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Preface

The International Symposium on Research in Attacks, Intrusion, and Defenses (RAID)
is celebrating its 20th anniversary this year! You have the proceedings of this event in
your hands and we hope you will enjoy it.

RAID was created to offer a venue for researchers looking at the emerging field of
intrusion detection. It was the follow up to the CMAD workshop (future directions in
Computer Misuse and Anomaly Detection), which was held for the fourth and last time
in 1996. CMAD was initiated by Becky Bace, who sadly passed away in 2017, and had
approached intrusion detection from both an operational as well as from an “intelli-
gence” point of view. RAID has grown in much the same spirit, expanding its scope
beyond the sole intrusion detection area, encouraging research on real-world problems,
fostering sound, thorough, and reproducible experiments, and building bridges to other
communities (e.g., measurement, networking, systems) that share these same values.
Twenty years later, RAID is a well-established international conference that enjoys
truly worldwide recognition. Hosted every year in a different location, it has alternated
between Europe and the USA with a few notable exceptions, including Australia
(2007), Saint Lucia (2013), and Japan (2015).

This year, RAID 2017 received 105 admissible submissions of which 21 were
accepted (20% acceptance rate). Each paper received at least 3 reviews and 43 papers
(41%) received two additional reviews to settle disagreements between the first three
reviewers, to answer questions raised during the online discussion phase, or to address
issues brought forth by the authors’ rebuttal. As in previous years, a double blind
reviewing process was used to ensure that the reviewers remained unaware of the
authors’ names and affiliations during the discussion. The final decision for each paper
was made during a face-to-face PC meeting following the IEEE Symposium on
Security and Privacy in San Jose (CA), in May 2017. More than two thirds of the PC
members attended that meeting.

The quality, diversity, and commitment of the Program Committee is paramount to
the success of any conference and, with RAID, we have striven to broaden the pool of
reviewers. Over the last ten years, an average of 50% of the members of the PC were
changed from year to year. Furthermore, this year, nearly a third of the new PC
members had never served on the RAID PC before, ensuring the healthy development
of the community by reaching out to external experienced reviewers. It is also worth
noting that RAID always tries to maintain a balance between industry and academia
within its PC members, as well as between the various geographies. This year, around
75% of the PC members came from academia and 25% from industry. Approximately
half of the members work in the USA, a bit less than a third in Europe, and the rest,
15%, were from the rest of the world, mostly Asia.

We endeavor to provide quality reviews to those who submit a paper to RAID and
we try to provide constructive feedback when a paper is unfortunately rejected. In order
to improve transparency, accepted papers are accompanied by a public summary,



which is available within the online proceedings as supplementary material. It briefly
explains the reasons why a given paper has been accepted but also, sometimes,
acknowledges some reservations expressed by members of the PC. We hope that these
open summaries will encourage future researchers to address the limitations identified
by the PC members and consider new directions for research.

In 2012, for the 15th anniversary of RAID, we began the process of awarding, every
five years, an “influential paper” award to a previously published paper at RAID that
has had a major influence on the community. This year’s award was given to the 2004
RAID paper by K. Wang and S.J. Stolfo, entitled “Anomalous Payload-Based network
intrusion detection.” That paper has been cited 869 times since its publication, which is
an average of 67 times per year, every year, since its publication, the highest yearly
average for every paper published at RAID since its creation.

RAID wouldn’t exist without the dedication of the reviewers, who play a special
role and spend a great deal of time reviewing papers, discussing them online, attending
the PC meeting, shepherding papers, etc. To express our gratitude to them, every year
RAID awards an “Outstanding Reviewer” prize. The winner is selected based on a
number of factors: the quality of the reviews as judged by the other reviewers (use-
fulness, technical depth, etc.), timeliness of the reviews, participation in the online
discussion and the face-to-face meeting, and the willingness to defend papers as
opposed to quickly discard them. While we had a difficult time identifying a winner
amongst so many excellent reviewers, it is with great pleasure that we announce that
this year the award goes to Jon Giffin, from Hewlett Packard Enterprise.

RAID only exists because of the community that supports it. Indeed, RAID is
completely self-funded. Every organizer independently shoulders the financial risks
associated with its organization. The sponsors, therefore, play a very important role and
ensure that the registration fees remain very reasonable. Therefore, we want to take this
opportunity to thank Spamhaus and Comcast for their generous sponsorships of RAID
2017. We, of course, are very grateful to the general chair, Manos Antonakakis, from
Georgia Tech, and his assembled team for ensuring that the conference ran smoothly.
Special thanks go to the local arrangement chair, Roberto Perdisci, University of
Georgia; to the publication chair, Michalis Polychronakis, from Stony Brook Univer-
sity; to the publicity chair, Nick Nikiforakis, from Stony Brook University; to the
sponsor chair, Yacin Nadji, from Georgia Tech; to the local infrastructure chair,
William R. Garrison, from Georgia Tech; and to the poster chair and webmaster, Chaz
Lever, from Georgia Tech.

Happy Birthday, RAID. We all look forward for many more years to come.

September 2017 Marc Dacier
Michael Bailey
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VDF: Targeted Evolutionary Fuzz Testing
of Virtual Devices

Andrew Henderson1(B), Heng Yin2, Guang Jin1, Hao Han1,
and Hongmei Deng1

1 Intelligent Automation, Inc., Rockville, MD 20855, USA
hendersa@icculus.org, {gjin,hhan,hdeng}@i-a-i.com

2 University of California, Riverside, CA 92521, USA
heng@cs.ucr.edu

Abstract. As cloud computing becomes more and more prevalent, there
is increased interest in mitigating attacks that target hypervisors from
within the virtualized guest environments that they host. We present
VDF, a targeted evolutionary fuzzing framework for discovering bugs
within the software-based virtual devices implemented as part of a hyper-
visor. To achieve this, VDF selectively instruments the code of a given
virtual device, and performs record and replay of memory-mapped I/O
(MMIO) activity specific to the virtual device. We evaluate VDF by
performing cloud-based parallel fuzz testing of eighteen virtual devices
implemented within the QEMU hypervisor, executing over two billion
test cases and revealing over one thousand unique crashes or hangs in
one third of the tested devices. Our custom test case minimization algo-
rithm further reduces the erroneous test cases into only 18.57% of the
original sizes on average.

Keywords: Virtualization · Fuzzing · Device testing · Security

1 Introduction

As cloud computing becomes more prevalent, the usage of virtualized guest sys-
tems for rapid and scalable deployment of computing resources is increasing.
Major cloud service providers, such as Amazon Web Services (AWS), Microsoft
Azure, and IBM SoftLayer, continue to grow as demand for cloud computing
resources increases. Amazon, the current market leader in cloud computing,
reported that AWS’s net sales exceeded 7.88 billion USD in 2015 [2], which
demonstrates a strong market need for virtualization technology.

This popularity has led to an increased interest in mitigating attacks that tar-
get hypervisors from within the virtualized guest environments that they host.

This document has been approved for public release: 88ABW-2016-3973.

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-66332-6 1) contains supplementary material, which is available to
authorized users.
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Unfortunately, hypervisors are complex pieces of software that are difficult to test
under every possible set of guest runtime conditions. Virtual hardware devices
used by guests, which are hardware peripherals emulated in software (rather than
directly mapping to physical devices on the host system), are particularly com-
plex and a source of numerous bugs [3–6]. This has led to the ongoing discovery
of vulnerabilities that exploit these virtual devices to access the host.

Because virtual devices are so closely associated with the hypervisor, if not
integrated directly into it, they execute at a higher level of privilege than any
code executing within the guest environment. They are not part of the guest
environment, per se, but they are privileged subsystems that the guest environ-
ment directly interacts with. Under no circumstances should activity originating
from within the guest be able to attack and compromise the hypervisor, so effec-
tively identifying potential vulnerabilities in these virtual devices is a difficult,
but valuable, problem to consider. However, these virtual devices are written by
a number of different authors, and the most complex virtual devices are imple-
mented using thousands of lines of code. Therefore, it is desirable to discover
an effective and efficient method to test these devices in a scalable and auto-
mated fashion without requiring expert knowledge of each virtual device’s state
machine and internal details.

Such issues have led to a strong interest in effectively testing virtual device
code [9,28] to discover bugs or other behaviors that may lead to vulnerabilities.
However, this is a non-trivial task as virtual devices are often tightly coupled
to the hypervisor codebase and may need to pass through a number of device
initialization states (i.e. BIOS and guest kernel initialization of the device) before
representing the device’s state within a running guest system.

Evolutionary fuzzing techniques (e.g., AFL [38]) has gained its popularity
recently for its effectiveness in discovering crashes and hangs. It is widely used
in industry, and most finalists in the DARPA Cyber Grand Challenge used it
for vulnerability discovery. Several academic research papers soon appeared to
further improve the effectiveness of evolutionary fuzzing, such as AFLFast [21],
VUzzer [33], Driller [35], and DeepFuzz [22]. While these efforts greatly improve
the state-of-the-art, they aim at finding defects within the entire user-level pro-
gram, and cannot be directly applied to find bugs in virtual devices, for several
reasons. First of all, the fuzz testing must be targeted at specific virtual device
code, which is a rather small portion of the entire hypervisor code base. It must
be in-situ as well, as virtual devices frequently interact with the rest of the
hypervisor code. Last but not least, it must be stateful, since virtual devices
need to be properly initialized and reach certain states to trigger defects.

To address these unique challenges, we propose Virtual Device Fuzzer (VDF),
a novel fuzz testing framework that provides targeted fuzz testing of interesting
subsystems (virtual devices) within complex programs. VDF enables the testing
of virtual devices within the context of a running hypervisor. It utilizes record
and replay of virtual device memory-mapped I/O (MMIO) activity to create
fuzz testing seed inputs that are guaranteed to reach states of interest and ini-
tialize each virtual device to a known good state from which to begin each test.
Providing proper seed test cases to the fuzzer is important for effective exploring
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the branches of a program [25,34], as a good starting seed will focus the fuzzer’s
efforts in areas of interest within the program. VDF mutates these seed inputs
to generate and replay fuzzed MMIO activity to exercise additional branches of
interest.

As a proof of concept, we utilize VDF to test a representative set of eighteen
virtual devices implemented within the QEMU whole-system emulator [19], a
popular type-2 hypervisor that uses a virtualized device model. Whether QEMU
completely emulates the guest CPU or uses another hypervisor, such as KVM [10]
or Xen [18], to execute guest CPU instructions, hardware devices made available
to the guest are software-based devices implemented within QEMU.

In summary, this paper makes the following contributions:

– We propose and develop a targeted, in-situ fuzz testing framework for virtual
devices.

– We evaluate VDF by testing eighteen QEMU virtual devices, executing over
2.28 billion test cases in several parallel VDF instances within a cloud envi-
ronment. This testing discovered a total of 348 crashes and 666 hangs within
six of the tested virtual devices. Bug reports and CVEs have been reported
to the QEMU maintainers where applicable.

– We devise a testcase minimization algorithm to reduce each crash/hang test
case to a minimal test case that still reproduces the same bug. The average
test case is reduced to only 18.57% of its original size, greatly simplifying the
analysis of discovered bugs and discovering duplicate test cases that reproduce
the same bug. We also automatically generate source code suitable for repro-
ducing the activity of each test case to aid in the analysis of each discovered
bug.

– We analyze the discovered bugs and organize them into four categories: excess
host resource usage, invalid data transfers, debugging asserts, and multi-
threaded race conditions.

2 Background

Within QEMU, virtual device code registers callback functions with QEMU’s
virtual memory management unit (MMU). These callback functions expose vir-
tual device functionality to the guest environment and are called when specific
memory addresses within the guest memory space are read or written. QEMU
uses this mechanism to implement memory-mapped I/O (MMIO), mimicking
the MMIO mechanism of physical hardware.

We have identified a model for guest activity that attempts to attack these
virtual devices:

1. The virtual device is correctly instantiated by the hypervisor and made avail-
able to the guest environment.

2. The virtual device is correctly initialized via the guest’s BIOS and OS kernel
and is brought to a stable state during the guest boot process. Any needed
guest kernel device drivers have been loaded and initialized.
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3. Once the guest boots, the attacker acquires privileged access within the guest
and attempts to attack the virtual devices via memory reads/writes to the
MMIO address(es) belonging to these virtual devices.

Unfortunately, it is non-trivial to perform large-scale testing of virtual devices
in a manner analogous to this model. The read/write activity would originate
from within the guest environment, requiring the guest to completely boot and
initialize prior to performing a test1. Because any read/write to a virtual device
control register may change the internal state of the device, the device must be
returned to a known good “just initialized” state prior to the start of each test.

While utilizing virtual machine (VM) state snapshots to save and restore the
state of the guest is a potential solution, the time required to continually restore
the state of the guest to a known good state makes this approach inefficient for
large-scale testing. Consider the megabytes of system state data (guest RAM,
CPU state, and device state and internal cache storage) required to restore a
running VM to a known state. Even when ignoring the time required to retrieve
such state information from secondary storage, megabytes of data within the
snapshot must still be unserialized and placed into hypervisor data structures
prior to the start of each test.

2.1 Understanding Guest Access of Virtual Devices

The flow of activity for virtual device access from within QEMU is shown in
Fig. 1. This figure shows a KVM-accelerated QEMU hypervisor configuration.
The guest environment executes within QEMU, and the virtual devices are pro-
vided to the guest by QEMU. CPU instruction execution and memory accesses,
however, are serviced by the KVM hypervisor running within the host system’s
Linux kernel. A request is made from a guest process (a) and the guest kernel
accesses the device on the process’s behalf (b). This request is passed through
QEMU’s KVM interface to the KVM kernel module in the host’s kernel. KVM
then forwards the request to a QEMU virtual device (c). The virtual device
responds (d) and the result is provided to the guest kernel (e). Finally, the guest
process receives a response from the guest kernel (f).

Unlike the standard 0–3 ring-based protection scheme used by x86 platforms,
virtualized systems contain two sets of rings: rings 0 through 3 on the host, and
rings 0’ through 3’ on the guest. The rings within the guest are analogous to
their counterparts on the host with one exception: the highest priority guest ring
(ring 0’) is at a lower priority than the lowest priority ring on the host (ring 3).
While a guest environment may be compromised by malicious software, it is still
safely contained within a virtualized environment. However, if malware were to
compromise the hypervisor and gain host ring 3 privileges, it would effectively
“break out” of the virtualization and gain the opportunity to attack the host.

1 QEMU provides the qtest framework to perform arbitrary read/write activity with-
out the guest. We discuss qtest, and its limitations when fuzz testing, in Sect. 3.
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Fig. 1. Device access process for a device request originating from inside of a
QEMU/KVM guest. Note that the highest level of privilege in the guest (ring 0’)
is still lower than that of the QEMU process (ring 3).

2.2 Understanding Memory Mapped I/O

Both physical and virtual peripherals provide one or more registers that control
their behavior. By accessing these control registers, the hardware is instructed
to perform tasks and provide information about the current state of the device.
Each device’s control registers are organized into one or more register banks.
Each register bank is mapped to a contiguous range of guest physical memory
locations that begin at a particular base address. To simplify interaction with
these control registers, the registers are accessed via normal memory bus activity.
From a software point of view, hardware control registers are accessed via reads
and writes to specific physical memory addresses.

The x86 family of processors is unique because it also provides port I/O-
specific memory (all memory addresses below 0x10000) that cannot be accessed
via standard memory reads and writes [29]. Instead, the x86 instruction set pro-
vides two special I/O-specific instructions, IN and OUT, to perform 1, 2, or 4
byte accesses to port I/O memory. Other common architectures, such as Alpha,
ARM, MIPS, and SPARC, do not have this port I/O memory region and treat all
control register accesses as regular memory-mapped I/O. For simplicity in our
discussion, we use port-mapped I/O (PMIO) and memory-mapped I/O inter-
changeably throughout this paper.

Figure 2 shows where MMIO devices are mapped in guest physical memory on
x86-based systems. PCI-based PMIO mappings occur in the addresses ranging
from 0xC000 through 0xFFFF, with ISA-based devices mapped into the sub-
0xC000 range. PCI devices may also expose control registers or banks of device
RAM or ROM in the PCI “hole” memory range 0xE0000000-0xFFFFFFFF.

While some ISA devices are historically mapped to specific addresses (for
example, 0x3F8 for the COM1 serial port), other ISA devices can be configured
to use one or more of a small set of selectable base addresses to avoid conflicts
with other devices. PCI devices are far more flexible in the selection of their
address mapping. At boot, the BIOS queries the PCI bus to enumerate all PCI
devices connected to the bus. The number and sizes of the control register banks
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Fig. 2. The x86 address space layout for port- and memory-mapped I/O.

needed by each PCI device are reported to the BIOS. The BIOS then determines
a memory-mapping for each register bank that satisfies the MMIO needs of all
PCI devices without any overlap. Finally, the BIOS instructs the PCI bus to
map specific base addresses to each device’s register banks using the PCI base
address registers (BARs) of each device.

However, PCI makes the task of virtual device testing more difficult. By
default, the BARs for each device contain invalid addresses. Until the BARs
are initialized by the BIOS, PCI devices are unusable. The PCI host controller
provides two 32-bit registers in the ISA MMIO/PMIO address space for con-
figuring each PCI device BAR2. Until the proper read/write sequence is made
to these two registers, PCI devices remain unconfigured and inaccessible to the
guest environment. Therefore, configuring a virtual PCI-based device involves
initializing both the state of the PCI bus and the virtual device.

3 Fuzzing Virtual Devices

3.1 Evolutionary Fuzzing

Fuzzing mutates seed input to generate new test case inputs which execute new
paths within a program. Simple fuzzers naively mutate seed inputs without any
knowledge of the program under test, treating the program as a “black box”.
In comparison, evolutionary fuzzing, such as AFL [38] can insert compile-time
instrumentation into the program under test. This instrumentation, placed at
every branch and label within the instrumented program, tracks which branches
have been taken when specific inputs are supplied. Such evolutionary fuzzing is
much more effective at exploring new branches.

If AFL generates a test case that covers new branches, that test case becomes
a new seed input. As AFL continues to generate new seeds, more and more states
of the program are exercised. Unfortunately, all branches are considered to be of

2 CONFIG ADDRESS at 0xCF8 and CONFIG DATA at 0xCFC [11].
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equal priority during exploration, so uninteresting states are explored as readily
as interesting states are. This leads to a large number of wasted testing cycles as
uninteresting states are unnecessarily explored. Therefore, VDF modifies AFL
to only instrument the portions of the hypervisor source code that belong to
the virtual device currently being tested. This effectively makes AFL ignore the
remainder of the hypervisor codebase when selectively mutating seed inputs.

AFL maintains a “fuzz bitmap”, with each byte within the bitmap repre-
senting a count of the number of times a particular branch within the fuzzed
program has been taken. AFL does not perform a one-to-one mapping between
a particular branch and a byte within the bitmap. Instead, AFL’s embedded
instrumentation places a random two-byte constant ID into each branch. When-
ever execution reaches an instrumented branch, AFL performs an XOR of the new
branch’s ID and the last branch ID seen prior to arriving at the new branch. This
captures both the current branch and the unique path taken to reach it (such
as when the same function is called from multiple locations in the code). AFL
then applies a hashing function to the XOR’d value to determine which entry in
the bitmap represents that branch combination. Whenever a particular branch
combination is exercised, the appropriate byte is incremented within the bitmap.

VDF modifies AFL to use a much simpler block coverage mechanism that
provides a one-to-one mapping between a particular instrumented branch and
a single entry in the bitmap. Because VDF selectively instruments only the
branches within a virtual device, the bitmap contains more than enough entries
to dedicate an entry to each instrumented branch3. VDF’s modifications do away
with the XORing of IDs and AFL’s hash function. Instead, IDs are assigned lin-
early, simplifiying the ground truth determination of whether a particular branch
has been reached during testing while guaranteeing that no IDs are duplicated.

Thus, AFL takes a general purpose approach towards fuzzing/exploring all
branches within a program. VDF’s modified AFL takes a more focused approach
that constrains fuzzing to only the branches of interest in a program. VDF’s
approach eliminates the possibility of ambiguous branch coverage, which is still
possible to experience with an unmodified AFL.

3.2 VDF Workflow

Figure 3 shows the three-step flow used by VDF when testing a virtual device.
In the first step, virtual device activity is recorded while the device is being
exercised. This log of activity includes any initialization of PCI BARs for the
virtual device via the PCI host controller (if needed), initialization of any internal
device registers, and any MMIO activity that exercises the virtual device. This
log is saved to disk and becomes the seed input for the fuzzer. This collection of
seed input is described further in Sect. 3.3.

In the second step, the collected virtual device read/write activity is then pro-
vided as seed data to AFL. Multiple AFL instances can be launched in parallel,
with one required master instance and one or more optional slave instances. The

3 VDF still uses a two-byte branch ID, allowing for 65536 unique branches to be
instrumented. In practice, this is more than adequate for virtual device testing.
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Fig. 3. VDF’s process for performing fuzz testing of QEMU virtual devices.

primary difference between master and slave instances is that the master uses a
series of sophisticated mutation strategies (bit/byte swapping, setting bytes to
specific values like 0x00 and 0xFF, etc.) to explore the program under test. Slave
instances only perform random bit flips throughout the seed data.

Once the seed input has been mutated into a new test case, a new QEMU
instance is spawned by AFL. VDF replays the test case in the new QEMU
instance and observes whether the mutated data has caused QEMU to crash or
hang. VDF does not blindly replay events, but rather performs strict filtering
on the mutated seed input during replay. The filter discards malformed events,
events describing a read/write outside the range of the current register bank,
events referencing an invalid register bank, etc. This prevents mutated data
from potentially exercising memory locations unrelated to the virtual device
under test. If a test case causes a crash or hang, the test case is logged to disk.

Finally, in the third step, each of the collected crash and hang test cases is
reduced to a minimal test case capable of reproducing the bug. Both a minimized
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test case and source code to reproduce the bug are generated. The minimization
of test cases is described further in Sect. 3.5.

3.3 Virtual Device Record and Replay

Fuzzing virtual devices is difficult because they are stateful. It is necessary to
traverse an arbitrarily large number of states within both the virtual device
and the remainder of the hypervisor prior to reaching a desired state within the
virtual device. Because each virtual device must be initialized to a known good
start state prior to each test, VDF uses record and replay of previous virtual
device activity to prepare the device for test and then perform the test itself.

First, VDF records any guest reads or writes made to the virtual device’s
control registers when the device is initialized during guest OS boot4. This cap-
tures the setup performed by the BIOS (such as PCI BAR configuration), device
driver initialization in the kernel, and any guest userspace process interaction
with the device’s kernel driver. Table 1 shows the different sources of initializa-
tion activity used by VDF when recording device activity during our testing.

Table 1. QEMU virtual devices seed data sources.

Device class Device Seed data source

Audio AC97 Linux guest boot with ALSA [1] speaker-test

CS4231a

ES1370

Intel-HDA

SoundBlaster 16

Block Floppy qtest test case

Char Parallel Linux guest boot with directed console output

Serial

IDE IDE Core qtest test case

Network EEPro100 (i82550) Linux guest boot with ping of IP address

E1000 (82544GC)

NE2000 (PCI)

PCNET (PCI)

RTL8139 qtest test case

SD Card SD HCI Linux guest boot with mounted SDHCI volume

TPM TPM Linux guest boot with TrouSerS test suite [16]

Watchdog IB700 qtest test case

16300ESB Linux guest boot

4 If only a minimal amount of recorded activity is required, VDF can capture initial-
ization activity via executing a QEMU qtest test case.
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Second, the recorded startup activity is partitioned into two sets: an init set
and a seed set. The init set contains any seed input required to initialize the
device for testing, such as PCI BAR setup, and the activity in this set will never
be mutated by the fuzzer. VDF plays back the init set at the start of each test
to return the device to a known, repeatable state. The seed set contains the seed
input that will be mutated by the fuzzer. It can be any read/write sequence
that exercises the device, and it usually originates from user space activity that
exercises the device (playing an audio file, pinging an IP address, etc.).

Even with no guest OS booted or present, a replay of these two sets returns
the virtual device to the same state that it was in immediately after the reg-
ister activity was originally recorded. While the data in the sets could include
timestamps to ensure that the replay occurs at the correct time intervals, VDF
does not do this. Instead, VDF takes the simpler approach of advancing the vir-
tual clock one microsecond for each read or write performed. The difficulty with
including timestamps within the seed input is that the value of the timestamp is
too easily mutated into very long virtual delays between events. While it is true
that some virtual device branches may only be reachable when a larger virtual
time interval has passed (such as interrupts that are raised when a device has
completed performing some physical event), our observation is that performing
a fixed increment of virtual time on each read or write is a reasonable approach.

Event Record Format. VDF event records contain three fields: a header
field, base offset field, and data written field. This format captures all data
needed to replay an MMIO event and represents this information in a compact
format requiring only 3–8 bytes per event. The compactness of each record is
an important factor because using a smaller record size decreases the number of
bits that can potentially be mutated.

The header is a single byte that captures whether the event is a read or write
event, the size of the event (1, 2, or 4 bytes), and which virtual device register
bank the event takes place in. The base offset field is one to three bytes in size
and holds the offset from the base address. The size of this field will vary from
device to device, as some devices have small register bank ranges (requiring only
one byte to represent an offset into the register bank) and other devices map
much larger register banks and device RAM address ranges (requiring two or
three bytes to specify an offset). The data field is one or four bytes in size and
holds the data written to a memory location when the header field specifies a
write operation. Some devices, such as the floppy disk controller and the serial
port, only accept single byte writes. Most devices accept writes of 1, 2, or 4
bytes, requiring a 4 byte field for those devices to represent the data. For read
operations, the data field is ignored.

While VDF’s record and replay of MMIO activity captures the interaction
of the guest environment with virtual devices, some devices may make use of
interrupts and DMA. However, we argue that such hardware events are not
necessary to recreate the behavior of most devices for fuzz testing. Interrupts
are typically produced by a virtual device, rather than consumed, to alert the
guest environment that some hardware event has completed. Typically, another
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read or write event would be initiated by the guest in reaction to an interrupt, but
since we record all this read/write activity, the guest’s response to the interrupt
is captured without explicitly capturing the interrupt.

DMA events copy data between guest and device RAM. DMA copies typically
occur when buffers of data must be copied and the CPU isn’t needed to copy
this data byte-by-byte. Our observation is that if we are only copying data to
be processed, it is not actually necessary to place legitimate data at the correct
location within guest RAM and then copy it into the virtual device. It is enough
to say that the data has been copied and then move onto the next event. While
the size of data and alignment of the data may have some impact on the behavior
of the virtual device, such details are outside the scope of this paper.

Recording Virtual Device Activity. Almost every interaction between the
guest environment and virtual devices occurs via virtual device callback func-
tions. These functions are registered with QEMU’s MMU and are triggered by
MMIO activity from the guest. Such callback functions are an ideal location to
record the virtual device’s activity. Rather than attempt to capture the usage of
each device by reconstructing the semantics of the guest’s kernel and memory
space, we capture device activity at the point of the hardware interface that
is provided to software. In fact, we have no immediate need to understand the
details of the guest environment as the virtual devices execute at a level above
that of even the guest’s BIOS or kernel. By placing recording logic in these
callback functions, VDF is able to instrument each virtual device by manually
adding only 3–5 LOC of recording logic to each MMIO callback function.

Playback of Virtual Device Activity. Once VDF has recorded a stream of
read/write events for a virtual device, it must replay these events within the con-
text of a running QEMU. Because QEMU traverses a large number of branches
before all virtual devices are instantiated and testing can proceed, it isn’t possi-
ble to provide the event data to QEMU via the command line. The events must
originate from within the guest environment in the form of memory read/write
activity. Therefore, QEMU must be initialized before performing event replay.

QEMU provides qtest, which is a lightweight framework for testing virtual
devices. qtest is a QEMU accelerator, or type of execution engine. Common
accelerators for QEMU are TCG (for the usage of QEMU TCG IR) and KVM
(for using the host kernel’s KVM for hardware accelerated execution of guest
CPU instructions). The qtest framework works by using a test driver process
to spawn a separate QEMU process which uses the qtest accelerator. The qtest
accelerator within QEMU communicates with the test driver process via IPC.
The test driver remotely controls QEMU’s qtest accelerator to perform guest
memory read/write instructions to virtual devices exposed via MMIO. Once the
test is complete, the test driver terminates the QEMU process.

While the qtest accelerator is convenient, it is inadequate for fuzz testing for
two reasons. First, the throughput and timing of the test is slowed because of
QEMU start-up and the serialization, deserialization, and transfer time of the
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IPC protocol. Commands are sent between the test driver and QEMU as plain-
text messages, requiring time to parse each string. While this is not a concern
for the virtual clock of QEMU, wall clock-related issues (such as thread race
conditions) are less likely to be exposed.

Second, qtest does not provide control over QEMU beyond spawning the new
QEMU instance and sending control messages. It is unable to determine exactly
where a hung QEMU process has become stuck. A hung QEMU also hangs the
qtest test driver process, as the test driver will continue to wait for input from the
non-responsive QEMU. If QEMU crashes, qtest will respond with the feedback
that the test failed. Reproducing the test which triggers the crash may repeat
the crash, but the analyst still has to attach a debugger to the spawned QEMU
instance prior to the crash to understand the crash.

VDF seeks to automate the discovery of any combination of virtual device
MMIO activity that triggers a hang or crash in either the virtual device or some
portion of the hypervisor. qtest excels at running known-good, hard-coded tests
on QEMU virtual devices for repeatable regression testing. But, it becomes less
useful when searching for unknown vulnerabilities, which requires automatically
generating new test cases that cover as many execution paths as possible.

To address these shortcomings, we have developed a new fuzzer QEMU accel-
erator, based upon qtest, for VDF’s event playback. This new accelerator adds
approximately 850 LOC to the QEMU codebase. It combines the functionality of
the qtest test driver process and the qtest accelerator within QEMU, eliminating
the need for a separate test driver process and the IPC between QEMU and the
test driver. More importantly, it allows VDF to directly replay read/write events
as if the event came directly from within a complete guest environment.

3.4 Selective Branch Instrumentation

Fuzz testing must explore as many branches of interest as possible, so determin-
ing the coverage of those branches during testing is a metric for measuring the
thoroughness of each testing session. While the code within any branch may host
a particular bug, execution of the branch must be performed to trigger the bug.
Thus, reaching more branches of interest increases the chances that a bug will be
discovered. However, if the fuzzer attempts to explore every branch it discovers,
it can potentially waste millions of tests exploring uninteresting branches.

To address this issue, VDF leverages the instrumentation capabilities of
AFL to selectively place instrumentation in only the branches of interest (those
belonging to a virtual device). By default, the compiler toolchain supplied with
AFL instruments programs built using it. VDF modifies AFL to selectively
instrument only code of interest within the target program. A special compile-
time option has been added to AFL’s toolchain, and only branches in source files
compiled with this flag are instrumented. Other files will have uninstrumented
branches that are ignored by the fuzzer as they are seen as (very long) basic
blocks of instructions that occur between instrumented branches.

Prior to the start of each testing session, VDF dumps and examines all func-
tion and label symbols found in the instrumented hypervisor. If a symbol is
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found that maps to an instrumented branch belonging to the current virtual
device under test, the name, address, and AFL branch ID (embedded in the
symbol name) of the symbol are stored and mapped to the symbol’s location
in the fuzz bitmap. At any point during testing, the AFL fuzz bitmap can be
dumped using VDF to provide ground truth of exactly which branches have been
covered.

static void voice_set_active (AC97LinkState *s, int bm_index, int on) {
switch (bm_index) {
case PI_INDEX:

AUD_set_active_in (s->voice_pi, on);
break;

case PO_INDEX:
AUD_set_active_out (s->voice_po, on);
break;

case MC_INDEX:
AUD_set_active_in (s->voice_mc, on);
break;

default:
AUD_log ("ac97",

"invalid bm_index(%d) in voice_set_active",
bm_index);

break;
}

}
ID: COVERED: ADDRESS: SYMBOL: LINE:
--- -------- -------- ------- -----
00c COVER 002e92e0 voice_set_active 296
00d COVER 002e9324 REF_LABEL__tmp_ccBGk9PX_s__27_39 296
00e COVER 002e9368 REF_LABEL__tmp_ccBGk9PX_s__28_40 296
00f UNCOVER 002e93a4 REF_LABEL__tmp_ccBGk9PX_s__29_41 296

Fig. 4. A sample of the branch coverage data for the AC97 virtual device.

Figure 4 shows an example of the coverage information report that VDF
provides. This example shows both the original source code for a function in the
AC97 audio virtual device (top) and the generated branch coverage report for
that function (bottom). The report provides two pieces of important information.
The first is the ground truth of which branches are instrumented, including their
address within the binary, the symbol associated with the branch (inserted by
the modified AFL), and the original source file line number where the branch’s
code is located. The second is whether a particular branch has been visited yet.

The four branches listed in the report are associated with the four cases in the
switch statement of the voice set active() function, which is located on line
296 in the source file. An analyst familiar with the internals of the AC97 virtual
device could review this report and then devise new seed inputs to trigger any
unexplored branches. Thus, such reports are useful for not only an understanding
of which branches have been reached, but they also providing insight into how
unexplored virtual device branches might be reached.

3.5 Creation of Minimal Test Cases

Once VDF detects either a crash or a hang in a virtual device, the test case that
produced the issue is saved for later examination. This test case may contain a
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large amount of test data that is not needed to reproduce the discovered issue,
so it is desirable to reduce this test case to the absolute minimum number of
records needed to still trigger the bug. Such a minimal test case simplifies the
job of the analyst when using the test case to debug the underlying cause.

AFL provides a test case minimization utility called afl-tmin. afl-tmin
seeks to make the test case input smaller while still following the same path of
execution through the binary. Unfortunately, this will not be useful for reducing
the test cases recorded by VDF, which is only interested in reaching the state
in which a crash/hang occurs. It has no interest in reaching every state in the
test case, but only the states necessary to reach the crash/hang state. Therefore,
VDF performs a three-step test case post-processing, seen in Fig. 5, to produce
a minimal test case which passes through a minimimal number of states from
any test case shown to reproduce an issue.

Fig. 5. The test case minimization process.

First, the test case file is read into memory and any valid test records in the
test case are placed into an ordered dataset in the order in which they appear
within the test case. Because the fuzzer lacks semantic understanding of the
fields within these records, it produces many records via mutation that contain
invalid garbage data. Such invalid records may contain an invalid header field,
describe a base offset to a register outside of the register bank for the device,
or simply be a truncated record at the end of the test case. After this filtering
step, only valid test records remain.
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Second, VDF eliminates all records in the dataset that are located after the
point in the test case where the issue is triggered. To do this, it generates a
new test case using all but the last record of the dataset and then attempts to
trigger the issue using this truncated test case. If the issue is still triggered, the
last record is then removed from the dataset and another new truncated test
case is generated in the same fashion. This process is repeated until a truncated
test case is created that no longer triggers the issue, indicating that all dataset
records located after the issue being triggered are now removed.

Third, VDF eliminates any remaining records in the dataset that are not
necessary to trigger the issue. Beginning with the first record in the dataset,
VDF iterates through each dataset record, generating a new test case using all
but the current record. It then attempts to trigger the issue using this generated
test case. If the issue is still triggered, the current record is not needed to trigger
the issue and is removed from the dataset. Once each dataset record has been
visited and the unnecessary records removed, the dataset is written out to disk
as the final, minimized test case. In addition, source code is generated that is
suitable for reproducing the minimized dataset as a qtest testcase.

While simple, VDF’s test case minimization is very effective. The 1014 crash
and hang test cases produced by the fuzzer during our testing have an average
size of 2563.5 bytes each. After reducing these test cases to a minimal state,
the average test case size becomes only 476 bytes, a mere 18.57% of the original
test case size. On average, each minimal test case is able to trigger an issue by
performing approximately 13 read/write operations. This average is misleadingly
high due to some outliers, however, as over 92.3% of the minimized test cases
perform fewer than six MMIO read/write operations.

4 Evaluation

The configuration used for all evaluations is a cloud-based 8-core 2.0 GHz Intel
Xeon E5-2650 CPU instance with 8 GB of RAM. Each instance uses a minimal
server installation of Ubuntu 14.04 Linux as its OS. Eight cloud instances were
utilized in parallel. Each device was fuzzed within a single cloud instance, with
one master fuzzer process and five slave fuzzer processes performing the testing.
A similar configuration was used for test case minimization: each cloud instance
ran six minimizer processes in parallel to reduce each crash/hang test case.

We selected a set of eighteen virtual devices, shown in Table 2, for our evalu-
ation of VDF. These virtual devices utilize a wide variety of hardware features,
such as timers, interrupts, and DMA. Each of these devices provides one or
more MMIO interfaces to their control registers, which VDF’s fuzzing acceler-
ator interacts with. All devices were evaluated using QEMU v2.5.05, with the
exception of the TPM device. The TPM was evaluated using QEMU v2.2.50
with an applied patchset that provides a libtpms emulation [20] of the TPM

5 US government approval for the engineering and public release of the research shown
in this paper required a time frame of approximately one year. The versions of QEMU
identified for this study were originally selected at the start of that process.
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Table 2. QEMU virtual devices tested with VDF.

Device class Device Branches

of interest

Initial

coverage

Final

coverage

Crashes

found

Hangs

found

Tests per

instance

Test

duration

Audio AC97 164 43.9% 53.0% 87 0 24.0M 59d 18 h

CS4231a 109 5.5% 56.0% 0 0 29.3M 65d 12 h

ES1370 165 50.9% 72.7% 0 0 30.8M 69d 18 h

Intel-HDA 273 43.6% 58.6% 238 0 23.1M 59d 12 h

SoundBlaster

16

311 26.7% 81.0% 0 0 26.7M 58d 13 h

Block Floppy 370 44.9% 70.5% 0 0 21.0M 57d 15 h

Char Parallel 91 30.8% 42.9% 0 0 14.6M 25d 12 h

Serial 213 2.3% 44.6% 0 0 33.0M 62d 12 h

IDE IDE Core 524 13.9% 27.5% 0 0 24.9M 65d 6 h

Network EEPro100

(i82550)

240 15.8% 75.4% 0 0 25.7M 62d 12 h

E1000

(82544GC)

332 13.9% 81.6% 0 384 23.9M 61d

NE2000 (PCI) 145 39.3% 71.7% 0 0 25.2M 58d 13 h

PCNET (PCI) 487 11.5% 36.1% 0 0 25.0M 58d 13 h

RTL8139 349 12.9% 63.0% 0 6 24.2M 58d 12 h

SD Card SD HCI 486 18.3% 90.5% 14 265 24.0M 62d

TPM TPM 238 26.1% 67.3% 9 11 2.1M 36d 12 h

Watchdog IB700 16 87.5% 100.0% 0 0 0.3M 8h

I6300ESB 76 43.4% 68.4% 0 0 2.1M 26 h

hardware device [23]. Fewer than 1000 LOC were added to each of these two
QEMU codebases to implement both the fuzzer accelerator and any recording
instrumentation necessary within each tested virtual device.

VDF discovered noteworthy bugs in six virtual devices within the evaluation
set, including a known denial-of-service CVE [7] and a new, previously undis-
covered denial-of-service CVE [8]. Additional bugs were discovered relating to
memory management and thread-race conditions, underscoring VDF’s ability to
discover bugs of a variety of natures utilizing the same techniques and principles.

4.1 Virtual Device Coverage and Bug Discovery

During our testing with VDF, we collected four metrics to aid in our under-
standing of both the speed and magnitude of VDF’s coverage. These metrics
are (1) the number of branches covered by the initial seed test case; (2) the
total number of branches in the virtual device; (3) the current total number
of branches covered (updated at one minute intervals); and (4) the percentage
of total bugs discovered during each cumulative day of testing. Taken together,
these metrics describe not only the total amount of coverage provided by VDF,
but also the speed at which coverage improves via fuzzing and how quickly it
discovers crash/hangs.

Figure 6 shows the average percentage of covered branches over cumulative
testing time. Of the eighteen tested virtual devices, 30.15% of the total branches
were covered by the initial seed test cases. After nine cumulative days of test-
ing (36 h of parallel testing with one master and five slave fuzzing instances),
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62.32% of the total branches were covered. The largest increase in average cov-
erage was seen during the first six cumulative hours of testing, where cover-
age increased from the initial 30.15% to 52.84%. After 2.25 days of cumulative
testing, average coverage slows considerably and only 0.43% more of the total
branches are discovered during the next 6.75 cumulative days of testing. While
eleven of the eighteen tested devices stopped discovering new branches after only
one day of cumulative testing, six of the seven remaining devices continued to
discover additional branches until 6.5 cumulative days had elapsed. Only in the
serial device were additional branches discovered after nine cumulative days.
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Fig. 6. Average percentage of branches covered (left) and average percentage of total
bugs discovered (right) over time during fuzz testing.

Table 2 presents some insightful statistics about coverage. The smallest
improvement in the percentage of coverage was seen in the AC97 virtual device
(9.1% increase), and the largest improvement in coverage was seen in the SDHCI
virtual device (72.2% increase). The smallest percentage of coverage for any vir-
tual device with discovered crashes/hangs was 53.0% (AC97), but eight others
had a greater level of coverage than 53.0% with no discovered crashes/hangs.

Figure 6 also shows the average percentage of discovered hangs/crashes over
cumulative testing time. As shown in Table 2, a total of 1014 crashes and hangs
were discovered in six virtual devices. These 1014 test cases were all discovered
within 27 days of cumulative testing for each device, with no additional test
cases being discovered after that point. Approximately 50% of all test cases
were discovered after four days of cumulative testing, with approximately 80%
of all test cases discovered after five days of cumulative testing.

One interesting insight is that even though the number of branches covered
is very close to its maximum after approximately 2.5 cumulative days of testing,
only approximately 25% of all crash/hang test cases were discovered at that
point in time. This shows that it is not necessarily an increase in branch coverage
that leads to the discovery of bugs, but rather the repeated fuzz testing of those
discovered branches.

4.2 Classification of All Discovered Virtual Device Bugs

While it is straightforward to count the number of discovered crash/hang test
cases generated by VDF, it is non-trivial to map these test cases to their
underlying cause without a full understanding of the virtual device under test.
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Our proposed test case minimization greatly simplifies this process, as many
unique bugs identified by VDF minimize to the same set of read/write oper-
ations. The ordering of these operations may differ, but the final read/write
that triggers the bug remains the same. Each discovered virtual device bug falls
into one of four categories: Excess resource usage (AC97), invalid data trans-
fers (E1000, RTL8139, SDHCI), debugging asserts (Intel-HDA), and thread race
conditions (TPM).

Excess Host Resource Usage. Host system resources must be allocated to
QEMU to represent the resources belonging to the guest environment. Such
resources include RAM to represent the physical RAM present on the guest, CPU
cores and cycles to perform CPU and virtual device emulation, and disk space
to hold the guest’s secondary storage. Additional resources may be allocated by
QEMU at runtime to meet the data needs of virtual devices, which presents a
potential opportunity for a malicious guest to trick QEMU into allocating large
amounts of unnecessary resources.

VDF discovered a crash while testing the AC97 audio virtual device, caused
by QEMU allocating approximately 500 MB of additional host memory when the
control register for AC97 MIC ADC Rate is set to an invalid, non-zero value. An
important observation on this type of resource bug is that it will easily remain
hidden unless the resource usage of the QEMU process is strictly monitored and
enforced. For example, using the Linux ulimit command to place a limit on the
virtual memory allocated to QEMU will discover this bug when the specified
memory limit is exceeded. VDF enforces such a limitation during its testing,
restricting the amount of virtual memory allocated to each QEMU instance.
Once this limit is exceeded, a SIGTRAP signal is raised and a crash occurs.

Allocating excessive resources for a single guest instance is typically not a
concern, but the potential impact increases greatly when considering a scenario
with large numbers of instances deployed within a cloud environment. Discov-
ering and correcting such bugs can have a measurable impact on the resource
usage of hosts implementing cloud environments. Cloud service providers must
allocate some amount of host hardware RAM and secondary storage to each
VM hosted on that hardware. Thus, each VM must have a resource quota that
is determined by the service provider and enforced by the host and hypervi-
sor. However, if this quota does not take into account the resources used by
the hypervisor itself, an excess host resource usage bug can potentially consume
considerable host resources. Therefore, we reported this as a bug to the QEMU
maintainers.

Invalid Data Transfers. Many virtual devices transfer blocks of data. Such
transfers are used to move data to and from secondary storage and guest physical
memory via DMA. However, invalid data transfers can cause virtual devices
to hang in an infinite loop. This type of bug can be difficult to deal with in
production systems as the QEMU process is still running while the guest’s virtual
clock is in a “paused” state. If queried, the QEMU process appears to be running
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and responsive. The guest remains frozen, causing a denial of service of any
processes running inside of the guest.

VDF discovered test cases that trigger invalid data transfer bugs in the E1000
and RTL8139 virtual network devices and the SDHCI virtual block device. In
each case, a transfer was initiated with either a block size of zero or an invalid
transfer size, leaving each device in a loop that either never terminates or exe-
cutes for an arbitrarily long period of time.

For the E1000 virtual device, the guest sets the device’s E1000 TDH and
E1000 TDT registers (TX descriptor head and tail, respectively) with offsets
into guest memory that designate the current position into a buffer contain-
ing transfer operation descriptors. The guest then initiates a transfer using
the E1000 TCTL register (TX control). However, if the values placed into the
E1000 TDH/TDL registers are too large, then the transfer logic enters an infinite
loop. A review of reported CVEs has shown that this issue was already discovered
in January 2016 [7] and patched [14].

For the RTL8139 virtual device, the guest resets the device via the ChipCmd
(chip control) register. Then, the TxAddr0 (transfer address), CpCmd (“C+” mode
command), and TxPoll (check transfer descriptors) registers are set to initiate
a DMA transfer in the RTL8139’s “C+” mode. However, if an invalid address
is supplied to the TxAddr0 register, QEMU becomes trapped in an endless loop
of DMA lookups. This was an undiscovered bug, which has been patched and
assigned CVE-2016-8910 [8] as a denial of service exploit.

For the SDHCI virtual device, the guest sets the device’s SDHC CMDREG reg-
ister bit for “data is present” and sets the block size to transfer to zero in the
SDHC BLKSIZE register. The switch case for SDHC BLKSIZE in the sdhci write()
MMIO callback function in hw/sd/sdhci.c performs a check to determine
whether the block size exceeds the maximum allowable block size, but it does
not perform a check for a block size of zero. Once the transfer begins, the device
becomes stuck in a loop, and the guest environment becomes unresponsive. Luck-
ily, fixes for this issue were integrated into mainline QEMU [12] in December 2015.

Debugging Asserts. While using an assert is a commonly-used debugging
technique in mature software codebases, asserts are used to catch a particular
case that should “never happen”. If that impossible case actually can happen as a
result of untrusted input, proper error-handling logic should be added to the code
to address it. Within the Intel-HDA audio device, the intel hda reg write()
function in hw/audio/intel-hda.c uses an assert call to trigger a SIGABRT
when a write is made to an address offset of 0 from the MMIO register base
address. VDF was able to trigger this assert, which we have reported as a bug
to the QEMU maintainers.

Thread Race Conditions. The virtual TPM in mainline QEMU is a pass-
through device to the host’s hardware TPM device. It is possible to implement a
TPM emulated in software using libtpms [20] and then have QEMU pass TPM
activity through to the emulated hardware. QEMU interacts with the separate



22 A. Henderson et al.

process implementing the TPM via RPC. However, it is also possible to integrate
libtpms directly into QEMU by applying a patchset provided by IBM [23]. This
allows each QEMU instance to “own” its own TPM instance and directly control
the start-up and shutdown of the TPM via a TPM backend in QEMU.

VDF discovered a hang that is the result of the TPM backend thread pool
shutdown occurring before the tasks allocated to the thread pool have all been
completed. Without an adequately long call to sleep() or usleep() prior to the
thread pool shutdown to force a context switch and allow the thread pool worker
threads to complete, the thread pool will hang on shutdown. Because the shut-
down of the TPM backend is registered to be called at exit() via an atexit()
call, any premature exit() prior to the necessary sleep() or usleep() call will
trigger this issue. QEMU’s signal handlers are never unregistered, so using a
SIGTERM signal to kill QEMU is unsuccessful.

Note that this thread pool is part of the TPM backend design in QEMU,
and is not part of the libtpms library that implements the actual TPM emula-
tor. Most likely this design decision was made to avoid any noticeable slowdown
in QEMU’s execution by making the TPM virtual device run in an asynchro-
nous manner to avoid any performance impact caused by performing expensive
operations in the software TPM. Other newer TPM pass-through options, such
as the Character in User Space (CUSE) device interface to a stand-alone TPM
emulator using libtpms [13], should not experience this particular issue.

5 Related Work

Fuzzing has been a well-explored research topic for a number of years. The
original fuzzing paper [32] used random program inputs as seed data for testing
Unix utilities. Later studies on the selection of proper fuzzing seeds [25,34] and
the use of concolic fuzzing to discover software vulnerabilities [17] have both been
used to improve the coverage and discovery of bugs in programs undergoing fuzz
testing. By relying on the record and replay of virtual device activity, VDF
provides proper seed input that is known to execute branches of interest.

Frameworks for testing virtual devices are a fairly recent development.
qtest [9] was the first framework to approach the idea of flexible low-level test-
ing of virtual devices. VDF leverages qtest, but has improved on the approach
to better improve test case throughput and test automation. Tang and Li pro-
posed an approach [36] using a custom BIOS within the guest environment that
listened on a virtual serial port to drive testing. VDF’s approach relies upon
no software executing within the guest environment (BIOS, kernel, etc.), and
performs device-specific BIOS-level initialization as part of its init set.

A number of tools utilize record and replay. ReVirt [31] records system events
to replay the activity of compromised guest systems to better analyze the nature
of the attack. Aftersight [27] records selected system events and then offloads
those events to another system for replay and analysis. Its primary contribution
of decoupled analysis demonstrates that record and replay facilitates repeated
heavyweight analysis after the moment that the event of interest originally
occurred. PANDA [30], a much more recent work in this area, uses a modified
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QEMU to record non-deterministic guest events that occur system-wide. These
events are then replayed through increasingly heavier-weight analysis plugins to
reverse engineer the purpose and behavior of arbitrary portions of the guest.

Symbolic execution of complex programs is also a common technique to calcu-
late the path predicates and conditionals needed to exercise branches of interest.
KLEE [24] performs symbolic execution at the process level. Selective Symbolic
Execution (S2E) [26] executes a complete guest environment under QEMU and
performs symbolic execution at the whole-system level. The approach proposed
by Cong et al. [28] attempts to extract the code for five network virtual devices
from QEMU, stub out key QEMU datatypes, and then perform symbolic execu-
tion on the resulting code. VDF is capable of performing its testing and analysis
of a much larger set of virtual devices within the context of QEMU. However,
the techniques laid out in [28] can complement VDF by generating new seed test
cases designed to augment VDF’s ability to reach new branches of interest.

Driller [35] uses both white box fuzzing and symbolic execution to discover
vulnerabilities within programs. Unlike VDF, which is interested in exploring
only branches of interest, Driller seeks to explore all branches within a program.
It switches between symbolic execution and fuzzing when fuzzing gets “stuck”
and can no longer discover data values that explore new branches. VDF focuses
on executing large numbers of fuzzing test cases without using expensive sym-
bolic execution to create new seeds.

The discovery of vulnerable code is a difficult and ongoing process, and there
is interest in research work orthogonal to our effort that seeks to protect the
host system and harden hypervisors. DeHype [37] reduces the privileged attack
surface of KVM by deprivileging 93.2% of the KVM hypervisor code from kernel
space to user space on the host. The Qubes OS project [15] compartmentalizes
software into a variety of VMs, allowing the isolation of trusted activities from
trusted ones within the OS. Qubes relies upon the bare-metal Xen hypervisor,
which is much harder to exploit than a hypervisor executing under the host OS.

6 Conclusion

In this paper, we presented VDF, a system for performing fuzz testing on vir-
tual devices, within the context of a running hypervisor, using record/replay of
memory-mapped I/O events. We used VDF to fuzz test eighteen virtual devices,
generating 1014 crash or hang test cases that reveal bugs in six of the tested
devices. Over 80% of the crashes and hangs were discovered within the first day
of testing. VDF covered an average of 62.32% of virtual device branches during
testing, and the average test case was minimized to 18.57% of its original size.

Acknowledgment. The authors would like to thank the staff of the Griffiss Institute
in Rome, New York for generously allowing the use of their cloud computing resources.
This material is based upon research sponsored by the Air Force Research Lab, Rome
Research Site under agreement number FA8750-15-C-0190.



24 A. Henderson et al.

References

1. Advanced Linux Sound Architecture (ALSA). http://www.alsa-project.org
2. Amazon.com, Inc., Form 10-K 2015. http://www.sec.gov/edgar.shtml
3. CVE-2014-2894: Off-by-one error in the cmd start function in smart self test in

IDE core. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2894
4. CVE-2015-3456: Floppy disk controller (FDC) allows guest users to cause denial

of service. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456
5. CVE-2015-5279: Heap-based buffer overflow in NE2000 virtual device. https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5279
6. CVE-2015-6855: IDE core does not properly restrict commands. http://cve.mitre.

org/cgi-bin/cvename.cgi?name=CVE-2015-6855
7. CVE-2016-1981: Reserved. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2016-1981
8. CVE-2016-8910: Qemu: net: rtl8139: infinite loop while transmit in C+ mode.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8910
9. Features/QTest. http://wiki.qemu.org/Features/QTest

10. Kernel-Based Virtual Machine. http://www.linux-kvm.org/
11. PCI - OSDev Wiki. http://wiki.osdev.org/PCI
12. [Qemu-devel] [PATCH 1/2] hw/sd: implement CMD23 (SET BLOCK COUNT)

for MMC compatibility. https://lists.gnu.org/archive/html/qemu-devel/2015-12/
msg00948.html

13. [Qemu-devel] [PATCH 1/5] Provide support for the CUSE TPM. https://lists.
nongnu.org/archive/html/qemu-devel/2015-04/msg01792.html

14. [Qemu-devel] [PATCH] e1000: eliminate infinite loops on out-of-bounds transfer
start. https://lists.gnu.org/archive/html/qemu-devel/2016-01/msg03454.html

15. Qubes OS Project. https://www.qubes-os.org/
16. TrouSerS - The open-source TCG software stack. http://trousers.sourceforge.net
17. Avgerinos, T., Cha, S.K., Lim, B., Hao, T., Brumley, D.: AEG: automatic exploit

generation. In: Proceedings of Network and Distributed System Security Sympo-
sium (NDSS) (2011)

18. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Operating
Syst. Rev. 37(5), 164 (2003)

19. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, Freenix Track, pp. 41–46 (2005)

20. Berger, S.: libtpms library. https://github.com/stefanberger/libtpms
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Abstract. Fuzz testing is an effective and scalable technique to perform
software security assessments. Yet, contemporary fuzzers fall short of
thoroughly testing applications with a high degree of control-flow diver-
sity, such as firewalls and network packet analyzers. In this paper, we
demonstrate how static program analysis can guide fuzzing by augment-
ing existing program models maintained by the fuzzer. Based on the
insight that code patterns reflect the data format of inputs processed
by a program, we automatically construct an input dictionary by stati-
cally analyzing program control and data flow. Our analysis is performed
before fuzzing commences, and the input dictionary is supplied to an
off-the-shelf fuzzer to influence input generation. Evaluations show that
our technique not only increases test coverage by 10–15% over baseline
fuzzers such as afl but also reduces the time required to expose vul-
nerabilities by up to an order of magnitude. As a case study, we have
evaluated our approach on two classes of network applications: nDPI, a
deep packet inspection library, and tcpdump, a network packet analyzer.
Using our approach, we have uncovered 15 zero-day vulnerabilities in
the evaluated software that were not found by stand-alone fuzzers. Our
work not only provides a practical method to conduct security evalua-
tions more effectively but also demonstrates that the synergy between
program analysis and testing can be exploited for a better outcome.

Keywords: Program analysis · Fuzzing · Protocol parsers

1 Introduction

Software has grown in both complexity and dynamism over the years. For exam-
ple, the Chromium browser receives over 100 commits every day. Evidently, the
scale of present-day software development puts an enormous pressure on pro-
gram testing. Evaluating the security of large applications that are under active
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development is a daunting task. Fuzz testing is one of the few techniques that
not only scale up to large programs but are also effective at discovering program
vulnerabilities.

Unfortunately, contemporary fuzzers are less effective at testing complex net-
work applications that handle diverse yet highly structured input. Examples
of such applications are protocol analyzers, deep packet inspection modules,
and firewalls. These applications process input in multiple stages: The input
is first tokenized, then parsed syntactically, and finally analyzed semantically.
The application logic (e.g., intrusion detection, network monitoring etc.) usu-
ally resides in the final stage. There are two problems that these applications
pose. First, the highly structured nature of program input begets a vast number
of control flow paths in the portion of application code where packet parsing
takes place. Coping with diverse program paths in the early stages of the packet
processing pipeline, and exploring the depths of program code where the core
application logic resides is taxing even for state-of-the-art fuzzers. Second, the
diversity of program input not only amplifies the number of control flows but also
demands tests in breadth. For example, the deep packet inspection library, nDPI,
analyzes close to 200 different network protocols [27]. In the face of such diversity,
generating inputs that efficiently test application logic is a hard problem.

Although prior work on grammar-based fuzzing [13,16,29] partly address the
problem of fuzz testing parser applications, they cannot be applied to testing
complex third-party network software for two reasons. First, existing grammar-
based fuzzers rely on a user-supplied data model or language grammar speci-
fication that describes the input data format. A fundamental problem with a
specification-based approach to fuzzing is that the formal grammar of program
input might not be available to begin with. Indeed, few network protocols have a
readily usable formal specification. Therefore, grammar-based fuzzing at present,
is contingent upon a data model that is—most often—manually created by an
expert. Although proposals such as Prospex [7] that automatically create gram-
mar specifications from network traces are promising, they are designed with
a single protocol in mind. Automatic specification generation for diverse gram-
mars has not been attempted. A second problem with certain grammar-based
approaches that use whitebox testing is that they require significant software
alterations, and rely on implementation knowledge. For example, to conduct
grammar-based whitebox testing, parsing functions must be manually identified
in source code, and detokenization functions must be written. Although man-
ual fallbacks may be inevitable in the face of implementation diversity, prior
approaches demand significant software revisions, making them ill-suited for
security evaluation of third-party software.

In this paper, we demonstrate how the stated challenges can be addressed by
augmenting fuzzing with static program analysis. Being program centric, static
analysis can examine control flow throughout an application’s codebase, per-
mitting it to analyze parsing code in its entirety. This design choice makes our
approach well-suited for testing complex network applications. Our approach has
two key steps. First, we automatically generate a dictionary of protocol message



28 B. Shastry et al.

constructs and their conjunctions by analyzing application source code. Our
key insight is that code patterns signal the use of program input, and therefore
sufficient cues about program input may be gathered by analyzing the source
code. To this end, we develop a static analyzer that performs data and control-
flow analysis to obtain a dictionary of input constructs. Second, the dictionary
obtained from the first step is supplied to an off-the-shelf fuzzer. The fuzzer
uses the message fragments (constructs and conjunctions) present in the sup-
plied dictionary toward input generation. Although anecdotal evidence suggests
that a carefully constructed dictionary can dramatically improve a fuzzer’s effec-
tiveness [35], program dictionaries at present are created by a domain-specific
expert. To make our analysis and test framework easily deployable on real-world
code, we have developed a plugin to the Clang/LLVM compiler that can (i) Be
automatically invoked at code compilation time, and (ii) Produce input dictio-
naries that are readily usable with off-the-shelf fuzzers such as afl. Indeed, our
work makes security evaluations accessible to non-domain-experts e.g., audit of
third-party code in the government sector.

We have prototyped our approach in a tool that we call Orthrus, and eval-
uated it in both controlled and uncontrolled environments. We find that our
analysis helps reduce the time to vulnerability exposure by an order of magni-
tude for the libxml2 benchmark of the fuzzer test suite [15]. Furthermore, we
use Orthrus to conduct security evaluations of nDPI (deep packet inspection
library), and tcpdump (network packet analyzer). Input dictionaries generated
via static code analysis increase test coverage in nDPI, and tcpdump by 15%,
and 10% respectively. More significantly, input dictionaries have helped uncover
15 zero-day vulnerabilities in the packet processing code of 14 different proto-
cols in the evaluated applications that were not found by stand-alone fuzzers
such as afl, and the Peach fuzzer. These results lend credence to the efficacy
of our approach in carrying out security evaluations of complex third-party net-
work software. Our prototype, Orthrus, is available at https://www.github.com/
test-pipeline/Orthrus.

Contributions

– To address the challenges of fuzzing complex network software, we propose
a static analysis framework to infer the data format of program inputs from
source code.

– We propose a novel approach—the use of static program analysis—to augment
fuzzing. To this end, we couple our analysis framework with an off-the-shelf
fuzzer.

– Finally, we prototype our approach and extensively evaluate its impact. Our
prototype achieves an improvement of up to 15% in test coverage over state-
of-the-art fuzzers such as afl, expedites vulnerability discovery by an order
of magnitude, and exposes 15 zero-day vulnerabilities in popular networking
software1. These results validate our proposition that static analysis can serve
as a useful fuzzing aid.

1 Ethical Considerations: Vulnerabilities found during our case studies have been
responsibly disclosed to the concerned vendors who have subsequently patched them.

https://www.github.com/test-pipeline/Orthrus
https://www.github.com/test-pipeline/Orthrus
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2 Background

In this section, we provide a brief overview of static analysis, and fuzz testing
that is relevant to our work.

Static Analysis. Our application of static analysis is closer to the notion of
static analysis as a program-centric checker [10]: Tools that encapsulate a notion
of program behavior and check that the implementation conforms to this notion.
Historically, static analysis tools aimed at finding programming errors encode a
description of correct (error-free) program behavior and check if the analyzed
software meets this description. In contrast, our analyses encode input-processing
properties of a program in order to extract features of the input message format.

Static analysis helps in analyzing the breadth of a program without concrete
test inputs. However, because static analysis usually encapsulates an approxi-
mate view of the program, its analysis output (bugs) has to be manually val-
idated. The analysis logic of a static analyzer may be catered to different use
cases, such as finding insecure API usages, erroneous code patterns etc. This
analysis logic is usually encoded as a set of rules (checking rules), while the
analysis itself is carried out by a static analyzer’s core engine.

Static program analysis includes, among other types of analyses, program
data-flow and control-flow analyses [1]. Data-flow analysis inspects the flow of
data between program variables; likewise control-flow analysis inspects the flow
of control in the program. While data-flow analysis may be used to understand
how program input interacts with program variables, control-flow analysis may
be used to understand how control is transferred from one program routine to
another. In practice, both data and control flow analyses are essential compo-
nents of a static analyzer.

Program data and control-flow may be analyzed at different program abstrac-
tions. In our work, we focus on syntactic as well as semantic analysis, using the
program abstract syntax tree (AST), and control flow graph (CFG) respectively.
At the syntactic level, our analysis is performed on the program’s AST, and at
the semantic level, on the program’s CFG. A program’s AST representation
comprises syntactic elements of a program, such as the If, For, While state-
ments, program variables and their data types etc. Each syntactic element is
represented as an AST node. All AST nodes, with the exception of the root and
the leaf nodes, are connected by edges that denote a parent-child relationship.
The CFG of a program unit represents its semantic elements, such as the control
flow between blocks of program statements. The CFG nodes are basic blocks:
Group of program statements without a branching instruction. The CFG edges
connect basic blocks that comprise a possible program path. The infrastructure
to obtain program AST, CFG, and perform analysis on them is available in
modern compiler toolchains.

Fuzz Testing. Fuzzing is one of the most common dynamic analysis techniques
used in security assessments. It was introduced by Miller et al. to evaluate the
robustness of UNIX utilities [22]. Ever since, fuzzing has seen widespread adop-
tion owing to its effectiveness in eliciting faulty program behavior. The first
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fuzzer functioned without any program knowledge: It simply fed random inputs
to the program. In other words, it was a blackbox (program agnostic) fuzzer.
Blackbox fuzzers paved the way for modern fuzzers that are program aware.

State-of-the-art fuzzers build a model of the analyzed program as it is tested.
This model is used to guide testing more optimally, i.e., expend resources for
teasing out unexplored program paths. Techniques used to build a model of
the program under test may vary from coverage tracing (afl) [34], to constraint
solving (SAGE) [14]. Fuzzers may also expect the user to define a grammar
underlying the message format being tested. Examples of such fuzzers are the
Peach Fuzzer [29] and Sulley [28], both of which generate inputs based on a user
specified grammar. Fuzzers such as afl support the use of message constructs for
fuzzer guidance. However, unlike Peach, afl does not require a formal grammar
specification; it simply uses pre-defined constructs in the input dictionary toward
input mutation.

3 Program Analysis Guided Fuzzing

In this section, we first briefly outline our specific problem scope with regard to
protocol specification inference, then provide an overview of our approach, and
finally describe our methodology.

Problem Scope. An application protocol specification usually comprises a state
machine that defines valid sequences of protocol messages, and a message format
that defines the protocol message. In our work, we focus on inferring the pro-
tocol message format only, leaving the inference of the state machine for future
work. Since file formats are stateless specifications, our work is applicable for
conducting security evaluations of file format parsers as well.

Approach Overview. We demonstrate how fuzz testing of network applications
can be significantly improved by leveraging static analysis for test guidance. It
has already been suggested in non-academic circles that a carefully constructed
dictionary of parser input can dramatically improve a fuzzer’s effectiveness [35].
However, creating input dictionaries still requires domain expertise. We automat-
ically generate input dictionaries by performing static program analysis, supply-
ing it to an off-the-shelf fuzzer toward input generation. Indeed, our prototype
builds on legacy fuzzers to demonstrate the effectiveness of our approach.

Figure 1 illustrates our analysis and test workflow. First, we statically ana-
lyze application source code and obtain a dictionary of protocol message con-
structs and conjunctions. Each item in the dictionary is an independent message
fragment: It is either a simple message construct, or a conjunction of multiple
constructs. For example, a constant string SIP/2.0 in the source code is inferred
as a message construct, while usages of another construct, say the constant string
INVITE, that are contingent on SIP/2.0 are inferred to be a conjunction of the
form INVITE SIP/2.0. Second, we supply the input dictionary obtained in the
first step to a fuzzer toward input generation. The fuzzer uses the supplied dic-
tionary together with an initial set of program inputs (seeds) toward fuzzing
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Fig. 1. Work-flow for program analysis guided fuzzing.

an application test case. In contrast to prior work, our analysis is automatic,
and requires neither a hand-written grammar specification, nor manual software
alterations. Furthermore, the input dictionary obtained through our analysis
may be supplied as is to existing fuzzers such as afl, aflfast, and libFuzzer, mak-
ing our approach legacy compliant.

3.1 Input Dictionary Generation

The use of static program analysis for inferring program properties is a long-
standing field of research. However, the main challenge underlying our approach
is that our analysis must infer properties of the program input from applica-
tion source code. Although Rice’s theorem [17] states that all semantic program
properties are undecidable in general, we aim to make an informed judgement.

Program Slicing. The first problem we encounter is an instance of the classical
forward slicing problem [12]: determining the subset of program statements, or
variables that process, or contain program input. Although existing forward
slicing techniques obtain precise inter-procedural slices of small programs, they
do not scale up to complex network parsers that exhibit a high degree of control
as well as data-flow diversity.

As a remedy, we obtain a backward program slice with respect to a pre-
determined set of program statements that are deemed to process program input.
These program statements are called taint sinks, since program input (taint)
flows into them. Since our analysis is localized to a set of taint sinks, it is tractable
and scales up to large programs. Naturally, the selection criteria for taint sinks
influence analysis precision, and ultimately decide the quality of inferred input
fragments. Therefore, we employ useful heuristics and follow reasonable design
guidelines so that taint sink selection is not only well-informed by default, but
can also benefit from domain expertise when required. We explain our heuristics
and design guidelines for taint sink selection in the next paragraph.

Taint Sinks. We select a program statement as a taint sink if it satisfies one or
more of the following conditions:
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1. It is a potentially data-dependent control flow instruction, such as switch, if
statements.

2. It is a well-known data sink API (e.g., strcmp), or an API that accepts const
qualified arguments as input.

3. It contains a constant assignment that contains a literal character, string, or
integer on the right hand side, such as
const char *sip = ‘‘SIP/2.0’’

Although these heuristics are simple, they are effective, and have two useful
properties that are crucial to generating an effective fuzzer dictionary. First,
they capture a handful of potential input fragments of high relevance by focusing
on program data and control flow. In contrast, a näıve textual search for string
literals in the program will inevitably mix-up interesting and uninteresting use of
data, e.g., strings used in print statements will also be returned. Second, although
our heuristics are straightforward, they capture a wide array of code patterns
that are commonly found in parsing applications. Thus, they constitute a good
default specification that is applicable to a large class of parsing applications. The
defaults that are built-in to our analysis framework make our solution accessible
for conducting security assessments of third-party network software.

Naturally, our heuristics may miss application-specific taint sinks. A promi-
nent example is the use of application specific APIs for input processing. As
a remedy, we permit the security analyst to specify additional taint sinks as
an analysis parameter. In summary, we facilitate entirely automatic analysis of
third-party software using a default taint specification, while opportunistically
benefiting from application-specific knowledge where possible. This makes our
analysis framework flexible in practice.

Analysis Queries. In order to infer protocol message constructs, we need to
analyze data and control-flow around taint sinks. To facilitate fast and scalable
analysis, we design a query system that is capable of both syntactic and seman-
tic analysis. Fortunately, the infrastructure to obtain program AST, CFG, and
perform analysis on them is already available in modern compiler toolchains.
Thus, we focus on developing the analysis logic for performing backward pro-
gram slicing toward obtaining protocol message constructs.

Algorithm 1 illustrates our analysis procedure for generating an input dictio-
nary from source code. We begin by initializing our internal data-structures to
an empty set (lines 2–4). Next, we iterate over all compilable source files in the
code repository, and obtain their program AST and CFG representations (lines
8–9) using existing compiler routines. Based on our default set of taint sinks,
we formulate syntactic and semantic queries (described next) that are designed
to elicit input message constructs or their conjunctions in source code (line 6).
Using these queries, we obtain a set of input message constructs using syntactic
analysis (line 11), and a set of input message conjunctions using semantic analy-
sis (line 13) in each source file. The constructs and conjunctions so obtained are
added to the dictionary data structure (line 14–15) and the analysis continues
on the next source file.
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Algorithm 1. Pseudocode for generating an input dictionary.
1: function generate-dictionary(SourceCode, Builder)
2: dictionary = ∅
3: constructs = ∅
4: conjunctions = ∅
5: � Queries generated from internal database
6: queries = Q
7: for each sourcefile in SourceCode do
8: ast = frontendParse(sourcefile)
9: cfg = semanticParse(ast)
10: � Obtain constructs
11: constructs = syntactic-analysis(ast, queries)
12: � Obtain conjunctions of existing constructs
13: conjunctions = semantic-analysis(cfg, constructs)
14: � Update dictionary
15: dictionary += constructs
16: dictionary += conjunctions

17: return dictionary

18:
19: function syntactic-analysis(AST , Queries)
20: constructs = ∅
21: for each query in Q do
22: constructs += synQuery(AST , query)

23: return constructs
24:
25: function synQuery(AST , Query)
26: matches = ∅
27: while T = traverseAST(AST ) do
28: if Query matches T then
29: matches += (T.id, T.value)

30: return matches
31:
32: function Semantic-Analysis(CFG, Constructs)
33: conjunctions = ∅
34: � Obtain conjunctions in a given calling context
35: conjunctions += Context-Sensitive-Analysis(CFG, Constructs)
36: � Obtain productions in a given program path
37: conjunctions += Path-Sensitive-Analysis(CFG, Constructs)
38: return conjunctions

Syntactic Queries. At the syntactic level, our analysis logic accepts functional
queries and returns input message constructs (if any) that match the issued
query. These queries are made against the program AST. A functional query is
composed of boolean predicates on a program statement or data type. As an
example, consider the following query:

stringLiteral(hasParent(callExpr(hasName(‘‘strcmp’’)))).
The query shown above searches for a program value of type string
(stringLiteral) whose parent node in the AST is a function call (callExpr),
and whose declaration name is strcmp. Thus, a functional query is essentially
compositional in nature and operates on properties of the program AST. There
are two key benefits of functional queries. First, their processing time is very low
allowing them to scale up to large codebases (see Sect. 4.1). Second, since large
parsing applications use a recurring pattern of code to parse input messages of
different formats, even simple queries can be efficient at building a multi-protocol
input dictionary.
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Syntactic queries are useful for obtaining a list of simple input message
constructs such as constant protocol keywords. However, these queries do not
analyze the context in which constructs appear in the program. Analyzing the
context brings us a deeper understanding of the input message format. As an
example, we may know which two constructs are used in conjunction with each
other, or if there is a partial order between grammar production rules involv-
ing these constructs. Deeper analysis of message constructs may infer complex
message fragments, allowing the fuzzer to explore intricate parsing routines. To
facilitate such context-sensitive analyses, we write context and path-sensitive
checkers that enable semantic queries.

Semantic Queries. At the semantic level, a query accepts a list of input mes-
sage constructs as input, and returns conjunctions (if any) of constructs as
output. Semantic queries are made against a context-sensitive inter-procedural
graph [30] constructed on a program’s CFG. Each query is written as a checker
routine that returns the set of conjunctions that can be validated in the call-
ing context where the input construct appeared. As an example, consider the
parsing code snippet shown in Listing 1.1.

Listing 1.1. Sample parser code.

1 int parse(const char *token1 , const char *token2) {
2 if (token1 == "INVITE")
3 if (strcmp(token2 , "SIP /2.0"))
4 do_something ();
5 }

The parse function takes two string tokens as input and performs an oper-
ation only when the first token is INVITE and the second token is SIP/2.0.
From this code, we can infer that there is a dependency between the two tokens,
namely, that INVITE is potentially followed by the SIP/2.0 string. While syntac-
tic queries can only identify simple message constructs, semantic queries can be
used to make an inference about such message conjunctions. Together, syntactic
and semantic queries may be used to build a dictionary of the input message
format.

Implementation. We have implemented our approach in a research prototype,
that we call Orthrus. Our query system is composed of tooling based on the
libASTMatchers, and the libTooling infrastructure in Clang (syntactic queries),
and checkers to the Clang Static Analyzer [20] (semantic queries).

3.2 Dictionary Based Fuzzing

An input dictionary can improve the effectiveness of fuzzing by augmenting
the program representation maintained by the fuzzer for test guidance. The
input fragments in the supplied dictionary enable input mutations that are well-
informed, and in some cases more effective at discovering new program paths
than purely random mutations. Contemporary fuzzers offer an interface to plug
in an application-specific dictionary. We use this interface to supply the input
fragments inferred by our analysis framework to the fuzzer.
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Algorithm 2. Pseudocode for dictionary-based fuzzing.
1: function dictionary-fuzz(input, Dictionary, deterministic)
2: dictToken = Random(Dictionary)
3: if deterministic then
4: for each byteoffset in input do
5: fuzz-token-offset(input, dictToken, byteoffset)

6: else
7: byteoffset = Random(sizeOf(input))
8: fuzz-token-offset(input, dictToken, byteoffset)

9:
10: function fuzz-token-offset(input, dictToken, byteoffset)
11: � Token overwrites input byte
12: input[byteoffset] = dictToken
13: Program(input)
14: � Token inserted into input
15: InsertToken(input, byteoffset, dictToken)
16: Program(input)

Algorithm 2 presents the pseudocode for dictionary based fuzzing employed
by most present-day fuzzers. Dictionary based mutations may be performed
either deterministically (at all byte offsets in the input stream, line 4–5), or
non-deterministically (at a random byte offset, line 7–8). There are two kinds of
dictionary based mutations used by fuzzers: overwrite, and insert. In an overwrite
operation, the chosen dictionary token is used to overwrite a portion of a program
input in the fuzzer queue (line 12–13). In an insert operation, the chosen token
is inserted into the queued input at the specified offset (line 15–16). Typically,
fuzzers perform both mutations on a chosen token.

Fuzzers bound the runtime allocated to dictionary-based fuzzing routines. In
practice, fuzzers either use up to a certain threshold (typically a few hundred)
of supplied dictionary tokens deterministically, while using the rest probabilis-
tically, or pick each token at random. Thus, it is important that the size of the
supplied dictionary is small, and the relevance of the tokens is high. Our use of
demand-driven queries, and analyses of varying precision ensures that we supply
such a dictionary to the fuzzer.

4 Evaluation

In this section, we present our evaluation of Orthrus in both controlled and
uncontrolled environments. First, we (i) Quantitatively evaluate our analysis run
time towards dictionary generation, and (ii) Qualitatively evaluate the generated
dictionary tokens, for the codebases under test (Sect. 4.1). Second, we measure
the time to uncover vulnerabilities using Orthrus generated dictionaries in a set
of fuzzer benchmarks (Sect. 4.2). Third, we measure the test coverage achieved
and examine the vulnerabilities exposed by fuzzing production code with the
aid of Orthrus generated dictionaries (Sect. 4.3). We conclude this section with
a discussion of factors that may limit the validity of our approach and how we
address them.



36 B. Shastry et al.

Table 1. Dictionary generation run time relative to code compilation time. Timing
measurements have been averaged over ten runs and are presented in minutes (m) and
seconds (s).

Software Source lines of code Compilation Dictionary generation

Syntactic Semantic Total

c-ares 97 k 2.11 s 0.43 s 20.14 s 20.57 s

libxml2 196 k 17.95 s 1.48 s 23.09 s 24.57 s

openssl 278 k 20.02 s 6.45 s 5m 37.24 s 5 m 43.69 s

nDPI 27 k 7.16 s 2.14 s 42.84 s 44.98 s

tcpdump 75 k 2.99 s 0.32 s 9.04 s 9.36 s

woff2 39 k 3.20 s 3.58 s 11.58 s 15.16 s

Table 2. A sample of string input fragments extracted from the source code of libxml2,
and nDPI using syntactic queries. Extracted fragments are comma separated.

Software Taint sink Query Input fragments

libxml2 xmlBufferWriteChar(),
xmlOutputBufferWrite()

Obtain constant
argument

xml:lang=", <!DOCTYPE,
<! [CDATA[, xmlns

nDPI memcmp(), strcmp() Obtain constant
argument

snort, America Online

Inc., last message

Measurement Infrastructure. All measurements presented in this section
were performed on a 64-bit machine with 80 CPU threads (Intel Xeon E7-4870)
clocked at 2.4 GHz, and 512 GB RAM.

4.1 Analysis Run Time and Effectiveness

Table 1 presents the run times of static analysis (both syntactic and semantic)
performed for dictionary generation for each of the code bases evaluated in this
paper. To put the run times in perspective, the run time of code compilation for
each code base is presented in the third column. Since semantic analysis is com-
putationally more expensive than syntactic analysis, it dominates the dictionary
generation run time. However, in relation to fuzzing run time that is usually in
the order of days, the time required for dictionary generation (at most a few
minutes across our data-set) is negligible.

Table 2 presents a sample of input fragments (constructs) extracted from the
source code for libxml2, and nDPI for which dictionary-based fuzzing showed
substantial improvement in test coverage and outcome. In the interest of space
and visual clarity, we have excluded fragments extracted from tcpdump since
they mainly comprise binary input. Listing 1.2 shows one of the syntactic queries
applied to the nDPI, and libxml2 codebases that resulted in the sample fragments
presented in Table 2. Our analysis heuristics have helped build an XML input
dictionary that is similar in content to the manually created XML dictionary for
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afl. Moreover, using backward slicing from familiar taint sinks such as memcmp, we
have been able to extract protocol fragments (such as the string literal America
Online Inc. used by nDPI to fingerprint instant messaging traffic) that have
been instrumental in increasing test coverage.

Listing 1.2. Syntactic query issued on nDPI and libxml2 codebases. The query returns
string literals passed as arguments to taint sinks such as strcmp.

1 // Obtain string literals passed to POSIX APIs "strcmp", and
2 // "memcmp", and libxml2 APIs " xmlBufferWriteChar", and
3 // " xmlOutputBufferWrite ".
4 StatementMatcher StringMatcher =
5 stringLiteral(
6 hasAncestor(
7 declRefExpr(
8 to(namedDecl(
9 anyOf(hasName("strcmp"),

10 hasName("memcmp"),
11 hasName("xmlBufferWriteChar"),
12 hasName("xmlOutputBufferWrite")
13 )
14 )
15 )
16 )
17 )
18 ).bind("construct");

4.2 Benchmarks: Time to Vulnerability Exposure

To enable independent reproduction, we briefly document our evaluation
methodology.

Fuzzer Test Suite. In order to measure the time required to expose program
vulnerabilities, we used the fuzzer test suite [15]. The fuzzer test suite is well-
suited for this purpose because it provides a controlled environment in which
timing measurements can be done, and contains test cases for several known
high-profile vulnerabilities. Indeed, the test suite has been used for benchmarking
the LLVM libFuzzer [21], that we use as a baseline in our evaluation. The specific
vulnerabilities in the test suite that feature in our evaluation are: CVE-2014-
0160 [23] (OpenSSL Heartbleed), CVE-2016-5180 [25] (buffer overflow in the c-
ares dns library), CVE-2015-8317 [24] (buffer overflow in libxml2), and a security-
critical bug in Google’s WoFF2 font parser [6].

Test Methodology. For each test case, our evaluation was performed by mea-
suring the time to expose the underlying vulnerability in two scenarios: (i) The
baseline fuzzer alone; and (ii) The baseline fuzzer augmented with an Orthrus
generated dictionary. Our approach is deemed effective when the time to expose
vulnerability reduces in comparison to the baseline, and is ineffective/irrelevant
when it increases or remains the same in comparison to the baseline. Timing
measurements were done using Unix’s time utility. In order to reduce the effect
of seemingly random vulnerability exposures, we obtained at least 80 timing
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Fig. 2. Comparison of time required to expose vulnerability using libFuzzer as the
baseline.

measurements for each test case in both scenarios. Measurements for each test
case were carried out in parallel, with each experiment being run exclusively on a
single core. The input dictionary generated by Orthrus was supplied to libFuzzer
via the -dict command line argument. Finally, to eliminate the effect of seed
corpuses on measurement outcome, we strictly adhered to the selection of seed
corpuses as mandated by the fuzzer test suite documentation.

Results. Figure 2 presents our test results as box plots. The baseline box plot
(libFuzzer) is always on the left of the plot, and results for libFuzzer augmented
with Orthrus (Orthrus) on the right. The Orthrus generated input dictionary
brought down the time to expose a buffer overflow in the libxml2 library (CVE-
2015-8317) by an order of magnitude (from a median value of close to 3 h using
the baseline to a median value of 5 min using our approach). For all the other
test cases, the median time to expose vulnerability was lower for Orthrus in com-
parison to libFuzzer. In addition, Orthrus shrunk the range of timing variations
in exposing the vulnerability.

To understand the varying impact of the supplied dictionary on the time to
vulnerability exposure, we studied each of the tested vulnerabilities to under-
stand their root cause. Our approach consistently brought down the time to
exposure for all vulnerabilities that were triggered by a file or protocol mes-
sage specific to the application under test. Thus, our approach worked well in
scenarios where knowledge of the input format was crucial to eliciting the vulner-
ability. Furthermore, in scenarios where our approach did not substantially lower
the time to vulnerability exposure, the time penalty incurred by our approach,
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owing to the test time dedicated to dictionary mutations, was marginal. In sum-
mary, we find that static program analysis can improve bug-finding efficiency
of fuzzers for those class of bugs that are triggered by highly structured input
(commonly found in network applications, and file format parsers), while not
imposing a noticeable performance penalty.

4.3 Case Study

To investigate the practical utility of Orthrus, we conducted a case study of two
popular network applications, namely, nDPI, and tcpdump. These applications
were selected because they are not only deployed in security-critical environ-
ments but also parse potentially attacker-controlled data. For each application,
we conducted multivariate testing using baseline fuzzers such as afl and aflfast [3]
with and without an Orthrus generated dictionary.

The chosen applications were also fuzzed using the Peach fuzzer [29], a state-
of-the-art fuzzer for protocol security assessments. Since grammar specifications
for the set of protocols parsed by tcpdump, and nDPI were not publicly available,
we enabled Peach fuzzer’s input analyzer mode that automatically infers the
input data model. Such an evaluation was aimed at comparing Peach fuzzer with
Orthrus in scenarios where a data model specification is not available. However,
the community edition of the Peach fuzzer that we had access to, is not geared
toward long runs. In our Peach-based experiments, we could not achieve a run
time of longer than 24 h. This prevents a fair comparison of the two approaches.
Therefore, we document results of our Peach experiments for reference, and not
a comparative evaluation.

Evaluation Methodology. We evaluated Orthrus using two metrics, namely,
test coverage achieved, and the number of program vulnerabilities exposed. Test
coverage was measured as the percentage of program branches that were dis-
covered during testing. Since fuzzers often expose identical crashes, making it
non-trivial to document unique vulnerabilities, we semi-automatically dedupli-
cated fuzzer crashes in a two-step process. First, we used the concept of fuzzy
stack hashes [26] to fingerprint a crash’s stack trace using a cryptographic hash
function. Second, crashes with a unique hash were manually triaged to deter-
mine the number of unique program vulnerabilities. We used two elementary
seeds (bare-bone IPv4, and IPv6 packets) to fuzz tcpdump, and nDPI. Tests
involving the fuzzers afl and aflfast were conducted in a multi-core setting.

Fuzzing Duration. Dictionary based mutations get a fraction of the total
fuzz time of a fuzzer. Thus, to fully evaluate our approach, we ran the fuzzer
configurations (except Peach) until each unique program input synthesized by
the fuzzer was mutated with the supplied dictionary constructs at least once.
Owing to the relatively poor execution throughput of the evaluated software
(under 100 executions per second), we had to run each fuzzer over a period of
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Table 3. Test coverage achieved (in %) by different fuzzing configurations.

Software afl afl-orthrus aflfast aflfast-orthrus Peach-analyzer

tcpdump 80.56 90.23 (+9.67) 71.35 78.82 (+7.47) 6.25

nDPI 66.92 81.49 (+14.57) 64.40 68.10 (+3.70) 24.98

1 week in which time the supplied dictionary was utilized at least once for each
unique input.

Utilities. CERT’s exploitable [11] utility was used for crash deduplication. We
used AddressSanitizer [2] as a debugging aid; this expedited the bug reporting
process.

Evaluated Software. We evaluated nDPI revision f51fef6 (November 2016),
and tcpdump trunk (March 2017).

Test Coverage. Our test coverage measurements present the fraction of all
program branches (edges) covered by test cases generated by a fuzzer configura-
tion. We have evaluated Orthrus against two baselines, namely, afl, and aflfast.
Therefore, our measurements have been obtained for afl, afl augmented with
Orthrus-generated input dictionary (afl-Orthrus), aflfast, aflfast augmented with
Orthrus-generated input dictionary (aflfast-Orthrus), and the Peach fuzzer with
a binary analyzer data model. Table 3 shows the test coverage achieved by dif-
ferent fuzzer combinations for tcpdump, and nDPI, while Fig. 3 visualizes code
coverage over time. Program coverage was measured when there was a change in
its magnitude. Due to the relatively short running duration of the Peach fuzzer,
we have excluded its coverage visualization.

As shown in Fig. 3, the obtained coverage measurements for tcpdump, and
nDPI, approach a saturation point asymptotically. For both tcpdump, and nDPI,
the growth rate in test coverage is higher initially, tapering off asymptotically
to zero. The test coverage curves for afl-Orthrus and aflfast-Orthrus have a
higher initial growth rate compared to their respective baselines, namely, afl,
and aflfast. This results in a consistent increase in overall test coverage achieved
by Orthrus in comparison to the baseline fuzzers, as shown in Table 3. For nDPI,
Orthrus’ input dictionary increases test coverage by 14.57% over the afl fuzzer.
In the case of tcpdump, this increase in test coverage is 9.67%. Orthrus’ enhance-
ments in test coverage over aflfast for nDPI, and tcpdump are 3.7%, and 7.47%
respectively. Although aflfast is a fork of afl, the supplied input dictionary has
a lesser effect on the former than the latter. To understand this anomaly, we
examined the source code of afl, and aflfast. afl performs dictionary-based muta-
tions on all inputs in the fuzzer queue at least once. However, aflfast performs
dictionary-based mutations on a given input in the queue, only when the input’s
performance score (computed by the aflfast algorithm) is above a certain thresh-
old. We determined that the threshold used by aflfast is too aggressive, resulting
in too few inputs in the fuzzer queue undergoing dictionary mutations.
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Fig. 3. Test coverage as a function of time for tcpdump (a), and nDPI (b), for different
fuzzing configurations. Program coverage measurements were made only when there
was a change in its magnitude.

Vulnerabilities Exposed. Table 4 shows the number of vulnerabilities exposed
in nDPI, and tcpdump, across all fuzzing configurations. In the case of tcpdump,
the positive impact of the Orthrus generated dictionary is evident. afl, and afl-
Orthrus, exposed 15, and 26 unique vulnerabilities respectively. 10 out of the 11
additional vulnerabilities exposed by afl-Orthrus, were exclusively found by it,
i.e., it exposed 10 vulnerabilities in tcpdump not found by stand-alone afl. aflfast,
and aflfast-Orthrus configurations exposed 1 and 5 vulnerabilities respectively.
aflfast-Orthrus exposed 4 vulnerabilities that were not exposed by stand-alone
aflfast. In the case of nDPI, afl-Orthrus exposed 4 vulnerabilities that were not
found by stand-alone afl, while aflfast-Orthrus exposed 1 such vulnerability. For
both nDPI, and tcpdump, aflfast-Orthrus finds fewer number of vulnerabilities
overall in comparison to its baseline. We conjecture that the fuzz schedule alter-
ations carried out in aflfast [3] influence the scheduling of dictionary-mutations,
resulting in the observed drop.

Table 5 documents those vulnerabilities found using Orthrus generated dic-
tionaries that were not found by stand-alone fuzzing of tcpdump, and nDPI.
The number of exposed vulnerabilities that may be exclusively attributed to
Orthrus are 10, and 5, for tcpdump, and nDPI respectively. Overall, Orthrus
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Table 4. Number of bugs and vulnerabilities exposed by different fuzzing configura-
tions. For Orthrus-based fuzzer configurations, the number of bugs exclusively found
by them is shown in brackets.

Software afl afl-orthrus aflfast aflfast-orthrus Peach-analyzer

tcpdump 15 26 (+10) 1 5 (+4) 0

nDPI 26 27 (+4) 24 17 (+1) 0

generated dictionaries exposed vulnerabilities in 14 different network protocols
across the two codebases. Some of the exposed vulnerabilities are in the process-
ing of proprietary protocol messages such as the Viber protocol. All the exposed
vulnerabilities resulted in buffer overflows, and were immediately reported to the
respective vendors. These results are a testament to the efficacy of our approach
in increasing the breadth of testing for complex network applications without
requiring domain-specific knowledge.

Table 5. Vulnerabilities exposed exclusively using Orthrus generated dictionaries in afl,
and aflfast, for tcpdump, and nDPI. All the vulnerabilities result in a buffer overflow.
Number in square brackets indicates the number of vulnerabilities found.

Software Vulnerable component

tcpdump IPv6 DHCP packet printer

IPv6 Open Shortest Path First (OSPFv3) packet printer

IEEE 802.1ab Link Layer Discovery Protocol (LLDP) packet printer

ISO CLNS, ESIS, and ISIS packet printers [2]

IP packet printer

ISA and Key Management Protocol (ISAKMP) printer

IPv6 Internet Control Message Protocol (ICMPv6) printer

Point to Point Protocol (PPP) printer

White Board Protocol printer

nDPI ZeroMQ Message Transport Protocol processor

Viber protocol processor

Syslog protocol processor

Ubiquity UBNT AirControl 2 protocol processor

HTTP protocol processor

Preliminary Results for Snort++. We used Orthrus to perform dictionary-
based fuzzing of snort++, a C++ implementation of the popular snort IDS. Base-
line fuzzing with afl-fuzz helped find a single vulnerability (CVE-2017-6658) in
the snort++ decoder implementation. In contrast, the Orthrus generated dictio-
nary has helped find an additional vulnerability (CVE-2017-6657) in the LLC
packet decoder implementation of snort++ [31].
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4.4 Limitations

Although our evaluations show that static analysis guided fuzzing is beneficial,
our positive results may not generalize to other parsing applications. However,
our evaluation comprising six different parser implementations provides strong
evidence that our approach can make fuzz testing more effective. Automatically
generated parsers (e.g., yacc-based parsers) may contain code that is structurally
different than hand-written parsers that we have evaluated. We believe that their
analysis may be carried out at the specification level than at the source code level.
Furthermore, we make use of simple heuristics to infer input message fragments
from source code. Thus, our analysis may miss legitimate input fragments (false
negatives), and/or add irrelevant tokens to the input dictionary (false positives).
However, we take practical measures to keep the number of false positives/neg-
atives low. For example, our design incorporates practical security advice given
by reputed institutes such as CERT [5] that have been compiled over years of
source code audits. In our case study, we make use of a small (yet relevant) seed
set to bootstrap fuzzing. It is possible that a diverse seed set improves the per-
formance of our baseline fuzzers. Having said that, we have carefully analyzed
the additional coverage achieved solely through the use of the supplied dictio-
nary to ensure that the presented increments can be attributed to our method.
In addition, we have manually triaged all vulnerabilities found exclusively using
dictionary-based fuzzing to ensure causality, i.e., they were ultimately exposed
due to the use of specific tokens in the supplied dictionary.

5 Related Work

Multiple techniques have been proposed to improve the effectiveness of fuzzing.
For our discussion of related work, we focus on approaches that infer the pro-
tocol specification, use grammar-based fuzzing, or query-driven static analysis
approaches.

Inferring Protocol Specification. There are two problems underlying pro-
tocol specification inference: Inferring the protocol (i) Message format; and (ii)
State machine. Prior work, with the exception of Prospex [7] has focused solely
on the message format inference problem. Broadly, two approaches have been
proposed to automatically infer the protocol specification. The first approach
relies entirely on network traces for performing the inference, exemplified by
the tool Discoverer [8]. As other researchers have noted, the main problem with
this approach is that network traces contain little semantic information, such
as the relation between fields in a message. Therefore, inference based entirely
on network traces is often limited to a simple description of the message for-
mat that is an under-approximation of the original specification. The second
approach, also a pre-dominant one, is to employ dynamic program analysis in
a setting where the network application processes sample messages, in order to
infer the protocol specification. Proposals such as Polyglot [4], Tupni [9], Aut-
oformat [19], Prospex [7], and the tool by Wondracek et al. [32] fall into this
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category. In comparison to our work, these proposals have two shortcomings.
First, they require dynamic instrumentation systems that are often proprietary
or simply inaccessible. Dynamic instrumentation and analysis often requires soft-
ware expertise, making it challenging for auditing third-party code. In contrast,
we show that our analysis can be bundled into an existing compiler toolchain
so that performing protocol inference is as simple as compiling the underlying
source code. Second, prior work with the exception of Prospex, have not specifi-
cally evaluated the impact of their inference on the effectiveness of fuzz testing.
Although Comparetti et al. [7] evaluate their tool Prospex in conjunction with
the Peach fuzzer, their evaluation is limited to finding known vulnerabilities in
controlled scenarios. In contrast to these studies, we extensively evaluate the
impact our inference on the effectiveness of fuzzing, both quantitatively in terms
of test coverage achieved, and time to vulnerability exposure, and qualitatively
in terms of an analysis of vulnerabilities exclusively exposed using our inference
in real-world code.

Grammar-Based Fuzzing. Godefroid et al. [13] design a software testing tool
in which symbolic execution is applied to generate grammar-aware test inputs.
The authors evaluate their tool against the IE7 JavaScript interpreter and find
that grammar-based testing increases test coverage from 53% to 81%. Although
their techniques are promising, their work suffers from three practical difficul-
ties. First, a manual grammar specification is required for their technique to
be applied. Second, the infrastructure to perform symbolic execution at their
scale is not publicly available, rendering their techniques inapplicable to third-
party code. Third, their approach requires non-trivial code annotations, requir-
ing a close co-operation between testers and developers, something that might
not always be feasible. In contrast, we solve these challenges by automatically
inferring input data formats from the source code. Indeed, we show that more
lightweight analysis techniques can substantially benefit modern fuzzers. Lang-
fuzz [16] uses a grammar specification of the JavaScript and PHP languages
to effectively conduct security assessments on the respective interpreters. Like
Godefroid et al., the authors of Langfuzz demonstrate that, in scenarios where a
grammar specification can be obtained, specification based fuzzing is superior to
random testing. However, creating such grammar specifications for complex net-
work applications manually is a daunting task. Indeed, network protocol specifi-
cations (unlike computing languages) are specified only semi-formally, requiring
protocol implementors to hand-write parsers instead of generating them from a
parser generator. Such practical difficulties make grammar (specification) based
fuzzing challenging for network applications.

Query Based Program Analysis. Our static analysis approach is inspired
by prior work on the use of queries to conduct specific program analyses by
Lam et al. [18], and automatic inference of search patterns for discovering taint-
style vulnerabilities from source code by Yamaguchi et al. [33]. At their core,
both these works use a notion of program queries to elicit vulnerable code pat-
terns from source code. While Lam et al. leverage datalog queries for analysis,
Yamaguchi et al. employ so called graph traversals. In contrast to their work, we
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leverage query-driven analysis toward supporting a fuzzer instead of attempting
static vulnerability discovery.

6 Conclusions and Future Work

In this paper, we demonstrate how static analysis guided fuzzing can improve
the effectiveness of modern off-the-shelf fuzzers, especially for networking appli-
cations. Code patterns indicate how user input is processed by the program. We
leverage this insight for gathering input fragments directly from source code.
To this end, we couple a static analyzer to a fuzzer via an existing interface.
Using input dictionaries derived from semantic and syntactic program analysis
queries, we are able to not only increase the test coverage of applications by
10–15%, but also reduce the time needed to expose vulnerabilities by an order of
magnitude in comparison to fuzzers not supplied with an input dictionary. We
leverage our research prototype to fuzz two high-profile network applications,
namely, nDPI, a deep packet inspection library, and tcpdump, a network packet
analyzer. We find 10 zero-day vulnerabilities in tcpdump, and 5 zero-day vul-
nerabilities in nDPI that were missed by stand-alone fuzzers. These results show
that our approach holds promise for making security assessments more effective.

Our work highlights the need for a stronger interaction between program
analysis and testing. Although our study describes one way in which program
analysis can enhance fuzzing, exploiting their reciprocal nature poses some inter-
esting problems such as directing static analysis on code portions that have not
been fuzzed. This is one avenue for future work. A logical follow up of our work
will be to infer the protocol state machine in addition to its message format,
and leverage the additional insight for conducting stateful fuzzing. Leveraging
our inference algorithm toward conducting large-scale analysis of open-source
C/C++ parser implementations is another avenue for future work that will shed
light on the security dimension of an important software component. Indeed, tar-
geting our analysis at the binary level will help us evaluate its efficacy against
closed source applications.
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Abstract. Tens of millions of wearable fitness trackers are shipped
yearly to consumers who routinely collect information about their exer-
cising patterns. Smartphones push this health-related data to vendors’
cloud platforms, enabling users to analyze summary statistics on-line and
adjust their habits. Third-parties including health insurance providers
now offer discounts and financial rewards in exchange for such private
information and evidence of healthy lifestyles. Given the associated mon-
etary value, the authenticity and correctness of the activity data col-
lected becomes imperative. In this paper, we provide an in-depth security
analysis of the operation of fitness trackers commercialized by Fitbit, the
wearables market leader. We reveal an intricate security through obscu-
rity approach implemented by the user activity synchronization protocol
running on the devices we analyze. Although non-trivial to interpret, we
reverse engineer the message semantics, demonstrate how falsified user
activity reports can be injected, and argue that based on our discoveries,
such attacks can be performed at scale to obtain financial gains. We fur-
ther document a hardware attack vector that enables circumvention of
the end-to-end protocol encryption present in the latest Fitbit firmware,
leading to the spoofing of valid encrypted fitness data. Finally, we give
guidelines for avoiding similar vulnerabilities in future system designs.

Keywords: Fitness trackers · Reverse engineering · Spoofing · Fitbit

1 Introduction

Market forecasts indicate 274 million wrist-based fitness trackers and smart-
watches will be sold worldwide by 2020 [1]. Such devices already enable users
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and healthcare professionals to monitor individual activity and sleep habits, and
underpin reward schemes that incentivize regular physical exercise. Fitbit main-
tains the lead in the wearables market, having shipped more units in 2016 than
its biggest competitors Apple, Garmin, and Samsung combined [2].

Fitness trackers collect extensive information which enables infering the
users’ health state and may reveal particularly sensitive personal circumstances.
For instance, one individual recently discovered his wife was pregnant after exam-
ining her Fitbit data [3]. Police and attorneys start recognizing wearables as
“black boxes” of the human body and use statistics gathered by activity trackers
as admissible evidence in court [4,5]. These developments highlight the critical
importance of both preserving data privacy throughout the collection process,
and ensuring correctness and authenticity of the records stored. The emergence of
third-party services offering rewards to users who share personal health informa-
tion further strengthens the significance of protecting wearables data integrity.
These include health insurance companies that provide discounts to customers
who demonstrate physical activity through their fitness tracker logs [6], websites
that financially compensate active users consenting to fitness monitoring [7], and
platforms where players bet on reaching activity goals to win money [8]. Unfor-
tunately, such on-line services also bring strong incentives for malicious users to
manipulate tracking data, in order to fraudulently gain monetary benefits.

Given the value fitness data has towards litigation and income, researchers
have analyzed potential security and privacy vulnerabilities specific to activity
trackers [9–12]. Following a survey of 17 different fitness trackers available on
the European market in Q1 2016 [15], recent investigations into the security of
Fitbit devices (e.g. [12]), and the work we present herein, we found that in com-
parison to other vendors, Fitbit employs the most effective security mechanisms
in their products. Such competitive advantage, giving users the ability to share
statistics with friends, and the company’s overall market leadership make Fitbit
one of the most attractive vendors to third parties running fitness-based financial
reward programs. At the same time it motivates us to choose Fitbit trackers as
the target of our security study, in the hope that understanding their underlying
security architecture can be used to inform the security and privacy of future fit-
ness tracker system designs. Rahman et al. have investigated the communication
protocols used by early Fitbit wearables when synchronizing with web servers
and possible attacks against this [9]. Cyr et al. [10] studied the different lay-
ers of the Fitbit Flex ecosystem and argued correlation and man-in-the-middle
(MITM) attacks are feasible. Recent work documents firmware vulnerabilities
found in Fitbit trackers [11], and the reverse engineering of cryptographic prim-
itives and authentication protocols [12]. However, as rapid innovation is the pri-
mary business objective, security considerations remain an afterthought rather
than embedded into product design. Therefore, wider adoption of wearable tech-
nology is hindered by distrust [13,14].

Contributions: We undertake an in-depth security analysis of the Fitbit Flex
and Fitbit One fitness trackers and reveal serious security and privacy vul-
nerabilities present in these devices which, although difficult to uncover, are
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reproducible and can be exploited at scale once identified. Specifically, we
reverse engineer the primitives governing the communication between trackers
and cloud-based services, implement an open-source tool to extract sensitive per-
sonal information in human-readable format, and demonstrate that malicious
users can inject fabricated activity records to obtain personal benefits. To cir-
cumvent end-to-end protocol encryption implemented in the latest firmware, we
perform hardware-based reverse engineering (RE) and document successful injec-
tion of falsified data that appears legitimate to the Fitbit cloud. The weaknesses
we uncover, as well as the design guidelines we provide to ensure data integrity,
authenticity and confidentiality, build foundations for more secure hardware and
software development, including code and build management, automated test-
ing, and software update mechanisms. Our insights provide valuable information
to researchers and practitioners about the detailed way in which Fitbit operates
their fitness tracking devices and associated services. These may help IoT man-
ufacturers in general to improve their product design and business processes,
towards developing rigorously secured devices and services.

Responsible Disclosure: We have contacted Fitbit prior to submitting our
work, and informed the company about the security vulnerabilities we discov-
ered. We disclosed these vulnerabilities to allow sufficient time for them to fix the
identified problems before the publication of our findings. At the time of writ-
ing, we are aware that the vendor is in the process of evaluating the disclosed
vulnerabilities and formulating an effective response to them.

2 Adversary Model

To retrieve the statistics that trackers collect, users predominantly rely on smart-
phone or tablet applications that extract activity records stored by the devices,
and push these onto cloud servers. We consider the adversarial settings depicted
in Fig. 1, in which users are potentially dishonest, whilst the server is provably
trustworthy. We assume an active adversary model in which the wristband user

Fig. 1. Adversary model considered for (a) devices not implementing encryption and
(b) trackers using encryption.
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is the primary adversary, who has both the means and motive to compromise
the system. Specifically, the attacker (a) views and seeks to manipulate the
data uploaded to the server without direct physical control over the device, or
(b) inspects and alters the data stored in memory prior to synchronization, hav-
ing full hardware control of the device. The adversary’s motivation is rooted in
the potential to obtain financial gains by injecting fabricated fitness data to the
remote server. Smartphone and cloud platform security issues are outside the of
scope of this paper, therefore not considered in our analysis.

2.1 Target Fitbit Devices

The adversary’s target devices are the Fitbit Flex and Fitbit One wrist-based
fitness trackers, which record user step counts, distance traveled, calories burned,
floors climbed (Fitbit One), active minutes, and sleep duration. These particular
trackers have been on the market for a number of years, they are affordable and
their security and privacy has been scrutinized by other researchers. Thus, both
consumers and the vendor would expect they are not subject to vulnerabilities.

We subsequently found that other Fitbit models (e.g. Zip and Charge) imple-
ment the same communication protocol, therefore may be subject to the same
vulnerabilities we identify in this work.

2.2 End-to-End Communication Paradigms

Following initial pairing, we discover Fitbit trackers are shipped with one of
two different firmwares; namely, the latest version (Flex 7.81) which by default
encrypts activity records prior to synchronization using the XTEA algorithm
and a pre-installed encryption key; and, respectively, an earlier firmware ver-
sion (Flex 7.64) that by default operates in plaintext mode, but is able to acti-
vate message encryption after being instructed to do so by the Fitbit server.
If enabled, encryption is end-to-end between the tracker and the server, whilst
the smartphone app is unaware of the actual contents pushed from tracker to
the server. The app merely embeds encrypted records retrieved from the tracker
into JSON messages, forwards them to the Fitbit servers, and relays responses
back to the tracker. The same functionality can be achieved through software
running on a computer equipped with a USB Bluetooth LE dongle, including
the open-source Galileo tool, which does not require user authentication [16].

Even though only the tracker and the server know the encryption key, upon
synchronization the smartphone app also receives statistic summaries from the
server in human readable format over an HTTPS connection. As such, and fol-
lowing authentication, the app and authorized third parties can connect to a user
account via the Fitbit API and retrieve activity digests—without physical access
to the tracker. We also note that, despite newer firmware enforcing end-to-end
encryption, the Fitbit server continues to accept and respond to unencrypted
activity records from trackers that only optionally employ encryption, thereby
enabling an attacker to successfully modify the plaintext activity records sent to
the server.
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Fig. 2. Schematic illustration of the testbed used for protocol reverse engineering.
Linux-based laptop used as wireless Internet gateway and running MITM proxy.

3 Protocol Reverse Engineering

In this section, we reverse engineer the communication protocol used by the Fit-
bit trackers studied, uncovering an intricate security through obscurity approach
in its implementation. Once we understand the message semantics, we show that
detailed personal information can be extracted and fake activity reports can be
created and remotely injected, using an approach that scales, as documented in
Sect. 4.

3.1 MITM Setup

To intercept the communication between the tracker and the remote server, we
deploy an MITM proxy on a Linux-based laptop acting as a wireless Internet
gateway, as illustrated in Fig. 2. We install a fake CA certificate on an Android
phone and trigger tracker synchronization manually, using an unmodified Fitbit
application. The application synchronizes the tracker over Bluetooth LE and
forwards data between the tracker and the server over the Wi-Fi connection,
encapsulating the information into JSON messages sent over an HTTPS con-
nection. This procedure resembles typical user engagement with the tracker,
however the MITM proxy allows us to intercept all communications between the
tracker and the server, as well as between the smartphone and the server. In
the absence of end-to-end encryption, we can both capture and modify messages
generated by the tracker. Even with end-to-end encryption enabled, we can still
read the activity digests that the server provides to logged-in users, which are
displayed by the app running on their smartphones.

3.2 Wireshark Plugin Development and Packet Analysis

To simplify the analysis process and ensure repeatability, we develop a custom
frame dissector as stand-alone plugin programmed in C for the Wireshark net-
work analyzer [17].1 Developing this dissector involves cross-correlating the raw

1 The source code of our plug-in is available at https://seemoo.de/fitbit-wireshark.

https://seemoo.de/fitbit-wireshark
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Fig. 3. Generic microdump in plain-text, as displayed by the wireshark dissector we
implement. Note the ability to filter by ‘fitbit’ protocol type in the analyzer.

messages sent by the tracker with the server’s JSON responses to the client
application. After repeated experiments, we infer the many protocol fields that
are present in tracker-originated messages and that are encoded in different for-
mats as detailed next. We use the knowledge gained to present these fields in a
human-readable format in the protocol analyzer.

There are two types of tracker-originated messages we have observed during
our analysis, which will be further described in the following sections:

1. Microdumps: A summary of the tracker status and configuration.
2. Megadumps: A summary of user activity data from the tracker.

3.3 Microdump

Depending on the action being performed by the user (e.g. authentication and
pairing, synchronizing activity records), the smartphone app makes HTTPS
requests to the server using specific URLs, e.g. POST https://<fitbit_server_ip
>/1/devices/client/.../validate.json?btle_Name=Flex&secret=null&btAddress=
<6Byte_tracker_ID> for initial authentication. Each basic action is accompa-
nied by a so-called microdump, which is required to identify the tracker, and to
obtain its state (e.g. its current firmware version). Irrespective of whether or not
the tracker implements protocol encryption, the microdump header includes the
tracker ID and firmware version, and is sent in plain-text. Figure 3 illustrates
a microdump sent along with a firmware update request, as interpreted by our
Wireshark dissector.
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We also note that the only validation feature that plain-text messages imple-
ment is a CRC-CCITT checksum, presumably used by the server to detect data
corruption in tracker-originated messages. In particular, this acquired knowledge
will allow us to inject generic messages into the server and obtain replies, even
when a valid tracker ID is already associated with a person’s existing account.
Yet, microdumps only contain generic information, which does not allow the
spoofing of user activity records. In what follows, we detail the format of mes-
sages sent to the server to synchronize the tracked user activity.

Note that the plain-text format does not provide measures for verifying the
integrity and authenticity of the message contents except for a checksum, which is
deterministically calculated from the values of the message fields. This allows the
adversary to inject generic messages to the server and receive replies, including
information about whether a tracker ID is valid and associated with a user
account.

3.4 Megadump Synchronization Message

Step counts and other statistics are transmitted by the tracker in the form of a
so-called megadump. Independent of encrypted or plain-text mode, neither the
Fitbit smartphone application nor the Galileo synchronization tool are aware of
the exact meaning of this payload. The megadump is simply forwarded to the
server, which in turn parses the message and responds with a reply. This reply is
then forwarded (by the corresponding application) back to the tracker, confirm-
ing to the tracker that the data was synchronized with the server successfully.

Despite this behavior, the Fitbit smartphone application—in contrast to
Galileo—is aware of the user’s statistics. However, this is due to the applica-
tion making requests to the Fitbit Web API. Once authenticated, this API can
be used to retrieve user information from the server in JSON format. The Fit-
bit smartphone application periodically synchronizes its display via the Fitbit
Web API, allowing the user to see the latest information that was uploaded by
the most recent tracker megadump. A plain-text example of this is shown in
Fig. 4. Note that the Fitbit Web API separates data by type, such that not all
information transmitted within one megadump is contained within one JSON
response. From the megadump a total distance of 522720mm can be extracted,
which equals to the 0.52 km from the JSON.

We use this information to reverse engineer and validate the megadump
packet format, and have identified that each megadump is split into the following
sections: a header, one or more data sections, and a footer. These sections start
with a section start sequence of bytes: c0 cd db dc; and end with a section
terminator byte: c0. If the byte c0 is required to be used within a data section,
it is escaped in a manner similar to RFC 1055.2

Message Header. The megadump header is very similar to the microdump
header, but contains a fewdifferences. Figure 5 shows how this header is structured.

2 A Non-standard for transmission of IP Data-grams over Serial Lines: SLIP.
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Fig. 4. Megadump frame in plain-text format as transmitted to the Fitbit server (main
window) and the human-readable JSON status response by the Fitbit Web API (top
right).

Data Sections. Following the header are one or more data sections. Each data
section contains various statistics in a particular format, and may even be blank.
As previously mentioned, each data sections start with c0 cd db dc, and are
terminated by a single c0 character. Therefore, the data sections are of variable
length. From the packets we have analyzed, it has been observed that there are
typically four data sections, which all appear in the following order, and have
the following format:

(1) Daily Summary: The first data section contains activity information across
a number of different absolute timestamps. This section contains a series of
fixed-length records that begin with a little-endian timestamp, and end with
a section terminator byte (c0).



56 H. Fereidooni et al.

Fig. 5. Megadump header structure

Fig. 6. Per-minute summary

(2) Per-minute Summary: The next data section is a per-minute summary, com-
prising a series of records that indicate user activity on a per-minute granu-
larity. The structure of this data section is shown in Fig. 6.

The section begins with a timestamp (unlike other timestamps, this field is
big-endian), which acts as the base time for this sequence of step counts. Each
step count record is then an increment of a time period (typically two minutes),
from this base time. Following the timestamp is a byte indicating the start of
the step count records. The full meaning of this byte is unclear, but we believe
it indicates the time period between each step count record. Following this, a
series of records consisting of four bytes state the number of steps taken per-
time period. The second byte indicates the number of steps taken, and the fourth
byte is either ff to indicate another record follows, or c0 (for the last record) to
terminate the data section.

(3) Overall Summary: This data section contains a summary of the previous
records, although as will be demonstrated later it is not validated against
“per-minute” or “per-day” data. The format of this section is shown in Fig. 7.

This section starts with a timestamp, indicating the base time for this sum-
mary data. Following this timestamp is a 16-bit value that holds the number of
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Fig. 7. Megadump summary fields

Fig. 8. Megadump footer fields

calories burned. Following on from this is a 32-bit value containing the number of
steps taken, and a 32-bit value containing the distance travelled in millimeters.
Finally, the summary ends with elevation, floors climbed and active minutes—all
16-bit values.

(4) Alarms: The final data section contains information about what alarms are
currently set on the tracker, and is typically empty unless the user has
instructed the tracker to create an alarm.

Message Footer. The megadump footer contains a checksum and the size of
the payload, as shown in Fig. 8.

4 Protocol-Based Remote Spoofing

This section shows that the construction of a megadump packet containing fake
information and the subsequent transmission to the Fitbit server is a viable
approach for inserting fake step data into a user’s exercise profile. This attack
does not actually require the possession of a physical tracker, but merely a known
tracker ID to be associated with the user’s Fitbit account. This means that one
can fabricate fake data for any known and actively used tracker having a firmware
version susceptible to this vulnerability. In order to construct a forged packet,
however, the format of the message must be decoded and analyzed to determine
the fields that must be populated.

4.1 Submission of Fake Data

The Fitbit server has an HTTPS endpoint that accepts raw messages from track-
ers, wrapped in an XML description. The raw message from the tracker is Base64
encoded, and contains various fields that describe the tracker’s activity over a
period of time.
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Fig. 9. The result of replaying data from another Fitbit tracker to a different tracker
ID. (a) shows the Fitbit user activity screen before the replay attack, and (b) shows
the results after the message is formed by changing the tracker ID, and submitted to
the server.

The raw messages of the studied trackers may or may not be encrypted,
but the remote server will accept either. Even though the encryption key for a
particular tracker is unknown, it is possible to construct an unencrypted frame
and submit it to the server for processing, associating it with an arbitrary tracker
ID. Provided that all of the fields in the payload are valid and the checksum is
correct, the remote server will accept the payload and update the activity log
accordingly. In order to form such a message, the raw Fitbit frame must be
Base64 encoded and placed within an XML wrapper as shown in Listing 1.1:

Listing 1.1. Fitbit frame within an XML wrapper
1 <?xml version=" 1 .0 "?>
2 <ga l i l e o −c l i e n t version=" 2 .0 ">
3 <c l i e n t −i n f o>
4 <c l i e n t −id>
5 6de4df71 −17f9 −43ea−9854−67 f842021e05
6 </ c l i e n t −id>
7 <c l i e n t −version>1 . 0 . 0 . 2 2 9 2</ c l i e n t −version>
8 <c l i e n t −mode>sync</ c l i e n t −mode>
9 <dongle−version major="2"minor="5"/>

10 </ c l i e n t −i n f o>
11 <tracke r t racker−id="F0609A12B0C0">
12 <data>∗∗∗ BASE64 PACKET DATA ∗∗∗</data>
13 </ t racke r>
14 </ ga l i l e o −c l i e n t>

The fabricated frame can be stored in a file, e.g. payload, and then submit-
ted with the help of an HTTP POST request to the remote server as shown in
Listing 1.2, after which the server will respond with a confirmation message.
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Listing 1.2. Submitting fake payload to the server
1 $ cu r l − i −X POST https :// c l i e n t . f i t b i t . com/ t ra cke r / c l i e n t /message
2 −H"Content−Type : t ext /xml"
3 −−data−binary @payload

Impersonation Attack: In order to test the susceptibility of the server to this
attack, a frame from a particular tracker was captured and re-submitted to the
server with a different tracker ID. The different tracker ID was associated with
a different Fitbit user account. The remote server accepted the payload, and
updated the Fitbit user profile in question with identical information as for the
genuine profile, confirming that simply altering the tracker ID in the submis-
sion message allowed arbitrary unencrypted payloads to be accepted. Figure 9
shows the Fitbit user activity logs before and after performing the impersonation
attack. The fact that we are able to inject a data report associated to any of
the studied trackers’ IDs reveals both a severe DoS risk and the potential for
a paid rogue service that would manipulate records on demand. Specifically, an
attacker could arbitrarily modify the activity records of random users, or manip-
ulate the data recorded by the device of a target victim, as tracker IDs are listed
on the packaging. Likewise, a selfish user may pay for a service that exploits this
vulnerability to manipulate activity records on demand, and subsequently gain
rewards.

Fig. 10. a shows the Fitbit user activity screen before fake data were submitted, and b
shows the screen after the attack. In this example, 10000 steps and 10 km were injected
for the date of Sunday, January 15th, 2017 by fabricating a message containing the
data shown in Table 1.

Fabrication of Activity Data: Using the information gained during the pro-
tocol analysis phase (see Sect. 3), we constructed a message containing a frame
with fake activity data and submitted it to the server, as discussed above. To
do this, the payload of a genuine message was used as a skeleton, and each data
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section within the payload was cleared by removing all data bytes between the
delimiters. Then, the summary section was populated with fake data. Using only
the summary section was enough to update the Fitbit user profile with fabri-
cated step count and distance traveled information. The format of the summary
section is shown in Table 1, along with the fake data used to form the fabricated
message.

Table 1. Data inserted into the packet summary section

Range Usage Value

00-03 Timestamp 30 56 7b 58 15/01/17
04-05 Calories 64 00 100
06-09 Number of Steps 10 27 00 00 10000
0A-0D Distance in mm 80 96 98 00 10000000
0E-0F Elevation 00 00 00 00 0

Fig. 10 again shows a before and after view of the Fitbit user activity screen,
when the fake message is submitted. In this example, the packet is constructed
so that 10000 steps and a distance traveled of 10 km were registered for the 15th
of January 2017. This attack indicates that it is possible to create an arbitrary
activity message and have the remote server accept it as a real update to the
user’s activity log.

Exploitation of Remote Server for Field Deduction: A particular problem
with the unencrypted packets was that it was not apparent how the value of the
CRC field is calculated (unlike the CRC for encrypted packets). However, if a
message is sent to the server containing an invalid CRC, the server responds
with a message containing information on what the correct CRC should be (see
Listing 1.3).

Listing 1.3. Response from the Fitbit server when a payload with an invalid checksum
is submitted.

1 $ cu r l − i −X POST <target−u r l> −−data−binary @payload
2 <?xml version=" 1 .0 " encoding="UTF−8"standalone="yes "?>
3 <ga l i l e o −s e r v e r version=" 2 .0 ">
4 <er r o r>INVALID_DEVICE_DATA:com. f i t b i t . p ro to co l . s e r i a l i z e r .

DataProcess ingExcept ion : Pars ing f i e l d
5 [ s i gna tu r e ] o f the ob j e c t o f type CHECKSUM. IO e r r o r −&gt ;

Remote checksum [2246 | 0 x8c6 ] and l o c a l
6 checksum [60441 | 0 xec19 ] do not match .</ e r r o r>
7 </ ga l i l e o −s e r v e r>

This information can be used to reconstruct the packet with a valid CRC.
Such an exploit must be used sparingly, however, as the remote server will refuse
to process further messages if an error threshold is met, until a lengthy timeout
(on the order of hours) expires.
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Fig. 11. Fitbit tear-down and connecting Fitbit micro-controller to the debugger.

5 Hardware-Based Local Spoofing

We now demonstrate the feasibility of hardware-based spoofing attacks focusing
on Fitbit Flex and Fitbit One devices. We first conducted an analysis of the
Fitbit protocol as previously described in Sect. 3. However, since the newest
firmware (Fitbit 7.81) uses end-to-end encryption with a device-specific key, the
data cannot be manipulated using MITM attacks, as described in the previous
section. Therefore, we resort to a physical attack on the tracker’s hardware. We
reverse engineered the hardware layout of the devices to gain memory access,
which enabled us to inject arbitrary stepcount values into memory, which the
tracker would send as valid encrypted frames to the server.

5.1 Device Tear-Down

In order to understand how to perform the hardware attack, we needed to tear
down the devices. In the following section, we give an overview of the tools
required for this process.

Tools: The tools to perform the hardware attack were relatively inexpensive and
easy to purchase. To accomplish the attack, we used (i) a digital multimeter,
(ii) a soldering iron, thin gauge wire, flux (iii) tweezers, (iv) a soldering heat
gun, (v) the ST-LINK/v2 in circuit debugger/programmer, and (vi) the STM32
ST-LINK utility.

The digital multimeter was used to locate the testing pins associated with
the debug interface of the microcontroller. However, attackers performing the
attack would not require a multimeter, as long as the layout of the testing pins
is known. The soldering heat gun and tweezers were utilized to perform the
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mechanical tear-down of the device casing. The soldering iron and accessories
were used to solder wires to the identified testing pins. We used the ST-LINK/v2
and STM32 ST-LINK utilities to connect to the device in order to obtain access
to the device’s memory.

Costs: The required tools for performing the hardware attack are relatively
cheap. The STLINK/v2 is a small debugger/programmer that connects to the
PC using a common mini-USB lead and costs around $15. The corresponding
STM32 ST-LINK utility is a full-featured software interface for programming
STM32 microcontrollers, using a mini-USB lead. This is free Windows software
and that can be downloaded from ST3. General-purpose tools (e.g. hair dryer)
can be employed to tear-down the casing. Therefore the total costs make the
attack accessible to anyone who can afford a fitness tracker. We argue that
hardware modifications could also be performed by a third party in exchange of
a small fee, when the end user lacks the skills and/or tools to exploit hardware
weaknesses in order to obtain financial gains.

Tear-Down Findings: According to our tear-down of the Fitbit trackers (Fitbit
Flex and Fitbit One), as shown in Fig. 11, the main chip on the motherboard
is an ARM Cortex-M3 processor. This processor is an ultra-low-power 32-bit
MCU, with different memory banks such as 256KB flash, 32KB SRAM and
8KB EEPROM. The chip used for Fitbit Flex is STM32L151UC WLCSP63
and for Fitbit One STM32L152VC UFBGA100. The package technology used in
both micro-controllers is ball grid array (BGA) which is a surface-mount package
with no leads and a grid array of solder balls underneath the integrated circuit.
Since the required specifications of the micro-controller used in Fitbit trackers
are freely available, we were able to perform hardware reverse-engineering (RE).

5.2 Hardware RE to Hunt Debug Ports

We discovered a number of testing points at the back of the device’s main board.
Our main goal was to identify the testing points connected to debug interfaces.
According to the IC’s datasheet, there are two debug interfaces available for
STM32L: (i) serial wire debug (SWD) and (ii) joint test action group (JTAG).

Fig. 12. Connecting the tracker to the debugger.

3 http://www.st.com/en/embedded-software/stsw-link004.html.

http://www.st.com/en/embedded-software/stsw-link004.html


Breaking Fitness Records Without Moving 63

We found that the Fitbit trackers were using the SWD interface. However,
the SWD pins were obfuscated by placing them among several other testing
points without the silkscreen identifying them as testing points. SWD technology
provides a 2-pin debug port, a low pin count and high-performance alternative to
JTAG. The SWD replaces the JTAG port with a clock and single bidirectional
data pin, providing test functionality and real-time access to system memory.
We selected a straightforward approach to find the debug ports (other tools that
can be exploited include Arduino+JTAGEnum and Jtagulator). We removed
the micro-controller from the device printed circuit boards (PCBs). Afterward,
using the IC’s datasheet and a multimeter with continuity tester functionality,
we traced the debug ports on the device board, identifying the testing points
connected to them.

5.3 Connecting Devices to the Debugger

After discovering the SWD debug pins and their location on the PCB, we sol-
dered wires to the debug pins. We connected the debug ports to ST-LINK v2
pin header, according to Fig. 12.

Dumping the Firmware: After connecting to the device micro-controller, we
were able to communicate with MCU as shown in Fig. 11. We extracted the entire
firmware image since memory readout protection was not activated. There are
three levels of memory protection in the STM32L micro-controller: (i) level 0:
no readout protection, (ii) level 1: memory readout protection, the Flash memory
cannot be read from or written to, and (iii) level 2: chip readout protection, debug
features and boot in RAM selection are disabled (JTAG fuse). We discovered that
in the Fitbit Flex and the Fitbit One, memory protection was set to level 0, which
means there is no memory readout protection. This enabled us to extract the
contents of the different memory banks (e.g., FLASH, SRAM, ROM, EEPROM)
for further analysis.

Note that it is also possible to extract the complete firmware via the MITM
setup during an upgrade process (if the tracker firmware does not use encryp-
tion). In general, sniffing is easier to perform, but does not reveal the memory
layout and temporal storage contents. Moreover, hardware access allows us to
change memory contents at runtime.

Device Key Extraction: We initially sniffed communications between the
Fitbit tracker and the Fitbit server to see whether a key exchange protocol is
performed, which was not the case. Therefore, we expected pre-shared keys on
the Fitbit trackers we connected to, including two different Fitbit One and three
different Fitbit Flex devices. We read out their EEPROM and discovered that
the device encryption key is stored in their EEPROM. Exploring the memory
content, we found the exact memory addresses where the 6-byte serial ID and
16-byte encryption key are stored, as shown in Fig. 13. We confirm that each
device has a device-specific key which likely is programmed into the device during
manufacturing [12].
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Disabling the Device Encryption: By analyzing the device memory content,
we discovered that by flipping one byte at a particular address in EEPROM, we
were able to force the tracker to operate in unencrypted mode and disable the
encryption. Even trackers previously communicating in encrypted mode switched
to plaintext after modifying the encryption flag (byte). Figure 13 illustrates how
to flip the byte, such that the tracker sends all sync messages in plaintext format
(Base64 encoded) disabling encryption.

Fig. 13. Device key extraction and disabling encryption.

Injecting Fabricated Data Activities: We investigated the EEPROM and
SRAM content to find the exact memory addresses where the total step count
and other data fields are stored. Based on our packet format knowledge and
previously sniffed megadumps, we found that the activity records were stored in
the EEPROM in the same format. Even encrypted frames are generated based
on the EEPROM plaintext records. Therefore, oblivious falsified data can be
injected, even with the newest firmware having encryption enabled. As it can
be seen in Fig. 14a and b, we managed to successfully inject 0X00FFFFFF steps
equal to 16 777 215 in decimal into Fitbit server by modifying the corresponding
address field in the EEPROM and subsequently synchronising the tracker with
the server.

6 Discussion

In this section we give a set of implementation guidelines for fitness trackers.
While Fitbit is currently the only manufacturer that puts effort into securing
trackers [15], our guidelines also apply to other health-related IoT devices. We
intend to transfer the lessons learned into open security and privacy standards
that are being developed.4

4 See https://www.thedigitalstandard.org.

https://www.thedigitalstandard.org
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Fig. 14. The results of injecting fabricated data. (a) shows the Fitbit app screenshot,
and (b) demonstrates the Fitbit web interface.

False data injection as described in the previous sections is made possible
by a combination of some of the design choices in the implementation of the
Fitbit trackers and in the communication protocol utilized between the track-
ers and Fitbit application servers. These design choices relate to how encryption
techniques have been applied, the design of the protocol messages, and the imple-
mentation of the hardware itself. To overcome such weaknesses in future system
designs, we propose the following mitigation techniques.

Application of encryption techniques: The examined trackers support full
end-to-end encryption, but do not enforce its use consistently.5 This allows us to
perform an in-depth analysis of the data synchronization protocol and ultimately
fabricate messages with false activity data, which were accepted as genuine by
the Fitbit servers.

Suggestion 1. End-to-end encryption between trackers and remote servers
should be consistently enforced, if supported by device firmware.

Protocol message design: Generating valid protocol messages (without a clear
understanding of the CRC in use) is enabled by the fact that the server responds
to invalid messages with information about the expected CRC values, instead of
a simple “invalid CRC”, or a more general “invalid message” response.

Suggestion 2. Error and status notifications should not include additional
information related to the contents of actual protocol messages.

5 During discussions we had with Fitbit, the company stressed that models launched
after 2015 consistently enforce encryption in the communications between the tracker
and server.
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CRCs do not protect against message forgery, once the scheme is known. For
authentication, there is already a scheme in place to generate subkeys from the
device key [12]. Such a key could also be used for message protection.

Suggestion 3. Messages should be signed with an individual signature subkey
which is derived from the device key.

Hardware implementation: The microcontroller hardware used by both ana-
lyzed trackers provides memory readout protection mechanisms, but were not
enabled in the analyzed devices. This opens an attack vector for gaining access
to tracker memory and allows us to circumvent even the relatively robust pro-
tection provided by end-to-end message encryption as we were able to modify
activity data directly in the tracker memory. Since reproducing such hardware
attacks given the necessary background information is not particularly expen-
sive, the available hardware-supported memory protection measures should be
applied by default.

Suggestion 4. Hardware-supported memory readout protection should be
applied.

Specifically, on the MCUs of the investigated tracking devices, the memory of
the hardware should be protected by enabling chip readout protection level 2.

Fraud detection measures: In our experiments we were able to inject fabri-
cated activity data with clearly unreasonably high performance values (e.g. more
than 16 million steps during a single day). This suggests that data should be
monitored more closely by the servers before accepting activity updates.

Suggestion 5. Fraud detection measures should be applied in order to screen
for data resulting from malicious modifications or malfunctioning hardware.

For example, accounts with unusual or abnormal activity profiles should be
flagged and potentially disqualified, if obvious irregularities are detected.

7 Related Work

Researchers at the University of Toronto [18] have investigated transmission
security, data integrity, and Bluetooth privacy of eight fitness trackers including
Fitbit Charge HR. They focused on transmission security, specifically at whether
or not personal data is encrypted when transmitted over the Internet in order
to protect confidentiality. They also examined data integrity concentrating on
whether or not fitness data can be considered authentic records of activity that
have not been tampered with. They did not attempt to reverse engineer the
proprietary encoding or encryption used for transmitting data.

In 2013, Rahman et al. [9] studied the communication between Fitbit Ultra
and its base station as well as the associated web servers. According to Rahman
et al., Fitbit users could readily upload sensor data from their Fitbit device onto
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the web server, which could then be viewed by others online. They observed two
critical vulnerabilities in the communication between the Fitbit device’s base
station, and the web server. They claimed that these vulnerabilities could be
used to violate the security and privacy of the user. Specifically, the identified
vulnerabilities consisted of the use of plaintext login information and plaintext
HTTP data processing. Rahman et al. then proposed FitLock as a solution to
the identified vulnerabilities. These vulnerabilities have been patched by Fitbit
and no longer exist on contemporary Fitbit devices. Zhou et al. [20] followed
up on Rahman’s work by identifying shortcomings in their proposed approach
named FitLock, but did not mention countermeasures to mitigate the vulnerabil-
ities that they found. In 2014, Rahman et al. published another paper detailing
weaknesses in Fitbit’s communication protocol, enabling them to inject falsified
data to both the remote web server and the fitness tracker. The authors pro-
posed SensCrypt, a protocol for securing and managing low power fitness track-
ers [21]. Note that Fitbit’s communication paradigm has changed considerably
since Fitbit Ultra, which uses ANT instead of Bluetooth, and is not supported
by smartphone applications, but only by a Windows program last updated in
2013. Neither the ANT-based firewalls FitLock nor SensCrypt would work on
recent Fitbit devices. Transferring their concept to a Bluetooth-based firewall
would not help against the attacks demonstrated in this paper, since hardware
attacks are one level below such firewalls, while our protocol attacks directly
target the Fitbit servers.

Cyr et al. [10] analyzed the Fitbit Flex ecosystem. They attempted to do a
hardware analysis of the Fitbit device but because of the difficulties associated
with debugging the device they decided to focus on other parts such as Bluetooth
LE, the associated Android app and network analysis. The authors explained the
data collected by Fitbit from its users, the data Fitbit provided to Fitbit users,
and methods of recovering data not made available to device owners.

In the report released by AV TEST [19], the authors tested nine fitness
trackers including Fitbit Charge and evaluated their security and privacy. The
authors tried to find out how easy it is to get the fitness data from the fitness
band through Bluetooth or by sniffing the connection to the cloud during the
synchronization process.

AV TEST reported some security issues in Fitbit Charge [11]. They dis-
covered that Fitbit Charge with firmware version 106 and lower allows non-
authenticated smartphones to be treated as authenticated if an authenticated
smartphone is in range or has been in range recently. Also, the firmware version
allowed attackers to replay the tracker synchronization process. Both issues have
been now fixed by Fitbit.

In [12], the authors captured the firmware image of the Fitbit Charge HR
during a firmware update. They reversed engineer the cryptographic primitives
used by the Fitbit Charge HR activity tracker and recovered the authentica-
tion protocol. Moreover, they obtained the cryptographic key that is used in
the authentication protocol from the Fitbit Android application. The authors
found a backdoor in previous firmware versions and exploiting this backdoor they
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extracted the device specific encryption key from the memory of the tracker using
Bluetooth interface. Memory readout has been fixed in recent firmware versions.

Principled understanding of the Fitbit protocol remains open to investigation
as the open-source community continues to reverse-engineer message semantics
and server responses [16].

8 Conclusion

Trusting the authenticity and integrity of the data that fitness trackers generate
is paramount, as the records they collect are being increasingly utilized as evi-
dence in critical scenarios such as court trials and the adjustment of healthcare
insurance premiums. In this paper, we conducted an in-depth security analysis of
two models of popular activity trackers commercialized by Fitbit, the market
leader, and we revealed serious security and privacy vulnerabilities present in
these devices. Additionally, we reverse engineered the primitives governing the
communication between these devices and cloud-based services, implemented an
open-source tool to extract sensitive personal information in human-readable for-
mat and demonstrated that malicious users could inject spoofed activity records
to obtain personal benefits. To circumvent the end-to-end protocol encryption
mechanism present on the latest firmware, we performed hardware-based RE and
documented successful injection of falsified data that appears legitimate to the
Fitbit cloud. We believe more rigorous security controls should be enforced by
manufacturers to verify the authenticity of fitness data. To this end, we provided
a set of guidelines to be followed to address the vulnerabilities identified.
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Abstract. Organizations are facing an increasing number of criminal
threats ranging from opportunistic malware to more advanced targeted
attacks. While various security technologies are available to protect orga-
nizations’ perimeters, still many breaches lead to undesired consequences
such as loss of proprietary information, financial burden, and reputation
defacing. Recently, endpoint monitoring agents that inspect system-level
activities on user machines started to gain traction and be deployed in
the industry as an additional defense layer. Their application, though, in
most cases is only for forensic investigation to determine the root cause
of an incident.

In this paper, we demonstrate how endpoint monitoring can be proac-
tively used for detecting and prioritizing suspicious software modules
overlooked by other defenses. Compared to other environments in which
host-based detection proved successful, our setting of a large enterprise
introduces unique challenges, including the heterogeneous environment
(users installing software of their choice), limited ground truth (small
number of malicious software available for training), and coarse-grained
data collection (strict requirements are imposed on agents’ performance
overhead). Through applications of clustering and outlier detection algo-
rithms, we develop techniques to identify modules with known malicious
behavior, as well as modules impersonating popular benign applications.
We leverage a large number of static, behavioral and contextual fea-
tures in our algorithms, and new feature weighting methods that are
resilient against missing attributes. The large majority of our findings
are confirmed as malicious by anti-virus tools and manual investigation
by experienced security analysts.
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1 Introduction

Malicious activities on the Internet are increasing at a staggering pace. The 2015
Verizon DBIR report [36] highlighted that in 2015 alone 70 million pieces of
malware were observed across 10,000 organizations with a total estimated finan-
cial loss of 400 million dollars. Enterprises deploy firewalls, intrusion-detection
systems, and other security technologies on premise to prevent breaches. How-
ever, most of these protections are only in effect within the organization perime-
ter. When users travel or work remotely, their devices lack the network-level
protections offered within the organization and are subject to additional threats.

Recently, many organizations started to deploy endpoint monitoring
agents [34] on user machines with the goal of protecting them even outside
the enterprise perimeter. Mandiant [24] reports that in a set of 4 million sur-
veyed hosts, 2.8 million hosts have endpoint instrumentation installed. These
agents record various activities related to downloaded files, installed applica-
tions, running processes, active services, scheduled tasks, network connections,
user authentication and other events of interest, and send the collected data to
a centralized server for analysis. Since stringent requirements are imposed on
the performance of these tools, they are usually lightweight and collect coarse-
grained information. Today, this data is used mainly for forensic investigation,
once an alert is triggered by other sources.

We believe that endpoint monitoring offers a huge opportunity for detec-
tion and mitigation of many malicious activities that escape current network-
side defenses. Endpoint agents get visibility into different types of events such
as registry changes and creation of executable files, which do not appear in
network traffic. Moreover, existing research in host-based detection methods
(e.g., [1,2,12,19,27,31]) confirms our insight that endpoint monitoring can be
used successfully for proactive breach detection. Nevertheless, to the best of
our knowledge, endpoint monitoring technologies have not yet been used for
this goal, as a number of challenges need to be overcome. Most accurate host-
based detection technologies rely on much finer-grained data (e.g., system calls
or process execution) than what is collected by endpoint agents. Additionally,
production environments in large organizations need to handle up to hundreds of
thousands of machines, with heterogeneous software configurations and millions
of software variants. Ground truth is inherently limited in this setting, since we
aim to detect malware that is already running on enterprise hosts, and as such
has bypassed the security protections already deployed within the enterprise.

In this paper, we analyze endpoint data collected from a large, geographically
distributed organization (including 36K Windows machines), and demonstrate
how it can be used for detecting hundreds of suspicious modules (executables or
DLLs) overlooked by other security controls. Our dataset includes a variety of
attributes for 1.8 million distinct Windows modules installed on these machines.
The enterprise of our study uses multiple tools to partially label the modules
as whitelisted (signed by reputable vendors), blacklisted (confirmed malicious by
manual investigation), graylisted (related to adware), or unknown. Interestingly,
only 6.5% of modules are whitelisted, very small number (534) are blacklisted,
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while the large majority (above 90%) have unknown status. As the ground truth
of malicious modules in our dataset in very limited, well-known techniques for
malware detection such as supervised learning are ineffective.

We use several insights to make the application of machine learning success-
ful in our setting. We first leverage the set of behaviors observed in blacklisted
modules to identify other modules with similar characteristics. Towards that
goal, we define a similarity distance metric on more than 50 static, behavioral
and contextual features, and use a density-based clustering algorithm to detect
new modules with suspicious behavior. Second, while enterprise hosts have rela-
tively heterogeneous software configuration, it turns out that popular Windows
executables or system processes have a large user base. We exploit the homo-
geneity of these whitelisted applications for detecting an emerging threat, that
of software impersonation attacks [26]. We detect a class of attacks impersonat-
ing static attributes of well-known files by a novel outlier-detection method. In
both settings we use new dynamic feature weighting methods resilient to missing
attributes and limited ground truth.

In summary, our contributions are highlighted below.

Endpoint-data analysis for malware detection. We are the first to analyze
endpoint data collected from a realistic deployment within a large enterprise
with the goal of proactively detecting suspicious modules on users’ machines.
We overcome challenges related to (1) lightweight instrumentation resulting in
coarse-grained event capturing; (2) the heterogeneous environment; (3) limited
ground truth; (4) missing attributes in the dataset.

Prioritization of suspicious modules. We propose a density clustering algo-
rithm for prioritizing the most suspicious modules with similar behavior as the
blacklisted modules. Our algorithm reaches a precision of 90.8% and recall of
86.7% (resulting in F1 score of 88.7%) relative to manually-labeled ground truth.
Among a set of 388K modules with unknown status, we identified 327 executable
and 637 DLL modules with anomalous behavior and the false positive rates are
as low as 0.11% and 0.0284% respectively. Through manual investigation, we
confirmed as malicious 94.2% of the top ranked 69 executables and 100% of the
top 20 DLL modules. Among these, 69 malicious modules were new findings
confirmed malicious by manual investigation, but not detected by VirusTotal.

Software impersonation. We propose an outlier-detection algorithm to iden-
tify malware impersonating popular software. Our algorithm detected 44 out-
lying modules in a set of 7K unknown modules with similar characteristics as
popular whitelisted modules, with precision of 84.09%. Among them, 12 mod-
ules are our new findings considered malicious by manual investigation, but not
detected by VirusTotal.

Novel feature weighting methods. To account for missing attributes and
limited ground truth, we propose new feature weighting methods taking into
account the data distribution. We compare them with other well-known feature
weighting methods and demonstrate better accuracy across multiple metrics of
interest.
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2 Background and Overview

In this section we first describe the problem definition, adversarial model, and
challenges we encountered. We then give an overview of our system, provide
details on the dataset we used for analysis, and mention ethical considerations.

2.1 Problem Statement

Organizations deploy network-perimeter defenses such as firewalls, anti-virus
software, and intrusion detection systems to protect machines within their net-
work. To obtain better visibility into user activities and offer protection outside
of enterprise perimeter, organizations started to deploy endpoint agents on user
machines [34]. These agents monitor processes running on end hosts, binaries
downloaded from the web, modifications to system configuration or registries
through lightweight instrumentation, and report a variety of recorded events to
a centralized server for analysis.

In the organization of our study, machines are instrumented with host agents
that perform regular and on-demand scans, collect aggregate behavioral events,
and send them to a centralized server. We address the problem of discovering
highly risky and suspicious modules installed on Windows machines through
analysis of this realistic, large-scale dataset. Specifically, we are looking for two
common types of malicious behavior:

– Starting from a set of blacklisted modules vetted by security experts, we are
interested in discovering other modules with similar characteristics. With the
availability of malware building kits [7], attackers can easily generate slightly
different malware variants to evade signature detection tools. We leverage the
insight that malicious variants produced by these toolkits share significant
similarity in their behavior and other characteristics.

– Starting from a set of whitelisted modules considered legitimate, we look for
malicious files impersonating them. System process impersonation has been
used by Advanced Persistent Threats (APT) campaigns for evasion [25,26].
Detecting this in isolation is difficult, but here we exploit the homogeneity of
whitelisted files in an enterprise setting. These files have a large user base and
should have similar behavior across different machines they are installed on.
Our main insight is that malicious files impersonating these popular modules
are significantly different in their behavior and contextual attributes.

Adversarial model. We assume that endpoint machines are subject to compro-
mise through various attack vectors. An infection could happen either inside the
enterprise network or outside when users travel or take their machines home. In
modern attacks there are multiple stages in the campaign lifecycle, e.g., a piece
of malware is delivered through email followed by download of second-stage
malware that initiates communication with its command-and-control center and
updates its code [23]. We assume that before attackers have complete control
of the machine, the endpoint agent is able to collect and upload information to
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the centralized server. Of course, we cannot make any assumptions about agents
once a machine is completely subverted by attackers. However, our goal is to
detect infection early, before it leads to more serious consequences such as data
leakage or compromise of administrator credentials.

We assume that the server storing the endpoint data is protected within the
enterprise perimeter. Breaches involving a compromise of monitoring tools or
servers are much more serious and can be detected through additional defenses,
but they are not our focus. Here we aim to detect and remediate endpoint
compromise to prevent a number of more serious threats.

Challenges. A number of unique challenges arise in our setting. Our dataset
is collected from a heterogeneous environment with 1.8 million distinct mod-
ules installed on 36K machines. Most users have administrative rights on their
machines and can install software of their choice. Second, we have limited
ground truth with less then 10% of modules labeled as whitelisted, blacklisted
or graylisted and the majority having unknown status. Third, a number of
attributes are missing due to machine reboots or disconnection from corpo-
rate network. Lastly, the monitoring agents collect lightweight information to
minimize their overhead.

Fig. 1. System diagram.

2.2 System Overview

Our system analyzes data collected from endpoint agents deployed in a large
enterprise. Our goal is to identify among the large set of modules with unknown
status those with suspicious behavior and prioritize them by their risk. In par-
ticular, we are looking for two types of malicious modules: (1) those with similar
behavior as known blacklisted modules; and (2) those impersonating popular,
legitimate whitelisted software. For our analysis, we employ a large number of
features from three categories: static (extracted from the module’s PE head-
ers), behavioral (capturing file access patterns, process creation and network
access events); and contextual (related to module location on the machines it is
installed).

Our system architecture is illustrated in Fig. 1. After we query the raw data
from the server, we apply some data transformation and aggregation in the
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processing phase and extract features from these three categories. We define a
module distance metric that assigns different feature weights for the two sce-
narios of interest. In case of similarity detection, high-entropy features are given
higher weight and we adapt the DBSCAN algorithm to account for custom-
defined distance metric and missing features. For software impersonation we
favor features that distinguish malicious from benign files best, and design a
novel two-stage outlier detection process. A detailed description of our tech-
niques follows in Sect. 3.

2.3 Dataset

Table 1. Total number of modules in each cat-
egory (BL – blacklisted, WL – whitelisted, UL –
unknown), and those with missing description,
company name and signature fields.

Status #Total #Description #Company Name #Signature

BL 534 440 445 520
WL 117,128 19,881 13,070 2,430
UL 1,692,157 1,304,557 1,314,780 1,503,449

The dataset is collected by end-
point agents deployed on 36,872
Windows machines. Agents mon-
itor executable and DLL mod-
ules, and perform scheduled scans
at intervals of three days. Ana-
lysts could also request scans
on demand. Data generated by
agents is sent to a centralized server. We had access to a snapshot of the database
from August 2015, including 1.8 million distinct modules. Among them, 117K
were marked as whitelisted (through custom tools). A small set (534 modules)
were labeled as blacklisted after detailed manual investigation by experienced
security analysts. Note that we did not augment this set with results from anti-
virus (AV) software, as these tools generate a large amount of alarms on low-risk
modules, such as adware or spyware, which were considered “graylisted” by secu-
rity analysts.

We choose to only use the blacklisted modules as reference of highly risky
malicious activity. The remaining 1.7 million modules have unknown status,
including lesser-known applications and variants of known applications. In total,
there are 301K distinct file names in our dataset.

To illustrate the noisy aspect of our dataset, Table 1 lists the total number
of modules, as well as the number of modules without description, company
name or signature in each category (BL – blacklisted, WL – whitelisted, UL –
unknown). As seen in the table, the large majority of blacklisted modules do not
include these fields, but also a fair number of unknown and whitelisted modules
miss them.

To illustrate the heterogeneity of the environment, the left graph in Fig. 2
shows the CDF for the number of hosts installing the same file name. The large
majority of file names are installed on few hosts relative to the population.
Even among whitelisted file names, 95% of them are installed on less than 100
hosts. 95% of the blacklisted files are installed on less than 20 hosts. Only a
small percentage of files are extremely popular and these are mostly Windows
executables and system processes or libraries (e.g., whitelisted svchost.exe and
unknown presentationcore.ni.dll are installed on 36K and 29K machines,
respectively).
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The right graph in Fig. 2 shows the CDF for the number of file variants with
same name but distinct SHA256 hashes. Whitelisted and unknown file names
include more variants than blacklisted ones. For instance, whitelisted setup.exe
has 1300 variants, unknown microsoft.visualstudio∼.dll has 26K variants,
while the maximum number of blacklisted variants is 25. This is due to the
limited set of blacklisted modules, as well as the evasive nature of malware
changing file name in different variants.
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Fig. 2. CDFs of hosts (left) and modules (right) sharing same filename.

2.4 Ethical Considerations

The enterprise’s IT department consented to give us access to a snapshot of the
data for the purpose of this study. We had access to data only within the premises
of the enterprise and were only allowed to export the results presented in the
paper. Our dataset did not include any personal identifying information (e.g.,
username and source IP of employee’s machine) that put users’ privacy at risk.
We also took measures to prevent potential information leakage: for instance,
the behavior and contextual features were aggregated across hosts installing the
same module.

3 System Design

We provide here details on our system design and implementation. Our first
goal is prioritizing the most suspicious unknown modules with similar behavior
as known blacklisted modules. Our second goal is detecting malware impersonat-
ing popular file names (e.g., system processes) through a novel outlier-detection
algorithm. Both techniques can be used to detect suspicious unknown mod-
ules, and enlarge the set of blacklisted modules manually labeled by analysts.
They both utilize the same set of 52 (static, behavioral, and contextual) features
extracted from the dataset (see Sect. 3.1). However feature weights and parame-
ters are customized for the two algorithms, as discussed in Sects. 3.2 and 3.3.
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3.1 Feature Selection

For each module we extract a multi-dimensional feature vector, with features
capturing the module’s attributes according to three distinct categories: static,
behavioral and contextual. Table 7 in Appendix A provides a comprehensive list
of all features.

Static features. These are mainly extracted from the module’s PE header
and include: (1) descriptive features represented as either string values (descrip-
tion and company name) or sets (name of imported DLLs and section names);
(2) numerical features such as file size, PE size, PE timestamp, module entropy;
and (3) binary features denoting attributes such as signature present, signature
valid, icon present, version information present, PE type (32 or 64 bit), PE
machine (e.g., AMD64), and module packed.

Behavioral features. These are related to the module’s behavior on all hosts
where it is installed. We include features related to: (1) file system access –
number of executable files created, deleted or renamed, files read, physical or
logical drives opened; (2) process access – number of regular processes, browser
or OS processes opened, processes or remote threads created; and (3) network
connections such as set of domains and IP addresses the module connects to.
These events are stored cumulatively at the server since the time the module was
first observed on the network. Since a module might exist on many machines,
we compute average number of events per machine for file system and process
access features.

Contextual features. The endpoint agents collect information about the time
when a module is initially installed on a machine, its full file system path, the user
account that created the module and the full path of all files and processes cap-
tured by the behavior events initiated by the module. We parse the file path and
match it to different categories such as Windows, Systems, ProgramFiles, Pro-
gramData, or AppDataLocal. Additionally, the agents monitor if modules have
auto-start functionality and categorizes that into different types (e.g., logon, ser-
vices, startup, scheduled task). We also have access to the user category owning
the module (admin, trusted installer or regular user).

From this information, we extract a number of contextual features related to:
(1) file system path – number of directory levels, the path category, number of
executable and non-executable files in the same folder, and number of sub-folders
in the path; (2) path of destination events – the path category of destination
files, and number of events created by the module in the same and in different
paths; (3) file’s metadata – file owner, hidden attributes, and days from creation;
(4) auto-start functionality – type of auto-start if enabled. We took the average
values across all hosts installing the module.

Final set of features. We initially considered a larger set of 70 features, but we
reduced the list to 52 features that are available in at least 10 blacklisted modules.
Some features related to registry modifications, process and I/O activity were
not encountered in our dataset of blacklisted modules, but could be applicable to
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an enlarged set of malicious modules. The final list of features we used is given
in Table 7 in Appendix A.

3.2 Prioritizing Suspicious Modules

For detecting modules with similar behavior as known blacklisted modules, we
first cluster the set of blacklisted modules, and then identify other unknown mod-
ules in these clusters. We prioritize unknown modules according to their distance
to the blacklisted modules. We describe our definition of module similarity and
distance metric, as well as our feature weighting method that is resilient against
missing features.

Clustering. Many clustering algorithms are available in the literature, and we
choose the DBSCAN [9] algorithm for clustering the blacklisted modules on the
set of 52 features. Its advantages are that it does not require the number of clus-
ters be specified in advance, can find arbitrarily-shaped clusters, and can scale to
large datasets. DBSCAN creates clusters starting from core samples, points that
have at least min sample points in their neighborhood, and proceeds iteratively
by expanding the clusters with points within distance ε (called neighborhood
radius).

We use standard distance metrics for each feature, according to the feature’s
type: L1 distance for integer and real values; binary distance for binary values
(d(x, y) = 0 if x = y, and d(x, y) = 1, otherwise); edit distance for strings;
Jaccard distance for sets. The distance between two modules M1 = (x1, . . . , xn)
and M2 = (y1, . . . , yn) is a weighted sum of distances for individual features:
d(M1,M2) =

∑n
i=1 wid(xi, yi), where

∑n
i=1 wi = 1 [14].

Feature weights. One of our main observation is that features should con-
tribute differently to overall modules similarity. While there are many estab-
lished methods for feature selection and weighting in supervised settings [8,15],
the problem is less studied in unsupervised settings like ours.

We tested two methods for setting feature weights. Assume that we have n
features in our dataset X = (X1, . . . , Xn). First, a simple method is to set weights
uniformly across all features, wi = 1/n, for i ∈ [1, n]. In the second novel method
we introduce, we choose feature weights proportional to the feature’s entropy
computed from the dataset. If feature i is categorical and has m possible values
v1, . . . , vm, we define pij as the probability that feature i takes value vj , for
j ∈ [1,m]. If feature i is numerical, we need to define a number m of bins
b1, . . . , bm so that the probability of feature i belonging to bin bj is pij , for
j ∈ [1,m]. Then, the entropy for feature i is H(Xi) = −∑m

j=1 pij log(pij). We
assign normalized feature weights proportional to their entropy, according to
our intuition that features with higher variability should contribute more towards
module similarity.

Our algorithms need to be resilient against missing features since a large frac-
tion of behavior features are not available (as machines are offline for extended
periods of time, or machines are sometimes rebooted before sending behavior
events to the server). When computing the distance between two missing values,
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rather than setting it at 0 we choose a fixed, penalty value which is a parameter
of our algorithm (the distance between a missing value and any other existing
value is set at the maximum value of 1). Higher penalty results in lower simi-
larity when computing the distance metric, thus the value of the penalty needs
to be carefully calibrated. We elaborate more on optimal parameter selection in
Sect. 4.

Prioritizing unknown modules. After clustering blacklisted modules with
DBSCAN and the distance metric described above, our next goal is to identify
unknown modules that belong to these clusters. The algorithm is run on 388K
unknown modules and assigns some of them to blacklisted clusters according
to their distance to cluster points. To prioritize the most suspicious ones, we
order the unknown modules that belong to a blacklisted cluster based on their
minimum distance to known blacklisted modules. We describe our results in
Sect. 4.1.

3.3 Impersonation of Popular Software

For detecting malware impersonating popular, legitimate software, we leverage
the large machine base in our dataset to determine a set of popular modules
and their common characteristics across machines. While it is relatively easy
for malware to inherit some of the static features of popular modules to appear
legitimate, in order to implement its functionality malware will exhibit differ-
ences in its behavioral and contextual features. We leverage this observation to
detect a set of modules impersonating popular file names (e.g., system processes
or software installers).

Our algorithm proceeds in two steps. First, we generate a set of “coarse”
clusters whose large majority of modules are popular whitelisted files. Second,
we identify a set of outliers in these clusters whose distance to other whitelisted
modules is larger than the typical distance between legitimate modules in the
cluster. The list of detected outliers is prioritized by the largest distance from
legitimate ones. We elaborate on weight selection, distance computation, and
our outlier detection algorithm below.

Weights and distance computation. As described in Sect. 3.2, the distance
between modules is a sum of feature distances adjusted by weights. However,
feature weights are computed differently in this case since we would like to give
higher weights to features distinguishing benign and malicious modules. Towards
this goal, we compute the information gain of the whole set of features over all
whitelisted and blacklisted modules and define static weights proportional to the
feature’s information gain.

Assume that X = (X1, . . . , Xn, y) is our dataset with n features and label y
(blacklisted or whitelisted). Assume that feature i takes m values v1, . . . , vm and
let Sij be the set of records having Xi = vj . The information gain for feature i
in dataset X is:

IG(X,Xi) = H(X) −
∑

j∈{1,··· ,m}

|Sij |
|X| H(Sij)
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Fig. 3. Outlier detection example. Fig. 4. Distance CDF from whitelisted to
whitelisted (WLWL), unknown (WLUL)
and blacklisted (WLBL) modules.

Here the entropy values H(X) and H(Sij) are computed from two bins (mali-
cious and benign). We further refine our method to increase the weights of fea-
tures with relative stability within the set of whitelisted modules in a cluster.
In particular, we compute the average distance for feature i for all pairs of
whitelisted modules (denoted Avgi) per cluster and use 1/Avgi as a factor pro-
portional to feature i’s stability. We set Min(1/Avgi,MaxW ) as dynamic weights
(MaxW is a threshold that limits the maximum weight – set at 20). The final
feature weights for a cluster are defined as the product of static (global) and
dynamic (cluster-specific) weights and normalized to sum up to 1. For missing
values, we use a penalty value as in Sect. 3.2.

Coarse cluster selection. We create clusters of modules with popular file
names. We select file names present on a large number of machines (more than
a parameter Oγ). We enforce that our coarse clusters include sufficient benign
samples through two conditions: (1) the clusters include minimum Oα whitelisted
modules; and (2) the ratio of whitelisted modules to all modules in a cluster is at
least a threshold Oβ . Coarse clusters should also include at least one unknown
(or blacklisted) module for being considered.

To account for generic file names (e.g., setup.exe or update.exe) with vari-
able behavior, we compute the average distance of all pairs of whitelisted mod-
ules in a cluster (denoted Avgwdist) and remove the clusters with Avgwdist larger
than a threshold Oθ. We also remove the modules developed by the company
providing us the dataset, as most of the internal builds exhibit diverse behavior.

Detecting outliers. Figure 4 shows distance CDFs between whitelisted mod-
ules, as well as between whitelisted and blacklisted, and whitelisted and unknown
modules in the coarse clusters. This confirms that blacklisted modules imper-
sonating legitimate file names are at a larger distance from other whitelisted
modules compared to the typical distance between legitimate modules. Based
on this insight, our goal is to identify unknown modules substantially different
from whitelisted ones in the coarse clusters.
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Our approach involves measuring the neighborhood distance in a coarse clus-
ter. For each whitelisted module, we compute the minimum distance to other
whitelisted files, and the neighborhood distance (denoted DistWL) is the maxi-
mum of all the minimum distances. For an unknown module U the distance to
the closest whitelisted module is DistU . Module U is considered an outlier if the

ratio R =
DistU

DistWL
> Oλ. We illustrate this process in Fig. 3. We experiment

with different values of Oλ ≥ 1 (see our results in Sect. 4.2).

4 Evaluation

We evaluated the effectiveness of our system using a snapshot of data from
August 2015. Our dataset includes information about 534 blacklisted, 117K
whitelisted and 1.7 million unknown modules installed on 36K Windows
machines.

For prioritizing modules with known malicious behavior, we use 367 black-
listed modules whose static features have been correctly extracted. These mod-
ules were labeled by security experts with the corresponding malware family
and we use them as ground truth to evaluate our clustering-based algorithm.
Next, we selected a set of 388K unknown modules (79K executable and 309K
DLL) installed on at most 100 machines (popular modules have lower chance
of being malicious) and identified those that belong to the clusters generated
by our algorithm. For validating the new findings, we used external intelligence
(VirusTotal), internal AV scan results, as well as manual investigation by tier 3
security analysts. The results are presented in Sect. 4.1.

For validating our software impersonation detection algorithm, we used two
datasets. First, we extracted all coarse-clusters with at least one whitelisted and
one blacklisted module, and tested the effectiveness in identifying the blacklisted
modules. This dataset (referred as DS-Outlier-Black) contains 15 clusters and
2K whitelisted, 19 blacklisted, and 2K unknown modules. Second, for higher
coverage, we extracted all popular coarse-clusters (file names installed on more
than 10K machines) that had at least one whitelisted and one unknown module.
This dataset (DS-Outlier-Unknown) contains 314 clusters and a total of 11K
whitelisted, 14 blacklisted, and 5K unknown modules. Unknown modules at
large minimum distance from other whitelisted modules in these clusters were
detected as outliers. The results are presented in Sect. 4.2.

Finally, both approaches are able to detect malicious modules ahead of off-
the-shelf anti-virus tools. Initially only 25 out of 327 unknown executables and
463 out of 637 unknown DLLs were flagged by VirusTotal but eight months
later (in May 2016), we uploaded the hashes of detected modules to VirusTotal
again and noticed that 2 executables and 23 DLLs were detected in addition to
previous findings (from August 2015). We identified a total of 81 modules (69
by clustering and 12 by outlier detection) confirmed malicious through manual
investigation, but still not flagged by VirusTotal.
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4.1 Results on Prioritizing Malicious Modules

Table 2. Parameters in DBSCAN clustering.

Number of modules 367 Blacklisted (273 EXE, 94 DLL)
Features Static only, All Features
Feature weights Uniform, Entropy-based
Missing features penalty ∈ [0.1, 0.8]
DBSCAN Parameters min sample = 2 ε ∈ [0.05, 0.3]

Results on Blacklisted Modules.
We use the 367 blacklisted modules
as ground truth to select optimal val-
ues of the penalty and ε parameter in
DBSCAN (we set min sample = 2
since we observed clusters with 2
malware samples). Our goal is to optimize a metric called F1 score that is a
weighted average of precision and recall, but we also consider other metrics
(precision, recall, false positives, false negatives). In our ground truth dataset,
147 modules are labeled as noise (they do not belong to any cluster). To account
for these, we measure coverage, defined as the percentage of blacklisted modules
(excluding the ones in the noise set) that belong to a cluster of size at least
min sample.

We experiment with different parameters in DBSCAN, as detailed in Table 2.
We vary ε in DBSCAN between 0.05 and 0.3 and the penalty of missing features
in the [0.1,0.8] range at intervals of 0.01. We consider and compare four models:
(1) Static-Unif: static features with uniform weights; (2) Static-Ent: static features
with entropy weights; (3) All-Unif: all features with uniform weights; (4) All-Ent:
all features with entropy weights. Most of the features with highest entropy are
static features but some context (time since creation, path-related features) and
behavior features (set of contacted IP addresses and created processes) are also
highly ranked. We used bins of 7 days for PE timestamp and Days since creation,
and bins of 64 KB for File Size and PE Size.

Penalty choice. We first fix the value of ε and show various tradeoffs in our
metrics depending on penalty (the distance between a missing feature and any
other feature value). Figure 5 (left) shows the dependence on penalty for three
different metrics (precision, recall and coverage) for the Static-Unif model when ε
is set at 0.1. As we increase the penalty, the distance between dissimilar modules
increases and the coverage decreases as more modules are classified as noise.
Also, smaller clusters are created and the overall number of clusters increases,

Fig. 5. Penalty dependence for Static-Unif with ε = 0.1 (left) and All-Ent with ε = 0.2
(right).
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Table 3. Optimal performance metrics for 4 models.

Model Penalty ε Clusters Single clusters FP FN Precision Recall Coverage F1

Static-Unif 0.3 0.13 50 150 55 42 84.67 87.86 99.16 86.24

Static-Ent 0.3 0.15 59 173 34 67 90.52 82.9 92.75 86.55

All-Unif 0.2 0.17 37 215 28 89 92.2 78.8 81.05 84.98

All-Ent 0.1 0.16 49 172 33 50 90.8 86.7 93.03 88.7

resulting in higher precision and lower recall. In Fig. 5 the increase in precision
is faster than the decrease in recall until penalty reaches 0.3, which gives the
optimal F1 score for the Static-Unif model.

As we include more features in our models (in the All-Unif and All-Ent mod-
els), the penalty contribution should be lower as it intuitively should be inversely
proportional to the space dimension (particularly as a large number of behavior
features are missing). Figure 5 (right) shows how penalty choice affects our met-
rics in the All-Ent model for ε fixed at 0.2. Similar trends as in Static-Unif are
observed, but a penalty of 0.1 achieves optimal F1 score. In both cases, results
are consistent for different values of ε.

Choice of ε. For optimal penalty values as described above, the graph in Fig. 6
shows the F1 score as a function of the neighborhood size in DBSCAN (ε) for the
four models considered. The optimal ε value is slightly larger in models with all
features (0.16 for All-Unif and 0.17 for All-Ent) compared to models using static
features only (0.13 for Static-Unif and 0.15 for Static-Ent). When more features
are used, naturally the value of the neighborhood size in a cluster needs to be
enlarged to account for larger distances between modules and more noise in the
feature vectors.

Model comparison. Table 3 gives all metrics of interest for the four models
with choice of ε and penalty parameters achieving optimal F1 score. Several
observations based on Table 3 and Fig. 6 are described below:

– Feature weights make a difference. Choosing feature weights proportional to
the feature’s entropy in the blacklisted set improves our metrics compared
to choosing weights uniformly. For static models, precision is increased from
84.97% for uniform weights to 90.52% for entropy-based weights. For models
considering all features, the recall is improved from 78.8% for uniform weights
to 86.7% for entropy weights. The overall F1 score for All-Ent is maximum at
88.7% (with precision of 90.8% and recall of 86.7%) compared to Static-Unif
at 86.24% and All-Unif at 84.98%.

– Benefit of behavioral and contextual features. Augmenting the feature list
with behavioral and contextual features has the effect of increasing the F1
score from 86.55% (in Static-Ent) to 88.7% (in All-Ent). While precision is
relatively the same in Static-Ent and All-Ent, the recall increases from 82.9%
in Static-Ent to 86.7% in All-Ent. An additional benefit of using behavioral
and contextual features (which we can not though quantify in our dataset) is
the increased resilience to malware evasion of the static feature list.
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– Coverage and noise calibration. The coverage for the optimal All-Ent model is
relatively high at 93.03%, but interestingly the maximum coverage of 99.16%
was achieved by the Static-Unif model (most likely due to the smaller dimen-
sion of the feature space). The model All-Unif performs worse in terms of
noise (as 215 single clusters are generated) and coverage (at 81.05%). This
shows the need for feature weight adjustment particularly in settings of larger
dimensions when missing features are common.

Fig. 6. F1 score as a function of ε for four
models.

Results on unknown mod-
ules. We empirically created the
blacklisted clusters with All-Ent
for optimal parameters ε = 0.16
and penalty= 0.1. We now com-
pare the list of 388K unknown
modules to all blacklisted mod-
ules. As an optimization, we first
compute the distance between
blacklisted and unknown mod-
ules using only static features and
filter out the ones with distance
larger than ε, leaving 1741 exe-
cutables and 2391 DLLs. Then,
we compute the distance between the remaining unknown and blacklisted mod-
ules using all features. If an unknown module is within the distance threshold ε
to one blacklisted module, we consider it similar but continue to find the closest
blacklisted module. The detected modules are prioritized based on their mini-
mum distance to a blacklisted module. In the end, 327 executables and 637 DLLs
were detected.

For verification, we uploaded the hashes of these modules to VirusTotal in
August 2015 and 25 out of 327 unknown executables and 463 out of 637 unknown
DLLs were flagged by at least one anti-virus engine. The reason for such low
match on executable files is that most of them were not available in VirusTotal
and company policies did not allow us to submit binary files to VirusTotal.
When combining VirusTotal with the results from internal AV scan, we identified
239 out of 327 unknown executable and 549 out of 637 DLLs as suspicious,
corresponding to a precision of 73% and 86%, respectively. Among the set of 79K
executable and 309K DLLs, there were 88 executable and 88 DLL legitimate
modules detected by our algorithm, corresponding to a false positive rate of
0.11% and 0.0284%, respectively.

To further confirm our findings, we selected a number of 89 modules with
highest score (69 executables and 20 DLLs) and validated them with the help of
a tier 3 security analyst. The analyst confirmed 65 out of 69 executables and all
20 DLL modules as malicious, resulting in a precision of 94.2% on executables
and 100% on DLLs. Another interesting finding is that our techniques detected
new malicious modules confirmed by the security analyst, but not flagged by
VirusTotal. In total 60 executables and 9 DLLs from the set of 89 investigated
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modules were confirmed malicious by the security analyst, but not detected by
VirusTotal. These new findings demonstrate the ability of our techniques to com-
plement existing anti-virus detection technologies, and add another protection
layer on endpoints.

4.2 Results of Outlier Detection

We evaluated the effectiveness of our approach in detecting software imperson-
ation on two separate datasets (DS-Outlier-Black and DS-Outlier-Unknown).
Before describing the results, we discuss how the parameters of the algorithm
are selected.

Parameter selection. In the coarse cluster selection stage, we select popular
file names by comparing the number of module installations to Oγ . We set Oγ to
10K, representing 25% of our set of monitored machines. This setting captures
popular software (e.g., system processes, common browsers, Java). To ensure
that the coarse clusters include enough benign samples for learning legitimate
behavior, we use Oα and Oβ as the lower-bounds for the number and ratio
of whitelisted modules. We set Oα = 5, Oβ = 0.2 in DS-Outlier-Black for
larger coverage and Oα = 10, Oβ = 0.1 in DS-Outlier-Unknown. As illustrated
in Fig. 4, the pairwise distances between whitelisted modules are usually small
(below 0.05 for ≥95% pairs), while distances from whitelisted to unknown and
blacklisted modules are much larger. Hence, we only include stable clusters whose
Avgwdist is smaller than the threshold Oθ set at 0.05.

Results on DS-Outlier-Black. We examined the 15 clusters in DS-Outlier-
Black (including at least one blacklisted module) and inspected the 19 black-
listed and 2K unknown modules in these clusters. We found most filenames tar-
geted by malware being Windows system files, such as svchost.exe, lsass.exe,
dwm.exe, services.exe and explorer.exe. Malware impersonates these files
to avoid causing suspicion as these processes are always present in Windows
Task Manager. Additionally, file names belonging to popular software, includ-
ing wmplayer.exe (Windows Media Player), reader sl.exe (Adobe Acrobat
SpeedLauncher) and GoogleUpdate.exe (Google Installer), are also targets for
impersonation.

After coarse cluster selection, we obtained 5 clusters that met our selection
criteria. These include 12 blacklisted and 12 unknown modules. We first evaluate
the coverage of our algorithm in detecting blacklisted modules. To this end,
our outlier detection algorithm captures all 12 blacklisted modules in these 5
clusters, as their distance from whitelisted modules is above 4, much larger than
the threshold Oλ set at 1 (see Sect. 3.3). Among the 12 unknown modules, 8
modules in 4 clusters are alarmed and are all confirmed to be either malicious
(flagged by VirusTotal) or suspicious (experiences unusual behavior, but is not
yet confirmed as malicious by domain experts). In particular, a malicious module
impersonating services.exe is detected one week ahead of VirusTotal, but
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Table 4. Summary of modules detected as outliers.

Dataset #FileName #Blacklisted #Malicious #Suspicious #Unknown #Modules Precision%

DS-Outlier-Black 5 12 1 7 0 20 100

DS-Outlier-Unknown 10 0 5 12 7 24 70.8

other instances of this file are also suspicious (one of them is the ZeroAccess
rootkit [26]). The summary of our results is in Table 4.

Results on DS-Outlier-Unknown. We use the data from DS-Outlier-Unknown
to evaluate our approach on a larger set of clusters including at least one
unknown module, but not necessarily any blacklisted modules. DS-Outlier-
Unknown includes 314 clusters with 5K unknown modules, and we show that our
approach can still achieve high precision in this larger dataset.

Table 5. Detection results based on dif-
ferent Oλ.

Dataset Count Oλ

1 4 7 10

DS-Outlier-Black Confirmed 20 18 8 4

Unknown 0 0 0 0

DS-Outlier-Unknown Confirmed 17 13 5 4

Unknown 7 4 3 2

After applying our filtering steps,
14 clusters (with 30 unknown and no
blacklisted modules) were handed to the
outlier detection algorithm. New sys-
tem processes (e.g., mpcmdrun.exe) and
new applications (e.g., installflash
player.exe) were identified in this
dataset. Among the 30 unknown mod-
ules, 24 were flagged as outliers based on
their distance to the closest whitelisted module. Among them, 17 were confirmed
malicious, but only 5 were detected by VirusTotal. Thus, our outlier detection
technique identified 12 modules not detected by VirusTotal as malicious.We did
not find enough information to validate the remaining 7 modules and we labeled
them as unknown. By considering the malicious and suspicious instances as true
positives, the overall precision is 70.8%. In total, 44 modules were detected (com-
bining the results on DS-Outlier-Black) with an overall precision of 84.09%. We
summarize our findings in Table 4, provide more details on the detected modules
in Table 6, and present a case study in Appendix B.

We also assess the impact of the threshold Oλ on the result. We increase Oλ

incrementally from 1 to 10 and measure the number of confirmed (malicious and
suspicious) and unknown modules for both datasets. The results shown in Table 5
suggest that setting Oλ to 1 achieves both high accuracy and good coverage.

5 Limitations

An adversary with knowledge of the set of features employed by our algorithms
might attempt to evade our detection. Most static features (e.g., description,
size) can be modified easily. Even if the attacker is successful in evading a subset
of static features, our dynamic feature weighting method still provides resilience
against this attack. Since feature weights are adaptively adjusted in our case,
other features (behavior and contextual) get higher weights, and static features
become less significant.
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Table 6. Summary of the modules alarmed by outlier detection algorithm.

Dataset FileName #Blacklisted #Malicious #Suspicious #Unknown Anomalous
features

DS-Outlier-Black services.exe 2 1 2 0 Unsigned, path,
DLLs

svchost.exe 4 0 0 0 Unsigned, path,
DLLs, size,
description,
company name,
Auto Logon,
hidden
attribute

googleupdate.exe 1 0 1 0 Invalid
signature,
DLLs, newly
created, ssdeep
similar

dwm.exe 4 0 1 0 Unsigned, path,
DLLs

wmplayer.exe 1 0 3 0 Unsigned,
description,
DLLs, ssdeep
similar to
malware

DS-Outlier-Unknown udaterui.exe 0 0 0 1 Invalid
signature

googleupdatesetup.exe 0 0 3 0 Unsigned, path,
version info,
similar to
malicious by
ssdeep

installflashplayer.exe 0 5 5 0 5 Confirmed by
VirusTotal,
similar to
malicious by
ssdeep

intelcphecisvc.exe 0 0 1 0 Unsigned, size,
entropy, ssdeep
similar to
malware

mpcmdrun.exe 0 0 1 0 Unsigned, size,
network
connections,
ssdeep similar
to malware

pwmewsvc.exe 0 0 0 1 Unsigned, no
version info,
size, compile
time

tphkload.exe 0 0 2 0 Invalid
signature, size,
compile time,
creates remote
thread

flashplayerupdateservice.exe 0 0 0 3 Invalid
signature

vpnagent.exe 0 0 0 1 Invalid
signature

vstskmgr.exe 0 0 0 1 Invalid
signature

To evade the behavior and contextual features, malware authors need to
adjust multiple functionalities like processes creation, file access and communi-
cations which could incur high cost in the malware development process. For
example, we consider abnormal remote IPs as one behavior feature and evading
this requires changes to the attacker’s or target’s network infrastructure. At the
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same time, most contextual features (e.g., file path, number of executables in
the same folder, auto-start functionality) are dependent on the organization’s
configuration, typically not known by attackers.

Another concern is that behavior-based techniques could be vulnerable to
mimicry attacks [5], in which malware simulates system call sequences of legiti-
mate software to avoid detection. We argue that mimicry attacks are less likely
to succeed in our setting as we collect a more diverse set of behavioral and
contextual features.

Advanced attackers could suppress events generated by the monitors or even
inject fake events for evasion. Approaches that protect the agent integrity, like
PillarBox [4], could be deployed to defeat against these attacks.

6 Related Work

Malware clustering. To automatically detect malware variants and reduce
the security analysts’ workload, malware clustering techniques (e.g., [1,2,17,18,
27,29,31,37]) were proposed by the security community. These techniques per-
form static and dynamic analysis by running known malware samples in con-
trolled environments. They extract fine-grained features related to file system
access, registry modification, OS activities, and network connections. Our work
differs from these approaches in the following aspects. First, our features are
extracted from data collected by agents installed on a large set of user machines
in an enterprise network. Second, we only have access to coarse-grained aggre-
gated behavioral events as stringent performance constraints are imposed on the
agents. Moreover, our ground truth is limited with the large majority of mod-
ules (more than 90%) having unknown status. Lastly, we introduce a new set of
contextual features (e.g., location of files on user machines, file metadata, auto-
start functionality) that leverage the large, homogeneous user base in enterprise
settings.

Host-based anomaly detection. Many previous works proposed algorithms
for detection of unusual program behavior based on runtime information col-
lected from hosts. So far, system calls [11,16,21,22,32], return addresses from
call stack [10], system state changes [1], memory dumps [3], and access activi-
ties on files and registries [20] have been used to detect suspicious behavior. We
used a more comprehensive set of features, extracted from a much larger realistic
deployment.

Recently, researchers proposed malware detection systems based on data
collected from a large number of endpoints (e.g., Polonimum [6], AESOP [35],
MASTINO [30]). These approaches rely on file-to-machine and file-to-file affini-
ties, and cannot detect isolated infections. In contrast, our approach is exempted
from such restrictions. Gu et. al. [13] developed a detection system against cam-
ouflaged attacks (malicious code injected in legitimate applications at runtime).
Our system covers camouflage attacks as part of software impersonation, but
addresses a larger set of attacks. A recent trend in this area is to combine net-
work and host-based behavioral features for anomaly detection [33,40].
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Enterprise security analytics. Previous research showed that security logs
collected in a large enterprise, such as web proxy, Windows authentication, VPN,
and DHCP, can be leveraged to detect host outliers [39], predict host infec-
tion [38], and detect malicious communications in multi-stage campaigns initi-
ated by advanced persistent threats [28]. We focus here on analyzing a different
source of data (collected by monitoring agents deployed on Windows machines)
with the goal of identifying suspicious modules installed on user machines. We
believe that combining endpoint and network-based monitoring data is most
promising for identifying increasingly sophisticated threats in the future.

7 Conclusions

In this paper, we present the first study analyzing endpoint data collected from
Windows monitoring agents deployed across 36K machines in a large organiza-
tion with the goal of identifying malicious modules. We had to address some
unforeseen challenges encountered in a large-scale realistic deployment as ours.
Using a large set of static, behavioral and contextual features, we propose algo-
rithms to identify modules similar to known blacklisted modules, as well as
modules impersonating popular whitelisted software applications. Our valida-
tion based on internal AV scanning, VirusTotal and manual investigation by
security experts confirms a large number of detected modules as malicious, and
results in high precision and low number of false positives. In future work, we
plan to extend our techniques to obtain higher coverage and identify other types
of suspicious activities in this environment.
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A Feature Set

Our feature set includes features with different types, such as string, set, binary,
and numerical attributes. Table 7 displays the full set of features used for our
analysis, as well as their category and type.

B Case Studies

In this section, we present several detailed case studies of our findings. First, we
detail two clusters of similar modules we identified, one with executable modules
and another with DLLs, and we highlight the features that our new findings share
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Table 7. Final list of features. To note, all contextual features and numerical behavior
features are computed by averaging the corresponding values across all hosts including
the module.

Category Sub-category Feature Description Type

gnirtSnoitpircsedeliFnoitpircseDevitpircseDcitatS
gnirtSynapmocfoemaNemanynapmoC

teSsLLDdetropmillafoemaNsLLDdetropmI
teSsemannoitcesllafoemaNsemannoitceS

regetnIeludomfoeziSeziseliFlaciremuN
regetnIredaehEPmorfeziSezisEP

PE timestamp Time when PE file was created Date
Entropy Module code entropy Real
DLL count Number of imported DLLs Integer

Attributes Icon present Is icon present? Binary
Version information present Is version information present? Binary
PE type Type of PE (32 or 64 bit) Binary
PE machine Type of targeted CPU (Intel 386, AMD64 etc.) Categorical
Packed Is module obfuscated by a packer? Binary
.NET Is it built with .NET? Binary
Signature Signature name String
Signature valid Is signing certificate issued by a trusted authority? Binary

Behavior File-system access Written/Renamed executables Avg. number of executables written/renamed Real
Process access Created processes Avg. number of created processes Real

Opened processes Avg. number of opened processes Real
Network connections Set of domains Set of domain names connected to Set

Set of IPs Set of IP addresses connected to Set

laeRhtapnislevelforebmun.gvAlevelhtaPhtapeludoMtxetnoC
Path laeR?redlofmetsySnidetacolsImetsyS
Path Windows Is located in Windows folder? Real
Path laeR?redlofseliFmargorPnidetacolsIseliFmargorP
Path laeR?redlofataDmargorPnidetacolsIataDmargorP
Path AppDataLocal Is located in AppDataLocal folder? Real
Path laeR?redlofgnimaoRataDppAnidetacolsIgnimaoRataDppA
Path ?redlofcfiiceps-resunidetacolsIresU Real
Number executables Avg. number of executables in same folder Real
Number executables same company Avg. number of executables with same company in same folder Real
Number non-executables Avg. number of non-executables in same folder Real
Number sub-folders Avg. number of sub-folders in same folder Real
Machine count Number of installations Integer

Destination path Dest SamePath Is destination path same as the module path? Real
Dest DifferentPath Is destination path different than the module path? Real
Dest System Is destination in System(syswow64/system32) folder? Real
Dest Windows Is destination in Windows folder? Real
Dest laeR?redlofseliFmargorPninoitanitsedsIseliFmargorP
Dest laeR?redlofataDmargorPninoitanitsedsIataDmargorP
Dest laeR?redloflacoLataDppAninoitanitsedsIlacoLataDppA
Dest AppDataRoaming Is destination in AppDataRoaming folder? Real
Dest laeR?redlofcfiiceps-resuninoitanitsedsIresU
Dest ?redlofpmeTninoitanitsedsIpmeT Real

Metadata Administrator Does owner have administrator privileges? Real
Hidden attribute Does file have hidden attribute set? Real
Days since creation Avg. days since first observed on hosts Real

Auto-start Auto Services Does the module have auto-start for services? Real
Auto ServiceDLL Does the module have auto-start for service DLL? Real
Auto Logon Does the module have auto-start for logon? Real
Auto ScheduledTasks Does the module have auto-start for scheduled tasks? Real

with blacklisted modules. Second, we give more details on some of the detected
outliers and emphasize the difference from the legitimate whitelisted modules
they impersonate.

B.1 Similarity

We found 12 unknown modules all with different file names, but similar to a
blacklisted module house of cards s03e01∼.exe. These modules imperson-
ate popular movie or application names such as Fifty Shades of Grey∼.exe
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and VCE Exam Simulator∼.exe to deceive users. They all imported a single
DLL (KERNEL32.dll) and used the same very common section names (.text,
.rdata, .data, .rsrc, .reloc). One of them is even signed with a rogue cer-
tificate. Interestingly, these modules could not be grouped together only based on
their static features, as these are common among other modules. However, when
we consider the behavioral and contextual features, they are similar in some
unusual ways. For instance, these modules write executables to a temp directory
under AppData and create processes from that location. Moreover, they used the
same autostart method (AutoLogon) to be persistent in the system and they
reside in the same path under the ProgramData folder.

Another DLL cluster including 15 unknown and 1 blacklisted mod-
ules is intriguing as they have randomized 14-character file names (e.g.
oXFV2lbFU7dgHY.x64.dll). The modules are almost identical in their fea-
tures except for slightly different entropy values and creation dates. VirusTotal
reported 10 of them, but different modules were detected by different number
of AVs. One of them was not detected initially, but when we queried VirusTotal
later the module was detected by 29 AVs. After eight months, the remaining 5
modules have not yet been detected by any AVs in VirusTotal but confirmed
manually by the security analysts.

B.2 Outlier Detection

Our system identified 2 blacklisted and 3 unknown modules of services.exe
as outliers. We found out that one of them was infected by ZeroAccess [26], a
Trojan horse that steals personal information, replaces search results, downloads,
and executes additional files. This module was confirmed by VirusTotal one week
later after our detection. For the remaining two, we performed manual analysis.
One of the modules has a description in Korean without a company name and
signature. It has additional section names .itext, .bss, .edata, .tls com-
pared to the legitimate process. The module imports some common DLLs such
as kernel32 .dll, user32.dll, oleaut32.dll, but also imports shell32.dll
and wsock32.dll, which is unusual for benign variants of services.exe mod-
ules. In addition, the module size is ∼1 MB whereas other whitelisted modules
have sizes between 110 KB to 417 KB. Unfortunately, no behavior features were
captured in this module but it has several suspicious contextual features. The
module is installed in only a single machine with hidden attributes and it is
located in C:\Windows\winservice instead of C:\Windows\System32. The sec-
ond detected services.exe module is missing the signature field and imports
different set of DLLs. Even though the module is 32 bit, the DLLs it imports
are usually included in 64-bit versions of benign services.exe. It also has some
suspicious contextual features since it is installed only in a single machine rela-
tively recently and its file system path is ∼\Download\ffadecffa baffc instead
of the usual C:\Windows\System32. Both of these modules were confirmed as
malicious by security experts in the organization.
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Abstract. Ransomware is a form of extortion-based attack that locks
the victim’s digital resources and requests money to release them. The
recent resurgence of high-profile ransomware attacks, particularly in crit-
ical sectors such as the health care industry, has highlighted the pressing
need for effective defenses. While users are always advised to have a reli-
able backup strategy, the growing number of paying victims in recent
years suggests that an endpoint defense that is able to stop and recover
from ransomware’s destructive behavior is needed.

In this paper, we introduce Redemption, a novel defense that makes
the operating system more resilient to ransomware attacks. Our approach
requires minimal modification of the operating system to maintain a
transparent buffer for all storage I/O. At the same time, our system mon-
itors the I/O request patterns of applications on a per-process basis for
signs of ransomware-like behavior. If I/O request patterns are observed
that indicate possible ransomware activity, the offending processes can
be terminated and the data restored.

Our evaluation demonstrates that Redemption can ensure zero data
loss against current ransomware families without detracting from the user
experience or inducing alarm fatigue. In addition, we show that Redemp-
tion incurs modest overhead, averaging 2.6% for realistic workloads.

1 Introduction

Ransomware continues to be one of the most important security threats on the
Internet. While ransomware is not a new concept (such attacks have been in
the wild since the last decade), the growing number of high-profile ransomware
attacks [8,13,14,19] has resulted in increasing concerns on how to defend against
this class of malware. In 2016, several public and private sectors including the
healthcare industry were impacted by ransomware [9,11,35]. Recently, US offi-
cials have also expressed their concerns about ransomware [16,20], and even
asked the U.S. government to focus on fighting ransomware under the Cyberse-
curity National Action Plan [20].

In response to the increasing ransomware threat, users are often advised to
create backups of their critical data. Certainly, having a reliable data backup
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policy minimizes the potential costs of being infected with ransomware, and is
an important part of the IT management process. However, the growing number
of paying victims [10,17,29] suggests that unsophisticated users – who are the
main target of these attacks – do not follow these recommendations, and easily
become a paying victim of ransomware. Hence, ransomware authors continue to
create new attacks and evolve their creations as evidenced by the emergence of
more sophisticated ransomware every day [7,32–34].

Law enforcement agencies and security firms have recently launched a pro-
gram to assist ransomware victims in retrieving their data without paying ran-
som fees to cybercriminals [30]. The main idea behind this partnership is that
reverse engineers analyze the cryptosystems used by the malware to extract
secret keys or find design flaws in the way the sample encrypts or deletes files.
While there are ransomware families that are infamous for using weak cryptog-
raphy [12,22,24], newer ransomware variants, unfortunately, have learned from
past mistakes by relying on strong cryptographic primitives provided by stan-
dard cryptographic libraries. In response to the increasing number of ransomware
attacks, a desirable and complementary defense would be to augment the oper-
ating system with transparent techniques that would make the operating system
resistant against ransomware-like behavior. However, an endpoint approach to
defend against unknown ransomware attacks would need to immediately stop
attacks once the ransomware starts destroying files, and should be able to recover
any lost data.

This paper presents a generic, real-time ransomware protection approach to
overcome the limitations of existing approaches with regard to detecting ran-
somware. Our technique is based on two main components: First, an abstract
characterization of the behavior of a large class of current ransomware attacks
is constructed. More precisely, our technique applies the results of a long-term
dynamic analysis to binary objects to determine if a process matches the abstract
model. A process is labeled as malicious if it exhibits behaviors that match
the abstract model. Second, Redemption employs a high-performance, high-
integrity mechanism to protect and restore all attacked files by utilizing a trans-
parent data buffer to redirect access requests while tracking the write contents.

In this paper, we demonstrate that by augmenting the operating system with
a set of lightweight and generic techniques, which we collectively call Redemp-
tion, it is possible to stop modern ransomware attacks without changing the
semantics of the underlying file system’s functionality, or performing significant
changes in the architecture of the operating system. Our experiments on 29
contemporary ransomware families show that our approach can be successfully
applied in an application-transparent manner, and can significantly enhance the
current protection capabilities against ransomware (achieving a true positive
[TP] rate of 100% at 0.8% false positives [FPs]). Finally, we show that this goal
can be achieved without a discernible performance impact, or other changes to
the way users interact with standard operating systems. To summarize, we make
the following contributions.
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– We present a general approach to defending against unknown ransomware
attacks in a transparent manner. In this approach, access to user files is medi-
ated, and privileged requests are redirected to a protected area, maintaining
the consistent state of user data.

– We show that efficient ransomware protection with zero data loss is possible.
– We present a prototype implementation for Windows, and evaluate it with

real users to show that the system is able to protect user files during
an unknown ransomware attack while imposing no discernible performance
overhead.

The rest of the paper is structured as follows. Section 2 presents related work.
In Sect. 3, we present the threat model. In Sect. 4, we elaborate on the architec-
ture of Redemption. In Sect. 6, we provide more details about the implemen-
tation of the system. In Sect. 7, we present the evaluation results. Limitations of
the approach are discussed in Sect. 8. Finally, Sect. 9 concludes the paper.

2 Related Work

The first scientific study on ransomware was performed by Gazet [18] where he
analyzed three ransomware families and concluded that the incorporated tech-
niques in those samples did not fulfill the basic requirements for mass extor-
tion. The recent resurgence of ransomware attacks has attracted the attention
of several researchers once more. Kharraz et al. [22] analyzed 15 ransomware
families including desktop locker and cryptographic ransomware, and provided
an evolution-based study on ransomware attacks. The authors concluded that
a significant number of ransomware in the wild has a very similar strategy to
attack user files, and can be recognized from benign processes. In another work,
Kharraz et al. [21] proposed Unveil, a dynamic analysis system, that is specifi-
cally designed to assist reverse engineers to analyze the intrinsic behavior of an
arbitrary ransomware sample. Unveil is not an end-point solution and no real
end-user interaction was involved in their test. Redemption is an end-point
solution that aims differentiate between benign and malicious ransomware-like
access requests to the file system.

Scaife et al. [31] proposed CryptoDrop which is built upon the premise that
the malicious process aggressively encrypts user files. In the paper, as a lim-
itation of CryptoDrop, the authors state that the tool does not provide any
recovery or minimal data loss guarantees. Their approach is able to detect a
ransomware attack after a median of ten file losses. Redemption does not have
this limitation as it is designed to protect the consistent state of the original files
by providing full data recovery if an attack occurs. Hence, unlike CryptoDrop,
Redemption guarantees minimal data loss and is resistant to most of realistic
evasion techniques that malware authors may use in future.

Very recently, Continella et al. [15], and Kolodenker et al. [23] concur-
rently and independently proposed protection schemes to detect ransomware.
Continella et al. [15] proposed ShieldFS which has a similar goal to us.
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The authors also look at the file system layer to find typical ransomware activ-
ity. While ShieldFS is a significant improvement over the status quo, it would
be desirable to complement it with a more generic approach which is also resis-
tant to unknown cryptographic functions. Unlike ShieldFS, Redemption does
not rely on cryptographic primitive identification which can result in false posi-
tive cases. More importantly, this was a conscious design choice to minimize the
interference with the normal operation of processes, minimize the risk of process
crashes and avoid intrusive pop-up prompts which can have noticeable usability
side-effects.

Kolodenker et al. [23] proposed PayBreak which securely stores cryptographic
encryption keys in a key vault that is used to decrypt affected files after a ran-
somware attack. In fact, KeyBreak intercepts calls to functions that provide cryp-
tographic operations, encrypts symmetric encryption keys, and stores the results
in the key vault. After a ransomware attack, the user can decrypt the key vault
with his private key and decrypt the files without making any payments. The per-
formance evaluation of the system also shows that PayBreak imposes negligible
overhead compared to a reference platform. Similar to ShieldFS, PayBreak relies
on identifying functions that implement cryptographic primitives. As mentioned
earlier, Redemption does not depend on any hooking technique to identify
cryptographic functions. Furthermore, the detection accuracy of Redemption
is not impacted by the type of packer a ransomware family may use to evade
common anti-malware systems. This makes Redemption a more generic solu-
tion to the same problem space.

The evaluation of Redemption covers a significantly larger number of ran-
somware families compared to [15,31] and shows it can successfully identify
unseen ransomware attacks after observing a median of five exposed files with-
out any data loss. Indeed, Redemption shares some similarity with Crypto-
Drop, ShieldFS, and PayBreak due to the common characteristics of ransomware
attacks. However, extracting such behavior of ransomware is not the main con-
tribution of the paper as they have been comprehensively discussed in several
security reports. Rather, Redemption is the introduction of a high performance,
data loss free end-user protection framework against ransomware that protects
the consistent state of the entire user space and can be used as an augmented
service to the operating system. We are not aware of any other scientific work
on the protection against ransomware attacks.

3 Threat Model

In this paper, we assume that ransomware can employ any standard, popu-
lar techniques to attack machines similar to other types of malware. That is,
ransomware can employ several strategies to evade the detection phase, compro-
mise vulnerable machines, and attack the user files. For example, a ransomware
instance could be directly started by the user, delivered by a drive-by download
attack, or installed via a simple dropper or a malicious email attachment.

We also assume that the malicious process can employ any techniques to
generate the encryption key, use arbitrary encryption key lengths, or in general,
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utilize any customized or standard cryptosystems to lock the files. Ransomware
can access sensitive resources by generating new processes, or by injecting code
into benign processes (i.e., similarly to other classes of malware). Furthermore,
we assume that a user can install and run programs from arbitrary untrusted
sources, and therefore, that malicious code can execute with the privileges of
the user. This can happen in several scenarios. For instance, a user may install,
execute and grant privileges to a malicious application that claims to be a well-
known legitimate application, but in fact, delivers malicious payloads – including
ransomware.

In addition, in this work, we also assume that the trusted computing base
includes the display module, OS kernel, and underlying software and hardware
stack. Therefore, we can safely assume that these components of the system
are free of malicious code, and that normal user-based access control prevents
attackers from running malicious code with superuser privileges. This is a fair
assumption considering the fact that ransomware attacks mainly occur in the
user-mode.

Redemption 
Monitor

1

2

6

5 4

3

1

2

Fig. 1. Redemption mediates the access to the file system and redirects each write
request on the user files to a protected area without changing the status of the original
file. Reading the user files, creating and writing on new files follow the standard 2-step
procedure since they do not introduce any risk with regard to ransomware attacks on
user data.

4 Design Overview

In this section, we provide our design goals for Redemption. We refer the
reader to Sect. 6 for details of our prototype implementation. Redemption has
two main components. First, a lightweight kernel module that intercepts process
interactions and stores the event, and manages the changes in a protected area.
Second, a user-mode daemon, called behavioral monitor and notification module,
that assigns a malice score to a process, and is used to notify the user about the
potential malicious behavior of a process.
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Intercepting Access Requests. In order to implement a reliable dynamic
access control mechanism over user data, this part of the system should be
implemented in the kernel, and be able to mediate the access to the file system.
The prototype redirects each write access request to the user files to a protected
area without changing the status of the original file. We explain more details on
how we implemented the write redirection semantics in Sect. 6.

Figure 1 presents an example that illustrates how access requests are
processed. In an unmodified system, the request would succeed if the corre-
sponding file exists, and as long as the process holds the permission. The system
introduces the following changes. (1) Redemption receives the request A from
the application X to access the file F at the time t, (2) if At requests access with
write or delete privilege to the file F , and the file F resides in a user defined path,
the Redemption’s monitor is called, (3) Redemption creates a corresponding
file in the protected area, called reflected file, and handles the write requests.
These changes are periodically flushed to the storage to ensure that they are
physically available on the disk. The meta-data entry of the corresponding file
is updated with the offset and length of the data buffer in the I/O request after
a successful data write at Step 3. (4) the malice score of the process is updated,
and is compared to a pre-configured threshold α. (5) the Redemption monitor
sends a notification to the display monitor to alert the user depending on the
calculated malice score. (6) a success/failure notification is generated, and is sent
to the system service manager.

Data Consistency. An important requirement for Redemption is to be able
to guarantee data consistency during the interaction of applications with the
file system. A natural question that arises here is what happens if the end-user
confirms that the suspicious operations on the file that was detected by the
system are in fact benign. In this case, having a consistency model is essential to
protect the benign changes to the user files without on-disk data corruption. The
implementation of the consistency policy should maintain the integrity properties
the applications desire from the file system. Failure to do so can lead to corrupted
application states and catastrophic data loss. For this reason, the system does
not change the file system semantics that may affect the crash guarantees that
the file system provides. To this end, Redemption operates in three steps:
(1) it reads the meta-data generated for the reflected file, and creates write
requests based on the changed data blocks, and changes the status of these
blocks to committed, (2) upon receiving the confirmation notification, the system
updates the meta-data of the reflected file from committed to confirmed, and (3)
the reflected file is deleted from the protected area.

Another question that arises here is how the system protects the consistency
of the original file during the above-mentioned three-steps procedure if a system
crash occurs. In case of a crash, the system works as follows: (1) if data is
committed (Step 1), but the corresponding meta-data is not updated (Step 2),
the system treats the change as incomplete, and discards the change as a rollback
of an incomplete change. This operation means that Step 2 is partially completed
before a crash, so the system repeats the Step 1, (2) If the meta-data of the
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reflected file is updated to confirmed, it means that the benign changes to the
file has been successfully committed to the original file. In this case, the reflected
file is removed from the protected area. Note that a malicious process may attack
the Malice Score Calculation (MSC) function by trying to keep the malice score
of the process low while performing destructive changes. We elaborate more on
these scenarios in Sect. 8.

User Notification. The trusted output that Redemption utilizes is a visual
alert shown whenever a malicious process is detected. We have designed the
alert messages to be displayed at the top of the screen to be easily noticeable.
Since benign applications usually require sophisticated inputs (i.e., clicking on
specific buttons, filling out the path prompt) from the user before performing
any sensitive operation on the files, the user is highly likely to be present and
interacting with the computer, making it difficult for her to miss an alert.

5 Detection Approach

As mentioned earlier, an important component of Redemption is to perform
system-wide application monitoring. For each process that requires privileged
access to user files, we assign a malice score. The malice score of a process
represents the risk that the process exhibits ransomware behavior. That is, the
malice score determines whether the Redemption monitor should allow the
process to access the files, or notify the user. In the following, we explain the
features we used to calculate the malice score of a process. The features mainly
target content-based (i.e., changes in the content of each file) and behavior-based
(i.e., cross-file behavior of a process) characteristics of ransomware attacks.

5.1 Content-Based Features

Entropy Ratio of Data Blocks. For every read and write request to a file,
Redemption computes the entropy [25] of the corresponding data buffers in
the I/O traces similar to [21]. Comparing the entropy of read and write requests
to and from the same file offset serves as an excellent indicator of ransomware
behavior. This is due to the popular strategy of reading in the original file data,
encrypting it, and writing the encrypted version.

File Content Overwrite. Redemption monitors how a process requests write
access to data blocks. In a typical ransomware attack, in order to minimize the
chance of recovering files, the malicious process overwrites the content of the
user files with random data. Our system increases the malice score of a process
as the process requests write access to different parts of a file. In fact, a process
is assigned a higher malice score if it overwrites all the content of the files.

Delete Operation. If a process requests to delete a file that belongs to the end-
user, it receives a higher malice score. Ransomware samples may not overwrite
the data block of the user files directly, but rather generate an encrypted version
of the file, and delete the original file.
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5.2 Behavior-Based Features

Directory Traversal. During an attack, the malicious process often arbitrarily
lists user files, and starts encrypting the files with an encryption key. A process
receives a higher malice score if it is iterating over files in a given directory. Note
that a typical benign encryption or compression program may also iterate over
the files in a directory. However, the generated requests are usually for reading
the content of the files, and the encrypted or compressed version of the file is
written in a different path. The intuition here is that the ransomware usually
intends to lock as many files as possible to force the victim to pay.

Converting to a Specific File Type. A process receives a higher malice score
if it converts files of differing types and extensions to a single known or unknown
file type. The intuition here is that in many ransomware attacks, unlike most
of the benign applications that are specifically designed to operate on specific
types of files, the malicious process targets all kinds of user files. To this end,
Redemption logs if a process requests access to widely varying classes of files
(i.e., videos, images, documents). Note that accessing multiple files with differ-
ent extensions is not necessarily malicious. Representative examples include the
media player to play .mp3 files (audio) as well as .avi (video) files. However,
such applications typically open the files with read permission, and more impor-
tantly, only generate one request in a short period of time since the application
requires specific inputs from the user. Hence, the key insight is that a malicious
ransomware process would overwrite or delete the original files.

Access Frequency. If a process frequently generates write requests to user
files, we would give this process a higher malice score. We monitor δ – the time
between two consequent write access requests on two different user files. Our
intuition is that ransomware attacks programmatically list the files and request
access to files. Therefore, the δ between two write operations on two different
files is not very long – unlike benign applications that usually require some input
from the user first in order to perform the required operation.

5.3 Evaluating the Feature Set

Indeed, the assumption that all the features are equally important hardly holds
true in real world scenarios. Therefore, we performed a set of measurements to
relax this assumption. We used Recursive Feature Elimination (RFE) approach
to determine the significance of each feature. To this end, the analysis started
by incorporating all the features and measuring the FP and TP rates. Then,
in each step, a feature with the minimum weight was removed and the FP
and TP rates were calculated by performing 10 fold cross-validation to quantify
the contribution of each feature. The assigned weights were then used as the
coefficient of the feature in the formula 1 in Sect. 5.4.

Our experiments on several combinations of features shows that the highest
false positive rate is 5.9%, and is produced when Redemption only incorpo-
rates content-based features (F1). The reason for this is that file compression
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applications, when configured to delete the original files, are reported as false
positives. During our experiments, we also found out that in document editing
programs such as Microsoft Powerpoint or Microsoft Paint, if the user inserts a
large image in the editing area, the content-based features that monitor content
traversal or payload entropy falsely report the application as being anomalous.
However, when behavior-based features were incorporated, such programs do
not receive a high anomaly score since there is no cross-file activities with write
privilege similar to ransomware attacks. When all the features are combined (i.e.,
F12), the minimum false positive rate (0.5% FP with 100% TPs) is produced on
labeled dataset. Hence, we use the combination of all the features in our system.

5.4 Malice Score Calculation (MSC) Function

The MSC function allows the system to identify the suspicious process and notify
the user when the process matches the abstract model. Given a process X, we
assign a malice score S to the process each time it requests privileged access
to a user file. If the malice score S exceeds a pre-defined malice threshold α,
it means that the process exhibits abnormal behaviors. Hence, we suspend the
process and inform the user to confirm the suspicious action. In the following,
we provide more details on how we determine the malice score for each process
that requests privileged operations on user files:

(r1): The process that changes the entropy of the data blocks between a read
and a write request to a higher value receives a higher malice score. The required
value is calculated as an additive inverse of the entropy value of read and write
ratio, and resides on [0,1], meaning that the higher the value of entropy in the
write operation, the closer the value of the entropy to 1. If the entropy of the
data block in write is smaller than the read operation, we assign the value 0 to
this feature.

(r2): If a process iterates over the content of a file with write privilege, it will
receive a higher malice score. If the size of the file A is sA, and yA is the total
size of the data blocks modified by the process, the feature is calculated as yA

sA

where the higher the number of data blocks modified by the process, the closer
the value is to 1.

(r3): If a process requests to delete a file, this behavior is marked as being
suspicious. If a process exhibits such I/O activities, the value 1 is assigned to r3.

(r4): Redemption monitors if the process traverses over the user files with write
privilege, and computes the additive inverse of the number of privileged accesses
to unique files in a given path. The output of the function resides on [0,1]. Given
a process X, the function assigns a higher malice score as X generates more write
requests to access files in a given path. Here, write(X, fi) is the ith independent
write request generated by the process X on a given file fi.

(r5): Given a set of document classes, Redemption monitors whether the
process requests write access to files that belong to different document classes.
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The file A and file B belong to two different document classes if the program
that opens file A cannot take file B as a valid input. For example, a docx and
a pdf file belong to two different document classes since a docx file cannot be
opened via a PDF editor program. We assign the score 1 if the process performs
cross-document access requests similar to ransomware.

(r6): The system computes the elapsed time (δ) between two subsequent write
requests generated by a single process to access two different files. 1

δ represents
the access frequency. As the elapsed time between two write requests increases,
the access frequency decreases.
We define the overall malice score of a process at time t by applying the weights
of individual features:

MSC(r) =

k∑

i=1

wi × ri

k∑

i=1

wi

(1)

where wi is the predefined weight for the feature i in the MSC function. The
value of wi is based on the experiment discussed in Sect. 5.3. The weights we
used in (1) are w1 = 0.9, w2 = 1.0, w3 = 0.6, w4 = 1.0, w5 = 0.7, w6 = 1.0.

Note that when Redemption is active, even when using all the combined
features, file encryption or secure deletion applications are typically reported as
being suspicious. As mentioned earlier, such applications generate very similar
requests to access user files as a ransomware does. For example, in a secure
deletion application, the process iterates over the entire content of the given file
with write privileges, and writes random payloads on the contents. The same
procedure is repeated over the other files in the path. Hence, such cases are
reported to the user as violations, or other inappropriate uses of their critical
resources.

6 Implementation

In this section, we provide the implementation details of Redemption. Note
that our design is sufficiently general to be applied to any OS that is a poten-
tial target for ransomware. However, we built our prototype for the Windows
environment which is the main target of current ransomware attacks today.

Monitoring Access Requests. Redemption must interpose on all privi-
leged accesses to sensitive files. The implementation of the system is based on
the Windows Kernel Development framework without any modifications on the
underlying file system semantics. To this end, it suffices on Windows to mon-
itor the write or delete requests from the I/O system to the base file system
driver. Furthermore, to guarantee minimal data loss, Redemption redirects
the write requests from the user files to the corresponding reflected files. The
reflected files are implemented via sparse files on NTFS. In fact, the NTFS
file system does not allocate hard disk drive space to reflected files except in
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regions where they contain non-zero data. When a process requests to open a
user file, a sparse file with the same name is created/opened in the protected
area. The sparse files are created by calling the function FltFsControlFile with
the control code FSCTL SET SPARSE. The size of the file is then set by calling
FltSetInformationFile that contains the size of the original file.

Redemption updates the FileName field in the file object of the create
request with the sparse file. By doing this, the system redirects the operation
to the reflected file, and the corresponding handle is returned to the requesting
process. The write request is executed on the file handle of the reflected file which
has been returned to the process at the opening of the file. Each write request
contains the offset and the length of the data block that the process wishes to
write the data to.

If the write request is successfully performed by the system, the correspond-
ing meta-data of the reflected file (which is the offset and the length of the
modified regions of the original file) is marked in the write requests. In our pro-
totype, the meta-data entry to represent the modified regions is implemented
via Reparse Points provided by Microsoft – which is a collection of application-
specific data – and is interpreted by Redemption that sets the tags. When
the system sets a reparse point, a unique reparse tag is associated with it
which is then used to identify the offset and the length of every change. The
reparse point is set by calling FltTagFile when the file is created by Redemp-
tion. On subsequent accesses to the file in the protected area, the reparse
data is parsed via FltFsControlFile with the appropriate control code (i.e.,
FSCTL GET REPARSE POINT). Hence, the redirection is achieved by intercepting
the original write request, performing the write, and completing the original
request while tracking the write contents.

The consistency of the data redirected to the sparse files is an important
design requirement of the system. Therefore, it is required to perform frequent
flushing to avoid potential user data loss. Indeed, this approach is not without a
cost as multiple write requests are required to ensure critical data is written to
persistent media. To this end, we use the Microsoft recommended approach by
opening sparse files for unbuffered I/O upon creation and enabling write-through
caching via FILE FLAG NO BUFFERING and FILE FLAG WRITE THROUGH flags. In
fact, with write-through caching enabled, data is still written into the cache, but
cache manager writes the data immediately to disk rather than incurring a delay
by using the lazy writer. Windows recommends this approach as replacement
for calling the FlushFileBuffer function after each write which usually causes
unnecessary performance penalties in such applications.

Behavioral Detection and Notification Module. We implemented this
module as a user-mode service. This was a conscious design choice similar to the
design of most anti-malware solutions. Note that Microsoft officially supports
the concept of protected services, called Early Launch Anti-Malware (ELAM),
to allow anti-malware user-mode services to be launched as protected services.
In fact, after the service is launched as a protected service, Windows uses code
integrity to only allow trusted code to load into a protected service. Windows
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also protects these processes from code injection and other attacks from admin
processes [28]. If Redemption identifies the existence of a malicious process, it
automatically terminates the malicious process.

7 Evaluation

The prototype of the Redemption supports all Windows platforms. In our
experiments, we used Windows 7 by simply attaching Redemption to the file
system. We took popular anti-evasion measures similar to our experiments in
Sect. 3. The remainder of this section discusses how benign and malicious dataset
were collected, and how we conducted the experiments to evaluate the effective-
ness of our approach.

7.1 Dataset

The ground truth dataset consists of file system traces of manually confirmed
ransomware samples as well as more than 230 GB of data which contains the
interaction of benign processes with file system on multiple machines. We used
this dataset to verify the effectiveness of Redemption, and to determine the
best threshold value to label a suspicious process.

Collecting Ransomware Samples. We collected ransomware samples from
public repositories [1,3] that are updated on a daily basis, and online forums
that share malware samples [2,26]. In total, we collected 9,432 recent samples,
and we confirmed 1174 of them to be active ransomware from 29 contemporary
ransomware families. We used 504 of the samples from 12 families in our training
dataset. Table 2 describes the dataset we used in this experiment.

Collecting Benign Applications. One of the challenges to test Redemption
was to collect sufficient amount of benign data, which can represent the realistic
use of file system, for model training purposes. To test the proposed approach
with realistic workloads, we deployed a version of Redemption on five separate
Windows 7 machines in two different time slots each for seven days collecting
more that 230 GB of data. The users of the machines were advised to perform
their daily activities on their machines. Redemption operated in the monitor-
ing mode, and did not collect any sensitive user information such as credentials,
browsing history or personal data. The collected information only included the
interaction of processes with the file system which was required to model benign
interaction with the file system. All the extracted data was anonymized before
performing any further experiments. Based on the collected dataset, we created a
pool of application traces that consisted of 65 benign executables including appli-
cations that exhibit ransomware-like behavior such as secure deletion, encryp-
tion, and compression. The application pool consisted of document editors (e.g.,
Microsoft Word), audio/video editors (e.g., Microsoft Live Movie Maker, Movavi
Video Editor), file compression tools (e.g., Zip, WinRAR), file encryption tools
(e.g., AxCrypt, AESCrypt), and popular web browsers (e.g., Firefox, Chrome).
Due to space limitation, we provided a sub set of benign applications we used
in our analysis in Table 1.
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7.2 Detection Results

As discussed in Sect. 4, one of the design requirements of the system is to produce
low false positives, and to minimize the number of unnecessary notifications for
the user. To this end, the system employs a threshold value to determine when
an end-user should be notified about the suspicious behavior of a process.

We tested a large set of benign as well as ransomware samples on a Redemp-
tion enabled machine. As depicted in Tables 1 and 2, the median score of benign
applications is significantly lower than ransomware samples. For file encryption
programs such as AxCrypt which are specifically designed to protect the privacy
of the users, the original file is overwritten with random data once the encrypted
version is generated. In this case, Redemption reports the action as being mali-
cious – which, in fact, is a false positive. Unfortunately, such false positive cases
are inevitable since these programs are exhibiting the exact behavior that a typ-
ical ransomware exhibits. In such cases, Redemption informs the end-user and
asks for a manual confirmation. Given these corner cases, we select the malice
score as α = 0.12 where the system achieves the best detection and false posi-
tive rates (FPs = 0.5% at a TP = 100%). Figure 2 represents the false positive
and true positive rates as a function of the malice score on the labeled dataset.
This malice threshold is still significantly lower than the minimum malice score
of all the ransomware families in the dataset as provided in Table 2. The table
also shows the median file recovery rate. As depicted, Redemption detects a
malicious process and successfully recovers encrypted data after observing on
average four files. Our experiment on the dataset also showed that 7 GB storage
is sufficiently large for the protected area in order to enforce the data consistency
policy.

Testing with Known/Unknown Samples. In addition to the 10-fold cross
validation on 504 samples, we also tested Redemption with unknown benign
and malicious dataset. The tests included 29 ransomware families which 57%
of them were not presented in the training dataset. We also incorporated the
file system traces of benign processes in the second time slot as discussed in
Sect. 7.1 as the unseen benign dataset in this test. Table 3 represents the list
of ransomware families we used in our experiments. This table also shows the
datasets that were used in prior work [15,23,31]. In this experiment, we used
the malice threshold α = 0.12 similar to the previous experiment and manually
checked the detection results to measure the FP and TP rates. The detection
results in this set of experiments is (TPs = 100% at 0.8% FPs). Note that the
number of FP cases depends on the value of malice threshold. We selected this
conservative value to be able to detect all the possible ransomware behaviors.
Indeed, observing realistic work loads on a larger group of machines can lead to
a more comprehensive model, more accurate malice threshold calibration, and
ultimately lower FP rates. However, our experiments on 677 ransomware sam-
ples from 29 ransomware families show that Redemption is able to detect the
malicious process in all the 29 families by observing a median of 5 files. We
suspect the difference in the number of files is due to difference in the size of the
files being attacked. In fact, this is a very promising result since the detection
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Fig. 2. TP/FP analysis of Redemption. The threshold value α = 0.12 gives the best
detection and false positive rates (FPs = 0.5% at a TP = 100%).

Table 1. A list of Benign applica-
tion and their malice scores.

Program Min. Score Max. Score

Adobe Photoshop 0.032 0.088
AESCrypt 0.37 0.72
AxCrypt 0.31 0.75
Adobe PDF reader 0.0 0.0
Adobe PDF Pro 0.031 0.039
Google Chrome 0.037 0.044
Internet Explorer 0.035 0.045
Matlab 0.038 0.92
MS Words 0.041 0.089
MS PowerPoint 0.025 0.102
MS Excel 0.017 0.019
VLC Player 0.0 0.0
Vera Crypt 0.33 0.71
WinRAR 0.0 0.16
Windows Backup 0.0 0.0
Windows paintit 0.029 0.083
SDelete 0.283 0.638
Skype 0.011 0.013
Spotify 0.01 0.011
Sumatra PDF 0.022 0.041
Zip 0.0 0.16
Malice Score Median 0.027 0.0885

Table 2. A list of ransomware families and their
malice scores.

Family Samples Min. Score Max. Score File
Recovery

Cerber 33 0.41 0.73 5
Cryptolocker 50 0.36 0.77 4
CryptoWall3 39 0.4 0.79 6
CryptXXX 46 0.49 0.71 3
CTB-Locker 53 0.38 0.75 7
CrypVault 36 0.53 0.73 3
CoinVault 39 0.42 0.69 4
Filecoder 54 0.52 0.66 5
GpCode 45 0.52 0.76 2
TeslaCrypt 37 0.43 0.79 4
Virlock 29 0.51 0.72 3
SilentCrypt 43 0.31 0.59 9
Total Samples 504 - - -
Score Median - 0.43 0.73 -
File Recovery Median - - - 4

rate of the system did not change by adding unknown ransomware families which
do not necessarily follow the same attack techniques (i.e., using different cryp-
tosystems). The results of this experiment also shows that the number of exposed
files to ransomware does not change significantly if Redemption is not trained
with unseen ransomware families. This result clearly implies that the system can
detect a significant number of unseen ransomware attacks.
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Table 3. The list of ransomware families used to test Redemption, CryptoDrop [31],
ShieldFS [15], and PayBreak [23]. The numbers shown for [15,23,31] are extracted from
the corresponding papers.

Family Redemption

Samples/FA
CryptoDrop [31]
Samples/FA

ShieldFS [15]
Samples

PayBreak [23]
Samples

Almalocker - - - 1

Androm - - - 2

Cerber 30/6 - - 1

Chimera - - - 1

CoinVault 19/5 - - -

Critroni 16/6 - 17 -

Crowti 22/8 - - -

CryptoDefense 42/7 18/6.5 6 -

CryptoLocker(copycat) - 2/20 - -

Cryptolocker 29/4 31/10 20 33

CryptoFortess 12/7 2/14 - 2

CryptoWall 29/5 8/10 8 7

CrypWall - - - 4

CrypVault 26/3 - - -

CryptXXX 45/3 - - -

CryptMIC 7/3 - - -

CTB-Locker 33/6 122/29 - -

DirtyDecrypt 8/3 - 3 -

DXXD - - - 2

Filecoder 34/5 72/10 - -

GpCode 45/3 13/22 - 2

HDDCryptor 13/5 - - -

Jigsaw 12/4 - - -

Locky 21/2 - 154 7

MarsJokes - - - 1

MBL Advisory 12/4 1/9 - -

Petya 32/5 - - -

PayCrypt - - 3 -

PokemonGo - - - 1

PoshCoder 17/4 1/10 - -

TeslaCrypt 39/6 149/10 73 4

Thor Locky - - - 1

TorrentLocker 21/6 1/3 12 -

Tox 15/7 - - 9

Troldesh - - - 5

Virlock 29/7 20/8 - 4

Razy - - - 3

SamSam - - - 4

SilentCrypt 43/8 - - -

Xorist 14/7 51/3 - -

Ransom-FUE - 1/19 - -

WannaCry 7/5 - - -

ZeroLocker 5/8 - 1 -

Total Samples (Families) 677(29) 492(15) 305(11) 107(20)

File Attacked/Recovered(FA/FR) Median 5/5 10/0 - -

7.3 Disk I/O and File System Benchmarks

In order to evaluate the disk I/O and file system performance of Redemption,
we used IOzone [6], a well-known file system benchmark tool for Windows. To
this end, we first generated 100 × 512 MB files to test the throughput of block
write, rewrite, and read operations. Next, we tested the standard file system
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operations by creating and accessing 50,200 files, each containing 1 MB of data
in multiple directories. We ran IOzone as a normal process. Then, for having a
comparison, we repeated all the experiments 10 times, and calculated the average
scores to get the final results. We wrote a script in AutoIt [5] to automate the
tasks.The results of our findings are summarized in Table 4.

The experiments show that Redemption performs well when issuing heavy
reads and writes, and imposes an overhead of 2.8% and 3.4%, respectively. How-
ever, rewrite and create operations can experience slowdowns ranging from 7% to
9% when dealing with a large number of small files. In fact, creating the reflected
files and redirecting the write requests to the protected area are the main rea-
sons of this performance hit under high workloads. These results also suggest
that Redemption might not be suitable for workloads involving many small
files such as compiling large software projects. However, note that such heavy
workloads do not represent the deployment cases Redemption is designed to
target (i.e., protecting the end host of a typical user that surfs the web and
engages in productivity activities such as writing text and sending emails).

Another important question that arises here is that how many files should
be maintained in the protected area when Redemption is active. In fact, as
the protected area is sufficiently large, the system can maintain several files
without committing them to the disk and updating the original files. However,
this approach may not be desirable in scenarios where several read operations
may occur immediately after write operations (i.e., database). More specifically,
in these scenarios, Redemption, in addition to write requests, Redemption
should also redirect read operations to the protected area which is not ideal
from usability perspective. To this end, we also performed an I/O benchmark-
ing on the protected area by requesting write access to files, updating the files,
and committing the changes to the protected area without updating the orig-
inal files. We created a script to immediately generate read requests to access
updated files. The I/O benchmark on the protected area shows that the perfor-
mance overhead for read operations is less than 3.1% when 100 files with median
file size of 17.4 MB are maintained in the protected area. This number of files
is significantly larger than the maximum number of files Redemption needs
to observe to identify the suspicious process. Note that we consider the scenar-
ios where read operations are requested immediately after write operations to
exercise the redirection mechanism under high loads. Based on this performance
benchmarking, we conclude that read redirection mechanism does not impose
a significant overhead as we first expected. In the following, we demonstrate
that Redemption incurs minimal performance overhead when executing more
realistic workloads for our target audience.

7.4 Real-World Application Testing

To obtain measurable performance indicators to characterize the overhead of
Redemption, we created micro-benchmarks that exercise the critical perfor-
mance paths of Redemption. Note that developing benchmarks and custom
test cases requires careful consideration of factors that might impact the runtime
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Table 4. Disk I/O performance in a stan-
dard and a Redemption-protected host.

Operation Original Redemption

Performance Performance Overhead (%)

Write 112,456.25 KB/s 110094.67KB/s 3.4
Rewrite 68,457.57 KB/s 62501.76 KB/s 8.7
Read 114,124.78 KB/s 112070.53 KB/s 2.8
Create 12,785 files/s 11,852 files/s 7.3

Table 5. Runtime overhead of
Redemption on a set of end-point
applications

Application Original (s) Redemption (s) Overhead (%)

AESCrypt 165.55 173.28 4.67
AxCrypt 182.4 191.72 5.11
Chrome 66.19 67.02 1.25
IE 68.58 69.73 1.67
Media Player 118.2 118.78 0.49
MS Paint 134.5 138.91 3.28
MS Word 182.17 187.84 3.11
SDelete 219.4 231.0 5.29
Vera Crypt 187.5 196.46 4.78
Winzip 139.7 141.39 1.21
WinRAR 160.8 163.12 1.44
zip 127.8 129.32 1.19
Average - - 2.6

measurements. For example, a major challenge we had to tackle was automating
the testing of desktop applications with graphical user interfaces. In order to
perform the tests as identical as possible on the standard and Redemption-
enabled machines, we wrote scripts in AutoIt to interact with each application
while monitoring their performance impact. To this end, we called the applica-
tion within the script, and waited for 5 s for the program window to appear. We
then automatically checked whether the GUI of the application is the active win-
dow. The script forced the control’s window of the application to be on top. We
then started interacting with the edit control and other parts of the programs
to exercise the core features of the applications using the handle returned by
the AutoIt script. Similarly to the previous experiment, we repeated each test
10 times. We present the average runtimes in Table 5.

In our experiments, the overhead of protecting a system from ransomware was
under 6% in every test case, and, on average, running applications took only 2.6%
longer to complete their tasks. These results demonstrate that Redemption is
efficient, and that it should not detract from the user experience. These experi-
ments also support that Redemption can provide real time protection against
ransomware without a significant performance impact. We must stress that if
Redemption is deployed on machines with a primarily I/O bound workload,
lower performance should be expected as indicated by the benchmark in Sect. 7.3.

7.5 Usability Experiments

We performed a user study experiment with 28 participants to test the usability
of Redemption. We submitted and received IRB waiver for our usability exper-
iments from the office of Human Subject Research Protection (HSRP). The goal
of the usability test is to determine whether the system provides transparent
monitoring, and also to evaluate how end-users deal with our visual alerts. The
participants were from different majors at the authors’ institution. Participants
were recruited by asking for volunteers to help test a security tool. In order
to avoid the effects of priming, the participants were not informed about the
key functionality of Redemption. The recruitment requirement was that the
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participants are familiar with text editors and web browsers so that they could
perform the given tasks correctly. All the experiments were conducted using two
identical Windows 7 virtual machines enabled with Redemption on two laptops.
The virtual machines were provided a controlled Internet access as described
in Sect. 7. Redemption was configured to be in the protection mode on the
entire data space generated for the test user account. A ransomware sample was
automatically started at a random time to observe how the user interacts with
Redemption during a ransomware attack. After each experiment, the virtual
machines were rolled back to the default state. No personal information was
collected from the participants at any point of the experiments.

We asked the participants to perform three tasks to evaluate different aspects
of the system. The first task was to work with an instance of Microsoft Word
and PowerPoint on the test machines running Redemption. The experiment
observer asked the participants to compare this process with their previous expe-
rience of using Microsoft Word and PowerPoint and rate the difficulty involved
in interacting with the test setup on a 5-point Likert scale.

In the second task, the participants were asked to encrypt a folder containing
multiple files with AxCrypt on the Redemption-enabled machine. This action
caused a visual alert to be displayed to the participant that the operation is
suspended, and ask the user to confirm or deny the action. The participants
were asked to explain why they confirmed or denied the action and the reason
behind their decision.

In the last task, the participants were asked to perform a specific search on
the Internet. While they were pre-occupied with the task, the ransomware sample
was automatically started. This action was blocked by Redemption and caused
another visual alert to be displayed. Similar to the second task, the experiment
observer monitored how participants handled the alert.

At the end of the first phase of the experiment, all 28 participants found the
experience to be identical to using Microsoft Word and PowerPoint on their own
machines. This finding empirically confirms that Redemption is transparent
to the users. In the second experiment, 26 participants confirmed the action.
Another 2 noticed the alert, but denied the operation so no file was encrypted.
In the third phase, all the 28 participants noticed the visual alert, and none of
the users confirmed the operation. The participants explained that they were
not sure why they received this visual alert, and could not verify the operation.
These results confirm that Redemption visual alerts are able to draw all par-
ticipants’ attention while they are occupied with other tasks, and are effective in
protecting the user data. Furthermore, the experiments clearly imply that end-
users are more likely to recognize the presence of suspicious operations on their
sensitive data using Redemption indicators. To confirm statistical significance,
we performed a hypothesis test where the null hypothesis is that Redemption’s
indicators do not assist in identifying suspicious operations during ransomware
attacks, while the alternative hypothesis is that Redemption’s ransomware indi-
cators do assist in identifying such destructive actions. Using a paired t-test, we
obtain a p-value of 4.9491×10−7, sufficient to reject the null hypothesis at a 1%
significance level.
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8 Discussion and Limitations

Unfortunately, malware research is an arms race. Therefore, there is always the
possibility that malware developers find heuristics to bypass the detection on the
analysis systems, or on end-user machines. In the following, we discuss possible
evasion scenarios that can be used by malware authors, and how Redemption
addresses them.

Attacking REDEMPTION Monitor. Note that the interaction of any user-
mode process as well as kernel mode drivers with the file system is managed
by Windows I/O manager which is responsible for generating appropriate I/O
requests. Since every access in any form should be first submitted to the I/O
manager, and Redemption registers callbacks to all the I/O requests, bypassing
Redemption’s monitor is not possible in the user-mode. Furthermore, note that
direct access to the disk or volume is prohibited by Windows from Windows
Vista [27] for user-mode applications in order to protect file system’s integrity.
Therefore, any other form of requests to access the files is not possible in the
user-mode, and is guaranteed by the operating system.

Attackers may be able to use social engineering techniques and frustrate users
by creating fake alert messages – accusing a browser to be a ransomware – and
forcing the user to turn off Redemption. We believe these scenarios are possi-
ble. However, note that such social engineering attacks are well-known security
problems and target all end-point security solutions including our tool. Defend-
ing against such attacks depends more on the security awareness of users and is
out of scope of this work.

Attacking the Malice Score Calculation Function. An attacker may also
target the malice calculation function, and try to keep the malice score of the
process lower than the threshold. For example, an attacker can generate code
that performs selective content overwrite, use a low entropy payload for content
overwrite, or launch periodic file destruction. If an attacker employs any one
of these techniques by itself, the malice score becomes lower, but the malicious
action would still be distinguishable. For example, if the file content is overwrit-
ten with low entropy payload, the process receives a lower malice score. However,
since the process overwrites all the content of a file with a low-entropy payload,
it is itself suspicious, and would be reported to the user.

We believe that the worst case scenario would be if an attacker employs
all the three techniques simultaneously to bypass the malice score calculation
function. This is a fair assumption since developing such a malware is straight-
forward. However, note that in order to launch a successful ransomware attack,
and force the victim to pay the ransom fee, the malicious program needs to
attack more than a file – preferably all the files on the system. Hence, even if
the malicious program employs all of the bypassing techniques, it requires some
sort of iteration with write permission over the user files. This action would
still be seen and captured by Redemption. In this particular case, a malicious
program can successfully encrypt a single user file, but the subsequent write
attempt on another file would be reported to the user for the confirmation if the
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write request occurs within a pre-defined six hour period after the first attempt.
This means a ransomware can successfully encrypt a user file every six hours.
We should stress that, in this particular scenario, the system cannot guarantee
zero data loss. However, the system significantly decreases the effectiveness of
the attack since the number of files encrypted per day is very small.

Furthermore, since these approaches incur a considerable delay to launch a
successful attack, they also increase the risk of being detected by AV scanners on
the end-point before encrypting a large number of files, and forcing the user to
pay. Consequently, developing such stealthy ransomware may not be as profitable
as current ransomware attack strategies where the entire point of the attack
is to encrypt as many files as possible in a short period of time and request
money. An attacker may also avoid performing user file encryption, and only
lock the desktop once installed. This approach can make the end-user machine
inaccessible. However, such changes are not persistent, and regaining access to
the machine is significantly easier, and is out of the scope of this paper.

9 Conclusions

In this paper, we proposed a generic approach, called Redemption, to defend
against ransomware on the end-host. We show that by incorporating the pro-
totype of Redemption as an augmented service to the operating system, it
is possible to successfully stop ransomware attacks on end-user machines. We
showed that the system incurs modest overhead, averaging 2.6% for realistic
workloads. Furthermore, Redemption does not require explicit application sup-
port or any other preconditions to actively protect users against unknown ran-
somware attacks. We provide an anonymous video of Redemption in action
in [4], and hope that the concepts we propose will be useful for end-point pro-
tection providers.
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Abstract. Acquiring a representative labelled dataset is a hurdle that
has to be overcome to learn a supervised detection model. Labelling a
dataset is particularly expensive in computer security as expert knowl-
edge is required to perform the annotations. In this paper, we introduce
ILAB, a novel interactive labelling strategy that helps experts label large
datasets for intrusion detection with a reduced workload. First, we com-
pare ILAB with two state-of-the-art labelling strategies on public labelled
datasets and demonstrate it is both an effective and a scalable solution.
Second, we show ILAB is workable with a real-world annotation project
carried out on a large unlabelled NetFlow dataset originating from a
production environment. We provide an open source implementation
(https://github.com/ANSSI-FR/SecuML/) to allow security experts to
label their own datasets and researchers to compare labelling strategies.

Keywords: Intrusion detection · Active learning · Rare category
detection

1 Introduction

Supervised learning is adapted to intrusion detection and has been success-
fully applied to various detection problems: Android applications [11], PDF
files [7,35], botnets [2,5], Windows audit logs [4], portable executable files [19].
However, supervised detection models must be trained on representative labelled
datasets which are particularly expensive to build in computer security. Expert
knowledge is required to annotate and data are often confidential. As a result,
crowd-sourcing [37] cannot be applied as in computer vision or natural lan-
guage processing to acquire labelled datasets at low cost. Some labelled datasets
related to computer security are public (Malicia project [22], KDD99 [41],
kyoto2006 [39], etc.) but they are quickly outdated and they often do not account
for the idiosyncrasies of each deployment context.
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Experts are essential for annotating but they are an expensive resource, that
is why the labelling process must use expert time efficiently. Active learning
methods have been proposed to reduce the labelling cost by asking the expert
to annotate only the most informative examples [32]. However, classical active
learning methods often suffer from sampling bias [29,34]: a family (a group of
similar malicious or benign examples) may be completely overlooked by the
annotation queries as the expert is asked to annotate only the most informative
examples. Sampling bias is a significant issue in intrusion detection: it may lead
to missing a malicious family during the labelling process, and being unable to
detect it thereafter. Moreover, the labelling strategy must scale to large datasets
to be workable on real-world annotation projects.

Finally, active learning is an interactive process which must ensure a good
expert-model interaction, i.e. a good interaction between the expert who anno-
tates and the detection model [33,43]. The expert annotations improve not only
the detection model but also the relevance of the following annotation queries.
A low execution time is thus required to allow frequent updates of the detec-
tion model with the expert feedback. A labelling strategy with a high execution
time would alter the expert-model interaction and is unlikely to be accepted by
experts.

In this paper, we introduce ILAB, a novel interactive labelling strategy that
helps an expert acquire a representative labelled dataset with a reduced work-
load. ILAB relies on a new hierarchical active learning method with binary labels
(malicious vs. benign) and user-defined malicious and benign families. It avoids
the sampling bias issue encountered by classical active learning as it is designed
to discover the different malicious and benign families. Moreover, the scalable
algorithms used in ILAB make it workable on large datasets and guarantee a
low expert waiting time for a good expert-model interaction.

Our paper makes the following contributions:

– We present a novel active learning method called ILAB designed to avoid
sampling bias. It has a low computation cost to ensure a good expert-model
interaction, and it is scalable to large datasets.

– We compare ILAB with two state-of-the-art active learning methods for intru-
sion detection [14,40] on two detection problems. We demonstrate that ILAB
improves the scalability without reducing the effectiveness. Up to our knowl-
edge, [14,40] have never been compared. We provide an open source imple-
mentation of ILAB and of these two labelling strategies to foster comparison
in future research works.

– We show that ILAB is a workable labelling strategy that scales to large real-
world datasets with an annotation project on NetFlow data originating from
a production environment. We provide an open source implementation of the
graphical user interface deployed during the annotation project to allow secu-
rity experts to label their own datasets.

The rest of the paper is organized as follows. Section 2 presents the sampling
bias issue in active learning and related works. The problem being addressed and
the notations are detailed in Sect. 3. Section 4 explains ILAB labelling strategy.
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Finally, Sect. 5 compares ILAB with state-of-the-art labelling strategies through
simulations run on public fully labelled datasets, and Sect. 6 presents a real-
world annotation project carried out with ILAB on a large unlabelled NetFlow
dataset.

2 Background and Related Work

Active Learning. Active learning [32] methods have been developed in the
machine learning community to reduce the labelling cost. A labelling strategy
asks the expert to annotate only the most informative instances, i.e. the ones
that lead to the best detection model. Active learning methods rely on an inter-
active process where the expert is asked to annotate some instances from a large
unlabelled pool to improve the current detection model and the relevance of the
future annotation queries (see Fig. 1). However, annotating only the most infor-
mative instances may cause a family of observations to be completely missed
by the labelling process (see [8,29] for theoretical examples) and, therefore, may
have a negative impact on the performance of the detection model.

Expert

Labelled Dataset Unlabelled Pool

Detection Model
Train a model

Annotation queriesNew labelled instances

Fig. 1. Active learning: an interactive process

B1
45%

M1
1%

Missed cluster

B2
40%

Decision Boundary

M2
4%

M3
10%

Fig. 2. Sampling bias example

Sampling Bias. Figure 2 provides an example of
sampling bias in one dimension with uncertainty
sampling [20] which queries the closest instances
to the decision boundary. Each block represents
a malicious or a benign family. With this data
distribution, instances from the family M1 are
unlikely to be part of the initial training dataset,
and so the initial decision boundary is likely to lie between the families B2 and
M3. As active learning proceeds, the classifier will gradually converge to the
decision boundary between the families B2 and M2 and will only ask the expert
to annotate instances from these two families to refine the decision boundary. The
malicious family M1 on the left is completely overlooked by the query algorithm
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as the classifier is mistakenly confident that the entire family is benign. As the
malicious family M1 is on the wrong side of the decision boundary, the classifier
will not be able to detect this malicious family thereafter.

Sampling bias is a significant problem for intrusion detection that may lead to
malicious families remaining completely undetected. Besides, the risk of sampling
bias is even higher for intrusion detection than for other application domains
because the initial labels are not uniformly distributed. Uniform random sam-
pling cannot be used to acquire the initial labelled instances as the malicious
class is too under-represented. The signatures widely deployed in detection sys-
tems can provide initial labels but they likely all belong to the same family or
to a small number of families.

Related Work. Online active learning [21,30,31,44,45] is well-suited to follow the
evolution of the threats: experts perform annotations over time to update the
detection model that is already deployed. In this setting, the detection model in
production has been initially trained on a labelled dataset representative of the
deployment environment. In our case, such a representative labelled dataset is
unavailable and the objective is to acquire it offline to train the initial detection
model.

Some works focus on offline active learning to build a labelled dataset for
intrusion detection. First, Almgren et al. [1] have applied plain uncertainty sam-
pling [20] to intrusion detection before the sampling bias issue has been dis-
covered. Then, Aladin [40] and Görnitz et al. [14] have proposed new labelling
strategies for intrusion detection that intend to discover the different malicious
families. Aladin applies rare category detection [26] on top of active learning to
foster the discovery of the different families, and Görnitz et al. use a k-nearest
neighbour approach to detect yet unknown malicious families. However, both
[14,40] deal with sampling bias at the expense of the expert-model interaction.
These labelling strategies require heavy computations to generate the annotation
queries that cause long waiting-periods that cannot be exploited by the expert.
ILAB relies on rare category detection to avoid sampling bias, as Aladin, but
with a divide and conquer approach to ensure a good expert-model interaction.
Aladin [40] and Görnitz et al. [14] labelling strategies have never been compared
to our knowledge. We compare ILAB with these two labelling strategies in the
simulations presented in Sect. 5 and we provide open source implementations in
order to foster comparison in future research works.

Finally, active learning is an interactive process where a user interface is
required for the expert to annotate. Almgren et al. and Görnitz et al. have
only run simulations on fully labelled datasets with an oracle answering the
annotation queries and they have not mentioned any user interface. Aladin has
a corresponding graphical user interface, but [40] provides no detail about it.
As an ergonomic user interface can definitely reduce the expert effort [9,33],
ILAB comes up with an open source graphical user interface briefly described in
Sect. 6.
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3 Problem Statement

Our goal is to acquire a representative labelled dataset from a pool of unlabelled
instances with a reduced human effort. Both the number of annotations asked
from the expert and the computation time for generating the annotation queries
must be minimized to reduce the workload and ensure a good expert-model
interaction. We assume that there is no adversary attempting to mislead the
labelling strategy as it is performed offline before the detection model is deployed
in production.

Notations. Let D = {xi ∈ R
m}1≤i≤N be the dataset we want to label partially

to learn a supervised detection model M. It contains N instances described by
m real-valued features. For example, each instance xi could represent a PDF file,
an Android application, the traffic of an IP address, or the activity of a user.
Such unlabelled data are usually easy to acquire from the environment where the
detection system is deployed (files, network traffic captures, or logs for example).

To represent an instance with real-valued features the expert must extract
discriminating features and transform them into real values. Many research
works focus on feature extraction for given detection problems: Android applica-
tions [11], PDF files [7,35], Windows audit logs [4], portable executable files [19].
In this paper, we do not address feature extraction and we focus on reducing the
cost of building a representative labelled dataset with an effective labelling strat-
egy. Instances are represented by real-valued features regardless of the detection
problem thanks to feature extraction. As a result, labelling strategies are generic
regarding the detection problems.

Let L = {Malicious, Benign} be the set of labels and Fy be the set contain-
ing the user-defined families of the label y ∈ L. For example, malicious instances
belonging to the same family may exploit the same vulnerability, they may be
polymorphic variants of the same malware, or they may be emails coming from
the same spam campaign.

Our aim is to create a labelled dataset

DL ⊆ {(x, y, z) | x ∈ D, y ∈ L, z ∈ Fy}
maximizing the accuracy of the detection model M trained on DL. DL associates
a label y ∈ L and a family z ∈ Fy to each instance x ∈ D. The labelled
dataset DL is built with an iterative active learning strategy. At each iteration,
a security expert is asked to annotate, with a label and a family, b ∈ N instances
selected from the pool of remaining unlabelled instances denoted by DU . During
the annotation process, the expert cannot annotate more instances than the
annotation budget B ∈ N.

Objective. The objective of the labelling strategy is to build DL maximizing the
accuracy of the detection model M while asking the expert to annotate at most
B instances. In other words, the labelling strategy aims to ask the expert to
annotate the B instances that maximize the performance of the detection model
M. Besides, the labelling strategy must be scalable to work on large datasets
while keeping a low expert waiting time.
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4 ILAB Labelling Strategy

ILAB is an iterative annotation process based on active learning [32] and rare
category detection [26]. At each iteration, the expert is asked to annotate b
instances to improve the current detection model and to discover yet unknown
families. Active learning improves the binary classification model raising the
alerts while rare category detection fosters the discovery of new families to avoid
sampling bias. First, we describe how we initialize the active learning process
and then we explain the labelling strategy, i.e. which instances are selected from
the unlabelled pool to be annotated by the expert.

DMalicious
L

DBenign
L

DMalicious
U

DBenign
U

Annotation Queries

Uncertainty sampling (1)

Low likelihood (2)

High likelihood (3)

Decision
Boundary

M1

M2

M3

B1

B2

Fig. 3. ILAB labelling strategy

Initial Supervision. The active learning process needs some initial labelled exam-
ples to learn the first supervised detection model. This initial supervision can be
difficult to acquire for detection problems. The Malicious class is usually too
under-represented for uniform random sampling to be effective at collecting a
representative labelled dataset.

If a public labelled dataset is available for the detection problem considered, it
can be used for the initial supervision. Otherwise, the signatures widely deployed
in detection systems can provide Malicious examples at low cost, and random
sampling can provide Benign examples. In both cases, the initial labelled dataset
does not contain all the malicious families we want to detect, and it is not
representative of the data in the deployment environment. ILAB enriches the
initial labelled dataset across the iterations to make it representative of the
environment where the detection system is deployed.

The iterations are performed until the annotation budget B has been spent.
At each iteration, buncertain annotation queries are generated with uncertainty
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sampling to improve the detection model and bfamilies = b − buncertain instances
are queried for annotation with rare category detection to avoid sampling bias
(see Fig. 3).

4.1 Uncertainty Sampling

A binary probabilistic detection model M is learned from the annotated
instances in DL. We use a discriminant linear model, i.e. logistic regression [10].
Linear models are highly valued by computer security experts who do not trust
black box detection models [27]. These detection models can be interpreted
because the coefficients associated with each feature represent their contribution
to the detection model. Besides, discriminant models are known to be better
than generative ones in active learning settings [47]. Finally, learning a logistic
regression model and applying it to predict the label of new instances is fast
so the expert does not wait a long time between iterations. Our approach is
generic, the expert can choose to use another model class particularly suited for
her application.

The rare malicious families are often the most interesting in intrusion detec-
tion, hence the impact of the training instances from rare families is increased.
The logistic regression model is learned with sample weights inverse to the pro-
portion of the family in the training dataset:

β(x, y, z) =
|DL|

| {(x′, y′, z′) ∈ DL | y′ = y ∧ z′ = z} | .

The weights are capped, β̂ = min(β, 100), to avoid giving too much weight to
very rare families. Learning the logistic regression detection model with these
weights is crucial to ensure a good detection of the rare malicious families.

The model M is used to compute the probability p(x) that an unlabelled
instance x ∈ DU is Malicious according to M:

∀x ∈ DU , p(x) = PM(y = Malicious | x).

Annotation Queries. The buncertain unlabelled instances which are the closest to
the decision boundary of M are annotated by the expert:

arg min
x∈DU

|p(x) − 1/2|. (1)

The detection model is uncertain about the label of these instances, that is why
their annotations allow to improve the detection model. This step corresponds
to uncertainty sampling [20], a classical active learning method applied in [1].
Uncertainty sampling suffers, however, from sampling bias [29]. We also perform
rare category detection to foster the discovery of yet unknown families.
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4.2 Rare Category Detection

Rare category detection is applied on the instances that are more likely to be
Malicious and Benign (according to the detection model M) separately. Not all
families are present in the initial labelled dataset and rare category detection [26]
fosters the discovery of yet unknown families to avoid sampling bias. One might
think that we could run rare category detection only on the malicious instances
since it is the class of interest in intrusion detection. However, a whole malicious
family may be on the wrong side of the decision boundary (see the family M1

in Fig. 2), and thus, running rare category detection on the predicted benign
instances is necessary. Hereafter, we only detail the rare category detection run
on the Malicious predictions since the analysis of the Benign ones is performed
similarly.

Let DMalicious
U be the set of instances whose predicted label by M is

Malicious and DMalicious
L be the set of malicious instances already annotated

by the expert. First, a multi-class logistic regression model is learned from the
families specified in DMalicious

L to predict the family of the instances in DMalicious
U .

Let Cf be the set of instances from DMalicious
L ∪ DMalicious

U whose family (anno-
tated or predicted) is f . Each family f is modelled with a Gaussian distribution
N (μf , Σf ) depicted by an ellipsoid in Fig. 3. The mean μf and the diagonal
covariance matrix Σf are learned with Gaussian Naive Bayes [10]. We denote by
pN (μf ,Σf )(x) the probability that x follows the Gaussian distribution N (μf , Σf ).

Annotation Queries. The family annotation budget bfamilies is evenly distributed
among the different families. We now explain which unlabelled instances are
queried for annotation from each family.

First, ILAB asks the expert to annotate instances that are likely to belong
to a yet unknown family to avoid sampling bias. These instances are located at
the edge of the ellipsoid, they have a low likelihood of belonging to the family
f [26,40]:

arg min
x∈Cf\DMalicious

L

pN (μf ,Σf )(x). (2)

Then, ILAB queries representative examples of each family for annotation.
These instances are close to the centre of the ellipsoid, they have a high likelihood
of belonging to the family f :

arg max
x∈Cf\DMalicious

L

pN (μf ,Σf )(x). (3)

Half the budget is allocated to low likelihood instances, and the other half
to high likelihood instances. Low likelihood instances are likely to belong to yet
unknown families that is why these annotation queries foster the discovery of
new families. They are, however, more likely to be outliers that may impair
the detection model performance. ILAB also asks the expert to annotate high
likelihood instances to get more representative examples of the families in the
labelled dataset for a better generalization of the detection model.
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5 Comparison with State of the Art Labelling Strategies

5.1 Datasets

Labelling strategies are generic methods that can be applied to any detection
problem once the features have been extracted. We consider a system and a
network detection problem: (1) detection of malicious PDF files with the dataset
Contagio1, and (2) network intrusion detection with the dataset NSL-KDD2.
These datasets cannot be used to train a model intended for production as they
are non-representative of real-world data. However, our comparisons are relevant
as we are not comparing attack detection models but labelling strategies in order
to train attack detection models on new problems.

Contagio is a public dataset composed of 11,101 malicious and 9,000 benign
PDF files. We transform each PDF file into 113 numerical features similar to the
ones proposed by Smutz and Stavrou [35,36].

NSL-KDD contains 58,630 malicious and 67,343 benign instances. Each
instance represents a connection on a network and is described by 7 cate-
gorical features and 34 numerical features. The 7 categorical features (e.g.
protocol type with the possible values tcp, udp or icmp) are encoded into
several binary features corresponding to each value (e.g. tcp → [1, 0, 0], udp →
[0, 1, 0], icmp → [0, 0, 1]). We end up with 122 features.

Table 1. Description of the public datasets

Dataset #instances #features #malicious families #benign families

Contagio 10% 10, 000 113 16 30

NSL-KDD 10% 74, 826 122 19 15

The malicious instances in NSL-KDD are annotated with a family but the
benign ones are not, and Contagio does not provide any family information. The
families are, however, required to run simulations with Aladin and ILAB, and to
assess the sampling bias of the different labelling strategies. We have assigned
families to the remaining instances with a k-means clustering and the number
of families k has been selected visually with the silhouette coefficient [28].

Neither dataset has a proportion of malicious instances representative of
a typical network (55% for Contagio and 47% for NSL-KDD). We have uni-
formly sub-sampled the malicious class to get 10% of malicious instances. Table 1
describes the resulting datasets: Contagio 10% and NSL-KDD 10%.

1 http://contagiodump.blogspot.fr/.
2 http://www.unb.ca/cic/research/datasets/nsl.html.

http://contagiodump.blogspot.fr/
http://www.unb.ca/cic/research/datasets/nsl.html
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5.2 Labelling Strategies

We compare ILAB with uncertainty sampling [20], Aladin [40], and Görnitz et al.
labelling method [14]. Since there is no open source implementation of these
labelling strategies, we have implemented them in Python with the machine
learning library scikit-learn [25]. All the implementations are released to ease
comparison in future research works. We briefly present each labelling strat-
egy, we provide some details about our implementations and how we set the
additional parameters if relevant.

Uncertainty Sampling [20]. At each iteration, a binary logistic regression model
is trained on the labelled instances, and the expert is asked to annotate the b
most uncertain predictions, i.e. the closest to the decision boundary. Uncertainty
sampling has no additional parameter.

Görnitz et al. labelling strategy [14]. At each iteration, a semi-supervised anom-
aly detection model is trained on both the labelled and the unlabelled instances.
The model relies on an adaptation of an unsupervised anomaly detection model,
Support Vector Data Description (SVDD) [42], that takes into account labelled
instances. It consists in a sphere defined by a centre c ∈ R

m and a radius r ∈ R:
the instances inside are considered benign, and the ones outside malicious. The
labelling strategy queries instances that are both close to the decision boundary
and have few malicious neighbours to foster the discovery of new malicious fam-
ilies. The nearest neighbours are computed with the Euclidean distance with the
scikit-learn ball tree implementation [23] that is effective with a large number of
instances in high dimension.

Semi-supervised SVDD has no open source implementation, so we have imple-
mented it for our experiments with the information provided in [12–14]. The
parameters c, r, and the margin γ ∈ R are determined with the quasi-Newton
optimization method BFGS [46] available in scipy [17]. The optimization algo-
rithm requires initial values for c, r, and γ that are not specified in the papers.
We initialize c with the mean of the unlabelled and benign instances, r with the
average distance of the unlabelled and benign instances to the centre c, and γ
with the default value 1. Moreover, the detection model has three parameters:
ηU ∈ R and ηL ∈ R, the weights of the unlabelled and labelled instances, and
κ the weight of the margin γ. The authors provide no information about how
to set these parameters. When we set them to the default value 1, numerical
instabilities prevent the optimization algorithm from converging properly, and
lead to an extremely high execution time and very poor performance (more than
2 hours for training the model on Contagio 10% to get an AUC below 93%). We
have thus worked on the setting of these parameters. We have set ηU and ηL

to the inverse of the number of unlabelled and labelled instances, to give as
much weight to unlabelled and labelled instances, and to ensure numerical sta-
bility. The detection model is trained without any kernel as in the experiments
presented in [12–14].

Finally, the labelling strategy requires to set two additional parameters:
k ∈ N the number of neighbours considered, and δ ∈ [0, 1] the trade-off between
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querying instances close to the decision boundary and instances with few mali-
cious neighbours. We use k = 10 as in [14] and the default value δ = 0.5.

Aladin [40]. Aladin runs rare category detection on all the data. It asks the expert
to annotate uncertain instances lying between two families to refine the decision
boundaries, and low likelihood instances to discover yet unknown families. Aladin
does not have additional parameters.

This labelling strategy relies on a multi-class logistic regression model and a
multi-class Gaussian Naive Bayes model. The logistic regression parameters are
selected automatically with a grid search 4-fold cross validation optimizing the
AUC [16]. The penalty norm is either �1 or �2 and the regularization strength
is selected among the values {0.01, 0.1, 1, 10, 100}. The Gaussian Naive Bayes
model is trained without any prior.

ILAB. ILAB labelling strategy has only an additional parameter: buncertain. It
is set to 10% of the number of annotations performed at each iteration, i.e.
buncertain = 10 in our case. Some instances near the decision boundary are
annotated to help the detection model make a decision about these instances,
but not too many since these instances are often harder to annotate for the
expert [3,15,33] and they may lead to a sampling bias [29].

The logistic regression and Gaussian Naive Bayes models are trained the
same way as for Aladin.

5.3 Results

The datasets Contagio 10% and NSL-KDD 10% are split uniformly into two
datasets: (1) an active learning dataset (90%) used as a pool to build the labelled
dataset DL, and (2) a validation dataset (10%) to assess the performance of the
detection model trained on DL. The different labelling strategies are compared
with simulations where the annotation queries are answered by an oracle pro-
viding the ground truth labels and families.

All the strategies are run with b = 100 annotations at each iteration. The
annotation budget is set to B = 1000 for Contagio 10%, and to B = 2000
for NSL-KDD 10% as this dataset contains more instances. The initial labelled
datasets are composed of instances belonging to the most represented families:
7 malicious instances and 13 benign instances.

All the experiments are run on Linux 3.16 on a dual-socket computer with
64Go RAM. Processors are Intel Xeon E5-5620 CPUs clocked at 2.40 GHz with
4 cores each and 2 threads per core. Each labelling strategy is run 15 times and
we report the average performance with the 95% confidence interval.

First, we compare the number of known families across the iterations to assess
sampling bias (see Fig. 4a). Then, we compare the performance of the detection
models on the validation dataset (see Fig. 4b). Finally, we monitor the execution
time of the query generation algorithms to evaluate the expert waiting time
between iterations (see Fig. 4c).
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Fig. 4. Comparison of the labelling strategies Contagio 10% (on the left) and NSL-
KDD 10% (on the right)
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Families Detection. Figure 4a shows that uncertainty sampling and Görnitz et al.
labelling strategy miss many families during the annotation process. Both
labelling strategies suffer from sampling bias. Görnitz et al. labelling strategy
relies on k-nearest neighbours to detect yet unknown malicious families but only
close to the decision boundary, that is why many families further from the deci-
sion boundary are not discovered. Their strategy to foster the discovery of yet
unknown families is not effective on both datasets.

ILAB dedicates only a part of its annotation budget to the detection of yet
unknown families, that is why Aladin detects slightly more families than ILAB.
ILAB queries some high likelihood instances which are unlikely to belong to new
families, but they allow to keep the detection performance increasing across the
iterations (see Fig. 4b).

ILAB and Aladin discover about as many families across the iterations on
both datasets. These labelling strategies are effective at avoiding sampling bias.
They are designed to detect rare categories, and they are able to discover almost
all the families on both datasets.

Detection Performance. Figure 4b represents the evolution of the Area Under
the Curve (AUC) [16] on the validation dataset. It shows that ILAB performs
better than the other labelling strategies on both datasets.

Görnitz et al. labelling strategy performs very poorly on Contagio 10%.
The detection performance increases at the first iteration, but then it keeps
on decreasing when new instances are added to the labelled dataset. This pecu-
liar behaviour can be explained by the simplicity of the SVDD detection model
which cannot discriminate the benign from the malicious instances properly.
The geometry of the data prevents SVDD from isolating the benign instances
from the malicious instances in a sphere. We notice the same behaviour less pro-
nounced on NSL-KDD 10%. A solution to address this issue is to train SVDD
with a kernel to increase the complexity of the model. However, this solution
will considerably increase the execution time which is already too high to ensure
a good expert-model interaction (see Fig. 4c).

Görnitz et al. labelling strategy performs much better initially on NSL-
KDD 10% than the other labelling strategies. Indeed, thanks to semi-
supervision, Görnitz et al. use not only the 20 initial labelled instances to train
their detection model, but also all the instances from the unlabelled pool. Görnitz
et al. semi-supervised detection model is, however, not as effective as logistic
regression initially on Contagio 10%. SVDD makes the assumption that the
unlabelled instances are mostly benign, and so the malicious instances in the
unlabelled pool may damage the detection model performance.

Uncertainty sampling has a better detection performance than ILAB during
the first iterations on NSL-KDD 10% because it allocates all its annotation bud-
get to refining the decision boundary. On the contrary, ILAB dedicates 90% of
its annotation budget to rare category detection to avoid sampling bias. In the
end, uncertainty sampling suffers from sampling bias and converges to a poorer
performance.
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The detection performance of uncertainty sampling and Aladin decreases dur-
ing the first iterations on Contagio 10%. This undesirable behaviour is caused by
sampling bias: non-representative instances are queried for annotation, added to
the training dataset and prevent the detection model from generalizing properly.
Uncertainty sampling queries instances close to the decision boundary that are
hard to classify for the detection model, but not representative of the malicious
or benign behaviours. Aladin queries only uncertain and low likelihood instances
which are not necessarily representative of the malicious and benign behaviours
either. ILAB addresses this problem by dedicating a part of its annotation bud-
get to high likelihood instances to get representative examples of each family.
Therefore, the detection performance keeps on increasing across the iterations.

Scalability. Figure 4c depicts the query generation execution time (in seconds)
across the iterations. Görnitz et al. query generation algorithm is very slow. For
NSL-KDD 10%, the expert waits more than 10 min between each iteration while
the labelling strategy computes the annotation queries. A third of the execution
time corresponds to the computation of the semi-supervised SVDD model, and
the remaining two thirds corresponds to the k-nearest neighbour algorithm. The
execution time of Görnitz et al. labelling strategy is thus too high to ensure a
good expert-model interaction even on a dataset containing fewer than 100,000
instances.

ILAB has an execution time comparable to uncertainty sampling. For NSL-
KDD 10%, the expert waits less than 1 min between each iteration. On the
contrary, Aladin execution time increases drastically when new instances are
added to the labelled dataset and new families are discovered. Aladin runs rare
category detection on all the instances, while ILAB runs it on the malicious and
the benign instances separately. ILAB divide and conquer approach reduces the
execution time as running rare category detection twice on smaller datasets with
fewer families is faster than running it on the whole dataset. Aladin’s authors
were aware of this high execution time. During their experiments, the expert
was asked to annotate 1000 instances each day, and the new annotation queries
were computed every night. Their solution reduces the expert waiting time, but
it significantly damages the expert-model interaction since the expert feedback
is integrated only once a day.

In conclusion, uncertainty sampling and Görnitz et al. labelling strategy suf-
fer from sampling bias. Aladin and ILAB are the only labelling strategies able to
avoid sampling bias thanks to rare category detection performed at the family
level (see Fig. 4a). ILAB main advantage over Aladin is its divide and conquer
approach that significantly reduces the execution time (see Fig. 4c) and thus
improves the expert-model interaction. Our comparisons show that ILAB is both
an effective and a scalable labelling strategy that can be set up on real-world
annotation projects.
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6 Real-World Annotation Project on NetFlow Data

In this section, we deploy ILAB on a large unlabelled NetFlow dataset originating
from a production environment.

NetFlow. As stated in [5]: “NetFlow is a network protocol proposed and imple-
mented by Cisco [6] for summarizing network traffic as a collection of network
flows. A flow is defined as a unidirectional sequence of packets that share spe-
cific network properties (e.g. IP source/destination addresses, and TCP or UDP
source/destination ports).” Each flow is described by attributes and summary
statistics: source and destination IP addresses, source and destination ports,
protocol (TCP, UDP, ICMP, ESP, etc.), start and end time stamps, number of
bytes, number of packets, and aggregation of the TCP flags for TCP flows.

Table 2. NetFlow dataset

Num. flows 1.2 · 108

Num. IP addresses 463, 913
Num. features 134
Num. TRW alerts 70

Dataset and Features. The flows are recorded
at the border of a defended network. We
compute features describing each external IP
address communicating with the defended net-
work. from its flows during a given time win-
dow. We compute the mean and the variance
of the number of bytes and packets sent and
received at different levels: globally, for some
specific port numbers (80, 443, 53 and 25), and for some specific TCP flags aggre-
gates (....S, .A..S., .AP.SF, etc.). Besides, we compute other aggregated val-
ues: number of contacted IP addresses and ports, number of ports used, entropy
according to the contacted IP addresses and according to the contacted ports.
In the end, each external IP address is described by 134 features computed from
its list of flows.

The NetFlow data is recorded during a working day in 2016. The features
are computed for each external IP address with a 24-hour time window. The
NetFlow dataset is large: it is composed of 463,913 IP addresses represented by
134 real-valued features (see Table 2). A second dataset has been recorded the
following day for the validation of the resulting detection model. The results
are, however, not reported due to space constraints since the main focus is the
deployment of the labelling strategy in an annotation project.

ILAB Graphical User Interface. A security expert answers ILAB annotation
queries from the graphical user interface depicted in Fig. 5. The top buttons allow
the expert to select a type of annotation queries: Uncertain for the instances
near the decision boundary, Malicious and Benign for the annotation queries
generated by rare category detection. The panel below allows to go through the
annotation queries corresponding to each family.

By default, each instance is described only by its features which may be hard
to interpret, especially when they are in high dimension. A custom visualization
which may point to external tools or information can be displayed to ease the
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Fig. 5. ILAB graphical user interface for annotating

annotations. Figure 5 depicts the custom visualization we have implemented for
NetFlow data3.

Finally, the expert can annotate the selected instance with the Annotation
panel. For each label, it displays the list of the families already discovered. The
expert can pick a family among a list or add a new family. The interface sug-
gests a family for high likelihood queries and pre-selects it. It helps the expert
since the model is confident about these predictions. On the contrary, there is
no suggestion for the uncertainty sampling and the low likelihood queries. The
model is indeed uncertain about the family of these instances and unreliable
suggestions may mislead the expert [3].

ILAB in Practice. First, we need some labelled instances to initialize the active
learning process. The alerts raised by the Threshold Random Walk (TRW) [18]
module of Bro [24] provide the initial anomalous examples and the normal exam-
ples are drawn randomly. The initial labelled dataset is composed of 70 obvious
scans detected by TRW, and of 70 normal examples belonging to the Web, SMTP
and DNS families. Malicious activities in well-established connections cannot be
detected without the payload, which is not available in NetFlow data, that is
why we consider the families Web, SMTP and DNS to be normal. All the initial
labels are checked individually by the expert to avoid poisoning the model.

This initial labelled dataset is not representative of all the anomalous behav-
iours we want to detect. We run ILAB with the parameters B = 1000, b = 100

3 The IP addresses have been hidden for privacy reasons.
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and buncertain = 10 to acquire a representative labelled dataset. Across the iter-
ations, ILAB has discovered stealthier scans: ICMP scans, slow scans (only
one flow with a single defended IP address contacted on a single port), furtive
scans (a slow scan in parallel with a well-established connection). Besides, it
has detected TCP Syn flooding activities designed to exhaust the resources
of the defended network. Finally, ILAB has asked the expert to annotate IP
addresses with anomalous behaviours which are not malicious: misconfigurations
and backscatters.
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Fig. 6. ILAB execution time

Low Expert Waiting Time. ILAB divide and conquer approach allows the expert
to annotate some instances while the labelling strategy is still computing anno-
tation queries. First, the binary detection model is trained and the uncertainty
sampling queries are computed. The binary detection model is indeed required
to predict the label of the unlabelled instances to run rare category detection
afterwards. Then, rare category detection is performed on the malicious predic-
tions while the expert annotates the uncertain instances. Finally, rare category
detection is computed on the benign predictions while the expert annotates the
malicious annotation queries. The malicious predictions are analysed before the
benign ones, because their number is smaller, so the analysis is faster (see Fig. 6).

In practice, running rare category detection takes less time than the anno-
tations. As a result, the expert must only wait while the uncertain queries are
computed (see the orange curve Uncertainty Sampling in Fig. 6). During the
NetFlow annotation project the expert has waited less than 40 s at each itera-
tion. ILAB low computation cost ensures a good expert-model interaction: the
detection model is updated frequently with expert feedback without inducing
long waiting-periods.

Families Benefits. ILAB and Aladin deal with the sampling bias problem thanks
to rare category detection performed at the family level. At first glance, this solu-
tion may seem to increase the annotation cost as it requires experts to provide a
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more precise information than a binary label. However, asking experts to provide
a family does not increase the annotation cost in practice: experts place instances
in “mental bins” corresponding to families to provide a label [26]. Experts must
understand the type of the instance to provide a label, and, therefore, assigning
a family does not require an additional effort.

Besides, the clustering of the annotation queries according to families (see
Fig. 5) decreases the average annotation cost. Families provide a context that
helps the expert answer the queries. Annotation queries related to the same
family are likely to share the same label and family, and thus, it reduces the
amount of context switching during the annotation process. On the contrary,
uncertainty sampling and Görnitz et al. labelling strategy ask the expert to
annotate a list of unrelated instances without any context.

Finally, an alert raised by a supervised detection model can be hard to inter-
pret for the security expert. This issue called semantic gap by Sommer et al. [38]
is due to the binary output (Malicious or Benign) of the detection model. The
families acquired with ILAB can bridge the semantic gap by enriching the alerts
with a malicious family to help the expert supervising the detection system take
the necessary actions.

7 Conclusion

We introduce ILAB a novel interactive labelling strategy that streamlines anno-
tation projects. It relies on active learning and rare category detection to avoid
sampling bias. We demonstrate that ILAB offers a better scalability than two
state-of-the-art labelling strategies [14,40] without damaging the effectiveness.
Up to our knowledge, [14,40] had never been compared. We provide open source
implementations to foster comparison in future research works.

ILAB divide and conquer approach reduces the computation cost, and allows
the expert to annotate some instances while the labelling strategy is still comput-
ing annotation queries. Thus, ILAB provides a good expert-model interaction:
the detection model is updated frequently with expert feedback without inducing
long waiting-periods.

The NetFlow annotation project shows that ILAB is a workable labelling
strategy that can be applied to a large dataset originating from a production
environment. ILAB is a generic labelling strategy that can be applied to other
detection problems once the feature extraction task has been performed. It is
designed for security experts who deploy intrusion detection systems, and we pro-
vide an open source implementation of the graphical user interface to allow them
to label their own datasets. For future work, we plan to run broader experiments
with independent computer security experts to assess ILAB from an end-user’s
point of view and to improve its usability from their feedback.
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Abstract. In this paper, we propose a novel system, named
BridgeScope, for precise and scalable vetting of JavaScript Bridge secu-
rity issues in Android hybrid apps. BridgeScope is flexible and can be
leveraged to analyze a diverse set of WebView implementations, such as
Android’s default WebView, and Mozilla’s Rhino-based WebView. Fur-
thermore, BridgeScope can automatically generate test exploit code to
further confirm any discovered JavaScript Bridge vulnerability.

We evaluated BridgeScope to demonstrate that it is precise and effec-
tive in finding JavaScript Bridge vulnerabilities. On average, it can vet
an app within seven seconds with a low false positive rate. A large scale
evaluation identified hundreds of potentially vulnerable real-world pop-
ular apps that could lead to critical exploitation. Furthermore, we also
demonstrate that BridgeScope can discover malicious functionalities that
leverage JavaScript Bridge in real-world malicious apps, even when the
associated malicious severs were unavailable.

Keywords: Android security · WebView security · Javascript Bridge

1 Introduction

Android apps (i.e., hybrid apps) increasingly integrate the embedded web
browser component, “WebView”, to render web pages and run JavaScript code
within the app for seamless user experience. App developers can select from
a variety of WebView implementations, such as Android’s default WebView1,
Mozilla’s rhino-based WebView2, Intel’s XWalkView3, and Chromeview4.

The power of WebView extends beyond the basic browser-like functionality
by enabling rich interactions between web (e.g., JavaScript) and native (e.g.,
Java for Android) code within an app through a special interface known as
1 https://developer.android.com/reference/android/webkit/WebView.html.
2 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino.
3 https://crosswalk-project.org/.
4 https://github.com/pwnall/chromeview.
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a “JavaScript Bridge” [8,14,22,23,26,27,31,32]. The JavaScript Bridge feature
eases the development of hybrid apps. However, it also introduces critical security
risks, such as sensitive information leakage, and local resource access (Sect. 2.2).
Recent research work [8,14,22,23] has highlighted the problems rooted in the use
of JavaScript Bridge. However, an automated and fine-grained solution that can
precisely and scalably detect JavaScript Bridge security issues is still missing.

In this paper, we present a precise and scalable static detection framework
named “BridgeScope”. BridgeScope can automatically vet JavaScript Bridge
usage in Android hybrid apps, and generate test exploit code to validate prob-
lematic JavaScript Bridge usage. Our approach is four-fold. First, BridgeScope
fills the semantic gap between different core WebView implementations using a
generalized WebView model. Second, using the generalized code, BridgeScope is
able to precisely discover all available WebView components and bridges in an
app. Third, BridgeScope reconstructs the semantic information of all JavaScript
Bridges and identifies the sensitive bridges that contain data flows to sensitive
API invocations (such as getLastLoction()). Finally, BridgeScope generates test
exploit code using the analysis results (such as the UI event sequences to trigger
WebView components and data flow inside sensitive bridges).

To achieve high precision and scalability, BridgeScope applies fine-grained
type, taint, and value analysis, which is implemented based using a novel “shad-
owbox” data structure. We refer to our analysis technique as “shadowbox analy-
sis”. Compared with state-of-the-art static approaches such as data flow tracking
[4,33], shadowbox analysis is path- and value-sensitive, while preserving preci-
sion and scalability. We evaluated our shadowbox analysis technique using a
generic benchmark (DroidBench5), and found that it achieved 94% precision.

Finally, we evaluated BridgeScope with 13,000 of the most popular free
Android apps, gathered from Google Play across 26 categories. BridgeScope
found a total of 913 potentially vulnerable apps that may enable various types
of attacks such as stealing sensitive information, gaining privileged access by
bypassing security checks (such as Same Origin Policy6 in the web context),
and other serious attacks that may result in monetary loss to device users.
Furthermore, our evaluation on real-world malware apps also demonstrated
that BridgeScope could identify malicious functionalities hidden in sensitive
JavaScript Bridges, even when the associated malicious servers were unavailable.

In summary, we highlight our key contributions:

– We conduct a systematic study on how WebView and JavaScript Bridge are
used by both benign apps and malware with diverse WebView implementa-
tions.

– We design a precise and scalable static detection system to automatically
detect vulnerabilities caused by JavaScript Bridge.

– We evaluate our detection system BridgeScope with real-world popular apps
and find 913 potentially vulnerable apps that could be exploited by attackers.
On average, our system can vet an app within 7 s with a low false positive
rate.

5 https://github.com/secure-software-engineering/DroidBench.
6 https://en.wikipedia.org/wiki/Same-origin policy.

https://github.com/secure-software-engineering/DroidBench
https://en.wikipedia.org/wiki/Same-origin_policy


Precisely and Scalably Vetting JavaScript Bridge in Android Hybrid Apps 145

2 Problem Statement

2.1 Background: WebView and JavaScript Bridge

To understand the fundamental components of WebView, irrespective of any
specific implementation, we devise a model, shown in Fig. 1, based on Android’s
default WebView which we find to be representative of most key properties that
are important for our JavaScript Bridge analysis.

Hybrid Mobile Application

Sensitive 
Info.

M

m1

.

.

mn

Jm

WebView Instance W

Configuration Settings

E
vent H

andlers

Native Mobile Code

Web Code

Jw

Fig. 1. Major modules in Android default WebView. In the example, Bridge Jm enables
interaction between web code Jw and native code M .

JavaScript Bridge. The bridge Jm, shown in Fig. 1, allows interactions between
the embedded web content Jw and the mobile native code implemented in M
(the Bridge Object). Through its access to M , the web code in Jw inherits access
to the local resources and sensitive information in the mobile framework.

To enable bridges in WebView, all bridges must be registered by the API add-
JavascriptInterface(BridgeObject, BridgeName) in advance, where BridgeObject
is a native object (i.e., an instance of a Java class such as M in Fig. 1) that is
being imported into the WebView instance W , and BridgeName is the object’s
reference name that can be used to directly access BridgeObject in the web
context through Jw.

Annotation. In Android 4.2+, an annotation mechanism is introduced to
restrict bridge access. In BridgeObject, only the methods that are explicitly
annotated by ‘@JavaScriptInterface’ can be invoked by JavaScript code.

Configuration Settings. Developers can configure a WebView component
through its setting property. For instance, developers can enable/disable
JavaScript in WebView. JavaScript is generally disabled by default requiring
explicit activation by developers.

Event Handler. This mechanism allows developers to handle different events
after WebView runs, which can be further utilized to provide additional secu-
rity checks. For instance, the two event handlers shouldOverrideUrlLoading()
and shouldInterceptRequest(), which are designed to handle URL and resources
loading events, can be further used to restrict new web content loaded in Web-
View.
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Same Origin Policy (SOP). In WebView, SOP is enabled to enforce access
control on local data in the web layer between mutually distrusting parties.
However, SOP is not extended to resources in the native layer, such as users’
contact list.

2.2 Security Issues Caused by JavaScript Bridge and Their Impacts

To illustrate the general problem with JavaScript Bridges, consider an Android
app that exposes several methods {m1...mn} ∈ M through a bridge Jm in an
embedded WebView W , as shown in Fig. 1. Consider that m1 provides privileged
access to sensitive APIs and/or functionality in the mobile framework. The web
platform dictates that any code Jw that executes in the context of the embedded
WebView W will also have access to the exposed interface Jm since Jm ∈ Jw.
In other words, all JavaScript code Jw executed in the context of the WebView,
even in embedded iFrames, can invoke all methods exposed by the app in M .

We consider two general approaches attackers may use to exploit JavaScript
Bridge’s:

– Direct Access To Sensitive APIs: Attackers who can inject code into W can
then directly invoke sensitive functionality exposed through Jm. Attackers
can also combine the use of multiple methods in M for more stealthy attacks
that may use one method to read data, and another method to write data to
a remote server. This is a variant of the classic confused deputy access control
problem [16]. In this scenario, the WebView W , as the deputy, will diligently
allow access to both exposed methods m1 and m2, allowing an attacker to
first invoke the request for sensitive information through m1, and then append
the returned data to another request to the communication-enabled exposed
interface m2. Additionally, even if M does not include a method such as m2,
if the app has INTERNET permissions, then data from m1 can still be leaked
by Jw through a JavaScript HTTP method.

– Cross-Origin DOM Manipulation: A more interesting attack scenario emerges
when mn exposes an API that allows manipulation of the DOM in W , such
as using loadURL() or loadDataWithBaseURL(). As a result, an embedded
iFrame in W can inject cross origin JavaScript code to effectively circumvent
the same origin policy (SOP) and execute cross-site-scripting-like attacks in
W ’s web origin. This is a violation of the same origin policy assumption, and
can result in client-side XSS attacks using JavaScript Bridges. The root cause
here is that the origin information is lost when JavaScript causes content to
be loaded via a Bridge Object.

2.3 Sensitive APIs

We consider three type of ‘sensitive’ system APIs, which we categorize as source
(i.e., reading data from Android), sink (i.e., sending data out of mobile devices),
and danger (i.e., dangerous operations) APIs. Specifically, we define “source
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API” and “sink API” using a comprehensive categorization developed in a pre-
vious work [25]. Additionally, we treat any API that can access local hardware
(such as camera), and cause charges on the user’s device (e.g. SMS, phone calls),
as a “danger API”.

2.4 Threat Model

We focus on hybrid apps that enable JavaScript and JavaScript Bridge. We
assume that the code written in C/C++ and implicit data flow inside apps have
minimal influence for our analysis. Generally, we consider attack scenarios in the
context of benign and malicious apps:
Benign Apps. In this scenario, we assume that HTML/Javascript code loaded
in WebView of benign apps is untrusted. We also assume that web attackers
cannot directly access the native context, but can inject malicious HTML/-
JavaScript code to WebView through code injection attacks. We consider two
ways for attackers to launch such attacks. Attackers can either compromise third-
party websites, or inject/hijack network traffic (e.g., MITM attack) [3], such as
the HTTP communication within WebView or third party Java libraries (e.g.,
ad libs [26]).

A much stronger assumption is that attackers may also hijack HTTPS traffic.
Although this type of attack is difficult, it is still feasible, particularly considering
how poorly/insecurely HTTPS is implemented/used in mobile apps [11,13].
Malicious Apps. We assume that an attacker writes a malicious app using
WebView and JavaScript Bridge, and submits it to app marketplaces, such as
Android official market ‘Google Play’. To evade security vetting systems in app
marketplaces, such as Google Bouncer7, the app is designed in such a way that (1)
WebView loads a remote web page, whose content is controlled by the attacker;
(2) the malware’s sensitive behaviors are conducted in JavaScript Bridge, while
its command & control (CC) logic is implemented by JavaScript code in Web-
View; (3) initially, the CC code is not injected into the loaded web page, and
it only becomes available at a specific time, such as after the app bypasses the
security checks and is published.

3 Shadowbox Analysis

In this section, we present details about our shadowbox analysis technique. First,
we highlight the advantages of our approach, compared with other state-of-the-
art approaches. Then, we present definitions and concepts related to shadowbox.
We also discuss more details about type, taint and value analysis respectively.
Finally, we show how to apply shadowbox analysis to solve different challenges,
such as the problem caused by common data structures.

7 http://googlemobile.blogspot.com/2012/02/android-and-security.html.

http://googlemobile.blogspot.com/2012/02/android-and-security.html
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3.1 Challenges

Type, taint, and value/string analysis are frequently used program analysis tech-
niques [4,7,15,33]. However, the state-of-the-art approaches fall short of (1) pre-
cisely handling common data structures, such as list, hashmap, Android Bundle8,
Parcel9, etc.; (2) maintaining path- and value-sensitivity while also remaining
precise and scalable. These shortcomings may cause false negatives and false
positives in analysis results.
Path- And Value-Sensitivity. To achieve high precision, it is critical to main-
tain path- and value-sensitivity. However, state-of-the-art work (such as Flow-
droid [4] and Amandroid [33]) do not thoroughly maintain these properties. For
instance, Listing 1.1 shows a snippet of a test case (from DroidBench) designed
to test false positives of alias analysis. In this test case, sensitive information
saved in ‘deviceId’ is transferred to a field of an instance of the class ‘A’ (Line
14), and then a sink API is called (Line 15), which merely sends out a constant
string rather than the sensitive information. However, existing approaches, such
as Flowdroid [4] and Amandroid [33], erroneously find a path from source to
sink in this scenario due to path-insensitivity.
1 c l a s s A{ pub l i c S t r ing b =”Y” ;}
2 c l a s s B{ pub l i c A a t t r ;}
3 . . .
4 A b , q , y ; B a , p , x ;
5 a = new B( ) ; p = new B( ) ;
6 b = new A() ; q = new A() ;
7 i f (Math . random ( ) < 0 . 5 ) {x = a ; y = b ;}
8 e l s e {x = p ; y = q ;}
9 x . a t t r = y ;

10 q . b = dev i c e Id ; // source
11 sms . sendTextMessage ( ”+49 1234” , nu l l , a . a t t r . b , nu l l , nu l l ) ; // sink

Listing 1.1. A snippet of a test case for alias analysis in DroidBench

Common Data Structures. When a common data structure (e.g., list, hash
map) is temporarily used to store tainted data (e.g., sensitive information), it
may raise challenges to precisely track the sensitive data flow inside these data
structures, since the position of taint data is difficult to determine. Most existing
work (e.g., [4]) simply overtaints the entire data structure, which inevitably
introduced false positives. Consider, for example, an array where only a single
entry should be tainted (code shown in Listing 1.2). When line 4 is executed, only
array[1] should be tainted. If, instead, the entire array is tainted, false positives
are inevitably caused.
1 ArrayList<Str ing> array = new ArrayList<Str ing >() ;
2 St r ing s = source ( ) ;
3 array . add ( s ) ; // array : [ souce ]
4 array . add (0 , ” element0 ” ) ; // array : [" element0 ", source () ]

Listing 1.2. An Example abstracted from real apps

BridgeScope solves this problem by performing fine-grained type, taint and
value analysis using a ‘shadowbox ’ data structure as discussed in the following
sections.
8 https://developer.android.com/reference/android/os/Bundle.html.
9 https://developer.android.com/reference/android/os/Parcel.html.

https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/os/Parcel.html
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3.2 Concepts Related to Shadowbox

We define a shadowbox as the representation of an object (e.g. WebView). Gen-
erally, only tainted ‘primitive variables’ (e.g., integers), whose data type is prim-
itive, and all ‘non-primitive variables’ (e.g., string and array) are boxed. The
relevant concepts are defined as follows: (note that v and s represent a variable
and a shadowbox, respectively)

– A variable v’s representation 〈scopev, namev〉: Generally, scopev is the
full name of a function (for local variables), an object (for regular fields), or
a class name (for static fields), while namev is v’s name, which is usually a
register name.
Furthermore, to support inter-component communication (ICC) [33], the
global but temporary representation <global, intent> is created to rep-
resent an intent message. To record a function f ’s return value, the represen-
tation <f, return> is used.

– Points-to relationship: If a variable v points to an object o, whose shadow-
box is s, v and o have points-to relationship, which is represented by v → s.

– Alias relationship: If two variables v1 and v2, and their shadowboxes s1 and
s2 stasify the following statement: v1 → s1 ∧ v2 → s2 ∧ ID10(s1) = ID(s2),
v1 and v2 are alias. Such relationship is represented by v1 = v2.10

– Shadowbox dependency graph (SDG): A collection of points-to rela-
tionships: {(v, s)∗ | v → s}. For convenience, we use SDG(v), SDGv, or
SDG(〈scopev, namev〉) to represent the shadowbox pointed by v.

– Fields information in shadowbox (FDG): This is a variant of SDG:
{(v, s)∗ | v → s ∧ v ∈ ‘non-static fields ins′}. Since FDG is always bound
with a shadowbox s, we use FDGs to indicate such relationship.

3.3 Type and Taint Analysis

Driven by the shadowbox concept, we define the analysis rules that implement
type and taint analysis (Table 1). The analysis rules work directly on Dalvik
opcode11. We use lower case letters to represent variables, with the exception of
e and f , which represent fields and functions, respectively. We use upper case
letters for classes or data types. In the rules, operations on array are solved with
the help of value analysis, as shown in Sect. 3.5.

3.4 Value and String Analysis

Given a target variable v and its instruction i, v’s value is calculated by per-
forming backward programming analysis along the analyzed path to update its
“expression tree”. The expression tree is subtly different with the regular binary
expression tree [1]. The expression tree’s leaf nodes correspond to system APIs
(e.g., getDeviceId()), constants, JavaScript Bridge function input, and variables
10 ID stands for the shadowbox’s memory location in our static analysis.
11 https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html.

https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
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Table 1. Analysis rules

v1 = v2 op v3 ⇒ SDG(v1)taint = SDG(v2)taint | SDG(v3)taint

v = new C ⇒ s = a new shadowbox; sdata type = C; v → s
v1 = v2 ⇒ v1 → SDG(v2)
v ∈ C ⇒ SDG(v)data type = SDG(v)data type ∧ C
function f(...){...; return r; } ⇒ 〈f, return〉 → SDG(r)

for v ∈ SDGvertexes, delete v if v.scope == f
r = f(p0, p1, ...) ⇒ 〈f, return〉 → null
function f(p′

0, p
′
1, ...) {...} 〈f, p′

0〉 → SDG(p0); 〈f, p′
1〉 → SDG(p1); ...;

r → SDG(〈f, return〉)
v = o.e ⇒ SDGv → FDGSDG(o)(e)
v = C.e ⇒ SDG(v) → 〈C, e〉
o.e = v ⇒ FDGSDG(o)(e) → SDGv
C.e = v ⇒ 〈C, e〉 → SDG(v)
a[i] = v ⇒ Section 3.5
v = a[i] ⇒ Section 3.5

whose values is to be calculated (i.e., variable leaf ), and the internal nodes cor-
respond to functions (e.g., string.replace()) and operators. Initially, the root
node of the expression tree is v. Starting from i, all variable leaves in the expres-
sion tree are kept being updated. If it is found that a variable v1 is dependent
on another variable v2 or an expression e1, v1’s leaf node is replaced by v2 or
e1. The analysis is continued till there are no variable leaves. To handle string
operations, the associated functions are modelled. For example, the function
StringBuilder.append() itself is treated as an internal node, and its function
parameters are added as its children nodes.

Then, the target variable’ value can be retrieved by resolving the expression
tree. For this purpose, the expression tree is first converted to a regular expression
using in-order traversal. During the conversion, functions in internal nodes are
converted to proper operators. For example, StringBuilder.append() is replaced
by +, and linked with the function’s parameters (i.e., the children nodes). Then,
we apply a lightweight solver to compute the expression’s value, which is built
on top of the Python function ‘eval()’.

3.5 Application of Shadowbox Analysis

Path-Sensitivity. We use the code shown in Listing 1.1 as the illustrative exam-
ple. Before utilizing shadowbox analysis on the test case, SDG is first created by
initializing shadowboxes of ‘this’ and the corresponding function’s parameters
with their associated data types. Then, the analysis is applied on each instruction
based on the rules defined in Sect. 3.3. When a conditional statement c (Line 8)
is encountered, the depth-first strategy is used and each path is analyzed sequen-
tially. To keep the independence of each path, SDG is cloned and saved so that
when a path is done, SDG is quickly restored for another path. Finally, when the
sink API ‘sendTextMessage()’ is encountered, the third parameter’s shadow-
box is read from SDG and checked to determine whether the parameter contains
sensitive information.
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Fig. 2. SDG’s partial content when sending text message, where cycles with dashed
line are variable representations, and boxes with solid line represent corresponding
shadowboxes. (Color figure online)

SDG’s content (when the branch statement is true) is partially shown in
Fig. 2.12 By checking the shadowbox referenced by ‘a.attr.b’ (the box with red
line), we can learn that the third parameter is not tainted.
HashMap and Linear Data Structures. The propagation problem caused
by common data structures is due to their lack of regular field information,
which makes it difficult to locate target variables. To mitigate this problem, we
model common data structures using ‘shadowbox’, and augment common data
structures by adding explicit fields to them that enable us to apply our analysis
rules and handle them similar to regular data structures.

We use keys in a hashmap as the explicit fields, since keys are always
unique. We leverage value analysis to retrieve the keys’ values, which are then
treated as fields. Thus the instructions ‘value = H.get(key)’ and ‘H.get(key)
= value’ can be converted to assignment statements ‘value = FDGH(key)’ and
‘FDGH(key) = value’, where H is an instance of hashmap.

We select the element position in linear data structures (such as list, array,
Android Parcel, etc.) as the explicit fields. Thus the instructions ‘value =
array[index]’ and ‘array[index] = value’ can be converted to assignment
statements ‘value = FDGarray(index)’ and ‘FDGarray(index) = value’.

Most cases can be handled using the above intuition by computing index’s
value in advance (Sect. 3.4), and converting it to a regular field. However, since
an operation’s index value is changeable, such as injecting a new element in the
middle of a list, or merging two lists, we maintain the data structures’ internal
state (which is represented by FDG) during updates. For example, consider if an
element e is inserted into a list L at the position i through the API ‘L.add(i, e)’.
FDGL can be updated to

FDG′
L ={(v, FDGL(v)) | v ∈ FDGL.fields ∧ v < i}

∪ {(i, e) | i → e}
∪ {(v + 1, FDGL(v)) | v ∈ FDGL.fields ∧ v >= i}.

Similarly, operations in Android Bundle and Parcel are also supported.

12 Since most variable scopes are the same, scope information in variable representa-
tions is hidden to make SDG more concise.
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4 BridgeScope

In this section, we present the design and implementation details of BridgeScope,
and we explore the major challenges we encountered in detecting JavaScript
Bridge problems and how BridgeScope intuitively solves these challenges.

4.1 Challenges and Solutions

Semantic gap between web and native code. This adds complexity to the
analysis, especially when the suspicious command and control web code is not
available, which is true for most cases.

To solve the problem, we assume that the code O loaded in WebView is
omnipotent , which means O has the capability to do anything through the
JavaScript Bridge. Under this assumption, it is only necessary to focus on the
analysis of JavaScript Bridge, which lowers the complexity and scope of our
analysis.

However, actual code R loaded in WebView has the following relationship
with O: R ⊂ O, which means our initial assumption introduces false positives
to our analysis, as it may be not feasible for attackers to launch code injec-
tion attacks in some cases. For instance, if a benign app’s communications with
remote servers are always properly protected, then even when there is a sensitive
bridge found in the app, it is still hard to exploit.

To reduce false positives, we consider the complexity for attackers to launch
attacks (i.e., attack complexity). We discuss more details in Sect. 5.

Semantic gap between different WebView implementations. As
discussed in Sect. 2.1, there are multiple WebView implementations in
the Android platform. The major challenge is to eliminate the seman-
tic gap between different implementations to enable a generic analysis.
For example, the default Android WebView uses addJavascriptInterface
(BridgeObject,BridgeName) to enable a JavaScript Bridge, while rhino-based
WebView uses putProperty(scope, BridgeName, BridgeObject). Similarly,
the default WebView in Android 4.2 and above requires the annotation
‘@JavascriptInterface’, while the default WebView in older Android versions and
Rhino does not use any annotation feature.

Rather than specifically hard-coding and addressing each different implemen-
tation and their syntax differences, we observe that all implementations have key
common elements that follow the model shown in Sect. 2.1. Armed with that
observation, we address this challenge by translating different implementations
to an intermediate representation. This gives us an abstraction that lowers the
semantic gap and eliminates the diversity to allow analysis that is agnostic of
the specific implementation.

Difficulty in identifying all JavaScript Bridges. A quick but naive solution
to identify Android’s default WebView in 4.2 and above, as well as Crosswalk and
Chromeview, is to directly search for annotations. However, this approach may



Precisely and Scalably Vetting JavaScript Bridge in Android Hybrid Apps 153

introduce false negatives because it is not generic, different WebView imple-
mentations do not use the same annotation syntax, and annotated functions
may only be known at runtime. While our generic WebView model supports
the annotation mechanism, it is still not possible to apply a simple search app-
roach. Specifically, due to the well-known program analysis points-to problem
[30], BridgeObject cannot be easily identified, meaning that functions which
are annotated are only identifiable at runtime. Additionally, it is error-prone
due to annotation inheritance.

To address this challenge, we leverage a shadowbox dependency graph (see
Sect. 3), which we use to first identify all possible WebView implementations, and
further identify JavaScript Bridges for each WebView according to the semantics
of WebView.

During analysis, a key consideration is to maintain the status of variables,
especially WebView, so that critical information can be quickly extracted, such
as the pair 〈BridgeObject, BridgeName〉. Then, all JavaScript Bridges can be
extracted using the ‘shadowbox’ data structure and its dependency graph (see
Sect. 3).

Unknown semantics of functions in JavaScript Bridge. Generally, the
native end of the JavaScript Bridge is a black box, since its source code is not
always readily available. It is challenging to reconstruct the semantics of each
function in a bridge (i.e., bridge function), but it is a critical step in undersanding
the functionality to decide which bridge is sensitive. To solve the problem, we use
fine-grained data flow analysis on all functions of JavaScript Bridges by tracking
their parameters and system sensitive information.

Unknown input format of JavaScript Bridge. Even when a sensitive bridge
is found, it is still challenging to validate it since appropriately formatted input
data is required. We mitigate the problem by applying several heuristics infor-
mation gathered from our analysis results, such as the data flow information,
key API semantic, etc.

4.2 System Overview

As shown in Fig. 3, our static analysis approach BridgeScope consists of four
main components: WebView abstraction, WebView and bridge discovery, bridge
analysis, and log analysis. Given an app, the WebView abstraction module firstly
disassembles it to the Dalvik bytecode13 and then abstracts all WebView imple-
mentations in the app by translating the different implementations of WebView
to an ‘intermediate representation’.

Next, starting from entry points of activities [4,21], type and value/string
analysis based on shadowbox is performed to extract control flow graph (CFG),
where type analysis is critical to resolve virtual function calls and solve points-to
problem, and value/string analysis is useful to resolve Java reflection. Compared
with existing approaches to generate CFG, our approach is fine-grained and
complete.

13 https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html.

https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
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Fig. 3. Overview of BridgeScope

In addition, during the process, value/string analysis is also run specif-
ically for two situations: (1) when JavaScript is enabled or disabled in
WebView, the key parameter’s value is computed; (2) When the pair
‘〈BridgeObject, BridgeName〉’ is configured, BridgeName’s value is also
computed.

Then, all methods in BridgeObject are further analyzed by means of data
flow analysis to identify sensitive bridges. Finally, the log analysis module collects
all analysis results from other modules and further generates heuristic informa-
tion for the test attack code generation purpose.

4.3 WebView Abstraction

This module fills the semantic gap between different WebViews, which is done by
translating different implementations of WebView into a generic ‘intermediate
representation’. We devise an ‘intermediate representation’ scheme, including
common APIs (Table 2), and a generalized annotation mechanism.

Table 2. Generic WebView common APIs

API Description

add bridge(BridgeObject, BridgeName) Add JavaScript Bridge to WebView

enable js(boolean) Enable/disable JavaScript

set event handler(event handler) Register event handler

load(URL / local file / JavaScript code) Run WebView

To support the annotation mechanism, which identifies Bridge Objects, we
define the common annotation ‘@JavaScriptBridge’ and apply it to all WebView
instances, overwriting any specific annotation implementation such as in Android
WebView in 4.2+ and Crosswalk.

We generalize WebView using shadowbox, whose structure is shown in
Table 3. Generally, WebView contains three types of fields: (1) JsFlag, which
indicates whether JavaScript is enabled; (2) Event Handler, which is used to
react to different events (e.g., URL redirection, errors in web pages); (3) and
JavaScript Bridge, which is a handle to a Bridge Object between the native and
web context.
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Table 3. The generic model representation of WebView (a) and JavaScript Bridge (b).
Note that we use the special symbol ‘¡’ to indicate that when the associated field is
initialized or changed, it should be computed by value/string analysis immediately.

(a)
DataType Fields
WebView JsFlag (¡) EventHandler Bridge#0 Bridge#1..

(b)
DataType Fields

Bridge BridgeObject BridgeName(¡)

4.4 WebView and Bridge Discovery

The goal of this module is to discover all WebView components and bridges.
We apply type and value/string analysis based on shadowbox on the generalized
WebView code (Sect. 4.3). This allows us to generate a complete control flow
graph (CFG), and enables discovery of most WebViews and JavaScript Bridges
within an app.

The analysis starts from entry points of Android Activities, since a WebView
is almost always launched within an Activity. Even if a WebView is standalone
or independent (such as Xbot [24]), we can still identify it after obtaining the
CFG of the target app.

During analysis, data types of key variables, such as BridgeObject, are also
for the further analysis (Sect. 4.5). Additionally, values of key variables, such as
JsF lag and BridgeName (Sect. 4.3), are computed on demand with the help
of value and string analysis. JsF lag can be used to filter out WebViews whose
JavaScript is disabled (i.e., JsF lag is false), while BridgeName is helpful in
attack code generation.

4.5 Bridge Analysis

The goal of the module is to identify sensitive bridges from all bridges in
BridgeObject. To achieve the goal, it is critical to reconstruct the semantics and
learn the functionality of all exposed functions in BridgeObject (i.e., bridge func-
tion), which are annotated with ‘@JavaScriptBridge’ (Sect. 4.3). In BridgeScope,
we apply taint analysis (Sect. 3) based on shadowbox on each function by track-
ing data flow of function parameters (TP ) and system sensitive information
(TS). To distinguish these two types of information, we define different taint
value ranges: [TPmin, TPmax], and [TSmin, TSmax]. Initially, parameters of a
bridge function are tainted from left to right sequentially. Specifically, the nth
parameter is assigned with the taint value TPmin ∗ 2n. During analysis, if a sen-
sitive native API (Sect. 2.3) is invoked, we take a snapshot of their parameters’
states (e.g., the associated shadowboxes), which will be analyzed further.

Finally, a bridge function’s semantic information is reconstructed based on
its data flow analysis result. A bridge function will be flagged as sensitive if:
(1) its return is tainted by the value t while t ∈ [TSmin, TSmax], (2) or a sink
API s() is called while s()’s parameters are tainted, (3) or a danger API is
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invoked. Based on the above three scenarios, we categorize all bridge functions
into SourceBridge , SinkBridge , and DangerBridge , correlating to the API
categorization as defined in Sect. 2.3.

As a result, an app can be flagged as potentially vulnerable, if a sensitive
bridge function f is found by BridgeScope. We use the following reasoning: (1)
if f ∈ SourceBridge, it means that sensitive information can be obtained in
the web context. Then, an attacker can send out sensitive information through
network related APIs in the web context (like XMLHttpRequest()) or a sink
JavaScript Bridge if it exists; (2) if f ∈ SinkBridge, security checks in event
handlers in WebView, such as shouldOverrideUrlLoading(), can be evaded; (3)
if f ∈ DangerBridge, a danger API can be accessed through f .

4.6 Log Analysis and Exploit Code Generation

BridgeScope collects a rich set of heuristics information for the app under analy-
sis as it executes each module (Table 4). This information is useful to further
analyze flagged sensitive bridges and to generate test attack code. Furthermore,
inspired by SMV-Hunter [29], we retrieve required UI events for triggering tar-
get WebViews by analyzing the result of the ‘WebView and bridge discovery’
module.

Table 4. Collected Information

Purpose Collected information Which module

Triggering WebView UI Events WebView & Bridge Discovery

Generating test code Domains associated with WebView

〈BridgeObject, BridgeName〉
Semantics of bridge functions Bridge Analysis

SourceBridge,SinkBridge,DangerBridge

Algorithm 1 outlines our approach that leverages the above collected informa-
tion to generate test code to verify discovered vulnerabilities. In the algorithm, a
function create input() is assumed to generate appropriate inputs for each bridge
function. We implement it as a smart fuzzer using the following heuristics:

– Data Types: Based on data type information of parameters of bridge func-
tions, which is gathered from type analysis, we can generate random but valid
inputs [29].

– Bridge Function Name: The bridge function name itself also provides an
important clue. For example, if a BridgeScope’s name is downloadImage()
and the input is of type String, then input is likely a URI of a picture file.
In our fuzzer, we handle several keywords, such as “url”, “email”, “picture”,
“camera”, “audio”, “video”, “SMS”, “call” to provide typical input values.
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Algorithm 1. Test Code Generation
1: function generate test code
2: for f in SourceBridge do
3: input ← create input(f);
4: fname ← replace bridgeobject with bridgename(P, f);
5: add test code(X, “var r = fname(input)”) � append the JavaScript code to the result

X
6: for d in Domains do � bypass security check in event handler
7: add test code(X, “XMLHttpRequest(http://d/r)”)
8: end for
9: for f ′ in SinkBridge do
10: input′ ← create input(f ′,“r”);
11: fname′ ← replace bridgeobject with bridgename(P, f ′);
12: add test code(X, “fname′(input′)”)
13: end for
14: end for
15: for f in SinkBridge ∪ DangerBridge do
16: input ← create input(f);
17: fname ← replace bridgeobject with bridgename(P, f);
18: add test code(X, “fname(input)”)
19: end for
20: return X
21: end function

– Semantics of bridge functions and key native APIs: We can also build input
by utilizing the semantic information. For instance, assume there is a path in
CFG from a bridge function to a sensitive API: f(p0 : string, p1 : string) �
sendTextMessage(v0, null, v2, null, null), where v0 and v2’s taint values are
TPmin ∗ 2 and TPmin ∗ 4, respectively. The data flow in the bridge function
includes p0 � v0 and p1 � v2. Since in sendTextMessage(), v0 is the desti-
nation address, and v2 is the message content to be sent, p0 and p1 are likely
a phone number and message content. Therefore, the following input can be
used to test the sensitive bridge function: f("0123456789", "test").

5 Evaluation of BridgeScope

In this section, we present our evaluation of BridgeScope. First, we measure the
performance of the programming analysis techniques by leveraging the generic
benchmark DroidBench. Then, we evaluate BridgeScope’s efficacy, precision, and
overhead using 13,000 popular apps, and present our findings. Finally, we present
some interesting case studies to illustrate the JavaScript Bridge vulnerability.

5.1 Performance of Shadowbox Analysis

We evaluate the precision of shadowbox analysis using the generic benchmark
DroidBench 2.0. Our test results (Table 5) show BridgeScope’s overall precision
is 94%, compared to 80% and 91% for Flowdroid [4] and Amandroid [33], respec-
tively, and BridgeScope’s recall and F-score are also better than the others. Our
use of shadowbox analysis benefits from its path- and value-sensitivity, and it is
fine-grained, especially in handling common data structures.
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Table 5. Testing Result on DroidBench. × represents suspicious data flows not
detected, and © represents benign data flows flagged as suspicious. The number in
{} represents the number of errors.

DroidBench BridgeScope Flowdroid Amandroid

Aliasing © ©
Android specific ×× ×× × × ×
Arrays and lists © © ©© © © © © ×
Callbacks ×× © © × © © © © × × ××
Emulator detection ×× ×× ××
Field/Object Sensitivity

General java © © ×× ©{4} × × × × © × ×
Implicit flows – – –

Interapp communication © © ©
ICC × × ×× ©{16} × × × × © × × × ××
Lifecycle ©× © × × × × ××
Reflection × × ×
Threading × × ×{5}
Totally Found Paths f 100 127 101

Precision p = f/(f + ©) 94% 80% 90%

Recall r = ©/(©/ + ×) 83% 82% 75%

F-score 2 ∗ p ∗ r/(p + r) 0.89 0.81 0.82

5.2 Performance of BridgeScope

Dataset. We use 13,000 apps that were collected from the Google Play app
market. We crawled these apps from 26 categories, and extracted the top 500
most popular free apps for each category.

Scalability. We implemented BridgeScope in 8,157 lines of Python code on the
top of the disassembly tool Apktool14. We deployed our tool on a university
server, which is allocated with 20 CPU cores and 100 GB of memory. Due to
Python’s poor support for multiple threads, we run single process and single
thread for the analysis (i.e., starting 20 processes for 20 apps each time). Finally,
with the boost of the JIT (Just-in-Time) based Python interpreter (such as
pypy15), the average analysis time of each process is 141 s. Thus, the average
analysis time for each app is around 7 s. This suggests that BridgeScope is indeed
capable of scaling to the level of real-worlds app markets to provide vulnerability
detection services.

Precision. Among 13,000 apps, we find that 11,913 apps have at least one Web-
View component and 8,146 apps declare at least one JavaScript Bridge interface.
14 https://ibotpeaches.github.io/Apktool/.
15 https://pypy.org/.

https://ibotpeaches.github.io/Apktool/
https://pypy.org/


Precisely and Scalably Vetting JavaScript Bridge in Android Hybrid Apps 159

In total, 913 apps were flagged as potentially vulnerable apps by BridgeScope,
while a total of 1,530 sensitive bridge functions were found, including 56 bridge
functions which could suffer from SOP Violation Attacks (Sect. 2.2).

Measuring false positives and negatives. A false positive occurs when an
app is flagged as potentially vulnerable by BridgeScope, but has no vulnerability.
A false negative occurs when an app is flagged as non-vulnerable by BridgeScope,
but includes a JavaScript Bridge vulnerability.

Since it is hard to directly collect ground truth for the dataset, manual ver-
ification may be necessary, which is a difficult and tedious job for such a large
dataset. To reduce the workload, we first design a dynamic verification mod-
ule to automatically validate the potentially vulnerable apps (thus we do not
need to manually validate all data) when analyzing false positives. Additionally,
we manually analyzed a small set of 20 randomly chosen apps from those not
marked as potentially vulnerable, which we used as the basis of measuring the
false negative rate.

Fig. 4. Overview of the dynamic verification module

As shown in Fig. 4, our dynamic verification module is built around an instru-
mented Android Emulator, where all executed functions of apps under test are
outputted, sensitive information is modified to special values, and native sink
APIs parameters (e.g., WebView.load) are also outputted. In the module, UI
Event Trigger [29] is used to input UI required event sequentially to trigger tar-
get WebViews, while Network Proxy is used to launch MITM attacks to inject
attack code, which is generated using the example algorithm mentioned earlier
(Algorithm 1).

In our evaluation we also hijack all network traffic, including HTTPS, so
that we can further analyze the complexity faced by attackers who launch code
injection attacks (i.e., Attack Complexity Analysis). We mainly consider three
scenarios: (1) HTTP : the remote server is connected over HTTP; (2) first-party
HTTPS : the remote server belonging to developers is connected over HTTPS;
(3) third-party HTTPS : others. In Attack Complexity Analysis, we use the URL
loaded by the WebView as input, and initiate a crawler to check all accessible
URLs, similar to the approach in [14].

Finally, we check whether a potential vulnerability is successfully exploited
by analyzing logs from the Android Emulator and proxy (i.e., Log Analysis).
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If a bridge function f satisfies: (1) f ∈ SourceBridge, it can be verified by
checking executed functions, sink APIs parameters and proxys traffic. (2) f ∈
SinkBridge∪DangerBridge, it can be verified by checking executed functions.

False Positives. By means of the dynamic verification module, we found that
617 potentially vulnerable apps flagged by BridgeScope are successfully exploited
(i.e., they are surely not false positives). This reduces our manual verification job
to only 296 non-verified potentially vulnerable apps. We then randomly selected
20 apps and manually analyzed them. We found most of them still contain
vulnerable bridges that could be exploited. The reason they are missed by the
dynamic verification module is because the dynamic module uses heuristics but
cannot guarantee the completeness. For example, it may not always generate
proper input formats of the JavaScript Bridges, such as the JSON string. There
are 4 apps that use WebView to load local HTML files instead of connecting to
Internet. While these 4 apps could be considered as false positives of BridgeScope
(because our assumed network adversary may not be able to inject attack code in
this case), we argue that they could still be vulnerable/exploited in an extended
threat model in which external HTML files are not trusted (which could be also
reasonable considering that these files could be manipulated by malicious apps
in the phone).

False Negatives. To evaluate the false negatives of BridgeScope, we randomly
selected 20 apps from those non-potentially-vulnerable apps that had at least
one WebView. Thorough manual review and testing (almost 1 h per app) of how
the WebViews are used in those 20 apps, showed that none were potentially
vulnerable, suggesting that indeed our false negative rate is relatively low.

5.3 Overall Findings

Diverse WebView implementations. Based on our static analysis result,
we found that WebView implementations are indeed diverse. Table 6 shows the
distribution of different WebView implementations in our dataset.

Table 6. Diverse WebView implementations

Android Default
WebView

Mozilla Rhino
Based WebView

Chromeview XWalkView Total

11,823 526 20 0 11,913

Evadable Security Checks in WebView event handlers. As shown in
Sect. 2, event handlers perform security checks on the URL to be connected.
However, in our evaluation we found that the customized event handler did
not properly protect sensitive information leakage. Once sensitive information
is successfully obtained in the web context, it can always be directly sent out
through a JavaScript API or by dynamically creating DOM elements [9].
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Attacking capability. To further understand the attack capability on those
potentially vulnerable apps, we analyze the different sinks and sensitive APIs
of those confirmed potentially vulnerable apps and summarize the attack capa-
bilities shown in Table 7. The most common attack enabled is to steal private
information from content providers. This is due to the fact that a large number
of potentially vulnerable apps use sensitive JavaScript Bridges to load authenti-
cation tokens from content providers. We also observe that attackers can launch
diverse attacks including some critical attacks such as sending text messages,
sending emails, and playing videos.

Table 7. Attacking capability distribution

Attack capability App number Attack capability App number

Leaking Content Provider Content 241 Sending text message by intent 57

Leaking the Device ID 42 Sending email by intent 51

Leaking phone numbers 14 Playing video by intent 61

Directly sending text message 2 Create calendar by intent 171

Downloading/Saving Picture 344 SOP Violation Attack 41

Table 8. Difficulty to exploit vulnerabilities

Network channel HTTP Third-Party HTTPS HTTPS

Difficulty Easy Medium Hard

Number 224 103 290

Attack complexity. To reduce the false positive caused by our analysis assump-
tion (Sect. 4.1) and further understand the relative difficulty of launching attacks
on vulnerable apps, we define three attack complexity levels:

– Hard: The content in a vulnerable WebView is loaded over first-party HTTPS.
In this case, those vulnerable JavaScript Bridges could be intentional bridges
to the trusted JavaScript in the first-party content. However, it could still be
attacked by hijacking HTTPS traffic [3], especially considering that HTTPS
can be very poorly/insecurely implemented or used in mobile apps [11,13].

– Medium: The vulnerable WebView loads third-party content over HTTPS. It
faces similar risks as above [3,11,13]. In addition, attackers could compromise
third-party content (such as through a Content Delivery Network [20]) to
inject the malicious JavaScript.

– Easy: The vulnerable WebView loads web content through HTTP. In this
case, attackers can easily inject the malicious JavaScript into HTTP traffic.

Based on the above definitions, Table 8 shows the results of attacking com-
plexity analysis of our automatically verified vulnerable apps. We can see that
the majority of vulnerable apps are hard to attack, but we also note that
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most apps that fall into this category contain JavaScript Bridges that explic-
itly allow trusted JavaScript to access sensitive information from users. In other
words, as long as the transport protocol is compromised, attacker capabilities are
enhanced. Recent disclosures of the fragility of HTTPS [5,6] makes this scenario
more trivial than not.

We also observe that there exists a large number of vulnerable apps using the
HTTP protocol, which can be obviously easily attacked through code injection
since communication is in clear text.

5.4 Case Studies

We present two interesting case studies of vulnerable apps here. In the interest
of responsible disclosure, we avoid naming the specific apps at this time while
we notify developers and coordinate possible fixes.
Case 1: Advertisement library vulnerability. In this case, the vulnerable
app loads an advertisement library, which is a common practice in app develop-
ment. However, this ad library contains a vulnerable WebView, which is used to
communicate with the advertiser’s website to retrieve advertising content over
the HTTP protocol. BridgeScope detects only one vulnerable JavaScript Bridge
imported into this vulnerable WebView. However, 56 methods are available in
this vulnerable JavaScript Bridge. Among them, 19 are critical methods, which
can be invoked by attackers to steal sensitive information (such as device ID,
WIFI status, network operator name, and user’s internal data) and download or
delete files and folders in the device.

We found 12 apps in our dataset that used this vulnerable advertisement
library, making all of them equally vulnerable.
Case 2: Vulnerable browser apps. Developers often extend WebView to
quickly create and specify their own customized browser apps. Many special-
ized ‘browsers’ on the app market use this model. We crawled 100 popular
browser apps from Google Play in January 2016. 74 of them are merely exten-
sions of the standard WebView. BridgeScope successfully detected 6 vulnerable
browser apps that can be exploited to leak sensitive information such as device ID
(5 apps), phone number (1 app), serial number (1 app).

We also found one popular browsers app, downloaded by more than 100,000
users, which suffers from SOP Violation Attacks. The app is designed to provide
an ad-free user experience by filtering out ads using a blacklist. A bridge function,
named ‘applyAdsRules(String url)’, checks whether the url is related to an
advertisement website. If the url is ‘safe’, it will be sent to the app’s main Activity
to render it using the key API WebV iew.loadUrl(url). This fits the pattern of
the SOP violation attack, giving an attacker the ability to load content that he
knows not to be blacklisted by the app’s filter function to launch client-side XSS
attacks.

Different from other apps, these browser apps have much larger attack sur-
faces since the website (e.g., third-party) to be accessed and the protocol used
in communications (e.g., HTTP or HTTPS) are specified by users, making them
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relatively easy to attack by simply redirecting a user to an attacker-controlled
website.

5.5 Results on Real-World Malware

In addition to finding potential vulnerabilities in benign apps, we also test our
tool on real-world malware that uses JavaScript Bridge techniques. By searching
reports from Honeynet [2] and Palo Alto Networks [24], we collected 23 malicious
apps that were reported to employ JavaScript Bridge techniques.

By running BridgeScope on these malicious apps, we found a total of 68 sensi-
tive bridges. Although the malicious servers were already down, BridgeScope still
successfully identified malicious behaviors hidden in JavaScript Bridges, includ-
ing leaking of sensitive information, sending text messages, and prompting fake
notifications, which are the same as the report descriptions about these malware
by Honeynet [2] and Palo Alto Networks [24].

6 Discussion

Limitation in Static Analysis. Similar to other existing static analysis
tools [4,33], our work does not handle implicit data flow, or low level libraries
written in C/C++, which may lead to false negatives. However, C/C++ library
could be mitigated by modeling their functions, such as system.arraycopy(). We
leave implicit data flow tracking as our future work.
More comments on HTTPS. In this paper, some of detected vulnerable
apps require hijacking HTTPS in order to exploit them. We consider that
while HTTPS may pose a higher level of complexity and difficulty for exploit-
ing JavaScript Bridge vulnerabilities, it is still a realistic threat vector because
HTTPS is widely implemented insecurely/poorly in mobile apps [11,13] and sev-
eral recent high profile works also showed the inherent issues of HTTPS [5,6,20].
Therefore, once attackers can successfully hijack HTTPS, they can exploit our
reported vulnerabilities to launch diverse critical attacks (shown in Table 7).

7 Related Work

WebView Security. Luo et al. [22] exposed attack vectors in WebView, and
demonstrated the JavaScript Bridge vulnerability. Chin et al. [8] analyzed Web-
View vulnerabilities that result in excess authorization and file-based cross-zone
scripting attacks. Mutchler et al. [23] did a generic large scale study on security
issues (such as unsafe navigation and unsafe content retrieval) in Android apps
equipped with WebView. Wu et al. [34] discussed file leakage problems caused
by file:// and content:// schemes in WebView. Georgiev et al. [14] did a study
on a popular third-party hybrid middleware frameworks. Hassanshahi et al. [17]
studied the security issues caused by intent hyperlinks.
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The JavaScript Bridge vulnerability is rooted in the conflict between secu-
rity models of the native and web context [14], and the lack of privilege isola-
tion [19]. The approach NoFrak proposed by [14] partially solves the conflict
by extending the web’s same original policy (SOP) to the local resources. Other
works such as MobileIFC [28] also propose a similar concept of extending SOP to
mediate access control between the mobile and web context within a hybrid app.
Jin et al. [19] proposed a defense solution for JavaScript Bridge vulnerabilities in
hybrid apps, with focus on privilege separation based on iFrame instances within
the WebView. In [31], the authors proposed Draco, a uniform and fine-grained
access control framework for web code running in Android default WebView.

Privacy Detection And Protection. Taint analysis is an effective approach for
detecting privacy leakage. On Android, systems such as TaintDroid [10] and Flow-
Droid [4] are among some of the most well-known taint-based systems. Existing
Android analysis tools [4,7,12,15,33] may be useful for detection of vulnerabili-
ties. However, existing work either performed coarse-grained analysis, or imposed
high performance overhead [7,18]. Furthermore, existing work could not handle
the semantics of JavaScript Bridge and diverse WebView implementations.

8 Conclusion

The integration of mobile and web through the use of WebView requires compro-
mises to be made in the security of both platforms. Subsequently, we find that
the current design and practices in the implementation of WebView causes a
class of generic vulnerabilities that can be exploited by attackers to cause serious
problems on mobile devices. We implement an analysis framework, BridgeScope,
which can automatically discover vulnerabilities in a hybrid mobile app and gen-
erate test attack code that is then automatically verified as a feasible exploit.
Our system is implemented in Android, and we provide evaluation that shows
our system is a feasible approach to automatically and precisely discover vulner-
abilities at large scale.
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Abstract. As a key stakeholder in mobile communications, the com-
munication service provider (CSP, including carriers and ISPs) plays a
critical role in safeguarding mobile users against potentially-harmful apps
(PHA), complementing the security protection at app stores. However
a CSP-level scan faces an enormous challenge: hundreds of millions of
apps are installed everyday; retaining their download traffic to construct
their packages entails a huge burden on the CSP side, forces them to
change their infrastructure and can have serious privacy and legal ram-
ifications. To control the cost and avoid trouble, today’s CSPs acquire
apps from download URLs for a malware analysis. Even this step is
extremely expensive and hard to meet the demand of online protection:
for example, a CSP we are working with runs hundreds of machines
to check the daily downloads it observes. To rise up to this challenge,
we present in this paper an innovative “app baleen” (called Abaleen)
framework for an on-line security vetting of an extremely large number
of app downloads, through a high-performance, concurrent inspection
of app content from the sources of the downloads. At the center of the
framework is the idea of retrieving only a small amount of the con-
tent from the remote sources to identify suspicious app downloads and
warn the end users, hopefully before the installation is complete. Run-
ning on 90 million download URLs recorded by our CSP partner, our
screening framework achieves an unparalleled performance, with a nearly
85× speed-up compared to the existing solution. This level of perfor-
mance enables an online vetting for PHAs at the CSP scale: among all
unique URLs used in our study, more than 95% were processed before
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the completion of unfettered downloads. With the CSP-level dataset, we
revealed not only the surprising pervasiveness of PHAs, but also the real
impact of them (over 2 million installs in merely 3 days).

Keywords: Large scale · Communication service provide · Potentially-
harmful apps

1 Introduction

With computing moving toward mobile platforms, also come new waves of mobile
malware, which commits all sorts of malicious activities, ranging from fraud, code
plagiarism to data theft and illegal surveillance. Such applications, re-branded
as potentially harmful apps (PHA) by Google [20] to avoid the ambiguity of
the term “malware”, pose serious threats to the mobile ecosystem and therefore
become the main focus of security defense by all major stake holders in mobile
communications. On the front line are mobile app stores, such as Google Play and
Amazon App Store, which implement malware checks to vet apps and protect
their customers. Such protection, however, is far from perfect, particularly when
it comes to detecting fraudulent or plagiarized apps, as evidenced by the recent
discovery of fraud apps on app stores, including Google Play [5]. Further, there
are hundreds of third-party stores around the world, whose app vetting could
become sluggish, not to mention thousands of apps being downloaded directly
from websites, not going through any security check. For such apps, the only
party capable of observing their downloads and operations, and therefore at the
position to provide additional protection for the end user is mobile carriers and
ISPs, which we call communication service provider or CSP in our research.

Challenges in the CSP-scale protection. Today’s CSPs are offering different
kinds of value-added security services (e.g., AT&T Managed Security Services
[2]) to their customers, which can potentially complement the protection already
in place at app stores: particularly, for catching fraudulent and plagiarized apps
(many of them are malware [15,28]) missed by typical app-store vetting, and for
scanning those downloaded from non-app-store sources. However, in the absence
of right technologies, such services entail significant burdens on the providers. A
CSP has to process massive amount of data on the daily base: as an example, a
world-leading CSP informed us that they observe over 30 million downloads of
Android apps every day from a single region. Inspecting all such downloads for
PHAs cannot be done through deep packet inspection, since app files today are
compressed (in the ZIP format for Android APKs) and therefore their content
cannot be directly observed from individual packets.

Alternatively, the CSP could temporarily retain all the packets in a download
to reconstruct the app’s package before scanning its content. This approach, how-
ever, is extremely expensive in terms of storage and computing, and unrealistic
for a major CSP which is totally different form an individual organization that
could easily reconfigure its firewalls to redirect or split app traffic for malware
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detection. Further, retaining packets for app scanning does not support online
protection (that is, detecting suspicious apps before they are fully downloaded
to customers’ devices), unless the download process is suspended pending for the
outcomes of a security check, which today’s CSP simply will not do. Another
hurdle for the packet retention approach is the legal and privacy concern. As
an example, in the United Kingdom, the High Court of Justice issued a judicial
order declaring that sections of the EU Data Retention Directive (which itself
only allows retention of packet headers, not content [4]) prescribing indiscrim-
inate data retention are incompatible with EU law and would be inapplicable
from 31 March 2016 onwards [10].

To work around the legal barrier and control the cost, the CSP today chooses
to download apps again from the URLs collected from the traffic it monitors and
scan them off-line. The problem is that even this simple approach still brings
in substantial overheads and can hardly provide any online protection to their
mobile customers. As a prominent example, the CSP we are collaborating with
told us that a major IT company helping them scan apps utilizes 500 servers to
keep up with the pace of ever-growing app download traffic (30 million URLs
per day now). Clearly, a more efficient and more sustainable alternative is in
urgent need here.

Our approach. We believe that a practical solution is expected to fully respect
today CSP’s infrastructure, capability and legal constraints, and also serve to
complement existing security protection put in place by other stake holders, app
stores in particular. To this end, we present in this paper a new, highly efficient
online app-download analysis framework, called Abaleen (app-baleen, as inspired
by baleen whale’s high-performance filtering system). Abaleen is designed to
work under today’s CSP infrastructure, and inspect massive amount of app-
installing URLs within a short period of time, which allows the CSP to offer
online protection, alerting to their subscribers even before an app’s installation
on the client when possible. For each ongoing app download, Abaleen concur-
rently utilizes the observed download URL to analyze the app data stored at
the source the link points to. At the center of this new framework are the tech-
niques that only partially download a very small amount of data (a few KB on
average from a full package of 20 MB) from each stored APK for security checks
(fraud and clone detection and other PHA scans), for the purpose of achieving
extremely high performance (Sect. 3.2). More specifically, Abaleen framework
supports security analysts to select different portions of an online app content
for filtering and detecting various kinds of PHA, which further allows them to
design customized filters and high-performance scanners (called scanlet). Exam-
ples include using an app’s package name, checksum and signatures to determine,
almost instantly, whether the app was seen before, regardless of different down-
load URLs. For the app that was not, multiple scanlets will work on the APK,
still using nothing more than a small set of downloaded data.

This partial-download and lightweight inspection framework turns out to be
highly effective. Running our prototype on top of 90 million URLs provided
by our CSP partner (from March 2nd to 4th in 2016, with 99% of the links
reusable), Abaleen demonstrates that security checks over partial content work
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as effectively as much more heavyweight full downloads: almost all those detected
by mainstream malware scanners were also captured by only inspecting 1 to 30%
of their content. Further, our fraud and clone scanlets identified additional 10%
PHAs never reported before (which have been manually confirmed and reported
to the CSP), at a high precision (100% for fraud detection and 93% for clone
detection). Most importantly, compared with the baseline solution (in which all
the apps pointed by unique URLs are fully downloaded for duplicate removal
and malware scan, as the CSP currently does), our approach improved the per-
formance by almost 85 times, using merely 3 virtual-machine (VM) instances
(8 cores, 2.5 GHz CPU, 16 GB memory) to analyze all the app installs the CSP
receives per day. This performance enables the CSP to provide their customers
real-time protection, sending out alerts even before an app has been installed
on a mobile device. Indeed, our experiment shows that 95% of these download
URLs were successfully analyzed before their APKs were fully downloaded.

Findings. Looking into the results of our analysis, we gained new insights into
the illicit activities inside the Chinese mobile ecosystem, where Google Play
cannot be accessed and the users tend to download apps from highly diverse
sources. Particularly, our study shows that PHAs have been extensively propa-
gated across the ecosystem. In just 3 days, already 2,263,643 downloads of 19,101
PHAs were observed. Among them are the PHAs that masquerade as the official
apps of banks, online shopping sites, social networks and other organizations.
Particularly, even two months after those apps were downloaded, still a fraud
app impersonating JD.com, the largest Chinese e-commerce site, are missed by
all 56 scanners on VirusTotal. As another example, the fake app for Bank of
Communications, the 12th largest one in the world, is flagged by only a single
scanner. Also interesting is the discovery of 17 different fake versions of WeChat,
the largest Chinese social network app with 700 million users: those apps commit
a wide spectrum of illicit activities, from credential stealing to aggressive adver-
tising. Again, most alarming here is that so far, many of them are only flagged by
Tencent, the developer of WeChat, among all 56 scanners hosted by VirusTotal.
Actually, after two months, all these apps are still accessible from various web
sources, indicating that the whole Chinese ecosystem (including mobile users) is
less mature in terms of awareness of security risks. Further, we found that apps
from major Chinese stores like 360 and Baidu are all delivered through various
content-distribution networks (CDNs), and in many cases, even when a PHA
was removed from the stores, it could still be downloaded from its CDN cache.
This could potentially enable cyber criminals to continue to spread their PHAs
even after the apps have been taken down by the app stores.

Contributions. The contributions of the paper are outlined as follows:

• Highly scalable framework for online PHA detection. The main contribution
of this paper is an innovative framework that uses partial downloads to sup-
port online PHA detection at an extremely large scale. We demonstrate that
by strategically picking up a small amount of app data from its online repos-
itory, security checks can be done as effectively as those performed on the

http://JD.com
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fully-downloaded apps, and in a much faster way (85 × speed-up without
undermining the quality of the PHA scan), which enables real-time online
detection for end users.

• New techniques to tune PHA detection to work with partial downloads . Partic-
ularly, our new fraud and clone detection approaches leverage the icon, name,
and UI similarity between a PHA and its impersonation target to efficiently
identify suspicious apps, which requires only a small amount of data from an
APK online and can therefore be easily integrated into the partial-download
mechanism of the framework. We further show that only a small fraction of
APK content is sufficient for modern Anti-Virus scanners to capture almost
all PHAs.

• New discoveries and insights. Using Abaleen, we had the unique opportunity
to analyze tens of millions of app download URLs, a scale never achieved in
any prior study. Our study brought to light new findings about the Chinese
mobile ecosystem, including the pervasiveness of security threats there (fraud,
clone in particular) and the number of downloads by users. Such discoveries
will contribute to better understanding of cyber criminals’ strategies and
techniques, and more effective protection of mobile users.

2 Background

Android and PHA. According to Netmarketshare [8], Android remains to be
the most popular mobile operating system, with a 61.9% market share. With its
biggest market share, Android is also the main target of PHA authors. In order to
reach a large audience and gain their trust, a significant portion of PHAs today
are designed to impersonate the apps associated with big organizations or other
legitimate apps. Particularly, a fraudulent app can include a target organization’s
logo and name, and mimic its official app’s UI layouts. At least some of these
apps can get through today’s app-store vetting. For example, it is reported that
fake bank apps continue to pop up on Google play, victimizing the customers
of the French bank, Industrial Bank of Korea (IBK), Israeli BankMirage and
others, even for the party that does not have official app [5]. Also lacking in the
vetting process is the detection of cloned apps, which are built by repackaging
legitimate apps (e.g., AngryBird) with new functionalities, for the purpose of
free-riding the latter’s popularity to distribute the former.

CSP-level protection. Under the realistic threats of large-scale attacks, espe-
cially those involving extensive fraudulent charges on their subscribers, all major
mobile carriers and ISPs today have security infrastructures in place to mitigate
the security risks present in their networks. Also, they all provide additional
security services to their customers, detecting signs of breaches from the cus-
tomers’ traffic and helping their incident investigations etc. Prominent examples
include AT&T Managed Security Service [2] and Verizon Manged Security [9].
These services and infrastructures are mainly aimed at network-level protection,
inspecting individual packets or collective features of traffic to identify botnets,
SMS Spam, Phishing websites, etc.
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The emergence of PHAs in mobile networks poses a new challenge to CSPs,
since detecting these apps goes way beyond network-level defense: PHAs cannot
be easily blocked by blacklisting their hosting domains and IPs, as many of
them may belong to legitimate app stores; inspecting app-download packets or
retaining packets for scanning is unrealistic on CSP level, as shown in Sect. 1.
Up to our knowledge, today no effective techniques are there for timely scanning
massive amount of APK download traffic going through the CSP and providing
mobile users timely alerts especially before PHAs are installed on their devices,
which is urgently needed by CSPs for extra profits (said by our CSP partner).

Adversary model. We consider an adversary who attempts to distribute PHAs
through app stores and other online sources (e.g., forums and other public sites).
He is capable of infiltrating some stores, using fraudulent, plagiarized (cloned)
apps or other PHAs those stores are not well equipped to detect. On the other
hand, Abaleen was built for the purpose of detecting the suspicious apps hosted
on the websites not within the adversary’s control. Those sites, including app
stores and other application download portals, are the main channel for PHA
propagation, since they attract most Android users and the PHAs there can
easily reach a large audience. In the meantime, we do have protection in place
to mitigate the threat from malicious sites, which might cloak, an active attack
tactic that causes the content downloaded from the same URL differ based upon
the requestor’s IP and other information. Our techniques raise the bar for such
attacks, making them more difficult to succeed, though we still cannot eliminate
the threat (Sects. 3.2 and 5). Further assumed in our study is that the CSP
intends to complement, rather than replace the existing defense at app stores,
which has been confirmed by our industry partner. Finally, in our research,
we focus on the apps installed through the unprotected HTTP protocol, whose
traffic content, download URLs in particular, can be seen by the CSP. This is
because almost all major app stores, except Google Play, are found to utilize
HTTP for app installation. Prominent examples include Slideme, GetJar and all
major Chinese markets. Particularly, in China where Google Play is inaccessible,
almost all app download URLs are in plaintext and can be reused for collecting
the same apps being downloaded (Sect. 4.1).

3 Design and Implementation

As mentioned earlier, a CSP-level online PHA analysis is expected to be highly
efficient and extremely scalable, and also effective in complementing the security
controls enforced by other stake holders in the mobile communications. The
latter is important because the CSP is not meant to replace other parties, app
markets in particular, in terms of end-user protection. Instead, it is supposed to
provide another layer of defense against the PHAs missed by those parties.

3.1 Overview

Figure 1 illustrates the architecture of Abaleen, including a set of filters and light-
weight scanlets. The filters perform a sequence of quick checks on massive amount
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Fig. 1. Overview of our approach.

of app-download traces (i.e., the URLs) to remove those considered to be legiti-
mate or seen before. Such filtering steps start with analyzing the download URLs,
screening out duplicates (which is nontrivial, see Sect. 3.2) and those on a white
list and immediately flagging those on a black list (an example is shown in Fig. 2).
The follow-up filters run the partial-download technique to acquire the package
name and signature from the APK pointed by each of the remaining links, iden-
tifying those issued by trusted parties or analyzed before (Sect. 3.2). In Fig. 2,
the filter drops Baidu map.apk, which is signed by Baidu (a party on the white
list), and a FM radio app whose checksum and signature matches another app
that Abaleen analyzed before. The traces significantly trimmed down in this way
are then handed over to the scanlets, which further download partial app content
(icon, names, XML files and others) to detect fraudulent, cloned and other suspi-
cious apps (Sect. 3.3). In the example, the icon of the app from 139.196.26.149
is found to be similar to that of the Chase bank and its name also contains the
word ‘Chase’, which causes an alert to the user (e.g., through SMS).

3.2 Abaleen Filters

A CSP typically observes a huge volume of app-download traffic, that is, a down-
load URL including a .apk file or an HTTP response with its Content-Type set
to “application/vnd.android.package-archive”. As an example, our CSP
partner reports at least 30 million downloads of Android apps every day from
a region with a population of 20 million. Such URLs can be obtain as soon
as their downloads start. Obviously, most of them belong to popular apps or
are developed by reputable organizations. To quickly filter out these unlikely-
harmful apps, a straightforward solution is to remove from the traffic the URLs
all pointing to the same web locations and download the apps there only once,
together with those signed by trusted parties. However, this turns out to be
nontrivial, due to the variations in the URL parameters and the extensive use
of the content distribution networks (CDNs).

URL filtering. Although many of download URLs pointing to the same web
sources are identical and can therefore be easily removed, others look quite dif-
ferent. In some cases, the differences are caused by the parameters on a URL. To
identify the parameters unrelated to the APK file, we tried to download the same
app using various mobile devices in different places. To this end, we found some
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h p://180.153.105.142/...apk?mkey=56d7c9&f=1a58&fsname=com.qiyi.video.apk
h p://180.153.105.141/...apk?mkey=56d7f8&f=2320&fsname=com.qiyi.video.apk
h p://bcs.apk.r1.91.com/.../20/fm.qing ng.qtradio_081201.apk
h p://139.196.26.149/chase.apk
h p://download.sanguosha.com/sgscq/Baidu_map.apk
h p://apl.oupeng.com/appportal/.../7C1248D9D33E99C9FE039942864E59EF.apk

URL filter (1st and 2nd urls are the same stored in CDN)

h p://180.153.105.142/...apk?mkey=56d7c9&f=1a58&fsname=com.qiyi.video.apk
h p://bcs.apk.r1.91.com/.../20/fm.qing ng.qtradio_081201.apk
h p://139.196.26.149/chase.apk
h p://download.sanguosha.com/sgscq/Baidu_map.apk
h p://apl.oupeng.com/appportal/.../7C1248D9D33E99C9FE039942864E59EF.apk

APK filter (2nd app is analyzed before; 4th app is signed by Baidu)

h p://180.153.105.142/...apk?mkey=56d7c9&f=1a58&fsname=com.qiyi.video.apk
h p://139.196.26.149/chase.apk
h p://apl.oupeng.com/appportal/.../7C1248D9D33E99C9FE039942864E59EF.apk

Fig. 2. An example of our approach Fig. 3. APK file (zip format)

parameters are apparently used to transport the information about the device
installing the app and its owner, such as location, IMEI, IMSI, and even the
content related to the owner’s preferences (e.g., “mkey” and “f” in Fig. 2). The
Abaleen filter removes all the parameters unrelated to the APK file to compare
across the URLs their domains, paths and the APK names, keeping only one
link for those showing up more than once. To prevent the adversary from taking
advantage of the filter to deliver different code, we only remove the duplicates
for the domains belonging to either known app stores (Amazon, Baidu, Tencent,
etc.) or their CDNs.

Further complicating the filtering is the pervasiveness of CDNs, which enable
the mobile user to acquire apps from the hosts close to her location but introduce
a huge variation even in the domains of download URLs. Identification of CDNs
is known to be hard and cannot be easily automated. What we did is to probe
a set of largest app stores (e.g., 360, Baidu, Tencent) from different locations to
find out the domains or IP addresses of the CDNs they use. Even though the
CDN list collected in this way is by no means complete, it already helps reduce
the number of download transactions: trimming down the 30 million download
URLs from our CSP partner to around 1 million.

Partial download. To further cut down the volume of the download trans-
actions to be scanned, we need to go beyond the URL-level screening, looking
into the APK content to find the same apps stored at different places and the
trusted apps hosted by less secure stores. Apparently this can only be done by
downloading the whole app before its content can be inspected, as many IT
companies do today (which was communicated to us by our CSP partner). The
overheads introduced in this way, however, are tremendous: given that the aver-
age size of today’s Android app is around 20 MB, scanning over merely 1 million
apps requires transporting 20 TB data across the Internet and analyzing all of
them, not to mention that a CSP has to go through at least tens of millions
of app installs every day. Also the delays incurred by acquiring and evaluating
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apps’ full content make it hard to timely respond to the security risk observed,
alerting the user before a PHA is installed on her device.

A key observation in our research is that to find out whether an app is mali-
cious, legitimate or seen before, oftentimes, only part of its content needs to be
examined: for example, just looking at the certificate for the app’s signature, we
can filter out those signed by reputable organizations; by inspecting its check-
sum, we can remove the ones analyzed before and capture known PHAs. Note
that such information cannot be falsified by the adversary as long as he does
not control the hosting website (as considered in our adversary model), since
they will be verified before the apps can be installed on the recipient devices.
Actually, this “partial analysis” approach is fully supported by a modern data
download technique implemented by almost every website today, which allows
a download to start from any offset within an APK. Actually, this feature is
supported by the HTTP 1.1 protocol [27] (page 52), which includes a header
field called “Range”. This field allows a request to specify the byte offset in the
target file and the length of the content to be retrieved. Abaleen leverages this
feature to pick up a small amount of information from the remote package for
an efficient PHA analysis.

The challenge here is how to locate the necessary contents when an app is
only remotely available. We notice that an APK file is in the ZIP format (Fig. 3),
which includes the compressed versions of the app’s contents (e.g., images, DEX
bytecode) and a directory list that serves as the table of the contents (TOC),
with the offset for each document within the ZIP file. The offset and length
of the directory list in the ZIP file are specified in the EOCD (i.e., End of
Central Directory Record) structure at the end of the ZIP file [11]. The length of
EOCD is variable, which includes 22-byte data plus a variable-length comment.
In our evaluation, the length of the whole EOCD never exceeds 200 bytes, which
makes the TOC easy to retrieve for locating other documents inside the package.
Specially, Abaleen first sends a request to the target APK file and retrieves its
total length by reading the Content-Length field in the HTTP response header.
Then, Abaleen sends another request to only retrieve the last 200 bytes by setting
up the header field “Range” (the offset is set to the length of the file minus 200;
the length is set to 200 bytes). From the retrieved data (i.e., EOCD), Abaleen
knows the offset of TOC and its length. After retrieving TOC in a similar way,
Abaleen can request the file entries that are needed for further analysis. Note
that the downloaded data are actually not a ZIP file which cannot be directly
decompressed. Our approach utilizes a dummy ZIP file with an app’s directory
list and all other downloaded elements placed at the right offsets of the file before
running a standard tool (unzip) to extract them. In particular, the dummy ZIP
file has the same size as the original APK, which uses the same dictionary and
compressed files. Also the dictionaries in both files (the dummy file and the
original APK) are located at the same position in their respective APKs. In this
way, only a few KB is collected for an app.
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Fast app screening. We note that, although the same app hosted on differ-
ent stores cannot be identified from their install URLs, they all bear the same
“META-INF/MAN-IFEST.MF” (containing the SHA-1 checksums of each indi-
vidual file in the APK for signing the app) whose MD5 can serve as the checksum
of an app. What Abaleen does is retrieving this file and searching for the check-
sum in the dataset of known APKs: a match found there causes the APK to be
dropped; otherwise, its checksum is saved to the database together the results of
the scan. Also used in this step is an app’s “signature”, that is, the public key
on its X.509 certificate. Abaleen includes a white list of trusted app developers
(e.g., Google, etc.). The apps signed by them are considered to be safe and will
not be further inspected.

As mentioned in our adversary model (Sect. 2), the design of Abaleen is meant
to detect the suspicious apps hosted on legitimate app stores and websites, which
is the main channel for spreading PHAs today, given the popularity of the sites
and their lack of adequate app-vetting protection. However, there are untrusted
sites that may try to evade our techniques: such a site can deliver different
content according to the user-agent of the visitor’s browser (user-agent cloaking),
the referer field in her download request (referrer cloaking), her IP address (IP
cloaking) and whether she visits the site before (called repeated cloaking) [3].
Although this active attack is not within our adversary model, Abaleen does
have necessary means to mitigate the threat.

Specifically, once deployed by the CSP, our approach can conduct partial
downloads using the original request’s user agent and referer, and different IP
addresses. Given the large number of IP addresses under the CSP’s control, it
becomes almost impossible for the adversary to fingerprint the Abaleen filter’s
address. This approach also beats the repeated cloaking, since the adversary
cannot find out whether our APK filter has visited his site before from its IP
and therefore becomes more likely to treat it as a first-time visitor and deliver
malicious payloads. In a more sophisticated cloak, specific to our design, the
adversary might try to detect the partial-download behavior. However, requests
for retrieving part of resources hosted by a website are common today. Also
note that for an untrusted site, we only can contact it once to get its APK’s
MANIFEST.MF, which ensures that the site can no longer send us different content,
even when it detects our intention later. This is because the file includes the app’s
signature, with the SHA-1 checksum for every single file in the APK. Therefore,
even though we cannot guarantee to eliminate the cloaking attack, our techniques
do raise the bar to the attack (see Sect. 5).

In terms of performance, our study shows that the Abaleen filters work effec-
tively on the real-world data: in our experiment, the URL and APK filters
removed 29,893,194 URLs from 30 million downloads (99.64%), within 12.51 h
with 3 Virtual Machines, significantly reducing the workload for the follow-up
scan step.
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3.3 Abaleen Scanlets

After the bulk of the app-install transactions have been filtered out, Abaleen
starts running various scanlets on the remaining download URLs to identify sus-
picious apps, which will cause an early warning to be issued to the subscribed
user. Here we describe the extensible design of a general scanlet and three exam-
ple scanlets integrated into our implementation.

General design of scanlets. As mentioned earlier, the scanlets are meant to be
highly efficient, scalable and complementary to the protection at the app-store
level. They are hosted by the extensible Abaleen framework under which both
scanlets and PHA analyzers can be easily added and removed. Based on this
design, Abaleen framework should supports security analysts both to easily port
existing PHA detectors to the framework and to customize their own scanlets.
Specifically, Abaleen framework allows security analysts to specify the elements
in an APK file which should be partially downloaded, and also an algorithm to
handle the downloaded components.

Detecting frauds. Fraudulent apps are a special category of PHAs that imper-
sonate those released by big organizations (e.g., banks, payment card companies,
and online retailers etc.) to reach a large audience, steal their sensitive informa-
tion and perform other illicit or unwanted activities (e.g., advertising). Such
PHAs often slip under the radar of today’s app stores, whose vetting mecha-
nisms are less effective against such a threat [18]. The key observation we have
about these PHAs is that they have to plagiarize their target organizations’ icons
and names to deceive the users. As a result, they are actually exposed by this
resemblance in the appearance but the difference in signing parties. Based upon
such an observation, we built a scanlet that quickly scraps names and icons from
APKs online to search a database with the symbols of large organizations and
prominent apps. Those found matching there but carrying inconsistent signa-
tures are reported to be potentially harmful. Note that such detection can be
effectively done by only downloading an app’s manifest (including its name and
path for the icon) and icon image (the signature has already been retrieved by
the APK filter), and therefore works highly efficiently, capable of alerting the end
user even before her app download completes. Also, note that the programming
trick like dynamic loading of icons does not work here because this will cause
an icon change once the app is clicked by the user, which is highly unusual and
suspicious.

However, this simple approach turns out to be more complicated than it
appears to be: organizations can have multiple logos and PHA authors can
change their targets’ app names (e.g., from “Chase Mobile” to “Online Chase”)
and icons (e.g., adjusting their colors) but still make them deceptive to mobile
users. As an example, Fig. 4 presents the icons of some suspicious apps, which are
compared with the original Chase bank app that they might impersonate. These
apps are identified through both a text analysis of their names and an image
evaluation on their icons to control false positives. Both analyses are important,
since an app carrying an icon similar to that of a different app could still be
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Original app Fraud app 1 Fraud app 2 Fraud app 3

Fig. 4. Icons of suspicious apps and the original Chase bank app.

legitimate: e.g., an app called “Financial assistant” includes a bank icon that
looks like the image of ICBC (i.e., a famous bank in China). Following we
describe the techniques that address these issues.

Our idea to defeat the name change trick is to identify a key-term (‘Chase’)
perceived to represent an organization, which is then used to detect the app
whose name involving that term. To do this in a largely automatic way, we
collect a list of organizations (e.g., the top banks in different countries) and
their official apps (by searching leading app stores), extract their names and try
to find out whether a smaller unit within each name, such as a word or a phrase,
can also describe the organization. For example, “JPMorgan Chase bank” can
be represented by a single word “Chase”. For this purpose, we leverage search
engines: our approach extracts individual words and phrases within a name (e.g.,
“JPMorgan”, “Chase”, “bank”, “JPMorgan Chase”, “Chase bank”) and searches
them online; if the top (most relevant) result returned by the search points to
the organization’s website (which is found by searching for the organization’s
full name), we believe that the term is semantically tied to the organization,
which we call semantic terms. Among all semantic terms, those that do not
include any other semantic terms are picked out as the organization’s key-terms.
In the above example, “Chase” is a key-term while “Chase bank” is not. For the
app with a Chinese name, we first perform word segmentation (using Jieba [6])
to identify the words from Chinese characters before extracting its key-terms
from the words. Also for some organizations, their acronyms can also be their
key-terms. For example, “BOA” is commonly perceived as “Bank of America”,
particularly when the app with that name also has a similar icon. These acronyms
are found by searching online for the combination of initial letters of the words
within an organization’s full name or each of its non-single-word semantic term.
Again, those finding us the organization’s site are considered to be its key-terms.

In our research, we ran this approach on a list of 194 prominent organizations
and 258 apps (including banks, payment services, insurance companies, online
retailers, top games and social network apps) to automatically extract their key-
terms and semantic terms. These terms were further used to harvest each orga-
nization’s logos, by searching for them online (e.g., under Google Images, search-
ing for “Chase Bank logo”). Top 50 images returned, after removing duplicates,
were saved into our database and labeled by their corresponding key-terms1.

1 Those terms and images were manually inspected to ensure their correctness.
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Altogether, our approach harvested 11,640 images for 194 organizations. The
database is then used by the fraud detector for scanning the APK content par-
tially downloaded from its website: the scanlet first looks for the presence of
key-terms within an APK’s name after removing from the name all non-letter
characters (i.e., those not inside the English or Chinese letter set); when a match
is found, it further checks the APK’s icon and raises an alarm if the icon is found
similar to any of the logos labeled by the key-terms.

The comparison between an icon and a logo can be done through an image
similarity analysis. The algorithm we use is called Perceptual Hashing [24], which
has been widely applied to find copyright infringement online. In a nutshell, the
technique summarizes a set of perceivable features from an image and compares
whether two images are close in terms of these features [23]. The state-of-the-
art implementation can handle rotation, skew, contrast adjustment and other
changes made by the PHA authors.

Detecting clones. For the CSP-level protection, a scanlet detecting clones is
expected to be highly efficient, working only on a small portion of the APK.
To this end, we leveraged an observation that the cloned apps tend to pre-
serve the user interfaces (UIs) of the original apps, presumably in an attempt to
impersonate the original apps to reach a large audience. As a result, UI-related
components, particularly an app’s UI layout files (in XML format), are largely
intact in the cloned version [28]. Given the fact that such XML files are tiny,
our scanlet can just retrieve them from an online APK, serving as a pre-filter
to find out whether they strongly resemble those of known apps. Then Abaleen
partially downloads the DEX code for clone detection. In this way, only very few
bytes need to be downloaded.

Specifically, the visual structure of an app, including the features of its UI
components (e.g., button, text field), is typically defined in its XML files. These
components are represented through View elements (e.g., a single button) and
further organized into ViewGroup (a special View containing other Views or
ViewGroups). In Fig. 5, we show examples for Views (e.g., Button) and View-
Groups (e.g., LinearLayout). Such a hierarchical structure can be described by
an interface-graph (IGraph): nodes represent Views and ViewGroups, which are
connected by the edges that describe the inclusion of one element (e.g., a View)
within the other (e.g., a ViewGroup). Such IGraphes are identical between the
cloned and the original apps, when the repackaged version does not change the
UIs, as found in today’s PHAs. Note that changing UIs brings in risks to the
PHA authors, making the apps less similar to the one they intend to imper-
sonate and easier to notice by the user [15]. We ignore views with attribute
“visibility:none” which makes UI components invisible to users. Also, though
UIs can be dynamically generated, to make this happen, efforts need to be made
to analyze and encode the UIs of the original apps, which raises the bar for the
clone attack.

To enable a highly efficient similarity comparison across hundreds of thou-
sands of apps, we developed a novel technique that identifies a set of struc-
tural and content features from each IGraph and maps these features to a
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Fig. 5. An example of IGraph.

low-dimensional representative such as a number for evaluating the closeness
of two graphs. Specifically, for each node in the graph, we describe it with a
vector v = 〈s, n, b, w〉, where s is a sequence number assigned to the node in the
order determined by a deep-first traversal on the graph (i.e., the first one encoun-
tered in the traversal given 1, the next one given 2, and so on2), n is the number
of the UI elements on the node, b is the number of the node’s children, and w is
an index assigned to the UI type of the current node (e.g., button, image, etc.).
We maps each node to a 4-dimensional space with each of these features being a
coordinate, and then computes the geometric center of the whole graph as its rep-
resentative: vall = (

∑
e(p,q)∈IGgraph(wpvp + wqvq))/(

∑
e(p,q)∈IGraph(wp + wq)),

where v is called vhash, e is the edge from node p to q. Unlike the cryptographic
hash, which cannot tolerate even a minor difference, the vhash is linear to the
change on an IGraph: two XMLs’ vhashes come close when their IGraphs are
similar, and two different XMLs will have their vhashes distance apart. This
allows us to sort the vhash values of known apps and run a binary search to help
our scanlet quickly locate the apps carrying similar UIs (as described by their
IGraphs).

In our research, our scanlet uses the vhash technique to compare the XMLs
of an APK (only less than 1% of the file) against those of 500,000 apps we
collected (which include prominent gaming apps, tools, etc.) before code com-
parison. Whenever the APK is found to share at least 80% of XMLs with a
known app, it is considered to be a likely clone. To control false positives, we
further used a white list to remove the XMLs belonging to SDKs and code tem-
plates (e.g., Umeng SDK, Android Support Libraries). Our study shows that
this simple approach is capable of processing an APK within 2 s on average,
has a high precision (0.008% false positives among all alarms) and importantly
captured 1,563 PHAs never known before in our experiment (Sect. 4.2).

Screening other PHAs. We describe a lightweight scanlet to demonstrate
how to combine existing scanners with Abaleen framework. As mentioned earlier,
Abaleen is meant to be a highly scalable CSP-level framework that complements,
rather than replaces, the protection already in place at mobile app stores. For
this purpose, we design the scanlet built for screening app downloads from less
reliable sources (particularly legitimate yet less protected stores and websites

2 For each node, its child nodes with most children are visited first.
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through which PHAs can easily reach a large audience) using existing scan results
from leading stores and AV scanners (e.g., AVG, Qihoo-360).

Specifically, the scanlet simply lets go of all the apps passing the vetting of
renowned sources documented by a white list. For other apps, the scanlet lever-
ages the scan results of the identical app in the leading app markets. To this end,
we need to search in the stores for the package name and checksum of each app
from an unreliable source, which is actually complicated: this is because except
Google Play, most other stores do not make such a search interface open to the
public. To address this issue, we leveraged the observation that a URL scheme
market://details?id=<package name> proposed by Google [7] is actually sup-
ported by almost all the market apps (e.g., those for Amazon, Slideme, Baidu,
360, Tencent). Once the scheme is triggered by any Android app, a market app
is invoked to download an APK using its package name from the corresponding
online store. In our research, we reverse-engineered the protocols used by the
market apps to query their stores and recovered the package-searching APIs for
leading Chinese markets, as illustrated in Table 1. Using such APIs, our scan-
lets can directly retrieve from these stores the checksums of the apps with given
package names (through partial download). Once the checksums match those of
the apps downloaded from other legitimate but less protected sources, such apps
are also quickly filtered out, without going through further evaluations.

Table 1. Protocols for searching package name in markets.

Market Protocol

Baidu http://m.baidu.com/appsrv?...&action=detail&pkname=com.baidu.
appsearch&pname=<package name>& ...

Tencent http://android.myapp.com/myapp/detail.htm?
apkName=<package name>

Qihoo http://openbox.mobilem.360.cn/iservice/getAppDetail?...
&pname=<package name>&

For the apps outside this fast lane, our scanlet downloads the code of the
app (DEX and native code), typically only 20–30% of the package, which is
most incriminating part of a PHA, including the program logics for malicious
activities. Note that even though the PHA authors could hide attack code within
resource files (e.g., images), the operations for loading and executing the code
are still inside the DEX or native components of the app, and therefore can be
detected from these components. Most importantly, our study shows that the
code components, together with other ZIP and APK files within a package and
its MD5, are all most AV scanners use to detect PHAs (see Sect. 4.2). Based
upon this observation, our scanlet only downloads these code components from
online APKs and sends them for a PHA scan by existing AV scanners.

http://m.baidu.com/appsrv?...&action=detail&pkname=com.baidu.appsearch&pname=
http://m.baidu.com/appsrv?...&action=detail&pkname=com.baidu.appsearch&pname=
http://android.myapp.com/myapp/detail.htm?apkName=
http://android.myapp.com/myapp/detail.htm?apkName=
http://openbox.mobilem.360.cn/iservice/getAppDetail?...&pname=
http://openbox.mobilem.360.cn/iservice/getAppDetail?...&pname=
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4 Evaluation and Measurement

To understand the efficacy of Abaleen, we evaluated our prototype over 90 million
APK download URLs provided by our CSP partner, which represent all app
install transactions the CSP observed from a Chinese region with a 20 million
population during three consecutive days. Since most apps were inside China,
we deployed Abaleen in 3 VM instances hosted on the Aliyun cloud [1], a major
Chinese cloud service provided by Alibaba. All instances have 8 cores, 16 GB
memory. Two run Ubuntu Linux 14.04 with a 40 GB disk and one runs Windows
with a 500 GB disk. The bandwidth it has for app download is about 4 MB per
second on average.

4.1 Efficiency and Scalability

Setting. As mentioned earlier (Sect. 3), Abaleen takes two stages to inspect
massive amount of download data: it first filters out the apps analyzed before
and then runs fraud, clone and PHA scanlets on the remaining APKs. At each
stage, a different amount of content needs to be partially downloaded: manifests,
checksums and signatures first and then icons, XMLs and for a subset of apps,
DEX, binary and HTMLs. Also additional time is spent on concurrently running
fraud, clone and other PHA detection. In our research, we measured the time
used in the whole process, and further compared the results with that of the
straightforward alternative: downloading all apps after removing duplicate URLs
for a PHA scan, as our CSP partner is currently doing.

Table 2. Number of URLs in each stage.

Day 1 Day 2 Day 3

Original 30 million 30 million 30 millon

Reusable 29.70 million 29.68 million 29.74 millon

Full download (Remove duplicates) 1,846,250 1,572,956 1,681,563

Abaleen after URL filter 918,916 755,242 833,832

after APK filter 106,806 40,054 47,549

fraud/clone detection 106,806 40,054 47,549

PHA screening 53,134 22,524 20,655

Table 2 shows the number of URLs and unique apps included in our dataset
for each of the three days. Each day the CSP saw roughly 30 million download
URLs, with 99% of them reusable (which can be used to download the same
content multiple times). After removing duplicated URLs, about 1.8 million
were left. By analyzing these URLs, our filters further trimmed down the install
transactions the scanlets need to inspect. For the first day, a little more than
100,000 out of the 1.8 million remained after duplicate or legitimate apps were
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dropped. All these 100,000 were scanned by both fraud and clone scanlets, but
only a little more than half of them, about 50,000, were outside three largest
Chinese app stores that have proper app vetting in place (Baidu, Tencent, 360)
and therefore needed to be partially downloaded (20 to 30%) for an additional
PHA scan. Although still around 100,000 unique installs were seen on Day 2 and
Day 3, respectively, the number of new apps (never seen in the prior days) went
down, to 40,054 for the second day and 47,549 for the third day. To compare the
number of bytes downloaded at each stage, we randomly selected 5000 apps and
measured the sizes of their individual files. The results show that on average,
only 0.24%, 2.17%, and 27.22% of the app need to be downloaded for APK filter,
clone/fraud detection, and PHA screening, respectively.

To benchmark the performance of our system against the full-download app-
roach, we randomly sampled 5000 apps from the whole dataset to measure the
operation time of Abaleen at different stages against that for full downloads in
the same VMs. 100 threads were run to concurrently collect the content from
the APKs online.

Results. The results of this experimental study are presented in Table 3. On
average, filtering an app took 0.098 s, retrieving its icon, manifest and XMLs
needed 0.352 s and collecting its DEX, binary and others used 2.201 s. With
these parameters, the whole dataset can be comfortably handled by the 3 VM
instances. As an example, all the apps for Day 1 can be processed within 0.94
days. In contrast, downloading full APKs took 7.290 s on average using the same
VM instances. Altogether, going through all 1.8 million apps with the partial
download was about 55 times faster than the full-download solution on the first
day. Further, it is important to note that the workload Abaleen faces decreases
every day due to the overlapping between the apps downloaded cross days. On
the third day, only 47,549 new apps needed to scan. At that point, the speed-up
factor became roughly 85 times.

By comparing the time for app screening through Abaleen and that for
fully downloading an APK, we found that Abaleen was much faster. Among
all unique URLs in our study, more than 95% were processed before their apps
were fully downloaded, showing that Abaleen is capable of supporting online
PHA detection.

4.2 Effectiveness

Fraud and clone detection. Altogether, our fraud scanlet reported 289 sus-
picious APKs and the clone scanlet flagged 1,563. 17 of them passed VirusTotal
and 845 were not detected by the leading anti-virus (AV) scanners we ran in
our study, including AVG and Qihoo 360. From all those reported, we manually
went through 150 random samples and found no false positive. To evaluate the
false negative rate is difficult due to the lack of the ground truth for real fraud
apps within the 90 million APK download URLs. What we did was to compare
our detection results with a report of fraud apps given by our CSP partner.
The comparison shows that all the fraud apps in the report were caught by our
approach.
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Table 3. The time (in seconds) for handling each app by Abaleen.

URL filter APK filter Fraud/clone Other PHA Full download

time (s) 0.00001 0.098 0.352 2.201 7.290

To measure the false positive rate of clone, we randomly sampled 100 detected
clones (after pre-filtering and partially downloading the code for comparison)
and installed them on a device for a comparison with the original apps (those
used for detecting the clones). We manually inspected those detected clones and
found 1 false positive. This gives us a false detection rate (false positives vs. all
detected) of 1% and a false positive rate (false positives vs. all apps analyzed)
of 0.008% (= 1563 × 1%/(106806 + 40054 + 47549)). The problem was caused
by the shared libraries missed on our white list (built from the libraries within
2000 known legitimate apps).

PHA screening. For the PHA screening, what we wanted to understand is
whether the scan on the partial content of APKs works as effectively as on the
whole APKs. To do this, we randomly sampled 2,400 apps and submitted both
their partial APKs (in a dummy ZIP file including DEX code, native code, other
ZIP and APK files within the original APK package and its MD5) and complete
ones to VirusTotal, a platform with 56 AV engines, and use the detection results
of complete APKs as ground truth. 1,137 complete apps were flagged, while 1,101
(96.8% from 1,137) partial apps were also flagged, indicating that the partial
content is effective for the PHA scan (only 3.2% apps undetected). We further
ran AVG and Qihoo AV detector locally on all 96,313 apps (which are needed
for PHA screening for all the three days, see Table 2) and found that 97.3% of
PHAs detected from the complete APKs were also flagged by the scanners on
their partial APKs. Our analysis on the remaining 2.7% apps shows that they
were missed due to the MD5 of their partial APKs, which were calculated by
the scanners to compare with their malware signatures. The MD5 signatures
are known to be fragile, and many scanners (e.g., AVG) are not reliant upon
them. Also, many app stores/websites provide MD5 for their apps, which can be
utilized for PHA detection. Altogether, we conclude that the partial app content
can bring in around 3% false negatives.

4.3 Measurement

From the 90 million real-world app-download URLs analyzed by Abaleen, we
gained a rare opportunity to look into the PHA threat in the Chinese Android
ecosystem from the CSP’s perspective. Our study reveals the surprising perva-
siveness of such apps in the traffic (19,101 in total): particularly, during merely
three days, we observed 1,852 cloned and fraud apps impersonating a wide spec-
trum of legitimate apps, including bank and payment service and the largest
Chinese social network. Many of them are never reported before and still missed
by mainstream AV scanners even after two months. Also found in the study
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are the techniques the PHAs employ to evade detection, e.g., using legitimate
apps’ certificate. Further, even leading app stores apparently are less prepared
for detecting fraud and clone PHAs, which can stay there for a long time. Even
after being removed from the markets, PHAs could still be hosted by CDNs,
which could continue to be used to victimize the mobile users. Also note that
although the measurement study was performed in China, other countries (e.g.,
Russia, India, etc.) may have similar problems. These countries have many third-
party markets in addition to Google Play. Even in the north America, third-party
markets are still popular (e.g., Amazon, SlideME, etc.).

4.3.1 Landscape
Magnitude of the PHA threat. Altogether, Abaleen reported 19,101 PHAs
from the 90 million download URLs collected by our CSP partner in three days,
including 289 fraudulent apps, 1,563 app clones and 17,249 other PHAs, which
were downloaded for 2,263,643 times in these days. Among them, 17 fraud apps
were not flagged by any AV scanners even two months after their download URLs
were gathered. Other fraud apps include those impersonating Bank of Communi-
cations, China Guangfa Bank, Wechat, JD (a leading Chinese e-commerce com-
pany) and China Mobile Online Office. Further, some PHA authors apparently
are highly productive, creating 167 PHAs and spreading them to 17 different
locations (app stores, download portals, etc.).

Insights. The most important insight from the study is that the whole Chi-
nese ecosystem apparently are less mature in terms of security protection. Even
though major app stores indeed made effort to enhance their app vetting, still
a large number of fraud and clone PHAs fall through the cracks. Third-party
stores are even more plagued by different kinds of PHAs, and a large number
of mobile users download PHAs from various sources on the daily base. Even
extremely dangerous Phishing apps, those impersonating banks, popular social
network apps, etc., can be found from just a few days’ traffic.

4.3.2 Understanding PHAs
Fraud. As mentioned earlier, within our traffic, totally 289 fraudulent apps were
downloaded for 16,983 times. Most of them (83.7%) came from app markets or
other legitimate download portals. Most of such apps do not copy the target’s
names, and instead, embed key-terms in their names to deceive the users. Look-
ing into the UIs of such apps, we discovered that most of them include the
views similar to those of the official apps, e.g., the screen for entering bank
accounts and passwords, while the rest actually are quite different, only sharing
icons and names with the official apps. The latter are mostly pushing advertise-
ments and Phishing messages to the users, in the name of the organizations they
impersonate.

We also found 17 zero day PHA. A prominent example is the phony app for
JD.com, a leading Chinese e-commerce company. The app has been signed by
the default AOSP (Android Open Source Project) certificate, and is capable of

http://JD.com
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collecting the user inputs, including her login credential, and can also request
installation of other PHAs, which once started cannot be stopped. The app
appears to be a repackage of the official app but has been heavily obfuscated.
It is remarkable that given the high profile of the victim, the fraud app has still
not been detected by any AV scanner after two months (since Mar. 2nd, 2016,
the first time it showed up in our trace).

Clone. We were surprised to find that 1,563 app clones were downloaded for
134,859 times in just three days. Some of them were developed to deceive the
users for collecting their personal data, just like fraud apps. Others, however,
possibly attempt to steal the original apps’ advertisement revenues. 45.9% of
those cloned apps were from majority appstore (Baidu, Tencent, Qihoo 360),
while 54.1% from other download portals. Interestingly, we also discovered that
339 apps are actually the clones of a pornography app, which itself was flagged
as malware by our CSP partner. This indicates that either these apps all came
from the same author with different certificates or PHA authors even plagia-
rized the code of their peers. Another interesting observation is that some apps
from different authors have an identical sequence of permissions added to their
manifest, which may indicate that they were all repackaged using the same tool.

Other PHAs. As mentioned earlier, our Abaleen prototype runs AVG and
Qihoo 360 as local scanners (for the purpose of avoiding upload of tens of thou-
sands of apps to VirusTotal, see Sect. 4.2) for analyzing the partial content of the
APKs that has not been checked by leading app stores. Altogether this step iden-
tified 17,249 PHAs from the three-days’ traces, and 1,571 of them were signed
by the default AOSP certificates. In addition to the classic harmful activities
like Adware, SMS Trojan and Rootkit, there are 3 PHAs found to be able to
infect both PCs and Android devices through HTMLs. Specifically, such an app
injects a malicious script to HTML files, and when the script is running, all other
HTMLs are further infected. These apps carry different signatures, which could
imply that the same attack trick has been adopted by multiple PHA authors.

Some PHAs were found to utilize some simple techniques to evade detection.
One of them is using random string to replace author information on an app’s
certificate, possibly to avoid the detection based upon the checksum of certifi-
cates. Also, we discovered that 514 PHAs include more than one certificate,
many of these certificates are actually extracted from legitimate apps, which
apparently are used to disguise a PHA as the legitimate one.

4.3.3 Propagation and Defense
PHA hosting. We found that many PHAs were downloaded from app stores
(though less known ones), forums, app download portals and other legitimate
sites, and only 3,483 from unknown places. Particularly, 46.3% fraud or clone
apps were present on the leading Chinese app stores, Baidu, Tencent and Qihoo
at the time the traces were collected, though 106 of them were removed when
we analyzed them. Also, 22.6% of these apps were uploaded to multiple app
markets. These findings indicate that indeed app stores and legitimate websites
are the main channel for PHA propagation.
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On the other hand, some PHAs did come from suspicious domains. From
the 90 million download traces, we found a few likely malicious domains from
which PHAs were delivered. Interestingly, the adversary apparently played
a domain rotation trick to drive download traffic through related domains
to a smaller set of IPs. For examples, we found that download requests for
7xk7r4.com1.z0.glb.clouddn.com and 7xnt11.com1.z0.glb.clouddn.com all point-
ing to the same IP address. Further, some suspicious domains impersonate legiti-
mate ones, such as http://www.baidu.com.860ys.com and http://www.soso.com.
860ys.com, where baidu.com and soso.com are all popular Chinese domains.
Another observation is that the standard redirection trick for protecting malware
hosting sites (such as those for drive-by downloads) is also used to hide PHA
sites: we found that a download request for “http://www.huobaotv.net/194/
e6%88%90%e4%ba%ba%e6%92%ad%e6%94%be%e5%99%a8 j2QFmY.apk” led
to three redirections before the APK could be accessed.

Defense in place. In the presence of the serious PHA threat, the responses
from the leading app stores, however, do not seem to be adequate. Specifically,
in our research, we measured the time it takes for the app stores to clean their
houses, as presented in Table 4. As we can see from the table, even after two
months, most PHA URLs for those stores are still alive.

Table 4. Ratio of removed PHAs after two months.

App store Baidu Qihoo-360 Tencent

Ratio of removed PHAs 24.8% 3.8% 18.9%

Further complicating the situation is the extensive use of CDNs, as mentioned
earlier (Sect. 3.2). Even after a PHA is dropped from an app store, its copy can
still be cached by the store’s CDN for a while, which can still be downloaded
to victimize the user. In our research, we found that though some fraud or
clone PHAs in the Tencent app store were no longer there, they could still be
downloaded from Tencent’s own CDN. To understand how long these code can
still be around, we measured the duration between when they were removed
from the store and the time they were no longer accessible from the CDN. We
found that even 22 days after the apps’ removal from the market, 19.3% of apps
could still be downloaded from the CDN.

5 Discussion

Website cloaking. The design of Abaleen is meant to defend against the threat
from the PHAs hosted by legitimate websites. These sites are supposed to deliver
what a client asks for and not play the trick to change the app or its components
according to the client’s identity. In other words, the adversary in our assump-
tions is passive, who can deposit his PHA to a public site but does not have con-
trol on the download process. This model is realistic, since most apps today are

http://7xk7r4.com1.z0.glb.clouddn.com
http://7xnt11.com1.z0.glb.clouddn.com
http://www.baidu.com.860ys.com
http://www.soso.com.860ys.com
http://www.soso.com.860ys.com
http://baidu.com
http://soso.com
http://www.huobaotv.net/194/e6%88%90%e4%ba%ba%e6%92%ad%e6%94%be%e5%99%a8_j2QFmY.apk
http://www.huobaotv.net/194/e6%88%90%e4%ba%ba%e6%92%ad%e6%94%be%e5%99%a8_j2QFmY.apk
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installed from app stores, well-known application portals and other reasonable
sources, even inside China, where Google Play is not accessible. In the meantime,
risks do exist in which the adversary cheats mobile users into downloading PHAs
from a malicious site (e.g., through social engineering). Although the threat is
outside our adversary model, Abaleen is not defenseless in front of such attacks.
As mentioned earlier (Sect. 3.2), a CSP has a plenty of resources (IP addresses
in particular) to defeat the IP, referer and user-agent based cloaking used by
today’s malicious sites.

On the other hand, the adversary could adapt to our new technique, trying
to detect the partial-download requests and deliver fake content. This attempt,
however, is more complicated than it appears to be, due to the fact that a down-
load starting from somewhere inside an APK is common nowadays for improving
the reliability and performance of data transfer. Most importantly, our analysis
shows that 47.9% of all 70,000 apps have their checksum files (MANIFEST.MF,
the one used for signing apps) at the beginning of their packages while 45.6%
include the files at the end of the APKs. Also, the start and the end of such a
file can be easily identified, even when they are compressed. Therefore, Abaleen
can run a multi-threaded download manager that breaks an APK into blocks
and pretends to concurrently download all the blocks: whether the checksum file
is at the head of the APK can be immediately found in this way (by checking
whether the beginning a few bytes are “META-INF/”); if not, the manager can
be set to first complete the download of the last 5% of the APK, which almost
certainly includes the checksum file. Once the file is retrieved, the website can
no longer cloak, since the file contains the SHA-1 for each document inside the
package and signed by the app developer. This allows us to begin the partial
download immediately after that. Note that multi-threaded download is widely
used by ordinary Android users. Differentiating the behavior of Abaleen from
the normal request, therefore, is challenging if not impossible, which certainly
raises the bar for the attack.

Evasion. Further the PHA author might attempt to evade the security checks
of our scanlets, for example, through using fake APK headers. However, fake
APK headers will cause the APK install to fail on user’s device. Attackers may
also obfuscate app icons, names and XMLs files. As discussed in Sect. 3.2, such
an attack cannot succeed without a significant effort, since the scanlets are all
designed to tolerate certain levels of changes: e.g., we utilized the key-term search
in the app name, perceptual hashing for image similarity comparison in the pres-
ence of color change and distortion, and vhash for fingerprinting the XMLs, which
works even when the files have been moderately altered. On the other hand, fur-
ther research is needed to better understand what the best evasion strategy the
adversary may have in this situation. Also, our PHA scanlet filters out all the
apps in the leading stores. This does not mean that these stores are PHA free.
Instead, the CSP just does not want to replace the roles of the stores in user
protection, which become prominent in recent years (e.g., Google’s enhancement
of Bouncer). Still the security implications here need further investigation.
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HTTPS. Abaleen cannot handle encrypted download traffic. As mentioned ear-
lier, most app markets and download portals today are using HTTP. Actually,
once these app download sources decide to encrypt their traffic, the CSP is
no longer at the position of detecting propagation of malicious content, simply
because it can no longer see the traffic content. On the other hand, the app stores
that utilize HTTPS, like Google Play, are those with proper security protection,
while the stores and download portals choosing less protected communication
mechanisms (HTTP here) tend to be less aggressive in vetting the apps they
host and therefore are supposed to be the focus of our CSP level PHA analy-
sis (assuming that these stores and portals are legitimate, see our adversary
model). In our evaluation, 2,263,643 downloads of 19,101 PHAs were observed,
within the 3-day traffic (including 90 million HTTP downloads) captured from
a single city.

6 Related Work

CSP-level threat identification. Although PHA detection has been inten-
sively studied [13,15,16,25,29], rarely has the problem been investigated from
the CSP perspective. A prominent exception is the study on the malicious traf-
fic observed by cellular carriers [22], which utilizes DNS requests from apps to
understand the activities of mobile malware in the US. Interestingly, the study
indicates that mobile app markets are relative safe and few attack instances were
observed from the traffic. While this might be true back years ago in the US,
the situation is certainly very different now in China, as we found in our study.
Also remotely related to our work is the research on botnet detection, also at
the CSP level (e.g., BotHunter [21]), which detects bots from their communica-
tion traffic. Our study, however, focuses on a large-scale screening of the apps
being downloaded and installed, and therefore needs to address the challenge of
analyzing mass amount of app content.

Fraud and clone app detection. Prior research on fraudulent apps often
relies on the features extracted from the apps and various machine learning
algorithms [12,19] to detect them. Unlike these approaches, the Abaleen scanlet
is designed specifically for finding those impersonating legitimate apps, and can
therefore utilize the similarity of their icons and names and difference in their
signing parties to capture suspicious apps. Also note that as a screening frame-
work, Abaleen is only supposed to identify those suspicious code, rather than
using the thin information acquired by partial downloads to detect malware,
though our scanlet indeed achieves a high accuracy in fraud detection.

Clone detection can be done through code analysis [14,17,31] or using other
app data. Examples in the first category include those utilizing hashes [31], pro-
gram dependence graphs [17], control flow graphs [14] for code similarity com-
parison. The latter includes the recent effort to use UIs for clone app detection:
specifically, ViewDroid [30] and MassVet [15] statically construct an app’s view
graphs to compare them with the UIs of other apps. However, those approaches
are still too heavyweight to be used for a CSP-level analysis. Droidmarking [26]
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detects cloned apps with the help of stakeholders, which is not suitable for CSP-
level detection. Closely related to our work is DroidEagle [28], which also utilizes
an app’s XMLs to detect its clones. However, the approach is rather straightfor-
ward, relying on hash checksums over XMLs to compare UI layouts across apps.
This treatment, however, is rather fragile, and can be easily evaded by the PHA
authors by a minor adjustment of the files. By comparison, our clone scanlet
runs vhash to summarize an XML file, which can tolerate moderate changes to
the XML structures.

7 Conclusion

In this paper, we present the Abaleen framework to support CSP-level online
screening of Android apps. The framework is built on an innovative partial-
download technique, which enables retrieval of a small portion of APK content
for PHA analysis. Running Abaleen on 90 million app-download URLs, we found
that it achieved a nearly 85 times speed-up compared with the existing technique,
which enables an online detection of PHAs, alerting users before download com-
pletion. Further by analyzing the apps detected, our study sheds new light on
the PHA plague in the Chinese Android ecosystem.
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Abstract. Clustering has been well studied for desktop malware analy-
sis as an effective triage method. Conventional similarity-based clus-
tering techniques, however, cannot be immediately applied to Android
malware analysis due to the excessive use of third-party libraries in
Android application development and the widespread use of repackaging
in malware development. We design and implement an Android mal-
ware clustering system through iterative mining of malicious payload
and checking whether malware samples share the same version of mali-
cious payload. Our system utilizes a hierarchical clustering technique and
an efficient bit-vector format to represent Android apps. Experimental
results demonstrate that our clustering approach achieves precision of
0.90 and recall of 0.75 for Android Genome malware dataset, and aver-
age precision of 0.98 and recall of 0.96 with respect to manually verified
ground-truth.

1 Introduction

Triaging is an important step in malware analysis given the large number of
samples received daily by security companies. Clustering, or grouping malware
based on behavioral profiles is a widely-studied technique that allows analysts
to focus their efforts on new types of malware. Multiple static [14,30], dynamic
[2,22], and hybrid [12] analysis based clustering techniques have been proposed
in the desktop malware domain.

With the rapid growth of Android smart devices, malicious Android apps
have become a persistent problem. Security companies receive a list of (poten-
tial zero-day) malware on a daily basis [28]. Those apps that present certain
suspicious behaviors but are not detected by any existing anti-virus scanners
need to be further analyzed manually. Conducting clustering on those incoming
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malware apps can allow the analysts to triage their tasks by (a) quickly identify-
ing malware that shares similar behaviors with known existing malware so they
may not allocate much resources on it; and (b) selecting a few representative
apps from each new malware cluster to prioritize their analysis.

We often observe that existing approaches to group Android malware based
on their behaviors have provided limited capabilities. For example, existing
Android malware detection products may report a family name for a detected
sample; however, samples from one family can have multiple different versions of
malicious code segments presenting significantly different behaviors. Therefore,
the malware family information provided by AV products can be incomplete to
describe crucial malicious code segments of Android malware.

Existing overall similarity analysis based clustering system cannot be imme-
diately applied for Android malware clustering because the malicious code seg-
ments often constitute only a small fraction of an Android malware sample. In
desktop malware clustering, the static or dynamic features are first extracted
from target samples. Then a clustering algorithm (e.g., hierarchical agglomer-
ative clustering) is applied to group the samples such that samples within the
same resulting group share high level of overall similarity. However, we note
that overall similarity analysis performs poorly in Android malware clustering
because of two common practices in Android malware development.

The first practice is repackaging. Malware writers may embed the malicious
code inside an otherwise legitimate app, in which case the real malicious code
segment is likely to be small compared to the original benign app. Our analysis
shows that the ratio of the core malicious code segments to the entire app for a
collection of 19,725 malware samples is between 0.1% and 58.2%. Given the small
percentage of malicious code segments, the conventional clustering approach that
is based on overall code similarity will not work well. For example, two malicious
samples from different families can be repackaged based on the same original
benign app, thus presenting high level of overall similarity. Likewise, Android
malware variants with the same malicious code of one family can be repackaged
into different original benign apps, thus presenting low level of overall similarity.

Another practice is utilizing shared library code. Android apps often include
a variety of third-party libraries to implement extra functionalities in a cost-
effective way. If the library code size is too large compared to the rest of the
app, samples from different malware families may be clustered together simply
because they share the same libraries. We measured the library code proportion
of the 19,725 malware samples. For 13,233 of the samples that used at least
one legitimate library, we found that the average library code ratio is 53.1% in
terms of number of byte code instructions. This means a large portion of an
Android app belongs to libraries. One approach to prevent those libraries from
“diluting” the malicious code segments is to use a whitelist [4–6,8,10] to exclude
all library code. However, previous work leverages only the names of libraries
while building a whitelist as opposed to the content of libraries. We observed that
malware authors injected their malicious code under popular library names, such
as com.google.ssearch, com.android.appupdate, android.ad.appoffer, and
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com.umeng.adutils. Consequently, näıve whitelisting approaches inadvertently
remove certain malicious payloads together with the legitimate library code from
analysis. We found that about 30% of our analyzed Android malware families
disguise their malicious payload under popular library names.

Due to the above two reasons, directly applying overall similarity analysis on
Android apps will not be effective for Android malware analysis. A major chal-
lenge is to precisely identify the malicious code segments of Android malware.
For simplicity, we refer to the core malicious code segments of Android malware
as malicious payload. A payload can be an added/modified part of a repack-
aged malware app, or the entire code of “standalone” malware app excluding
legitimate library code.

In this paper we propose an Android malware clustering approach through
iterative mining of malicious payloads. Our main contributions include:

1. We design and implement an Android malware clustering solution through
checking if apps share the same version of the malicious payloads. By recon-
structing the original malicious payloads, our approach offers an effective
Android malware app clustering solution along with fundamental insights
into malware grouping.

2. We design a novel method to precisely remove legitimate library code from
Android apps, and still preserve the malicious payloads even if they are
injected under popular library names.

3. We conduct extensive experiments to evaluate the consistency and robustness
of our clustering solution. Our experimental results demonstrate that our
clustering approach achieves precision of 0.90 and recall of 0.75 for Android
Genome malware dataset, and average precision of 0.984 and recall of 0.959
regarding manually verified ground-truth.

2 Overview of Android Malware Clustering System

Rather than directly conducting overall similarity analysis between Android mal-
ware samples, we first design a solution to precisely remove legitimate library
code from Android apps. We consider the shared code segments (excluding legit-
imate library code) between the analyzed Android apps as candidate payload,
and find all of the input Android apps through pairwise intersection analysis. For
a group of n apps, each input app will contribute to n − 1 versions of candidate
payloads.

After extracting all candidate payloads, we conduct traditional clustering
analysis on all candidate payloads to group similar ones together. Base on sev-
eral key insights that are learned from analyzing candidate payload clustering
results, we design an effective approach to iteratively mine the payload clusters
that are most likely to be malicious, and make sure that each input app will
only contribute one version of malicious payload. Finally, we use the identified
malicious payload clusters and payload-to-app association information to group
the input Android malware apps. We describe this process in more details below.
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Fig. 1. Overview of the clustering system with five Android malware samples.

Figure 1 illustrates the overview of the clustering analysis system with five
malware samples.

1. Library code removal: We convert malware samples into fingerprint rep-
resentation, and design an effective approach to precisely remove legitimate
library code from each app fingerprint. We denote the library-removed app
fingerprints as fp1, fp2, fp3, fp4, and fp5 accordingly.

2. Candidate payloads extraction: We conduct a pairwise intersection analy-
sis to extract all shared code segments (e.g., candidate payloads) between
input apps. Relying on the app fingerprint representation, we create candidate
payload fingerprints, and record the payload-to-app association information.
For example, fp1-2 indicates that this candidate payload is extracted from
malware sample 1 and 2.

3. Candidate payloads clustering: We then perform hierarchical clustering
on all candidate payloads with a predefined clustering similarity threshold θ,
e.g., the candidate payload fingerprints fp1-2, fp1-3, and fp2-3 are grouped
together as the largest payload cluster based on the overall payload similarity.

4. Malicious payload mining: After removing legitimate libraries, similar
malicious payloads extracted from samples in the same malware family will
become more popular1 due to the “legitimate” reason of code reuse. Therefore,
we design an iterative approach to mine the popular payload clusters from the
clustering results, which are more likely malicious payload. For instance, can-
didate payload cluster containing fp1-2, fp1-3, and fp2-3 is selected as the most
popular cluster. To ensure that each input app only contributes one version
of final malicious payload, we simultaneously update the remaining payload
clusters. e.g., fingerprints fp1-4, fp1-5, fp2-4, fp2-5, fp3-4, and fp3-5 are then
skipped because malware sample 1, 2 and 3 have already been “used”.

5. Malicious samples grouping: We group the original Android samples
based on payload mining results and payload-to-app association information
such that the samples within each app cluster contains the same version of
the malicious payload. For example, malware samples 1, 2, and 3 are grouped
together based on the selected candidate payload cluster containing fp1-2,
fp1-3, and fp2-3.

1 Further intuition explanation and popularity criteria are included in Sect. 4.
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3 App Fingerprint Representation and Utilization

As we can see from Sect. 2, the clustering system requires an effective fingerprint
representation to denote input Android apps and candidate payloads. Ideally,
the fingerprint needs to be constructed from the code segments of the input app
and support two fundamental operations: precisely removing legitimate code,
correctly extracting shared app code.

Based on these requirements, we decide to represent Android apps as bit-
vector fingerprints, by encoding the features that are extracted from app code
through feature hashing [13,14,26]. The value of each bit in the generated fin-
gerprint is either 0 or 1, indicating whether the corresponding app has a specific
feature or not.

This bit-vector format enables us to precisely remove legitimate library code
(Sect. 3.2), extract shared code segments (Sect. 3.3), and reconstruct the original
malicious payload (Sect. 3.4) by utilizing the bit manipulation capability.

3.1 Fingerprint Generation and Fingerprint Comparison

In this work, we use n-gram sequence of Dalvik bytecode to denote an Android
app feature, and use a bit-vector fingerprint to represent the extracted features.
The overall fingerprint generation process is shown in Fig. 2.
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Fig. 2. Overall fingerprint generation procedure

For each Android app, we first use Dexdump [7] to disassemble classes.dex
into Dalvik bytecode, then preprocess the Dalvik bytecode sequences to only
include the major distinctive information and extract the n-gram features from
the preprecessed bytecode sequences. We follow similar approach to extract the
distinctive information (e.g., bytecode opcode) for feature construction as Jux-
tapp [11]. Since feature space is vital to support the key operations designed in
this work, we decide to increase the feature space by including more generic but
meaningful information from each bytecode instruction. The major distinctive
information is separated into 4 categories and summarized in Table 1. Besides the
feature differences shown in Table 1, we extract the n-gram features at the func-
tion level, while Juxtapp extracts n-gram features at the basic block level. For
simplicity, we only show the Dalvik bytecode opcode sequences as the distinctive
instruction information in Fig. 2.
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Table 1. Major feature categories and main differences comparing with Juxtapp

Feature category Examples Our approach Juxtapp

Dalvik bytecode opcode sequences sget, goto, return � �
Java VM type signatures Z(Boolean), B(byte) �
String value of const-string
instructions

– �

Type signatures for “invoked”
functions

f(I,[B)Z �

After extracting all the n-gram features, we then encode all the features in
a bit-vector format fingerprint through feature hashing technique using djb2
hash function. During feature hashing process, we use a tuple A(i, j) to represent
a feature position, in which i is the function offset indicating from which function
the particular n-gram feature is extracted, and j is the bytecode offset indicating
the position of the n-gram feature within the corresponding function. Then the
feature-to-bit information is stored in a map, in which the key is the bit index
within the fingerprint indicating where the feature is stored, and the value is the
list of feature tuples that are mapped to the bit location. With increased feature
space, we hope to reduce majority of the random feature collisions, and allow
each bit index to represent the same n-gram feature content.

Similar to the complete Android apps, individual legitimate libraries and the
candidate malicious payloads are also represented in the same size of bit-vector
fingerprints. The concrete n-gram size and the fingerprint size used for clustering
are determined through analyzing the collision rate of random features, which is
discussed in Sect. 6.2.

To measure the similarity between two fingerprints, we use the Jaccard index,
or the Jaccard similarity, which is defined as the size of intersection divided by
the size of union of two sets. Since each fingerprint is a bit-vector, we leverage
cache-efficient bit-wise AND (∧) and bit-wise OR (∨) operations to compute the
intersection and the union. Then, the similarity of two fingerprints fpa and fpb
is defined as follows:

Similarity(fpa, fpb) =
S(fpa ∧ fpb)
S(fpa ∨ fpb)

, (1)

where S(·) denotes the number of 1-bits in the input.
Our fixed-sized bit-vector fingerprint representation also allows us to easily

measure containment ratio in a similar fashion:

Containment(fpa, fpb) =
S(fpa ∧ fpb)

S(fpa)
, (2)

which measures how much of the content of fpa is contained in fpb.
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3.2 Fingerprint Based Library Code Removal

To precisely remove legitimate library code without excluding a possibly injected
malicious payload, we exclude legitimate library code from an app by removing
the library-mapped bits from the app bit-vector fingerprint. For each legitimate
library, we collect its official jar file and disassemble it into Dalvik bytecode
sequences; then apply the same feature hashing technique to map the n-gram
features of the library code into a bit-vector fingerprint fplib. We then flip all
the bits in the library fingerprint to get fplib. Since the same features contained
in an Android app and the library are mapped to the same bit positions in
their fingerprint representation, we can exclude library-mapped bits from an
app fingerprint by bit-wise ANDing fplib and fpapp. Figure 3 demonstrates the
overall procedure to safely remove legitimate twitter4j library code from a
malware sample.
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Fig. 4. Extracting a candidate payload
from two malware applications

We first conduct statistical analysis for the disassembled apps to identify the
embedded legitimate libraries, and record the years when the target samples
were created. We then obtain2 the officially released library jar files to create
the corresponding library fingerprints, and remove the library code from the
analyzed apps. The library code removal process is applied only when an app
contains code snippets that are defined under corresponding library namespaces.

In our implementation, each library is represented with an individual finger-
print. We encode multiple versions of the same library together in a single library
fingerprint. This aggregated library representation may cause potential feature
collision between the app code and the irrelevant versions of the library code.
However, we empirically demonstrate in Sect. 6.3 that the library code removal
process is precise because different versions of the same library typically share
high level of code similarity due to code reuse, and the size of the single library
is often smaller than the entire app.

3.3 Fingerprint Based Candidate Payload Extraction

The next operation is to extract malicious payloads from malware samples. We
consider the shared code segments (after excluding legitimate libraries) between
2 We randomly select one version of library in each year in case there are multiple

versions of libraries released within the same year.
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each malware sample pair to be a candidate malicious payload. For a group of
malware samples, we obtain the intersection of every fingerprint pair of library-
excluded samples, and consider the shared 1-bits between the sample fingerprints
as a candidate payload fingerprint.

Figure 4 describes the intersection analysis procedure to extract a candidate
malicious payload at a high level. For two malware samples we first build their
fingerprints and exclude the legitimate library bits from the fingerprints. Then we
pinpoint their shared 1-bits (e.g., bits index 2, 3, and 4) as potentially malicious3

bits and construct a candidate payload fingerprint.
During the candidate payload extraction process, we keep track of the asso-

ciation information between the candidate payload (e.g., A1-2) and the corre-
sponding samples (e.g., A1 and A2). We subsequently use the payload-to-app
association information and the malicious payload mining results to group mal-
ware samples.

3.4 Fingerprint Based Malicious Payload Reconstruction

Using the bit-vector fingerprint representation, we can also define the cluster
fingerprint for a version of the candidate payload cluster as the intersection of
all the candidate payload fingerprints in the cluster. The 1-bits contained in the
resulting cluster fingerprint can be viewed as the shared malicious bits for all
input apps that share the same version of malicious payload.

Using the identified malicious bits from app fingerprints, we can then recon-
struct the corresponding malicious payload code by checking the feature-to-bit
mapping information that was recorded during feature hashing, which can be
viewed as the reverse procedure of fingerprint generation. Given the identified
malicious bits, we locate the feature tuples that are mapped to those identified
malicious bits. We use each retrieved feature tuple to locate the n lines of code
where the n-gram feature is extracted, then reconstruct complete malicious code
sequences by properly stitching the identified n lines of code segments together.

In practice, feature collision is possible but becomes negligible with appro-
priate n-gram size and fingerprint size, thus we will rarely recover the irrele-
vant code. To certain extent, payload code reconstruction compensates feature
hashing collisions (e.g., resulting in missing n-grams) as far as the missing n-
gram is within the overlapped original code sequences of recovered features.
The reconstructed malicious payload code can be further inspected to verify its
maliciousness.

4 Malicious Payload Mining

Key insights: (a) In practice, when feature hashing is configured to have a
low collision rate, malware app fingerprints will not contain a large number of
shared 1-bits unless they do share certain common features (e.g., payload code

3 malicious payload mapped.
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snippets). (b) Likewise, if a target dataset contains malware samples that do
share the same version of the malicious payload, then the candidate payload
fingerprints extracted from those samples will contain similar shared 1-bits and
be automatically clustered into the same group. (c) After removing legitimate
library code from an app, similar malicious payloads have higher chances to form
a larger cluster than the ones related to less popular libraries or coincidentally
shared code segments. (d) Compared to coincidentally shared code segments,
similar malicious payloads will have a larger shared code base because of “legiti-
mate” reason of code reuse in the same malware family, and the fingerprints for
the malicious payloads will have a larger amount of shared 1-bits.

Based on the above key insights, we design the following strategies to itera-
tively select representative candidate payload clusters based on payload popular-
ity, which is determined based on the three criteria: the entry size of a payload
cluster l, the number of distinct apps associated with a payload cluster m, and
1-bits count of a payload cluster fingerprint k.

– We count the number of candidate payload fingerprint entries in each cluster,
and maximize the possibility of extracting core malicious payloads by selecting
the clusters with the largest number of payload fingerprint entries. Payload
cluster size l is a direct indicator for the popularity of the shared code segments
between malware samples, and such popular shared code is a good candidate
for one version of malicious payloads since we have already filtered out popular
legitimate library code.

– We measure the distinct apps m that contribute to generating candidate pay-
load fingerprints of each cluster, and select the clusters with the largest number
of distinct apps if they have the same number of payload entries. Payload clus-
ters that contain a large number of unique payload entries are often associated
with a large number of distinct apps, and we use this app association informa-
tion to break the tie in case the number of cluster entries are the same since
distinct apps can be considered as another sign of comparative popularity.

– We obtain the intersection bits k of payload fingerprint entries in each clus-
ter as the cluster fingerprint. If two clusters are associated with the same
number of distinct apps, we then select the one with the larger number of
1-bits in its cluster fingerprint. In this way, we can extract the payload with
a larger code size, and it helps to increase the likelihood of getting malicious
payloads together with shared libraries, and we subsequently exclude possibly
remaining libraries later.

– During cluster selection, we keep track of which apps have been used to gen-
erate candidate payload fingerprints in the previously selected clusters, and
consider already-selected apps as “inactive”. We update the remaining pay-
load clusters by removing candidate fingerprint entries that are associated
with “inactive” apps. Skipping such fingerprints allows us to extract one ver-
sion of the malicious payload from each app. This helps to merge all the
shared core malicious code together, and only extract the widely shared mali-
cious code between all apps, which also helps to reduce the probability of
extracting non-malicious payload code.
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– We omit a payload cluster if the corresponding cluster fingerprint contains
less than the minimum k number of 1-bits, meaning that the extracted code
segments are too small. It forces the algorithm to break the current large pay-
load cluster into smaller clusters with a larger code size, and prevent different
malware families from being clustered together. We set the minimum number
of 1-bits k to 70 since the majority of the analyzed Android malware app
fingerprints had more than 70 1-bits.

– We exclude a candidate payload cluster if it becomes empty after the update in
the last step, or if the number of payload fingerprint entries is too small (e.g.,
l = 1). This is because Clusters with only a single candidate payload entry
provide little additional popularity information, and are more likely to contain
less popular libraries or other coincidentally shared code snippets. We consider
malware samples associated with such payload clusters as unclustered, and the
unclustered app is evaluated as a singleton.

The shared payloads between Android samples can be library code seg-
ments, malicious payloads, copy-and-pasted code segments, or other coinciden-
tally shared code segments. The above payload mining strategy enables us to
select the most likely malicious candidate payload groups. Legitimate non-library
reused code may be collected together with malicious payload only if it is shared
across a significant number of apps. Otherwise, the less popular legitimate non-
library code will be evidently excluded during the (popularity-based) payload
mining procedure. If the same benign app is indeed used by many malware
apps, we can further exclude original benign app code (i.e., the legitimate non-
library reused code) in a similar way to remove library code using a benign app
fingerprint.

5 Optimize Overall Clustering Efficiency

According to the previously discussed malicious payload mining procedure, we
will generate n×(n−1)

2 versions of candidate payload fingerprints given n malware
samples, but the hierarchical clustering algorithm also has a quadratic complex-
ity with respect to the number of analyzing targets. Due to the overall quartic
complexity of the algorithm, directly using it to analyze large number of samples
becomes a time-consuming task. Therefore, we further develop two methods to
improve the scalability of the clustering analysis procedure, and hereafter refer
them as Opt-1, and Opt-2.

5.1 Opt-1: Optimize Each Pairwise Computation

The first method to speed up the overall clustering process is to optimize each
pairwise computation. Broder proposed minHash [3] to quickly estimate the
Jaccard similarity of two sets without explicitly computing the intersection and
the union of two sets. By considering our bit-vector fingerprint as a set, we apply
minHash to further transform a large fingerprint into a smaller size signature, and
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calculate the similarity of minHash signatures to estimate the Jaccard similarity
of the original fingerprints.

To apply minHash, we define a minHash function output of our bit-vector
fingerprint h(fp) to be the first non-zero bit index on a randomly permutated
bits order of the fingerprint. We then apply the same minHash function to two
fingerprint fpa and fpb. This will generate the same minHash value when the
first non-zero bit indexes for two fingerprints fpa and fpb are the same. Since
the probability that the firstly encountered bit is a non-zero bit for fpa and fpb
is conceptually the same as Jaccard similarity Similarity(fpa, fpb) [18], we use
such probability Pr[h(fpa) = h(fpb) to estimate the original Jaccard similarity.

The probability estimation becomes more accurate if more independent min-
Hash functions are used together. Formally, we define a minHash signature
sig(fp) to be a set of k minHash function values extracted from k round of
random permutations over the fingerprint, and represent it as follows: sig(fp) =
[h1(fp), h2(fp), ..., hk(fp)]. We denote the similarity of two minHash signatures as
the ratio of equal elements between sig(fpa) and sig(fpb).

Instead of maintaining k random permutations over the bit-vector, we follow
a common practice for using minHash technique and use k different hash func-
tions to simulate k random permutations, where each hash function maps a bit
index to a value. In order to create k hash functions, we first generate k random
numbers, then use FNV [9] hash algorithm to produce a basic hash output for
each bit index, and finally apply XOR operation between each random number
and the hash output to get the k hash outputs. For each hash function, we select
the smallest hash value (to simulate the first non-zero bit index) over all of the
bit indexes of the fingerprint as the final hash output.

Note that the FNV hash value and the k random numbers are all 32 bits
unsigned integers, and they can be used to safely simulate random permutation
over 512MB bit-vector fingerprint. In practice, the k value usually needs to be
larger than 100 to generate good enough results [18]. We set k to be 256 in our
experiments, and thus convert each bit-vector fingerprint into a 1 KB minHash
signature.

In order to evaluate the potential impact of Opt-1 on accuracy, we conduct
two experiments on the smallest 50 malware families4: one experiment (Exp-1)
with no optimization, and another experiment (Exp-2) using Opt-1. We used the
clustering output from Exp-1 as a reference, and measured the precision and
recall of the clustering output from Exp-2. The precision and recall indicate how
similar the two experiments results are, and are used to check the impact on
accuracy brought by Opt-1.

Our experiments showed that on average Exp-2 took less than 83% time to
complete compared to Exp-1 for the analyzed families, and the average preci-
sion and recall of the clustering output were 0.993 and 0.986. Opt-1 significantly
reduce the overall memory consumption with minHash signature representa-
tion and improve the pairwise computation efficiency with almost zero accuracy
penalty.

4 We select those families since their family sizes are under 100 and all the experiments
for those families can be finished within 1 h.
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5.2 Opt-2: Employ approximate clustering

The previous optimization is still not sufficient for using the algorithm to analyze
large scale malware samples. For instance, when analyzing with 2,000 samples,
the algorithm will create 1,999,000 candidate payloads, and it results in approx-
imately 2.0 × 1012 pairwise comparison. Even 1% of the total comparison still
takes lots of computation resources. To resolve the scalability issue for a large
dataset input, we further adopt prototype-based clustering technique [16,22] to
achieve approximate clustering.

Specifically, we randomly divide the target samples into small size (e.g., 150)
groups. For each group, we apply hierarchical clustering analysis on the shared
payload within the group, and create a prototype fingerprint for each payload
cluster by applying intersection analysis (to obtain all the shared 1-bit) among
the payload fingerprints in each cluster. We then conduct hierarchical clustering
analysis on all the collected prototype fingerprints. In this way, we represent
a group of similar payload fingerprints with a single prototype fingerprint, and
the algorithm proceeds with approximate clustering analysis using the prototype
fingerprints instead of the original payload fingerprints.

We design two experiments to evaluate the impact of Opt-2 on accuracy:
one experiment (Exp-3) using Opt-1 only, and another experiment (Exp-4) using
Opt-1 and Opt-2. Due to the quartic complexity of the original algorithm, the
overall analysis (using Opt-1 only) will get dramatically slower for analyzing
larger number of malware samples. For instance, we found it takes about one
day to analyze 1000 samples and more than five days to analyze 2000 samples
for Exp-3. In order to conduct the evaluation within reasonable amount of time,
we randomly select 70% of labeled samples from the largest 4 malware families
and conduct the two experiments for each family. We used the clustering output
generated by Exp-3 as reference, and measured the precision and recall of the
clustering output generated by Exp-4 to evaluate the accuracy impact brought
by Opt-2.

Our experiments showed that on average Exp-4 can speed up more than
95% compared to Exp-3, and the average precision and recall for the analyzed
4 families were 0.955 and 0.932. This optimization makes it feasible to apply
our algorithm to analyze a bigger scale of malware families while providing a
desirable trade-off option between speed and accuracy.

6 Experiments

In this section, we describe the data preparation procedure, and report malware
clustering results and key findings of our experiments.

6.1 Data Preparation

We obtained a large collection of potentially malicious Android apps (rang-
ing from late 2010 to early 2016) from various sources, include Google Play,
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VirusShare [23] and third party security companies. In order to prepare ground-
truth family labeling for the datasets, we queried the collected apps against
VirusTotal [29] around April 2016, and used the scanning results to filter out
potentially ambiguous apps.

To assign family labels to the collected malware samples, we applied the
following steps: (1) tokenized VirusTotal scanning results and normalized the
contained keywords, and then counted the total number of occurrences of
each keyword. (2) removed all the generic keywords such as Virus, Trojan,
and Malicious. (3) detected keyword aliases by calculating the edit distances
between keywords. For example, Nickyspy, Nickspy, Nicky, and Nickibot were
all consolidated into Nickispy. (4) assigned the dominant keyword as the family
label for the sample. A keyword was considered as dominant if it satisfied two
conditions: (a) the count of the keyword was larger than a predefined threshold
t (e.g., t = 10), and (b) the count of the most popular keyword was at least twice
larger than the counts of any other keywords.

Table 2. Clearly labeled malware families

Name Size Name Size Name Size Name Size Name Size

Dowgin 3280 Minimob 145 Erop 48 Vidro 23 Koomer 15

Fakeinst 3138 Gumen 145 Andup 48 Winge 19 Vmvol 13

Adwo 2702 Basebridge 144 Boxer 44 Penetho 19 Opfake 13

Plankton 1725 Gingermaster 122 Ksapp 39 Mobiletx 19 Uuserv 12

Wapsx 1657 Appquanta 93 Yzhc 37 Moavt 19 Svpeng 12

Mecor 1604 Geinimi 86 Mtk 35 Tekwon 18 Steek 12

Kuguo 1167 Mobidash 83 Adflex 32 Jsmshider 18 Spybubble 12

Youmi 790 Kyview 80 Fakeplayer 31 Cova 17 Nickispy 12

Droidkungfu 561 Pjapps 75 Adrd 30 Badao 17 Fakeangry 12

Mseg 245 Bankun 70 Zitmo 29 Spambot 16 Utchi 11

Boqx 214 Nandrobox 65 Viser 26 Fjcon 16 Lien 11

Airpush 183 Clicker 58 Fakedoc 26 Faketimer 16 Ramnit 9

Smskey 166 Golddream 54 Stealer 25 Bgserv 16

Kmin 158 Androrat 49 Updtkiller 24 Mmarketpay 15

Although our malware labeling process may look similar to AVclass [27], we
developed the approach independently without the knowledge of the AVclass;
and both work was finished around the same time. The unlabeled samples were
not included in the malware dataset for clustering analysis. In summary, we
collected 19,725 labeled malware samples from 68 different families, and the
detailed breakup of the malware samples is shown in Table 2.

Besides the above labeled malware dataset, we also collected Android
Genome malware samples [34] to obtain an optimal clustering threshold, and
randomly selected a list of 10,000 benign samples from AndroZoo [1] to evaluate
the accuracy of the library removal procedure. In particular, we selected benign
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apps that were created around the same time (before Jan 1st, 2016) as most of
the labeled malware samples, and their latest (Mar 2017) VirusTotal re-scanning
results showed no malicious labels.

6.2 Feature Collision Analysis

The accuracy of the proposed clustering system and the correctness of the recon-
structed malicious payloads relies on the assumption that unique features will
be mapped to unique bit locations within the bit-vector fingerprint. Feature col-
lision is directly impacted by two parameters: an n-gram size, and a bit-vector
fingerprint size. To evaluate a feature collision rate, we varied the n-gram size
(2 and 4) and the bit-vector fingerprint size, and then measured how many
unique features were mapped to the same single bit position, i.e., feature colli-
sion. Figure 5 illustrates feature collision with regard to different n-gram sizes
and fingerprint sizes.

The graph shows that feature collision occurs more frequently when the fin-
gerprint size is small. The total number of unique features depends on the n-
gram size. For the labeled malware, it was about 4.1 million for 2-gram features,
and 14.4 million for 4-gram features. And for the benign dataset, it was about
15.2 million for 2-gram features, and 45.3 million for 4-gram features. Accord-
ing to the pigeonhole principle, when putting N unique features into M buckets,
with N > M , at least one bucket would contain more than one unique features.
This means that we need to set the bit-vector fingerprint size larger than the
total number of unique features to reduce feature collision. Therefore, we set the
default n-gram size to be 2 and default fingerprint size to be 1024 KB which pro-
vides 8,388,608 unique bit positions. With the above configuration, the unique
feature per bit value was reduced to 0.49 to process the labeled malware dataset.
Notice that the complete feature space is unlimited for our system due to the
inclusion of arbitrary string values, however the true unique features contained
in a certain dataset will be limited.

Fig. 5. Random feature collision status Fig. 6. Benign apps lib removal accuracy
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6.3 Library Removal Accuracy

Besides the random feature collision discussed in the previous section, it is also
possible that feature collision may happen between the app code and the irrel-
evant versions of the library code. To evaluate the library removal accuracy, we
assumed the libraries used in benign samples were not purposefully manipulated,
and measured the precision (e.g., how much of the removed code is true library
code) and recall (e.g., how much of the true library code is removed) of library
code removal results for the prepared benign samples. Particularly, we consid-
ered the code that were defined under the official library names in the benign
samples as ground truth library code, and created the true library code finger-
print fptrue by mapping all the features from the true library code to a bit-vector
fingerprint. After removing the library code from each app, we identified the bit
positions that were presented in the original app fingerprint and were removed
subsequently; and used the identified bit positions to generate removed library
code fingerprint fpremoved. Using the containment ratio calculation function as
discussed in Sect. 3.1, library removal precision Plib is defined as S(fptrue∧fpremoved)

S(fpremoved)
,

and library removal recall Rlib is defined as S(fptrue∧fpremoved)
S(fptrue)

, where S(·) denotes
the number of 1-bits in the bit-vector.

Figure 6 depicts the library removal precision and recall for the benign apps.
We observed that 9,215 benign apps contained at least one legitimate library,
and the median values for precision and recall were 0.94, 0.95, respectively. We
manually inspected certain corner cases with poor precision or recall. The poor
precision cases were due to incomplete true library code extraction, e.g., an older
version of Admob library contained obfuscated version of code which were not
under com.google domain, thus not counted as true library code. The poor
recall cases were due to excessive true library code inclusion, e.g., all the code
of the Androidify app was defined under com.google domain which made the
distinction of library code obscure.

6.4 Malware Clustering Results

In order to select an optimal clustering threshold for the system and assess the
performance comparing with other known Android malware clustering system,
we first applied our clustering system on the Android Genome malware dataset.
We used the classical precision and recall [2,12,14,19,22,30] measurements to
evaluate the accuracy of clustering results. Figure 7 describes the clustering pre-
cision and recall results with various thresholds.

The highest F-measure score was 0.82 with precision of 0.90 and recall of 0.75
when the clustering threshold was 0.85. We set the default clustering threshold
value to be 0.85 for subsequent clustering analysis. As a reference, ClusThe-
Droid [17] achieved precision of 0.74 and recall of 0.73 while clustering 939 of
Android Genome malware samples.

Note that the clustering outputs produced by our system is per sub-version
instead of per family, therefore it is more challenging to properly obtain fine-
grained ground truth labels to evaluate the accuracy. In fact, this was the main
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Fig. 7. Clustering results of Android
Genome malware dataset

Datasets Samples Clusters Precision Recall

D1 1064 33 0.977 0.972

D2 1462 27 0.987 0.964

D3 1708 29 0.985 0.978

D4 1039 31 0.971 0.960

D5 2277 29 0.988 0.989

D6 1066 30 0.971 0.919

D7 1256 29 0.985 0.981

D8 1680 29 0.985 0.980

D9 2074 31 0.996 0.858

D10 1612 31 0.992 0.989

Fig. 8. Clustering results of different
sub-version datasets

reason for a bit low recall of our system with respect to coarse-grained ground
truth labels, e.g., one Android malware family samples might contain multiple
versions of malicious payloads. While reviewing the clustering results, we noticed
that 13 families of the Genome dataset contained more than one versions of
malicious payloads. For example, Basebridge contained 7 versions of malicious
payloads with threshold of 0.85.

Therefore, we separated the labeled malware samples into sub-versions using
the clustering system, and further designed several experiments to evaluate the
clustering results with manually verified sub-version ground-truth. We manu-
ally verified the correctness of the sub-version cluster results. For the generated
sub-version clusters, we first checked if the extracted payload was the indeed
malicious. Since each version of the extracted payloads usually had similar class
names and Dalvik code sequences, the maliciousness of the extracted payload can
be spotted by checking the extracted class names (e.g., similar pseudo-random
pattern). In case the class names were not enough to determine its malicious-
ness, we then went through the reconstructed code segments and checked if
there were any suspicious activities or behaviors, such as stealthily sending out
premium SMS. After verifying the maliciousness of the extracted payload, we
then randomly selected 3 samples from each sub-version group, and checked if
the selected apps contained the same version malicious payload. Out of 19,725
malware samples that were labeled with 68 families, we obtained a total of 260
verified sub-version clusters, and each cluster corresponded to one version of the
malicious payloads.

We considered the VirusTotal family labels together with the manually
verified sub-version information as ground truth, and prepared 10 experiment
datasets. For each dataset, we randomly selected 30 sub-versions from the entire
ground truth dataset (e.g., 260 sub-versions), then mixed the selected samples
together as one input dataset. The resulting datasets had different overall sizes
as each individual sub-version had different numbers of samples. The detailed
dataset sizes and sample clustering results for the 10 datasets are presented in
Fig. 8. On average, the sample clustering algorithm separated the input mal-
ware samples into 29.9 clusters, which was extremely close to the reference set
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(i.e., 30 sub-versions). For the 10 experiment datasets, the clustering algorithm
achieved average precision of 0.984 and average recall of 0.959, the worst precision
and recall for clustering multiple malware families were 0.971 and 0.858, which
suggests that the clustering system generated consistent and reliable outputs.

6.5 Key Findings for Malicious Payload Analysis

In this section, we report the key findings learned from the malware sub-version
verification process.

Significant library code ratio: From the labeled malware datasets, we found
that the average library code ratio was larger than 50% for the malware sam-
ples that contained at least one legitimate library. This highlights that existing
Android malware similarity analysis work becomes ineffective without properly
handling library code.

Limited versions of malicious payloads: During our experiments, we
acquired 260 versions of malicious payloads from 68 labeled malware families
while conducting clustering of each family. Among the 68 malware families,
27 families had only one version of malicious payload, and 5 families had more
than 10 different versions of malicious payloads. For example, Dowgin was the
largest malware family and had 23 versions of malicious payloads extracted.

Malicious payload under popular namespaces: We conducted manual
analysis on the extracted malicious payloads, and noted that 29% of Android
malware families injected their malicious payloads under popular namespaces,
such as com.google and com.android, or legitimate advertisement library
namespaces like com.umeng. Table 3 in Appendix includes the detailed malicious
payload findings for the identified families. Since com.google and com.android
are the main class names used by Android Open Source Project and Google
Mobile Services, such malicious payloads can easily get overlooked.

7 Limitation

Our Android malware clustering approach is based on the assumption that mal-
ware authors often reuse the same malicious payload to create new malicious
samples, and the obfuscated code sequences of malicious payload would largely
remain the same if they are generated by the same obfuscation tool. This is con-
sistent with our findings as listed in Sect. 6.5. Theoretically, advanced obfusca-
tion techniques (e.g., class encryption or dynamic loading) can eventually break
the assumption by generating a new version of a malicious payload for every
new malware instance, or completely removing the original malicious payload
from classes.dex. The attack and defense against malware obfuscation is a
long-term arms race, and has already been observed in the traditional desk-
top malware analysis domain. For example, as observed in desktop malware
research [15,20,24], independent systems might be desirable to specifically han-
dle the de-obfuscation process. We consider it as a separate pre-processing step
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for malware analysis, and leave a comprehensive solution for advanced obfus-
cation as an orthogonal problem. In addition, using dynamic analysis with a
sandbox can help further analyze malware. However, dynamic analysis also suf-
fers from its own limitations, such as sandbox evasion and code coverage.

We believe that the Android malware analysis community can benefit from
our work in several aspects. (a) It offers an alternative malicious payload extrac-
tion approach in which we can extract a more complete version of malicious pay-
loads even if the malicious payloads are injected under popular library names
or under existing functions. (b) It provides a viable solution for conducting
Android malware clustering analysis by checking if malware samples contain
the same version of malicious payloads. (c) Majority of Android malware sam-
ples are not obfuscated or obfuscated by simple obfuscation tools, even for the
samples we collected recently. For example, within the extracted 260 versions
of malicious payloads, we observed 181 of them had plain code, and only 79 of
them used naming obfuscation, which was a simple basic obfuscation technique
being used in practice. (d) As long as there are shared malicious code segments
regardless of obfuscation among the samples from the same malware family,
our algorithm extracts the shared patterns and uses them for deciding malware
clustering output.

8 Related Work

8.1 Android Malware Clustering and App Similarity Analysis

Due to the challenges that are discussed in Sect. 1, existing Android malware
clustering approaches have not been widely adopted yet. ClusTheDroid [17] was
a system for clustering Android malware using 38 features extracted from profiles
of reconstructed dynamic behaviors. Samra [25] extracted features from Android
app manifest files, and could only cluster applications into two categories using
K-means algorithm. Without properly excluding the features or behaviors that
belong to the original benign apps or legitimate libraries, traditional clustering
approaches would not be able to produce promising results.

Similarity analysis is essential for clustering, but existing Android applica-
tion similarity analysis techniques were mainly designed to detect repackaged
apps [11,31,33], and such overall similarity analysis based techniques cannot be
directly applied for Android malware clustering for reasons described in Sect. 1.
SMART [21] proposed a semantic model for Android malware analysis, but was
mainly built for malware detection and classification. Both Juxtapp [11] and
our system use n-gram bytecode features and feature hashing [13,14,26] as basic
building blocks. However, Juxtapp excluded library code for further analysis if
the core application component does not directly invoke it, which still couldn’t
differentiate a legitimate library and a bogus library with the same legitimate
name. Furthermore, directly using Juxtapp to cluster Android malware will suf-
fer the same limitations like other traditional clustering methods as it is based
on overall similarity.
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8.2 Android Malicious Payload Analysis

Malicious payload identification and extraction is essential for Android malware
analysis. Zhou and Jiang [34] manually analyzed malicious payloads of Android
malware and summarized the findings in the Android Malware Genome project.
DroidAnalytics [32] presented a multi-level signature based analytics system to
examine and associate repackaged Android malware. MassVet [5] analyzed graph
similarity at the function level and extracted the shared non-legitimate func-
tions as malicious payloads through commonality and differential analysis, and
it applied a whitelist to exclude legitimate library code from analysis.

MassVet [5] is close to our work in that both extract malicious payloads
from Android malware. However, similar to existing Android malware analysis
work [4–6,8,10], MassVet simply used library name based whitelists to exclude
popular library code, which can result in the failure of malicious payload extrac-
tion, and lead to false negatives in malware detection if malicious payloads are
injected under popular library namespaces. In addition, due to the function
level payload granularity of MassVet, it can not be easily designed to achieve
payload-sharing based Android malware clustering, since the same function could
be shared by different malware families, and the malware samples from the
same family usually share multiple functions at the same time. Last but not
least, MassVet won’t be able to extract malicious payload injected under exist-
ing functions, while the instruction level payload granularity designed by our
approach enables us to precisely identify one version of malicious payload from
each Android malware, which includes all of the malicious components even if
they are injected in existing functions or across different functions.

9 Conclusion

In this paper, we proposed a practical solution to conduct Android malware clus-
tering. As an internal component, the fingerprint based library removal technique
was used to distinguish a legitimate library and a bogus library that may share
the same library name. Unlike traditional clustering techniques which exam-
ine the overall similarity, we achieved Android malware clustering by checking
whether the analyzed Android malware samples shared the same version of mali-
cious payload code. Compared with existing malicious payload extraction sys-
tem, our approach extracts malicious payloads even if they were injected under
popular library namespaces or under existing benign functions, and it provides
a more complete picture of the whole malicious payload. Our comprehensive
experimental results demonstrate that our clustering approach generates consis-
tent and reliable outputs with high precision and recall.
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A Detailed malicious payload mining results

Table 3. Malicious payload under popular libraries

Family Popular class names used

Nickispy
com.google.android.info.SmsInfo

com.google.android.service.UploadService

Uuserv
com.uuservice.status.SysCaller.callSilentInstall

com.uuservice.status.SilenceTool.MyThread.run

Fjcon
com.android.XWLauncher.CustomShirtcutActivity

com.android.XWLauncher.InstallShortcutReceiver

Yzhc
com.android.Base.Tools.replace name

com.android.JawbreakerSuper.Deamon

Gumen
com.umeng.adutils.AdsConnect

com.umeng.adutils.SplashActivity

Basebridge
com.android.sf.dna.Collection

com.android.battery.a.pa

Spambot
com.android.providers.message.SMSObserver

com.android.providers.message.Utils.sendSms

Moavt
com.android.MJSrceen.Activity.BigImageActivity

com.android.service.MouaService.InitSms

Zitmo
com.android.security.SecurityService.onStart

com.android.smon.SecurityReceiver.sendSMS

Mseg
com.google.vending.CmdReceiver

android.ad.appoffer.Copy 2 of DownloadManager

Droidkungfu
com.google.ssearch.SearchService

com.google.update.UpdateService

Dowgin
com.android.qiushui.app.dmc

com.android.game.xiaoqiang.jokes.Data9

Fakeinst
com.googleapi.cover.Actor

com.android.shine.MainActivity.proglayss Click

Ksapp
com.google.ads.analytics.Googleplay

com.google.ads.analytics.ZipDecryptInputStream

Bankun
com.google.game.store.bean.MyConfig.getMsg

com.google.dubest.eight.isAvilible

Pjapps
com.android.MainService.SMSReceiver

com.android.main.TANCActivity

Adwo
com.android.mmreader1030

com.google.ads.AdRequest.isTestDevice

Svpeng
com.adobe.flashplayer .FV.doInBackground

com.adobe.flashplayer .FA.startService

Opfake
com.android.appupdate.UpdateService

com.android.system.SurpriseService

Badao
com.google.android.gmses.MyApp

com.android.secphone.FileUtil.clearTxt
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Abstract. Understanding how application programming interfaces
(APIs) are used in a program plays an important role in malware
analysis. This, however, has resulted in an endless battle between mal-
ware authors and malware analysts around the development of API
[de]obfuscation techniques over the last few decades. Our goal in this
paper is to show a limit of existing API de-obfuscations. To do that,
we first analyze existing API [de]obfuscation techniques and clarify an
attack vector commonly existed in API de-obfuscation techniques, and
then we present Stealth Loader, which is a program loader using our
API obfuscation technique to bypass all existing API de-obfuscations.
The core idea of this technique is to load a dynamic link library (DLL)
and resolve its dependency without leaving any traces on memory to be
detected. We demonstrate the effectiveness of Stealth Loader by analyz-
ing a set of Windows executables and malware protected with Stealth
Loader using major dynamic and static analysis tools and techniques.
The result shows that among other obfuscation techniques, only Stealth
Loader is able to successfully bypass all analysis tools and techniques.

Keywords: API obfuscation · Windows · Program loader · Malware
analysis

1 Introduction

Malware analysis is essential for fighting against cyber crime. Analysts take
advantage of various analysis methods to reveal the behaviors of malware effec-
tively. Windows userland APIs are important information sources for under-
standing the behaviors and intentions of malware since a sequence of APIs
expresses significant part of the functionalities of malware. That is, the API
is a fundamental factor for malware analysis.
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Malware authors understand this situation, so they try to hide APIs used in
their malware by managing various obfuscation tricks [13,19,20,23]. One exam-
ple is API redirection, which is an obfuscation technique that aims to confuse
the control flows from call instructions to APIs by inserting junk code in the
middle of the flows. Another example is DLL unlinking, which aims to make
control flows from call instructions unreachable to the code of any recognized
APIs. This is done by hiding loaded DLLs containing API code, which possibly
becomes the destination of the control flows.

To fight against these API obfuscations, many API de-obfuscation approaches
have been proposed in the past few decades [11,18,23]. For example, one app-
roach aggressively collects traces of loaded DLLs from multiple sources, e.g.,
the Process Environment Block (PEB), Virtual Address Descriptor (VAD), or
callback events, and creates a complete list of loaded DLLs. Another approach
deeply performs a control flow analysis until it finds any API code reachable
from call instructions in the original code by taking advantage of various static
analysis techniques.

An essential step in these API de-obfuscations is API name resolution,
i.e., relating a virtual memory address to an API name. To do that, API de-
obfuscations have to identify the positions of loaded DLLs that contain API
code. As far as we have investigated, to identify the positions of loaded DLLs,
most existing API de-obfuscations are likely to depend on data structures that
the underline operating system (OS) manages. For example, in the case of Win-
dows, many analysis tools are designed to acquire the addresses of loaded DLLs
from PEB or VAD. We consider that, behind this design, they expect that the
Windows OS precisely manages loaded DLLs and keeps track of them by storing
the information related to them in specific data structures. We also consider
that this expectation possibly becomes an attack vector for malware authors to
evade existing API de-obfuscations.

Our goal in this paper is to show a limitation of existing API de-obfuscations
by actually attacking this expectation. To do that, we propose a new Windows
API obfuscation technique and implement it in our prototype, Stealth Loader.
The design principle of Stealth Loader is that it loads a DLL without leav-
ing any traces in Windows-managed data structures. To achieve this, we have
two approaches. The first is that we redesign each phase of program loading
to become trace-free. The second is that we add two new features to a pro-
gram loader; one is for removing some fields of the Portable Executable (PE)
header of a loaded DLL from memory, and the other is for removing behavioral
characteristics of Stealth Loader itself.

One effect of Stealth Loader is that a stealth-loaded DLL1 is not recognized as
a loaded DLL by analysis tools and even by the Windows OS because there is no
evidence in Windows-managed data structures to recognize it. Due to this effect,
calls of the functions exported from stealth-loaded Windows system DLLs, such
as kernel32.dll and ntdll.dll, are not recognized as API calls because the DLLs
are not recognized as loaded, i.e., analysis tools fail API name resolution.

1 A DLL loaded by Stealth Loader.
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The main challenge of this paper is to design a trace-free program loader
without destroying the runtime environment for running programs. A program
loader is one of the core functions of an OS. Therefore, simply changing the
behavior of a program loader is likely to affect the runtime environment, and
that change sometimes leads to a program crash. In addition, changes excessively
specific to a certain runtime environment lose generality as a program loader.
We need to redesign each step of the program loading procedure carefully while
considering the effects on runtime environments that our changes may cause.

To demonstrate the effectiveness of Stealth Loader against existing API de-
obfuscations, we embedded Stealth Loader into several Windows executables
and analyzed them with major malware analysis tools. The result showed that
all of these tools failed to analyze the invoked or imported APIs of stealth-
loaded DLLs.

In addition, to show that the current implementation of Stealth Loader is
practical enough for hiding malware’s fundamental behaviors, we protected five
real pieces of malware with Stealth Loader and then analyzed them by using
a popular dynamic analysis sandbox, Cuckoo Sandbox [15]. The result of this
experiment showed that pieces of malware whose malicious activities were obvi-
ously identified before applying Stealth Loader successfully hid most of their
malicious activities after Stealth Loader was applied. Consequently, they could
make Cuckoo Sandbox produce false negatives.

The contributions of this paper are as follows.

– We analyze existing API [de]obfuscation techniques and reveal a common
expectation of API de-obfuscations which possibly becomes an attack vector
for malware authors to bypass analyses and detections.

– We introduce Stealth Loader, a program loader using our Windows API obfus-
cation technique that exploits this attack vector.

– We demonstrate the effectiveness of Stealth Loader by analyzing Windows
executables and real malware protected with Stealth Loader. The results show
that Stealth Loader successfully evaded seven primary analysis tools.

– We discuss possible countermeasures against Stealth Loader. We present that
Stealth Loader can evade API de-obfuscation techniques proposed in academic
studies as well.

2 Problem Analysis

In this section, we explain existing API obfuscation and de-obfuscation tech-
niques that are used in both major malware analysis tools and academic studies.
Then, we clarify a common expectation shared in API de-obfuscations.

2.1 API Obfuscation

API obfuscation is a technique for hiding imported or invoked APIs from static
or dynamic analysis tools, respectively. Malware authors often take advantage
of this technique to protect their malware from being detected or analyzed. We
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Fig. 1. Three patterns of API redirection. The upper one is the case of a normal
Windows executable before applying API redirection. (a) is a case in which the reference
of the call instruction is modified. (b) is a case in which the entry of IAT is modified.
(c) is a case in which API redirection is conducted with stolen code.

first mention the basics of the PE format. Then, we explain IAT obfuscation
and DLL unlinking as a technique against static analysis. Last, we explain API
redirection as one technique against both static and dynamic analyses.

A PE executable usually has an import address table (IAT) and import name
table (INT) to manage external APIs if it depends on them. IAT is a table that
contains function pointers to APIs whose code is located in external DLLs. INT
is also a table that contains the names of external APIs corresponding to IAT
entries. Since these tables are referenced from the header of a PE executable,
malware analysts can acquire the list of APIs that a piece of malware depends
on from its PE header when they analyze a PE-format piece of malware.

To interfere with static analysis, malware often deletes INT and disconnects
the reference to the tables from its PE header. This is called IAT obfuscation.
Even if a piece of malware does not have any references to the tables from its
PE header, since it keeps the list of APIs inside and restores it at runtime, it
can sustain the feasibility of the original functionality.

DLL unlinking [11] is another technique for interfering with static analy-
sis by obfuscating loaded DLLs. It makes control flows from call instructions
unreachable to any APIs by hiding loaded DLLs that could possibly become the
destination of the flows. Since a control flow of an external function call does not
reach any memory area where a Windows system DLL is mapped, analysis tools
fail to recognize this flow as an API call reference. This technique achieves this
by removing the registered meta-information of the DLL from the lists of PEB,
which is a data structure of Windows for managing loaded DLLs and their status
in a process. Since some Windows APIs, e.g., EnumProcessModules, depend on
PEB to extract loaded DLL lists, unlinked DLLs can avoid being listed by these
APIs.
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API redirection [23] is a technique for attacking both static and dynamic
analyses by obfuscating API references. As Fig. 1-(a) shows, it modifies call
instructions in the original code. Otherwise, as Fig. 1-(b) shows, it modifies IAT
entries. With these modifications, it forces control flows to APIs in order to
detour a stub, which executes junk instructions and finally jumps to APIs. By
inserting a stub between an IAT entry or call instruction and API code, malware
breaks the direct connection between the caller and callee of an API. Since many
analysis tools expect API call instructions to directly refer to API code or at
least via IAT, this technique can confuse their API resolution.

Additionally, advanced API redirection, shown in Fig. 1-(c), is involved with
stolen code [23]. At the same time, when API redirection is applied, it copies
some instructions at the entry of an API, i.e., mov edi, edi and push ebp, to
right before the jmp instruction in the allocated buffer for a stub. An execution
performed after running these instructions in the buffer is transferred to the
instruction after the copied ones in API code, i.e., mov ebp, esp. By doing this,
malware can avoid analyses that monitor the executions of an API at the entry
instruction of an API, i.e., mov edi, edi.

2.2 API De-obfuscation

Malware analysts take advantage of API de-obfuscation techniques to clarify
imported APIs or invoked APIs for static or dynamic analysis, respectively.

Regarding IAT obfuscation, it is necessary to reconstruct an obfuscated IAT
and deleted INT. To reconstruct them, most existing IAT reconstruction tools,
such as impscan (a plugin of The Volatility Framework [11]) and Scylla [14],
follow four steps: acquiring a memory dump, finding IAT, resolving API, and
repairing the PE header.

1. Run a target program until it resolves imported APIs and fills in IAT with
the resolved addresses. Then, acquire a memory dump of it.

2. Find the original IAT by analyzing code sections of a target program, e.g.,
collecting memory addresses often referred by indirect call instructions, such
as call [0x01001000].

3. Resolve API names from each entry of the found IAT by identifying the loaded
addresses of each DLL. Then, make a list of imported APIs.

4. Restore INT with the resolved API names and then update the pointers in
the PE header to point to the found IAT and restored INT.

To defeat DLL unlinking, even if a loaded DLL is not listed on PEB, we can
find the existence of an unlinked DLL by parsing VADs if we use ldrmodules,
which is a plugin of The Volatility Framework [11]. In addition, Rekall [17]
identifies loaded DLLs in memory dumps on the basis of the debug section
included in the PE header of each loaded DLL. In a PE header, a globally unique
identifier (GUID) can be contained, and Rekall sends a query to a Microsoft
symbol server to find the DLL related to the GUID.

Some dynamic analysis tools, such as Cuckoo Sandbox [15], make the corre-
spondence between addresses and API names by monitoring APIs or events. For
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example, by monitoring LoadLibrary, we can get both the loaded address of a
DLL and its file name at the same time since the address is returned from this
API and the file name is passed to this API.

To fight against API redirection, Sharif et al. [18] proposed an approach of
statically analyzing control flows from call instructions until the flows reach any
API code. Even if there is a stub between them, their approach can get over it
by continuously analyzing flows to the end of a stub.

To overcome stolen code, shown in Fig. 1-(c), Kawakoya et al. [9] proposed a
way of tracking the movement of API code with taint analysis. Their approach
sets taint tags on API code and tracks them by propagating the tags to identify
the position of copied instructions.

2.3 Analysis

A common intention of existing API obfuscations is to attack API name resolu-
tion, i.e., the intention is to make it difficult to relate a virtual memory address to
an API name. If analysis tools fail to make the relationship between an executed
virtual memory address with an API name, they fail to recognize an execution
transfer from a virtual address to API code as an API call.

On the other hand, strategies existing API de-obfuscations take to fight
against API obfuscations are either to complement lacking or hidden DLL infor-
mation by finding the information from multiple data sources or to perform
deeper code analysis until they reach a certain point where DLL information is
found. In both cases, they rely on the meta-information of DLL, which is stored
in some of the data structures the OS manages. In other words, they expect
that the OS precisely manages loaded DLLs, keeps track of their loading and
unloading, and stores their meta-information in certain data structures.

3 Design

We propose a new API obfuscation technique with Stealth Loader, which is a
program loader that does not leave any traces of loaded DLLs in Windows-
managed data structures. In this section, we present an overview of Stealth
Loader and then introduce the design of it.

3.1 Overview

Figure 2 shows the components of Stealth Loader and how it works.
Stealth Loader is composed of exPEB, sLdrLoadDll, sLdrGetProcAddress,

and Bootstrap. exPEB is the data structure to manage the meta-information of
stealth-loaded DLLs. sLdrLoadDll and sLdrGetProcAddress are exported func-
tions and the main components of Stealth Loader. sLdrLoadDll is used for load-
ing a specified DLL in the way we explain in this Section, while sLdrGetPro-
cAddress is used for retrieving the address of an exported function or variable
from a specified stealth-loaded DLL. Bootstrap is a code snippet for resolving
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Fig. 2. How Stealth Loader works and its components. (a) is the file layout of an
executable before Stealth Loader is embedded. (b) is the one after Stealth Loader is
embedded and the components of Stealth Loader are also described. (c) is the process
memory layout after Bootstrap has resolved the dependencies of an executable and
stealth-loaded DLLs.

the API dependencies of an executable and stealth-loaded DLLs by using the
two exported functions.

We first embed Stealth Loader into an executable which we want to protect.
After an executable begins to run, Bootstrap code is executed. It identifies nec-
essary DLLs for an executable and then loads them using sLdrLoadDll. At that
time, it does not rely on Windows-loaded DLLs2 to resolve the dependency of
stealth-loaded DLLs. After loading all necessary DLLs and resolving APIs, the
execution is transferred to the code of an executable from Bootstrap.

Our intention behind Stealth Loader is to attack API name resolution as
other API obfuscations do. We achieve this by hiding the existences of loaded
DLLs. This is the same intention as DLL unlinking, but our approach is more
robust against API de-obfuscations. We tackle this from two different directions.
The first is that we redesign the procedure of program loading to be trace-free.
The second is that we add two new features to a program loader; one is for
removing traces left on memory after completing DLL loading, and the other is
for removing characteristic behaviors of Stealth Loader itself.

3.2 Program Loader Redesign

We first break the procedure of a program loader into three phases: code map-
ping, dependency resolution, and initialization & registration. Then, we observe
what traces may be left at each phase for loading a DLL. On the basis of obser-
vation, we redesign each phase. In addition, we consider that the side effects
caused by the redesigns are reasonable as an execution environment.

2 DLLs loaded by Windows.
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Code Mapping

Observation. The purpose of this phase is to map a system DLL that resides on
disk into memory. Windows loader conducts this using a file-map function, such
as CreateFileMapping. The content of a mapped file is not loaded immediately. It
is loaded when it becomes necessary. This mechanism is called “on-demand page
loading.” Thanks to this, the OS is able to consume memory efficiently. That is, it
does not always need to keep all the contents of a file on memory. Instead, it needs
to manage the correspondence between memory areas allocated for a mapped
file and its file path on a disk. Windows manages this correspondence using the
VAD data structure. A member of VAD indicates the path for a mapped file
when the corresponding memory area is used for file mapping. This path of a
mapped file in VAD becomes a trace for analysis tools to detect the existence of
a loaded system DLL on memory. ldrmodules acquires the list of loaded DLLs
on memory by parsing VADs and extracting the file paths of mapped files.

Design. Instead of using file-map functions, we map a system DLL using file and
memory operational functions such as CreateFile, ReadFile, and VirtualAlloc to
avoid leaving path information in VAD. The area allocated by VirtualAlloc is
not file-mapped memory. Therefore, the VAD for the area does not indicate any
relationship to a file. The concrete flow in this phase is as follows.

1. Open a DLL file with CreateFile and calculate the necessary size for locating
it onto memory.

2. Allocate continuous virtual memory with VirtualAlloc for the DLL on the
basis of size.

3. Read the content of an opened DLL file with ReadFile and store the headers
and each section of it to proper locations in the allocated memory.

Side Effect. Avoiding file-map functions for locating a DLL on memory imposes on
us two side effects. The first is that we have to allocate a certain amount of memory
immediately for loading all sections of a DLL when we load the DLL. That means
that we cannot use on-demand page loading. The second is that we cannot share
a part of the code or data of a stealth-loaded DLL with other processes because
memory buffers allocated with VirtualAlloc are not shareable, while ones where
files are mapped are sharable. Regarding the first, recent computers have enough
physical memory, so it would not be a big problem even if we could not consume
memory efficiently. With regard to the second, we did not find any system DLL
using shared memory with other processes in our experiments. Because of these
reasons, we consider these effects to not be that significant.

Dependency Resolution

Observation. The purpose of this phase is to resolve the dependency of a loading
DLL. Most DLLs somehow depend on APIs exported from other DLLs. There-
fore, a program loader has to resolve the dependency of a loading DLL to make
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Fig. 3. Example of resolving dependency by Stealth Loader. (a) is the layout before
Stealth Loader starts, (b) shows that the stealth-loaded advapi32.dll does not create
a dependency on the Windows-loaded ntdll.dll, and (c) shows that the stealth-loaded
advapi32.dll creates a dependency on the stealth-loaded ntdll.dll.

the DLL ready to be executed. When the Windows loader finds a dependency,
and if a dependent DLL is already loaded into memory, it is common to use
already loaded DLLs to resolve the dependency, as shown in Fig. 3-(b).

However, this dependency becomes a trace for analysis tools, i.e., behav-
ioral traces. For example, if a stealth-loaded advapi32.dll has a dependency on a
Windows-loaded ntdll.dll, the APIs of ntdll.dll indirectly called from advapi32.dll
are possibly monitored by analysis tools. In other words, we can hide a call of
RegCreateKeyExA, while we cannot hide one of NtCreateKey. Analysis tools
can get similar behavior information from NtCreateKey as that from RegCre-
ateKeyEx since RegCreateKeyEx internally calls NtCreateKey while passing
almost the same arguments.

Design. To avoid this, Stealth Loader loads dependent DLLs by itself to resolve
the dependency of a loading DLL. In the case of Fig. 3, it loads ntdll.dll by
itself to resolve the dependency of advapi32.dll. As a result, after advapi32.dll
has been loaded and its dependency has been resolved, the memory layout is
like that shown in Fig. 3-(c). On the basis of this layout, when an original code
calls RegCreateKeyExA, RegCreateKeyExA internally calls the NtCreateKey of
stealth-loaded ntdll.dll. Therefore, this call is invisible to analysis tools even if a
Windows-loaded kernel32.dll and ntdll.dll are monitored by them.

Side Effect. The side effect caused by this design is reduced memory space effi-
ciency. That is, Stealth Loader consumes approximately twice as much memory
for DLLs as the Windows loader since it newly loads a dependent DLL even if
the DLL is already located on memory. We consider this side effect to not be
that significant because recent computers have enough memory as we previously
mentioned.
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Initialization and Registration

Observation. Windows loader initializes a loading DLL by executing the initialize
function exported from a DLL, such as DllMain. At the same time, it registers a
loaded DLL to PEB. In PEB, the meta-information of loaded DLLs is managed
by linked lists. Many analysis tools often check PEB to acquire a list of loaded
DLLs and their loaded memory addresses.

Design. Stealth Loader also initializes a loading DLL in the same way as Win-
dows loader does. However, it does not register the meta-information of loaded
DLL to PEB to avoid being detected by analysis tools through PEB.

Side Effect. The side effect of this design is that stealth-loaded DLLs cannot
receive events such as process-creation or process-termination. This is because
these events are delivered to DLLs listed in PEB. We consider this effect to not
be very significant because most system DLLs do not depend on these events at
all as far as we have investigated. Most of them are implemented to handle only
create-process and -thread events, which are executed mainly when the DLL is
first loaded.

3.3 Stealthiness Enhancement

Apart from finding traces in Windows-managed data structures, there are other
ways to identify the existence of a loaded DLL. In this subsection, we present
the possibility of detecting loaded DLLs from characteristic strings in PE header
of a certain DLL or behaviors of Stealth Loader itself. Then, we introduce our
approaches to hiding the string patterns and behaviors.

PE Header Removal. Stealth Loader deletes some fields of the PE header on
memory after it has loaded a DLL and resolved its dependency. This is because
some of the fields may become a hint for analysis tools to inferring a DLL loaded
on memory. For example, GUID is possibly included in the debug section of the
PE header of a system DLL. Another example is that the tables of exported and
imported API names of a system DLL, which are pointed from the PE header,
also provide useful information for analysis tools. Like these examples, the PE
header contains a lot of information for identifying a DLL.

In Stealth Loader, we delete the debug section, import name table, and export
name table. Basically, the debug section is not used by the original code in a
process under normal behavior; it is only used for debugging purposes. The
import name table is necessary to resolve dependencies only when a DLL is
being loaded. After it is completed, this table is not referenced from the code
and data. Therefore, we can simply delete them after a DLL has been loaded.

Unlike the above two, we cannot simply delete the export name table since
it is accessed after a DLL has been loaded in order to retrieve the address of
an exported API of the loaded DLL at runtime. This is called “dynamic API
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resolution”. Therefore, we prepared an interface, sLdrGetProcAddress, to resolve
APIs exported from stealth-loaded DLLs. Also, we prepared a data structure,
exPEB, in Stealth Loader to manage the exported API names and corresponding
addresses of each stealth-loaded DLL. Thanks to them, we can delete the export
name table as well without losing the dynamic API resolution capability of
Stealth Loader.

Reflective Loading. Reflective Loading is used for hiding the API calls invoked
from Stealth Loader itself. While the calls invoked from original code are suc-
cessfully hidden by Stealth Loader, API calls invoked from Stealth Loader are
still visible to analysis tools because Stealth Loader basically uses APIs exported
from Windows-loaded DLLs. These exposed API calls give a chance for analy-
sis tools to detect the existence of Stealth Loader because some of the behav-
iors of Stealth Loader are not often seen in normal programs. For example,
CreateFile(‘‘kernel32.dll’’) is very characteristic since programs normally
load a DLL with LoadLibrary(‘‘kernel32.dll’’) and do not open a Windows
system DLL as a file with CreateFile. The position of Stealth Loader may allow
analysis tools to perform a special analysis on Stealth Loader to extract loaded
DLLs information from it.

To avoid this, we use Reflective Loading. The core idea of Reflective Loading
is to copy all sections of an already loaded DLL to allocated buffers during the
code mapping phase instead of opening a file and reading data from it. This idea
is inspired by Reflective DLL injection, introduced in Fewer’s paper [4], as a way
of stealthily injecting a DLL into another process. We leveraged this to load a
DLL as a part of Stealth Loader without opening the file of each DLL.

If a target DLL is not loaded at that time, we use the APIs of the stealth-
loaded kernel32.dll to open a file, allocate memory, and conduct the other steps.
kernel32.dll and ntdll.dll are always loaded because these DLLs are loaded by
Windows as a part of process initialization. Thus, we can completely hide all
API calls invoked by Stealth Loader from analysis tools monitoring API calls.

4 Implementation

We implement Stealth Loader on Windows 7 Service Pack 1. In this section, we
explain dynamic API resolution of Stealth Loader and stealth-loadable APIs.

4.1 Dynamic API Resolution

Stealth Loader supports dynamic API resolution with sLdrLoadDll and sLdrGet-
ProcAddress. When Stealth Loader loads a DLL depending on the LdrLoadDll
or LdrGetProcedureAddress of ntdll.dll, e.g., kernel32.dll, it replaces the entries
of IAT to the two functions in the loading DLL with pointers to sLdrLoadDll or
sLdrGetProcAddress. Under this situation, when the original code attempts to
dynamically load a DLL, for example, using LoadLibrary, which internally calls
LdrLoadDll, the API call to LoadLibrary redirects to sLdrLoadDll and then
Stealth Loader loads a specified DLL.
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4.2 Stealth-Loadable APIs

In Stealth Loader, we support 12 DLLs: ntdll.dll, kernel32.dll, kernelbase.dll,
gdi32.dll, user32.dll, shell32.dll, shlwapi.dll, ws2 32.dll, wininet.dll, winsock.dll,
crypt32.dll, and msvcrt.dll. This means that we support in total 7,764 APIs
exported from these 12 DLLs. The number of unsupported APIs is 1,633. The
reasons we cannot support them are described in Appendix A. Since these rea-
sons are very detailed and specific to the Windows 7 environment, we put them
into this appendix. We can support more DLLs with no or at least little cost.
However, we consider the current number of supported APIs to be enough for
the purpose of this paper because we have already covered 99% (1018/1026) of
the APIs on which IDAScope, a popular static malware analysis tool [16], focuses
as important APIs. In addition, we also covered 75% (273/364) of the APIs on
which Cuckoo Sandbox, a popular sandbox whose target APIs are selected by
malware analysts [15], sets hooks for dynamic analysis. Regarding the remaining
25% of APIs, they separately reside in several DLLs in a small group.

5 Experiment

To show the feasibility of Stealth Loader, we conducted two types of experiments:
one for comparing its resistance capability against existing analysis tools to other
API obfuscations, and another for confirming its effectiveness with real malware.

5.1 Resistance

To show the resistance capability of Stealth Loader against existing API de-
obfuscation tools, we prepared test executables and analyzed them with seven
major static and dynamic analysis tools that are primarily used in the prac-
tical malware analysis field. These tools are public available and cover various
techniques we mentioned in Subsect. 2.2. Regarding the other techniques which
are not covered by these tools, we qualitatively discuss the resistance capabil-
ity of Stealth Loader against them in Subsect. 7.3 because they are not public
available.

The test executables were prepared by applying Stealth Loader for nine Win-
dows executables, calc.exe, winmine.exe, notepad.exe, cmd.exe, regedt32.exe,
tasklist.exe, taskmgr.exe, xcopy.exe, and ftp.exe. After applying Stealth Loader
for them, we verified if the executables were runnable without any disruptions
and as functional as they had been before applying Stealth Loader by interact-
ing with running test executables, such as clicking buttons, inputting keystrokes,
writing and reading files, and connecting to the internet.

For comparison, we prepared tools using different API obfuscation tech-
niques, that is, IAT obfuscation, API redirection which is explained in Fig. 1-(c),
and DLL unlinking. Using the tools, we applied these techniques to the same
nine Windows executables. We analyzed them with the same analysis tools and
compared the results.
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Static Analysis. In this experiment, we analyzed each test executable with four
major static analysis tools, IDA [7], Scylla [14], impscan (The Volatility Frame-
work [11]), and ldrmodules (The Volatility Framework [11]). IDA is a de-facto
standard dis-assembler for reverse engineering. Scylla is a tool that reconstructs
the destroyed IAT of an obfuscated executable. impscan and ldrmodules are plu-
gins of The Volatility Framework for reconstructing IATs and making a list of
all loaded modules on memory, respectively.

Table 1. Static and dynamic analysis resistance results

API obfuscations Static analysis Dynamic analysis

IDA Scylla impscan ldrmodules Cuckoo traceapi mapitracer

Stealth Loader � � � � � � �
IAT Obfuscation � N/Aa

API Redirection � b � N/Aa � � �
DLL Unlinking � �

� indicates that obfuscation technique successfully evaded tool. Stealth Loader evaded
all the tools.
a IAT Obfuscation and API Redirection are a technique for API obfuscation while
ldrmodules is a tool for extracting loaded DLLs.
b When we manually gave the correct original entry point of a test executable to
Scylla, it could identify imported APIs correctly. When we did not, it failed.

We explain how each analysis tool, except for IDA, resolves API. Scylla
acquires the base addresses of loaded DLLs from the EnumProcessModules
API, which internally references PEB and resolves API addresses with Get-
ProcAddress. In addition, it heuristically overcomes API redirection. impscan
also acquires the base addresses from PEB and resolves API addresses from the
export address table (EAT) of each loaded DLL. ldrmodules acquires the base
addresses from VAD.

Procedure. We first statically analyzed each test executable using each analysis
tool, and then identified imported APIs. In the case of ldrmodules, we identi-
fied loaded DLLs. Then, we manually compared the identified imported APIs
or loaded DLLs with ones we had acquired from the same executables before
applying Stealth Loader.

Result. The left part of Table 1 shows the result of this experiment. Stealth
Loader successfully defeated all static analysis tools, while the others were ana-
lyzed by some of them. This is because there were no hints for the analysis
tools to acquiring the base addresses of loaded DLLs. IAT Obfuscation failed
to defeat Scylla and impscan because these two tools are originally designed
for reconstructing IAT by themselves in the way we explained in Subsect. 2.2.
API redirection failed to evade Scylla because Scylla is designed for heuristically
overcoming API redirection. DLL unlinking failed to evade ldrmodules because
ldrmodules identified loaded DLLs through VADs, not PEB.
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Dynamic Analysis. In this experiment, we analyzed each test executable
with three dynamic analysis tools, Cuckoo Sandbox [15], traceapi [8], and
mini apitracer [21]. All of them are designed to monitor API calls. Cuckoo Sand-
box is an open-source, dynamic malware analysis sandbox. traceapi is a sample
tool of Detours, which is a library released from Microsoft Research for hooking
API calls. mini apitracer, shown as mapitracer in Table 1, is a plugin of DECAF
[6], which is a binary analysis framework built on QEMU [2].

Each analysis tool relates API names and memory addresses as follows.
Cuckoo acquires the base address of loaded DLLs from callback functions regis-
tered with the LdrRegisterDllNotification API and resolves API addresses with
GetProcAddress. traceapi acquires the base address of loaded DLLs with LoadLi-
brary and resolves API addresses with GetProcAddress. mini apitracer acquires
the base addresses of loaded DLLs from PEB and resolves API addresses by
parsing the EAT of each DLL.

Procedure. We first ran each test executable on each dynamic analysis environ-
ment and monitored the API calls. Then, we compared the monitored API calls
with the ones we had collected from the same executable before applying Stealth
Loader.

Result. The right part of Table 1 shows the results of this experiment. Stealth
Loader successfully evaded all dynamic analysis tools, while the others were
captured by some of them. IAT obfuscation totally failed because the dynamic
analysis tools did not depend on IAT at all to identify the locations of APIs.
API redirection successfully defeated all of them. This is because even though
the dynamic analysis tools set hooks on the first instruction of each API for
API monitoring, API redirection avoided executing them. As we explained in
Subsect. 2.1, when an API is called API redirection transfers an execution to
the code at a few instructions after the entry of the API. DLL unlinking also
failed because the analysis tools calculated the locations of each API from the
addresses of loaded DLLs and set hooks on each API before DLL unlinking had
hidden DLLs.

5.2 Real Malware Experiment

The purpose of this experiment is to demonstrate that the current Stealth Loader
implementation is practical enough for hiding the major characteristic behaviors
of malware even though it has unsupported APIs.

Procedure. First, we collected 117 pieces of malware from VirusTotal [22] that
were detected by several anti-virus products. At that time, we picked up four ones
(DownloadAdmin, Win32.ZBot, Eorezo, and CheatEngine) from them because
they were not obfuscated at all. We also picked one piece of malware (ICLoader)
from 113 obfuscated ones as a representative case of obfuscated ones. Next,
we applied Stealth Loader to the five pieces of malware. Then, using Cuckoo
Sandbox, we analyzed both the malware before and after Stealth Loader was
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Table 2. Real malware experiment results

without Stealth Loader with Stealth Loader

Malware Name Score Signatures Events # of Calls Score Signatures Events # of Calls

DownloadAdmin 3.6 11 16 9,581 1.8 5 12 224

Win32.ZBot 5.0 11 46 1,350 1.4 4 10 183

Eorezo 5.6 15 192 20,661 0.8 3 10 64

CheatEngine 4.8 12 209 126,086 1.6 5 10 120

ICLoader 4.0 11 33 3,321 4.0 11 38 1,661

Score is calculated from hit signatures, which are scored depending on severity of each behavior;

score of less than 1.0 is benign, 1.0 - 2.0 is warning, 2.0 - 5.0 is malicious, and higher than 5.0 means

danger. Signatures means number of hit signatures. Events indicates number of captured events. #
of Calls is number of API calls captured by Cuckoo Sandbox.

applied. Last, we compared the results of the analyses in terms of the malicious
score, the number of detected events, hit signatures, and monitored API calls.
The malicious scores were calculated from observed behaviors matched with
pre-defined malicious behavioral signatures [15].

To achieve the purpose of this experiment, we believe that the variety
of malware’s behaviors is more important than the number of malware. We
also consider that the behaviors of the 4 pieces of malware (DownloadAdmin,
Win32.ZBot, Eorezo, and CheatEngine) can cover the majority of behaviors,
such as modifying a specific registry key or injecting code into another process,
exhibited in all of the pieces of malware we collected for this experiment. This is
because the signatures hit by analyzing the 4 ones contributed to detecting 637
out of 792 events which were generated by analyzing the 117 pieces of malware.

To ensure that Stealth-Loader-applied malware actually ran and conducted
malicious activities, we configured Cuckoo Sandbox to write a memory dump file
after each analysis had been done, and we then manually analyzed it with The
Volatility Framework to confirm the traces which had been seen before applying
Stealth Loader, such as created files or modified registries, were actually found.

Result. Table 2 shows the results of this experiment. Regarding DownloadAd-
min, Win32.ZBot, Eorezo, and CheatEngine, Stealth Loader successfully hid
the malicious behaviors and then the scores dropped to warning or benign from
malicious or danger levels.

Regarding ICLoader, the score was the same before and after applying Stealth
Loader because the same behaviors were observed. The reason is that this piece
of malware acquires the base address of kernel32.dll by itself without depending
on Windows APIs. That is, it directly accesses PEB, parses a list in PEB to
find an entry of kernel32.dll, and then acquires the base address of kernel32.dll
from the entry. From this base address, the malware acquires the addresses of
LoadLibrary and GetProcAddress of the Windows-loaded kernel32.dll and then
resolves the dependencies of the other APIs by using these two APIs. Since
this malware does not use LoadLibrary or the equivalent APIs of the stealth-
loaded kernel32.dll for dynamic API resolution, Stealth Loader did not have a
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chance to obfuscate the calls of dynamically resolved APIs invoked from this
malware. We consider this to not be a limitation because our expected use case
of Stealth Loader is to directly obfuscate compiler-generated executables, not
already-obfuscated executables. This behavior, i.e., acquiring the base address
of kernel32.dll through PEB, is a typical behavior of obfuscated executables.

6 Related Work

In this section, we briefly repeat the API obfuscation techniques which we men-
tioned in Sect. 2 for comparison with Stealth Loader and then explain other
types of API obfuscations related to our research.

IAT obfuscation has the different target from Stealth Loader. It disturbs
API name resolution by deleting INT and IAT and disconnecting to them from
PE header, while Stealth Loader focuses on Windows-managed data structures,
such as PEB or VAD. DLL unlinking obfuscates loaded DLLs. Its purpose is
the same as Stealth Loader. However, DLL unlinking focuses on only PEB, not
VAD, while Stealth Loader does on both. API redirection obfuscates the control
flow from API call instructions to recognized API code whereas Stealth Loader
attacks API name resolution. That is, Stealth Loader tries to make API code
unrecognizable.

One piece of research close to us is Abrath et al.’s work [1]. They proposed
a technique of linking Windows system DLLs statically with an executable and
deleting imported API information from it to prevent API calls from being
monitored. The effect of linking Windows system DLLs with an executable could
be similar to the effect we obtained. However, static linked DLLs may lose the
portability of a PE executable since system DLLs tend to depend on specific
Windows versions and the size of a linked executable becomes larger.

Aside from the obfuscation techniques that we explained in Sect. 2.1, another
type of obfuscation approach, called “API sequence obfuscation”, has been pro-
posed. Shadow Attack [13] is an API sequence obfuscation that works by parti-
tioning one piece of malware into multiple processes. These multiple processes
execute a part of the original behaviors of the malware. Illusion Attack [19] is
another API sequence obfuscation that passes requested system call numbers
and arguments via ioctl to an underlining kernel driver. From a monitoring tool
viewpoint, it looks like a sequence of ioctl. These attacks mainly focus on scram-
bling executed API calls to avoid detection, while our approach focuses on hiding
each API call to escape from both detection and analysis.

7 Discussion

In this section, we first discuss platform dependency of Stealth Loader. Then,
we discuss other de-obfuscations and possible countermeasures against Stealth
Loader.
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7.1 Platform Dependency

As we mentioned in Sect. 4, the current Stealth Loader is implemented to run
on Windows 7 environment. However, we believe that the design explained in
Sect. 3 is also applicable to other Windows platforms including Windows 8 and
10. Of course, since Windows 8 and 10 have different implementations from Win-
dows 7, we need an effort to make Stealth Loader runnable on these platforms
without any issues. More concretely, we have to resolve some corner cases like
we mentioned in Appendix A. In other word, the other part of this paper is
applicable to other Windows platforms.

Regarding applying Stealth Loader to Linux, we consider that the designs of
Stealth Loader are applicable to Linux platforms. Since Linux OS and libraries
are less dependent each other than Windows ones, the implementation of Stealth
Loader for Linux may become simpler than the one of Windows. We consider
that Stealth Loader on Linux could make library calls invisible to library-call-
monitoring tools, such as ltrace.

7.2 Other De-obfuscations

Eureka [18] relates the base address of a loaded DLL with a DLL file by monitor-
ing NtMapViewOfSection API calls and extracting the specified file name and
the return address. Since Stealth Loader does not use file-map functions at all,
this API is not called when Stealth Loader loads a DLL. As a result, Eureka fails
API name resolution, even though it overcomes stolen code or API redirection
with performing deep program analyses.

API Chaser, proposed in [9] relates code with API name before starting an
analysis by setting taint tags containing API name on the code. Then it keeps
track of its relationship by propagating the tags during its analysis. Since it
makes the relationship before Stealth Loader works, it may not be affected by
Stealth Loader. However, it is widely known that tag propagation is disconnected
at implicit flow code [3]. So, attackers are able to evade it by simply processing
code with implicit flow without changing the value of it.

7.3 Countermeasures

Monitor at Kernel Layer. One countermeasure against Stealth Loader is
monitoring at kernel layer. Stealth Loader has to depend on Windows system
service calls, while it is independent of userland API code. Even though much
useful information has already been lost when the executions of some APIs,
e.g., network-related APIs, reach the kernel layer, a series of service system calls
possibly provides a part of the whole picture regarding the behaviors of the
executable protected with Stealth Loader.

Specialized Analysis Environment. Another one is to install hooks on sys-
tem DLLs in an analysis environment before starting an analysis by modifying
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a file of each DLL on disk. This kind of modifications is likely to be detected
and warned by Windows. However, since modified DLLs are loaded by not only
benign processes but also processes protected with Stealth Loader, analysis tools
probably identify the executions of APIs by the installed hooks when they are
executed.

Instrumentation tools, such as Intel PIN [12], could possibly become a solu-
tion against Stealth Loader because they can possibly identify the locations of
stealth-loaded DLLs by tracking the all memory reads and writes related to the
DLLs. However, a major drawback of these tools is that they are easily detectable
by malware. So, if malware analysts use these tools for analyzing Stealth-Loader-
applied malware in practice, they need a further consideration for hiding these
tools from malware.

Detecting DLLs from Memory Patterns. Scanning memory and finding
specific patterns for a DLL may be effective. By preparing the patterns of each
DLL in advance and scanning memory with these patterns, it could be possible
to identify the modules loaded on memory. Also, comparing binaries using a
different tool such as BinDiff [24] is also effective. By comparing the control
flow of a Windows system DLL with that on memory, we could identify the
existence of specific DLLs. However, since there are several binary- or assembly-
level obfuscation techniques, such as [10], we need different counter-approaches
to solve this type of problem.

Inferring DLLs from Visible Traces. Since current Stealth Loader avoids
supporting some APIs as we explained in Appendix A, this fact may give static
analysis tools a hint to infer a DLL. For example, if analysis tools identify the
position of the IAT of a stealth-loaded DLL using the way we explained in
Subsect. 2.1, they can probably specify the DLL from only visible imported APIs
in the IAT. To solve this, we could take advantage of API redirection explained in
Fig. 1-(c) in Subsect. 2.1. This type of API redirection modifies indirect API call
instructions in original code with direct instructions which make the execution
jump to a stub for each API. So, since there are no indirect API call instructions
in original code, analysis tools are likely to fail to identify the IAT.

Detecting Stealth Loader Itself. Detecting Stealth Loader itself possibly
becomes another direction to fight against Stealth Loader. One way is detecting
specific byte patterns of Stealth Loader. While Stealth Loader hides its behav-
iors as we explained in Subsect. 3.3, the code or data of it may be likely to
have specific patterns available to be detected. However, as we discussed above,
several techniques, such as [10], have already proposed to avoid byte-pattern-
based detection. If we apply one of them to Stealth Loader, we can avoid being
detected.
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Restricting Untrusted Code. One more direction is to prevent Stealth
Loader from working at each phase. Policy enforcement, which is mentioned
in safe loading [5], may be partially effective for that purpose. If there is a policy
to restrict opening a system DLL for reading, Stealth Loader cannot map the
code of a DLL on memory if it is not loaded by Windows yet. On the other
hand, if the DLLs are already loaded by Windows, Reflective loading allows us
to load them with Stealth Loader.

In addition, safe loading has a restriction to giving executable permissions.
No other instances except for the trusted components of safe loading does not
give executable permission to a certain memory area. Safe loader supports only
Linux platform, however, if it would support Windows, safe loading may be able
to prevent Stealth Loader from providing the executable permission to the code
read from a DLL file.

8 Conclusion

We analyzed existing API [de]obfuscation techniques and clarified that API name
resolution becomes an attack vector for malware authors to evade malware analy-
ses and detections depending on API de-obfuscations. We also presented Stealth
Loader and its implementation as a proof-of-concept to exploit the attack vector.
Then, we demonstrated that Stealth Loader actually evaded all major analysis
tools. In addition, we qualitatively showed that Stealth Loader can evade API
de-obfuscations proposed in academic studies.

We do not consider that Stealth Loader is perfect. But we also consider
that defeating Stealth Loader is not easy because none of the existing counter-
measures discussed in Subsect. 7.3 can be come a direct solution against Stealth
Loader. We consider that most existing malware analysis tools depend on more or
less some of the API de-obfuscation techniques mentioned in this paper, implying
that Stealth Loader can pose a serious real-world threat in the future.

A The Reasons for Unsupported API

In this Appendix, we explain the reasons why we cannot support several APIs
with Stealth Loader on Windows 7 platform.

A.1 ntdll Initialization

ntdll.dll does not export the initialize function, i.e., DllMain does not exist in
ntdll.dll, and LdrInitializeThunk, which is the entry point of ntdll.dll for a newly
created thread, is also not exported. This inability of initialization leads to many
uninitialized global variables, causing a program crash. As a workaround to this,
we classified the APIs of ntdll.dll as to whether they are dependent on global
variables or not by using static analysis. Then, we defined the APIs dependent
on global variables as unsupported. As a result, the number of supported APIs
for ntdll.dll is 776, while that of unsupported APIs is 1,992.
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A.2 Callback

APIs triggering callback are difficult to apply Stealth Loader to because these
APIs do not work properly unless we register callback handlers in PEB. So, we
exclude some of the APIs of user32.dll and gdi32.dll, which become a trigger
callback from our supported APIs. To distinguish whether APIs are related to
callbacks or not, we developed an IDA script to make a call flow graph and ana-
lyzed win32k.sys, user32.dll, and gdi32.dll using the script. Then, we identified
203 APIs out of 839 exported from user32.dll and 202 out of 728 exported from
gdi32.dll.

A.3 Local Heap Memory

Supporting APIs to operate local heap objects is difficult because these objects
are possibly shared between DLLs. The reason is as follows. When a local heap
object is assigned, this object is managed under the stealth-loaded kernelbase.dll.
However, when the object is used, the object is checked under the Windows-
loaded kernelbase.dll. This inconsistency leads to failure in the execution of some
APIs related to the local heap object operation. To avoid this situation, we
exclude the APIs for operating local heap objects from our supported API. As
a result of static analysis, we found that local heap objects are managed in
BaseHeapHandleTable, located in the data section of kernelbase.dll. Therefore,
we do not support 6 APIs depending on this table in current Stealth Loader.
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Abstract. Kernel exploits are commonly used for privilege escalation
to take full control over a system, e.g., by means of code-reuse attacks.
For this reason modern kernels are hardened with kernel Address Space
Layout Randomization (KASLR), which randomizes the start address
of the kernel code section at boot time. Hence, the attacker first has to
bypass the randomization, to conduct the attack using an adjusted pay-
load in a second step. Recently, researchers demonstrated that attack-
ers can exploit unprivileged instructions to collect timing information
through side channels in the paging subsystem of the processor. This
can be exploited to reveal the randomization secret, even in the absence
of any information-disclosure vulnerabilities in the software.

In this paper we present LAZARUS , a novel technique to harden
KASLR against paging-based side-channel attacks. In particular, our
scheme allows for fine-grained protection of the virtual memory mappings
that implement the randomization. We demonstrate the effectiveness of
our approach by hardening a recent Linux kernel with LAZARUS, mit-
igating all of the previously presented side-channel attacks on KASLR.
Our extensive evaluation shows that LAZARUS incurs only 0.943% over-
head for standard benchmarks, and therefore, is highly practical.

Keywords: KASLR · Code-reuse attacks · Randomization ·
Side channels

1 Introduction

For more than three decades memory-corruption vulnerabilities have challenged
computer security. This class of vulnerabilities enables the attacker to over-
write memory in a way that was not intended by the developer, resulting in a
malicious control or data flow. In the recent past, kernel vulnerabilities became
more prevalent in exploits due to advances in hardening user-mode applications.
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For example, browsers and other popular targets are isolated by executing them
in a sandboxed environment. Consequently, the attacker needs to execute a
privilege-escalation attack in addition to the initial exploit to take full con-
trol over the system [4,17–19]. Operating system kernels are a natural target for
attackers because the kernel is comprised of a large and complex code base, and
exposes a rich set of functionality, even to low privileged processes. Molinyawe et
al. [20] summarized the techniques used in the Pwn2Own exploiting contest, and
concluded that a kernel exploit is required for most privilege-escalation attacks.

In the past, kernels were hardened using different mitigation techniques to
minimize the risk of memory-corruption vulnerabilities. For instance, enforcing
the address space to be writable or executable (W⊕X), but never both, prevents
the attacker from injecting new code. Additionally, enabling new CPU features
like Supervisor Mode Access Prevention (SMAP) and Supervisor Mode Exe-
cution Protection (SMEP) prevents certain classes of user-mode-aided attacks.
To mitigate code-reuse attacks, modern kernels are further fortified with kernel
Address Space Layout Randomization (KASLR) [2]. KASLR randomizes the
base address of the code section of the kernel at boot time, which forces attack-
ers to customize their exploit for each targeted kernel. Specifically, the attack
needs to disclose the randomization secret first, before launching a code-reuse
attack.

In general, there are two ways to bypass randomization: (1) brute-force
attacks, and (2) information-disclosure attacks. While KASLR aims to make
brute-force attacks infeasible, attackers can still leverage information-disclosure
attacks, e.g., to leak the randomization secret. The attacker can achieve this by
exploiting a memory-corruption vulnerability, or through side channels. Recent
research demonstrated that side-channel attacks are more powerful, since they do
not require any kernel vulnerabilities [6,8,10,13,23]. These attacks exploit prop-
erties of the underlying micro architecture to infer the randomization secret of
KASLR. In particular, modern processors share resources such as caches between
user mode and kernel mode, and hence, leak timing information between privi-
leged and unprivileged execution. The general idea of these attacks is to probe
different kernel addresses and measure the execution time of the probe. Since the
timing signature for valid and invalid kernel addresses is different, the attacker
can compute the randomization secret by comparing the extracted signal against
a reference signal.

The majority of side-channel attacks against KASLR is based on paging [8,
10,13,23]. Here, the attacker exploits the timing difference between an aborted
memory access to an unmapped kernel address and an aborted memory access
to a mapped kernel address. As we eloberate in the related work Sect. 7 the focus
of the existing work is on attacks, and only include theoretical discussions on
possible defenses. For instance, Gruss et al. [8] briefly discuss an idea similar to
our implemented defense by suggesting to completely un-map the kernel address
space when executing the user mode as it is done in iOS on ARM [16]. However,
as stated by the authors [8] they did not implement or evaluate the security
of their approach but only provided a simulation of this technique to provide
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a rough estimation of the expected run-time overhead which is around 5% for
system call intensive applications.

Goal and Contributions. The goal of this paper is to prevent kernel-space ran-
domization approaches from leaking side-channel information through the pag-
ing subsystem of the processor. To this end, we propose LAZARUS , as a novel
real-world defense against paging-based side-channel attacks on KASLR. Our
software-only defense is based on the observation that all of the presented attacks
have a common source of leakage: information about randomized kernel addresses
is stored in the paging caches of the processor while execution continues in user
mode. More specifically, the processor keeps paging entries for recently used
addresses in the cache, regardless of their associated privilege level. This results
in a timing side channel, because accesses for cached entries are faster than
cache misses. Our defense separates paging entries according to their privilege
level in caches, and provides a mechanism for the kernel to achieve this efficiently
in software. LAZARUS only separates those parts of the address space which
might reveal the randomization secret while leaving entries for non-randomized
memory shared. Our benchmarks show that this significantly reduces the per-
formance overhead. We provide a prototype implementation of our side-channel
defense, and conduct an extensive evaluation of the security and performance
of our prototype for a recent kernel under the popular Debian Linux and Arch
Linux distributions.

To summarize, our contributions are as follows:

– Novel side-channel defense. We present the design of LAZARUS , a soft-
ware-only protection scheme to thwart side-channel attacks against KASLR
based on paging.

– Protoype Implementation. We provide a fully working and practical pro-
totype implementation of our defense for a recent Linux kernel version 4.8.

– Extensive Evaluation. We extensively evaluate our prototype against all
previously presented side-channel attacks and demonstrate that the random-
ization secret can no longer be disclosed. We re-implemented all previously
proposed attacks on KASLR for the Linux kernel. We additionally present an
extensive performance evaluation and demonstrate high practicality with an
average overhead of only 0.943% for common benchmarks.

2 Background

In this section, we first explain the details of modern processor architectures nec-
essary to understand the remainder of this paper. We then explain the different
attacks on KASLR presented by related work.

2.1 Virtual Memory

Virtual memory is a key building block to separate privileged system memory
from unprivileged user memory, and to isolate processes from each other. Virtual
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Fig. 1. When virtual memory is active, all memory accesses of the processor are medi-
ated by the MMU 1 : it loads the associated page-table entry 2 into the TLB from
memory, checks the required privilege level 3 , and translates the virtual memory
address into the corresponding physical memory address if and only if the current
privilege level of the processor matches the required privilege level 4 .

memory is implemented by enforcing an indirection between the address space
of the processor and the physical memory, i.e., every memory access initiated by
the processor is mediated by a piece of hardware called the Memory Management
Unit (MMU). The MMU translates the virtual address to a physical address, and
enforces access control based on permissions defined for the requested address.
The translation information as well as the access permissions are stored in a
hierarchical data structure, which is maintained by the kernel, called the page
table. The kernel isolates processes from each other by maintaining separate page
tables for each process, and hence, different permissions. In contrast to processes,
the kernel is not isolated using a separate page table but by setting the supervisor
bit in page-table entries that translate kernel memory. In fact, each process page
table contains entries that map the kernel (typically in the top part of the virtual
address space). This increases the performance of context switches between the
kernel and user applications because replacing the active page table forces the
MMU to evict entries from its internal cache, called Translation Lookaside Buffer
(TLB). The TLB caches the most recent or prominent page table entries, which is
a sensible strategy since software usually exhibits (spatial or temporal) locality.
Hence, all subsequent virtual-memory accesses, which are translated using a
cached page-table entry, will be handled much faster.

Figure 1 shows the major components of virtual memory and their interac-
tion. In the following we describe the MMU and the TLB in detail and explain
their role in paging-based side-channel attacks.

The Central Processing Unit (CPU) contains one or more execution units
(cores), which decode, schedule, and eventually execute individual machine
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instructions, also called operations. If an operation requires a memory access,
e.g., load and store operations, and the virtual memory subsystem of the proces-
sor is enabled, this access is mediated by the MMU (Step 1 ). If the page-table
entry for the requested virtual address is not cached in the TLB, the MMU loads
the entry into the TLB by traversing the page tables (often called a page walk)
which reside in physical memory (Step 2 ). The MMU then loads the respective
page-table entry into the TLBs (Step 3 ). It then uses the TLB entries to look
up the physical address and the required privilege level associated with a virtual
address (Step 4 ).

2.2 Paging-Based Side-Channel Attacks on KASLR

All modern operating systems leverage kernel-space randomization by means of
kernel code randomization (KASLR) [2,11,14]. However, kernel-space random-
ization has been shown to be vulnerable to a variety of side-channel attacks.
These attacks leverage micro-architectural implementation details of the under-
lying hardware. More specifically, modern processors share virtual memory
resources between privileged and unprivileged execution modes through caches,
which was shown to be exploitable by an user space adversary.

In the following we briefly describe recent paging-based side-channel attacks
that aim to disclose the KASLR randomization secret. All these attacks exploit
the fact that the TLB is shared between user applications and the kernel (cf.,
Fig. 1). As a consequence, the TLB will contain page-table entries of the kernel
after switching the execution from kernel to a user mode application. Henceforth,
the attacker uses special instructions (depending on the concrete side-channel
attack implementation) to access kernel addresses. Since the attacker executes
the attack with user privileges, the access will be aborted. However, the time
difference between access attempt and abort depends on whether the guessed
address is cached in the TLB or not. Further, the attacker can also measure the
difference in timing between existing (requiring a page walk) and non-existing
mappings (immediate abort). The resulting timing differences can be exploited
by the attacker as a side channel to disclose the randomization secret as shown
recently [8,10,13,23].

Page Fault Handler (PFH). Hund, et al. [10] published the first side-channel
attack to defeat KASLR. They trigger a page fault in the kernel from a user
process by accessing an address in kernel space. Although this unprivileged
access is correctly denied by the page fault handler, the TLBs are queried during
processing of the memory request. They show that the timing difference between
exceptions for unmapped and mapped pages can be exploited to disclose the ran-
dom offset.

Prefetch Instruction. Furthermore, even individual instructions may leak tim-
ing information and can be exploited [8]. More specifically, the execution of
the prefetch instruction of recent Intel processors exhibits a timing difference,



LAZARUS: Practical Side-Channel Resilient 243

which depends directly on the state of the TLBs. As in the case of the other side-
channel attacks, this is used to access privileged addresses by the attacker. Since
this access originates from an unprivileged instruction it will fail, and according
to the documentation the processor will not raise an exception. Hence, its exe-
cution time differs for cached kernel addresses. This yields another side channel
that leaks the randomization secret.

Intel’s TSX. Transactional memory extensions introduced by Intel encapsulate
a series of memory accesses to provide enhanced safety guarantees, such as roll-
backs. While potentially interesting for the implementation of concurrent soft-
ware without the need for lock-based synchronization, erroneous accesses within
a transaction are not reported to the operating system. More specifically, if the
MMU detects an access violation, the exception is masked and the transaction
is rolled back silently. However, an adversary can measure the timing differ-
ence between two failing transactions to identify privileged addresses, which are
cached in the TLBs. This enables the attacker to significantly improve over the
original page fault timing side-channel attack [13,23]. The reason is that the
page fault handler of the OS is never invoked, significantly reducing the noise in
the timing signal.

3 LAZARUS

In this section, we give an overview of the idea and architecture of LAZARUS,
elaborate on the main challenges, and explain in detail how we tackle these
challenges.

3.1 Adversary Model and Assumptions

We derive our adversary model from the related offensive work [6,8,10,13,23].

– Writable ⊕ Executable Memory. The kernel enforces Writable ⊕ Exe-
cutable Memory (W⊕X) which prevents code-injection attacks in the ker-
nel space. Further, the kernel utilizes modern CPU features like SMAP and
SMEP [12] to prevent user-mode aided code-injection and code-reuse attacks.

– Kernel Address Space Layout Randomization (KASLR). The base
address of the kernel is randomized at boot time [2,14].

– Absence of Software-Based Information-Disclosure Vulnerability.
The kernel does not contain any vulnerabilities that can be exploited to dis-
close the randomization secret.

– Malicious Kernel Extension. The attacker cannot load malicious kernel
extensions to gain control over the kernel, i.e., only trusted (or signed) exten-
sions can be loaded.

– Memory-corruption Vulnerability. This is a standard assumption for
many real-world kernel exploits. The kernel, or a kernel extension contains
a memory-corruption vulnerability. The attacker has full control over a user-
mode process from which it can exploit this vulnerability. The vulnerability
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Fig. 2. The idea behind our side channel protection: An unprivileged user process ( 1 )
can exploit the timing side channel for kernel addresses through shared cache access in
the MMU paging caches ( 2 ). Our defense mitigates this by enforcing ( 3 ) a separation
between different privilege levels for randomized addresses ( 4 ).

enables the attacker to overwrite a code pointer of the kernel to hijack the
control-flow of the kernel. However, the attacker cannot use this vulnerability
to disclose any addresses.

While modern kernels suffer from software-based information-disclosure vul-
nerabilities, information-disclosure attacks based on side channels pose a more
severe threat because they can be exploited to disclose information in the absence
of software vulnerabilities. We address the problem of side channels, and treat
software-based information-disclosure vulnerabilities as an orthogonal problem.

3.2 Overview

Usually, kernel and user mode share the same virtual address space. While legit-
imate accesses to kernel addresses require higher privilege, these addresses still
occupy some parts of the virtual memory space that is visible to user processes.
The idea behind our side-channel defense is to strictly and efficiently separate
randomized kernel memory from virtual memory in user space.

Our idea is depicted in Fig. 2. Kernel execution and user space execution
usually share a common set of architectural resources, such as the execution
unit (Core), and the MMU. The attacker leverages these shared resources in the
following way: in step 1 , the attacker sets up the user process and memory
setting that will leak the randomization secret. The user process then initiates
a virtual memory access to a kernel address.

Next, the processor invokes the MMU to check the required privilege level
in step 2 . Since a user space process does not possess the required privileges
to access kernel memory, any such access will ultimately be denied. However, to
deny access the MMU has to look up the required privileges in the page tables.
These are structured hierarchically with multiple levels, and separate caches on
every level. Hence, even denied accesses constitute a timing side-channel that
directly depends on the last cached level.

We address 3 the root of this side channel: we separate the page tables for
kernel and user space. This effectively prevents side-channel information from
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kernel addresses to be leaked to user space, because the MMU uses a different
page table hierarchy. Thus, while the processor is in user mode, the MMU will
not be able to refer to any information about kernel virtual addresses, as shown
in step 4 .

3.3 Challenges for Fine-Grained Address Space Isolation

To enable LAZARUS to separate and isolate both execution domains a number
of challenges have to be tackled: first, we must provide a mechanism for switching
between kernel and user execution at any point in time without compromising the
randomized kernel memory (C1). More specifically, while kernel and user space no
longer share the randomized parts of privileged virtual memory, the system still
has to be able to execute code pages in both execution modes. For this reason,
we have to enable switching between kernel and user space. This is challenging,
because such a transition can happen either through explicit invocation, such as
a system call or an exception, or through hardware events, such as interrupts. As
we will show our defense handles both cases securely and efficiently.

Second, we have to prevent the switching mechanism from leaking any side-
channel information (C2). Unmapping kernel pages is also challenging with
respect to side-channel information, i.e., unmapped memory pages still exhibit a
timing difference compared to mapped pages. Hence, LAZARUS has to prevent
information leakage through probing of unmapped pages.

Third, our approach has to minimize the overhead for running applications
to offer a practical defense mechanism (C3). Implementing strict separation
of address spaces efficiently is involved, since we only separate those parts of
the address space that are privileged and randomized. We have to modify only
those parts of the page table hierarchy which define translations for randomized
addresses.

In the following we explain how our defense meets these challenges.

C1: Kernel-User Transitioning. Processor resources are time-shared between
processes and the operating system. Thus, the kernel eventually takes control
over these resources, either through explicit invocation, or based on a signaling
event. Examples for explicit kernel invocations are system calls and exceptions.
These are synchronous events, meaning that the user process generating the
event is suspended and waiting for the kernel code handling the event to finish.

On the one hand, after transitioning from user to kernel mode, the event
handler code is no longer mapped in virtual memory because it is located in the
kernel. Hence, we have to provide a mechanism to restore this mapping when
entering kernel execution from user space.

On the other hand, when the system call or exception handler finishes and
returns execution to the user space process, we have to erase those mappings
again. Otherwise, paging entries might be shared between privilege levels. Since
all system calls enter the kernel through a well-defined hardware interface, we can
activate and deactivate the corresponding entries by modifying this central entry
point.
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Transitions between kernel and user space execution can also happen through
interrupts. A simple example for this type of event is the timer interrupt, which is
programmed by the kernel to trigger periodically in fixed intervals. In contrast
to system calls or exceptions, interrupts are asynchronously occurring events,
which may suspend current kernel or user space execution at any point in time.

Hence, interrupt routines have to store the current process context before
handling a pending interrupt. However, interrupts can also occur while the
processor executes kernel code. Therefore, we have to distinguish between inter-
rupts during user or kernel execution to only restore and erase the kernel entries
upon transitions to and from user space respectively. For this we facilitate the
stored state of the interrupted execution context that is saved by the interrupt
handler to distinguish privileged from un-privileged contexts.

This enables LAZARUS to still utilize the paging caches for interrupts occur-
ing during kernel execution.

C2: Protecting the Switching Mechanism. The code performing the address space
switching has to be mapped during user execution. Otherwise, implementing a
switching mechanism in the kernel would not be possible, because the processor
could never access the corresponding code pages. For this reason, it is necessary
to prevent these mapped code pages from leaking any side-channel information.
There are two possibilities for achieving this.

First, we can map the switching code with a different offset than the rest of
the kernel code section. In this case an adversary would be able to disclose the
offset of the switching code, while the actual randomization secret would remain
protected.

Second, we can eliminate the timing channel by inserting dummy mappings
into the unmapped region. This causes the surrounding addresses to exhibit an
identical timing signature compared to the switching code.

Since an adversary would still be able to utilize the switching code to conduct
a code-reuse attack in the first case, LAZARUS inserts dummy mappings into
the user space page table hierarchy.

C3: Minimizing Performance Penalties. Once paging is enabled on a processor,
all memory accesses are mediated through the virtual memory subsystem. This
means that a page walk is required for every memory access. Since traversing
the page table results in high performance penalties, the MMU caches the most
prominent address translations in the Translation Lookaside Buffers (TLBs).

LAZARUS removes kernel addresses from the page table hierarchy upon
user space execution. Hence, the respective TLB entries need to be invalidated.
As a result, subsequent accesses to kernel memory will be slower, once kernel
execution is resumed.

To minimize these perfomance penalties, we have to reduce the amount of
invalidated TLB entries to a minimum but still enforce a clear separation between
kernel and user space addresses. In particular, we only remove those virtual
mappings, which fall into the location of a randomized kernel area, such as the
kernel code segment.
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4 Prototype Implementation

We implemented LAZARUS as a prototype for the Linux kernel, version 4.8 for
the 64 bit variant of the x86 architecture. However, the techniques we used are
generic and can be applied to all architectures employing multi-level page tables.
Our patch consists of around 300 changes to seven files, where most of the code
results from initialization. Hence, LAZARUS should be easily portable to other
architectures. Next, we will explain our implementation details. It consists of the
initialization setup, switching mechanism, and how we minimize performance
impact.

4.1 Initialization

We first setup a second set of page tables, which can be used when execution
switches to user space. These page tables must not include the randomized por-
tions of the address space that belong to the kernel. However, switching between
privileged and unprivileged execution requires some code in the kernel to be
mapped upon transitions from user space. We explicitly create dedicated entry
points mapped in the user page tables, which point to the required switching
routines.

Fixed Mappings. Additionally, there are kernel addresses, which are mapped to
fixed locations in the top address space ranges. These fixmap entries essentially
represent an address-based interface: even if the physical address is determined at
boot time, their virtual address is fixed at compile time. Some of these addresses
are mapped readable to user space, and we have to explicitly add these entries
as well.

We setup this second set of page tables only once at boot time, before the
first user process is started. Every process then switches to this set of page tables
during user execution.

Dummy Mappings. As explained in Sect. 3, one way of protecting the code pages
of the switching mechanism is to insert dummy mappings into the user space
page table hierarchy. In particular, we create mappings for randomly picked
virtual kernel addresses to span the entire code section. We distribute these
mappings in 2M intervals to cover all third-level page table entries, which are
used to map the code section. Hence, the entire address range which potentially
contains the randomized kernel code section will be mapped during user space
execution using our randomly created dummy entries.

4.2 System Calls

There is a single entry point in the Linux kernel for system calls, which is called
the system call handler. We add an assembly routine to execute immediately
after execution enters the system call handler. It switches from the predefined
user page tables to the kernel page tables and continues to dispatch the requested
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system call. We added a second assembly routine shortly before the return of
the system call handler to remove the kernel page tables from the page table
hierarchy of the process and insert our predefined user page tables.

However, contrary to its single entry, there are multiple exit points for the
system call handler. For instance, there is a dedicated error path, and fast and
slow paths for regular execution. We instrument all of these exit points to ensure
that the kernel page tables are not used during user execution.

4.3 Interrupts

Just like the system call handler, we need to modify the interrupt handler to
restore the kernel page tables. However, unlike system calls, interrupts can occur
when the processor is in privileged execution mode as well. Thus, to handle inter-
rupts, we need to distinguish both cases. Basically we could look up the current
privilege level easily by querying a register. However, this approach provides
information about the current execution context, whereas to distinguish the two
cases we require the privilege level of the interrupted context.

Fortunately, the processor saves some hardware context information, such
as the instruction pointer, stack pointer, and the code segment register before
invoking the interrupt handler routine. This means that we can utilize the stored
privilege level associated with the previous code segment selector to test the
privilege level of the interrupted execution context. We then only restore the
kernel page tables if it was a user context.

We still have to handle one exceptional case however: the non-maskable inter-
rupt (NMI). Because NMIs are never maskable, they are handled by a dedicated
interrupt handler. Hence, we modify this dedicated NMI handler in the kernel
to include our mechanism as well.

4.4 Fine-Grained Page Table Switching

As a software-only defense technique, one of the main goals of LAZARUS is
to offer practical performance. While separating the entire page table hierarchy
between kernel and user mode is tempting, this approach is impractical.

In particular, switching the entire page table hierarchy invalidates all of the
cached TLB entries. This means, that the caches are reset every time and can
never be utilized after a context switch. For this reason, we only replace those
parts of the page table hierarchy, which define virtual memory mappings for ran-
domized addresses. In the case of KASLR, this corresponds to the code section
of the kernel. More specifically, the kernel code section is managed by the last
of the 512 level 4 entries.

Thus, we replace only this entry during a context switch between privileged
and unprivileged execution. As a result, the caches can still be shared between
different privilege levels for non-randomized addresses. As we will discuss in
Sect. 5, this does not impact our security guarantees in any way.
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5 Evaluation

In this section we evaluate our prototypical implementation for the Linux ker-
nel. First, we show that LAZARUS successfully prevents all of the previously
published side-channel attacks. Second, we demonstrate that our defense only
incurs negligible performance impact for standard computational workloads.

5.1 Security

Our main goal is to prevent the leakage of the randomization secret in the kernel
to an unprivileged process through paging-based side-channel attacks. For this,
we separate the page tables for privileged parts of the address space from the
unprivileged parts. We ensure that this separation is enforced for randomized
addresses to achieve practical performance.

Because all paging-based exploits rely on the timing difference between
cached and uncached entries for privileged virtual addresses, we first conduct
a series of timing experiments to measure the remaining side channel in the
presence of LAZARUS.

In a second step, we execute all previously presented side-channel attacks on
a system hardened with LAZARUS to verify the effectiveness of our approach.

Effect of LAZARUS on the Timing Side-Channel. To estimate the
remaining timing side-channel information we measure the timing difference for
privileged virtual addresses. We access each page in the kernel code section at
least once and measure the timing using the rdtscp instruction. By probing the
privileged address space in this way, we collect a timing series of execution cycles
for each kernel code page. The results are shown in Fig. 3.1

The timing side channel is clearly visible for the vanilla KASLR implemen-
tation: the start of the actual code section mapping is located around the first
visible jump from 160 cycles up to 180 cycles. Given a reference timing for a
corresponding kernel image, the attacker can easily calculate the random offset
by subtracting the address of the peak from the address in the reference timing.

In contrast to this, the timing of LAZARUS shows a straight line, with a
maximum cycle distance of two cycles. In particular, there is no correlation
between any addresses and peaks in the timing signal of the hardened kernel.
This indicates that our defense approach indeed closes the paging-induced timing
channel successfully. We note, that the average number of cycles depicted for
LAZARUS are also in line with the timings for cached page table entries reported
by related work [8,13]. To further evaluate the security of our approach, we
additionally test it against all previous side-channel attacks.

1 For brevity, we display the addresses on the x-axis as offsets to the start of the
code section (i.e., 0xffffffff80000000). We further corrected the addresses by their
random offset, so that both data series can be shown on top of each other.
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Fig. 3. Timing side-channel measurements.

Real-World Side-Channel Attacks. We implemented and ran all of the pre-
vious side-channel attacks against a system hardened with LAZARUS, to exper-
imentally assess the effectiveness of our approach against real-world attacks.

Page-fault handler. The first real-world side-channel attack against KASLR was
published by Hund et al. [10]. They noted that the execution time of the page
fault handler in the OS kernel depends on the state of the paging caches. More
specifically, they access kernel addresses from user space which results in a page
fault. While this would usually terminate the process causing the access viola-
tion, the POSIX standard allows for processes to handle such events via signals.
By installing a signal handler for the segmentation violation (SIGSEGV), the user
process can recover from the fault and measure the timing difference from the
initial memory access to the delivery of the signal back to user space. In this way,
the entire virtual kernel code section can be scanned and each address associ-
ated with its corresponding timing measurement, allowing a user space process
to reconstruct the start address of the kernel code section. We implemented
and successfully tested the attack against a vanilla Linux kernel with KASLR.
In particular, we found that page fault handler exhibits a timing difference of
around 30 cycles for mapped and unmapped pages, with an average time of
around 2200 cycles. While this represents a rather small difference compared to
the other attacks, this is due to the high amount of noise that is caused by the
execution path of the page fault handler code in the kernel.2 When we applied
LAZARUS to the kernel the attack no longer succeeded.

Prefetch. Recently, the prefetch instruction featured on many Intel x86 proces-
sors was shown to enable side-channel attacks against KASLR [8]. It is intended
to provide a benign way of instrumenting the caches: the programmer (or the
compiler) can use the instruction to provide a hint to the processor to cache a
given virtual address.

2 This was also noted in the original exploit [10].
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Although there is no guarantee that this hint will influence the caches in
any way, the instruction can be used with arbitrary addresses in principle. This
means that a user mode program can prefetch a kernel virtual address, and
execution of the instruction will fail siltently, i.e., the page fault handler in the
kernel will not be executed, and no exception will be raised.

However, the MMU still has to perform a privilege check on the provided
virtual address, hence the execution time of the prefetch instruction depends
directly on the state of the TLBs.

We implemented the prefetch attack against KASLR for Linux, and succes-
fully executed it against a vanilla system to disclose the random offset. Executing
the attack against a system hardened with LAZARUS we found the attack to
be unsuccessful.

TSX. Rafal Wojtczuk originally proposed an attack to bypass KASLR using the
Transactional Synchronization Extension (TSX) present in Intel x86 CPUs [23],
and the attack gained popularity in the academic community through a paper
by Jang et al. [13]. TSX provides a hardware mechanism that aims to simplify
the implementation of multi-threaded applications through lock elision. Initially
released in Haswell processors, TSX-enabled processors are capable of dynami-
cally determining to serialize threads through lock-protected critical sections if
necessary. The processor may abort a TSX transaction if an atomic view from
the software’s perspective is not guaranteed, e.g., due to conflicting accesses
between two logical processors on one core.

TSX will suppress any faults that must be exposed to software if they occur
within a transactional region. Memory accesses that cause a page walk may abort
a transaction, and according to the specification will not be made architecturally
visible through the behavior of structures such as TLBs [12]. The timing charac-
teristics of the abort, however, can be exploited to reveal the current state of the
TLBs. By causing a page walk inside a transactional block, timing information
on the aborted transaction discloses the position of kernel pages that are mapped
into a process: first, the attacker initiates a memory access to kernel pages inside
a transactional block, which causes (1) a page walk, and (2) a segmentation fault.
Since TSX masks the segmentation fault in hardware, the kernel is never made
aware of the event and the CPU executes the abort handler provided by the
attacker-controlled application that initiated the malicious transaction. Second,
the attacker records timing information about the abort-handler execution. A
transaction abort takes about 175 cycles if the probed page is mapped, whereas
it aborts in about 200 cycles or more if unmapped [23]. By probing all possible
locations for the start of the kernel code section, this side channel exposes the
KASLR offset to the unprivileged attacker in user space.

Probing pages in this way under LAZARUS reveals no information, since we
unmap all kernel code pages from the process, rendering the timing side channel
useless as any probes to kernel addresses show as unmapped. Only the switching
code and the surrounding dummy entries are mapped. However, these show
identical timing information, and hence, are indistinguishable for an adversary.
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5.2 Performance

We evaluated LAZARUS on a machine with an Intel Core i7-6820HQ CPU
clocked at 2.70 GHz and 16 GB of memory. The machine runs a current release
of Arch Linux with kernel version 4.8.14. For our testing, we enabled KASLR
in the Linux kernel that Arch Linux ships. We also compiled a secondary kernel
with the same configuration and LAZARUS applied.

We first examine the performance overhead with respect to the industry
standard SPEC2006 benchmark [9]. We ran both the integer and floating point
benchmarks in our test platform under the stock kernel with KASLR enabled.
We collected these results and performed the test again under the LAZARUS
kernel. Our results are shown in Fig. 4.

The observed performance overhead can be attributed to measurement inac-
curacies. Our computed worst case overhead is of 0.943%. We should note that
SPEC2006 is meant to test computational workloads and performs little in terms
of context switching.

To better gauge the effects of LAZARUS on the system, we ran the system
benchmarks provided by LMBench3 [22]. LMBench3 improves on the context
switching benchmarks by eliminating some of the issues present in previous ver-
sions of the benchmark, albeit it still suffers issues with multiprocessor machines.
For this reason, we disabled SMP during our testing. Our results are presented
in Fig. 5.

We can see how a system call intensive application is affected the most under
LAZARUS. This is to be expected, as the page tables belonging to the ker-
nel must be remapped upon entering kernel execution. In general, we show a
47% performance overhead when running these benchmarks. We would like to
remind the reader, however, that these benchmarks are meant to stress test the
performance of the operating system when handling interrupts and do not reflect
normal system operation.

In order to get a more realistic estimate of LAZARUS, we ran the Phoronix
Test Suite [15], which is widely used to compare the performance of operating
systems. The Phoronix benchmarking suite features a large number of tests
which cover different aspects of a system, and are grouped according to the
targeted subsystem of the machine. Specifically, we ran the system and disk
benchmarks to test application performance. Our results are shown in Fig. 6.
We show an average performance overhead of 2.1% on this benchmark, which
is in line with our results provided by the SPEC and LMBench benchmarks.
The worst performers were benchmarks that are bound to read operations. We
speculate that this is due to the amount of context switches that happen while
the read operation is taking place, as a buffer in kernel memory needs to be
copied into a buffer from user space or remapped there.

Lastly, we ran the pgbench benchmark on a test PostgreSQL database and
measured a performance overhead of 2.386%.
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Fig. 4. SPEC2006 benchmark results

Fig. 5. LMBench3 benchmark results

Fig. 6. Phoronix benchmark suite
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6 Discussion

6.1 Applying LAZARUS to Different KASLR Implementations

Relocation of kernel code is an example of how randomization approaches can
be used as a defense building block which is implemented by practically all
real-world operating systems [2,11,14]. While a kernel employing control-flow
integrity (CFI) [1,3,21] does not gain security benefit from randomizing the
code section, it might still randomize the memory layout of other kernel mem-
ory regions: for instance, it can be applied to the module section, to hide the
start address of the code of dynamically loadable kernel modules. Further, ran-
domization was recently proposed as a means to protect the page tables against
malicious modification through data-only attacks [5].

Since all of the publicly available attacks focus on disclosing the random offset
of the kernel code section, we implemented our proof of concept for KASLR as
well. Nonetheless, we note that LAZARUS is not limited to hardening kernel code
randomization, but can be applied to other randomization implementations as
well. In contrast to the case of protecting KASLR, our defense does not require
any special treatment for hiding the low-level switching code if applied to other
memory regions.

6.2 Other Side-Channel Attacks on KASLR

As explained in Sect. 2, almost all previously presented side-channel attacks
on KASLR exploit the paging subsystem. LAZARUS isolates kernel vir-
tual memory from user processes by separating their page tables. However,
Evtyushkin et al. [6] recently presented the branch target buffer (BTB) side-
channel attack, which does not exploit the paging subsystem for virtual kernel
addresses.

In particular, they demonstrated how to exploit collisions between branch
targets for user and kernel addresses. The attack works by constructing a mali-
cious chain of branch targets in user space, to fill up the BTB, and then executing
a previously chosen kernel code path. This evicts branch targets previously exe-
cuted in kernel mode from the BTB, thus their subsequent execution will take
longer.

While the BTB attack was shown to bypass KASLR on Linux, it differs from
the paging-based side channels by making a series of assumptions: (1) the BTB
has a limited capacity of 10 bits, hence it requires KASLR implementations to
deploy a low amount of entropy in order to succeed. (2) it requires the attacker to
craft a chain of branch targets, which cause kernel addresses to be evicted from
the BTB. For this an adversary needs to reverse engineer the hashing algorithm
used to index the BTB. These hashing algorithms are different for every micro
architecture, which limits the potential set of targets. (3) the result of the attack
can be ambiguous, because any change in the execution path directly effects the
BTB contents.
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There are multiple ways of mitigating the BTB side-channel attack against
KASLR. A straightforward approach is to increase the amount of entropy for
KASLR, as noted by Evtyushkin et al. [6]. A more general approach would be
to introduce a separation between privileged an unprivileged addresses in the
BTB. This could be achieved by offering a dedicated flush operation, however
this requires changes to the hardware. Alternatively, this flush operation can
emulated in software, if the hashing algorithm used for indexing the BTB has
been reverse engineered. We implemented this approach against the BTB attack
by calling a function which performs a series of jump instructions along with our
page tables switching routine and were unable to recover the correct randomiza-
tion offset through the BTB attack in our tests.

7 Related Work

In this section we discuss software and hardware mitigations against side-channel
attacks that were proposed, and compare them to our approach.

7.1 Hardware Mitigations

Privilege Level Isolation in the Caches. Eliminating the paging side channel is
also possible by modifying the underlying hardware cache implementation. This
was first noted by Hund et al. [10]. However, modern architectures organize
caches to be optimized for performance. Additionally, changes to the hardware
are very costly, and it takes many years to widely deploy these new systems.
Hence, it is unlikely that such a change will be implemented, and even if it is,
existing production systems will remain vulnerable for a long time. Our software-
only mitigation can be deployed instantly by patching the kernel.

Disabling Detailed Timing for Unprivileged Users. All previously presented pag-
ing side-channel attacks rely on detailed timing functionality, which is provided
to unprivileged users by default. For this reason, Hund et al. [10] suggested to
disable the rdtsc instruction for user mode processes. While this can be done
from software, it effectively changes the ABI of the machine. Since modern plat-
forms offer support for a large body of legacy software, implementing such a
change would introduce problems for many real-world user applications. As we
demonstrate in our extensive evaluation, LAZARUS is transparent to user-level
programs and does not disrupt the usual workflow of legacy software.

7.2 Software Mitigations

Separating Address Spaces. Unmapping the kernel page tables during user-land
execution is a natural way of separating their respective address spaces, as sug-
gested in [8,13]. However, Jang et al. [13] considered the approach impractical,
due to the expected performance degradation. Gruss et al. [8] estimated the
performance impact of reloading the entire page table hierarchy up to 5%, by
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reloading the top level of the page table hierarchy (via the CR3 register) during
a context switch, but did not provide any implementation or detailed evaluation
of their estimated approach. Reloading the top level of the page tables results
in a higher performance overhead, because it requires the processor to flush
all of the cached entries. Address space separation has been implemented by
Apple for their iOS platform [16]. Because the ARM platform supports multiple
sets of page table hierarchies, the implementation is straightforward on mobile
devices. For the first time we provide an improved and highly practical method
of implementing address space separation on the x86 platform.

Increasing KASLR Entropy. Some of the presented side-channel attacks benefit
from the fact that the KASLR implementation in the Linux kernel suffers from a
relatively low entropy [6,10]. Thus, increasing the amount of entropy represent a
way of mitigating those attacks in practice. While this approach was suggested by
Hund et al. [10] and Evtyushkin et al. [6], it does not eliminate the side channel.
Additionally, the mitigating effect is limited to attacks which exploit low entropy
randomization. In contrast, LAZARUS mitigates all previously presented paging
side-channel attacks.

Modifying the Page Fault Handler. Hund et al. [10] exploited the timing dif-
ference through invoking the page fault handler. They suggested to enforce its
execution time to an equal timing for all kernel addresses through software.
However, this approach is ineffective against attacks which do not invoke the
kernel [8,13]. Our mitigation reorganizes the cache layout in software to suc-
cessfully stop the attacks, that exploit hardware features to leak side channel
information, even for attacks that do not rely on the execution time of any
software.

KAISER. Concurrently to our work Gruss et al. implemented strong address-
space separation [7]. Their performance numbers are in line with our own mea-
surements, confirming that separating the address spaces of kernel and userland
constitutes a practical defense against paging-based side-channel attacks. In con-
trast to LAZARUS, their approach does not make use of dummy mappings to
hide the switching code, but separates it from the rest of the kernel code section
(as outlined in 3.3.C2).

8 Conclusion

Randomization has become a vital part of the security architecture of mod-
ern operating systems. Side-channel attacks threaten to bypass randomization-
based defenses deployed in the kernel by disclosing the randomization secret
from unprivileged user processes. Since these attacks exploit micro-architectural
implementation details of the underlying hardware, closing this side channel
through a software-only mitigation efficiently is challenging. However, all of
these attacks rely on the fact that kernel and user virtual memory reside in
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a shared address space. With LAZARUS, we present a defense to mitigate pre-
viously presented side-channel attacks purely in software. Our approach shows
that side-channel information exposed through shared hardware resources can be
hidden by separating the page table entries for randomized privileged addresses
from entries for unprivileged addresses in software. LAZARUS is a necessary
and highly practical extension to harden kernel-space randomization against
side-channel attacks.
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Abstract. With the increasing scale of deployment of Internet of Things
(IoT), concerns about IoT security have become more urgent. In par-
ticular, memory corruption attacks play a predominant role as they
allow remote compromise of IoT devices. Control-flow integrity (CFI)
is a promising and generic defense technique against these attacks. How-
ever, given the nature of IoT deployments, existing protection mecha-
nisms for traditional computing environments (including CFI) need to
be adapted to the IoT setting. In this paper, we describe the challenges
of enabling CFI on microcontroller (MCU) based IoT devices. We then
present CaRE, the first interrupt-aware CFI scheme for low-end MCUs.
CaRE uses a novel way of protecting the CFI metadata by leveraging
TrustZone-M security extensions introduced in the ARMv8-M architec-
ture. Its binary instrumentation approach preserves the memory layout
of the target MCU software, allowing pre-built bare-metal binary code to
be protected by CaRE. We describe our implementation on a Cortex-M
Prototyping System and demonstrate that CaRE is secure while impos-
ing acceptable performance and memory impact.

1 Introduction

Cyber-Physical Systems (CPS) are becoming pervasive across many applica-
tion areas ranging from industrial applications (manufacturing), transport, and
smart cities to consumer products. Internet of Things (IoT) refers to systems
incorporating such devices with (typically always-on) communication capability.
Estimates put the number of deployed IoT devices at 28 billion by 2021 [19].
Although programmable CPS devices are not new, connectivity makes them
targets for network originating attacks. Gartner highlights device identity (man-
agement), code/data integrity and secure communication as the most important
security services for IoT [23].

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-66332-6 12) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2017
M. Dacier et al. (Eds.): RAID 2017, LNCS 10453, pp. 259–284, 2017.
DOI: 10.1007/978-3-319-66332-6 12

http://dx.doi.org/10.1007/978-3-319-66332-6_12
http://dx.doi.org/10.1007/978-3-319-66332-6_12


260 T. Nyman et al.

The system software in IoT devices is often written in memory-unsafe lan-
guages like C [26]. The arms race [46] in runtime exploitation of general purpose
computers and network equipment has shown us that memory errors, such as
buffer overflows and use-after-free errors, constitute a dominant attack vector
for stealing sensitive data or gaining control of a remote system. Over the years,
a number of platform security techniques to resist such attacks have been devel-
oped and deployed on PCs, servers and mobile devices. These include protections
against code injection and code-reuse attacks, such as Control-Flow Integrity [2]
(CFI) and Address Space Layout Randomization [13,34] (ASLR) which aim to
ensure the run-time integrity of a device.

CFI (Sect. 3.1) is a well-explored technique for resisting the code-reuse
attacks such as Return-Oriented Programming (ROP) [44] that allow attack-
ers in control of data memory to subvert the control flow of a program. CFI
commonly takes the form of inlined enforcement, where CFI checks are inserted
at points in the program code where control flow changes occur. For legacy appli-
cations CFI checks must be introduced by instrumenting the pre-built binary.
Such binary instrumentation necessarily modifies the memory layout of the code,
requiring memory addresses referenced by the program to be adjusted accord-
ingly [27]. This is typically done through load-time dynamic binary rewriting
software [15,37].

A prominent class of state-of-the-art CFI schemes is based on the notion of
a shadow stack [14]: a mechanism that prevents overwriting subroutine return
addresses on the call stack by comparing each return address to a protected
copy kept in the shadow stack before performing the return. This effectively
mitigates return-oriented programming attacks that stitch together instruction
sequences ending in return instructions [44]. However, it presumes the existence
of mechanisms to ensure that the shadow stack cannot be manipulated by the
attacker.

As we argue in detail in Sect. 3.3, the type of IoT scenarios we consider have
a number of characteristics that make traditional CFI mechanisms difficult to
apply. First, IoT devices are typically architected as interrupt-driven reactive
systems, often implemented as bare-metal software involving no loading or relo-
cation. To the best of our knowledge, no existing CFI scheme is interrupt-aware.
Second, IoT devices are often based on computing cores that are low-cost, low-
power single-purpose programmable microcontrollers (MCUs). Countermeasures
for general purpose computing devices, such as ASLR, often rely on hardware
features (e.g., virtual memory) that are unavailable in simple MCUs. Prior CFI
schemes for embedded systems, such as HAFIX [16], and the recently announced
Intel Control-flow Enforcement Technology (CET) [30], require changes to the
hardware and toolchain, access to source code and do not support interrupts.

On the positive side, hardware-based isolation mechanisms for MCUs have
appeared not only in the research literature [12,18,31], but also as commercial
offerings such as the recently announced TrustZone-M security extensions for
the next generation of ARM microcontrollers (Sect. 2.2) providing a lightweight
trust anchor for resource-constrained IoT devices [4]. However, since software
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(and updates) for IoT devices may come from a different source than the orig-
inal equipment manufacturer (OEM), it is unrealistic to expect the software
vendors to take responsibility for the instrumentation necessary for hardware-
assisted CFI protection – OEMs in turn will be incentivized to distribute the
same software to all devices, with and without hardware security extensions.

Goal and Contributions. We introduce the first hardware software co-design
based security architecture that (i) enables practical enforcement of control-flow
policies, (ii) addresses the unique challenges of low-end IoT devices with respect
to CFI deployment, (iii) requires no changes to the underlying hardware, and
(iv) operates directly on binary code thereby avoiding the need for source code.
Specifically, we target control-flow integrity policies that defend against runtime
attacks, such as ROP, that belong to the most prominent software attacks on
all modern computing architectures, e.g., Desktop PCs [44], mobile devices [32],
and embedded systems [21].

To this end we present the design and implementation of a novel architec-
ture, CaRE (Call and Return Enforcement), accompanied with a toolchain for
achieving robust run-time code integrity for IoT devices. We claim the following
contributions:

– The first interrupt-aware CFI scheme for low-end MCUs (Sect. 4) support-
ing

• hardware-based shadow stack protection by leveraging recently
introduced TrustZone-M security extensions (Sect. 4.2).

• a new binary instrumentation technique that is memory layout-
preserving and can be realized on-device (Sect. 4.3).

– An implementation of CaRE on ARM Versatile Express Cortex-M Prototyp-
ing System (Sect. 4.4).

– A comprehensive evaluation (Sect. 5) showing that CaRE ensures CFI
(Sect. 5.1), has a lower performance overhead (Sect. 5.2) compared to
software-based shadow stack schemes while imposing comparable impact on
program binary size (Sect. 5.3).

2 Background

2.1 ARM Architecture

ARM microprocessors are RISC-based computer designs that are widely used in
computing systems which benefit from reduced cost, heat, and power consump-
tion compared to processors found in personal computers. The ARM Cortex-M
series of processors, geared towards low-cost embedded microcontrollers (MCUs),
consists of core designs optimized for different purposes, such as small silicon
footprint (M0), high energy efficiency (M0+), configurability (M3) or high per-
formance (M4, M7). Cortex-M processors only support the 16-bit Thumb and
mixed 16 and 32-bit Thumb-2 instruction sets. 32-bit Thumb-2 instructions are
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encoded as two 16-bit half-words. ARMv8-M [4] is the next generation instruc-
tion set architecture for M-class processors. The Cortex-M231 and Cortex-M332

are the first cores to support the ARMv8-M architecture. Both are compatible
with other processors in the Cortex-M family, allowing (legacy) software re-use
on these devices.

All 32-bit ARM processors feature 16 general-purpose registers, denoted
r0-r15. Registers r13-r15 have special names and usage models. These reg-
isters, including the program counter (pc) can be accessed directly. Cortex-M
processors implement two stacks, the Main stack and Process stack. The stack
pointer (sp) is banked between processor modes, i.e., multiple copies of a register
exists in distinct register banks. Not all registers can be seen at once; the regis-
ter bank in use is determined by the current processor mode. Register banking
allows for rapid context switches when dealing with processor exceptions and
privileged operations. Application software on Cortex-M processor executes in
Thread mode where the current stack is determined by the stack-pointer select
(spsel) register. When the processor executes an exception it enters the Handler
mode. In Handler mode the processors always uses the Main stack. When exe-
cuting in Handler mode, the Interrupt Program Status Register (ipsr) holds the
exception number of the exception being handled. The ipsr may only be read
using a mrs instruction used to access ARM system register, and is only updated
by the processor itself on exception entry and exit (see Exception behaviour in
Sect. 4.4).

ARM calling standard. As with all processors, ARM provides a calling standard
that compiler manufacturers should use to resolve subroutine calls and returns in
an interchangeable manner. In programs conforming to the ARM Architecture
Procedure Call Standard (AAPCS) [3] subroutine calls may be performed either
through a Branch with Link (bl) or Branch with Link and eXchange (blx)
instruction. These instructions load the address of the subroutine to the pc and
the return address to the link register (lr). ARM processors do not provide
a dedicated return instruction. Instead, a subroutine return is performed by
writing the return address to the program counter pc. Hence, any instruction
that can write to the pc can be leveraged as an effective return instruction. Two
common effective return instructions are bx lr and pop {..., pc}. The bx lr
instruction performs a branch to the return address stored in the link register
lr. The pop {..., pc} in a subroutine epilogue loads the return address from
the stack to the pc. The former is typically used in leaf routines, which do not
execute procedure calls to other routines. The latter is typically preceded by
a push {..., lr} instruction in the subroutine prologue, which in a non-leaf
routine stores the return address in lr (possibly along with other registers that
need to be saved) on the stack in preparation for calls to other routines.

1 https://www.arm.com/products/processors/cortex-m/cortex-m23-processor.php.
2 https://www.arm.com/products/processors/cortex-m/cortex-m33-processor.php.

https://www.arm.com/products/processors/cortex-m/cortex-m23-processor.php
https://www.arm.com/products/processors/cortex-m/cortex-m33-processor.php
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2.2 TrustZone-M

TrustZone-M [4,48] (TZ-M) is a new hardware security technology present in
the ARMv8-M architecture. In terms of functionality, it replicates the properties
of processor supported isolation and priority execution provided by TrustZone-
enabled Cortex-A application processors (TZ-A), but their respective architec-
tural realizations differ significantly. Both TZ architectures expose a set of secure
state non-privileged and privileged processor contexts beside their traditional
non-secure state counterparts3. In both TZ variants the memory management
is extended to enable splitting the device’s physical memory into secure and
non-secure regions.

In TZ-M, the only general purpose registers banked between the non-secure
and secure states are the sp registers used to address the Main and Process
stacks. The remaining general purpose registers are shared (not banked) between
the non-secure and secure states. In practice this means that the secure state
software is responsible for sanitizing any sensitive information held in any general
purpose registers during a transition from secure to non-secure state.

Secure memory

Secure gateway 
veneers

Secure code

Secure data

Non-secure memory

Non-secure code

Non-secure data

secure_func:
SG
B secure_func_entry

BL secure_func

Secure non-secure 
callable (NSC)

BXNS lr

secure_func_entry:
...
BXNS lr

1 2

3

5

6
7

88

74

Fig. 1. ARMv8-M secure state call [48]

In TZ-A the entry to the secure state occurs via a dedicated hardware excep-
tion and the context switch is performed by the exception handler known as
the Secure Monitor. In TZ-M the division between the secure and non-secure
states is instead based on a memory map set up during device initialization
which assigns specific regions of memory as either secure or non-secure. The
transitions between secure and non-secure state occur automatically as the flow
of execution is transferred from program code in non-secure memory to secure
memory (and vice versa). Where in TZ-A the entry into the secure state typi-
cally has to manage VM and MMU configuration at the expense of thousands of
processor cycles, TZ-M is geared towards embedded processors with no virtual
memory support (at most a MPU). In TZ-M a switch of security state only takes
a few processor cycles including a pipeline flush [48].
3 Also referred to as the secure world and normal world.
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The hardware support for the division of memory into secure and non-secure
regions in ARMv8-M is a Secure Attribution Unit (SAU) inside the processor.
The SAU is configurable while the processor executes in secure state. External
interrupts may be routed to either non-secure state exception handlers, or secure
state exception handlers based on the SAU configuration. Figure 1 denotes a
typical memory layout for a TZ-M equipped device. Each memory region known
to the SAU may be declared as either Non-Secure (❶), Secure (❷) or Secure Non-
Secure Callable (NSC ❸). While Secure memory contains the secure program
image and data, the NSC memory contains secure gateway veneers4, i.e., branch
instructions (❼) which point to the actual subroutine code in Secure memory
(❹). The purpose of the NSC is to prevent non-secure program code to branch
into invalid entry points in secure program code (such as into the middle of a
function, as is often done in atleast ROP). To this end, the ARMv8-M instruction
set also introduces a Secure Gateway (sg) instruction, which is included in the
beginning of each veneer (❻) and acts as a call gate to the secure program code.
From the non-secure program code a call to a secure subroutine is performed
using a regular bl instruction (❺), targeting the corresponding veneer in the
NSC. Calls targeting a memory address in the NSC will automatically cause
a context switch to secure state, and the processor will validate that the call
targets a valid entry point with a sg instruction. In particular, calls from non-
secure state calling secure memory outside the NSC, or non-sg instructions in
the NSC will fail in a Secure Fault, a new type of hardware exception which
always traps into secure state. Secure subroutines return by executing a bxns
lr instruction (❽), which otherwise behaves like a return through bx lr, but
additionally switches the processor to non-secure state.

3 Problem Statement

3.1 Code-Reuse Attacks on ARM

Code-reuse attacks are a class of software exploits that allow attackers to exe-
cute arbitrary code on a compromised device, even in the presence of hardware
countermeasures against code injection, such as W⊕X [28]. In a return-to-libc
attack [45], the subroutine return address on the call stack is replaced by the
address of an entry point to a subroutine in the executable memory of a process.
The technique has been generalized into Return-Oriented Programming [44]
(ROP) for the x86 architecture, which has since become the exploitation tech-
nique of choice for modern memory-safety vulnerability attacks. Subsequently
ROP has been extended to various other CPU architectures [6,9,21], including
ARM microprocessors [32].

Many code-reuse attacks on x86 platforms use unintended instruction
sequences found by performing a branch into the middle of otherwise benign
instructions. Such unintended sequences cannot be formed in the 32-bit ARM,

4 http://www.keil.com/support/man/docs/armclang link/armclang link
pge1444644885613.htm.

http://www.keil.com/support/man/docs/armclang_link/armclang_link_pge1444644885613.htm
http://www.keil.com/support/man/docs/armclang_link/armclang_link_pge1444644885613.htm
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or in the 16-bit Thumb instruction sets where branch target alignment is enforced
on instruction load, and hence may only target the intended instruction stream.
However, the presence of both 32-bit and 16-bit instructions in Thumb-2 code
introduces ambiguity when decoding program code from memory. When decod-
ing Thumb-2 instructions, ARM processors still enforce 2-byte alignment on
instruction fetches, but the variable-length encoding allows the second half-word
in a 32-bit Thumb-2 instruction to be interpreted as the first half-word of an
unintended instruction. Such unintended instructions have been successfully uti-
lized in prior work [35,36] to exploit ARM code.

It has been shown that, on both x86 and ARM, it is also possible to perform
ROP attacks without the use of return instructions [8] in what has become to
be known as Jump-Oriented Programming (JOP). On ARM platforms, JOP can
be instantiated using indirect subroutine calls.

3.2 Control-Flow Integrity

A well known approach to address code-reuse attacks is enforcing the Control-
Flow Integrity (CFI) of the code. The execution of any program can be abstractly
represented as a Control-Flow Graph (CFG), where nodes represent blocks
of sequental instructions (without intervening branches), and edges represent
control-flow changes between such nodes (branch instructions). CFI enforcement
strives to ensure that the execution of the programs conforms to a legitimate
path in the program’s CFG. CFI builds on the assumption that program code
in memory is not writable (i.e., that memory pages can be marked W⊕X) as
a countermeasure against code injection attacks. Code immutability allows CFI
checks to be omitted for nodes in the CFG that end in direct branch instruc-
tions [2,20], i.e., branches with a statically determined target offset. As a result,
CFI is typically applied to nodes in the CFG that end in an indirect branch.
Indirect branches are typically emitted for switch-case statements, subroutine
returns, and indirect calls (subroutine calls to dynamic libraries, calls through
function pointers, e.g. callbacks, as well as C++ virtual functions).

While the construction of the CFG can occur through static inspection of
the program binary, the actual enforcement of CFI must occur at runtime. In
inlined CFI enforcement the checks that validate control-flow changes are inter-
spersed with the original program code at subroutine call sites, as well as in the
subroutine prologue and epilogue. The insertion of these checks can be achieved
through compiler extensions [10], or by binary machine-code rewriting. Binary
instrumentation that adds additional instructions to a pre-built program binary
by necessity modifies the memory layout of the code, and hence will require
memory addresses referenced by the program to be adjusted accordingly.

Traditional ROP targets return instructions that read the return address off
the program stack. A well known technique to enforce that subroutine returns
target the original call site is the notion of a shadow call stack [14]. The shadow
call stack is used to hold a copy of the return address. On subroutine return the
return address on the shadow call stack is compared to the return address on
the program stack. If they match, the return proceeds as usual. A mismatch in
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return addresses on the other hand indicates a failure of CFI and triggers an
error which terminates the program prematurely. Recent results show that, in
fact, shadow stacks are essential for the security of CFI [7].

3.3 CFI Challenges for Microcontrollers

We identify the following challenges in realizing CFI protection on IoT devices:

– Interrupt awareness: Since the software to be protected is a single,
interrupt-driven bare-metal program, the CFI scheme needs to handle both
interruptible code, as well as execution in interrupt contexts. To the best of
our knowledge, no existing CFI scheme meets this requirement.

– Hardware-based shadow stack protection: Protection of shadow stack
must leverage lightweight hardware-based trust anchors like TrustZone-M.
The code size and performance overhead of purely software-based CFI is pro-
hibitive on resource constrained devices and techniques for general purpose
computing devices often rely on hardware (such as x86 segmentation sup-
port [2]) that is unavailable in simple MCUs.

– Layout-preserving instrumentation: Since software for MCUs is com-
monly deployed as monolithic firmware images with strict size requirements,
CFI instrumentation must preserve memory layout of the image so as to avoid
extensive rewriting and to minimize the increase in code size.

– On-device instrumentation: To avoid having to rely on the developer (or
some other external entity) to perform the required instrumentation, the CFI
scheme must be amenable to on-device instrumentation.

3.4 Adversarial Model

We consider a powerful adversary with arbitrary read-access to code memory
and arbitrary read-write access to data memory of the non-secure state program.
This model accounts for buffer overflows or other memory-related vulnerabili-
ties (e.g. an externally controlled format string5) that, in practice, would allow
adversaries to gain such capabilities. The adversary cannot modify code memory,
a property that is achievable even on MCU class systems through widespread
countermeasure against code injection (e.g. MPU-based W⊕X). Nevertheless,
arbitrary read-access necessitates a solution that is able to withstand informa-
tion disclosure (the strongest attack scenario in Dang et al.s [14] evaluation of
prior work on CFI). Our threat model is therefore similar to previous work on
CFI, but we also consider an even stronger adversary who can exploit interrupt
handling to undermine CFI protection.

This model applies even when an attacker is in active control of a module or
thread within the same address space as the non-secure state program, such as
gaining control of an unprotected co-processor on the System-On-Chip (SoC).

5 CWE-134: Use of Externally-Controlled Format String https://cwe.mitre.org/data/
definitions/134.html.

https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/134.html
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However, the adversary lacks the ability to read or modify memory allocated to
the secure state software.

In this work, we do not consider non-control data attacks [46] such as Data-
Oriented Programming [29]. This class of attacks can achieve privilege escalation,
leak security sensitive data or even Turing-complete computation by corrupting
memory variables that are not directly used in control-flow transfer instructions.
This limitation also applies to prior work on CFI.

4 CFI CaRE

We now present CaRE (Call and Return Enforcement), our solution for ensuring
control-flow integrity. CaRE specifically targets constrained IoT devices, which
are expected to stay active in the field for a prolonged time and operate unat-
tended with network (Internet) connectivity, possibly via IoT gateways. This
kind of deployment necessitates the incorporation of software update mechanisms
to fix vulnerabilities, update configuration settings and add new functionality.

We limit our scope to small, more or less bare-metal IoT devices. The system
software is deployed as monolithic, statically linked firmware images. The secure
and non-secure state program images are distinct from each other [1], with the
secure state software stack structured as a library. The configuration of the SAU
and the secure state program image is performed before the non-secure code is
started. The entry to the secure state library happens through a well-defined
interface describing the call gates available to non-secure software. Functions
in the secure state are synchronous and run to completion unless interrupted
by an exception. The system is interrupt-driven, reacting to external triggers.
While it is possible that the non-secure state software is scheduled by a simple
Real-Time Operating System (RTOS), the secure state software does not have
separate scheduling or isolation between distinct software components for the
simple reason that the device is single-purpose rather than a platform for running
many programs from many stakeholders in parallel. Even when an RTOS is
present, it is seldom necessary for non-secure state code to support dynamic
loading of additional code sequences.

4.1 Requirements

Given the above target deployment scenario, we formulate the following require-
ments that CaRE should meet:

Requirement 1. It must reliably prevent attacks from redirecting the flow of
execution of the non-secure state program.

Requirement 2. It must be able to protect system software written in standard
C and assembler conformant to the AAPCS.

Requirement 3. It must have minimal impact on the code footprint of the non-
secure state program.
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Requirement 4. Its performance overhead must be competitive compared to the
overhead of software-based CFI schemes.

We make the following assumptions about the target device:

Assumption 1. A trust anchor, such as TZ-M, which enables isolated code
execution and secure storage of data at runtime is available.

Assumption 2. All (secure and non-secure) code is subject to a secure boot
sequence that prevents tampering of program and update images at rest. This
bootstrap sequence itself is not vulnerable to code-reuse attacks, and routines in
the bootstrap code are not invoked again after the device startup completes.

Assumption 3. All code is non-writable. It must not be possible for an attacker
to modify the program code in memory at runtime.

Assumption 4. All data is non-executable. It must not be possible for an
attacker to execute data as it were code. Otherwise, an attacker will be able
to mount code injection attacks against the device.

Assumption 1 is true for commercial off-the-shelf ARMv8-M MCUs. There
also exist several research architectures, such as SMART [18], SANCUS [40], and
Intel’s TrustLite [31] that provide equivalent features. Assumption 2 is true for
currently announced ARMv8-M SoCs6. Assumptions 3 and 4 are in line with
previous work on CFI and can be easily achieved on embedded devices that are
equipped with MPUs. These assumptions can be problematic in the presence of
self-modifying code, runtime code generation, and unanticipated dynamic load-
ing of code. Fortunately, most embedded system software in MCUs is typically
statically linked and written in languages that compile directly to native code.
Even when an RTOS is present, it is seldom necessary for non-secure state code
to support dynamic loading of additional code sequences.

4.2 Architecture

Our design incorporates protection of a shadow call stack on low-end ARM
embedded devices featuring TZ-M. The shadow call stack resides in secure mem-
ory, and is only accessible when the processor executes in the secure state. We
also propose a layout-preserving binary instrumentation approach for Thumb
code, with small impact to code footprint, and an opportunity for on-device
instrumentation as part of code installation. The main aspect of this property is
that the binary program image is rewritten without affecting its memory layout.
Figure 2 shows an overview of the CaRE architecture.

The premise for CaRE is instrumentation of non-secure state code in a man-
ner which removes all function calls and indirect branches and replaces them with
dispatch instructions that trap control flow to a piece of monitor code, the Branch
6 https://www.embedded-world.de/en/ausstellerprodukte/embwld17/product-98637

96/numicro-m2351-series-microcontroller.

https://www.embedded-world.de/en/ausstellerprodukte/embwld17/product-9863796/numicro-m2351-series-microcontroller
https://www.embedded-world.de/en/ausstellerprodukte/embwld17/product-9863796/numicro-m2351-series-microcontroller
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Monitor (❶), which runs in non-secure state. As a result, each subroutine call
and return is now routed through the Branch Monitor. The Branch Monitor
maintains the shadow stack by invoking secure functions (❷) only callable from
the Branch Monitor, before transferring control to the original branch target.
Other indirect branches, such as ones used to branch into switch case jump tables
can be restricted by the Branch Monitor to a suitable range and to target direct
branches in jump table entries. Thus, the Branch Monitor provides complete
mediation of instrumented non-secure state code.

Apart from the Branch Monitor, the program image also contains bootstrap
routines (labeled bn) that are used to initialize the runtime environment (❸).
Such routines may initially need to operate without a stack and other mem-
ory structures in place, and as such are typically hand written in assembler.
Due to these constraints, the bootstrap routines are likely to deviate from usual
AAPCS conventions. In particular, all calls are not guaranteed to result in a
subsequent matching return as fragments of bootstrap routines may simply be
chained together until eventually transferring control to the named C entry point
marking the beginning of main program code. On the other hand, the initializa-
tion code is typically not entered again after control has been transfered to the
main function until the device is reset.

Hence, from the perspective of maintaining control-flow integrity, both the
Branch Monitor and bootstrap code exist outside benign execution paths encoun-
tered in the program during normal operation. Henceforth, we will refer to the
code reachable from the main function as the main program. The CFG nodes
labeled fn in Fig. 2 represent the instrumented main program (❹). The main
program and bootstrap code do not share any routines (Assumption 2), even
though routines belonging to one or the other may be interleaved in program
memory. The main program code constitutes a strongly connected component
within the call graph7. This observation leads us to consider the main program
code as a complete ensemble in terms of instrumentation target. It can include
an RTOS and/or interrupt handlers. Interrupts handlers labeled hn (❺), with
the exception of the supervisor call handler that hosts the Branch Monitor, are
considered to be part of the main program. Conceptually, interrupts may be
reached from any node in the program’s CFG.

By eliminating non-mediated calls and returns in the non-secure state main
program, thus forcing each indirect branch through the Branch Monitor, we can
unequivocally eliminate control-flow attacks that utilize such branches.

4.3 Instrumentation

The instrumentation must intercept all subroutine calls and returns. Further-
more, it should have minimal impact on code footprint. Prior shadow stack
schemes either instrument the subroutine prologue and epilogue [10,14], or the
call site [14], pushing the return address to the shadow stack upon a subroutine

7 A call graph is a control-flow graph which represents the calling relationships between
subroutines in a program.
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call, and validating the return address on top of the shadow stack upon return.
We propose an alternative approach which is layout-preserving.

In uninstrumented code, the target address of direct subroutine calls (i.e., bl
instructions with immediate operands) are encoded as pc-relative offsets (i.e.,
signed integer values). In other words, the destination address depends on the
location of the branch instruction in memory. During instrumentation, we cal-
culate the absolute destination address, and store it in a data structure, called
the branch table which at runtime resides in read-only non-secure memory. Each
destination address in this branch table is indexed by the memory address of
the original branch instruction. The original branch instruction is overwritten
with a dispatch instruction, which, when executed, traps into the Branch Moni-
tor. At runtime, whenever an instruction rewritten in this fashion traps into the
Branch Monitor, the Branch Monitor will lookup the destination address from
the branch table, and redirect control flow to the original destination address.

In a similar manner, indirect branches corresponding to calls and effective
returns are replaced with dispatch instructions. The destination address of the
branches are only known at runtime, determined by a register value (lr in the
case of effective returns), or by a return address stored on the program call
stack, and hence do not influence the construction of the branch table during
instrumentation.

To address JOP attacks, our CFI enforcement must also be able to determine
legal call targets for indirect calls. In the case of indirect subroutine calls, the
call target must be a valid entry point to the destination subroutine, i.e., the
call must target the beginning of the subroutine prologue. The entry addresses
are extracted from the symbol information emitted by the compiler for debug
purposes. Further restriction of call targets is possible by means of static or
dynamic analysis (see Sect. 6). Since CaRE only requires the addresses of entry
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points, not the full debug information, the entry points are included in the
software image in a call target table on the device in a similar manner to the
branch table. When an indirect call occurs, the Branch Monitor will match the
branch target against this record of valid subroutine entry points.

In our implementation, we use the supervisor call svc instruction as the
dispatch instruction, and place the Branch Monitor in the supervisor call excep-
tion handler. The svc instruction has a number of desirable properties which
make it suitable as a dispatch. Firstly, it allows for an 8-bit comment field,
which is ignored by hardware, but can be interpreted in software, typically to
determine the service requested. We exploit this comment field to identify the
type of the original instruction, overwritten during the instrumentation (e.g. bl,
blx, pop {..., pc} etc.). Secondly, the supervisor call handler executes at the
highest exception priority, allowing us to pre-empt execution to the Branch Mon-
itor when instrumenting exception handlers. Lastly, because the svc in Thumb
instruction is a 16-bit instruction, it can be used for instrumenting both 32-bit
and 16-bit instructions. When replacing 32-bit instructions, e.g., a Thumb-2 bl
instruction with an immediate operand, we use the sequence 0xb000, which cor-
responds to the opcode for add sp, #0 (effectively a NOP) as padding to fill
the remaining 16 bits of the original bl.

4.4 Implementation

We implemented a proof-of-concept prototype of CaRE on the ARM Versa-
tile Express Cortex-M Prototyping System MPS2+ configured as a Cortex-
M23 CPU.
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We implemented a binary rewriter to perform the instrumentation on non-
secure state binaries. It utilizes the Capstone disassembly engine8 to identify
control-flow instructions for rewriting.

Figure 3 illustrates the altered control-flow changes. When a dispatch instruc-
tion is encountered in the program (❶), instead of taking a control-flow trans-
fer directly to the original target (❷), program execution is temporarily halted
by a trap into the Branch Monitor (❸). The Branch Monitor will update the
shadow stack maintained in secure memory by invoking secure shadow stack
operations entry points in the gateway veneer (❹), which allow access to the
secure state subroutines handling the actual update (❺). Upon completion, con-
trol is returned to the non-secure Branch Monitor code (❻), which finally redi-
rects control flow to the intended destination (❼). The same sequence applies
both for calls, and returns (❽).

Branch Monitor. The Branch Monitor is responsible for dispatching and validat-
ing control-flow transfers that occur during program execution. When invoked,
it will first determine the reason for the trap based on the svc comment and
trigger the corresponding branch handler routine within the Branch Monitor.
The routine updates the shadow stack accordingly (pushes return address on
subroutine calls, pops and validates return address on subroutine returns) and
redirects the control flow to the intended target. For branches corresponding
to direct subroutine calls a branch table lookup is needed since the target of a
call is not anymore evident from the dispatch instruction. For indirect calls, the
Branch Monitor verifies that each call targets a valid subroutine entry within
the main program by looking up the target from the call target table.

As the Branch Monitor executes in the supervisor call handler, the main
stack contains a context state stack frame corresponding to the processor state
at the point the supervisor call exception was taken (see Table 1). Control-flow
redirection is triggered by manipulating stored pc and lr values in the context
stack frame and performing an exception return from the Branch Monitor (see
below), which causes the processor to restore the context stack frame and resume
execution from the address in the stored pc.

Interrupt awareness. An important feature of M-class cores is their deterministic
interrupt latency in part attributable to the fact that the context-switch, while
entering the exception handler, is performed entirely in hardware. An instruction
that triggers an exception, such as the svc used for supervisor calls, causes (1)
the hardware to save the current execution context state onto a stack pointed
to by one of the sp registers, (2) the ipsr to be updated with the number of the
taken exception, and (3) the processor to switch into Handler mode in which
exceptions are taken. Table 1 shows the layout of a typical stack frame created
during exception entry9. The value stored at offset 0x18 in the stack frame is

8 http://www.capstone-engine.org/.
9 In Cortex-M processors that implement the floating point extensions, the context

stack frame may also contain the values of floating point registers.

http://www.capstone-engine.org/
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Table 1. Context state stack frame layout [4]

Offset Stack contents

0x1C xpsr

0x18 pc

0x14 lr

0x10 r12

0x0C r3

0x08 r2

0x04 r1

0x00 r0 ← sp

the pc value at the point the exception was taken, and represents the return
value from which program execution shall continue after the exception handler
exits. To facilitate fast restoration of the saved context state, M-class processors
support a special return sequence which restores the saved values on the stack
into their corresponding registers. This sequence is known as an exception return
and occurs when the processor is in Handler mode, and a special Exception
Return Value (ERV) is loaded into the pc either via a pop instruction, or a bx
with any register. ERVs are of the form 0xFXXXXXXX, and encode in their
lower-order bits information about the current processor state and state before
the current exception was taken. ERVs are not interpreted as memory addresses,
but are intercepted by the processor as they are written to the pc. When this
occurs, the processor will validate that there is an exception currently being
handled, and that its number matches the exception number in the ipsr. If the
exception numbers match, the processor performs an exception return to the
processor mode specified by the ERV, restoring the previous register state from
the current stack, including the stored pc. This causes the processor to continue
execution from the point in the program at which the exception was originally
taken. When multiple exceptions are pending, lower priority exceptions may
be tail-chained which causes the processor to directly begin executing the next
pending exception, without restoring the context state frame between exceptions.

Due to the fact that the context state stack frame contains a stored pc value
that is restored on exception return, an exception handler with a vulnerability
that allows an attacker to control the content of the context state frame on the
stack constitutes a valid attack vector. This attack differs from a traditional
ROP attack in that the attacker does not need to control the immediate lr
value (which may reside only in the lr register), as during the execution of
the exception handler lr contains merely the current ERV value. Instead, by
manipulating the pc value in the context state stack frame, an attacker can
cause an effective return from the exception handler to an arbitrary address.
To avoid this, CaRE needs to be interrupt aware, and accurately record the
correct return address for the exception handler onto the shadow stack. However,
exceptions (when enabled) may be triggered by events external to the main
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program execution, effectively pre-empting the main program at an arbitrary
position in the code, even during the execution of another exception handler
(assuming an exception of higher priority arriving concurrently).

To tackle this challenge, we introduce exception trampolines. When an excep-
tion is received, the trampoline determines the return address, stores it on the
shadow stack, and then proceeds to execute the original exception handler. The
exception trampolines can be instrumented in place by rewriting the non-secure
state exception vector and replacing the address of each exception with the
address of a corresponding exception trampoline, that ends in a fixed branch
to the original exception handler. That address is the original exception vector
entry.

Since CaRE may interrupt the execution of another exception handler, we
need to support a nested exception return, i.e. when the pc is being supplied
with two consecutive return values in immediate succession. However, pc values
in the 0xF0000000 - 0xFFFFFFFF range are only recognized as ERVs when they
are loaded to the pc either via a pop instruction, or a bx with any register (see
Sect. 2.1). In particular, when an ERV is loaded to the pc as part of an exception
return, it is instead interpreted as a memory address in an inaccessible range thus
causing a hard fault in the processor. To overcome this, we also deploy return
trampolines, small fragments of instruction sequences that contain the different
effective return instructions originally present in the program image prior to
binary rewriting. When the Branch Monitor returns from the supervisor call
exception handler, it does so via the trampoline corresponding to the original
return instruction.

5 Evaluation

5.1 Security Considerations

A key consideration for the effectiveness of CaRE is the ability of the Branch
Monitor to perform complete mediation of indirect control-flow events in
untrusted non-secure state program code. After all, any branch instruction for
which an adversary can control the destination may potentially be used to dis-
rupt the normal operation of the program. In practice, it is not possible to com-
pletely eliminate all instructions that may act as indirect branches from the non-
secure state program image. In particular, the bootstrap code, the Branch Mon-
itor itself and the return trampolines must remain uninstrumented. We argue
that despite the Branch Monitor and bootstrap code being uninstrumented,
CaRE is secure in terms of fulfilling Requirement 1. We demonstrate this with
the following reasoning.

Claim. In order to maintain the control-flow integrity of the non-secure state
program it is sufficient for the Branch Monitor to mediate calls that occur
within the strongly connected component of the main program’s call graph.

We base our reasoning on the following observations:
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Observation 1. The secure state software stack, and the Branch Monitor are
trusted and cannot be disabled or modified.

This follows from Assumptions 2 and 3. A secure boot mechanism protects
the program code at rest and read-only memory protects it from modification
at runtime.

Observation 2. The main program has been instrumented in a manner which
replaces all subroutine calls and indirect branch instructions with Branch Mon-
itor calls.

This follows simply from the operation of our instrumentation.
Based on these observations we formulate the following invariants:

Invariant 1. Each subroutine within the main program has a fixed entry address
that is the entry point for all control-transfer instructions (that are not returns)
that branch to the subroutine.

Invariant 2. All control-transfer instructions in the main program that act as
effective returns target a previously executed call site within the main program.

Invariant 1 is true for all subroutines that are entered by control-transfer
instructions where the destination address is an immediate operand that is
encoded into the machine code instruction itself. This remains true after instru-
mentation as per Observations 1 and 2, as the destinations addresses are repli-
cated read-only in the branch table, and the control-flow transfer for instru-
mented calls is mediated by the Branch Monitor. The entry address to an inter-
rupt handler is the address recorded in the interrupt vector, and thus fixed, as
interrupt handlers are not called directly from main program code.

As long as Invariant 1 holds control-flow transfers to an offset from the begin-
ning of a subroutine are not possible. This includes branches that target 32-bit
Thumb-2 instructions at a 16-bit offset10, thus attempting to make use of the
ambiguity in the Thumb-2 instruction set encoding.

Invariant 2 follows during benign execution from the structure of the pro-
gram’s call graph and Assumption 2. It remains true after instrumentation,
notably even in the case the return addresses are compromised, because Observa-
tions 1, 2 and Invariant 1 imply that the Branch Monitor has complete mediation
of control-flow transfers within the main program. Thus, the Branch Monitor has
the ability to enforce that no return may target an address from which a match-
ing call site has not been observed.

Based on this, and given that no instrumented subroutine call will ever occur
from the bootstrap code nor from the Branch Monitor into the main program
we may formulate the following corollaries:

Corollary 1. No return within the main program may target the Branch Mon-
itor.
10 Half-word alignment for branch instruction target addresses is enforced by the hard-

ware itself.
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Corollary 2. No return within the main program may target the initialization
code.

Hence, as long as the Branch Monitor can correctly mediate all immediate
branches corresponding to subroutine calls and all indirect branch instructions
within the main program, the call/return matching performed by the Branch
Monitor enforces that no control-flow transfers to outside the main program
occur as a result of mediated calls.

We evaluated the effectiveness of our Branch Monitor implementation by
attempting to corrupt control-flow data on the stack through a buffer overflow
introduced into our sample binaries. We also performed simulations where we
corrupted the target addresses kept in memory or registers for different branch
types (both calls and returns) in a debugger. In each case, we observed the
Branch Monitor detecting and preventing the compromised control flow.

5.2 Performance Considerations

The overhead CaRE adds to program execution is dependent on the number of
subroutine calls and returns in the program. We evaluated the impact of CaRE
on performance using microbenchmarks with varying proportions of subroutine
calls (and returns) in relation to other instructions. Our microbenchmarks con-
sisted of an event-based One-Time Password (OTP) generation algorithm that
uses the Corrected Block Tiny Encryption Algorithm (XXTEA) block cipher
algorithm, and a Hash-based Message Authentication Code (HMAC) implemen-
tation using the SHA256 cryptographic hash function. The size of the branch
table was kept constant for each experiment. Our microbenchmarks contain only
direct subroutine calls and all indirect branches corresponded to effective returns.

Table 2. Microbenchmark results. “Monitor traps” shows the number of Branch Mon-
itor invocations during the execution of the microbenchmark routine. “Ratio” shows
the ratio of instrumented control-flow transfer instructions in relation to other machine
code instructions in the main program image.

Program Monitor traps Ratio Uninstrumented Instrumented Overhead

otp 4 1
956

0.53 ms 0.59 ms 0.07 ms

hmac 80 1
588.4

0.02 ms 0.09 ms 0.07 ms

We also instrumented the Dhrystone 2.1 benchmark program [47] in order
to estimate the performance impact on larger pieces of software. Dhrystone is
a synthetic systems programming benchmark used for processor and compiler
performance measurement. It is designed to reflect actual programming prac-
tice in systems programming by modeling the distribution of different types of
high-level language statements, operators, operand types and locality sourced
from contemporary systems programming statistics. In particular, it attempts
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Table 3. Dhrystone results. The “One run through Drystone” column shows the aver-
age runtime through the Dhrystone benchmark for the “Uninstrumented” and “Instru-
mented” program versions respectively.

Monitor traps Ratio One run through Drystone

Uninstrumented Instrumented Overhead

34 1
26.4

0.15 ms 0.76 ms 0.61 ms

to reflect good programming practice by ensuring that the number of subroutine
calls is not too low. Today Dhrystone has largely been supplanted by more com-
plex benchmarks such as SPEC CPU bencmarks11 and CoreMark12. The SPEC
CPU benchmarks in particular have been used in prior CFI literature [2,14].
However, the SPEC suite is not practical to port to MCUs cores. The support
library accompanying the Dhrystone benchmark contains both direct and indi-
rect subroutine calls, and indirect returns. Other types of indirect branches were
not observed in the main program portion of the samples.

All measurements were performed on an ARM Versatile Express Cortex-M
Prototyping System MPS2+ FPGA configured as a Cortex-M23 processor exe-
cuting at 25 MHz. Table 2 shows the results of the microbenchmarks and Table 3
shows the result for the Dhrystone benchmarks. According to the measurements
the overhead of CaRE ranges between 13%–513%. The results compare favor-
ably to existing software protection based shadow stack schemes with reported
overheads ranging between 101%–4400% [10,20] (see Sect. 7).

5.3 Memory Considerations

While layout preserving instrumentation does not add instructions to the pro-
gram image, the Branch Monitor and the constructed branch and call target
tables and need to be placed in device memory. The Branch Monitor only needs
to include the logic to handle branch variants present for a particular program
image. For our microbenchmark program image the Branch Monitor implemen-
tation adds a fixed 700 bytes (5.1%) to the program image size. The branch table
for the microbenchmarks program binary consists of 75 8-byte records, adding
600 bytes (4.3%) to the program image. Overall the memory consumption of
our microbenchmark program increased by 9.4%. For our Dhrystone program
image the Branch Monitor adds 1143 bytes (5.5%) and the branch and call
target tables 1528 bytes (7.3%) and 376 bytes (1.7%). Overall the memory con-
sumption of the Dhrystone program increased by 14.5%). The numbers for the
Dhrystone program include full instrumentation of the support library.

11 https://www.spec.org/benchmarks.html.
12 http://www.eembc.org/coremark/about.php.

https://www.spec.org/benchmarks.html
http://www.eembc.org/coremark/about.php
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6 Extensions

Function-Reuse Attacks. The call target validation as presented in Sect. 4 does
not fully address the issue of complete function reuse attacks within the main
program code. An attacker might perform a pointer substitution where a pointer
to one subroutine is exchanged for another subroutine. As both constitute valid
call targets, the control-flow transfer would be allowed. Our instrumentation
tools allow a human analyst to reduce the set of subroutines that may be subsi-
tituted for each other by limiting the entries to the call target table known to be
targeted by indirect subroutine calls, e.g. subrutines used as callback functions.
However, as the call target may be computed by the program only at runtime, it
is impractical to programatically fully explore all possible execution paths of a
program during static analysis and pre-compute a complete CFG. This remains
an open problem for any CFI scheme.

Threading. In our current implementation, the normal state software is limited
to using the Main stack. In order to enable CFI for the rudimentary threading
supported by Cortex-M processors, the Branch Monitor must be extended to
maintain a separate shadow stack for return addresses on the Process call stack.
The changes to the Branch Monitor are straightforward as it can consult the
spsel register to determine which shadow stack to update.

On-device instrumentation. The layout-preserving instrumentation approach
described in Sect. 4.3 has properties that make it suitable for performing binary
rewriting on-device. Firstly, since it does not affect addresses resolved at link-
time, it can be completed in a single pass over the binary image. Secondly,
the logic consists of a simple search and replace of branch instruction patterns
and branch table construction. While our current implementation relies on an
separate tool for rewriting, it is straighforward to implement the needed instru-
mentation as part of the installation process on-device.

Binary patching. Another approach to performing the instrumentation required
for CFI is Binary patching [5]. In binary patching, instrumented instructions
are replaced with dispatch instructions to trampolines that are placed in unused
memory. Compared to binary rewriting [27], binary patching does not require
adjusting of all pc-relative offsets and thus has less impact to the program mem-
ory layout. However, as explained in Sect. 2, Thumb-2 code has properties that
makes binary patching more challenging compared to the instrumentation app-
roach described in Sect. 4.3; dispatch instructions used for ARM binary patching
are typically 32-bit Thumb-2 pc-relative branches in order to encode a sufficient
offset to reach the trampolines. If the instrumented instruction is 16 bits in
size, the 32-bit dispatch instruction cannot be inserted without affecting the
memory layout of the binary. Instead of adjusting all subsequent instructions,
both the 16-bit target instruction, and another (16-bit or 32-bit) instruction is
moved to the trampoline to make room for the dispatch instruction. If the moved
instruction contains a pc-relative operation, it needs to be adjusted accordingly
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since the new location of the instruction will correspond to a different pc value.
Even for a small instruction sets such as Thumb, the required logic to perform
such adjustments is not in general practical to be implemented as part of the
software update mechanism on a resource constrained device. Additionally, as
trampolines may contain instructions moved from the instrumentation point,
each instrumentation point requires a corresponding trampoline. However, for
use cases where on-device instrumentation may not be a concern, a TZ-M pro-
tected shadow stack could be utilized with binary patching. This approach would
have the advantage of not requiring Branch Monitor logic in the supervisor call
handler.

7 Related Work

Code-reuse attack countermeasures have been a focal topic of research for the
past decade. The most widely used mitigation technique against this class of
attack is Address Space Layout Randomization (ASLR) [13,34]). ASLR relies
on shuffling the executable (and the stack and heap) base address around in
virtual memory, thus requiring an attacker to successfully guess the location of
the target code (or data). This makes ASLR impractical for constrained devices
that lack MMUs and where memory is a scarce resource.

Dang et al. [14] conduct a comprehensive evaluation of shadow stacks schemes
in the face of different adversarial models. Dang et al.’s parallel shadow stack [14]
and many traditional shadow stacks [24,25,38] are based on unprotected shadow
stacks, e.g., their integrity can be compromised if the shadow stack location is
known as they are located in the same address space as the vulnerable appli-
cation. Shadow stacks protected by canary values [20,42] can withstand attacks
that are limited to sequantial writes, but not arbitrary writes to specific memory
addresses. Dang et al. identify only two schemes that operate under an equivalent
adversary model as CaRE, in particular with regard to the ability to withstand
disclosure of the shadow stacks location; Chiueh and Hsus Read-Only RAD [10]
and Abadi et al.’s CFI scheme [2]. Read-Only RAD incurs a substantial overhead
in the order of 1900%–4400% according to benchmarks by the authors. Abadi
et al.’s protected shadow stack achieves a modest overhead between 5%–55%
(21% on average). However, it makes use of x86 memory segments, a hardware
feature not available on low-end MCUs. In contrast, CaRE provides equiva-
lent security guarantees without requiring hardware features unique to high-end
general purpose processors and compared to previous work on software-only
protected shadow stacks, CaRE performs better.

In addition, we consider an even stronger adversary who can exploit interrupt
handling to undermine CFI protection; this has been largely ignored in previous
CFI works. Prior work, most notably ROPDefender [17] and PICFI [39] support
software exception handling, particularly C++ exceptions. To the best of our
knowledge, CaRE is the first scheme to protect hardware interrupts initiated
by the CPU, a necessity for CFI in bare-metal programs. We make no claim
regarding software exceptions, as our system model assumes C programs.
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The prevalence of ROP and JOP exploitation techniques in runtime attacks
on modern PC platforms has also prompted processor manufacturers to pro-
vide hardware support for CFI enforcement. In June 2016, Intel announced
its Control-flow Enforcement Technology [30] that adds support for shadow
call stacks and indirect call validation to the x86/x84 instruction set archi-
tecture. Similarly the ARMv8.3-A architecture provides Pointer Authentication
(PAC) [43] instructions for ARM application processors that can be leveraged in
the implementation of memory corruption countermeasures such as stack pro-
tection and CFI. Countermeasures suitable for resource-constrained embedded
devices, however, have received far less attention to date. Kumar et al. [33] pro-
pose a software-hardware co-design for the AVR family of microcontrollers that
places control-flow data to a separate safe-stack in protected memory. Francillon
et al. [22] propose a similar hardware architecture in which the safe-stack is
accessible only to return and call instructions. AVRAND by Pastrana et al. [41]
constitutes a software-based defense against code reuse attacks for AVR devices.
HAFIX [16] is a hardware-based CFI solution for the Intel Siskiyou Peak and
SPARC embedded system architectures. SOFIA [11] is a hardware-based security
architecture for the LEON3 soft microprocessor that provides software integrity
protection and CFI through instruction set randomization.

8 Conclusion

Security is paramount for the safe and reliable operation of connected IoT
devices. It is only a matter of time before the attacks against the IoT device
evolve from very simple attacks such as targeting default passwords to advanced
exploitation techniques such as code-reuse attacks. The introduction of light-
weight trust anchors (such as TrustZone-M) to constrained IoT devices will
enable the deployment of more advanced security mechanisms on these devices.
We show why and how a well understood CFI technique needs to be adapted
to low-end IoT devices in order to improve their resilience against advanced
attacks. Leveraging hardware assisted security is an important enabler in CaRE,
but it also meets other requirements important for practical deployment on small
devices, such as interrupt-awareness, layout-preserving instrumentation and the
possibility for on-device instrumentation. For small, interrupt-driven devices, the
ability to ensure CFI in both interruptible code, as well for the code executing
in interrupt contexts is essential.
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to these incurred losses. Affected organizations currently have no way of
detecting these covert, and at times illegal miners and often discover the
abuse when attackers have already fled and the damage is done.

In this paper, we present MineGuard , a tool that can detect mining
behavior in real-time across pools of mining VMs or processes, and pre-
vent abuse despite an active adversary trying to bypass the defenses. Our
system employs hardware-assisted profiling to create discernible signa-
tures for various mining algorithms and can accurately detect these, with
negligible overhead (<0.01%), for both CPU and GPU-based miners. We
empirically demonstrate the uniqueness of mining behavior and show the
effectiveness of our mitigation approach(≈99.7% detection rate). Fur-
thermore, we characterize the noise introduced by virtualization and
incorporate it into our detection mechanism making it highly robust.
The design of MineGuard is both practical and usable and requires no
modification to the core infrastructure of commercial clouds or enter-
prises.
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1 Introduction

For most popular cryptocurrencies, such as Bitcoin and Litecoin, it is not prof-
itable to mine using one’s own resources unless the mining is carried out using
specialized hardware [17]. However, the exercise can be of value if carried out
on “stolen” resources, such as pools of hijacked VM instances or resources
acquired under false pretexts (e.g., for research). This has incentivized both
hackers [8,11,18] and unethical employees, such as professors [15], academic
researchers and students mining on university-owned resources [10,26]. Even
IT admins [7] have been found doing covert cryptomining. One researcher, for
instance, misused NSF-funded supercomputers to mine for Bitcoins costing the
university upwards of $150,000 [44]. On two other noteworthy occasions, NAS
device botnets secretly mined for DogeCoin and Monero amounting to $600,000
and $82,000 respectively, before the covert operations were eventually discovered
and shut down [14,29]. There are several other instances of employees and hack-
ers secretly mining for coins in both the corporate [5] and government sectors [4].

This covert abuse of “borrowed” resources is not limited to enterprises and
has also been observed in commercial clouds and datacenters [11]. The sheer
amount of resources needed for a covert cryptomining operation are readily avail-
able in a cloud setting. Furthermore, since mined coins can easily be transferred
to the attacker using a simple anonymized wallet address, it makes the “get
away” scheme straightforward [1]. As a result, numerous instances of this tar-
geted cloud abuse have already been uncovered, whereby attackers successfully
broke into clouds and deployed cryptominers at a massive scale by spawning
numerous VM instances dedicated exclusively to mining [9,11,18]. The advent
of GPU clouds, such as those operated by Amazon and Microsoft, have further
incentivized attackers to transfer their operations onto clouds and leverage the
power of parallel computing, as GPUs often have higher hash rates and perform
better for certain mining algorithms.

In this paper we present MineGuard, a simple hypervisor tool based on
hardware-assisted behavioral monitoring, which accurately detects the signa-
ture of a miner. Specifically, our system uses Hardware Performance Counters
(HPCs), a set of special-purpose registers built into modern processors, to accu-
rately track low-level mining operations or events within the CPU and GPU
with minimal overhead. This gives MineGuard the ability to accurately detect,
in real-time, if a VM is trying to mine for cryptocurrency, without incurring
any substantial slowdown (<0.01%). MineGuard is built on the observation that
for attackers to mine for any cryptocurrency, they will have to repeatedly run
the core Proof-of-Work (PoW) algorithm that the currency is based on (such as
Scrypt [32] for Litecoin) millions of times at the very least. Such repeated runs
would substantially influence the count of certain HPCs in a particular way,
which we can detect using a runtime checker. We empirically demonstrate very
high detection rates (≈99.7%), low false positives (<0.25%) and false negatives
(<0.30%). Furthermore, our system does not modify any hypervisor code and
leverages commonly available tools such as perf [19], thus making it easy to
deploy and use in cloud and enterprise environments. We believe that attackers
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cannot deceive MineGuard as (1) it attempts to catch the inherent mining behav-
ior essential for mining and (2) it is more privileged than a VM and hence difficult
to bypass. We make the following contributions:

Behavioral Analysis of Cryptomining: We perform a first-of-its-kind com-
prehensive study to explore the behavior of cryptocurrency mining focusing on
micro-architectural execution patterns. Specifically, (1) we show that CPU/GPU
signatures of mining and non-mining applications differ substantially; (2) differ-
ent implementations of the same coin exhibit similar signatures due to the same
underlying PoW algorithm, meaning that mining should be detectable by pro-
filing an algorithm instead of the executing binaries (to overcome polymorphic
malware) and (3) surprisingly, profiles of various coins exhibit overlapping sig-
natures, despite having different PoW algorithms.

HPC Monitoring in Virtual Environments: While prior work has demon-
strated the use of HPCs for malware detection, their utility and feasibility in a
virtualized context has largely been ignored. We characterize the noise that is
introduced into each HPC value individually due to virtualization, and show the
best-fit distribution for this noise in each case. Our findings indicate that certain
counters have a very pronounced noise-distribution, which can be used to error-
correct the signatures. In contrast, some HPCs show negligible effects of noise.
To incorporate this noise into our behavior profiles we develop a step-by-step
signature creation process that captures an evolving profile of mining malware
in increasingly noisier environments making our detection robust under different
virtualized environments.

Userspace Detection Tool: We build a user space tool, MineGuard, that can
run on top of any hypervisor or host OS and perform real-time detection. Mine-
Guard has a negligible overhead, a small size footprint, is hard to evade, and can-
not be compromised by malicious VMs. We believe MineGuard can be extended
for other resource-intensive malware with minor modifications and serves as a
valuable addition to the cloud security toolbox.

Paper Organization: We discuss the cost of covert cryptomining in Sect. 2 and
how HPCs can be used to detect such miners in Sect. 3; followed by our system
design in Sect. 4, methodology in Sect. 5 and evaluation in Sect. 6. Limitations are
presented in Sect. 7 and related work in Sect. 8. Finally, we conclude in Sect. 9.

2 Understanding the Cost of Covert Cryptomining

Apart from using compromised accounts and hijacked VM instances for min-
ing, hackers can also exploit the freemium business model of clouds. They can
amass the complimentary resources allocated to individual accounts and build
a large valuable pool [48,51], e.g., building an unlimited “slack space” on top of
small free storage shares in Dropbox [43]. This issue has recently gained more
traction amongst cloud providers with Google expressly forbidding any mining-
related activity in its free tier resources [27]. Furthermore, providers also offer
free resources under other specialized programs, such as to app developers and
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students. These resources can also be abused in the aforementioned manner.
As evidence to these freeloading issues, researchers recently constructed a min-
ing botnet on Amazon entirely out of free resources [11]. The mining botnet
was capable of generating cryptocurrency worth thousands of dollars and went
completely undetected, despite its large footprint and conspicuous behavior.

These covert and cleverly concealed mining operations are a serious financial
concern for admins. First, they waste valuable resources. Second, to maximize
the hash rates hackers push CPUs/GPUs to full compute capacity for extended
periods of time. This increases power consumption and generates heat, both of
which impact operating costs [6]. Hence, it is imperative that mining deploy-
ments be thwarted before different losses stack up.

Users can’t prevent this abuse as attackers can easily get root access and
bypass security mechanisms or simply spawn their own VMs using stolen
accounts. Similarly, providers and admins also struggle to mitigate these min-
ing rigs [18], as they cannot distinguish mining from other types of workloads
from outside the VM. Traditional VM instrospection techniques, such as ana-
lyzing memory dumps [41] or virtual disk monitoring [45], could be used but
they have a large overhead and do not scale well. Also, if vendors start “peek-
ing” into customers’ VMs (e.g., by analyzing memory dumps), they run the
risk of compromising the confidentiality and privacy of sensitive user data and
computations.

Hence, a tool like MineGuard that proactively detects mining-related abuse
(on free and stolen/compromised instances) and does not directly look at user
data or code, is needed as a part of the provider’s security toolbox.

3 Using Hardware Performance Counters

Past work has shown the effectiveness of hardware-based monitoring for mal-
ware detection [34,35,53–55] using architectural and microarchitectural execu-
tion patterns. The approach is predominantly characterized by an extremely low
performance overhead making it ideal for real-time monitoring on latency sensi-
tive systems. We build upon these past works and present the design of a system
based on Hardware Performance Counters (HPCs) for detecting mining behav-
ior on clouds/enterprises. HPCs, outlined in Table 2 later on, are a set of special
purpose registers internal to the processor that record and represent the runtime
behavior and characteristics of the programs being executed. Common examples
include counts of page faults, executed instructions, cache misses etc. Though
developed to aid application developers in fine-tuning their code, HPCs can also
be used for behavior profiling without directly looking at code and data. Other
than the fact that HPCs are extremely fast, their choice as the main detection
metric is based on the following insights.

First, miners need to run the core PoW algorithm of a coin repeatedly, mil-
lions of times. If an algorithm A alters a few specific HPCs, say counters X, Y
and Z, as part of the main hashing operations, then the values for these three
counters should dwarf counts of all other (relatively under utilized) HPCs given
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that algorithm A has to run millions of times. This implies that a very strong
signature can be constructed based on the relevant counters of a particular algo-
rithm, such as Scrypt [32] or CryptoNight [2]. If an adversary tries to stay under
the radar by mining conservatively, then the hash rates will take a hit and profits
will decline correspondingly making the exercise less lucrative. Also, since the
processor will remain relatively under utilized, power and cooling costs will stay
at manageable levels, making mining less of a nuisance for cloud vendors.

Second, any computation can only ever add to the values of HPCs and has no
way of reducing counter values, as opposed to software-based defenses, which the
attacker can subvert and alter. Hence, if an adversary mines for a coin, they will
have no way of reducing counter values to avoid detection, and will be flagged
with high likelihood. An adversary however, can try and neutralize the signature
by increasing the values of other HPCs not associated with the PoW algorithm.
But to do so successfully, the adversary has to overcome two hard challenges.
First and foremost, they have to figure out a computation that only affects HPCs
other than the ones related to the mining algorithm. In other words, there can be
no overlap in the counters altered by the miner and the computation in question.
Otherwise, the signature of the miner will only be bolstered further. Second, and
more importantly, they have to run the secondary computation millions of times
so that counter values are approximately equalized. However, the extra load on
the system would greatly diminish the hash rate of the miner, reducing their
profits.

Finally, HPCs are low-level registers and can be directly accessed by the hyper-
visor, requiring no modifications to the guest OS or applications. Furthermore, an
adversary that manages to compromise a VM, even with root access, will not be
able to falsify the values of the HPCs as the hardware does not allow this.

4 Design and Signature

The design of MineGuard was influenced by the following observations: First,
unlike generic malware that can exploit users in novel ways, miners have to stick
to the core PoW algorithm on which a cryptocurrency is based. This means that
if a signature is built specifically for the algorithm, various implementations, even
polymorphic and metamorphic ones, would be detectable. Second, detection has
to be performed in a manner oblivious to the VM so that a malicious party cannot
identify if they are being profiled or not, lest they start behaving differently. In
addition, if a malicious entity does start behaving differently to cover up its
tracks, it should incur a massive penalty, thereby defeating the whole purpose
of the attack. Third, the detection mechanism has to be more privileged than
the mining entity for obvious reasons. Finally, given the massive scale of clouds,
the mechanism needs to be highly scalable with low performance overhead.

Given these stringent requirements, a hardware-assisted mechanism that can
be executed on the host OS or the hypervisor emerged as the only logical candi-
date. As shown in Fig. 1A, MineGuard comprises of three components: A Profiler,
a Detection Agent, and a Mitigation Agent. These three components run on each
server in the cloud on top of the host or the hypervisor.
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Fig. 1. (A) Inner components of a MineGuard instance. (B) Overview of MineGuard.
Sequentially: MineGuard checks for current HPC values against the classifier. If a match
occurs, it discovers all other VMs of the tenant and shuts down/suspends these VMs
if they are also found mining.

The Profiler instruments each VM in real-time by polling the HPCs with a
2 s interval. The interval length is an adjustable metric, as MineGuard can use
any user-defined sampling frequency to increase the accuracy even further. How-
ever, since mining is a long-term activity usually carried out for several hours
at the very least (as opposed to short-term malware) we can easily afford to
utilize large sampling intervals. This has the benefit of minimizing MineGuard’s
resource usage and does not effect the quality of the signature giving highly
accurate detection rates as shown in Sect. 6. Furthermore, long intervals before
repolling for HPCs, minimizes the overhead experienced by legitimate users as
their VMs are profiled less often.

The Detection Agent runs the current HPC values against a classifier trained
to detect mining behavior. If the classifier outputs a positive match, the Detec-
tion Agent flags the VM. Once a VM is flagged, the Mitigation Agent suspends
it temporarily and determines the location of all VMs belonging to that tenant
by contacting the cloud orchestrator as shown in Fig. 1B. All of the tenant’s VM
are then put to further screening by the Detection Agents on their corresponding
servers. If more matches occur in this phase, the Mitigation Agents shut down
those suspicious VMs as well.

Signature Creation: To incorporate the noise introduced by virtualization, we
use a three-phased approach to creating accurate and precise mining signatures
for both CPUs and GPUs. For our purposes, a signature is a time series of
performance counter values of an application over a specified interval of time.
To generate such time series, in the first phase, we run miners for various coins in
a native environment and profile only the mining processes using perf [19] with
a sampling rate of 2 s (empirically chosen for ease and accuracy). This gave us
noise-free process-level HPC-based signatures for numerous coins. For GPUs we
used nvprof [3]. The signature that we obtain during this phase is cleaned so that
the bootstrapping code of the miner is not considered and only the signature
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for the core PoW algorithm is captured. We call this signature the OS-level
signature. In the second phase, we run miners inside VMs to cater to noise that
is induced by executing in a virtualized environment. No additional processes
are run on the VMs other than the default OS ones and our cryptominers, giving
us pure VM-level signatures. This phase corresponds to a scenario in which an
attacker uses dedicated VM instances for mining coins. Finally, in the last phase,
we perform mining inside VMs that are already running other jobs and processes.
This allows us to capture signatures in the presence of maximum noise. We repeat
our experiments for various popular and common cloud workloads running in
parallel with a cryptocurrency miner. Signatures generated during this phase
are called VM-Interference signatures. The aforementioned scheme, explicitly
captures the effects of virtualization-induced noise and workload-induced noise
both of which are a must for efficient detection of mining activity.

Signature Database: MineGuard’s signature database, which we use to train
the classifier, is very small in size for numerous reasons. First, unlike generic
malware, miners have to stick to a core PoW algorithm. Whether the miner is
polymorphic, metamorphic or heavily obfuscated, the core algorithm, which we
profile in our system, remains the same. Since there are a finite number of coins,
and consequently a limited number of proof-of-work algorithms, added to the
fact that there is no such thing as a zero-day coin, our resulting signatures are
few in number (<100). This makes our signature database small. And, since each
signature in the database is distinct and prominent compared to other common
cloud workloads, as shown in Sect. 6, the classifier is able to build its inner models
successfully.

5 Methodology

Before we jump into the results, we explain our prototype implementation and
test environment, and present details of the cryptocurrencies, miners and bench-
marks we used for testing and evaluation.

MineGuard Implementation: We implemented MineGuard in userspace
using a combination of C++, Python and Bash. We used C++ for the signa-
ture creation and detection modules, and Bash and Python scripts for profiling
VMs and collecting and organizing data. We used an open source random forest
library [25] for the bagged decision tree implementation, and perf/perf-KVM [19]
and nvprof [3] for CPU and GPU profiling, respectively. Upon deployment, a
driver script samples any given process (application/miner/VM) for 2 s (equiv-
alent to one test vector), formats the test vector and passes it to the predict
module to classify the process. Excluding the random forest library, the entire
MineGuard infrastructure only requires 282 lines of code. We have also made
the source code and training/test data publicly available at the following URL:
https://bitbucket.org/mhuzai/mineguard/overview.

Testbed: All experiments were performed on a machine with an Intel Core-i7
2600 K processor (Sandy Bridge), an NVIDIA GTX 960 GPU (Maxwell) and

https://bitbucket.org/mhuzai/mineguard/overview
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Table 1. Cryptocoins we used along with their PoW algorithms and CPU/GPU miners.

Cryptocurrency Proof-of-work
algorithm

CPU miner GPU miner

Bitcoin SHA256 cpuminer-multi-
windows,
bfgminer-5.1.0,
cgminer-2.11.4

–

Bytecoin CryptoNight cpuminer-multi-
windows

ccMiner-cryptonight-0.17

Dash X11 cpuminer-multi-
windows

ccMiner-1.6.6-tpruvot

Litecoin Scrypt cpuminer-multi-
windows

cudaminer-2014-02-28

Quarkcoin BLAKE, Blue
Midnight Wish,
Gr∅stl, JH, SHA-3
and Skein

cpuminer-multi-
windows

ccMiner-1.6.6-tpruvot

Vertcoin Lyra2RE cpuminer-multi-
windows

ccMiner-1.6.6-tpruvot

Ethereum Ethash (Modified
Dagger-Hashimoto)

ethminer-1.3.0 ethminer-1.3.0

Zcash Equihash nheqminer-0.5c nheqminer-0.5c

8 GB of DDR3 RAM. We ran Linux 3.16.0-44 for both desktop (native) and
server (virtualized) environments. For collecting CPU-based training data, each
application was profiled for 20 s, with one sample being collected every 2 s, for
a total of 10 samples per application and miner. This provided ample data for
high accuracy classification with negligible overhead (discussed in Sect. 6). For
GPU-based training data, samples were only collected once at the end of a 120 s
execution window - unlike perf, nvprof does not allow live periodic sampling of
running applications.

Cryptocurrencies and Miners: Other than Bitcoin, the seven additional
cryptocurrencies listed in Table 1 are still actively mined using CPUs and GPUs,
and hence together comprise a realistic group for mining in the cloud. Further-
more, the currencies were chosen to evaluate a variety of mining algorithms and
provide maximum coverage across the entire algorithm-space for mining-related
PoW algorithms. The coins were also chosen to represent a large fraction of the
market cap for mine-able coins (excluding Ripple, which cannot be mined, or
coins with similar PoW algorithms, like Monero which is based on the same
algorithm as Bytecoin). To mine these coins, we used cryptominers that were
open-source and readily available online. Table 1 lists the cryptominers and min-
ing algorithms for each of the cryptocurrencies used. Each miner was run using as
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Fig. 2. Difference in behavior of GPU miners and GPU applications. Miners are shown
in red; applications are shown in blue. (Color figure online)

many cores as available on the test system (8 cores for both the non-virtualized
and virtualized environment) and public mining pools were used to mine coins.
Using public pools ensured that our signature also incorporated the I/O aspects
of miners, in addition to the dominant compute aspects. Finally, each miner was
profiled in three different operating environments; OS (running standalone in
a host OS), VM (running standalone in a guest OS) and VM+Int (running
simultaneously with interfering applications in a guest OS).

Benchmarks and Cloud Workloads: To obtain signatures for non-mining
applications, we chose various workloads from representative benchmark suites
like CloudSuite (v3.0) [37], SPEC 2006 [20], Rodinia [33] and Parboil [49]. The
benchmarks were chosen to cover a wide variety of domains, such as Hadoop
workloads, scientific computing, AI simulations, data mining, graph analytics,
web searching etc.; and a wide variety of workload characteristics such as com-
pute and memory intensity, branch and cache behavior, and latency vs. through-
put sensitivity. Furthermore, our mix of benchmarks consisted of both single-
threaded and multi-threaded applications. We tested a total of 39 applications
which we feel are representative of a real-world cloud setting.

Classification Algorithm and Evaluation Metrics: For evaluating our
multi-class classification problem, we resorted to standard metrics like—
precision, recall, and F-score [47] which is the harmonic mean between precision
and recall. Since we do not know the underlying distribution of the different fea-
tures for miners, we tried out different non-parametric classifiers like k-Nearest
Neighbor (k-NN), Multiclass Decision Tree and Random Forest. We found that in
general, ensemble-based approaches like Random Forest outperformed the other
classifiers. During training, features from all applications (i.e., both miners and
non-miners) were used to train the classifier. We used a random forest with 50
decision trees. In the test phase, the classifier predicted the most probable class
for an unseen feature vector.1

1 Unless otherwise stated, all experiments perform binary classification.
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6 Evaluation

In this section we show empirical results from MineGuard, and present a dis-
cussion on various aspects and limitations of our system. Before moving onto
the first set of results, we discuss the empirical overhead of our HPC-based app-
roach. Prior work has shown in detail that the overhead of sampling counters,
even in microsecond intervals (much more fine-grained compared to our app-
roach), is negligible [35,46]. We observed very similar results with small values
(<0.01%) for various polling intervals, hence, we do not present results for the
overhead incurred due to space limitations and instead focus on other details
surrounding MineGuard. Additionally, we found that the average time required
to match a new sample against the classifier was 8 ms, bulk of which was spent
in file I/O such as formatting the profiling data and reading the signature from
disk. However, unnecessary I/O can be eliminated by keeping the signature in
main memory. Finally, actual classification only took 32 µs, showcasing the low
overhead nature of our design.

Uniqueness of GPU Mining Signatures: As explained above, MineGuard
uses HPC-based signatures to detect miners in real time. We justify our choice
of HPCs by demonstrating the uniqueness of mining behavior on GPU instances
compared to other common and popular GPU-based workloads. Figure 2 presents
this comparison between mining software and some popular and common GPU
workloads taken from the Rodinia [33] and Parboil [49] GPU-benchmark suites.
The figure shows the behavior of two different profiling metrics, out of a total
of 28 GPU metrics, across four miners and six applications. We ran these
experiments for several other benchmarks from the aforementioned benchmark
suites and found consistent results. However, those results have been omitted for
brevity. Some observations from our GPU results are discussed below.

Miners have significantly less core occupancy (number of actual threads out
of maximum possible threads) than non-mining applications. This is due to the
fact that, in general, it is a good practice to run as many threads as optimally
possible on a GPU core, and therefore non-mining applications tend to have
high core occupancy. Miners, on the other hand, also optimize for memory per
warp (the basic unit of execution in NVIDIA GPUs), and aim to avoid creating
bottlenecks in the memory system. Consequently, they usually exhibit low core
occupancies.

Another noticeable difference between miners and non-mining applications is
their usage of local memory. Local memory in NVIDIA GPUs is used for register
spilling and per-thread local data. However, despite its name, local memory
physically resides in the main memory of the GPU and as such it is not as fast
as scratchpads or texture caches. As a result, GPU application programmers
tune their code to minimize local memory usage as much as possible. As can
be seen in Fig. 2, the six different non-mining applications have in fact no local
memory usage (an exception is MRI, which does use local memory but does
so minimally). Miners, in stark contrast, exhibit high usage of local memory.
This is a consequence of the fact that mining algorithms require a significant
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number of registers and this in turn results in a significant number of register
spills (note: the high register usage of these algorithms also contributes to the
low core occupancy).

As evident, there is a marked difference between the performance counter
profiles of GPU miners and typical GPU applications. It is precisely these dif-
ferences that our classification algorithm relies upon to detect miners with high
accuracy.

Uniqueness of CPU Mining Signatures: As with GPU-based miners, we
collected HPC-based signatures for CPU-based miners as well. These signatures
were then compared to common CPU-based workloads from CloudSuite and the
SPEC2006 benchmark suite to distinguish CPU miners from non-mining appli-
cations. The unique and distinct characteristics of CPU-based miners, similar to
their GPU counterparts, can be seen in Fig. 3. The figure shows subgraphs for
two different HPCs, out of a total of 26 CPU HPCs shown later in Table 2. Both
subgraphs show a live-trace of a HPC’s value during the execution of a CPU-
based miner mining Litecoin and four non-mining applications; namely data
caching (memcached server), AI (game of Go), H264 (hardware video encoding)
and NAMD (molecular dynamics). The results from other benchmarks have been
omitted for clarity.

In both graphs, the mining signature stands out. Since miners repeatedly
run a small set of computations over and over again for millions of times, their
resource usage is consistent throughout their execution. In other words, min-
ers generally do not exhibit irregular phases as most common applications do.
Rather, miners possess regular and structured phases. This consistency in signa-
ture is represented by a step function like recurring pattern in both graphs (red
line).

On the other hand, non-mining applications and workloads have phases that
are noticeably different. While the phases are, like miners, repeated in regular
intervals, the behavior of each phase is much more irregular and possesses a high
degree of variance (a finding consistent with prior research [35]). These patterns
are particularly visible for H264 (black line). For example, the L1 Store curve of
H264 is rhythmic but irregular, and, in fact, we found that troughs in load count
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Fig. 4. Similarity in behavior of three different Bitcoin mining softwares. The x axis
shows time in units of 100 ms.

correspond to peaks in store count. Similarly, another interesting observation is
that for the Litecoin miner, the curves for the HPCs closely follow each other -
an increase in one is accompanied by an increase in the other, which is generally
not the case in the other workloads. Finally, even though data caching exhibits
a slight similarity to Litecoin for these two HPCs, it is quite different for all
metrics taken together. We take away the following insight from these results:
CPU-miners exhibit a unique HPC-based signature and this signature can be
effectively leveraged to detect virtual machines that are performing cryptocur-
rency mining.

Signature Homogeneity Within a Coin: Hackers usually employ various
techniques and mechanisms to bypass detection mechanisms. They use polymor-
phic, metamorphic and obfuscated malware to fool anti-virus software and run-
time checkers by completely overhauling their codebase. To show MineGuard’s
resilience against these techniques, we demonstrate how three completely differ-
ent miner implementations that are mining the same coin still exhibit the same
HPC-based signature.

Figure 4 shows two graphs, one per HPC, for three different miners all mining
for Bitcoin. The implementations of these miners are quite different from one
another, however, the graphs all show similar HPC patterns, thereby backing our
claim that the mining signature is consistent across different implementations.
The reason behind this, as mentioned previously, is that at their core, all miners
have to abide by a fixed PoW algorithm. Not only does this limit the amount
of variability that can be afforded by different implementations, but since the
algorithm is run millions of times, it dwarfs any differences that are present
in polymorphic or metamorphic versions of the mining malware. Consequently,
the resulting signatures only have minor variations from miner to miner. These
variations are broadly manifested across three categories. Phase shifts (where
the patterns are offset from each other by a small time delta), differences in
magnitude and occasionally in curve shape. We found that these changes are
rare and usually impact one or two HPCs largely keeping the signature similar
across implementations. MineGuard exploits this uniformity during its detection
phase allowing it to catch altered versions of a mining malware.
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Fig. 5. Similarity in behavior of various cryptocurrencies (algorithms). The x axis
shows time in units of 100 ms.

Signature Homogeneity Across Coins: We also claim that different cryp-
tocurrencies have similar signatures due to the nature of cryptomining. As evi-
dence, we present the signatures of five different cryptocurrencies in Fig. 5. The
figure shows a subset of the signatures of cryptominers mining Litecoin, Byte-
coin, Dashcoin, Quarkcoin and Vertcoin. It is immediately obvious that all five
signatures follow the same pattern - periods of constant computation (the flat
part of the curves, corresponding to hashing) punctuated by phases of expo-
nentially decaying irregular code that executes when new blocks are found, the
mining difficulty is changed, I/O is performed, etc. The only differences are in
the magnitudes of the various HPC values, which can be attributed to different
PoW algorithms having higher or lower operation counts. However, when look-
ing at the combined signature of all HPCs, the similarities dwarf the differences,
as shown in Fig. 5.

Effects and Characterization of Noise: So far, we have discussed the sig-
natures of miners and various other applications that were obtained in a non-
virtualized environment (OS). Although these signatures aptly present the simi-
larities and differences between various miners and non-mining applications, they
do not account for VM noise that would naturally be added when the aforemen-
tioned software are executed in a virtualized environment (guest OS) and profiled
from the hypervisor. Since monitoring virtual machines is the primary role of
MineGuard, we characterize this noise and study its effects on mining signatures.

By performing per feature noise profiling (on both OS and VM environments
using all miner and cloud workloads) for all 26 HPCs (see Table 2), we found
that roughly one-fourth of the counters show variation in values due to noise e.g.,
cycles, instructions, stalled-cycles-fronted, context switches etc. Figure 6A shows
the process via which we arrived at the best fit, which was determined using the
Akaike Information Criterion (AIC) [28]. The empirical data points (blue bars)
represent the noise added as we moved from native to in-VM execution. The
colored curves represent various distributions superimposed on top. As evident,
a vivid pattern can be extracted based on the distribution and later used for error
correction. Similarly, Fig. 6B shows the probability density functions for a few
HPC counters. The best fit distributions in the depicted cases were Nakagami
(cycles, stalled-cycles-frontend) and Burr (instructions, stalled-cycles-backend)
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distributions. Other HPCs, such as context switches, followed the tLocation-
Scale distribution. We found that three-fourths of the counters have negligible
change to their values or patterns when we move from OS to VM. This fact
justifies our choice of HPCs for MineGuard given that virtualization has limited
impact on HPCs. Furthermore, if necessary, the discovered distributions can be
factored into the signatures to develop error-corrected profiles for even more
robust and accurate signatures.

To visually demonstrate how this noise distorts signatures, we present graphs
for native vs in-VM execution of miners in Fig. 7A. The graph depicts the values
of the L1 Loads counter. The curves have become more jagged and noisy as the
system processes of the guest OS influence counter values, but their involvement
results in a minimal degradation of the signature. For example, the peaks and
troughs can still be clearly seen. Similarly, the slopes are unchanged and the
noisy plateaus are still flat, preserving the consistent behavior of miners. All
this follows from the fact that most HPCs do not suffer from virtualization-
induced noise as shown above and maintain unique patterns and characteristics
associated with mining.

MineGuard Under an Active Adversary: In an attempt to throw off Mine-
Guard, a clever attacker could selectively create noise in the HPCs by running
computations in parallel that influence counters not involved in mining. This
would artificially inflate the values and modify patterns of certain HPCs that
are irrelevant to the mining signature and appear as a benign workload to the
classifier. To check the effectiveness of this scheme we performed an experiment
with Litecoin where we modified the miner’s code to run a computation in par-
allel that predominantly affects the set of mining-orthogonal counters (HPCs
not showing significance use during mining). We measured how increasing the
number of threads for the extra computation negatively impacts the total hash
rate along with the corresponding reduction in MineGuard’s detection accuracy.
Figure 7B captures this relationship for 100 different runs of the aforementioned
experiment. As expected, increasing the number of threads for the camouflaging
computation severely degrades the hash rate (base hash rate is approximately
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30 kH/s). However, it has very little impact on the detection rate meaning that
the exercise would not be of benefit to the attacker. Granted, the experiment
covers only a small subset of the overall computation space available to the
attacker, we still feel that the impact suffered by the hash rate will be much
more severe compared to the hit taken by the classifier in nearly all cases.

Feature (Counter) Selection: We now present a formal approach to feature
(counter) selection to determine the importance of each counter, both by itself
and in relation to other counters. When looking at each counter individually, we
use mutual information to determine its importance. The mutual information
(MI) of two random variables is a measure of the mutual dependence between
the two variables. More specifically, it quantifies the “amount of information”
(in units such as bits or entropy) one random variable contributes to generating
a unique signature for the miner. When looking at multiple features together,
their importance as a whole is represented by joint mutual information (JMI),
a measure of the features’ combined entropy. JMI can then be used to rank
features from most important to least important. In turn, the ranking can be used
to choose the minimum number of features that provide the best classification
accuracy.

Table 2 lists the 26 different counters that were available on our system. To
obtain MI and JMI for each counter, we used FEAST, an open source toolbox
for feature selection algorithms [31]. The entropy (MI) of all 26 counters, both
in an OS setting and in a VM setting, is shown in Fig. 8. It can be seen that
features can be broadly divided into three categories. First, certain features like
feature ID 1 (clock cycles), 5 (bus cycles) and 8 (task clock) hold a significant
amount of information in both OS and VM environments. Second, features like
feature ID 9 (page faults) and 10 (context switches) contribute negligibly to
the classification process in both environments. Finally, the remaining features
provide varying amounts of information depending upon the environment. While
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Table 2. HPCs used for CPU-based signatures along with their JMI rank and expla-
nation.

Name of counter Counter ID OS rank VM rank Explanation

cycles 1 4 4 # of CPU clock cycles

instructions 2 6 6 # of executed instructions

branches 3 2 19 # of branch instructions

branch-misses 4 16 15 # of mispredicted branches

bus-cycles 5 8 1 # of useful bus cycles

stalled-cycles-frontend 6 1 5 # of stalled cycles in frontend of

pipeline

stalled-cycles-backend 7 11 16 # of stalled cycles in backend of

pipeline

task-clock 8 3 3 CPU time in milliseconds

page-faults 9 26 26 # of page faults

context-switches 10 24 24 # of context switches

cpu-migrations 11 25 25 # of migrations of profiled app

L1-dcache-loads 12 13 14 # of loads at L1 data cache

L1-dcache-load-misses 13 21 13 # of load misses at L1 data cache

L1-dcache-stores 14 7 7 # of stores at L1 data cache

L1-dcache-store-misses 15 14 8 # of store misses at L1 data cache

L1-dcache-prefetch-misses 16 18 17 # of misses at L1 cache that did not

benefit from prefetching

L1-icache-load-misses 17 15 10 # of instruction fetches missed in the

L1 instruction cache

LLC-loads 18 12 11 # of loads at the Last Level Cache

LLC-stores 19 20 2 # of loads that missed in the data

TLB

LLC-prefetches 20 9 20 # of stores that queried the data TLB

dTLB-loads 21 5 12 # of stores at the Last Level Cache

dTLB-load-misses 22 17 21 # of prefetches at the Last Level

Cache

dTLB-stores 23 10 9 # of loads that queried the data TLB

dTLB-store-misses 24 23 22 # of stores that missed in the data

TLB

iTLB-loads 25 19 23 # of instruction fetches that queried

the instruction TLB

iTLB-load-misses 26 22 18 # of instruction fetches that missed in

the instruction TLB

the general trends are the same in both environments, the differences between
the two graphs present the importance of performing feature selection for each
environment.

We present feature ranking results for both OS and VM environments based
on JMI in Table 2. Feature rankings mimic the patterns observed in MI - certain
features like 2 (instructions) do not change rank while others like 3 (branches)
change rank significantly. Another interesting observation is that system level
events like page faults and context switches have a low rank while purely
hardware-based events like loads and stores are ranked highly in both scenarios.

Classification Accuracy: We now present results for MineGuard’s miner
detection performance in both closed and open world setting. A closed world
setting is a scenario in which every cryptocurrency that MineGuard can be
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Fig. 8. The mutual information (entropy) contained within each hardware performance
counter for (A) an OS environment, (B) a VM environment.

requested to detect is a part of the signature database. The test sample may
vary from the signatures stored in the database but as we have previously shown,
miners have unique and consistent signatures, increasing the likelihood if the test
sample is from a miner, it will be matched to a miner in the signature database.

Table 3. Classification results for three different operating environments in a closed
world setting. Each result’s 95% confidence interval is written in brackets.

Closed world scenario F-score (CI) False positives (CI) False negatives (CI)

OS-Level 99.69% (0.13%) 0.22% (0.11%) 0.29% (0.25%)

VM-Level 99.69% (0.17%) 0.27% (0.14%) 0.26% (0.18%)

VM-Interference 99.15% (0.11%) 2.12% (0.29%) 0.04% (0.03%)

Open world scenario F-score (CI) False positives (CI) False negatives (CI)

OS-Level 94.91% (1.02%) 4.50% (1.13%) 2.58% (1.64%)

VM-Level 93.58% (1.33%) 5.63% (1.61%) 4.52% (2.41%)

VM-Interference 95.82% (0.86%) 6.77% (1.45%) 2.53% (1.54%)

Table 3 shows our results for this scenario where all values are reported after
100 runs. Since MineGuard has been trained on every cryptocurrency in the
test set, it achieves an exceptionally high miner detection accuracy. It achieves
≈99.5% accuracy with a false positive rate (FPR) of 0.22% and false negative
rate (FNR) of 0.29% when classifying miners running solely in either the OS and
VM setting. This equates to near-perfect miner detection and implies that if a
known cryptocurrency is being mined in an OS or a VM, MineGuard will detect
it almost every time. When classifying miners running with other applications,
the average F-score drops to 99.15% and FPR increases to 2.12%, while FNR
remains at ≈0%. Even in an open world setting, where all test signatures are
unseen (i.e., miners in the test set are unknown to the classifiers), MineGuard still
achieves accuracy ≈95% for all three cases. Though the results are slightly worse
than a closed world setting, they are still satisfactory overall. Furthermore, as
we explain in Sect. 7, unseen signatures are rare as zero-day coins are an unlikely
scenario.

The results shown in Table 3, have been computed on a per sample basis. This
means that the classifier treats each 2 s sample of HPC values as an independent
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test vector rather than labeling all samples collectively as miner/non-miner.
An alternate way is to use per application classification and treat all samples
collected from a running process as a single test vector. This approach has the
advantage that given the number of samples for a particular application, the
classification can be done using various ratios. For example, if 5 samples for an
application are available, if one is categorized as miner the entire application
is labeled as a miner. Similarly, we can use a scheme where all samples need
to be classified as a miner or use a simple majority rule (3 out of 5 classified
as miner then app is miner). In each case, the corresponding F-score, FPR and
FNR would be different. In Table 4, we present open world results for a simple
majority scheme (though other settings can also be used such as classification
based on 33% match or 75% match etc.) using per application testing.

Table 4. Classification results for three different operating environments in a open
world setting when all samples are treated collectively (per application processing).

Open world scenario F-score (CI) False positives (CI) False negatives (CI)

OS-Level 93.85% (2.68%) 0.0% (0.0%) 9.70% (3.77%)

VM-Level 91.67% (3.16%) 0.0% (0.0%) 16.33% (5.83%)

VM-Interference 96.32% (1.75%) 0.0% (0.0%) 7.99% (4.10%)

The results show that the F-score is still high. The corresponding FPRs for
our simple majority scheme are zero in all cases, which eliminates the primary
concern in our setting as legitimate tenants would rarely be flagged or shut down.
The reason for the 0% FPR is that previously, we were classifying each 2 s HPC
sample individually. In such a scenario there is a possibility that a particular
sample belonging to a non-miner exhibits HPC values matching those of a miner
(perhaps due to a hashing intensive phase in the execution). However, since now
we’re looking at all samples of a single application collectively, the chances of all
samples being hashing intensive (or even a majority of them) for a non-miner app
are rare and hence the 0% FPR. The corresponding FNRs are a bit high, however
this is less of a concern for the following reasons. First, since mining is commonly
a long-term activity the attacker will eventually get flagged in a subsequent scan
even if he evades the classifier once or twice. Second, if the attacker uses multiple
VMs to form a personal mining pool, then with high likelihood one of their VMs
will get flagged (even if other VMs successfully evade the classifier), which would
trigger MineGuard to immediately scan all other VMs that are part of the same
deployment again and if more VMs are caught, the cloud provider can do a more
comprehensive check of the entire deployment using VMI or other more invasive
tools.

Taken collectively, these results indicate that MineGuard is extremely adept
at identifying miners running in any operating environment. Even in the worse
case of detecting miners running in noisy environments, it achieves very high
accuracy.



Mitigating Covert Mining Operations in Clouds and Enterprises 305

Fig. 9. Accuracy of miner classification in a VM environment, in terms of (A) average
F-score, (B) average false positive rate and average false negative rate, as the number
of features is increased.

Effect of Signature Size on Accuracy: Figure 9 captures the relationship
between the size of the signature (number of top counters used) and the accu-
racy of detection in a VM environment for both open and closed world settings.
As shown in Fig. 9A, for the closed world scenario (triangles) even when only
2 counters are used, we achieve an average F-score above 99.5%, an average
false positive rate (FPR) below 0.5% and an average false negative rate (FNR)
of approximately 0, shown in Fig. 9B. This implies that MineGuard can actually
work with very small signature footprints speeding up all processes from profil-
ing to matching. Similarly, in the open world case (circles) with only 3 counters
the average F-score is around 85% and jumps to 90% if we consider the top
7 counters. Increasing the size further brings marginal increases that ultimately
take the detection rate close to 95% for all 26 counters. An opposite downward
trend is observed in the average values of FP and FN for the open world case
as shown in Fig. 9B, with the rates declining all the way to roughly 5% when
the entire vector of HPCs is used. These numbers might appear a bit high, but
as we argue in Sect. 7 the open world case is highly unlikely as unseen mining
algorithms are an extremely rare possibility.

7 Discussion

We discuss a few aspects of our work in this section and explore potential limi-
tations.

Custom or Zero-Day Cryptocurrency: Is MineGuard vulnerable to zero-
day or custom coins? We believe it is not. By definition, zero-day or custom
coins do not exist because for a coin to have any dollar value, it first needs to
have a known PoW algorithm, needs to be recognized by the cryptocommunity
as mathematically sound and has to be adopted at a moderate-to-large scale
for the core network to exist. Therefore, the first time a new piece of malware
for some new coin makes an appearance in the wild, it would already be well-
known in the cryptocurrency community, giving cloud vendors enough time to
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train MineGuard on the new coin’s signature, as its algorithm would be public
knowledge as mentioned above.

Evasion: An attacker can employ several techniques to try and evade Mine-
Guard’s detection scheme. First, they could employ known techniques of software
obfuscation. However, since we target the algorithm and not the implementation,
we believe that the attacker would have limited success (as shown in Sect. 6).
Second, the attacker could artificially manipulate the counters by performing
alternate computations that modify a distinct set of counters orthogonal to the
ones used in mining. Again, as we have shown in Sect. 6, this would severely
penalize the hash rate of the attacker while having very limited impact on his
chances of evading MineGuard. Thirdly, the attacker could attempt to stay under
the radar and mine at an extremely low hash rate. Theoretically, this is a limita-
tion since the attacker can evade MineGuard by sticking to low hash rates. How-
ever, we argue that the whole exercise becomes non-profitable for the attacker
and nullifies the whole point of mining on clouds. Furthermore, low hash rates
eliminate the original problem of resource abuse making it less of a nuisance.
Finally, the attacker could try to determine when the VM is being profiled by
MineGuard and stop mining temporarily. However, there are numerous issues
with this evasion scheme. First, since there is no measurable profiling overhead,
it is hard for an adversary to tell if their VM is being profiled. Second, instead
of monitoring the VMs in a round-robin fashion, the hypervisor can monitor the
VMs randomly, making it impossible to predict when a VM would be profiled.

Coin Diversity: We could not perform analysis on all cryptocurrencies available
in the market and chose to work with a popular subset (choosing coins with dis-
tinct algorithms and ignoring those which were forks of popular coins) as shown
in Table 1. Additionally, with the above restriction in mind we selected coins that
collectively comprise the largest share of market cap. Also, we justify our choice
by highlighting that most cryptocurrency exchanges, like Kraken [23], only deal
with the top 25–30 cryptocurrencies, as other altcoins have exceptionally low
dollar value and profit margins from transactions are very low [22]. Moreover,
documented cases of cryptocurrency Trojans have been mostly limited to the top
10–15 coins [12,13,16,21,24]. Hence, attackers avoid wasting precious hashes on
less valuable coins, which is why we chose our subset of popularly used coins.
Nevertheless, we list this as a limitation, since the possibility, however minute,
of an excluded coin’s signature matching a cloud app still remains.

8 Related Work

Cloud abuse has become a hot topic of research. Recent efforts [40,52] have been
geared towards developing a sound understanding of the problems and vulner-
abilities inherent to clouds. Others have demonstrated novel ways of exploiting
these vulnerabilities by building practical systems that are of value to attack-
ers, such as file sharing applications [51], unlimited storage banks [43] and
email-based storage overlays [48]. To mitigate these concerns, researchers have
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proposed various Virtual Machine Introspection (VMI) approaches [36,42,45].
However, some of these are voluntary and require user participation [30], which
of course the attacker wants no part of, and others have a large overhead [41].
Furthermore, these VMI-based approaches are designed to observe the memory,
disk and processor state of customers’ VMs, which is a serious privacy concern
given the sensitive nature of customer data.

A different yet related line of work attempts to describe the infrastructure
and mechanism of mining botnets. Huang et al. [39] present a thorough investi-
gation of mining ecosystems in the wild. They claim that mining is less profitable
than other malicious activities, such as spamming or booter-renting (DDoS for
hire), and should be used as a secondary monetizing scheme. However, we believe
that it is unfair to compare mining profits with other monetizing activities as the
price of coins varies substantially over time and as of this writing, the value of one
Bitcoin is a $1000 (and rising) as opposed to $100 in 2013, which demonstrates
that mining can generate an order of magnitude more revenue now. Further-
more, as mining uses an orthogonal set of resources (CPU/GPU and memory)
compared to DDoS attacks (network), we postulate that botnet-herders should
maximize their profits by running various resource-disjoint monetizing activities
in parallel making a strong case for covert cryptomining. Indeed, Sophos Secu-
rity presented evidence that mining botnets could potentially generate around
$100,000 per day of profits for herders [8].

Finally, there has been much research on detecting generic malware using
architectural and microarchitectural execution patterns, such as HPCs, with
differing results. Demme et al. [35] built a system for detection of generic mal-
ware and demonstrate the feasibility of the design based on ARM (Android)
and Intel (Linux) platforms. Other researchers [38,50,55] have also used low-
level hardware features to promising success, furthering the work of Demme
et al. In addition to generic malware, HPCs have also been successfully used
to detect kernel-level rootkits [53], side-channel attacks [34], firmware modifica-
tions [54] etc. However, none of these previous works try to accommodate the
noise introduced by virtualization, as we do in this work.

9 Conclusion

We present MineGuard, a userspace tool that prevents abuse of resources at
the hands of hackers interested in mining cryptocurrencies on others’ resources.
Whether the mining operation is local (restricted to one VM) or being con-
ducted in a pool of participating VMs, MineGuard can successfully detect and
shutdown the illegitimate mining “ring”. We empirically demonstrate that our
design imposes negligible overhead to legitimate tenants and can detect mining
in real-time with high precision. If multiple VMs are involved in mining, Mine-
Guard can collaborate with other MineGuard instances to expose the entire
footprint of the mining deployment. For detection, MineGuard uses signatures
based on Hardware Performance Counters for both CPU and GPU-based min-
ers. The fact that MineGuard runs on top of the hypervisor or the host OS
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prevents miners running inside the VMs from subverting it despite root access
on the guest. We also account for the noise generated as a result of virtualization
to provide error correction for our detection mechanisms. In the future, we plan
to extend MineGuard to accurately detect other types of malwares in highly
multiplexed and virtualized environments.
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Abstract. We create BEADS, a framework to automatically generate
test scenarios and find attacks in SDN systems. The scenarios capture
attacks caused by malicious switches that do not obey the OpenFlow
protocol and malicious hosts that do not obey the ARP protocol. We
generated and tested almost 19,000 scenarios that consist of sending mal-
formed messages or not properly delivering them, and found 831 unique
bugs across four well-known SDN controllers: Ryu, POX, Floodlight, and
ONOS. We classify these bugs into 28 categories based on their impact;
10 of these categories are new, not previously reported. We demonstrate
how an attacker can leverage several of these bugs by manually creat-
ing 4 representative attacks that impact high-level network goals such as
availability and network topology.

1 Introduction

Software-defined networking (SDN) is an attractive alternative to traditional
networking, offering benefits for large enterprise and data-center networks. In
SDNs, the control and management of the network (i.e., the control plane) is
separated from the delivery of data to the destinations (i.e., the data plane). Such
a separation offers enhanced manageability, flexibility, and programmability to
the network administrators, enabling them to perform better resource allocation,
centralized monitoring, and dynamic network reconfiguration.
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SDN’s benefits, however, come at a cost to security. The programmability
and malleability of the network presents new attack surfaces. In addition to the
network-based attacks applicable to traditional networks, new attack vectors
are available to an attacker to maliciously impact the network functionality by
manipulating, poisoning, or abusing the malleable network logic. For example,
we show that ARP spoofing attacks have broader impact in SDNs because of the
centralized control. In particular, many controllers maintain a centralized ARP
cache and implement Proxy ARP to resolve ARP queries, making the impact of
poisoning this cache much broader than in traditional networks.

Recent efforts at the intersection of SDN and security have focused on devel-
oping new languages for SDN programming, some of which offer formally ver-
ifiable guarantees [9,15,30,43], such as flow rule consistency [16,18,40]. Some
work has focused on possible attacks from the data plane to control plane and
vice versa [44]. Protocol-level attacks and corresponding defenses have also been
studied [7,10,16,42]. Finally, the dynamism and agility offered by SDNs has
been leveraged to build new defenses [11,13,25]. Several of these approaches
have identified specific attacks in the context of SDNs [7,10,16,38,42,44]. These
efforts highlight the need for systematic approaches to find attacks in SDNs.

In order to systematize OpenFlow testing, the Open Networking Foundation
created conformance test documents for OpenFlow 1.0.1 [32] and 1.3.4 [34]. Fol-
lowing these documents, the SDN community started two projects, OFTest [8]
and FLORENCE [29]. Both of them focus only on OpenFlow switches and con-
sist of manually written tests. OFTest supports 478 manually written tests for
OpenFlow 1.0–1.4, while FLORENCE supports 18 manually written tests for
OpenFlow 1.3. Examples of tests performed are: AllPortStats, which “Verif[ies]
[that] all port stats are properly retrieved” for OFTest and Port Range test to
“Verify that the switch rejects the use of ports that are greater than OFPP MAX
and are not part of the reserved ports” for FLORENCE.

Both OFTest and FLORENCE focus on testing how well a switch conforms
to the OpenFlow specification. However, OpenFlow is a configuration protocol;
it specifies how a controller instructs a switch to do something, but not what
the controller should tell the switch to do. As a result, many bugs and attacks
on SDNs arise from incorrect assumptions in the controller software about the
switches. Frameworks like OFTest and FLORENCE that exclude the controller
from the testing process are unable to find such issues.

Further, conformance testing is not sufficient to detect attacks. In fact, the
Open Flow Foundation conformance testing documents explicitly state: “This
document does not include requirements or test procedures to validate security,
interoperability or performance.” Previous work on automated attack finding
on communication protocols has been confined to distributed systems [23] and
transport protocols [12] which are less complex than SDN systems.

In this work, we develop BEADS, a framework to automatically and sys-
tematically test SDN systems for attacks resulting from malicious switches
and malicious hosts. Our framework automatically generates and tests thou-
sands of scenarios involving malicious switches that do not obey the OpenFlow
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protocol and malicious hosts that do not obey the ARP protocol. BEADS com-
bines known techniques such as Byzantine fault injection, semantically-aware
testcase generation, and black box testing to test whole SDN systems compris-
ing OpenFlow switches, controllers, and hosts. As such it differs from existing
SDN testing tools in the following aspects: (1) it supports malicious (Byzantine)
participants – hosts and switches; (2) it does not require access to the code of the
switch or controller; (3) it targets attacks at a deeper layer than simple parsing
(that can be tested using simple random fuzzers); (4) it achieves higher cov-
erage by using message grammar and semantically-aware test case generation;
(5) it can test controller algorithms like routing, topology detection, and flow
rule management by also including the controller in its test cases; (6) it makes
better use of resources by performing targeted and preferential search. BEADS is
publicly available at https://github.com/samueljero/BEADS.

Using BEADS, we identify bugs that trigger error messages, network topology
or reachability changes, or increased load. We then show that these bugs can
be exploited with damaging impacts on SDN networks. Our results show the
importance of malicious testing for SDNs as well as the practicality of blackbox
testing for such systems. Our contributions are:

• We create BEADS, a framework to automatically find malicious switch-
and host-level attacks. BEADS combines network emulation with software
switches and real SDN controllers running in a virtualized environment. It
takes a blackbox approach to the SDN switches and controller and does not
require access to the source code of either. Attack scenarios are automati-
cally generated based on message grammar and the protocol semantics asso-
ciated with special fields (such as port). BEADS uses four criteria to detect
bugs: error messages, network topology changes, reachability changes, and
controller or switch load.

• We use BEADS to automatically test almost 19,000 scenarios, and find 831
unique bugs across four well-known SDN controllers: Ryu [45], POX [27],
ONOS [5], and Floodlight [39]. We classify these bugs into 28 categories based
on their impact; 10 of these categories have not been previously reported. Out-
comes include preventing the installation of flow rules network-wide, periodic
switch disconnections, inducing packet loss in the data plane, denial of service
against the controller, and removing network links.

• We construct and implement 4 representative attack scenarios using several
bugs we identified to break high-level network goals such as availability, reach-
ability, and network connectivity. The scenarios are (1) TLS Man-in-the-
Middle, (2) Web Server Impersonation, (3) Breaking Network Quarantine,
and (4) Deniable Denial of Service. We demonstrate the feasibility of these
attack scenarios on real SDN controllers.

• We have notified the SDN vendors of bugs we found. Ryu has issued a patch
(CD2,CD3 in Table 2) while ONOS has confirmed that the latest version is
no longer impacted (EP1 in Table 2).

Roadmap. Section 2 specifies the threat models. Section 3 describes the design
of BEADS. Section 4 discusses the bugs we found and presents our attack

https://github.com/samueljero/BEADS
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demonstrations. Section 5 discusses some limitations of BEADS while Sect. 6
summarizes related work and Sect. 7 concludes the paper.

2 Threat Model

We consider a threat model where the attacker can control compromised SDN
switches or end-hosts connected to the SDN. We consider malicious switches
because prior work has shown that many SDN switches can be easily compro-
mised due to running operating systems with poor security defaults, out of date
software, and minimal updates [35,36] and, once compromised, they can influ-
ence the entire control plane. Note that if communication is not conducted over
secure channels, a man-in-the-middle attacker can control otherwise uncompro-
mised switches and hosts. We do not consider malicious controllers.

Malicious Switches. Attackers who have compromised an OpenFlow switch can
confuse SDN controllers via malicious OpenFlow messages. This ability is unique
to SDNs and can confuse the controller about the network topology and the loca-
tions of target hosts [7,10]. Additionally, a malicious OpenFlow switch can mount
a DoS attack against the controller by sending OpenFlow messages, spoofed or
legitimate, at a very high rate. Some controllers enforce per-switch OpenFlow
rate limits in an attempt to mitigate this type of attack [7]. Recent work has
shown that OpenFlow switches are extremely vulnerable to attackers, running
old, unsecured software versions with default/hidden administrator accounts,
out of date software, and minimal updates [35,36].

Our analysis focuses on how malicious switches can disrupt or degrade other
parts of the network (e.g., QoS on other switches or making the controller redi-
rect distant traffic through a compromised switch) via the control-plane. Thus,
we do not consider pure data-plane attacks (e.g., dropping packets). We model
malicious switches as having the following basic capabilities with respect to
OpenFlow messages between the switch and controller:

Drop (percentage). This action drops a particular type of OpenFlow message
with a given probability specified as a parameter, for example barrier request
drop 20. This emulates a malicious switch that does not send these messages or
ignores them after receiving them.

Duplicate (times). This action duplicates a particular type of OpenFlow mes-
sage a certain number of times given as a parameter. For example barrier reply
duplicate 5 means the malicious switch duplicates this messages 5 times.

Delay (msec). This action delays a particular type of OpenFlow message by a
given number of milliseconds, emulating a malicious switch that delays process-
ing a request or taking some action; for example, of hello delay 1000.

Change (field, value). This action modifies a particular field of a particular
type of OpenFlow message with a particular value. Modifications supported
include setting a particular value as well as adding or subtracting a constant. We
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select the modification values to be likely to trigger problems based on the field
type. This typically includes values like 0, minimum field value, and maximum
field value. This basic strategy corresponds to a malicious switch that performs
a different action or returns different information than that requested by the
controller. Examples of this action include flow add change priority 42 or
flow removed change reason 12.

Malicious Local Hosts. Attackers who have compromised a host that is directly
connected to an SDN, like a server or a user workstation, can launch attacks
to confuse the SDN controller about the network topology and the location of
target hosts, in order to hijack a target host or traffic of interest [7,10]. These are
primarily attacks that target the Address Resolution Protocol (ARP) [37] since
ARP is one of the few protocols that hosts can use to manipulate the SDN control
plane. Prior work has also pointed out that hosts can inject or tunnel LLDP
packets [7,10]. However, we need not separately consider such hosts because
they appear to the network as malicious switches, which we already consider.

For ARP, SDN has brought back known vulnerabilities because, while tra-
ditional networks have deployed defenses against ARP spoofing, these defenses
have not been adapted for SDNs. Unlike traditional network switches that main-
tain their own local ARP tables, operate on L2/L3 networks, and can be checked
to prevent ARP poisoning attacks, SDN switches consist of a programmable flow
table and leave the SDN controllers to check for ARP corruption. Such controllers
do not currently implement ARP spoofing defenses. Moreover, some controllers
(including POX and ONOS) maintain a centralized ARP cache and implement
Proxy ARP to resolve ARP queries. This creates a single, centralized ARP cache
for the entire network. Poisoning this cache has broader network-wide impact
rather than limited subnetwork-wide impact as in traditional networks.

We model malicious or compromised local hosts as follows:

ARP-location-injection (victim-MAC, victim-IP). The malicious host
injects ARP packets with the spoofed Ethernet source address of the victim to
make the controller believe that the victim is at the same port as the attacker.
Example: ARP-location-injection 00:00:00:00:00:04 10.0.0.4.

ARP-map-injection (attacker-MAC, victim-IP). The malicious host
injects ARP packets that indicate a mapping between the victim’s IP and the
attacker’s MAC. This disrupts the IP-to-MAC mapping, and leads the controller
to believe that the attacker has the victim’s IP address. An example of this attack
would be ARP-map-injection 00:00:00:00:00:01 10.0.0.4.

3 BEADS Design and Implementation

We first describe the design principles behind BEADS and then provide more
details about each component.
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3.1 Design Goals

There are several guiding principles behind BEADS: automation of attack gen-
eration and attack search, realism by testing real-world implementations of com-
plete SDN systems generalizable to many different implementations independent
of language and operating system, reproducibility of the results, high coverage of
test scenarios, efficient use of resources, and last but not least, focus on security
(rather than conformance) by supporting malicious switches and hosts.

Our main goal is to test real-world implementations of complete SDN sys-
tems. This requires including switches, controllers, and hosts in our tests to be
able to capture their interplay. Similarly, our tests would ideally include the
physical hardware and operating systems running the various system nodes, the
production network connecting the physical hardware, and the actual applica-
tion binaries running on the operating systems. However, using physical hard-
ware to test all possible configurations and operating systems is not scalable
and prohibitively expensive. We address this challenge by choosing a virtualized
environment that supports different operating systems and languages, and net-
work emulation using Mininet [21] that enables strong control over the network,
while still being close enough to a real-world installation.

Another design goal is to run actual implementations of the system of interest
without discriminating based on programming language, compiler, toolkit, or
target operating system, and without imposing restrictions solely for visibility
into algorithmic behavior. Ideally, we should use the same implementation that
will be deployed. We achieve this goal by using a proxy to create the behavior
of the malicious switch. Malicious host behavior is injected directly into the real
data-plane, similarly enabling the use of unmodified switches and controllers.

Finally, a major goal for our test case generation is to create meaningful,
semantically-aware test cases that can go beyond testing parsers. One simple
method to generate an attack strategy is to use random fuzzing where the entire
packet or some of its fields are replaced with random strings. While random
fuzzing has been used successfully to test API inputs, it would have a low success
rate for OpenFlow messages. OpenFlow messages are complex data structures
involving many layers of nested objects as well as other syntactic and seman-
tic dependencies. Although any packet can be represented as a bit string, the
majority of bit strings are not valid OpenFlow messages. Hence, the majority of
test cases generated by random fuzzing only test the OpenFlow message parser
while the attacks we are interested in lie at a much deeper layer, in the algorithms
creating and processing those messages. Basic knowledge of the packet format
or fields helps generate valid, meaningful messages by satisfying the syntactic
requirement. However, an ideal testing tool should also consider the semantic
meaning of different packet fields. For example, it should treat a field represent-
ing a switch port number differently from a field representing an IP address, and
treat the switch port number differently from the length of an embedded struc-
ture. This approach enables testing on semantically meaningful, yet problematic
values for a field—for example IP addresses actually in the network—and pro-
vides a means for tuning the testing to focus on particular types or locations
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of attacks. Similarly, our test generation creates tests with malicious hosts and
switches at multiple locations in our test topology to ensure that our results are
general and not tied to a specific topology.

3.2 Design Details

Our automated attack discovery platform, BEADS, is depicted in Fig. 1. We sep-
arate the attack strategy generation functionality controlled by a Coordinator
from the testing of a strategy in an SDN system controlled by an Execution Man-
ager (Manager for short). Several managers can run in parallel under the reign
of one coordinator. The coordinator has three roles: generate attack strategies,
assign those strategies to different managers for testing, and receive feedback
about the execution of those strategies and their results. The attack strategies
are generated based on the format of the messages and on the network topol-
ogy in order to choose what entity (host or switch) will behave maliciously. The
coordinator generates strategies for both malicious host and malicious switch
behavior and decides how to interleave them. The coordinator uses feedback
from the execution and testing of prior strategies for future strategy generation.
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The (execution) manager controls the execution environment for a set of
attack strategy tests. This environment consists of an SDN, with a given topol-
ogy, a specified placement and type of attackers (hosts and/or switches), as
well as a list of attack strategies and a mechanism for interleaving host and
switch strategies. BEADS combines network emulation using software switches
and emulated hosts with real SDN controllers running in a virtualized environ-
ment. We select Mininet for emulation because it offers the flexibility to test
different network topologies and traffic patterns while providing attack isolation
and increased reproducibility. Mininet exhibits high fidelity through the use of
real network stacks, software switches, and real traffic. We leverage virtualiza-
tion to run a wide range of SDN controllers independent of required operating
systems, libraries, or system configurations. BEADS does not require access to
the source code of the OpenFlow implementation in the switch or controller.

The manager uses Mininet to create an emulated data-plane network con-
sisting of SDN switches and emulated hosts capable of both generating normal
network traffic and injecting host-based attacks. This network is controlled using
OpenFlow by one or several controllers running on a separate virtual machine,
as depicted in Fig. 1. A Host Controller running on the same virtual machine
as Mininet controls the hosts connected to the testing network. Each host has a
Traffic component that generates the traffic used during testing, and a Mali-
cious Host Attack component that injects attacks that emulate a malicious
host according to the strategy and timing specified by the HostController and
received in turn from the manager of the execution environment. Finally, a Mali-
cious Switch Proxy intercepts all messages in both directions between the SDN
switches and the SDN controllers and creates malicious switch behavior accord-
ing to strategies received from the manager of the execution environment.

The entire system from strategy generation to strategy testing and bug detec-
tion is automated. The user supplies the controller under test and receives a list
of strategies that trigger bugs as the output. The user is then responsible to
manually examine these strategies and identify the bugs triggered and any fixes
required, as we do in Sect. 4.

3.3 Strategy Generation

Two questions must be answered to enable the coordinator to perform automatic
strategy generation in BEADS: (1) what is an attack strategy and (2) when to
inject an attack strategy. We discuss these aspects below.

In order to target attacks beyond simple parsing validation, we use attack
strategies that represent malicious actions (by compromised switches or hosts)
which target protocol packets: OpenFlow for malicious switches and ARP
for malicious hosts. A detailed list of these actions is presented in Sect. 2.
BEADS supports the testing of malicious switch actions, malicious host actions,
and combinations of both. For combinations, we need some form of coordina-
tion between malicious host and malicious switch actions, as they are launched
from independent components, not necessarily connected. We currently provide
a basic level of coordination between these strategies based on time relative to
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the start of each test; i.e., we specify the time at which different malicious switch
and malicious host actions occur relative to the start of the test.

The injection points differ for malicious hosts and malicious switches. In the
case of malicious switches, the attack is executed by a malicious proxy which has
the ability to modify or affect the delivery of OpenFlow messages as discussed in
Sect. 2. At the start of each test we define a set of one or more malicious switches.
For these switches, we then use send-based attack injection; i.e., when the proxy
receives an OpenFlow message to/from these switches, it takes any actions rel-
evant to that message type, and forwards the message to its destination. To
curtail state space explosion, we only consider strategies where the same action
is applied to every message of a given type. These strategies manipulate the deliv-
ery or fields of OpenFlow messages based on their message type and individual
message fields. For instance, a strategy may be to duplicate features reply
messages 10 times or to modify the in port field of a packet out message to 7.
Our malicious proxy supports all manipulations discussed in Sect. 2, including
dropping, duplicating, and delaying messages based on message type, as well as
modifying message field values based on message type.

Our testing applies this procedure to a list of strategies that we automatically
generate based on the OpenFlow message formats and semantics associated with
their fields. This list of strategies includes our message delivery attacks for each
message type and manipulations of each field in each message type. The field
values we use in our field manipulations are based on the field type, and are
chosen to be likely to cause unexpected behavior. This includes setting values
to zero, and the minimum and maximum values that the field can handle. For
fields representing switch ports, we also consider all real switch ports as well as
OpenFlow virtual ports like CONTROLLER. When selecting strategies to test, we
only consider strategies for message types that we observe actually occurring in
communication between the switch and controller. Because controllers usually do
not use all the messages detailed in the OpenFlow specification, this dramatically
reduces the number of strategies we need to test.

For malicious hosts, we consider the injection of ARP packets as discussed in
Sect. 2. We again define a list of malicious hosts at the start of each test. We use
time-based attack injection with these malicious hosts, where we launch attacks
for a few seconds at different times during each test. The exact time of attack,
duration, and frequency of packet injection are configurable.

This automatic strategy generation enables us to quickly and easily gener-
ate tens of thousands of strategies in a manner that considers both message
structure and protocol semantics. In contrast, DELTA [24] uses blind fuzzing,
supplemented with a few manual tests. It is able to generate an unbounded num-
ber of strategies, but considers neither message structure nor protocol semantics.
OFTest and FLORENCE make no attempt at strategy generation and rely on a
manually developed set of tests. As a result, FLORENCE only tests 18 different
scenarios and OFTest only covers a few hundred. BEADS is able to generate
several orders of magnitude more tests in a fraction of the time. While number
of test cases does not perfectly correspond with amount of search space covered,
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this does strongly suggest that BEADS can cover a much larger portion of the
search space, especially in combination with the new attacks that we find.

3.4 Impact Assessment

Once we have executed a strategy, we automatically determine the impact based
on a variety of system and network characteristics. Our framework collects sev-
eral outputs and, at the end of each test, checks them for conditions indicating a
deviation from normal behavior and a possible vulnerability. If such conditions
are detected, we automatically schedule a re-test of the strategy to make sure
that the failure is repeatable. If it is, we declare this strategy to be a vulnerability.

We use four methods to determine if a tested strategy leads to unexpected
behavior: (1) OpenFlow error messages, (2) network configuration changes, (3)
network reachability failures, and (4) controller or switch resource usage.

Since BEADS aims to identify actions that are the most damaging to the
network, we gradually filter actions based on their impact. First, we consider
the error messages, then the static network state, then the network connectivity,
and finally the controller and switch resource usage. Below we provide more
details about each of these and the rationale for considering them.

OpenFlow Error Messages. One mechanism we use to observe protocol devia-
tion is monitoring the OpenFlow connections for error messages. Error messages
are sent when an OpenFlow device (switch or controller) fails to parse an Open-
Flow message or the message indicates an invalid or unsupported option. These
messages indicate an anomalous condition in the OpenFlow connection, and that
some desired change to the network was not performed.

Network State. One of the most powerful indicators of undesirable changes
in the network are changes in the network state, including changes to routing,
access control lists (ACLs), and priorities of flows in the network. We define
network state as the state of the flow rules at each switch. The manager collects
the flow rules from all switches at the end of each test, canonicalizes them, and
compares them to reference flow rules from a benign run.

Unfortunately, the network state is not completely deterministic. Part
of our canonicalization process filters out known non-deterministic elements
(timestamps, etc.). Additionally, we use multiple benign test runs to detect
other non-deterministic elements and filter them out. Note that without detailed
knowledge of the application algorithms the SDN controller has implemented we
cannot decide whether a given non-deterministic rule is correct.

Reachability. Another protocol deviation indicator we use is pair-wise connec-
tivity tests. In particular, our test system uses pair-wise ICMP pings and iperf
to verify that all hosts are reachable from all other hosts. This is extremely effec-
tive in detecting spoofing attacks and attacks on connectivity. It also detects
many manipulations of flow rules that our network state detection mechanism
cannot detect due to non-determinism.
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Controller or Switch Resource Usage. The final protocol deviation indica-
tor we use is monitoring the RAM and CPU time used by the SDN controller and
switches. Excessive usage, compared to a benign baseline, indicates an oppor-
tunity for denial of service, where the ability of the switches or controller to
process messages and packets in a timely fashion is impaired.

3.5 Implementation

We use KVM for virtualization and Mininet for the emulated network. The hosts
were written in Python and use iperf and ping for traffic generation, and the
scapy library1 for malicious host attack injection. The hosts communicate with a
HostController Python script to execute malicious host attacks, generate traffic
in the network, and conduct reachability tests on the network.

We insert our malicious proxy into the path between the Open vSwitch2 soft-
ware switches started by Mininet and our SDN controllers by simply having the
proxy listen for TCP connections on a specified port and address, and supplying
this port and address to Mininet as the address of the controller. When a switch
connects, the proxy opens a second TCP connection to the controller and passes
messages back and forth, modifying the message as required by the strategy.
The proxy is implemented in C++ and leverages the C version of the Loxigen3

library to parse and modify OpenFlow messages.

4 Experimental Results

We present the results obtained by applying BEADS to four SDN controllers:
ONOS, POX, Ryu, and Floodlight. We then demonstrate the impact of these
bugs with 4 real attacks.

4.1 Methodology

We applied BEADS to ONOS 1.2.1, POX version eel4, Ryu 3.27, and Floodlight
1.2. For ONOS we used its default forwarding, which uses topology detection
and shortest path routing along with proxy ARP, and a flow rule idle time
of 30 s; for POX, we used the proto.arp responder, openflow.discovery,
openflow.spanning tree, and forwarding.l2 multi modules to enable topol-
ogy detection and shortest path routing along with proxy ARP; for Ryu, we used
the simple switch module, which emulates a network of learning switches; for
Floodlight, we used its default forwarding, which uses topology detection and
shortest path routing, and a flow rule idle time of 90 s.

The emulated network was created using Mininet 2.2.1 and Open vSwitch
2.0.2. While BEADS supports OpenFlow versions 1.0–1.5, our testing was done
1 http://www.secdev.org/projects/scapy/.
2 http://openvswitch.org/.
3 https://github.com/floodlight/loxigen.
4 Commit 4ebb69446515d9d9a0d5a002243cdca3c411520b from 9/24/2015.

http://www.secdev.org/projects/scapy/
http://openvswitch.org/
https://github.com/floodlight/loxigen
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with OpenFlow 1.0 because it was the default negotiated by Open vSwitch and
none of the SDN controllers we tested make use of the additional features intro-
duced in later versions of OpenFlow. We configured Mininet with a simple two-
tier tree topology of three switches and four hosts. The malicious switches and
hosts vary depending on the test being run.

Our testing was done on a hyper-threaded 20 core Intel Xeon 2.4 GHz system
with 125 GB of RAM. Each test takes about 60 s. We parallelize the tests by
running between 2 and 6 managers simultaneously. Testing required around 200 h
of total computation per tested SDN controller.

Table 1 presents a summary of tested scenarios and bugs found. We tested
6,996 strategies for ONOS, 4,286 for POX, 3,228 for Ryu, and 4,330 for Flood-
light. Not all the controllers take advantage of the complete functionality of
OpenFlow, and as we test only the messages that are actually used by the
tested system, the number of testing scenarios for each controller depended on
the implemented and used OpenFlow functionality. As a result, we tested sig-
nificantly more strategies for ONOS because ONOS automatically polls every
switch for statistics about flow rules and ports periodically using the OpenFlow
flow stats * and port stats * messages. The other controllers do not poll for
statistics and so have no need to use these message types, effectively utilizing a
much smaller portion of the OpenFlow protocol. Similarly Ryu’s learning switch
behavior requires no topology detection which reduces the number of messages
it uses. We found a total of 831 unique bugs, with 178 common to all four con-
trollers and a further 134 common to two or three controllers. Table 1 also shows
the detection criteria (Sect. 3.4) for each bug.

Table 1. Summary of tested scenarios and bugs.

SDN controller Total
tested

Bugs
found

Error
msg.

Net.
state

Reachability Res. usage

ONOS 6, 996 578 104 372 102 0

POX 4, 286 487 121 335 29 2

Ryu 3, 228 251 48 168 32 3

Floodlight 4, 330 577 95 478 4 0

Total 18, 840 1, 893 368 1, 353 167 5

4.2 Detailed Results

We analyze all 831 unique bugs, based on their outcome, and present a summary
in Table 2.

OpenFlow Operation Stall (OS)–No Known Mitigations. Several bugs
have the common outcome of preventing or delaying OpenFlow operations that
may affect multiple switches. By ignoring or dropping barrier request and
barrier reply messages or changing their transaction IDs, a malicious switch
can stall the installation of flow rules forming a path through that switch as we
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Table 2. Discovered bugs, each line corresponds to several bugs grouped by message
and action. Note that some bugs may occur multiple times, in different categories for
different controllers. FL = Floodlight.

Outcome Name Strategy Num Controllers New

OpenFlow

operation stall

OS1 Drop barrier messages 4 POX No

OS2 Change xid in barrier messages 12 POX No

OS3 Drop flow add 3 ALL No

Periodic

switch

disconnect

SD1 Change version,type,length fields of handshake

messages

197 ALL No

SD2 Duplicate handshake messages 20 ONOS Yes

SD3 Change version,type,length of

barrier request/barrier reply

36 ONOS/POX/FL No

SD4 Change version,type,length in

flow add/flow delete/flow removed

48 ALL No

SD5 Change version,type,length in

packet in/packet out

46 ALL No

SD6 Change version,type,length in

port mod/echo reply/echo request

42 POX/RYU/FL No

SD7 Change version,type,length in

of ∗ stats reply/of ∗ stats request

68 ONOS No

SD8 Change role in of nicira controller role * 12 ONOS/FL No

SD9 Add CONTROLLER port to

features reply/port status

15 ONOS/POX/FL Yes

Data-plane

loss

DP1 Delay/drop packet in/packet out 17 ALL No

DP2 Mod buffer id in pkt in/flow add 8 ALL No

Flow rule

modification

FM Change flow rule match, actions, etc. in

flow add

162 ALL No

Port config

modification

PC Change port mod to change port configuration 39 POX No

Packet

location

hijacking

LH1 Change port where packet was received in

packet in

14 ALL No

LH2 Change port for packet out 14 ALL No

Empty

packet ins

EP1 Change inner packet length to 0 in packet in 1 ONOS Yes

EP2 Set packet in length=0 2 POX/RYU/FL No

Controller

DoS

CD1 Delay flow add 2 POX No

CD2 Change length to 0 on any message 8 RYU Yes

CD3 Change inner packet length to 0 in packet in 2 RYU Yes

Link detection

failure

LD Change port lists in features reply/port status 33 ONOS/POX/FL Yes

Broken ARP

broadcast

BB Change port lists in features reply/port status 20 ONOS/FL Yes

Unexpected

flowrule

removal

FR1 Change flow stats reply such that flow rule

entry does not match

8 ONOS Yes

FR2 Change flow stats reply such that packet count

is constant

4 ONOS Yes

Unexpected

broadcast

UB Change port in field of the packet out message 6 POX/RYU Yes
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discovered in POX. A similar operation stall occurs when dropping or ignoring
flow add messages; the flow will eventually be inserted, but it will take extra
messages and controller processing. These bugs are due to the design of Open-
Flow and there are no known mitigations.

Periodic Switch Disconnect (SD)–Some Mitigations. We found many
bugs that cause the malicious switch to periodically disconnect. This causes
topology churn and prevents the installation of flow rules or the delivery of
packet in/packet out messages. It takes about 3 s for the network to fully
recover from one of these events, although the TCP level disconnection is only
about half a second.

While most of these bugs are unavoidable and due to the reception of invalid
OpenFlow messages, we did identify two subcategories of these bugs that can
be easily fixed. The first of these, consists of duplication of ONOS handshake
messages. The state machine ONOS uses to control its handshake with a switch
is not tolerant to message duplication. As a result, duplicating these messages
results in a connection reset. This could be avoided by designing the handshake
state machine to tolerate duplication.

The second subcategory of these bugs operates by modifying the
features reply message sent during the initial handshake to ONOS or POX
to include a port with number 0xFFFD. This triggers a disconnection by the
malicious switch the next time an ARP flood occurs, which might be hours later.
The disconnection occurs because this port number (in OpenFlow 1.0) indicates
the controller and results in an invalid packet in being sent to the controller.
These bugs can be mitigated by modifying the controller to sanity check the list
of ports received from the switch.

Data-Plane Loss (DP)–No Known Mitigations. While we do not explic-
itly consider data-plane level attacks, we found several bugs which can trigger
data-plane packet loss. All the controllers we tested are vulnerable to drop-
ping occasional data-plane packets as a result of malicious switches discarding
packet in or packet out messages. A different method to induce data loss is to
target the buffering of packets at malicious OpenFlow switches by corrupting the
buffers indicated in packet in or packet out messages. This causes the buffered
packet to eventually be dropped. These bugs can have particularly large impacts
on small flows like ARP and DNS where installing flow rules makes little sense.
We are not aware of any known mitigations against these bugs.

Flow Rule Modification (FM)–No Known Mitigations. Another class of
bugs disrupts flow rules from the controller by modifying flow add messages.
This enables the attacker to affect the timeout, priority, and match fields and
masks of flow rules in malicious switches as well as the actions performed on a
match. Our testing found a number of modifications that cause network-wide
denial of service, but specific changes to small sets of flows are also possible. We
are not aware of any known mitigations against these bugs.

Port Config Modification (PC)–No Known Mitigations. Similar to the
flow rule modification, a compromised switch can mislead a controller as to the
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configuration of its ports by modifying port mod messages. This configuration
primarily consists of the port’s enabled or disabled state and whether it has
broadcast enabled. Our testing found a number of specific modifications that
cause broad, network-wide denial of service, but these bugs could also be used
for specific modifications targeting specific topology changes in networks. We
are not aware of any known mitigations against these bugs.

Packet Location Hijacking (LH)–No Known Mitigations. Several bugs
allow a malicious switch to change the apparent source port of a packet sent to
the controller and the apparent destination port of packets send by the controller.
This hijacking of packet locations has dramatic and wide spread effects across the
network, including topology detection, MAC learning, and reactive forwarding.
Note that the topology poisoning attacks identified in prior efforts [7,10] apply
these bugs to LLDP traffic on particular ports to carefully forge specific links
without breaking the entire network. While attacks forging LLDP packets can
be mitigated using cryptographic techniques, the more general bugs are more
difficult to address, and we are not aware of any known mitigations.

Empty packet in’s (EP)–Some Mitigations. We identified a bug in the
ONOS controller where sending a packet in message with a zero-length pay-
load packet triggers a NULL pointer exception in the processing thread. ONOS’s
design separates the processing of messages from different switches into different
threads. As a result, this exception causes this switch’s to terminate, discon-
necting the malicious switch, but allows the controller to continue running. We
reported this bug to the ONOS project, which confirmed it and verified that it
was no longer present in their most recent release.

However, a second bug exists which effectively prevents all topology detection
and useful reactive forwarding through a compromised switch on any controller.
The bug is exploited by configuring the compromised switch to send packet in
messages with a payload length of at most zero bytes. This means that no packet
headers will be sent to the controller, which can then do nothing useful with the
message, preventing topology detection, MAC learning, and reactive forwarding.
Preventing these bugs would require an update to the OpenFlow specification
to disallow very small payload lengths.

Controller DoS (CD)–Some Mitigations. We identified several possible
bugs that can overload and DoS the controller. One unavoidable way to do this
is simply to delay the installation of flow rules in malicious switches, causing
a flood of packet in messages. This bug has been identified by several other
studies, including [7,42,44]. Note that ONOS and Floodlight partially mitigate
this bug by tracking flow rules to prevent repeated insertion attempts. The only
complete mitigation is to proactively insert all needed flow rules and never send
packets to the controller.

We also identified two new bugs that crash the Ryu controller. The first
of these causes an infinite loop when receiving an OpenFlow message with a
zero-length header while the second terminates the controller with an uncaught
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exception when a packet in message with a zero length payload is received. We
reported these bugs to the Ryu project, which has patched both.

Link Detection Failure (LD)–Some Mitigations. This bug works against
implementations of the LLDP protocol to prevent a correct global topology from
being constructed by a vulnerable controller. It exists in ONOS, Floodlight, and
POX; Ryu is not vulnerable only because it does not attempt to construct a
global view of the topology, but simply emulates a set of learning switches.
Link detection is typically implemented by having the controller send LLDP
packets out of each port on each switch that it knows about and observing where
the packet in messages containing those packets arrive. From the packet in
message, the controller knows what port the packet was received on, allowing
it to identify a unidirectional link between the port where this packet was sent
and the port where it was received.

This bug tampers with the list of ports sent by a malicious switch in the
features reply and port status messages that the controller uses to enumer-
ate available switch ports. If ports are omitted in these messages, no LLDP
packets will be sent on them, which means no links can form from those ports.
Without knowledge of these links, the controller is limited in its ability to route
packets and may be unable to reach certain destinations.

These bugs can be substantially mitigated by monitoring received packet in
messages and looking for previously unknown ports. If such ports are observed,
the controller can begin to send LLDP packets on those ports and emit an alert
about a malicious or buggy switch sending inconsistent information.

Broken ARP Broadcast (BB)–Some Mitigations. This bug is conceptually
similar to the link detection failure bug except that it applies to the network edge
ports of a malicious switch that are directly connected to hosts instead of to other
switches. It enables an attacker to render target hosts unreachable in a network
running ONOS or Floodlight. Both controllers identify edge ports as those that
have not received LLDP packets and are thus not connected to other switches and
only broadcast ARP requests on these ports. However, by relying solely on the
port lists from features reply and port status messages, certain ports may
be omitted from those messages and hidden from the controller, preventing ARP
broadcasts on those ports. This is despite other traffic from those ports. This
causes hosts behind these omitted ports of malicious switches to be effectively
unreachable. This lasts until each target host sends an ARP request of its own,
at which point the controller receives the ARP request and learns the location
of the target host. Much like link detection failure bugs, monitoring received
packet in messages can substantially mitigate these bugs.

Unexpected Flow Rule Removal (FR)–Complete Mitigations. These
bugs confuse the ONOS controller into removing flows that it installed on a
malicious switch, complicating debugging and directing suspicion away from the
malicious switch. This bug occurs because ONOS manages the flow rules in
switches with a very heavy hand. In particular, it will remove any flow rule
in the switch that it did not insert and will track the usage of flow rules and
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request removal of flows rules that have been idle for some amount of time.
As a result, by modifying the flow rule information returned to ONOS in the
flow stats reply message, a malicious switch can make a flow rule appear idle
or appear sufficiently different that ONOS does not recognize it and orders its
removal. These bugs can be mitigated by relying on the ability of OpenFlow
switches to automatically remove flow rules based on idle timeouts [31,33] and
ensuring that all expected rules are accounted for before beginning removal.

Unexpected Broadcast Behavior (UB)–Partial Mitigations. OpenFlow
packet out messages include a special broadcast option that asks a switch to
broadcast the included packet out of all ports with broadcast enabled that are
not the port on which this packet was received. However, this mechanism is vul-
nerable to subtle changes in behavior that cause unexpected packet forwarding
and cripples learning-switch type routing. This bug occurs when the packet out
message is modified by a malicious switch to change the in port, which results
in the packet being broadcast by the malicious switch out of the port on which
it was received. This has impact on learning switch routing because broadcast-
ing packets in this manner causes switches to learn incorrect locations for hosts
resulting in connectivity losses. These bugs can be detected by linking packets
sent at one switch with those received by other switches.

4.3 Attack Demonstrations

We demonstrate that one can weaponize the bugs in Table 2 into powerful attacks
with potentially disastrous consequences. We manually develop exploits for a few
of the bugs we discover and present these weaponized examples below. All attacks
were manually implemented and tested using BEADS. The network topology was
a simple tree with three switches and four hosts.

TLS Man-in-the-Middle. The security of TLS against man-in-the-middle
attacks relies on a correctly implemented certificate-based PKI and active user
involvement. Unfortunately, attackers can leverage maliciously obtained certifi-
cates [22] or tools like SSLStrip [26] to observe (and potentially modify) confi-
dential information exchanged between client and server.

We implemented this scenario using the Ryu controller, which provides learn-
ing switch routing. We assume that the attacker has access to a compromised
switch on path as well as a host that is not currently on the path between
client and server. We use the FM bug to alter the flow table of the attacker-
controlled switch to insert his host, potentially performing an SSL man-in-the-
middle attack, into the path between the target client and server. Additional
rules must be inserted using the FM vulnerability to ensure that each switch
only sees packets with addresses that conform to the network topology.

Web Server Impersonation. In this scenario, an attacker wishes to imper-
sonate an internal web server. We use the ONOS controller (we believe POX
is vulnerable to a similar attack) and a malicious host at an arbitrary location
in the network. We used the ARP-location-injection bug to confuse the con-
troller into believing that the target webserver is now located on the same port
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as the attacker. All future connections from new or idle hosts are then sent to
the attacker. Since ONOS uses a global Proxy ARP cache, the attacker can be
anywhere on the network. This effect lasts until the target server starts a new
connection with a host that causes a packet in to the controller. This will reset
the target server’s location and end the attack.

If the switch to which the target server is connected is compromised, the
attacker can increase the duration of this attack by also using the DP1 vulner-
ability to drop all packet in messages from the target to the controller. This
prevents the target server from ever re-asserting its old location and causes the
attack to last indefinitely.

Break Network Quarantine. This scenario considers an attacker who has
found useful information (e.g., PII, credit card data, intellectual property, etc.)
but induced a network quarantine in the process, and must transfer that data
to an external server despite the imposed isolation.

In our demonstration of this attack, the Ryu controller is implementing a
firewall and attempting to quarantine a target host from the rest of the network
by dropping all packets from its port. The attacker is assumed to control an
arbitrary switch in the network and is trying to send traffic from the target host
to elsewhere in the network to exfiltrate discovered data. We use the CD2 bug
for this attack, which causes the controller to enter an infinite loop and become
unresponsive. Eventually, the switches in the network detect the failed connec-
tion and enter standalone mode, at which point they fall back to conventional
Layer-2 Ethernet learning switches. This purges the flow table and enables all-
to-all connectivity, allowing the attacker to exfiltrate the data. We were able to
successfully demonstrate this attack against Ryu.

Deniable Denial of Service. In this scenario an adversary wishes to degrade
network performance while remaining undetected for as long as possible. Whole-
network effects such as controller crashes are thus undesirable, as are any actions
that are easily traceable to attacker-controlled entities.

We implemented this attack scenario using ONOS. To stealthily disrupt net-
work service, we use an infinite sequence of SD9 bugs. This bug uses a malformed
features reply message to cause disconnection of the malicious switch on the
next ARP flood, which may be a long time after the message was sent. Blame
for the disconnection will be placed on the controller because of the invalid
packet out message that triggers the disconnection, thereby directing suspi-
cion away from the malicious switch. Using this attack, each ARP flood caused
the malicious switch to disconnect from the controller, resulting in about 3 s of
impaired service. ARP floods occurred 4 times in our tests, but an attacker could
use normal ARP requests for non-existent hosts to increase that by a factor of
10. We successfully tested this attack against ONOS.

5 Discussion and Limitations

BEADS does not find fully weaponized attacks ready to launch against a tar-
get. Instead, it identifies strategies that cause significant impact on the network
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stemming from one or more bugs much like stack-overflow vulnerabilities, there
is still manual effort needed to write an exploit that uses the bug in a targeted
way. This includes fixing the malicious host or switch locations, as the bugs
themselves exist irrespective of network location.

Many of the bugs found by BEADS allow a malicious switch to impact other
switches or hosts indirectly. While a malicious switch always has the ability to
impact such devices directly, there are two reasons it might want to use indirect
methods instead. First, it makes it difficult to identify the malicious party by
making the controller appear responsible for the undesirable behavior. Second,
if a switch does not protect its connection with the controller using TLS, these
bugs allow a Man-In-The-Middle attacker to maliciously control the switch using
OpenFlow alone. Prior work has established that a significant number of SDN
switches are not using TLS to protect their communication with the controller,
making this a promising attack avenue [35,36].

Because BEADS is designed to detect bugs in the SDN control plane, we do
not include metrics like latency, throughput, and packet drop rate in our detec-
tion. These are important data plane metrics, but provide little to no information
about the control plane, and thus for our testing.

Our malicious proxy is stateless, and thus cannot coordinate modifications
of particular requests or responses. Instead, it applies actions based on the type
of each message. This maps well to OpenFlow’s use of separate types for most
requests, responses, and commands and reduces the attack generation search
space. Adding additional state to this proxy could enable the discovery of more
complex attacks, but at the cost of an exponential increase in the search space.

6 Related Work

Network testing and debugging. The work that is closest to ours is
DELTA [24]. DELTA also evaluates the whole SDN system, including both con-
troller and switches. However, it focuses on the SDN controller’s northbound
interface and uses only blind fuzzing without regard for message structure or
probable vulnerabilities on the OpenFlow southbound interface. BEADS focuses
on the southbound interface and uses message format and semantic information
to provide much better test coverage, especially against controller algorithms
like routing and topology detection. As a result, BEADS finds all the malicious
switch attacks that DELTA finds and several that DELTA does not.

Other closely related efforts are OFTest [8] and FLORENCE [29]. Both of
these tools test OpenFlow switches using manually written tests focusing on
conformance to the OpenFlow specification. Since these tools do not consider
the controller, they are unable to find bugs and attacks in the controller software
based on incorrect assumptions about the switches.

Another work related to ours is NICE [6], which uses model checking and
symbolic execution to test SDN controller applications using network invari-
ants. NICE differs from our work in that it focuses on non-malicious SDN test-
ing, while we focus on malicious attacks. NICE was only shown to scale to
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simple first-generation SDN controllers (e.g., NOX). The second generation of
SDN controllers we test, like ONOS and Ryu, include orders of magnitude more
code, which would substantially complicate the symbolic execution. In particu-
lar, topology generation requires the controller to send messages to the switches
on a timer which is not supported in NICE. BEADS successfully tests ONOS
and other large, second-generation SDN controllers. Finally, while NICE models
switches and hosts, our approach uses real (software) switches and real applica-
tions. OFTEN [20] (an extension of NICE) adds real switches, but it cannot test
for performance attacks. Further, neither NICE nor OFTEN consider sending
the switches malformed messages and both are dependent on difficult-to-design
network state invariants for bug detection.

STS [41] is another work looking at network debugging. This work develops
a method to minimize network execution traces containing bugs for OpenFlow
networks. To test their trace minimizing technique, they develop a network event
fuzzer that randomly injects events like link failures or packets into a network and
use it to find seven new bugs in five SDN controllers. Unlike the STS fuzzer, our
work focuses on manipulating the OpenFlow messages themselves and identifies
which of these messages are likely to lead to attacks.

Attacks and defenses in SDN. Work that studies SDN attacks includes explo-
ration of protocol attacks [10], saturation attacks [42,44], and controller-switch
communication attacks [4]. Several defense and verification techniques have been
proposed to ensure that flow rules do not violate invariants [1,2,16–18]. These
verification approaches focus on logic errors in rules, as opposed to malicious
manipulation of the SDN. The work by Mekky et al. [28] allows efficient inspec-
tion and filtering of higher network layers in SDNs. Kotani and Okabe [19] fil-
ter packet in messages according to predefined rules to protect the controller.
LineSwitch [3] mitigates control plane saturation DoS attacks by applying prob-
abilistic black-listing. Recently, Spiffy [14] was proposed to detect link-flooding
DDoS attacks in SDNs by applying rate changes to saturated links. None of
these approaches considers the problem of automatic attack identification.

7 Conclusion

We have developed a framework, BEADS, to automatically find attacks in SDN
systems. BEADS considers attacks caused by malicious hosts or switches by
using semantically-aware test case generation and considering the whole SDN
system (switches, controllers, and hosts). We used BEADS to automatically
test almost 19,000 scenarios on four controllers and found 831 unique bugs. We
classified these into 28 categories based on their impact; 10 of which are new. We
demonstrated through 4 attacks how an attacker can use these bugs to impact
high-level network goals such as availability, network topology, and reachability.
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Abstract. Mobile devices are highly dependent on the design of user
interfaces, since their size and computational cost introduce considerable
constraints. UI and UX are interdependent since UX measures the sat-
isfaction of users interacting with digital products. Therefore, both UX
and UI are considered as top priorities among major mobile OS plat-
forms. In this work we highlight some pitfalls in the design of Android
UI which can greatly expose users and break user trust in the UI by
proving how deceiving it can be. To this end, we showcase a series of
attacks that exploit side channel information and poor UI choices rang-
ing from sniffing users’ input; resurrecting tapjacking, to wiping users’
data, in Android from KitKat to Nougat.

1 Introduction

Modern mobile devices have penetrated our everyday life at an unprecedented
rate. An indicator of this trend is that despite the fact that commodity smart-
phones date back to less than a decade, globally there are more smartphone
users than desktop users. In terms of capabilities, while they can be considered
as a stripped down version of modern computers, their various embedded sensors
provide them additionally allowing them to sense their location through e.g. the
GPS, their position through the compass, or even the motion of a device through
accelerometers. This knowledge allows smartphones to adjust the user interface
and the provided information in real-time in a way that fits better for the user
and the corresponding environment.

More than simply managing all this information in a computational efficient
way, mobile devices are subject to size constraints as the attached monitor which
acts as both an input and an output modality of interaction is rather small and
a lot of functionality has to be squeezed into it in the most intuitive way so
as not to confuse users when interacting with the device. As a result, mobile
UIs contain a lot of components and information in a rather confined setting.
Therefore, while the resulting UI seems rather simple, it is in fact fairly complex.
Furthermore, since all mobile applications share the same small screen, they end
up getting stacked one on top of the other which prevents users from determining
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to which application the foreground component belongs to. Nevertheless, users
have absolute trust in the UI: they expect that what they are presented is exactly
what it claims to be.

Smartphone UIs have received a lot of attention over the last years, with
numerous researchers revealing vulnerabilities that lead to a significant number
of OS patches and precautionary measures, with Android; due to its popularity,
receiving most of them. In this paper, we present new attack vectors that we have
discovered which not only bypass recent countermeasures integrated in Android,
but more importantly, these attacks, in many cases, are for more malicious than
the reported in current state of the art.

After reviewing the related scientific literature, we argue that one may cate-
gorise Android UI attacks into two main categories. The first category consists
of attacks that utilize window dialogs that hold the SYSTEM ALERT WINDOW sig-
nature level permission, allowing them to be shown on top of all other apps;
e.g. [41]. Android Toast messages are an exception in this category, since they
require no permission, however have some significant limitations, as it is dis-
cussed in the next section. The second set of attacks consists of applications
that manage to determine the foreground app and consequently present a fake
application to steal sensitive user information; e.g. [18]. However, at the time
of writing, these attacks have either low or zero impact since their underlying
security issues have been already addressed. For the first category of attacks,
the SYSTEM ALERT WINDOW permission requires special handling by the user,
after the installation of an app to be granted. Additionally, after the introduc-
tion of API level 23, special intents (e.g. ACTION MANAGE OVERLAY PERMISSION
[11]) and checks (e.g. canDrawOverlays() [11]) have been introduced to harden
the UI and disable third party apps from arbitrarily drawing over other
apps. Regarding the second set of attacks, again several countermeasures have
been applied during the last years. Moreover, Android ActivityManager’s class
method getRunningTasks(), has been deprecated in API level 21 and is no
longer available to third party applications [2], while ActivityManager’s class
getRunningAppProcesses() returns a list of only the caller application’s pack-
age name as of API level 22.

In our work we use quite different attack vectors to achieve these results,
which, to the best of our knowledge and according to our reports to Google; see
Table 1 for details, had not been studied yet. Our proposed attacks exploit some
of the properties of the most generic Android OS mechanisms, such as Android
activities and Intents. Hence, not only do we succeed in delivering a wide range of
attacks to the Android OS through seemingly benign apps; they do not request
any dangerous permission, but we also provide proofs that these vulnerabilities
exist for far too many years, up to the latest versions. These attacks may range
from stealing sensitive input and installing apps without users’ knowledge, to
wiping the user’s phone, even in the latest versions of Android AOSP (SDK 25).
In addition, we have successfully uploaded our proof of concept applications to
Google Play, bypassing the security checks from the Bouncer; the system which
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analyses applications in Google Play for malicious functionality [27,31], further
proving the significance of the threats.

While much effort has been made in Android towards countering UI redress-
ing attacks, for instance since Marshmallow, the user is presented with a notifi-
cation screen whenever an overlay is detected, the ground truth is that most of
these defense mechanisms have been partially deployed, allowing an adversary
to launch a wide set of attacks. Table 1a provides an overview of our contribu-
tions stating some of the Android’s design goals and linking them with both our
findings and the way that these findings can be used maliciously.

More precisely, in this work we demonstrate that many security standards of
Android’s UI can be easily bypassed with the use of inherent mechanisms that
do not require any special permission from the user. To this end, our presented
attacks either exploit the knowledge of what the foreground app is (SDK<24),
or lure the user to use arbitrary UIs and result in a series of “unwanted” actions.
Based on the methods that will be presented, an adversary can launch sev-
eral serious attacks, ranging from sniffing sensitive and private data, to gaining
administrative privileges that allow the adversary to reset the device, wipe user’s
data, or even cover the installation of new downloaded apps. A summary of the
attacks presented in this work, their applicability to specific Android versions and
the percentage of current devices affected by them, are illustrated in Table 1b.
It should be noted that the reported results have not been tested to API levels
below 19 as these devices not only represent a small market share, but they have
been long deprecated.

2 Related Work

Android User Interfaces take place in three-dimensional space, where the two
dimensions control the horizontal and vertical positioning of controls inside a
mobile window respectively, while the other controls the “depth”. The latter
dimension refers to the different “layers” of UI graphic elements which are placed
on a mobile screen and it is defined from the level of the screen towards the
user’s eyes. Hence, as far as activities are concerned, the “outermost” activity is
practically the active one. However, there are also other types of graphic elements
that may appear on a mobile screen, such as dialogs. Dialogs consist of controls
that may appear on top of activities to interact with the users, usually providing
some kind of information. For managing all the UI elements on the Z axis, there
is a dedicated Android interface, namely WindowManager [12], used by the apps
to bound to a particular display.

In terms of user interaction, Android’s activities and dialog windows have
significant differences between them. First and foremost, activities have a much
more complex lifecycle which consists of special states and their corresponding
events that are triggered during their lifecycle. On the contrary, dialogs are usu-
ally either informative or prompt users for making a decision, and therefore have
much shorter and less complex lifecycle. Furthermore, all activities have to be
declared inside the app manifest file, whereas there is no such requirement for
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dialog windows. Following the same logic, an app’s activity can also be launched
from other apps using intents, a special Android mechanism to enable a kind of
“communication” between applications through asynchronous messages. Conse-
quently, there is a strong relationship between activities and intra- and inter-app
navigation, which makes them one of the fundamental building blocks of apps
on the Android platform.

At this point it is essential to clarify how Android UI elements interact with
each other inside or outside the scope of an app. In principle, a dialog window
cannot appear outside the scope of its calling app; i.e. appear on top of another
app’s activity, unless this app is granted the SYSTEM ALERT WINDOW permission.
While there is an exception to this rule inside Android, concerning the “Toast”
window, this type of windows have limited functionality and very short lifetime
(maximum 3.5 s). Moreover, the SYSTEM ALERT WINDOW permission is a signa-
ture level permission; far more strict than dangerous permissions, and allows
an application to create windows shown on top of all other apps by using the
TYPE SYSTEM ALERT option. According to Google Developer resources [7]: “Very
few apps should use this permission; these windows are intended for system-level
interaction with the user”. Apparently, while many applications may request
this permission, this permission is actually neither automatically granted nor
the user is notified about it during installation. Therefore, a permission manage-
ment screen is presented to the user to grant it [7] and to allow the application
to draw on top of the others. Table 2 provides an overview of the properties of
all UI elements that are able to draw over other apps have.

On the contrary, a newly launched activity is by default, and without requir-
ing any permission, able to appear on top of another app. This is the usual
and obvious way of interaction inside Android OS where apps appear on top
of others, usually as a result of users’ actions, creating a kind of an applica-
tion stack. Activities which are launching other activities or other apps’ activi-
ties and sometimes even return results, are a commonplace in Android and are
thus thoroughly supported through the Android Intent [5] mechanism. Notably,
up to recently, each application would have been actually stacked on top of the
others covering them entirely, as the size of each application would have been
equal to the screen’s size. This is not the case any more as several features,
recently introduced in Android’s UI, are providing more complex stacks such as
messaging apps’ “chatheads”; through SYSTEM ALERT WINDOW permission, and
Multi-Window [8].

2.1 Attacks to the UI

In principle, one of the main goals of malware is to perform unauthorised
actions on victims’ devices and for achieving this an adversary may use var-
ious approaches. Nonetheless, if the adversary cannot find a vulnerability to
penetrate into the user’s device either remotely or by getting physical access to
it, one alternative way would be to trick the user into performing the malicious
action himself. To this end, the adversary may use social engineering methods
to convince the user to e.g. install a malicious application or change specific OS
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Table 2. Android UI elements over other apps.

UI window type Required permission Manifest declaration Focusable Duration Launch

from service

Toast messages Not required 3.5 s

Alert messages SYSTEM ALERT WINDOW Not required � No limit

System alerts SYSTEM ALERT WINDOW Not required � No limit �
Keyguards* Required � No limit �
Normal activity Required � No limit �
Transparent activity Required � No limit �
Small shaped activity Required � No limit �
Notification Not required No limit �

settings. Obviously, the application must not raise an alert to the user indicating
its maliciousness, otherwise the user will not perform the task.

However, even if the user is tricked into installing a malicious app, this does
not guarantee that the adversary will accomplish his/her goals. For instance,
if the adversary has the goal of stealing a user’s password, then the embedded
security mechanisms of the operating system may prevent the adversary from
this theft. To overcome this obstacle, many malicious applications try to trick
users into providing the necessary input directly to them. An obvious method
to achieve this is by disguising themselves as legitimate apps so as to trick users
into providing the input to them. Another approach, which is very often used in
mobile devices due to their UI, is to provide a transparent layer on top of the
legitimate application and thus to steal the sensitive user input.

In literature, several attacks targeting Android relevant to our work are doc-
umented. Despite the fact that transparent elements in browsers were used as
the first UI redressing attacks, we are not studying them hereafter since they tar-
get an entirely different environment. Besides, these attacks cannot recover the
sensitive information nor can perform the actions that we target in our attacks.
To the best of our knowledge, the first attempts to escape the browser envi-
ronment can be attributed to Richardson [32] and Johnson [22]. Nevertheless,
these attacks were quite limited as e.g. they used a simple toast. The actual
successful UI redressing attack can be attributed to Niemietz and Schwenk [30]
who ported them to Android. The authors managed to create an overlay which
is “touch transitive” in that the clicks are also transferred to the application
which is positioned below it. In that scenario for example, the user is tricked
into clicking at specific points on the screen while his clicks are also parsed to
the dialer application which sits below the app. In that way, the user performs
an unauthorised call to a premium number without realising it.

The attack of Chen et al. [18] starts from a side channel attack to the under-
lying GUI system. While in principle the attack can be launched to any GUI,
the authors focus on Android and more precisely try to infer the activity that
is displayed from the foreground application based on shared memory. First,
the authors monitor offline the memory counters (virtual and physical) of an
application as they are recorded in procfs. That is, they monitor the memory
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consumption of each activity in an application by tracking the memory alloca-
tion of the corresponding /proc/[pid]/statm file. The hypothesis is that the
transition from one activity to another has a specific memory footprint that
can be used to create a unique signature in a target app. Based on this signa-
ture, the adversary can infer the foreground application and the corresponding
activity. By monitoring network traffic through /proc/net/tcp6 one can further
improve the results. Based on this input, the adversary may determine whether,
for instance, the victim is presented with the login screen of a sensitive app or
he/she is being asked to enter payment details. Therefore, he can timely bring
his malicious app in the foreground with a replicated UI and trick the user into
disclosing the sensitive information.

Bianchi et al. in [16] categorise all Android UI attacks under the general
umbrella of GUI confusion attacks. Despite the countermeasures that are dis-
cussed in this work, of special interest to our work is the reported leakage
of foreground application by profs. In this case, the leakage is from the file
/proc/[pid]/cgroups whose contents change from /apps/bg non interactive
to /apps when an app is sent to the foreground. Recently, Fernandes
et al. [21] showed that one could exploit the use of a defense mechanism
such as the aforementioned one, by monitoring the binder IPC calls in
/sys/kernel/debug/binder. This allows an adversary to know when the scan
has finished and to timely present user with a fake activity to steal the sensi-
tive data. To overcome this drawback, Fernandes et al. provide a more advanced
mechanism which mitigates such attacks.

The attacks of Ying et al. [41] can be considered quite narrow and the assump-
tions that the authors make are rather strong. Firstly, the attack is mainly
focused on custom ROMs where the ecosystem is very different compared to
Android AOSP, as there is a lot of customisation and radically different imple-
mentations even for native libraries. Actually, the authors exploit one of these
features, more precisely the SYSTEM ALERT WINDOW permission to draw on top
of other windows. Notably, to grant this permission to an application the user
has to perform a set of actions post installation [7]. Using Tacyt1 to estimate
the exposure from this attack vector, we identified 235,059 versions in Google
Play and 28,533 version outside it which use this permission. The reason for
this choice is that Tacyt downloads all the apps from Google Play and all their
versions in daily basis, analyses them and provides an interface to mine part of
this information. Due to the implementation of Tacyt, the responses are in per
app version and not per app, nonetheless, they provide a very good snapshot
of available Android apps. Notably, the latter numbers contradict the reported
ones by Ying et al. [41]. For Android AOSP, their attack cannot be considered
valid as none of the big corporations which are explicitly granted this permis-
sion by Google would try to exploit it as such actions would most probably put
them out of business immediately. Alternatively, the user has to be tricked into
performing a set of unusual and very dangerous actions.

1 https://www.elevenpaths.com/technology/tacyt/index.html.

https://www.elevenpaths.com/technology/tacyt/index.html
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Currently, there are several reported possible countermeasures to UI redress-
ing attacks [1,21,28,29,38]. Nonetheless, in terms of state of practice we consider
as baseline the latest version of Android AOSP, which at the time of writing is
7.1.1. The reasons for this choice is that while several defense mechanisms are
implemented for quite old Android versions e.g. Android 4.4 and they actu-
ally account for a low percentage of market share which has currently been left
unsupported. Additionally, Google has issued several security features in the
newer versions to tackle many of these attacks, and introduced new UI features,
some of which are exploited by our attacks. Notwithstanding the above, the
attacks that we demonstrate here can be launched to a plethora of Android
versions, illustrating that the defense mechanisms are rather low. For a more
thorough overview of this field, the interested reader may refer to [37].

3 The Attacks

The following paragraphs present the backbone of our attacks. After introducing
our threat model, we provide the necessary technical details and research findings
that enable the realisation of our attacks. Based on these findings, we detail how
an adversary can take advantage of them to launch an attack.

3.1 Threat Model

Like most attacks on Android, we assume that the victim has been tricked into
installing a malicious app [19,20,36]. To minimize the risk of alerting the user
that the app might be malicious, we minimize the requirement for permissions,
by requesting access only to the Internet. The latter is a weak assumption, since
after the radical changes in Android 6, the new permission model considers this
access as a normal permission. Practically, the user is not notified about it, yet
the permission is automatically granted and cannot be revoked. Therefore, our
threat model assumes that the device has not been compromised via a root
exploit. In fact, as we are going to show, most of our attacks can be applied to
the latest version of Android. Therefore, our malicious apps are assumed to be
unprivileged and managed to trick Bouncer and be shared through Google Play.

To provide stealthiness to our app, instead of just using Internet to commu-
nicate the commands and results, we use Firebase. The idea behind this choice
is that Firebase provides a nice hide out for the execution of our attack since
the channel is considered secure and trustworthy, as it is powered by Google,
and the traffic is also considered legitimate as many applications use it to store
information. Additionally, it facilitates the development lifecycle as Android has
many native API calls to exchange information with Firebase. In this regard,
the use of Firebase can be considered similar to the use of Facebook, Twitter,
etc. by social botnets [23] to hide their communication with the C&C server.
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3.2 Drawing over Other Activities

Microphone and touchscreen inputs can be considered as the most sensitive infor-
mation on a smartphone, as they constitute the primary inputs to the device.
While for the former the main security mechanisms can be found in the trans-
port layer, for the latter the mechanisms are embedded in the operating system.
This is perhaps the reason why a significant number of corresponding attacks
has already been reported. For instance, apart from the obvious keylogger appli-
cations, an attacker may try to recover information from leaks (potential or
malicious) of the software keyboard [17], processor’s cache [24], motion sensors
[14,39], distortions of the wireless signals from finger motions [42], hand motion
[26], audio [25], video [33] or both [34] to infer user’s input.

In our approach, we exploit Android’s UI and side channel information to
either steal or interfere with the user’s input. In what follows we discuss how
one can draw on top of other activities. Practically, this is split in two cases: one
where a transparent overlay activity covers another one, and one where one or
more non transparent activities partially cover other activities.

For the former case we use typical Android manifest theme declarations.
More specifically we have used the Theme.Translucent.NoTitleBar parame-
ter in the activities’ theme declaration to make an activity transparent and
extend it to full screen. In the cases where “on-screen” actions, such as clicks,
or key input through the supplementary presence of a keyboard needs to be
recorded, the transparent layout was supplied with corresponding KeyListener
and ClickListener objects. Notably, drawing over the Android UI by utiliz-
ing a transparent activity was seamless, as a “layer” since any visible view on
the transparent activity is seen as visible on the mobile screen (e.g. TextViews,
Buttons, etc.). The latter case was more demanding as activities whose size is
smaller than the screen are statistically quite “rare” in Android apps. Moreover,
apart from this constraint, we required to leave user interaction pass through
the outer space of the activity. To achieve these, we defined Application Theme
styles that contained the following items as elements:

<item name="android:windowIsFloating">true</item>

<item name="android:windowIsTranslucent">true</item>

<item name="android:windowBackground">@android:color/transparent</item>

<item name="android:windowNoTitle">true</item>

Then, a crucial step was to override the activity’s onCreate() method to
define some additional parameters. Namely, a WindowManager.LayoutParams
object was created whose dimAmount was set to 0 and it was flagged with the
attributes FLAG LAYOUT NO LIMITS and FLAG NOT TOUCH MODAL. To position the
sized floating activity on the screen, one can fine tune several parameters of
the corresponding LayoutParam e.g. “Gravity” parameters, or actual position
through (X,Y) on-screen coordinates. Finally, to make an activity “wrap” around
its contents (e.g. ImageViews) its layout width and layout height parame-
ters have to be defined to take the wrap content value, instead of the default
match parent default value. Notably, the aforementioned properties, can be used
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to create arbitrary stacks of activities on top of others, allowing an adversary to
create an interface as in Fig. 1a, where only part of the activity on the bottom
can be seen, nonetheless, the interaction (click) is passed to it. The fact that arbi-
trary number of sized activities can overlay other apps can also be used to create
a grid on top of the screen as illustrated in Fig. 1b. Both of these approaches, con-
cerning a number of floating, sized activities are used in our research for a wide
variety of attacks that range from permission escallation attacks, to revisiting
tapjacking, as it is illustrated in the next section.

(a) Stacked overlay activities. (b) Grid from overlay activities.

Fig. 1. Exploiting floating Android activities.

3.3 Tricking Users to Open Apps

In API level 4 Google introduced notifications to Android. As the name suggests,
this mechanism notifies users about application events. To create a notification
there is no permission needed to be granted. From API level 11, one must denote
the text of the notification; through setContentText which accepts a string vari-
able, the title of the notification; through setContentTitle which also accepts a
string variable, and the notification icons for the status bar and the notification
view, using setSmallIcon and setLargeIcon respectively [9]. As of API level
23, both icons can be set dynamically using custom bitmaps. Prior to API level
23, only the setLargeIcon provided this feature, as setSmallIcon required
an integer which denoted the resource ID in the application’s package of the
drawable to use. Practically, this means that a developer can now fetch all the
content of a notification; strings and icons, from the Internet, without having
any restriction from the declared app resources in the package. Notably, these
attacks emerged since API level 23. While one could long press on the icon of a
notification to see its properties, which would actually show the user the correct
app, this cannot be considered a normal user interaction, as it beats the purpose
of the notifications and cannot be expected to be performed regularly.

Shortcuts are an easy way to launch applications beyond going through the
list of installed applications. To this end, they are created in the home screen
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of Android so that the user can quickly find the apps she uses most often.
While the user can create shortcuts for her apps and arrange them in the
home screen, applications can also do it when deemed necessary, as long as
they have declared the normal permission INSTALL SHORTCUT in their manifest.
The underlying mechanism to create a shortcut is intents [4], so the developer
has to declare three variables: a string which denotes the caption of the shortcut
(EXTRA SHORTCUT NAME), a string which denotes the “action” of the intent to be
launched (setAction), and its icon as a bitmap (EXTRA SHORTCUT ICON). Again,
as in the previous case of notifications, all the parameters for the creation of app
shortcuts can be set dynamically, using Internet resources.

3.4 Sniffing PIN/Pattern

Due to the sensitivity of the data stored in modern smartphones, a wide set
of authentication and authorization methods have been introduced to prevent
unauthorised access. Perhaps the most common mechanism, regardless of the
underlying platform, is the lock screen, where users have to enter a PIN or
pattern to unlock the device. The approach is rather simple and provides base-
line security from physical intrusion. According to a recent study [35], most
users lock their phones by preferring patterns over text based methods; PIN and
passphrase.

While in some versions there might be some minor filename chang-
ers, by default, the pattern is stored as an unsalted SHA-1 hash in
/data/system/gesture.key file, while the PIN or passphrase are stored in
/data/system/password.key as a concatenation of the password’s SHA-1 and
MD5 hash values. Contrary to the patterns, the text-based passwords use a
salt which is stored in the /data/system/locksettings.db. Clearly, due to
the location where these files are stored, users and applications cannot access
them neither for reading nor for writing them. Therefore, attacks to recover the
unlocking code are focused either to cases where one has access to the stor-
age and manipulates it to e.g. remove the protection mechanism or to sniff the
password by side channel attacks [13,40,42].

While the user is not allowed to read nor modify the content of the two
aforementioned files, an application is able to determine which is the locking
modality that is used. To achieve it, the application must simply request the file
size of the two files. Obviously, the file whose size is a positive number indicates
which of the two modalities is used, as both files exist in the filesystem regardless
of which modality the user prefers.

To replicate the lock screen’s UI, one also needs to collect the user’s wallpaper.
Notably, in Android, all applications are allowed to access device’s wallpaper
by requesting the getDrawable property without the need for declaring any
dangerous permission, as reported by the Authors, in Security Issue 219663.
This choice can be considered rather dubious as users would most often use
personal photos as their wallpaper. Clearly, apart from the use described in our
attack, this feature also enables apps to profile users since the content of the
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wallpaper could reveal social connections, religious and political beliefs or even
sexual preferences.

Combining the above information we are able to prepare the screen that is
be presented to the user when he wants to unlock the phone, since the device’s
secure lock background image is almost always the blurred version of the user’s
wallpaper. The malicious application is seemingly harmless and can consist of
several activities. Obviously, the fake lock screen functions as the real one, yet
it records all touch events, which are stored and transmitted to the adversary to
recover the unlocking code. The interface and steps of our attack for the case of
pattern locked smartphone are illustrated in Figs. 2a and b.

To accomplish an attack that will result in sniffing a user’s lock screen pin or
pattern, our approach requires the implementation of a BroadcastReceiver class
that will be capable of listening for screen-off events, (ACTION SCREEN OFF), while
our app is running on the foreground. In other words, the actual initialization
of our attack is triggered by the user, not when she tries to unlock her mobile
phone by using the power button, but on the contrary when she locks her phone
so that she will subsequently unlock it for the next use. As a result, our fake
lock screen will be brought to the foreground after the screen-off event and will
remain there invisible until the moment the user tries to unlock her smartphone.
However, due to Android OS’s restrictions for security reasons, this “special”
kind of broadcast receiver cannot be registered in the app’s manifest but only
programmatically on runtime, nor can it be associated with a different activity
than the one that registered the receiver. To overcome these restrictions our app
registers the broadcast receiver programmatically through a “dummy” activity
and most importantly the same activity is also used to create the fake lock
screen. We accomplish this “transformation” of the dummy activity into the
desired one by hiding all the views that were used in it and by replacing them
with visible ones that where previously hidden, which comprise the “desired” fake
lock screen activity. Of course, the device’s specs are “welcomed” by attackers
in order to “fine tune” the attack, such as screen size and screen fonts, and thus
produce a “convincing” result. In order to force our fake lock screen precede
the real lock screen when the victim presses the power button, some special
flags are used, such as the FLAG SHOW WHEN LOCKED parameter. Finally, while
the user interacts with our fake lock screen we manage to create a simple path
data structure where each (X,Y) coordinate regarding touch screen events and
movements is recorded, ACTION DOWN, ACTION UP and ACTION MOVE. Obviously,
analysing this data structure can straightforwardly reveal a victim’s lock screen
pattern. Certainly, producing a fake lock screen that consists of UI controls to
capture a 4 digit screen lock is simpler.

3.5 Inferring Foreground Application

For obvious security and privacy reasons, Android prevents applications from
inferring which application is on the foreground. Nonetheless, it allows applica-
tions to know, without requesting any dangerous permission, which applications
are installed in the device, as well as which ones are currently running; the latter
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only applies for all Android versions prior to Nougat. While these permissions
and restrictions are performed in the SDK, one may dig into the OS layer to
retrieve this information.

Android is practically a Linux system and as most of the Unix-like systems
it follows the same approach for handling its filesystems. One well-known, yet
special filesystem is procfs which is utilised to store the information of the
processes that are executed by the operating system. While accessing the infor-
mation in this filesystem is well protected, in terms of reading and altering the
stored information this does not actually prevent side leakages. In principle, in
Android these mechanisms are more strict as each application is a separate user,
and as such, each application is prevented from accessing the “internals” of the
other. Nonetheless, some metadata are publicly available to all applications.

Special concern should be paid to the oom adj score file. To understand
the importance of this parameter we will discuss some Android specific fea-
tures of process management. In principle, Android runs is mobile devices which
have constrained resources, whereas many refinements have been introduced by
Google in order to allow Android to perform resource allocation and release.
Since the device has limited memory, Android performs the following steps to
achieve stability. If there is memory free, Android uses Zygote to launch a new
VM. However, if there is not any free memory, it has to close the last user appli-
cation. In this regard, each application is given a oom adj score, stored under
/proc/[pid]/. By monitoring the aforementioned files, and pruning all the sys-
tem applications, one can easily determine which is the application which is less
probable to be killed, which eventually, is the foreground app.

4 Use Cases and Implemented Attacks

To demonstrate our attacks and highlight their importance, we have prepared a
set of different attack scenarios that reveal different exposures from the Android
UI. Some representative interfaces of the attacks that we launched are illustrated
in Fig. 2. In these screenshots we have deliberately created a sloppy interface
for most of the attacks so that the reader can easily determine the overlayed
activity as well as the exposed functionality. As discussed in the previous section,
an adversary can easily present either transparent or sized activities on top of
the benign ones to provide the necessary look and feel and trick the user into
performing illegal actions and/or sniff input data.

While one could argue that the activities and their resources must be declared
in the manifest, one can easily bypass this restriction by simply using webviews
that cover the whole activity. In this regard, an adversary can load dynami-
cally any interface he wants. Note that the adversary through his malicious app
already knows which apps are installed in the victim’s device, also illustrated in
Fig. 2, so he can easily prepare the appropriate interface and load it dynamically
when deemed necessary. Therefore, in what follows, we consider the creation and
delivery of the forged interface as a trivial part of the attack that is made mostly
through Firebase.
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The lifecycle of our attacks is the following. Initially, Malory, the adversary,
uploads the malicious app in Google Play; as already reported our apps bypass
Bouncer’s filters, and the user is tricked into downloading the app and installing
it since it requires no special permissions. Then, the app sends through Firebase
all the necessary input from the victim’s phone. Next, Malory delivers all her
payload for the attacks through Firebase. Depending on the installed apps and
Android version, the malicious app either timely launches a forged activity or
overlays a benign app.

Starting a phone call: While an application needs to have a dangerous per-
mission granted to start a call, any application can use an intent to launch the
“Phone” application with an arbitrary number to call. For obvious reasons this
call will not be made unless the user presses the call button. Exploiting the UI
features described in the previous section, an adversary can easily create a set
of activities to cover the screen, leaving a small part of the call button and trick
the user in pressing it. A draft example of this approach is illustrated in Fig. 2c.
Another similar and perhaps more stealth attack would involve sending SMSs
to premium numbers.

Sniffing private data from legitimate apps: In this case there are two differ-
ent attack scenarios. For devices running Android prior to Nougat, an adversary
is able to determine which the foreground app is, as presented in the previous
section. Should the adversary determine that a specific app would provide him
with valuable data e.g. credentials, he presents the user with a customised float-
ing activity which covers the legitimate app, requesting private user input. As
shown in Fig. 2d, the user has no means to determine that the presented activ-
ity (shown as a common app dialog) does not belong to the legitimate app. In
fact in the illustrated example, Google Maps continues to function in the back-
ground as expected, since the floating activity occupies only a specific part of
the screen leaving the other parts of the screen unaffected. Considering devices
running on Nougat, while the adversary cannot determine which the foreground
application is, he can easily trick the user with other methods such as injecting
fake notifications or creating fake shortcuts, all mimicking legitimate ones.

Intercepting sensitive input: Should the adversary know which is the fore-
ground application via side channel information, as discussed in the previous
section, he can present the user a transparent activity. A typical example is
illustrated in Fig. 2g where the transparent activity accompanied by a keyboard
allows the user to type her message to one of the most widely used messen-
ger applications, Whatsapp. Having intercepted the input, the malicious app
displays a message that something went wrong to smoothly return to normal
execution.

Fake notifications: Based on the latter restriction in Nougat, about determin-
ing the foreground app, we tried a different approach: force the user to open a
desired application. To achieve this, we exploited the fake notification mecha-
nism, discussed in the previous section. Therefore, we created a malicious app
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that downloads dynamically both the notification icons and the notification mes-
sage. Since the adversary knows which the installed apps are, he can easily create
a forged notification for one of the victim’s apps. In Figs. 2e and f we illustrate
this in Nougat using PayPal as the target app. As shown in these screenshots,
the user has no means to determine that the foreground activity does not belong
to PayPal. As already discussed, the notification in Fig. 2f may not contain the
app name, yet the user most probably will not notice it. Clearly, in Marshmal-
low, since the name restriction does not apply, the user cannot tell the actual
difference, as the forged notification will be identical to the real one. Finally, it
should be noted that notifications are used as shortcuts, so the user does not
spend much time in trying to determine whether there is a name or not; in the
case of Nougat, he will trust the icon.

Fake shortcuts: Another approach to trick the user into launching the forged
activity of the malicious app is to create a fake shortcut on the mobile’s home
screen. While Android has its application menu locked so that applications can-
not add more icons, the same does not apply for the home screen. There, any
application using the normal permission INSTALL SHORTCUT can create a shortcut
with the icon and name of a legitimate and installed application, as described in
the previous section. However, the shortcut actually launches the forged activity
from the malicious app and not the legitimate one.

Installing applications: Further to performing actions within the scope of the
installed applications, an adversary could also trick the user into performing
actions within the scope of the operating system per se. For obvious reasons,
one would expect that an application would not be allowed to cover activities
over them, nonetheless, this is not the case. A profound example is the case of
the install manager. Notably, an adversary could download an application from
the Internet, by simply using an intent to the browser, or by other means such as
utilizing Google Drive, using local files, etc. Practically, using the “Intent” way
means that the app does not request Internet permission. Once the download
of the APK is finished, the Package Manager is automatically invoked and the
malicious app presents the user an activity as in Fig. 2h, to trick him and install
another app. In the less sinister scenario, the adversary manages to raise his
stats, while in the more sinister, the adversary tricks the user into installing an
application which has more dangerous payload and the user would have never
downloaded from Google Play.

Becoming administrator: In Android 2.2 [3], Google introduced a mechanism
that allows users to grant device administration features to specific applications
in order to facilitate enterprise applications and to provide them means to apply
stricter policies and device management. To this end, an application which is
granted this permission can among other features restart the device or wipe its
data. To facilitate the installation procedure, Android provides a shortcut so
that the application requesting this permission can present the user with this
screen. While one would expect that this activity would not be accessible and
no one would be able to interact with it once it loses focus, this restriction
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does not apply. As illustrated in Fig. 2i an adversary can cover the activity with
the techniques described in the previous section to trick the user into granting
some of the most dangerous permissions. Notwithstanding this deceit, the same
security gap is present is other highly dangerous activities, e.g. installing custom
certificates, granting access to user’s notifications to name a few. Apparently, the
user can be easily tricked into being blocked from his own device, wiping his own
data or even giving full remote access to his data.

Tapjacking revisited: The basic concept of most tapjacking attacks in the
literature is to create a transparent overlay which exploits a vulnerability in
Android’s UI to catch the event of user tapping the screen and then passing it
to the underlying application. To the best of our knowledge all of these attacks
are now obsolete as of Marshmallow. A different approach however is to exploit
the grid concept with many sized transparent activities of Fig. 1b. The twist
in this approach is that we do not try to pass the event to the underlying
application, but we exploit the size of users’ fingers, as well as the fact that
a “sized” activity can even have a surface of a few pixels. Since the activities
can also be transparent and can overlay any application, the malicious app can
sense where the user’s finger is and derive the user’s input. Eventually, if the
screen is covered by many small transparent activities, touch events will be
sensed by the grid, while the interaction with the underlying application will
also exist. Notably, in this scenario, the adversary does not need to know the
foreground app, as the malicious app logs almost all user tapping so he can later
infer sensitive application such as PINs, credentials, keyboard typing etc. To
demonstrate the applicability of this attack we created a proof of concept, yet
to facilitate the reader, the sized activities are marked red in Fig. 2j, but in the
original, they are transparent.

5 Conclusions

User interfaces are tightly entwined with user experience, especially regarding
user-smartphone interaction. However, the efforts in improving user interfaces
may hinder OS security, as app lifecycles are more complex. All the reported
attacks, accompanied with the corresponding proof of concept have been already
communicated to Google. In some cases, the Android Security team has already
responded and provided corresponding software patches, yet other issues are still
under investigation.

Considering the notifications and the shortcuts related issues we believe that
both users and developers cannot efficiently protect themselves, unless actions
in the side of the operating system are taken. Such actions include enforcing the
creation of notifications and shortcuts to pass strictly through resource bound
parameters. This way, software systems that statically analyse apps installation
packages would be able to detect malicious content, such as duplicated third
party logos and potentially harmful string values. When Android OS is abused for
either tricking users into making e.g. unwanted calls, or for escalating malicious
apps privileges, we believe that all the involved in these actions activities must
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be reviewed to handle events when they lose focus and they are overlaid, so
that users are notified accordingly. Notably, this mechanism has been partially
deployed e.g. in Marshmallow’s dangerous run-time permissions dialogs. Another
alternative would be to disable all OS activity controls when other UI elements
appear in front of them. The latter is done in Google Play app, where the
presence of a front layer disables some “dangerous” choices, such as the pressing
of the “install” app button. The diversity of the two approaches signifies that
the problem is known to Google, yet not to its entity, as the patches were applied
per case and not generically.

Unfortunately, the aforementioned countermeasures do not apply for the
cases of third party apps, therefore the OS could consider adopting them only
for the cases where OS activities are involved. That is because many applica-
tions provide “floats” in the front most UI screen layer and users find them very
usefull, such as the “chatheads” dialogs that are quite common in chatting apps.
Implementing the aforementioned solutions could either cause malfunctioning
in a large number of applications or continuous annoying alerts, which would
negatively affect UX. Subsequently, this raises the need for alternate counter-
measures for the third party apps. Towards this direction, a plausible incitement
would be to face these security problems differently and enable apps to protect
themselves from malicious software. All Android activities are able to “detect”
even the slightest changes in their interaction with the user UI, utilizing the
Android activities’ lifecycle states. That is, overriding the appropriate methods
(e.g. onPause method for detecting dialogs, or onStop method when the activ-
ities are fully covered by other UI elements) and act accordingly, like disabling
or hiding their “sensitive” UI elements, or even alerting their users.

It is also worth noticing that while intents are extremely helpful in providing
intercommunication between Android applications, they can be considered a
covert channel in terms of permissions, as they provide an out of the loop way
of using data and device resources. This is rather important as in static code
analysis, one cannot trace this through the corresponding manifest file or the
low level API calls, as intents do not map to the framework’s methods. This
way, they bypass security checks, increasing the complexity to approaches such
as Backes et al. [15] as it requires to determine interdependencies between apps.

Concluding, we may state that due to the lack of visible resources that would
allow users to determine which the “actual” foremost app is, users have imme-
diate and absolute trust to their OS that the presented apps are the ones they
claim to be. It is the authors’ strong belief that by providing some more rules
and permissions in the Android’s UI handling mechanisms in combination with
improving security concerns in app development by developers themselves, would
lead to the elimination of the majority of the Android UI related security issues
raised in this work.
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Abstract. To make outsourcing computing more practical, Intel
recently introduced SGX, a hardware extension that creates secure
enclaves for the execution of client applications. With SGX, instruction
execution and data access inside an enclave are invisible to the under-
lying OS, thereby achieving both confidentiality and integrity for out-
sourced computing. However, since SGX excludes the OS from its trusted
computing base, now a malicious OS can attack SGX applications, partic-
ularly through controlled side channel attacks, which can extract applica-
tion secrets through page fault patterns. This paper presents Sgx-Lapd,
a novel defense that uses compiler instrumentation and enclave verifiable
page fault to thwart malicious OS from launching page fault attacks. We
have implemented Sgx-Lapd atop Linux kernel 4.2.0 and LLVM 3.6.2.
Our experimental results show that it introduces reasonable overhead for
SGX-nbench, a set of SGX benchmark programs that we developed.

Keywords: SGX · Trusted Execution · Controlled channel attack ·
Page fault

1 Introduction

Trusted computing, or Trusted Execution Environment (TEE), is a foundational
technology to ensure confidentiality and integrity of modern computing. Over
the past few decades, a considerable amount of research has been carried out to
search for practical ways for trusted computing, e.g., by using a formally verified
operating system (OS) [16], or using a virtual machine monitor (VMM), hypervi-
sor [9,25], system management mode (SMM) [30], and even BIOS [28] to monitor
the kernel and application integrity, or with hardware support [17]. Increasingly,
hardware based technologies for TEE (e.g., TPM [20], TrustZone [23]) have
rapidly matured. The most recent advancement in this direction is the Intel
Software Guard eXtensions (SGX) [13,18].
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At a high level, SGX allows an application or part of an application to run
inside a secure enclave, which is an isolated execution environment. SGX hard-
ware, as a part of the CPU, prevents malicious software, including the OS, hyper-
visor, or even low-level firmware (e.g., SMM) from compromising its integrity
and secrecy. SGX provides opportunities for securing many types of software
such as system logs [15] and computer games [5]. The isolation enabled by
SGX is particularly useful in cloud computing, where customers cannot con-
trol the infrastructure owned by cloud providers. Haven [6] pioneered the idea of
enabling unmodified application binaries to run on SGX in a cloud by utilizing a
library OS [22]. VC3 [24] demonstrated privacy-aware data analytics in the cloud.
Ohrimenko et al. [19] presented a number of privacy preserving multi-party
machine learning algorithms running in SGX machines for cloud users, while
Chandra et al. [7] provide a more scalable solution on larger models using
randomization.

Unfortunately, since SGX excludes the OS kernel from its trusted computing
base, SGX enclave programs can certainly be attacked by the underlying OS. A
powerful demonstration of this is controlled channel attacks, which can extract
application secrets using the page fault patterns of an enclave’s execution [31].
In particular, by controlling the page table mappings of an enclave program, a
malicious OS can observe a number of patterns regarding an application’s page
access footprint, such as the number of page faults, the base virtual address
of the faulting pages, the sequence of page faults, and even the timing of page
faults. If an attacker also has the binary code of the enclave program, he or
she can recover a lot of secrets (e.g., text documents, outlines of JPEG images)
based exclusively on the page access patterns.

Given such a significant threat from page-fault side channel attacks, it is
imperative to design new defenses. Thus in this paper we present Sgx-Lapd,
a system built atop both OS kernel and compilers to ensure that the LArge
Pages are verifieD by the enclave (Lapd) and attacker triggered page faults are
detectable by the enclave itself. The key insight is that page-fault side channel
attacks are very effective when the OS uses 4 KB pages; if we can enlarge the
page size, most programs will trigger few code page faults—and data page faults
can also be significantly reduced (by three orders of magnitude if we use MB level
pages). Thus, the challenge lies in how to make sure that the OS has cooperated
and really provided large pages to the enclave programs.

Since the only trust for SGX programs is the underlying hardware and the
enclave code itself, we have to rely on the enclave program itself to verify whether
an OS indeed has provided large pages. As a page-fault attack often incurs signif-
icant delays during cross-page control flow transfers, an intuitive approach would
be to detect the latency at each cross small-page control flow transfer point. How-
ever, there is no reliable way of retrieving the hardware timing information inside
the enclave (e.g., RDTSC instruction is not supported in SGX v1 [14]), and mean-
while it can also be attacked by the OS. Note that RDTSC reads the Time-Stamp
Counter from the TSC MSR which can be modified by WRMSR instruction [3].
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Also, the API sgx get trusted time provided by Intel SGX SDK is also only
available in simulation mode.

Interestingly, we notice that each enclave contains a data structure, EXINFO,
that tracks the page fault address if a page fault causes the enclave exit [14].
Therefore, we can detect whether an OS has indeed provided large pages by
traversing this data structure when there is a page fault. However, when to incur
a page fault is decided by the OS, and the enclave program has to deliberately
trigger a page fault for such a verification. Therefore, if we can instrument the
enclave program to automatically inject a page access and then verify whether
a page fault was triggered by checking the EXINFO data structure, we can then
detect whether the underlying OS has cooperated. Sgx-Lapd is designed exactly
based on this idea.

We have implemented Sgx-Lapd atop a recent Linux kernel 4.2.0 and LLVM
3.6.2. Specifically, we implemented an OS kernel module to enable the OS to
support large page tables, and we implemented a compiler pass in LLVM to
recognize the cross small-page control flow transfer points and insert the self-
verification code. We have evaluated our system using a number of benchmarks.
In order to test Sgx-Lapd on actual SGX hardware, we had to port a bench-
mark, since there are no existing SGX programs to test. We therefore manually
created SGX-nbench, a modified version of nbench 2.2.3 running on real SGX
hardware. Our experimental results show that Sgx-Lapd introduces reasonable
performance overhead for the tested benchmarks.

In short, we make the following contributions:

– We present Sgx-Lapd, a system that uses large paging via kernel module and
self-verifiable page faults through compiler instrumented code to defeat the
controlled side channel attacks.

– We have also developed a new SGX benchmark suite SGX-nbench, for mea-
suring the performance overhead of real SGX programs.

– We have evaluated Sgx-Lapd with SGX-nbench and showed that it introduces
reasonable overhead for detecting both non-present and non-executable page
fault attacks.

2 Background and Related Work

In this section, we provide the background on the page fault side channel attacks
using a running example in Sect. 2.1, and then discuss the possible defenses and
related work in Sect. 2.2. Finally, we reveal how an enclave program handles
exceptions in Sect. 2.3, which comprises the basic knowledge in order to under-
stand our defense.

2.1 The Page-Fault Side Channel Attack

An SGX enclave program is executed in user mode (ring-3), and it has to ask
the underlying OS to provide resources such as memory, CPU, and I/O. As
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such, this gives a hostile OS (ring-0) the opportunity to attack enclave pro-
grams from various vectors, such as manipulating system call execution (e.g.,
Iago [8] attacks) or controlling page fault access patterns to infer the secrets
inside enclave programs [31].

The virtual memory pages of a process are managed by the underlying OS.
Specifically, when launching a new process, the OS first creates the page tables
and initializes the page table entries for virtual addresses specified in the appli-
cation binary. When a process is executed, if the corresponding virtual page
has not been mapped in the page table yet, a page fault exception will occur,
and the CPU will report the faulting address as well as the type of page access
(read or write) to the page fault handler, which will be responsible for mapping
the missing pages. When a process terminates, the OS will delete the virtual to
physical mappings and reclaims all the virtual pages.

Page faults for SGX processes are treated in the same way as regular
processes, with the only difference that the page fault handler can observe just
the base address of the faulting address. Therefore, by controlling the page table
mappings, a hostile OS can observe all of the page access patterns of a vic-
tim SGX process. If the attacker also has the detailed virtual address mappings
(e.g., when owning a copy of the SGX enclave binary), such a page fault attack
is extremely powerful as demonstrated by Xu et al. [31].

A Running Example. To understand clearly the nature of the page fault side
channel attack, we use example code from [31] as a running example to explain
how Sgx-Lapd works to defeat this attack. The source code of this example is
shown in Fig. 1(a). At a high level, this enclave program takes user input GENDER
and returns a welcome string based on whether the GENDER is MALE or FEMALE. To
show this program is vulnerable to the page fault attack, we compile its source
code using LLVM deliberately with the option “align-all-function=12” that
aligns each function at a 4 KB boundary. The resulting disassembled code for this
example is presented in Fig. 1(b), where five control flow transfer instructions
inside WelcomeMessage are highlighted.

We can notice that a hostile OS can infer whether a user enters MALE
or FEMALE to the program by observing the page fault profiles. Specifically,
when all other pages except 0x404000 are marked unmapped: if a subse-
quent page fault accesses page 0x403000 (for control flow transfer “callq
WelcomeMessageForFemale”), then an attacker can infer GENDER is FEMALE; oth-
erwise an attacker can conclude GENDER is MALE when page 0x402000 is accessed.

2.2 Possible Defenses and Related Work

In the following, we examine various possible defenses. At a high level, we cate-
gorize them into hardware assisted and software based defenses.

Hardware-Assisted Defenses. As the hardware of a system is usually in the
TCB, it can be helpful to utilize the hardware to enforce security.
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Fig. 1. Our running example.

– Enclave Managed Paging. A very intuitive approach is to allow the enclave
itself to manage the paging (i.e., self-paging [12]). Once the enclave has been
granted this capability, it can disable paging out sensitive pages, or enforce
large pages, etc.

– Hardware Enforced Contractual Execution. Recently, Shinde et al. [27]
proposed having the hardware enforce a contract between the application and
the OS. Such a contract states that the OS will leave a certain number of
pages in memory; if a page fault that violates the contract does occur, the
hardware reports the violation to the secure application.

While the hardware-assisted approaches sound appealing, they have to mod-
ify the hardware to add new mechanisms, such as securely delivering the page
fault address to the application page fault handler without relying on the OS.
In addition, hardware modifications require significant time before widespread
adoption is possible.
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Software-Based Defenses. Software defenses have significant advantages over
hardware modifications, one of which is that they can work on existing platform.
We focus more on software defenses due to this. Note that software approaches
can have the freedom of rewriting the binary code or recompiling the program
source to add new capabilities on the enclave program. A number of defenses
can be designed:

– ORAM. ORAM [11,21] is a technique for hiding the memory contents and
access patterns of a trusted component from an untrusted component. Initially
it was a software obfuscation technique, but recently there has been increasing
interest in applying ORAM to build practical cloud storage. Theoretically,
ORAM can be applied to protect the page fault patterns, but ORAM has
large space requirements and high overhead.

– Normalization. Another approach is to make sensitive portions of the code
behave identically for all possible inputs. However, this is difficult because
not only must all page accesses be identical, but also each execution branch
should take the same time to execute. Meanwhile, as demonstrated by Shinde
et al. [27] in their use of deterministic multiplexing to execute the sensitive
code, such an approach runs the risk of imposing extremely high overhead
(up to 4000X), as the execution of any path must also perform all the page
faults that every other path might make.

– Randomization and Noise Injection. Alternatively, if the code is hard to
normalize, then we can introduce randomization and noise to make attacks
harder. For instance, we can apply the same principle as ASLR [29] by per-
forming fine-grained randomization (e.g., [4,10]) of code and data locations
to hide from an attacker what code or data is actually being accessed, or
inject noise into normal program behavior to hide legitimate page accesses
among random fake ones. However, the challenge lies in how to make the
randomization or noise indistinguishable from the normal page fault patterns.

– Detection. If an application is able to detect a controlled page fault attack,
then it has the ability to abort execution before an attacker can extract the
secret. However, the challenge lies in extracting the unique signatures for this
attack. Recently, T-SGX [26] leverages code instrumentation and Transac-
tional Synchronization Extensions (TSX) mechanism to detect whether there
is any exception occurs inside a transaction. Similar to T-SGX, we also take
a detection approach and we both use compiler instrumentation to insert the
detection logic. However, the difference is that T-SGX relies on TSX whereas
Sgx-Lapd does not depend on this hardware feature and instead it uses large
pages.

2.3 Exception Handling Inside SGX

Since a page fault is an exception and Sgx-Lapd needs to use some internal
enclave data structures for the defense, we would like to examine in greater
detail how SGX handles exceptions. The following study is based on the trace
from a real SGX platform by executing our instrumented running example and
confirmed with the description from the SGX programming reference [14].
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Fig. 2. The layout of involved enclave data
structures.

By design, an exception will trigger
an asynchronous enclave exit (AEX),
and the CPU execution has to leave
the enclave and come back through
an ENTER or ERESUME instruction. In
general, there are 10 exceptions [14]
an SGX enclave can capture, and the
type of the exception is stored in
the EXITINFO.VECTOR field, which is
at offset 0xA0 in the GPRSGX region,
as illustrated in Fig. 2. Note that the
4 bytes of EXITINFO contain the infor-
mation that reports the exit reasons
(i.e., which exception) to the software
inside the enclave, and the first byte is
the VECTOR field. The GPRSGX region
holds the processor general purpose
registers as well as the AEX information. Among the 10 exceptions, we are
interested in GP, general protection fault, which is caused by illegal access, e.g.,
accessing thread control structure (TCS) inside an enclave and PF, the page
fault exception. Exceptions such as DV (divide by zero), BP (int 3 for debug-
ging), and UD (undefined instruction, e.g., executing CPUID inside enclave) etc.,
are out of our interest, though they are all handled similarly as GP by the CPU.

Page Fault Exceptions. An exception is handled by system software first,
and then by the application defined code. A page fault exception can be entirely
handled by the system software (only requires 3 steps of execution), but other
exceptions such as GP, DV, or UD require 8 steps, as illustrated in Fig. 3.

Specifically, when an exception occurs, SGX hardware will automatically
store the fault instruction address in the GPRSGX.RIP field and the exception
vector in the GPRS.EXITINFO.VECTOR field (Step ❶), and meanwhile inform the
CPU of the instruction to be executed next, which is defined as the Asynchro-
nous Exit Pointer (AEP, which is normally just an ERESUME instruction). This is
because an exception needs to be handled by system software, and the enclave
internal address should not be exposed to the system software; the CPU will
just execute AEP after handling the exception, so the address is not exposed.
Also note that there are only two instructions that can enter an enclave: EENTER
and ERESUME. EENTER always starts the execution at the enclave entry address
whereas ERESUME will use the internally maintained GPRSGX.RIP as the starting
address.

For a page fault exception, SGX hardware will also store the fault address in
MADDR as well as the corresponding error code (ERRCD) in the EXINFO structure,
whose layout is presented in Fig. 2. Note that EXINFO and EXITINFO are two
different data structures, and EXINFO is only used for PF and GP exceptions,
though both of them are stored in the State Save Area (SSA) page.
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Fig. 3. Detailed CPU control flow transfers in SGX enclave exception handling.

After the system software maps the missing page (Step ❷) for the page
fault exception, the CPU will continue the execution in user space to execute
the ERESUME instruction, which restores registers and returns control to where
the exception occurred. Again, the ERESUME instruction is stored at address
called AEP, which is defined by the EENTER instruction. After executing ERESUME
(Step ❸), the CPU will continue the execution at the fault address that is cap-
tured by GPRSGX.RIP. For other exceptions such as GP, the CPU has to execute
8 steps to eventually resolve that exception.

Non-Page Fault Exceptions. Some exceptions cannot be completely resolved
by the system software. In this case, the event will be triggered again if the
enclave is re-entered using ERESUME to the same fault instruction (e.g., a divide
by 0 instruction). Therefore, SGX supports resuming execution at a different
location (to skip the fault instruction for instance). However, the fault instruction
address is internally stored in GPRSGX.RIP field by the hardware inside enclave,
and we must rely on the enclave code to update GPRSGX.RIP to a different
instruction location, and then ERESUME to this new location. To tell the enclave
and update GPRSGX.RIP, we have to use the EENTER instruction and then EEXIT.

Take a GP exception as an example, as illustrated in Fig. 3: when enclave
code accesses data in TCS (thread control structure, which is not supposed to be
accessed by the enclave code), it triggers a GP exception (Step ➀). The hardware
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stores the fault instruction address at GPRSGX.RIP and the exception number,
namely #GP, in EXITINFO.VECTOR. Meanwhile, the hardware also passes the AEP
address to the system software, which is the next instruction to be executed after
handling the exception. The system exception handler processes this exception
as SIGSEGV, which cannot be completely resolved without collaboration with
the enclave code. Therefore, the control flow goes to the user space sig handler
(Step ➁), which works together with the trts handle exception function inside
the enclave to resolve the exception. More specifically, after learning more details
about this exception, sig handler executes EENTER at Step ➂ and then the
execution goes to the enclave entry point.

Note that enclave entry is defined in the enclave binary and initialized by
EINIT, and EENTER will start to execute enclave code at enclave entry, which
normally contains a dispatch table. In our exception handling case, it will call
trusted exception handling function trts handle exception (Step ➃) to reset
GPRSGX. RIP to the address of the internal handle exception function, and
then it executes EEXIT at Step ➄ to continue the execution of signal handler,
which further executes system call sigreturn (Step ➅) to trap to the kernel.
Then at Step ➆, the sigreturn system call will return to AEP, which will exe-
cute ERESUME instruction (Step ➇). Having set up the GPRSGX.RIP value with
internal handle exception, enclave code will execute this function, call the
corresponding user defined handler if there is one, and continue the execution.
To Capture Page Fault Exceptions SGX hardware will not automatically
report a page fault exception to EXINFO and EXITINFO unless the EXINFO-bit
(namely SECS. MISCSELECT[0]) is set, and this bit can be controlled in SGX-v2,
not in the current market available SGX v1. We have verified this observation in
a real SGX-v2 machine with the help from the Intel SGX team. Note that SECS is
the enclave control structure, which contains meta-data used by the hardware to
protect the enclave and is created by the ECREATE instruction. Enclave developers
can set the SECS.MISCSELECT field before invoking ECREATE to create the enclave.
Once the EXINFO-bit is set, both GP and PF will be reported in the EXINFO
structure. Therefore, an enclave can inject a GP exception to probe whether
EXINFO-bit has been set, as we have demonstrated in the SGXLAPD probe code
in Fig. 3.

3 System Overview

3.1 Scope and Assumptions

The focus of this paper is on defending the controlled channel attacks, which can
be more specifically termed as page fault attacks. There are two types of page
fault attacks: code page fault and data page fault. As a first step, we focus on
the code page fault attacks and leave the protection of data page fault attacks
to future work. Also, we focus on the Linux platform.

We assume the SGX hardware and the enclave program itself are trusted.
While we wish for the OS to provide large pages, the OS may not cooperate and
may cheat the enclave programs. Therefore, we will verify whether an OS indeed
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provides large pages from the application itself. Regarding the SGX hardware,
the market available one is Skylake, and we focus on the x86-64 architecture.
Typically, under this architecture, the CPU supports 4K and 2M page sizes [2].
We use 2M large pages. Also, we assume an attacker has a binary code copy of
our enclave code, the same threat model as in [31].

3.2 Challenges and Approaches

Key Idea. The goal of Sgx-Lapd is to minimize page fault occurrence by
using large pages (i.e., 2 MB). However, an OS may not provide large pages to
the enclave program, and therefore the key idea of Sgx-Lapd is to verify from
the enclave itself whether an OS provides it 2 MB or 4 KB size pages. To perform
the verification, fortunately we have another observation: if the OS is hostile and
only provides 4 KB size pages, but if there is no controlled page fault attack, the
execution will still be normal; but if there is such an attack, then a cross 4 KB
page control flow transfer will trigger a page fault. If we have set the enclave to
report page fault exceptions to EXINFO, we can detect this attack by checking
the MADDR field in this data structure. Also, another reason to use 2 MB pages
is to minimize the page fault occurrences for enclave code, since most programs
have less than 2 MB code. If we do not use large pages, we cannot differentiate
whether the page fault is malicious or benign when a real page fault occurs.

Challenges. However, there are still two major challenges we have to solve:

– How to insert the verification code. We certainly cannot manually insert
the verification code into the enclave binary, as that would be error-prone
and not scalable. Instead, we must resort to either binary code rewriting or
compilers to automatically insert our code. Meanwhile, not all control flow
transfers need the verification; we only need to check those that cross 4 KB
page boundaries and we must identify them to insert our code.

– How to perform the verification. At each cross 4 KB page control flow
transfer, we need to know how to traverse the EXITINFO and EXINFO struc-
tures inside the enclave in order to retrieve data such as the fault address.
Meanwhile, we also have to decide whether the fault is legal or not since there
could exist enclaves that have more than 2 MB code.

Approaches. To address the first challenge, we decide to modify a mainstream
compiler, LLVM, to automatically insert the large page verification code, which
will be executed at run-time inside an enclave to make sure the OS really cooper-
ates. The reason why we selected a compiler approach is because SGX essentially
comes with a set of new instructions, and it requires an ecosystem change for
applications to really take advantage of its security features (unless one is directly
running a legacy application inside the enclave using a library OS).

We use the insight we learned in Sect. 2.3 to address the second challenge.
Specifically, we notice that inside the enclave, %gs:0x20 always points to the
GPRSGX region (as illustrated in Fig. 2), from which we can easily reach EXINFO,
which is at (%gs:0x20)-16, and EXITINFO, which is at (%gs:0x20)+ 0xA0. To
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allow legal control flow transfers across 2M page boundaries, our instrumented
code will also collect the source address of the control flow transfer in addition
to the target fault address. If this transfer crosses to another 2 MB page, it will
be considered legal. Next, we present our detailed verification algorithm using
our running example.

3.3 The Verification Algorithm

Fig. 4. Final disassembled code for function
WelcomeMessage after Sgx-Lapd instrumentation
for non-present page fault detection.

The page fault exception attack
can be triggered in two ways.
The first and most straight-
forward way is to manipu-
late the page mapping (i.e.,
the P-bit in the page table)
and make the target page
unmapped. Then any code exe-
cution access will trigger a non-
present (NP) page fault. This
approach has been used by
Xu et al. [31]. However, we
also determined that there is
a second way to perform the
attack by making the page non-
executable when CPU paging
mode is PAE or IA-32e to
trigger a non-executable (NX)
page fault. Therefore, we pro-
vide two strategies to detect
these faults.

We note that in terms of
detection capability, the NX
page fault approach can detect all attacks including both non-present and non-
executable faults. However, the NP page fault approach cannot detect non-
executable page faults. Therefore, in practice we recommend the use of the NX
approach. Only when the CPU is set in non PAE nor IA-32e mode will the NP
approach be useful. We provide both approaches just for the completeness of the
defense.

(I). Detecting NP Page Faults. Since we have instrumented our verification
code in the enclave binary at each cross 4 KB-page control flow transfer point,
we just need to invoke a target page read (basically inject an explicit page fault)
and check whether indeed there is a page fault. If so, a page fault attack is
confirmed by checking field EXITINFO.VECTOR. To show how Sgx-Lapd really
performs this, we illustrate the final disassembly of function WelcomeMessage in
our running example in Fig. 4.

We can notice that for the four direct control flow transfers in
WelcomeMessage (Fig. 1), we each instrumented 49 bytes of code right before
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them. The last control flow transfer instruction retq has 47 bytes of instru-
mented code. More specifically, for the first (“je 404049”) and third (“jmp
4040df”) control flow transfers, our instrumented code directly performs a
within-page jump (i.e., “jmp 40403e” and “jmp 4040a7”) because there is no
need for the verification, whereas for the second (“callq 403000”), and forth
(“callq 402000”) direct function call, and fifth (“retq”) function return, our
instrumented code first injects a target page read, and then traverses EXITINFO
in SSA to detect whether there is a real page fault.

The full disassembly of our page fault verification code for the second control
flow transfer “callq 403000” is presented in Fig. 4 from 0x404040 to 0x404070.
In particular, our instrumented code will first save the flag register via pushfq,
rax, rsi, and rdx in the stack, and then load the target address into rsi, i.e.,
“lea -0x104b(%rip), %rsi”. After that, it loads the base address of GPRSGX
into %rax, and assigns a zero to the field EXITINFO.VECTOR (to clear any prior
exceptions recorded in the vector). Then it performs a one-byte memory read
access at the target address, i.e., “mov (%rsi), %dl”, to inject a page fault
to test if there is any controlled side channel on the target page. After that,
the enclave code checks the EXITINFO.VECTOR field. If it is set to be 0xe, a
page fault is detected (because there is a page fault for the three just executed
instructions, and it must come from attack since enclave memory is not supposed
to be swapped out) and we abort the execution; otherwise, we pop those saved
registers and continue the execution.

Detecting NX Page Faults. Instead of using “mov (%rsi), %dl” to inject a
read page fault, we need to really execute the target page in order to detect the
NX page fault if there is any. The verification can be performed at either the
destination page or the source page (if we inject a callq *%rsi and retq pair
in the source and target).

If we perform the verification at the destination page, we need to track the
source address (because we need to allow cross 2 MB transfers) because a target
page can be invoked by many different sources. On the other hand, since at each
control flow transfer point we already know the source address, we decide to
take the second approach, namely inject a callq *%rsi in the source page, and
a retq in the target page to quickly return. To this end, we need to inject a
retq in the beginning of each determined basic block, and probe the page fault
by quickly returning from the target. We omit the details for brevity here since
most of the code is similar to those in Fig. 4.

4 Detailed Design

An overview of Sgx-Lapd is illustrated in Fig. 5. There are three key com-
ponents: an Sgx-Lapd-compiler and Sgx-Lapd-linker that work together to
produce the enclave code that contains large page verification code at any cross-
small page control flow transfer points, and an Sgx-Lapd kernel module that
runs in kernel space to provide the 2 MB pages for enclave code. In this section,
we provide the detailed design for these three components.
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4.1 SGX-LAPD-Compiler

Fig. 5. Sgx-Lapd overview.

The goal of Sgx-Lapd-compiler is to
automatically insert the 4 KB page fault
detection code into each cross page
control flow transfer (CFT) at various
instructions such as call/jmp/jcc/ret.
In particular, our compiler needs to track
the source and target addresses for the
CFTs, and also needs to keep the start-
ing address of the inserted code such that
we can later patch our instrumented code
to NOP instructions (or other semanti-
cally equivalent ones) if the CFT is within
a page. Note that only after the code is
generated can this patching be performed
(by our Sgx-Lapd-linker) because we do
not know the final concrete address before
that.

The Meta-data Used by Our
Compiler. We define a data structure that tracks (1) the starting address of
the inserted code, (2) the source, and (3) the target address, for each encoun-
tered CFT (except retq since we do not know its target address statically).
We store this information in a special data section we created and we call it

Fig. 6. Examples of Sgx-Lapd instrumented code label and the corresponding meta-
data.
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.SgxLapdCodeLabel. An example of these code labels is presented in Fig. 6. In
particular, for the first CFT “je 20c4”, we store the starting address of the
inserted code at offset 0, which is the symbolic code label .LINST2 0 12. Then
at offset 8 (recall that we are working on a 64-bit architecture), we store the
source address of this CFT, which is .LINST2 0 11. Finally, at offset 0x10, we
store the target address, which is .LINST2 1 8.

Meanwhile, during the compilation phase, we only know the symbol addresses
for the code labels and the final concrete address is resolved during the link-
ing phase. We have to thus create relocation entries to store these code label
addresses and let the linker eventually resolve them. To this end, we also cre-
ate relocation entries for each .SgxLapdCodeLabel item. After compilation, the
value for these relocation entries will be the logic address within that partic-
ular object file. For instance, for the first entry .LINST2 0 12, whose value is
.text+0x0200d, its final concrete address will be resolved by the linker (once the
base address of .text is resolved). Also, mainstream compilers typically main-
tain the labels for each basic block starting address and CFT target address. We
just need to parse the meta-data provided by compilers and use them for our
purposes.

The Instrumentation Algorithm. At a high level, to perform the instrumen-
tation, our compiler will iterate through each compiled function right after the
code generation phase. For each basic block within a function, we will look for
the CFT instructions (i.e., call/jmp/ret and conditional jumps jcc). For each
CFT instruction, we get its source address and destination address and store
them in the corresponding .SgxLapdCodeLabel section. Note for retq, since we
do not know its target address statically, no target address meta data is needed
for this instruction.

Since there are different types of CFTs, we have to instrument slightly dif-
ferent verification code. Note that the size difference is due to the different
instructions used to fetch the target address for different CFT. Specifically, to
detect NP page faults, we insert 49 bytes of assembly code if it is a direct CFT,
and this assembly code is formed from a macro template with symbols as macro
parameters. For indirect CFT, we insert 50 bytes of assembly if it is an indirect
CFT through memory (e.g., “call (%rax)”), otherwise 45 bytes if it uses reg-
ister (e.g., “call %rax”), right before the CFT instructions. For return CFT,
we insert 47 bytes of assembly. For NX page fault detection, we insert 56 bytes,
57 bytes, 52 bytes, and 53 bytes respectively each for direct CFT, indirect CFT
through memory, indirect CFT through register, and return CFT. We also store
the starting address of the inserted code into .SgxLapdCodeLabel for direct
CFTs. Note that the inserted assembly code will use the destination address
symbol for the direct CFTs, and these symbol addresses will be automatically
resolved during the linking phase. For all indirect CFTs (e.g., “callq %rax”
and retq), we will directly use the correspondingly run-time value to access the
target page in the inserted assembly code. In other words, we do not need to
generate any meta-data for indirect CFTs as their target addresses are computed
at runtime, and they also do not need patching.
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4.2 SGX-LAPD-Linker

Symbol Address Resolution. The compiler generates the object file for each
input source file using a logic address starting at offset 0. The function or global
variable references are all through symbols. Their concrete addresses are not
known until linking time, when the linker combines the same section (e.g., .text,
.data) from each object file. To assist the linker in calculating the address for
each symbol, there is a relocation entry specifying the relative address to its
section. Sgx-Lapd leverages this mechanism, and generates symbols for each
label that we want to know the final address of into the .SgxLapdCodeLabel
section and the corresponding relocation record into the .RELOCATION section.
Later, in the linking phase, the linker can resolve the concrete address for each
label. For example, .LINST2 0 12 is resolved as 0x40400d, as shown in Fig. 6.

Code Optimization. Our Sgx-Lapd-compiler has instrumented each CFT due
to the fact that we do not know whether any of these transfers will cross a 4 KB
page boundary in the final executable. Once the code is finally linked, we can
scan the final executable to patch the overly instrumented code.

Thanks to our tracked meta-data, it becomes extremely simple to patch
this code. Specifically, we know where to start the patching because our
.SgxNypdCodeLabel section tracks the starting address of the instrumented
code. We also know whether an instrumented CFT crosses a 4 KB page boundary
or not because we also know the source and destination addresses of this transfer
from .SgxNypdCodeLabel. Note that retq is not included in this optimization
since its destination address is unknown statically.

While we could patch all the inserted bytes to NOP instructions, we can just
insert an unconditional jump to directly skip the unnecessary code instead. We
also know how many bytes our instrumented code occupies (e.g., 49 bytes for
direct CFT for non-present page fault detection). As such, we can directly rewrite
the first two bytes in the beginning of the instrumented code to an unconditional
jump instruction (e.g., “eb 2f” to skip the remaining 47 bytes of the 49 bytes
of inserted code), as shown in the example code for the first and third CFT
instructions in Fig. 4.

4.3 SGX-LAPD-Kernel Module

The last component of Sgx-Lapd is the kernel module that is responsible for
providing 2 MB pages for enclave code. While we can rewrite the OS kernel to
provide 2 MB pages for all processes, such a design would waste page resources
for many other non-SGX processes. Therefore, we design a kernel module to
exclusively manage the page tables for enclave code.

Meanwhile, to really use SGX, Intel provides a number of hardware level
data structures such as the Enclave Page Cache Map (EPCM) to manage the
enclave page cache (EPC), a secure storage used by the CPU to store the enclave
pages [14]. An enclave must run from the EPC, which is protected from non-
enclave memory accesses. The EPC is initialized by the BIOS during boot time,
and later each enclave process can use privileged instructions such as ENCLS
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[EADD] to add a page. In other words, we can directly instrument the corre-
sponding SGX kernel code to manage the enclave process page tables.

In particular, the SGX kernel module is responsible for the management of
enclave memory allocation and virtual-to-physical mapping. Each enclave page
is allocated from a pool of EPC pages, and each EPC page has a size of 4 KB.
The process of adding an EPC page into an enclave is by first mapping a 4 KB
virtual page to a 4 KB EPC page, then copying the corresponding contents to
that EPC page via the EADD instruction. While our Sgx-Lapd-kernel module
cannot directly add a 2 MB EPC, it groups 512 small pages into a 2 MB page.
Note that those 512 smaller pages need to be contiguous in the physical address
space, and the physical address of the first page is 2 MB aligned. The SGX kernel
module manages all the EPC pages and knows the physical address for each EPC
page. We can control which physical pages are mapped to EPC pages.

5 Implementation

We have implemented Sgx-Lapd for X86-64 Linux. We did not implement any-
thing from scratch; instead we implemented Sgx-Lapd-compiler atop LLVM
3.6.2, Sgx-Lapd-linker atop ld−2.24, and Sgx-Lapd-kernel module atop the
Intel SGX kernel driver. Below we share some implementation details of interest.

Specifically, we modified the LLVM compilation framework to add a new
Machine Function pass into the LLVM backend. This new pass operates on
LLVM’s machine-dependent representation code. Note that our pass is running
in the end of the compilation phase, so the code is ready to be emitted into
assembly code. This also ensures that our inserted code is not optimized out
by other passes. Inside this pass, we iterate each instruction within each basic
block in order to identify all CFT instructions. For each CFT, the page fault
detection code is inserted into the same basic block before the CFT instruction.
We also add a new data section named .SgxLapdCodeLabel inside MCObject
FileInfo class during the initialization phase. The .SgxLapd CodeLabel section
is like the debug info section and can be removed by using the “strip -R
.SgxLapdCodeLabel” command. Later in AsmPrinter, where the object file is
created, we emit the meta data into the .SgxLapdCodeLabel section. In total,
we added 1, 500 LOC to the LLVM framework.

To perform the linking of our compiled code, we modified the linker script to
make sure the binary will be loaded into a 2MB-aligned starting address. Our
linker also needs to use the meta-data inside the final ELF to optimize our instru-
mented code. We implemented our own optimization pass and integrated with
linker ld. Basically, we parse the ELF header to locate the .SgxLapd CodeLabel
section. Then the meta-data is used to decide whether each control flow transfer
crosses a 4 KB page boundary. Control flow transfers that happen inside the
same page or cross a 2 MB page boundary are considered valid (no verification
check) and thus we insert unconditional jump to skip the verification code for
those CFTs. In total, we added 150 LOC into ld.

Finally, we modified the Linux SGX kernel driver (initially provided by
Intel) to support 2 MB paging, which is only applied to the code pages of an
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enclave binary. Note that the data pages are still 4 KB. We first instrumented
enclave create in the SGX kernel driver to record the base loading address
and size of an enclave binary. We also make sure the EPC pages allocated to the
enclave binary are contiguous and starting at a 2 MB aligned physical address.
Until an EINIT is executed, the enclave is not permitted to execute any enclave
code, so before the execution of EINIT, all the enclave pages have been assigned
and initialized. We can group each block of 512 small pages into a 2 MB page by
modifying the page table for the enclave process. In total, we added 200 LOC
into the SGX kernel driver.

6 Evaluation

In this section, we present our evaluation result. We first describe how we cre-
ate the benchmark programs and set up the experiment in Sect. 6.1, and then
describe detailed result in Sect. 6.2.

6.1 The Benchmark and Experiment Setup

We have tested Sgx-Lapd using two set of benchmarks: one is a manually ported
nbench 2.2.3, which we call SGX-nbench, that runs atop a real SGX platform,
and the other is the SPEC2006 benchmark that was not ported to SGX. It is
important to note that no SGX applications currently exist that we can directly
test, but we want to test the results of real SGX performance imposed by our
solution. We therefore manually ported nbench into our SGX-nbench, which can
be used to measure the true performance for any real SGX solutions. Meanwhile,
since porting program to SGX platform requires non-trivial effort, SPEC2006 is
in not running atop SGX enclave. We used SPEC2006 to exclusively measure
how heavy of code instrumentation is for real programs.

SGX-nbench. We ported nbench 2.2.3, which contains 10 tests, to SGX-nbench.
Specifically, we ported each benchmark to run inside an enclave in order to
measure actual enclave performance. The difficulty of this task is that porting
an application to run in SGX is nontrivial; libraries will not be available unless
they are statically linked, and all system calls must be made outside the enclave.
In addition, enclaves cannot execute certain instructions. Therefore, much of the
code must be restructured in order to run inside an enclave. Porting a benchmark
of the size and complexity of SPEC is a formidable task, so we focused on porting
the more reasonably-sized nbench to measure real enclave performance.

In order to minimize the modifications to nbench, we moved only the minimal
code required to run the timed portion of each benchmark into an enclave, and
we left the rest of the benchmark code on the host application side. Specifically,
we created an enclave application that we linked with modified nbench code; all
the timing code stays outside the enclave, and the modified nbench code performs
enclave calls to run the initialization code and timed code. The enclave contains
the benchmark initialization functions (each benchmark needs to allocate one
or more buffers and initialize them with starting data before the benchmark)
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and iteration functions (each benchmark performs n iterations until n is large
enough that the elapsed time is greater than min seconds).

Our port added 5, 279 LOC, modified 150 LOC, and removed 447 LOC from
nbench 2.2.3. About half of the added LOC comprised enclave code or host
application enclave initialization code, while the other added LOC were added
to call the enclave functions for each of the benchmarks.

SPEC2006. We directly compiled SPEC2006 by using clang compiled from our
modified LLVM framework. There are 31 benchmarks provided by SPEC2006,
but only 21 are written in C/C++. We selected those 21 benchmarks to eval-
uate Sgx-Lapd. In total, there are 12 integer benchmarks and 7 floating-point
benchmarks. 998.specrand and 999.specrand are the common random number
generator for integer suite and floating-point suite respectively.

Experiment Setup. All the benchmarks are compiled with Clang. Our tested
platform is Ubuntu 14.04 with Linux Kernel 4.2.0, and our hardware is a 4-core
Intel Core i5-6200U Skylake CPU running SGX-v1 at 2.3 GHz with 4G DDR3
RAM.

6.2 Results

We complied the benchmarks with three settings: without Instrumentation, with
Non-Present page fault Detection (NPD) and with Non-eXecutable page fault
Detection (NXD). The evaluation tries to measure the overhead added to the
compiler and programs caused by the instrumentation.

Sgx-Lapd Compiler. Table 1 presents the building details for the SPEC2006
and SGX-nbench. To show how much code we needed to insert for each program,
we reported the number of CFTs for each benchmark. We report the number
of direct CFTs in the 3rd column and the number of indirect CFTs in the 4th
column. We also show the static binary size for each benchmark after compila-
tion. The number of CFTs correlates with the size of the binary code; a larger
code size will have more CFTs. Space overhead is due to the inserted code, so
a program with more CFTs will have a higher space overhead. Table 1 shows
that 400.perlbench and 403.gcc have the largest space overhead. Note that
445.gobmk is as large as 403.gcc, but only one-third is code. Hence, its space
overhead is small. For SGX-nbench, we only report the size of code inside the
enclave. On average, Sgx-Lapd increases the static binary size by 213% with
NPD and 244% with NXD.

In terms of compilation time, Sgx-Lapd only introduces small overhead
to the compiler. The building time for SPEC2006 is increased from 5672 s to
5745 s, with only additional 73 s more time. The building time for SGX-nbench
is increased from 1.4 s to 1.6 s.

Sgx-Lapd Linker. In the linking phase, Sgx-Lapd will optimize out the unnec-
essary instrumentation code. To show the efficiency of our optimization, we
reported the number of patches for each benchmark in Table 1. As mentioned in
Sect. 4.1, each direct CFT is associated with one piece of meta-data to record
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Table 1. The building results for SPEC2006 and SGX-nbench

Benchmark w/o Instrumentation w/ NPD w/ NXD

Size

(KB)

#Direct

CFT

#InDirect

CFT

#Patch Size

(KB)

Increase

(%)

#Patch Size

(KB)

Increase

(%)

400.perlbench 1086 50152 1881 33375 5266 384.9 34651 5818 435.7

401.bzip 90 2029 120 1454 262 191.1 1572 286 217.8

403.gcc 3218 143634 5190 95564 15170 371.4 101562 16738 420.1

429.mcf 19 338 32 265 47 147.4 296 51 168.4

433.milc 132 3665 234 1497 440 233.3 2341 484 266.7

444.namd 327 6527 113 4653 863 163.9 5675 935 185.9

445.gobmk 3382 26701 2369 15185 5642 66.8 15838 5962 76.3

447.dealII 3240 101938 5722 70494 11596 257.9 80068 12856 296.8

450.soplex 375 13867 1467 7719 1551 313.6 9742 1723 359.5

453.povray 1027 32399 1747 16508 3739 264.1 21304 4107 299.9

456.hmmer 303 11108 478 6117 1227 305 8048 1355 347.2

458.sjeng 136 4541 189 2686 516 279.4 3118 564 314.7

462.libquantum 47 1113 104 592 139 195.7 727 155 229.8

464.h264ref 653 12533 875 8466 1721 163.6 9492 1869 186.2

470.lbm 19 140 20 71 31 63.2 110 31 63.2

471.omnetpp 655 25196 2503 6234 2819 330.4 11028 3175 384.7

473.astar 43 1062 90 647 135 214 888 147 241.9

482.sphinx3 186 6186 299 3315 702 277.4 3926 774 316.1

483.xalancbmk 4250 140253 9892 92143 16522 288.8 95686 18538 336.2

988.specrand 7 19 10 19 11 57.1 19 13 85.7

999.specrand 7 19 10 19 11 57.1 19 13 85.7

SGX-nbench 273 848 91 615 408 49.5 732 412 50.9

Average 885 26558 1520 16711 3128 212.5 18493 3455 244.1

the instrumented code information. Sgx-Lapd Linker scans that information to
find all the direct CFTs for which the verification code does not need to be run
and patches them with an unconditional branch. The patch number for NXD
approach is larger. Currently, Sgx-Lapd does not instrument the library code.
We cannot use call-ret pair to check page fault, and thus verification code of
CFT to library call need to be skipped. Note that this should not be a limitation
of Sgx-Lapd since in real application, the enclave code is built in static linked
binary [1]. Sgx-Lapd can instrument all the enclave code.

Runtime Performance. Sgx-Lapd slows down the program execution time,
which is caused by the additional page fault detection code inserted before each
cross-page CFT. We evaluated the slowdown in both SPEC2006 and our own
SGX-nbench. For SPEC2006, we measured the execution time overhead for each
benchmark by running the instrumented benchmarks on their reference data sets
10 times, with a maximum variance of 2%. In Fig. 7, we present the execution
time overhead for each SPEC2006 benchmark, shown as a percent increase over
the normalized baseline performance of the non-instrumented version of each
benchmark. Similar to space overhead, the NXD approach has a larger execution



376 Y. Fu et al.

40
0.p
erl
be
nc
h

40
1.b
zip

40
3.g
cc

42
9.m

cf

43
3.m

ilc

44
4.n
am
d

44
5.g
ob
mk

44
7.d
ea
lII

45
0.s
op
lex

45
3.p
ov
ray

45
6.h
mm

er

45
8.s
jen
g

46
2.l
ibq
ua
ntu
m

46
4.h
26
4r
ef

47
0.l
bm

47
1.o
mn
etp
p

47
3.a
sta
r

48
2.s
ph
inx
3

48
3.x
ala
nc
bm
k

98
8.s
pe
cra
nd

99
9.s
pe
cra
nd

0

100

200

300

400

500

600

700

800

900
w/NPD
w/NXD

Fig. 7. Percent overhead for each of the SPEC2006 benchmarks.

Nu
me
ric
So
rt

St
rin
g S
or
t

Bi
tfi
eld

FP
Em
ula
tio
n

Fo
ur
ier

As
sig
nm
en
t

Id
ea

Hu
ffm

an

Ne
ur
al
Ne
t

LU
De
co
mp
os
iti
on

0

20

40

60

80

100

120

140

160

180

200
w/NPD
w/NXD

Fig. 8. Percent overhead for each of the SGX-nbench benchmarks.

time overhead than NPD. In general, benchmarks with a larger number of CFTs
will have higher overhead. As shown in Table 1, most of the verification code in
483.xalancbmk cannot be skipped, which is why it has the largest overhead. On
average, NPD introduces 120% overhead on SPEC2006, while NXD introduces
183% overhead.

For SGX-nbench, we used the performance result reported by the benchmark
itself. In particular, SGX-nbench runs its benchmarks multiple times, taking the
mean and standard deviation until it reaches a confidence threshold such that
the results are 95% statistically certain. In Fig. 8, we present the execution time
overhead for each SGX-nbench benchmark, shown as a percent increase over the
normalized baseline of the non-instrumented version. The average overhead of
SGX-nbench is only 60% with NPD and 42% with NXD, smaller than SPEC2006.
This is because Sgx-Lapd only instruments the code inside the enclave. The host
application code is not instrumented and has no overhead. This demonstrates
the true performance of Sgx-Lapd in real SGX programs.
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7 Discussion

Sgx-Lapd relies on the enclave code itself to detect page faults and verify
whether an OS indeed provides large pages. All the code outside the enclave
is not trusted, which means both the user level sig handler and the kernel
level system exception handler can be malicious. According to the detailed steps
in exception handling described in Fig. 3, we can notice that an attacker can
execute the eight step exception handling instead of the three step page fault
handling to reset the GPRSGX.RIP to some other instructions. But this relies on
collaboration from the enclave code, which is trusted. Therefore, we have to note
that such an attack is impossible unless the enclave code itself is compromised.

Meanwhile, we note that there might exist a race condition for a malicious
OS to reset the EXITINFO.VECTOR right after entering the enclave as illustrated
in Fig. 4. More specifically, a malicious OS can first launch the page fault attack,
causing EXITINFO.VECTOR to be set. When control returns to the enclave again
but before our verification code, the malicious OS injects another interrupt (e.g.,
timer interrupt or other faults such as GP) and makes the enclave exit again (to
reset EXITINFO.VECTOR and evade our detection). Fortunately, such an attack
is challenging to launch. In particular, to launch this attack, attackers have to
execute the enclave program using single step execution; otherwise it will be very
challenging for them to control the timing. However, there is no way to execute
enclave program using single step in the deployment mode (only debugging mode
can), and attackers must rely on the extremely low probability to inject the
interrupt or exception right after entering the enclave and before our checking
code. But this time window is extremely short (just a few instructions).

In addition, there is a lot of room for further improvement of Sgx-Lapd,
particularly on where to instrument our detection code. For instance, our current
design overly inserts a lot of intra-page control flow transfer page fault detection
code in the enclave binary, though we have patched the binary to skip executing
that code. While our current design can be acceptable for small enclave bina-
ries, especially considering the fact that we already ask the SGX to provide 2 MB
pages for the enclave code (such a design already wastes a large volume of space),
we certainly would like to further eliminate this unnecessary code. We believe
this would require iterative processing and instruction relocation. We leave this
to one of our future works. On the other hand, if we were able to precisely iden-
tify the input-dependent CFTs, we would not have to insert excessive amounts
of detection code. Therefore, the second avenue for future improvement is to
identify the input-dependent CFTs. However, this is also a non-trivial task for
a compiler since it would require a static input taint analysis. We leave this to
another of our future works.

Finally, Sgx-Lapd only stops code page fault attacks; attackers can still
trigger data page faults. As mentioned in Sect. 3.1, we leave the defense for data
page fault attacks to future work. We also would like to note that practical
controlled channel attacks often require two kinds of page fault patterns, as
demonstrated by Xu et al. [31]. The first is the code page pattern which indicates
the start or end of a specific function. The second can be either a code page fault
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pattern or a data page fault pattern, but it critically depends on the first code
page fault pattern to be effective. By removing only code page fault patterns,
Sgx-Lapd can still make data page fault attacks much harder.

8 Conclusion

We have presented Sgx-Lapd, a system that leverages enclave verifiable large
paging to defeat controlled page fault side channel attacks based on the insight
that large pages can significantly reduce benign page fault occurrence. A key
contribution of Sgx-Lapd is a technique that explicitly verifies whether an OS
has provided large pages by intentionally triggering a page fault at each cross
small page control flow transfer instruction and validating with the internal SGX
data structure updated by the hardware. We have implemented Sgx-Lapd with
a modified LLVM compiler and an SGX Linux kernel module. Our evaluation
with a ported real SGX benchmark SGX-nbench shows that, while space and
runtime overhead can be somewhat high, as a first step solution Sgx-Lapd
can still be acceptable especially considering the difficulties in fighting for the
controlled side channel attacks. Finally, the source code of Sgx-Lapd is available
at https://github.com/utds3lab/sgx-lapd, and the source code of SGX-nbench is
available at https://github.com/utds3lab/sgx-nbench.
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Abstract. A cold boot attack is a powerful physical attack that can
dump the memory of a computer system and extract sensitive data from
it. Previous defenses focus on storing cryptographic keys off the memory
in the limited storage “borrowed” from hardware chips. In this paper,
we propose EncExec, a practical and effective defense against cold boot
attacks. EncExec has two key techniques: spatial cache reservation and
secure in-cache execution. The former overcomes the challenge that x86
processors lack a fine-grained cache control by reserving a small block
of the CPU’s level-3 cache exclusively for use by EncExec; the latter
leverages the reserved cache to enable split views of the protected data:
the data stored in the physical memory is always encrypted, and the
plaintext view of the data is strictly confined to the reserved cache. Con-
sequently, a cold boot attack can only obtain the encrypted form of the
data. We have built a prototype of EncExec for the FreeBSD system.
The evaluation demonstrates that EncExec is a practical and effective
defense against cold boot attacks.

1 Introduction

A cold boot attack is a powerful physical attack that can extract sensitive data
from the physical memory1 of a computer system. It exploits the fact that,
contrary to the common belief, memory chips may retain their contents for
seconds after the power is lost and considerably longer at a low temperature
[14,27]. An attacker can dump the memory of a victim computer by freezing and
transplanting its memory units to a computer under his control or rebooting it to
a malicious operating system (OS). Sensitive data can then be extracted from the
dumped memory [14]. Lots of sensitive data sit in the memory for a long time [7].
For example, whole-disk encryption protects the document at rest in case the
computer is lost or stolen. However, the disk encryption key (or its derived sub-
keys) often sits in the memory in plaintext and thus vulnerable to the cold boot
attack. Cold boot attacks have also been demonstrated against mobile devices,
even though their memory units are soldered onto the motherboard [23,28], by
1 For brevity, we refer to the physical memory as the memory and the CPU cache as

the cache.
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freezing and rebooting them to the recovery mode. The attacker then uses a tool
to extract sensitive data from the phone, including passwords, contacts, photos,
and emails. Cold boot attacks have become a major security and privacy concern.

A few defenses have been proposed to address cold boot attacks on the
x86 [12,21,22,26] and ARM [10] platforms. In principle, they re-purpose exist-
ing hardware features to keep cryptographic keys off the memory. For example,
AESSE [21], TRESOR [22], LoopAmnesia [26], and ARMORED [10] store a sin-
gle AES key in SSE registers, debug registers, performance counters, and NEON
registers, respectively. By doing so, the key will never leave the CPU and conse-
quently not be contained in the memory dump. However, the amount of storage
provided by these “borrowed” registers is very limited. It is often too small for
cryptographic algorithms that use longer keys (e.g., RSA). They also interfere
with normal operations of these registers. From another perspective, Copker [12]
temporarily disables caching and uses the cache-as-RAM technology [9] to imple-
ment RSA. However, Copker severely degrades the system performance when it
is active because caching has to be completely disabled. On recent Intel proces-
sors with a shared Level-3 (L3) cache, Copker has to disable caching on all the
cores. Moreover, these systems focus solely on securing cryptographic algorithms
while completely ignoring other sensitive data in the process (one reason is that
they do not have large enough secure storage for them). Sensitive data, such as
user accounts and passwords, can be scattered in the process address space as
the memory is allocated, copied, and freed [7]. This calls for a stronger protec-
tion against cold boot attacks that can protect not only cryptographic keys but
also sensitive data.

In this paper, we propose EncExec, a system that can securely execute a
whole program, or a part of it, in the cache. Data protected by EncExec have
split views in the memory and the (reserved) cache: data stored in the memory
are always encrypted; they are decrypted into the cache only when accessed.
EncExec guarantees that the decrypted data will never be evicted to the memory.
As such, the reserved cache is desynchronized from the memory. Even though
the data are encrypted in the memory, the CPU can still access the unencrypted
data from the cache because the cache precedes the memory. Consequently, the
memory dump contains just the encrypted view of the protected data. Their
unencrypted view only exists in the cache and will be lost when the power is
reset or the system is rebooted. To enable split views of the protected data,
EncExec relies on two key techniques, spatial cache reservation and secure in-
cache execution. The former reserves a small block of the cache by carefully
managing the system’s physical memory allocation. A key challenge here is the
lack of direct control of the cache in the x86 architecture – there are instructions
to enable/disable the cache and to invalidate the whole cache or a cache line, but
there is no fine-grained control over how data is cached and evicted by various
levels of caches. Without precise control of cache replacement, the unencrypted
data in the cache could be accidentally leaked to the memory. To address that,
we observe that x86 processors use the n-way set-associative cache organization.
EncExec thus can reserve a small block of the cache by reserving all the physical
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memory cached by it. Additionally, the CPU will not spontaneously evict a cache
line unless there are cache conflicts. EncExec thus can prevent the unencrypted
data from being evicted to the memory by avoiding conflicts for the reserved
cache. EncExec’s second technique utilizes the reserved cache to protect sensitive
data by desynchronizing the cache and the memory.

EncExec can be used in two modes. In the first mode, a process is given a
block of the secure memory for storing its critical data. The process can decide
which data to protect. From the process’ point of view, this block of memory
can be used just like the regular memory. In the second mode, EncExec uses the
reserved cache to protect the whole data of the process. Specifically, it uses the
reserved cache as a window over the process’ data, similar to demand paging.
The data in the window are decrypted in the cache and remain in the cache
until they are replaced by EncExec. The data out of the window only exist in
the memory and stay encrypted. Note that window-based encrypted execution
alone is not secure because the (unencrypted) window often contain critical data
due to program locality. For example, a web server’s private key most likely is
in the window because it is constantly being used to encrypt and decrypt web
traffic. Without strict cache control provided by EncExec’s first technique, the
unencrypted data can be evicted to the memory and obtained by an attacker.
Between these two modes, the first one is more practical because a process has
the best knowledge of its data and the reserved cache is still relatively small
for large programs. The first mode can support more processes simultaneously.
However, it does require some changes to the program.

We have built a prototype of EncExec for the FreeBSD 10.2 operating sys-
tem. Our prototyping experience shows that EncExec can be easily integrated
into the kernel and provide an effective defense against cold boot attacks. The
performance overhead is very minor for the first mode, while the overhead for
the second mode as expected depends mostly on the process’ program locality.

2 System Design

2.1 Design Goals and Assumptions

EncExec aims at protecting a process’ sensitive data against cold-boot attacks.
Specifically, it reserves a small block of the (L3) cache and uses the reserved
cache to securely execute the whole process or a part of it in the cache. We have
the following design goals for EncExec:

– Data secrecy : the plaintext view of the protected data should only exist in the
cache. It must be encrypted before being evicted to the memory. The key to
encrypt the data must be protected from cold boot attacks as well.

– Data quantity requirement : most early defenses can only secure small cryp-
tographic keys. A practical solution should support cryptographic algorithms
such as RSA that use large keys.

– Performance isolation: the cache is critical to the overall system performance.
EncExec reserves a small portion of the L3 cache for its use. It should not incur
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large performance overhead for other processes whether EncExec is active
or not; i.e., the performance impact of EncExec is isolated from concurrent
processes.

– Application transparency : when operating in the whole-data protection mode,
EncExec should be transparent to the protected process. An unmodified user
program should be able to run under EncExec just like on a normal OS (but
slower).

Threat Model: the attacker is assumed to have physical access to the
victim’s device. He can launch a cold-boot attack either by transplanting the
(frozen) memory units to a computer under his control [14] or by rebooting
it to a tiny malicious OS [23,28]. We assume that the attacker does not have
malware, such as a kernel rootkit, installed on the victim’s device, otherwise he
could simply obtain the memory through the malware without resorting to cold-
boot attacks. This threat model covers the common scenarios where cold-boot
attacks may be attempted. For example, many business laptops lost in public
places have encrypted hard disks and are protected by screen locks.

Since the attacker has physical control over the device, he could launch other
physical attacks. For example, external expansion buses like FireWire may be
exploited to directly access the physical memory via DMA. Some devices have
enabled debug ports (e.g., the JTAG port on a mobile phone). The attacker
can attach a debugger to these ports and fully control the system. More exotic
attacks, such as monitoring or injecting data on the buses, often require sophisti-
cated equipment and aplenty financial support. In this paper, we consider these
attacks out of the scope and assume they are prevented by other defenses, such
as using IOMMU to prevent DMA attacks and disabling debug ports.

A process may have close interaction with its external environment. Sensitive
data could leak to the environment. For example, a word processor often stores
parsed documents in temporary files. This problem has been addressed by a
number of previous systems [24]. In this paper, we assume the data transferred
out of the process maintain their secrecy by, say, encrypting the file system and
network communications. Of course, the keys for encryption need to be protected
(by EncExec).

2.2 Design Overview

Figure 1 shows the overall architecture of EncExec. The user space of a process
consists of code and data sections. EncExec focuses on protecting the process’
data against cold boot attacks but leaves the code as is. This is based on the
assumption that the data more likely contain sensitive information that needs
protection, while the code is often publicly available and does not carry private
user information. Nevertheless, EncExec can also be applied to protect the code
if needed. In Fig. 1, the protected data remain encrypted in the memory all
the time, the decrypted data are stored in the part of the L3 cache reserved by
EncExec. EncExec uses the L3 cache to minimize its performance impact because
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Fig. 1. Overall architecture of EncExec. Three pages of the protected data is in the
window.

recent Intel processors have large, unified, inclusive L3 caches2. Moreover, the L3
cache is physically indexed and physically tagged. Physical addresses thus solely
determine the allocation of this cache. To enable the split views of the data,
EncExec uses the reserved cache as a (discontinuous) window over the protected
data. The data in the window is decrypted and fully contained within the cache.
Since the cache precedes the memory, the CPU directly accesses the decrypted
data in the cache when it tries to access the data in the window. The data out
of the window remains encrypted in the memory and unaccessible to the CPU.
EncExec extends the kernel’s virtual memory management (VMM) to strictly
control the process’ data access so that no plaintext data will be evicted to
the memory due to cache conflicts. Specifically, only the protected data in the
window (as well as the code and unprotected data) are mapped in the process’
address space. If more protected data are used than the window size, EncExec
selects a page in the window for replacement, similar to demand paging in the
OS. Because a page table can only map memory in pages, the reserved cache
must be page-aligned, and its size is a multiple of the page size. We use the
hardware-accelerated AES (AES-NI [16]) in the counter mode for encryption.
Both the key and the initial vector are randomly generated, and the key and
sub-keys are securely stored in the reserved cache to protect them from cold
boot attacks.

This architecture can support both modes of EncExec. In the first mode,
EncExec provides the process with a block of secure memory. Any data stored
in this memory is guaranteed to be protected from cold boot attacks. The process
can decide when and how to use this memory. As such, the program needs to
be (slightly) modified. For example, we can modify a cryptographic library so
that its stack and session data are allocated from the secure memory. In the
second mode, EncExec protects the complete data of a process. This mode is
transparent to the protected process; no changes to the program are necessary.

2 An unified cache stores both code and data. An inclusive L3 cache includes all the
data cached by the L1 and L2 caches.
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Because we use demand-paging to manage the reserved cache, the amount of the
protected data can be larger than the size of the reserved cache for both modes,
similar to how virtual memory can be larger than the physical memory. In the
rest of this section, we describe in detail the design of EncExec. EncExec has
two key techniques: spatial cache reservation reserves a small, continuous block
of the L3 cache for exclusive use by EncExec, secure in-cache execution leverages
the reserved cache to protect the process data.

2.3 Spatial Cache Reservation

EncExec’s first technique reserves a small part of the L3 cache for its use. This
is a challenging task on the x86 architecture because x86 transparently manages
cache assignment and replacement. It does not provide explicit and fine-grained
control of the cache. A process has no direct control over how its data are cached,
and the CPU decides transparently which cached line3 to be replaced when there
is a cache conflict. To replace a cache line, the CPU first evicts the old contents
back to the memory and then loads the new contents from the memory. EncExec
needs to precisely control how the protected data are cached and how the cache is
replaced to avoid conflicts in the reserved cache. Without this control, the CPU
can evict some of the reserved cache to the memory, leaking the unencrypted
data to the physical memory. To address that, EncExec enforces the following
two rules:

– Rule I, the protected data are only cached by the reserved cache, and no other
memory is cached by the reserved cache. Consequently, neither the kernel itself
nor other processes can cause the reserved cache to be evicted.

– Rule 2, the amount of the accessible (decrypted) protected data must be less
than the size of the reserved cache. They thus always fit in the reserved cache.
Consequently, the protected data themselves cannot cause the reserved cache
to be evicted.

These two rules prevent conflicts in the reserved cache caused by other processes
and by the protected data themselves, respectively. With these two rules,
EncExec can guarantee that the decrypted data remain in the CPU cache, unob-
tainable by cold boot attacks.

EncExec enforces these two rules by leveraging the cache architecture and
the replacement algorithm of x86 processors. Modern x86 processors often have
a large shared L3 cache. Figure 2 shows the cache architecture of an Intel Core-i7
4790 processor. There are three levels of caches. Each CPU core has dedicated
L1 and L2 caches, but all the four cores share a single large L3 cache. The L1
cache is split into an instruction cache (IL1) and a data cache (DL1), each 32 KB
in size. The L2 and L3 caches are unified in that they cache both code and data.
L1 and L2 caches are relatively small in size (64 KB and 256 KB, respectively),
but the L3 cache is capacious at 8 MB. Even though the L1 and L2 caches are
3 A cache line is the unit of data transfer between the cache and the memory. Recent

x86 processors use a cache line of 64 bytes.
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Fig. 2. Intel Core i7 cache architecture

small, they are more important to the overall system performance because they
are faster and closer to CPU cores. It is thus impractical to reserve any part
of the L1 or L2 cache, especially because EncExec has to reserve the cache in
pages (4 KB at least). Another important feature of the L3 cache for EncExec is
inclusivity. An inclusive L3 cache is guaranteed to contain all the data cached by
the L1 and L2 caches. The CPU will not bypass the L3 cache when it accesses the
memory. Without inclusivity, the CPU could evict the unencrypted data to the
memory directly from the L1 or L2 cache and load the encrypted data directly
from the memory to the L1 or L2 cache. The former leaks the unencrypted data
to the memory, while the latter causes the program to malfunction. Recent Intel
processors have large, unified, inclusive L3 caches. However, old processors like
Pentium 4 have non-inclusive L2 caches (they do not have an on-chip L3 cache)
and thus cannot be used by EncExec. In addition, we assume the cache is set
to the write-back mode instead of the write-through mode. This is because in
the write-through mode the CPU keeps the cache and the memory in sync by
writing any updates to the cached to the memory as well. Most OSes use the
write-back mode for the main memory due to its better performance.

EncExec takes control of all the physical memory cached by the reserved
cache so that no other processes can use that memory and cause eviction of the
reserved cache (rule 1). The actual memory EncExec has to control is decided by
the CPU’s cache organization. Specifically, the memory and the cache are divided
into equal-sized cache lines (64 bytes). The memory in a line is cached or evicted
as a whole. Intel processors use the popular n-way set-associative algorithm to
manage the cache [15]. Figure 3 shows a simple 2-way set-associative cache with
a cache line of 16 bytes to illustrate the concept. This cache is organized into
8 cache lines, and each two consecutive lines are grouped into a set. This cache
thus has 8 cache lines in 4 sets. Meanwhile, the memory address (16 bits) is
divided into three fields: the offset field (4 bits) specifies the offset into a cache
line. This field is ignored by the cache since the memory is cached in lines; the
set field (2 bits) is an index into the cache sets. A line of the memory can be
cached by either line in the indexed set; the last field, tag, uniquely identifies
the line of the physical memory stored in a cache line. During the cache fill, the
CPU selects one line of the indexed set (evict it first if it is used) and loads the
new memory line into it. The tag is stored along with the data in the cache line.
During the cache lookup, the CPU compares the tag of the address to the two
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Fig. 3. 2-way set-associative cache, 8 cache lines in 4 sets. Each cache line is 16 bytes.

tags in the indexed set simultaneously. If there is a match, the address is cached
(a cache hit); otherwise, a cache miss has happened. The CPU then fills one of
the lines with the data. Note that all the addresses here are physical addresses
as the L3 cache is physically indexed and physically tagged.

The L3 cache of Intel Core-i7 4790 is a 16-way set-associative cache with a
cache line size of 64 bytes [15]. Therefore, the offset field has 6 bits to address
each of the 64 bytes in a cache line. The width of the set field is decided by three
factors: the cache size, the cache line size, and the associativity. This processor
has an 8 MB L3 cache. The set field thus has 13 bits ( 8M

64×16 = 8192 = 213); i.e.,
there are 8, 192 sets. The tag field consists of all the leftover bits. If the machine
has 16 GB (234) of physical memory (note the L3 cache is physically tagged),
the tag field thus has 15 bits (34 − 6 − 13 = 15).

EncExec relies on the page table to control the use of the reserved mem-
ory (Sect. 2.4). A page table can only map page-sized and page-aligned memory.
Therefore, EncExec has to reserve at least a whole page of the L3 cache. Even
though this processor supports several page sizes (4 KB, 2 MB, and 1 GB), we
only reserve a smallest page of the cache (4 KB, or 64 lines) to minimize the
performance overhead. However, we have to reserve 64 cache sets instead of 64
cache lines because this cache uses 16-way set-associative and all the cache lines
in the same set have to be reserved together (as the CPU may cache our data in
any line of a set). The actual amount of the reserved cache accordingly is 64 KB.
These reserved cache sets must be continuous and the first set is page-aligned
so that together they can cache a whole page of the physical memory. In our
prototype, we reserve the cache sets from index 8, 128 (0x1FC0) to index 8, 191
(0x1FFF). Figure 4 shows the format of memory addresses that are cached by
these selected sets. EncExec needs to take control of all physical pages conform-
ing to this format (rule 1), which total 1

128 of the physical memory. For example,
it needs to reserve 128MB physical memory on a machine with 16GB of RAM.
As mandated by rule 2, EncExec cannot use more data than the reserved cache
size in order to avoid cache conflicts. Therefore, we can use 16 pages (64 KB) of
the reserved 128 MB memory at a time. Note that the amount of the protected
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Fig. 4. Addresses that map to the reserved cache (bits marked with x can be either 0
or 1)

data can be larger than 16 pages because we use demand paging to manage the
reserved cache. Moreover, an attacker that controls an unprotected process (e.g.,
using JavaScript in a browser) cannot evict EncExec’s reserved cache because
the reserved physical memory is not mapped in that process’s virtual address
space (remember that the L3 cache is physically indexed and physically tagged).

2.4 Secure In-Cache Execution

EncExec’s second technique, secure in-cache execution, splits the views of the
protected data between the memory and the reserved cache: the data remain
encrypted in the memory, and their plaintext view only exists in the cache. In
other words, we need to desynchronize the memory and the cache. There are
three requirements for this to happen: first, the cache must be configured to
use the write-back mode so that data modified in the cache will not be written
through to the memory; second, the L3 cache is inclusive of the L1 and L2
caches so that the CPU always accesses the memory through the L3 cache; third,
there are no conflicts in the reserved cache so that the CPU will not evict any
reserved cache line. The first two requirements are guaranteed by the hardware
and the existing kernels. The third requirement is fulfilled by EncExec’s second
technique.

EncExec’s first technique takes control of all the physical pages that may
be cached by the reserved cache. As long as we use no more protected data
than the size of the reserved cache, they can fit in the reserved cache without
conflicts, and any changes to these data, including decryption, stay within the
cache. To continue the previous example, we select 16 pages out of the reserved
128 MB physical memory and use these pages for securing the protected data.
We call these pages plaintext pages. In order to desynchronize the cache and
the memory, we only need to copy the encrypted data to a plaintext page and
decrypt them there. The decrypted data remain in the cache since there are no
cache conflicts. However, we often need to protect more data than that can fit in
plaintext pages. To address that, EncExec’s second technique leverages demand
paging to protect a large amount of data.

In demand paging, a part of the process can be temporarily swapped out
to the backing store (e.g., a swap partition) and be brought into the memory
on-demand later [25]. For EncExec, the original memory of the protected data
serves as the swap for plaintext pages. The data are brought into and evicted from
plaintext pages when necessary. The page table is used to control the process’
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access to the data. When the process tries to access the unmapped data (marked
as non-present in the page table), the hardware delivers a page fault exception
to the kernel. EncExec hooks into the kernel’s page fault handler and checks
whether the page fault is caused by the unmapped protected data. If so, it
tries to allocate a plaintext page for the faulting page. If none of the plaintext
pages are available, EncExec selects one for replacement. Specifically, it first
encrypts the plaintext page and copies it back into its original page (note the
original page is a non-reserved page). EncExec then decrypts the faulting page
into this plaintext page and updates the page table if necessary. To initiate the
protection, EncExec encrypts all the protected data, flushes their cache, and
unmaps them from the process’ address space. As such, EncExec can completely
moderate access to the protected data. By integrating EncExec into the kernel’s
virtual memory management, we can leverage its sophisticated page replacement
algorithm (e.g., the LRU algorithm) to select plaintext pages for replacement.
Note that the second technique alone is not secure because plaintext pages often
contain (most recently used) sensitive data due to program locality. Without the
first technique, there is no guarantee that plaintext pages will not be evicted to
the memory and become vulnerable to cold boot attacks. It is thus necessary for
both techniques to work together.

EncExec needs to frequently encrypt and decrypt the protected data. The
cryptographic algorithm thus plays an important role in the overall performance
of the protected process. Recent CPUs have built-in hardware support to speed
up popular cryptographic algorithms. For example, most Intel CPUs now fea-
ture hardware acceleration for AES, a popular block cipher, through the AES-
NI extension [16]. EncExec uses hardware-accelerated ciphers when available.
Our prototype uses AES-128 in the counter mode. Therefore, each block of the
protected data can be encrypted/decrypted independently. To protect the (ran-
domly generated) key from cold boot attacks, we dedicate one plaintext page
to store the key, its derived sub-keys, and other important intermediate data.
Initial vectors are stored for each page of the data. It is not necessary to protect
the secrecy of initial vectors, but they should never be reused.

3 Implementation

We have implemented a prototype of EncExec based on the FreeBSD operating
system (64-bit, version 10.2) [1]. FreeBSD’s virtual memory management has an
interesting design that enables multiple choices for implementing EncExec. Our
prototype is based on the Intel Core-i7 4790 CPU with 16 GB of memory. Other
CPUs with a similar cache architecture can be used by EncExec as well. For
example, the Xeon E5-2650 processor has a 20 MB shared, inclusive L3 cache
organized as 20-way set-associative. In the rest of this section, we describe our
prototype in detail.
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3.1 Spatial Cache Reservation

EncExec reserves a block of the L3 cache by owning all the physical pages cached
by it, i.e., physical pages whose addresses are all 1’s from bit 12 to bit 18 (Fig. 4).
In other words, EncExec reserves one physical page every 128 pages4. EncExec
can only use 16 of these pages as plaintext pages to protect data so that these
pages can be completely contained in the reserved cache.

Modern operating systems have a sophisticated, multi-layer memory man-
age system to fulfill many needs of the kernel and the user space. For example,
physical memory is often allocated in pages by the buddy memory allocator, and
kernel objects are managed by the slab memory allocator to reduce fragmenta-
tion [1]. The slab allocator obtains its memory from the physical page allocator,
forming a layered structure. Given this complexity, EncExec reserves its physical
pages early in the booting process when the kernel is still running in the single
processor mode. Memory allocated after enabling the multi-processor support is
harder to reclaim – an allocated page may contain kernel objects accessed con-
currently by several processors. Simply reclaiming it will lead to race conditions
or inconsistent data.

When FreeBSD boots, the boot loader loads the kernel image into a contin-
uous block of the physical memory, starts the kernel, and passes it the layout
of the physical memory discovered by the BIOS (through e820 memory map-
pings). The kernel image is large enough to contain several reserved physical
pages that need to be reclaimed. The kernel uses several ad-hoc boot-time mem-
ory allocators to allocate memory for the booting process (e.g., allocpages

in sys/amd64/amd64/pmap.c. We modify these allocators to skip the reserved
pages. If a large block of memory (i.e., more than 127 pages) is allocated, we save
the location and length of the allocated memory in order to fix it later. A typical
example is the array of vm page structures. There is one vm page structure for
each physical page. This structure thus could be really large.

By now, the kernel still runs on the simple boot page table. The kernel
then replaces it with a new, more complete page table (create pagetables in
sys/amd64/amd64/pmap.c). x86-64 has a huge virtual address space. This allows
the kernel to use it in ways that are not possible in 32-bit systems. For example,
the kernel has a dedicated 4TB area that directly maps all the physical memory,
including the reserved pages. This is called the direct map. Accordingly, the
kernel can access any physical memory by adding the offset of this area to the
physical address (PHYS TO DMAP(pa)). It is not necessary to unmap plaintext
pages from the direct map because EncExec needs to directly access them (e.g.,
to decrypt a page). Another area in this new page table maps in the kernel. As
mentioned earlier, the kernel is large enough to contain several reserved pages.
If we find such a page when creating the page table, we allocate a non-reserved
page, copy the contents from the original page, and map this page in the page

4 This number is decided by the CPU’s cache architecture. For example, EncExec
reserves one physical page every 512 pages on the aforementioned Xeon E5-2650
CPU.



392 Y. Chen et al.

vnode/object vm_page

vmspace

vm_map

pmap

statistics
vm_object/
EncExec

vm_object

vm_page encrypted
vm_page

vm_page

vm_map_entry

vm_map_entry

vm_map_entry

vm_page encrypted
vm_page

vm_object/
EncExec

Fig. 5. Virtual memory structures for a process. Dark rectangles mark the possible
placements for EncExec.

table5. This essentially replaces all the reserved pages in the kernel map with
non-reserved pages. The kernel then switches to the new page table and continues
the booting process. To make sure that no reserved pages exist in this new page
table (except the DMAP area), we write a small kernel function to scan the new
page table for reserved pages. No reserved page was found in the new page table.

Eventually, the kernel adds the left-over physical pages to the run-time page
allocator (vm page startup in sys/vm/vm page.c). We hook into this function
and reserve pages as they are being added to the allocator. We also hook into
the kernel’s whole-cache flushing function (wbinvd). By doing so, we can encrypt
the plaintext pages first to prevent the unencrypted data from being leaked to
the memory. The CPU may temporarily power down a part of its caches in some
power management states. In our implementation, we disable the CPU power
management when EncExec is active and re-enable it otherwise.

3.2 Secure In-Cache Execution

With EncExec, the protected data remain encrypted in the memory; they are
loaded and decrypted into the reserved cache on demand. This essentially adds
another layer to the kernel’s demand paging: the memory serves as the backing
store for plaintext pages, while the swap partition services as the backing store
for the memory. EncExec manipulates the page table to desynchronize the cache
and the plaintext pages. FreeBSD’s virtual memory management has a unique
design that provides two alternative choices in the placement of EncExec.

Figure 5 shows the kernel data structures that manage the process address
space in FreeBSD. The top level structure, vmspace, represents the whole address
space. It is a container for other related structures. Two notable such structures
are vm map and pmap. FreeBSD separates the address space layout (vm map) from
the page table management (pmap). vm map describes the process’ virtual address
space layout using a list of vm map entry structures. Each vm map entry spec-
ifies a continuous block of the process’ address space, including its start and

5 The kernel uses 2MB large pages to map its data. We break them down into 4 KB
pages first.
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end addresses and its permissions (read/write/execute). Each vm map entry is
backed by a chain of vm objects. A vm object describes the origin of the data
for this entry and the backing store to swap in and out the data. There are three
types of vm objects. Named vm objects represent files. Program sections like
the code and data sections use named vm objects because their initial contents
are loaded from the program binary. Anonymous vm objects represent sections
that are zero-filled on the first use, such as uninitialized data sections and heap
sections. Shadow vm objects hold a private copy of the locally modified pages
(represented by vm pages). Every vm object has an associated pager interface
that decides how to swap in and swap out the object’s associated data. For
example, anonymous vm objects use the swap pager to store data in the swap
partition. The pmap structure consists of architecture-specific data and func-
tions to manage the process’ page table. Every CPU architecture defines its own
pmap structure but implements the common pmap API. As such, other kernel
modules do not need to be concerned with the details of page tables. Pmap can
decide when and how to map a page. For example, it can unmap a page from
the process’ address space as long as the page is not pinned by the upper vm
layers.

This design enables two feasible ways to implement EncExec in the FreeBSD
kernel: it can either be implemented as a shadow object or in the pmap module.
We chose the latter because it is simpler and more likely to be applicable to
other OSes (e.g., Linux). Specifically, a vm map entry can be backed by a chain
of vm objects. Objects ahead in the chain precede over these later in the chain.
When a page fault happens, the page fault handler searches for the faulting page
along the chain of vm objects. It returns the first located page without checking
the rest of the chain. This chain of objects is essential to many features of
FreeBSD’s virtual memory design, such as copy-on-write where the kernel creates
a shadow object of the original one for both the parent and the child and marks
the original object read-only. If either process tries to modify a shared page, the
kernel makes a copy of the page and gives it to the corresponding shadow object.
This new copy overshadows the original shared page. EncExec can be similarly
implemented as a shadow object by using plaintext pages to store the data and
the original (non-reserved) memory as the backing store. However, this design
introduces additional complexity to the kernel’s already tangled virtual memory
system [20]. For example, EncExec’s shadow object should always be the first
object in the chain, otherwise plaintext pages could be copied to vm objects
earlier in the chain and leaked to the memory. EncExec thus has to monitor any
changes to the object chain. If a new object is inserted before EncExec’s shadow
object, EncExec must move its object to the head of the chain. Reordering
objects is not supported by FreeBSD. Additionally, it is hard to apply this design
to other kernels that do not have a similar structure (e.g., Linux).

The pmap module also has the needed support for EncExec: by design, pmap
is allowed to unmap a page from the process’ address space as long as the
page is not pinned. The page fault handler will ask pmap to remap that page
if it is later accessed. Moreover, pmap maintains a reverse mapping for each
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physical page, which keeps track of all the processes and virtual addresses a
physical page is mapped. EncExec uses reverse mapping to completely disconnect
a shared page from all the processes, otherwise some processes might incorrectly
access the encrypted data. Pmap also tracks the page usage information for page
replacement. EncExec can leverage this information to optimize its own page
replacement.

EncExec first picks 15 reserved pages as the plaintext pages and unmaps all
the protected data from the process’ address space. If a page is shared by multiple
processes, EncExec removes it from other processes as well. EncExec then returns
to the user space to resume the process. When the process accesses its protected
data, a page fault will be triggered. The page fault handler searches its data
structures and asks pmap to map in the data (pmap map in pmap.c). EncExec
intercepts this request, allocates a plaintext page, decrypts the target page into
it, and maps it into the process. At any time, no more than 15 plaintext pages
can be used by the protected process. If more are needed, EncExec will pick a
plaintext page in use for replacement. In addition, the FreeBSD kernel might
proactively map-in (also called pre-fault) a page, expecting the process to access
it in the near future. No page fault will be triggered when the process accesses
this page later. In our prototype, we disable pre-faulting for the protected data
sections to save the limited plaintext pages. The process may also perform file
I/O with the protected memory. For correctness, we temporarily restore the
affected pages and unmap them from the process’ address space. When these
pages are accessed by the user space again, page faults will be triggered. This
signals the end of the file I/O operation. We then re-enable the protection for
these pages.

4 Evaluation

In this section, we evaluate the security and performance of our EncExec pro-
totype. All the experiments were conducted on a desktop with a 3.6 GHz Intel
Core i7-4790 CPU and 16 GB of memory. The system runs 64-bit FreeBSD for
x86-64, version 10.2. To test its performance, we run various benchmarks in
the FreeBSD ports and the benchmarks of mbed TLS [2]. Mbed TLS, formerly
known as PolarSSL, is a popular, portable, open-source TLS library developed
by ARM.

4.1 Validation

We first validate that we can actually desynchronize the cache and plaintext
pages. Theoretically, updates to the plaintext pages should be confined to the
reserved cache because neither the kernel nor other processes can cause cache
conflicts with EncExec, and we never use more plaintext pages than the size of
the reserved cache. Consequently, the CPU should not evict the cached plaintext
pages. However, x86 does not provide instructions to directly query the cache
line status. To address that, we first validate that none of the reserved pages are
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used by the kernel or unprotected processes. Specifically, we write a simple kernel
function that scans a page table for reserved pages. We apply this function to all
the active page tables in the system. No reserved pages are found to be mapped
in these page tables, except plaintext pages in the kernel’s direct map area.
As mentioned before, we use direct map to encrypt/decrypt plaintext pages.
We also unmap plaintext pages from the direct map when EncExec is not in
use. If the kernel accesses any of these pages, a page fault will be triggered
and the kernel will crash itself. None of these happen during our experiment.
Moreover, we conduct an experiment to validate de-synchronization of the cache
and the plaintext pages. Specifically, we write all zeros to a plaintext page and
then execute the wbinvd instruction, which writes back the modified cache lines
and invalidates the internal caches. Now, the cache and the page have been
synchronized and the memory of this page is guaranteed to contain all zeros.
Next, we modify the plaintext page. Any changes should remain in the cache. To
check that, we discard the modified cache lines by executing the invd instruction
and read the plaintext page again. The plaintext page should contain all zeros.
This is indeed the case. It shows that the plaintext page and the cache have been
desynchronized.

Fig. 6. Overhead of common crypto-
graphic algorithms.

Fig. 7. Overhead of RSA and DH
handshakes.

Fig. 8. Overhead of Elliptic Curve
algorithms.

Fig. 9. Performance of Bonnie. The unit
on Y-axis is MB/sec and thousand-
seeks/sec (for RandomSeeks only).
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4.2 Performance Evaluation

EncExec uses the hardware-accelerated AES (AES-NI) to encrypt and decrypt
data. Our measurements show that it takes about 3µs on average to
encrypt/decrypt 4 KB data using 128-bit AES algorithm. Therefore, there is
an extra 3µs or so delay to load a data page and 6µs if it’s necessary to replace
an existing page. This delay is the most significant source of EncExec’s overhead,
but it is hard to reduce this delay.

We use the official benchmarks from mbed TLS to measure the performance
overhead of EncExec. These benchmarks consist of a wide range of cryptographic
algorithms. The results are presented in Figs. 6, 7, and 8. The overhead is cal-
culated relative to the baseline performance, i.e., the performance of mbed TLS
on the original FreeBSD system. The “mode 1” bars give the overhead of mbed
TLS protected by the first mode of EncExec. Specifically, we modified the source
code of mbed TLS to allocate the session data and the stack from the secure
memory. The “mode 2” bars give the overhead of mbed TLS protected by the
second mode of EncExec, i.e., we protect all its data sections with EncExec. We
experimented with both 15 and 31 plaintext pages. In the latter, we changed our
prototype to double the reserved cache (32 pages, or 128 KB). This set of exper-
iments represents the most practical use cases of EncExec, given the limited size
of the reserved cache.

For simple algorithms like SHA-512 and AES, EncExec incurs virtually no
overhead (Fig. 6) because neither CPU nor the memory is a performance bot-
tleneck. Earlier systems like TRESOR [22] have similar or even slightly better
performance for AES. However, EncExec can support more complex algorithms,
such as RSA and Diffie-Hellman, due to its larger secure storage. For those algo-
rithms, mbed TLS in mode 1 and mode 2/31 pages only slightly lags behind the
baseline (about 2% slower), but its performance under mode 2/15 pages is sig-
nificantly slower than the baseline. For example, it can only achieve about 8.4%
of the baseline performance for RSA-2048 public key encryption and 16.7% for
RSA-2048 private key encryption. This can be explained with the working set
model [25]. Clearly, the working set of these benchmarks is larger than 15 pages
but less than (or around) 31 pages. With only 15 plaintext pages, thrashing is
guaranteed, leading to poor performance. Mode 1 is not affected by the large
working set because it only needs to protect the selected data, instead of all the
data sections. Nevertheless, many real-world programs have very large working
set. EncExec’s second mode is thus more suitable for compact programs, such
as an encryption/decryption service program.

We also measured the impact of EncExec on other concurrently running
processes. Specifically, we run bonnie, a file system benchmark, twice, once alone
and once while the mbed TLS benchmark is running (mode 2/15 pages). The
results are shown in Fig. 9. These two runs have almost identical performance
for most of the six tests except the third one: the concurrent run is about 43%
slower. This overhead likely is not caused by EncExec but instead the result of
the kernel’s scheduling algorithm: both benchmarks have very low initial CPU
usage. It is likely that they will be scheduled to run on the same CPU core.
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When bonnie is running its third test, the mbed TLS benchmark starts to run
the RSA-related tests and uses more than 80% of the CPU. Temporarily, the
mbed TLS benchmark preempts bonnie and degrades its performance. This is
supported by the fact that bonnie uses 19.9% of the CPU time in the single
run for this test, but it only receives 11.1% of the CPU time in the concurrent
run. In the following tests, bonnie uses more than 100% of the CPU time and
will be scheduled to a different CPU core than the mbed TLS benchmark. The
performance of the mbed TLS benchmark remains mostly the same. To verify
this hypothesis, we simultaneously run bonnie and the mbed TLS benchmark
without EncExec. The similar results are observed a little bit earlier than the
concurrent run with EncExec. This is because the mbed TLS benchmark runs
faster this time. Overall, this result is not surprising: a process protected by
EncExec and other processes cannot interfere with each other through the L3
cache, but they can still interact through the L1 and L2 caches if they are
scheduled to the same core. Meanwhile, there is no interference through the
cache if they are scheduled to different cores because each core has its own
L1 and L2 caches. This strong performance isolation makes EncExec a more
practical defense against cold boot attacks.

5 Discussion

In this section, we discuss some potential improvements to EncExec and related
issues.

Impact on L1 and L2 Caches: EncExec controls all the physical pages cached
by the reserved cache. This allows EncExec to precisely control the replacement
of the reserved cache. These pages are also cached by the L1 and L2 cache. This
naturally raises the question of whether EncExec reserves some of the L1 and
L2 cache, as an side effect. L1 and L2 caches are critical to the overall system
performance as they are smaller, faster, and closer to CPU cores. Reserving
even a small part of them could severely harm the system performance. Fortu-
nately, EncExec does not reserve any of the L1 and L2 cache. This is because
each L1 and L2 cache line can cache more physical lines than a L3 cache line
does. For example, Intel Core i7-4790 has 256 KB of L2 cache and 64 KB of L1
cache (instruction + data). Its L2 cache uses the 8-way set-associative algorithm.
Accordingly, the set field for the L2 cache is 9 bits ( 256K

64×8 = 512 = 29), and the
tag field is 19 bits. Therefore, each L2 cache line caches 219 lines of the phys-
ical memory, most of which are not reserved by EncExec. Therefore, EncExec
does not reserve any of the L1 or L2 cache lines. Nevertheless, it changes access
patterns of the L1 and L2 caches. Some L1 and L2 cache lines may see more
activities and some less.

Thrashing Control: EncExec can protect either the selected sensitive data or
all the data. In the latter case, thrashing could happen if the process’ working
set is larger than the reserved cache. To relieve that, we could reserve more
cache and use processors with a larger L3 cache. For example, the Xeon E5-2670
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processor has a 20 MB shared L3 cache with 20-way set-associative. EncExec can
use 40 plaintext pages (or 160 KB) if we reserve 8 KB of the cache space. Recent
Intel CPUs partition the L3 cache among their cores. Specifically, each core
has its own slice of the CPU’s L3 cache which acts like a N-way set-associative
cache. Physical RAM is assigned (equally) to these slices using an undisclosed
hash algorithm [17–19,29]. This design allows more cache pages to be reserved
by EncExec since cache slices operate mostly independently [29]. Even though
these improvements allow EncExec to support a larger working set, the reserved
cache is still not enough for complex programs. For these programs, the develop-
ers should use EncExec to protect only the sensitive data. Most cryptographic
algorithms have a small working set that fits in EncExec’s reserved cache.

Large Page Sizes: EncExec controls all the physical pages cached by the
reserved cache. For example, our prototype reserves one physical page every
128 pages. This precludes the use of larger pages in the kernel. As previously
mentioned, x86 processors support several page sizes, including 4 KB, 2 MB, and
1 GB. They often have separate TLB (translation look-aside buffer) entries for
small pages and large pages. Using large pages can thus reduce the TLB pres-
sure for small pages. The kernel uses 2 MB pages to map its own code and data.
However, EncExec has to reserve 4 small pages from every 2 MB page. A kernel
with EncExec therefore cannot use large pages. In our prototype, we break large
kernel pages into small ones and reclaim the pages we need to reserve. There are
two possible workarounds for the kernel to continue using large pages. First, we
can compile the kernel so that no code or data will be allocated to the reserved
page. The kernel still maps itself with large pages, but none of the reserved pages
are actually accessed at runtime. This leaves a number of unused holes in the
kernel’s address space. As long as these pages are not touched by the kernel, they
will not conflict with EncExec. Second, we can restore kernel large pages when
EncExec is not in use. The user may not always need the protection of EncExec.
For example, he may use EncExec when accessing his bank accounts but not
when browsing random Internet sites. This solution will eliminate EncExec’s
idle performance overhead.

In addition, some I/O devices (e.g., graphic cards) may use large continu-
ous blocks of physical address space for memory-mapped I/O (MMIO). MMIO
accesses the device’s (on-board) I/O memory instead of the RAM. Memory-
mapped I/O will not interfere with EncExec because I/O spaces are often con-
figured to be uncachable in order to correctly interact with I/O devices. Read-
ing/writing I/O memory thus will not cause cache fill or eviction.

Intel SGX: Intel SGX is a powerful and complex extension to Intel CPUs. It
creates a trusted execution environment, called enclave, for trusted apps. The
enclave’s code and data are encrypted in the memory and only decrypted in
the CPU cache. SGX’s TCB (trusted computing base) consists of only the CPU
and the app itself. Therefore, the enclave is protected from cold boot attacks,
bus snooping attacks, and malicious high-privileged code (e.g., the hypervisor).
SGX has many other useful features, such as remote attestation that can ensure
the initial integrity of the trusted app. Compared to SGX, EncExec works on
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the existing commodity Intel and other CPUs with a similar cache architec-
ture, while SGX is only available in the new Intel CPUs. EncExec is also very
lightweight: accessing the protected data in EncExec is instant and does not
require time-consuming context switches. A context switch in SGX could be
very expensive since it has to flush the TLB and perform various checks [5].
EncExec can also support unmodified programs. Moreover, the design of SGX
is vulnerable to cache-based side-channel attacks [8]. By protecting data in the
reserved cache, EncExec can provide some (limited) protection against cache
side-channel attacks targeting that data, even though the side-channel defense
is not the focus of this paper.

6 Related Work

Cold Boot Attacks and Defenses: the first category of related work con-
sists of cold boot attacks and defenses. A cold boot attack exploits the fact that
frozen DRAM keeps its contents for a relatively long period of time. It has been
demonstrated against both desktop computers [14,27] and mobile phones [23,28].
A cold boot attack can be launched by either transplanting the frozen memory
to a machine controlled by the attacker or booting a small kernel to dump
the memory. Most existing defenses focus on re-purposing hardware storage to
protect (small) cryptographic keys [10,21,22,26] or execute cryptographic algo-
rithms [12] on the chip. For example, AESSE [21], TRESOR [22], LoopAmne-
sia [26], and ARMORED [10] protect an AES key in the SSE registers, debug
registers, performance counters, and NEON registers, respectively. These “bor-
rowed” registers naturally can only support compact cryptographic algorithms,
but they do not have enough space for algorithms like RSA that have larger
memory footprints. Compared to this line of work, EncExec can support all
these algorithms.

Copker uses the cache-as-RAM technology [9] to run cryptographic algo-
rithms in the cache. It can also support more complex algorithms such as RSA.
However, Copker has very high context switch overheads – it has to force the
calling CPU core, as well as any cores that share a cache with it, to enter the
no-fill mode of caches. This poses a severe limit on the number of concurrent
processes that can use Copker. For example, it can only support one process at
a time on the Intel Core i7 CPU used in our prototype because the L3 cache is
shared by all the cores. Most recent and near-future Intel CPUs all have a similar
cache architecture. EncExec does not have these limitations. For example, it can
support multiple concurrent processes and has a close to native performance if
used properly. Mimosa uses hardware transactional memory to protect private
(RSA) keys from memory disclosure [13]. EncExec also supports large RSA keys
and can transparently protect the whole data sections. Both EncExec Mimosa
require changes to the OS kernel although EncExec’s changes are more inva-
sive. On the other hand, Mimosa requires special hardware support (hardware
transactional memory); thus it is not applicable to other architectures.
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CaSE combines the cache-as-ram technology and ARM TrustZone to create
a system that can protect the data from both cold-boot attacks and the com-
promised operating system [30]. The flexible cache control of the ARM platform
allows CaSE to have lower performance overhead than Copker but similar to
EncExec. EncExec instead works on the x86 architecture that lacks find-grained
cache control. A recent system called RamCrypt [11] uses moving-window based
encryption to protect the process data, similar to our second technique. As men-
tioned before, this technique alone is potentially susceptible to cold boot attacks
because the recently-used unencrypted (sensitive) data can be evicted to the
memory and become vulnerable to cold boot attacks.

Other Related Work: EncExec can protect the whole process data from cold
boot attacks. Overshadow uses the hypervisor-assisted whole process encryption
to protect an application from the untrusted OS kernel [6]. PrivateCore vCage
is a virtual machine monitor that implements full-memory encryption for guest
VMs by actively managing the whole L3 cache [3]. EncExec focuses on protecting
applications. It reserves a small portion of the L3 cache and relies on demand
paging to support larger protected data. XnR leverages demand paging to pre-
vent an attacker from reading the randomized code [4]. RamCrypt similarly uses
that technology to protect the process data from cold boot attacks [11]. HIveS
manipulates the CPU’s physical memory layout to hide malware in the I/O
memory address space to avoid detection by memory forensic tools [31].

7 Summary

We have presented the design, implementation, and evaluation of EncExec, a
practical and effective defense against cold boot attacks. EncExec has two key
techniques: spatial cache reservation reserves a small block of the L3 cache, and
secure in-cache execution uses demand paging to protect sensitive process data.
Under the protection of EncExec, the sensitive data are always encrypted in the
memory, and the plaintext data are confined to the reserved cache. Consequently,
cold boot attacks can only obtain the encrypted data. The evaluation results
demonstrate the effectiveness and practicality of EncExec.
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17. Irazoqui, G., Eisenbarth, T., Sunar, B.: S $ A: a shared cache attack that works

across cores and defies VM sandboxing-and its application to AES. In: Proceedings
of the 36th IEEE Symposium on Security and Privacy, pp. 591–604. IEEE (2015)

18. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: Proceedings of the 36th IEEE Symposium on Security
and Privacy, pp. 605–622 (2015)

19. Maurice, C., Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse engi-
neering intel last-level cache complex addressing using performance counters. In:
Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 48–65.
Springer, Cham (2015). doi:10.1007/978-3-319-26362-5 3

https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
http://www.coreboot.org/images/6/6c/LBCar.pdf
http://www.coreboot.org/images/6/6c/LBCar.pdf
http://dx.doi.org/10.1007/978-3-319-26362-5_3


402 Y. Chen et al.

20. McKusick, M.K., Neville-Neil, G.V., Watson, R.N.: The Design and Implemen-
tation of the FreeBSD Operating System. Addison-Wesley Professional, London
(2014)

21. Müller, T., Dewald, A., Freiling, F.C.: AESSE: a cold-boot resistant implementa-
tion of AES. In: Proceedings of the Third European Workshop on System Security,
Paris (2010)

22. Müller, T., Freiling, F.C., Dewald, A.: TRESO: runs encryption securely outside
RAM. In: Proceedings of the 20th USENIX Conference on Security, San Francisco
(2011)

23. Müller, T., Spreitzenbarth, M.: FROST: forensic recovery of scrambled telephones.
In: Proceedings of the 11th International Conference on Applied Cryptography and
Network Security, Banff (2013)

24. Onarlioglu, K., Mulliner, C., Robertson, W., Kirda, E.: PrivExec: private execution
as an operating system service. In: Proceedings of the 2013 IEEE Symposium on
Security and Privacy (SP 2013). IEEE Computer Society, Washington, DC (2013)

25. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. Wiley, Har-
low (2012)

26. Simmons, P., Amnesia, S.T.: A software-based solution to the cold boot attack on
disk encryption. In: Proceedings of the 27th Annual Computer Security Applica-
tions Conference, Orlando (2011)

27. Lest We Remember: Cold-boot attacks on encryption keys. https://citp.princeton.
edu/research/memory/

28. FROST: Forensic Recovery Of Scrambled Telephones. http://www1.informatik.
uni-erlangen.de/frost

29. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the Intel last-level
cache. https://eprint.iacr.org/2015/905.pdf

30. Zhang, N., Sun, K., Lou, W., Hou, Y.T.: CaSE: cache-assisted secure execution on
ARM processors. In: Proceedings of the 2016 IEEE Symposium on Security and
Privacy (SP 2016) (2016)

31. Zhang, N., Sun, K., Lou, W., Hou, Y.T., Jajodia, S.: Now you see me: hide and
seek in physical address space. In: Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, ASIA (CCS 2015). ACM
(2015)

https://citp.princeton.edu/research/memory/
https://citp.princeton.edu/research/memory/
http://www1.informatik.uni-erlangen.de/frost
http://www1.informatik.uni-erlangen.de/frost
https://eprint.iacr.org/2015/905.pdf


Scotch: Combining Software Guard Extensions
and System Management Mode to Monitor

Cloud Resource Usage

Kevin Leach1(B), Fengwei Zhang2, and Westley Weimer3

1 University of Virginia, Charlottesville, VA 22903, USA
kjl2y@virginia.edu

2 Wayne State University, Detroit, MI 48202, USA
fengwei@wayne.edu

3 University of Michigan, Ann Arbor, MI 48109, USA
weimerw@umich.edu

Abstract. The growing reliance on cloud-based services has led to
increased focus on cloud security. Cloud providers must deal with con-
cerns from customers about the overall security of their cloud infrastruc-
tures. In particular, an increasing number of cloud attacks target resource
allocation in cloud environments. For example, vulnerabilities in a hyper-
visor scheduler can be exploited by attackers to effectively steal CPU
time from other benign guests on the same hypervisor. In this paper,
we present Scotch, a system for transparent and accurate resource con-
sumption accounting in a hypervisor. By combining x86-based System
Management Mode with Intel Software Guard Extensions, we can ensure
the integrity of our accounting information, even when the hypervisor
has been compromised by an escaped malicious guest. We show that we
can account for resources at every task switch and I/O interrupt, giv-
ing us richly detailed resource consumption information for each guest
running on the hypervisor. We show that using our system incurs small
but manageable overhead—roughly 1µs every task switch or I/O inter-
rupt. We further discuss performance improvements that can be made
for our proposed system by performing accounting at random intervals.
Finally, we discuss the viability of this approach against multiple types
of cloud-based resource attacks.

1 Introduction

The growing ubiquity of Software- and Infrastructure-as-a-Service has led to
an increase in the cloud computing market. Spending on cloud computing
infrastructure is projected to reach $38 billion in 2016 [14]. At the same time, the
National Vulnerability Database shows that there are 226 security vulnerabili-
ties in Xen, 99 vulnerabilities for VMWare ESX, and 98 vulnerabilities for KVM
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hypervisors [29]. As a result, there is additional concern over security breaches
in cloud environments [20,26].

Such vulnerabilities have already led to exploits related to the improper allo-
cation of cloud resources. For instance, resource-freeing attacks [35] allow a mali-
cious VM guest to take one resource from a victim VM (e.g., more CPU time).
Similarly, vulnerabilities in hypervisor schedulers have been documented [32,49].
Hypervisor vulnerabilities may permit a malicious customer to acquire cloud
resources for free or at the expense of a victim. As a result, there is a need for
cloud providers to guarantee levels of service and billing accountability to their
customers using their infrastructure [24].

Cloud providers make use of virtualization platforms such as the Xen hyper-
visor [18]. Resource allocation is performed by the hypervisor according to the
provider’s configuration corresponding to the customer’s service level. For exam-
ple, a cloud provider might offer more CPU time to a customer that pays more
money—this policy would be enforced by the hypervisor’s scheduler. However,
malicious customers that exploit vulnerabilities in the hypervisor may be able
to evade this policy, obtaining more resources than would be dictated by their
service levels.

In this paper, we present Scotch (Securely Communicating Objective,
Transparent Cloud Health), a technique that leverages two x86 features to accu-
rately account for resources consumed by virtual machines: System Management
Mode (SMM) and Software Guard eXtensions (SGX). SMM permits transpar-
ent access to CPU registers and memory in the underlying operating system,
hypervisor, and guests. SGX allows the creation of encrypted regions called
enclaves that isolate critical execution from a potentially-compromised hyper-
visor or operating system. We can use SMM to track the resources consumed
by each guest such that (1) potentially malicious guests are unaware, and (2)
we can detect previously undetected resource accounting attacks. While SMM
asynchronously measures resource usage, this information can be securely con-
veyed to an individual userspace enclave using SGX. This novel combination
of SMM and SGX enables a new method of accurately measuring and securely
communicating resource usage information in virtualized environments.

We evaluate a prototype of our technique based on the Xen hypervisor. We
show that our technique takes roughly 1µs to check resource usage during each
context switch and interrupt. We also show how this fixed 1µs cost can be
amortized across multiple context switches and interrupts by randomly choosing
intervals in which to check resource consumption. Next, we discuss the trade-
off between the quantity of a resource that can be stolen by a malicious guest
compared to the overhead our technique incurs. Finally, we discuss the types
of attacks for which Scotch is capable of providing accurate resource account-
ing information where other approaches cannot. We note that Scotch does not
automatically decide whether malicious activity is occurring; a direct compara-
tive study against such techniques remains future work.
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We make the following contributions:

– A technique for accurately and transparently measuring system resources
consumed by guest VMs running under a hypervisor,

– A prototype implementation employing the proposed technique for Xen, and
– An experimental evaluation of the prototype measuring accuracy and over-

head of the proposed technique.

2 Background

In this section, we discuss three topics relevant to our proposed technique. First,
we introduce System Management Mode, a special execution mode built into
x86-based CPUs that permits transparent, isolated execution. Second, we discuss
the Xen hypervisor and the types of vulnerabilities that could be leveraged by
a malicious customer to gain or otherwise misuse cloud resources. Third, we
introduce Intel Software Guard eXtensions (SGX), another set of instructions
that enable our approach.

2.1 System Management Mode

System Management Mode (SMM) is a CPU mode available in all x86 archi-
tecture. It is similar to Real and Protected Modes. Originally designed for facil-
itating power control, recent work has leveraged SMM for system introspec-
tion [28,43], debugging [45], and other security tasks [44,46]. In brief, the CPU
enters SMM upon a System Management Interrupt (SMI). While in SMM, the
CPU executes the System Management Handler (SMI Handler), a special seg-
ment of code loaded from the Basic Input/Output System (BIOS) firmware into
System Management RAM (SMRAM), an isolated region of system memory [6].
Upon completing executing the SMI Handler, the CPU resumes execution in
Protected Mode.

We use SMM as a trusted execution environment for implementing our
resource accounting functions. SMM has been available on all x86 platforms
since the 386, so it is widely available for usage on commodity systems. In addi-
tion, the underlying operating system is essentially paused while the SMI handler
executes. This isolated execution provides transparency to the operating system.
We trust SMM for two main reasons: (1) SMRAM can be treated as secure stor-
age because it is inaccessible by Protected and Real Modes, and (2) the SMI
handler requires only a small trusted code base because it is stored in the BIOS
and cannot be modified after booting when properly configured.

The SMI handler is stored as part of the BIOS. Typically, vendors ship SMI
handler code specific to their platforms. Upon powering the system, the BIOS
loads the SMI handler code into SMRAM before loading the operating system.
After loading the SMI handler, the BIOS prevents further modifications to the
SMI handler by locking down SMRAM. On Intel and AMD platforms, this is
implemented using a write-once model-specific register (MSR); upon setting a
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specific bit, no other changes can be made to SMRAM (or the associated MSR).
Thus, even if the hypervisor becomes completely compromised, the underlying
SMI handler performing our resource accounting task will remain intact. The
SMI handler is, by default, loaded into a 4 KB region of memory, called the
ASEG segment. We can alternatively load the SMI handler into another segment
of memory called TSEG to allocate more space, often as much as 8 MB.

Finally, as SMRAM is isolated in hardware (i.e., it cannot be mapped by the
MMU unless the CPU is in SMM), a hypothetical DMA attack would not be
able to corrupt resource accounting information stored in SMRAM.

2.2 Xen Credit Scheduler and Resource Accounting

Xen [18] is a widely-deployed open source hypervisor. Xen is responsible for mul-
tiplexing multiple independent guest virtual machines. In a cloud environment,
customers are given access to guest VMs with different configurations according
to how much they pay. For instance, a customer may pay more to the cloud
provider for a VM configured with more memory, disk space, or nominal CPU
time.

Xen uses the Xen Credit Scheduler [1] by default to manage CPU time. The
Credit scheduler allocates virtual credits to each Virtual CPU (VCPU) that
wants CPU time. Each VCPU can be given more or fewer credits depending on
the service level paid for. That is, the scheduler can distribute more credits to
one customer’s VCPU over another’s based on how much is billed for CPU time.
Every context switch, the scheduler decides which VCPU to run next based in
part on the number of credits that VCPU currently has. While there are other
schedulers Xen can be run with (Cherkasova et al. [13] provide a comparison),
the Credit scheduler is the most commonly deployed scheduler.

Critically, Xen runs a helper function (burn credits in the sched credit.c
file) at a regular interval that deducts credits from the currently executing
VCPU. In brief, this function approximates CPU usage over time by polling
the currently-executing context. Previous research [24,32,49] discussed in Sect. 7
has already explored vulnerabilities related to this approximation. If a malicious
guest knows about the interval at which burn credits is executed, the guest can
measure time precisely and yield the CPU before the credits are accounted for.
In doing so, a malicious attacker can potentially use CPU time without being
billed for it.

In addition, Xen maintains credit information (and other metadata) about
each guest in memory. Guests that escape the VM [15] could potentially alter
such data, yielding incorrect accounting (and later, billing) information. For
example, by deducting credits more rapidly from a benign victim guest, the vic-
tim’s apparent CPU consumption could be made to exceed its real consumption.

2.3 Software Guard eXtensions

Intel SGX is another new set of instructions that permits the creation of enclaves
in userspace [23]. These enclaves are encrypted regions of memory (code and
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data) that cannot be accessed from outside of the enclave context. SGX allows
computation to occur securely, even if the operating system or hypervisor is
malicious.

SGX is intended to secure local computation; I/O instructions are illegal
while inside an enclave. Instead, SGX-based applications must call out (via
OCALLs) to switch to untrusted OS code to execute I/O on behalf of the enclave.
SGX applications are therefore unable to monitor other activity happening on
the system (e.g., through shared memory or device I/O) securely. In this paper,
we use SMM to measure system-wide usage and then report this information to
the end user via an SGX enclave application.

3 Threat Model

In this section, we discuss three types of attacks against which Scotch is capable
of reliably accounting: (1) scheduler attacks, (2) resource interference attacks,
and (3) VM escape attacks. These attacks increase in terms of expressive power
and detriment against a hypervisor.

3.1 Scheduler Attacks

We consider an attacker capable of exploiting vulnerabilities in the hypervisor’s
scheduler to acquire system resources for the malicious VM at the expense of
a victim VM. This approach allows the attacker to prevent the victim from
accessing rightful resources and also allows the attacker to perform expensive
computations for free.

Figure 1a shows the non-attack scenario, a potential schedule of two benign
CPU-bound VMs competing for CPU time on one physical CPU. Both guests 1
and 2 are given equal time, and when the VMM assesses which VM to bill, each
guest is billed for its fair share of CPU time. However, as shown in the attack
scenario in Fig. 1b, a malicious guest could yield at precise times to avoid when
the VMM attempts to assess which guest is running. As a result, a malicious
VM could appear to never consume CPU time. Zhou et al. [49] showed that such
an attack can consume the vast majority of CPU time under proper conditions.

3.2 Resource Interference Attacks

Resource interference attacks work by exploiting VM multi-tenancy. That is,
all VM guests on a single hypervisor will have to share the underlying physical
resources at some point (e.g., there is only one system bus). A clever attacker VM
can execute precise, calculated workloads that could impact the performance of
other victim VMs or simply improve its own performance. For example, Resource
Freeing Attacks [35] work by forcing a victim VM to free up a resource for the
attacker to use. For example, the victim might be running a webserver, in which
case the attacker can flood requests to the victim, cause it to block on I/O, and
free up CPU time for the attacker. In this paper, we consider an attacker capable
of degrading victim guest performance in this manner.
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(a) Non-attack scenario.
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(b) Attack scenario.

Fig. 1. Resource accounting scenario. A potential schedule of two benign VMs (denoted
1 and 2) with ideal CPU-bound workloads. The orange arrows represent when a VMM
would poll which guest is running as part of determining billing. The accounting infor-
mation inferred is accurate over time. In (b), a malicious guest closely controls CPU
usage so that the benign guest (1) appears to use all of the CPU time. (Color figure
online)

3.3 VM Escape Attacks

Virtualization technologies, such as Xen, nominally isolate guest VMs from one
another. Indeed, with full hardware virtualization, each guest believes it has
control of an entire system. However, vulnerabilities inevitably find their way
into hypervisors that allow malicious guests to escape out of the virtualization
environment and execute arbitrary code within the hypervisor context [15,27].
Naturally, such attacks can have a devastating impact on cloud providers, poten-
tially exposing private or valuable data to the attacker. In this paper, we consider
an attacker capable of escaping the guest context, and taking over the VMM.1

In this paper, we do not assume VM escape attacks that completely disable
the system. For instance, it is very possible that a VM escape attack could
compromise the hypervisor and stop executing all guests, or an attacker could
attempt to disable network communications in the SMI handler with the Remote
System. These sorts of denial-of-service (DoS) attacks can often be detected with
timeouts and are out of scope for this work. Instead, we consider escape attacks
where the attacker is capable of corrupting data structures related to resource
usage.

4 Architecture

The goal of the Scotch architecture is to provide accurate and transparent
resource accounting for cloud computing systems. This is done via resource
accounting code that measures resources consumed by each guest residing on
a hypervisor during every task switch and interrupt. We take advantage of hard-
ware support to provide incorruptible accounting code and data storage as well
as tamper-proof event-based invocation.
1 We assume the attacker can gain ring 0 (i.e., kernel) privilege after escaping the

guest VM environment.
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Figure 2 illustrates our system architecture. We have two or more systems in
our approach. First, one or more Protected Systems run Virtual Machine Monitor
(VMM) software capable of hosting multiple benign or malicious VM guests.
Each Protected System reliably collects resource consumption information about
each guest, periodically reporting this information to an SGX enclave. The SGX
enclave stores all of the resource consumption information from the VMs on the
Protected System for further processing or analysis in a way that cannot be read
or tampered with by a malicious guest, operating system, or hypervisor. In our
implemented prototype of Scotch, we consider one Protected Machine with
one SGX enclave.

4.1 Resource Accounting Workflow

The Protected Machine described in Fig. 2 is responsible for collecting reliable
and tamper-resistant resource consumption information about each VM guest
whether it is malicious or benign. To accomplish this goal, we will discuss five
steps (marked 1©– 5© in Fig. 2) taken by the Protected System to ensure the
integrity of the resource accounting information.

In step 1©, the VMM is engaged by a VM guest through preemption or
a hypercall to service an I/O request. Using hardware support (q.v. Sect. 5),
we capture all such events, and execute our custom resource accounting code
(denoted step 2©). Note that the VM guest could be malicious or benign—we
make no distinction in our approach because we are simply computing accurate
and tamper-resistant resource accounting so that benign customers are eventu-
ally notified of the resources actually consumed.

During a context switch, step 2© invokes an SMI, causing our accounting
code to run in the SMI handler. Using further hardware support, we can con-
vert certain types of I/O and event interrupts into SMIs. For instance, when
a VM’s time quantum elapses, a timer raises an interrupt telling the VMM to
switch guests. In Scotch, we change such interrupts to invoke SMIs instead.
Invoking an SMI is critically important to the continued reliability of accounting
information provided by our system.

In step 3©, our accounting code records which VM guest will run next as
well as the time elapsed since the last time our code executed (i.e., the last con-
text switch event). This information is recorded in an isolated region of system
memory, inaccessible from the hypervisor (or guest) context. For I/O events, we
record information about what type of I/O is being done. For recording resource
consumption besides CPU time, capturing these I/O events allows us to reason
about whether a guest is consuming disk or network.

In step 4©, our accounting code finishes executing and transfers control back
to the guest. We do not pass control back to the hypervisor because a com-
promised hypervisor may change the result of a task switch event (cf. time-of-
check-to-time-of-use attacks). For example, during a context switch, the hyper-
visor scheduler will select a new guest to run. If one were to perform resource
accounting before the hypervisor finalizes the scheduling decision, a compromised
hypervisor could spoof which guest will run next, perform accounting, and then
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Fig. 2. High level overview of Scotch. The system contains one Protected System
running VMM software containing a number of benign and malicious guests. One
of the benign guests has an SGX enclave application running that receives account-
ing information from our tamper-resistant resource monitoring code. The annotations
1©– 5© correspond to the order of events in an indicative workflow. We assume benign
guests are motivated to know their resource consumption.

run a different guest. Instead, in Scotch we invoke the resource accounting
code right before control would have been transferred to the guest. After our
accounting code completes, control flows directly to the correct guest.

Finally, step 5© represents a task that is completed occasionally. It is possible
that a malicious guest that escapes to the hypervisor could corrupt data. In
particular, if such an attacker is trying to hide the resources they consume, they
might corrupt timers on the hypervisor that we use to measure the amount of
time each guest spends consuming a resource. In such cases, we could use the
SMI handler code (Step 2©) to occasionally request time information from a
trusted remote server (cf. Spectre [43]).

Cost of Accounting. Recall that our approach invokes SMIs to reliably exe-
cute our resource accounting code. The invocation of the SMI and the resource
accounting code itself both incur overhead on the hypervisor. This, in turn,
affects the performance of the guests on the system, even if no malicious guests
are running. For example, assuming a CPU-bound workload in which all guests
consume all of their allocated time quanta, adding our resource accounting code
essentially increases the amount of time taken to complete a context switch.
Thus, deploying Scotch means accepting an associated performance loss in
order to gain high accuracy, tamper-resistant resource accounting information.

As we discuss in Sect. 6, we also consider an alternative scenario to mitigate
performance impact by invoking our code at different intervals. Ideally, we would
invoke our accounting code on every possible task switch and I/O interrupt event.
However, we could instead elect to invoke our code every x such events, where
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x is some random interval from 1 to some maximum interval. Essentially, every
time an interrupt or task switch occurs, we flip a coin to decide whether to
invoke our resource accounting code. This requires adding such decision code
to the hypervisor, which could be noticed (or altered) by malicious, escaped
guests. However, we propose this approach as a means to significantly improve
performance on diverse workloads. This option allows a cloud provider to trade
off resource accounting granularity and overhead.

5 Implementation

In this section, we discuss how we implement our approach on a real system.
Recall there are five steps in our workflow from Fig. 2:

1. Capture interrupts and task switch events,
2. Redirect interrupts to invoke resource accounting code,
3. Compute resource usage impact of the current event,
4. Transfer CPU control to next guest, and
5. Relay accounting information into a trusted SGX enclave running within a

VM guest.

Capturing these interrupts depends on features from Intel’s Virtualization
(VT-x) extension. In particular, we use VT-x’s intercept capability, which allows
us to control what happens as a result of a diverse array of events that can
happen during execution, including task switching and interrupts. VT-x supports
intercepting other events such as when a guest executes certain instructions, but
we do not use this feature in Scotch. After intercepting task switches and I/O
interrupts, we execute our resource accounting code.

We use System Management Mode (SMM) to implement our resource
accounting code. We invoke a System Management Interrupt (SMI), which
causes the CPU to save its state and transfer control to the SMI handler. The
SMI handler is stored in the BIOS and loaded into the special SMRAM memory
region upon booting the system. SMRAM is only addressable by SMM, and so
any hypervisor or guest code running in Protected or Long Mode are not capable
of reading or writing our SMI handler code. We overwrite the SMI handler with
custom resource accounting code, which is then executed every time we assert
an SMI.

SMIs can be asserted in several ways according to the platform’s chipset.
For our prototype, we use the AMD 800 series chipset. This platform supports
invoking SMIs by writing to the legacy I/O port 0xb0 [5]. By executing outb
instructions, we can invoke SMIs. Alternatively, we can also write to offset 0x9b
of the SMI control register of the advanced configuration and power interface
(ACPI) MMIO configuration space.2 Writes to this address causes an SMI to
occur. Once an SMI is asserted, the CPU switches to SMM and begins executing
the SMI handler at a fixed offset. Finally, we can also assert SMIs by configuring
timing registers to deliver SMIs at configurable intervals.
2 On our platform, the specific physical address was 0xfed8029b.
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We wrote a custom SMI handler that locates the VM guests residing on the
system, identify which one was executing when the SMI occurred, and updates
resource account information about that guest. On x86 machines, the control
register CR3 contains a pointer to the physical location of the page directory
associated with a process—in Xen, the CR3 value can uniquely identify guests.
We maintain a map of CR3 register values to VM guest IDs. We can also com-
pute the location of the Virtual Machine Control Structure (VMCS) of each
guest, which contains information about virtualized timers (and other informa-
tion related to VM guest context). In our prototype, we have two guest VMs
executing on one physical core—this setup simplifies identifying which guest is
currently executing.

Recall that our SMI handler is invoked for one of two reasons: task switching
or interrupt servicing. During a task switch, the VMCS page contains a pointer
to the next guest that will run after the task switch completes. In other words, we
know which guest will run next but not the guest that just completed running.
Nonetheless, we can record current timestamp t1 using the rdtsc instruction.
Then, when the next task switch occurs, we can get another timestamp t2, and
use the difference t2 − t1 to estimate the amount of CPU time consumed by
the guest that was previously executing. For interrupts, we can determine which
IRQ was involved using the VMCS, from which we can determine the device
that caused the interrupt. For our current prototype, we track the number of
interrupts and associated IRQs corresponding to each guest.

After our resource accounting SMI handler completes, it switches back to Pro-
tected Mode to resume normal execution. Executing an RSM instruction restores
the previous state and configuration registers. Ultimately, in our prototype, this
transfers control of the CPU to the next guest task to execute without any
space for the VMM to execute any instructions. Thus, even if the hypervisor is
compromised, it does not have an opportunity to change the results of a task
switch or interrupt event after we have completed our accounting code. This
approach allows a highly granular and accurate view of resource consumption of
each guest.

Next, we relay our accounting information to the SGX enclave, which stores
data for later analysis in an isolated space. We cannot use SGX-related instruc-
tions while in SMM [23]. Instead, we perform several steps to get the data into
the SGX enclave. First, we create a normal userspace stub program in the vir-
tual machine guest containing the SGX enclave. This stub program contains a
page of memory for arbitrary data, and code to marshall that data into the
SGX enclave (via EENTER). We use the SMI handler to check the integrity of the
stub program to detect potential tampering. Next, we note the physical address
of this starting page, and the SMI handler writes its accounting data into that
location. We configure the SMI handler to transfer control to the stub code after
exiting SMM (by changing save state). The stub code (executing in Protected
Mode at ring 3) then places that data into the enclave. This approach allows us
confidence that the accounting data is securely relayed to user space.
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Finally, we implement a network card driver in the SMI handler to com-
municate with the Remote System for accurate, external timing information.
A similar approach was used in Spectre [43] and MalT [45]. We use symmet-
ric key encryption with a key stored in SMRAM transmitted by the Remote
System as the BIOS is booting the Protected System. This ensures that the
key is stored securely before the Protected System has an opportunity to load
potentially-compromised hypervisor code.

6 Evaluation

In this section, we evaluate Scotch. We present experimental results and dis-
cussion. We seek to answer the following research questions:

RQ1 Can we perform accurate resource accounting during scheduler attacks?
RQ2 What is the overhead of our accounting approach on benign workloads?
RQ3 Can we accurately account resources during resource interference attacks?
RQ4 Can we perform accurate resource accounting during VM escape attacks?
RQ5 How do our CPU-based techniques apply to other resources?

6.1 Experimental Setup

Our experiments were carried out on an Intel Core i7-7700HQ 2.8 GHz CPU with
32 GB of memory. We ran two identical Ubuntu 15.04 guests, each given 256 MB
of memory and 1CPU core. We recorded the physical memory addresses of each
guest’s Virtual Machine Control Structure (VMCS) to ease experimentation.
For ground truth data, we used Xen’s built-in instrumentation, xentrace [3].
Xentrace behaves similarly to perf in that it can monitor for certain events
and record resource usage. For some research questions, we developed our own
attacks to mimic the behavior of possible attacks that would occur in the wild.
Those implementations are detailed in the appropriate sections that follow.

6.2 RQ1: Scheduler Attack

Our first research question asks whether our system is capable of accurately
recording CPU time consumption when a malicious guest uses a scheduler attack
to steal CPU time. For this experiment, we have one malicious guest VM and
one victim guest VM competing for the same amount of CPU time on a physical
core. We wrote ten variants of the Xen credit scheduler, each of which gives the
malicious VM an increasing amount of CPU time by influencing credit allocation
in the scheduler. This is similar to the pseudo-attack implemented in [24], though
we effect changes in the credits assigned to each guest over time to achieve
changes in CPU time.

The ten scheduler variants are meant to represent varying degrees severity
of a given attack—during each accounting period, each variant will randomly
decide whether to deduct credits from the attacker VM, with variant n being
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4n% likely to skip credit deduction. That is, scheduler variant 10 is 40% likely
to skip the deduction of credits on the attacker VM. This means that, over time,
the attacker will have more credits and thus more time to get scheduled.

We ran several benchmark applications in both guests using each of the
ten scheduler variants: pi, gzip, and PARSEC [11]. Computing pi represents a
highly CPU-bound workload, while gzip on a large random file represents a more
mixed CPU and I/O-bound workload. The PARSEC benchmark suite has been
used previously in the area of cloud performance and economics [37,39]. Under
benign circumstances, each guest should get 50% of the CPU time regardless
of workload. When the attack variants are considered, an increasing amount of
CPU time should be allocated to the attacker.

Table 1. Ratio of attacker VM CPU time to guest VM CPU time.

Scheduler attack severity level

Benign 1 2 3 4 5 6 7 8 9 10

Scotch 1.00 1.04 1.07 1.10 1.13 1.17 1.21 1.26 1.31 1.36 1.41

Ground truth 0.99 1.05 1.09 1.12 1.15 1.17 1.20 1.25 1.30 1.35 1.39

Table 1 shows the results of this experiment. We ran each benchmark pro-
gram for five minutes measuring the CPU time allocated. We report the ratio
between the attacker VM and victim VM CPU time for both Scotch and xen-
trace [3]. Furthermore, we average the results of all benchmarks. We note that,
under benign circumstances, Scotch and xentrace both report a ratio of 1.0.
However, as the attack becomes more severe, the attacker VM gets a higher ratio
of CPU time, again validated against xentrace. This pattern is consistent across
all workloads. Overall, Scotch performs accurate resource accounting even in
the face of severe scheduler attacks.

6.3 RQ2: Overhead

We note that executing our isolated SMI handler resource accounting code takes
additional time during each context switch and interrupt. Our SMI handler code
takes 2248± 69 cycles to execute. On our 2.8 GHz platform, that corresponds to
about 1µs. However, acquiring granular resource accounting information means
this 1µs cost must be incurred every context switch and every interrupt. In
contrast, a typical VM switch takes roughly 20,000 cycles, or roughly 7.1µs.
Adding our resource accounting code thus increases context switching time 14%.
However, in purely CPU-bound workloads, Xen uses a 30 ms default quantum
per guest. Thus, the context switching time is amortized into the 30 ms runtime
per quantum. In other words, every 30 ms of useful work requires a total of
8.1µs overhead in Scotch, compared to 7.1µs overhead in default systems.
Thus, we can estimate the additional system overhead incurred by Scotch on
CPU-bound workloads with:
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|8.1µs − 7.1µs|
(30ms + 7.1µs)

= 33 × 10−6additional overhead

That is, our system incurs an additional .0033% overhead by using our sys-
tem. As I/O operations typically take much longer in comparison to CPU-bound
computation, this overhead reasonably approximates the worst-case overhead
incurred by Scotch.

However, for the complete picture, we must also consider more realistic mixed
CPU- and I/O-bound workload. Using gzip, we compressed a large randomly-
generated file for a total of 5 min. The file was twice the size of guest system
memory preclude caching the entire file and force operations to go all the way
to disk. We measured the amount of CPU time and the amount of time spent
servicing disk requests using our approach. In five minutes, there were 8070
context switches in which 214.59 s of CPU time were consumed. Thus, we can
estimate the amount of CPU time consumed after each context switch with:

214.59 s
8070 switches

= 26.6ms,

which is reasonable (for reference, recall the standard quantum in Xen is 30 ms):
gzip would be spending some amount of time executing CPU-bound compression
code. Using the formula above, we get an additional overhead of 0.0038%.

In contrast, there were 1371 interrupts going to disk, which took a total
of 85.42 s. This corresponds to 62.3 ms per interrupt. Using a similar formula
above, we can estimate the additional overhead incurred on disk-bound interrupt
events. For interrupts, this additional overhead is 0.0016%. Both values represent
a significant improvement over existing SMM-based work [24]. While part of this
improvement is due to faster SMI-handler code, much of the overhead depends
on the underlying capability of the CPU to switch into SMM. Previous work has
found SMI handler code takes on the order of 10µs [43,45]. That said, even with
a 100-fold increase in execution time of our SMI handler code, we still incur an
overhead below 1%.

Note that we can further improve performance using an interval-based app-
roach. Instead of invoking our code on every task switch or I/O interrupt, we
can instead invoke our code after x such events, where x is a random number
between 1 and some maximum interval. This random interval approach prevents
transient resource attacks from going unnoticed because such attacks cannot
learn a pattern for our resource accounting invocation. Thus, in the long run,
such an approach maintains high accuracy with regard to resource accounting,
but features a lower overhead. That said, spreading out the interval does create
an opportunity for a sophisticated attacker to hide malicious activity; such an
attacker could risk a certain amount of detection (determined by the measure-
ment interval) by attempting to steal resources and counting on not be measured
with our approach. Ultimately, the end user must decide the level of granularity
of resource accounting information they need in comparison to the amount of
overhead incurred by Scotch.
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6.4 RQ3: Resource Interference Attacks

We also consider accounting in the face of resource interference attacks [35].
Scotch is capable of maintaining accurate resource accounting information even
in the presence of such attacks. Because Scotch is invoked on every task switch
and I/O interrupt, we maintain an accurate picture of resource consumption by
construction. For example, as discussed in Sect. 3.2, a resource freeing attack
may work by causing a victim to block on I/O and thus free up CPU time for
the attacker—but they still involve standard task switching and I/O interrupts.
Thus, in such an attack, Scotch will accurately report that one guest is blocked
on I/O and that the other is using the CPU.

We note that resource interference attacks often rely on an attacker’s knowl-
edge of a victim’s workload. We reiterate that Scotch does not detect or pre-
vent such an attack per se (although an analyst may do so by inspecting the
resource accounting information). Instead, Scotch provides a guarantee about
the quality and accuracy of resource accounting information our system delivers,
even in the face of such attacks. This represents an improvement over previous
approaches [12,24], which neither detect nor prevent nor accurately account for
resource usage in the presence of such attacks.

6.5 RQ4: VM Escape Attacks

Next, we discuss the viability of using Scotch even when the hypervisor has
been compromised completely. Attacks such as Venom [15] or CloudBurst [27]
allow a malicious VM guest to exploit vulnerabilities in the underlying hypervisor
to escape the virtualized environment and execute arbitrary code in the hyper-
visor context. These are particularly dangerous attacks because they have the
potential to compromise all of the other VM guests on the hypervisor. Addition-
ally, such attacks are capable of changing resource allocation arbitrarily, poten-
tially influencing ultimate billing for benign customers. In such cases, Scotch
can provide accurate resource accounting information that can be used to provide
accurate billing for all customers.

Recall that our resource accounting code is stored in isolated SMRAM. Even
if an attacker is allowed ring 0 privilege in the underlying hypervisor, there is not
a way for such an attacker to either (1) change previously-collected accounting
information, or (2) change the accounting code itself. While ring 0 code could
influence configuration registers and invoke spurious SMIs, a cursory analysis of
the data transmitted to the Remote System would reveal such behavior. Addi-
tionally, such an attacker is not able to change SMM-related configuration regis-
ters because they are locked before the BIOS transfers control to the hypervisor.

However, malicious ring 0 code could alter kernel structures (Direct Kernel
Object Manipulation [30]) or sensitive registers to influence accounting informa-
tion before it is seen by the SMI handler. An attacker could, for instance, write
the TSC register so that it appears a particular guest has consumed fewer cycles
than it actually has, leading to an accounting discrepancy. In such cases, we could
employ an instruction-level instrumentation approach similar to MalT [45] while
kernel code executes to detect TSC writes or other malicious DKOM activity.
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6.6 RQ5: Beyond CPU Time

RQ1 discusses experiments related to CPU time as a resource. However, Scotch
is also capable of accurately recording VM guests’ consumption of other system
resources as well. First, by invoking our code on every I/O interrupt as well as
every task switch, we have the opportunity to examine consumption of peripheral
devices (e.g., network and disk). As discussed in Sect. 5, VT-x allows us to gather
information about the cause of the interrupt via the VMCS. Second, we do
not give the hypervisor an opportunity to execute any code after the interrupt
occurs—instead, after our resource accounting code executes, we transfer control
to the next guest VM that was supposed to run after the interrupt completed.
In doing so, there is no opportunity for a compromised hypervisor to alter the
results of an interrupt to make it appear as though a different resource had been
consumed.

6.7 Threats to Validity

Scotch is a system meant to provide accurate resource accounting information
in the cloud so that end customers have greater assurance that they are billed cor-
rectly according to the resources they really consume. While we have conducted
experiments validating the high accuracy and low overhead of our approach, we
discuss some assumptions we have made in conducting this evaluation.

First, we did not experiment using a test in the wild. For example, we imple-
mented a resource-based attack by directly modifying the scheduler’s behav-
ior. We favored this approach because it admits controlled experimentation: it
allowed us to vary how much of the CPU time was being stolen. We believe this
represents different modalities of attackers with varying goals—some attackers
may wish to operate more stealthily for longer periods of time, while others
might operate more blatantly. We believe a controlled attack such as the one we
have created is reasonably indicative of a variety of attacker behavior. Similarly,
the benchmark workloads we evaluated on may not generalize. We attempted
to mitigate this threat by including both microbenchmarks (CPU-bound and
mixed) as well as the PARSEC [11] benchmarks which have been previously
used in the area of cloud performance.

Second, invoking SMIs may cause perturbations in the behavior of certain
caching mechanisms. For instance, the instruction cache might be cleared, and
different chipsets and CPUs may perform other tasks while switching to SMM.
Attacks abusing knowledge of this low-level detail have been documented [41,42].
In this paper, we assume that the hardware is trusted and that hardware-level
bugs that admit such attacks are out of scope.

Third, while DMA attacks would be unable to affect the integrity of data
stored in SMRAM or within the SGX enclave, there is a potential opportunity
for an attacker to compromise data while it is being marshalled into the enclave
from SMM. In Scotch, we configured the system to immediately transfer control
to the enclave entry code after resuming from SMM. Depending on the platform’s
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RSM implementation, there may be a small window to corrupt that marshalled
data.

Finally, modifying the SMI handler to enable Scotch requires some degree
of trust in the hardware vendor’s BIOS code. Several attacks against SMM and
related firmware have been discovered [17,25]; such attacks could compromise
the resilience of data collected by Scotch. We can mitigate such concerns by
using open source firmware where available, such as Coreboot [16] as used in
Spectre [43] and MalT [45]. This would allow evaluating the firmware before
deployment while trusting a restricted set of closed-source vendor code.

6.8 Evaluation Conclusions

Unlike previous approaches, Scotch was able to perform accurate resource
accounting in the face of scheduler attacks, producing results that were within
2% of the ground truth. Scotch increases the cost of each context switch by
14%, which corresponds to a .0033% overhead for CPU-bound workloads and a
.0016% overhead on more mixed workloads. This can be mitigated by account-
ing at random intervals, trading off granularity for overhead. By construction,
Scotch provides accurate accounting in the face of resource interference attacks,
since such attacks still use standard task switching and I/O interrupts. Scotch
also provides accurate accounting in the presence VM escape attacks, since even
the hypervisor cannot tamper with SMRAM or SMI handler code. In addition
to accurately measuring CPU time, techniques in Scotch can address resources
such as disk and network I/O that are processed through interrupts. Over-
all, Scotch provides transparent and accurate resource accounting for virtual
machine guests.

7 Related Work

In this section, we discuss four main areas of related work: (1) Resource account-
ing techniques that propose helping cloud providers guarantee a particular ser-
vice level to their customers, (2) SMM-based system protection techniques, (3)
SGX-based system protection techniques, and (4) other multi-tenancy virtual-
ization studies.

7.1 Resource Accounting

Chen et al. [12] propose Alibi, a system for verifiable resource accounting. It
places a reference monitor underneath the service provider’s software platforms
(i.e., nested virtualization). Jin et al. [24] propose another verifiable resource
accounting mechanism for CPU and memory allocation even when the hypervisor
is compromised. Similar to our system, their approach also uses SMM as a trusted
execution environment to account the resource usage. However, our system differs
from previous work in the following ways:
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1. By invoking our resource accounting code every context switch and inter-
rupt, we can derive a granular resource usage report for each guest. This
allows a rapid identification of discrepancies in resource usage. By contrast,
Jin et al. employ a polling technique that requires running the analysis for
a long time before a conclusion can be made—if an attacker is trying to be
stealthy by stealing fewer resources, our approach can be used to more quickly
identify such behavior, possibly within a few context switches, depending on
the workload.

2. In addition, the manner in which our resource accounting code is invoked
guarantees that we do not miss transient events—other techniques that
employ polling for resource auditing may miss malicious guests that learn
their polling behavior. For instance, Wang et al. [38] provides a systematic
analysis of evasion attacks (i.e., transient attacks) for polling-based SMM sys-
tems. In such attacks, the adversary can circumvent the defense mechanisms
by studying their polling behavior. With Scotch, if a malicious guest wants
CPU time, control must transfer to it at some point, at which point our SMI
handler will be invoked.
However, this guarantee comes at the price of performance. As noted in
Sect. 6, our resource accounting code incurs an additional 1µs per task switch
and I/O event. We can tune this depending on the end-user’s needs, instead
invoking our code on random intervals to amortize the 1µs cost. Ultimately,
the 1µs cost corresponds to a worst-case additional overhead of .0033%, which
may be low enough for most applications.

3. Scotch requires no nested virtualization and retains a small Trusted Code
Base (TCB) within SMM. In contrast, Alibi [12] incurs a higher overhead,
roughly 6% CPU and 700% I/O, much of which is due to nested virtualization.
Additionally, Alibi incorporates the KVM codebase, significantly increasing
the TCB.

4. Finally, Scotch is capable of reporting accurate accounting information in
the presence of a malicious guest capable of escaping the virtualization envi-
ronment. An escaped guest might be able to change resource usage informa-
tion recorded by the hypervisor (e.g., credits consumed in the Xen scheduler
to hide oddities in consumed CPU time). However, as we store this informa-
tion in SMRAM, we can derive an accurate report of resource usage without
relying on data structures stored in the hypervisor.

In addition to works from academia, several industrial systems have been
introduced for resource accounting [4,31,36]. For instance, Amazon AWS pro-
vides a tool called CloudWatch [4], which is a monitoring service for AWS cloud
resources that provides system-wide visibility to resources consumed by cloud
applications.

7.2 SMM-Based Approaches

To the best of our knowledge, only Jin et al. [24] have proposed an SMM-based
cloud resource accounting technique. Their approach is called Hardware-Assisted
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Resource Accounting (HRA). This technique is limited by its dependency on
random polling. By sampling which VCPU (and therefore which VM guest) is
currently executing, HRA relies on a large sample size to approximate a sort of
Gantt chart of VM running time. Additionally, HRA relies on data structures
in the hypervisor to coarsely approximate memory consumption. In contrast, by
measuring resource consumption every context switch and interrupt, Scotch
can rapidly determine accurate resource consumption information.

Additionally, there are several other SMM-based systems that are not directly
used in securely reporting hypervisor resource consumption. These systems
instead focus on detecting malicious activity [43], hiding keystrokes from the
OS [44], and securing peripheral devices [46]. Furthermore, systems like Hyper-
Check [47] and HyperSentry [8] have been used to verify the integrity of a run-
ning hypervisor. Finally, MalT [45] proposed a transparent, remote debugging
framework for use in analyzing stealthy malware or attacks capable of escaping
a VM or rooting a system. Besides using SMM for defense, attackers use it for
malicious purposes like implementing stealthy rootkits [19,33]. For example, the
National Security Agency (NSA) uses SMM to build advanced rootkits such as
Deitybounce for Dell and Ironchef for HP Proliant servers [2].

7.3 SGX-Based Approaches

Previous SGX-based systems such as Haven [10] ported system libraries and a
library OS into an SGX enclave, which forms a large TCB. Arnautov et al. [7]
proposed SCONE, a secure container mechanism for Docker that uses SGX to
protect container processes from external attacks. Hunt et al. [21] developed
Ryoan, a SGX- based distributed sandbox that enables users to keep their data
secret in data-processing services. These two papers did not propose techniques
to reduce the attack surface of computation inside enclaves or reduce the perfor-
mance overhead imposed by SGX paging. Schuster et al. [34] developed VC3, an
SGX-based trusted execution environment to execute MapReduce computation
in clouds.

7.4 Other VM Multi-tenancy Studies

Zhang et al. [48] presented a class of memory denial-of-Service attacks in multi-
tenant cloud servers, showing that a malicious VM may cause significant perfor-
mance degradation of the victim VM by causing contention in storage-based
and scheduling-based resources. Bates et al. [9] discussed using side-channel
attacks to recover private information about co-resident VM guests. Similarly,
Inci et al. [22] exploited side-channel information to acquire RSA keys from vic-
tim guests. Scotch does not address these sorts of attacks. We instead focus
on scenarios in which attackers actively attempt to consume more resources for
themselves at the expense of victim guests.
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8 Future Work

In Sect. 3, we discussed three classes of attacks where Scotch can provide accu-
rate resource accounting information. However, we also discuss transplantation
attacks in which an escaped VM guest moves malicious code into a victim guest
so that the victim computes and accesses resources on behalf of the malicious
guest. Scotch and similar accounting systems are not currently capable help-
ing detect such attacks or otherwise automatically deciding whether malicious
activity occurs. Even with perfectly accurate resource consumption information,
the victim VM in this case would appear as though it were consuming resources
as normal, and so the victim would end up being billed for work initiated by the
attacker. We believe that such attacks would require detecting either the escape
itself (i.e., detecting the vulnerability or exploit causing the guest to escape the
virtualized environment) or detecting disparities from the normal workload per-
formed by the benign guest. In the future, we would like to incorporate such
detection into Scotch.

Additionally, we see Scotch as seeding the development of a general app-
roach to securing interrupts and peripheral I/O. Currently, SGX does not sup-
port any form of secure communication outside the scope of the enclave. Exist-
ing work such as SGXIO [40] has investigated trusted I/O paths with peripheral
devices. Scotch can target a similar application—by interacting with periph-
eral devices in SMM, we have the opportunity to attest firmware on potentially
malicious devices, whereas SGXIO requires trusting a hypervisor containing a
driver. We intend to explore securing I/O using Scotch’s combination of SMM
and SGX.

9 Conclusion

The growing popularity of cloud-based virtualization services, coupled with the
increasing number of security vulnerabilities in hypervisors, presents a com-
pelling need for accurate and transparent virtual machine resource accounting.
We introduce Scotch, an architecture that uses System Management Mode
on x86-based systems to carry out resource accounting and store information
in an isolated manner that cannot be tampered with by a compromised guest
or hypervisor. By accounting for resources at every task switch and I/O inter-
rupt, our system is accurate in the presence of certain classes of attacks, such
as scheduler attacks and resource interference attacks, by construction. Scotch
produced results that were within 2% of the ground truth, while incurring a
.0016% overhead on indicative workloads. Because SMRAM is isolated, Scotch
can even provide accurate information in the face of VM escape attacks. Over-
all, Scotch provides transparent and accurate resource accounting for virtual
machine guests.
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Abstract. We present techniques for attributing amplification DDoS
attacks to the booter services that launched the attack. Our k-Nearest
Neighbor (k -NN) classification algorithm is based on features that are
characteristic for a DDoS service, such as the set of reflectors used by that
service. This allows us to attribute DDoS attacks based on observations
from honeypot amplifiers, augmented with training data from ground
truth attack-to-services mappings we generated by subscribing to DDoS
services and attacking ourselves in a controlled environment. Our eval-
uation shows that we can attribute DNS and NTP attacks observed by
the honeypots with a precision of over 99% while still achieving recall
of over 69% in the most challenging real-time attribution scenario. Fur-
thermore, we develop a similarly precise technique that allows a victim
to attribute an attack based on a slightly different set of features that
can be extracted from a victim’s network traces. Executing our k -NN
classifier over all attacks observed by the honeypots shows that 25.53%
(49,297) of the DNS attacks can be attributed to 7 booter services and
13.34% (38,520) of the NTP attacks can be attributed to 15 booter ser-
vices. This demonstrates the potential benefits of DDoS attribution to
identify harmful DDoS services and victims of these services.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks have become commoditized by
DDoS-for-hire services, commonly called booters or stressers [7,19]. A large num-
ber of booter services advertise their services openly as an economical platform
for customers to launch DDoS attacks. At the same time DDoS attacks are
increasing in number and in magnitude. This proliferation of DDoS attacks has
caused many network and website operators to rank this type of attack as one of
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the largest threats facing them [13]. This barrage of DDoS attacks has increased
the demand for Content Delivery Networks (CDNs) and Software Defined Net-
working defenses that can absorb and filter these attacks [5]. In turn, this has
prompted attackers to react by devising increasingly efficient methods of bypass-
ing or overwhelming defenses. The result is an escalating technological arms-race
between DDoS attackers and defenders that at times has congested segments of
the core Internet infrastructure as collateral damage [17].

Despite the proliferation of DDoS services and attacks, little progress has
been made on attributing the services that are launching these attacks on behalf
of their customers. Most ideas for attribution focus on IP traceback mecha-
nisms [16,21–23,30] to trace the source of spoofed IP packets, which require
ISPs to assist and so far have not been widely deployed. This has resulted in
most of these attacks being unattributed unless the attackers unveil themselves.
While it is important to create strong technological DDoS defenses, we argue
that there is also benefit in investigating other methods that enable attribu-
tion of DDoS attacks to the services responsible for launching these attacks.
For instance, some of these booter services—seven out of 23 services that we
studied—claim they are benign services by advertising as “stress-testing” ser-
vices intended to be used only by authorized administrators. For example, one
of these services included this statement on their website, “We provide a pro-
fessional and legal ip stresser service which is based on a massive 20 dedicated
server backend, ensuring that your server is tested to its limits.” Attribution can
remove this veil of legitimacy and assist efforts to undermine these services by
allowing victims and law enforcement to attribute which booter services were
responsible for an attack. Attribution also enables measuring the scale of these
services and prioritizing undermining the larger services that are causing more
harm. In order to assist ongoing investigations, we are continually sharing infor-
mation from our study on DDoS attacks and booter services with the European
Police Office (Europol), the United States Federal Bureau of Investigation (FBI)
and large ISPs or backbone providers.

In this work, we show that it is possible to build supervised learning
techniques that allow honeypot amplifier operators and victims to accurately
attribute attacks to the services that launched them. To begin, we identify three
key features that honeypot operators can record to construct a supervised k -NN
classifier that can attribute attacks. In order to validate our method, we sub-
scribed to 23 booter services and generated a ground truth data set of attacks
to booter service mappings1. Validation of our classifier using the ground truth
self-attack data set shows that it is highly precise at attributing DNS and NTP
attacks with a precision of over 99% at 69.35% recall in the worst case of real-time
attribution. When retrospectively attributing attacks, the recall even increases
to 86.25%. Executing our classifier over the set of all attacks observed by the
honeypots shows that 25.53% (49,297) of the DNS attacks can be attributed to
7 booter services and 13.34% (38,520) of the NTP attacks can be attributed to
15 booter services.

1 Our ethical framework for these measurements is based on previous studies that
have used this methodology [7,20].



Linking Amplification DDoS Attacks to Booter Services 429

Finally, we show that a k -NN classifier can also be used by victims to attribute
DDoS attacks to the service that launched the attack. Our findings demonstrate
that many of the attacks we observed can be attributed to a small set of booter
services that are operating relatively openly. Our ability to attribute large num-
bers of attacks to a small set of booter services and sharing of this information
with Europol and the FBI to assist in active investigations demonstrates the
usefulness of our attribution methods.

In summary, we frame our contributions as follows:

– We present a k -NN-based classifier that attributes amplification DDoS attacks
observed by honeypots with a precision of over 99% while still achieving recall
of over 69% in the most challenging real-time attribution scenario.

– We present a similarly precise technique that allows a DDoS victim to
attribute attacks based on features extracted from a victim’s network traces.

– We attribute 25.53% (49,297) of the DNS attacks to 7 booter services and
13.34% (38,520) of the NTP attacks to 15 booter services.

2 Background

2.1 Threat Model

Amplification DDoS constitutes a powerful attack in which an adversary aims
to exhaust the bandwidth of a victim’s host or network by inducing a large
volume of traffic. Towards this, the attacker abuses multiple servers as so called
amplifiers. These servers offer UDP-based protocols prone to amplification, i.e.,
the server’s response is significantly larger than the corresponding request sent
to the server. At least 14 protocols suffer from this flaw [18], such as NTP
and DNS, leading to a multitude of servers that can be exploited as amplifiers.
Given the connection-less nature of UDP, an attacker can redirect the servers’
responses to the victim by simply spoofing the source IP address in requests.
Due to amplification ratios of a factor of 5 to 4500 [18], an attacker that sends
requests at a rate of some Mbit/s can still cause attack traffic at Gbit/s-scale.

Furthermore, we are concerned with a special type of attacker: booter services.
These offer platforms for DDoS-as-a-service, often under the disguise of “stress-
testing”, where customers can request various types of attacks for a small fee. The
booter will then launch these attacks using its infrastructure. Our threat model
thus contemplates four parties: Customers, who commission attacks; booters,
who conduct the actual attacks; amplifiers, who are exploited to amplify traffic;
and victims, who are the targets of such attacks.

The aim of this paper is to attribute attacks to booters, when observed from
either the victim’s or an amplifier’s perspective. This is non-trivial, as from the
victim’s perspective the attack seems to stem from the amplifiers. Similarly,
from an amplifier’s perspective, the requests seem to be legitimate requests by
the victim (due to the use of spoofed source IP addresses by the booter). While
ultimately one would like to identify the customer, only the booter, amplifiers,
and the victim are directly participating in an attack. Nonetheless, since the
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booter has a business relation to the customer, pinpointing the booter behind
an attack constitutes an important step towards this goal.

2.2 Ethical Considerations

As part of our study we subscribed to 23 booters and conducted a controlled set
of self DDoS attacks. Furthermore, we also leveraged honeypots for amplification
attacks. We settled on this methodology for collecting a ground truth data set of
mappings between observed attacks and the services that launched these attacks
after finding that no data set available to us could be used to validate our DDoS
attribution techniques. Before we began performing these self DDoS attacks we
carefully attempted to minimize the harms and maximize the benefits associated
with our methodology based on observations from previous studies that launch
self-attacks in order to measure booter’s attacks [7,20].

We received an exemption from our Institutional Review Board (IRB), since
our study did not include any personally identifiable information. In addition, we
consulted with our institution’s general counsel, who advised us not to engage
with any DDoS service that advertised using botnets and to cease active engage-
ment with any booter service that we realized was using botnets.

An analysis of TTL values observed by the honeypots indicated that it is
unlikely any of the booter services we subscribed to used botnets. Based on the
guidance of our institution’s general counsel, our victim server was connected
by a dedicated 1 Gbit/s network connection that was not shared with any other
servers. We also obtained consent from our ISP and their upstream peering points
before conducting any DDoS attack experiments. We also minimized the attack
durations, notified our ISP before launching any attack and had a protocol in
place to end an attack early if it caused a disruption at our ISP.

We purchased subscriptions from 23 booter services. When doing so, we
selected the cheapest option, which ranged from $6–$20 and averaged $12 per
month, to minimize the amount of money given to these services. In total, we
spent less than $400 and no individual booter service received more than $40 in
payments as part of the measurements in this paper2. All payments were made
using PayPal and we assumed that proper controls were put in place at PayPal
to mitigate the risk of money flowing to extremist groups. As part of our design
methodology, we minimized the amount of money paid and targeted a small set
of booters to obtain a valuable ground truth data set.

Our method created some harm to amplifiers and their upstream peering
points by consuming bandwidth resources. The largest amount of bandwidth
consumed was 984.5 kbit/s for NTP amplifiers and the least was 16.7 kbit/s for
DNS amplifiers, similar to those reported in a previous study [7].

Over the course of our experiments we did not receive any complaints from
the operators of these amplifiers. We limited our attacks to 30 s. Based on

2 To put this into perspective: Previous studies of these booters have shown that
they have thousands of paid subscribers and generate revenues of over $10,000 per
month [7,19].
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analysis from a previous study that used a similar methodology [7], these short
duration attacks enable us to observe about 80% of the amplifiers used by a
given booter service and reduce the harm we cause to misconfigured amplifiers.

Similarly, the use of DDoS honeypots might also incur harm on the Inter-
net. We used AmpPot, a honeypot proposed by Kraemer et al. [8]. To avoid
contributing to DDoS attacks, AmpPot limits the rate of requests and deploys
automatic IP blacklisting: The honeypots will stop responding for one hour to
any IP address sending more than 10 requests per minute. This limits the max-
imum amount of data sent to a DDoS victim to a few kilobytes. For a more
detailed ethical discussion on AmpPot we refer the reader to [8].

3 Amplification Attack Data Set

To investigate if and how amplification attacks can be attributed to their origi-
nating booter service, we established two data sets that help us to gain insights
into the overall amplification attacks, but also to find concrete attack instances
caused by individual booters. In Sect. 3.1, we describe how we leverage amplifi-
cation honeypots to gain insights into global amplification attacks. In Sect. 3.2,
we discuss how we use booters and launch controlled attacks against ourselves
to learn about attack techniques of certain attackers.

3.1 Honeypot Attacks

Although the general threat of amplification attacks has been known for years,
actual attack insights are only documented in anecdotal evidence, such as attacks
against Spamhaus or OVH at hundreds of Gbit/s attack volume. To collect
insights into the set of global amplification attacks, we leverage data collected
by AmpPot [8], a honeypot proposed by Krämer et al. AmpPot emulates
seven UDP-based protocols that have known amplification vectors and will thus
eventually be abused as part of real-world DDoS amplification attacks (QOTD,
CharGen, DNS, NTP, RIPv1, MSSQL, and SSDP). Krämer et al. observed that
attackers will eventually find such honeypots via Internet scans, and start abus-
ing them as potential reflectors shortly thereafter. AmpPot thus serves as an
eye on global amplification attacks, and due to the nature of the attack traffic,
can also observe who is being attacked and when.

In December 2014, eleven globally-distributed honeypots with single static
IP addresses were deployed, and have been operated continuously since then.
In November 2015, a twelfth honeypot was added, listening on 48 static IP
addresses. This honeypot employs a special feature named Selective Response,
where each source scanning for amplifiers will find a unique set of 24 IP
addresses3 [10].

We set our analysis period to two months from December 9, 2015 to February
10, 2016. In this period, the honeypots observed 570,738 amplification attacks
3 The idea behind this is to imprint a unique fingerprint on each scanner. Letting each

scanner find 24 IP addresses maximizes the total number of fingerprints.
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(8,918 attacks per day on average). However, given that RIPv1, MSSQL, and
QOTD combined account for less than 5% of these, we decided to exclude those
protocols from our analyses.

3.2 Self-attacks

The honeypots give us valuable insights into global attacks, but do not give us
indications where the attacks were coming from. Previous studies have identified
so-called booter services (“booters”) as being responsible for a large number
of amplification attacks [6,7,20]. In an attempt to learn attack characteristics
of these booters, we signed up at these services and then launched short-lived
amplification attacks against a target in our control.

To start launching self-attacks and correlating them with the traffic seen at
the honeypots, our first task was to identify booter services to cover in the study.
Absent a centralized location for finding booters, we located services via search
engines and advertisements on underground forums. We selected a total of 23
services offering amplification attacks based on NTP, DNS, CharGen and SSDP.
When selecting these booters, we tried to include services that we speculated
to be more stable and have more subscribers based on reviewing user feedback
on underground forums. To minimize the amount of money we paid to these
abusive services, we kept the number of covered booters relatively small.

Table 1 provides an overview of the booter services4 that we cover and the
amplification attack types they offer. NTP was the most popular attack pro-
tocol, followed by DNS. 16 of the 23 services clearly advertise malicious DDoS
attacks. In contrast, seven services hide their malicious intention behind “stress-
ing” services, a seemingly benign way to verify the resilience of a network against
DDoS attacks. However, not a single service performs any kind of attack target
validation. That is, service subscribers can specify any IP address (or domain)
that should be attacked, regardless of whether the target is under the control of
the client. This shows the clear malicious intention behind all 23 booter services.

Table 1. Covered booter services

AUR BAN BO1 BO2 BO3 CRI DOW EXI EXO KST INB NET RAW SER STA ST1 ST2 ST3 ST4 SYN THU VDO WEB

CharGen ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DNS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NTP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SSDP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Booter services maintain front-end sites that allow their customers to pur-
chase subscriptions and launch attacks using simple web forms. We created cus-
tom crawlers to automate the task of visiting the websites of covered boot-
ers and launching attacks directed at our own target. Using this automation,
4 To avoid unintentionally advertising booter services covered in this study, we replace

the name of booter services by the first three letters of their domain name. The last
letter is replaced by a number in the case of name collisions.
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daily attacks were launched for each covered booter and attack type. A total of
13 booter services were covered within the first week of starting the self-attacks
on December 9, 2015 and by January 14, 2016 all 23 booters were covered.

Labeling Self-attacks: As we instructed all booters to attack the same target,
we had to find a mechanism to separate between multiple consecutive self-attacks
to assign (booter) labels to the attack traffic. To this end, we initially relied on
the time that attacks were initiated. To account for clock skew, we left 10 min
between consecutive attacks and used a grace period of ±3 min for matching.
On January 14, we started to use a distinct victim IP per booter service as an
improved matching criterion. Based on the same criterion, we then also mapped
the self-attacks to attacks observed at the honeypots.

Table 2. Overview over self-attacks

Protocol Booters Launched attacks Observed

At victim At honeypots >100 pkts.

CharGen 16 608 417 35 33

DNS 19 676 452 173 100

NTP 22 823 577 421 373

SSDP 16 560 351 1 0

Total 23 2667 1797 630 506

Table 2 gives an overview over the self-attacks. We launched a total of 2667
CharGen, DNS, NTP and SSDP attacks using 23 booter services. Interestingly,
only around 2/3 of the attacks we initiated were observed at the victim. This
can be explained by our observation of maintenance issues that some booter
websites have. Sometimes booter websites provide the user interface for selecting
a particular attack type that is temporarily non-functional. To users it appears
that the attack has been successfully launched, but no actual attack traffic is
generated as a result of initiating such attacks.

The DDoS honeypots observed many NTP attacks (73.0%) and DNS
attacks (38.3%), but only a small fraction of the CharGen attacks (8.4%) and
only a single SSDP attack. Furthermore, while the honeypots observed some
traffic belonging to 630 attacks, in only 506 cases did we record more than 100
requests. We inspected the reasons why the honeypots missed large portions
of SSDP and CharGen attacks. To this end, we investigated the attack traffic
towards our victim to learn the preferences of attacks in choosing reflectors. In
both cases, we found that the vast majority of the reflectors that were abused
by multiple booters send responses that are significantly larger than the ones
configured in AmpPot. This indicates that the honeypots’ SSDP and CharGen
responses were too small to be attractive for attackers, and adversaries preferred
other reflectors with better amplification. We leave further investigations on
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reflector selection strategies open for future work and focus on DNS and NTP
in the following.

Multi-branding Booters: During the sign-up phase, we noticed that some
booters were visually similar. Investigations have revealed that one miscreant
follows a multi-branding strategy, i.e., sells the same service via different booter
names that shared similar web front-ends. It became apparent that attacks from
RAW and WEB shared characteristics, and also their sign-up page of the web inter-
face was equivalent in appearance and HTML code. We further analyzed those
two booters by launching application layer (layer 7) attacks against our victim
server. Layer 7 attacks usually abuse public HTTP proxy servers to hide the
identity of back-end servers involved. However, some proxies reveal the identity
of the requesting clients in the X-Forwarded-For field of the HTTP header.
Based on this observation, we were able to verify that these two booters used
shared back-end infrastructure. We thus conclude that RAW and WEB are likely to
be operated by the same individuals and will regard them as equivalent.

4 Characteristic Attack Features

We will now introduce characteristic attack patterns that we can use to train our
classifier for attribution purposes. We first describe various characteristics that
we have observed to repeat across subsets of attacks at the honeypots. We then
describe how we leverage these observations as features to summarize attacks.

4.1 Attack Observations

While analyzing the attacks captured by the honeypots, we observed the follow-
ing three properties that repeated across subsets of the attacks.

Honeypot Sets: Although eleven honeypots were active since the end of 2014,
few attacks (1.63%) abused all of them simultaneously. In fact, more than 60%
of all DNS- and NTP-based attacks abused five honeypots or less. This indicates
that attackers either perform only partial scans of the Internet, or choose a
subset of the discovered amplifiers in subsequent attacks.

Interestingly, we observed that honeypot sets seem to be reused across multi-
ple attacks, i.e., even in attacks against different victims or on different days. To
further investigate this observation, we analyzed amplifiers seen in self-attacks
from a few example booter services over time, shown in Fig. 1. The entries on
the heat maps show the ratio of abused amplifiers that were shared per booter
and attack protocol on two consecutive days each. With the exception of DNS,
there is a high level of overlap for attacks based on NTP, CharGen, and SSDP,
suggesting that booters reuse their set of amplifiers for a protocol for some time.
The low overlap for attacks based on DNS is likely caused by frequent rescans
to account for the relatively high IP churn rate of DNS amplifiers [11].

In addition, we verified that two simultaneous attacks towards the same vic-
tim on different protocols showed little overlap in the sets of honeypots abused.
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Fig. 1. Overlap of amplifier sets between consecutive dates.

This could indicate that the set of amplifiers might be specific to the protocol,
which intuitively can be explained by the small overlap of systems that suffer
from amplification vulnerabilities for multiple protocols.

Victim Ports Entropy: While one UDP port determines the amplification
protocol (e.g., DNS, NTP, etc.), the other determines the victim port on which
the victim will receive the reflected responses. Since an attacker has virtually no
restrictions on setting the victim port, we expected to observe the two obvious
choices: Choosing one victim port per attack, or choosing an individual victim
port for every request. Surprisingly, in addition to that, we also observed attacks
where requests shared a small number of victim ports. One explanation could be
that attackers use multiple threads for attacking, and that they choose a different
victim port per thread. In addition, we verified that a significant number of booter
services actually ask their clients to choose the victim port, giving a reason why
the number of source ports is frequently restricted to one.

Time-to-Live Values: The Time-to-Live (TTL) value in the IP packet indi-
cates how many hops a packet has traversed from the attack source to the hon-
eypot. As already observed by Krämer et al. [8], for one particular attack, a
honeypot will usually only see one (or very few) TTL value(s). We can thus
conclude that most attacks likely stem from a single source, which motivates
further investigations in finding this particular source sending spoofed traffic.
Additionally, the vast majority of requests have a TTL >230. This suggests that
attackers use a fixed initial TTL of 255 in their generated packets, as otherwise
we would see a wider distribution.

4.2 Distance Function

In order to leverage these observations in a classifier, we next introduce a distance
function based on the above features. Given two attack instances A and B, such
a function is used to determine how dissimilar the two instances are. For an
attack A, we will denote the set of honeypots used by HPA, the set of victim
ports observed by VPortA, and the set of TTLs received at honeypot hp by
TTLhp,A.



436 J. Krupp et al.

To compare honeypot sets, we leverage the well-known Jaccard distance:

dhp(A,B) = 1 − |HPA ∩ HPB |
|HPA ∪ IPB |

To compare the set of victim ports, we take the normalized difference:

dvp(A,B) =

∣
∣|VPortA| − |VPortB|∣∣

max (|VPortA|, |VPortB |)
Finally, to compare TTLs, we compute the overlap of their histograms5

dhist(S, T ) = 1 −
∑

x
min(S(x), T (x))

∑

x
max(S(x), T (x))

and then average this overlap over all honeypots involved in both attacks:

dttl(A,B) =

∑

hp∈HPA∩HPB

dhist (TTLhp,A,TTLhp,B)

|HPA ∩ HPB |
From these three sub-functions we compute a weighted average as the overall

distance function. We set the weights to whp = 5, wvp = 1, and wttl = |HPA ∩
HPB |/2. Note that our methodology is independent from the weights and the
analyst can choose any weights according to her needs. We assigned a smaller
weight to the victim port feature, as it relies on inputs with little entropy given
just three cases: a single victim port, a few victim ports, or many victim ports.
For the TTL feature, we assign a higher weight if the two attacks have more
honeypots in common, as we assume that coinciding TTLs for multiple honeypots
have a much higher significance than those for only a single honeypot.

5 Honeypot Attack Attribution

We now leverage the aforementioned features to identify which booter has caused
which attacks observed at a honeypot. The core idea is to use supervised machine
learning techniques to attribute an attack observed at a honeypot to a particular
booter service. We will first use our ground truth data set to show the perfor-
mance and resilience of our classifier in various situations. Afterwards, we will
apply the classifier to the entire data set of attacks collected by the honeypots.

5 To account for fluctuation in TTLs due to route changes, we apply smoothing to
the histograms using a binomial kernel of width 6, which corresponds to a standard
deviation of σ ≈ 1.22.
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5.1 Description

Finding the true origin of an amplification attack is a non-trivial problem,
because—from the reflector’s perspective—all packets carry spoofed headers.
Using our attack distance metric, we showed that attacks from the same booter
service exhibit similar characteristics and this observation turns the problem of
finding the origin of an attack into a classification problem. The collected self-
attack data set can be used for training and validating a classifier. Since the
number of attacks observed strongly varies between booters, we decided to use
the k-Nearest Neighbor (k-NN) algorithm due to its resilience to such imbal-
ances. In k-NN, to determine the label of an instance, the set of its k nearest
neighbors is computed. Next, every neighbor casts a vote for its own label, and
finally the instance is given the label of the majority of its neighbors.

Additional care has to be taken, as our training data set is not exhaustive
and may miss data for some booters. That is, not all attacks can be attributed
to a booter that we know. Therefore, we use a cutoff threshold t to introduce
a label for an unknown classification result. When classifying an item i, we only
consider the k nearest neighbors that can be found in the neighborhood of radius
t centred around item i. If no item from the training data set lies within this
neighborhood, the item i is assigned the label unknown. To find a well-suited and
conservative threshold, we analyzed our ground truth data set using our distance
function and hierarchical clustering. From those clusters, we then computed the
average distance between attacks within a cluster and took the 95th percentile
over all. This results in t = 0.338 for DNS and t = 0.236 for NTP.

Furthermore, as shown in Sect. 4.1, booters rescan to find new lists of ampli-
fiers on a regular basis. To reflect this during classification, we only consider
elements from the training data set no more than 7 days apart, which approxi-
mately corresponds to the maximum rescan frequency we observed for booters.

When using k-NN, the choice of k is highly critical for the performance of
the classifier. One common approach is to learn the value of k from the training
data set using n-fold cross-validation (CV). In n-fold CV, the training data set
is partitioned into n equally sized sets. Then, the classifier is trained on n − 1
of these sets, and the final set is used for validation. This process is repeated n
times, until every set has been used as the validation set once. For finding k we
thus perform 10-fold CV for all k ∈ {1, 3, 5} as part of the training phase of the
classifier. We restrict k to odd values to avoid ties in the voting phase. We only
consider k ≤ 5, because about 2/3 of the clusters contain less than five attacks.

To assess the performance of our classifier, we first define the false positive
rate (FPR), precision and recall metrics, as well as macro-averaging. Intuitively,
the FPR for a label li (in our case, a particular booter) is the fraction of elements
that were incorrectly assigned the label li while their true label was not li. In
a similar vein, precision is the ratio with which the classifier was correct when
assigning label li, while recall is the ratio with which the classifier is able to
re-identify elements with true label li. Let tpi be the number of items correctly
classified to have label li (true positives), let tni be the number of items correctly
classified to not have label li (true negatives), let fpi be the number of items
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incorrectly classified to have label li (false positives), and let fni be the number
of items incorrectly classified to not have label li (false negatives). Then the FPR
is defined as fpri = fpi/(fpi + tni), precision as pi = tpi/(tpi + fpi), and recall as
ri = tpi/(tpi + fni). To compute overall performance measures from these per-
class metrics, we employ macro-averaging, i.e., first computing fpr, p, and r per
class and averaging the respective results afterwards, as this will avoid bias due
to imbalance in our ground truth data. Thus booters for which we were able to
collect more datapoints do not influence the results more strongly. However, since
we strongly prefer mislabeling an attack as unknown over incorrectly attributing
it to a wrong booter, we only weigh the unknown label with 1

8 .

5.2 Validation

To validate our classifier, we defined three experiments on our labeled self-attack
data set: First, we conducted 10-fold CV to assess how well our classifier can
correctly attribute attacks (E1). Second, to estimate how well our classifier deals
with attacks from booters not contained in the training data set, we used leave-
one-out CV on the booter level (E2). This means that the attacks from all but
one booter constitute the training set, and all attacks from the omitted booter
are used for validation, checking if these attacks are correctly labeled as unknown.
Third, we were also interested in the performance of classifying attacks in real-
time (E3), i.e., training only on labeled observations prior to the attack.

Table 3. Honeypot-driven experimental results
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Table 3 shows the results for both DNS and NTP. For each experiment we
give the percentage of attacks correctly attributed to its booter, the percentage
of attacker the classifier labeled as unknown, as well as the percentage of attacks
that were misclassified, along with their putative label. Additionally, the first
row states the number of attacks contained in our data set6. Note that in the
second experiment (E2) every column regards a classifier trained on the entire
data set except the corresponding booter; hence the classifier is correct when
assigning the unknown label in this case.

In the 10-fold CV (E1) our DNS classifier correctly attributed 78% or more of
the attacks for each booter. Exceptions are the cases of EXI and VDO, for which
our data set only contains a single attack, which naturally cannot be attributed
correctly due to lack of training data. All the remaining attacks were labeled
as unknown. In fact, the DNS classifier never attributed an attack to a wrong
booter in all three experiments. This is especially remarkable in the leave-one-
out scenario (E2), when the classifier was not trained on data for one of the
booters. That is, even in this case our classifier did not lead to false accusations,
showing the resilience of the classifier against attacks stemming from booters
not contained in the training set. Of course, this resilience comes at the cost of
higher false negative rates in the other experiments (E1 & E3), as we prefer the
classifier to label an attack as unknown over attributing it to the wrong booter.
This could possibly be alleviated by obtaining more training data per booter.
The last experiment (E3) simulates the performance of the classifier in a real-
time scenario, i.e., when classifying an attack only based on training data that
was obtained prior to the attack. In contrast to this, the first experiment (E1)
measured the performance when classifying attacks after the fact. Since booters
regularly rescan for amplifiers and update their set of amplifiers accordingly, our
classifier will achieve a performance worse than in the first experiment (E1).
However, even in the real-time attribution setting, we could still attribute at
least 67% of all attacks without any incorrect attributions. The loss compared
to E1 can be explained by the fact that the first attack of a booter can never be
correctly classified due to lack of prior training data.

In the case of NTP, we achieved an overall attribution rate of 78% or more in
the 10-fold CV (E1) for most booters, with the exception of those which occur
only once in the data set. Remarkably, the cases of EXI and SYN show that the
classifier also performs reasonably well even for small amounts of training data.
The NTP classifier generates misclassifications. However, this only stems from
a few attacks by NET and CRI, which exhibit precisely the same characteristics.
While we suspect that NET and CRI share the same infrastructure, we were not
able to verify this assumption by leveraging layer 7 attacks (as done previously
for RAW and WEB). The same two attacks are also the cause for the only mis-
classifications in the leave-one-out scenario (E2), as about a quarter of attacks
from CRI were attributed to NET, when the classifier was not trained on data
from CRI. In the real-time scenario (E3), the NTP classifier attributed over 76%
of the attacks in most cases, even outperforming the DNS classifier. Since NTP

6 This effectively provides the entire confusion matrix for each experiment.
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experiences less amplifier churn, booters can use the same amplifier set for a
longer period of time, i.e., an attack is more likely to use a set of amplifiers for
which the classifier already observed a training sample. A notable exception here
is BO1, for which only 57% of the attacks could be attributed, despite the large
number of attacks contained in the data set. This indicates that BO1 performs
rescans more frequently than other booters.

Averaging over booters for which the data set contains more than one attack,
our classifier achieves a macro-averaged precision of 100.00% and recall of 86.25%
in E1 for DNS, and 99.74% and respectively 91.01% for NTP. In the case of
real-time attribution (E3), the precision stays similarly high (100.00% for DNS,
99.69% for NTP), while the recall drops to 69.35% and respectively 76.73%.

5.3 Attribution

After validating the classification mechanism, we now turn to applying it to our
entire data set of attacks observed at the honeypots (excluding the self-attacks).
Due to their low entropy, we excluded attacks that were only observed by a
single honeypot. This left 266,324 NTP-based and 161,925 DNS-based attacks.
For both we trained our classifier on all self-attacks collected from December 9
to February 10.

Our NTP classifier attributed 38,520 attacks (14.46%) to one of the booters
it was previously trained on and our DNS classifier attributed almost a third of
all attacks (49,297, 30.44%) to a booter. Note that not all attacks observed at
the honeypots have to be caused by booters; they can also be caused by malev-
olent parties that do not offer their attack capabilities on an online platform.
Furthermore, since we only trained our classifier on a limited set of booters, our
classifier cannot possibly achieve a classification rate of 100%. Still, attributing
a considerable amount of attacks to the booters of our training set indicates that
the booters we considered are used very actively.

6 Victim-Driven Attack Attribution

Based on the success of the classifier that allows honeypot operators to attribute
DDoS attacks, we now aim to build a similar classification method that will
enable victims to attribute attacks based on features that can be extracted from
victims’ network traces. The core idea is to isolate a set of features that are
directly observable by the victim and that can precisely attribute attacks to a
particular booter service using a similar k -NN-classifier algorithm.

6.1 Description

Motivated by the fact that each booter abuses characteristic sets of amplifiers,
we use the set of amplifiers as seen in the victim’s attack traces as a feature for
training our victim-driven classifier. However, the TTL value of the attack source
used in the honeypot operator attribution technique is not directly observable by
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a victim, so we cannot use this feature in our victim based attribution method.
The loss of the TTL value feature is mostly compensated for by the victim being
able to see a larger set of amplifiers used by the booter service.

As we will show, this single feature is sufficient to build a classifier that
can accurately attribute NTP, SSDP, and CharGen attacks from the victim’s
perspective. The one exception is that the set of open DNS resolvers used by
individual booter services are less stable over time, likely due to churn. As a
result, relying on the set of amplifiers as the sole feature for classifying DNS
attacks will not provide the same classification performance as for the other
three attack types. Therefore, we must identify additional entropy to improve
the accuracy of our victim-based DNS attack classification technique. Based on
our analysis of DNS attack traces captured at our victim server, we noticed that
each booter service tends to send spoofed ANY requests for a very small number
of mostly non-overlapping domain names. We thus complement the feature of
amplifier sets with an additional feature over the set of domain names resolved
in DNS attacks. That is, for DNS, the Jaccard index is computed both for the set
of amplifiers and for the set of resolved domains, and the similarity score is the
mean of the two computed Jaccard indices. For all other protocols (NTP, SSDP,
and CharGen), we use the Jaccard index computed over the set of amplifiers.

In the victim-driven data set, all attacks are labeled with the booter service
and we do not have any unknown attacks. However, we will evaluate the situation
of unattributed attacks by performing the same E2 leave-one-out CV experiment
as in Sect. 5.2. Given this, we select a cutoff threshold t to introduce a label for
an unknown classification result that is used in the same way as in Sect. 5.2. We
choose a conservative threshold of t = 0.55 for CharGen, t = 0.60 for DNS,
t = 0.55 for NTP, and t = 0.45 for SSDP. In order to select the threshold value,
the score of correct classifications and incorrect classifications were manually
checked and a reasonably conservative value was selected for each attack type.
Only attack instances in the training set for which the similarity score is no less
than t were considered as potential neighbors. If no neighbor could be found for
a test instance, it was classified as unknown.

6.2 Validation

To validate the results of our victim-driven classifier, we perform the same exper-
iments as in Sect. 5.2. Table 4 shows the result of our victim-driven classifier
experiments for DNS and NTP7.

In E1, our DNS classifier achieved high attribution rates of 80% or more,
except for BO2, EXI, EXO, and VDO, where a large fraction was also marked as
unknown. However, in five cases the classifier also mistook attacks from one
booter as coming from another. The higher number of false positives for DNS is
attributable to the less stable set of DNS amplifiers abused by booters. These
results are worse than those for the honeypot-driven classifier, possibly due to
the fact that unlike organic sets of amplifiers, the honeypots do not churn over

7 Results for CharGen and SSDP can be found in Sect. A.1.
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Table 4. Victim-driven experimental results

(a) DNS

A
U
R

B
A
N

B
O
2

B
O
3

E
X
I

E
X
O

N
E
T

R
A
W

S
E
R

S
T
1

S
T
2

S
T
3

S
T
A

S
Y
N

T
H
U

V
D
O

samples 25 10 2 27 7 25 19 81 36 21 51 18 21 25 24 60

E
1

correct 96 80 0 89 29 60 95 96 100 95 98 83 100 100 100 43
unknown 4 20 100 4 71 36 0 4 0 5 2 11 0 0 0 52
wrong VDO 7 NET 4 EXO 5 SYN 6 BO3 5

E
2 unknown 100 100 100 74 86 64 47 98 100 100 100 89 48 56 96 92

wrong THU 4
VDO 22 RAW 14 NET 12

STA 24
EXO 42
STA 11 SYN 2 SYN 11 EXO 43

NET 10
VDO 8
ST3 36 BO3 4 BO3 5

SYN 3

E
3

correct 76 60 50 81 14 40 79 75 92 71 82 83 86 92 96 28
unknown 24 40 50 19 86 56 5 22 8 29 18 17 0 4 4 72

wrong NET 4 EXO 16 SYN 1
EXI 1 EXO 14 ST3 4

(b) NTP

A
U
R

B
A
N

B
O
1

B
O
2

B
O
3

C
R
I

D
O
W

E
X
I

E
X
O

K
S
T

N
E
T

R
A
W

S
E
R

S
T
1

S
T
3

S
T
4

S
T
A

S
Y
N

T
H
U

V
D
O

samples 23 15 40 3 28 27 27 7 61 20 29 82 15 21 19 27 22 28 22 61

E
1

correct 100 100 95 0 100 100 96 71 97 100 86 100 100 100 89 100 91 100 95 100
unknown 0 0 5 100 0 0 4 29 3 0 0 0 0 0 11 0 9 0 5 0

wrong EXO 10
CRI 3

E
2 unknown 100 100 100 100 100 74 100 100 34 100 10 100 100 100 100 93 100 93 100 100

wrong NET 26 NET 66 EXO 86
CRI 3 SYN 7 ST4 7

E
3

correct 87 73 90 0 96 89 81 43 90 80 69 98 87 86 74 93 77 86 86 97
unknown 13 27 10 100 4 11 19 57 10 20 17 2 13 14 26 7 23 14 14 3

wrong EXO 10
CRI 3

time. Misclassifications are even more prevalent in our E2 experiment, where
in some cases the classifier confused over half of the attacks. While the num-
ber of misclassifications could be reduced by lowering the cutoff threshold, this
would also cause a higher rate of unknown results in the other two experiments.
Finally, in E3 the classifier shows similar performance compared to E1, with
a slight degradation. However, this is expected, since if a booter service has
just rescanned we will have no training samples that match the current set of
amplifiers.

For NTP the victim-driven classifier generally performs better than for DNS.
In the 10-fold CV (E1), the classifier correctly attributed 71% or more of the
attacks for every booter, in many cases even more than 85%. As before, BO2
marks an exception due to the small number of attacks that were recorded for this
booter. As already observed in the honeypot-based classifier, attacks from NET
and CRI showed similar behavior. A third booter, EXO, that was only observed in
the victim-based data set exhibits similar traits as well. While we were not able to
verify that these booters are just different front ends of a multibranding booter,
they account for almost all of the misattributions not only for NTP but also for
CharGen. In E2 the classifier achieves a perfect result for most booters, with the
exception of the previously mentioned group and two confusions between ST4
and SYN. Again, the results of our real-time classification experiment (E3) are as
expected, with attribution rates of over 69% in all cases, except for EXI, whose
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recall drops from 71% to only 43%, due to the small number of attacks observed
from this booter.

Overall, the victim-driven classifier achieves a macro-averaged precision of
91.65% and recall of 79.03% for DNS, while for NTP it performs better with
94.58% and respectively 91.07%.

7 Discussion

We now discuss potential ways to evade our attribution implementation and
describe general limitations of our approach that we have not discussed so far.

7.1 Evasion

While our attribution methods have proven to work well as of now, they may
be susceptible to evasion attempts by miscreants. A mimicry attacker could try
to be attributed as someone else by following our methodology, i.e., learning the
attack profile of another booter and copying its behavior. For example, she could
use the same set of reflectors as the other booter for her own attacks. However,
this involves a significant increase in terms of effort in comparison to Internet-
wide scans. In addition, our TTL-based features are much harder to copy, as
they encode the location of the booter service and are subject to changes for
other booter locations. While such mimicry attacks are possible [2], given the
complexity and overhead, we do not believe that attackers trying to trigger a
false attribution constitute an actual risk in practice. For similar arguments,
attackers that share lists of reflectors with each other would partially poison our
analysis, but again TTL-based attribution may be safe against this. Our use of
the set of domain names resolved as a feature for our victim-driven DNS classifier
can be evaded by booter services selecting a larger pool of domain names that
result in large replies and cycling through this pool.

An evasive attacker could try to evade our classification mechanisms. Attack-
ers have full control over the traffic they generate, and thus could add noise. For
example, one could randomize the set of reflectors used in the attacks, or spoof
the initial TTL value within a range of possible values. It is unclear if a classifier
could still keep up with such evasion attempts, but it may be possible to add
additional features to enrich the classification, such as other characteristics (e.g.,
IP packet IDs, DNS transaction IDs), as those have shown characteristic pat-
terns even if they were randomized [8]. In addition, honeypots that selectively
respond to scan requests may survive such randomization [10]. Even if attackers
randomize the set of reflectors, any subset will still be a subset of a unique map-
ping to a scanner. Lastly, randomizing the traffic does also incur a performance
overhead to attackers, as they cannot reuse pre-generated packets.

Finally, attackers could try to map out the honey amplifiers using probing
messages [3] if the honeypot amplifier data was made public for the DDoS service
to use as an oracle. To avoid this evasion technique, access to the honeypot
amplifier data is restricted to vetted entities, such as researchers and LEAs.
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7.2 Limitations

Our in-the-wild experiments faced some limitations, as discussed in the following:

Honeypot Coverage: Regardless of our attempts to maximize the coverage of
the honeypots, they missed significant fractions of the self-attacks, especially for
SSDP and CharGen. This can be addressed by framing larger emulated responses
to make the honeypots more attractive to attackers. The coverage for two of the
main protocols, DNS and NTP, was significant, though, covering about 57% of
the self-attacks. We therefore argue that our results are representative at least
for these two protocols. In addition, there is no limitation of our methodology
that would restrict its applicability to the two well-tested protocols.

Multi-source Attribution: We assumed that attacks are caused by single
sources (booters). If botnets launched amplification attacks, our features (e.g.,
TTL) would be unstable. To give an upper bound of attacks launched by botnets,
we searched for attacks with several TTL values, as this—among other reasons—
might be caused by distributed traffic sources. Less than 9.5% of attacks at the
honeypots show more than 2 TTL values at a honeypot.

Other Attacks: Other types of DDoS attacks, such as SYN flooding or HTTP-
based attacks, do not use reflectors and are thus not traceable with our pro-
posed methods. Note that amplification attacks constitute the most common
bandwidth exhaustion attack. This is also demonstrated by the fact that all
booters advertise amplification attacks, while support for other attack types
(e.g., HTTP-based attacks) is far less popular. To put things into perspective:
we observed more than 8,900 amplification attacks per day.

8 Related Work

The general risk of amplification attacks was first illustrated in Paxon’s sem-
inal paper on reflection attacks [15] and then by Rossow’s recent overview of
amplification vulnerabilities in 14 UDP-based network protocols [18]. A wealth
of further work analyzed amplification attacks, such as attempts to monitor
and reduce the number of reflectors [1,4,11], analyses on detailed amplifica-
tion vectors in specific protocols [4,12,24–26], studies on the impact of DDoS
attacks [29], and proposals to detect and defend against amplification DDoS
attacks [5,9,18,28].

Orthogonal to these studies, we investigated ways to perform attribution
for amplification DDoS attacks. While concepts for closing the root cause of
amplification attacks (IP spoofing) are well-known [14], little success has been
made in identifying the spoofing sources. Our work thus constitutes an important
element for law enforcement to identify and act upon information of booter
services that are responsible for the majority of attacks. We follow a similar goal
to IP traceback mechanisms [16,21–23,30], i.e., to find the source of “bad” (such
as spoofed) traffic. While we also aim to reveal the source of the bad traffic, we
focus on attack services rather than locating the networks that cause the traffic.
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In addition, the working principles behind the methods are inherently different.
Most IP traceback methods are deterministic and can be guaranteed to find the
correct source of traffic. However, at the same time, they impose requirements
that are often not met in practice, such as that providers have to mark IP
packets or collaborate to find traffic paths. In contrast, our proposed mechanism
advances the field in that we do not require such a collaborative effort. In fact,
despite being known for decades, automated traceback mechanisms have not
been deployed by many providers. To tackle this problem, our approach merely
requires a set of honeypots that anybody can set up, enabling a single party
to perform attribution. On the other hand, our approach is limited to mapping
amplification attacks to booter services, whereas traceback mechanisms could
trace back any type of DoS traffic—down to the network that caused it.

Closely related to our work is AmpPot, as proposed by Krämer et al. [8]. This
honeypot technology has enabled us to monitor thousands of DDoS attacks per
day. We combine such data with observations of attack traffic emitted by booters,
introducing the new concept of attributing amplification attacks to booters.

Our work was motivated by various research papers that shed light onto
booter services using forensic analyses. Karami and McCoy were the first to mon-
itor such booter services, studying the adversarial DDoS-As-a-Service concept [6]
and observing that booters are a source for amplification attacks. Similarly,
Santanna et al. analyze leaked databases and payment methods of 15 boot-
ers [19]. Related to our idea to fingerprint booters, Santanna et al. performed
self-attacks of 14 booter services and also observed that the set of reflectors
chosen by booters may have overlap across attacks [20]. We build upon this
observation, find further correlations for attacks of booter services, and propose
to use theses for attack attribution. Karami et al. [7] provide a detailed view
on the subscribers and victims of three booters. They provide early attempts to
map the infrastructures of booters, but do not perform any kind of attribution
between attacks and booters or infrastructures.

Wang et al. [27] have studied the dynamics of attack sources of DDoS botnets,
showing distinct patterns per botnet. While the authors provide first results that
might enable them to predict future attack sources, they do not further investi-
gate this matter. Our work is different in motivation and techniques in multiple
respects. First, booters follow a completely different methodology than DDoS
botnets, which rarely use IP spoofing. Second, we can leverage the observation
that attackers scan for “attack sources” (amplifiers). Third, we perform attack
attribution rather than prediction.

Recently, Krupp et al. [10] showed how to uncover the scan infrastructures
behind amplification DDoS attacks, which in some cases could also be identified
to be the attacking infrastructure. Although their work might seem similar to
ours at first, there are key differences both in the goal and the methodology:
While they use probabilistic reasoning to identify the scanners that provide the
necessary reconnaissance for attacks, we use machine learning techniques to link
attacks to the originating booters. Moreover, both approaches serve different
demands: while their work aids in adding pressure on providers to cease illegal
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activities, our paper helps to generate forensic evidence that a particular booter
has caused a specific attack, which can prove useful in prosecution.

9 Conclusion

Our work presented the first deep exploration of techniques for attributing ampli-
fication DDoS attacks to booter services. We present two precise attribution
techniques based on carefully chosen features as part of a k -NN classifier. In
order to evaluate the effectiveness of our techniques, we subscribed to a small
set of booter services and launched self-attacks to collect a ground truth set
of attack-to-booter-service mappings. We discuss the ethical framework used to
collect this data set, which is similar to that of a previous study [7].

Our honeypot-driven technique attributes DNS and NTP attacks with a very
high precision of over 99% while still achieving recall of over 69.35% in the most
challenging real-time attribution scenario. Further analysis has revealed that
25.53% (49,297) of the observed DNS attacks can be attributed to just 7 booter
services and 13.34% (38,520) of the NTP attacks can be attributed to 15 booter
services. We have shared these findings with law enforcement agencies to help
them prioritize legal actions against the wealth of booter services.

Our second technique extracts features out of a victim’s network’s traces and
attributes attacks from the victim’s perspective, which opens the possibility to
offer a centralized DDoS attribution service. Using this technique, victims can
learn the source of the attacks they face and could even compare two attacks to
determine if they have been launched by the same actor (booter).
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A Appendix

A.1 Additional Experimental Results

Table 5 shows our experimental results for victim-driven attribution for CharGen
(precision 92.86%, recall 89.24%) and SSDP (precision 92.15%, recall 81.41%).
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Table 5. Victim-driven experimental results for CharGen and SSDP
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Abstract. Software Denial-of-Service (DoS) attacks use maliciously
crafted inputs aiming to exhaust available resources of the target soft-
ware. These application-level DoS attacks have become even more preva-
lent due to the increasing code complexity and modular nature of Inter-
net services that are deployed in cloud environments, where resources are
shared and not always guaranteed. To make matters worse, many code
testing and verification techniques cannot cope with the code size and
diversity present in most services used to deliver the majority of everyday
Internet applications. In this paper, we propose Cogo, a practical system
for early DoS detection and mitigation of software DoS attacks. Unlike
prior solutions, Cogo builds behavioral models of network I/O events in
linear time and employs Probabilistic Finite Automata (PFA) models to
recognize future resource exhaustion states. Our tracing of events spans
then entire code stack from userland to kernel. In many cases, we can
block attacks far before impacting legitimate live sessions. We demon-
strate the effectiveness and performance of Cogo using commercial-grade
testbeds of two large and popular Internet services: Apache and the
VoIP OpenSIPS servers. Cogo required less than 12 min of training time
to achieve high accuracy: less than 0.0194% false positives rate, while
detecting a wide range of resource exhaustion attacks less than seven
seconds into the attacks. Finally, Cogo had only two to three percent
per-session overhead.

Keywords: Software DoS · Early detection · Slow-rate attacks · Prob-
abilistic Finite Automata

1 Introduction

Software availability is a major concern for the success of today’s interconnected
Internet services. As technologies become more advanced and complex, servicing
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an ever increasing number of users and devices, they become much harder to
properly design and test against inputs and runtime conditions that may result
in resource exhaustion and, eventually, denial-of-service (DoS). Recent surveys
clearly indicate that business owners are concerned about DoS attacks over other
security concerns [6,8]. A system is vulnerable to resource exhaustion attacks
if it fails to properly regulate the resources that can be allocated to individual
user sessions and the service overall. Resource DoS attacks can target system
resources such as memory, computing (CPU), and I/O including file access and
traditional network resources [21,23,37]. Contrary to the common belief, resource
exhaustion attacks are increasing in numbers, becoming even more prevalent and
risky when compared to network layer attacks [1,21].

Recent work by Elsabagh et al. [25] proposed Radmin, a system for detecting
DoS attacks at the application layer. Radmin operated by learning (offline) and
enforcing (online) resource consumption patterns of programs. Radmin showed
promising results; however, it had a quadratic training time complexity in the
training data size that makes it prohibitive to apply to large code bases. More-
over, Radmin was tested on stateless traffic and synthetic attacks rather than
on live traffic and known attacks used in practice. Radmin also did not cover
network state and I/O which are common targets for attacks. Another limi-
tation was that Radmin was heavily dependent on “normal” patterns of pure
resource utilization without modeling the rate at which individual resources were
acquired and released. As we show in our experiments, lack of taking into consid-
eration when individual resources were allocated can lead to prolonged evasion
by Slow-rate [11] attacks, violating the early detection goal of Radmin.

In this paper, we propose Cogo as a novel Probabilistic Finite Automata
(PFA) based system for runtime detection and mitigation of software resource
exhaustion DoS attacks. Cogo fully addresses all the aforementioned limitations
of Radmin, enabling early detection of real-world attacks in many cases before
they are able to affect the service operation or quality. Our approach operates
in two phases: offline and online. In the offline phase, Cogo monitors the entire
resource consumption behavior of the target program — including its network
I/O — and builds PFA models that characterize the program’s resource behavior
over time. Cogo monitors network I/O at the individual socket level and sup-
ports monitoring of containerized processes. To reduce modeling complexity, we
introduce an efficient PFA learning algorithm that operates in linear time. Dur-
ing the online phase, Cogo actively monitors the program and detects deviations
from the learned behaviors. It attributes anomalies to the specific threads and
connections causing them, allowing for selectively limiting resource utilization of
individual sessions that may violate the models.

We built a working prototype implementation of Cogo by extending the code
base of Radmin [25] which offered several integrated user/kernel tracing capabili-
ties and an extensible PFA detection engine. We extended Radmin by supporting
new low-level network I/O monitoring, process migration, and monitoring con-
tainerized processes. Extending Radmin allowed us to benchmark our approach
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in a unified way and provide comparative results.1 We discuss two case stud-
ies using real-world attacks and commercial-grade testbeds against The Apache
HTTP Server [2] and the VoIP OpenSIPS [9] server. In our experiments, Cogo
achieved a significant improvement in training time over Radmin, requiring only
few minutes instead of days to train and build the models. This is significant
since in real-world systems training data are expectantly large in size. In addition
to short training time, Cogo achieved a low false positive rate (FPR) (0.019%
for Apache, 0.063% for OpenSIPS) using small models (76 MB for Apache,
55 MB for OpenSIPS). Moreover, Cogo swiftly detected the attacks in less than
seven seconds into their execution, resulting in zero downtime in some cases.
Its runtime overhead is negligible. it increased the latency by 0.2 ± 0.3 ms per
request on average, resulting in two to three percent per-session overhead.
To summarize, this study makes the following contributions:

– Demonstrates Cogo as a system for early detection and mitigation of resource
exhaustion DoS attacks against real-word complex Internet services. Our app-
roach extends prior work on Radmin [25] by enabling network stack tracing
from the application to the kernel, monitoring containerized processes, and
attaching to running processes.

– Presents and discusses a linear time training algorithm that reduces the train-
ing and model building time complexity.

– Studies the effectiveness of Cogo using realistic testbeds with real-world
attacks on Apache and the VoIP OpenSIPS server. The results demonstrate
that Cogo is suitable for large-scale deployment as it is scalable, accurate,
has low false positives, and can mitigate real-world attacks.

2 Assumptions and Threat Model

Cogo focuses on DoS attacks that occur at the application layer such as algo-
rithmic, state, and protocol-specific attacks. Volumetric attacks targeting the
network and transport layers, as well as other attack vectors such as code exe-
cution and memory exposure are outside the scope of this work. We assume
that attackers have full knowledge of the internals of the attacked program and
can craft benign-looking inputs that prevent the attacked program from serving
legitimate clients (a DoS attack). To protect a program with Cogo, we assume
the availability of benign training inputs that cover the typical desired behav-
ior of the program. Cogo uses kernel tracing; our prototype currently supports
only Linux and Unix-like operating systems since they power the majority of
servers.2 However, the approach itself does not place restrictions on the runtime
environment and can be ported to other operating systems with little effort.3

1 By building on Radmin, Cogo inherits other monitoring sensors from Radmin such
as CPU and memory sensors.

2 Market share of operating systems by category: https://en.wikipedia.org/wiki/
Usage share of operating systems.

3 For Microsoft Windows, kernel tracing can be implemented using the Event Trac-
ing for Windows (ETW) kernel-mode API: https://msdn.microsoft.com/en-us/
windows/hardware/drivers/devtest/adding-event-tracing-to-kernel-mode-drivers.

https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://msdn.microsoft.com/en-us/windows/hardware/drivers/devtest/adding-event-tracing-to-kernel-mode-drivers
https://msdn.microsoft.com/en-us/windows/hardware/drivers/devtest/adding-event-tracing-to-kernel-mode-drivers
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We only focus on detection; proper remediation strategies after attack detection
should be implemented by the operator and are outside the scope of this work.
Nevertheless, Cogo offers the option to migrate the offending process or session
to another server, reduce its resource priority, or terminate it based on a con-
figurable policy. Finally, we assume that attackers can be local or remote, but
cannot overwrite system binaries or modify the kernel.

3 The Cogo System

Cogo operates in two phases: offline training phase and online detection phase. In
the offline phase, Cogo monitors the behavior of the target program on benign
inputs and collects a trace of network I/O measurements. The measurements
are sequences of raw data that include the event type (socket open, close, send,
receive), the consumption amount of the related resource (number of owned
sockets, traffic rate per socket), and meta data such as the PID, the socket inode
number, and timestamps.

The raw resource consumption amounts are encoded (quantized) over a
countable finite alphabet Σ (a finite set of symbols). |Σ| is a tuning parameter,
typically less than 16 for a maximum of 16 different consumption levels. Encod-
ing is done by mapping (many-to-few) each raw resource consumption value to
one symbol from Σ. This is necessary since the PFAs (state machines) only work
with a finite set of values. Since encoding is a typical step in constructing finite
automata from arbitrary values, and due to space constraints, we refer interested
readers to [25,26] for more detail.4

Cogo constructs multiple PFAs from the measurements, one PFA per resource
type. The PFAs capture both the spatial and temporal network I/O patterns
in the measurements. In the online phase, Cogo executes the PFAs as shadow
state machines along with the target program and raises an alarm if a deviation
of the normal behavior is detected. Cogo detects anomalous behavior using the
statistical properties of the PFAs — namely the transition probabilities on the
PFA edges. In the following, we discuss how Cogo monitors network I/O and its
PFA learning and detection algorithms.

3.1 Network Tracing

Cogo monitors the network activity of the target program by intercepting the
traffic and socket events that happen in the context of target processes inside
the kernel. Specifically, it monitors all socket creation and destruction events
triggered by the target processes and tracks traffic sent or received on those
sockets. Cogo computes the transmit (TX) and receive (RX) rates per second
from the size and direction of the monitored traffic.

Cogo differentiates sockets from regular file descriptors inside the kernel as
follows: First, it retrieves a target process task structure in kernel space using

4 We use “measurements” to refer to encoded measurements in the rest of this paper.
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the global process identifier (PID). (The task structure is the actual structure
that represents the process inside the kernel.) It traverses the task structure and
extracts the file descriptors table owned by the process. For each file descrip-
tor, Cogo extracts the inode object associated with the file descriptor. (The
inode object is a kernel structure that contains all needed information to manip-
ulate and interact with a file descriptor. An inode represents each file in a file
system, including regular files and directories, as well as special files such as sock-
ets, devices, and pipes.) Cogo checks if the inode object contains an embedded
(allocated member) socket object. If found, Cogo marks the corresponding file
descriptor of the inode as a socket descriptor. Cogo tracks all identified sockets
by their low-level unique inode numbers throughout their lifetime.

For each identified socket, Cogo extracts the socket Internet protocol family
from the socket kernel structure. (The protocol family defines the collection of
protocols operating above the Internet Protocol (IP) layer that utilize an IP
address format. It can be one of two values: INET6 and INET for the IPv6
and IPv4 protocol families, respectively.) This is essential for determining how
to interpret the socket network addresses. Given a socket protocol family, Cogo
extracts the local and foreign addresses and port numbers, if available. Foreign
port numbers may not be available if the socket is a listening or a datagram
socket.

Cogo intercepts all transmit and receive socket events that occur in the con-
text of the monitored process in kernel space, including regular I/O operations
such as streamed and datagram I/O, asynchronous I/O (AIO) operations, and
operations utilizing a socket iterator. Cogo collects the direction (TX or RX)
and size of the traffic, and associates them with the corresponding socket inode
number. The TX and RX rates are computed periodically per socket. The period
length is configurable (defaults to 1 s). To minimize memory and runtime over-
head, Cogo installs a kernel timer that ticks once per period length, requiring
minimal memory per socket as only the last tick timestamp and total traffic size
need be kept in memory. It also minimizes runtime overhead by avoiding unnec-
essary context switches to compute the rates. Cogo also monitors the socket
status: connected or disconnected. When a socket disconnects or is freed by the
kernel, Cogo purges any structures associated with that particular socket from
its kernel memory.

3.2 Training and Learning

Cogo employs Probabilistic Finite Automata (PFA) based learning and detec-
tion. Cogo builds one PFA for each monitored resource: one PFA for socket
creation and destruction, one PFA for TX rate, and one PFA for RX rate. Cogo
uses the PFAs to compute the probability of observed measurements in the online
phase. In the following, we present a training algorithm that runs in time linear
in the measurements length, making Cogo attractive and realistic for real-world
deployment.
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Constructing Bounded Generalized Suffix Trees. To construct each
resource PFA, first, Cogo builds a bounded Generalized Suffix Tree (GST) from
the resource measurements. (A suffix tree is a tree containing all suffixes of a
given string. A GST is a suffix tree for a set of strings.) Given a set of strings S
over an alphabet Σ (a finite set of symbols), a GST over S contains a path from
the root to some leaf node for each suffix in S. Each edge in the GST is labeled
with a non-empty substring in S; the labels of outgoing edges from the same
node must begin with unique symbols. A GST can be constructed in linear time
and space O(n) where n is the total number of symbols in S, using Ukkonen’s
algorithm [36]. A GST allows efficient implementations of several string query
operations over sets of strings such as linear time substring searching and finding
the longest common substring among all the strings in the set. Cogo limits the
depth of the GST by processing the measurements into non-overlapping subse-
quences of maximum length L.5 This bounds the depth of the GST to L and the
space requirements per GST to O(|S|L).

After constructing the bounded GST, Cogo counts the number of occurrences
of each substring in the tree. This corresponds to the number of leaf nodes in
the subtree rooted at each node in the tree. These counts are computed in a
single depth-first traversal of the GST. For each parent-child nodes in the tree,
the ratio between the child’s count to the parent’s count gives the conditional
probability of seeing the first symbol of the corresponding child substring after
the parent’s. More formally, the prediction probability of a symbol sj after a
substring sisi+1 . . . sj−1 can be computed as:

P (sj |sisi+1...sj−1) =
count(sisi+1...sj−1sj)
count(sisi+1...sj−1)

, (1)

which Cogo computes on-the-fly during the depth-first traversal of the GST to
count the substrings, and stores it in each child node in the tree.

Inferring the PFAs. Cogo infers a PFA from the GST. Each PFA is a 5-tuple
(Σ,Q, π, τ, γ), where: Σ is a finite set of symbols processed by the PFA; Q is
a finite set of states, and q◦ ∈ Q is the start state; τ : Q×Σ → Q is the state
transition function; and, γ : Q×Σ → [0, 1] is the transition probability function.

To infer a PFA from the GST, Cogo starts by creating a forest of unconnected
PFA nodes where each node has a unique ID and corresponds to exactly one
node in the GST. It then traverses the GST in depth-first order: For each edge
between each parent (source) and child (destination) nodes in the GST, Cogo
checks the length of the edge label. If the label has exactly one symbol, Cogo
adds a transition between the corresponding source and destination nodes in the
PFA, sets the transition probability to the child node probability in the GST,
and sets the transition symbol to the edge label. If the edge has a label of length

5 We found that non-overlapping subsequences were sufficient for large-scale deploy-
ments. However, it may be desired to overlap subsequences to maximize fidelity of
very small datasets.
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greater than one, i.e., the label is a substring consisting of multiple symbols,
Cogo adds nodes to the PFA corresponding to each inner symbol in the label;
adds a PFA transition from the source state to the node corresponding to the first
symbol in the label; and adds another transition from the last inner symbol in
the label to the destination node. Formally put, given the edge u

sisi+1...sj−−−−−−−→ v in

the GST, Cogo adds the following path to the PFA: u′ si,count(u[si])/count(u)−−−−−−−−−−−−−−−−→ •
si+1,1.0−−−−−→ . . .

sj−1,1.0−−−−−→ • sj ,1.0−−−→ v′ where u′ and v′ are the corresponding nodes in
the PFA of u and v. Recall that transitions in the PFA hold both a transition
symbol and an emitted probability.

At this stage, this initial PFA contains paths that correspond to the sub-
strings from the GST, and can be used for prediction so long as the entire
substring is in the tree. However, if the next symbol following some substring is
not in the tree, then a Markovian decision need be made since it may still be pos-
sible to predict the symbol using a shorter suffix. For this, the GST suffix links
are used to find the next immediate suffix. In a GST, the node corresponding to
the string si . . . sj has a suffix link (a pointer) to the internal node corresponding
to the string si+1 . . . sj , i.e., its immediate suffix. This enables jumping to the
next available context (history) in constant time. Cogo utilizes the suffix links to
complete the PFA construction in the following manner: For each node u (visited
during the depth-first traversal) and for each symbol σ ∈ Σ that does not mark
any outgoing edge from u, Cogo follows the suffix links starting from u until:

1. An internal node v is reached where the first symbol of the substring repre-
sented by that node equals σ. In this case, Cogo adds a transition between
the corresponding two nodes to u and v in the PFA. It sets the transition
symbol to σ and the transition probability to that stored in v in the GST.

2. The root of the GST is reached and it has an edge with a label that begins
with σ to some child node v. Here, Cogo adds a transition between the cor-
responding u and v nodes in the PFA. It sets the transition symbol to σ and
the transition probability to that stored in v.

3. The root is reached but it has no outgoing edges for σ. In this case, a loop-
back transition on σ from u to itself is added and the transition probability is
set to ρmin (a small predefined value for the minimum transition probability).

Since the GST contains all suffixes, the resulting PFA would contain outgo-
ing edges from the start state that never prefixed the training sequences. This
can result in the PFA accepting anomalous behavior if an attack occurs at the
very beginning of execution of a target process. Cogo eliminates those spurious
transitions by keeping a set of the initials of the training sequences and pruning
outgoing start state transitions from the PFA that do not correspond to those
initials. This is done in constant time (|Σ| comparisons). Using a single depth-
first traversal, Cogo also removes any transitions that have a probability less
than or equal to ρmin and replaces them with loop-back transitions with ρmin

probability. During the same traversal, Cogo normalizes the probabilities across
outgoing edges from each node.
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Minimizing the PFAs. The PFA may contain redundancy such as unreach-
able states (because of eliminated transitions) or overlapping paths, resulting in
unnecessary space overhead. To overcome this, Cogo minimizes the PFA using
the following greedy approach. The goal is to reduce the size of the PFA as much
as possible without incurring excessive training overhead, i.e., reduction time has
to be linear in the size of the PFA. The minimization algorithm is based on the
insight that paths farther away from the PFA root (the start state) are more
likely to overlap sine they represent longer substrings.

Cogo iterates over the PFA in breadth-first order. Each time it visits a new
state u, it searches for all previously visited states that are fully equivalent to
the u. Two states are fully equivalent if they have the same outgoing transitions
with the same transition symbols, probabilities, and destination states for each
transition. Cogo groups all the equivalent states into a single state set. This
process continues till all states in the PFA are visited, producing a set family of
states. After that, all equivalent states set are removed and replaced with a single
state in the PFA. The process is repeated on the resulting PFA till any of the
following conditions occur: (1) Tthe PFA stops changing. (2) The minimization
ratio, i.e., the size of the resulting PFA divided by the size of the old PFA,
drops below some user defined threshold θ (defaults to 0.1). (3) The number of
repetitions exceeds a user chosen threshold ζ (defaults to 100). The 2nd condition
terminates the minimization stage once a diminishing returns point is reached.
The 3rd condition gives the user the ability to control the hidden constant c
of the minimization complexity O(cn). This completes the construction of the
PFA. Figure 1 illustrates an example of a bounded GST and the PFA inferred
by Cogo from the set {01001101, 01010100} where L = 4, i.e., the effective set is
{0100, 1101, 0101, 0100}. The figure also shows how to compute the probability
of the sequence 010 using the PFA.

Fig. 1. Bounded GST and final PFA produced by Cogo from the strings {01001101,
01010100} with maximum depth L = 4. Each edge in the GST has a substring and a
transition probability. Dotted edges are suffix links in the GST. Each edge in the PFA
has one symbol and a transition probability. Low probability edges are not shown for
simplicity. To compute P (010), we walk φ → a → b → c, giving 1 ∗ 2/3 ∗ 3/5 = 2/5.
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3.3 Detection

In the online phase, Cogo executes the PFAs as shadow state machines to the
monitored program. Each measurement symbol results in a transition in the
corresponding PFA of that measured resource type. Computing the probability
of a sequence of symbols using a PFA reduces to walking the path corresponding
to the symbols in the PFA, one transition at a time. This enables constant time
online detection with minimal state keeping overhead, since only the current
state and the transition symbol determine the next state.

For a sequence of n measurements, a PFA allows us to compute the predic-
tion probability in O(n) time and O(1) space. Given a PFA M and a string of
measurements s = s1 . . . sl, and assuming that M is currently in state qj , we
walk M (for each si ∈ s) where each transition emits the transition probability.
The prediction probability of s by M is computed as the multiplication of all
emitted probabilities along the walked path. Cogo decides that the sequence s
is anomalous if the sequence resulted in at least t low probability transition in
the PFA. Specifically, Cogo performs the following test:

∣
∣
∣

{

γ(qj , si) ≤ ρmin, i ∈ 1 . . . l
}
∣
∣
∣

{≤ t → accept
> t → reject

(2)

where γ(qj , si) is the transition probability of symbol si outgoing from state
qj , qj+1 = τ(qj , si) gives the next PFA state, and t is the tolerance level. Recall
that Cogo builds the PFAs such that low probability transitions are loop-back
transitions, therefore they do not result in a state change in the PFA. This
allows Cogo to offer tolerance by forgetting up to t low probability transitions.
If a sequence results in more than t low probability transitions, Cogo raises an
alarm.

3.4 Attaching to a Running Process

It is desirable in practice to be able to attach Cogo to a running process
rather than starting a program under Cogo. For instance, attaching to run-
ning processes is essential for on-demand monitoring of processes that migrate
among a cluster of servers. The main challenge in attaching to a run process
in our context is that Cogo would not know in which states in the PFAs the
process might be, nor how it got to those states. In other words, the process and
the PFAs would not be in sync.

To resolve this, we developed the following non-deterministic PFA executor:
First, Cogo attaches to the running program and starts monitoring at any arbi-
trary point in its execution. As measurements arrive, for each PFA for the target
program, Cogo executes the PFA in a non-deterministic fashion by finding all
paths that correspond to the incoming measurements, producing a set of poten-
tial paths P that the monitored process might have executed along. As more
measurements arrive, Cogo extends each path in P by one transition at a time
and checks if the detector accepts or rejects the new paths. A rejected path is
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eliminated from P. Eventually, either all paths in P are eliminated or only a sin-
gle path remains. If all paths are eliminated, meaning the process has deviated,
Cogo raises an alarm. If a single path remains, then the PFA and the process
have been successfully synchronized and Cogo returns to normal operation.

3.5 Seeing Through Containers

It is typical that web applications are deployed in isolated instances, i.e., multiple
instances of the web server would be running in isolation from each other on the
same host. Each instance gets its own isolated view of the systems resources —
including file system, CPU, RAM, and network interfaces. Common isolation
techniques are either based on full virtualization (e.g., virtual machines) or
operating-system-level virtualization using software containers (e.g., OpenVZ,
LXC, and Docker). Full virtualization does not pose an issue for Cogo since
Cogo can be deployed inside the web server VM itself. On the other hand, con-
tainers abstract out the OS kernel, making it impossible to deploy Cogo inside
an isolated container since Cogo requires kernel access. Therefore, Cogo needs to
be deployed on the host (outside the containers) yet monitor processes running
inside isolated containers.

The main hurdle of seeing through containers is that PIDs inside a container
are local to that container, i.e., they only identify the process inside that con-
tainer PID namespace. Quoting from the Linux kernel manual, “a namespace
wraps a global system resource in an abstraction that makes it appear to the
processes within the namespace that they have their own isolated instance of the
global resource.”6 The local PID serves no meaning outside the container where
a process is running. Instead, the process is identified by a different global PID
only known to the host running the container. Without knowledge of the global
PID of a process, Cogo cannot attach and monitor that process in kernel space
since the global PID is the PID seen by the kernel tracer in kernel space. Note
that there are no containers or namespaces in kernel space.

We implemented a container-aware global PID resolver to be able to identify
processes running in namespaces. First, Cogo starts the process in a suspended
state inside the container and gets the process id in the container namespace
(NSPID). (The NSPID from the loader process is the PID local to the container
where the process is running.) This is possible by creating a custom loader
process that outputs its NSPID and its namespace identifier (NSID), then sends
a stop signal to itself. (The NSID is a unique namespace identifier.) When the
loader process receives a continue signal, it loads the desired target program via
a call to the exec system call. Given the NSPID and NSID, Cogo searches all
namespaces on the host system for a matching child NSID that contains a match-
ing NSPID. Once identified, Cogo extracts the global PID of the process from
the identified child namespace. It then attaches to that process (the loader) using
the global PID and sends it a continue signal. Upon receiving the continue signal

6 The Linux kernel manpage for namespaces is available at: http://man7.org/linux/
man-pages/man7/namespaces.7.html.

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
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by the loader, it loads and executes the desired target using the exec system
call, replacing the process image but retaining any PIDs. Cogo then continues
normal operation.

4 Implementation

We implemented Cogo by extending the code base of Radmin [25]. Radmin
offered several integrated kernel space and user space tracing capabilities and
an extensible PFA engine, which allowed us to implement and benchmark Cogo
in a unified way. Figure 2 illustrates the architecture of Cogo within Radmin.
We extended Radmin’s kernel tracer to support network I/O monitoring, and
implemented Cogo’s learning and detection algorithms by extending Radmin’s
PFA engine which originally only supported a quadratic time PFA construction
(q-PFA in the figure). We also extended the framework to support attaching to
running processes and monitoring containerized processes.

Fig. 2. Cogo’s architecture within Radmin. Cogo extends Radmin with a network I/O
monitoring module, the linear PFA construction component, a non-deterministic PFA
executor, and a custom loader to resolve namespace PIDs.

We extended Radmin’s kernel tracer to support network I/O monitoring by
attaching handlers to the relevant tracepoints [24] in the kernel. Kernel trace-
points are special points in the executable kernel memory that provide hooks to
various events in the kernel. The hooks call functions (probes) that are provided
at runtime by kernel modules. Cogo provided a handler for each tracepoint where
it collected and reported the measurements to the rest of Radmin as needed. Each
tracepoint executes in the context of the process that triggered the event. Cogo
filters out process contexts using the global PIDs of the monitored processes.
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Table 1. Kernel tracepoints hooked by Cogo for network I/O monitoring.

Kernel tracepoint Description

socket.create A socket is allocated

socket.close A socket is closed and released

socket.sendmsg, socket.writev,

socket.aoi write, socket.write iter

Data is being sent on a socket

socket.recvmsg, socket.readev,

socket.aoi read, socket.read iter

Data is received on a socket

It supports monitoring a single process, all processes part of one program, or
all processes in a process tree. Table 1 lists the relevant tracepoints that Cogo
hooked to monitor network state.

5 Evaluation

We measured the detection accuracy, earliness, and overhead of Cogo on two
large-scale server applications that are commonly targeted by application layer
DoS attacks: Apache [2], the world’s most used web server software; and Open-
SIPS [9], the famous free VoIP server and proxy implementation of the session
initiation protocol (SIP) [33]. The testbeds used Docker containers for isolation
and CORE [15] for network emulation.

5.1 HTTP Attacks on Apache

Our Apache testbed is depicted in Fig. 3. It consisted of a server running Apache,
one User Agent (UA) node for benign clients, and one Weaponized User Agent
(W-UA) node for attackers. UA and W-UA consisted of Docker containers run-
ning HTTP clients. We generated benign traffic using an HTTP client model
derived from Choi-Limb [22]. From the mean and standard deviation for various
model parameters for the data set reported in [22], we used a nonlinear solver
to calculate approximate distribution parameters for the distribution found to
be a good fit in Choi-Limb. We represented each client using one instance of the
HTTPerf [7] benchmark. For each client, we generated a workload session using
a unique seed and the distilled distribution parameters. The session consisted of
a series of requests with a variable think time between requests drawn from the
client model. We generated the workload session in HTTPerf’s workload session
log format (wsesslog). Each client request contained as URL parameters a ran-
dom request length padding and a requested response size drawn from the client
model. The Apache server hosted a CGI-bin web application that simulated real
deployments. For each client HTTP request, the server responded with content
equal in byte length to the requested response size.
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Fig. 3. HTTP DoS testbed used in our experiments, including the Apache server, a
User Agent (UA) node where benign clients reside, and a Weaponized User Agent
(W-UA) node where attacks originate from.

Attack traffic originated from the W-UA node. We used the HTTP appli-
cation layer DoS benchmark SlowHTTPTest [4] which bundles several Slow-
rate [11] attack variants. (Slow-rate attacks are low-bandwidth application layer
DoS attacks that use legitimate albeit slow HTTP requests to take down web
servers.) Two famous examples of Slow-rate attacks are Slowloris [12] and
Slowread [5]. In Slowloris, attackers send the HTTP request headers as slowly as
possible without hitting the connection timeout limit of the server. Its Slowread
variant sends the headers at normal speeds but reads the response as slowly
as possible. If enough of these slow requests are made in parallel, they can
consume the entire server’s application layer connections queue and the server
becomes unable to serve legitimate users. Slow-rate attacks typically manifest in
an abnormally large number of relatively idle or slow sockets.

We built Cogo model for Apache using 12 benign traffic runs, each of which
consisted of one hour of benign traffic. We set the number of benign clients
to 100. Note that each benign client is a whole workload session. For testing,
we performed several experiments using blended benign and attack traffic by
injecting attack requests at random points while serving a benign load. Test-
ing is performed by running Apache under Cogo in detection mode, serving
one hour worth of benign requests from 100 benign clients and 100 Slow-rate
clients (attackers). The number of attackers represents the total concurrent
SlowHTTPTest attack connections. We limited the attack duration to 15 min.
We configured Apache to serve a maximum of 100 concurrent connections at any
moment in time.

We performed each experiment with and without Cogo. We configured Cogo
to kill the offending Apache worker process when an attack is detected.7 Finally,
we experimented with two types of attackers: non-aggressive attackers that seep

7 More advanced remediation policies can be used, such as blocking offending source
IPs, rate limiting, or protocol-specific recovery. We opted for process termination for
simplicity as remediation is not the focus of Cogo.
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in the server at a very slow rate, and aggressive attackers that bombard the server
with as many concurrent connections as possible. For non-aggressive attackers,
we set the SlowHTTPTest connection rate to one connection per second. For
aggressive attackers, we set the connection rate to the server capacity, i.e., 100
connections per second.

Detection Results. Table 2 summarizes the results. It took Cogo only about
12 min to build a model for Apache from the benign measurements. This is
about a 505× improvement over Radmin which took more than four days to
construct a model from the same measurements. The savings in training time
came at the expense of a slight increase in the model size (from 34 MB to
76 MB) which is acceptable and does not pose a bottleneck. The model is only
loaded once at startup of Cogo; detection time is invariant of the model size as
each measurement point results in exactly one transition in one of the PFAs.

Cogo achieved a very low false positive rate (FPR) at 0.0194% (about 91%
better than Radmin). We believe the reason for this reduction in FPR is that
Cogo retains longer low-probability paths in the PFA as the detection algorithm
limits transition probabilities rather whole path probabilities as in Radmin. For
the most part, false positives (FPs) were encountered during startup or shutdown
of Apache which from experience has shown considerable variability.

Table 2. Summary of results for Apache. The number of requests was 473,558.

Item Radmin Cogo Improvement

Training time (sec.) 379,661 752 � 505×
Model size (MB) 34 76 � 0.45×
FPs, FPR 1,116, 0.2357% 92, 0.0194% � 12×
Downtime (sec; non-aggressive) 137 0 � ∞
Downtime (sec; aggressive) 58 7 � 8.3×

Figures 4 and 5 depict the availability of Apache against non-aggressive and
aggressive attacks. Cogo successfully prevented Apache from going down against
non-aggressive attacks. As the attack connections were idling at the server side,
Cogo detected anomalous transmit and receive rates and terminated the attacked
Apache workers. This occurred within seven seconds from connection establish-
ment. Against the same attacks, Apache under Radmin remained down for longer
than two minutes. For aggressive attacks, Apache protected with Radmin was
down for one minute, compared to only seven seconds under Cogo.

5.2 VoIP Attacks on OpenSIPS

Next, we considered detection of resource attacks on VoIP servers as telephony
systems have increasingly become targets of DDoS attacks evidenced during the
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Fig. 4. Apache server availability against non-aggressive Slow-rate attacks. With Rad-
min, the server was down for more than two minutes. There was no downtime under
Cogo.

2015 attack on the Ukrainian power grid [13]. To establish and manage calls,
VoIP servers rely on Session Initiation Protocol (SIP) [33] which is known to be
vulnerable to exhaustion and overload, even under benign conditions [29]. Over-
load can be caused by a variety of legitimate SIP behaviors such as response
duplication, call forwarding, and call forking (conference calls) which result in
large numbers of control packets that may congest servers. Similarly, exces-
sive transactions cause system resource exhaustion in stateful servers when the
number of requests exceeds the finite memory available to track each call state
machine. An adversary who wishes to cause DoS can do so by initiating calls
that exercise these legitimate but atypical resource intensive behaviors and thus
degrade server performance — all while blending in with normal traffic (without
malformed packets or specification violations) to circumvent defenses such as
scrubbing or bandwidth limitation. In the following we evaluate Cogo against
these protocol attacks on a representative SIP testbed based on OpenSIPS [9].
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Fig. 5. Apache server availability against aggressive Slow-rate attacks. Cogo reduced
the server down time by at least a factor of eight, down from 58 s to only seven seconds.

Testbed and Procedure. Our SIP DDoS testbed, shown in Figure 6, con-
sisted of a SIP server and pairs of SIP user agents and weaponized agents that
serviced simultaneous callers and attackers. The SIP server ran OpenSIPS 2.2
and was configured using the residential configuration generated by the Open-
SIPS configuration tools. OpenSIPS used fixed-size shared and private memory
across its child processes (32 MB and 16 MB respectively). To exacerbate mem-
ory exhaustion at the server, we adjusted the wt timer of the OpenSIPS to 32 s
(the recommended value in the RFC) which corresponds to the length of time a
transaction is held in memory after it has completed. Though intended to help
absorb delayed messages after the transaction completed, it also inadvertently
reserves memory that could otherwise be made available to handle new calls. For
the following experiments, we considered a small enterprise or large residential
deployment, thus end-to-end delays from UA to server were minimal (ten ms)
and link bandwidth was isolated to SIP traffic at 100 Mbps.

Pairs of UA nodes were used to represent benign SIP callers (UA-1) and
callees (UA-2). These nodes ran instances of the SIP Proxy (SIPp) [10]: a SIP
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Fig. 6. SIP DDoS testbed used in our experiments. UA-1 and UA-2 are benign user
agents. W-UA-1 and W-UA-2 are attack (weaponized) agents.

benchmarking tool to generate SIP caller/callee workloads. While we did not
model the audio portion of the call, we leveraged the log-normal feature of SIPp
to insert a random, lognormal distributed pause between call setup and hang
up to simulate variability among call lengths. Our call length distribution was
log-normal with a mean of 10.28 and variance of one ms equating to an average
call length of 30 s. Each call consisted of an INVITE transaction followed by the
variable pause, and then terminated with a BYE transaction. SIPp can initiate
calls in parallel, allowing us to model many users from a single node.

Attacks were initiated from the W-UAs at caller W-UA-1 and callee
W-UA-2. We staged attacks by repurposing SIPp as an attack tool, supplying
it with scenario files that specify malicious caller/callee behaviors such as flood-
ing requests or excessive duplication of responses. For example, a BYE flood
attack equates to W-UA-1 initiating a number of spurious BYE transactions,
each with a new call id to represent a new transaction. Because SIP does not
associate a BYE with a prior INVITE, the BYE is accepted and transaction
memory is wastefully reserved while the attack is in process. W-UA-2 colludes
with W-UA-1 by purposefully not responding to the request, which adds to the
time transaction memory is held at the server. Like the benign workload, we can
tune the amplitude of SIPp to control the number of simultaneous attack calls.

The Cogo model for OpenSIPS was built from five benign observation col-
lecting runs, totaling 8 h of benign measurements. During this observation run
OpenSIPS was subjected to a benign load between the SIPp clients (UA-1, UA-2)
and the SIP server. The clients initiated calls to the server. Call setup and call
disconnect were specified using XML files input to SIPp and followed standard
SIP call setup conventions for invite, ringing, bye, and appropriate response and
status messages. Call hold used the SIPp log-normal distribution. The SIPp
maximum calls per second rate was set to 10 and call limit to 200. This com-
bination of SIPp settings produced a steady call rate of ∼7 calls every second.
Several additional benign observation runs were made during which OpenSIPS
was started and then terminated to ensure the observations captured startup
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Table 3. Summary of OpenSIPS results. The number of benign call requests was 6,342.

Item Radmin Cogo Improvement

Training time (sec.) 43,493 258 � 169×
Model size (MB) 41 55 � 0.75×
FPs, FPR 9, 0.1419% 4, 0.0631% � 2.25×
Bye flood detection delay (sec.) ∞ 6 � ∞
Invite flood detection delay (sec.) ∞ 4 � ∞

and shutdown which from experience has shown considerable variability. The
total size of the observation data was 515 MB. Processing these observations
resulted in a model of 55 MB. Several test runs were made using the model and
with it Cogo exhibited virtually zero false positives under a load with the same
characteristics as that used for the observation runs.

Detection Results. Table 3 summarizes the results. Cogo reduced training
time from about 12 h to only 4 min (greater than 169× reduction). The model
size increased by a factor of only 0.75×, from 41 MB to 55 MB. In terms of
accuracy, Cogo only had 4 FPs throughout the experiment. The four FPs all
occurred at startup time of OpenSIPS. Radmin triggered 9 FPs also at startup
time. The impact of BYE and INVITE floods on OpenSIPS, and the detection
behavior of Cogo is shown in Fig. 7. The attacks were not detectable by Radmin
since OpenSIPS uses a fixed size memory pool, therefore preventing memory
exhaustion by the attack calls. In other words, without monitoring network I/O,
it is impossible to early detect BYE and INVITE floods. Cogo, on the other
hand, detected the attacks almost immediately, within less than six seconds after
the attacks onset. Note that we did not implement any remediation policy for
OpenSIPS; proper remediation requires a protocol-specific solution that times
out or hangs up the attack calls.

5.3 Performance Overhead

Cogo effectively had a negligible overhead. We measured the throughput of
Apache and OpenSIPS on the benign workloads with and without Cogo. Apache
maintained a steady rate of 130 requests per second. We benchmarked Apache
with HTTPerf and experienced a very marginal 0.2± 0.3 ms response time
increase per request. The average response time increased from 10.3 ms to
10.5 ms. For OpenSIPS, it maintained a steady call rate of 200 calls per sec-
ond. We experimented with call rates from 300 to 1000 calls per second and did
not observe any degradation in throughput.
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Fig. 7. Cogo detection of bye and invite floods against OpenSIPS.

6 Related Work

Modern operating systems have a number of threshold-based facilities to limit
resource consumption (ulimit, AppArmor [3]). However, these limits are static
upper bounds and disregard different consumption of different program segments
for different inputs. This enables attackers to maximize the DoS time by crafting
inputs that trigger prolonged resource consumption or starvation, such as Slow-
rate attacks [21,23,30]. Several static and dynamic instrumentation tools exist
for profiling, such as Valgrind [32] and Intel Pin [31]. However, the instrumenta-
tion overhead is often too high to enable their continuous usage, especially when
detection of exhaustion is the goal [34,35]. Apostolico [18] presented a theoretic
study for linear prediction using a Generalized Suffix Trees (GST). However, to
the best of our knowledge, there is no implementation or a quantitative study
of [18]. Our approach, builds a simpler model using a PFA construction that
provided tight detection time and space guarantees instead of a GST.

In [14,30] there is a survey of different approaches for anomalous traffic detec-
tion which is not connected directly or indirectly to resource consumption at the
application layer. Antunes et al. [17] proposed a system for testing servers for
exhaustion vulnerabilities using fuzzed test cases from user-supplied specs of the
server protocol. Groza et al. [27] formalized DoS attacks using a protocol-specific
cost rules. Aiello et al. [16] formalized DoS resilience rules that protocols should
meet but they are not feasible requirements in practice [37]. Chang et al. [20]
proposed a static analysis system for identifying source code sites that may result
in uncontrolled CPU time and stack consumption. The system employed taint
analysis and control-dependency analysis to identify source code sites that can be
influenced by untrusted input. Several similar approaches that required manual
code annotation were also developed [28,38]. Closely related, Burnim et al. [19]
used symbolic execution to generate inputs that exhibit worst case complexity.

Cogo substantially differs from those systems in that it does not require
access to the source code or any side information and it covers network resources
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used by an application, not only CPU and memory. Elsabagh et al. [25] proposed
Radmin, a system for early detection of application layer DoS attacks. This is the
system we used as a starting point for Cogo. The system showed good accuracy
and low overhead. However, it did not monitor network I/O, had a prohibitive
quadratic training time, and could not monitor containerized processes or attach
to a running process.

7 Conclusions

This paper presented Cogo, a practical and accurate system for early detection
of DoS attacks at the application layer. Unlike prior solutions, Cogo builds a
PFA model from the temporal and spatial resource usage information in linear
time. Cogo monitors network state, supports containerized processes monitoring
and attaching to running processes. Cogo detected real-world attacks on Apache
and OpenSIPS, both are large-scale servers. It achieved high accuracy, early
detection, and incurred negligible overhead. Cogo required less than 12 min of
training time, incurred less than 0.0194% false positives rate, detected a wide
range of attacks less than seven seconds into the attacks, and had a negligible
response time overhead of only 0.2 ± 0.3 ms. Cogo is both scalable and accurate,
suitable for large-scale deployment.
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Abstract. This study extensively scrutinizes 14months of registration
data to identify large-scale malicious campaigns present in the .eu TLD.
We explore the ecosystem and modus operandi of elaborate cybercrim-
inal entities that recurrently register large amounts of domains for one-
shot, malicious use. Although these malicious domains are short-lived, by
incorporating registrant information, we establish that at least 80.04%
of them can be framed in to 20 larger campaigns with varying duration
and intensity. We further report on insights in the operational aspects of
this business and observe, amongst other findings, that their processes
are only partially automated. Finally, we apply a post-factum clustering
process to validate the campaign identification process and to automate
the ecosystem analysis of malicious registrations in a TLD zone.

Keywords: Malicious domain names · Campaigns · DNS security

1 Introduction

The Domain Name System (DNS) is one of the key technologies that has allowed
the web to expand to its current dimensions. Virtually all communication on the
web requires the resolution of domain names to IP addresses. Malicious activi-
ties are no exception, and attackers constantly depend upon functioning domain
names to execute their abusive operations. For instance, phishing attacks, dis-
tributing spam emails, botnet command and control (C&C) connections and
malware distribution: these activities all require domain names to operate.

Widely-used domain blacklists are curated and used to stop malicious domain
names1 shortly after abusive activities have been observed and reported. As a
1 We use the term malicious domain name whenever we refer to a domain name that

is registered to be bound to a malicious service or activity.
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consequence, attackers changed to a hit-and-run strategy, in which malicious
domain names are operational for only a very small time window after the initial
registration, just for a single day in 60% of the cases [11]. Once domain names
have fulfilled their purpose, attackers can simply abandon them and register a
new set of domain names to ensure continuity of their criminal activities [24].

This strategy is economically viable to the attackers when the cost of reg-
istering a domain name is minimal. However, this approach requires repetitive
and often automated domain name registrations. We refer to these series of mali-
cious domain names registered by a single entity as campaigns. To obscure their
actions, attackers often use fake registration details and need to switch between
identities, registrars and resellers to avoid detection.

Moreover, we have observed that certain underground services pop up to
facilitate the bulk domain registration process for abusive activities. For instance,
on the darknet forum “AlphaBay”, we found several instances of “Domain and
Email Registration as a Service”. In one example2, cyber criminals register new
domain names and create fresh, private email accounts that are sold to be used
for illegal activities, such as carding.

The sheer volume of malicious domain names, as well as the fact that the
registration process is being automated and monetized, illustrates the need for
strong insights into the modus operandi of cybercriminals to produce effective
countermeasures.

In this paper, we focus on the malicious campaign ecosystem by extensively
leveraging the registrant and registration details, with the goal to better under-
stand how miscreants operate to acquire a constant stream of domain names. We
rigorously investigate 14 months of .eu domain registrations, a top 10 ccTLD [15]
for the European Economic Area. Overall, the dataset of this study contains
824,121 new domain registrations; 2.53% of which have been flagged as mali-
cious by blacklisting services.

Among others, the following conclusions can be drawn from this in-depth
assessment:

1. While most malicious domains are short-lived, a large fraction of them can
be attributed to a small set of malicious actors: 80.04% of the malicious regis-
trations are part of just 20 long-running campaigns. We identified campaigns
that were active for over a year, and campaigns that registered more than
2,000 blacklisted domains (Sect. 3).

2. The campaign identification process suggests that 18.23% of malicious
domains does not end up on a blacklist (Sect. 3.3).

3. The malicious domain registration process is only partially automated: under-
ground syndicates work along office hours, take holiday breaks and make
human errors while registering domains (Sect. 4).

4. Ecosystem analysis can be automated and reproduced by leveraging clustering
algorithms. In our experiment, the 30 largest clusters formed by agglomera-

2 http://pwoah7foa6au2pul.onion/forum/index.php?threads/%E2%96%84-
%E2%96%88-%E2%98%85-paperghost-%E2%98%85-%E2%96%88-%E2%96%84-
fresh-non-hacked-private-email-logins-lower-your-fraud-detection-score-2.71566.

http://pwoah7foa6au2pul.onion/forum/index.php?threads/%E2%96%84-%E2%96%88-%E2%98%85-paperghost-%E2%98%85-%E2%96%88-%E2%96%84-fresh-non-hacked-private-email-logins-lower-your-fraud-detection-score-2.71566
http://pwoah7foa6au2pul.onion/forum/index.php?threads/%E2%96%84-%E2%96%88-%E2%98%85-paperghost-%E2%98%85-%E2%96%88-%E2%96%84-fresh-non-hacked-private-email-logins-lower-your-fraud-detection-score-2.71566
http://pwoah7foa6au2pul.onion/forum/index.php?threads/%E2%96%84-%E2%96%88-%E2%98%85-paperghost-%E2%98%85-%E2%96%88-%E2%96%84-fresh-non-hacked-private-email-logins-lower-your-fraud-detection-score-2.71566


474 T. Vissers et al.

tive clustering encompass 91.48% of blacklisted campaign registrations. These
clusters exhibit a clear mapping with manually identified campaigns (Sect. 5).

The remainder of this paper is structured as follows. First, in Sect. 2, we
introduce the data set used in this research, along with initial insights. Next,
we perform a large scale experiment to manually identify malicious campaigns
(Sect. 3), followed by several analyses to gather more insights (Sect. 4). In Sect. 5,
we follow up with a method to automate campaign identification. We discuss
applications and limitations in Sect. 6, followed by a summary of related work
in Sect. 7. Lastly, we conclude this study in Sect. 8.

2 Datasets and Initial Findings

In this section, we present the data used in this research and give initial insights
based on a first, high-level analysis.

2.1 Registration Data

We analyzed 824,121 .eu domain registrations between April 1, 2015 and May 31,
2016. We inspected the following fields:

Basic registration information contains the domain name, the date and
time of registration, and the registrar via which the registration happened.

Contact information of the registrant contains the company name, name,
the language, email address, phone, fax, as well as postal address information.
We decomposed two additional attributes from the email address: the email
account and the email provider.

Nameservers or glue records that are responsible for resolving entries within
the domain. We enriched the nameserver data with their geographical location
by resolving the NS records and adding IP geolocation data.

2.2 Blacklists

To capture whether or not a domain was used in malicious activity, a set of
public blacklists was queried on a daily basis. Each new domain is monitored
daily during 1 month after registration. Afterwards, all domains were checked
once more 4 months after the last registration in our dataset. The following
blacklist services have been used:

dbl.spamhaus.org blacklist [21]. This Spamhaus blacklist is queried using
their DNS API, and provides indicators for botnet C&C domains, malware
domains, phishing domains, and spam domains.

multi.surbl.org blacklist [20]. SURBL features a combination of different
lists, such as abuse, phishing, malware, etc. The combined SURBL list is queried
over DNS.

Google’s Safe Browsing list [7]. Google’s Safe Browsing list is queried
via a Web API, and provides indicators for malware domains, phishing domains,
and domains hosting unwanted software, as described in [8].
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2.3 Preliminary Insights

Given the data described above, we present a preliminary analysis to provide
insights in the general trends and patterns of malicious registrations.
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Fig. 1. Weekly share of malicious and all registrations over time.

Observing the 824,121 registrations that occurred between April 1, 2015 and
May 31, 2016, we find that 2.53% end up on a blacklist. This corresponds to a
total of 20,870 registrations used by cyber criminals in the given 14 month time
span. Figure 1 shows the weekly share of both malicious and all registrations over
this period. The differences in intensity of malicious registrations are moderately
correlated with those of all registrations (ρ = 0.54). However, the variance of
malicious registrations is clearly much larger. Most of the increased malicious
activity, for instance at the start of February 2016, can be attributed to a single
malicious campaign. These cases are discussed in depth in Sect. 3.

The selected blacklists return metadata that encode the reason(s) why a
particular domain name was flagged. In our records, 93.68% of the blacklisted
domains in the dataset is labelled for spam, 2.09% for malware infrastructure,
0.57% for unwanted software, and 3.22% for phishing activities.

Most domains appear on blacklists very shortly after their registration. More
specifically, 72.93% of malicious domains were flagged within 5 days of delegation.
98.57% of malicious registrations are listed on a blacklist in their first month.

3 Campaign Identification Experiment

Typically, illegal online activities do not occur in an isolated or dispersed fash-
ion [5,11]. Instead, malicious actors commonly set up campaigns that involve
multiple, tightly related abusive strategies, techniques and targets. Through an
in-depth, a posteriori analysis of the .eu dataset, we assessed whether such pat-
terns can be identified between domain registrations and to what extent these
registrations happen in bulk.

Ultimately, we manually identified 20 distinct campaigns responsible for
the vast majority of malicious registrations. A campaign represents a series of
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registrations over time, with strong similarities in terms of registration data
(e.g. the registrar, the registrant’s address information, phone number or email
address, and the set of nameservers). Moreover, a campaign can most probably
be attributed to a single individual or organization. In this section, we first give
a more thorough description on how these campaigns were identified, followed
by some general insights into their characteristics.
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Fig. 2. Daily percentage of malicious registrations, including and excluding campaign
registrations. The dotted lines represent the highest daily concentration of both sets.

3.1 Campaign Identification Process

As malicious registrations often occur in batches [10,11], high temporal concen-
trations can serve as a preliminary indicator of campaign activity. Figure 2 plots
the relative amount of malicious registrations on each day. That graph can be
used to identify the time periods in which the amount of malicious registrations
was surging. If a campaign was responsible for a high concentration of malicious
registrations, a substantial subset of registrations within that timeframe should
be related to each other. Hence, all malicious registrations that occurred in that
time span are examined to find common characteristics in the registration data.
These can be recurring values or distinct patterns in the email address, the
address info, the registrar, the registrant name, etc. To detect useful outliers,
we visualized correlations between registration fields. For example, by plotting
the email providers of the registrants versus the country listed in their street
address (as shown in Fig. 3), multiple hotspots of malicious registrations can be
found that contribute to one or more campaigns. These unique combinations
and patterns form the basis of the manually assigned campaign selection crite-
ria. To evaluate these, we apply them to the full dataset, i.e. on both benign
and blacklisted registrations, over all 14 months. If the criteria match multiple
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active days and contain a substantial number of blacklisted domains, they are
withheld as a new campaign. This process was repeated iteratively, reducing the
number of malicious concentrations each time.
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Fig. 3. Malicious registrations, grouped by email provider and country of the registrant.
For visibility, combinations with less that 50 registrations are left out of the figure.
Moreover, email providers with less than 50 distinct email addresses in the dataset
have been obfuscated for privacy reasons.

Over the complete dataset, we identify 20 distinct campaigns. A variety of
attributes of the registration details have been used to characterize a campaign,
the specifics for each campaign are listed in Table 1.

3.2 General Campaign Observations

The activity of the 20 identified campaigns is depicted in Fig. 4. A first observa-
tion is that most of the campaigns are long-living: only one campaign runs for
less than a month, while some campaigns run up to a year and more3.

Secondly, campaigns strongly vary in their activity patterns. Some campaigns
are active on almost a daily basis (e.g. campaign c 19), whereas others only
have a few distinct active days throughout their lifetime (e.g. campaign c 07).
Similarly, campaigns vary in concentration. An intense, six week campaign was
for instance responsible for almost 2,000 new registrations (c 20), whereas one
3 Note that some campaigns might be running even longer than 372 days, as they

might have been active before the starting date of our dataset (campaigns c 01 -
c 05) or they may still be active past the time span that is covered in our dataset.



478 T. Vissers et al.

Table 1. Attributes used to express the selection criteria of a campaign. ● represents
a string match, and ✩ a regular expression pattern.
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Fig. 4. Campaign duration and activity over time. The black lines represent the over-
all duration of the campaign, while the black dots indicate the number of malicious
registrations on that day.

steady campaign ran over 10 months and produced only 154 malicious registra-
tions (c 13).

A third observation is that campaigns contribute to a large fraction of mali-
cious registrations found in the .eu registration data. Together, the 20 campaigns
cover 16,704 domain registrations, that appeared on blacklists. This represents
80.04% of the 20,780 blacklisted registrations in our dataset.

Lastly, not all registrations identified as part of a campaign are flagged as
malicious. In total, 19.30% of the campaign registrations we identified are not
known as abusive domains by blacklisting services. A more in-depth analysis
of these potential false positives is discussed in Sect. 3.3. Note that to avoid
any bias, Fig. 4 only include registrations that appeared on blacklists, and thus
represent a lower bound of campaign activity.



Exploring the Ecosystem of Malicious Domain Registrations in the .eu TLD 479

3.3 Validation of Campaign Selection Criteria

As briefly mentioned in the previous section, 19.30% of the registrations asso-
ciated with malicious campaigns do not appear on blacklists. We expect that
various reasons contribute to this mismatch:

1. Incomplete coverage by blacklists. As blacklists are not exhaustive ora-
cles, we expect that certain domains in a campaign may simply not have been
picked up by the specific set of blacklists used.

2. Not abused. It is possible that a number of campaign registrations simply
has not been used for malicious purposes (yet).

3. False positives. Some of our campaign criteria might not be strict enough,
introducing false positive matches.

Figure 5 depicts in red the percentage of registrations for each individual cam-
paign that appears on a blacklist. There are three campaigns with less than 60% of
their registrations blacklisted: c 05, c 11 and c 15. In the remainder of this section
we validate the quality of the campaign selection criteria. We attempt to gauge the
real false positive rate by inspecting domains belonging to campaigns, but do not
appear on blacklists. A high false positive rate would imply that the selection cri-
teria are imprecise and include a significant set of domains that were registered
without any malicious intent. In contrast, a very high true positive rate implies
that the selection criteria are substantially more exhaustive in defining domains
with malicious intent compared to blacklisting services.

Transitive Attribution. To assess the prevalence of incomplete blacklists and
not-active malicious domains, we examine the registrant data of false positives
in order to find undeniable traces that connect them to malicious domains. We
base this transitive attribution on phone numbers as these are uniquely assigned
identifiers that were never used in our campaign selection criteria. Thus, if the
registrant’s phone number is identical to that of a blacklisted registration, we
consider the domain name to be part of the malicious campaign and assume
that it has either not been abused yet, or was not picked up by a blacklist. In
total, 3,252 campaign domains are transitively considered as malicious. As shown
in yellow in Fig. 5, 14 of the 20 identified campaigns are thereby completely
validated.

A threat to using phone numbers to identify malicious registrants arises
when an attacker retrieves the WHOIS information of a legitimate .eu domain
and falsely uses it for his own registration. With three small experiments, we
try to invalidate the presence of this scenario in the transitive attributed set.
Firstly, we measure the time interval between the registration time of a transi-
tively attributed domain and of the blacklisted domain that it was associated
with. We find that for 2,058 domains, the malicious registration (with the same
phone number) occurred within 60 s of the transitively attributed registration.
We argue that it is virtually impossible for an attacker to observe a new regis-
tration (which is non-public information in the .eu zone), query its WHOIS data
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and subsequently make a similar registration in that time interval. In a second
experiment, we argue that an attacker would not exploit a benign registrant’s
information if those contact details are already tainted. In that regard, we filter
out 965 of the remaining domains that were registered after a prior registra-
tion with the same phone number was already blacklisted. Lastly, we consult a
phone number verification tool [22] and identify invalid phone numbers for 189
of the 229 remaining domains. We presume that a malicious actor would not
steal benign registrant details with an invalid phone number while attempting
to mimic a legitimate registrant. In the end, we observe one of these three indi-
cators for 3,212 (98.77%) of the transitively attributed domains and conclude
that this attribution is justified.

In-Depth Analysis of Campaign C 15. After the transitive attribution step,
still 30.6% of the registrations in campaign c 15 remain potential false positives.
This set of domain names is further investigated.

Within campaign c 15, all domain names are composed of concatenated
Dutch words (mostly 2 words, but sometimes up to 4). The same words are
frequently reused, indicating that a limited dictionary was used to generate the
domain names. The remaining 583 potential false positives domain names were
split up by a native Dutch speaker in segments of existing words. 396 of these
unflagged domain names turned out to be exclusively constructed out of Dutch
words used in blacklisted domains of the campaign. As this is a very specific
pattern, these domains have been labeled as validated true positive. The remain-
ing domain names had either one word segment in common (172 domains) or
no common word at all (15 domains). Thereafter, a new iteration of transitive
attribution strategy was applied on that remaining set. Hereby, 147 registrations
shared a phone number with the previously validated registrations, reducing the
potential false positives to just 40 registrations.

Interstingly, we find that 95 out of the 98 registrant names that are used
in c 15 can be generated with on of the Laravel Faker generator tool forks [16]
using its nl-NL language option.

Manual Analysis of the Remaining False Positives. After the transitive
attribution and the analysis of c 15, the residual potential false positives in all
campaigns were further investigated manually, by querying DNS records, visiting
websites, and searching on blacklists (e.g. URLVoid [23]) and search engines.
Only two additional domains could be validated as true positives: one registration
in campaign c 04 was identified as a phishing website by FortiGuard [6], and one
registration in campaign c 15 sent out unsolicited to a temporary email account
on email-fake.com.

Summary of Validation. Of the 20,698 campaign registrations, 16,704
domains (80.73%) were flagged by blacklisting services, 3,252 registrations
(15.71%) were linked to malicious domains via transitive attribution, and 552
(2.67%) have been manually validated as registered with malicious intent.

http://email-fake.com
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Fig. 5. Extended false positive analysis of each campaign. (Color figure online)

To conclude, the campaign selection criteria resulted in only 190 potential
false positives (i.e. 0.92%). This is a strong indicator that the selection criteria
are sufficiently accurate to perform a representative analysis and to give us the
necessary insights into the malicious domain ecosystem.

4 Insights into Malicious Campaigns

In this section, we discuss several interesting observations regarding malicious
campaigns, found during our assessment.

Abuse Indicators and Categories. Overall, the vast majority of blacklisted
domains (93.68%) were associated with spam domains. As listed in Table 2, all
campaigns follow this general distribution, except for c 19 where nearly 28% is
linked to botnet C&C servers.

Spamhaus DBL and SURBL are the two abuse sources that cover the largest
number of domains. While there is a considerable overlap, both are required to get
an exhaustive coverage of all campaigns. In particular, c 1 and c 19 are exclusively
flagged by just one of the two sources. Interestingly, Google Safe Browsing was not
involved in flagging domains in any of the campaigns. Presumably, Safe Browsing
focuses more on malware delivery, as opposed to malicious infrastructure.

Cross-Campaign Characteristics. Some interesting characteristics exist
across multiple campaigns. For instance, c 03, c 04 and c 20 generate the reg-
istrant’s email address from its name followed with a numerical suffix. Simi-
larly, the registered domain names in c 05 and c 11 follow clear character pat-
terns with numerical suffixes. Another returning peculiarity is the discrepancy
between the registrant’s street address and his country. c 07, c 9, c 13 and c 14
use valid street addresses located outside of Europe (US and Panama) in combi-
nation with a European country (Norway, Ireland and others). Presumably, this
is to partly confuse the residential requirements for registering a .eu domain. In



482 T. Vissers et al.

Table 2. The different types of abuse, the blacklists and registration timing pat-
terns per campaign. A small fraction of blacklisted domains has a missing abuse type.
The max. burst represents the highest number of registrations that occurred within a
60-second time span.

Abuse types Blacklist sources Registration timing patterns

Campaign Spam Botnet Malware Phishing Unwanted Spamhaus SURBL
Google

SB
Day of week
(Mon-Sun)

Hour of day
(00-23h)

Max.
burst

c 01 100.00% 100.00% 99

c 02 100.00% 100.00% 27.53% 59

c 03 100.00% 99.48% 86.82% 51

c 04 99.88% 0.12% 1.38% 99.64% 76.26% 28

c 05 83.05% 12.99% 77.97% 9

c 06 100.00% 87.63% 12.37% 3

c 07 91.40% 91.40% 1.08% 10

c 08 100.00% 100.00% 3.70% 19

c 09 99.63% 0.12% 1.97% 99.26% 28.45% 46

c 10 99.20% 1.60% 78.40% 90.40% 48

c 11 85.18% 0.08% 16.00% 77.02% 59

c 12 99.59% 0.20% 99.39% 74.29% 23

c 13 96.75% 81.82% 19.48% 1

c 14 100.00% 84.43% 86.05% 132

c 15 97.28% 73.35% 33.46% 13

c 16 100.00% 0.12% 100.00% 43.71% 8

c 17 100.00% 100.00% 8.83% 18

c 18 99.85% 0.15% 99.77% 28.04% 10

c 19 72.07% 27.93% 100.00% 5

c 20 99.29% 0.96% 99.14% 7.58% 19

All malicious 93.68% 1.27% 0.85% 3.22% 0.57% 81.07% 50.04% 1.81%

the case of c 10, a fixed street address is listed throughout the campaign while
10 different countries are combined with it.

Registration Process is Not Fully Automated. While performing the in-
depth analysis of the malicious domain registrations, we found multiple indica-
tions that the malicious registration process in (at least some of) the campaigns
is not fully automated: syndicates work along office hours and make human
errors while registering domains.

Office hours and holiday breaks. As expected, the overall registrations in the
.eu zone follow a weekly pattern. Figure 6 demonstrates this by zooming into
1 month of registrations. During weekends, a significantly smaller amount of
registrations occurs than during the week. On average, week days have 2.34
times more registrations than weekend days. For blacklisted registrations, the
difference is even more prominent. During weekend days, 3.85 times less
malicious registrations occur as compared to weekdays. Moreover, several week-
end days have no blacklisted registrations at all. Table 2 displays this behavior
separately for each campaign.
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As already mentioned in Sect. 2, the distribution over time of malicious reg-
istrations is much more fluctuating than those of all registrations (Fig. 1). Inter-
estingly, the longer drops in malicious registration activity coincide with holiday
periods. The most significant one starts at the first week of July and continues
for several weeks, concurring with the summer holidays. The other major periods
of recess correspond to Labour day weekend (May 1), the Christmas holidays
(last week of December) and the beginning of Lent or Carnival (mid-February).
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Fig. 6. Daily share of all and malicious registrations between April 1, 2015 and April
20, 2015. A clear weekly pattern is measured for both.

There are multiple hypotheses to explain these registration patterns:

1. Malicious actors might deliberately mimic normal registration patterns to
avoid detection.

2. There might be a lower demand for new malicious domains during holidays,
when potential victims are less active online.

3. Cybercriminal activities could be managed as any other business and are
therefore equally susceptible to vacation periods.

To substantiate the latter hypothesis, we also zoomed in into the variation
in registration time per campaign. Interestingly, as shown in Table 2 displays
this separately for each campaign, we identified that some of the campaigns
clearly align with a typical day at the office. For instance, in campaign c 11 and
c 18 syndicates are working 8 to 10 h a day, and the daily pattern of c 11 even
suggests that there is sufficient time to take a lunch break. In contrast, the daily
registration pattern of campaign c 19, further illustrated in Fig. 7, hints at a
more automated process. The vast majority of registrations are made daily at
midnight and 1 PM. Furthermore, campaigns such as c 14 are registering at a
rate up to 132 new domains per minute, suggesting underlying automation.

Minor inconsistencies in the data. We observe a number of inconsistencies in
several registration details of certain campaigns. These inconsistencies could be
the consequence of small errors or typos, suggesting that some of the data has
been manually entered into scripts or registration forms, or that different input
validation rules have been applied by registrars or resellers.
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Fig. 7. Times of registrations for campaign c 19. Note the impact of daylight saving
time starting from the last Sunday of March.

As listed in Table 3, we encounter a few cases where registration fields belong-
ing to the same registrant vary typographically inside a single campaign.

In campaign c 15, we also observed registrant names for which the name
field has been filled inconsistently, leading to name patterns such as Lastname
Lastname or Firstname Firstname Lastname.

Table 3. Minor inconsistencies found in the registration details campaign domains.
Some registration details have been obfuscated for privacy reasons.

Attribute Inconsistencies

c 04 street P.O BOX 3...4 P.O BOX 3...4,

c 11 city AIX EN PROVENCE AIX-EN-PROVENCE

c 11 street 1... ROUTE D AVIGNON 1... ROUTE D’AVIGNON

c 16 street 947 C...R 9457 C...R

Adaptive Registration Strategies. Several campaigns alter their strategies
throughout their lifetime. For instance, five campaigns have registered domains
via multiple registrars: c 01, c 03, c 11, c 12 and c 16. Figure 8 illustrates how
campaign c 11 sequentially changes between 4 registrars over the entire duration
of the campaign. Malicious actors might change registrars for economic reasons
(cheaper domain registrations) or to evade detection. Alternatively, the change
in registrar can be triggered by an intermediate reseller that changes registrar.

Table 4 lists for each campaign the amount of adaptive registration details
that were used throughout its lifespan. While five campaigns use just a single
phone number and email address, the large majority leverage multiple registra-
tion details. The email providers that are categorized as “Campaign” indicate
that a domain name that was registered as part of the campaign, was later used
as the email provider for a new registration.

As primary indicators of evasion sophistication, we list two metrics. Firstly,
we give the maximum number of domains for which a campaign has reused a
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single phone number or email address. Secondly, we measure the longest period
during which a registrant’s phone or email address has been reused. c 15, c 12
and c 8 demonstrate the highest sophistication in terms of minimizing the reuse
of registrant details. However, c 15 uses many different self-registered email
providers and only reuses details sparsely over a long period. In other words,
they leverage a more elaborate strategy than c 12 and c 8, where registrant
details seem to be automatically generated in a hit-and-run fashion The success
of c 15’s strategy is supported by its low blacklist presence. In contrast, c 2, c 11
and c 18 deploy exhibit more simple and high-volume strategies.
Table 4. The amount of registrars, phone numbers, email addresses and types of email
providers used per campaign.

Campaign
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Nb of registrars 3 1 2 1 1 1 1 1 1 1 4 2 1 1 1 3 1 1 1 1

Nb of phones 4 3 19 54 1 2 1 29 14 1 2 29 1 1 97 8 1 4 1 13
Max domains per phone 338 1026 385 169 177 158 93 20 590 125 1220 24 154 989 16 372 283 1265 752 237
Max phone usage (days) 90 71 69 276 129 1 359 2 155 204 246 15 307 41 232 147 50 75 226 35

Nb of email addresses 6 18 71 54 177 2 1 29 13 1 2 29 29 1 98 8 1 4 1 14
Max domains per email 263 103 68 169 1 158 93 20 590 125 1240 24 126 989 16 373 283 1265 752 237
Max email usage (days) 50 8 14 267 – 1 359 2 155 204 157 15 255 41 232 147 50 75 226 35
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Private 5 – – – – 2 1 – – 1 1 – 1 – – – – – – –
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Fig. 8. Registrations per day and per registrar of campaign c 11.

Related Campaigns. By searching for overlaps between campaigns in their
registrants’ details, as well as temporal characteristics (simultaneous or chained
activity), we have identified that several campaigns are likely related to each
other:

– c 02 and c 03 have registrants with the same phone number
– c 08 and c 12 have registrants with the same phone number, email and address
– c 16 and c 18 have registrants with the same address

Similarly, the abrupt ending of campaigns c 01, c 02 and c 03 suggest that
these campaigns might be of the same actor, or depend on the same reseller or
registrar that ended their service.
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Most Active Malicious Actors. Table 5 gives the highest represented mali-
cious registrars, registrants and email providers in our dataset. Most surpris-
ingly, 49.6% of all the malicious domain names are registered with one single
registrar. Furthermore, it used by half of all the campaigns we identified. We
argue that this registrar is either very flexible in accepting registrations, or has
the most interesting price setting for bulk registrants. Note that this registrar
only accounts for 2.27% of all benign registrations. This observation confirms
earlier findings in [11,13] that a handful of registrars accounts for the majority
of spammer domains.

The most used malicious email providers are all popular public webmail
providers. The situation is different compared to the registrars as gmail.com has
the largest share of malicious registrations but also well-represented in benign
registrations. In contrast, aol.com and yahoo.com do have a large fraction of
malicious registrations.

Over 3,000 malicious registrations can be attributed to just 3 registrants who
are predominantly malicious. Related to the reasoning in Sect. 3.3, we suspect
that non-blacklisted registrations of these registrants are likely malicious as well.

Table 5. Top 3 most malicious registrars, email providers and registrants. For each
entry, we list their contribution to all malicious and benign registrations, their toxicity
and the campaigns that are associated with them. The toxicity expresses the percentage
of malicious registrations within that entity.

Nb of Contribution

malicious Malicious Benign Toxicity Associated campaigns

1. registrar 5 10,353 49.61% 2.27% 36.25% 1 2 3 4 9 10 12 13 14 17

2. registrar 3 3,004 14.39% 2.64% 12.41% 3 7 8 12 16 18

3. registrar 7 2,327 11.15% 0.46% 38.67% 20

1. gmail.com 4,221 20.23% 24.79% 2.08% 4 14 19

2. yahoo.com 3,348 16.04% 1.49% 21.85% 2 3 4 8 20

3. aol.com 2,134 10.23% 0.31% 46.28% 8 9

1. m...s@c...k.com 1,265 6.06% 0.00% 99.37% 18

2. abuse@j...n.com 1,240 5.94% 0.12% 54.89% 11

3. n...t@gmail.com 989 4.74% 0.01% 95.37% 14

5 Automating Campaign Identification

In the previous section, we discussed a large-scale experiment in which we man-
ually identified large campaigns from a corpus of malicious registrations. The
criteria that defined these campaigns were mainly recurring registrant and name-
server details. In this section, we use that knowledge to automate the campaign
identification process by using a clustering algorithm. The results serve to both
validate the manual experiment, as well as to demonstrate the capabilities of
automatic campaign identification to aid ecosystem analyses in TLDs.

http://gmail.com
http://aol.com
http://yahoo.com
http://gmail.com
http://yahoo.com
http://aol.com
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5.1 Clustering Process

Algorithm. Agglomerative clustering is chosen as the basis to perform auto-
matic campaign identification. It is a hierarchical clustering algorithm that works
by iteratively merging the two clusters that are closest to each other [12]. We
adopt the complete linkage criterion to determine the distance between clusters.
Using this criterion, the distance is equal to that of the most dissimilar instances
of both clusters, promoting a high density. There are two main reasons for opting
for agglomerative clustering.

1. The algorithm does not require a predetermined number of clusters, allowing
us to statistically evaluate the optimal number of clusters afterwards.

2. Given the results from Sect. 3, we presume that about 80% of malicious
domains can be grouped into clusters. Agglomerative clustering allows the
remaining independent domains to have their own singleton cluster, without
necessarily polluting the large clusters.

Feature Set. For each of the 20,870 blacklisted registrations, we extract 13 fea-
tures. There are two general registration features, domain length and regis-
trar. Next, we have ten registrant features: name, street, city, region, country,
zip code, phone number, email account and email provider. Lastly, two name-
server features were included, the nameserver domain names and their geo-
graphical location.

Agglomerative clustering uses the Euclidean distance measure to calculate
the distance between two instances. However, except for domain length and
address score, all features in our set are categorical, not numeric. In order to
accommodate these features, we apply one-hot encoding [18]: for each possible
category in our set, a new binary feature is created. Each instance that carried
that value will receive a value of 1 in the new binary encoded feature, all others
are set to 0. Naturally, one-hot encoding dramatically increases the number of
features, more specifically from 13 to 30,843.

Cutoff Selection. Agglomerative clustering has no predefined stopping criteria
and merges clusters until only one remains. Using the campaign labels from
the manual analysis in Sect. 3, we calculate the V-measure after each merging
step to statistically express the mapping between clusters and campaigns. The
V-measure is the harmonic mean of the homogeneity and completeness score [19].
The former is a metric that represents how homogeneous each cluster is in terms
of campaign labels, the latter measures whether the instances of a certain label
are all assigned to the same cluster4. The highest V-measure is observed at
a cutoff of 432 clusters, where the homogeneity is 0.90 and the completeness
score 0.86.

4 For instances without campaign labels, the registrant’s phone numbers are set as
their label.
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5.2 Results

In the selected model, very large clusters have formed. Namely, 80% of domains
reside in the 39 largest clusters, while a long tail of 227 clusters consisting out
of only 5 registrations or less. In other words, the clustering algorithm forms
a Pareto distribution similar to the manual campaign identification in Sect. 4.
Furthermore, the top 30 clusters represent 91.48% of blacklisted registrations
that reside within the 20 manually identified campaigns.

Using Fig. 9, we analyze the top 30 largest clusters and their correlation to
the campaign labels from the manual analysis. The clustering algorithm largely
aligns with the manual campaign identification, with most clusters mapping to
a single campaign. The notable exceptions being the two largest clusters. The
first cluster encompasses 2,052 domains of both c 02 and c 03. This is in line
with our previous speculation (Sect. 4) that c 02 and c 03 are related given their
synchronized ending and the fact that they share registrants with the same phone
number. The same is true for the second cluster, as both c 16 and c 18 clearly
share registrants with the same address.

Cluster 16 is the only automatically identified cluster that solely exists out
of domains without campaign labels. When inspecting those domains, we find
that this cluster is likely related to or part of c 20. More specifically, their active
days align and the same registrar is used for all registrations in both sets, as
shown in the bottom part of Fig. 10.

Several clusters also contain a small amount of instances without a campaign
label. We distinguish two cases: instances that closely align to a campaign, but
were not selected because of too narrow selection criteria; and instances that
have no campaign affinity, but are most probably merged because the clustering
algorithm has executed too many merges. The former are labeled as (Related)
in Fig. 9, the latter as (Unrelated).

18 of the 20 manually identified campaigns are represented in the top
30 clusters. The smallest identified campaign, c 07, is not found in this sub-
set of clusters because it is simply too small. Cluster 30 contains 110 domains,
more than c 07 encompasses as a whole. However, we find that c 07 is completely
and homogeneously represented by the 35th cluster. The second campaign that
is missing is c 15. As mentioned in Sect. 3.3, this campaign was selected by a
unique and complex address formatting pattern. Since the clustering algorithm
only performs binary matches on these fields, it is less effective at detecting these
more advanced similarities. As shown in the top part of Fig. 10, c 15 is spread
out over 18 clusters, that essentially represent 18 different registrants that are
reused throughout the campaign. The affinity between those clusters is clear
when considering their active days.

In conclusion, the manual and automatic campaign identification results align
to a large extent. We find that, when performing automatic detection using clus-
tering, we achieve a more exhaustive identification of clear similarities as opposed
to manual identification (e.g. cluster 16). However, the automatic approach has
difficulties to detect more advanced similarity patterns (e.g. c 15). In future
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work, more sophisticated techniques, such as n-grams, can be integrated into
the clustering algorithm to detect more advanced similarity patterns.

In general, the outcome of the clustering algorithm both validates the app-
roach of the manual analysis, as well as demonstrates the capabilities of auto-
matic and reproducible campaign identification using registrant and nameserver
details.

 (Unrelated)
(Related)

c_01
c_02
c_03
c_04
c_05
c_06
c_08
c_09
c_10
c_11
c_12
c_13
c_14
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c_20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Number of Registrations: ● ● ● ●400 800 1200 1600

Fig. 9. Mapping of the top 30 clusters to campaign instances. The bottom two rows
represent domains without a campaign label: the (Related) row groups the registra-
tions that closely align with campaigns, the (Unrelated) groups registrations without
campaign affinity. The clusters are ranked from large to small.

6 Discussion and Limitations

In this section, we want to discuss the relevance and applications, as well as the
limitations of our study.

Applications. Given the exploratory nature of this research, we anticipate
several applications and next steps.

The relevance of this work is not limited to .eu domains. Presumably, mali-
cious actors do not restrict their potential to a single TLD. Furthermore, bulk
registrations can be made across multiple TLDs using the same registrar. There-
fore, the findings and methods described in this paper can most likely be applied
to other or across TLDs. To reproduce this study, access to registrant and name-
server details of registrations is required. This data can generally be obtained
by downloading zone files and WHOIS data.
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Clusters with c_15 domains

Clusters with c_20 domains (red) and Cluster 16 (blue)
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Fig. 10. Related temporal activity, highlighted in gray. Top: Domains of campaign c 15
are spread over many clusters. Bottom: Cluster 16 maps to clusters of c 20 domains.

Additionally, we demonstrate that automatic campaign identification using
clustering is a feasible strategy. Moreover, 18.38% of registrations in the identified
campaigns are not present on blacklists. This entices interesting opportunities
to extend the coverage of blacklists. Although the proposed system relies on a
post-factum analysis, it could create opportunities to stop ongoing campaigns.

Limitations. We note four limitations and potential validity threats.
Firstly, the main subjects of this research are domain names that are reg-

istered with malicious intent. However, backlists also contain legitimate regis-
trations that have been compromised later on. We argue that the prevalence
of these cases is minimal, since 98.57% of blacklisted registrations were already
flagged within the first 30 days of registration. Furthermore, compromised benign
domains would appear as outliers in our data and could thus hardly pollute cam-
paign analyses.

Secondly, both the manual and automatic identification rely on patterns in
the registration data. Malicious actors can leverage this dependency by con-
stantly using different registration data and patterns. However, the cost for
attackers would increase to achieve this higher level of circumvention. Further-
more, it is hard not to exhibit any pattern when performing bulk registrations
(same registrars, time patterns, fake identity generating tools,...).

Additionally, several registrars offer anonymization services to their cus-
tomers, obscuring the registrant contact information to the registry. Evidently,
this diminishes the ability to differentiate between registrations and conceals
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information that can be used to identify domains registered by the same entity.
In the case of .eu, the use of such obfuscation services is not allowed by the
registry’s terms and conditions. During our analysis, we find that such services
were only deployed by c 05 which could have impacted this campaign.

Finally, our research is based on a set of publicly available blacklists that are,
at least to some extent, incomplete. A more complete ground truth would likely
improve the performance of our approach.

7 Related Work

Prior to our research, Hao et al. [11] studied the domain registration behavior
of spammers. They reported that most spam domains are very short-lived. More
specifically, 60% of these domains were active for only a single day. Spammers are
registering many “single-shot” domains to minimize interference by blacklists.
To counter this strategy, the authors explore various features on which spam
domains exhibit distinctive behavior. For instance, in contrast with benign reg-
istrations, they find that malicious domains are more often registered in batches.
Recently, Hao et al. implemented many features discussed in that prior work to
create a machine learning-based predictor capable of detecting malicious domains
at time-of-registration [10]. The three most dominant features of their classifier
are authoritative nameservers, trigrams in domain names and the IP addresses
of nameservers.

While both papers approach malicious domains as a two-class problem
(benign vs. malicious registrations), many of their features essentially depend
on returning characteristics of different underlying malicious campaigns. In this
work, we are the first to shift the focus to the campaigns itself, exploring their
modus operandi and different identifying characteristics.

A method related to ours was proposed by Felegyhzi et al. [5], who investi-
gated the feasibility of proactive domain blacklisting, by inferring other malicious
registrations from known-bad domains through shared nameservers and identical
registration times. The proposed system shortens the time required to blacklist
malicious domains, while providing important insights regarding the similarities
of registrations within campaigns. Additionally, Cova et al. [4] identified dif-
ferent rogue antivirus campaigns by looking at the hosting infrastructure and
registration details (including the registrant’s email) of different domains.

Related studies concentrate on DNS traffic of newly registered domains to
characterize malicious behaviour [1–3,9,14]. These systems mainly focus on the
initial operational DNS patterns of domain names.

Other important efforts regarding malicious domains come from the study
of domain generation algorithms (DGAs). Recent work by Plohmann et al. [17]
demonstrates the increasing importance of understanding DGAs to thwart C&C
communication. Using reimplementations of these algorithms, the authors exe-
cute forward generation of domain lists, which enables proactive identification
of C&C domains.
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8 Conclusion

In this study, we analyzed the maliciously-flagged .eu registrations over a
14-month period. This paper is the first to extensively dissect the underbelly
of malicious registrations using registrant details to identify its operational com-
ponents, namely campaigns. We explored the ecosystem and modus operandi of
elaborate malicious actors that register massive amounts of domains for short-
lived, malicious use.

By searching for shared characteristics, we established that at least 80.04%
of all malicious registrations can be attributed to 20 campaigns with varying
duration and intensity. Moreover, the coverage of blacklists can be extended by
19.30%, using the information from the campaign identification. After a rig-
orous evaluation, we are able to confirm that the vast majority of these pre-
viously undetected registrations are genuinely related to malicious activity; at
most 0.92% are false positive registrations.

Our study demonstrates the potential to leverage the registrant details and
other registration characteristics to identify large campaigns. Aided by an auto-
matic identification process, this insight can be used to easily track and interfere
with massive, long-running campaigns and to preemptively extend blacklists
with malicious domains that have yet to be actively used by a cybercriminal.
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