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Abstract. Both Smale’s alpha theory and Rump’s interval theorem pro-
vide the conditions which guarantee the existence of a simple solution
of a square nonlinear system. In this paper, we generalize the conclusion
provided by Rall to reveal the relationship between Smale’s alpha the-
ory and Rump’s interval theorem. By point estimates, we propose the
conditions under which the condition of Rump’s interval theorem holds.
Furthermore, using only the information of the given system at the ini-
tial approximate point, we give the convergence conditions of interval
Newton’s algorithm proposed by Rump.
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1 Introduction

Solving a nonlinear system in the form f(x) = 0 with f = (f1, f2, . . . , fn)T

and x = (x1, . . . , xn)T is one of the most fundamental problems in scientific
computing. In this paper, we assume that f : Rn → R

n and f1, f2, . . . , fn have
all order continuous partial derivatives. Denote the Jacobian matrix of f at x
by f ′(x).

Newton’s method and its modifications have long played an important role
in solving nonlinear systems. Under certain conditions, Newton’s method con-
structs a sequence of iteration points that will converge to a solution of the
given nonlinear system. In 1948, the author of [2] established the Kantorovich
theorem based on the assumption that the Jacobian matrix of the nonlinear
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system is Lipschitz continuous on some domain. The Kantorovich theorem first
gives the condition to ensure that a simple solution exists close to the initial
point and the Newton iteration sequence quadratically converges to this simple
solution. Using the technique of point estimates, Smale et al. [15–17] developed
the alpha theory to locate and approximate simple solutions. The alpha theory
requires only information concerning the nonlinear system at the initial point of
the Newton iteration. By introducing the dominating sequence technique, Wang
and Han [18] improved both the condition and conclusion of the alpha theory.
With the aid of Schröder operator, Giusti et al. [3] provided a criterion for locat-
ing clusters of solutions of univariate nonlinear functions. Later on, Giusti et al.
[4] generalized their results to locate breadth-one singular solutions of multivari-
ate nonlinear systems. For the performance of the alpha theory, Hauenstein and
Sottile [6] described the program alphaCertified to certify solutions of polyno-
mial systems. Recently, Hauenstein and Levandovskyy [5] extended the program
alphaCertified to verify solutions to polynomial-exponential systems.

Interval arithmetic is another important tool of verification methods. In
1960s, Krawczyk [9] first introduced an interval version of Newton’s method for
verifying the existence of simple solutions. Moore [10] proposed computationally
verifiable sufficient condition for interval Newton’s method given by Krawczyk.
Rump [12] made interval Newton’s method perform better in practice, which
is called Rump’s interval theorem and included in verifynlss function in INT-
LAB toolbox [13] in Matlab. Based on the deflation technique using smoothing
parameters, Rump and Graillat [14] described a verification algorithm to ver-
ify multiple solutions of univariate nonlinear functions and double solutions of
multivariate nonlinear systems. Further, Li and Zhi [8] provided an algorithm
to verify breadth-one singular solutions of polynomial systems, which had been
generalized to deal with the verification of isolated singular solutions in [7].
By combining interval algorithms with some other methods, Yang et al. [19]
investigated the verification for real solutions of positive-dimensional polynomial
systems.

In 1980, Rall [11] exhibited the relationship between the Kantorovich theorem
and Moore’s interval theorem. By the quantities of the Kantorovich theorem,
Rall provided the conditions under which Moore’s verifiable sufficient condition
holds. For an initial approximate x(0) ∈ R

n and a radius ρ > 0, let Xρ denote
the set {x : ‖x − x(0)‖∞ < ρ}, and let η, B, κ be the constants such that

‖f ′(x(0))
−1

f(x(0))‖∞ ≤ η,

‖f ′(x(0))
−1‖∞ ≤ B,

‖f ′(u) − f ′(v)‖∞ ≤ κ‖u − v‖, u,v ∈ Ω,

where Ω is a sufficiently large region containing x(0). Rall’s conclusion is that if

h = Bκη <
1
4
,

then

x(0) − f ′(x(0))
−1

f(x(0)) + (I − f ′(x(0))
−1

f ′(Xρ))(Xρ − x(0)) ⊂ Xρ
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holds for any ρ satisfying the inequality

1 − √
1 − 4h

2h
η ≤ ρ ≤ 1 +

√
1 − 4h

2h
η.

Since the alpha theory and Rump’s interval theorem are respectively the
generalization of the Kantorovich theorem and Moore’s interval theorem, we
generalize Rall’s conclusion to discuss the relationship between the alpha theory
and Rump’s interval theorem in this paper. By only the information of the given
system at the initial approximate point, we provide the conditions to guarantee
that we can obtain an approximate point after finite Newton’s iterations, where
this approximate iteration point corresponds to an interval solution satisfying the
condition of Rump’s interval theorem. The next section will give some notation
and background results.

2 Notation and Preliminaries

First of all, we emphasize that the norm ‖ ·‖ of the vector and the matrix in this
paper are both the infinite norm ‖ · ‖∞ since the metric for the interval vector
is closely related to the infinite norm.

Henceforward, we use boldface letters to express tuples and denote their
entries by the same letter with subscripts, for example α = (α1, . . . , αn)T .
Denote the usual product order on R

n by ≤, that is, for arbitrary α,β ∈ R
n,

α ≤ β if and only if αi ≤ βi for 1 ≤ i ≤ n.
For x ∈ R

n, if f ′(x) is nonsingular, then define

α(f ,x) = β(f ,x)γ(f ,x),

β(f ,x) = ‖f ′(x)−1
f(x)‖,

γ(f ,x) = sup
k≥2

‖f ′(x)−1f (k)(x)
k!

‖
1/(k−1)

.

Given the initial approximate x(0) with the associated simple root x∗ of f , we
let α, β and γ to stand for α(f ,x(0)), β(f ,x(0)) and γ(f ,x(0)), respectively.
Applying Newton’s method for f can get the Newton iteration sequence {x(k)},
that is,

x(k+1) = x(k) − f ′(x(k))
−1

f(x(k)), k ∈ N.

The alpha theory provides the convergence conditions which ensure the sequence
{x(k)} converges to x∗ only with the values α, β and γ. The dominating sequence
technique is a powerful tool for improving the alpha theory. The dominating
sequence {t(k)} is produced by the Newton iteration with the initial approximate
t(0) = 0 for the univariate function

h(t) = β − t +
γt2

1 − γt
,



The Convergence Conditions of Interval Newton’s Method 275

where the equation h(t) = 0 has the following two solutions

t∗ =
2β

1 + α +
√

1 − 6α + α2
, t∗∗ =

1 + α +
√

1 − 6α + α2

4γ
. (1)

The following theorem is a version of the alpha theory given by Wang and Han,
where the condition on the quantity α is best possible.

Theorem 1. [4,18] If 0 < α < 3 − 2
√

2, then for any t∗ ≤ ρ < t∗∗, the system
f(x) = 0 has exactly one simple root x∗ in B(x(0), ρ). In addition, the New-
ton iteration sequence {x(k)} converges quadratically to x∗, and the dominating
sequence {t(k)} increases and converges quadratically to t∗. Furthermore, for all
k ∈ N,

‖x(k+1) − x(k)‖ ≤ t(k+1) − t(k),

‖x(k+1) − x(k)‖ ≤ q(α)2
k−1

β

with
q(α) =

4α

(1 − α +
√

1 − 6α + α2)
2 . (2)

Denote the set of intervals by IR. An interval vector X = [x,x] ∈ IR
n with

x,x ∈ R
n and x ≤ x is defined by

X = [x,x] = {x ∈ R
n : x ≤ x ≤ x}.

For x ∈ R
n, X = [x,x] ∈ IR

n, x + X = [x + x,x + x]. Let Yρ = {y ∈ R
n :

‖y‖ ≤ ρ}, then B(x, ρ) = x + Yρ.
The norm of the interval vector X = [x,x] is defined by

‖X‖ = ‖[x,x]‖ = max{‖x‖ : x ∈ X}.

Besides int(X) designates the interior of the interval vector X. Given a set Z ⊂
R

n, the interval hull of Z is the narrowest interval vector containing Z, namely,

hull(Z) =
⋂

{X ∈ IR
n : X ⊇ Z}.

Given a continuous mapping g : Rn → R
m and an interval vector X, the interval

vector g(X) ∈ IR
m is defined as

g(X) = hull{g(x) : x ∈ X}.

Given an interval matrix A ∈ IR
m×n and an interval vector X ∈ IR

n, the
interval vector AX is defined by

AX = hull{Ax : A ∈ A,x ∈ X}.

Specially, the norm of the interval matrix A is defined as

‖A‖ = max{‖A‖ : A ∈ A}.

The following theorem is a version of the interval Newton’s method given by
Rump.
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Theorem 2. [12] Given x(0) ∈ R
n, Y ∈ IR

n with 0 ∈ Y, R ∈ R
n×n, if

S(Y,x(0)) := −Rf(x(0)) + (I − Rf ′(x(0) + Y))Y ⊆ int(Y),

then there exists a unique x∗ ∈ x(0) + Y such that f(x∗) = 0.

3 Main Results

To give the main results of this paper, we need the following functions,

ψ(u) = 2u2 − 4u + 1,

g1(α) = α2 − 4α + 10,

g2(α) = α3 − 6α2 + 21α + 28,

g3(α) = 4α3 − 25α2 + 88α − 8,

θ(α) =
1
3

arccos(
g2(α)√
g1(α)3

),

ω1(α) =
√

g1(α) cos(θ(α) +
2π

3
) + 2 +

α

2
,

ω2(α) =
√

g1(α) cos(θ(α) +
4π

3
) + 2 +

α

2
,

ω3(α) =
√

g1(α) cos(θ(α)) + 2 +
α

2
.

Here we give some lemmas and one proposition from which the main theorem
will easily follow.

Lemma 1. [15] Given x̃ ∈ R
n, if γ‖x̃ − x(0)‖ < 1 − √

2/2, then

γ(f , x̃) ≤ γ

ψ(γ‖x̃ − x(0)‖)(1 − γ‖x̃ − x(0)‖)
.

Lemma 2. If 0 < α < 3 − 2
√

2, then for all k ≥ 1,

γ‖x(k) − x(0)‖ < 1 −
√

2
2

, (3)

γ(f,x(k)) ≤ γ

ψ(γ‖x(k) − x(0)‖)(1 − γ‖x(k) − x(0)‖)
. (4)

Proof. If 0 < α < 3 − 2
√

2, then by Theorem 1,

‖x(k) − x(0)‖ ≤
k∑

j=1

‖x(j) − x(j−1)‖ ≤
k∑

j=1

(t(j) − t(j−1))

≤ t(k) ≤ t∗.
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Therefore
γ‖x(k) − x(0)‖ ≤ 2α

1 + α +
√

1 − 6α + α2
.

Since the right hand side of the above inequality monotonously increases from 0
to 1 − √

2/2 as α goes from 0 to 3 − 2
√

2, it follows that (3) holds. By means of
Lemma 1, (4) follows. ��
Lemma 3. If

0 < ρ <
1 − √

2/2
γ

, (5)

β + ρ(
1

(1 − γρ)2
− 1) < ρ, (6)

then
S(Yρ,x

(0)) ⊆ int(Yρ). (7)

Proof. Given an arbitrary real vector y ∈ Yρ, we expand the Jacobian matrix
f ′(x(0) + y) into power series and get

f ′(x(0))
−1

f ′(x(0) + y) = f ′(x(0))
−1

(f ′(x(0)) +
∞∑

k=2

f (k)(x(0))
yk−1

(k − 1)!
)

= I +
∞∑

k=2

kf ′(x(0))
−1

f (k)(x(0))
yk−1

k!
.

If (5) holds, then

‖I − f ′(x(0))
−1

f ′(x(0) + y)‖ ≤
∞∑

k=2

k‖f ′(x(0))
−1f (k)(x(0))

k!
‖‖y‖k−1

≤
∞∑

k=2

k(γρ)k−1

=
1

(1 − γρ)2
− 1.

Suppose that (5) (6) hold, then for an arbitrary real vector y ∈ Xρ, we can infer
that

‖ − f ′(x(0))
−1

f ′(x(0)) + (I − f ′(x(0))
−1

f ′(x(0) + y))y‖ < ρ,

which implies that (7) holds. ��
Lemma 4. Let

α∗ = − 1
12

(22247 + 1320
√

330)
1/3

+
431

12(22247 + 1320
√

330)
1/3

+
25
12

(8)

≈ 0.093347623,
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then for an arbitrary 0 < α < α∗, we have

g1(α∗) < g1(α) < g1(0),
g2(0) < g2(α) < g2(α∗),
g3(0) < g3(α) < g3(α∗) = 0,

θ(α∗) < θ(α) < θ(0),
ω1(0) < ω1(α) < ω1(α∗),

ω2(α∗) < ω2(α) < ω2(0) < 3 − 3
√

2
2

,

ω3(α) > 3 − 3
√

2
2

.

Proof. According to Cartan’s root-finding formula, the equation g3(α) = 0 has
only a positive real root α∗ as in (8). Obviously, g′

1(α) < 0 and g′
2(α) > 0 for all

0 < α < α∗. Thus both θ(α) and ω2(α) monotonously decrease on the interval
(0, 3 − 2

√
2). A routine computation gives rise to

ω′
1(α) =

(4 − 2α)
√−3g3(α) sin(θ(α) + π

6 ) + (84 − 36α) cos(θ(α) + π
6 )

2
√−3g1(α)g3(α)

+
1
2
,

then for all 0 < α < α∗, ω′
1(α) > 0. This lemma follows immediately from what

we have proved. ��
Proposition 1. Under the condition (5), the inequality (6) holds if and only if

0 <α < α∗, (9)
ω1(α)

3γ
<ρ <

ω2(α)
3γ

. (10)

Proof. Define Δ = (q/2)2 + (p/3)3 with

p = −1
3
(
4 + βγ

−2γ
)
2

+
1 + 2βγ

2γ2
,

q = 2(
4 + βγ

−6γ
)
3

+
β

2γ2
− (4 + βγ)(1 + 2βγ)

−12γ3
,

then

p = −g1(α)
12γ2

, q = − g2(α)
108γ3

, Δ =
g3(α)

1728γ6
.

It follows by Lemma 4 that for all α > 0, p < 0 and q < 0, then we have three
cases to consider.

Case I: α > α∗. In this case, Δ > 0 and the equation

ρ3 − 4 + βγ

2γ
ρ2 +

1 + 2βγ

2γ2
ρ − β

2γ2
= 0 (11)
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has only one real solution

ρ∗ = 3

√
−q

2
+

√
Δ + 3

√
−q

2
−

√
Δ.

An easy computation yields that for all α > α∗, ρ∗ > (1 − √
2/2)/γ. Therefore,

in this case, (6) holds if and only if ρ > ρ∗, which contradicts the condition (5).
Case II: α = α∗. In this case, Δ = 0 and (11) has only two unequal real

solutions

− 3

√−q

2
, 2 3

√−q

2
.

Clearly,

− 3

√−q

2
< 0, 2 3

√−q

2
>

1 − √
2/2

γ
.

Hence in this case, (6) can not hold under the condition (5).
Case III: 0 < α < α∗. In this case, Δ < 0 and (11) has three unequal real

solutions
ω1(α)

3γ
,

ω2(α)
3γ

,
ω3(α)

3γ
.

Recalling Lemma 4, we know that for all 0 < α < α∗,

ω3(α)
3γ

>
1 − √

2/2
γ

,

ω2(α)
3γ

<
1 − √

2/2
γ

,

0 <
ω1(α)

3γ
<

ω2(α)
3γ

.

Thus in this case, (6) holds if and only if (10) holds.
As a whole, under the condition (5), the inequality (6) holds if and only if

(9) and (10) hold. ��
On the basis of α, β and γ, the following theorem provides the conditions

such that (7) holds, which is an immediate conclusion of Proposition 1.

Theorem 3. If 0 < α < α∗, then for any ρ satisfying the inequality

ω1(α)
3γ

< ρ <
ω2(α)

3γ
,

the condition (7) holds.

The following corollary indicates that the alpha theory is of greater preci-
sion than Rump’s interval theorem, which can be directly deduced by an easy
computation.
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Corollary 1. If 0 < α < α∗, then

ω1(α)
3γ

> t∗.

For the Newton iteration sequence {x(k)}, define

ρ∗(f ,x(k)) =
ω1(α(f ,x(k)))
3γ(α(f ,x(k)))

, ρ∗∗(f ,x(k)) =
ω2(α(f ,x(k)))
3γ(α(f ,x(k)))

. (12)

In view of the quantity α of the alpha theory proposed by Wang and Han [18], we
give the following convergence condition of interval Newton’s algorithm proposed
by Rump.

Proposition 2. Let �·� be the integer ceiling function, p(α) be defined by

p(α) =
2α

1 + α +
√

1 − 6α + α2
,

and q(α) be defined in (2). If 0 < α < 3 − 2
√

2, then for any

k ≥ �log2(
ln α∗ + ln(1 − p(α)) + lnψ(p(α)) − ln α

ln q(α)
+ 1)�, (13)

the condition
S(Yρ(k) ,x(k)) ⊆ int(Yρ(k)) (14)

holds for any ρ(k) satisfying the inequality

ρ∗(f ,x(k)) < ρ(k) < ρ∗∗(f ,x(k)). (15)

Proof. By Theorem 1 and Lemma 2, we know that if 0 < α < 3 − 2
√

2, then for
any k ∈ N,

α(f ,x(k)) ≤ αq(α)2
k−1

ψ(γ‖x(k) − x(0)‖)(1 − γ‖x(k) − x(0)‖)
.

If 0 < α < 3 − 2
√

2, then for all k ∈ N,

γ‖x(k) − x(0)‖ ≤ p(α) < 1 −
√

2
2

,

which implies that for all k ∈ N,

ψ(γ‖x(k) − x(0)‖)(1 − γ‖x(k) − x(0)‖) ≥ ψ(p(α))(1 − p(α)).

Hence if 0 < α < 3 − 2
√

2, then for all k ∈ N,

α(f ,x(k)) ≤ αq(α)2
k−1

ψ(p(α))(1 − p(α))
,

which implies that 0 < α(f ,x(k)) < α∗ holds if the iteration number k satisfies
the inequality (13). Our conclusion will follow from Theorem 3. ��
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With the aid of the quantity α of the alpha theory given in [1], the conclusion
of the above proposition can be improved as follows.

Proposition 3. If 0 < α ≤ (13 − 3
√

17)/4, then for any k ≥ 3, the condition
(14) holds for any ρ(k) satisfying the inequality (15).

Proof. Since the function α/ψ(α)2 monotonously increases on the interval [0, 1−√
2/2), it follows that α/ψ(α)2 < 1 for any 0 < α ≤ (13 − 3

√
17)/4. Recalling

Proposition 1 in [15], we can deduce that if 0 < α ≤ (13 − 3
√

17)/4, then for
any k ∈ N,

α(f ,x(k)) ≤ (
α

ψ(α)2
)
2k−1

α.

As a result, if 0 < α ≤ (13 − 3
√

17)/4, then 0 < α(f ,x(3)) < α∗. ��

4 Example

In this section, we propose some examples to illustrate our conclusion, which are
done in Matlab R2012a with INTLAB V6 under Windows 7. In these examples,
the true interval of the display as −0.0059 is obtained by subtracting
and adding 1 to the last displayed digit, namely,

−0.0059 = [−0.00600000000000,−0.00580000000000].

Example 1. Let

f1 = x2
1 + x2 − 2 = 0,

f2 = x1 − x2 = 0,

and x(0) = (1.8, 1.8)T . The program of the alpha theory computes

α∗ < α = 0.1436672967 <
13 − 3

√
17

4
,

then by Proposition 3, we can immediately deduce that 0 < α(f ,x(3)) < α∗. The
values of α(f ,x(k)), ρ∗(f ,x(k)), ρ∗∗(f ,x(k)), k = 1, 2, 3, are shown in Table 1,
and the values of x(k), ρ(k), S(Yρ(k) ,x(k)), k = 1, 2, 3, are shown in Table 2.

Example 2. [11] Let

fi(x) = xi − 0.7xi

9∑

j=1

ai,jxj − 1 = 0, i = 1, 2 . . . , 9,

with

ai,j =
3
4

ti(1 − t2j )
2
wj

ti + tj
,
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Table 1. The values of α(f , x(k)), ρ∗(f , x(k)) and ρ∗∗(f , x(k)) about Example 1

k α(f , x(k)) ρ∗(f , x(k)) ρ∗∗(f , x(k))

1 0.04063913776 0.1474393618 0.8654682610

2 0.001956685388 0.005916476543 0.8785582303

3 0.000003858607108 0.00001157539288 0.8785582303

Table 2. The values of x(k), ρ(k) and S(Yρ(k) , x(k)) about Example 1

k x(k) ρ(k) S(Y
ρ(k) , x(k))

1

(
1.13913043490000

1.13913043490000

)
0.147440361800000

(
[−0.14648800759416, −0.11996338231131]

[−0.14648800759416, −0.11996338231131]

)

2

(
1.00590473980000

1.00590473980000

)
0.005917476543000

(
−0.0059

−0.0059

)

3

(
1.00001157619900

1.00001157619900

)
1.257539288000000e-05 1.0e-005 ∗

(
−0.11576

−0.11576

)

where ti, wi, i = 1, 2, . . . , 9, are respectively the nodes and weights of Gaussian
integration rule of order 17 on the interval [0, 1] (See Table 3).

For the initial approximate

x(0) = [1.36, 1.36, 1.36, 1.36, 1.36, 1.36, 1.36, 1.36, 1.36]T ,

we have

α∗ < α = 0.144327213206543 <
13 − 3

√
17

4
.

It follows by Proposition 3 that 0 < α(f ,x(3)) < α∗. To be precise,

α(f ,x(3)) = 9.771724278220212e-10,

ρ∗(f ,x(3)) = 2.106476714805001e-09,

ρ∗∗(f ,x(3)) = 0.721018979786819.

Choose ρ(3) = 2.206476714805001e-09, then S(Yρ(3) ,x(3)) ⊆ int(Yρ(3)). The
values of x(3) and S(Yρ(3) ,x(3)) are shown in Table 4, where i stands for the
coordinate index.

Example 3. Let

fi = x2
i + xi+1 − 2 = 0, i = 1, 2, . . . , 99,

f100 = x99 − x100 = 0.

Given x(0) with x
(0)
i = 1.28, i = 1, 2, . . . , 100, it follows that

13 − 3
√

17
4

< α = 0.165370210314031 < 3 − 2
√

2.
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Table 3. The values of ti, wi of Example 2

i ti wi

1 0.015919880000000 0.040637193262940

2 0.081984445000000 0.090324080584283

3 0.193314285000000 0.130305351576427

4 0.337873290000000 0.156173536255424

5 0.500000000000000 0.165119676661738

6 0.662126710000000 0.156173536254610

7 0.806685715000000 0.130305351576465

8 0.918015555000000 0.090324080583571

9 0.984080120000000 0.040637193262741

Table 4. The values of x(3) and S(Yρ(3) , x(3)) about Example 2

i x(3) S(Yρ(3) , x(3))

1 1.03266743259998 1.0e-008 ∗ -0.2175469960

2 1.10583043469589 1.0e-008 ∗ 0.058000438

3 1.17693975483393 1.0e-008 ∗ 0.074880771

4 1.23474234890867 1.0e-008 ∗ -0.046156608

5 1.27801354526920 1.0e-008 ∗ 0.033335094

6 1.30888887603008 1.0e-008 ∗ -0.052842004

7 1.32995480221212 1.0e-008 ∗ 0.015004650

8 1.34328756776955 1.0e-008 ∗ -0.029283159

9 1.35027189327776 1.0e-008 ∗ 0.057999652

Recalling Proposition 2, we know that there exists k ∈ N such that α(f ,x(k)) <
α∗. Indeed, for the first-step iteration point x(1), we have

α(f ,x(1)) = 0.0209408111113277 < α∗,

ρ∗(f ,x(1)) = 0.0229019461130693,

ρ∗∗(f ,x(1)) = 0.291551749088838.

Choose ρ(1) = 0.0229019461130694, then S(Yρ(1) ,x(1)) ⊆ int(Yρ(1)).
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