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Abstract. The problem of fitting sparse reduced data in arbitrary
Euclidean space is discussed in this work. In our setting, the unknown
interpolation knots are determined upon solving the corresponding opti-
mization task. This paper outlines the non-linearity and non-convexity of
the resulting optimization problem and illustrates the latter in examples.
Symbolic computation within Mathematica software is used to generate
the relevant optimization scheme for estimating the missing interpolation
knots. Experiments confirm the theoretical input of this work and enable
numerical comparisons (again with the aid of Mathematica) between var-
ious schemes used in the optimization step. Modelling and/or fitting
reduced sparse data constitutes a common problem in natural sciences
(e.g. biology) and engineering (e.g. computer graphics).
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1 Problem Formulation

A sequence of interpolation points M = {x0, x1, x2, . . . , xn} (here n ≥ 2) in
Euclidean space Em is called reduced data if the corresponding interpolation
knots {ti}n

i=0 are not given (see e.g. [6,10,12,13,20,23,25,29,30]). Let the class
of admissible curves γ (denoted by IT ) form the set of piece-wise C2 curves
γ : [0, T ] → Em interpolating M with the ordered free unknown admissible
knots {ti}n

i=0 satisfying γ(ti) = xi. Here ti < ti+1 are free with, upon re-scaling
t0 = 0 and tn = T set to an arbitrary constant T > 0. More precisely, for each
choice of ordered knots, the curve γ is assumed to be C2 except of being only at
least C1 over {ti}n

i=0. The analysis to follow is not restricted to a thinner class
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of γ ∈ C2([t0, tn]) due to the ultimate choice of computational scheme (called
herein Leap-Frog - see [18,24,27,28]) which effectively deals with the optimiza-
tion problem (1). However, the computed optimum by Leap-Frog belongs to the
tighter class of functions coinciding with C2([t0, tn]) as addressed in [17,18].

Assume now, we search for an optimal γopt ∈ IT to minimize:

JT (γ) =
∫ T

t0

‖γ̈(t)‖2dt =
n−1∑
i=0

∫ ti+1

ti

‖γ̈(t)‖2dt. (1)

The latter defines an infinite dimensional optimization task over IT . The
unknown interpolation knots {ti}n

i=0 (t0 = 0 and 0 < tn = T can be fixed)
belong to:

ΩT
t0 = {(t1, t2, . . . , tn−1) ∈ R

n−1 : t0 = 0 < t1 < t2 < . . . < tn−1 < tn = T < ∞}. (2)

For any affine reparameterization φ : [0, T ] → [0, T̃ ] defined as φ(t) = tT̃ /T
(with t = φ−1(s) = sT/T̃ ) φ−1′ ≡ T/T̃ and φ−1′′ ≡ 0, formula (1), for γ̃(s) =
(γ ◦ φ−1)(s) reads:

JT̃ (γ̃) =
n−1∑
i=0

∫ si+1

si

‖¨̃γ(s)‖2ds =
T 3

T̃ 3

n−1∑
i=0

∫ t̃i+1

t̃i

φ−1′
(s)‖(γ̈ ◦ φ−1)(s)‖2ds

=
T 3

T̃ 3
JT (γ). (3)

Thus, a curve γopt ∈ IT is optimal to JT if and only if a corresponding γ̃opt ∈
IT̃ is optimal for JT̃ . Hence tn = T can be taken as arbitrary, and with the
additional affine mapping φ(t) = t − t0, one can also set t0 = 0.

Recall now a cubic spline interpolant γCi

T = γC
T |[ti,ti+1] (see e.g. [3]), which for

given temporarily fixed admissible interpolation knots T = (t0, t1, . . . , tn−1, tn)
reads as:

γCi

T (t) = c1,i + c2,i(t − ti) + c3,i(t − ti)2 + c4,i(t − ti)3, (4)

and fulfills (for i = 0, 1, 2, . . . , n − 1; cj,i ∈ R
m, where j = 1, 2, 3, 4)

γCi

T (ti+k) = xi+k, γ̇Ci

T (ti+k) = vi+k, k = 0, 1

with the assumed unknown velocities v0, v1, v2, . . . , vn−1, vn ∈ R
m. The coeffi-

cients cj,i (with Δti = ti+1 − ti) are defined as follows:

c1,i = xi, c2,i = vi,

c4,i =
vi + vi+1 − 2xi+1−xi

Δti

(Δti)2
, c3,i =

(xi+1−xi)
Δti

− vi

Δti
− c4,iΔti. (5)

Adding n− 1 conditions γ̈
Ci−1
T (ti) = γ̈Ci

T (ti) over x1, x2, . . . , xn−1 yields m tridi-
agonal linear systems (see [3]) of n − 1 equations in n + 1 vector unknowns
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v0, v1, . . . , vn ∈ R
m:

vi−1Δti + 2vi(Δti−1 + Δti) + vi+1Δti−1 = bi,

bi = 3
(

Δti
xi − xi−1

Δti−1
+ Δti−1

xi+1 − xi

Δti

)
. (6)

In case of the so-called natural cubic spline interpolant (denoted as γC
T = γNS

T ),
two extra constraints involving v0 and vn stipulate that γ̈C

T (0) = γ̈C
T (T ) = 0

which leads to:

2v0 + v1 = 3
x1 − x0

Δt0
, vn−1 + 2vn = 3

xn − xn−1

Δtn−1
. (7)

The resulting m linear systems (i.e. (6) and (7)), each of size (n + 1) × (n + 1),
determine unique vectors v0, v1, v2, . . . , vn (see [3, Chap. 4]), which when fed into
(5) and then passed to (4) determine explicitly a natural cubic spline γNS

T (with
fixed T ). Visibly all computed velocities {vi}m

i=0 (and, thus, γNS
T ) with the aid

of the above procedure depend in fact on the interpolation knots {ti}m
i=0 and

fixed data M . It is well known (see e.g. [3]) that if the respective knots {ti}m
i=0

are frozen the optimization task (1) is minimized by a unique natural spline γNS
T

defined by {ti}n
i=0 and M . Therefore, upon relaxing all internal knots {ti}n−1

i=1

in (1) (for arbitrarily fixed terminal knots to e.g. t0 = 0 and tn = T ) one arrives
at the following (see [3,17–19]):

Theorem 1. For a given M with points in Euclidean space Em, the subclass of
natural splines I NS ⊂ IT satisfies

min
γ∈IT

JT (γ) = min
γNS∈INS

JT (γNS), (8)

which reduces to the finite dimensional optimization in Ĵ = (t1, t2, . . . , tn−1)
over non-compact ΩT

t0 introduced in (2):

JT (γNS
opt ) = min

T̂ ∈ΩT
t0

J F
T (t1, t2, . . . , tn−1)

= min
T̂ ∈ΩTc

t0

4
n−1∑
i=0

( −1
(Δti)3

(−3‖xi+1 − xi‖2 + 3〈vi + vi+1|xi+1 − xi〉Δti

−(‖vi‖2 + ‖vi+1‖2 + 〈vi|vi+1〉)(Δti)2
)
, (9)

for which at least one global minimum Ĵopt = (topt
1 , topt

2 , . . . , topt
n−1) ∈ ΩT

t0 exists.

We take here the computed optimal values of Ĵopt, as estimates {t̂i}m
i=0 ≈

{ti}m
i=0. In this paper, we demonstrate strong non-linearity and non-convexity

effects built-in the optimization scheme (9). The relevant examples and the-
oretical insight is supplemented to justify the latter. Sufficient conditions for
convexity (or unimodality) of (9) are proved at least for n = 2. The complexity
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of the optimization scheme (9) not only impedes its theoretical analysis but also
impacts on the choice of feasible numerical scheme handling computationally
(9). Finally, this work is supplemented with illustrative examples and numerical
tests used to fit input sparse reduced data M for various n and m = 2, 3.

Related work on fitting reduced data M (sparse or dense) can also be found in
[8,9,15,16,21,22,26,33,34]. Some applications in computer vision and graphics,
image processing, engineering, physics, and astronomy are discussed e.g. in [1,2,
5,7,11,21,31,32].

2 Non-Linearity of J F
T and Numerical Difficulties

First we demonstrate a high non-linearity featuring the optimization task (9).
This is accomplished by generating an explicit formula for (9) whose complexity
is substantial even for n small and gets complicated for n incremented. The latter
is illustrated by the next two examples followed by pertinent computational tests.

Example 1. Consider four data points (i.e. here n = 3) M = {x0, x1, x2, x3} in
Em. Formula for J F

T (see (9)) reads here as J F,3
Tc

(T̂ ) = J 3
0 +J 3

1 +J 3
2 (with

T̂ = (t0, t1, t2, t3) and t0 = 0 and e.g. t3 = T = Tc - see (12)), where

J 3
0 =

1
(t0 − t1)3

(−3‖x0‖2 − 3‖x1‖2 + (t0 − t1)(3〈v0|x0〉 − 3〈v0|x1〉 + 3〈v1|x0〉

−3〈v1|x1〉 + (‖v0‖2 + ‖v1‖2 + 〈v0|v1〉)(t1 − t0)) + 6〈x0|x1〉),
J 3

1 =
1

(t1 − t2)3
(−3‖x1‖2 − 3‖x2‖2 + (t1 − t2)(3〈v1|x1〉 − 3〈v1|x2〉 + 3〈v2|x1〉

−3〈v2|x2〉 + (‖v1‖2 + ‖v2‖2 + 〈v1|v2〉)(t2 − t1)) + 6〈x1|x2〉),
J 3

2 =
1

(t2 − t3)3
(−3‖x2‖2 − 3‖x3‖2 + (t2 − t3)(3〈v2|x2〉 − 3〈v2|x3〉 + 3〈v3|x2〉

−3〈v3|x3〉 + (‖v2‖2 + ‖v3‖2 + 〈v2|v3〉)(t3 − t2)) + 6〈x2|x3〉). (10)

The missing velocities {v0, v1, v2, v3} for natural spline γNS
T (see (4)) are deter-

mined here by the following four matrix equations, with i = 1, . . . ,m (see (6)
and (7))

⎛
⎜⎜⎝

2 1 0 0
t2 − t1 2(t2 − t0) t1 − t0 0

0 t3 − t2 2(t3 − t1) t2 − t1
0 0 1 2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

vi
0

vi
1

vi
2

vi
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

3
xi
1−xi

0
t1−t0

3(
(t2−t1)(x

i
1−xi

0)

t1−t0
+

(t1−t0)(x
i
2−xi

1)

t2−t1
)

3(
(t3−t2)(x

i
2−xi

1)

t2−t1
+

(t2−t1)(x
i
3−xi

2)

t3−t2
)

3
xi
3−xi

2
t3−t2

⎞
⎟⎟⎟⎟⎟⎠

yielding (with the aid of symbolic computation in Mathematica - see [35]) a
unique solution. For the sake of this example, we consider exclusively the case
of m = 1. This can be easily extended to m > 1, since both square of norms and
dot products (appearing in non-reduced form of J F

Tc
(T̂ )) are additive by each

vector component. Upon substituting computed velocities from the last matrix
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equations into J F,3
Tc

(as previously we set t0 = 0 and t3 = Tc - see (12)) and
taking into account that m = 1, Mathematica FullSimplify (see [35]) function
yields an explicit formula for

J F,3
Tc

(t1, t2) = N3(t1, t2)/(t21(t1 − t2)2(t2 − Tc)2((t1 + t2)2 − 4Tct2)),

where

N3(t1, t2) = (3(−T 3
c t22(x0 − x1)

2 + 2T 2
c t32(x0 − x1)

2 + Tct
4
2(x0 − x1)(x1 − x0)

+t31(−Tc(x0 + x1 − 2x2) + t2(x0 + x1 − 2x3))(Tc(x2 − x0) + t2(x0 − x3))

−t21(T
3
c (x0 − x2)

2 − 3Tct
2
2(x0 − x2)(x0 − x3)

+t32(x0 − x3)(2x0 − x2 − x3)) + t1(2T 3
c t2(x0 − x1)(x0 − x2)

−3T 2
c t22(x0 − x1)(x0 − x2) + t42(x0 − x1)(x0 − x3)

−Tct
3
2(x0 − x1)(x2 − x3)) − t41(Tc(x2 − x0) + t2(x0 − x3))(x2 − x3))).

Note that N3(t1, t2) is a 5th order polynomial in t1 and t2. �

Example 2. Let five data points (i.e. here n = 4) M = {x0, x1, x2, x3, x4} be
given in Em. Formula (9) reads here J F,4

Tc
(T̂ ) = J 4

0 + J 4
1 + J 4

2 + J 4
3 (for

T̂ = (t0, t1, t2, t3, t4) with t0 = 0 and t4 = Tc - see (12)), where J 4
k = J 3

k , for
k = 0, 1, 2 (see (10)) and

J 4
3 =

1
(t3 − t4)3

(−3‖x3‖2 − 3‖x4‖2 + (t3 − t4)(3〈v4|x3〉 − 3〈v3|x4〉 + 3〈v4|x3〉

−3〈v4|x4〉 + (‖v3‖2 + ‖v4‖2 + 〈v3|v4〉)(t4 − t3)) + 6〈x3|x4〉).
Again the missing velocities {v0, v1, v2, v3, v4} for the natural spline γNS

T defined
by (4) are determined here by five matrix equations, with i = 1, . . . ,m (see (6)
and (7)):

⎛
⎜⎜⎜⎜⎝

2 1 0 0 0
t2 − t1 2(t2 − t0) t1 − t0 0 0

0 t3 − t2 2(t3 − t1) t2 − t1 0
0 0 t4 − t3 2(t4 − t2) t3 − t2
0 0 0 1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

vi
0

vi
1

vi
2

vi
3

vi
4

⎞
⎟⎟⎟⎟⎠ = Bi, (11)

where

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3xi
1−xi

0
t1−t0

3( (t2−t1)(x
i
1−xi

0)
t1−t0

+ (t1−t0)(x
i
2−xi

1)
t2−t1

)

3( (t3−t2)(x
i
2−xi

1)
t2−t1

+ (t2−t1)(x
i
3−xi

2)
t3−t2

)

3( (t4−t3)(x
i
3−xi

2)
t3−t2

+ (t3−t2)(x
i
4−xi

3)
t4−t3

)

3xi
4−xi

3
t4−t3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Again the system (11) renders a unique solution {v0, v1, v2, v3, v4} (found e.g.
upon using Mathematica software - see [35]). As previously only the case of m = 1
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is here considered. Upon substituting computed velocities from (11) into J F,4
Tc

and setting t0 = 0 and t4 = Tc (see (12)) Mathematica FullSimplify function
yields an explicit formula for J F,4

Tc
(t1, t2, t3) =

N4(t1, t2, t3)

4t21(t1 − t2)2(t2 − t3)2(t3 − Tc)2(t2(t3 − t1)(t1 + 2t2 + t3) + Tc((t1 + t2)2 − 4t2t3))
.

It can be checked that N4(t1, t2, t3) is an 8th order polynomial in t1, t2 and
t3. We omit here to present a full explicit formula for N4(t1, t2, t3) since it takes
more than one A4 format page size. �

Examples 1 and 2 indicate the growing complexity of the non-linearity in (9)
while n increases. Thus, in a search for global minimum of (9), any numerical
optimization scheme relying on derivative computation (irrespectively of an ini-
tial guess) faces the computational difficulties for n getting bigger. The latter
is demonstrated in the next Example 3 for n = 7, where Mathematica Find-
Minimum applied with Newton Method fails (see [35]). Similar effects appear
when Mathematica Minimize[f,constraints,variables] is invoked (see [35]) which
works efficiently for both minimized function and imposed constraints (such as
inequality or equations) expressed as polynomials. The latter happens with the
numerator of the derivative of (9). To alleviate this problem and to efficiently
optimize (9) we invoke first a multidimensional version of the Secant Method (not
relying on derivative computation) given in Mathematica software e.g. for two
free variables as FindMinimum[f, {{var1, 2num1}, {var, 2num2}}] - see [35].
Its super-linear convergence order (e.g. for m = 1 equal to ((1+

√
5)/2) ≈ 1.618)

though slower than Newton quadratic rate, makes it still both faster and com-
putationally feasible as opposed to most standard optimization techniques based
on derivative calculation. In the last section of this paper, we compare the Secant
Method with a Leap-Frog Algorithm (see [18,27,28])). One of the advantages of
Leap-Frog over the Secant Method is a faster execution time (see also [17,18]).

In order to set up a computationally feasible numerical optimization scheme
a good initial guess is needed. In particular, for the Secant Method for each free
variable, two numbers are needed to be selected. A possible choice is the so-called
cumulative chord Tc = {tci}n

i=0 (see e.g. [13,14,20,25]):

tc0 = 0, tci+1 = tci + ‖xi+1 − xi‖, i = 0, . . . , n − 1, (12)

with T c =
∑n−1

i=0 ‖xi+1−xi‖. Cumulative chord parameterization in a normalized
form Tcc reads tcc

i = tci/T c (for i = 0, 1, . . . , n). Here an additional assumption
about reduced data M i.e. xi = xi+1 is also drawn. For the Secant Method and
each free knot ti appearing in (9) (here i = 1, 2, . . . , n−1) we choose two starting
numbers as tci − ε and tci + ε, with some prescribed small value for ε.

The next example illustrates expected computational difficulties in optimiz-
ing (9).

Example 3. (a) Consider four 2D reduced data points (i.e. here n = 3):

M3 = {(−4, 0), (−0.5,−4), (0.5,−3), (−0.5, 4)}.
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The cumulative chord knots (see (12)) based on M3 coincide with Tc =
{0, 5.31507, 6.72929, 13.8004}. In fact, here we have only two free variables
{t1, t2} corresponding to the unknown knots at points xi (i = 1, 2). Find-
Minimum (Newton Method) applied to (9) with the initial guess as cumula-
tive chords Tc yields the following optimal knots (with optimal energy value
J F

Tc
(T̂opt) = 0.741614):

Topt = {0, 5.3834, 8.2118, 13.8004}, (13)

where T̂opt = {5.3834, 8.2118}. The execution time TN
M3

= 3.012858 s. Find-
Minimum for the Secant Method (with two numbers associated to each free
variables taken as ε = ±0.5 variation of (12)) gives exactly the same optimal
knots (13) (with the same J F

Tc
(T̂opt) = 0.741614) but shorter execution time

TS
M3

= 0.647756 s. Finally, Minimize with constraints 0 < t1 < t2 < 13.8004
gives optimal knots (13) with J F

Tc
(T̂opt) = 0.741614. The execution time

amounts here TM
M3

= 9.229526 s > TN
M3

> TS
M3

.
(b) Consider now six 2D reduced data points (i.e. here n = 5):

M5 = {(0, 0), (−0.5,−4), (0.5,−4), (−0.5, 4), (0.5, 4), (−1, 3.8)}.

The resulting cumulative chord knots (based on (12) and M5) are equal here to
Tc = {0, 4.03113, 5.03113, 13.0934, 14.0934, 15.6067} with internal knots T̂c =
{4.03113, 5.03113, 13.0934, 14.0934}. In this case, there are four free variables
{t1, t2, t3, t4} corresponding to the unknown knots at points xi (i = 1, . . . , 4).
FindMinimum (Newton Method) applied to (9) with initial guess as Tc yields
the following optimal knots (with optimal energy value J F

Tc
(T̂opt) = 4.65476):

Topt = {0, 2.9185, 5.12397, 11.1964, 13.507}, (14)

where T̂opt = {2.9185, 5.12397, 11.1964}. The execution time TN
M5

= 29.946006 s.
FindMinimum (Secant Method) (here again ε = ±0.5 is added to cumula-
tive chord initial guess along each free knot ti) yields exactly the same opti-
mal knots (14) (with J F

Tc
(T̂opt) = 4.65476) and again shorter execution time

TS
M5

= 6.385922 s. As previously, Minimize with constraints 0 < t1 < t2 < t3 <

t4 < 13.507 yields optimal knots (14) and J F
Tc

(T̂opt) = 4.65476. The execution
time here reads TM

M5
= 358.390915 s >> TN

M5
> TS

M5
.

(c) Finally, consider now eight 2D reduced data points (i.e. here n = 7):

M6 = {(0, 0), (−0.5,−4), (0.5,−4), (−0.5, 4),
(0.5, 4), (−1, 3.8), (0.3, 0.3), (0.5, 0.5)}.

By (12) Tc = {0, 4.03113, 5.03113, 13.0934, 14.0934, 15.6067, 19.3403, 19.6231}.
As previously T̂c = {4.03113, 5.03113, 13.0934, 14.0934, 15.6067, 19.3403}. For
both optimization schemes FindMinimum (Newton Method) and Minimize no
result was reported within 60 min. FindMinimum (Secant Method) (with as pre-
viously ε = ±0.5 variations of cumulative chords for each free variable) yields
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optimal knots (with energy J F
Tc

(T̂opt) = 8.27118):

Topt = {0, 2.67713, 4.69731, 10.3221, 12.3943, 14.8132, 19.0316, 19.6231},

where Topt = {2.67713, 4.69731, 10.3221, 12.3943, 14.8132}. The execution time
is TS

M7
= 35.708519 s. �

The above experiments illustrate that for n ≥ 7, FindMinimum (Secant
Method) offers a feasible computational scheme to optimize (9). In Sect. 4 of
this paper, we compare the performance of already discussed Secant Method
with Leap-Frog Algorithm (see [17,18,27,28]).

3 Non-Convexity of J F
T

We demonstrate in this section that J F
Tc

introduced in (9) may not be convex.
In doing so, a simple degenerate case of (9) with n = 2 is examined. Three points
M = {x0, x1, x2} are admitted with one relaxed internal knot t1 ∈ [t0 = 0, t2 =
Tc] (see (12)).

Example 4. For n = 2 and arbitrary natural m ≥ 1 (using Mathematica pack-
age), by (9) the energy J F

Tc
(t1) = (Tc − t0)−3(Ẽdeg ◦ φ−1)(t1), where Ẽdeg(s1) =

3‖x0−x1
s1

+ x2−x1
1−s1

‖2 - here t1 ∈ (t0, t2 = Tc), and s1 = φ(t1) = (t−t0)(Tc−t0)−1 ∈
(0, 1). Obviously since φ−1′ ≡ Tc − t0 > 0 and φ−1′′ ≡ 0 the convexity (non-
convexity) of Ẽdeg is inherited by J F

Tc
. Take now for m = 1 the following points

x0 = −1, x1 = 0 and x2 = 20 (here (x0 −x1)(x2 −x1) = −20 < 0). The graph of
the energy Ẽdeg(s1) = 3(−1

s1
+ 20

1−s1
)2 over the interval (0, 1) is plotted in Fig. 1(a).

The non-convexity is better visible in Fig. 1(b) with the graph of the energy Ẽdeg

localized over the sub-interval (0.05, 0.35). Finally the change of sign in the sec-
ond derivative Ẽ ′′

deg is also illustrated in Fig. 1(c). In fact, Ẽ ′′
deg(0.21) = 1338.7

and Ẽ ′′
deg(0.20) = −1640.63. Thus, Ẽdeg is not convex which also implies non-

convexity of J F
Tc

in the general case. �

Fig. 1. The graph of the non-convex energy Ẽdeg for x0 = −1, x1 = 0, and x2 = 20 (a)
over the interval (0, 1), (b) in the proximity of non-convexity sub-interval (0.05, 0.35)
(c) and the graph of the corresponding changing signs second derivative Ẽ ′′

deg in the
proximity of (0.05, 0.35)
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Fig. 2. The graph of the convex energy Ẽdeg for x0 = 2, x1 = 0, and x2 = 5 (a) over
the interval (0, 1), (b) and the graph of the corresponding second derivative Ẽ ′′

deg ≥ 0
over (0, 1)

The next example formulates sufficient conditions to enforce convexity of
J F

Tc
, but only for m = 1 and n = 2. The latter can be extended to the general

case of m ≥ 1 and n = 2. Such general case is here omitted due to the paper
length limitation.

Example 5. (i) For m = 1 it is easy to show that Ẽdeg is convex (and so thus J F
Tc

)
if (x0−x1)(x2−x1) ≥ 0 - under this constraint, we have exactly one critical point
for Ẽdeg. Indeed, recalling that Ẽdeg(s1) = 3f2(s1) with f(s1) = x0−x1

s1
+ x2−x1

1−s1
it suffices to show that f is either convex and f ≥ 0 or it is concave and f ≤ 0,
for s1 ∈ (0, 1). Indeed the latter combined with Ẽ ′′

deg = 3(f2)′′ = 6(f ′)2 + 6ff ′′

yields the convexity of J F
Tc

given non-negativity of ff ′′ over s1 ∈ (0, 1) which
follows from (x0 − x1)(x2 − x1) ≥ 0 applied both to f ′′(s1) = x0−x1

s3
1

+ x2−x1
(1−s1)3

and f . Figure 2(a) shows that convexity of Ẽdeg(s1) = 3( 2
s1

+ 5
1−s1

)2 indeed
follows for x0 = 2, x1 = 0 and x2 = 5 with (x0 − x1)(x2 − x1) ≥ 0 clearly
fulfilled. As expected Ẽ ′′

deg ≥ 0 over (0, 1) - see Fig. 2(b). The corresponding
sufficient conditions guaranteeing the convexity of Ẽdeg for m ≥ 1 and n = 2 can
also be formulated (though omitted here) - see [19]. As it turns out, the vector
generalization 〈x0 − x1|x2 − x1〉 ≥ 0 of scalar inequality (x0 − x1)(x2 − x1) ≥ 0
assures the convexity of Ẽdeg and thus of J F

Tc
.

(ii) In case of scalar data (i.e. when m = 1) if (x0 − x1)(x2 − x1) < 0 holds
then the existence of exactly one critical point (and thus one global minimum -
see Theorem 1) of Ẽdeg (and so of J F

Tc
) follows, which yields the unimodality of

Ẽdeg = 3f2 (see [4]). Indeed, assume that (x0 −x1)(x2 −x1) < 0. Since now x0 =
x1 and x1 = x2 we have x0 −x1 = 0 and x2 −x1 = 0. To show unimodality of f2

we need to prove the existence of exactly one critical point s1 ∈ (0, 1) satisfying
(f2)′(s1) = 2f(s1)f ′(s1) = 0. Taking into account (x0 − x1)(x2 − x1) < 0 we
have that f ′(s1) = −x0−x1

s2
1

+ x2−x1
(1−s1)2

is either always positive or negative over
(0, 1). Hence for unimodality of f2 it suffices to show that f(s1) = 0 has one
root s01 ∈ (0, 1) defining a unique global minimum of f2 = 0 (and of Ẽdeg). In
this case as Ẽdeg(s1) = 3f2(s1) the energy Ẽdeg also vanishes at s01. The latter
may not be the case for the convexity case, since another factor f ′(s1) = 0 may
contribute to (f2)′(s1) = 0. A simple inspection shows that
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s01 =
(x0 − x1)

(x0 − x1) − (x2 − x1)
. (15)

Note that the denominator x0 −x2 in (15) does not vanish due to (x0 −x1)(x2 −
x1) < 0. Of course, s01 > 0 since (x0 − x1)(x2 − x1) < 0. To justify s01 < 1
two cases are here considered, namely either x0 − x1 > 0 and x2 − x1 < 0 or
x0 − x1 < 0 and x2 − x1 > 0. In the first (second) case s01 < 1 in (15) leads to a
true inequality x2 − x1 < 0 (x2 − x1 > 0). Figure 1 confirms the unimodality of
Edeg for (x0 − x1)(x2 − x1) = −20 < 0. As proved the global minimum of (9) is
attained at s01 = 1/21 ≈ 0.047619 nullifying J F

Tc
.

Note that in case of convexity (enforced by (x0 − x1)(x2 − x1) ≥ 0), the
unique global minimum s01 can also be found in analytic form. Indeed as x0 = x1

and x1 = x2 it suffices to assume a stronger inequality (x0 − x1)(x2 − x1) > 0.
The latter results in either f > 0 or f < 0. Consequently for 6f ′f to vanish we

need to solve f ′(s1) = 0 over (0, 1) which leads to s01 =
√

|x0−x1|√
|x2−x1|+

√
|x0−x1| ∈

(0, 1). Thus, f2 is unimodal (and so Ẽdeg) since (f2)′ = 2ff ′ vanishes at exactly
one point s01 ∈ (0, 1). The unimodality of Ẽdeg can also be proved in case of
〈x0 − x1|x2 − x1〉 < 0 for arbitrary data with m ≥ 1 and n = 2. �

4 Numerical Experiments for Fitting Sparse Reduced
Data

All experiments are conducted in Mathematica - see [35]. The numerical tests
compare the Leap-Frog algorithm (see [17,18]) with the Secant Method both used
to optimize (9). Only sparse reduced data points M in E2,3 are admitted here,
though the entire setting is applicable for arbitrary m, i.e. for reduced data M
in arbitrary Euclidean space.

The first example admits reduced data M in E2 (i.e. for m = 2).

Fig. 3. Natural splines interpolating data points M2D3 (a) γNS
Tuni

with uniform knots

Tuni, (b) γNS
Tc

with cumulative chords Tc, (c) γNS
T LF

opt
with optimal knots T LF

opt = T SM
opt

(thus γNS
T LF

opt
= γNS

T SM
opt

) (d) γNS
T LF

opt
and γNS

Tc
plotted together
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Example 6. Assume for n = 6, the following 2D points (see dotted points in
Fig. 3):

M2D3 = {(−3,−3), (−3.1,−2.6), (2.5,−2.6), (2.4,−2.8), (−3, 2.8), (−3, 2.6)}.

The uniform interpolation knots, {t̂i = i
6Tc}6i=0 (rescaled to Tc - see (12)) taken

as a blind guess of {ti}6i=0, read as:

Tuni = {0, 2.84308, 5.68615, 8.52923, 11.3723, 14.2154}
and the initial guess based on cumulative chord Tc (see (12)) coincides with:

Tc = {0, 0.412311, 6.01231, 6.23592, 14.0154, 14.2154}.

Here T̂uni (and T̂c) is defined as Tuni (and Tc) stripped from its terminal values.
The natural splines γNS

Tuni
(based on Tuni) and γNS

Tc
(based on Tc) yield the fol-

lowing energies J F
Tc

(T̂uni) = 15.4253 > J F
Tc

(T̂c) = 8.51108. Both interpolants
γNS
Tuni

and γNS
Tc

are shown in Fig. 3(a) and (b), respectively.
One expects that the Secant Method with two initial numbers tci ± 0.5 may

produce a bad solution as |tc0 − tc1| < 0.5, |t2 − t3| < 0.5 and |t4 − t5| < 0.5.
Indeed the Secant Method returns topt

1 = −8.2211 < t0 = 0, which is disallowed.
Upon adjusting tci ± 0.05 the Secant Method yields (for (9)) the optimal knots
T̂ SM

opt augmented by terminal times t0 = 0 and t5 = Tc as:

T SM
opt = {0, 0.737027, 6.07314, 7.14642, 13.5208, 14.2154}

with the optimal energy J F
Tc

(T̂ SM
opt ) = 5.04331. The execution time amounts to

TSM = 9.204045 s. The resulting curve γS
T SM

opt
is plotted in Fig. 3(c). In fact, for

general data it is safer for each free variable optimized by the Secant Method to
choose a pair of numbers tci ± 0.5min0≤i≤n−1{|tci+1 − tci |}.

Leap-Frog decreases the initial energy to J F
Tc

(T̂ LF
opt ) = J F

Tc
(T̂ SM

opt ) (as for
the Secant Method) with the iteration stopping conditions T̂ LF

opt = T̂ SM
opt (up to

6th decimal point) upon 38 iterations. The respective execution time amounts
to TLF = 3.247230 < TSM . The 0th (i.e. J F

Tc
(T̂c)), 1st, 2nd, 10th, 18th, and

38th iterations of Leap-Frog decrease the energy to:

{8.51108, 5.91959, 5.23031, 5.04455, 5.04331, 5.04331}
with again only the first three iterations contributing to the major correction of
the initial guess knots Tc. The resulting natural spline γNS

T LF
opt

(clearly the same

as γNS
T SM

opt
yielded by the Secant Method) based on T LF

opt is shown in Fig. 3(c) and

also visually compared with γNS
Tc

in Fig. 3(d).
Again if Leap-Frog iteration bound condition is changed e.g. to make current

Leap-Frog energy equal to J F
Tc

(T̂ SM
c ) (say up to 5th decimal place) then only 18

iterations are needed here with shorter execution time TLF
E = 1.785042 < TSM

and with optimal times

T LFE
opt = {0, 0.736394, 6.0697, 7.14349, 13.5205, 14.2154}.
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We miss out here a bit on a precise estimation of the optimal knots but we
accelerate the Leap-Frog execution time by obtaining almost the same interpo-
lating curve as the optimal one (as T̂ LFE

opt ≈ T̂ SM
opt ). For other iteration stopping

criteria accelerating the execution of Leap-Frog at almost no cost in difference
between computed and optimal curve see [19]. �

We pass now to an example of reduced data in E3 (i.e. with m = 3).

Fig. 4. Natural splines interpolating data points M3D3 (a) γNS
Tuni

with uniform knots

Tuni, (b) γNS
Tc

with cumulative chords Tc, (c) γNS
T LF

opt
with optimal knots T LF

opt = T SM
opt

(thus γNS
T LF

opt
= γNS

T SM
opt

) (d) γNS
T LF

opt
and γNS

T SM
c

plotted together

Example 7. Consider for n = 7 the following 3D points (see dotted points in
Fig. 4):

M3D3 = {(0, 0, 1), (0, 0, −1), (0, 0, −0.8), (1, 0, 0), (1, 0.2, 0), (1, 0.4, 0), (1, 0.8, 0.2),

(1, 1, 0)}.

The uniform interpolation knots {t̂i = i
7Tc}7i=0 ≈ {ti}7i=0 (rescaled to t0 = 0 and

to Tc – see (12)) read as:

Tuni = {0, 0.658669, 1.31734, 1.97601, 2.63467, 3.29334, 3.95201, 4.61068}
and the initial guess based on cumulative chords Tc is equal to:

Tc = {0, 2, 2.2, 3.48062, 3.68062, 3.88062, 4.32784, 4.61068}.

Here T̂uni = {0.658669, 1.31734, 1.97601, 2.63467, 3.29334, 3.95201}, while
the other one T̂c = {0, 2, 2.2, 3.48062, 3.68062, 3.88062, 4.32784, 4.61068}. The
natural splines γNS

Tuni
(based on Tuni) and γNS

Tc
(based on Tc) yields the fol-

lowing energies J F
Tc

(T̂uni) = 46.7919 > J F
Tc

(T̂c) = 22.3564. Both interpolants
γNS
Tuni

and γNS
Tc

are shown in Fig. 4(a) and(b), respectively. Noticeably the energy
based on blind guess of knots (i.e. for uniform knots) is far from the optimal one.

The Secant Method yields for (9) the optimal knots T̂ SM
opt (augmented by

terminal knots t0 = 0 and t7 = Tc - see (12))

T SM
opt = {0, 1.34728, 1.82093, 3.12718, 3.39487, 3.62307, 4.19613, 4.61068}
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with the optimal energy J F
Tc

(T̂ SM
opt ) = 15.407. The execution time amounts to

TSM = 128.804084 s. The resulting curve γNS
T SM

opt
is plotted in Fig. 4(c). Note that

for each free variable, the Secant Method uses here two initial numbers tci ± 0.1.
Leap-Frog decreases the initial energy to J F

Tc
(T̂ LF

opt ) = J F
Tc

(T̂ SM
opt ) (as for

the Secant Method) with the iteration stopping conditions T̂ LF
opt = T̂ SM

opt (up to
5th decimal point) upon 620 iterations. The execution time amounts to TLF =
73.749111 s < TSM . The 0th (i.e. J F

Tc
(T̂c)), 1st, 2nd, 10th, 50th, 40th and

100th, 200th, 281th and 620th iterations of Leap-Frog decrease the energy to:

{22.3564, 18.5598, 18.274, 17.4628, 15.8596.15.5049, 15.409115.407, 15.407}

with again only the first three iterations contributing to major correction of the
initial guess knots Tc. The resulting natural spline γNS

T LF
opt

(clearly the same as

γNS
T SM

opt
yielded by the Secant Method) based on T LF

opt2 is shown in Fig. 4(c) and

also visually compared with γNS
Tc

in Fig. 4(d). The optimal curve does not vary
too much from the initial guess curve based on cumulative chord knots.

Again if Leap-Frog iteration bound condition is changed e.g. to make current
Leap-Frog energy equal to J F

Tc
(T̂ SM

c ) (say up to 4th decimal place) then only
281 iterations are needed here with shorter execution time TLF

E = 33.931990 s <
TSM and with optimal knots:

T LFE
opt = {0, 1.348043, 1.82195, 3.12892, 3.39651, 3.62453, 4.19679, 4.61068}.

As previously, we lose here slightly on a precise estimation of the optimal knots
but we accelerate the Leap-Frog execution time by obtaining almost the same
interpolating curve as the optimal one (as T LFE

opt ≈ T SM
opt ). For other iteration

stopping criteria accelerating the execution of Leap-Frog at almost no cost in
difference between computed curve and optimal curve see [19]. �

5 Conclusions

In this paper, we discuss the method of estimating the unknown interpolation
knots {ti}n

i=0 by {t̂i}n
i=0 to fit reduced sparse data M = {qi}n

i=0 with the nat-
ural cubic spline in arbitrary Euclidean space Em. As indicated here, the above
task is transformed into the corresponding finite-dimensional constrained opti-
mization task (9) in (t1, t2, . . . , tn−1)-variables, subject to the satisfaction of the
inequalities t0 < t1 < t2, < . . . < tn−1 < tn. We first demonstrate a high non-
linearity and possible non-convexity of (9) - Sects. 1, 2, and 3. Consequently, the
latter hinders the use of standard optimization techniques like Newton Method to
deal with such optimization task. Finally, two computationally feasible schemes
are implemented, i.e. Leap-Frog and the Secant Method to examine the quality
of the reconstructed interpolants. The derivation of the explicit formula in (9)
including its particular forms examined in Examples 1 and 2 relies on Mathemat-
ica symbolic computation - see [35]. All numerical computations performed in
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Examples 3, 6 and 7 resort to the numerical functions supplied by Mathematica
software (see [35]). In addition, sufficient conditions to enforce the convexity (or
unimodality) of (9) are generated for the special case of n = 2 - see Example 5.
Future work involves the analysis of a more general case i.e. when n is arbitrary.
Alternatively one may also consider to derive a similar to (9) optimization task
set for a complete spline interpolant (see [3]), with the initial velocities v0 and
vn either a priori given or approximated according to [15].
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