
Vladimir P. Gerdt · Wolfram Koepf
Werner M. Seiler · Evgenii V. Vorozhtsov (Eds.)

 123

LN
CS

 1
04

90

19th International Workshop, CASC 2017
Beijing, China, September 18–22, 2017
Proceedings

Computer Algebra
in Scientific Computing

Lecture Notes in Computer Science 10490

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Vladimir P. Gerdt • Wolfram Koepf
Werner M. Seiler • Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific Computing
19th International Workshop, CASC 2017
Beijing, China, September 18–22, 2017
Proceedings

123

Editors
Vladimir P. Gerdt
Joint Institute of Nuclear Research
Dubna
Russia

Wolfram Koepf
Universität Kassel
Kassel
Germany

Werner M. Seiler
Universität Kassel
Kassel
Germany

Evgenii V. Vorozhtsov
Russian Academy of Sciences
Novosibirsk
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66319-7 ISBN 978-3-319-66320-3 (eBook)
DOI 10.1007/978-3-319-66320-3

Library of Congress Control Number: 2017950084

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
The chapter ‘Symbolic Versus Numerical Computation and Visualization of Parameter Regions for
Multistationarity of Biological Networks’ is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license infor-
mation in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://creativecommons.org/licenses/by/4.0/

Preface

The International Workshop on Computer Algebra in Scientific Computing (CASC) is
a leading conference which provides the opportunity for all researchers from home and
abroad to present their research results annually. CASC is the forum of excellence for
the exploration of the frontiers in the field of computer algebra and its applications in
scientific computing. It brings together scholars, engineers, and scientists from various
disciplines including computer algebra. This workshop provides a platform for the
delegates to exchange new ideas and application experiences, share research results,
discuss existing issues and challenges, and explore international cooperation in
cutting-edge technology face to face.

This year, the 19th CASC conference was held in Beijing (China). Study on
computer algebra in China started with the work of Prof. Wen-Tsun Wu on automated
geometry theorem proving and characteristic set methods for polynomial equation
solving in the late 1970s. In 1990, the Research Center of Mathematics Mechanization
(MMRC) was established in the Chinese Academy of Sciences, and the center runs a
series of academic programs on computer algebra and related areas.

In particular, jointly with the Japanese Society for Symbolic and Algebraic Com-
putation, the Asian Symposium on Computer Mathematics was started in 1995 and
held every two years. MMRC also organized The International Symposium on Sym-
bolic and Algebraic Computation (ISSAC) in 2005. Other major research groups
include the Laboratory of Automated Reasoning at the Chongqing Branch of the
Chinese Academy of Sciences led by Prof. Jingzhong Zhang, and the research group at
Beihang University led by Prof. Dongming Wang. In 2007, the Computer Mathematics
Society of China was established, and Prof. Xiao-Shan Gao was the founding president
of the society. The society runs an annual conference with approximately 100–150
participants.

Prof. Xiao-Shan Gao has kindly agreed to be one of the General Chairs of the CASC
2017 workshop. This has affected the choice of Beijing as a venue for CASC 2017.

This volume contains 26 full papers submitted to the workshop by the participants
and accepted by the Program Committee after a thorough reviewing process with
usually three independent referee reports. Additionally, the volume includes two
contributions corresponding to the invited talks.

Polynomial algebra, which is at the core of computer algebra, is represented by
contributions devoted to the convergence conditions of interval Newton’s method
applied to the solution of a nonlinear system; certifying the simple real zeros of
overdetermined polynomial systems with interval methods; decomposition of poly-
nomial sets into lexicographic Gröbner bases and into normal triangular sets; com-
putation of all the isolated solutions to a special class of polynomial systems with the
aid of a special homotopy continuation method; computing real witness points of
general polynomial systems with the aid of the penalty function based critical point
approach; algorithms for zero-dimensional ideals using linear recurrent sequences;

finding quasihomogeneous isolated hypersurface singularities with the aid of an
interface of the computer algebra system (CAS) POLYMAKE in the CAS SINGULAR; and
full rank representation of real algebraic sets with applications in visualizing plane and
space curves with singularities. Two papers deal with the problems arising in poly-
nomial interpolation: one focussing on the optimal knots selection for spline interpo-
lation in the case of sparse reduced data, and one focussing on sparse interpolation
algorithms for black box univariate or multivariate polynomials whose coefficients are
from a finite set.

The invited talk of Lihong Zhi is devoted to computing multiple zeros of polynomial
systems. It shows how to compute the multiplicity structure of each multiple zero and
the lower bound on the minimal distance between the multiple zero and other zeros
of the system. The developed algorithms were implemented in the CAS Maple.

Several papers deal with using computer algebra for the investigation of various
mathematical and applied topics related to ordinary differential equations (ODEs),
focussing on, for example, the introduction of the concept of a Laurent Gröbner basis
for the investigation of the Laurent (differential) polynomial systems, and the study of
local integrability of an autonomous system of ODEs with the aid of an approach based
on power geometry.

The invited talk by S. Abramov handles the problem of the solvability of linear
systems of ordinary differential equations whose coefficients have the form of infinite
formal power series. The problem is to decide whether the system has non-zero Laurent
series, regular, or formal exponential-logarithmic solutions, and to find all such solu-
tions if they exist. Maple-based procedures are presented for constructing local
solutions.

Four papers deal with applications of symbolic and symbolic-numeric computations
for investigating and solving partial differential equations (PDEs) and ODEs in
mathematical physics and fluid mechanics, focussing on, for example, the
symbolic-numeric integration of the dynamical Cosserat partial differential equations
describing the mechanical behavior of elastic rods; the symbolic-numeric solution with
Maple of the parametric self-adjoint 2D elliptic boundary-value problem with the aid of
a high-accuracy finite element method; and a new symbolic-numeric preconditioned
solver for incompressible Navier–Stokes equations using the integral form of collo-
cation equations.

Applications of CASs in mechanics, physics, and biology are represented by the
following themes: investigation of the asymptotic stability of a satellite with a gravi-
tational stabilizer; satellite dynamics subject to damping torques; Mathematica-based
analysis of the relative equilibria stability in a problem of celestial mechanics; sta-
tionary motions of the generalized Kowalewski gyrostat and their stability; and sym-
bolic versus numerical computation and visualization of parameter regions for
multistationarity of biological networks.

The remaining topics include the computation of some integer sequences in Maple;
algorithms for computing the integer points of a polyhedron; a divide and conquer
algorithm for sparse nonlinear interpolation; and normalization of indexed differentials
based on function distance invariants.

The CASC 2017 workshop was supported financially by the National Center for
Mathematics and Interdisciplinary Sciences of the Chinese Academy of Sciences, the

VI Preface

Academy of Mathematics and Systems Science of the Chinese Academy of Sciences,
and the Key Laboratory of Mathematics Mechanization of the Chinese Academy of
Sciences. We appreciate that they provided free accommodation for a number of
participants.

Our particular thanks are due to the members of the CASC 2017 local organizing
committee at the Key Laboratory of Mathematics Mechanization, Chinese Academy of
Sciences, Jin-San Cheng, Changbo Chen, Ruyong Feng, and Zhikun She, who ably
handled all the local arrangements in Beijing. In addition, Profs. Xiao-Shan Gao and
Jin-San Cheng provided us with the history of computer algebra activities in China.

Furthermore, we want to thank all the members of the Program Committee for their
thorough work. We are grateful to Matthias Orth (Universität Kassel) for his technical
help in the preparation of the camera-ready manuscript for this volume. Finally, we are
grateful to the CASC publicity chair, Andreas Weber (Rheinische Friedrich-Wilhelms-
Universität Bonn), and his assistant, Hassan Errami, for the design of the conference
poster and the management of the conference web page http://www.casc.cs.uni-bonn.de.

July 2017 Vladimir P. Gerdt
Wolfram Koepf

Werner M. Seiler
Evgenii V. Vorozhtsov

Preface VII

http://www.casc.cs.uni-bonn.de

Organization

CASC 2017 was organized jointly by the Institute of Mathematics at Kassel University
and the Key Laboratory of Mathematics Mechanization, Academy of Mathematics and
System Sciences, Chinese Academy of Science, Beijing, China.

Workshop General Chairs

Xiao-Shan Gao, Beijing
Vladimir P. Gerdt, Dubna
Werner M. Seiler, Kassel

Program Committee Chairs

Wolfram Koepf, Kassel
Evgenii V. Vorozhtsov, Novosibirsk

Program Committee

Moulay Barkatou, Limoges
François Boulier, Lille
Jin-San Cheng, Beijing
Victor F. Edneral, Moscow
Matthew England, Coventry
Jaime Gutierrez, Santander
Sergey A. Gutnik, Moscow
Thomas Hahn, Munich
Jeremy Johnson, Philadelphia
Victor Levandovskyy, Aachen
Marc Moreno Maza, London, Canada
Veronika Pillwein, Linz
Alexander Prokopenya, Warsaw
Georg Regensburger, Linz
Eugenio Roanes-Lozano, Madrid
Valery Romanovski, Maribor
Doru Stefanescu, Bucharest
Thomas Sturm, Saarbrücken
Akira Terui, Tsukuba
Elias Tsigaridas, Paris
Jan Verschelde, Chicago
Stephen M. Watt, W. Ontario, Canada

Additional Reviewers

Alexander Bathkin
Russell Bradford
Martin Bromberger
Alexander Bruno
Xiaojie Dou
Bruno Grenet
Qiaolong Huang
Manuel Kauers
Denis Khmelnov
Thomas Peter

Hamid Rahkooy
Daniel Robertz
Olivier Ruatta
Vasily Shapeev
Yilei Tang
Francis Valiquette
Nathalie Verdière
Andreas Weber
Zafeirakis Zafeirakopoulos

Local Organization

Jin-San Cheng, Beijing (Chair)
Changbo Chen, Chongqing
Ruyong Feng, Beijing
Zhikun She, Beijing

Publicity Chair

Andreas Weber, Bonn

Website

http://www.casc.cs.uni-bonn.de/2017
(Webmaster: Hassan Errami)

X Organization

http://www.casc.cs.uni-bonn.de/2017

Contents

Linear Differential Systems with Infinite Power Series Coefficients
(Invited Talk) . 1

S.A. Abramov

On the Asymptotic Stability of a Satellite with a Gravitational Stabilizer 16
Andrei V. Banshchikov

Sparse Interpolation, the FFT Algorithm and FIR Filters 27
Matteo Briani, Annie Cuyt, and Wen-shin Lee

On New Integrals of the Algaba-Gamero-Garcia System 40
Alexander D. Bruno, Victor F. Edneral, and Valery G. Romanovski

Full Rank Representation of Real Algebraic Sets and Applications 51
Changbo Chen, Wenyuan Wu, and Yong Feng

Certifying Simple Zeros of Over-Determined Polynomial Systems. 66
Jin-San Cheng and Xiaojie Dou

Decomposing Polynomial Sets Simultaneously into Gröbner Bases
and Normal Triangular Sets . 77

Rina Dong and Chenqi Mou

Symbolic Versus Numerical Computation and Visualization of Parameter
Regions for Multistationarity of Biological Networks. 93

Matthew England, Hassan Errami, Dima Grigoriev, Ovidiu Radulescu,
Thomas Sturm, and Andreas Weber

The Polymake Interface in Singular and Its Applications 109
Raul Epure, Yue Ren, and Hans Schönemann

Computation of Some Integer Sequences in Maple 118
W.L. Fan, D.J. Jeffrey, and Erik Postma

Symbolic-Numerical Algorithm for Generating Interpolation Multivariate
Hermite Polynomials of High-Accuracy Finite Element Method 134

A.A. Gusev, V.P. Gerdt, O. Chuluunbaatar, G. Chuluunbaatar,
S.I. Vinitsky, V.L. Derbov, and A. Góźdź

http://dx.doi.org/10.1007/978-3-319-66320-3_1
http://dx.doi.org/10.1007/978-3-319-66320-3_1
http://dx.doi.org/10.1007/978-3-319-66320-3_2
http://dx.doi.org/10.1007/978-3-319-66320-3_3
http://dx.doi.org/10.1007/978-3-319-66320-3_4
http://dx.doi.org/10.1007/978-3-319-66320-3_5
http://dx.doi.org/10.1007/978-3-319-66320-3_6
http://dx.doi.org/10.1007/978-3-319-66320-3_7
http://dx.doi.org/10.1007/978-3-319-66320-3_7
http://dx.doi.org/10.1007/978-3-319-66320-3_8
http://dx.doi.org/10.1007/978-3-319-66320-3_8
http://dx.doi.org/10.1007/978-3-319-66320-3_9
http://dx.doi.org/10.1007/978-3-319-66320-3_10
http://dx.doi.org/10.1007/978-3-319-66320-3_11
http://dx.doi.org/10.1007/978-3-319-66320-3_11

Symbolic-Numerical Algorithms for Solving the Parametric Self-adjoint 2D
Elliptic Boundary-Value Problem Using High-Accuracy Finite
Element Method . 151

A.A. Gusev, V.P. Gerdt, O. Chuluunbaatar, G. Chuluunbaatar,
S.I. Vinitsky, V.L. Derbov, and A. Góźdź

A Symbolic Study of the Satellite Dynamics Subject to Damping Torques . . . 167
Sergey A. Gutnik and Vasily A. Sarychev

Characteristic Set Method for Laurent Differential Polynomial Systems 183
Youren Hu and Xiao-Shan Gao

Sparse Polynomial Interpolation with Finitely Many Values
for the Coefficients . 196

Qiao-Long Huang and Xiao-Shan Gao

On Stationary Motions of the Generalized Kowalewski Gyrostat
and Their Stability . 210

Valentin Irtegov and Tatyana Titorenko

Computing the Integer Points of a Polyhedron, I: Algorithm. 225
Rui-Juan Jing and Marc Moreno Maza

Computing the Integer Points of a Polyhedron, II: Complexity Estimates 242
Rui-Juan Jing and Marc Moreno Maza

Non-linearity and Non-convexity in Optimal Knots Selection for Sparse
Reduced Data . 257

Ryszard Kozera and Lyle Noakes

The Convergence Conditions of Interval Newton’s Method
Based on Point Estimates . 272

Zhe Li, Baocheng Wan, and Shugong Zhang

Normalization of Indexed Differentials Based on Function
Distance Invariants . 285

Jiang Liu

Symbolic-Numeric Integration of the Dynamical Cosserat Equations 301
Dmitry A. Lyakhov, Vladimir P. Gerdt, Andreas G. Weber,
and Dominik L. Michels

Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences . . . 313
Vincent Neiger, Hamid Rahkooy, and Éric Schost

Symbolic-Numerical Analysis of the Relative Equilibria Stability
in the Planar Circular Restricted Four-Body Problem. 329

Alexander N. Prokopenya

XII Contents

http://dx.doi.org/10.1007/978-3-319-66320-3_12
http://dx.doi.org/10.1007/978-3-319-66320-3_12
http://dx.doi.org/10.1007/978-3-319-66320-3_12
http://dx.doi.org/10.1007/978-3-319-66320-3_13
http://dx.doi.org/10.1007/978-3-319-66320-3_14
http://dx.doi.org/10.1007/978-3-319-66320-3_15
http://dx.doi.org/10.1007/978-3-319-66320-3_15
http://dx.doi.org/10.1007/978-3-319-66320-3_16
http://dx.doi.org/10.1007/978-3-319-66320-3_16
http://dx.doi.org/10.1007/978-3-319-66320-3_17
http://dx.doi.org/10.1007/978-3-319-66320-3_18
http://dx.doi.org/10.1007/978-3-319-66320-3_19
http://dx.doi.org/10.1007/978-3-319-66320-3_19
http://dx.doi.org/10.1007/978-3-319-66320-3_20
http://dx.doi.org/10.1007/978-3-319-66320-3_20
http://dx.doi.org/10.1007/978-3-319-66320-3_21
http://dx.doi.org/10.1007/978-3-319-66320-3_21
http://dx.doi.org/10.1007/978-3-319-66320-3_22
http://dx.doi.org/10.1007/978-3-319-66320-3_23
http://dx.doi.org/10.1007/978-3-319-66320-3_24
http://dx.doi.org/10.1007/978-3-319-66320-3_24

The Method of Collocations and Least Residuals Combining the Integral
Form of Collocation Equations and the Matching Differential Relations
at the Solution of PDEs . 346

Vasily P. Shapeev and Evgenii V. Vorozhtsov

A Special Homotopy Continuation Method for a Class
of Polynomial Systems . 362

Yu Wang, Wenyuan Wu, and Bican Xia

Penalty Function Based Critical Point Approach to Compute Real Witness
Solution Points of Polynomial Systems . 377

Wenyuan Wu, Changbo Chen, and Greg Reid

Computing Multiple Zeros of Polynomial Systems: Case of Breadth One
(Invited Talk) . 392

Lihong Zhi

Author Index . 407

Contents XIII

http://dx.doi.org/10.1007/978-3-319-66320-3_25
http://dx.doi.org/10.1007/978-3-319-66320-3_25
http://dx.doi.org/10.1007/978-3-319-66320-3_25
http://dx.doi.org/10.1007/978-3-319-66320-3_26
http://dx.doi.org/10.1007/978-3-319-66320-3_26
http://dx.doi.org/10.1007/978-3-319-66320-3_27
http://dx.doi.org/10.1007/978-3-319-66320-3_27
http://dx.doi.org/10.1007/978-3-319-66320-3_28
http://dx.doi.org/10.1007/978-3-319-66320-3_28

Linear Differential Systems with Infinite Power
Series Coefficients (Invited Talk)

S.A. Abramov(B)

Dorodnitsyn Computing Centre, Federal Research Center Computer Science
and Control of Russian Academy of Sciences, Vavilova, 40, Moscow 119333, Russia

sergeyabramov@mail.ru

Abstract. Infinite power series may appear as inputs for certain math-
ematical problems. This paper examines two possible solutions to the
problem of representation of infinite power series: the algorithmic rep-
resentation (for each series, an algorithm is specified that, given an
integer i, finds the coefficient of xi, — any such algorithm defines a
so called computable, or constructive, series) and a representation in an
approximate form, namely, in a truncated form.

1 Introduction

Infinite power series play an important role in mathematical studies. Those series
may appear as inputs for certain mathematical problems. In order to be able to
discuss the corresponding algorithms, we must agree on representation of the
infinite series (algorithm inputs are always objects represented by specific finite
words in some alphabet). This paper examines two possible solutions to the
problem of representation of power series.

In Sect. 2, we consider the algorithmic representation. For each series in x,
an algorithm is specified that, given an integer i, finds the coefficient of xi.
Any deterministic algorithms are allowed (any such algorithm defines a so called
computable, or constructive series). Here there is a dissimilarity with the publi-
cations [14], [15, Chap. 10], where some specific case of input (mainly the hyper-
geometric type) is considered, and the coefficients of the power series which are
returned by the corresponding algorithms can be given “in closed form”.

For example, suppose that a linear ordinary differential system S of arbitrary
order with infinite formal power series coefficients is given, decide whether the
system has non-zero Laurent series, regular, or formal exponential-logarithmic
solutions, and find all such solutions if they exist. If the coefficients of the origi-
nal systems are arbitrary formal power series represented algorithmically (thus,
we are not able, in general, to recognize whether a given series is equal to zero
or not) then these three problems are algorithmically undecidable, and this can
be deduced from the classical results of Turing [21]. But, it turns out that the

S.A. Abramov—Supported in part by the Russian Foundation for Basic Research,
project No. 16-01-00174.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 1–15, 2017.
DOI: 10.1007/978-3-319-66320-3 1

2 S.A. Abramov

first two problems are decidable in the case when we know in advance that
a given system S is of full rank [5]. However, the third problem (finding for-
mal exponential-logarithmic solutions) is not decidable even in this case [3].
It is shown that, despite the fact that such a system has a basis of formal
exponential-logarithmic solutions involving only computable (i.e., algorithmi-
cally represented) series, there is no algorithm to construct such a basis. But, it
is possible to specify a limited version of the third problem, for which there is
an algorithm of the desired type: namely, if S and a positive integer d are such
that for the system S the existence of at least d linearly independent solutions
is guaranteed, then we can construct such d solutions [20].

It is shown also that the algorithmic problems connected with the ramifica-
tion indices of irregular formal solutions of a given system are mostly undecidable
even if we fix a conjectural value ρ of the ramification index [2]. However, there
is nearby an algorithmically decidable problem: if a system S of full rank and
positive integers ρ, d are such that for S the existence at least of d linearly
independent formal solutions of ramification index ρ is guaranteed then one can
compute such d solutions of S.

Thus, when we use the algorithmic way of power series representation, a
neighborhood of algorithmically solvable and unsolvable problems is observed.

For the solvable problems mentioned above, a Maple implementation is pro-
posed [9]. In Sect. 2.2, we report some experiments.

Note that the ring of computable formal power series is smaller than the
ring of all formal power series because not every sequence of coefficients can
be represented algorithmically. Indeed, the set of elements of the constructive
formal power series is countable (each of the algorithms is a finite word in some
fixed alphabet) while the set of all power series is uncountable.

In Sect. 3, we consider an “approximate” representation. A well-known exam-
ple is the results [16] related to the number of terms of entries in A that can
influence some components of formal exponential-logarithmic solutions of a dif-
ferential system xsy′ = Ay, where s is a given non-negative integer, A is a matrix
whose entries are power series. As a further example we consider matrices with
infinite power series entries and suppose that those series are represented in an
approximate form, namely, in a truncated form. Thus, it is assumed that a poly-
nomial matrix P which is the l-truncation (l is a non-negative integer, deg P = l)
of a power series matrix A is given, and P is non-singular, i.e., detP �= 0. In [4], it
is proven that the question of strong non-singularity, i.e., the question whether
P is not the l-truncation of a singular matrix having power series entries, is
algorithmically decidable. Assuming that a non-singular power series matrix A
(which is not known to us) is represented by a strongly non-singular polynomial
matrix P , we give a tight lower bound for the number of initial terms of A−1

which can be determined from P−1.
We discuss the possibility of applying the proposed approach to “approxi-

mate” linear higher-order differential systems: if a system is given in the approx-
imate truncated form and the leading matrix is strongly non-singular then the
results [16,18] and their generalization can be used, and the number of reliable
terms of Laurent series solution can be estimated by the algorithm proposed in [6].

Infinite Power Series Coefficients 3

Theorems are known that if a system has a solution in the form of a series,
then this system also has a solution in the form of a series with some specific
properties such that the initial terms of these series coincide (and estimates of the
number of coinciding terms are given), see, e.g., [13]. To avoid misunderstandings,
note that this is a different type of task. We are considering a situation where a
truncated system is initially given, and we do not know the original system. We
are trying to establish, whether it is possible to get from the solutions of this
system an information on solutions of any system obtained from this system by
a prolongation of the polynomial coefficients to series.

The information that can be extracted from truncated series, matrices, sys-
tems, etc. may be sufficient to obtain certain characteristics of the original
(untruncated) objects. Naturally, these characteristics are incomplete, but may
suffice for some purposes.

In Sect. 4, we discuss the fact that the width of a given full-rank system S
with computable formal power series coefficients can be found, where the width
of S is the smallest non-negative integer w such that any l-truncation of S with
l � w is a full-rank system. It is shown also that the above-mentioned value w
exists for any full-rank system [5]. We introduce also the notion of the s-width.
This is done on the base of the notion of the strong non-singularity.

2 Algorithmic Representation

Definition 1. We suppose that for each series a(x) =
∑∞

i=0 aix
i under consid-

eration, an algorithm Ξa (a procedure, terminating in finitely many steps) such
that a(x) =

∑∞
i=0 Ξa(i)xi, i.e., such that ai = Ξa(i) ∀i is given. We will call

such series computable (or constructive).

2.1 Computable Infinite Power Series in the Role of Coefficients of
Linear Differential Systems

Let K be a field of characteristic 0. We will use the standard notation K[x] for
the ring of polynomials in x and K(x) for the field of rational functions of x with
coefficients in K. Similarly, we denote by K[[x]] the ring of formal power series
and K((x)) = K[[x]][x−1] its quotient field (the field of formal Laurent series)
with coefficients in K. The ring of n × n-matrices with entries belonging to a
ring (a field) R is denoted by Mat n(R).

Definition 2. A ring (field) is said to be constructive if there exist algorithms
for performing the ring (field) operations and an algorithm for zero testing in
the ring (field).

We suppose that the ground field K is a constructive field of characteristic 0.
We write θ for x d

dx and consider differential systems of the form

Ar(x)θry + Ar−1(x)θr−1y + · · · + A0(x)y = 0 (1)

4 S.A. Abramov

where y = (y1, . . . , ym)T is a column vector of unknown functions, and y1, . . . , ym

are the components of y.
For the matrices

A0(x), A1(x), . . . , Ar(x) (2)

we have Ai(x) ∈ Mat m(K[[x]]), i = 0, 1, . . . , r, and Ar(x) (the leading matrix of
the system) is non-zero.

We call elements of the matrices Ai(x) system coefficients. As the system
coefficients will appear computable series.

It can be deduced from the classical results of Turing [21] that

We are not able, in general, to test whether a given computable series is
equal to zero or not; for a square matrix whose entries are computable
series - to test, whether this matrix is non-singular or not.

However, it turns out that the problems of finding solutions of some types are
decidable in the case when we know in advance that a given differential system
S is of full rank, i.e., that the equations of the system are linearly independent
over K[θ]. Algorithms for constructing local solutions of certain types can be
proposed (the components of local solutions either are series in x, or contain
such series as constituents). All the involved series are supposed to be formal.

Definition 3. The solutions whose components are formal Laurent series are
Laurent solutions. The components of a regular solution are of the form

yi(x) =
u∑

i=1

xλi

ki∑

s=0

gi,s(x)
lns x

s!
, (3)

where u, ki ∈ N, λi ∈ K̄ and gi,s(x) ∈ K̄((x))m (K̄ denotes the algebraic closure
for K.)

Definition 4. A proper formal (exponential-logarithmic) solution of a system is
a solution of the form

eQ(1
t)tλΦ(t), x = tρ, (4)

where
λ ∈ K̄;
Q(1t) is a polynomial in 1

t over K̄ and the constant term of this polynomial
is equal to zero;

ρ is a positive integer;
Φ(t) is a column vector with components in the form

∑k
i=0 gi(t) logi(t), and

all gi(t) are power series over K̄.
If ρ has the minimal possible value in representation (4) of a proper formal

solution then ρ is the ramification index of that solution.

A formal (exponential-logarithmic) solution is a finite linear combination with
coefficients from K̄ of proper formal solutions.

Infinite Power Series Coefficients 5

Formal exponential-logarithmicis solutions are of a special interest since, e.g.,
any system of the form y′ = Ay, where A is an m × m-matrix whose entries are
formal Laurent series, has m linearly independent (over K̄) formal solutions [19].

The main problems which are considered in this section are the following.
Suppose that a linear ordinary differential system S of arbitrary order having
the form (1) with computable formal power series coefficients (entries of the
matrices Ai(x)) is given, test whether the system has

(1) non-zero Laurent series,
(2) regular, or
(3) formal exponential-logarithmic solutions,

and find all such solutions if they exist.

Theorem 1. (i) [5,8] The first two problems are decidable in the case when we
know in advance that a given system S is of full rank, i.e., in the case where the
equations of the given system are linearly independent over the ring K[θ].

(ii) [3] Despite the fact that such a system has a basis of formal exponential-
logarithmic solutions involving only computable series, there is no algorithm to
construct such a basis.

However, it is possible to specify a limited version of the third problem, for
which there is an algorithm of the desired type:

Theorem 2 [20]. If S and a positive integer d are such that for the system S
the existence of at least d linearly independent solutions is guaranteed, we can
construct such d solutions.

It is shown also that the algorithmic problems connected with the ramifica-
tion indices of irregular formal solutions of a given system are mostly undecidable
even if we fix a conjectural value of the ramification index:

Theorem 3 [2]. There exists no algorithm which, given a system S with com-
putable power series coefficients and a positive integer ρ, tests the existence of a
proper formal solution of ramification index ρ for the system S.

Thus,

When we use the algorithmic way of power series representation, a neigh-
borhood of algorithmically solvable and unsolvable problems is observed.

2.2 Procedures for Constructing Local Solutions

For the solvable problems mentioned above, a Maple [17] implementation as
procedures of the package EG was proposed [9]. The package is available from
http://www.ccas.ru/ca/eg.

We report some experiments (Figs. 1, 2 and 3). The degree of the truncation
of the series involved in the solutions returned by our procedures is not less

http://www.ccas.ru/ca/eg

6 S.A. Abramov

Fig. 1. An example of a system (f(k) is not yet defined).

than it is required by the user. That degree can be even bigger: in any case,
it is big enough to represent the dimension of the space of the solutions under
consideration.

Let m = 3 and the system be of the form presented in Fig. 1.
Suppose that we define the procedure for computing coefficients of the series∑∞

k=0 f(k)xk as presented in Fig. 2.

Fig. 2. f(k) is defined.

(Thus,
∑∞

k=0 f(k)xk = −1 − x + x2 +
∑∞

k=3(−k2 + k)xk.) The results of the
search for Laurent, regular and formal solutions are presented on Fig. 3.

The procedure of the construction of all formal solutions constructs also
all regular, and in particular, all Laurent solutions. Actually, one procedure
EG[FormalSolution] is sufficient in order to obtain solutions of all three types.
However, if it is required to construct, say, only Laurent solutions, then it is
advantageous to use procedure EG[LaurentSolution], because it will construct
them considerably faster, even if the original system has no formal solutions but
the Laurent ones. For this reason, we propose three procedures for searching
solutions of various types.

In conclusion of this section note that the ring of computable formal power
series is smaller than the ring of all formal power series because not every
sequence of coefficients can be represented algorithmically. Indeed, the set of

Infinite Power Series Coefficients 7

Fig. 3. Laurent, regular and formal solutions of the system.

elements of the computable formal power series is countable (each of the algo-
rithms is a finite word in some fixed alphabet) while the set of all power series
is uncountable.

3 Approximate (Truncated) Representation

Now, we consider an “approximate” representation of series.
A well-known example [16] is the result by Lutz and Schäfke. It is related

to the number of terms of entries of a power series matrix A that can influence
initial terms of some constituents of formal exponential-logarithmic solutions of
a differential system xsy′ = Ay, where s is a non-negative integer.

As a further example [4], we consider matrices with infinite power series
entries and suppose that those series are represented in an approximate form,
namely, in a truncated form.

We start with introducing some notions.
If l ∈ Z, a ∈ K((x)) then we define the l-truncation a〈l〉 which is obtained

by omitting all the terms of degree larger than l in a. For a non-zero element
a =

∑
aix

i of K((x)), we denote by val a the valuation of a defined by val a =
min {i such that ai �= 0}; by convention, val 0 = ∞.

For A ∈ Mat n(K((x))), we define valA as the minimum of the valuations
of the entries of A. We define the leading coefficient of a non-zero matrix A ∈
Mat n(K((x))) as lc A = (x−valAA)|x=0. For A ∈ Mat n(K[x]), we define deg A
as the maximum of the degrees of the entries of A.

The notation AT is used for the transpose of a matrix (vector) A. In is the
identity n × n-matrix.

Given A ∈ Mat n(K((x))), we define the matrix A〈l〉 ∈ Mat n(K[x, x−1])
obtained by replacing the entries of A by their l-truncations (if A ∈ Mat n(K[[x]])
then A〈l〉 ∈ Mat n(K[x])).

8 S.A. Abramov

If P ∈ Mat n(K[x]) then any P̂ ∈ Mat n(K[[x]]) such that (P̂)〈deg P 〉 = P is
a prolongation of P .

3.1 Strongly Non-singular Matrices

Definition 5. A polynomial matrix P which is non-singular, i.e., detP �= 0,
is strongly non-singular if P is not the l-truncation (l = deg P) of a singular
matrix having power series entries; in other words, P is strongly non-singular if
det P̂ �= 0 for any prolongation P̂ of P .

It is proven that the question of strong non-singularity is algorithmically
decidable. For the answer to this question, the number

h = deg P + valP−1 (5)

plays the key role.

Theorem 4 [4]. P is strongly non-singular if and only if

deg P + valP−1 � 0, (6)

i.e., h � 0.

Example 1. If P is a non-singular constant matrix then P is a strongly non-
singular due to the latter proposition. However, the matrix

(
x 0
1 x

)

, (7)

is not strongly non-singular:

det
(

x x2

1 x

)

= 0. (8)

This could be recognized in advance: for (7) we have deg P = 1, val P−1 = −2
(since det P = x2), and the inequality h � 0 does not hold: 1 − 2 = −1. ��

Assuming that a non-singular power series matrix A (which is not known to
us) is represented by a strongly non-singular polynomial matrix P , we give a
tight lower bound for the number of initial terms of entries of A−1 which can be
determined from P−1.

Theorem 5 [4]. Let P be a polynomial matrix. If the inequality h � 0 holds
then first, for any prolongation P̂ , the valuations of the determinant and the
inverse matrix of the approximate matrix and, resp., of the determinant and
the inverse of the prolonged matrix coincide. Second, in the determinants of the
approximate and prolonged matrices, the coefficients coincide for xval detP , as
well as h subsequent coefficients (for larger degrees of x). A similar statement
holds for the inverse matrix. The bound h is tight.

Infinite Power Series Coefficients 9

Example 2. Let

P =
(

1 + x 0
1 1 − x

)

.

Here h = 1. The matrix P is strongly non-singular.
Let

P̂ =
(

1 + x + x2 + . . . 0
1 1 − x

)

.

We have

det P = 1 − x2 = 1 + 0 · x − 1 · x2, det P̂ = 1 + 0 · x + 0 · x2 + . . .

We have also:

P−1 =
(

1/(1 + x) 0
−1/(1 − x2) 1/(1 − x)

)

=
(

1 − x + x2 + . . . 0 + 0 · x
−1 + 0 · x − x2 − . . . 1 + x + x2 + . . .

)

,

P̂−1 =
(

1 − x 0
−1 1/1 − x

)

=
(

1 − x 0 + 0 · x
−1 + 0 · x 1 + x + x2 + . . .

)

.

��
As a consequence of Theorem 5, if val detP = e then val det P̂ = e and

detP − det P̂ = O(xe+h+1).

Similarly, if valP−1 = e then val (P̂)−1 = e and

P−1 − P̂−1 = O(xe+h+1).

3.2 When only a Truncated System Is Known

In this section, we are interested in the following question. Suppose that for
a system S of the form (1) only a finite number of terms of the entries of
A0(x), A1(x), . . . , Ar(x) is known, i.e., we know not the system S itself but the
system S〈l〉 for some non-negative integer l. Suppose that we also know that

– ordS〈l〉 = ordS,
– Ar(x) is invertible.

How many terms of Laurent series solutions of S can be determined from the
given “approximate” system S〈l〉?

We first recall the following result:

10 S.A. Abramov

Proposition 1 [6, Proposition 6]. Let S be a system of the form (1) and

γ = min
i

val
(
A−1

r (x)Ai(x)
)
, q = max{−γ, 0}.

There exists an algorithm that uses only the terms of degree less than

rmq + γ + val detAr(x) + 1 (9)

of the entries of the matrices A0(x), A1(x), . . . , Ar(x), and computes a non-zero
polynomial (the so called indicial polynomial [12, Chap. 4, Sect. 8], [10, Definition
2.1], [6, Sect. 3.2]) I(λ) such that:

– if I(λ) has no integer root then (1) has no solution in K((x))m \ {0},
– otherwise, let e∗, e∗ be the minimal and maximal integer roots of I(λ); then

the sequence

ak = rmq + γ + val detAr(x) + max{e∗ − e∗ + 1, k + (rm − 1)q}, (10)

k = 1, 2, . . . , is such that for any e ∈ Z, k ∈ Z
+ and column vectors

ce, ce+1, . . . , ce+k−1 ∈ Km,

the system S possesses a solution y(x) ∈ K((x))m of the form

y(x) = cex
e + ce+1x

e+1 + · · · + ce+k−1x
e+k−1 + O(xe+k),

if and only if, the system S〈al〉 possesses a solution ỹ(x) ∈ K((x))m such that
ỹ(x) − y(x) = O(xe+k).

Using the latter proposition we prove

Theorem 6 [4]. Let Σ be a system of the form

Pr(x)θry + Pr−1(x)θr−1y + · · · + P0(x)y = 0

with polynomial matrices P0(x), P1(x), . . . , Pr(x). Let its leading matrix Pr(x)
be strongly non-singular. Let

d = deg Pr, p = −valP−1
r , h = d − p, γ = min

0�i�r−1
(val (P−1

r Pi))

be such that the inequality

h − p − γ � 0

holds. Let I(λ) be the indicial polynomial of Σ. Let the set of integer roots of
I(λ) be non-empty, and e∗, e∗ be the minimal and maximal integer roots of I(λ).
Let a non-negative integer k satisfy the equality

max{e∗ − e∗ + 1, k + (rm − 1)q} = l − rmq − γ − val detPr(x). (11)

Infinite Power Series Coefficients 11

Let Σ̂ be an arbitrary system of the form (1) such that Σ̂〈l〉 = Σ for l = deg Σ
(i.e., Σ̂ is an arbitrary prolongation of Σ). Then for any e ∈ Z, the system Σ̂
possesses a solution

ŷ(x) ∈ K((x))m, val ŷ(x) = e,

if and only if, the system Σ possesses a solution y(x) ∈ K((x))m such that

y(x) − ŷ(x) = O(xe+k+1) (12)

(evidently, the equalities val ŷ(x) = e and (12) imply that val y(x) = e).

Example 3. Let

P1 =
(

1 0
0 1 − x

)

, P0 =
(

0 −1
−x + 2x2 + 2x3 + 2x4 −2 + 4x

)

.

For the first-order differential system Σ

P1(x)θy + P0(x)y = 0

we have

d = 1, p = 0, h = 1, γ = 0, I(λ) = λ(λ − 2), e∗ − e∗ + 1 = 3.

The conditions of Theorem 6 are satisfied.
The general solution of Σ is

y1 = C1 − C1x + C2x
2 − C2x

3 + 0x4 +
2C1

15
x5 +

C1

30
x6 +

(
C1

210
+

2C2

35

)
x7 + . . . ,

y2 = − C1x + 2C2x
2 − 3C2x

3 + 0x4 +
2C1

3
x5 +

C1

5
x6 +

(
C1

30
+

2C2

5

)
x7 + . . . ,

where C1 and C2 are arbitrary constants.
Equation (11) has the form max{3, k} = 4, thus

k = 4.

This means that all Laurent series solutions of any system Σ̂ of the form

A1(x)θy + A0(x)y = 0 (13)

with non-singular matrix A1 and such that Σ̂〈4〉 = Σ (we have deg Σ = 4) are
power series solutions having the form

ŷ1 = C1 − C1x + C2x
2 − C2x

3 + O(x5),

ŷ2 = − C1x + 2C2x
2 − 3C2x

3 + O(x5),

where C1, C2 are arbitrary constants. Consider, e.g., the first-order differential
system Σ̂ of the form (13) with

A1 =
(

1 0
0 1 − x

)

,

12 S.A. Abramov

A0 =
(

0 −1
−x + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7 + x8 + . . . −2 + 4x

)

.

Its general solution is

ŷ1 = C1 − C1x + C2x
2 − C2x

3 + 0x4 + 0x5 + 0x6 +
C1

35
x7 + . . . ,

ŷ2 = −C1x + 2C2x
2 − 3C2x

3 + 0x4 + 0x5 + 0x6 +
C1

5
x7 + . . . ,

what corresponds to the forecast and expectations. ��
Remark 1. The latter example shows that Theorem 6 gives a tight bound for
possible value of k: in that example that we cannot take k + 1 instead of k.
Indeed, y1 contains the term 2C1

15 x5, while ŷ1 has factually no term of degree 5.

We see that the information that can be extracted from truncated series,
matrices, systems, etc. may be sufficient to obtain certain characteristics
of the original (untruncated) objects. Naturally, these characteristics are
incomplete, but may suffice for some purposes.

In the context of truncated systems we considered only the problem of testing
the existence and constructing Laurent series solutions, but we did not discuss
similar problems related to regular and formal exponential-logarithmic solutions.
We will continue to investigate this line of enquiry.

4 The Width

In conclusion, we discuss a plot which connects both thematic lines of the paper.

Definition 6 [4,5]. Let S be a system of full rank over K[[x]][θ]. The minimal
integer w such that S〈l〉 is of full rank for all l � w is called the width of S The
minimal integer ws such that any system S1 having power series coefficients and
satisfying the condition S

〈ws〉
1 = S〈ws〉, is of full rank, is called the s-width (the

strong width) of S.
We will use the notations w(S), ws(S) when it is convenient.

Any linear algebraic system can be considered as a linear differential system
of zero order. This lets us state using the following example that for an arbitrary
differential system S we have ws(M) �= w(M) in general, however, the inequality

ws(S) � w(S)

holds.

Infinite Power Series Coefficients 13

Example 4. Let A be (
x x3

1 x

)

, (14)

then

w(A) = 1,

since det A〈0〉 = 0 and

A〈1〉 = A〈2〉 =
(

x 0
1 x

)

, det
(

x 0
1 x

)

�= 0,

and A〈l〉 = A when l � 3, det A �= 0. However, ws(A) > 1, due to det
(

x x2

1 x

)

=

0. It is easy to check that ws(A) = 2. ��
It was proven in [5, Theorem 2] that if a system S of the form (1) is of full

rank then there exists the width w of S. The value w may be computed if the
coefficients of S are represented algorithmically.

As for the idea of the proof from [5], it is shown that the rank-preserving
EG-eliminations [1,7] give a confirmation for the fact that S is of full rank. That
confirmation uses only a finite number of the terms of power series which are
coefficients of S. For this, the induced recurrent system R is considered (such R
is a specific recurrent system for the coefficients of Laurent series solutions of S).
This system has polynomial coefficients of degree less than or equal to r = ordS.
The system S is of full rank if and only if R is of full rank as a recurrent system.
A recurrent system of this kind can be transformed by a special version of the
EG-eliminations [5, Sect. 3] into a recurrent system R̃ whose leading matrix is
non-singular. This gives the confirmation mentioned above. It is important that
only a finite number of the coefficients of R are involved in the obtained leading
matrix of R̃ (due to some characteristic properties of the used version of the EG-
eliminations). Each of polynomial coefficients of R is determined from a finite
number (bounded by a non-negative integer N) of the coefficients of the power
series involved in S. This proves the existence of the width and of the s-width
as well. The mentioned number N can be computed algorithmically when all
power series are represented algorithmically; thus, in this case we can compute
the width of S since we can test [1,7,11] whether a finite order differential system
with polynomial coefficients is of full rank or not. From this point we can consider
step-by-step S〈N−1〉, S〈N−2〉, . . . , S〈1〉, S〈0〉 until there appears the first which is
not of full rank. If all the truncated systems are of full rank then w = 0.

Concerning the s-width, we get the following theorem

Theorem 7 [4]. Let S be a full rank system of the form (1). Then the s-width
ws(S) is defined. If the power series coefficients of S are represented algorith-
mically then we can compute algorithmically a non-negative integer N such that
ws(S) � N .

14 S.A. Abramov

However, it is not exactly clear how to find the minimal value N , i.e., ws(S). Is
this problem algorithmically solvable? The question is still open.

Acknowledgments. The author is thankful to M. Barkatou, D. Khmelnov, M.
Petkovšek, E. Pflügel, A. Ryabenko and M. Singer for valuable discussions.

References

1. Abramov, S.: EG-eliminations. J. Differ. Eqn. Appl. 5, 393–433 (1999)
2. Abramov, S.: On ramification indices of formal solutions of constructive linear

ordinary differential systems. J. Symbolic Comput. 79, 475–481 (2017)
3. Abramov, S.A., Barkatou, M.A.: Computable infinite power series in the role of

coefficients of linear differential systems. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 1–12. Springer, Cham
(2014). doi:10.1007/978-3-319-10515-4 1

4. Abramov, S., Barkatou, M.: On strongly non-singular polynomial matrices. In:
Schneider, C., Zima, E. (eds.) Advances in Computer Algebra: Proceedings of
the Waterloo Workshop in Computer Algebra 2016. Springer, Heidelberg (2017,
accepted)

5. Abramov, S., Barkatou, M., Khmelnov, D.: On full rank differential systems with
power series coefficients. J. Symbolic Comput. 68, 120–137 (2015)

6. Abramov, S.A., Barkatou, M.A., Pflügel, E.: Higher-order linear differential
systems with truncated coefficients. In: Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 10–24. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-23568-9 2

7. Abramov, S., Bronstein, M.: Linear algebra for skew-polynomial matrices. Rapport
de Recherche INRIA RR-4420 (2002). http://www.inria.fr/RRRT/RR-4420.html

8. Abramov, S.A., Khmelnov, D.E.: Regular solutions of linear differential systems
with power series coefficients. Program. Comput. Softw. 40(2), 98–106 (2014)

9. Abramov, S.A., Ryabenko, A.A., Khmelnov, D.E.: Procedures for searching local
solutions of linear differential systems with infinite power series in the role of
coefficients. Program. Comput. Softw. 42(2), 55–64 (2016)

10. Barkatou, M., Pflügel, E.: An algorithm computing the regular formal solutions of
a system of linear differential equations. J. Symbolic Comput. 28, 569–588 (1999)

11. Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of
skew polynomials. In: Proceedings of the ISSAC 2002, pp. 8–15. ACM, New York
(2002)

12. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-
Hill, New York (1955)

13. Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations.
Math. Ann. 267, 213–238 (1984)

14. Koepf, W.: Power series in computer algebra. J. Symbolic Comput. 13, 581–603
(1992)

15. Koepf, W.: Computeralgebra. Eine algorithmisch orientierte Einführung. Springer,
Heidelberg (2006)

16. Lutz, D.A., Schäfke, R.: On the identification and stability of formal invariants for
singular differential equations. Linear Algebra Appl. 72, 1–46 (1985)

17. Maple online help. http://www.maplesoft.com/support/help/

http://dx.doi.org/10.1007/978-3-319-10515-4_1
http://dx.doi.org/10.1007/978-3-642-23568-9_2
http://www.inria.fr/RRRT/RR-4420.html
http://www.maplesoft.com/support/help/

Infinite Power Series Coefficients 15

18. Pflügel, E.: Effective formal reduction of linear differential systems. Appl. Algebra
Eng. Commun. Comput. 10(2), 153–187 (2000)

19. van der Put, M., Singer, M.F.: Galois Theory of Differential Equations.
Grundlehren der mathematischen Wissenschaften, vol. 328. Springer, Heidelberg
(2003)

20. Ryabenko, A.A.: On exponential-logarithmic solutions of linear differential systems
with power series coefficients. Program. Comput. Softw. 41(2), 112–118 (2015)

21. Turing, A.: On computable numbers, with an application to the Entscheidungs-
problem. Proc. Lond. Math. Soc. Ser. 2 42, 230–265 (1936)

On the Asymptotic Stability of a Satellite
with a Gravitational Stabilizer

Andrei V. Banshchikov(B)

Matrosov Institute for System Dynamics and Control Theory
of Siberian Branch of Russian Academy of Sciences,

PO Box 292, 134, Lermontov Str., Irkutsk 664033, Russia
bav@icc.ru

Abstract. The problem of the influence of the structure of forces on
the stability of the relative equilibrium of a controlled satellite with a
gravitational stabilizer on the circular orbit is studied. In the space of
entered parameters, the regions with different degrees of instability by
Poincaré are found. Assuming an instability of a potential system, the
problem of the possibility of its stabilization up to asymptotic stability
is considered. A parametric analysis of the obtained inequalities with the
help of “Mathematica” built-in tools for symbolic-numerical modelling
is carried out.

1 Introduction

Investigation of stability and stabilization of nonlinear or linearized models of
mechanical systems often leads to the problem of “parametric analysis” of the
conditions (inequalities) obtained. In the case of parametric analysis, it is impor-
tant to have a possibility to estimate the domain of values of the parameters
under which a desired system’s state is provided. Naturally, it is hard to hope
for obtaining any readable analytical results for the models which have high
dimensions and contain many parameters. At this stage, one can efficiently use
software packages of computer algebra (SPCA) as well as the corresponding
software elaborated on the basis of these software packages.

The paper considers a problem of stability of the position of relative equilib-
rium in the orbital coordinate system of a controlled satellite with a gravitational
stabilizer. The mechanical system in question is a well-studied model (see, for
example, the review [1]). To obtain sufficient stability conditions, the second Lya-
punov method and the Barbashin–Krasovskii theorem were applied. As noted
in [1], obtaining the necessary stability conditions (by linear equations of per-
turbed motion) leads to presenting very bulky calculations. In contrast to the
passive stabilization and orientation systems, the possibilities of active control of
a gravitational stabilizer are investigated in [2], in particular, the optimization
of the system by degrees of stability and accuracy.

The application of computer algebra methods and SPCA capabilities to the
problems of celestial mechanics has rich history and till today attracts academic
attention (see, for example, [3,4]).
c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 16–26, 2017.
DOI: 10.1007/978-3-319-66320-3 2

On the Asymptotic Stability of a Satellite with a Gravitational Stabilizer 17

2 Description and Construction of a Symbolical Model

The system’s mass center moves along the Kepler circular orbit with constant
angular velocity ω . For the description of a motion of the system, two right-
handed rectangular Cartesian coordinate systems are introduced (the orbital
coordinate system (OCS) and the coordinate system rigidly connected to a satel-
lite). To define relative positioning of the axes of these coordinate systems, the
directional cosines defined by the angles ψ , θ , ϕ of Euler’s type, are used (see,
for example, [2]). The stabilizer is a rigid rod with point mass at its free end.
The rod is connected to the satellite with a 2-degree-of-freedom suspension. The
rotation axes of the rod coincide with the direction of the axes of pitch and roll.
The system is influenced by a gravitation moment. When moving undisturbed,
the system’s principal central axes of inertia coincide with the axes of orbital
coordinate system, and the rod is oriented along the radius of the orbit. This is
the equilibrium position of a satellite with the stabilizer in regard to OCS.

With the help of the developed software [5,6], the following results are
obtained in a symbolic form on PC for the system of bodies in question:

• kinetic energy and force function of the approximate Newtonian field of grav-
itation;

• nonlinear equations of motion in Lagrange form of the 2nd kind;
• matrices of equations of perturbed motion in the first approximation in the

vicinity of equilibrium position;
• coefficients of the system’s characteristic equation.

Linearized in the vicinity of the equilibrium position, equations of motion for
a satellite with a stabilizer are decomposed into two subsystems. Respectively,
a “pitch” subsystem (θ) and a “yaw-and-roll” subsystem (ψ, ϕ) are:{

M1 q̈1 + K1 q1 = Q1

M2 q̈2 + G q̇2 + K2 q2 = Q2,
(1)

where all derivatives are calculated on dimensionless time τ = ωt (ω= |ω| is the

module of orbital angular velocity); q1 =
(

θ
δ

)
, q2 =

⎛
⎝ψ

ϕ
σ

⎞
⎠; δ, σ are rotation

angles of the rod with regard to the satellite’s body; Q1 =
(

0
Qδ

)
, Q2 =

⎛
⎝ 0

0
Qσ

⎞
⎠

are control forces;

M1 =
(

c f
f d

)
; K1 = 3

(
b − a f

f f

)
; M2 =

⎛
⎝a 0 0

0 b f
0 f d

⎞
⎠;

K2 =

⎛
⎝ c − b 0 0

0 4(c − a) 4f
0 4f 3f + d

⎞
⎠; G =

⎛
⎝ 0 c − b − a 0

a + b − c 0 0
0 0 0

⎞
⎠.

18 A.V. Banshchikov

Here, we introduce the following notations:

a = Jy; b = Jx + mr (l + r) +
1
3

ml2 + m0(l + r)2; c = b + Jz − Jx;

d =
(m

3
+ m0

)
l2; f =

(m

2
+ m0

)
rl + d; c − b − a = Jz − Jx − Jy,

where m and m0 are masses of the rod and the point load at the end, respectively;
l>0 is the rod length; r≥0 is the distance from the system’s mass center to the
point of attachment of the rod; Jx, Jy, Jz; a, b, c are principal inertia moments
of the satellite and whole system, respectively.

Taking into account the mass distribution in the system and in the ellipsoid
of inertia of rigid body, the following inequalities are valid

b > a > 0, c > a, f > d > 0, c > f, b > f,
c + a − b ≡ Jz + Jy − Jx > 0, b + a − c ≡ Jx + Jy − Jz > 0,

(2)

Equation (1) may be interpreted as equations of oscillations of a mechanical
system influenced by potential (with the matrices K1,K2) and gyroscopic (with
the matrix G) forces. These forces are determined by gravitation forces as well
as by orbital motion. The matrices M1 and M2 play the role of diagonal blocks
of a positive definite matrix of kinetic energy.

3 Formulation of the Problem

According to Kelvin–Chetaev’s theorems [7], examination of stability of trivial
solution begins with the analysis of the matrix of potential forces. Let us write
out the conditions of positive definiteness of matrices K1,K2:

b > a + f, c > b, (c − a)(3f + d) − 4f2 > 0. (3)

Let us assume that

(1) for the “pitch” subsystem, the values of the parameters satisfy the condition
a < b < a + f (i.e., the first inequality in (3) is violated);

(2) for the “yaw-and-roll” subsystem, the last inequality in (3) or simultaneously
the second and third inequalities are changed to the opposite.

Taking into account the assumptions presented, the system is unstable when
initial potential forces are in action. The simultaneous stabilization of the two
subsystems by additional forces of different nature is required. For this purpose,
control forces with the suspension of the rod are added into the right-hand sides
of the motion Eq. (1) as it is shown below

Qδ = k̃∗
θ θ̇ − k̃∗

δ δ̇ + k̃θθ − k̃δδ; Qσ = k̃∗
ϕ ϕ̇ − k̃∗

σ σ̇ + k̃ϕϕ − k̃σσ, (4)

where k̃∗
θ =

k∗
θ

ω
; k̃∗

δ =
k∗

δ

ω
; k̃θ =

kθ

ω2
; k̃δ =

kδ

ω2
; k̃∗

ϕ =
k∗

ϕ

ω
; k̃∗

σ =
k∗

σ

ω
;

k̃ϕ =
kϕ

ω2
; k̃σ =

kσ

ω2
are constant coefficients.

On the Asymptotic Stability of a Satellite with a Gravitational Stabilizer 19

The objective of the paper is to investigate the effect of the structure of
forces on the stability of the equilibrium position of system (1). In addition,
the problem of the possibility of ensuring the asymptotic stability of the two
subsystems by a “reduced” set of forces represented in (4) is formulated.

By splitting the matrices in terms of velocities and coordinates in Eq. (1)
into the symmetric and skew-symmetric parts, it is not difficult to write out
the structure of the forces affecting the system. For example, concerning the
“yaw-and-roll” subsystem, potential (with a matrix P2), non-conservative (N2),
dissipative (D2) and gyroscopic (G2) forces are added to the initial potential
(with a matrix K2) and gyroscopic (with a matrix G) forces, where

P2 =

⎛
⎜⎝

0 0 0
0 0 − k̃ϕ

2

0 − k̃ϕ

2 k̃σ

⎞
⎟⎠; N2 =

⎛
⎜⎝

0 0 0
0 0 k̃ϕ

2

0 − k̃ϕ

2 0

⎞
⎟⎠;

D2 =

⎛
⎜⎝

0 0 0

0 0 − k̃∗
ϕ

2

0 − k̃∗
ϕ

2 k̃∗
σ

⎞
⎟⎠; G2 =

⎛
⎜⎝

0 0 0

0 0 k̃∗
ϕ

2

0 − k̃∗
ϕ

2 0

⎞
⎟⎠.

4 Regions of System’s Instability

For the convenience of graphical representation of the regions with different
degrees of instability and subsequent parametric analysis, we introduce four
dimensionless parameters:

α =
c − b

a
=

Jz − Jx

Jy
; γ =

b − a

c
; p1 =

d

f
; p2 =

f

c
. (5)

The physically obtainable values of the parameters, taking into account (2),
lie within the intervals: −1 < α < 1, 0 < γ < 1, 0 < p1 ≤ 1, 0 < p2 < 1. It
is not difficult to show that conditions (2) imply γ + α > 0.

The diagonal blocks of the initial matrix of potential forces (when Qδ = 0,
Qσ = 0) in notation (5) have the form:

K1 = 3
(

γ p2
1 1

)
; K2 =

⎛
⎝α 0 0

0 4(γ + α) 4p2(α + 1)
0 4 3 + p1

⎞
⎠.

In the space of the outlined parameters, the relations γ = p2, α = 0,
S ≡ (γ + α)(3 + p1) − 4p2(α + 1) = 0 define the surfaces which separate the
regions having different degrees of instability. For example, Fig. 1 shows these
regions for the values of the parameters p1 = 4/5, p2 = 5/7.

It is known that if the equilibrium position is unstable at potential forces,
Kelvin–Chetaev’s theorem [7] of influence of gyroscopic forces tells us that gyro-
scopic stabilization is possible only for systems with an even degree of instability.

20 A.V. Banshchikov

Fig. 1. Regions with different degrees of instability.

Here, respectively, instability regions for the entire system have: Z – zero
degree; Ê – an even degree (when γ > p2) and E (when γ < p2); O , O , Ô –
odd degree.

The evenness (or oddness) of the degree of instability according to Poincaré
is determined by positivity (or negativity) of the determinant of the matrix of
potential forces. It is necessary to emphasize that for the values of the para-
meters from the regions Ê and E , the unstable equilibrium position has an
even degree of instability (i.e., detK = det K1 ∗ det K2 > 0). Thus, under cer-
tain conditions, equilibrium can be stabilized due to the influence of gyroscopic
forces. Earlier in [8], the author has proved the stabilization of the equilibrium
in the needle-shaped part (subregion) of the region Ê for an uncontrolled satel-
lite. The matrices K1 and K2 are positive definitive in the region Z . On the
basis of another Kelvin–Chetaev’s theorem, the addition to the potential forces
of gyroscopic forces preserves the nature of stability of the investigated motion.

The mass distribution in the system in which the initial matrix of potential
forces of the system will be positive definitive is usually given for the applied
problems of spacecraft dynamics. Further, due to the addition of primarily dis-
sipative forces, the asymptotic stability of motion is ensured by Lyapunov’s
theorem. However, unstable systems may also be of interest and, besides, “non-
standard” situations on the orbit are possible.

Thus, taking into account the assumptions made in the formulation of the
problem in Sect. 3, we shall consider the possibility of stabilizing an unstable

On the Asymptotic Stability of a Satellite with a Gravitational Stabilizer 21

system in the region O (when γ < p2, α < 0, (γ +α)(3+p1)−4p2(α+1) < 0)
or in the region E (when γ < p2, α > 0, (γ + α)(3 + p1) − 4p2(α + 1) < 0) to
asymptotic stability by additional forces (4).

5 Parametric Analysis of Asymptotic Stability Conditions

It is obvious that the characteristic equation of system (1) is factorized: Λ(λ) ≡
Λ(1) ∗ Λ(2) = 0. After performing elementary transformations with the char-
acteristic matrices (multiplying their rows by positive factors), we obtain the
characteristic determinants in notation (5), respectively, in the “pitch” subsys-
tem and in the “yaw-and-roll” subsystem:

Λ(1) =
∣∣∣∣ λ2 + 3γ p2(λ2 + 3)
λ2 − λk̃∗

θ + (3 − k̃θ) λ2p1 + λk̃∗
δ + (3 + k̃δ)

∣∣∣∣ =
4∑

i=0

wi λi, where

w4≡ det M1= p1 − p2, w3= k̃∗
δ + p2k̃

∗
θ , w2= 3 (p1γ − 2p2 + 1) + k̃δ + p2k̃θ,

w1 = 3
(
γ k̃∗

δ + p2k̃
∗
θ

)
, w0 = 3

(
3 (γ − p2) + γ k̃δ + p2k̃θ

)
;

Λ(2)=

∣∣∣∣∣∣
λ2+ α λ(α − 1) 0

λ(α −1)(γ −1) λ2(1+ γα)+ 4(α+ γ) (λ2+ 4)p2(α + 1)
0 λ2 − λk̃∗

ϕ + (4 − k̃ϕ) λ2p1+ λk̃∗
σ + (3+ p1+ k̃σ)

∣∣∣∣∣∣ =

=
6∑

i=0

vi λi, where v6 ≡ det M2 = (1 + γ α) p1 − (α + 1)p2,

v5 = (1 + γ α) k̃∗
σ + (α + 1) p2 k̃∗

ϕ, v1 = 4α
(
(α + γ) k̃∗

σ + (α + 1) p2 k̃∗
ϕ

)
,

v3 = (1 + 3γ + α(α + 2γ + 3)) k̃∗
σ + (α + 1)(4 + α) p2 k̃∗

ϕ,

v4 = (1+ γα)(3+ p1+ k̃σ) + (1+ 3γ+ α(3+ α+ 2γ))p1 − (α+ 1)p2(8+ α−k̃ϕ),

v2 = (1 + 3γ + α (α + 2γ + 3))
(
3 + p1 + k̃σ

)
+ 4α p1 (γ + α) +

+ (α + 1) p2

(
(4 + α) k̃ϕ − 8(α + 2)

)
,

v0 = 4α
(
(α + γ)

(
3 + p1 + k̃σ

)
+ (α + 1) p2

(
k̃ϕ − 4

))
.

The principal diagonal minors of the Hurwitz matrix, respectively, for two
subsystems

Δ
(1)
3 = w1w2w3 − w4w

2
1 − w0w

2
3; Δ

(2)
3 =

∣∣∣∣∣∣
v5 v3 v1
v6 v4 v2
0 v5 v3

∣∣∣∣∣∣ ; Δ
(2)
5 =

∣∣∣∣∣∣∣∣∣∣

v5 v3 v1 0 0
v6 v4 v2 v0 0
0 v5 v3 v1 0
0 v6 v4 v2 v0
0 0 v5 v3 v1

∣∣∣∣∣∣∣∣∣∣

22 A.V. Banshchikov

are analytically obtained with SPCA “Mathematica” and were used in further
calculations, but due to bulkiness, their explicit form is not given here.

The fulfillment of the conditions on the existence of roots with negative real
parts for the polynomial Λ(λ)

wi > 0, (i = 0, 4); Δ
(1)
3 > 0, (6)

vi > 0, (i = 0, 6); Δ
(2)
3 > 0; Δ

(2)
5 > 0 (7)

ensures the asymptotic stability of the system’s equilibrium position on the basis
of Lyapunov’s theorem on the first approximation.

It is worth noting that the conditions w4 > 0 and v6 > 0 are satisfied by
virtue of the positive definiteness of the kinetic energy matrix.

5.1 Stabilization in the “Pitch” Subsystem

With the help of “Mathematica” function Reduce designed to find the symbolic
(analytical) solution of the inequalities systems, the conditions for the control
parameters k̃∗

θ , k̃∗
δ , k̃θ, k̃δ (when p1 > p2, γ < p2) ensuring the fulfillment of

the system of inequalities (6) are obtained. Due to the solution’s bulkiness, its
presentation is omitted here. It is worth noting that “extra” forces entail “costs”
of their technical implementation.

An analysis of the solution obtained allows us to conclude that it is possible
to achieve stabilization of the subsystem to asymptotic stability by a “reduced”
set of control forces in Case 1 Qδ = −k̃∗

δ δ̇ − k̃δ δ or Case 2 Qδ = k̃∗
θ θ̇ + k̃θ θ.

In Case 1, additional dissipative and potential forces make an impact on the
subsystem, and in Case 2, all forces (potential, non-conservative, dissipative and
gyroscopic) are present. As a result, the following proposition is formulated and
proved.

Proposition 1. When choosing control parameters that satisfy the conditions

k̃∗
δ > 0, k̃δ > 3

(
p2
γ

− 1
)

in Case 1 or k̃∗
θ > 0, k̃θ > 3

(
1 − γ

p2

)
in

Case 2, all the roots of the polynomial Λ(1)(λ) have negative real parts.

5.2 Stabilization in the “Yaw-and-Roll” Subsystem

We note that the control parameters k̃∗
ϕ and k̃∗

σ enter only the odd coefficients
v1 , v3 , v5 of the characteristic equation. With the above mentioned Reduce func-
tion, their positivity is analyzed separately for the regions O and E . For example,
for the region O , the function call and the solution have the following form:

Reduce[{ 0 < p2 < p1 ≤ 1, 0 < γ < p2, −γ < α < 0, S < 0,

v1 > 0, v3 > 0, v5 > 0 }, { k̃∗
σ, k̃∗

ϕ }, Reals]

On the Asymptotic Stability of a Satellite with a Gravitational Stabilizer 23

p2 < p1 ≤ 1 ∧ γ < p2 ∧ −γ < α < 0 ∧

∧ k̃∗
σ > 0 ∧ − (1 + 3γ + α(3 + α + 2γ)) k̃∗

σ

(α + 1)(α + 4)p2
< k̃∗

ϕ < − (α + γ) k̃∗
σ

(α + 1)p2
.

Looking at the analytical solution of this system of inequalities, we note the
positivity of k̃∗

σ and the negativity of k̃∗
ϕ . Therefore, forces (in the matrix D2) can

only be dissipative but not accelerating. As a result, the following proposition is
formulated and proved.

Proposition 2. It is impossible to ensure the coefficients v1 , v3 , v5 are simul-
taneously positive for the values of the parameters from the region O when
k̃∗

σ = 0 or k̃∗
ϕ = 0, but in the region E , this can be done.

Thus, in order to stabilize the system in the region O , a complete set of
control forces with respect to velocities is required (in contrast to the region E ,
where a “reduced” set of forces is sufficient).

It is not possible to obtain an analytical solution for the entire system of
inequalities (7) because of the large number of parameters and the complexity
of the expressions being analyzed. Therefore, to simplify the analysis, let us move
on to symbolic-numerical analysis for fixed values of some parameters.

To start with, we consider the question of the possibility of asymptotic sta-
bility for the region O . Since in this region v0

∣∣∣k̃σ=0 , k̃ϕ=0 ≡ det K2 > 0 , it is
possible not to take into account the positional forces in Qσ from (4) (i.e., let
us add k̃σ = 0 and k̃ϕ = 0). When solving the system of inequalities (7) using
Reduce function for the specific numerical values k̃∗

ϕ < 0, k̃∗
σ > 0 (for example,

k̃∗
σ = 1, k̃∗

ϕ = −γ/p2, p1 = 4/5) we get the answer FALSE (i.e. the system is
incompatible). The same answer was received in the case k̃σ �= 0 , k̃ϕ �= 0 (i.e.
under the action of the whole set of forces Qσ). As a result of the analysis, the
following proposition can be formulated.

Proposition 3. For the values of the parameters in the region O system (1)
cannot be stabilized up to the asymptotic stability due to the control forces’
effect (4).

Now, let us consider the question of the possibility of asymptotic stability for
the region E . Taking into account the second part of Proposition 2, we assume
that Qσ = −k̃∗

σ σ̇ − k̃σ σ (that is, additionally only dissipative and potential
forces act). In this case, the principal diagonal minors of the third and fifth
order Hurwitz matrix do not depend on the second control parameter k̃σ and
have the form:

Δ
(2)
3 = −p2(α − 1)2(α + 1)(γ − 1)(9 (1 − γ) + α (6 (1 − γ) + α + 1))(k̃∗

σ)2,

Δ
(2)
5 = −144 p22 α (α − 1)4(α + 1)2(γ − 1)3(k̃∗

σ)3.

When solving the system of inequalities (7) (where, as in Fig. 1, p1 = 4/5,
p2= 5/7) in relation to k̃∗

σ, k̃σ using function

Reduce[{ 0 < γ < 5/7, 0 < α < 1, S < 0, v6 > 0, v0 > 0, v2 > 0, v4 > 0,

v1 > 0, v3 > 0, v5 > 0, Δ
(2)
3 > 0, Δ

(2)
5 > 0 }, { k̃∗

σ, k̃σ }, Reals],

24 A.V. Banshchikov

we get the answer:

k̃∗
σ > 0 ∧ k̃σ >

100 − 33α − 133 γ

35 (α + γ)
∧

∧
((

0 < α ≤ 3
25

∧ 0 < γ <
5
7

)
∨

(3
25

< α ≤ 5
33

∧ 25α − 3
28α

< γ <
5
7

)
∨

∨
(5

33
< α <

19
44

∧ 25α − 3
28α

< γ <
100 − 33α

133

))
. (8)

It is not difficult to show that in the region E , the value 100−33α−133γ
35(α+γ) > 0,

and, therefore, the parameter k̃σ in (8) is positive. We note that any positive
value of the other parameter k̃∗

σ satisfies solution (8). Thus, in the present case,
Qσ are the forces of friction and elasticity.

Let us construct the region of asymptotic stability (8) in the parameter plane
α, γ using “Mathematica” function RegionPlot, designed for a graphical repre-
sentation of the solution of the system of inequalities, with the next value of
the parameter k̃σ = 10 . The result obtained is shown with a shaded region in
Fig. 2. It has been found that with an increasing (decreasing) value k̃σ, this area
expands (narrows) within the limits of the borders found v6 = 0 , S = 0 , α = 0 ,
γ = 0 , γ = 5/7 (see Fig. 2) and disappears at a value k̃σ = 0 .

Fig. 2. Region of asymptotic stability.

On the Asymptotic Stability of a Satellite with a Gravitational Stabilizer 25

A similar symbolic-numerical analysis has also been carried out for the control
forces Qσ = k̃∗

ϕ ϕ̇ + k̃ϕ ϕ . As a result of the analysis, the following proposition
can be formulated.

Proposition 4. For the values of the parameters from the region E , system
(1) can be stabilized up to an asymptotic stability thanks to the effect of control
forces Qσ = −k̃∗

σ σ̇ − k̃σ σ or Qσ = k̃∗
ϕ ϕ̇ + k̃ϕ ϕ.

6 Conclusion

Based on the analogy with the parametric analysis presented above, the pos-
sibility of asymptotic stability was also investigated for other regions in Fig. 1.
The study has shown that replacing the initial parameters a, b, c, f, d with the
parameters α, γ, p1, p2 only slightly simplified the symbolic-numerical analysis.
But due to the limited values of α, γ, p1, p2, this replacement allowed us to see
a qualitative picture of the research. For a future research, the problem of the
influence of the structure of forces on system’s stability and its stabilization
requires a more detailed study.

It is necessary to emphasize the problems of reliability and precision of com-
putations, as well as the problems of explicitness and speeding-up of the process
of investigations can be partially solved when SPCA is chosen as a software
tool. Along with the application of the SPCA (as “a calculator”) for solving a
definite problem, the approach, which implies the elaboration of some software
for solving a definite class of problems on the basis of the internal program-
ming language of the SPCA (in our case – “Mathematica”), is quite important.
Practically, the whole above analysis has been conducted using this software.

The work has been partially supported by the Russian Foundation for Basic
Research (grant No. 16-07-00201). The research is partially supported by the
Council for Grants of the President of Russian Federation, state support of the
leading scientific schools, project No. NSh-8081.2016.9.

References

1. Sarychev, V.A.: Problems of orientation of satellites. Itogi Nauki i Tekhniki. Ser.
“Space Res.” 11, 5–224 (1978). VINITI Publication, Moscow (in Russian)

2. Potapenko, E.M.: Dynamics of a spacecraft with direct active control of the gravity
gradient stabilizer. Kosmicheskie Issledovaniya 26(5), 699–708 (1988). (in Russian)

3. Gutnik, S.A., Guerman, A., Sarychev, V.A.: Application of computer algebra
methods to investigation of influence of constant torque on stationary motions
of satellite. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2015. LNCS, vol. 9301, pp. 198–209. Springer, Cham (2015). doi:10.1007/
978-3-319-24021-3 15

4. Prokopenya, A.N., Minglibayev, M.Z., Mayemerova, G.M.: Symbolic calculations
in studying the problem of three bodies with variable masses. Program. Comput.
Softw. 40(2), 79–85 (2014)

http://dx.doi.org/10.1007/978-3-319-24021-3_15
http://dx.doi.org/10.1007/978-3-319-24021-3_15

26 A.V. Banshchikov

5. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: Symbolic com-
putation in modelling and qualitative analysis of dynamic systems. Comput. Tech-
nol. 19(6), 3–18 (2014). (in Russian)

6. Banshchikov, A.V., Irtegov, V.D., Titorenko, T.N.: Software package for modeling
in symbolic form of mechanical systems and electrical circuits. Certificate of State
Registration of Computer Software No. 2016618253. Federal service for intellectual
property. Issued 25 July 2016 (in Russian)

7. Chetaev, N.G.: Stability of Motion. Works on Analytical Mechanics. AS USSR,
Moscow (1962). (in Russian)

8. Banshchikov, A.V.: Parametric analysis of stability conditions for a satellite with a
gravitation stabilizer. In: Ganzha, V.G., et al. (ed.) CASC 2002, pp. 1–6. Technische
Universität München, Munich (2002)

Sparse Interpolation, the FFT Algorithm
and FIR Filters

Matteo Briani(B), Annie Cuyt, and Wen-shin Lee

Department of Mathematics and Computer Science (Wis-Inf),
Universiteit Antwerpen, Middelheimlaan 1, B-2020 Antwerpen, Belgium

{Matteo.Briani,annie.cuyt,wen-shin.lee}@uantwerpen.be

Abstract. In signal processing, the Fourier transform is a popular
method to analyze the frequency content of a signal, as it decomposes
the signal into a linear combination of complex exponentials with integer
frequencies. A fast algorithm to compute the Fourier transform is based
on a binary divide and conquer strategy.

In computer algebra, sparse interpolation is well-known and closely
related to Prony’s method of exponential fitting, which dates back to
1795. In this paper we develop a divide and conquer algorithm for sparse
interpolation and show how it is a generalization of the FFT algorithm.

In addition, when considering an analog as opposed to a discrete ver-
sion of our divide and conquer algorithm, we can establish a connection
with digital filter theory.

1 Sparse Interpolation

Let the function φ(t) be given by

φ(t) =
n∑

i=1

αi exp(2πiμit)

and let us consider the general nonlinear interpolation problem of the samples
φ(tj), given by

φ(tj) =
n∑

i=1

αi exp(2πiμij/M), j = 0, . . . , 2n − 1, . . . (1)

with
√−1 = i, distinct μi ∈ C, αi ∈ C \ {0}, |Re(μi)| < M/2, tj = j/M,

where, without loss of generality, M ∈ IN. A solution of this interpolation prob-
lem was already presented in 1795 in [1] and can also be found in [2, pp. 378–
382]. Let us denote Ωi = exp(2πiμi/M), with Ωi �= Ωk when i �= k because
|Re(μi)| < M/2. It is apparent that the data φ(tj) are structured, namely

M. Briani—This research is supported by the Instituut voor Wetenschap en Tech-
nology - IWT.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 27–39, 2017.
DOI: 10.1007/978-3-319-66320-3 3

28 M. Briani et al.

φ(tj) =
n∑

i=1

αiΩ
j
i , j = 0, . . . , 2n − 1, . . . (2)

We now want to obtain the values Ωi, i = 1, . . . , n and αi, i = 1, . . . , n from
the 2n samples φ(tj). From Ωi the value μi can easily be deduced because
2π|Re(μi)|/M < π and hence no periodicity problem arises. Temporarily we
assume that n is known. How n can be extracted from the samples is explained
in Sect. 2.

Consider the polynomial

n∏

i=1

(z − Ωi) = zn + bn−1z
n−1 + · · · + b1z + b0 (3)

with so far unknown coefficients bi, i = 1, . . . , n. Since the Ωi are its zeroes, we
find for k ≥ 0,

0 =
n∑

i=1

αiΩ
k
i (Ωn

i + bn−1Ω
n−1
i + · · · + b0)

=
n∑

i=1

αiΩ
n+k
i +

n−1∑

j=0

bj

(
n∑

i=1

αiΩ
j+k
i

)

= φ(tk+n) +
n−1∑

j=0

bjφ(tk+j).

In other words, we can conclude that the structured data φ(tj) are linearly
generated,

⎛

⎜⎝
φ(t0) . . . φ(tn−1)

...
. . .

...
φ(tn−1) . . . φ(t2n−2)

⎞

⎟⎠

⎛

⎜⎝
b0
...

bn−1

⎞

⎟⎠ = −

⎛

⎜⎝
φ(tn)

...
φ(t2n−1)

⎞

⎟⎠ . (4)

This linear system allows us to compute the coefficients bi, i = 0, . . . , n − 1 and
actually compose the polynomial (3) having Ωi, i = 1, . . . , n as its zeroes. Let us
now denote by H

(r)
n the Hankel matrix

H(r)
n =

⎛

⎜⎝
φ(tr) . . . φ(tr+n−1)

...
. . .

...
φ(tr+n−1) . . . φ(tr+2n−2)

⎞

⎟⎠

and by H
(0)
n (z) the Hankel polynomial [3, p. 625]

H(0)
n (z) =

∣∣∣∣∣∣∣∣∣

φ(t0) . . . φ(tn−1) φ(tn)
...

. . .
...

...
φ(tn−1) . . . φ(t2n−2) φ(t2n−1)

1 . . . zn−1 zn

∣∣∣∣∣∣∣∣∣

.

Sparse Interpolation, the FFT Algorithm and FIR Filters 29

Then
n∏

i=1

(z − Ωi) =
H

(0)
n (z)

|H(0)
n |

,

where |H(0)
n | denotes the determinant of H

(0)
n . From the matrix factorisations

H(0)
n = VnDαV T

n ,

H(1)
n = VnDα

⎛

⎜⎝
Ω1

. . .
Ωn

⎞

⎟⎠ V T
n ,

where Vn and Dα respectively denote the Vandermonde matrix

Vn =

⎛

⎜⎜⎜⎝

1 1 . . . 1
Ω1 Ω2 . . . Ωn

...
...

...
Ωn−1

1 Ωn−1
2 . . . Ωn−1

n

⎞

⎟⎟⎟⎠

and the diagonal matrix

Dα =

⎛

⎜⎝
α1

. . .
αn

⎞

⎟⎠ ,

it is easy to see that the polynomial zeroes Ωi can also be obtained as generalized
eigenvalues [4,5]. So the Ωi also satisfy

det
(
H(1)

n − ΩiH
(0)
n

)
= 0, i = 1, . . . , n. (5)

The coefficients αi in the model (1) can be obtained from any set of n interpo-
lation conditions taken from (2),

⎛

⎜⎝
Ωj

1 . . . Ωj
n

...
...

Ωj+n−1
1 . . . Ωj+n−1

n

⎞

⎟⎠

⎛

⎜⎝
α1

...
αn

⎞

⎟⎠ =

⎛

⎜⎝
φ(tj)

...
φ(tj+n−1)

⎞

⎟⎠ , 0 ≤ j ≤ n. (6)

With Ωi computed as above, the remaining equations are linearly dependent.
Whether solving (4) or (5), the Hankel matrices involved tend to become

quite ill-conditioned when n increases [6,7]. So in practice, one may be interested
in a divide and conquer approach where the full system is divided into several
smaller systems, thus keeping the condition number under control. In Sect. 2 we
present such an algorithm, which we connect to the traditional FFT in Sect. 3.
Our goal is not to incorporate sparsity considerations into the FFT algorithm as
in [8], but rather to add the divide and conquer approach of the FFT to sparse

30 M. Briani et al.

interpolation. Related work can be found in [9] where digital filters are used as
a splitting technique and Prony’s method is used to solve for the non-filtered μi.

So here the classical FFT algorithm will appear as a special case, when
restricting the μi to integer values. In its most general form, with μi complex,
our formula is related to a comb filter. The former is the subject of the Sects. 2
and 3, while the latter is discussed in the Sects. 4 and 5.

2 Divide and Conquer Approach

In this section we assume for simplicity that Re(μi) ∈ ZZ and we introduce
ω = exp(2πi/N) with the integer N > 0. In addition we require that N divides
M , thus guaranteeing that M/N ∈ IN. From our samples φ(tj) we now deduce
N linear combinations φk(tj) by the construction [10, pp. 15–17]

φk(tj) :=
1
N

N−1∑

�=0

ωk�φ(tj + �/N), k = 0, . . . , N − 1. (7)

These φk(tj) are linear combinations of already collected samples φ(tj+M�/N)
since tj+�/N can be expressed as (j+M�/N)/M . Figure 1 graphically illustrates
formula (7). Each derived sample contains only some of the original components
of (1), as can be seen from the rearrangement

φk(tj) =
1
N

N−1∑

�=0

ωk�φ(tj+M�/N)

=
1
N

N−1∑

�=0

ωk�
n∑

i=1

αi exp (2πiμi(j/M + �/N))

=
1
N

N−1∑

�=0

ωk�
n∑

i=1

αi exp(2πiμitj)ω�μi

=
1
N

n∑

i=1

αi exp(2πiμitj)

(
N−1∑

�=0

ω�(k+μi)

)
. (8)

We remark that

N−1∑

�=0

ω�(k+μi) = N if mod(k + μi, N) = 0,

N−1∑

�=0

ω�(k+μi) = 0 otherwise. (9)

So actually, every component of the original exponential sum (1) is present in
one and only one linear combination φk. When Re(μi) ∈ ZZ formula (7) allows
a perfect split of (1) over N smaller sized problems. Since each φk has the same

Sparse Interpolation, the FFT Algorithm and FIR Filters 31

Fig. 1. Formula (7) with M = 80 and N = 8.

exponential structure as (1), we can apply (4) or (5) to it and identify the
parameters αi and μi present in φk from the values φk(tj). And this for each
smaller exponential sum φk, k = 0, . . . , N − 1.

But (7) also remains valid for general μi ∈ C as it is merely a linear combi-
nation of the samples taken at equidistant points. In Sect. 4 we see that, what
changes when going from Re(μi) ∈ ZZ to μi ∈ C, is that the factor

N−1∑

�=0

ω�(k+μi)

that accompanies each term in a particular φk(tj) is replaced by expression (13)
of which the behaviour is illustrated in Fig. 2.

Let us now discuss the number of terms in each of the φk and for this we first
consider the detection of n in (1) which we didn’t touch in Sect. 1. In an exact
(noisefree) context, the value of n can simply be detected from the theorems
given in [3, p. 603] and [11, pp. 20–31]:

det H(r)
n �= 0,

det H(r)
ν = 0, ν > n,

It is analyzed in [12] that when ν < n, the value detH
(r)
ν is not guaranteed zero

as for ν > n, or guaranteed nonzero as for ν = n, but can vanish accidentally
when by the choice of M and r one hits a zero of this expression. From these
statements the number of components n can be obtained as the rank of H

(r)
ν for

ν > n. In order to inspect |H(r)
ν | for ν > n, additional samples up to tr+2ν−2

need to be provided, in other words at least the additional sample φ(t2n) in case
r = 0 and ν = n + 1.

32 M. Briani et al.

The smaller exponential interpolation problems built with the values φk(tj)
for each k separately, may contain less exponential terms and hence their Hankel
matrices

H
(r)
n,k =

⎛

⎜⎝
φk(tr) . . . φk(tr+n−1)

...
. . .

...
φk(tr+n−1) . . . φk(tr+2n−2)

⎞

⎟⎠

may have a rank smaller than n. For each k = 0, . . . , N − 1, the rank of H
(r)
ν,k is

less than or equal to n and the sum of these ranks equals exactly n.
We present a small example to illustrate the principle of (7). Let (1) be

defined by the values for αi and μi given in Table 1.

Table 1. Ill-conditioned example of (1).

Re(μi) 5 6 7 8 9 45 −10 −33

Im(μi) 0 0 0 0 0 0 0 0

| αi | 1 1 1 1 1 1 1 1

arg(αi) 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4

With M = 100 and n = 8 the Hankel matrix H
(0)
n has a condition number of

the magnitude 7.7 × 109! In [13] oversampling is used as a means to reduce the
condition number. Here we use (8) to split the exponential analysis problem and
bring the condition number down. We take N = 5. Each of the samples φk(tj)
for k = 0, . . . , 4 involves only a subset of the original components exp(2πiμitj),
as detailed in Table 2.

Table 2. Example from Table 1 split into N = 5 subsets.

k Re(μi) Condition nr

0 5 45 −10 2.2 × 100

1 9 1.0 × 100

2 8 1.0 × 100

3 7 −33 1.4 × 100

4 6 1.0 × 100

The major improvement in the conditioning is not only due to the reduction
in size of the Hankel matrices involved, but also to a much better disposition in
the complex plane of the frequencies μi per subsum.

Sparse Interpolation, the FFT Algorithm and FIR Filters 33

3 The FFT Algorithm

An algorithm related to formula (7) is the FFT algorithm which retrieves the
coefficients αi from a set of samples φ(tj), j = 0, . . . , M − 1 given by

φ(tj) =
M∑

i=1

αi exp(2πiij/M). (10)

The difference between (10) and (1) is that now all integer frequencies appear,
so μi = i, and that therefore the number of terms in the sum equals M , which
is also the number of samples. The coefficients αi in (10) are called Fourier
coefficients. In a way, (7) is a generalization of the FFT to sparse interpolation
or Prony’s algorithm as we now explain in some more detail.

Let M = N1 × · · · × Nm with all Nk ∈ IN. Then the FFT algorithm breaks
down the set of samples (10) into new different sets as follows. We detail the first
divide of φ(tj) into N1 smaller exponential sums, starting from (8). For μi = i
and n = M , we find from (8):

φk(tj) =
1

N1

M∑

i=1

αi exp(2πiij/M)

(
N1−1∑

�=0

ω�(k+i)

)
, k = 0, . . . , N1 − 1

where

1
N1

N1−1∑

�=0

ω�(k+i)

evaluates to either 0 or 1. Preserving only the terms that are not multiplied by
zero leads to

φk(tj) =
M/N1∑

i=1

α1+(i−1)N1+k exp(2πij(1 + (i − 1)N1 + k)/M)

=
M/N1∑

i=1

α1+(i−1)N1+k exp(2πijiN1/M) exp(2πij(1 − N1 + k)/M)

=
M/N1∑

i=1

α1+(i−1)N1+k exp(2πiij/(M/N1)) exp(2πij(1 − N1 + k)/M)

k = 0, . . . , N1 − 1 (11)

The subsequent step in which each smaller sum is divided into N2 new smaller
sums is obvious for k = N1−1, but the other φk first need to be multiplied by the
so-called twiddle factor exp(−2πij(1−N1 +k)/M) in order to bring them in the
correct form (1). For the subdivision of each of the N1 sums into N2 yet smaller
sums, one substitutes in (11) and the expression for the twiddle factors, M by
M/N1 and N1 by N2. In this way one continues until the algorithm has created

34 M. Briani et al.

M sums each containing only one component of the form αi exp(2πiij/M). Thus
at the final stage each single component immediately reveals the coefficient αi.

The case where M = 2m is of particular interest because then (8) and (11)
simplify even further (ω = exp(πi) = −1) into

φk(tj) =
1
2

1∑

�=0

(−1)�kφ(tj + �/2), k = 0, 1.

4 An Analog Version of the Splitting Technique

We now consider a generalization of (7) when it does not make sense to require
that the Re(μi) be integer, as we did in the discrete case. To this end we intro-
duce, in addition to ω = exp(2πi/N),

Ω = ωκ, ||κ|| = 1.

Fig. 2. The functions M4(1, μ)/N (left) and |M4(1, μ)/N | (right) for μ ∈ [0, 5].

The samples φk(tj) derived from the samples φ(tj) are then defined by the
following continuous analogon of (7):

φk(tj) =
1
N

N−1∑

�=0

Ωk�φ(tj + �/N)

=
1
N

N−1∑

�=0

Ωk�
n∑

i=1

αi exp (2πiμij/M + 2πiμi�/N)

=
1
N

N−1∑

�=0

Ωk�
n∑

i=1

αi exp(2πiμij/M)ω�μi

=
1
N

n∑

i=1

αi exp(2πiμij/M)
N−1∑

�=0

ω�(k+μi) κ�k

=
1
N

n∑

i=1

αi exp(2πiμij/M)Mk(κ, μi), k = 0, . . . , N − 1, (12)

Sparse Interpolation, the FFT Algorithm and FIR Filters 35

where Mk(κ, μ), for fixed N , is defined by

Mk(κ, μ) :=
1 − (

ωk+μκk
)N

1 − ωk+μκk
. (13)

In case κ = 1 formula (12) coincides with (8). However, the value of (13) does
not reduce to 0 or N as in (9). By (12) all integer frequencies Re(μi) are either
zeroed or copied to φk, as in (9), while the non-integer frequencies inbetween are
amplified as in Fig. 2, where we illustrate (12) for κ = 1, N = 5 and Re(μi) ∈
[0, 5]. The function Mk(κ, μ) is periodic, and in Fig. 2 the period equals 5. The
effect on the integer frequencies μ = i, i = 0, . . . , 5 is accentuated in the graph
at the bottom in Fig. 2.

The complex number κ = exp(2πiθ) on the unit circle acts as a continuous
shifter of Re(μi), as shown in Fig. 3. Increasing k to k + 1 in (7) can also be
achieved by choosing κ = exp(2πi/N) in (12).

Fig. 3. Influence of the parameter κ while N and ω are kept equal in both Mk graphs.

Table 3. Analog divide and conquer illustration.

Re(μi) 5 6 7.3 8 9.5 45 −10 −33

Im(μi) 0 0 −0.1 0 −0.001 0 0 0

| αi | 1 1 1 1 1 1 1 1

arg(αi) 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4

We repeat the example of Sect. 2 where the data have now been altered so
that Re(μi) �∈ ZZ and Im(μi) �= 0. The new data can be found in Table 3. We
take a look at φ4(tj) given by (7) and (12) but with the μi from Table 3 and
with κ = 1. The components in φ4(tj) are now multiplied by M4(1, μi)/N .
So none of the non-integer frequencies is annihilated. The μi with non-integer

36 M. Briani et al.

Table 4. Analysis of φ4(tj) for μi from Table 3.

Re(μi) 7.3 9.5

Im(μi) −0.1 −0.001

| αiM4(1, μi)/N | 0.1361 0.6456

real parts are weakened in modulus as indicated in Table 4. By repeating the
multiplication with M4(1, μi)/N this effect is strengthened. In order to retrieve
the correct αi, the coefficient of exp(2πiμij/M) in φ4(tj) which can be obtained
using a standard exponential analysis needs to be multiplied by N/M4(κ, μi).
The effect of M4(1, μ) is graphically illustrated in Fig. 4.

Fig. 4. Effect of the function M4(1, μ)/N on the frequencies in Table 3.

5 Connection to FIR Filters

We want to illustrate how formula (12) can be interpreted as the result of a
digital filter. In general, a digital filter takes a set of samples as input, applies
a transform and delivers another set of samples as output. In a finite impulse
response or FIR filter the output samples are a linear combination of the present

Sparse Interpolation, the FFT Algorithm and FIR Filters 37

and previous input samples. If we denote the filter coefficients by β� and the
sampling distance is 1/M , then the filtered signal ψ(tj) equals

ψ(tj) =
L−1∑

�=0

β�φ(tj − �/M).

When the input signal is the unit impulse δ(·) where δ is the Kronecker delta
function, then the output signal is called the impulse response h(tj) given by

h(tj) =
L−1∑

�=0

β�δ(tj − �/M) = βj , tj = j/M.

The transfer function associated with the FIR filter ψ equals

H(z) =
L−1∑

�=0

β�z
−�.

In order to establish a link with formula (12), we define for k fixed and � =
0, . . . , L − 1 = M − 1, (remember that N divides M),

β�k :=

⎧
⎨

⎩

1
N

Ωk(N−(�+1)/(M/N)), (� + 1)/(M/N) ∈ IN

0, otherwise.

When putting the β�k for fixed k in a vector, they are structured in N blocks of
size M/N , each block containing M/N − 1 zeroes and one power of Ωk:

1
N

(
0, . . . , 0, Ω(N−1)k, 0, . . . , 0, Ωk, 0, . . . , 0, Ω0

)

Since formula (12) is based on the current and future samples, we also need to
shift the signal in order to fit the filter description:

φ(tj) := φ(tj + (1 − 1/M)).

Then

ψ(tj) = φk(tj) =
M−1∑

�=0

β�kφ(tj − �/M). (14)

The impulse response of the filter (12), rewritten as (14), is given by

hk(tj) = βjk.

The filter (12) gets a crisper look, meaning that it is flatter in the neighborhood
of the zeroes and exhibits a sharper peak where it attains one, when applied
iteratively. In Fig. 5 we show the result of (12) applied once (as in Fig. 2), twice
and five times, reminding us more and more of a comb filter [14, p. 474].

38 M. Briani et al.

Fig. 5. FIR filter (12) applied once, twice and five times.

6 Conclusion

Sparse interpolation, which is a special case of multi-exponential analysis, can be
combined with a divide and conquer technique which is a direct generalization of
the fast Fourier transform algorithm in case the frequencies belong to a discrete
set. This connection opens up new computational possibilities in the fitting of
sparse models to data.

An analog version of our general divide and conquer method is related to
digital filter theory, more precisely FIR filter theory.

References

1. de Prony, R.: Essai expérimental et analytique sur les lois de la dilatabilité des
fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la
vapeur de l’alkool, à différentes températures. J. Ec. Poly. 1, 24–76 (1795)

2. Hildebrand, F.: Introduction to Numerical Analysis. McGraw Hill, New York
(1956)

3. Henrici, P.: Applied and computational complex analysis I. Wiley, New York (1974)
4. Hua, Y., Sarkar, T.K.: Matrix pencil method for estimating parameters of exponen-

tially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal
Process. 38(5), 814–824 (1990)

5. Golub, G., Milanfar, P., Varah, J.: A stable numerical method for inverting shape
from moments. SIAM J. Sci. Comput. 21, 1222–1243 (1999)

6. Beckermann, B.: The condition number of real Vandermonde, Krylov and positive
definite Hankel matrices. Numer. Math. 85, 553–577 (2000)

7. Beckermann, B., Golub, G., Labahn, G.: On the numerical condition of a general-
ized Hankel eigenvalue problem. Numer. Math. 106(1), 41–68 (2007)

8. Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and
ESPRIT with application to sparse FFT. Front. Appl. Math. Stat. 2, 1–16 (2016).
Article 1

Sparse Interpolation, the FFT Algorithm and FIR Filters 39

9. Heider, S., Kunis, S., Potts, D., Veit, M.: A sparse prony FFT. In: Proceed-
ings of the 10th International Conference on Sampling Theory and Applications
(SAMPTA), pp. 572–575 (2013)

10. Cuyt, A., Lee, W.-s.: Smart sampling and sparse reconstruction. GB Priority
1114255.1, (filed on 18.08.2011, published on 21.02.2013). WIPO Patentscope.
https://patentscope.wipo.int/search/docservicepdf pct/id00000020191665/PDOC
/WO2013024177.pdf

11. Baker Jr., G., Graves-Morris, P.: Padé Approximants. Encyclopedia of Mathemat-
ics and Its Applications, vol. 59, 2nd edn. Cambridge University Press, Cambridge
(1996)

12. Kaltofen, E., Lee, W.-s., Lobo, A.A.: Early termination in Ben-Or/Tiwari sparse
interpolation and a hybrid of Zippel’s algorithm. In: Proceedings of the 2000 Inter-
national Symposium on Symbolic and Algebraic Computation, pp. 192–201. ACM,
New York (2000)

13. Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by
Prony-like methods. Linear Algebra Appl. 439(4), 1024–1039 (2013). 17th Confer-
ence of the International Linear Algebra Society, Braunschweig, Germany, August
2011

14. Schlichthärle, D.: Digital Filters. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-14325-0

https://patentscope.wipo.int/search/docservicepdf_pct/id00000020191665/PDOC/WO2013024177.pdf
https://patentscope.wipo.int/search/docservicepdf_pct/id00000020191665/PDOC/WO2013024177.pdf
http://dx.doi.org/10.1007/978-3-642-14325-0
http://dx.doi.org/10.1007/978-3-642-14325-0

On New Integrals of
the Algaba-Gamero-Garcia System

Alexander D. Bruno1, Victor F. Edneral2,3(B), and Valery G. Romanovski4,5,6

1 Keldysh Institute of Applied Mathematics of RAS,
Miusskaya Sq. 4, Moscow 125047, Russia

abruno@keldysh.ru
2 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,

Leninskie Gory 1(2), Moscow 119991, Russia
edneral@theory.sinp.msu.ru

3 Peoples’ Friendship University of Russia (RUDN University),
6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation

edneral vf@rudn.university
4 Faculty of Electrical Engineering and Computer Science, University of Maribor,

Smetanova 17, SI-2000 Maribor, Slovenia
5 CAMTP – Center for Applied Mathematics and Theoretical Physics,

University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
6 Faculty of Natural Science and Mathematics, University of Maribor,

Koroška cesta 160, SI-2000 Maribor, Slovenia
valery.romanovsky@uni-mb.si

Abstract. We study local integrability of a plane autonomous polyno-
mial system of ODEs depending on five parameters with a degenerate
singular point at the origin. The approach is based on making use of
the Power Geometry Method and the computation of normal forms. We
look for the complete set of necessary conditions on parameters of the
system under which the system is locally integrable near the degenerate
stationary point. We found earlier that the sets of parameters satisfy-
ing these conditions consist of four two-parameter subsets in the full
five-parameter co-space. Now we consider the special subcase of the case
b2 = 2/3 and separate subsubcases when additional first integrals can
exist. Here we have found two such integrals.

Keywords: Ordinary differential equations · Integrability · Resonant
normal form · Power Geometry · Computer algebra

1 Introduction

We consider an autonomous system of ordinary differential equations of the form

dxi/dt
def= ẋi = ϕi(X), i = 1, 2, (1)

where X = (x1, x2) ∈ C2
and ϕi(X) are polynomials.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 40–50, 2017.
DOI: 10.1007/978-3-319-66320-3 4

On New Integrals of the Algaba-Gamero-Garcia System 41

A method of the analysis of integrability of system (1) based on power trans-
formations [5] and computation of normal forms near stationary solutions of
transformed systems (see [3] and Chap. 2 in [4]) was proposed in [6–8].

In a neighborhood of the stationary point X = 0, system (1) can be written
in the form

Ẋ = AX + Φ̃(X), (2)

where Φ̃(X) has no terms linear in X.
Let λ1 and λ2 be the eigenvalues of the matrix A. If at least one of them

is different from zero, then the stationary point X = 0 is called an elementary
stationary point. In this case, system (2) has a normal form (see, e.g. Chap. 2
in [4]). If both eigenvalues vanish, then the stationary point X = 0 is called
a nonelementary stationary point. In this case, there is no normal form for
system (2). But using power transformations, we can split the nonelementary
stationary point X = 0 to a set of elementary stationary points [5]. For each of
these elementary stationary points, we can compute the normal form and write
the conditions of local integrability.

In the present paper, we demonstrate how this approach can be applied to
study the local and global integrability in the case of planar system near a
stationary point X0 = 0 of high degeneracy in the case of the system

ẋ = α y3 + β x3 y + (a0 x5 + a1 x2y2),
ẏ = γ x2 y2 + δ x5 + (b0 x4y + b1 x y3). (3)

This system is a subfamily of the system introduced in [1].
Systems with a nilpotent matrix of the linear part were thoroughly studied

by Lyapunov and others. In system (3), there is no linear part, and the first
approximation is not homogeneous. This is the simplest case of a planar system
without linear part and with Newton’s open polygon (see Chap. 2 in [4]) con-
sisting of a single edge. In generic case, such problems have not been studied.
However, the system with such support was considered in [1], where the authors
set −α = δ = 1 and 3β + 2 γ = 0. Further, the authors of [1] studied the
Hamiltonian subcase of this system under the additional assumption that the
Hamiltonian function is expandable into the product of only square-free factors.

We study the following problem: what are the conditions on parameters
under which system (3) is locally or globally integrable when the system is
non-Hamiltonian.

We discuss the first quasi-homogeneous approximation of system (3) and the
necessary conditions of local integrability. First, we calculate the sets of these
conditions. Then, we prove that these conditions are sufficient for the global
integrability by computing the corresponding first integrals of motion. We do it
first for the case when b2 �= 2/3 in system (6), and after that for a subcase of
the case b2 = 2/3. The search for the necessary conditions of local integrability
by this approach is impossible without computer algebra methods.

42 A.D. Bruno et al.

2 Problem Statement

We start from the study of the case when the first quasi-homogeneous approxi-
mation of (3) considered in [7–9] has the form

˙̃x = α ỹ3 + β x̃3 ỹ, ˙̃y = γ x̃2 ỹ2 + δ x̃5, (4)

where α �= 0 and δ �= 0. Using the linear transformation x = σx̃, y = τ ỹ we can
fix two nonzero parameters in (4) and obtain the system

ẋ = −y3 − b x3 y, ẏ = c x2 y2 + x5. (5)

Each autonomous planar quasi-homogeneous system (4) has an integral, but
it is not necessarily analytic. We are interested to have the analytic integrability
of (4), so we look for conditions on parameters under which system (3) is locally
or globally analytically integrable.

The following result was proven in [7–9]:

Theorem 1. In the case D
def= (3 b + 2 c)2 − 24 �= 0, system (5) is locally inte-

grable if and only if the number N = (3 b − 2 c)/
√

D is rational.

In this paper, we will study a simple particular case c = 1/b, then N = 1 and
D = (3b − 2/b)2. In view of Theorem 1, the first quasi-homogeneous approxima-
tion has an analytic integral if b2 �= 2/3 but it is not a Hamiltonian system.

We will study the integrability problem for the entire system (3) with the
first quasi-homogeneous approximation (5) writing the system in the form

dx/dt = −y3 − b x3y + a0 x5 + a1 x2y2,
dy/dt = (1/b)x2y2 + x5 + b0 x4y + b1 x y3.

(6)

Thus, we consider the system with five arbitrary parameters ai, bi, (i = 0, 1) and
b �= 0.

3 Necessary Conditions of Local Integrability

The rationality of the ratio λ1/λ2 and the condition A (see [3,4,7,8]) are the
necessary and sufficient conditions for local analytical integrability of a planar
system near an elementary stationary point. The condition A is a strong algebraic
condition on coefficients of the normal form. For local integrability of the original
system (1) near a degenerate (nonelementary) stationary point, it is necessary
to have local integrability near each of the elementary stationary points, which
are produced by the blowing up process described below.

The algorithm for calculation of the normal form and the normalizing
transformation together with the corresponding computer program are briefly
described in [11].

On New Integrals of the Algaba-Gamero-Garcia System 43

At the first step, we should rewrite (6) in a non-degenerate form. It can be
done using the power transformation (see Chap. 1, $1.8 in [4])

x = u v2, y = u v3 (7)

and the time rescaling u2v7dt = dτ . As a result, we obtain system (6) in the
form

du/dτ = −3u − [3 b + (2/b)]u2 − 2u3 + (3 a1 − 2 b1)u2v+
(3 a0 − 2 b0)u3v,

dv/dτ = v + [b + (1/b)]u v + u2v + (b1 − a1)u v2 + (b0 − a0)u2v2.
(8)

Under the power transformation (7), the point x = y = 0 blows up into two
straight invariant lines u = 0 and v = 0. Along the line u = 0, system (8) has a
single stationary point u = v = 0. Along the second line v = 0, this system has
four elementary stationary points

u = 0, u = −1
b
, u = −3b

2
, u = ∞. (9)

The necessary condition of local integrability of system (6) near the point
x = y = 0 is local integrability near all stationary points of system (8).

Lemma 1. Near the points u = v = 0 and u = ∞, v = 0, system (8) is locally
integrable.

This lemma was proven in [7–9].
Thus, we must find conditions of local integrability at two other stationary

points (9). Then we will have the conditions of local integrability of system (6)
near the original point.

Let us consider the stationary point u = −1/b, v = 0. First we restrict
ourselves to the case b2 �= 2/3 when the linear part of system (8), after the shift
u = w − 1/b, has non-vanishing eigenvalues. At b2 = 2/3, the matrix of the
linear part of the shifted system in new variables w and v has the Jordan cell
with both zero eigenvalues (17). This case will be studied by means of one more
power transformation below. In papers [3,4], the condition A was formulated
and applied to the considered problem in [6]. For two-dimensional systems, it
is a sufficient condition of their integrability. It is an algebraic condition on
the coefficients of the normal form. In our case, it can be written as a system
of algebraic equations. We have computed the condition A with the program
described in [11]. There are two solutions of the corresponding subset of equations
from the condition A [9] at b �= 0:

a0 = 0, a1 = −b0 b, b1 = 0, b2 �= 2/3 (10)

and
a0 = a1 b, b0 = b1 b, b2 �= 2/3. (11)

44 A.D. Bruno et al.

The consideration of the stationary point u = −3 b/2, v = 0 under condition
(11) gives three more two-parameter (depending on a1 and b) solutions

(1) b1 = −2 a1, a0 = a1b, b0 = b1b, b2 �= 2/3,
(2) b1 = (3/2) a1, a0 = a1b, b0 = b1b, b2 �= 2/3,
(3) b1 = (8/3) a1, a0 = a1b, b0 = b1b, b2 �= 2/3.

(12)

Thus, we have proved.

Theorem 2. Conditions (10) and (12) form the set of necessary conditions
of local integrability of system (8) near all its stationary points and the local
integrability of system (6) at the stationary point x = y = 0.

This theorem was proven in [7–9].

4 Sufficient Conditions of Integrability

The conditions presented in Theorem2 as the necessary and sufficient conditions
for the local integrability of system (6) at the stationary point at the origin can
be considered as good candidates for sufficient conditions of global integrability.
However, it is necessary to prove the sufficiency of these conditions by indepen-
dent methods. It is necessary to do it for each of four conditions (10) and (12)
at each of the stationary points u = −3b/2, v = 0 and u = −1/b, v = 0, for
b2 �= 2/3.

In [12], we found first integrals of system (8) for all cases (10), (12) (mainly
by the Darboux method, see, e.g., [13]).

We found four families of solutions which exhausted all cases mentioned
above:

1. At a0 = 0, a1 = −b0 b, b1 = 0:

I1uv = u2(3 b + 2u)v6,
I1xy = 2x3 + 3 b y2.

(13)

2. At b1 = −2a1, a0 = a1b, b0 = b1b:

I2uv = u2 v6 (3 b + u (2 − 6 a1 b v)),
I2xy = 2x3 − 6 a1 b x2 y + 3 b y2.

(14)

3. At b1 = 3a1/2, a0 = a1b, b0 = b1b:

I3uv = [4 − 4a1 u v + 35/6a1 ×2 F1 (2/3, 1/6; 5/3;−2u/(3b)) ×
u v (3 + 2u/b)1/6]/[u1/3v (3b + 2u)1/6],

I3xy = [a1x
2(−4 + 35/6

2F1

(
2/3, 1/6; 5/3;−2x3/(3 b y2)

) ×
(3 + 2x3/(b y2))1/6) + 4y]/[y4/3(3 b + 2x3/y2)1/6],

(15)

On New Integrals of the Algaba-Gamero-Garcia System 45

4. At b1 = 8a1/3, a0 = a1b, b0 = b1b:

I4u,v = [u (3 + 2 a2
1bu) + 6 a1 b v]/

[3u [u3(6 + a2
1b u) + 6 a2

1b u2v + 9 b v2]1/6] − (16)
8 a1

√−b/35/3B
6+a1

√−6 b u+3 v
√

−6 b/u3(5/6, 5/6),

where Bt(a, b) is the incomplete beta function and 2F1(a, b; c; z) is the hyperge-
ometric function [2].

The first integrals and solutions do not have any singularities for the values
b2 = 2/3, but the approach with the aid of which these solutions were found has
the limitation b2 �= 2/3, so there are possible additional integrals at these values.
Thus, we need to study the case b2 = 2/3 separately.

5 Case b2 = 2/3, Subcase 3a0 − 2b0 = b(3a1 − 2b1)

Let us consider the case b =
√

2/3. At these values b, both stationary points
u = −3b/2, v = 0 and u = −1/b, v = 0 are collapsing, and after the shift
u → w − 1/b, we have instead of (8) the degenerate system

dw
dτ = v(− 9

2

√
3
2 a0 + 9

2 a1 + 3
√

3
2 b0 − 3 b1)+

wv(272 a0 − 3
√

6 a1 − 9 b0 + 2
√

6 b1)+√
6 w2 + w2v(−9

√
3
2 a0 + 3 a1 + 3

√
6 b0 − 2 b1)−

2w3 + w3v(3 a0 − 2 b0),
dv
dτ = −

√
6
6 wv + v2(− 3

2 a0 +
√

3
2 a1 + 3

2 b0 −
√

3
2 b1)+

w2v + wv2((
√

6 a0 − a1 − √
6 b0 + b1)+

+w2v2(−a0 + b0).

(17)

This system has zero eigenvalues at the stationary point w = v = 0, so we should
apply a power transformation once again. In [9], we used the transformation

v → r2w, v̇ → 2ṙrw + r2ẇ, (18)

and obtained the systems with resonances of 19th and 27th orders. We calculated
the corresponding normal form with 4 free parameters till 19th order, but for
finding new solutions we should have more equations, and we need to compute
the 27th order resonance. This resonance exists only if 3a0 − 2b0 �= b(3a1 − 2b1),
b2 = 2/3, and its calculation is very hard. We postpone the investigation of this
subcase.

46 A.D. Bruno et al.

But if b2 = 2/3, equation (17) can be rewritten as

dw
dτ = −3v/(2b)[(3a0 − 2b0) − b(3a1 − 2b1)]+
wv(272 a0 − 3

√
6 a1 − 9 b0 + 2

√
6 b1)+√

6 w2 + w2v(−9
√

3
2 a0 + 3 a1 + 3

√
6 b0 − 2 b1)−

2w3 + w3v(3 a0 − 2 b0),
dv
dτ = −

√
6
6 wv + v2(− 3

2 a0 +
√

3
2 a1 + 3

2 b0 −
√

3
2 b1)+

w2v + wv2((
√

6 a0 − a1 − √
6 b0 + b1)+

+w2v2(−a0 + b0).

(19)

We see that in systems (17) and (19), the coefficient of v in the linear part of the
first equation is zero if 3a0 − 2b0 = b(3a1 − 2b1). So we have the special subcase

3a0 − 2b0 = b(3a1 − 2b1), b2 = 2/3.

For this subcase, we use the transformation

u → w − 1/b, v → rw, v̇ → ṙw + rẇ, (20)

with the time scaling by division of the equations by w/
√

6, so τ̃ = wτ/
√

6.
Then, from (8) we have

dw
dτ̃ = 6w + 3(3a1 − 2b1)rw − 2

√
6w2 − 2

√
6(3a1 − 2b1)rw2+

2(3a1 − 2b1)rw3,
dr
dτ̃ = −7r − (9a1 −

√
3
2b0 − 5b1)r2 + 3

√
6rw+

(7
√

6a1 − 2b0 − 13
√

2
3b1)r2w − (8a1 −

√
3
2b0 − 16

3 b1)r2w2.

(21)

This is a three-parameter system with the resonance of the 13th order at the
stationary point w = 0, r = 0 on the invariant line w = 0. Along this line, there
is also another stationary point. It is possible to prove the integrability of the
system there, and this point does not supply any additional restriction on the
parameters.

We have calculated the normal form for (21) till the 26th order and obtained
two equations for the condition A. They are a13 = 0 and a26 = 0, where a13
and a26 are given in [14]. Each of these equations is homogeneous in parameters
a1, b0, b1 of system (6) of sixth and twelfth orders, for example, a13 is

a13 =
77591416320*a1^6*s6+65110407552*a1^5*b0-343384549344*a1^5*b1*s6-
214574033664*a1^4*b0^2*s6-1084658542848*a1^4*b0*b1+
495240044652*a1^4*b1^2*s6-618953467392*a1^3*b0^3+
59995851552*a1^3*b0^2*b1*s6+1782026653968*a1^3*b0*b1^2-
325584668628*a1^3*b1^3*s6-8037029376*a1^2*b0^4*s6+
642627782784*a1^2*b0^3*b1+230489977896*a1^2*b0^2*b1^2*s6-
1080958485096*a1^2*b0*b1^3+105084809187*a1^2*b1^4*s6-

On New Integrals of the Algaba-Gamero-Garcia System 47

29504936448*a1*b0^5+95627128896*a1*b0^4*b1*s6-
130189857408*a1*b0^3*b1^2-155744503512*a1*b0^2*b1^3*s6+
270984738720*a1*b0*b1^4-15802409798*a1*b1^5*s6+
19669957632*b0^5*b1-20179406208*b0^4*b1^2*s6-
15425489664*b0^3*b1^3+25998124528*b0^2*b1^4*s6-
22559067296*b0*b1^5+882415736*b1^6*s6,

where s6 =
√

6. Both a13 and a26 are equal to zero at solutions (10) and (12).
Homogeneous algebraic equations in three variables can be rewritten as inho-

mogeneous equations in two variables. If we suppose that a1 = 0, we get only one
and zero dimensional solutions in the parametric cospace. Let us postpone the
consideration of these cases and suppose that a1 �= 0. In this case, we substitute
b0 = c0 a1, b1 = c1 a1 and obtain the system of two equations in two variables
a13(c0, c1) = 0, a26(c0, c1) = 0. The resultant of two corresponding polynomi-
als in each of two variables is identically equal to zero. It is interesting that the
condition A of the 19th order from [9,15] is identically equal to a13 up to mul-
tiplication by a constant. So it is enough to solve only equation a13(c0, c1) = 0.
This equation can be factorized as the product of four factors including a6

1:

a13 = 48(c1 − 3/2)×
(c0 − 1/12

√
6c1 + 1/2

√
6)2×

[409790784c30 − 104
√

6c20(−9152256 + 3385633c1)−
208c0(−10917702 + c1(−360720 + 3319927c1))+√

6(−718439040 + c1(2461047528+
c1(−1944898681 + 441207868c1)))]×
a6
1.

(22)

From the first two factors, we get two two-parametric solutions c1 = 3/2 and
c1 = 6 + 2

√
6c0 or

b1 = 3a1/2, a0 = (2b0 + b(3a1 − 2b1))/3, b =
√

2/3,

b1 = 6a1 + 2
√

6b0, a0 = (2b0 + b(3a1 − 2b1))/3, b =
√

2/3.
(23)

For solutions (23), we calculate the normal form of (21) till the 36th order and
obtain that for each solution it is a diagonal linear system.

The use of general roots of the polynomial, which is a cubic factor in (22),
is too complicated. There are some partial one-parametric solutions which yield
vanishing a13 at (10), (12), for instance:

b1 = 5a1/3, b0 = −5a1/(12
√

6), a0 = (2b0 + b(3a1 − 2b1))/3, b =
√

2/3,

b1 = 8a1/3, b0 = 8
√

6a1/9, a0 = (2b0 + b(3a1 − 2b1))/3, b =
√

2/3.

We note that the first solution from given above is a new solution which does
not intersect with (10) and (12), but we do not see here one-parameter solutions.

For each set of parameters (23), one can find the Darboux integrating factor
μ = fa

1 · fd
2 · fc

3 (see e.g. [12,13]). In both cases, system (21) has invariant lines
f1 = r, f2 = w, f3 = 1 − √

2/3w.

48 A.D. Bruno et al.

In the first case (when b1 = 3/2a1)

μ1 = rawdfc
3 ,

where
a = −2, d = −13

6
, c = −4

3
.

In the second case (when b1 = 6a1 + 2
√

6b0)

μ2 = rawdfc
3 ,

where

a =
3a1 + 2

√
6b0

3a1 +
√

6b0
, d =

8a1 + 5
√

6b0

6a1 + 2
√

6b0
, c =

−a1

3a1 +
√

6b0
.

The corresponding first integrals of (21) are

I1rw = w−7/6(1 −
√

2
3w)−1/3[−9a1 + 3

√
6b0 − 42

r − 6(
√

6a1 + 5b0)w+
2(9a1 + 4

√
6b0)w2 − 21/6(9

√
2a1 + 8

√
3b0)w5/3(−√

6 + 2w)1/3×
2F1(−1/2, 1/3; 1/2;

√
2/3/w)],

I2rw = r
3

3a1
3a1+

√
6b0 · w

7/3+
7b0

3
√

6a1+6b0 · (1 − √
2/3w)

−a1
3a1+

√
6b0 ×

{ −6+2
√
6w

6a1+3
√
6b0

+ r[3 + 2w(−√
6 + w)]}.

(24)

In the original variables x, y of Eq. (6), these integrals up to multiplication
by a number have the form:

I1xy = (y/x2)(
√

6 + 2x3/y2)−7/6(x3/y2)2/3 · {42
√

6+
1/(xy3)[−36a1x

6 − 16
√

6b0x
6 + 84x4y24

√
6a1x

3y2−
36b0x

3y2 + 21/3(x3/y2)1/3y2(
√

6 + (x3/y2)2/3×
(2(9a1 + 4

√
6b0)x3 + 3(3

√
6a1 + 8b0)y2)×

2F1(−1/2, 1/3; 1/2; 3y2

3y2+
√
6x3)]},

I2xy = y(
√

2/3 + x3/y2)−1/2+
a1

−6a1−2
√

6b0 (x2/y)− a1
3a1+

√
6b0 ×

{3 + (x2/y2)[
√

6x + 3(2a1 +
√

6b0)y]}.

(25)

In the case b = −√
2/3, we obtain a similar formula.

6 Analytical Properties of the Integrals

We should check analyticity the obtained first integrals of (25) near the origin
x = y = 0.

We note that by Theorem 4.13 of [10], if a system has a Darboux integrating
factor of the form

μ = fβ1
1 fβ2

2 (1 + h.o.t)β

then it has an analytic first integral except of the case when both β1 and β2 are
integer numbers greater than 1. In both cases, the above orders a and b of the
integrating factor μ1,2 are not integer simultaneously in the generic case.

On New Integrals of the Algaba-Gamero-Garcia System 49

7 Conclusions

For a five-parameter non-Hamiltonian planar system (6), we have found for the
case b2 �= 2/3 four sets of two-parametric necessary conditions on parameters
under which the system is locally integrable near the degenerate point x = y = 0.
These sets of conditions are also sufficient for local and global integrability of
system (6). For the subcase b2 = 2/3 and 3a0−2b0 = b(3a1−2b1), we have found
two more first integrals. For our search of additional first integrals, we need to
calculate the condition A at the point with the resonance of the 27th order for
the subcase b2 = 2/3, 3a0 − 2b0 �= b(3a1 − 2b1) [9].

We have used Standard Lisp for the normal forms calculations. The inte-
grating factors and integrals were calculated using the computer algebra system
Mathematica.

Acknowledgements. Victor F. Edneral was supported by the grant NSh-7989.2016.2
of the President of Russian Federation and by the Ministry of Education and Science
of the Russian Federation (Agreement number 02 A03.21.0008), Valery G. Romanovski
was supported by the Slovenian Research Agency (research core funding No. P1-0306).

References

1. Algaba, A., Gamero, E., Garcia, C.: The integrability problem for a class of planar
systems. Nonlinearity 22, 395–420 (2009)

2. Bateman, H., Erdêlyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill
Book Company, New York (1953)

3. Bruno, A.D.: Analytical form of differential equations (I, II). Trudy Moskov. Mat.
Obsc. 25, 119–262 (1971), 26, 199–239 (1972) (Russian). Trans. Moscow Math.
Soc. 25, 131–288 (1971), 26, 199–239 (1972) (English)

4. Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Nauka, Moscow
(1979) (Russian). Springer, Berlin (1989) (English)

5. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Fizmatlit,
Moscow (1998) (Russian). Elsevier Science, Amsterdam (2000) (English)

6. Bruno, A.D., Edneral, V.F.: Algorithmic analysis of local integrability. Dokl. Akad
Nauk 424(3), 299–303 (2009) (Russian). Doklady Mathem. 79(1), 48–52 (2009)
(English)

7. Bruno, A.D., Edneral, V.F.: On integrability of a planar ODE system near a
degenerate stationary point. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2009. LNCS, vol. 5743, pp. 45–53. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04103-7 4

8. Bruno, A.D., Edneral, V.F.: On integrability of a planar system of ODEs near a
degenerate stationary point. J. Math. Sci. 166(3), 326–333 (2010)

9. Bruno, A.D., Edneral, V.F.: On possibility of additional solutions of the degenerate
system near double degeneration at the special value of the parameter. In: Gerdt,
V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol.
8136, pp. 75–87. Springer, Cham (2013). doi:10.1007/978-3-319-02297-0 6

10. Christopher, C., Mardešić, P., Rousseau, C.: Normalizable, integrable, and lineariz-
able saddle points for complex quadratic systems in C2. J. Dyn. Control Syst. 9,
311–363 (2003)

http://dx.doi.org/10.1007/978-3-642-04103-7_4
http://dx.doi.org/10.1007/978-3-642-04103-7_4
http://dx.doi.org/10.1007/978-3-319-02297-0_6

50 A.D. Bruno et al.

11. Edneral, V.F.: An algorithm for construction of normal forms. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134–142.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-75187-8 10

12. Edneral, V., Romanovski, V.G.: On sufficient conditions for integrability of a planar
system of ODEs near a degenerate stationary point. In: Gerdt, V.P., Koepf, W.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 97–105.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15274-0 9

13. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Compu-
tational Algebra Approach. Birkhäuser, Boston (2009)

14. http://theory.sinp.msu.ru/∼edneral/CASC2017/a13-26.txt
15. http://theory.sinp.msu.ru/∼edneral/CASC2017/a19.txt

http://dx.doi.org/10.1007/978-3-540-75187-8_10
http://dx.doi.org/10.1007/978-3-642-15274-0_9
http://theory.sinp.msu.ru/~edneral/CASC2017/a13-26.txt
http://theory.sinp.msu.ru/~edneral/CASC2017/a19.txt

Full Rank Representation of Real Algebraic Sets
and Applications

Changbo Chen1,2, Wenyuan Wu1,2(B), and Yong Feng1,2

1 Chongqing Key Laboratory of Automated Reasoning and Cognition,
Chongqing Institute of Green and Intelligent Technology,

Chinese Academy of Sciences, Chongqing, China
changbo.chen@hotmail.com, {wuwenyuan,yongfeng}@cigit.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. We introduce the notion of the full rank representation of
a real algebraic set, which represents it as the projection of a union of
real algebraic manifolds VR(Fi) of Rm, m ≥ n, such that the rank of the
Jacobian matrix of each Fi at any point of VR(Fi) is the same as the
number of polynomials in Fi.

By introducing an auxiliary variable, we show that a squarefree regu-
lar chain T can be transformed to a new regular chain C having various
nice properties, such as the Jacobian matrix of C attains full rank at any
point of VR(C). Based on a symbolic triangular decomposition approach
and a numerical critical point technique, we present a hybrid algorithm
to compute a full rank representation.

As an application, we show that such a representation allows to better
visualize plane and space curves with singularities. Effectiveness of this
approach is also demonstrated by computing witness points of polyno-
mial systems having rank-deficient Jacobian matrices.

1 Introduction

Numerical algebraic geometry [12,33], which solves problems arising from alge-
braic geometry by numerical computation techniques, has made great progress
in the past decades with the advent of homotopy continuation methods [24,34].
For well-posed problems, such algorithms can often provide good approximated
answers in a shorter time than methods based on symbolic computation. On the
other hand, different from symbolic approaches, the accuracy of computation
with a geometric object may depend greatly on the algebraic representations.

Rank deficiency of the Jacobian matrix is a typical factor affecting the
performance of numerical root finding procedures like Newton iteration. The
iteration process may not converge or converge only linearly to points not meet-
ing the full rank condition. To handle this problem, approaches such as defla-
tion [20,22,23,26,28] have been proposed. In the particular case of real varieties,
algebraic representations such as being implicitly sum of squares of polynomi-
als bring another level of difficulty for numerical computation since a slight

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 51–65, 2017.
DOI: 10.1007/978-3-319-66320-3 5

52 C. Chen et al.

deformation may change the dimension. Such ill-posed problems might be han-
dled to some extent by computing polynomial SOS [29] and real radicals [3,19,25]
based on semidefinite programming.

Different from the above approaches, to handle the singularities of a real
algebraic set V caused by self-intersections, non-radicalness, sum of squares and
others, we lift V to a higher dimensional space such that the variety V becomes
the union of projections of real algebraic manifolds M1, . . . ,Ms. Each Mi is rep-
resented by a set of polynomials attaining full rank at any point of Mi. See
Sect. 2 for illustrative examples. Such a representation allows some operations
like existential quantifier elimination [13], witness points computing [11,30,35],
curve tracing and border curve generating [7] to be accomplished by firstly apply-
ing them to a smooth geometric object with full rank algebraic representation,
which allows efficient algorithms with good complexity [32], and next making
use of the projection operator, which costs nothing if the object is represented
by points.

In this paper, we provide a proof-of-concept algorithm, see Sect. 3, for com-
puting such a full rank representation based on a symbolic triangular decom-
position method [6] and a numeric critical point technique [35]. The full rank
condition is achieved by introducing an auxiliary variable to a squarefree regular
chain. The resulting new object is still a squarefree regular chain but has extra
nice properties, such as the ideal generated by it being the same as its saturated
ideal (importance of such regular chains are discussed in [1]). Such a representa-
tion is partly motivated by the work [5] of decomposing a semi-algebraic system
into regular semi-algebraic systems and the work [31] for computing witness
points via triangular decompositions. Related theoretical work on lifting plane
curves as projections of non singular space curves can be found in [4].

We provide two applications of our methods. The first is to plot singular plane
and space curves [8,14–18], detailed in Sect. 4. The second is to compute witness
points of systems for which classical Lagrange multiplier method fails due to
rank-deficiency of Jacobian matrices, presented in Sect. 5. Effectiveness of this
method is justified by examples in the two applications. In Sect. 6, we summarize
the main results of the paper and discuss some possible future research directions.

2 Full Rank Representation of Real Algebraic Sets

In this section, we introduce the notion of full rank representation of a real
algebraic set and provide several examples to illustrate the notion.

Definition 1. Let F ⊆ R[x1, . . . , xn] and VR(F) be the zero set of F in R
n.

Let m ≥ n and π : Rm → R
n be the projection function which sends a point

(x1, . . . , xn, xn+1, . . . , xm) in R
m to the point (x1, . . . , xn) in R

n. A full rank
representation of VR(F) is a sequence of polynomial sets Fi ⊆ R[x1, . . . , xm],
i = 1, . . . , s, such that

(i) We have VR(F) = π(∪s
i=1VR(Fi)), where VR(Fi) is the zero set of Fi in R

m.
(ii) For any i, we have VR(Fi) �= ∅.

Full Rank Representation of Real Algebraic Sets and Applications 53

(iii) For any i, the Jacobian matrix JFi
with respect to the variables of Fi

attains full rank |Fi|, where |Fi| is the number of elements of Fi, at any
point of VR(Fi).

Geometrically, a full rank representation represents a real algebraic set VR(F)
as the projection of a union of possibly several smooth manifolds. To make it
precise, we recall the regular level set theorem, see pages 113–114 of [21].

Definition 2. Let M and N be smooth manifolds. If F : M → N is a smooth
map, a point p ∈ M is said to be a regular point of F if the induced map between
tangent spaces F∗ : TpM → TF (p)N is surjective; it is called a critical point
otherwise. A point c ∈ N is said to be a regular value of F if every point of
the level set F−1(c) is a regular point, and a critical value otherwise. A level set
F−1(c) is called a regular level set if c is a regular value.

Theorem 1. Every regular level set of a smooth map is a closed embedded sub-
manifold whose codimension is equal to the dimension of the range.

Proposition 1. Let G ⊆ R[x1, . . . , xm] and k be the number of elements in G.
Assume that VR(G) �= ∅ and at any point of VR(G), the Jacobian matrix JG has
full rank k. Then VR(G) is a smooth submanifold of Rm with codimension k.

Proof. Consider the map G : Rm → R
k. Since at any point of VR(G), the Jaco-

bian matrix JG has full rank k, we know that any point of VR(G) is a regular
point of the map G by Definition 2. Thus VR(G) = G−1(0) is a smooth subman-
ifold of Rm with codimension k by Theorem 1.

Example 1. Consider the real algebraic set defined by the polynomial

f := z4 + 2 z2y2 + 2 z2x2 + 2 y4 + 4 y2x2 + 2x4 − 4 z2 − 6 y2 − 6x2 + 5.

Then G := {g1, g2}, where g1 := x2 + y2 − 1, g2 := x2 + y2 + z2 − 2, is a full rank
representation of VR(f). Indeed, we have f = g21 + g22. The Jacobian matrix Jf

has rank 0 at any point of VR(f) whereas JG has rank 2 at any point of VR(G).
An alternative full rank representation of f is as below:
⎧
⎨

⎩

y2 + x2 − 1,
z + 1,
wy − 1

⎫
⎬

⎭
,

⎧
⎨

⎩

y2 + x2 − 1,
z − 1,
wy − 1

⎫
⎬

⎭
,

⎧
⎨

⎩

x − 1,
y,
z + 1

⎫
⎬

⎭
,

⎧
⎨

⎩

x + 1,
y,
z + 1

⎫
⎬

⎭
,

⎧
⎨

⎩

x − 1,
y,
z − 1

⎫
⎬

⎭
,

⎧
⎨

⎩

x + 1,
y,
z − 1

⎫
⎬

⎭
.

Example 2. Consider the Motzkin polynomial M := x4y2+x2y4−3 y2x2+1. It
is known that M can not be written as sum of squares of polynomials in R[x, y].
A full rank representation of it is: {x−1, y−1}, {x−1, y+1}, {x+1, y+1}, {x+
1, y − 1}.
Example 3. Consider the lemniscate of Gerono defined by the polynomial y2 +
x4 − x2. It has a singular point (0, 0). A full rank representation of it is:

{
x4 − x2 + y2,
zy − 1

}
,

⎧⎨
⎩

x − 1,
y,
z − 1

⎫⎬
⎭ ,

⎧⎨
⎩

x,
y,
z − 1

⎫⎬
⎭ ,

⎧⎨
⎩

x + 1,
y,
z − 1

⎫⎬
⎭ .

54 C. Chen et al.

The zero sets of the four polynomial systems are the union of four smooth curves
and three points in R

3, as illustrated in Fig. 2 (one red point is hidden), whose
projection in (x, y) space is exactly the lemniscate in Fig. 1.

Fig. 1. Lemniscate of Gerono. Fig. 2. A lifting of the lemniscate.
(Color figure online)

3 Compute Full Rank Representation

In this section, we show that after introducing an auxiliary variable, a squarefree
regular chain can be transformed to a new one having various nice properties,
based on which we present a hybrid algorithm to compute a full rank represen-
tation of a given real algebraic set.

Throughout this section, let k be a field of characteristic 0 and K be the
algebraic closure of k. We refer to [2,6] for basic notions on regular chains.

Lemma 1 [2]. Let T be a regular chain in k[x1, . . . , xn]. Let init(T) be the
squarefree part of the product of the initials of polynomials in T . Let sat(T) :=
〈T 〉 : init(T)∞. Let W (T) be the quasi-component of T , that is W (T) = V (T) \
V (init(T)). Then V (sat(T)) = W (T) holds. Moreover, sat(T) is an unmixed
ideal with dimension n − |T |.
Definition 3 ([10], page 31). Let V ⊆ Kn be an equidimensional variety of
dimension d. Let F ⊆ k[x1, . . . , xn] be a set of generators of its defining ideal
I(V). V is nonsingular at a point p ∈ V if the rank of the Jacobian matrix of F
at p is n − d. V is nonsingular if it is nonsingular at every point.

Lemma 2. Let F = {f1, . . . , fk} ⊆ C[x1, . . . , xn]. Assume that at any point p of
VC(F), the Jacobian matrix JF has rank k. Then VC(F) is a complex submanifold
of Cn with codimension k.

Proof. It follows directly from the definition of complex submanifold (see Defi-
nition 2.8 in [27]).

Full Rank Representation of Real Algebraic Sets and Applications 55

Theorem 2 (Jacobian Criterion [9], page 402). Let R := k[x1, . . . , xn] be
a polynomial ring. Let I := 〈F 〉 ⊆ k[x1, . . . , xn] be an ideal. Let p be a prime
ideal of R containing I. Let c be the codimension of Ip in Rp. Then:

– The Jacobian matrix JF modulo p has rank ≤ c.
– (R/I)p is a regular local ring iff the matrix J modulo p has rank = c.

Lemma 3. Let F = {f1, . . . , fk} ⊆ C[x1, . . . , xn]. Assume that at any point p
of VC(F), the Jacobian matrix JF has rank k. Then the ideal generated by F is
an equidimensional radical ideal of codimension k.

Proof. By Lemma 2, the ideal 〈F 〉 is an equidimensional ideal of codimension k.
Next we show it is radical (the argument below is similar to those used in the
proof of Lemma 7 in [13]). Let R := C[x1, . . . , xn] and I := 〈F 〉. Let p be an
associated prime ideal of I. Since 〈F 〉 is an equidimensional ideal of codimension
k, the codimension of Ip in Rp is also k no matter whether p is an isolated or
embedded prime. By Theorem 2, (R/I)p is a regular local ring, which implies
that Ip is prime. On the other hand, Ip = (∩Qi)p, where Qi are components of
a minimal primary decomposition of I such that

√
Qi = p. Thus ∩Qi is prime,

which implies that I is radical.

Theorem 3. Let T = {t1, . . . , tk} be a squarefree regular chain of Q[x1 < · · · <
xn]. Let d = n − k. Let init(T) be the squarefree part of the product of the
initials of polynomials in T and sep(T) be the squarefree part of the product
of the separants of polynomials in T . Set h to be the least common multiple of
init(T) and sep(T). We introduce a new variable w and let C := {T, hw − 1}.
Then we have

(i) C is a squarefree regular chain of Q[x1 < · · · < xn < w].
(ii) At any point p of VC(C), the rank of the Jacobian matrix of C is k + 1.
(iii) The ideal 〈C〉 is radical and C = sat(C) holds.
(iv) VC(C) is a nonsingular variety and a complex submanifold of C

n+1 with
dimension d.

(v) Assume VR(C) �= ∅ holds. Then VR(C) is a smooth manifold of dimen-
sion d.

Proof. Note that sep(hw − 1) = h. Since T is a squarefree regular chain and h
is regular modulo sat(T), we deduce (i).

To prove (ii), let f = hw − 1, note that we have

JC :=

⎛
⎜⎜⎜⎜⎜⎝

∂t1
∂x1

· · · ∂t1
∂xd

∂t1
∂xd+1

∂t2
∂x1

· · · ∂t2
∂xd

∂t2
∂xd+1

∂t2
∂xd+2

· · · · · ·
∂tk
∂x1

· · · ∂tk
∂xd

∂tk
∂xd+1

∂tk
∂xd+2

· · · ∂tk
∂xn

∂f
∂x1

· · · ∂f
∂xd

∂f
∂xd+1

∂f
∂xd+2

· · · ∂f
∂xn

∂f
∂w

⎞
⎟⎟⎟⎟⎟⎠

.

Consider the minor being the product of ∂t1
∂xd+1

· · · ∂tk
∂xn

∂f
∂w , which is the poly-

nomial sep(t1) · · · sep(tk)h. Thus the minor is nonzero at any point of VC(C).
Therefore the rank of the Jacobian matrix of C is k + 1 at any point of VC(C).

56 C. Chen et al.

Next we prove (iii). By Lemma 3, the ideal 〈C〉 is radical. Since W (C) ⊆
V (C) ⊆ W (C) holds, we have V (C) = W (C) = V (sat(C)) by Lemma 1. Since
both 〈C〉 and sat(C) are radical, we have 〈C〉 =

√〈C〉 =
√

sat(C) = sat(C).
Thus (iii) is proved.

Property (iv) follows directly from (ii), Definition 3 and Lemma 2 while
Property (v) follows directly from (ii) and Proposition 1.

Remark 1. In Theorem 3, if we replace h by the border polynomial of T , then
the conclusion still holds.

Next we present a hybrid algorithm to compute the full rank representation
of a real variety. The algorithm relies on the following subroutines:

– Triangularize(F) [6]: given a set of polynomials F , it returns a set of squarefree
regular chains T1, . . . , Ts such that V (F) = ∪s

i=1W (Ti).
– Intersect(p, T) [6]: given a polynomial p and a squarefree regular chain T , it

returns a set of squarefee regular chains T1, . . . , Ts such that V (p) ∩ W (T) ⊆
∪s

i=1W (Ti) ⊆ V (p) ∩ W (T).
– WitnessPoints(F) [35]: given a set of polynomials F whose Jacobian matrix

has full rank at any regular point of VR(F), it numerically computes a finite
set W ⊆ VR(F) such that W meets every connected component of VR(F).

Proposition 2. Algorithm 1 terminates and correctly computes a full rank rep-
resentation of VR(F).

Proof. In the first for loop of Algorithm 1, each polynomial h ∈ H is regu-
lar modulo sat(T), which implies that for any C ∈ Intersect(h, T), we have
dim(C) < dim(T). So the algorithm terminates. Its correctness follows directly
from Theorem 3.

Remark 2. In Algorithm 1, if we replace H by the border polynomial set [5]
of T , then the witness points of G (same as that of [G,H]) can be computed
symbolically by combining open cylindrical algebraic decomposition and real root
isolation of zero-dimensional regular chains (see [5]). However, this approach
tends to produce polynomials of larger sizes due to computations of iterated resul-
tants, and thus makes the full rank representation less suitable as the input of
numerical algorithms.

Next we illustrate the main steps of Algorithms 1 by an example.

Example 4. Consider the following polynomial system

F :=
{

x2
2x1 − x3

2x1 + x1
2 + 2x2 x1 + 2x2

2 + 2x3 x4 + x4
2 − x1 − 1,

−x3
2x1 + x2

2x1 + x4
2 + 2x3 x4 + 2x3

2 + 2x2 x1 + x1
2 − x1 + 1

}
.

1. The command Triangularize returns a single squarefree regular chain:

T :=
{

x4
2 + 2x3 x4 + 2x2

2 + 2x2 x1 + x1
2 − 1

x3
2 − x2

2 + 1

Full Rank Representation of Real Algebraic Sets and Applications 57

Algorithm 1. FullRankDecompose(F)
Input: A polynomial system F ⊆ Q[x1 < · · · < xn].
Output: A full rank representation of VR(F) (with witness points information).
begin

introduce a new variable w; set S1 := Triangularize(F), S2 := ∅ and S3 := ∅;
while S1 �= ∅ do

choose and remove a regular chain T from S1;
let H1 (resp. H2) be the set of nonconstant irreducible factors of the
initials (resp. separants) of polynomials in T ;
H := H1 ∪ H2;
S2 := S2 ∪ {[T,H]};
for h ∈ H2 \ H1 do

S1 := S1 ∪ Intersect(h, T);

for [T,H] ∈ S2 do
let h be the product of polynomial in H; set g := hw − 1; G := T ∪ {g};
let S := WitnessPoints(G);
if S �= ∅ then

S3 := S3 ∪ {[G,S]}
return the sequence of elements in S3

2. By computing the initials and separants of polynomials in T , we have H1 = ∅
and H = H2 = {x4 + x3, x3}.

3. Calling Intersect(x4 + x3, T) returns T1 := {x2 + x1, x
2
3 − x2

1 + 1, x4 + x3}
while calling Intersect(x3, T) returns T2 := {x2 − 1, x3, x

2
4 +x2

1 +2x1 +1} and
T3 := {x2 + 1, x3, x

2
4 + x2

1 − 2x1 + 1}.
4. In the next iterations of the while loop, we call successively Intersect(x3, T1),

Intersect(x4, T2) and Intersect(x4, T3) and obtain the following two regular
chains (by removing duplicated ones): T4 := {x1 + 1, x2 − 1, x3, x4} and
T5 := {x1 − 1, x2 + 1, x3, x4}.

5. We have S2 := {[T,H], [T1, {x3}], [T2, {x4}], [T3, {x4}], [T4, ∅], [T5, ∅]} after
the while loop terminates.

6. Consider the first iteration of the second for loop. We have h = (x3+x4)(x3),
g = hw − 1 and G = T ∪ {g}. Calling WitnessPoints(G) returns ∅.

7. When the for loop terminates, we have the final full rank representation, built
on top of the regular chains T1, T4 and T5:

[[[x_2+x_1, x_3^2-x_1^2+1, x_4+x_3, _w*x_3-1],
[[x_1 = -1.356357868, x_2 = 1.356357868, x_3 = .9163550989,

x_4 = -.9163550989, _w = 1.091280008],
[x_1 = 1.356357868, x_2 = -1.356357868, x_3 = -.9163550989,
x_4 = .9163550989, _w = -1.091280008]]],

[[x_1-1, x_2+1, x_3, x_4, _w-1],
[[x_1 = 1.000000000, x_2 = -1.000000000, x_3 = 0., x_4 = 0., _w = 1.000000000]]],

[[x_1+1, x_2-1, x_3, x_4, _w-1],
[[x_1 = -1.000000000, x_2 = 1.000000000, x_3 = 0., x_4 = 0., _w = 1.000000000]]]]

58 C. Chen et al.

4 Applications on Plotting Singular Plane and Space
Curves

In this section, we present applications of the full rank representation on visual-
izing singular plane and space curves.

Algorithm PlotSingularCurve
Input: a plane or space curve defined by F (x1, . . . , xr) = 0 and a box B of
R

r, where r = 2, 3.
Output: the plotting of the curve inside the box B.
Steps:
1. Let S := FullRankDecompose(F).
2. For each (G,W) of S, let W ′ be the union of points of W inside B and

the intersection points of VR(G) with the fibers of the boundaries of B.
3. For each (G,W ′), trace the smooth curve VR(G) by a prediction- projec-

tion method using points in W ′.
4. Plot the projection of the traced points in B.

Paper [18] presents a list of challenges for real algebraic plane curve visual-
ization software. Among them, we choose two irreducible algebraic curves which
softwares like Maple have difficulties to correctly visualize near singular points.

The first example is defined in Challenge 15 of [18].

Ỹ −−
r := −(x2 − y2)2 + axr.

Here we choose a = 7/6, r = 8. A full rank representation of it computed by
Algorithm 1 is as below, where some of the witness points are omitted for brevity.
To have better numerical stability when tracing the curve, we have rescaled the
coefficients of the polynomials, which is a typical technique for dealing with
machine epsilon, and increased the degree of the auxiliary variable w, which
makes w converge faster to infinity when its coefficient approaches to zero.

[[[5.000000*10^6*y^4-1.0000000*10^7*x^2*y^2-5.833333333*10^6*x^8+5.000000*10^6*x^4,
(1000.*x^2*y-1000.*y^3)*_w^3-1],

[[x = -.8361036479, y = -.4137816431, _w = -.1660497798],
[x = .8361036479, y = .4137816431, _w = .1660497798],
[x = .9575968845, y = 0.9351001503e-1, _w = .2274988437],
[x = .4174607241, y = .3761233446, _w = .4327575059],
...]],

[[10000.*x^4-8571.428571, 10.*y, 1.*_w-1],
[[x = -.9621954582, y = 0., _w = 1.000000000],
[x = .9621954582, y = 0., _w = 1.000000000]]],

[[10.*x, 10.*y, 1.*_w-1], [[x = 0., y = 0., _w = 1.000000000]]]]

Figure 3 shows the plotting of the curve by the command plots:- implicitplot
in Maple, where the curve is not completely plotted near the singular point (0, 0).
Figure 4 illustrates a correct visualization by PlotSingularCurve.

A second example is defined in Challenge 17. The polynomial is:

SAk,� := (y − 1 − xk)�(y − xk)� + (y − 1)k�+1yk�.

Full Rank Representation of Real Algebraic Sets and Applications 59

Fig. 3. By plots:- implicitplot in Maple. Fig. 4. By PlotSingularCurve.

Here we choose k = � = 2. A full rank representation of it computed by Algo-
rithm 1 is as below, where some of the witness points are omitted for brevity.
Again, we have rescaled the coefficients of the polynomials and increased the
degree of the auxiliary variable w in the representation.

[[[1.000000*10^6*y^9+1.000000*10^6*x^8-5.000000*10^6*y^8-4.000000*10^6*y*x^6
+1.0000000*10^7*y^7+2.000000*10^6*x^6+6.000000*10^6*y^2*x^4-1.0000000*10^7*y^6
-6.000000*10^6*y*x^4-4.000000*10^6*y^3*x^2+5.000000*10^6*y^5+1.000000*10^6*x^4
+6.000000*10^6*y^2*x^2-2.000000*10^6*y*x^2-2.000000*10^6*y^3+1.000000*10^6*y^2,
(-1.285714286*10^6*y^8+5.714285714*10^6*y^7-1.0000000*10^7*y^6
+5.714285714*10^5*x^6+8.571428571*10^6*y^5-1.714285714*10^6*y*x^4
-3.571428571*10^6*y^4+1.714285714*10^6*y^2*x^2+8.571428571*10^5*x^4
-1.714285714*10^6*y*x^2+8.571428571*10^5*y^2+2.857142857*10^5*x^2
-2.857142857*10^5*y)*_w^3-1],

[[x = -.3683735588, y = .1510941675, _w = -0.6572659595e-1],
[x = .7826945944, y = -.8765869978, _w = -0.4645572677e-2],
...]],

[[10.*x-10., 10.*y-10., 1.*_w-1],
[[x = 1.000000000, y = 1.000000000, _w = 1.000000000]]],

[[10.*x, 10.*y-10., 1.*_w-1], [[x = 0., y = 1.000000000, _w = 1.000000000]]],
[[10.*x, 10.*y, 1.*_w-1], [[x = 0., y = 0., _w = 1.000000000]]],

[[10.*x+10., 10.*y-10., 1.*_w-1],
[[x = -1.000000000, y = 1.000000000, _w = 1.000000000]]]]

Figure 5 shows the plotting of the curve by the command plots:-implicitplot
in Maple, where the curve is not completely plotted near the singular point (0, 0).
The solitary point (0, 1) is also missing. Figure 6 illustrates a correct visualization
by PlotSingularCurve.

Next we present an application on plotting a space curve. The example comes
from [8,16]. The curve is the zero set of the following polynomial system F .

F := {(x− y + z)2 + y2 − 2(x− y + z), ((x− y + z)2 + y2 + z2)2 − 4((x− y + z)2 + y2)}.

A visualization of VR(F) by PlotSingularCurve is shown in Fig. 7.

60 C. Chen et al.

Fig. 5. By plots:- implicitplot in Maple. Fig. 6. By PlotSingularCurve.

Fig. 7. A visualization of VR(F) by PlotSingularCurve with green points being self inter-
section points. (Color figure online)

5 Experimentation

In this section, we report on the experimental results of a preliminary implemen-
tation of our algorithm in Maple. The test examples are created from random
polynomials with some transformation such that the Jacobian matrix is rank
deficient and polynomial SOS methods do not directly apply. We compare with
the RealTriangularize command [5] in the RegularChains library of Maple,
which can also compute real witness points and real dimensions of polynomial
systems with rank-deficient Jacobian matrices.

Full Rank Representation of Real Algebraic Sets and Applications 61

Example 5. Consider a set of polynomials G := {g1, g2, g3, g4, g5}, where g1 :=
−9x4−4x3+10x1+1, g2 := −8+4x3+10x5, g3 := −7x5 x2−5x2−8x5+1, g4 :=
7x4 x3 −10x2

2 +1, g5 := −6x5 x2 −3x4
2 +1. Let M be a 2×2 invertible matrix

M :=

(
1 x1

x2 x1x2 − 1

)

.

Set (f1, f2)T := M(g21 + g22 , g3)
T and F := {f1, f2, g4, g5}. That is

F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−7x5 x2 x1 + 100x5
2 + 80x5 x3 − 8x5 x1 + 81x4

2 + 72x4 x3

− 180x4 x1 + 32x3
2 − 80x3 x1 − 5x2 x1 + 100x1

2

− 160x5 − 18x4 − 72x3 + 21x1 + 65,
−7x5 x2

2x1 + 100x5
2x2 + 80x5 x3 x2 − 8x5 x2 x1 + 81x4

2x2

+ 72x4 x3 x2 − 180x4 x2 x1 + 32x3
2x2 − 80x3 x2 x1

− 5x2
2x1 + 100x2 x1

2 − 153x5 x2 − 18x4 x2 − 72x3 x2

+ 21x2 x1 + 8x5 + 70x2 − 1,
7x4 x3 − 10x2

2 + 1,
−6x5 x2 − 3x4

2 + 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

A full rank representation of VR(F) (after normalizing the coefficients) is
[[[0.4183612727e-1*x1^7-.2285796501*x1^6+.5030640417*x1^5-.3897793981*x1^4-.4559214459*x1^3

+1.000000000*x1^2-.6441493178*x1+.1609043497,
.1529373720*x2-0.5369788910e-1*x1^6+.2699715843*x1^5-.5451541805*x1^4+.2573550740*x1^3

+.7684914458*x1^2-1.000000000*x1+.3914206422,
0.6037479144e-1*x3-0.6628199824e-1*x1^6+.3082918410*x1^5-.5584479577*x1^4+.2069073607*x1^3

+.8725734034*x1^2-1.000000000*x1+.2543012124,
.1556812072*x4+0.7596151567e-1*x1^6-.3533133600*x1^5+.6400011227*x1^4-.2371231577*x1^3

-1.000000000*x1^2+.9730562705*x1-.3087361007,
.1509369786*x5+0.6628199820e-1*x1^6-.3082918408*x1^5+.5584479574*x1^4-.2069073606*x1^3

-.8725734030*x1^2+.9999999997*x1-.3750507950, 1.0*_w-1],
[[x1 = -1.234303648, x2 = -.5486535450, x3 = -.2498708024, x4 = -1.149283697,

x5 = .8999483232, _w = 1.000000000],
[x1 = 2.176655446, x2 = 1.618025934, x3 = 2.917166233, x4 = 1.233098803,
x5 = -.3668665021, _w = 1.000000000],

[x1 = .8850340374, x2 = -.4777062337, x3 = .1805787394, x4 = 1.014225043,
x5 = .7277685022, _w = 1.000000000]]]]

Let F ∗ be the polynomial system in the output. It is a square system consist-
ing of 6 polynomials and defines a zero-dimensional real variety. The smallest
singular values of JF ∗ at the three zeros of VR(F ∗) are respectively:

0.0454144731863706450, 0.0351114360453165381, 0.0176834495031580330.

Example 6. Consider the polynomial system F :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

64x3
4 − 16x1 x3

3 + 50x3
2x1

2 − 3x3
2x5 − 3x4

3 + 42x3
2x1 − 126x3 x2 x1

− 2x2
3 + 41x3

2 − 54x3 x2 − 18x3 x1 + 81x2
2 − 6x3 + 18x2 + 6,

64x3
4x1 − 16x3

3x1
2 + 50x3

2x1
3 − 3x5 x3

2x1

− 3x4
3x1 + 64x3

4 − 16x1 x3
3 + 92x3

2x1
2 − 126x3 x2 x1

2

− 2x2
3x1 + 3x3

2x5 + 3x4
3 + 83x3

2x1 − 180x3 x2 x1

− 18x3 x1
2 + 2x2

3 + 81x2
2x1 + 41x3

2 − 54x3 x2 − 24x3 x1

+ 81x2
2 + 18x2 x1 − 6x3 + 18x2 + 6x1 + 4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Set the variable order to be x1 < x2 < x3 < x4 < x5. A full rank representation
of VR(F) computed by Algorithm 1 consists of 3 components, with dimensions

62 C. Chen et al.

being respectively 2, 1, 1, numbers of polynomials being respectively 4, 5, 5, and
total degrees of polynomials in them being respectively

(3, 2, 5, 5), (1, 1, 1, 3, 1), (1, 1, 1, 3, 1).

The number of computed witness points are respectively 9, 1, 3. The maximum
residuals after substituting the witness points into the three components are
respectively 5.34 × 10−7, 5. × 10−10, 6. × 10−10. The smallest singular values of
the Jacobian matrices evaluated at the witness points are respectively

0.217390601993606e − 1, 0.217565704741585e − 1, 3.32650846923473,
1.32160172547595, 0.184438528285523e − 1, 0.184312217006799e − 1,
.472264278357534, 1.13453515931668, 1.14395048107664, .125000000000000,
0.340696090687040e − 1, 0.340696090687040e − 1, .125000000000000.

Example 7. Consider the following polynomial system

F :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3x4 x1
3 + 100x2

4 − 119x3
2x2

2 − 6x4
2x3 x2 + 36x3

4 + 9x4
4 + 3x4 x1

2

− 40x2
2x1 − 16x3 x2 x1 + 24x3

2x1 + 48x4
2x1 + 71x1

2

− 7x2 x1 − 20x2
2 + 2x3 x2 + 12x3

2 − 6x4
2 − 8x1 − 7x2 + 3,

9x4
4 − 6x4

2x3 x2 + 3x4 x1
3 + 36x3

4 − 119x3
2x2

2 + 100x2
4 + 48x4

2x1

− 3x4 x1
2 + 24x3

2x1 − 16x3 x2 x1 − 40x2
2x1 − 6x4

2 + 12x3
2

+ 2x3 x2 − 20x2
2 − 7x2 x1 + 71x1

2 + 7x2 − 14x1 + 1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Set the variable order as x1 < x2 < x3 < x4. A full rank represen-
tation of VR(F) computed by Algorithm 1 consists of 3 components, with
dimensions being respectively 1, 0, 0, numbers of polynomials being respec-
tively 4, 5, 5, and total degrees of polynomials in them being respectively
(12, 19, 3, 35), (8, 9, 9, 7, 1), (20, 19, 19, 19, 1). The number of computed witness
points are respectively 4, 4, 4. The maximum residuals after substituting the wit-
ness points into the three components are respectively 0.1419818555e − 4, 3.09 ×
10(−8), 0.2263585e − 5. The smallest singular values of the Jacobian matrices
evaluated at the witness points are respectively

1.01136778729643, 1.54387370543690, 1.51495924713963, 1.52421428042282,
0.778955506429449e − 1, .660455232353615, .317809084873550, .105611642184416,
0.000221843023788232e − 3, 0.615594132791045e − 3, 0.165300475257133e − 3,
0.596754059706055e − 3.

Example 8. Consider the following system F :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
3 − 16x3 x1

2 + 100x2
2x1 + 160x4 x2 x1 + 64x3

2x1 + 64x4
2x1 − 14x1

2

+ 20x2 x1 + 112x3 x1 + 16x4 x1 − 4x3 x5 − 3x4 x5 + 50x1 − 8x3 + 1,
x2 x1

3 − 16x3 x2 x1
2 + 100x2

3x1 + 160x4 x2
2x1 + 64x3

2x2 x1

+ 64x4
2x2 x1 − 14x2 x1

2 + 20x2
2x1 + 112x3 x2 x1 + 16x4 x2 x1

− 4x2 x3 x5 − 3x2 x4 x5 − x1
2 + 50x2 x1 + 16x3 x1 − 100x2

2 − 8x3 x2

− 160x4 x2 − 64x3
2 − 64x4

2 + 14x1 − 19x2 − 112x3 − 16x4 − 50,
−6x4 x1 + 2x2 − 7x5 + 1,
−2x6 x1 − 4x4 x3 + 3x5 + 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Full Rank Representation of Real Algebraic Sets and Applications 63

Set the variable order to be x1 < · · · < x6. A full rank representation of VR(F)
computed by Algorithm 1 consists of 6 components, with dimensions being respec-
tively 1, 1, 0, 0, 0, 0, numbers of polynomials being respectively 6, 6, 7, 7, 7, 7, and
total degrees of polynomials in them being respectively

(4, 2, 3, 2, 2, 9), (3, 13, 3, 2, 2, 19), (5, 4, 1, 4, 4, 4, 1),
(1, 1, 1, 1, 1, 1, 1), (5, 4, 1, 4, 4, 4, 1), (4, 3, 1, 3, 2, 3, 1).

The number of computed witness points are respectively 2, 3, 3, 1, 1, 2. The max-
imum residuals after substituting the witness points into the six components are
respectively 0.67701e − 4, 3.8 × 10−8, 1.17 × 10−8, 0, 2.8 × 10−9, 4. × 10−10. The
smallest singular values of the Jacobian matrices of polynomial systems in the
output evaluated at the witness points are respectively

0.243258982897929e − 5, 0.243028372806473e − 5, .129125424091993,
.678574657147939, 0.295982421600441e − 1, 0.735206574833336e − 3,
0.712398160744306e − 3, 0.467778814287120e − 2, 0.571345331300000e − 2,
0.457875824937666e − 4, 0.301415284267564e − 2, 0.306478932392468e − 2.

In all four examples, the smallest singular values are far from machine epsilon,
which indicates that the Jacobian matrices have full (numerical) rank. Table 1
summarizes an experimental comparison with the RealTriangularize command.
The column in-deg and out-deg denote respectively the maximum total degrees
of polynomials appearing in the input and output of FullRankDecompose. The
experimentation was conducted on an Ubuntu Laptop (Intel i7-4700MQ CPU
@ 2.40GHz, 8.0GB memory). The memory usage was restricted to 60% of the
total memory. It is interesting to notice that FullRankDecompose outperforms
RealTriangularize for systems having larger degrees.

Table 1. Summary of experimentation results on four examples.

Sys in-deg out-deg Complex-dim Real-dim RealTriangularize FullRankDecompose

Ex 5 4 7 1 0 > 1800(s) 275(s)

Ex 6 3 5 3 2 1(s) 2(s)

Ex 7 4 35 2 1 > 1800(s) 92(s)

Ex 8 4 19 2 1 > 1800(s) 320(s)

6 Conclusion and Future Work

In this paper, we introduced the notion of the full rank representation of a real
algebraic set to remove various singularities, which often lead to ill-posedness
in numerical computation. A proof-of-concept hybrid algorithm was proposed
to compute it. Such a representation was successfully applied to visualize some
plane and space curves with singularities. Effectiveness of the hybrid algorithm
was also illustrated by computing full rank representations of some nontrivial
examples with rank-deficient Jacobian matrices.

64 C. Chen et al.

Nevertheless, we notice that the current algorithm computes more than nec-
essary (like in a triangular shape) for a full rank representation. How to reduce
the size (including degrees and coefficients) of polynomials in the representation
remains a challenge, which is crucial for the stability of numerical procedures
taking such representation as input. In a future work, we will also investigate the
possibility of combining with other numerical methods, such as sum of squares
based on semidefinite programming.

Acknowledgements. The authors would like to thank Hoon Hong and anonymous
reviewers for their helpful comments. This work is partially supported by the projects
NSFC (11471307, 11671377, 61572024), cstc2015jcyjys40001, and the Key Research
Program of Frontier Sciences of CAS (QYZDB-SSW-SYS026).

References

1. Alvandi, P., Chen, C., Hashemi, A., Maza, M.M.: Regular chains under linear
changes of coordinates and applications. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 30–44. Springer, Cham
(2015). doi:10.1007/978-3-319-24021-3 3

2. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comput. 28(1–2), 105–124 (1999)

3. Brake, D., Hauenstein, J., Liddell, A.: Validating the completeness of the real
solution set of a system of polynomial equations. ISSAC 2016, 143–150 (2016)

4. Caire, L.: Plane curves as projections of non singular space curves. Manuscripta
Math. 67(1), 433–450 (1990)

5. Chen, C., Davenport, J., May, J., Moreno Maza, M., Xia, B., Xiao, R.: Triangular
decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

6. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

7. Chen, C., Wu, W.: A numerical method for computing border curves of bi-
parametric real polynomial systems and applications. In: Gerdt, V.P., Koepf, W.,
Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 156–171.
Springer, Cham (2016). doi:10.1007/978-3-319-45641-6 11

8. Daouda, D., Mourrain, B., Ruatta, O.: On the computation of the topology of a
non-reduced implicit space curve. ISSAC 2008, 47–54 (2008)

9. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry.
Graduate Texts in Mathematics, vol. 150. Springer, Heidelberg (2013). doi:10.1007/
978-1-4612-5350-1

10. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52.
Springer, Heidelberg (1997). doi:10.1007/978-1-4757-3849-0

11. Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl.
Math. 125(1), 105–119 (2012)

12. Hauenstein, J., Sommese, A.: What is numerical algebraic geometry. J. Symb.
Comp. 79, 499–507 (2017). Part 3

13. Hong, H., El Din, M.S.: Variant quantifier elimination. J. Symb. Comp. 47(7),
883–901 (2012)

14. Hong, H.: An efficient method for analyzing the topology of plane real algebraic
curves. Math. Comput. Simul. 42(4), 571–582 (1996)

http://dx.doi.org/10.1007/978-3-319-24021-3_3
http://dx.doi.org/10.1007/978-3-319-45641-6_11
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://dx.doi.org/10.1007/978-1-4757-3849-0

Full Rank Representation of Real Algebraic Sets and Applications 65

15. Imbach, R., Moroz, G., Pouget, M.: Numeric and certified isolation of the singu-
larities of the projection of a smooth space curve. MACIS 2015, 78–92 (2016)

16. Jin, K., Cheng, J.: Isotopic epsilon-meshing of real algebraic space curves. SNC
2014, 118–127 (2014)

17. Jin, K., Cheng, J.-S., Gao, X.-S.: On the topology and visualization of plane alge-
braic curves. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2015. LNCS, vol. 9301, pp. 245–259. Springer, Cham (2015). doi:10.1007/
978-3-319-24021-3 19

18. Labs, O.: A list of challenges for real algebraic plane curve visualization software.
In: Emiris, I.Z., Sottile, F., Theobald, T. (eds.) Nonlinear Computational Geome-
try, pp. 137–164. Springer, New York (2010)

19. Lasserre, J., Laurent, M., Rostalski, P.: Semidefinite characterization and compu-
tation of zero-dimensional real radical ideals. Found. Comput. Math. 8(5), 607–647
(2008)

20. Lecerf, G.: Quadratic newton iteration for systems with multiplicity. Found. Com-
put. Math. 2(3), 247–293 (2002)

21. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol.
218. Springer, Heidelberg (2003). doi:10.1007/978-1-4419-9982-5

22. Leykin, A.: Numerical primary decomposition. ISSAC 2008, 165–172 (2008)
23. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated

singularities of polynomial systems. TCS 359(1), 111–122 (2006)
24. Li, T.Y.: Numerical solution of multivariate polynomial systems by homotopy con-

tinuation methods. Acta Numerica 6, 399–436 (1997)
25. Ma, Y., Wang, C., Zhi, L.: A certificate for semidefinite relaxations in computing

positive-dimensional real radical ideals. J. Symb. Comput. 72, 1–20 (2016)
26. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros

of polynomial systems. ISSAC 2011, 249–256 (2011)
27. Morrow, J.A., Kodaira, K.: Complex Manifolds, vol. 355. American Mathematical

Society, Providence (1971)
28. Ojika, T., Watanabe, S., Mitsui, T.: Deflation algorithm for the multiple roots of

a system of nonlinear equations. J. Math. Anal. Appl. 96(2), 463–479 (1983)
29. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems.

Math. Program. 96(2), 293–320 (2003)
30. Rouillier, F., Roy, M.F., El Din, M.S.: Finding at least one point in each connected

component of a real algebraic set defined by a single equation. J. Complex. 16(4),
716–750 (2000)

31. El Din, M.S., Schost, É.: Properness defects of projections and computation of
at least one point in each connected component of a real algebraic set. Discrete
Comput. Geom. 32(3), 417–430 (2004)

32. El Din, M.S., Spaenlehauer, P.: Critical point computations on smooth varieties:
degree and complexity bounds. In: ISSAC 2016, pp. 183–190 (2016)

33. Sommese, A., Verschelde, J., Wampler, C.: Numerical decomposition of the solution
sets of polynomial systems into irreducible components. SIAM J. Numer. Anal.
38(6), 2022–2046 (2001)

34. Sommese, A., Wampler, C.: The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific Press, Singapore (2005)

35. Wu, W., Reid, G.: Finding points on real solution components and applications to
differential polynomial systems. ISSAC 2013, 339–346 (2013)

http://dx.doi.org/10.1007/978-3-319-24021-3_19
http://dx.doi.org/10.1007/978-3-319-24021-3_19
http://dx.doi.org/10.1007/978-1-4419-9982-5

Certifying Simple Zeros of Over-Determined
Polynomial Systems

Jin-San Cheng(B) and Xiaojie Dou(B)

Key Lab of Mathematics Mechanization, Institute of Systems Science,
Academy of Mathematics and Systems Science, CAS, Beijing, China

{jcheng,xjdou}@amss.ac.cn

Abstract. We construct a real square system related to a given over-
determined real system. We prove that the simple real zeros of the over-
determined system are the simple real zeros of the related square system
and the real zeros of the two systems are one-to-one correspondence with
the constraint that the value of the sum of squares of the polynomials
in the over-determined system at the real zeros is identically zero. After
certifying the simple real zeros of the related square system with the
interval methods, we assert that the certified zero is a local minimum of
the sum of squares of the input polynomials. If the value of the sum of
the squares of the input polynomials at the certified zero is equal to zero,
then it is a zero of the input system. Notice that a complex system with
complex zeros can be transformed into a real system with real zeros.

Keywords: Over-determined polynomial system · Simple real zeros ·
Sum of squares · Minimum point · Interval methods

1 Introduction

Finding zeros of polynomial systems is a fundamental problem in scientific com-
puting. Newton’s method is widely used to solve this problem. For a fixed approx-
imate solution of a system, we can use the α-theory [3,10,31], the interval meth-
ods or the optimization methods [11,16,20,23,28,32] to completely determine
whether it is related to a zero of the system. However, the α-theory or the inter-
val methods focus mainly on a simple zero of a square system, that is, a system
with n equations and n unknowns.

Some special certifications of a rational solution of rational polynomials with
certified sum of squares decompositions are considered [2,13,15,22,26,27,30].

How about singular zeros of a well-constrained polynomial system? Usually,
an over-determined system which contains the same zero as a simple one is
constructed by introducing new equations. The basic idea are the deflation tech-
niques [1,5,6,8,9,24,25,33]. In some references [4,12,17,18,21,29], new variables
are also included. Moreover, some authors verify that a perturbed system pos-
sesses an isolated singular solution within a narrow and computed error bound.
The multiplicity structures of singular zeros of a polynomial system are also
c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 66–76, 2017.
DOI: 10.1007/978-3-319-66320-3 6

Certifying Simple Zeros of Over-Determined Polynomial Systems 67

studied [5,9,21]. Especially in [1,9], singular zeros of the input systems are trans-
formed into simple zeros of the new systems when the coefficients are rational.

For the deflation methods mentioned above, on one hand, to be a zero of the
perturbed systems does not mean being a zero of the input system considering
the difference between the two systems; on the other hand, although the over-
determined systems without introducing new variables have the same zeros as
the input systems, the verification methods, such as the α-theory or the interval
methods, could not be used directly on the over-determined systems in general.

In [7], the authors study computing simple zeros of over-determined polyno-
mial systems with Newton’s method in theory. They also extend the α-theory
from well-constrained systems to over-determined systems. A main result about
Newton’s method given in their paper is Theorem 4 [7], which says that under
the condition of 2α1(g, ζ) < 1, where g is an analytic function g : E → F, with E

and F two real or complex Hilbert spaces, ζ is an attractive fixed point for New-
ton’s method and simultaneously, a strict local minimum for ‖g‖2. However, as
they stated, whether the attracting fixed points for Newton’s method are always
local minima of ‖g‖2, or the zeros of the input system, is unknown.

In this paper, we consider the problem of certifying the simple real zeros
of an over-determined polynomial system. After transforming the input over-
determined system into a square one, we can use both the α-theory and the
interval methods to certify its simple zeros. In this paper we only consider using
the interval methods to certify the simple real zeros of the over-determined
system. We prove that the simple real zeros of the input system are local minima
of the sum of squares of the input polynomials. We also give the condition that
the local minimum is a simple zero of the input system.

Let R be the field of real numbers. Denote R[x] = R[x1, . . . , xn] as the
polynomial ring. Let F = {f1, . . . , fm} ⊂ R[x] be a polynomial system. Let
p = (p1, . . . , pn) ∈ R

n.
The following theorem is our main result of this paper.

Theorem 1. Let Σ = {f1, . . . , fm} ⊂ R[x] (m ≥ n) and f =
m∑

i=1

f2
i . If p ∈ R

n

is a simple real zero of Σ, then, we have:

1. p is a local minimum of f ;
2. p is a simple real zero of Σ if and only if (p, 0) is a simple real zero of the

square system Σr = {J1(f), . . ., Jn(f), f − r}, where Ji(f) = ∂f
∂xi

.

In the above theorem, we get a necessary and sufficient condition to certify
the simple real zeros of the input system Σ by certifying the simple real zeros
of the square system Σr. Therefore, to certify that p is a simple real zero of Σ,
the key point is verifying that f(p) = 0.

However, it is difficult to decide numerically if a point is a zero of a polyno-
mial. Thus we can not use the necessary and sufficient condition to certify the
simple real zeros of Σ by certifying the simple real zeros of Σr.

As an alterative, we refine and certify the simple real zeros of Σ by refining
and certifying a new square system Σ′ = {J1(f), . . ., Jn(f)} with the interval

68 J.-S. Cheng and X. Dou

methods and get a verified inclusion X, which contains a unique simple real
zero x̂ of Σ′. In fact, x̂ is a local minimum of f . On one hand, if f(x̂) = 0, by
Theorem 1, (x̂, 0) is a simple real zero of Σr, and then x̂ is a simple real zero of
Σ. Thus, we certified the input system Σ. On the other hand, if f(x̂) �= 0, we
will have a very small positive value f(x̂). At this point, We assert that Σr has
a unique zero in the verified inclusion X × [0, f(x̂)], which means we certified
the system Σr.

The paper is organized as below. We will introduce some notations and pre-
liminaries in the next section. In Sect. 3, we will give a method to show how to
transform an over-determined system into a square one. The interval verification
method on the obtained square system is considered in Sect. 4.

2 Preliminaries

Let C be the field of complex numbers. Denote C[x] = C[x1, . . . , xn] as the
polynomial ring. Let F = {f1, . . . , fm} ⊂ C[x] be a polynomial system. Let
p = (p1, . . . , pn) ∈ C

n. F(p) = 0 denotes that p is a zero of F(x) = 0.
Let A be a matrix. Denote AT as the transpose of A and rank(A) as the

rank of A. Let Mat(ai,j) denote the matrix whose i-th row j-th column element
is ai,j .

Let Σ = {f1, . . . , fm} ⊂ C[x] be a polynomial system. Denote J(Σ) as the
Jacobian matrix of Σ. That is,

J(Σ) =

⎛

⎜
⎝

∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm

∂x1
. . . ∂fm

∂xn

⎞

⎟
⎠ .

For a polynomial f ∈ C[x], let J(f) denote (∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

), Ji(f) = ∂f
∂xi

and Ji,j(f) = Jj(Ji(f)) = ∂2f
∂xj∂xi

. Denote Σr = {J1(f), . . ., Jn(f), f − r} with

f =
m∑

j=1

f2
j .

We denote the value of a function matrix A at a point p ∈ C
n as A(p). Let

J(F)(p) denote the value of a function matrix J(F) at a point p, similarly for
J(f)(p).

Definition 1. An isolated solution of F(x) = 0 is a point p ∈ C
n which

satisfies:
∃ ε > 0 : {y ∈ C

n : ‖y − p‖ < ε} ∩ F−1(0) = {p}.

Definition 2. We call an isolated solution p ∈ C
n of F(x) = 0 a singular

solution if and only if
rank(J(F)(p)) < n.

Else, we call p a simple solution.

Certifying Simple Zeros of Over-Determined Polynomial Systems 69

Definition 3. A stationary point of a polynomial function f(x) ∈ C[x] is a
point p ∈ C

n, which satisfies:

∂f

∂xi
(p) = 0, ∀ i = 1, . . . , n.

We can find the following lemma in many undergraduate text books about
linear algebra (see Example 7 on page 224 in [19]).

Lemma 1. Let A ∈ R
m×n be a real matrix with m ≥ n and B = AT A. Then

the ranks of A and B are the same, especially for the case that A is of full rank.

In the following, we will consider the real zeros of the systems with real coef-
ficients. It is reasonable since for a system (m equations and n unknowns) with
complex coefficients, we can rewrite the system into a new one with 2 m equa-
tions and 2n unknowns by splitting the unknowns xi = xi,1+ixi,2 and equations
fj(x1, . . . , xn) = gj,1(x1,1, x1,2, . . . , xn,1, xn,2) + i gj,2(x1,1, x1,2, . . . , xn,1, xn,2),
where i2 = −1, fj ∈ C[x], gj,1, gj,2 ∈ R[x], j = 1, . . . ,m, and find out the
complex zeros of the original system by finding out the real zeros of the new
system.

3 Transforming Over-Determined Polynomial Systems
into Square Ones

In this section, we will show how to transform an over-determined polynomial
system into a square one with their zeros having a one-to-one correspondence,
especially for the simple zeros.

By Definition 3, we have the following lemma:

Lemma 2. Given a polynomial system Σ = {f1, . . . , fm} ⊂ R[x] (m ≥ n). Let

f =
m∑

i=1

f2
i and Σ′ = {J1(f),J2(f), . . . ,Jn(f)}. If p ∈ R

n is a real zero of Σ′,

then p is a stationary point of f .

Lemma 3. Let a polynomial system Σ = {f1, . . . , fm} ⊂ R[x] (m ≥ n), f =
m∑

i=1

f2
i and Σ′ = {J1(f),J2(f), . . . ,Jn(f)}. If p ∈ R

n is a real zero of Σ, then

we have:

1. p is a real zero of Σ′;
2. rank(J(Σ)(p)) = rank(J(Σ′)(p).

Proof. It is clear that p is a real zero of Σ′ providing that p is a real zero of Σ,

since Ji(f) = 2
m∑

k=1

fk Ji(fk).

To prove the second part of this lemma, we rewrite Ji(f) as follows.

Ji(f) = 2 〈f1, . . . , fm〉 〈Ji(f1), . . . ,Ji(fm)〉T , (1)

70 J.-S. Cheng and X. Dou

where 〈 · 〉T is the transpose of a vector or a matrix 〈 · 〉. Then

Ji,j(f) = Jj(Ji(f)) = Jj(2
m∑

k=1

fk Ji(fk)) = 2
m∑

k=1

(Jj(fk)Ji(fk) + fk Ji,j(fk))

= 2 〈Jj(f1), . . . ,Jj(fm)〉 〈Ji(f1), . . . ,Ji(fm)〉T + 2
m∑

k=1

fk Ji,j(fk).

(2)
Then the Jacobian matrix of Σ′ is

J(Σ′) =

⎛

⎜
⎝

J1,1(f) . . . J1,n(f)
...

. . .
...

Jn,1(f) . . . Jn,n(f)

⎞

⎟
⎠ = Mat(Ji,j(f)).

We rewrite

Mat(Ji,j(f)) = 2AT A + 2Mat(
m∑

k=1

fk Ji,j(fk)), (3)

where

A =

⎛

⎜
⎝

J1(f1) . . . Jn(f1)
...

. . .
...

J1(fm) . . . Jn(fm)

⎞

⎟
⎠

is an m×n matrix which is exactly the Jacobian matrix of Σ, that is, J(Σ) = A.
Then we have

J(Σ′)(p) = A(p)T A(p). (4)

By Lemma 1, the second part of the lemma is true. This ends the proof. �
Remark 1. In our construction of f and Σ′, the degree of the polynomials may
be doubled. However, it has no influence on our actual computation, if you notice
Eq. (4) in the above proof. In fact, to get J(Σ′)(p), we only need to compute
A(p), which does not increase our actual computing degree.

As a byproduct, thanks to the doubled degree of the polynomials, our final
certifying accuracy is also improved in Lemma 4.

The following is the proof of Theorem 1

Proof. In fact, by fixing the real zero p as a simple zero in Lemma 3, we have
p is a simple real zero of Σ′ = {J1(f), . . . ,Jn(f)}. Since p is a simple zero
of Σ, A(p) is a column full rank matrix. Therefore, it’s easy to verify that
J(Σ′)(p) = A(p)T A(p) is a positive definite matrix. Thus, p is a local minimum
of f and the first part of the theorem is true. Now we consider the second part.

First, it’s easy to verify that p is the real zero of Σ if and only if (p, 0) is the
real zero of Σr. With the same method as proving Lemma 3, we can get

rank(J(Σ)(p)) = rank(J(Σr)(p, 0)) − 1, (5)

which means that J(Σr)(p, 0) is of full rank if and only if J(Σ)(p) is of full rank.
Thus, p is the simple zero of Σ if and only if (p, 0) is the simple zero of Σr. The
second part is true. We have finished the proof. �

Certifying Simple Zeros of Over-Determined Polynomial Systems 71

From Theorem 1, we can know that the simple real zeros of Σ and Σr are
in one to one correspondence with the constraint that the value of the sum
of squares of the polynomials in Σ at the simple real zeros is identically zero.
Thus we can transform an over-determined polynomial system into a square
system Σr.

We will show a simple example to illustrate the theorem below.

Example 1. The simple zero p = (0, 0) of the over-determined system Σ =
{f1, f2, f3} corresponds to a simple zero of a square system Σr = {J1(f),J2(f),
f − r}, where f = f2

1 + f2
2 + f2

3 with

f1 = x2 − 2 y, f2 = y2 − x, f3 = x2 − 2x + y2 − 2 y.

We can verify simply that (p, 0) is a simple zero of Σr.

Though the simple real zeros of Σ and Σr have a one to one correspondence,
it can not be used directly to do certification of the simple zeros of Σ since
we can not certify r = 0 numerically. But we can certify the zeros of Σ′ =
{J1(f),J2(f), . . . ,Jn(f)} as an alternative. By Theorem 1 and Lemma 2, when
the value of f is zero at the certified zero, the certified zero is the very zero of
the system Σ. We will discuss it in next section.

4 Certifying Simple Zeros of Over-Determined Systems

In this section, we consider to certify the over-determined system with the inter-
val methods. We will prove the same local minimum result as [7].

The classical interval verification methods are based on the following
theorem:

Theorem 2 [16,20,28,29]. Let f : Rn → R
n with f = (f1, . . . , fn) ∈ C1, x̃ ∈

R
n, real interval vector X ∈ IR

n with x̃ ∈ X and real matrix R ∈ R
n×n be given.

Let an interval matrix M ∈ IR
n×n be given whose i-th row Mi satisfies

{∇fi(ζ) : ζ ∈ x̃ + X} ⊆ Mi.

Denote by I the n × n identity matrix and assume

−Rf(x̃) + (I − RM)X ⊆ int(X),

where int(X) denotes the interior of X. Then, there is a unique x̂ ∈ x̃ + X with
f(x̂) = 0. Moreover, every matrix M̃ ∈ M is nonsingular. In particular, the
Jacobian J(f)(x̂) is nonsingular.

About interval matrices, there is an important property in the following
theorem.

Theorem 3 [14]. A symmetric interval matrix AI is positive definite if and only
if it is regular and contains at least one positive definite matrix.

72 J.-S. Cheng and X. Dou

Given an over-determined polynomial system Σ = {f1, . . . , fm} ⊂ R[x] with
a simple real zero, we can compute a related square system

Σ′ = { ∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn
} with f =

m∑

j=1

f2
j .

Based on Lemma 3, a simple zero of Σ is a simple zero of Σ′. Thus, we
can compute the approximate simple zero of Σ by computing the approximate
simple zero of Σ′. Using Newton’s method, we can refine these approximate
simple zeros with quadratic convergence to a relative higher accuracy. Then, we
can certify them with the interval method mentioned before and get a verified
inclusion X, which possesses a unique certified simple zero of the system Σ′ by
Theorem 2, denoted as x̂ ∈ X.

However, even though we get a certified zero x̂ of the system Σ′, considering
Lemma 2, we cannot say x̂ is a zero of the input system Σ, because the certified
zero x̂ is just a stationary point of f . Considering Theorem 1 and the difference
between Σ′ and Σr, we have the following theorem.

Theorem 4. Let Σ, Σ′, Σr, f , x̂ and the interval X be given as above. Then,
we have:

1. x̂ is a local minimum of f ;
2. there exists a verified inclusion X × [0, f(x̂)], which possesses a unique sim-

ple zero of the system Σr. Especially, if f(x̂) = 0, the verified inclusion X
possesses a unique simple zero of the input system Σ.

Proof. First, it’s easy to see that computing the value of the matrix J(Σ′) at
the interval X will give a symmetric interval matrix, denoted as J(Σ′)(X). By
Theorem 2, we know that for every matrix M ∈ J(Σ′)(X), M is nonsingu-
lar. Therefore, the interval matrix J(Σ′)(X) is regular. Especially, the matrix
J(Σ′)(x̂), which is the Hessian matrix of f , is of full rank and therefore is pos-
itive definite. Thus, x̂ is a local minimum of f . By Theorem 3, we know that
J(Σ′)(X) is positive definite. Thus, for every point q ∈ X, J(Σ′)(q) is a positive
definite matrix. Considering Theorem 2, it’s trivial that for the verified inclusion
X × [0, f(x̂)], there exists a unique simple zero of the system Σr. If f(x̂) = 0,
by Theorem 1, the verified inclusion X of the system Σ′ is a verified inclusion
of the original system Σ. �
Remark 2. In the above proof, we know that for every point q ∈ X, J(Σ′)(q) is
a positive definite matrix.

By Theorem 2, we know that there is a unique x̂ ∈ X with Σ′(x̂) = 0.
However, we could not know what the exact x̂ is. According to the usual practice,
in actual computation, we will take the midpoint p̂ of the inclusion X as x̂ and
verify whether f(p̂) = 0 or not. Considering the uniqueness of x̂ in X, therefore,
if f(p̂) = 0, we are sure that the verified inclusion X possesses a unique simple
zero of the input system Σ. If f(p̂) �= 0, we can only claim that there is a local
minimum of f in the inclusion X and X× [0, f(p̂)] is a verified inclusion for the
system Σr.

Certifying Simple Zeros of Over-Determined Polynomial Systems 73

Considering the expression of Σ and f and for the midpoint p̂ of X, we have
a trivial result below.

Lemma 4. Denote ε =
m

max
j=1

|fj(p̂)|. Under the conditions of Theorem 4, we

have |f(p̂)| ≤ mε2.

Based on the above idea, we give an algorithm below. In the verification
steps, we will apply the algorithm verifynlss in INTLAB [29], which is based
on Theorem 2, to compute a verified inclusion X for the related square system Σ′.
For simplicity, denote the interval X = [x1, x1], · · · , [xm, xm] and the midpoint
of X as p̂ = [(x1 + x1)/2, . . . , (xm + xm)/2].

Algorithm 1. VSPS: verifying a simple zero of a polynomial system
Input: an over-determined polynomial system Σ := {f1, · · · , fm} ⊂ R[x] and an

approximate simple zero p̃ = (p̃1, · · · , p̃n) ∈ R
n.

Output: a verified inclusion X and a small non-negative number.
1: Compute f and Σ′;
2: Compute p̃′ := Newton(Σ′, p̃);
3: Compute X := verifynlss(Σ′, p̃′) and f(p̂);
4: if f(p̂) = 0, then
5: return (X, 0);
6: else
7: return (X, f(p̂)).
8: end if

The correctness and the termination of the algorithm is obvious by the above
analysis.

We give two examples to illustrate our algorithm.

Example 2. Continue Example 1. Given an approximate zero p̃ = (0.0003528,
0.0008131). Using Newton’s method, we will get a high accuracy approximate
zero

p̃′ = 10−11 · (−0.104224090958505,−0.005858368844383).

Compute f = f2
1 +f2

2 +f2
3 and Σ′ = {J1(f),J2(f)}. After applying the algorithm

verifynlss on Σ′, we have a verified inclusion:

X =
(

[−0.11330049261083, 0.11330049261083]
[−0.08866995073891, 0.08866995073891]

)

· 10−321.

Based on Theorem 2, we know that there exists a unique x̂∈X, s.t. Σ′(x̂)=0.
Let Σr = {J1(f),J2(f), f −r}. By Theorem 1, we can certify the simple zero

of Σ by certifying the simple zero of Σr. Considering the difference between Σ′

and Σr, we check first whether the value of f at some point in the interval X is
zero. According to the usual practice, we consider the midpoint p̂ of X, which
equals (0, 0) and further, f(p̂) is zero. Therefore, we are sure that there exists

74 J.-S. Cheng and X. Dou

a unique x̂ = (x̂, ŷ) ∈ X, s.t. Σr((x̂, 0)) = 0 and then, there exists a unique
simple zero (x̂, ŷ), |x̂|, |ŷ| ≤ 10−321, of the input system Σ in the interval X,
which means we certified the input system Σ.

Example 3. Let Σ = {f1 = x2
1 + 3x1x2 + 3x1x3 − 3x2

3 + 2x2 + 2x3, f2 =
−3x1x2 + x1x3 − 2x2

2 + x2
3 + 3x1 + x2, f3 = 2x2x3 + 3x1 − 3x3 + 2, f4 =

−6x2
2x3 +2x2x

2
3 +6x2

2 +15x2x3 − 6x2
3 − 9x2 − 7x3 +6} be an over-determined

system. Given an approximate zero

p̃ = (−1.29655, 0.47055,−0.91761).

Using Newton’s method, we will get a high accuracy zero

p̃′ = (−1.296687216045438, 0.470344502045004,−0.917812633399457).

Compute

f = f2
1 + f2

2 + f2
3 + f2

4 and Σ′ = {J1(f),J2(f),J3(f)}.

After applying the algorithm verifynlss on Σ′, we have a verified inclusion:

X =

⎛

⎝
[−1.29668721603974, −1.29668721603967]
[0.47034450205107, 0.47034450205114]
[−0.91781263339256, −0.91781263339247]

⎞

⎠ .

Similarly, based on Theorem 2, we know that there exists a unique x̂ ∈ X, s.t.
Σ′(x̂) = 0.

Proceeding as in the above example, we consider the midpoint p̂ of X and
compute f(p̂) = 3.94 ·10−31 �= 0. Thus, by Theorem 4, we get a verified inclusion
X × [0, f(p̂)], which contains a unique simple zero of the system Σr. It means
that X may contain a zero of Σ. Even if X does not contain a zero of Σ, it
contains a local minimum of f , which has a minimum value no larger than f(p̂).

Acknowledgement. The work is partially supported by NSFC Grants 11471327.

References

1. Akogul, T.A., Hauenstein, J.D., Szanto, A.: Certifying solutions to overdetermined
and singular polynomial systems over Q, 12 August 2014. arXiv: 1408.2721v1
[cs.SC]

2. Allamigeon, X., Gaubert, S., Magron, V., Werner, B.: Formal proofs for nonlinear
optimization (2014). arXiv:1404.7282

3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation.
Springer, New York (1998)

4. Dayton, B., Li, T., Zeng, Z.: Multiple zeros of nonlinear systems. Math. Comp. 80,
2143–2168 (2011)

5. Dayton, B., Zeng, Z.: Computing the multiplicity structure in solving polynomial
systems. In: Kauers, M. (ed.) Proceedings of ISSAC 2005, pp. 116–123. ACM, New
York (2005)

http://arxiv.org/abs/1408.2721v1
http://arxiv.org/abs/1404.7282

Certifying Simple Zeros of Over-Determined Polynomial Systems 75

6. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation
of clusters of zeros: case of embedding dimension one. Found. Comput. Math. 7,
1–58 (2007)

7. Dedieu, J.P., Shub, M.: Newton’s method for overdetermined systems of equations.
Math. Comput. 69(231), 1099–1115 (1999)

8. Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comput.
Math. 13(3), 371–403 (2013)

9. Hauenstein, J.D., Mourrain, B., Szanto, A.: Certifying isolated singular points and
their multiplicity structure. In: Proceedings of ISSAC 2015, pp. 213–220 (2015)

10. Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to
polynomial systems. ACM Trans. Math. Softw. 38(4), 28 (2012)

11. Kanzawa, Y., Kashiwagi, M., Oishi, S.: An algorithm for finding all solutions
of parameter-dependent nonlinear equations with guaranteed accuracy. Electron.
Commun. Jpn. (Part III: Fundam. Electron. Sci.) 82(10), 33–39 (1999)

12. Kanzawa, Y., Oishi, S.: Approximate singular solutions of nonlinear equations and
a numerical method of proving their existence. Sūrikaisekikenkyūsho Kōkyūroku
990, 216–223 (1997). Theory and application of numerical calculation in science
and technology, II (Japanese) Kyoto (1996)

13. Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification of global optimality of
approximate factorizations via rationalizing sums-of-squares with floating point
scalars. In: Proceedings of ISSAC 2008, pp. 155–164, New York. ACM (2008)

14. Rohn, J.: Positive definiteness and stability of interval matrices. SIAM J. Matrix
Anal. Appl. 15, 175–184 (1994)

15. Kaltofen, E.L., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial
optimization via sums-of-squares of rational functions with rational coefficients. J.
Symb. Comput. 47(1), 1–15 (2012)

16. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-
schranken. Computing 4, 247–293 (1969)

17. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated
singularities of polynomial systems. Theor. Comput. Sci. 359, 111–122 (2006)

18. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial
systems. SIAM J. Numer. Anal. 52(4), 1623–1640 (2014)

19. Li, S.: Linear Algebra. Higher Education Press (2006). ISBN 978-7-04-019870-6
20. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer.

Anal. 14, 611–615 (1977)
21. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros

of polynomial systems. In: Proceedings ISSAC 2011, pp. 249–256 (2011)
22. Monniaux, D., Corbineau, P.: On the generation of positivstellensatz witnesses

in degenerate cases. In: Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.)
ITP 2011. LNCS, vol. 6898, pp. 249–264. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22863-6 19

23. Nakaya, Y., Oishi, S., Kashiwagi, M., Kanzawa, Y.: Numerical verification of nonex-
istence of solutions for separable nonlinear equations and its application to all solu-
tions algorithm. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 86(5),
45–53 (2003)

24. Ojika, T.: A numerical method for branch points of a system of nonlinear algebraic
equations. Appl. Numer. Math. 4, 419–430 (1988)

25. Ojika, T., Watanabe, S., Mitsui, T.: Deflation algorithm for the multiple roots of
a system of nonlinear equations. J. Math. Anal. Appl. 96, 463–479 (1983)

http://dx.doi.org/10.1007/978-3-642-22863-6_19
http://dx.doi.org/10.1007/978-3-642-22863-6_19

76 J.-S. Cheng and X. Dou

26. Peyrl, H., Parrilo, P.A.: A Macaulay2 package for computing sum of squares decom-
positions of polynomials with rational coefficients. In: Proceeding of SNC 2007, pp.
207–208 (2007)

27. Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational
coefficients. Theor. Comput. Sci. 409(2), 269–281 (2008)

28. Rump, S.M.: Solving algebraic problems with high accuracy. In: Proceedings of the
Symposium on A New Approach to Scientific Computation, San Diego, CA, USA,
pp. 51–120. Academic Press Professional Inc. (1983)

29. Rump, S.M., Graillat, S.: Verified error bounds for multiple roots of systems of
nonlinear equations. Numer. Algorithms 54(3), 359–377 (2010)

30. El Din, M.S., Zhi, L.: Computing rational points in convex semialgebraic sets and
sum of squares decompositions. SIAM J. Optim. 20(6), 2876–2889 (2010)

31. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E.,
Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines : New Directions in
Pure, Applied and Computational Mathematics, pp. 185–196. Springer, Heidelberg
(1986). doi:10.1007/978-1-4612-4984-9 13

32. Yamamura, K., Kawata, H., Tokue, A.: Interval solution of nonlinear equations
using linear programming. BIT Numer. Math. 38(1), 186–199 (1998)

33. Zeng, Z.: Computing multiple roots of inexact polynomials. Math. Comput. 74,
869–903 (2005)

http://dx.doi.org/10.1007/978-1-4612-4984-9_13

Decomposing Polynomial Sets Simultaneously
into Gröbner Bases and Normal Triangular Sets

Rina Dong and Chenqi Mou(B)

LMIB–SKLSDE–School of Mathematics and Systems Science,
Beihang University, Beijing 100191, China
{rina.dong,chenqi.mou}@buaa.edu.cn

Abstract. In this paper we focus on the algorithms and their imple-
mentations for decomposing an arbitrary polynomial set simultaneously
into pairs of lexicographic Gröbner bases and normal triangular sets with
inherent connections in between and associated zero relationship with the
polynomial set. In particular, a method by temporarily changing the vari-
able orderings to handle the failure of the variable ordering assumption
is proposed to ensure splitting needed for characteristic decomposition.
Experimental results of our implementations for (strong) characteristic
decomposition with comparisons with available implementations of tri-
angular decomposition are also reported.

Keywords: Normal triangular set · Gröbner basis · Characteristic
decomposition · Variable ordering

1 Introduction

Polynomial elimination theory, a classical branch of algebra, mainly studies
the variable elimination, ordering, and decomposition of polynomial systems
to reduce them into new ones with specific algebraic structures like being trian-
gularized [28]. There are three main elimination methods based respectively on
resultants, triangular sets [24,28,34], and Gröbner bases [6,9], the last two of
which can be considered as generalizations of the well-known method of Gaussian
elimination for linear systems.

Triangular decomposition is the process to decompose a polynomial set into
finitely many triangular sets, which are ordered triangularized polynomial sets
with respect to (w.r.t.) the variable ordering, such that the zero set of the poly-
nomial set is equal to the union of those of the triangular sets. With continuous
development on the theory, methods, and algorithms for triangular decompo-
sition (see, e.g., [2–4,8,14,18,26,27,34] and references therein), triangular sets
have become a computational tool for polynomial elimination and polynomial

This work was partially supported by the National Natural Science Foundation of
China (NSFC 11401018).

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 77–92, 2017.
DOI: 10.1007/978-3-319-66320-3 7

78 R. Dong and C. Mou

system solving. Currently there are effective algorithms for decomposing poly-
nomial sets of moderate size into triangular sets of various kinds [7,8,16,21,28].
In this paper we are particularly interested in one kind of triangular sets,
namely the normal sets, which are also called normalized triangular sets [18] and
p-chain [14]. Normal sets, the initials of whose polynomials involve only the para-
meters, are convenient for dealing with parametric polynomial systems [7,14].
Algorithms have been proposed to normalize triangular sets or to decompose
arbitrary polynomial sets into normal sets [28,32].

The Gröbner basis is a set of special generators of the ideal generated by a
polynomial set w.r.t. a certain term ordering. Since its introduction by Buch-
berger in his Ph.D. thesis [6], the Gröbner basis has gained extensive study
on the theory, methods, and algorithms [12,13,15,25,33] and become a pow-
erful tool for computational commutative algebra and algebraic geometry with
diverse applications. The elimination method with Gröbner bases is mainly based
on the lexicographic (LEX) term ordering because of the good structures and
rich properties of LEX Gröbner bases, for example their elimination property for
elimination ideals. The structures of LEX Gröbner bases were studied first for
bivariate ideals [17] and then extended to general zero-dimensional polynomial
ideals [10,22]. Furthermore, the relationships between triangular decomposition
of a polynomial set and the LEX Gröbner basis of the ideal generated by the
polynomial set have also been studied. For zero-dimensional polynomial ideals,
the relationship has been studied in [19] and algorithms for computing triangular
decomposition from LEX Gröbner bases have been proposed in [10,19].

The relationship between Ritt characteristic sets and LEX Gröbner bases is
investigated in [30] for polynomial ideals of arbitrary dimension via the so-called
W-characteristic sets which are the smallest triangular sets contained in the LEX
Gröbner bases. In particular, it is shown in [30] that when the W-characteristic
set is abnormal, some certain polynomial in it is pseudo-divisible by another
polynomial. By using such pseudo-divisibility, an algorithm is proposed in [31]
to decompose an arbitrary polynomial set simultaneously into pairs of LEX
Gröbner bases and normal sets (called characteristic decomposition) which have
rich interconnections and provide two kinds of representations for the zeros of the
polynomial set, and the structures and properties of characteristic decomposition
are also studied.

As the follow-up work of [31], this paper focuses on the algorithms for
(strong) characteristic decomposition and their implementations. In particular,
an assumption on the variable ordering for the pseudo-divisibility to occur, the
failure of which is not touched in [31] but happens indeed in our experiments (in
8 out of 35 positive-dimensional test examples, with more details in Table 1), is
further handled by temporarily changing the variable orderings. We also make an
enriched comparison on the performances of our implementation for character-
istic decomposition with some available implementations for triangular decom-
position via normal decomposition. As shown by the experimental results, our
implementation performs comparably well with other similar implementations,
but with richer output.

Decomposing Polynomial Sets 79

After a brief review of triangular sets, Gröbner bases, and (strong) charac-
teristic decomposition in Sect. 2, we present the method to handle the variable
ordering condition and recall the algorithms for (strong) characteristic decom-
position in detail, followed by an illustrative example, in Sect. 3. Then the exper-
imental results with our implementations for (strong) characteristic decomposi-
tion are reported in Sect. 4.

2 Preliminaries

In this section some basic notions and notations used in the sequel are recalled.
The reader is referred to [2,5,9,28] and references therein for more details on the
theories of Gröbner bases and triangular sets and to [30,31] for the definitions
and properties of characteristic decomposition.

2.1 Triangular Set and Triangular Decomposition

Let K be a field and K[x1, . . . , xn] be the ring of polynomials in n ordered
variables x1 < · · · < xn with coefficients in K. For the sake of simplicity, we
denote K[x1, . . . , xn] by K[x].

Let F be a polynomial in K[x]\K. With respect to the variable ordering, the
greatest variable effectively appearing in F is called the leading variable of F and
denoted by lv(F). Let lv(F) = xi. Then F can be written as F = Ixk

i + R with
I ∈ K[x1, . . . , xi−1], R ∈ K[x1, . . . , xi], and deg(R, xi) < k = deg(F, xi). The
polynomial I is called the initial of F , denoted by ini(F). For any polynomial
set F ⊆ K[x], we use ini(F) to denote the set {ini(F) | F ∈ F}.

Definition 1. A finite, nonempty, ordered set T = [T1, . . . , Tr] of polynomials
in K[x] \ K is called a triangular set if lv(T1) < · · · < lv(Tr).

The saturated ideal of a triangular set T = [T1, . . . , Tr] is defined as sat(T) =
〈T 〉 : J∞, where J = ini(T1) · · · ini(Tr). For a triangular set T ⊂ K[x], the
variables in {x1, . . . , xn} \ {lv(T1), . . . , lv(Tr)} are called its parameters. T is
said to be zero-dimensional if it has no parameter, and positive-dimensional
otherwise.

Definition 2. A triangular set T = [T1, . . . , Tr] ⊆ K[x] is said to be a normal
set if ini(T1), . . . , ini(Tr) only involve the parameters of T .

One of the most commonly used triangular sets are the so-called regular sets
or regular chains [16,27]. Any normal set is regular by definition. For any two
polynomial sets F ,G ⊂ K[x], we denote by Z(F/G) the set

Z(F/G) := {x̄ ∈ K̄
n : F (x̄) = 0, G(x̄) �= 0,∀F ∈ F , G ∈ G},

where K̄ is the algebraic closure of K. In particular, Z(F) := Z(F/{}).

Definition 3. Let F ⊂ K[x] be a polynomial set. A finite number of triangular
sets T1, T2, . . . , Tt ⊂ K[x] are called a triangular decomposition of F if Z(F) =⋃t

i=1 Z(Ti/ ini(Ti)).

80 R. Dong and C. Mou

2.2 Gröbner Basis and W-Characteristic Set

A term ordering <t is a total and well ordering on all the terms in K[x]. With
a fixed term ordering <t, the greatest term in a polynomial F ∈ K[x] w.r.t. <t

is called the leading term of F and denoted by lt(F).
In this paper the LEX term ordering <LEX is of our main concern. For two

different terms xα and xβ in K[x] with α = (α1, . . . , αn) and β = (β1, . . . , βn),
we say that xα <LEX xβ if there exists an integer i (1 ≤ i ≤ n) such that
αi < βi and for j = i + 1, . . . , n, αj = βj .

Definition 4. Let I ⊆ K[x] be an ideal. A finite set {G1, . . . , Gs} of poly-
nomials in I is called a Gröbner basis of I w.r.t. the term ordering <t if
〈lt(G1), . . . , lt(Gs)〉 = 〈lt(I)〉, where 〈lt(I)〉 denotes the ideal generated by the
leading terms of all the polynomials in I.

A Gröbner basis G is said to be reduced if for each G ∈ G, its coefficient w.r.t.
lt(G) is 1 and any term in G is not divisible by lt(G′) for any G′ ∈ G \ {G}.
The reduced Gröbner basis of any ideal w.r.t. a fixed term ordering is unique.
In particular, from the reduced LEX Gröbner basis of an ideal, one can extract
the W-characteristic set of this ideal as defined below.

Definition 5 [30, Definition 3.1]. Let G be the reduced LEX Gröbner basis of
the ideal 〈P〉 ⊆ K[x]. Denote G(i) = {G ∈ G | lv(G) = xi}. Then the ordered set
of all the smallest polynomials w.r.t. <LEX in every set G(i) for i = 1, . . . , n is
called the W-characteristic set of 〈P〉.

Obviously, a W-characteristic set is also a triangular set. Basic properties
of W-characteristic sets and the pseudo-divisibility relationship between poly-
nomials in W-characteristic sets are recalled respectively in Proposition 1 and
Theorem 1 below. We would like to mention here that it is the relationship in
Theorem 1 that enables us to adopt an effective splitting strategy in algorithms
for characteristic decomposition of polynomial sets.

Proposition 1 [30, Proposition 3.1]. Let C be the W-characteristic set of 〈P〉 ⊆
K[x]. Then (a) For any P ∈ 〈P〉, prem(P, C) = 0; (b) 〈C〉 ⊆ 〈P〉 ⊆ sat(C); (c)
Z(C/ ini(C)) ⊆ Z(P) ⊆ Z(C).

Theorem 1 [30, Theorem 3.9]. Let C = [C1, . . . , Cr] be the W-characteristic set
of 〈P〉 ⊆ K[x]. If C is not normal, then there exists an integer k (1 ≤ k ≤ r)
such that [C1, . . . , Ck] is normal and [C1, . . . , Ck+1] is not regular.

Assume that the variables x1, . . . , xn are ordered such that the parameters of
C are all smaller than the other variables and let Ik+1 = ini(Ck+1) and l be the
integer such that lv(Ik+1) = lv(Cl).

(a) If Ik+1 is not R-reduced w.r.t. Cl, then

prem(Ik+1, [C1, . . . , Cl]) = 0, prem(Ck+1, [C1, . . . , Ck]) = 0.

Decomposing Polynomial Sets 81

(b) If Ik+1 is R-reduced w.r.t. Cl, then prem(Cl, [C1, . . . , Cl−1, Ik+1]) = 0 and
either res(ini(Ik+1), [C1, . . . , Cl−1]) = 0 or prem(Ck+1, [C1, . . . , Cl−1, Ik+1,
Cl+1, . . . , Ck]) = 0.

For a triangular set T ⊂ K[x] and a variable ordering <, we say that the
variable ordering condition is satisfied for T w.r.t. < if all the parameters of T
are ordered before the leading variables of polynomials in T in <. As a counter-
example [30, Example 3.1(b)] shows, when the variable ordering condition is
not satisfied for a W-characteristic set, Theorem 1 does not hold in general. We
will work on the case when the variable ordering condition is not satisfied in
Algorithm 1 in Sect. 3.

2.3 (Strong) Characteristic Decomposition and Characterizable
Gröbner Basis

Definition 6 [31, Definition 3.1]. A pair (G, C) with G, C ⊆ K[x] is called a
characteristic pair if G is a reduced LEX Gröbner basis, C is the W-characteristic
set of 〈G〉, and C is normal.

For any polynomial set F ⊆ K[x], we want to compute finitely many char-
acteristic pairs (G1, C1), . . . , (Gt, Ct) such that

Z(F) =
t⋃

i=1

Z(Gi) =
t⋃

i=1

Z(Ci/ ini(Ci)) =
t⋃

i=1

Z(sat(Ci)). (1)

A finite number of characteristic pairs (G1, C1), . . . , (Gt, Ct) are said to be a char-
acteristic decomposition of F if the zero relationship (1) holds.

Remark 1. As can be seen from the definition of characteristic decomposition
above, from a characteristic decomposition (G1, C1), . . . , (Gt, Ct) of a polynomial
set F one can easily extract a normal decomposition C1, . . . , Ct of F .

Theorem 2 [31, Theorem 4.1]. For any finite, nonempty polynomial set F ⊆
K[x], its characteristic decomposition can be computed within a finite number of
operations if the variable ordering condition is satisfied.

Definition 7 [31, Definitions 3.7 and 3.8]. A reduced LEX Gröbner basis G is
said to be characterizable if 〈G〉 = sat(C), where C is the W-characteristic set of
G. A characteristic pair (G, C) is said to be strong if sat(C) = 〈G〉.

Clearly the reduced LEX Gröbner basis in a strong characteristic pair is
characterizable. Furthermore, it is proved that the W-characteristic set of a
characterizable Gröbner basis is also normal [31, Proposition 3.9], and thus a
characterizable Gröbner basis and its W-characteristic set form a strong charac-
teristic pair.

A characteristic decomposition is said to be strong if each characteristic pair
within is strong. For any characteristic decomposition Ψ = {(G1, C1), . . . , (Gt, Ct)}

82 R. Dong and C. Mou

of F ⊆ K[x], by [31, Theorem 3.22] one can explicitly transform Ψ into a strong
characteristic decomposition Ψ̄ = {(Ḡ1, C̄1), . . . , (Ḡt, C̄t)} such that the following
zero relationships hold.

Z(F) =
t⋃

i=1

Z(Ḡi) =
t⋃

i=1

Z(C̄i/ ini(C̄i)) =
t⋃

i=1

Z(sat(C̄i)). (2)

3 Algorithm for (Strong) Characteristic Decomposition

In this section we first handle the variable ordering condition in Theorem1 by
temporarily changing the variable orderings, then we incorporate this process
into the proposed algorithm (Algorithm 1 in [31]) for characteristic decom-
position and represent it as Algorithm2 for self-containedness. The algo-
rithm to transform a characteristic decomposition into a strong one by using
[31, Theorem 3.22] is formulated as Algorithm 3. The algorithms for (strong)
characteristic decomposition are able to decompose an arbitrary polynomial set
into simultaneously (characterizable) Gröbner bases and normal triangular sets.

3.1 Algorithm to Handle the Variable Ordering Condition

For a polynomial set P ⊂ K[x] and a variable ordering <, let G be the reduced
LEX Gröbner basis of 〈P〉 w.r.t. < and C be the W-characteristic set extracted
from G. If C is abnormal but the variable ordering condition is not satisfied for C
w.r.t. <, then Theorem 1 does not hold in general, which means that the psuedo-
divisibility between the polynomials in C may not be found and thus the splitting
needed in algorithms for characteristic decomposition is not guaranteed. In order
to make the psuedo-divisibility happen, the following procedure is proposed.

(1) Take a new ordering <′ on the variables x1, . . . , xn.
(2) Compute the reduced LEX Gröbner basis G′ of 〈P〉 w.r.t. <′ and extract

the new W-characteristic set C′ of 〈P〉 from G′.
(3) Check whether the variable ordering condition is satisfied for C′ w.r.t. <′

and C′ is abnormal.

If the variable ordering condition is verified to be satisfied for C′ w.r.t. <′ and C′ is
abnormal, then we stop with G′, C′, and <′, otherwise the above steps (1)–(3) are
repeated until the variable ordering condition is satisfied or the repetition ends
after the finite choices of possible variable orderings. The procedure described
above is formulated into Algorithm1 below.

When the Gröbner basis G = {1}, the W-characteristic C′ = [1]. In this case
the variable ordering condition is assumed to be satisfied for C′, and ({1}, [1], <)
is returned as in Algorithm 1.

Algorithm 1 may return a new variable ordering <′ which is different from
the original one, but we make use of the fact that w.r.t. <′ the abnormal W-
characteristic set C′ of the considered ideal 〈P〉 satisfies the variable ordering

Decomposing Polynomial Sets 83

Algorithm 1. ((G′, C′), <′) := VOC(P, <) (algorithm for ensuring the vari-
able ordering condition)
Input: P, a finite, nonempty set of nonzero polynomials in K[x];

<, a variable ordering.
Output: either (G′, C′), a pair of reduced LEX Gröbner basis of 〈P〉 and its

W-characteristic set, and <′, a variable ordering such that C′ satisfies
the variable ordering condition w.r.t. <′.
or “ERROR”

Compute the reduced LEX Gröbner basis G of 〈P〉 w.r.t <;1

Extract the W-characteristic set C from G w.r.t <;2

if C satisfies the variable ordering condition w.r.t. < then3

return ((G, C), <)4

else5

Ψ :={all possible variable orderings on x1, . . . , xn}\{<};6

for <′∈ Ψ do7

Compute the reduced LEX Gröbner basis G′ of 〈P〉 w.r.t <′;8

Extract the W-characteristic set C′ from G′ w.r.t <′;9

if C′ is abnormal and satisfies variable ordering condition w.r.t. <′ then10

return ((G′, C′), <′)11

return “ERROR”12

condition, and thus Theorem1 ensures psuedo-divisibility between polynomials
in C′ and the splitting needed is also guaranteed. We would like to emphasize
that whether Theorem1 holds or not depends on the variable ordering, but
the resultant polynomial sets after splitting do not. This means that after the
splitting we can continue the computation for characteristic decomposition w.r.t.
the original variable ordering (see the descriptions of Algorithm2 below for more
details), and thus this change of variable orderings is only temporary.

In Line 7 of Algorithm1, we use the heuristic to choose first the new orderings
w.r.t. which C satisfies the variable ordering condition, namely the parameters
of C are ordered smaller than the other variables in such orderings, and then the
other orderings in Ψ . This strategy works well to succeed with the first pick of
such orderings in most cases.

Even with the change of variable orderings in Algorithm1 one may fail to
find a proper abnormal W-characteristic set which satisfies the variable ordering
condition. Below is one simple example for such failure, which is also the only
one we have found out of over one hundred examples in our experiments. The
characterization of this phenomenon and the way to continue the process of
characteristic decomposition when such phenomenon occurs are our future work.

Let P = {x2, (x + y)z + x} ⊆ K[x, y, z] with x < y < z. The reduced LEX
Gröbner basis of 〈P〉 is G = {x2, xz + yz + x} and the W-characteristic set is
C = [x2, (x + y)z + x]. Clearly C does not satisfy the variable ordering condition
w.r.t. x < y < z. But for all the other possible variable orderings, the new
W-characteristic sets are either normal or do not satisfy the variable ordering
condition w.r.t. the new variable ordering.

84 R. Dong and C. Mou

3.2 Algorithms for Characteristic Decomposition

Following the overall splitting strategies sketched in [30], an algorithm for char-
acteristic decomposition is proposed in [31]. For the purpose of clarity, this
algorithm is recalled and represented here, but updated with the addition of
Algorithm 1 for handling the variable ordering condition.

Let F ⊆ K[x] be the input polynomial set and < be a variable ordering. We
use a set Φ to store the polynomial sets which need further computation and a
set Ψ to store the characteristic pairs already computed.

(1) Pick up a polynomial set P ∈ Φ and remove it from Φ. Then we use Algo-
rithm 1, if it succeeds, to find a proper variable ordering <′ w.r.t. which the
W-characteristic set C of the ideal 〈P〉 satisfies the variable ordering condi-
tion, where C is extracted from the reduced LEX Gröbner basis G of 〈P〉.

(2) If C is a normal set, then one knows that no change of variable orderings
occurs, namely in this case <′=<, and a characteristic pair (G, C) is found
and adjoined to Ψ . Splitting for this case follows the strategy proposed in
Algorithm 1 in [31].
Otherwise, the variable ordering condition is satisfied for C w.r.t. <′ (differ-
ent from <) and C is abnormal, and Theorem1 furnishes pseudo-divisibility
between polynomials in C. By using the same splitting strategies in [31], but
w.r.t. the new variable ordering <′, we are able to split P into G ∪{H1}, . . . ,
G ∪{Hs}, where H1, . . . , Hs are polynomials reduced w.r.t. G. Then the new
polynomial sets G ∪ {H1}, . . . ,G ∪ {Hs} are adjoined to Φ.

(3) After the splitting another polynomial set P ′ ∈ Φ is picked up and steps
(1)–(2) are repeated for P ′ w.r.t. the original variable ordering <.

The above steps are repeated until Φ becomes empty, when we will get finitely
many characteristic pairs (G1, C1), . . . , (Gt, Ct) which form a characteristic decom-
position of the input polynomial set F . Following the same proving strategies as
in [31], one can show that after the addition of Algorithm1 for handling the vari-
able ordering condition, the algorithm for characteristic decomposition remains
correct and to terminate. The method of characteristic decomposition, whose
main steps are outlined above, is described formally as Algorithm2.

The complexity of Algorithm 2 for characteristic decomposition is not
touched in this paper partially due to the same underlying difficulty as in the
complexity analyses of algorithms for triangular decomposition: the very com-
plicated behaviors of splittings.

3.3 Algorithm for Strong Characteristic Decomposition

In [31, Theorem 3.22] it is proved that for any characteristic pair (G, C), one can
explicitly construct a strong characteristic pair (Ḡ, C̄), where Ḡ is the reduced
LEX Gröbner basis of sat(C) and C̄ is the W-characteristic set of Ḡ. Further-
more, a characteristic decomposition (G1, C1), . . . , (Gt, Ct) of a polynomial set F
can be transformed into a strong one (Ḡ1, C̄1), . . . , (Ḡt, C̄t) of F , without further

Decomposing Polynomial Sets 85

Algorithm 2. Ψ := CharPair(F , <) (algorithm for characterstic decompo-
sition)
Input: a finite, nonempty set F of nonzero polynomials in K[x] and a variable

ordering <.
Output: either a characteristic decomposition Ψ of F such that

Z(F) = ∪(G,C)∈Ψ Z(G) = ∪(G,C)∈Ψ Z(C/ ini(C)),
or the empty set meaning that Z(F) = ∅,
or the message “The variable ordering condition is not satisfied.”

Ψ := ∅, Φ := {F};1

while Φ �= ∅ do2

Choose P from Φ and set Φ := Φ \ {P};3

if VOC(P, <) = “ERROR” then4

return “The variable ordering condition is not satisfied.”;5

else6

((G, C), <′) := VOC(P, <);7

if G �= {1} then8

if C is normal then9

Ψ := Ψ ∪ {(G, C)};10

Φ := Φ ∪ {G ∪ {ini(C)} | ini(C) is the initial of C w.r.t <′,11

ini(C) �∈ K, C ∈ C};
else12

C := first polynomial in C such that [T ∈ C | lv(T) ≤′ lv(C)],13

ordered as a triangular set, is abnormal;
I := ini(C); y := lv(I);14

C̄ := the polynomial in C whose leading variable is y;15

if I is not reduced w.r.t. C̄ then16

Φ := Φ ∪ {G ∪ {ini(T)} | lv(T) ≤′ y, T ∈ C} ∪ {G ∪ {I}};17

else18

Q := pquo(C̄, I);19

if prem(ini(Q), [T ∈ C | lv(T) <′ y]) = 0 then20

Φ := Φ∪{G∪{ini(T)} | lv(T) <′ y, T ∈ C}∪{G∪{ini(I)}};21

else22

Φ := Φ ∪ {G ∪ {ini(T) | lv(T) <′ y, T ∈ C}}23

∪{G ∪ {prem(Q, [T ∈ C | lv(T) <′ y])}, G ∪ {I}};

return Ψ24

splitting to induce additional branches. An algorithm for strong characteristic
decomposition based on Algorithm 2 and the above observations is formulated
as Algorithm 3.

Remark 2. Algorithm 2 decomposes any polynomial set not only into normal
triangular sets, but also into reduced LEX Gröbner bases at one stroke. These
two different objects which have their own structures and properties (see [31,
Sect. 3.2]) are interconnected. This makes our algorithm distinct from other
existing ones for triangular decomposition like RegSer and Triangularize and so

86 R. Dong and C. Mou

Algorithm 3. Σ := SCharPair(F , <) (algorithm for strong characterstic
decomposition)

Σ := ∅;1

Ψ := CharPair(F , <);2

for (G, C) ∈ Ψ do3

Compute the reduced LEX Gröbner basis Ḡ of sat(C);4

if 〈Ḡ〉 = 〈G〉 then5

Σ := Σ ∪ {(G, C)};6

else7

Extract the W-characteristic set C̄ of from Ḡ;8

Σ := Σ ∪ {(Ḡ, C̄)};9

return Σ10

on. Algorithm 3 which decomposes polynomial sets into characterizable Gröbner
bases and normal triangular sets has richer properties (see [31, Sect. 3.3]). In
particular, sat(T) = 〈T 〉 holds naturally for any zero-dimensional triangular set
T , and thus in this case a characteristic decomposition is also a strong one.

3.4 An Illustrative Example

Let P = {ax2y+3b2 +a, a(b−c)xy+abx+5c} ⊆ K[c, b, a, y, x] with c < b < a <
y < x. Part of computation of strong characteristic decomposition of P with
Algorithm 3 is recorded below to illustrate how Algorithms 1 and 3 in Sect. 3
work.

In a certain step of computation of characteristic decomposition of P, the
polynomial set

P1 ={b(ax2 − 3b2 − a), b(y + 1)(3b2 + a), ab(y + 1)(3b2 + a − 5x),

a(3b2 + a)b(y + 1), ax2y + 3b2 + a, c}

is chosen, with the reduced LEX Gröbner basis of 〈P1〉 computed as

G1 = {c, 3b3y + aby + 3b3 + ab, b3xy + b3x, abx2 − 3b3 − ab, ax2y + 3b2 + a}

and the W-characteristic set as C1 = [c, 3b3y + aby + 3b3 + ab, b3xy + b3x]. One
can check that the W-characteristic set C1 is abnormal, and it does not satisfy
the variable ordering condition w.r.t. c < b < a < y < x.

Then a new variable ordering b < a < c < y < x is chosen, and the reduced
LEX Gröbner basis

G′
1 = {c, 3b3y + aby + 3b3 + ab, b3xy + b3x, abx2 − 3b3 − ab, ax2y + 3b2 + a}

of P1 is computed and its W-characteristic set C′
1 = [c, 3b3y + aby + 3b3 +

ab, b3xy + b3x] is extracted. At this point one can find that C′
1 satisfies the

variable ordering condition and is abnormal w.r.t. the new variable ordering.

Decomposing Polynomial Sets 87

With the set of initials of the polynomials C′
11, C′

12, C′
13 w.r.t. b < a < c <

y < x being {b3y + b3, 3b3 + ab}, the polynomial sets P2 = G′
1 ∪ {3b3 + ab}

and P3 = G′
1 ∪ {b3y + b3} are adjoined to Φ, and the computation continues

w.r.t. the original variable ordering c < b < a < y < x until the characteristic
decomposition of P is computed.

For one characteristic pair (G, C) = ({c, 3b2 + a, bx}, [c, 3b2 + a, bx]) in the
characteristic decomposition, the inequality sat(C) �= 〈G〉 is confirmed. Then the
reduced LEX Gröbner basis Ḡ = {c, 3b2 +a, x} of sat(C) is computed and its W-
characteristic set C̄′ = [c, 3b2 + a, x] is extracted, forming a strong characteristic
pair (Ḡ, C̄) in the strong characteristic decomposition of P.

4 Implementation and Experimental Results

We have implemented Algorithms 1, 2, and 3 in Maple 17 and made exper-
iments with the implementation on an Intel(R) Core(TM) i5-4210U CPU at
2.39 GHz with 8.00 GB RAM under Windows 8. The implementation is based
on the functions for Gröbner basis computation available in the FGb package
[11] shipped with Maple 17 and Maple’s built-in packages.

In our implementation polynomial factorization is used heuristically to
enhance the performance of algorithms for triangular decomposition. In our
algorithm, the splitting of a polynomial set P into G ∪ {H1}, . . . ,G ∪ {Hs}
is an essential step. Instead of H1, . . . , Hs, we can use any set of polynomi-
als L1, . . . , Lt which are irreducible factors w.r.t. G such that Z(H1 · · · Hs) =
Z(L1 · · · Lt). In order to further simplify the computation, we can also use
L1

′ = nform(L1,G), . . ., Lt
′ = nform(Lt,G) which are all reduced w.r.t. G

instead of L1, . . . , Lt. The polynomials L1
′, . . . , L′

t are usually smaller in size com-
pared with H1, . . . , Hs. Our experiments show that this simple strategy is rather
effective.

In the zero-dimensional case where the W-characteristic sets do not involve
any parameters, the variable ordering condition, which is required in Theorem1
to ensure the pseudo-divisibility relationship, holds naturally. However, the con-
dition does not necessarily hold in general in the positive-dimensional case.
Among 35 test examples in our experiments in which the ideals are positive-
dimensional, the variable ordering condition is not satisfied for 8 of them (marked
with † in Table 1). We would like to remark that Algorithm1 succeeds for all
of these 8 test examples with only one time of changing the variable orderings
whenever the failure of satisfaction of the variable ordering condition happens.

The experimental results with our implementation of Algorithm2 on 50
examples are reported in Table 1. Among these 50 examples, Ex 1–13 are from
the Epsilon package, Ex 14–16 from [28], Ex 17–18 from [1], Ex 19–33 from [23],
Ex 34–36 from [7], Ex 37–47 from the FGb library, and Ex 48–50 can be found
with this link1.

The computational performances of our implementation are compared with
existing implementations of methods for triangular decomposition by means of
1 http://www.lifl.fr/∼lemaire/BCLM09/BCLM09-systems.txt.

http://www.lifl.fr/~lemaire/BCLM09/BCLM09-systems.txt

88 R. Dong and C. Mou

normal decomposition. A normal decomposition is extracted out of the computed
characteristic decomposition for our implementation and for other implementa-
tions it is computed by normalization of regular decomposition: the function
Triangularize (in the RegularChains package [20] shipped in Maple 17) and the
function RegSer (in the Epsilon package [29] for Maple) are used for regular
decomposition, and the function normat (in Epsilon) is used for normalization of
the computed regular sets.

Remark 3. In spite of the comparison made by computing normal decomposition
with different implementations, we would like to emphasize that the normal
sets are only part of the computation output of Algorithm2, for reduced LEX
Gröbner bases and normal W-characteristic sets are computed simultaneously
and they enjoy remarkable interconnecting properties.

In Table 1, “Label” indicates the label in the above-cited references and
“Var,” “Eqs,” and “Dim” denote the number of variables, the number of equa-
tions, and the dimension of the ideal in the examples, respectively. “Total” and
“GB” under CharPair record respectively the total time (followed by the num-
ber of pairs in parenthesis) for normal decomposition using Algorithm2 and the
time for computing all the reduced LEX Gröbner bases; “Total” and “Regular”
under “RegSer” and “Triangularize” record the total time for normal decom-
position and the time for regular decomposition (followed by the numbers of
components in parenthesis) respectively. The marks “lost” and “>4000” in the
columns mean that Maple reports “lost kernel connections” (which persists
with several repeated attempts) and that the computation does not terminate
within 4000 seconds respectively.

The experimental results in Table 1 also show that for most of the examples in
which the ideals are zero-dimensional, the number of normal components in the
characteristic decomposition computed by Algorithm 2 is smaller than that in the
normal decomposition computed by RegSer or Triangularize with normalization.
This happens because the initials of polynomials in the normal W-characteristic
sets of zero-dimensional ideals do not involve any variables or parameters such
that no initials cause any splitting and no more polynomial set is adjoined into
Φ in Algorithm 2.

It is reasonable to claim that the built-in implementation in Maple for
algorithms to change the term orderings, especially that for the Gröbner walk in
the positive-dimensional case, is the bottleneck of our current implementation in
terms of efficiency. With our comparisons between implementations of algorithms
for the Gröbner walk in Mathematica and Maple, we predict that the total
time for normal decomposition with our implementation can be greatly reduced
for the positive-dimensional case if the step of Gröbner walk is performed with
the corresponding built-in command in Mathematica. For this reason, we are
working on an interface to call the Gröbner walk function in Mathematica from
Maple. According to our preliminary experiments, this may bring a speedup of
about 10 times for conversion of Gröbner bases in the positive-dimensional case
(the total time decreases from 27.2 s to 2.2 s for Ex 32, for example).

Decomposing Polynomial Sets 89

Table 1. Timings for characteristic decomposition (in second)

Algorithm2 RegSer Triangularize

Ex Label Var Eqs Dim Total GB Total Regular Total Regular

1 E1 10 10 1 0.844(5) 0.736 0.234(2) 0.187(2) 2.187(13) 2.109(13)

2 E5 15 17 4 2.187(7) 2.091 0.453(4) 0.328(4) 6.156(7) 6.078(7)

3 E14 4 3 1 0.656(10) 0.452 1.875(7) 0.125(1) 2.547(7) 0.156(1)

4 E20 4 4 1 0.094(2) 0.079 — 0.016(1) — 0.031(1)

5 E22 3 3 0 0.046(1) 0.046 0.312(2) 0.250(2) 0.140(3) 0.109(3)

6 E23† 9 5 4 0.469(11) 0.249 — 0.094(8) — 0.094(1)

7 E28 4 4 0 0.015(1) 0.015 0.109(1) 0.093(1) 0.141(3) 0.125(3)

8 E32† 8 6 2 0.234(6) 0.157 0.110(3) 0.110(3) — 0.110(1)

9 E33† 13 11 2 20.313(8) 18.924 0.765(5) 0.656(5) 1.687(1) 1.594(1)

10 E35† 8 8 3 0.406(11) 0.234 0.626(5) 0.532(5) 0.781(7) 0.688(7)

11 E40 6 6 0 0.344(1) 0.344 >4000 >4000 >4000 >4000

12 E47 5 4 1 1.234(8) 1.076 47.766(18) 1.297(12) 1.953(8) 0.547(2)

13 E48 7 3 4 0.453(2) 0.407 — 0.031(2) — 0.015(1)

14 N4 5 3 3 0.094(6) 0.094 — 0.016(4) — 0.047(3)

15 N6 4 3 2 0.063(2) 0.047 0.016(3) 0.016(3) — 0.031(3)

16 N20 4 3 2 0.078(3) 0.047 — <0.01(3) — 0.016(2)

17 F1 3 2 1 0.047(3) 0.047 — 0.016(3) — 0.062(2)

18 F2 4 3 1 1.531(13) 1.157 — 0.015(1) 0.281(6) 0.188(5)

19 S1 4 3 2 0.047(3) 0.047 — 0.015(3) — 0.046(3)

20 S2 4 9 0 0.032(1) 0.032 — 0.015(1) — 0.031(1)

21 S5 8 4 4 0.187(8) 0.125 3.188(31) 0.344(19) 1.513(9) 0.124(1)

22 S6 4 3 2 0.062(4) 0.062 — 0.016(3) — 0.046(3)

23 S7 4 3 1 0.281(8) 0.156 0.156(7) 0.047(4) 0.249(5) 0.109(1)

24 S8 4 3 2 0.031(2) 0.015 0.062(3) 0.062(3) 0.156(2) 0.141(2)

25 S9 6 4 2 0.375(12) 0.236 0.483(21) 0.14(8) 0.188(6) 0.094(1)

26 S10 7 4 3 0.594(16) 0.313 0.438(7) 0.172(5) 0.360(3) 0.235(1)

27 S12 8 4 4 0.140(1) 0.140 — 0.016(1) — 0.047(1)

28 S13† 5 2 3 0.296(10) 0.187 0.171(8) 0.109(8) 0.125(2) 0.094(1)

29 S14 5 3 2 0.203(8) 0.156 0.14(6) 0.109(6) 0.157(8) 0.125(8)

30 S15 12 7 5 0.344(1) 0.344 — 0.031(1) — 0.093(1)

31 S16 16 14 3 0.640(6) 0.344 0.703(7) 0.609(7) — 4.609(8)

32 S17 8 3 6 lost lost lost lost lost lost

33 S18 5 3 3 lost lost >4000 >4000 2058.235(56) 2.641(10)

34 maclane† 10 6 5 476.766(335) 433.867 >4000 >4000 10.937(21) 2.969(11)

35 nueral 4 3 1 1.844(13) 1.611 >4000 >4000 0.250(6) 0.125(5)

36 Leykin 1† 8 6 4 184.890(116) 169.983 >4000 >4000 5.625(15) 5.578(15)

37 Rose 3 3 0 0.859(1) 0.859 1.872(1) 1.607(1) 1.125(2) 0.875(2)

38 F663† 10 9 2 2.969(6) 2.328 1.935(16) 1.202(15) 1.607(6) 1.045(4)

39 Dessin2 10 10 0 26.718(1) 26.718 >4000 >4000 >4000 >4000

40 Liu 6 4 2 203.125(26) 192.531 >4000 >4000 18.907(20) 0.469(8)

41 Wang16 4 4 0 0.125(1) 0.109 14.555(1) 0.437(1) 16.047(1) 0.172(1)

42 Cyclic5 5 5 0 0.453(11) 0.281 lost lost 1.906(15) 1.531(15)

43 lichtblau 3 2 1 lost lost >4000 >4000 >4000 0.109(1)

44 filter9 9 9 0 0.515(1) 0.515 >4000 >4000 lost lost

45 fabrice24 9 9 0 436.7(1) 436.7 lost lost lost lost

46 uteshev b 4 4 0 3.438(1) 3.438 lost lost >4000 >4000

47 cyclic6 6 6 0 1.922(25) 1.095 lost lost >4000 >4000

48 4-body-h 3 3 0 5.953(3) 5.531 655.406(2) 15.922(2) 439.547(5) 0.359(5)

49 5-body-h 3 3 0 12.297(3) 11.250 1990.656(2) 107.891(2) 1560.984(5) 0.437(5)

50 fabfaux 3 3 0 0.219(1) 0.219 14.016(1) 0.188(1) 54.000(1) 0.172(1)

90 R. Dong and C. Mou

Table 2. Timings for strong characteristic decomposition (in second)

Ex Label Total Transform Branches

4 E20 0.125 0.078 2

6 E23 0.953 0.547 10

9 E33 >4000 — —

10 E35 0.828 0.422 10

12 E47 >4000 — —

14 N4 0.281 0.141 6

15 N6 0.297 0.235 2

16 N20 0.171 0.062 3

17 F1 0.219 0.125 3

18 F2 2.985 1.469 13

19 S1 0.140 0.093 3

21 S5 0.578 0.422 8

22 S6 0.266 0.188 4

24 S8 0.078 0.047 2

25 S9 0.735 0.391 12

28 S13 24.937 24.672 10

29 S14 35.437 35.219 8

35 Neural 3.094 1.516 13

38 f663 >4000 — —

The experimental results of our implementation of Algorithm3 are presented
in Table 2 for 19 test examples selected from those in Table 1. In Table 2, the
columns “Total” and “Transform” record the total time for computing strong
characteristic decomposition using Algorithm 3 and the time for transforming
a characteristic decomposition into a strong one, and “Branches” denotes the
number of branches in the strong characteristic pairs computed.

As one finds from Algorithm 3, there is no more splitting in the transforma-
tion from a characteristic decomposition into a strong one, but in practice the
number of branches in the characteristic decomposition may be strictly greater
than that in the strong one, as the example E23 in Tables 1 and 2 shows. In
the computed characteristic decomposition for the example E23, there are two
different characteristic pairs

({a, c − 1, bd,−b2 + r2,−d2 + s2,−b2 − d2 + t2 − 1, bx, dx − d},

[a, c − 1, bd,−b2 + r2,−d2 + s2,−b2 − d2 + t2 − 1, bx])

and

({a, bc − b, bd, −b2 + r2,−c2−d2+s2+2c−1,−b2−c2−d2 + t2, bx,−cy + dx

−d + y}, [a, bc−b, bd, −b2+r2,−c2−d2+s2+2c−1,−b2−c2−d2+t2, bx])

Decomposing Polynomial Sets 91

which lead to the same strong characteristic pair

({a, c−1, d,−b2 + r2, s2,−b2 + t2 −1, x}, [a, c−1, d,−b2 + r2, s2,−b2 + t2 −1, x])

after the transformation.

Acknowledgements. The authors would like to thank the reviewers for their detailed
comments which have led to effective improvements on this paper.

References

1. Alvandi, P., Chen, C., Marcus, S., Moreno Maza, M., Schost, É., Vrbik, P.: Doing
algebraic geometry with the RegularChains library. In: Hong, H., Yap, C. (eds.)
ICMS 2014. LNCS, vol. 8592, pp. 472–479. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44199-2 71

2. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comput. 28(1–2), 105–124 (1999)

3. Aubry, P., Moreno Maza, M.: Triangular sets for solving polynomial systems: a
comparative implementation of four methods. J. Symb. Comput. 28(1), 125–154
(1999)

4. Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas
decomposition of algebraic and differential systems. J. Symb. Comput. 47(10),
1233–1266 (2012)

5. Becker, T., Weispfenning, V., Kredel, H.: Gröbner Bases: A Computational
Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer,
New York (1993)

6. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität
Innsbruck, Austria (1965)

7. Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive
triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-75187-8 7

8. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

9. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics. Springer, New York (1997)

10. Dahan, X.: On lexicographic Gröbner bases of radical ideals in dimension zero:
interpolation and structure. Preprint at arXiv:1207.3887 (2012)

11. Faugère, J.-C.: FGb: a library for computing Gröbner bases. In: Fukuda, K.,
Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
84–87. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15582-6 17

12. Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

13. Gao, S., Volny, F., Wang, M.: A new framework for computing Gröbner bases.
Math. Comput. 85(297), 449–465 (2016)

http://dx.doi.org/10.1007/978-3-662-44199-2_71
http://dx.doi.org/10.1007/978-3-662-44199-2_71
http://dx.doi.org/10.1007/978-3-540-75187-8_7
http://dx.doi.org/10.1007/978-3-540-75187-8_7
http://arxiv.org/abs/1207.3887
http://dx.doi.org/10.1007/978-3-642-15582-6_17

92 R. Dong and C. Mou

14. Gao, X.-S., Chou, S.-C.: Solving parametric algebraic systems. In: Proceedings of
ISSAC 1992, pp. 335–341. ACM Press (1992)

15. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition
of polynomial ideals. J. Symb. Comput. 6(2), 149–167 (1988)

16. Kalkbrenner, M.: A generalized Euclidean algorithm for computing triangular rep-
resentations of algebraic varieties. J. Symb. Comput. 15(2), 143–167 (1993)

17. Lazard, D.: Ideal bases and primary decomposition: case of two variables. J. Symb.
Comput. 1(3), 261–270 (1985)

18. Lazard, D.: A new method for solving algebraic systems of positive dimension.
Discrete Appl. Math. 33(1–3), 147–160 (1991)

19. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. 13(2),
117–131 (1992)

20. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple 10.
In: Kotsireas, I. (ed.) Maple Conference 2005, pp. 355–368. Maplesoft, Waterloo
(2005)

21. Li, B., Wang, D.: An algorithm for transforming regular chain into normal chain. In:
Kapur, D. (ed.) ASCM 2007. LNCS, vol. 5081, pp. 236–245. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-87827-8 20

22. Marinari, M.G., Mora, T.: A remark on a remark by Macaulay or enhancing Lazard
structural theorem. Bull. Iran. Math. Soc. 29(1), 1–45 (2003)

23. Mou, C., Wang, D., Li, X.: Decomposing polynomial sets into simple sets over finite
fields: the positive-dimensional case. Theoret. Comput. Sci. 468, 102–113 (2013)

24. Ritt, J.F.: Differential Algebra. American Mathematical Society, New York (1950)
25. Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of poly-

nomial ideals. J. Symb. Comput. 22(3), 247–277 (1996)
26. Wang, D.: Decomposing polynomial systems into simple systems. J. Symb. Com-

put. 25(3), 295–314 (1998)
27. Wang, D.: Computing triangular systems and regular systems. J. Symb. Comput.

30(2), 221–236 (2000)
28. Wang, D.: Elimination Methods. Springer, Wien (2001)
29. Wang, D.: Elimination Practice: Software Tools and Applications. Imperial College

Press, London (2004)
30. Wang, D.: On the connection between Ritt characteristic sets and Buchberger-

Gröbner bases. Math. Comput. Sci. 10, 479–492 (2016)
31. Wang, D., Dong, R., Mou, C.: Decomposition of polynomial sets into characteristic

pairs. arXiv:1702.08664 (2017)
32. Wang, D., Zhang, Y.: An algorithm for decomposing a polynomial system into

normal ascending sets. Sci. China Ser. A 50(10), 1441–1450 (2007)
33. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–29

(1992)
34. Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geome-

tries. J. Autom. Reason. 2(3), 221–252 (1986)

http://dx.doi.org/10.1007/978-3-540-87827-8_20
http://arxiv.org/abs/1702.08664

Symbolic Versus Numerical Computation
and Visualization of Parameter Regions

for Multistationarity of Biological Networks

Matthew England1 , Hassan Errami2, Dima Grigoriev3, Ovidiu Radulescu4 ,
Thomas Sturm5,6(B) , and Andreas Weber2

1 Fac. Engineering, Environment & Computing, Coventry University, Coventry, UK
Matthew.England@coventry.ac.uk

2 Institut für Informatik II, Universität Bonn, Bonn, Germany
{errami,weber}@cs.uni-bonn.de

3 CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, France
Dmitry.Grigoryev@math.univ-lille1.fr

4 DIMNP UMR CNRS/UM 5235, University of Montpellier, Montpellier, France
ovidiu.radulescu@umontpellier.fr

5 University of Lorraine, CNRS, Inria, and LORIA, Nancy, France
thomas.sturm@loria.fr

6 MPI Informatics and Saarland University, Saarbrücken, Germany
sturm@mpi-inf.mpg.de

Abstract. We investigate models of the mitogenactivated protein
kinases (MAPK) network, with the aim of determining where in para-
meter space there exist multiple positive steady states. We build on
recent progress which combines various symbolic computation methods
for mixed systems of equalities and inequalities. We demonstrate that
those techniques benefit tremendously from a newly implemented graph
theoretical symbolic preprocessing method. We compare computation
times and quality of results of numerical continuation methods with our
symbolic approach before and after the application of our preprocessing.

1 Introduction

The mathematical modelling of intra-cellular biological processes has been using
nonlinear ordinary differential equations since the early ages of mathematical bio-
physics in the 1940s and 50s [28]. A standard modelling choice for cellular circuitry
is to use chemical reactions with mass action law kinetics, leading to polyno-
mial differential equations. Rational functions kinetics (for instance the Michaelis-
Menten kinetics) can generally be decomposed into several mass action steps. An
important property of biological systems is their multistationarity which means
having multiple stable steady states. Multistationarity is instrumental to cellular
memory and cell differentiation during development or regeneration of multicel-
lular organisms and is also used by micro-organisms in survival strategies. It is
thus important to determine the parameter values for which a biochemical model
is multistationary. With mass action reactions, testing for multiple steady states
boils down to counting real positive solutions of algebraic systems.
c© The Author(s) 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 93–108, 2017.
DOI: 10.1007/978-3-319-66320-3 8

http://orcid.org/0000-0001-5729-3420
http://orcid.org/0000-0001-6453-5707
http://orcid.org/0000-0002-8088-340X
http://orcid.org/0000-0001-5624-3368

94 M. England et al.

The models benchmarked in this paper concern intracellular signaling path-
ways. These pathways transmit information about the cell environment by induc-
ing cascades of protein modifications (phosphorylation) all the way from the
plasma membrane via the cytosol to genes in the cell nucleus. Multistation-
arity of signaling usually occurs as a result of activation of upstream signal-
ing proteins by downstream components [2]. A different mechanism for produc-
ing multistationarity in signaling pathways was proposed by Kholodenko [26].
In this mechanism the cause of multistationarity are multiple phosphoryla-
tion/dephosphorylation cycles that share enzymes. A simple, two steps phos-
phorylation/dephosphorylation cycle is capable of ultrasensitivity, a form of all
or nothing response with no multiple steady states (Goldbeter–Koshland mech-
anism). In multiple phosphorylation/dephosphorylation cycles, enzyme sharing
provides competitive interactions and positive feedback that ultimately leads to
multistationarity [23,26].

Our study is complementary to works applying numerical methods to ordi-
nary differential equations models used for biology applications. Gross et al. [18]
used polynomial homotopy continuation methods for global parameter estima-
tion of mass action models. Bifurcations and multistationarity of signaling cas-
cades was studied with numerical methods based on the Jacobian matrix [30].
Other symbolic approaches to multistationarity either propose necessary condi-
tions or work for particular networks [8,9,20,27].

Our work here follows [5], where it was demonstrated that determination
of multistationarity of an 11-dimensional model of a mitogen-activated pro-
tein kinases (MAPK) cascade can be achieved by currently available symbolic
methods when numeric values are known for all but potentially one parameter.
We show that the symbolic methods used in [5], viz. real triangularization and
cylindrical algebraic decomposition, and also polynomial homotopy continuation
methods, benefit tremendously from a graph theoretical symbolic preprocessing
method. This method has been sketched by Grigoriev et al. [17] and has been
used for a “hand computation,” but had not been implemented before. For our
experiments we use the model already investigated in [5] and a higher dimen-
sional model of the MAPK cascade.

2 The Systems for the Case Studies

For our investigations we use models of the MAPK cascade that can be found in
the Biomodels database1 as numbers 26 and 28 [24]. We refer to those models
as Biomod-26 and Biomod-28, respectively.

2.1 Biomod-26

Biomod-26, which we have studied also in [5], is given by the following set of
differential equations. We have renamed the species names as x1, . . . , x11 and
the rate constants as k1, . . . , k16 to facilitate reading:

1 http://www.ebi.ac.uk/biomodels-main/

http://www.ebi.ac.uk/biomodels-main/

Symbolic Versus Numerical Computation for Biological Networks 95

ẋ1 = k2x6 + k15x11 − k1x1x4 − k16x1x5

ẋ2 = k3x6 + k5x7 + k10x9 + k13x10 − x2x5(k11 + k12) − k4x2x4

ẋ3 = k6x7 + k8x8 − k7x3x5

ẋ4 = x6(k2 + k3) + x7(k5 + k6) − k1x1x4 − k4x2x4

ẋ5 = k8x8 + k10x9 + k13x10 + k15x11 − x2x5(k11 + k12) − k7x3x5 − k16x1x5

ẋ6 = k1x1x4 − x6(k2 + k3)
ẋ7 = k4x2x4 − x7(k5 + k6)
ẋ8 = k7x3x5 − x8(k8 + k9)
ẋ9 = k9x8 − k10x9 + k11x2x5

ẋ10 = k12x2x5 − x10(k13 + k14)
ẋ11 = k14x10 − k15x11 + k16x1x5 (1)

The Biomodels database also gives us meaningful values for the rate constants,
which we generally substitute into the corresponding systems for our purposes
here:

k1 = 0.02, k2 = 1, k3 = 0.01, k4 = 0.032,
k5 = 1, k6 = 15, k7 = 0.045, k8 = 1,
k9 = 0.092, k10 = 1, k11 = 0.01, k12 = 0.01,
k13 = 1, k14 = 0.5, k15 = 0.086, k16 = 0.0011. (2)

Using the left-null space of the stoichiometric matrix under positive conditions
as a conservation constraint [14] we obtain three linear conservation laws:

x5 + x8 + x9 + x10 + x11 = k17,

x4 + x6 + x7 = k18,

x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 = k19, (3)

where k17, k18, k19 are new constants computed from the initial data. Those
constants are the parameters that we are interested in here.

The steady state problem for the MAPK cascade can now be formulated
as a real algebraic problem as follows. We replace the left hand sides of all
equations in (1) with 0 and substitute the values from (2). This together with
(3) yields a system of parametric polynomial equations with polynomials in
Z[k17, k18, k19][x1, . . . , x11]. Since all entities in our model are strictly positive,
we add to our system positivity conditions k17 > 0, k18 > 0, k19 > 0 and x1 > 0,
. . . , x11 > 0. In terms of first-order logic the conjunction over our equations and
inequalities yields a quantifier-free Tarski formula.

2.2 Biomod-28

The system with number 28 in the Biomodels database is given by the following
set of differential equations. Again, we have renamed the species names into
x1, . . . , x16 and the rate constants into k1, . . . , k27 to facilitate reading:

96 M. England et al.

ẋ1 = k2x9 + k8x10 + k21x15 + k26x16 − k1x1x5 − k7x1x5 − k22x1x6 − k27x1x6

ẋ2 = k3x9 + k5x7 + k24x12 − k4x2x5 − k23x2x6

ẋ3 = k9x10 + k11x8 + k16x13 + k19x14 − k10x3x5 − k17x3x6 − k18x3x6

ẋ4 = k6x7 + k12x8 + k14x11 − k13x4x6

ẋ5 = k2x9 + k3x9 + k5x7 + k6x7 + k8x10 + k9x10 + k11x8 + k12x8 −
k1x1x5 − k4x2x5 − k7x1x5 − k10x3x5

ẋ6 = k14x11 + k16x13 + k19x14 + k21x15 + k24x12 + k26x16 −
k13x4x6 − k17x3x6 − k18x3x6 − k22x1x6 − k23x2x6 − k27x1x6

ẋ7 = k4x2x5 − k6x7 − k5x7

ẋ8 = k10x3x5 − k12x8 − k11x8

ẋ9 = k1x1x5 − k3x9 − k2x9

ẋ10 = k7x1x5 − k9x10 − k8x10

ẋ11 = k13x4x6 − k15x11 − k14x11

ẋ12 = k23x2x6 − k25x12 − k24x12

ẋ13 = k15x11 − k16x13 + k17x3x6

ẋ14 = k18x3x6 − k20x14 − k19x14

ẋ15 = k20x14 − k21x15 + k22x1x6

ẋ16 = k25x12 − k26x16 + k27x1x6

The estimates of the rate constants given in the Biomodels database are:

k1 = 0.005, k2 = 1, k3 = 1.08, k4 = 0.025,
k5 = 1, k6 = 0.007, k7 = 0.05, k8 = 1,
k9 = 0.008, k10 = 0.005, k11 = 1, k12 = 0.45,
k13 = 0.045, k14 = 1, k15 = 0.092, k16 = 1,
k17 = 0.01, k18 = 0.01, k19 = 1, k20 = 0.5,
k21 = 0.086, k22 = 0.0011, k23 = 0.01, k24 = 1,
k25 = 0.47, k26 = 0.14, k27 = 0.0018.

Again, using the left-null space of the stoichiometric matrix under positive con-
ditions as a conservation constraint [14] we obtain the following:

x6 + x11 + x12 + x13 + x14 + x15 + x16 = k28,

x5 + x7 + x8 + x9 + x10 = k29,

x1 + x2 + x3 + x4 + x7 + x8 + x9 + x10 + x11 +
x12 + x13 + x14 + x15 + x16 = k30,

where k28, k29, k30 are new constants computed from the initial data. We formu-
late the real algebraic problem as described at the end of Sect. 2.1. In particular,
note that we need positivity conditions for all variables and parameters.

Symbolic Versus Numerical Computation for Biological Networks 97

3 Graph-Theoretical Symbolic Preprocessing

The complexity, primarily in terms of dimension, of polynomial systems obtained
with steady-state approximations of biological models plus conservation laws is
comparatively high for the application of symbolic methods. It is therefore highly
relevant for the success of such methods to identify and exploit particular struc-
tural properties of the input. Our models have remarkably low total degrees
with many linear monomials after some substitutions for rate constants. This
suggests to preprocess with essentially Gaussian elimination in the sense of solv-
ing single suitable equations with respect to some variable and substituting the
corresponding solution into the system.

Generalizing this idea to situations where linear variables have parametric
coefficients in the other variables requires, in general, a parametric variant of
Gaussian elimination, which replaces the input system with a finite case distinc-
tion with respect to the vanishing of certain coefficients and one reduced system
for each case. With Biomod-26 and Biomod-28 considered here it turns out
that the positivity assumptions on the variables are strong enough to effectively
guarantee the non-vanishing of all relevant coefficients so that case distinctions
are never necessary. On the other hand, those positivity conditions establish
an apparent obstacle, because we are formally not dealing with a parametric
system of linear equations but with a parametric linear programming problem.
However, here the theory of real quantifier elimination by virtual substitution
tells us that it is sufficient that the inequality constraints play a passive role.
Those constraints must be considered when substituting Gauss solutions from
the equations, but otherwise can be ignored [22,25].

Parametric Gaussian elimination can increase the degrees of variables in the
parametric coefficient, in particular destroying their linearity and suitability to
be used for further reductions. As an example consider the steady-state approx-
imation, i.e., all left hand sides replaced with 0, of the system in (1), solving the
last equation for x5, and substituting into the first equation. The natural ques-
tion for an optimal strategy to Gauss-eliminate a maximal number of variables
has been answered positively only recently [17]: draw a graph, where vertices
are variables and edges indicate multiplication between variables within some
monomial. Then one can Gauss-eliminate a maximum independent set, which
is the complement of a minimum vertex cover. Figure 1 shows that graph for
Biomod-26, where {x4, x5} is a minimal vertex cover, and all other variables can
be linearly eliminated. Similarly, for Biomod-28 we find {x5, x6} as a minimum
vertex cover. Recall that minimum vertex cover is one of Karp’s 21 classical NP
complete problems [21]. However, our instances considered here and instances
to be expected from other biological models are so small that the use of existing
approximation algorithms [16] appears unnecessary. We have used real quantifier
elimination, which did not consume measurable CPU time; alternatively one
could use integer linear programming or SAT-solving.

It is a most remarkable fact that a significant number of biological mod-
els in the databases have that property of loosely connected variables. This
phenomenon resembles the well-known community structure of propositional

98 M. England et al.

Fig. 1. The graph for Biomod-26 is loosely connected. Its minimum vertex cover
{x4, x5} is small. All other variables form a maximum independent set, which can
be eliminated with linear methods.

satisfiability problems, which has been identified as one of the key structural rea-
sons for the impressive success of state-of-the-art CDCL-based SAT solvers [15].

We conclude this section with the reduced systems as computed with our
implementation in Redlog [11]. For Biomod-26 we obtain x5 > 0, x4 > 0, k19 > 0,
k18 > 0, k17 > 0 and

1062444k18x
2
4x5 + 23478000k18x

2
4 + 1153450k18x4x

2
5 + 2967000k18x4x5

+ 638825k18x
3
5 + 49944500k18x

2
5 − 5934k19x

2
4x5 − 989000k19x4x

2
5

− 1062444x3
4x5 − 23478000x3

4 − 1153450x2
4x

2
5 − 2967000x2

4x5

− 638825x4x
3
5 − 49944500x4x

2
5 = 0,

1062444k17x
2
4x5 + 23478000k17x

2
4 + 1153450k17x4x

2
5 + 2967000k17x4x5

+ 638825k17x
3
5 + 49944500k17x

2
5 − 1056510k19x

2
4x5 − 164450k19x4x

2
5

− 638825k19x
3
5 − 1062444x2

4x
2
5 − 23478000x2

4x5 − 1153450x4x
3
5

− 2967000x4x
2
5 − 638825x4

5 − 49944500x3
5 = 0.

For Biomod-28 we obtain x6 > 0, x5 > 0, k30 > 0, k29 > 0, k28 > 0 and

3796549898085k29x
3
5x6 + 71063292573000k29x

3
5 + 106615407090630k29x

2
5x

2
6

+ 479383905861000k29x
2
5x6 + 299076127852260k29x5x

3
6

+ 3505609439955600k29x5x
2
6 + 91244417457024k29x

4
6

+ 3557586742819200k29x
3
6 − 598701732300k30x

3
5x6

− 83232870778950k30x
2
5x

2
6 − 185019487578700k30x5x

3
6

−3796549898085x4
5x6 − 71063292573000x4

5 − 106615407090630x3
5x

2
6

− 479383905861000x3
5x6 − 299076127852260x2

5x
3
6 − 3505609439955600x2

5x
2
6

− 91244417457024x5x
4
6 − 3557586742819200x5x

3
6 = 0,

3796549898085k28x
3
5x6 + 71063292573000k28x

3
5 + 106615407090630k28x

2
5x

2
6

+ 479383905861000k28x
2
5x6 + 299076127852260k28x5x

3
6

+ 3505609439955600k28x5x
2
6 + 91244417457024k28x

4
6

+ 3557586742819200k28x
3
6 − 3197848165785k30x

3
5x6

− 23382536311680k30x
2
5x

2
6 − 114056640273560k30x5x

3
6

− 91244417457024k30x
4
6 − 3796549898085x3

5x
2
6 − 71063292573000x3

5x6

− 106615407090630x2
5x

3
6 − 479383905861000x2

5x
2
6 − 299076127852260x5x

4
6

− 3505609439955600x5x
3
6 − 91244417457024x5

6 − 3557586742819200x4
6 = 0.

Symbolic Versus Numerical Computation for Biological Networks 99

Notice that no complex positivity constraints come into existence with these
examples. All corresponding substitution results are entailed by the other con-
straints, which is implicitly discovered by using the standard simplifier from [12]
during preprocessing.

4 Determination of Multiple Steady States

We aim to identify via grid sampling regions of parameter space where multi-
stationarity occurs. Our focus is on the identification of regions with multiple
positive real solutions for the parameters introduced with the conservation laws.
We will encounter one or three such solutions and allow ourselves for biologi-
cal reasons to assume monostability or bistability, respectively. Furthermore, a
change in the number of solutions between one and three is indicative of a saddle-
node bifurcation between a monostable and a bistable case. A mathematically
rigorous treatment of stability would, possibly symbolically, analyze the eigen-
values of the Jacobian of the respective polynomial vector field. We consider two
different approaches: first a polynomial homotopy continuation method imple-
mented in Bertini, and second a combination of symbolic computation methods
implemented in Maple. We compare the approaches with respect to performance
and quality of results for both the reduced and the unreduced systems.

4.1 Numerical Approach

We use the homotopy solver Bertini [1] in its standard configuration to compute
complex roots. We parse the output of Bertini using Python, and determine
numerically, which of the complex roots are real and positive using a threshold
of 10−6 for positivity. Computations are done in Python with Bertini embedded.

For System Biomod-26 we produced the two plots in Fig. 2 using the original
system and the two in Fig. 3 using the reduced system. The sampling range for
k19 was from 200 to 1000 by 50. In the left plots the sampling range for k17
is from 80 to 200 by 10 with k18 fixed at 50. In the right plots the sampling
range for k18 is 5 to 75 by 5 with k17 fixed to 100. We see two regions forming
according to the number of fixed points: yellow discs indicate one fixed point
and blue boxes three. The diamonds indicate numerical errors where zero (red)
or two (green) fixed states were identified. We analyse these further in Sect. 4.3.

For Biomod-28 we produced the two plots in Fig. 5 using the original system.
The sampling range for k30 was from 100 to 1600 by 100. In the left plots the
sampling range for k28 is from 40 to 160 by 10 with k29 fixed at 180. In the right
plots the sampling range for k29 is from 120 to 240 by 10 with k28 fixed to 100.
The colours and shapes indicate the number of fixed points as before. For the
reduced system Bertini (wrongly) could not find any roots (not even complex
ones) for any of the parameter settings. The situation did not change when
going from adaptive precision to a very high fixed precision. However, we have
not attempted more sophisticated techniques like providing user homotopies. We
analyse these results further in Sect. 4.3.

100 M. England et al.

4.2 Symbolic Approach

Our next approach will still use grid sampling, but each sample point will
undergo a symbolic computation. The result will still be an approximate identi-
fication of the region (since the sampling will be finite) but the results at those
sample points will be guaranteed free of numerical errors. The computations
follow the strategy introduced in [5, Sect. 2.1.2]. This combined tools from the
Regular Chains Library2 available for use in Maple. Regular chains are the tri-
angular decompositions of systems of polynomial equations (triangular in terms
of the variables in each polynomial). Highly efficient methods for working in
complex space have been developed based on these (see [29] for a survey).

We make use of recent work by Chen et al. [6] which adapts these tools to the
real analogue: semi-algebraic systems. They describe algorithms to decompose
any real polynomial system into finitely many regular semi-algebraic systems:
both directly and by computation of components by dimension. The latter (the
so called lazy variant) was key to solving the 1-parameter MAPK problem in
[5]. However, for the zero dimensional computations of this paper there is only
one solution component and so no savings from lazy computations.

For a given system and sample point we apply the real triangularization (RT)
on the quantifier-free formula (as described at the end of Sect. 2.1: a quantifier
free conjunction of equalities and inequalities) evaluated with the parameter
estimates and sample point values. This produces a simplified system in several
senses. First, as guaranteed by the algorithm, the output is triangular according
to a variable ordering. So there is a univariate component, then a bivariate
component introducing one more variable and so on. Secondly, for all the MAPK
models we have studied so far, all but the final (univariate) of these equations
has been linear in its main variable. This thus allows for easy back substitution.
Thirdly, most of the positivity conditions are implied by the output rather than
being an explicit part of it, in which case a simpler sub-system can be solved
and back substitution performed instantly.

Biomod-26. For the original version of Biomod-26 the output of RT was a
component consisting of 11 equations and a single inequality. The equations
were in ascending main variable according to the provided ordering (same as the
labelling). All but the final equation is linear in its main variable, with the final
equation being univariate and degree 6 in x1. The output of the triangularization
requires that this variable be positive, x1 > 0, with the positivity of the other
variables implied by solutions to the system. So to proceed we must find the
positive real roots of the degree 8 univariate polynomial in x1: counting these
will imply the number of real positive solutions of the parent system. We do
this using the root isolation tools in the Regular Chains Library. This whole
process was performed iteratively for the same sampling regime as Bertini used
to produce Fig. 4.

We repeated the process on the reduced version of the system. The trian-
gularization again reduced the problem to univariate real root isolation, this
2 http://www.regularchains.org/

http://www.regularchains.org/

Symbolic Versus Numerical Computation for Biological Networks 101

time with only one back substitution step needed. As to be expected from a
fully symbolic computation, the output is identical and so again represented
by Fig. 4. However, the computation was significantly quicker with this reduced
system. More details are given in the comparison in Sect. 4.3.

Biomod-28. The same process was conducted on Biomod-28. As with Biomod-
26 the system was triangular with all but the final equation linear in its main
variable; this time the final equation is degree 8. However, unlike Biomod-26
two positivity conditions were returned in the output meaning we must solve a
bivariate problem before we can back substitute to the full system. Rather than
just perform univariate real root isolation we must build a Cylindrical Algebraic
Decomposition (CAD) (see, e.g., [4] and the references within) sign invariant for
the final two equations and interrogate its cells to find those where the equations
are satisfied and variable positive. Counting these we find always 1 or 3 cells,
with the latter indicating bistability. This is similar to the approach used in [5],
although in that case the 2D CAD was for one variable and one parameter. We
used the implementation of CAD in the Regular Chains Library [3,7] with the
results producing the plots in Fig. 6.

For the reduced system we proceeded similarly. A 2D CAD still needed to be
produced after triangularization and so in this case there was no reduction in the
number of equations to study with CAD via back substitution. However, it was
still beneficial to pre-process CAD with real triangularization: the average time
per sample point with pre-processing (and including time taken to pre-process)
was 0.485 s while without it was 3.577 s.

4.3 Comparison

Figures 2, 3, and 4 all refer to Biomod-26. The latter, produced using the sym-
bolic techniques in Maple, is guaranteed free of numerical error. We see that

Fig. 2. Bertini grid sampling on the original version of Biomod-26 (see Sect. 4.1). The
online version of this article contains colored figures

102 M. England et al.

Fig. 3. Bertini grid sampling on the reduced version of Biomod-26 (see Sect. 4.1)

Fig. 4. Maple grid sampling on Biomod-26 (see Sect. 4.2)

computing with the reduced system rather than the original system allowed
Bertini to avoid such errors: the rouge red and green diamonds in Fig. 2. However,
in the case of Biomod-28 the reduction led to catastrophic effects for Bertini:
built-in heuristics quickly (and wrongly) concluded that there are no zero dimen-
sional solutions for the system, and when switching to a positive dimensional run
also no solutions could be found.

Bertini computations (v1.5.1) were carried out on a Linux 64 bit Desktop
PC with Intel i7. Maple computations (v2016 with April 2017 Regular Chains)
were carried out on a Windows 7 64 bit Desktop PC with Intel i5.

For Biomod-26 the pairs of plots together contain 476 sample points. Table 1
shows timing data. We see that both Bertini and Maple benefited from the
reduced system: Bertini took a third of the original time while the speedup for
Maple was even greater: a tenth of the original. Also, perhaps surprisingly, the

Symbolic Versus Numerical Computation for Biological Networks 103

Fig. 5. Bertini grid sampling on the original version of Biomod-28 (see Sect. 4.1)

Fig. 6. Maple grid sampling on Biomod-28 (see Sect. 4.2)

Table 1. Timing data (in seconds) of the grid samplings described in Sect. 4. Numerical
computation is using Bertini; Symbolic computation is using Maple Regular Chains

Numerical Symbolic

Mean Mean Median StdDev Maximum

026 – Original 2.4 0.568 0.530 0.107 0.905

026 – Reduced 0.85 0.053 0.047 0.036 0.343

028 – Original 16.57 42.430 40.529 8.632 84.116

028 – Reduced ⊥ 0.485 0.468 0.119 0.796

104 M. England et al.

symbolic methods were quicker than the numerical ones here. For Biomod-28 the
speed-up enjoyed by the symbolic methods was even greater (almost 100 fold).
However, for this system Bertini was significantly faster. The symbolic methods
used are well known for their doubly exponential computational complexity (in
the number of variables) so it is not surprising that as the system size increases
there so should the results of the comparison. We see some other statistical data
for the timings in Maple: the standard deviation for the timings is fairly modest
but in each row we see there are outliers many multiples of the mean value and
so the median is always a little less than the mean average.

4.4 Going Further

Of course, we could increase the sampling density to get an improved idea of
the bistability region, as in Figs. 7 and 8. However, a greater understanding
comes with 3D sampling. We have performed this using the symbolic approach
described above, at a linear cost proportional to the increased number of sample
points. This was completed for Biomod-26: the region in question is bounded to
both sides in the k17 and k18 directions but extends infinitely above in k19. With
the k19 range bound at 1000 the region is bounded by extending k17 to 800 and
k18 to 600. For obtaining exact bounds (in one parameter) see [5].

Sampling in 20 s for k17 and k18 and 50 s for k19 produced a Maple point plot
of 20400 in 18 min. Figure 9 shows 2D captures of the 3D bistable points and
Fig. 10 the convex hull of these, produced using the convex package3. We note
the lens shape seen in the orientation in the left plots is comparable with the
image in the original paper of Markevich et al. [26, Fig. S7].

Fig. 7. As Fig. 6 but with a higher sampling rate

3 http://www-home.math.uwo.ca/∼mfranz/convex/

http://www-home.math.uwo.ca/~mfranz/convex/

Symbolic Versus Numerical Computation for Biological Networks 105

Fig. 8. As Fig. 4 but with a higher sampling rate

Fig. 9. 3D Maple Point Plot produced grid sampling on Biomod-26 (see Sect. 4.4)

Fig. 10. Convex Hull of the bistable points in Fig. 9

106 M. England et al.

5 Conclusion and Future Work

We described a new graph theoretical symbolic preprocessing method to reduce
problems from the MAPK network. We experimented with two systems and
found the reduction offered computation savings to both numerical and symbolic
approaches for the determination of multistationarity regions of parameter space.
In addition, the reduction avoided instability from rounding errors in the numer-
ical approach to one system, but uncovered major problems in that approach for
the other. An interesting side result is that, at least for the smaller system, the
symbolic approach can compete with and even outperform the numerical one,
demonstrating how far such methods have progressed in recent years.

In future work we intend to combine the results of the present paper and
our recent publication [5] to generate symbolic descriptions of the bistability
region beyond the 1-parameter case. Other possible routes to achieve this is to
consider the effect of the various degrees of freedom with the algorithms used. For
example, we have a free choice of variable ordering: Biomod-26 has 11 variables
corresponding to 39 916 800 possible orderings while Biomod-28 has 16 variables
corresponding to more than 1013 orderings. Heuristics exist to help with this
choice [10] and machine learning may be applicable [19]. Also, since MAPK
problems contain many equational constraints an approach as described in [13]
may be applicable when higher dimensional CADs are needed.

Acknowledgements. D. Grigoriev is grateful to the grant RSF 16-11-10075.
H. Errami, O. Radulescu, and A. Weber thank the French-German Procope-DAAD
program for partial support of this research. M. England and T. Sturm are grateful to
EU H2020-FETOPEN-2015-CSA 712689 SC2.

Research Data Statement: Data supporting the research in this paper is available
from doi:10.5281/zenodo.807678.

References

1. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software
for numerical algebraic geometry. doi:10.7274/R0H41PB5

2. Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signaling
pathways. Science 283(5400), 381–387 (1999)

3. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson,
D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS,
vol. 8660, pp. 44–58. Springer, Cham (2014). doi:10.1007/978-3-319-10515-4 4

4. Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Truth table
invariant cylindrical algebraic decomposition. J. Symb. Comput. 76, 1–35 (2016)

5. Bradford, R., Davenport, J., England, M., Errami, H., Gerdt, V., Grigoriev, D.,
Hoyt, C., Kosta, M., Radulescu, O., Sturm, T., Weber, A.: A case study on the
parametric occurrence of multiple steady states. In: Proceedings of the ISSAC
2017, pp. 45–52. ACM (2017)

6. Chen, C., Davenport, J., May, J., Moreno Maza, M., Xia, B., Xiao, R.: Triangular
decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

http://doi.org/10.5281/zenodo.807678
http://dx.doi.org/10.7274/R0H41PB5
http://dx.doi.org/10.1007/978-3-319-10515-4_4

Symbolic Versus Numerical Computation for Biological Networks 107

7. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proceedings of the ISSAC 2009,
pp. 95–102. ACM (2009)

8. Conradi, C., Mincheva, M.: Catalytic constants enable the emergence of bistability
in dual phosphorylation. J. Roy. Soc. Interface 11(95) (2014)

9. Conradi, C., Flockerzi, D., Raisch, J.: Multistationarity in the activation of a
MAPK: parametrizing the relevant region in parameter space. Math. Biosci.
211(1), 105–31 (2008)

10. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Pro-
ceedings of the ISSAC 2004, pp. 111–118. ACM (2004)

11. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM
SIGSAM Bull. 31(2), 2–9 (1997)

12. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered
fields. J. Symb. Comput. 24(2), 209–231 (1997)

13. England, M., Bradford, R., Davenport, J.: Improving the use of equational con-
straints in cylindrical algebraic decomposition. In: Proceedings ISSAC 2015, pp.
165–172. ACM (2015)

14. Famili, I., Palsson, B.Ø.: The convex basis of the left null space of the stoichiometric
matrix leads to the definition of metabolically meaningful pools. Biophys. J. 85(1),
16–26 (2003)

15. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

16. Grandoni, F., Könemann, J., Panconesi, A.: Distributed weighted vertex cover via
maximal matchings. ACM Trans. Algorithms 5(1), 1–12 (2008)

17. Grigoriev, D., Samal, S.S., Vakulenko, S., Weber, A.: Algorithms to study large
metabolic network dynamics. Math. Model. Nat. Phenom. 10(5), 100–118 (2015)

18. Gross, E., Davis, B., Ho, K.L., Bates, D.J., Harrington, H.A.: Numerical algebraic
geometry for model selection and its application to the life sciences. J. Roy. Soc.
Interface 13(123) (2016)

19. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select the vari-
able ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport,
J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp.
92–107. Springer, Cham (2014). doi:10.1007/978-3-319-08434-3 8

20. Joshi, B., Shiu, A.: A survey of methods for deciding whether a reaction network
is multistationary. Math. Model. Nat. Phenom. 10(5), 47–67 (2015)

21. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

22. Košta, M.: New concepts for real quantifier elimination by virtual substitution.
Doctoral dissertation, Saarland University, Germany, December 2016

23. Legewie, S., Schoeberl, B., Blüthgen, N., Herzel, H.: Competing docking interac-
tions can bring about bistability in the MAPK cascade. Biophys. J. 93(7), 2279–
2288 (2007)

24. Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L.,
He, E., Henry, A., Stefan, M.I., Snoep, J.L., Hucka, M., Le Novère, N., Laibe, C.:
BioModels database: an enhanced, curated and annotated resource for published
quantitative kinetic models. BMC Syst. Biol. 4, 92 (2010)

25. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.
36(5), 450–462 (1993)

http://dx.doi.org/10.1007/978-3-319-08434-3_8

108 M. England et al.

26. Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability
arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol.
164(3), 353–359 (2004)

27. Pérez Millán, M., Turjanski, A.G.: MAPK’s networks and their capacity for mul-
tistationarity due to toric steady states. Math. Biosci. 262, 125–37 (2015)

28. Rashevsky, N.: Mathematical Biophysics: Physico-Mathematical Foundations of
Biology. Dover, New York (1960)

29. Wang, D.: Elimination Methods. Springer, Heidelberg (2000)
30. Zumsande, M., Gross, T.: Bifurcations and chaos in the MAPK signaling cascade.

J. Theoret. Biol. 265(3), 481–491 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The Polymake Interface in Singular
and Its Applications

Raul Epure1, Yue Ren2(B), and Hans Schönemann1

1 Department of Mathematics, University of Kaiserslautern,
Kaiserslautern, Germany

{epure,hannes}@mathematik.uni-kl.de
2 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

yueren@mis.mpg.de

Abstract. Singular and polymake are computer algebra systems for
research in algebraic geometry and polyhedral geometry respectively. We
illustrate the implementation and the functionality of the polymake-
interface in Singular and exhibit its application to the arithmetic of
polyhedral divisors and the reconstruction of hypersurface singularities
from the Milnor algebra.

Keywords: Computer algebra · Algebraic geometry · Convex geometry

1 Introduction

Singular [6] is a computer algebra system for polynomial computations with
particular emphasis on applications in algebraic geometry, commutative algebra
and singularity theory. polymake [9] is a software for research in polyhedral
geometry. It deals with polytopes, polyhedra and fans as well as simplicial com-
plexes, matroids, graphs and tropical hypersurfaces.

Since the initial release of Singular, algebro geometric topics in which poly-
hedral methods play a crucial role have gained in importance (prominent exam-
ples are toric and tropical geometry). In an effort to do justice to these subjects,
which lie in the intersection of algebraic and convex geometry, Singular now
features an interface to polymake. This gives Singular users access to com-
plex algorithms in convex geometry, some of which in turn rely on other third
party software such as lattice point enumeration in normaliz [3]1.

In this article, we describe the interface to polymake, and we will briefly
comment on its implementation and its features. More importantly, we will show
how it can be used to produce a framework for polyhedral divisors, and, on

1 normaliz is a tool for computations in affine monoids, vector configurations, lattice
polytopes, and rational cones. Normaliz computes normalizations of affine monoids,
integer hulls and triangulations of vector configurations, lattice points, Hilbert-
/Ehrhart series and polynomials of rational polytopes, duals and Hilbert bases of
rational cones.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 109–117, 2017.
DOI: 10.1007/978-3-319-66320-3 9

110 R. Epure et al.

this example, how to create user-defined data types in Singular in general.
Furthermore, we will discuss the reconstruction of hypersurface singularities from
their Milnor algebra, to give a glimpse on ongoing research projects which were
made viable through the interface.

The interface was created in the DFG priority programme SPP 1489 in a col-
laboration of several big open source computer algebra systems. Its development
continues in the DFG collaborative research centre SFB-TRR 195, which aims
at taking a leading role in driving the development of interdisciplinary, open
source infrastructure. The authors would like to thank Michael Joswig, Ewgenij
Gawrilow, Benjamin Lorenz and Lars Kastner from the polymake team for
their advice and continued technical support.

2 An Interface to Polymake

The polymake interface in Singular is made possible through:

1. The polymake callable library functionality [10], which allows people to use
polymake as a C++ callable library.

2. The Singular blackbox functionality [14,15], which streamlines the integra-
tion of third party libraries into Singular.

Thanks to the the aforementioned functionalities, its actual implementation
is very simple, see Fig. 1. Each function merely requires a wrapper which:

Lines 3–6: checks the data type of the Singular input and reads the data,
Lines 7–9: converts the Singular input to a polymake object and calls the

respective function in polymake,
Lines 10–12: converts the polymake output to a Singular type and passes

it on.

The wrapper returns TRUE if an error occurred and FALSE otherwise. This
tells Singular whether or not to abort the procedures in which the interface
function was called.
Finally, there needs to be a line (Line 22), which tells Singular:

1. the Singular interpreter library containing the documentation (here:
polymake.lib),

2. the name of the function in the Singular interpreter (here: latticePoints),
3. whether the function is static, i.e. only to be used in Singular interpreter

libraries but invisible to the Singular user (here: FALSE),
4. the name of the C++ wrapper function (here: PMlatticePoints).

For a more detailed exposition on the integration of third party C++ libraries
into Singular, please check the in-depth report on the Gfanlib2 Singular-
interface [14,15].
2 gfanlib is a C++-library for basic manipulations of convex polyhedral cones and

polyhedral fans. It also contains a fast algorithm for computing mixed volumes using
homotopy methods.

The Polymake Interface in Singular and Its Applications 111

1 BOOLEAN PMlatticePoints(leftv res , leftv args)
2 {
3 leftv u = args;
4 if ((u != NULL) && (u->Typ() == polytopeID) && (u->next == NULL))
5 {
6 gfan::ZCone* p0 = (gfan::ZCone*) u->Data ();
7 polymake ::perl:: Object* p1 = ZPolytope2PmPolytope(p0);
8 polymake ::Matrix <polymake ::Integer > lp1 =
9 p->CallPolymakeMethod("LATTICE_POINTS");

10 intvec* lp0 = PmMatrixInteger2Intvec (&lp1 ,ok);
11 res ->rtyp = INTMAT_CMD;
12 res ->data = (char*) lp0;
13 return FALSE;
14 }
15 WerrorS("latticePoints:�unexpected�parameters");
16 return TRUE;
17 }
18
19 extern "C" int SI_MOD_INIT(polymake)(SModulFunctions* p)
20 {
21 [...]
22 p->iiAddCproc("polymake.lib","latticePoints",FALSE ,PMlatticePoints);
23 [...]
24 }

Fig. 1. C++ code for blackbox wrapper for latticePoints

Note that some polymake functionality depends on third party software,
e.g. visualization through jreality3 [16], which is why some functions in the
polymake interface can only be called if the necessary third party software is
installed.

The polymake interface is publicly available as part of the official Singular
release and a complete list of its functionality can be found in the documentation.
The three main functions and their respective third party software used in the
examples in this article are:

– computation of Minkowski sums,
– optimization of linear functionals via lrs4 [1] or cdd5 [8],
– enumeration of lattice points using LattE6 [4] or normaliz [3].

3 JReality is a Java based full-featured 3D scene graph package designed for 3D
visualization and specialized in mathematical visualization. It provides several back-
ends and can export graphics in several formats, allowing users for example to create
interactive 3D elements in pdf-files.

4 lrs is a C implementation of the reverse search algorithm for vertex enumeration and
convex hull problems. All computations are done exactly in either multiple precision
or fixed integer arithmetic, and the output is not stored in memory, so even problems
with very large output sizes can sometimes be solved.

5 cddlib is a C implementation of the Double Description Method of Motzkin et al.
for generating all vertices of a general convex polyhedron in R

d given by a system
of linear inequalities and vice versa.

6 LattE is a computer software dedicated to the problems of counting lattice points
and integration inside convex polytopes. It contains the first ever implementation of
Barnivok’s algorithm.

112 R. Epure et al.

3 User Defined Types in Singular: Polyhedral Divisors

Singular offers the possibility to create user defined types from already known
types and overload operators, such as +, ˆ or &&, in cases in which the first
operand is of a user defined type. In this section, we describe how this is done on
the example of polyhedral divisors as in divisors.lib [2], relying on the inter-
face to polymake for the computation of Minkowski sums and optimal values.

Polyhedral divisors were introduced by Altmann and Hausen, and they rep-
resent affine algebraic varieties with torus action in a way which encodes the
torus action in a purely combinatorial fashion. To be more precise, any affine
variety of dimension n with an effective action of an algebraic torus of dimen-
sion k corresponds to a polyhedral divisor living on a semiprojective variety of
dimension n − k. They generalize the concept of affine toric varieties and are
the building blocks for so-called divisorial fans, which generalize the concept of
toric varieties. Of particular interest are the evaluation maps, which are used to
characterize properness of polyhedral divisors.

Definition 1. Let N be a lattice and σ ⊂ NQ a pointed cone. Then Polσ(NQ)
is the set of all polyhedra in NQ with tail cone σ. It has a natural semigroup
structure under the Minkowski sum with neutral element σ.

For a normal algebraic variety Y the group of rational polyhedral (Weil)
divisors is defined to be

DivQ(Y, σ) = Polσ(NQ) ⊗Z Div(Y),

so that its elements are formal sums D =
∑k

i=1 Δi ⊗Di, where Δi ⊂ NQ are
polytopes with tail cone σ and Di are Weil divisors on Y .

For any u ∈ σ∨ there exists a natural evaluation map

DivQ(Y, σ) −→ DivQ(Y),

D =
k∑

i=1

Δi ⊗ Di �−→ D(u) =
k∑

i=1

evalu(Δi)Di,

where evalu(Δi) = max{〈u, v〉 | v ∈ σ}.
New types can be created using the command newstruct. To call newstruct,

one must specify a name for the new type, as well as types and names for the
subobjects of which it should consist. In Fig. 2, lines 4–5 show the declaration
of the type pdivisor, which consists of a list summands representing the formal
sum which makes up a polyhedral divisor plus the fixed tail cone tail. The list
summands will in turn consist of pairs of polytopes with tail cone tail and a
Weil divisor.

By default, copy and print are the only two operations defined for the
new type, the first copying, the second printing each subobject in order of
their declaration. However, it is possible to overload more operators, using
system(‘‘install’’,...), with a user defined procedure with matching num-
ber of input parameters (of which the first must be of the user defined type).

The Polymake Interface in Singular and Its Applications 113

Lines 9–12 are overloading the + and the * operators with the procedures defined
in Lines 15–49.

The procedure pdivmult simply iterates through all elements of summands,
which represent the summands in the formal sum, and scale each polytope by
a given factor. The procedure pdivplus merges the summands of its two inputs,
relying on polymake to compute the Minkowski sum of polytopes whose Weil
divisors appear in both summands.

Moreover, polymake was used for implementing the evaluation of polyhedral
divisors.

1 proc mod_init ()
2 {
3 LIB "polymake.lib";
4 newstruct("pdivisor",
5 "list�summands ,�cone�tail");
6
7 [...]
8
9 system("install","pdivisor",

10 "+",pdivplus ,2);
11 system("install","pdivisor",
12 "*",pdivmult ,2);
13 }
14
15 proc pdivmult(pdivisor A, int l)
16 {
17 list LA = A.summands;
18 for (int i=1; i<=size(LA); i++)
19 {
20 LA[i,1] = scale(LA[i,1],l);
21 }
22 pDivisor Al;
23 Al.sum = LA;
24 Al.tail = A.tail;
25 return (Al);
26 }

27 proc pdivplus(pdivisor A, pdivisor B)
28 {
29 list LAB = A.summands;
30 list LB = B.summands;
31 for (int i=1; i<=size(LB); i++)
32 {
33 p = findIndex(LAB ,LB[i][2]);
34 if (p>0)
35 {
36 LAB[p][1] =
37 minkowskiSum(LAB[p][1],
38 LB[i][1]);
39 }
40 else
41 {
42 LAB[size(LAB)+1] = LB[i];
43 }
44 }
45 pdivisor C;
46 C.summands = LAB;
47 C.tail = A.tail;
48 return(C);
49 }

Fig. 2. Singular code for polyhedral divisors using newstruct

4 Quasihomogeneous Isolated Hypersurface Singularities

In this section we present two applications regarding quasihomogeneous isolated
hypersurface singularities. Before we start we need some basic definitions. In
order to avoid unnecessary terminology, we give slightly restrictive definitions
compared to the standard literature.

Definition 2. Denote by C{x1, . . . , xn}7 the ring of convergent power series
over C and denote by m its maximal ideal. Let f ∈ C{x1, . . . , xn}. We say f
defines an isolated hypersurface singularity, if there exists some k ∈ N such
that mk ⊆ J(f) := 〈∂x1f, . . . , ∂xn

f〉. We say f is a quasihomogeneous isolated

7 Note that while we are working mathematically over the algebraically closed field C,
our purposes allow us to restrict ourselves to rational numbers, provided our initial
data is rational.

114 R. Epure et al.

hypersurface singularity (qhis), if there exist weights w1, . . . , wn ∈ Z>0 such that

gcd(w1, . . . , wn) = 1 and, for some fixed d ∈ N,
n∑

i=1

wimi = d, for all monomials

xm1
1 · . . . · xmn

n in the support of f. We refer to d as the weighted degree of f .
We call Mf = C{x1, . . . , xn}/J(f) the Milnor algebra and μf = dimC Mf the
Milnor number of f .

The following lemma gives an intrinsic characterization of quasi-homogeneity
in terms of derivations, adapted to Definition 2.

Lemma 1 [17, Lemma 2.3]. Let f ∈ C{x1, . . . , xn} define an isolated hypersur-
face singularity. Then f is a qhis with weights w1, . . . , wn ∈ N if and only if
gcd(w1, . . . , wn) = 1 and, after a suitable coordinate change, w1x1∂x1f + . . . +
wnxn∂xn

f = df for some d ∈ N.

Although qhis are defined as power series, the following lemma states that
they can be considered as polynomials after a suitable coordinate change.

Theorem 1 [5, Theorem 9.1.4]. Let f ∈ C{x1, . . . , xn} define a qhis and denote
by fk its truncation up to degree k ∈ N. If k ≥ μf + 1, then there exists an
automorphism ϕ of C{x1, . . . , xn} such that ϕ(f) = fk.

Theorem 1 gives us a bound for the degree of the possible monomials of f.
The next theorem gives a bound on the weighted degree d of f and a formula
for μf in terms of the weights w1, . . . , wn of f and d.

Theorem 2 [11, Theorem 4.3]. Let f ∈ C{x1, . . . , xn} define a qhis with wei-
ghts w1, . . . , wn ∈ N and weighted degree d ∈ N. Then the following hold:

1. d ≤ Cμf for some explicitly given C ∈ N.

2. μf =
n∏

j=1

(
d

wj
− 1

)
.

4.1 Finding Quasihomogeneous Isolated Hypersurface Singularities

A simple and nice application of the polymake interface in Singular is the
construction of examples of quasihomogeneous isolated hypersurface singular-
ities. The question is, which possible weights are possible for qhis, in case a
bound μf for the Milnor number is given. This has already been investigated by
Hertling and Kurbel in [11], though they are not explicit in their constructions.

We will explain how to tackle the question in Singular constructively on a
specific example. We will be using their results and lattice point enumeration,
which is done by Normaliz [3] through the polymake interface.

Example 1. Suppose f ∈ C{x, y, z} with μf = 14. Theorem 2 (a) then provides
a bound for the weighted degree of f and thus also a bound for all weights, as we
have wi ≤ d

2 +1 using [17, Satz 1.3]. In our case, we have d ≤ 42 so that wi ≤ 22
for i = 1, 2, 3. In Fig. 3 this is done in Lines 3 by the function wdeg bound, which

The Polymake Interface in Singular and Its Applications 115

reads of the number of variables from the active basering and has the bound on
the Milnor number as input.

In the Lines 4–15 we then construct the bounded polytope PB cut out by our
inequalities. It is the intersection of the positive orthant P and the polytope B
given by the weight bounds. Note that all coordinates are homogenized as in the
convention of polymake.

1 > ring R = 0,(x,y,z),ds;
2 > int mu = 14;
3 > int d = wdeg_bound(mu); // =42
4 > intmat p[5][4] = 0,1,0,0,
5 . 0,0,1,0,
6 . 0,0,0,1;
7 > polytope P =
8 . polytopeViaInequalities(p);
9 > intmat b[3][4] = 22,-1,0,0,

10 . 22,0,-1,0,
11 . 22,0,0,-1;
12 > polytope B =
13 . polytopeViaInequalities(b);

14 > polytope PB =
15 . convexIntersection(P,B);
16 > bigintmat candidates =
17 . latticePoints(PB);
18 > nrows(candidates);
19 12167
20 > matrix checkedCandidates =
21 . find_all_weights(candidates ,mu,d);
22 > nrows(checkedCandidates);
23 156

Fig. 3. Computing a list of candidates

Using the polymake interface, we then see that PB contains 12167 lattice
points of which only 156 satisfy Theorem 2(b), checked by find all weights. It
is known that any generic linear combination of monomials of suitable weighted
degree result in a qhis, allowing us to find explicit qhis with the given properties.

4.2 Reconstruction of QHIS from the Milnor Algebra

Let f, g ∈ C{x1, . . . , xn} define qhis. The famous Mather–Yau Theorem [5, The-
orem 9.1.8] states that C{x1, . . . , xn}/〈f〉 ∼= C{x1, . . . , xn}/〈g〉 if and only if
C{x1, . . . , xn}/J(f) ∼= C{x1, . . . , xn}/J(g). Hence it implies that it should be
possible to reconstruct f from Mf up to isomorphism, though its proof offers no
way on how to do so. For homogeneous polynomials, this has been addressed in
[12]. We tackle the problem in the quasihomogeneous case through methods in
convex geometry. The following results are part of ongoing research.

Example 2. Consider f = x3 + y3 + z3y ∈ C{x, y, z}, which is quasihomoge-
neous and defines an isolated hypersurface singularity (see Fig. 4, generated using
surfer [18]) with J(f) = 〈x2, 3y2+z3, yz2〉. We will now attempt to reconstruct
f from its Milnor algebra.

For the sake of simplicity, our example is chosen such that f and J(f) are
quasihomogeneous in the coordinates x, y, z. Hence, a reduced Gröbner basis
computation yields that the space of weights, under whom J(f) is quasihomo-
geneous, is spanned by the rows of

A =
(

1 0 0
0 3 2

)

.

116 R. Epure et al.

Fig. 4. The isolated hypersurface singularity of x3 + y3 + z3y

If this were not the case, we would have to use results from [7] regarding the
structure of the derivation module of Mf and an adapted version of the coor-
dinate changes as in the proof of [17, Lemma 2.4]. By [19, Theorem 1.2] f is
quasihomogeneous if and only if J(f) is weighted homogeneous with respect to
a positive weight. This is clearly the case in our example, confirming that Mf

does come from a qhis.
To see under which weight f is quasihomogeneous, we use the fact that

J(f) is weighted homogeneous with respect to all the weights under whom f
is quasihomogeneous (though J(f) may admit many more weights than f). A
quick computation reveals the Milnor number μf = 14, for which we have already
determined a polytope PB of possible candidates in Example 1. Intersecting PB
with the subspace generated by the rows of A reduces the number of lattice
points from 12167 to 184.

In a separate computation we determine the socle of Mf to be the equivalence
class of xz4, pinpointing the weighted degree of f . Checking the equation in
Theorem 2(b) then reduces the number of lattice points from 184 to 2 (Fig. 5).

Using syzygies we can construct examples of qhis with these weights and the
corresponding degrees under certain polynomial constraints using the same idea
as in Example 1. In this case our algorithm returns g = 2x3 + 3(y3 + z3y) with
Mg

∼= Mf .

1 > // Computing weight cone
2 > cone C=positive_cone(A);
3 > // Bound for degree d
4 > int d=wdeg_bound(J);
5 > d;
6 42
7 > // List of weights
8 > bigintmat L=
9 . find_weights_by_bound(A,d);

8 > nrows(L);
9 184

10 > // Candidates after reduction
11 . matrix LL=
12 . find_weights_by_formula(L,14,s);
13 > print(LL);
14 3,3,2,9,
15 4,3,2,10

Fig. 5. Restricting the number of weight candidates using polymake

The Polymake Interface in Singular and Its Applications 117

References

1. Avis, D.: Living with lrs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG
1998. LNCS, vol. 1763, pp. 47–56. Springer, Heidelberg (2000). doi:10.1007/
978-3-540-46515-7 4

2. Böhm, J., Kastner, L., Lorenz, B., Schönemann, H., Ren, Y.: A Singular 4-1-0
library for divisors and p-divisors (2016). www.singular.uni-kl.de

3. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz 3.0. algorithms for
rational cones and affine monoids (2016). https://www.normaliz.uni-osnabrueck.
de

4. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point
counting in rational convex polytopes. J. Symb. Comput. 38(4), 1273–1302 (2005)

5. de Jong, T., Pfister, G.: Local Analytic Geometry. Basic Theory and Application.
Advanced Lectures in Mathematics. Friedrich Vieweg & Sohn, Braunschweig (2000)

6. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-0 – a com-
puter algebra system for polynomial computations (2016). http://www.singular.
uni-kl.de

7. Epure, R.-P.: Homogeneity and derivations on analytic algebras. Master’s thesis.
University of Kaiserslautern, Germany (2015)

8. Fukuda, K.: Cddlib, a C implementation of the double description method of
Motzkin et al. (2016). https://www.inf.ethz.ch/personal/fukudak/cdd home/

9. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes.
In: Polytopes–Combinatorics and Computation (Oberwolfach, 1997), DMV Semi-
nar, vol. 29, pp. 43–73. Birkhäuser, Basel (2000)

10. Polymake team: Polymake callable library. https://polymake.org/doku.php/
reference/callable

11. Hertling, C., Kurbel, R.: On the classification of quasihomogeneous singularities.
J. Singul. 4, 131–153 (2012)

12. Isaev, A.V., Kruzhilin, N.G.: Explicit reconstruction of homogeneous isolated
hypersurface singularities from their Milnor algebras. Proc. Amer. Math. Soc.
142(2), 581–590 (2014)

13. Jensen, A.N.: Gfan 0.5, a software system for Gröbner fans and tropical varieties
(2011). http://home.math.au.dk/jensen/software/gfan/gfan.html

14. Jensen, A., Ren, Y., Seelisch, F.: gfan.lib- A Singular 4-1-0 interface to gfanlib
(2017)

15. Jensen, A., Ren, Y., Schönemann, H.: Blackbox types in Singular and Gfanlib
interface. to appear

16. Jreality: a Java library for real-time interactive 3D graphics and audio. http://
www3.math.tu-berlin.de/jreality/jrealityStatic/index.php

17. Saito, K.: Quasihomogene isolierte Singularitäten von Hyperflächen. Invent. Math.
14, 123–142 (1971)

18. Surfer: a software for visualizing real algebraic geometry in real-time. https://
imaginary.org/program/surfer

19. Xu, Y.-J., Yau, S.-T.: Micro-local characterization of quasi-homogeneous singular-
ities. Amer. J. Math. 118(2), 389–399 (1996)

http://dx.doi.org/10.1007/978-3-540-46515-7_4
http://dx.doi.org/10.1007/978-3-540-46515-7_4
www.singular.uni-kl.de
https://www.normaliz.uni-osnabrueck.de
https://www.normaliz.uni-osnabrueck.de
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://www.inf.ethz.ch/personal/fukudak/cdd_home/
https://polymake.org/doku.php/reference/callable
https://polymake.org/doku.php/reference/callable
http://home.math.au.dk/jensen/software/gfan/gfan.html
http://www3.math.tu-berlin.de/jreality/jrealityStatic/index.php
http://www3.math.tu-berlin.de/jreality/jrealityStatic/index.php
https://imaginary.org/program/surfer
https://imaginary.org/program/surfer

Computation of Some Integer Sequences
in Maple

W.L. Fan1(B), D.J. Jeffrey1, and Erik Postma2

1 Department of Applied Mathematics, The University of Western Ontario,
London, ON, Canada

{wfan54,djeffrey}@uwo.ca
2 Maplesoft, Waterloo, Canada

Abstract. We consider some integer sequences connected with combi-
natorial applications. Specifically, we consider Stirling partition and cycle
numbers, associated Stirling partition and cycle numbers, and Eulerian
numbers of the first and second kinds. We consider their evaluation in
different contexts. One context is the calculation of a single value based
on single input arguments. A more common context, however, is the cal-
culation of a sequence of values. We compare strategies for both. Where
possible, we compare with existing Maple implementations.

1 Introduction

For extended discussions of Stirling and Eulerian numbers, we refer to [1,2,7].
These and similar numbers arise frequently in combinatorial applications, and
have therefore been implemented in several computer algebra systems. To date,
the standard libraries of most systems have included Stirling numbers, but not
associated Stirling numbers [3], even though they have found several applications
in recent years. For example, they have appeared in series expansions for the
Lambert W function [4], and also appeared in one form of Stirling’s series for
the Gamma function [2]. (Stirling did not define the associated numbers.)

Another feature of many implementations is that the functions expect a sin-
gle argument, and return a single value. In practice, however, an application
will usually require a sequence of values, for example, to provide successive coef-
ficients in a series. The requirement of returning multiple values has already
been recognized in some Maple functions, for example, in the implementation of
Bernoulli numbers: they accept a mode parameter. To quote from Maple help:

The mode parameter controls whether or not the bernoulli routine com-
putes additional Bernoulli numbers in parallel with the requested one.
For example, if your computer has 4 cores, then the command bernoulli
(1000, singleton = false) will compute and store bernoulli (1002), bernoulli
(1004), and bernoulli (1006). Since in practice nearly all computations
which use Bernoulli numbers require many of them, and require them in
sequence, this results in considerable efficiency gains.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 118–133, 2017.
DOI: 10.1007/978-3-319-66320-3 10

Computation of Some Integer Sequences in Maple 119

This paper addresses both the computation of single values and of the integer
sequences associated with the combinatorial functions under consideration. As a
matter of terminology, we shall call a function that accepts a unique argument
and returns the corresponding unique result a singleton function, and the corre-
sponding operation a singleton computation. In contrast, a function accepting a
range (explicit or implicit) of arguments and returning the corresponding list of
values will be a sequence function, and the calculation a sequence calculation.

1.1 Definitions of Numbers

We collect here the definitions of all numbers considered.

Definition 1. The r-associated Stirling numbers of the first kind, more briefly
Stirling r-cycle numbers, are defined by the generating function

⎛
⎝ln

1
1 − z

−
r−1∑
j=1

zj

j

⎞
⎠

m

= m!
∑
n≥0

[
n

m

]

≥r

zn

n!
. (1)

Remark 1. The number
[
n
m

]
≥r

gives the number of permutations of n distinct
objects into m cycles, each cycle having a minimum cardinality r [2, p. 256].

Definition 2. The r-associated Stirling numbers of the second kind, called more
briefly here Stirling r-partition numbers, are defined, using Karamata–Knuth
notation, by the generating function

⎛
⎝ez −

r−1∑
j=0

zj

j!

⎞
⎠

m

= m!
∑
n≥0

{
n

m

}

≥r

zn

n!
. (2)

Remark 2. The number
{
n
m

}
≥r

gives the number of partitions of a set of size n

into m subsets, each subset having a minimum cardinality of r [2,5,6].

Definition 3. The Eulerian numbers of the first kind
〈
n
k

〉
are defined as the

number of permutations π1π2 . . . πn of {1, 2, . . . n} that have k ascents, i.e. k
places where πj < πj+1.

Definition 4. The Eulerian numbers of the second kind
〈〈
n
k

〉〉
are defined as the

number of permutations of the multiset {1, 1, 2, 2, . . . , n, n} for which all numbers
between the two occurrences of every m, with 1 ≤ m ≤ n, are greater than m,
for each permutation having k ascents, i.e. k places where πj < πj+1.

Remark 3. Note that m is not an argument. For example, given the multiset
{112233}, permutations such as 122133 or 123321 are permitted, but 211233 is
not. Amongst these permitted permutations, we count those with k ascents.

Nomenclature: In [1], the numbers
〈
n
k

〉
are called simply ‘Eulerian numbers’,

while the numbers
〈〈
n
k

〉〉
are called ‘second-order Eulerian numbers’.

120 W.L. Fan et al.

2 Stirling Partition Numbers

The Maple 2017 implementation is a singleton function, denoted stirling2 in
the combinat package. It uses the formula

{
n

m

}
=

1
m!

m∑
k=0

(−1)m−k

(
m

k

)
kn. (3)

For the singleton computation, Table 1 shows that the times1 are much less using
(3). In this table, we compared the Maple function stirling2 with the method
given below using the recurrence relation (7). Timings for a sequence calculation,
however, given in Table 2, show the new method is more efficient.

Table 1. Timings (sec) for generating a singleton Stirling partition number. The time
using (7) is compared with the Maple stirling2 function.

n m Recurrence stirling2

100 50 0.002 0.002

200 100 0.010 0.003

500 250 0.079 0.007

4000 200 2.700 0.009

5000 250 6.940 0.013

2.1 Sequence Calculation

Given n,m, we wish to compute all Stirling partition numbers
{
i
j

}
such that

i ≤ n and j ≤ m. We use the recurrence relation
{

i

j

}
= j

{
i − 1

j

}
+

{
i − 1
j − 1

}
, (4)

subject to the boundary conditions
{

j

j

}
= 1, and

{
i

1

}
= 1. (5)

Since
{
i
j

}
= 0 for j > i (see Fig. 1), we define a matrix P which will not store

these zeros.

Pij =
{

i + j − 1
j

}
. (6)

Then the recurrence relation becomes

P (i, j) = j P (i − 1, j) + P (i, j − 1). (7)

The boundary conditions then become, respectively, P (1, j) =
{
j
j

}
= 1, and

P (i, 1) = 1.
1 Product placement: times found using an Intel i7 in a Lenovo Ultrabook.

Computation of Some Integer Sequences in Maple 121

Timings: Table 2 shows the timings for filling matrices of various sizes with
integer sequences of Stirling partition numbers. The recurrence relation (7) is
compared with creating each entry through a call to Maple’s stirling2. Filling
the square matrix P (n, n) actually calculates all partition numbers

{
i
j

}
with

i ≤ 2n and j ≤ n. This is done for timing convenience, and the matrix can be
reshaped for other applications.

Table 2. Timings (sec) for generating sequences of Stirling partition numbers. The
time using (7) compared with Maple stirling2 function.

n m Recurrence stirling2

100 100 0.031 7.87

200 200 0.093 69.2

300 300 0.265 259

400 400 0.437 667

500 500 0.843 1450

3 Stirling Cycle Numbers

We consider the computation of
[
n
m

]
, implemented in Maple 2017 as stirling1

in the combinat package. The computational method used by stirling1 is
based on Stirling’s original definition of his numbers:

xn =
∑
k

[
n

k

]
(−1)n−kxk. (8)

For given n, stirling1 constructs the product on the left, which is then collected
in powers of x, so that by equating the coefficients of xk, all numbers

[
n
k

]
for

1 ≤ k ≤ n are determined and stored. Thus, a future call to
[
n
m

]
with 1 ≤ m ≤ n

will be returned by table lookup, but a future call with a different n will initiate
a new computation. It is interesting that although the interface appears to offer
the user only a singleton computation, in fact a particular integer sequence has
been computed silently.

3.1 Singleton Computation

A singleton computation returns the value of a function for a single pair of input
arguments. We implement the known recurrence relation

[
n

m

]
= (n − 1)

[
n − 1

m

]
+

[
n − 1
m − 1

]
, (9)

122 W.L. Fan et al.

subject to boundary conditions
[
m

m

]
= 1, for m ≥ 1, (10)

[
n

1

]
= (n − 1)!. (11)

We define the vector

u
(i)
j =

[
i + j − 1

j

]
.

In Fig. 1, we see that for fixed i, u
(i)
j describes numbers along the ith diagonal

line, counting from the left. The recurrence relation (9) can be written in terms
of u as

u
(i)
j = (i + j − 2)u(i−1)

j + u
(i)
j−1,

with u
(i)
1 = (i − 1)!. We note that once u

(i−1)
j is used, it does not need to be

stored further, so we can overwrite storage. Our iteration scheme is thus (Maple
notation for the ith element of a vector is u[i])

u[j] = (i + j − 2)u[j] + u[j − 1].

Therefore, we initialize u[1] = u
(i)
1 =

[
i
1

]
= (i − 1)! and fill in diagonal lines

successively.

m

n

Fig. 1. Scheme for calculating singleton Stirling cycle
[
n
m

]
or partition numbers

{
n
m

}
.

The computation proceeds from left to right and bottom to top. At each stage only
the numbers on one diagonal need to be stored in the vector u

(i)
j which is progressively

overwritten. The open circles show the base of each successive loop. The black filled
circles show the recurrence relation used. The larger circle is calculated from the two
smaller ones. The triangles line show the points computed by one call to stirling1.

Computation of Some Integer Sequences in Maple 123

Complexity. The aim of this subsection is to gain insight into the best ways to
test the implementations, by identifying the worst cases for the methods. A full
bit complexity is beyond the scope of this paper, and will require more work
on estimates for the sizes of Stirling numbers. As pointed out by Wilf [9], the
available estimates are for

[
n
k

]
when k is fixed and n → ∞, whereas the present

algorithms require knowledge of the opposite case.
In order to calculate the number

[
n
m

]
, a vector of length m must be re-

computed (overwritten) n − m times. Each iteration requires one multiplication
and 3 additions. Therefore the complexity is m(n−m). We can therefore expect
that the worst case for the method will be m = n/2.

Since Maple’s approach and the present one calculate different sets of num-
bers, a direct comparison is not very meaningful, and so we simply make a brief
comparison between one-time calculations. Notice that in Table 3, the times
taken by stirling1 are approximately independent of m as expected.

Table 3. Times for a single call to Maple’s stirling1 and the present singleton com-
putation. Timings (sec) based on 10 trials, with memory being cleared before each
call.

n m stirling1 Present scheme

300 150 0.023 0.035

400 200 0.063 0.052

400 20 0.062 0.011

1000 500 0.612 0.491

2000 500 4.92 3.00

3.2 A Finite Sum

For completeness, we mention that a singleton cycle number can be found from
a finite sum, as was done for a singleton partition number. We have

[
n

m

]
=

n−m∑
j=0

(−1)n−k+j

(
n − 1 + j

n − k + j

)(
2n − k

n − k − j

){
n − k + j

j

}
. (12)

Combining this with (3), we can express a cycle number as a double sum. This,
however, is too slow to warrant further consideration.

3.3 Sequence Calculation

The method used above for partition numbers can be readily adapted for cycle
numbers. Given n,m, we compute all Stirling cycle numbers

[
i
j

]
such that i ≤ n

and j ≤ m. We use the recurrence relation
[
i

j

]
= (i − 1)

[
i − 1

j

]
+

[
i − 1
j − 1

]
, (13)

124 W.L. Fan et al.

subject to the boundary conditions
[
j

j

]
= 1, and

[
i

1

]
= (i − 1)!. (14)

Since
[
i
j

]
= 0 for j > i (see Fig. 1), we define a matrix C which will not store

these zeros.

Cij =
[
i + j − 1

j

]
. (15)

Then the boundary conditions are C(1, j) =
[
j
j

]
= 1, and C(i, 1) = (i − 1)!. The

recurrence relation becomes

C(i, j) = (i + j − 2)C(i − 1, j) + C(i, j − 1). (16)

Timings. Table 4 shows the timing for filling matrices of various sizes with inte-
ger sequences of Stirling cycle numbers. The recurrence relation (16) is compared
with creating each entry through a call to Maple’s stirling1. Filling the square
matrix C(n, n) actually calculated all cycle numbers

[
i
j

]
with i ≤ 2n. This is

done for timing purposes, and the matrix can be reshaped for other applications.
The comparison is to compute the same numbers using the sequence calculation
function stirling1. Larger values of (n,m) are not tabulated because a bug in
Maple 2016 (and earlier) caused larger arguments to fail. This will be corrected
in Maple 2017.

Table 4. Timings (sec) for generating sequences of Stirling cycle numbers. The time
using (16) compared with Maple’s stirling1 function.

n m Recurrence stirling1

40 40 0.000 0.842

60 60 0.000 4.446

80 80 0.015 14.414

100 100 0.015 35.037

120 120 0.015 193.004

4 Associated Stirling Numbers

There are no known analogues of (3) or (8) for the associated Stirling numbers
for r ≥ 2; hence we must use either the generating functions (1) and (2), or the
following recurrence relations.

{
n + 1

k

}

≥r

= k

{
n

k

}

≥r

+
(

n

r − 1

){
n − r + 1

k − 1

}

≥r

, (17)

Computation of Some Integer Sequences in Maple 125

[
n + 1

k

]

≥r

= n

[
n

k

]

≥r

+ nr−1

[
n − r + 1

k − 1

]

≥r

. (18)

Note that n0 = 1. The boundary cases are
{

n

1

}

≥r

= 1, n ≥ r, (19)

[
n

1

]

≥r

= (n − 1)!, n ≥ r, (20)

{
kr

k

}

≥r

=
(rk)!

(r!)k k!
, k ≥ 1, (21)

[
kr

k

]

≥r

=
(rk)!
rkk!

, k ≥ 1. (22)

4.1 Singleton Stirling 2-Partition and 2-Cycle

The two computations have the same structure, and can be described in parallel.
We choose to implement

{
n

m

}

≥2

= m

{
n − 1

m

}

≥2

+ (n − 1)
{

n − 2
m − 1

}

≥2

, (23)

[
n

m

]

≥2

= (n − 1)
[
n − 1

m

]

≥2

+ (n − 1)
[

n − 2
m − 1

]

≥2

. (24)

We also have boundary conditions
[
2n

n

]

≥2

=
{

2n

n

}

≥2

=
(2n)!
n!2n

= (2n − 1)!!,

[
2n + 1

n

]

≥2

= 2
(2n + 1)!

3(n − 1)!2n
= 2

{
2n + 1

n

}

≥2

.

We define the vector

u
(i)
j =

[
i + 2j − 1

j

]

≥2

,

126 W.L. Fan et al.

and similarly for 2-partition numbers. In Fig. 2, we see that if we fix i, then u
(i)
j

describes numbers along the ith diagonal line. Now u
(i)
1 = i! and

u
(i)
j = (i + 2j − 2)u(i−1)

j + (i + 2j − 2)u(i)
j−1.

We note that once u
(i−1)
j is used, it does not need to be stored further, so we

can overwrite storage. Our iteration scheme is thus

u[j] = (i + 2j − 2)(u[j] + u[j − 1]).

For initialization, we can use a special case of (24):
[
2j + 2
j + 1

]

≥2

= u
(1)
j+1 = (2j + 1)

[
2j

j

]

≥2

= (2j + 1)u(1)
j .

Therefore, we initialize u to i = 1 using u
(1)
j = u[j] = 1 and fill in one line at a

time by fixing i and looping over j. Each j loop starts setting u
(i)
1 = i! = iu

(i−1)
1 .

We then loop over i.

m

n

Fig. 2. Calculating 2-partition and 2-cycle numbers. As with the r = 1 case, only
numbers on one sloping line need to be kept at any stage of the computation. The
same convention for illustrating the recurrence relation is used.

4.2 Sequence Calculation of 2-Partition and 2-Cycle Numbers

Given n,m, we compute all Stirling 2-partition numbers
{
i
j

}
≥2

or 2-cycle numbers[
i
j

]
≥2

such that i ≤ n and j ≤ m. We use the recurrence relations (23) or (24) as

Computation of Some Integer Sequences in Maple 127

appropriate. Since
{
i
j

}
≥2

=
[
i
j

]
≥2

= 0 for 2j > i (see Fig. 2), we define a matrix
C which will not store these zeros.

Cij =
[
i + 2j − 1

j

]

≥2

. (25)

Then the recurrence relation for 2-partition becomes

C(i, j) = j C(i − 1, j) + (i + 2j − 2)C(i − 1, j − 1). (26)

The recurrence relation for 2-cycle becomes

C(i, j) = (i + 2j − 2)C(i − 1, j) + (i + 2j − 2)C(i − 1, j − 1). (27)

4.3 Singleton Stirling r-Partition and r-Cycle Numbers

From the above discussion of 1-associated and 2-associated numbers, the gener-
alization is clear. We have to implement

[
n + 1

m

]

≥r

= n

[
n

m

]

≥r

+ n(n − 1)(n − 2) . . . (n − r + 2)
[
n − r + 1

m − 1

]

≥r

. (28)

We define the vector

u
(i)
j =

[
i + rj − 1

j

]

≥r

.

The generalization of Fig. 2 to one containing lines of slope 1/r is not shown.
For fixed i, u

(i)
j describes numbers along one of the lines, with u

(i)
1 = (i + r − 2)!

and

u
(i)
j = (i + rj − 2)u(i−1)

j + (i + rj − 2)(i + rj − 3) . . . (i + rj − r)u(i)
j−1.

We note that once u
(i−1)
j is used, it does not need to be stored further, so we

can overwrite storage. Our iteration scheme is thus

u[j] = (i + rj − 2)u[j] + (i + rj − 2) . . . (i + rj − r)u[j − 1].

For initialization, we can use a special case of (28):
[
rj + r

j + 1

]

≥r

= u
(1)
j+1 =(rj + r − 1)(rj + r − 2) . . . (rj + 1)

[
rj

j

]

≥r

=(rj + r − 1)(rj + r − 2) . . . (rj + 1)u(1)
j .

We initialize u using u
(1)
j = u[j] = 1 and fill in each line by fixing i and looping

over j. We start each j loop by setting u
(i)
1 = (i + r − 2)! = (i + r − 2)u(i−1)

1 . We
then loop over i.

128 W.L. Fan et al.

4.4 Sequence Calculation of r-Partition and r-Cycle Numbers

Given n,m, we compute all Stirling r-partition numbers
{
i
j

}
≥r

or r-cycle numbers[
i
j

]
≥r

such that i ≤ n and j ≤ m. The recurrence relation applied here can refer
to (17) and (18), which is subject to the boundary conditions

{
1
1

}

≥r

=
[
1
1

]

≥r

= 1. (29)

Since
{
i
j

}
≥r

=
[
i
j

]
≥r

= 0 for rj > i, we define a matrix C which will not store
these zeros.

Cij =
[
i + rj − 1

j

]

≥r

. (30)

Then the recurrence relation for r-partition becomes

C(i, j) = j C(i − 1, j) +
(

i + rj − 2
r − 1

)
C(i − r + 1, j − 1). (31)

The recurrence relation for r-cycle becomes

C(i, j) = (i+rj−2)C(i−1, j)+(i+rj−2)(i+rj−3) . . . (i+rj−r)C(i−r+1, j−1).
(32)

4.5 Implementation in Maple

In our implementation of Stirling numbers, we provide procedures for users to
compute either a singleton Stirling number or a sequence of Stirling numbers.
The procedures are

1. StirlingRCycle: to calculate a singleton Stirling r-cycle number.
2. StirlingRCycleMatrix: to calculate a sequence of Stirling r-cycle numbers.
3. StirlingRPartition: to calculate a singleton Stirling r-partition number.
4. StirlingRPartitionMatrix: to calculate a sequence of Stirling r-partition

numbers.

Neither Maple nor Mathematica has an implementation with which to compare
our programs. Therefore we have programmed the recurrence relations, as well
as the generating functions in Maple. In Table 5 below, we compared our new
scheme for computing a singleton r-associated Stirling cycle number with using
the generating function. The generating function for Stirling r-cycle numbers is:

StirRCycleGen := proc(n,k,r) local t, z, p;
t:=series((ln(1/(1-z)) - add(z^p/p , p=1..r-1))^k, z=0,n+1);
n!*coeff(t, z, n)/k!;

end proc;

Computation of Some Integer Sequences in Maple 129

Table 5. Timings in seconds of computations of single Stirling r-cycle number. Column
headings give the functions used. The numbers tested were

[
1700
m

]
≥100

.

m Singleton scheme Generating function

2 0.062 2.979

3 0.093 14.461

4 0.109 26.707

5 0.140 41.184

6 0.156 38.797

7 0.171 51.121

8 0.171 45.240

9 0.171 53.055

10 0.171 53.289

Table 5 shows that the singleton scheme is much faster than the generating
function for the computation of single r-associated Stirling cycle number. For the
computation of a sequence of r-associated Stirling cycle numbers, we compared
three methods: (1) a loop calling the singleton function; (2) a loop calling the
generating function; (3) the sequence procedure. The results are collected in
Tables 6 and 7, and show that the sequence procedure is fastest.

Table 6. Timings in seconds of computations of a sequence of r-associated Stirling
cycle numbers. Column headings give the functions used. The input argument is n,
and the return is an n× n matrix.

n Singleton scheme Generating function

10 0.011 2.402

20 0.024 8.746

30 0.037 18.952

40 0.063 36.477

50 0.771 72.817

Similar tests were performed for r-associated Stirling partition numbers. The
generating function for Stirling r-partition numbers is:

StirRPartGen := proc(n,k,r) local t, z, p;
t:=series((exp(z) - add(z^p/p! , p=0..r-1))^k, z=0, n+1);
n!*coeff(t, z, n)/k!;

end proc;

The test data are collected in Tables 8, 9 and 10. Since the pattern is similar to
that for cycle numbers, the discussion and tables are abbreviated.

130 W.L. Fan et al.

Table 7. Timings in seconds of computations of a sequence of r-associated Stirling
cycle numbers. Column headings give the functions used. The input argument is n,
and the return is an n× n matrix.

n Singleton scheme Sequence scheme

100 7.145 0.015

150 36.411 0.031

200 117.734 0.062

250 295.102 0.124

300 638.474 0.202

Table 8. Timings in seconds of computations of single r-associated Stirling partition
number. Column headings give the functions being used. The numbers tested were{
1000
m

}
≥18

.

m Singleton scheme Generating function

2 0.031 7.129

4 0.062 18.969

6 0.093 29.250

8 0.140 32.276

10 0.156 43.664

Table 9. Timings in seconds of computations of a sequence of r-associated Stirling
partition number. Column headings give the functions being used. The input argument
is n, and the return is an n× n matrix.

n Singleton scheme Generating function

10 0.020 1.864

20 0.035 8.345

30 0.070 22.047

40 0.144 44.074

50 0.201 79.233

Table 10. Timings in seconds of computations of a sequence of r-associated Stirling
partition numbers. Column headings give the functions used. The input argument is
n, and the return is an n× n matrix.

n Singleton scheme Sequence scheme

100 7.145 0.015

200 117.734 0.062

250 295.102 0.124

300 638.474 0.202

Computation of Some Integer Sequences in Maple 131

5 A Multiple Threads Approach to Sequence Calculations

The Maple help for Bernoulli numbers, quoted in the introduction, states that
additional values of Bernoulli numbers are calculated in parallel. This section
explored ways in which parallel computation could be applied to Stirling num-
bers. For this, we use the Threads package in Maple. When we generate the
numbers inside a matrix, instead of filling the matrix row by row and column
by column, we fill each diagonal from left to right. Here is the main part in the
sequential code to fill Stirling r-cycle numbers in the matrix by diagonal with
given input arguments (n, r) where n is the size of matrix.

for N from 3 to n do
for k from 2 to N-1 do

pd := mul(N-k+r-1-l, l = 1 .. r-1);
A(N-k+r, k) := pd*A(N-k, k-1)+(N-k+r-2)*A(N-k+r-1, k);

end do;
end do;

According to the recurrence relation, we know that we can divide such diag-
onal into a left half and right half. So we define two subroutines accordingly.

fileft := proc (N, r) local k, Nsplit, pd, l; global A;
Nsplit := floor((1/2)*N+1/2);
for k from 2 to Nsplit do

pd := mul(N-k+r-1-l, l = 1 .. r-1);
A(N-k+r, k) := pd*A(N-k, k-1)+(N-k+r-2)*A(N-k+r-1, k);

end do; end proc;

and

filrght := proc (N, r) local k, Nsplit, pd, l; global A;
Nsplit := floor((1/2)*N+1/2);
for k from Nsplit+1 to N-1 do

pd := mul(N-k+r-1-l, l = 1 .. r-1);
A(N-k+r, k) := pd*A(N-k, k-1)+(N-k+r-2)*A(N-k+r-1, k);

end do; end proc;

And for each half of the diagonal, we can establish an independent thread to
fulfill the task. We implemented this approach in Maple.

Threaded := proc (n, r) local N, k, Nsplit; global A;
A := Matrix(n, n, fill = 0);
A(1, 1) := 1;
for N from 3 to n do

Threads:-Task:-Start(null, Task = [fileft, N, r],
Task = [filrght, N, r])

end do; end proc;

132 W.L. Fan et al.

Table 11 compares the threaded scheme with the sequential scheme in the
computation of an n × n matrix of Stirling cycle numbers. The table reflects
the limitation that there is an overhead cost to setting up new threads, and the
benefit of the threaded approach is felt only when the amount of work achieved
within a thread outweighs the overhead. In this implementation, new threads
are created for each loop. We are exploring new methods of calculation which
will allow the threads to work more efficiently, with less overhead.

Table 11. Timings in seconds of comparison of threaded code with sequential code
in generating sequences of Stirling Cycle numbers. The tests were made on an AMD
8-core processor.

n Threaded scheme Sequential scheme

500 0.856 0.329

1000 2.420 1.380

2000 9.240 9.610

2500 17.900 24.900

3000 29.880 39.870

4000 87.960 142.800

6 Implementation of Eulerian Numbers

The Eulerian numbers share many similarities with the Stirling numbers, and
all the methods described above can be applied to their case. The numbers obey
the following recurrence relations [1].

〈
n

m

〉
= (m + 1)

〈
n − 1

m

〉
+ (n − m)

〈
n − 1
m − 1

〉
, (33)

〈〈
n

m

〉〉
= (m + 1)

〈〈
n − 1

m

〉〉
+ (2n − m − 1)

〈〈
n − 1
m − 1

〉〉
. (34)

The present Maple functions eulerian1 and eulerian2 are recursively pro-
grammed implementations of these equations. As a consequence, they are very
slow for large arguments. The new implementation of these numbers consists of
4 functions, which follow the patterns of the Stirling number implementations.

1. Eulerian1: calculates a singleton Eulerian number of the first kind.
As with Stirling partition numbers, a finite sum is known which is distinctly
the fastest method for a singleton computation [8]:

〈
n

k

〉
=

k+1∑
j=0

(−1)j
(

n + 1
j

)
(k − j + 1)n. (35)

Computation of Some Integer Sequences in Maple 133

2. Eulerian1Matrix: calculates a sequence of Eulerian numbers of the first kind.
This follows the sequence calculation of Stirling numbers, using (33).

3. Eulerian2: calculates singleton Eulerian numbers of the second kind.
This follows the simpleton method used earlier for Stirling cycle numbers.
There is no counterpart of (8) for Eulerian numbers.

4. Eulerian2Matrix: calculates a sequence of Eulerian numbers of the second
kind.
This follows the sequence calculation of Stirling numbers.

6.1 Timings for Eulerian Number Calculations

In view of the similarities with Stirling numbers, we shall not labour the com-
parisons between methods, since they form the same procession of speeds seen
before. Table 12 compares the implementations, following the patterns set above.

Table 12. Timings in seconds of computations of Eulerian numbers. Column headings
give the functions used.

n Eulerian1 Eulerian1Matrix Eulerian2 Eulerian2Matrix

60 2.776 0.015 3.135 0.000

80 9.656 0.015 10.795 0.015

100 23.743 0.015 27.924 0.015

120 52.884 0.015 60.684 0.015

140 101.634 0.046 115.159 0.046

160 180.430 0.062 204.049 0.062

180 300.036 0.062 342.952 0.062

References

1. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley
Publishing Co., Reading (1994)

2. Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht (1974)
3. Howard, F.T.: Associated stirling numbers. Fibonacci Quart. 18(4), 303–315 (1980)
4. Corless, R.M., Jeffrey, D.J., Knuth, D.E.: A sequence of series for the Lambert W

Function. In: Kuechlin, W.W. (ed.) Proceedings of the ISSAC 1997. ACM Press
(1997)

5. Karamata, J.: Theoreme sur la sommabilite exponentielle et d’autres sommabilites
rattachant. Mathematica, Cluj 9, 164–178 (1935). Romania

6. Knuth, D.E.: Two notes on notation. Am. Math. Mon. 99, 403–422 (1992)
7. Stirling, J.: Methodus Differentialis, London (1730)
8. Lehmer, D.H.: Generalized Eulerian numbers. J. Combin. Theory Ser. A 32, 195–

215 (1982)
9. Wilf, H.S.: The asymptotic behavior of the stirling numbers of the first kind. J.

Combin. Theory Ser. A 64, 344–349 (1993)

Symbolic-Numerical Algorithm for Generating
Interpolation Multivariate Hermite Polynomials

of High-Accuracy Finite Element Method

A.A. Gusev1(B), V.P. Gerdt1,2, O. Chuluunbaatar1,3, G. Chuluunbaatar1,
S.I. Vinitsky1,2, V.L. Derbov4, and A. Góźdź5

1 Joint Institute for Nuclear Research, Dubna, Russia
gooseff@jinr.ru

2 RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russia
3 Institute of Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia
4 N.G. Chernyshevsky Saratov National Research State University, Saratov, Russia

5 Institute of Physics, University of M. Curie-Sk�lodowska, Lublin, Poland

Abstract. A symbolic-numerical algorithm implemented in Maple for
constructing Hermitian finite elements is presented. The basis functions
of finite elements are high-order polynomials, determined from a spe-
cially constructed set of values of the polynomials themselves, their par-
tial derivatives, and their derivatives along the directions of the normals
to the boundaries of finite elements. Such a choice of the polynomials
allows us to construct a piecewise polynomial basis continuous across
the boundaries of elements together with the derivatives up to a given
order, which is used to solve elliptic boundary value problems using the
high-accuracy finite element method. The efficiency and the accuracy
order of the finite element scheme, algorithm and program are demon-
strated by the example of the exactly solvable boundary-value problem
for a triangular membrane, depending on the number of finite elements
of the partition of the domain and the number of piecewise polynomial
basis functions.

Keywords: Hermite interpolation polynomials · Boundary-value
problem · High-accuracy finite element method

1 Introduction

In Refs. [9,10], the symbolic-numeric algorithms and programs for the solution
of boundary-value problems for a system of second-order ordinary differential
equations using the finite element method (FEM) of high accuracy order with
Hermite interpolation polynomials (HIP) were developed, aimed at the calcula-
tion of spectral and optical characteristics of quantum systems.

It is known that the approximating function of the boundary-value problem
solution in the entire domain can be expressed by means of its values and the
values of its derivatives at the node points of the domain via the basis functions,
c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 134–150, 2017.
DOI: 10.1007/978-3-319-66320-3 11

Interpolation Multivariate Hermite Polynomials 135

referred to as Lagrange interpolation polynomials (LIP), which are nonzero only
on a few elements, adjacent to the corresponding nodes. Generally, the approxi-
mating function for the entire domain is represented in terms of linear combina-
tions of the basis functions. The coefficients of these linear combinations are the
values of the approximating function and its directional derivatives on a given
mesh of nodes. The basis functions themselves or their directional derivatives
take a unit value at one of the nodes. In many cases, the schemes are restricted
to the set of node values of the basis functions themselves. However, there are
problems, in which the values of directional derivatives are also necessary. They
are of particular importance when high smoothness between the elements is
required, or when the gradient of solution is to be determined with increased
accuracy. The construction of such basis functions, referred to as Hermite inter-
polation polynomials, is not possible on an arbitrary mesh of nodes. It is one of
the most important and difficult problems in the finite element method and its
applications in different fields, solved to date in the explicit form only for certain
particular cases [1,2,4–8,11,13,14,17,19,21].

This motivation determines the aim of the present work, namely, the develop-
ment of a symbolic-numerical algorithm implemented in any CAS for computing
in analytical form the basis functions of Hermitian finite elements for a few vari-
ables and their application to constructing the FEM schemes with high order of
accuracy.

In the paper, we present the symbolic-numeric algorithm implemented in the
CAS Maple [15] for constructing the interpolation polynomials (basis functions)
of Hermitian finite elements of a few variables based on a specially constructed
set of values of the polynomials themselves, their partial derivatives, and deriva-
tives along the normals to the boundaries of finite elements. The corresponding
piecewise continuous basis of the high-order accuracy FEM provides the conti-
nuity not only of the approximate solution, but also of its derivatives to a given
order depending on the smoothness of the variable coefficients of the equation
and the domain boundary. This basis is used to construct the FEM scheme
for high-accuracy solution of elliptic boundary-value problems in the bounded
domain of multidimensional Euclidean space, specified as a polyhedral domain.
We also used the symbolic algorithm to generate Fortran routines that allow the
solution of the generalized algebraic eigenvalue problem with high-dimension
matrices. The efficiency of the FEM scheme, the algorithm, and the program
is demonstrated by constructing typical bases of Hermitian finite elements and
their application to the benchmark exactly solvable boundary-value eigenvalue
problem for a triangle membrane.

The paper is organized as follows. In Sect. 2, the setting of the boundary-
value eigenvalue problem is given. In Sect. 3, we formulate the symbolic-numeric
algorithm for generating the bases of Hermitian finite elements with multiple
variables. In Sect. 4, we present the results of the calculations for the benchmark
boundary-value problem, demonstrating the efficiency of the FEM scheme. In the
Conclusion, we discuss the prospects of development of the proposed algorithm
of constructing the Hermitian finite elements and its applications to high-order
accuracy FEM schemes.

136 A.A. Gusev et al.

2 Setting of the Problem

Consider a self-adjoint boundary-value problem for the elliptic differential equa-
tion of the second order:

(D − E) Φ(z) ≡
⎛
⎝− 1

g0(z)

d∑
ij=1

∂

∂zi
gij(z)

∂

∂zj
+ V (z) − E

⎞
⎠ Φ(z) = 0. (1)

For the principal part coefficients of Eq. (1), the condition of uniform ellipticity
holds in the bounded domain z = (z1, . . . , zd) ∈ Ω of the Euclidean space Rd,
i.e., the constants μ > 0, ν > 0 exist such that μξ2 ≤ ∑d

ij=1 gij(z)ξiξj ≤
νξ2, ξ2 =

∑d
i=1 ξ2i ∀ξ ∈ Rd. The left-hand side of this inequality expresses the

requirement of ellipticity, while the right-hand side expresses the boundedness of
the coefficients gij(z). It is also assumed that g0(z) > 0, gji(z) = gij(z) and V (z)
are real-valued functions, continuous together with their generalized derivatives
to a given order in the domain z ∈ Ω̄ = Ω ∪ ∂Ω with the piecewise continuous
boundary S = ∂Ω, which provide the existence of nontrivial solutions obeying
the boundary conditions [6,12] of the first kind

Φ(z)|S = 0, (2)

or the second kind

∂Φ(z)
∂nD

∣∣∣
S
= 0,

∂Φ(z)
∂nD

=
d∑

ij=1

(n̂, êi)gij(z)
∂Φ(z)
∂zj

, (3)

where ∂Φm(z)
∂nD

is the derivative along the conormal direction, n̂ is the outer normal

to the boundary of the domain S = ∂Ω, êi is the unit vector of z =
∑d

i=1 êizi,
and (n̂, êi) is the scalar product in Rd.

For a discrete spectrum problem, the functions Φm(z) from the Sobolev space
Hs≥1

2 (Ω), Φm(z) ∈ Hs≥1
2 (Ω), corresponding to the real eigenvalues E: E1 ≤

E2 ≤ ... ≤ Em ≤ ... satisfy the conditions of normalization and orthogonality

〈Φm(z)|Φm′(z)〉 =
∫

Ω

dzg0(z)Φm(z)Φm′(z) = δmm′ , dz = dz1...dzd. (4)

The FEM solution of the boundary-value problems (1)–(4) is reduced to the
determination of stationary points of the variational functional [3,6]

Ξ(Φm, Em, z) ≡
∫

Ω

dzg0(z)Φm(z) (D − Em) Φ(z) = Π(Φm, Em, z), (5)

where Π(Φm, Em, z) is the symmetric quadratic functional

Π(Φm, Em, z) =

∫

Ω

dz

[d∑
ij=1

gij(z)
∂Φm(z)

∂zi

∂Φm(z)

∂zj
+ g0(z)Φm(z)(V (z) − Em)Φm(z)

]
.

Interpolation Multivariate Hermite Polynomials 137

Fig. 1. (a) Enumeration of nodes Ar, r = 1, . . . , (p + 1)(p + 2)/2 with sets of numbers
[n0, n1, n2] for the standard (canonical) triangle element Δ in the scheme with the fifth-
order LIP p′ = p = 5 at d = 2. The lines (five crossing straight lines) are zeros of LIP
ϕ14(z

′) from (12), equal to 1 at the point labeled with the number triple [n0, n1, n2] =
[2, 2, 1]. (b) LIP isolines of ϕ14(z

′)

3 FEM Calculation Scheme

In FEM, the domain Ω = Ωh(z) =
⋃Q

q=1 Δq, specified as a polyhedral domain,
is covered with finite elements, in the present case, the simplexes Δq with d + 1
vertices ẑi = (ẑi1, ẑi2, . . . , ẑid) with i = 0, . . . , d. Each edge of the simplex Δq is
divided into p equal parts, and the families of parallel hyperplanes H(i, k) are
drawn, numbered with the integers k = 0, . . . , p, starting from the correspond-
ing face, e.g., as shown for d = 2 in Fig. 1 (see also [6]). The equation of the
hyperplane is H(i, k) : H(i; z) − k/p = 0, where H(i; z) is a linear function of z.

The node points of hyperplanes crossing Ar are enumerated with sets of
integers [n0, . . . , nd], ni ≥ 0, n0 + . . . + nd = p, where ni, i = 0, 1, . . . , d are
the numbers of hyperplanes, parallel to the simplex face, not containing the i-th
vertex ẑi = (ẑi1, . . . ẑid). The coordinates ξr = (ξr1, . . . , ξrd) of the node point
Ar ∈ Δq are calculated using the formula

(ξr1, . . . , ξrd) = (ẑ01, . . . , ẑ0d)n0/p + (ẑ11, . . . , ẑ1d)n1/p + . . . + (ẑd1, . . . , ẑdd)nd/p (6)

from the coordinates of the vertices ẑj = (ẑj1, . . . , ẑjd). Then the LIP ϕr(z) equal
to one at the point Ar with the coordinates ξr = (ξr1, . . . , ξrd), characterized by
the numbers [n0, n1, . . . , nd], and equal to zero at the remaining points ξr′ , i.e.,
ϕr(ξr′) = δrr′ , has the form

ϕr(z) =

⎛
⎝

d∏
i=0

ni−1∏
n′

i=0

H(i; z) − n′
i/p

H(i; ξr) − n′
i/p

⎞
⎠ . (7)

138 A.A. Gusev et al.

Note that the construction of the HIP ϕκ
r (z), where κ ≡ κ1, . . . , κd, with the

fixed values of the functions {ϕκ
r (ξr′)} and the derivatives {∂•

•ϕκ
r (z)|z=ξr′ } at

the nodes ξr′ , already at d = 2 leads to cumbersome expressions, improper for
FEM using nonuniform mesh.

The economical implementation of FEM is the following:

1. The calculations are performed in the local (reference) coordinates z′, in which
the coordinates of the simplex vertices are the following: ẑ′

j = (ẑ′
j1, . . . , ẑ

′
jd),

ẑ′
jk = δjk,

2. The HIP in the physical coordinates z in the mesh is sought in the form of
linear combinations of polynomials in the local coordinates z′, the transition
to the physical coordinates is executed only at the stage of numerical solution
of a particular boundary-value problem (1)–(5),

3. The calculation of FEM integrals is executed in the local coordinates.

Let us construct the HIP on an arbitrary d-dimensional simplex Δq with the
d + 1 vertices ẑi = (ẑi1, ẑi2, . . . , ẑid), i = 0, . . . , d. For this purpose, we introduce
the local coordinate system z′ = (z′

1, z
′
2, . . . , z

′
d) ∈ Rd, in which the coordinates

of the simplex vertices are the following: ẑ′
i = (ẑ′

ik = δik, k = 1, . . . , d). The
relation between the coordinates is given by the formula:

zi = ẑ0i +
d∑

j=1

Ĵijz
′
j , i = 1, . . . , d, Ĵij = ẑji − ẑ0i. (8)

The inverse transformation and the relation between the differentiation oper-
ators are given by the formulas

z′
i =

d∑
j=1

(Ĵ−1)ij(zj − ẑ0j), (9)

∂

∂z′
i

=
d∑

j=1

Ĵji
∂

∂zj
,

∂

∂zi
=

d∑
j=1

(Ĵ−1)ji
∂

∂z′
j

. (10)

Equation (10) is used to calculate the HIP ϕκ
r (z′) = {ϕ̌κ

r (z′), Qs(z′)} from
(20) that satisfy the conditions (13), (17), and (18) of the next section, with the
fixed derivatives to the given order at the nodes ξr′ . In this case, the derivatives
along the normal to the element boundary in the physical coordinate system are,
generally, not those in the local coordinates z′. When constructing the HIP in the
local coordinates z′ one has to recalculate the fixed derivatives at the nodes ξr′ of
the element Δq to the nodes ξ′

r′ of the element Δ, using the matrices Ĵ−1, given
by cumbersome expressions. Therefore, the required recalculation is executed
based on the relations (8)–(10) for each finite element Δq at the stage of the
formation of the HIP basis {ϕκ̄′

r (z′)}P
r=1 on the finite element Δ, implemented

numerically using the analytical formulas, presented in the next section.

Interpolation Multivariate Hermite Polynomials 139

Fig. 2. Schematic diagram of the conditions on the element Δq (upper panel) and
Δ (lower panel) for constructing the basis of HIP [pκmaxκ

′]: [131], [141], [231], [152].
The squares are the points ξ′

r, where the values of the functions and their derivatives
are fixed according to the conditions (13), (16); the solid (dashed) arrows begin at the
points η′

s, where the values of the first (second) derivative in the direction of the normal
in the physical coordinates are fixed, according to the condition (17), respectively; the
circles are the points ζ′

s, where the values of the functions are fixed according to the
condition (18)

The integrals that enter the variational functional (5) on the domain Ωh(z) =⋃Q
q=1 Δq, are expressed via the integrals, calculated on the element Δq, and

recalculated to the local coordinates z′ on the element Δ,
∫

Δq

dzg0(z)ϕκ
r (z)ϕκ′′

r′ (z)U(z) = J

∫

Δ

dz′g0(z(z′))ϕκ
r (z′)ϕκ′′

r′ (z′)U(z(z′)), (11)

∫

Δq

dzgs1s2(z)
∂ϕκ

r (z)

∂zs1

∂ϕκ′′
r′ (z)

∂zs2

= J

d∑
t1,t2=1

Ĵ−1
s1s2;t1t2

∫

Δ

dz′gs1s2(z(z′))
∂ϕκ

r (z′)
∂z′

t1

∂ϕκ′′
r′ (z′)
∂z′

t2

,

where J = det Ĵ > 0 is the determinant of the matrix Ĵ from Eq. (8),
Ĵ−1

s1s2;t1t2 = (Ĵ−1)t1s1(Ĵ
−1)t2s2 , dz′ = dz′

1 . . . dz′
d, and ϕκ

r (z′) = {ϕ̌κ
r (z′), Qs(z′)}

from Eq. (20).

3.1 Lagrange Interpolation Polynomials

In the local coordinates, the LIP ϕr(z
′) is equal to one at the node point ξ′

r

characterized by the numbers [n0, n1, . . . , nd], and zero at the remaining node
points ξ′

r′ , i.e., ϕr(ξ
′
r′) = δrr′ , are determined by Eq. (7) at H(0; z′) = 1 − z′

1 −
. . . − z′

d, H(i; z′) = z′
i, i = 1, . . . , d:

140 A.A. Gusev et al.

Table 1. Characteristics of the HIP bases (20) at d = 2

[pκmaxκ′] [131] [141] [231] [152] [162] [241] [173]

p′ κmax(p + 1) − 1 5 7 8 9 11 11 13

Nκmaxp′ (p + 1)(p + 2)κmax(κmax + 1)/4 18 30 36 45 63 60 84

N1p′ (p′ + 1)(p′ + 2)/2 21 36 45 55 78 78 105

K p(p + 1)κmax(κmax − 1)/4 3 6 9 10 15 9 21

T1(1) 3p 3 3 6 3 3 6 3

T1(2) 9p 9 9 18 9 9 18 9

N(AP1) Nκmaxp′ 18 30 36 45 63 60 84

N(AP2) T1(κ′) 3 3 6 9 9 6 18

N(AP3) K − T1(κ′) 0 3 3 1 6 12 3

Restriction of derivative order κ′ : 3pκ′(κ′ + 1)/2 ≤ K

ϕr(z
′) =

⎛
⎝

d∏
i=1

ni−1∏
n′

i=0

z′
i − n′

i/p

ni/p − n′
i/p

⎞
⎠

⎛
⎝

n0−1∏
n′
0=0

1 − z′
1 − . . . − z′

d − n′
0/p

n0/p − n′
0/p

⎞
⎠ . (12)

Setting the numerators in Eq. (12) equal to zero yields the families of equa-
tions for the straight lines, directed “horizontally”, “vertically”, and “diago-
nally” in the local coordinate system of the element Δ, which is related by
the affine transformation with the “oblique” family of straight lines of the ele-
ment Δq. In Fig. 1, an example is presented that illustrates the construction
of the LIP at d = 2, r, r′ = 1, . . . , (p + 1)(p + 2)/2, p = 5 on the element Δ
in the form of a rectangular triangle with the vertices ẑ′

0 = (ẑ′
01, ẑ

′
02) = (0, 0),

ẑ′
1 = (ẑ′

11, ẑ
′
12) = (1, 0), ẑ′

2 = (ẑ′
21, ẑ

′
22) = (0, 1).

The piecewise polynomial functions Pl̄(z) forming the finite-element basis
{Pl̄(z)}P

l̄=1
, which are constructed by joining the LIP ϕr(z) of Eq. (7), obtained

from Eq. (12) by means of the transformation (9), on the finite elements Δq:

Pl(z) = {ϕl(z), Al ∈ Δq; 0, Al
∈ Δq} ,

are continuous, but their derivatives are discontinuous at the boundaries of the
elements Δq.

3.2 Algorithm for Calculating the Basis of Hermite Interpolating
Polynomials

Let us construct the HIP of the order p′ by joining of which the piecewise poly-
nomial functions (27) with the continuous derivatives up to the given order κ′

can be obtained.

Step 1. Auxiliary Polynomials (AP1). To construct HIP in the local coor-
dinates z′, let us introduce the set of auxiliary polynomials (AP1)

Interpolation Multivariate Hermite Polynomials 141

ϕκ1...κd
r (ξ′

r) = δrr′δκ10 . . . δκd0,
∂μ1...μdϕ

κ1...κd
r (z′)

∂z′
1

μ1 . . . ∂z′
d

μd

∣∣∣∣
z′=ξ′

r′

= δrr′δκ1μ1 . . . δκdμd , (13)

0 ≤ κ1 + κ2 + . . . + κd ≤ κmax − 1, 0 ≤ μ1 + μ2 + . . . + μd ≤ κmax − 1.

Here at the node points ξ′
r, defined according to (6), in contrast to LIP, the

values of not only the functions themselves, but of their derivatives to the order
κmax − 1 are specified. AP1 are given by the expressions

ϕκ1κ2...κd
r (z′) = wr(z

′)
∑

μ∈Δκ

aκ1...κd,μ1...μd
r (z′

1 − ξ′
r1)

μ1 × . . . × (z′
d − ξ′

rd)μd , (14)

wr(z
′) =

⎛
⎝ d∏

i=1

ni−1∏
n′

i=0

(z′
i − n′

i/p)κmax

(ni/p − n′
i/p)κmax

⎞
⎠
⎛
⎝n0−1∏

n′
0=0

(1 − z′
1 − . . . − z′

d − n′
0/p)κmax

(n0/p − n′
0/p)κmax

⎞
⎠ ,

wr(ξ
′
r) = 1,

where the coefficients aκ1...κd,μ1...μd
r are calculated from recurrence relations

obtained by substitution of Eq. (14) into conditions (13),

aκ1...κd,μ1...μd
r =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, μ1 + . . . + μd ≤ κ1 + . . . + κd, (μ1, . . . , μd) �= (κ1, . . . , κd),
d∏

i=1

1
μi!

, (μ1, . . . , μd) = (κ1, . . . , κd);

− ∑
ν∈Δν

(
d∏

i=1

1
(μi−νi)!

)
g

μ1−ν1,...,μd−νd
r (ξ′

r)a
κ1...κd,ν1...νd
r ,

μ1 + . . . + μd > κ1 + . . . + κd;

(15)

gκ1κ2...κd(z′) =
1

wr(z′)
∂κ1κ2...κdwr(z

′)
∂z′

1
κ1∂z′

2
κ2 . . . ∂z′

d
κd

.

For d > 1 and κmax > 1, the number Nκmaxp′ of HIP of the order p′ and the
multiplicity of nodes κmax are smaller than the number N1p′ of the polynomials
that form the basis in the space of polynomials of the order p′ (e.g., the LIP
from (12)), i.e., the polynomials satisfying Eq. (13) are determined not uniquely.

Table 2. The HIP p = 1, κmax = 3, κ′ = 1, p′ = 5 (the Argyris element [5,6,14])

AP1 : ξ1 = (0, 1), ξ2 = (1, 0), ξ3 = (0, 0)

ϕ0,0
1 = z32(6z

2
2 − 15z2 + 10) ϕ0,0

2 = z31(6z
2
1 − 15z1 + 10) ϕ0,0

3 = z30(6z
2
0 − 15z0 + 10)

ϕ0,1
1 = −z32(z2 − 1)(3z2 − 4) ϕ0,1

2 = −z31z2(3z1 − 4) ϕ0,1
3 = −z30z2(3z0 − 4)

ϕ1,0
1 = −z1z32(3z2 − 4) ϕ1,0

2 = −z31(z1 − 1)(3z1 − 4) ϕ1,0
3 = −z30z1(3z0 − 4)

ϕ0,2
1 = z32(z2 − 1)2/2 ϕ0,2

2 = z31z22/2 ϕ0,2
3 = z30z22/2

ϕ1,1
1 = z1z32(z2 − 1) ϕ1,1

2 = (z1 − 1)z31z2 ϕ1,1
3 = z30z1z2

ϕ2,0
1 = z21z32/2 ϕ2,0

2 = z31(z1 − 1)2/2 ϕ2,0
3 = z30z21/2

AP2 : η1 = (0, 1/2), η2 = (1/2, 0), η3 = (1/2, 1/2)

Q1 = 16z20z1z22/f11 Q2 = 16z20z21z2/f22 Q3 = −8z0z21z22/f01

142 A.A. Gusev et al.

Step 2. Auxiliary Polynomials (AP2 and AP3). For unique determination
of the polynomial basis let us introduce K = N1p′−Nκmaxp′ auxiliary polynomials
Qs(z) of two types: AP2 and AP3, linearly independent of AP1 from (14) and
satisfying the following conditions at the node points ξ′

r′ of AP1:

Qs(ξ′
r′) = 0,

∂κ′
1κ′

2...κ′
dQs(z′)

∂z′
1
μ1∂z′

2
μ2 . . . ∂z′

d
μd

∣∣∣∣
z′=ξ′

r′

= 0, s = 1, . . . ,K, (16)

0 ≤ κ1 + κ2 + . . . + κd ≤ κmax − 1, 0 ≤ μ1 + μ2 + . . . + μd ≤ κmax − 1.

Note that to provide the continuity of derivatives the part of polynomials referred
to as AP2 must satisfy the condition

∂kQs(z′)
∂nk

i(s)

∣∣∣∣
z′=η′

s′

= δss′ , s, s′ = 1, . . . , T1(κ′), k = k(s′), (17)

where η′
s′ = (η′

s′1, . . . , η
′
s′d) are the chosen points lying on the faces of vari-

ous dimensionalities (from 1 to d − 1) of the d-dimensional simplex Δ and not
coincident with the nodal points of HIP ξ′

r, where (13) is valid, ∂/∂ni(s) is the
directional derivative along the vector ni, normal to the corresponding ith face
of the d-dimensional simplex Δq at the point ηs′ in the physical coordinate sys-
tem, which is recalculated to the point η′

s′ of the face of the simplex Δ in the
local coordinate system using relations (8)–(10), e.g., for d = 2 see Eq. (25). Cal-
culating the number T1(κ) of independent parameters required to provide the
continuity of derivatives to the order κ, we determine its maximal value κ′ that
can be obtained for the schemes with given p and κmax and, correspondingly,
the additional conditions (17).

T2 = K − T1(κ′) parameters remain independent and, correspondingly, T2

additional conditions are added, necessary for the unique determination of the
polynomials referred to as AP3,

Qs(ζ ′
s′) = δss′ , s, s′ = T1(κ′) + 1, . . . ,K, (18)

where ζ ′
s′ = (ζ ′

s′1, . . . , ζ
′
s′d) ∈ Δ are the chosen points belonging to the simplex

without the boundary, but not coincident with the node points of AP1 ξ′
r.

The auxiliary polynomials AP2 are given by the expression

Qs(z′) =

(
d∏

t=0

z′
t
kt

) ∑
j1,...,jd

bj1,...,jd;sz
′
1
j1 ...z′

d
jd , z′

0 = 1 − z′
1 − ... − z′

d, (19)

where kt = 1, if the point ηs, in which the additional conditions (17) are specified,
lies on the corresponding face of the simplex Δ, i.e., H(t, ηs) = 0, and kt = κ′,
if H(t, ηs)
= 0. The auxiliary polynomials AP3 are given by the expression
(19) at kt = κ′. The coefficients bj1,...,jd;s are determined from the uniquely
solvable system of linear equations, obtained as a result of the substitution of
the expression (19) into conditions (16)–(18).

Interpolation Multivariate Hermite Polynomials 143

Table 3. The HIP p = 1, κmax = 4, κ′ = 1, p′ = 7

AP1 : ξ1 = (0, 1), ξ2 = (1, 0), ξ3 = (0, 0)

ϕ0,0
1 = −z42P0(z3) ϕ0,0

2 = −z41P0(z1) ϕ0,0
3 = −z40P0(z0)

ϕ0,1
1 = z42(z2 − 1)P1(z2) ϕ0,1

2 = z41z2P1(z1) ϕ0,1
3 = z40z2P1(z0)

ϕ1,0
1 = z1z42P1(z2) ϕ1,0

2 = z41(z1 − 1)P1(z1) ϕ1,0
3 = z40z1P1(z0)

ϕ0,2
1 = −z42(z2 − 1)2(4z2 − 5)/2 ϕ0,2

2 = −(1/2)z41z22(4z1 − 5) ϕ0,2
3 = −z40z22(4z0 − 5)/2

ϕ1,1
1 = −z1z42(z2 − 1)(4z2 − 5) ϕ1,1

2 = −z41z2(z1 − 1)(4z1 − 5) ϕ1,1
3 = −z40z1z2(4z0 − 5)

ϕ2,0
1 = −z21z42(4z2 − 5)/2 ϕ2,0

2 = −z41(z1 − 1)2(4z1 − 5)/2 ϕ2,0
3 = −z40z21(4z0 − 5)/2

ϕ0,3
1 = z42(z2 − 1)3/6 ϕ0,3

2 = z41z32/6 ϕ0,3
3 = z40z32/6

ϕ1,2
1 = z1z42(z2 − 1)2/2 ϕ1,2

2 = z41z22(z1 − 1)/2 ϕ1,2
3 = z40z1z22/2

ϕ2,1
1 = z21z42(z2 − 1)/2 ϕ2,1

2 = z41z2(z1 − 1)2/2 ϕ2,1
3 = z40z21z2/2

ϕ3,0
1 = z31z42/6 ϕ3,0

2 = z41(z1 − 1)3/6 ϕ3,0
3 = z40z31/6

AP2 : η1 = (0, 1/2), η2 = (1/2, 0), η3 = (1/2, 1/2)

Q1 = 8z1z22z20(12z
2
1 − 7z1 − 8z1z2 − 8z22 + 8z2)/f11

Q2 = −8z21z2z20(8z
2
1 + 8z1z2 − 8z1 + 7z2 − 12z22)/f22

Q3 = 4z21z22z0(12z22 − 17z2 + 5 − 17z1 + 32z1z2 + 12z21)/f01

AP3 : ζ4 = (1/4, 1/2), ζ5 = (1/2, 1/4), ζ6 = (1/4, 1/4)

Q4 = 1024z20z21z22(4z2 − 1) Q5 = 1024z20z21z22(4z1 − 1) Q6 = 1024z20z21z22(4z0 − 1)

P0(zj) = (20z3j − 70z2j + 84zj − 35) , P1(zj) = (10z2j − 24zj + 15)

Step 3. As a result, we get the required set of basis HIP

ϕκ
r (z′) = {ϕ̌κ

r (z′), Qs(z′)}, κ = κ1, . . . , κd, (20)

composed of the polynomials Qs(z′) of the type AP2 and AP3, and the polyno-
mials ϕ̌κ

r (z′) of the type AP1 that satisfy the conditions

ϕ̌κ1...κd
r (ξ′

r) = δrr′δκ10 . . . δκd0,
∂μ1...μd ϕ̌

κ1...κd
r (z′)

∂z′
1

μ1 . . . ∂z′
d

μd

∣∣∣∣
z′=ξ′

r′

= δrr′δκ1μ1 . . . δκdμd , (21)

0 ≤ κ1 + κ2 + . . . + κd ≤ κmax − 1, 0 ≤ μ1 + μ2 + . . . + μd ≤ κmax − 1;

∂kϕ̌κ1...κd
r (z′)
∂nk

i(s)

∣∣∣∣
z′=η′

s′

= 0, s′ = 1, . . . , T1(κ
′), k = k(s′), (22)

ϕ̌κ1...κd
r (ζ′

s′) = 0, s′ = T1(κ
′) + 1, . . . , K, (23)

and are calculated using the formulas

ϕ̌κ
r (z′) = ϕκ

r (z′) −
K∑

s=1

cκ;r;sQs(z′), cκ;r;s =

⎧⎨
⎩

∂kϕκ
r (z

′)
∂nk

i(s)

∣∣∣∣
z′=η′

s

, Qs(z′)∈AP2,

ϕκ
r (ζs), Qs(z′)∈AP3.

(24)

Step 4. The AP1 ϕ̌κ
r (z′) from (20), where κ denotes the directional derivatives

along the local coordinate axes, are recalculated using formulas (10) into ϕ̌κ
r (z′),

specified in the local coordinates, but now κ denotes already the directional
derivatives along the physical coordinate axes.

144 A.A. Gusev et al.

Table 4. The HIP p = 2, κmax = 3, κ′ = 1, p′ = 8

AP1 : ξ1 = (0, 1), ξ2 = (1/2, 1/2), ξ3 = (1, 0), ξ4 = (0, 1/2), ξ5 = (1/2, 0), ξ6 = (0, 0)

ϕ0,0
1 = z32(2z2 − 1)3S0(z2) ϕ0,0

3 = z31(2z1 − 1)3S0(z1) ϕ0,0
6 = z30(2z0 − 1)3S0(z0)

ϕ0,1
1 = −z32(z2 − 1)S1(z2) ϕ0,1

3 = −z31z2S1(z1) ϕ0,1
6 = −z30z2S1(z0)

ϕ1,0
1 = −z1z32S1(z2) ϕ1,0

3 = −z31(z1 − 1)S1(z1) ϕ1,0
6 = −z30z1S1(z0)

ϕ0,2
1 = z32(z2 − 1)2(2z2 − 1)3/2 ϕ0,2

3 = z31(2z1 − 1)3z22/2 ϕ0,2
6 = z30z22(2z0 − 1)3/2

ϕ1,1
1 = z32(2z2 − 1)3z1(z2 − 1) ϕ1,1

3 = z31z2(z1 − 1)(2z1 − 1)3 ϕ1,1
6 = z30z1z2(2z0 − 1)3

ϕ2,0
1 = z32(2z2 − 1)3z21/2 ϕ2,0

3 = z31(z1 − 1)2(2z1 − 1)3/2 ϕ2,0
6 = z30z21(2z0 − 1)3/2

ϕ0,0
2 = 64z31z32S2(z0) ϕ0,0

4 = 64z30z32S2(z1) ϕ0,0
5 = 64z30z31S2(z2)

ϕ0,1
2 = 32z31z32S3(z2, z0) ϕ0,1

4 = 32z30z32S3(z2, z1) ϕ0,1
5 = 64z30z31z2(6z2 + 1)

ϕ1,0
2 = 32z31z32S3(z1, z0) ϕ1,0

4 = 64z30z1z32(6z1 + 1) ϕ1,0
5 = 32z30z31S3(z1, z2)

ϕ0,2
2 = 8z31z32(2z2 − 1)2 ϕ0,2

4 = 8z30z32(2z2 − 1)2 ϕ0,2
5 = 32z30z31z22

ϕ1,1
2 = 16z31z32(2z1 − 1)(2z2 − 1) ϕ1,1

4 = 32z30z1z32(2z2 − 1) ϕ1,1
5 = 32z30z31z2(2z1 − 1)

ϕ2,0
2 = 8z31z32(2z1 − 1)2 ϕ2,0

4 = 32z30z21z32 ϕ2,0
5 = 8z30z31(2z1 − 1)2

AP2 : η1 = (0, 1/4), η2 = (0, 3/4), η3 = (1/4, 0), η4 = (3/4, 0), η5 = (1/4, 3/4), η6 = (3/4, 1/4)

Q1 = (512/9)z20z1z22(2z0 − 1)(2z2 − 1)(4z0 − 1)/f11

Q2 = −(512/9)z20z1z22(2z0 − 1)(2z2 − 1)(4z2 − 1)/f11

Q3 = −(512/9)z20z21z2(2z0 − 1)(2z1 − 1)(4z0 − 1)/f22

Q4 = −(512/9)z20z21z2(2z0 − 1)(2z1 − 1)(4z1 − 1)/f22

Q5 = (256/9)z0z21z22(2z1 − 1)(2z2 − 1)(4z2 − 1)/f01

Q6 = (256/9)z0z21z22(2z1 − 1)(2z2 − 1)(4z1 − 1)/f01

AP3 : ζ7 = (1/4, 1/2), ζ8 = (1/2, 1/4), ζ9 = (1/4, 1/4)

Q7 = 4096z20z21z22(2z0 − 1)(2z1 − 1)

Q8 = 4096z20z21z22(2z0 − 1)(2z2 − 1)

Q9 = 4096z20z21z22(2z1 − 1)(2z2 − 1)

S0(zj) = (48z22 − 105z2 + 58) , S1(zj) = (2zj − 1)3(9zj − 10),

S2(zj) = (24z2j − 12z0z1z2/zj + 4), S3(zi, zj) = (2zi − 1)(6zj + 1)

Step 5. The final transition to the physical coordinates is implemented by
means of transformation (9).

3.3 Example: HIP for d = 2

For d = 2, the order p′ of the polynomial with respect to the tangential variable
t at the boundary of the triangle ∂κ′+1

∂nκ′∂t
,. . . , ∂κmax

∂nκ′∂tκmax−κ′−1 . Thus, since the
triangle has three sides, the unique determination of the derivatives to the order
of κ′ at the boundary requires T1(κ′) = 3p+. . .+3κ′p = 3pκ′(κ′+1)/2 parameters
and, correspondingly, the additional conditions (17).

For example, if p = 1 and κmax = 4, then there are K = 6 additional
conditions for the determination of AP2 and AP3. The order p′ = 7 of the
polynomial in the tangential variable t at the boundary of the triangle coincides
with the order of the polynomial of two variables, and its unique determination
requires p′ + 1 = 8 parameters. The first-order derivative κ′ = 1 in the variable

Interpolation Multivariate Hermite Polynomials 145

Table 5. The HIP p = 1, κmax = 5, κ′ = 2, p′ = 9

AP1 : ξ1 = (0, 1), ξ2 = (1, 0), ξ3 = (0, 0)

ϕ0,0
1 = z5

2T0(z2) ϕ0,0
2 = z5

1T0(z1) ϕ0,0
3 = z5

0T0(z0)

ϕ0,1
1 = −z5

2(z2 − 1)T1(z2) ϕ0,1
2 = −z5

1z2T1(z1) ϕ0,1
3 = −z5

0z2T1(z0)

ϕ1,0
1 = −z1z5

2T1(z2) ϕ1,0
2 = −z5

1(z1 − 1)T1(z1) ϕ1,0
3 = −z5

0z1T1(z0)

ϕ0,2
1 = z5

2(z2 − 1)2T2(z2)/2 ϕ0,2
2 = z5

1z2
2T2(z1)/2 ϕ0,2

3 = z5
0z2

2T2(z0)/2

ϕ1,1
1 = z1z5

2(z2 − 1)T2(z2) ϕ1,1
2 = z5

1z2(z1 − 1)T2(z1) ϕ1,1
3 = z5

0z1z2T2(z0)

ϕ2,0
1 = z2

1z5
2T2(z2)/2 ϕ2,0

2 = z5
1(z1 − 1)2T2(z1)/2 ϕ2,0

3 = z5
0z2

1T2(z0)/2

ϕ0,3
1 = −z5

2(z2 − 1)3(5z2 − 6)/6 ϕ0,3
2 = −z5

1z3
2(5z1 − 6)/6 ϕ0,3

3 = −z5
0z3

2(5z0 − 6)/6

ϕ1,2
1 = −z1z5

2(z2 − 1)2(5z2 − 6)/2 ϕ1,2
2 = −z5

1z2
2(z1 − 1)(5z1 − 6)/2 ϕ1,2

3 = −z5
0z1z2

2(5z0 − 6)/2

ϕ2,1
1 = −z2

1z5
2(z2 − 1)(5z2 − 6)/2 ϕ2,1

2 = −z5
1z2(z1 − 1)2(5z1 − 6)/2 ϕ2,1

3 = −z5
0z2

1z2(5z0 − 6)/2

ϕ3,0
1 = −z3

1z5
2(5z2 − 6)/6 ϕ3,0

2 = −z5
1(z1 − 1)3(5z1 − 6)/6 ϕ3,0

3 = −z5
0z3

1(5z0 − 6)/6

ϕ0,4
1 = z5

2(z2 − 1)4/24 ϕ0,4
2 = z5

1z4
2/24 ϕ0,4

3 = z5
0z4

2/24

ϕ1,3
1 = z1z5

2(z2 − 1)3/6 ϕ1,3
2 = z5

1z3
2(z1 − 1)/6 ϕ1,3

3 = z5
0z1z3

2/6

ϕ2,2
1 = z2

1z5
2(z2 − 1)2/4 ϕ2,2

2 = z5
1z2

2(z1 − 1)2/4 ϕ2,2
3 = z5

0z2
1z2

2/4

ϕ3,1
1 = z3

1z5
2(z2 − 1)/6 ϕ3,1

2 = z5
1z2(z1 − 1)3/6 ϕ3,1

3 = z5
0z3

1z2/6

ϕ4,0
1 = z4

1z5
2/24 ϕ4,0

2 = z5
1(z1 − 1)4/24 ϕ4,0

3 = z5
0z4

1/24

AP2 : η1 = (0, 1/2), η2 = (1/2, 0), η3 = (1/2, 1/2), η4 = (0, 1/3), η5 = (0, 2/3),

η6 = (1/3, 0), η7 = (2/3, 0), η8 = (1/3, 2/3), η9 = (2/3, 1/3)

Q1 = 256z3
0z1z3

2((3z1z2 − 5z2
1 − z2

2 + z2)f11 − 4z1(z2 − z0)f12)/f2
11

Q2 = 256z3
0z3

1z2((3z1z2 − 5z2
2 − z2

1 + z1)f22 + 4z2(z1 − z0)f21)/f2
22

Q3 = 128z0z3
1z3

2((7z2
0 − 2z0 − z1z2)f01 + 2z0(z1 − z2)f02)/f2

01

Q4 = (729/16)z3
0z2

1z3
2(3z0 − 1)/f2

11

Q5 = (729/16)z3
0z2

1z3
2(3z2 − 1)/f2

11

Q6 = (729/16)z3
0z3

1z2
2(3z0 − 1)/f2

22

Q7 = (729/16)z3
0z3

1z2
2(3z1 − 1)/f2

22

Q8 = (729/64)z2
0z3

1z3
2(3z2 − 1)/f2

01

Q9 = (729/64)z2
0z3

1z3
2(3z1 − 1)/f2

01

AP3 : ζ10 = (1/3, 1/3) Q10 = 19683z3
0z3

1z3
2

T0(zj) = (70z4
j − 315z3

j + 540z2
j − 420zj + 126)

T1(zj) = (35z3
2 − 120z2

2 + 140z2 − 56), T2(zj) = (15z2
j − 35zj + 21)

normal to the boundary will be a polynomial of the order p′ − κ′ = 6, and
its unique determination will require p′ − κ′ + 1 = 7 parameters. However, it is
determined by only p′ −κ′(p+1) = 6 parameters: the mixed derivatives ∂

∂n , ∂2

∂n∂t

and ∂3

∂n∂t2 , specified at two vertices. The missing parameter can be determined
by specifying the directional derivative along the direction, non-parallel to the
triangle boundary, at one of the points on its side (e.g., in the middle of the
side). Thus, for p = 1 and κmax = 4, one can construct HIP with the fixed values
of the first derivative on the boundary of the triangle, and 6− 3 = 3 parameters
remain free.

The second-order derivative κ′ = 2 in the variable normal to the boundary
is a polynomial of the order p′ − κ′ = 5, and its unique determination requires
p′ − κ′ + 1 = 6 parameters. However, it is determined by only p′ − κ′(p + 1) = 4
parameters: the mixed derivatives ∂2

∂n2 and ∂3

∂n2∂t specified at two vertices of the

146 A.A. Gusev et al.

triangle. Thus, the unique determination of the second derivative will require 6
parameters. This fact means that using this algorithm for p = 1 and κmax = 4,
it is impossible to construct the FEM scheme with continuous second derivative.
In this case, one should use the scheme with κmax > 4, e.g., denoted as [152]
in Table 1 and Fig. 2. Then the three remaining free parameters are used to
construct AP3. Note that it is possible to construct the schemes providing the
continuity of the second derivatives at some boundaries of the finite elements.
This case is not considered in the present paper.

For d = 2, the derivatives ∂/∂ni along the direction ni, perpendicular to the
appropriate face i = 0, 1, 2 in the physical coordinate system are given in terms
of the partial derivatives ∂/∂z′

j , j = 1, 2 in the local coordinate system Δ, using
(8)–(10), by the expressions

∂

∂ni
= fi1

∂

∂z′
1

+ fi2
∂

∂z′
2

, i = 1, 2,
∂

∂n0
= (f01 + f02)

∂

∂z′
1

+ (f01 − f02)
∂

∂z′
2

, (25)

where fij = fij(ẑ0, ẑ1, ẑ2) are the functions of the coordinates of vertices ẑ0, ẑ1, ẑ2
of the triangle Δq in the physical coordinate system

f11 = J−1R(ẑ2, ẑ0), f12 = − (ẑ12 − ẑ02)(ẑ22 − ẑ02) + (ẑ21 − ẑ01)(ẑ11 − ẑ01)

JR(ẑ2, ẑ0)
,

f22 = J−1R(ẑ1, ẑ0), f21 = − (ẑ12 − ẑ02)(ẑ22 − ẑ02) + (ẑ21 − ẑ01)(ẑ11 − ẑ01)

JR(ẑ1, ẑ0)
,

f01 = −(2J)−1R(ẑ2, ẑ1), f02 =
(ẑ11 − ẑ01)2 + (ẑ12 − ẑ02)2 − (ẑ22 − ẑ02)2 − (ẑ21 − ẑ01)2

2JR(ẑ2, ẑ1)
,

J = (ẑ11 − ẑ01)(ẑ22 − ẑ02) − (ẑ12 − ẑ02)(ẑ21 − ẑ01), (26)
R(ẑj , ẑj′) = ((ẑ1j − ẑ1j′)2 + (ẑ2j − ẑ2j′)2)1/2.

The implementation of conditions (13), (16), (17), and (18), using which the
basis HIP were constructed, is schematically shown for d = 2 in Fig. 2. The
characteristics of the polynomial basis of HIP on the element Δ at d = 2 are
presented in Table 1.

Tables 2, 3, 4 and 5 present the results of executing the Algorithm from
Sect. 3.2 for the HIP (p = 1, κmax = 3, κ′ = 1, p′ = 5), (p = 1, κmax = 4,
κ′ = 1, p′ = 7), (p = 2, κmax = 3, κ′ = 1, p′ = 8) and (p = 1, κmax = 5, κ′ = 2,
p′ = 9): AP1 ϕk

r (z′), AP2 and AP3 Qk
s(z′), and the corresponding coefficients

cκ;r;s are calculated using Eq. (24). The notations are as follows: ξr, ηs, ζs are the
coordinates of the nodes, in which the right-hand side of Eqs. (21), (17) or (18)
equals one, z0 = 1 − z1 − z2, fij is found from formulas (26), the arguments of
functions and the primes at the notations of independent variables are omitted.
The explicit expressions for the HIPs (p = 1, κmax = 6, κ′ = 2, p′ = 11), (p = 2,
κmax = 4, κ′ = 1, p′ = 11), and (p = 1, κmax = 7, κ′ = 3, p′ = 13) were calculated
too, but are not presented here because of the paper size limitations (one can
receive it with request to authors or using program TRIAHP implemented in
Maple which will be published in the library JINRLIB). The calculations were
carried out using the computer Intel Pentium CPU 987, ×64, 4 GB RAM, the
Maple 16. The computing time for the considered examples did not exceed 6 s.

Interpolation Multivariate Hermite Polynomials 147

Remark 1. At κ′ = 1 on uniform grids, one can make use of the basis with
continuous first derivative consisting of the reduced HIP ϕ̌k

r (z′) and Qs(z′) for
f01 = f11 = f22 = 1. In this case, the derivatives of such polynomials along the
direction normal to the boundary generally do not satisfy conditions (17).

Fig. 3. (a) The mesh on the domain Ωh(z) =
⋃Q

q=1 Δq of the triangle membrane

composed of triangle elements Δq (b) the profiles of the fourth eigenfunction Φh
4 (z)

with Eh
4 = 3 + 1.90 · 10−17 obtained using the LIP of the order p′ = p = 8

Fig. 4. The error ΔEh
4 of the eigenvalue Eh

4 versus the number of elements n and the
length of the vector N

3.4 Piecewise Polynomial Functions

The piecewise polynomial functions Pl(z) with continuous derivatives to the
order κ′ are constructed by joining the polynomials ϕκ

r (z) = {ϕ̌κ
r (z), Qs(z)}

from (20), obtained using the Algorithm on the finite elements Δq ∈ Ωh(z) =⋃Q
q=1 Δq:

148 A.A. Gusev et al.

Pl′(z) =
{

±ϕκ
l(l′)(z), Al(l′) ∈ Δq; 0, Al(l′)
∈ Δq

}
, (27)

where the sign “−” can appear only for AP2, when it is necessary to join the
normal derivatives of the odd order.

The expansion of the sought solution Φm(z) in the basis of piecewise poly-
nomial functions Pl′(z), Φh

m(z) =
∑N

l′=1 Pl′(z)Φh
l′m and its substitution into the

variational functional (5) leads to the generalized algebraic eigenvalue prob-
lem, (A − BEh

m)Φh
m = 0, solved using the standard method (see, e.g., [3]).

The elements of the symmetric matrices of stiffness A and mass B comprise
the integrals like Eq. (5), which are calculated on the elements in the domain
Δq ∈ Ωh(z) =

⋃Q
q=1 Δq, recalculated into the local coordinates on the

element Δ.
The deviation of the approximate solution Eh

m, Φh
m(z) ∈ Hκ′+1≥1

2 (Ωh) from
the exact one Em, Φm(z) ∈ H2

2(Ω) is theoretically estimated as [6,20]
∣∣Em − Eh

m

∣∣ ≤ c1h
2p′

,
∥∥Φm(z) − Φh

m(z)
∥∥
0

≤ c2h
p′+1, (28)

where ‖Φi(z)‖20 =
∫

Ω
g0(z)dzΦi(z)Φi(z), h is the maximal size of the finite ele-

ment Δq, p′ is the order of the FEM scheme, m is the number of the eigenvalue,
c1 and c2 are coefficients independent of h.

4 Results and Discussion

As an example, let us consider the solution of the discrete-spectrum problem (1)–
(4) at d = 2, g0(z) = gij(z) = 1, and V (z) = 0 in the domain Ωh(z) = ∪Q

q=1Δq

in the form of an equilateral triangle with the side 4π/3 under the boundary
conditions of the second kind (3) partitioned into Q = n2 equilateral triangles Δq

with the side h = 4π/3n. The eigenvalues of this problem having the degenerate
spectrum [16,18] are the integers Em = m2

1+m2
2+m1m2 = 0, 1, 1, 3, 4, 4, 7, 7, . . .,

m1,m2 = 0, 1, 2, Figure 3 presents the finite-element mesh with the LIP of
the eighth order and the profile of the fourth eigenfunction Φh

4 (z). Figure 4 shows
the errors ΔEm = Eh

m −Em of the eigenvalue Eh
4 (z) depending on the number n

(the number of elements being n2) and on the length N of the vector Φh
m of the

algebraic eigenvalue problem for the FEM schemes from the fifth to the ninth
order of accuracy: using LIP with the labels [pκmaxκ

′] = [510], . . . , [910], and
using HIP with the labels [131], [141], [231] and [152] from Table 1, conserving
the continuity of the first and the second derivative of the approximate solution,
respectively.

As seen from Fig. 4, the errors of the eigenvalue ΔEh
4 (z) of the FEM schemes

of the same order are nearly similar and correspond to the theoretical estimates
(28), but in the FEM schemes conserving the continuity of the first and the
second derivatives of the approximate solution, the matrices of smaller dimension
are used that correspond to the length of the vector N smaller by 1.5–2 times
than in the schemes with LIP that conserve only the continuity of the functions
themselves at the boundaries of the finite elements. The calculations were carried

Interpolation Multivariate Hermite Polynomials 149

out using the computer 2× Xeon 3.2 GHz, 4 GB RAM, the Intel Fortran 77 with
quadruple precision real*16, with 32 significant digits. The computing time for
the considered examples did not exceed 3 min.

5 Conclusion

We presented a symbolic-numeric algorithm, implemented in the Maple system
for analytical calculation of the basis of Hermite interpolation polynomials of
several variables, which is used to construct a FEM computational scheme of
high-order accuracy. The scheme is intended for solving the eigenvalue problem
for the elliptic partial differential equation in a bounded domain of multidimen-
sional Euclidean space. The procedure provides the continuity not only of the
approximate solution itself, but also of its derivatives to a given order. By the
example of the exactly solvable problem for the triangle membrane it is shown
that the errors for the eigenvalue are nearly the same for the FEM schemes of
the same order and correspond to the theoretical estimates. To achieve the given
accuracy of the approximate solution the FEM schemes with HIP, providing the
continuity of the first and the second derivatives of the approximate solutions
the required matrices have smaller dimension, corresponding to the length of the
vector N smaller by 1.5–2 times than for the schemes with LIP, providing only
the continuity of the approximate solution itself at the boundaries of the finite
elements.

The FEM computational schemes are oriented at the calculations of the spec-
tral and optical characteristics of quantum dots and other quantum mechanical
systems. The implementation of FEM with HIP in the space with d ≥ 2 and the
domains different from a polyhedral domain will be presented elsewhere.

The work was partially supported by the Russian Foundation for
Basic Research (grants Nos. 16-01-00080 and 17-51-44003 Mong a) and the
Bogoliubov-Infeld program. The reported study was partially funded within the
Agreement N 02.03.21.0008 dated 24.04.2016 between the MES RF and RUDN
University.

References

1. Ames, W.F.: Numerical Methods for Partial Differential Equations. Academic
Press, London (1992)

2. Argyris, J.H., Buck, K.E., Scharpf, D.W., Hilber, H.M., Mareczek, G.: Some new
elements for the matrix displacement method. In: Proceedings of the Conference
on Matrix Methods in Structural Mechanics (2nd), Wright-Patterson Air Force
Base, Ohio, 15–17 October 1968

3. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall,
Englewood Cliffs/New York (1982)

4. Bell, K.: A refined triangular plate bending element. Int. J. Numer. Methods Eng.
1, 101–122 (1969)

150 A.A. Gusev et al.

5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods.
Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). doi:10.
1007/978-0-387-75934-0

6. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Pub-
lishing Company, Amsterdam (1978)

7. Dhatt, G., Touzot, G., Lefrançois, E.: Finite Element Method. Wiley, Hoboken
(2012)

8. Gasca, M., Sauer, T.: On the history of multivariate polynomial interpolation. J.
Comp. Appl. Math. 122, 23–35 (2000)

9. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L., Góźdź, A., Le Hai,
L., Rostovtsev, V.A.: Symbolic-numerical solution of boundary-value problems
with self-adjoint second-order differential equation using the finite element method
with interpolation hermite polynomials. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 138–154. Springer, Cham
(2014). doi:10.1007/978-3-319-10515-4 11

10. Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I.: KANTBP 4M: Program
for Solving Boundary Problems of the System of Ordinary Second Order Differen-
tial Equations. http://wwwinfo.jinr.ru/programs/jinrlib/indexe.html

11. Habib, A.W., Goldman, R.N., Lyche, T.: A recursive algorithm for Hermite inter-
polation over a triangular grid. J. Comput. Appl. Math. 73, 95–118 (1996)

12. Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics.
Applied Mathematical Sciences, vol. 49. Springer, New York (1985). doi:10.1007/
978-1-4757-4317-3

13. Lekien, F., Marsden, J.: Tricubic interpolation in three dimensions. Int. J. Numer.
Meth. Eng. 63, 455–471 (2005)

14. Logg, A., Mardal, K.-A., Wells, G.N. (eds.): Automated Solution of Differen-
tial Equations by the Finite Element Method (The FEniCS Book). Springer,
Heidelberg (2012). doi:10.1007/978-3-642-23099-8

15. www.maplesoft.com
16. McCartin, B.J.: Laplacian Eigenstructure of the Equilateral Triangle. Hikari Ltd.,

Ruse, Bulgaria (2011)
17. Mitchell, A.R., Wait, R.: The Finite Element Method in Partial Differential Equa-

tions. Wiley, Chichester (1977)
18. Pockels, F.: Über die Partielle Differential-Gleichung Δu + k2u = 0 und deren

Auftreten in der Mathematischen Physik. B.G. Teubner, Leipzig (1891)
19. Ramdas Ram-Mohan, L.: Finite Element and Boundary Element Aplications in

Quantum Mechanics. Oxford University Press, New York (2002)
20. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall,

Englewood Cliffs/New York (1973)
21. Zienkiewicz, O.C.: Finite elements. The background story. In: Whiteman, J.R.

(ed.) The Mathematics of Finite Elements and Applications, p. 1. Academic Press,
London (1973)

http://dx.doi.org/10.1007/978-0-387-75934-0
http://dx.doi.org/10.1007/978-0-387-75934-0
http://dx.doi.org/10.1007/978-3-319-10515-4_11
http://wwwinfo.jinr.ru/programs/jinrlib/indexe.html
http://dx.doi.org/10.1007/978-1-4757-4317-3
http://dx.doi.org/10.1007/978-1-4757-4317-3
http://dx.doi.org/10.1007/978-3-642-23099-8
www.maplesoft.com

Symbolic-Numerical Algorithms for Solving
the Parametric Self-adjoint 2D Elliptic

Boundary-Value Problem Using High-Accuracy
Finite Element Method

A.A. Gusev1, V.P. Gerdt1,2, O. Chuluunbaatar1,3, G. Chuluunbaatar1,2,
S.I. Vinitsky1,2(B), V.L. Derbov4, and A. Góźdź5

1 Joint Institute for Nuclear Research, Dubna, Russia
gooseff@jinr.ru, vinitsky@theor.jinr.ru

2 RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russia
3 Institute of Mathematics, National University of Mongolia,

Ulaanbaatar, Mongolia
4 N.G. Chernyshevsky Saratov National Research State University,

Saratov, Russia
5 Institute of Physics, University of Maria Curie-Sk�lodowska, Lublin, Poland

Abstract. We propose new symbolic-numerical algorithms imple-
mented in Maple-Fortran environment for solving the parametric self-
adjoint elliptic boundary-value problem (BVP) in a 2D finite domain,
using high-accuracy finite element method (FEM) with triangular ele-
ments and high-order fully symmetric Gaussian quadratures with posi-
tive weights, and no points are outside the triangle (PI type). The algo-
rithms and the programs calculate with the given accuracy the eigenval-
ues, the surface eigenfunctions and their first derivatives with respect to
the parameter of the BVP for parametric self-adjoint elliptic differential
equation with the Dirichlet and/or Neumann type boundary conditions
on the 2D finite domain, and the potential matrix elements, expressed
as integrals of the products of surface eigenfunctions and/or their first
derivatives with respect to the parameter. We demonstrated an efficiency
of algorithms and program by benchmark calculations of helium atom
ground state.

Keywords: Parametric elliptic boundary-value problem · Finite
element method · High-order fully symmetric high-order Gaussian
quadratures · Kantorovich method · Systems of second-order ordinary
differential equations

1 Introduction

The adiabatic representation is widely applied for solving multichannel scattering
and bound-state problems for systems of several quantum particles in molecular,
atomic and nuclear physics [6,7,11,14].
c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 151–166, 2017.
DOI: 10.1007/978-3-319-66320-3 12

152 A.A. Gusev et al.

Such problems are described by elliptic boundary value problems (BVPs)
in a multidimensional domain of the configuration space, solved using the
Kantorovich method, i.e., the reduction to a system of self-adjoint ordinary
differential equations (SODEs) using the basis of surface functions of an auxil-
iary BVP depending on the independent variable of the SODEs parametrically
[10,16]. The elements of matrices of variable coefficients of these SODEs includ-
ing the matrix of the first derivatives are determined by the integrals of prod-
ucts of surface eigenfunctions and/or their first derivatives with respect to the
parameter [4].

Thus, the key problem of such a method is to develop effective algorithms and
programs for calculating with given accuracy the surface eigenfunctions and the
corresponding eigenvalues of the auxiliary BVP, together with their derivatives
with respect to the parameter, and the corresponding integrals that present the
matrix elements of the effective potentials in the SODEs [9].

In this paper, we propose new calculation schemes and symbolic-numerical
algorithms implemented in Maple-Fortran environment for the solution of the
parametric 2D elliptic boundary-value problem using high-accuracy finite ele-
ment method (FEM) with triangular elements. For the integration, the new
high-order fully symmetric high-order Gaussian quadratures on a triangle are
performed. We used the symbolic algorithms to generate Fortran routines that
allow the solution of the algebraic eigenvalue problem with high-dimension matri-
ces. The algorithms were implemented in a package of programs that calculate
with the given accuracy eigenvalues, eigenfunctions, and their first derivatives
with respect to the parameter of the parametric self-adjoint elliptic differential
equations with the boundary conditions of the Dirichlet and/or Neumann type in
the 2D finite domain and the integrals of products of the surface eigenfunctions
and their first derivatives with respect to the parameters that express the matrix
elements of the effective potentials in the SODEs. Efficiency of the FEM scheme
is demonstrated by benchmark calculations of Helium atom ground state.

The structure of the paper is the following. In Sect. 2, the 2D FEM schemes
and algorithms for solving the parametric 2D BVP are presented. In Sect. 3,
fully symmetric high-order Gaussian quadratures are constructed. In Sect. 4,
the algorithm for calculating the parametric derivatives of eigenfunctions and
effective potentials is presented. In Sect. 5, the benchmark calculations of 2D
FEM algorithms and programs are analyzed. In the Conclusion we discuss the
results and perspectives.

2 FEM Algorithm for Solving the Parametric 2D BVP

Let us consider a BVP for the parametric self-adjoint 2D PDE in the domain
Ωx, x = (x1, x2) with the piecewise continuous boundary S = ∂Ωx,

(D(x; z)−εi(z)) Φi(x; z) = 0, (1)

D≡D(x; z) = − 1
g0(x)

⎛
⎝

2∑
ij=1

∂

∂xi
gij(x)

∂

∂xj

⎞
⎠ + U(x; z), (2)

Algorithms for Solving a 2D Elliptic Boundary-Value Problem 153

with the mixed Dirichlet/Neumann boundary conditions

(I) : Φ(x; z)|S = 0, (3)

(II) :
∂Φ(x; z)

∂nD

∣∣∣
S
= 0,

∂Φ(x; z)
∂nD

=
2∑

ij=1

(n̂, êi)gij(x)
∂Φ(x; z)

∂xj
. (4)

Here z ∈ Ωz = [zmin, zmax] is a parameter, the functions g0(x) > 0, gij(x) > 0,
and ∂xk

gij(x), U(x; z), ∂zU(x; z) and ∂zΦi(x; z) are continuous and bounded
for x ∈ Ωx; g12(x) = g21(x), g11(x)g22(x) − g212(x) > 0. Also assume that the
BVP (1), (3) has only the discrete spectrum, so that ε(z) : ε1(z) < . . . <
εjmax(z) < . . . is the desired set of real eigenvalues. The eigenfunctions satisfy
the orthonormality conditions

〈Φi|Φj〉 =
∫

Ω

g0(x)Φi(x; z)Φj(x; z)dx=δij , dx = dx1dx2. (5)

The FEM solution of the boundary-value problems (1), (3) is reduced to the
determination of stationary points of the variational functional [1,2]

Ξ(Φm, εm(z)) ≡
∫

Ω

dxg0(x)Φm(x; z) (D − εm(z)) Φ(x; z) = Π(Φm, εm(z)), (6)

where Π ≡ Π(Φm, εm(z)), Φm ≡ Φm(x; z) is the symmetric quadratic functional

Π=
∫

Ω

dx

[2∑
ij=1

gij(x)
∂Φm

∂xi

∂Φm

∂xj
+g0(x)Φm(U(x; z)−εm(z))Φm

]
.

The domain Ω(x, y) =
⋃Q

q=1 Δq, specified as a polygon in the plane (x1, x2) ∈
R2, is covered with finite elements, the triangles Δq with the vertices (x11, x21),
(x12, x22), (x13, x23) (here xik ≡ xik;q, i = 1, 2, k = 1, 3, q = 1, Q). On each
of the triangles Δq (the boundary is considered to belong to the triangle), the
shape functions ϕp

l (x1, x2) are introduced. For this purpose we divide the sides of
the triangle into p equal parts and draw three families of parallel straight lines
through the partition points. The straight lines of each family are numbered
from 0 to p, so that the line passing through the side of the triangle has the
number 0, and the line passing through the opposite vertex of the triangle has
the number p.

Three straight lines from different families intersect at one point Al ∈ Δq,
which will be numbered by the triplet (n1, n2, n3), ni ≥ 0, n1+n2+n3 = p, where
n1, n2, and n3 are the numbers of the straight lines passing parallel to the side of
the triangle that does not contain the vertex (x11, x21), (x12, x22), and (x13, x23),
respectively. The coordinates of this point xl = (x1l, x2l) are determined by the
expression (x1l, x2l) = (x11, x21)n1/p + (x12, x22)n2/p + (x13, x23)n3/p.

As shape functions we use the Lagrange triangular polynomials ϕp
l (x) of the

order p that satisfy the condition ϕp
l (x1l′ , x2l′) = δll′ , i.e., equal 1 at one of the

points Al and zero at the other points.

154 A.A. Gusev et al.

In this method, the piecewise polynomial functions Np
l (x) in the domain Ω

are constructed by joining the shape functions ϕp
l (x) in the triangle Δq:

Np
l (x) = {ϕp

l (x), Al ∈ Δq; 0, Al �∈ Δq}
and possess the following properties: the functions Np

l (x) are continuous in the
domain Ω; the functions Np

l (x) equal 1 at one of the points Al and zero at the
rest points; Np

l (x1l′ , x2l′) = δll′ in the entire domain Ω. Here l takes the values
l = 1, N .

The functions Np
l (x) form a basis in the space of polynomials of the pth

order. Now, the function Φ(x; z) ∈ Fh
z ∼ H1(Ωx) is approximated by a finite

sum of piecewise basis functions Np
l (x)

Φh(x; z) =
N∑

l=1

Φh
l (z)Np

l (x). (7)

The vector function Φh = {Φh
l (z)}N

l=1 has a generalized first-order partial
derivative and belongs to the Sobolev space H1(Ωx) [13]. After substituting
expansion (7) into the variational functional and minimizing it [1,13], we obtain
the generalized eigenvalue problem

ApΦh = εhBpΦh. (8)

Here Ap is the stiffness matrix; Bp is the positive definite mass matrix; Φh is
the vector approximating the solution on the finite-element grid; and εh ≡ εh(z)
is the corresponding eigenvalue. The matrices Ap and Bp have the form:

Ap={ap
ll′}N

ll′=1, Bp={bp
ll′}N

ll′=1, (9)

where the matrix elements ap
ll′ and bp

ll′ are calculated for triangular elements as

ap
ll′ =

∫

Δq

g0(x)ϕp
l (x; z)ϕp

l′(x; z)U(x; z) dx+
2∑

i,j=1

∫

Δq

gij
∂ϕp

l (x; z)
∂xi

∂ϕp
l′(x; z)
∂xj

dx,

bp
ll′ =

∫

Δq

g0(x)ϕp
l (x; z)ϕp

l′(x; z)dx.

Let us construct the LIP on a triangle Δq with the vertices x̂i = (xi1, xi2, x3d).
For this purpose we introduce the local coordinate system x′ = (x′

1, x
′
2) ∈ R2,

in which the coordinates of the simplex vertices are the following: x̂′
i = (x′

ik =
δik, k = 1, 2). The relation between the coordinates and derivatives is given by
the formula:

xi = x0i +
2∑

j=1

Ĵijx
′
j , x′

i =
2∑

j=1

(Ĵ−1)ij(xj − x0j), i = 1, 2, (10)

∂

∂x′
i

=
2∑

j=1

Ĵji
∂

∂xj
,

∂

∂xi
=

2∑
j=1

(Ĵ−1)ji
∂

∂x′
j

, (11)

Algorithms for Solving a 2D Elliptic Boundary-Value Problem 155

where Ĵij = x̂ji − x̂0i. When constructing the LIP in the local coordinates x′

one has to recalculate the fixed derivatives at the nodes Φr′ of the element Δq

to the nodes Φ′
r′ of the element Δ, using the matrices Ĵ−1, given by cumber-

some expressions. Therefore, the required recalculation is executed based on the
relations (10) and (11) for each finite element Δq at the stage of the formation
of the LIP basis {ϕp

r(x
′)}N

r=1 on the finite element Δ, implemented numerically
using the analytical formulas

∫

Δq

dxg0(x)ϕp
rϕ

p
r′U(x; z) = J

∫

Δ

dx′g0(x′)ϕp
r(x

′; z)ϕp
r′(x′; z)U(x′; z),

∫

Δq

dxgs1s2(x)
∂ϕp

r

∂xs1

∂ϕp
r′

∂xs2

=J

2∑
t1,t2=1

Ĵ−1
s1s2;t1t2

∫

Δ

dx′gs1s2(x
′)

∂ϕp
r(x

′; z)
∂x′

t1

∂ϕp
r′(x′; z)
∂x′

t2

,

where ϕp
r ≡ ϕr(x; z), J = det Ĵ > 0 is the determinant of the matrix Ĵ from

Eq. (10), Ĵ−1
s1s2;t1t2 = (Ĵ−1)t1s1(Ĵ

−1)t2s2 , dx′ = dx′
1dx′

2. In this case, we have
explicit expression for shape functions ϕp

l (z
′
1, z

′
2):

ϕp
l (x

′) =
n1−1∏
n′
1=0

1 − x′
1 − x′

2 − n′
1/p

n1/p − n′
1/p

n2−1∏
n′
2=0

x′
1 − n′

2/p

n2/p − n′
2/p

n3−1∏
n′
3=0

x′
2 − n′

3/p

n3/p − n′
3/p

. (12)

The integrals (10) are evaluated using the 2p-order 2D Gaussian quadrature.
In order to solve the generalized eigenvalue problem (8), the subspace itera-

tion method [1,13] elaborated by Bathe [1] for the solution of large symmetric
banded-matrix eigenvalue problems has been chosen. This method uses the sky-
line storage mode which stores the components of the matrix column vectors
within the banded region of the matrix, and is ideally suited for banded finite-
element matrices. The procedure chooses a vector subspace of the full solution
space and iterates upon the successive solutions in the subspace (for details, see
[1]). The iterations continue until the desired set of solutions in the iteration sub-
space converges to within the specified tolerance on the Rayleigh quotients for
the eigenpairs. If the matrix Ap in Eq. (8) is not positively defined, the problem
(8) is replaced with the following problem:

Ãp Φh = ε̃h Bp Φh, Ãp = Ap − αBp. (13)

The number α (the shift of the energy spectrum) is chosen such that the
matrix Ãp is positive defined. The eigenvector of problem (13) is the same, and
εh = ε̃h + α.

3 Fully Symmetric High-Order Gaussian Quadratures

Let consider the two-dimensional integral on triangular domain 	xy with vertices
(x1, y1), (x2, y2), (x3, y3):

I =
1

S�xy

∫

�xy

f(x, y)dydx (14)

156 A.A. Gusev et al.

Table 1. The quadrature rule for p = 15 with np = 52, [n0, n1, n2] = [1, 5, 6], Nw
i is

the number of different permutations of the areal coordinates (αi, βi, γi).

Nw
i wi αi, βi, γi

1 0.033266408301048 0.333333333333333 0.333333333333333 0.333333333333333

3 0.045542949984995 0.202687173029433 0.398656413485283 0.398656413485283

3 0.018936193317852 0.075705168935176 0.462147415532411 0.462147415532411

3 0.046595625404608 0.555517449279976 0.222241275360011 0.222241275360011

3 0.014390824709404 0.878972401688571 0.060513799155714 0.060513799155714

3 0.000733389561154 0.822518347845233 0.088740826077383 0.088740826077383

6 0.011157489727398 0.016416695030487 0.426971506367034 0.556611798602478

6 0.031443815585368 0.096704376730713 0.328778565825110 0.574517057444176

6 0.014551780499648 0.019017867773827 0.282103601487049 0.698878530739123

6 0.010312560870261 0.015907369998417 0.141176714757054 0.842915915244527

6 0.027717303713350 0.089942179570517 0.180738614626992 0.729319205802489

6 0.002839823398123 0.004434769410597 0.037262719444011 0.958302511145391

where S�xy
is a square of triangular domain 	xy. Using change of variables

x = x1γ + x2α + x3β, y = y1γ + y2α + y3β, γ = 1 − α − β, (15)

we obtain

I =
|J |

S�xy

∫

�αβ

f(α, β)dβdα = 2
∫ 1

0

∫ 1−α

0

f(α, β)dβdα, (16)

where J is a Jacobian and |J | = 2S�xy
, and domain 	αβ is an isosceles right

triangle with vertices (0, 0), (0, 1), (1, 0). The pth ordered fully symmetrical
Gaussian quadrature rules for this integral may be written as

I ≈
np∑
i=1

wif(αi, βi). (17)

We consider fully symmetric rules, where if a point with areal coordinates (α, β, γ)
is used in the quadrature, then all points resulting from the Nw

i permutation of
the areal coordinates are also used, with the same weight wi. Integration points
in a fully symmetric rule can thus belong to one of three different types of point
sets, or orbits, depending on the number of areal coordinates which are equal.
The number of points for such a rule is np = n0 + 3n1 + 6n2. Here n0 is the
number of points which three areal coordinates are equal, i.e., n0 = 0 or 1.
n1 is the number of points which two areal coordinates are equal, i.e., we get
three points which lie on the medians of the triangle. n2 is the number of points
which three areal coordinates are different, i.e., we get six points.

In paper [5], the weights and coordinates of the fully symmetric rules were
presented up to order p = 20 with minimal number of points using the moment
equations. Calculation was performed with double precision accuracy. However,

Algorithms for Solving a 2D Elliptic Boundary-Value Problem 157

Table 2. The quadrature rule for p = 16, np = 58, type [n0, n1, n2] = [1, 7, 6]

Nw
i wi αi, βi, γi

1 0.0415207350648329 0.3333333333333333 0.3333333333333333 0.3333333333333333

3 0.0101046137864021 0.0121739816884923 0.4939130091557539 0.4939130091557539

3 0.0363778998629740 0.1778835483267153 0.4110582258366423 0.4110582258366423

3 0.0253955775082257 0.0671491113178838 0.4664254443410581 0.4664254443410581

3 0.0359208834794810 0.5001385533336064 0.2499307233331968 0.2499307233331968

3 0.0267742614985530 0.6719362487011838 0.1640318756494081 0.1640318756494081

3 0.0136749716214666 0.8476751119345034 0.0761624440327483 0.0761624440327483

3 0.0031626040488014 0.9688994524978406 0.0155502737510797 0.0155502737510797

6 0.0266514412829383 0.1235525166817187 0.3005378086834664 0.5759096746348149

6 0.0089313378511684 0.0119532031311031 0.3372065794794446 0.6508402173894523

6 0.0152078872638436 0.0523853085701298 0.3143393035872713 0.6332753878425989

6 0.0183760532268712 0.0658032190776827 0.1786829962718098 0.7555137846505075

6 0.0080645623746130 0.0117710730623248 0.1921850841541305 0.7960438427835448

6 0.0068098562534747 0.0149594704947242 0.0806342445495042 0.9044062849557716

Table 3. The quadrature rule for p = 18, np = 76, type [n0, n1, n2] = [1, 9, 8]

Nw
i wi αi, βi, γi

1 0.0223535614716711 0.3333333333333333 0.3333333333333333 0.3333333333333333

3 0.0059334988479546 0.0460021789844010 0.4769989105077995 0.4769989105077995

3 0.0165585324593954 0.0730729604309092 0.4634635197845454 0.4634635197845454

3 0.0195910892704527 0.1551748557050338 0.4224125721474831 0.4224125721474831

3 0.0074160344816382 0.1550933080132821 0.4224533459933590 0.4224533459933590

3 0.0174049699198115 0.2365578681901632 0.3817210659049184 0.3817210659049184

3 0.0296996298680842 0.4863851422108091 0.2568074288945954 0.2568074288945954

3 0.0222906281899201 0.6736478731957263 0.1631760634021368 0.1631760634021368

3 0.0134460768460945 0.8559888247875595 0.0720055876062202 0.0720055876062202

3 0.0005486878691143 0.9921639450656871 0.0039180274671564 0.0039180274671564

6 0.0098384904247447 0.0120605799230755 0.4119329978824294 0.5760064221944951

6 0.0262821659985039 0.1420581973687457 0.2846674905460437 0.5732743120852107

6 0.0161450882618767 0.0645759925263757 0.3322842391902052 0.6031397682834191

6 0.0078521623046175 0.0411153725698427 0.2629574865443483 0.6959271408858090

6 0.0066043565050862 0.0091463267009754 0.2594416877532075 0.7314119855458171

6 0.0174843686058097 0.0725930398678583 0.1734580428423163 0.7539489172898254

6 0.0080232785271782 0.0147258776438553 0.1349402463458236 0.8503338760103211

6 0.0042665885840052 0.0124575576578779 0.0477763926862289 0.9397660496558932

some rules have the points outside the triangle and/or negative weights. We
need to use Gaussian quadrature rules with positive weights, and no points are
outside the triangle (so-called PI type).

158 A.A. Gusev et al.

The above Gaussian quadrature rules are constructed with Algorithm:

Step 1. Transfer the isosceles right triangular domain 	αβ to the equilateral tri-
angular domain with vertices (−1, 0), (1/2,−√

3/2), (1/2,
√

3/2), which centroid
of triangle located at the origin of the coordinate system.
Step 2. Write the moment equations in polar coordinates [5].
Step 3. Minimize nonlinear moment equation for solving n0 + 2n1 + 3n2 unkno-
wns using the Levenberg–Marquardt algorithm.
Step 4. Transformation of the calculated areal coordinates to the isosceles right
triangular domain 	αβ .

A new high ordered PI type rules that are not listed in the Encyclopedia
of Quadrature Formulas [3,12] are presented in Tables 1, 2, 3 and 4 calculated
by the above algorithm implemented in Maple. In the considered problems, the
maximal number of the nonlinear moment equations equals 44, and the number
of unknowns equals 47 at p = 20. The explicit expressions for Gauss quadratures
weights and areal coordinates with 32 significant digits were calculated, but are
not presented here because of the paper size limitations. Note, the alternative
equilateral triangle quadrature formulas were calculated in [17].

Table 4. The quadrature rule for p = 20, np = 85, type [n0, n1, n2] = [1, 8, 10]

Nw
i wi αi, βi, γi

1 0.0284956488386955 0.3333333333333333 0.3333333333333333 0.3333333333333333

3 0.0142039534279209 0.0474234283023599 0.4762882858488200 0.4762882858488200

3 0.0194408133550425 0.1095872167894353 0.4452063916052824 0.4452063916052824

3 0.0273065929935536 0.4916898571477065 0.2541550714261467 0.2541550714261467

3 0.0190593173083705 0.6282404953903102 0.1858797523048449 0.1858797523048449

3 0.0153240833856847 0.7827490888114787 0.1086254555942607 0.1086254555942607

3 0.0003407707226317 0.8487205009418537 0.0756397495290731 0.0756397495290731

3 0.0046354964939763 0.9218908161548015 0.0390545919225992 0.0390545919225992

3 0.0016717238812827 0.9775115344410667 0.0112442327794667 0.0112442327794667

6 0.0146283618671282 0.2120524546203612 0.3758687560757836 0.4120787893038552

6 0.0172080000328995 0.0546435084561301 0.3335452223628692 0.6118112691810008

6 0.0073409966477119 0.0097859886040601 0.4202306323332298 0.5699833790627102

6 0.0232450825127741 0.1383472868057439 0.3152308903849581 0.5464218228092980

6 0.0070480826238744 0.0106040218922527 0.2811743979692607 0.7082215801384866

6 0.0153834272762777 0.1032538874333241 0.2130007906781420 0.6837453218885339

6 0.0041951209853354 0.0070915889018085 0.1595497908201870 0.8333586202780045

6 0.0114288995104660 0.0449113089652980 0.1997044919178251 0.7553841991168769

6 0.0081140164445318 0.0377602618140266 0.1028511090917952 0.8593886290941782

6 0.0023340281749869 0.0051697211528337 0.0641281242816143 0.9307021545655520

Algorithms for Solving a 2D Elliptic Boundary-Value Problem 159

4 The Algorithm for Calculating the Parametric
Derivatives of Eigenfunctions and Effective Potentials

Taking a derivative of the boundary-value problem (1)–(5) with respect to the
parameter z, we find that ∂zΦi(x; z) is a solution of the following boundary-value
problem with the mixed boundary conditions

(D(x; z)−εi(z))
∂Φi(x; z)

∂z
=−

[
∂

∂z
(U(x; z)−εi(z))

]
Φi(x; z),

∂Φ(x; z)
∂z

∣∣∣∣
S

= 0 or
∂2Φ(x; z)
∂nD∂z

∣∣∣
S
= 0. (18)

The parametric BVP (18) has a unique solution, if and only if it satisfies the
conditions

∂εi(z)
∂z

=
∫

Ω

dxg0(x) (Φi(x; z))
∂U(x; z)

∂z
Φi(x; z), (19)

∫

Ω

dxg0(x)Φi(x; z)
∂Φi(x; z)

∂z
= 0. (20)

Below we present an efficient numerical method that allows the calculation of
∂zΦi(x; z) with the same accuracy as achieved for the eigenfunctions of the BVP
(1)–(5) and the use of it for computing the matrices of the effective potentials
defined as

Hij(z)=Hji(z)=
∫

Ω

dxg0(x)
∂Φi(x; z)

∂z

∂Φj(x; z)
∂z

, (21)

Qij(z)=−Qji(z)=−
∫

Ω

dxg0(x)Φi(x; z)
∂Φj(x; z)

∂z
. (22)

The boundary-value problem (18)–(20) is reduced to the linear system of
inhomogeneous algebraic equations with respect to the unknown ∂Φh/∂z:

L
∂Φh

∂z
≡ (Ap − εhBp)

∂Φh

∂z
= b, b = −

(
∂Ap

∂z
− ∂εh

∂z
Bp

)
Φh. (23)

The normalization condition (5), the condition of orthogonality between the
function and its parametric derivative (20), and the additional conditions (19)
for the solution of (23) read as

(
Φh

)T

BpΦh = 1,

(
∂Φh

∂z

)T

BpΦh = 0,
∂εh

∂z
=

(
Φh

)T ∂Ap

∂z
Φh. (24)

Then the potential matrix elements Hh
ij(z) and Qh

ij(z) (21) can be calculated
using the formulas

Hh
ij(z) =

(
∂Φh

i

∂z

)T

Bp
∂Φh

j

∂z
, Qh

ij(z) = −
(
Φh

i

)T

Bp
∂Φh

j

∂z
. (25)

160 A.A. Gusev et al.

Since εh is an eigenvalue of (8), the matrix L in Eq. (23) is degenerate. In this
case, the algorithm for solving Eq. (23) can be written in three steps as follows:

Step k1. Calculate the solutions v and w of the auxiliary inhomogeneous sys-
tems of algebraic equations

L̄v = b̄, L̄w = d, (26)

with the non-degenerate matrix L̄ and the right-hand sides b̄ and d

L̄ss′ =
{

Lss′ , (s − S)(s′ − S) �= 0,
δss′ , (s − S)(s′ − S) = 0,

(27)

b̄s =
{

bs, s �= S,
0, s = S,

ds =
{

LsS , s �= S,
0, s = S,

(28)

where S is the number of the element of the vector BpΦh having the greatest
absolute value.

Step k2. Evaluate the coefficient γ

γ = − γ1
(DS − γ2)

, γ1 = vTBpΦh, γ2 = wTBpΦh, DS = (BpΦh)S . (29)

Step k3. Evaluate the vector ∂zΦ
h

∂Φh
s

∂z
=

{
vs − γws, s �= S,
γ, s = S.

(30)

From the above consideration, it is evident that the computed derivative has the
same accuracy as the calculated eigenfunction.

Let D(x; z) in Eq. (1) be a continuous and bounded positive definite operator
on the space H1 with the energy norm, εi(z), Φi(x, z) ∈ H2 being the exact solu-
tions of Eqs. (1)–(5), and εh

i (z), Φh
i (x; z) ∈ H1 being the corresponding numerical

solutions. Then the following estimates are valid [13]
∣∣εi(z) − εh

i (z)
∣∣ ≤ c1h

2p,
∥∥Φi(x; z) − Φh

i (x; z)
∥∥
0

≤ c2h
p+1, (31)

‖Φi(x; z)‖20 =
∫

Ωx

dxg0(x)Φi(x; z)Φi(x; z), (32)

where h is the largest distance between any two points in Δq, p is the order
of the finite elements, i is the number of the corresponding solutions, and the
constants c1 and c2 are independent of the step h.

The following theorem can be formulated.

Theorem. Let D(x; z) in Eq. (1) be a continuous and bounded positive definite
operator on the space H1 with the energy norm. Also let ∂zU(x; z) be continuous
and bounded for each value of the parameter z. Then for the exact values of
the solutions ∂zεi(z), ∂zΦi(x; z) ∈ H2, Hij(z), Qij(z) from (18)–(21) and the

Algorithms for Solving a 2D Elliptic Boundary-Value Problem 161

corresponding numerical values ∂zε
h
i (z), ∂zΦ

h
i (x; z) ∈ H1, Hh

ij(z), Qh
ij(z) from

(23)–(25), the following estimates are valid:
∣∣∣∣
∂εi(z)

∂z
− ∂εh

i (z)
∂z

∣∣∣∣ ≤ c3h
2p,

∥∥∥∥
∂Φi(x; z)

∂z
− ∂Φh

i (x; z)
∂z

∥∥∥∥
0

≤ c4h
p+1,

∣∣Qij(z) − Qh
ij(z)

∣∣ ≤ c5h
2p,

∣∣Hij(z) − Hh
ij(z)

∣∣ ≤ c6h
2p, (33)

where h is the largest distance between any two points of the finite element
Δq, p is the order of finite elements, i, j are the numbers of the corresponding
solutions, and the constants c3, c4, c5, and c6 are independent of the step h.

The proof is straightforward following the scheme in accordance with [13].

5 Benchmark Calculations of Helium Atom Ground State

In the hyperspheroidal coordinates 0 ≤ R < ∞, 1 ≤ ξ < ∞, −1 ≤ η ≤ 1

r12 =
√

2R√
ξ2 + η2

, r1 =
R(ξ + η)√
2
√

ξ2 + η2
, r2 =

R(ξ − η)√
2
√

ξ2 + η2
(34)

the equation for the wave functions Ψ(R, ξ, η) =
√

ξ2 + η2Φ(R, ξ, η) for S-states
of the Helium atom reads as [15]

[
− 1

R5

∂

∂R
R5 ∂

∂R
− 3

R2
− 1

R2

(ξ2 + η2)2

ξ2 − η2

(
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1 − η2)

∂

∂η

)

+
√

2

√
ξ2 + η2

R

(
1 − 8ξ

ξ2 − η2

)
− 2E

]
Φ(R, ξ, η) = 0. (35)

The function Φ(R, ξ, η) satisfies the boundary conditions

lim
R→0

R5 ∂Φ(R, ξ, η)
∂R

= 0, lim
R→∞

R5Φ(R, ξ, η) = 0,

lim
ξ→1

(ξ2 − 1)
∂Φ(R, ξ, η)

∂ξ
= 0, lim

ξ→∞
Φ(R, ξ, η) = 0,

lim
η→±1

(1 − η2)
∂Φ(R, ξ, η)

∂η
= 0, (36)

and is normalized by the condition

8π2

∫ ∞

0

dRR5

∫ ∞

1

dξ

∫ 1

−1

dη
ξ2 − η2

(ξ2 + η2)2
Φ2(R, ξ, η) = 1. (37)

The parametric function φi ≡ φi(ξ, η;R) and the corresponding potential
curves εi(R) are eigensolutions of the 2D BVP having a purely discrete spectrum
[
− ∂

∂ξ
(ξ2−1)

∂

∂ξ
− ∂

∂η
(1−η2)

∂

∂η
+

√
2R

(
ξ2−η2−8ξ

)
√

ξ2+η2
3 −εi(R)

ξ2−η2

(ξ2+η2)2

]
φi = 0(38)

162 A.A. Gusev et al.

subject to the following boundary conditions

lim
ξ→1

(ξ2−1)
∂φi(ξ, η; R)

∂ξ
= 0, lim

ξ→∞
φi(ξ, η; R) = 0, lim

η→±1
(1−η2)

∂φi(ξ, η; R)

∂η
= 0,

and the normalization condition
∫ ∞

1

dξ

∫ 1

−1

dη
ξ2 − η2

(ξ2 + η2)2
φ2

i (ξ, η;R) = 1. (39)

In terms of scaled variable and parametric surface functions

ξ =
1 + λ

1 − λ
, 0 ≤ λ < 1, φi(ξ, η;R) =

pi(ξ, η;R)
ξ + 1

≡ pi(λ, η;R)
ξ + 1

, (40)

we rewrite the 2D BVP (38)–(39) in the form
[
− ∂

∂λ
λ(1−λ)2

∂

∂λ
− ∂

∂η
(1−η2)

∂

∂η
+

√
2R(1−λ)

(1+λ)2−(1−λ)2η2−8(1−λ2)√
(1+λ)2+(1−λ)2η2

3

+1−λ−εi(R)(1−λ)2
(1+λ)2−(1−λ)2η2

((1+λ)2+(1−λ)2η2)2

]
pi(λ, η;R) = 0. (41)

The surface functions pi(λ, η;R) satisfy the following boundary and normaliza-
tion conditions

lim
λ→0,1

λ(1−λ)
∂pi(λ, η;R)

∂λ
= 0, lim

η→±1
(1−η2)

∂pi(λ, η;R)
∂η

= 0, (42)

1
2

∫ 1

0

dλ

∫ 1

−1

dη(1−λ)2
(1+λ)2−(1−λ)2η2

((1+λ)2+(1−λ)2η2)2
p2i (λ, η;R) = 1. (43)

The numerical experiments in the finite-element grids have shown a strict
correspondence with the theoretical estimations (31) and (33) for the eigenvalues,
eigenfunctions, and the matrix elements. In particular, we calculated the values
of the Runge coefficients

βl = log2
∣∣∣(σh

l − σ
h/2
l)/(σh/2

l − σ
h/4
l)

∣∣∣ , l = 1, 2, (44)

with absolute errors on three twice condensed grids for their eigenvalues and
eigenfunctions, respectively

σh
1 = |E2h

m (z) − Eh
m(z)|, σh

2 = ‖Φ2h
m (x; z) − Φh

m(x; z)‖0. (45)

The Runge coefficients for six eigenvalues presented in Table 5 equal 7.52 ÷
8.19 and for their parametric derivatives equal 7.46 ÷ 7.76 are nearly similar
and correspond to the theoretical estimates (31) and (33) for the fourth-order
scheme (2p ≈ 8).

The calculations were carried out using the server 2× 4 kernels i7k (i7-3770K
4.5 GHz, 32 GB RAM, GPU GTX680), and the Intel Fortran compiler 17.0. The

Algorithms for Solving a 2D Elliptic Boundary-Value Problem 163

Table 5. Comparison of the transformed potential curves Ej(R) = (εj(R) − 3)/4 and
their first derivative with respect to parameter R with results [9] at jmax = 12. The
mesh points are λ = {0(L)1} and η = {0(L)1}, and R = 7.65 a.u.

j Ej(R) (L = 40) ∂REj(R) (L = 40) Ej(R) [9] ∂REj(R) [9]

1 −63.499 153 248 −15.796 136 178 −63.499 153 256 −15.796 136 189

2 −21.451 891 391 −3.997 429 168 −21.451 886 907 −3.997 431 891

3 −19.082 406 592 −4.142 660 217 −19.082 325 834 −4.142 711 985

4 −13.371 481 961 −3.897 822 460 −13.371 480 623 −3.897 824 374

5 −11.876 679 683 −3.314 363 652 −11.876 677 566 −3.314 347 679

6 −8.898 981 042 −2.705 445 931 −8.897 839 854 −2.705 544 197

j Ej(R) (L = 20) ∂REj(R) (L = 20) Ej(R) (L = 10) ∂REj(R) (L = 10)

1 −63.499 151 482 −15.796 133 881 −63.498 825 358 −15.795 727 590

2 −21.451 891 369 −3.997 429 139 −21.451 886 770 −3.997 423 220

3 −19.082 406 568 −4.142 660 186 −19.082 401 572 −4.142 653 692

4 −13.371 481 948 −3.897 822 446 −13.371 479 034 −3.897 819 472

5 −11.876 679 657 −3.314 363 641 −11.876 674 062 −3.314 361 245

6 −8.898 980 996 −2.705 445 914 −8.898 971 861 −2.705 442 515

Table 6. Matrix elements Hji(R), i, j = 1, ..., 6 at R = 7.65.

.1291804E-1 −.1264117E-1 .7293917E-2 .3763094E-2 −.1051774E-1 −.6007265E-2

−.1264117E-1 .3871021E-1 −.4493495E-2 −.1899806E-1 .2378084E-1 .5400750E-2

.7293917E-2 −.4493495E-2 .3270711E-1 .2565576E-1 .2270581E-1 −.1199926E-1

.3763094E-2 −.1899806E-1 .2565576E-1 .8136326E-1 .9664928E-2 −.2314799E-1

−.1051774E-1 .2378084E-1 .2270581E-1 .9664928E-2 .8335278E-1 .1949047E-1

−.6007265E-2 .5400750E-2 −.1199926E-1 −.2314799E-1 .1949047E-1 .2743837E-1

Table 7. Matrix elements Qji(R), i, j = 1, ..., 6 at R = 7.65.

.37E-15 −.5859058E-1 .2863643E-1 .4422091E-1 .3362249E-1 .1621148E-1

.5859058E-1 .43E-16 .2502732E-1 −.1657796E+0 −.6079201E-1 −.1728211E-1

−.2863643E-1 −.2502732E-1 .36E-15 −.4584596E-1 .1345970E+0 .8980072E-1

−.4422091E-1 .1657796E+0 .4584596E-1 −.12E-15 .2029277E+0 .1556143E-1

−.3362249E-1 .6079201E-1 −.1345970E+0 −.2029277E+0 .92E-16 .1142082E+0

−.1621148E-1 .1728211E-1 −.8980072E-1 −.1556143E-1 −.1142082E+0 .13E-15

computing time for the considered examples with 10−12 accuracy on the uniform
grids λ = {0(L)1}, η = {0(L)1} at L = 10, 20, 40 is 0.38, 5.08, and 41.21 s,
respectively. The matrix elements Qij(R) and Hij(R) are presented in Tables 6
and 7. As an example eigenfunctions and their parametric derivatives are shown
in Figs. 1 and 2.

164 A.A. Gusev et al.

Fig. 1. The eigenfunction p1(λ, η; R) and its parametric derivative ∂Rp1(λ, η; R) at
R = 7.65.

Fig. 2. The eigenfunction p4(λ, η; R) and its parametric derivative ∂Rp4(λ, η; R) at
R = 7.65.

We seek for the solution of the BVP (35)–(37) by Kantorovich expansion

Φ(R, ξ, η) =
jmax∑
j=1

φj(ξ, η;R)χj(R) (46)

Algorithms for Solving a 2D Elliptic Boundary-Value Problem 165

over the eigenfunctions φj(ξ, η;R) of the parametric 2D BVP having a purely
discrete spectrum Ej(R) = (εj(R) − 3)/R2, j = 1, 2, Substituting expansion
(46) into the 3D BVP Eqs. (35)–(37), we get the 1D BVP for a finite set of jmax

coupled SOODEs for χ(R) = {χ1(R), ..., χN (R)}T

(
− 1

R5
I

d

dR
R5 d

dR
+V(R)+Q(R)

d

dR
+

1
R5

dR5Q(R)
dR

−2E I
)

χ(R) = 0,

with the boundary and normalization conditions

lim
R→0

R5 dχ(R)
dR

= 0, lim
R→∞

R5χ(R) = 0, 8π2

∫ ∞

0

dRR5(χ(R))T χ(R) = 1.

The solution of this BVP with the help of KANTBP program [8] on the non-
uniform grids R = {0(50), 5, (75), 20} using calculated Ej(R), Vij(R) = Hij(R),
Vjj(R) = Hjj(R) + Ej(R), Qij(R), i, j = 1, ..., 12 gives us the energy of Helium
atom ground state E1 = −2.90372430 a.u. with 8 significant digits.

6 Conclusion

We have elaborated new calculation schemes, algorithms, and the program for
solving the parametric 2D elliptic BVP using the high-accuracy FEM with tri-
angular elements. The program calculates the potential matrix elements, the
integrals of the eigenfunctions multiplied by their first derivatives with respect
to the parameter. The parametric eigenvalues (potential curves) and the matrix
elements computed by the program can be used for solving the bound-state
and multi-channel scattering problems for a system of the coupled second-order
ODES with using the Kantorovich method. We demonstrated the efficiency of
the proposed finite element schemes, algorithms, and codes by benchmark cal-
culations of BVPs of helium atom ground state.

The work was partially supported by the Russian Foundation for
Basic Research (grants Nos. 16-01-00080 and 17-51-44003 Mong a) and the
Bogoliubov-Infeld program. The reported study was funded by the Agreement
N 02.03.21.0008 dated 24.04.2016 between the MES of the RF and RUDN
University.

References

1. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall,
Englewood Cliffs (1982)

2. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Publ.
Comp., Amsterdam (1978)

3. Cools, R.: An encyclopaedia of quadrature Formulas. J. Complex. 19, 445 (2003).
http://nines.cs.kuleuven.be/ecf/

4. Chuluunbaatar, O., Gusev, A.A., Abrashkevich, A.G., Amaya-Tapia, A., Kaschiev,
M.S., Larsen, S.Y., Vinitsky, S.I.: KANTBP: a program for computing energy lev-
els, reaction matrix and radial wave functions in the coupled-channel hyperspher-
ical adiabatic approach. Comput. Phys. Commun. 177, 649–675 (2007)

http://nines.cs.kuleuven.be/ecf/

166 A.A. Gusev et al.

5. Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for
the triangle. Int. J. Numer. Methods Eng. 21, 1129–1148 (1985)

6. Esry, B.D., Lin, C.D., Greene, C.H.: Adiabatic hyperspherical study of the helium
trimer. Phys. Rev. A 54, 394–401 (1996)

7. Fano, U., Rau, A.R.P.: Atomic Collisions and Spectra. Academic Press, Florida
(1986)

8. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP
3.0: new version of a program for computing energy levels, reflection and transmis-
sion matrices, and corresponding wave functions in the coupled-channel adiabatic
approach. Comput. Phys. Commun. 185, 3341–3343 (2014)

9. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: POTHEA: a
program for computing eigenvalues and eigenfunctions and their first derivatives
with respect to the parameter of the parametric self-adjoined 2D elliptic partial
differential equation. Comput. Phys. Commun. 185, 2636–2654 (2014)

10. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley,
New York (1964)

11. Kress, J.D., Parker, G.A., Pack, R.T., Archer, B.J., Cook, W.A.: Comparison
of Lanczos and subspace iterations for hyperspherical reaction path calculations.
Comput. Phys. Commun. 53, 91–108 (1989)

12. Papanicolopulos, S.-A.: Analytical computation of moderate-degree fully-
symmetric quadrature rules on the triangle. arXiv:1111.3827v1 [math.NA]

13. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall,
Englewood Cliffs (1973)

14. Vinitskii, S.I., Ponomarev, L.I.: Adiabatic representation in the three-body prob-
lem with Coulomb interaction. Sov. J. Part. Nucl. 13, 557–587 (1982)

15. Vinitsky, S.I., Gusev, A.A., Chuluunbaatar, O., Derbov, V.L., Zotkina, A.S.: On
calculations of two-electron atoms in spheroidal coordinates mapping on hyper-
sphere. In: Proceedings of SPIE, vol. 9917, p. 99172Z (2016)

16. Vlasova, Z.A.: On the method of reduction to ordinary differential equations. Trudy
Mat. Inst. Steklov. 53, 16–36 (1959)

17. Zhang, L., Cui, T., Liu, H.: A set of symmetric quadrature rules on triangles and
tetrahedra. J. Comput. Math. 27, 89–96 (2009)

http://arxiv.org/abs/1111.3827v1

A Symbolic Study of the Satellite Dynamics
Subject to Damping Torques

Sergey A. Gutnik1(B) and Vasily A. Sarychev2

1 Moscow State Institute of International Relations (University), 76, Prospekt
Vernadskogo, Moscow 119454, Russia

s.gutnik@inno.mgimo.ru
2 Keldysh Institute of Applied Mathematics (Russian Academy of Sciences), 4,

Miusskaya Square, Moscow 125047, Russia
vas31@rambler.ru

Abstract. The dynamics of the rotational motion of a satellite moving
in the central Newtonian force field in a circular orbit under the influence
of gravitational and active damping torques is investigated with the help
of computer algebra methods. The properties of a nonlinear algebraic
system that determines equilibrium orientations of a satellite under the
action of gravitational and active damping torques were studied. An algo-
rithm for the construction of a Gröbner basis is proposed for determining
the equilibrium orientations of a satellite with given central moments of
inertia and given damping torques. The conditions of the equilibria’s
existence were obtained by the analysis of real roots of algebraic equa-
tions from the constructed Gröbner basis. The domains with an equal
number of equilibria were specified by using algebraic methods for the
construction of discriminant hypersurfaces. The conditions of asymptotic
stability of the satellite’s equilibria were determined as a result of the
analysis of linearized equations of motion using Routh–Hurwitz criterion.

1 Introduction

In this paper, a symbolic investigation of a satellite dynamics under the influence
of gravitational and active damping torques is presented. The gravity orienta-
tion systems are based on the fact that a satellite with different moments of
inertia in the central Newtonian force field in a circular orbit has 24 equilibrium
orientations and four of them are stable [1]. An important property of gravity
orientation systems is that these systems can operate for a long time without
spending energy. The problem to be analyzed in the present work is related to
the behavior of the satellite acted upon by the gravity gradient and active damp-
ing torques. We assume that active damping torques depend on the projections
of the angular velocity of the satellite. Such active damping torques can be pro-
vided by using the angular velocity sensor. The action of damping torques both
leads to new equilibrium orientations and can provide the asymptotic stability
of the well known equilibria of the gravity oriented satellites. Therefore, it is
necessary to study the joint action of gravitational and active damping torques
c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 167–182, 2017.
DOI: 10.1007/978-3-319-66320-3 13

168 S.A. Gutnik and V.A. Sarychev

and, in particular, to analyze the necessary and sufficient conditions for asymp-
totic stability of the satellite’s equilibria in a circular orbit. Such solutions can
be used in practical space technology in the design of control orientation systems
of the satellites.

In the present work, the problem of determination of the classes of equilibrium
orientations and the conditions for asymptotic stability of defined equilibria for
the general values of damping torques is considered. The equilibrium orientations
are determined by real roots of the system of algebraic equations. The investi-
gation of equilibria was performed by using the computer algebra Gröbner basis
methods. The evolution of domains with a fixed number of equilibria is inves-
tigated by the analysis of the singular points of the discriminant hypersurface
depending on three dimensionless damping parameters.

The conditions of equilibria stability are determined as a result of an analysis
of the linearized equations of motion using the Routh–Hurwitz criterion. The
detailed investigation of the regions of the necessary and sufficient conditions
of stability is carried out by a numerical-analytical method in the plane of two
dimensionless inertia parameters at different values of damping coefficients. The
types of transition decay processes of spatial oscillations of a satellite at different
damping parameters have been investigated numerically.

The computer algebra methods for determination of the equilibrium orien-
tation of a satellite had been successfully used earlier to analyze the equilib-
rium orientations of a satellite under the influence of gravitational and constant
torques [3]. The study of the equilibria of polynomial dynamical systems by
means of symbolic computation is a very popular application of computer alge-
bra. The detailed analysis of typical problems on parametric dynamical systems
and computer algebra algorithms for solving this problem was presented at the
CASC 2011 Workshop [4]. The symbolic methods for analyzing the stability of
the equilibria of polynomial dynamical systems were presented at the CASC
2002 [5] and CASC 2007 Workshops [6].

2 Equations of Motion

Consider the attitude motion of a satellite subjected to gravitational and active
damping torques in a circular orbit. We assume that the satellite is a triaxial
rigid body, and active damping torques depend on the projections of the angular
velocity of the satellite. To write the equations of motion we introduce two right-
handed Cartesian coordinate systems with origin at the satellite’s center of mass
O. The orbital coordinate system is OXY Z, where the OZ axis is directed along
the radius-vector connecting the centers of mass of the Earth and the satellite,
the OX axis is in the direction of a satellite orbital motion. Then, the OY axis
is directed along the normal to the orbital plane. The satellite body coordinate
system is Oxyz, where Ox,Oy, and Oz are the principal central axes of inertia
of the satellite. The orientation of the satellite body coordinate system Oxyz
with respect to the orbital coordinate system is determined by means of the
aircraft angles of pitch (α), yaw (β), and roll (γ), and the direction cosines in

Influence of Damping Torques on Satellite Dynamics 169

the transformation matrix between the orbital coordinate system OXY Z and
Oxyz are represented by the following expressions [2]:

a11 = cos(x,X) = cos α cos β,

a12 = cos(y,X) = sinα sin γ − cos α sin β cos γ,

a13 = cos(z,X) = sinα cos γ + cos α sin β sin γ,

a21 = cos(x, Y) = sinβ,

a22 = cos(y, Y) = cos β cos γ,

a23 = cos(z, Y) = − cos β sin γ,

a31 = cos(x,Z) = − sin α cos β,

a32 = cos(y, Z) = cos α sin γ + sin α sin β cos γ,

a33 = cos(z, Z) = cos α cos β − sin α sin β sin γ. (1)

For small oscillations of the satellite, the angles of pitch, yaw, and roll correspond
to the rotations around the OY,OZ, and OX axes, respectively.

Let the satellite be acted upon by the moments of active damping, their
integral vector projections on the axes Ox,Oy, and Oz are equal to the following
values: Mx = k̄1p1,My = k̄2(q1−ω0), and Mz = k̄3r1. Here k̄1, k̄2, and k̄3 are the
damping coefficients, p1, q1, and r1 are the projections of the satellite’s angular
velocity onto the axes Ox,Oy, and Oz;ω0 is the angular velocity of the orbital
motion of the satellite’s center of mass. The equations of satellite attitude motion
can then be written in the Euler form:

Ap′
1 + (C − B)q1r1 − 3ω2

0(C − B)a32a33 + k̄1p1 = 0,

Bq′
1 + (A − C)r1p1 − 3ω2

0(A − C)a31a33 + k̄2(q1 − ω0) = 0,
Cr′

1 + (B − A)p1q1 − 3ω2
0(B − A)a31a32 + k̄3r1 = 0, (2)

p1 = (α′ + ω0)a21 + γ′,
q1 = (α′ + ω0)a22 + β′ sin γ,

r1 = (α′ + ω0)a23 + β′ cos γ. (3)

Here A,B, and C are the principal central moments of inertia of the satellite.
The prime denotes the differentiation with respect to time t.

After the introduction of dimensionless parameters θA = A/B, θC = C/B,
p = p1/ω0, q = q1/ω0, r = r1/ω0, k̃1 = k̄1/Bω0, k̃2 = k̄2/Bω0, k̃3 = k̄3/Bω0, and
τ = ω0t one can rewrite system (2)–(3) in the form

θAṗ + (θC − 1)qr − 3(θC − 1)a32a33 + k̃1p = 0,

q̇ + (θA − θC)rp − 3(θA − θC)a31a33 + k̃2(q − 1) = 0,
θC ṙ + (1 − θA)pq − 3(1 − θA)a31a32 + k̃3r = 0, (4)

p = (α̇ + 1)a21 + γ̇,

q = (α̇ + 1)a22 + β̇ sin γ,

r = (α̇ + 1)a23 + β̇ cos γ. (5)

The dot denotes the differentiation with respect to τ .

170 S.A. Gutnik and V.A. Sarychev

3 Equilibrium Orientations of Satellite

Setting in (2) and (3) α = α0 = const, β = β0 = const, γ = γ0 = const, we
obtain at A �= B �= C the equations

a22a23 − 3a32a33 + k1a21 = 0,

a21a23 − 3a31a33 + k2(a22 − 1) = 0,
a21a22 − 3a31a32 + k3a23 = 0, (6)

which allow us to determine the satellite equilibria in the orbital coordinate
system. Here k1 = k̃1/(C − B), k2 = k̃2/(A − C), and k3 = k̃3/(B − A). We
will consider the case when damping coefficients k1, k2, and k3 are positive.
Substituting the expressions for the direction cosines from (1) in terms of the
aircraft angles into Eq. (6), we obtain three equations with three unknowns α, β,
and γ. Another way of closing Eq. (6) is to add the following three conditions
for the orthogonality of direction cosines:

a2
21 + a2

22 + a2
23 − 1 = 0,

a2
31 + a2

32 + a2
33 − 1 = 0,

a21a31 + a22a32 + a23a33 = 0. (7)

Equations (6) and (7) form a closed system of equations with respect to the
six direction cosines identifying the satellite equilibrium orientations. For this
system of equations, we formulate the following problem: for given values of
k1, k2, and k3, it is required to determine all the nine directional cosines, i.e.,
all satellite equilibrium orientations in the orbital coordinate system. After
a21, a22, a23, a31, a32, and a33 are found, the direction cosines a11, a12, and a13

can be determined from the conditions of orthogonality.
It should be noted that to solve system (6), (7) it is sufficient to find the

values of two unknowns a21 and a22. Indeed, for each value a21 and a22, one can
find two values of a23 from the first equation of system (7) and then uniquely
determine their corresponding values a31, a32, and a33 from system (6), (7).

To find solutions of the algebraic system (6), (7) we used the algorithm for
constructing the Gröbner bases [7]. The method for constructing a Gröbner basis
is an algorithmic procedure that reduces the problem in the case of polynomials
of several variables to a problem with a polynomial of a single variable.

In our study, for Gröbner bases construction, we applied the command
Groebner[Basis] from the package Groebner implemented in the computer
algebra system Maple 15 [8]. We constructed the Gröbner basis of the system of
six second-order polynomials (6), (7) with six variables aij (i = 2, 3; j = 1, 2, 3),
with respect to the lexicographic ordering of variables by using option plex. In
the list of polynomials F:=[fi(i = 1, 2, . . . 6)], fi are the left–hand sides of the
algebraic equations (6), (7):

G:=map(factor,Groebner[Basis]([F, plex(a31, ... a22))).

Here, calculating the Gröbner basis over the field of rational functions in
k1, k2, and k3, we compute the generic solutions of our problem only. In our task

Influence of Damping Torques on Satellite Dynamics 171

from the area of satellite dynamics, the main goal of the study is to estimate a
wide range of system parameters for which the satellite’s equilibria exist, and
the task is to determine the regions in the space of parameters for which these
equilibria are asymptotically stable.

Taking into account the errors of the angular velocity sensors and the errors of
the signals, which generate damping torques, the exact bifurcation values of the
coefficients are very difficult to obtain in practice. We are interested in estimating
the size of regions in the space of damping parameters where equilibria exist.
In the case of parametric dynamical system solving, when the parameters reach
non-generic solutions, the symbolic application based on comprehensive Gröbner
bases [9], discriminant varieties [10] and comprehensive triangular decomposition
[4] methods are used.

Here we write down the polynomial in the Gröbner basis that depends only
on one variable x = a22. This polynomial has the form

P (a22, k1, k2, k3) = (a2
22 −1)[(k1k2 +k2k3 +k1k3 −4)a22 −k2(k1 +k3)] = 0. (8)

To determine the equilibria it is required to consider separately the following
three cases: a22 = 1, a22 = −1 and (k1k2 +k2k3 +k1k3 −4)a22 −k2(k1 +k3) = 0.

In the first case, when a22 = 1 (a21 = a23 = 0), we will get the following
eight equilibrium solutions from system (6) and (7):

a2
31 = 1, a32 = a33 = 0; a2

32 = 1, a31 = a33 = 0; a2
33 = 1, a32 = a33 = 0. (9)

In the second case, when a22 = −1, system (6), (7) takes the form

a32a33 = 0, a31a32 = 0,

a31a33 + 2k2 = 0,

a2
31 + a2

33 = 1. (10)

From (10) we obtain the following solutions:

a32 = 0, a31 = −2k2/3a33;
9a4

33 − 9a2
33 + 4k2

2 = 0,

a2
33 =

3 −
√

9 − 16k2
2

2
. (11)

Solutions (11) exist in the case when the discriminant of the biquadratic equation
9a4

33 −9a2
33 +4k2

2 = 0 is non-negative and a2
33 ≤ 1. These conditions are satisfied

when k2
2 ≤ 1/2.

Now let us consider the third case, where the satellite equilibrium solutions
are determined by the linear equation (k1k2+k2k3+k1k3−4)a22−k2(k1+k3) = 0,
from which we can obtain:

a22 =
k2(k1 + k3)

k1k2 + k2k3 + k1k3 − 4
. (12)

From the condition for the existence of a solution for the direction cosine a22 ≤ 1,
we obtain the inequality k1k3 ≥ 4. From the condition a22 ≥ −1, we obtain the

172 S.A. Gutnik and V.A. Sarychev

inequality 2k1k2+2k2k3+k1k3 ≥ 4. Consequently, solution (12) is possible when
the inequality k1k3 ≥ 4 holds.

Thus, from Eq. (8), we obtain all possible values of the direction cosine a22

satisfying the initial system (6), (7).
To find the a21 values, we have recalculated the Gröbner basis with respect

to the variable a21. The polynomial depending on only one variable a21 in the
Gröbner basis obtained is given by

P (a21) = p0a
8
21 + p1a

6
21 + p2a

4
21 + p3a

2
21 + p4 = 0, (13)

where

p0 = p801, p01 = k1k2 + k2k3 + k1k3 − 4,

p1 = −2p601p11,

p11 = (k1k3 − 4)2 + 2k2(k1 + k3)(k1k3 − 4) + k2
2(k

2
1 − k2

3),
p2 = p401p21,

p21 = (k1k3 − 4)4 + 4k2(k1 + k3)(k1k3 − 4)3

+ k2
2(6k2

1 + 8k1k3 + 17)(k1k3 − 4)2

+ 2k3
2(k1 + k3)(2k2

1 − 4k2
3 + 17)(k1k3 − 4)

+ k4
2(k1 + k3)2((k1 − k3)2 + 25),

p3 = p201p31p32,

p31 = k2
2(k1k3 − 4)(2k1k2 + 2k2k3 + k1k3 − 4),

p32 = (2k2
3 − 17)(k1k3 − 4)2 + 2k2(2k2

3 − 17)(k1 + k3)(k1k3 − 4)
+ k2

2(k1 + k3)(2k2
3(k1 − k3) − 17k1 − 33k3),

p4 = (k2
3 + 4)2p231.

Equation (13) together with (12), (6), and (7) can be used to determine all the
equilibrium orientations of the satellite under the influence of gravitational and
active damping torques.

The number of real roots of the algebraic equation (13) is even and does not
exceed 8. Let us show that each real root a21 of Eq. (13) corresponds to two
equilibrium solutions of the original system (6), (7). Indeed, for each solution
a21 of Eq. (13) and a22 of Eq. (12), one can find two values of a23 from the
first equation of system (7) and then uniquely determine their corresponding
values a31, a32, and a33 from system (6), (7). Once the set of six values a21, a22,
a23, a31, a32, and a33 is found, the remaining three values a11, a12, and a13 can be
uniquely determined from the conditions of the orthogonality of the directional
cosines. Since the number of real roots of Eq. (13) does not exceed eight, the
number of the satellite equilibria in this case does not exceed sixteen.

Influence of Damping Torques on Satellite Dynamics 173

4 Conditions for the Existence of Equilibrium
Orientations of the Satellite

Equations (6)–(8) and (12), (13) make it possible to determine all the equilibrium
orientations of the satellite due to gravity and active damping torques for the
given values of dimensionless damping parameters k1, k2, and k3 of the problem.

In studying the satellite equilibrium orientations, we determine the domains
with an equal number of real roots of Eq. (13) in the space of parameters. To
identify these domains, we use the Meiman theorem [11], which yields that the
decomposition of the space of parameters into domains with an equal number of
real roots is determined by the discriminant hypersurface. It is also possible to
calculate the number of real roots of a polynomial by means of ith subdiscrimi-
nants using Jacobi theorem [12,13].

In our case, the discriminant hypersurface is given by the discriminant of
polynomial (13). This hypersurface contains a component of codimension 1,
which is the boundary of domains with an equal number of real roots. The set
of singular points of the discriminant hypersurface in the space of parameters
k1, k2, and k3 is given by the following system of algebraic equations:

P (x) = 0, P ′(x) = 0. (14)

Here x = a2
21, and the prime denotes the differentiation with respect to x.

We eliminate the variable x from system (14) by calculating the determinant
of the resultant matrix of Eq. (14) with the help of symbolic matrix functions in
Maple and obtain an algebraic equation of the discriminant hypersurface as

P1(k1, k2, k3)P2(k1, k2, k3) = 0. (15)

Here P1(k1, k2, k3) and P2(k1, k2, k3) are 14th and 8th degree polynomials,
respectively, in terms of k2. The polynomial P1(k1, k2, k3) has the form

P1(k1, k2, k3) = 625k8
2p

4
01(k1k3 − 4)2(2k1k2 + 2k2k3 + k1k3 − 4)2. (16)

Here p01 = k1k2 + k2k3 + k1k3 − 4. P2(k1, k2, k3) has the form

P2(k1, k2, k3) = p2,0k
8
2 + p2,1k

7
2 + p2,2k

6
2 + p2,3k

5
2 + p2,4k

4
2

+ p2,5k
3
2 + p2,6k

2
2 + p2,7k2 + p2,8 = 0, (17)

where

p2,0 = 4(k1 + k3)4[4(k1k3 − 4)2 − 9((k1 + k3)2][((k1 − k3)2 + 25]2,
p2,1 = 8(k1k3 − 4)(k1 + k3)3[4(4k2

3 − 9)k6
1 − 2k3(16k2

3 + 39)k5
1

+ (32k4
3 + 220k2

3 − 7)k4
1 − 2k3(16k4

3 + 506k2
3 − 1557)k3

1

+ (16k6
3 + 220k4

3 − 14186k2
3 − 15827)k2

1

− 6k3(13k4
3 − 519k2

3 + 9041)k1 − 36k6
3 − 7k4

3 − 15827k2
3 + 28800],

p2,2 = 4(k1k3 − 4)2(k1 + k3)2[28(4k2
3 − 9)k6

1 − 2k3(16k2
3 + 339)k5

1

174 S.A. Gutnik and V.A. Sarychev

+ 2(48k4
3 − 1158k2

3 + 2325)k4
1 − 2k3(16k4

3 + 3106k2
3 − 15007)k3

1

+ (112k6
3 − 2316k4

3 + 54848k2
3 − 58559)k2

1 − 2k3(339k4
3

− 15007k2
3 + 65823)k1 − 252k6

3 + 4650k4
3 − 58559k2

3 + 49536],
p2,3 = 4(k1k3 − 4)3(k1 + k3)[56(4k2

3 − 9)k6
1 + 8k3(32k2

3 − 197)k5
1

+ (320k4
3 − 7176k2

3 + 11101)k4
1 + 4k3(64k4

3 − 3276k2
3 + 10397)k3

1

+ (224k6
3 − 7176k4

3 + 57150k2
3 − 53748)k2

1 − 4k3(394k4
3

− 10397k2
3 + 24858)k1 − 504k6

3 + 11101k4
3 − 53748k2

3 + 20736],
p2,4 = 4(k1k3 − 4)4[280(4k2

3 − 9)k6
1 + 40k3(64k2

3 − 219)k5
1

+ (3136k4
3 − 34408k2

3 + 44617)k4
1

+ 4k3(640k4
3 − 14308k2

3 + 30053)k3
1

+ (1120k6
3 − 34408k4

3 + 147366k2
3 − 108828)k2

1

− 4k3(2190k4
3 − 30053k2

3 + 52398)k1 − 2520k6
3

+ 44617k4
3 − 108828k2

3 + 20736],
p2,5 = 4(k1k3 − 4)5(k1 + k3)[56(4k2

3 − 9)k4
1

+ 4k3(64k2
3 − 219)k3

1 + (224k4
3 − 3240k2

3 + 5481)k2
1

− 6k3(146k2
3 − 441)k1 − 504k4

3 + 5481k2
3 − 8262],

p2,6 = 2(k1k3 − 4)6[56(4k2
3 − 9)k4

1 + 4k3(96k2
3 − 241)k3

1

+ (224k4
3 − 1752k2

3 + 2583)k2
1 − 2k3(482k2

3 − 1197)k1
− 504k4

3 + 2583k2
3 − 2754],

p2,7 = 8(4k2
1 − 9)(4k2

3 − 9)(k1 + k3)(k1k3 − 4)7,
p2,8 = (4k2

1 − 9)(4k2
3 − 9)(k1k3 − 4)8.

Now we should check the change in the number of equilibria when one of
the surfaces (15) is intersected. This can be done numerically by determin-
ing the number of equilibria at a point of each domain P1(k1, k2, k3) = 0 and
P2(k1, k2, k3) = 0 in the space of parameters k1, k2 and k3.

It should be noted that when the boundaries of the surface P1(k1, k2, k3) = 0
are intersected no change in the equilibria occurs due to the condition (12). From
(12) it follows that the factor k1k2+k2k3+k1k3−4 from (16) is not equal to zero.
When k1k3−4 = 0, then a22 = 1 and a21 = 0; when 2k1k2+2k2k3+k1k3−4 = 0,
then a22 = −1 and a21 = 0. Thus, in these cases, we have only zero solutions.

To study the evolution of the domains of the existence of a different number
of equilibrium orientations depending on the magnitude of the damping torque
vector in the space of dimensionless parameters k1, k2, and k3, we perform a
detailed analysis of the surface P2(k1, k2, k3) = 0. The satellite equilibrium ori-
entations exist when Eqs. (12) and (13) have real solutions. Equation (12) has a
solution if the condition k1k3 ≥ 4 is satisfied.

Below we present the results of the numerical and analytical analysis of the
properties and form of the discriminant hypersurface P2(k1, k2, k3) = 0, which

Influence of Damping Torques on Satellite Dynamics 175

are two-dimensional cross sections of the surface in the plane (k1, k3) at a fixed
value of parameter k2 (Figs. 1, 2 and 3).

Figures 1, 2 and 3 show the distributions of domains with an equal number
of real roots of Eq. (13) for the cases of significantly changed characteristics. The
distributions are classified for the values of k2 in the range 0.1 ≤ k2 ≤ 5. The
figures demonstrate the domains with a fixed number of real solutions in the
plane (k1, k3) (here, k1 is the vertical axis, and k3 is the horizontal axis), and
the domain boundaries are cross sections of the surface P2(k1, k2, k3) = 0 with
the plane k2 = const.

Fig. 1. The regions with the fixed number of equilibria for k2 = 0.1

The figures indicate the domains where eight and four real solutions exist
as well as the domains where no real solutions exist (marked by 0). It can be
seen from Fig. 1 that for small values of k2 (k2 < 0.5), there are eight real
roots of Eq. (13) in the region near the origin of the coordinate system. In these
cases, there is only one region located above the positive branch of the hyperbola
k1k3 = 4, where eight equilibria of the satellite exist (four real roots of Eq. (13)).
Grey shaded regions correspond to the existence of equilibria.

For k2 = 0.5, the regions with the number of real roots of Eq. (13) equal to
8 disappear in the positive quadrant k1 ≥ 0, k3 ≥ 0 (Fig. 2) and, with further
increase of parameter k2, there are regions with the number of real roots equal to
4, and the regions with no real roots (Fig. 3). There is only one region (marked by

176 S.A. Gutnik and V.A. Sarychev

Fig. 2. The regions with the fixed number of equilibria for k2 = 0.5

Fig. 3. The regions with the fixed number of equilibria for k2 = 5.0

Influence of Damping Torques on Satellite Dynamics 177

grey color), which is located above the positive branch of the hyperbola k1k3 = 4,
with 8 equilibrium orientations (four real roots of Eq. (13)).

The results of the analysis of the equilibria total number in the third case can
be summarized as follows. The curves P2(k1, k2, k3) = 0 and k1k3 = 4 decompose
the plane (k1, k3) into three domains where no equilibria (8 or 4 real roots exist),
8 equilibria (4 real roots exist), and no equilibria (no real roots) exist.

The final decomposition of the plane (k1, k3) for k2 = 0.1, k2 = 0.5, and
k2 = 5.0 is presented in Figs. 1, 2 and 3.

5 Necessary and Sufficient Conditions of Asymptotic
Stability of the Equilibrium Orientations of Satellite

In order to study the necessary and sufficient conditions of asymptotic stability of
the above-determined equilibrium orientations of system (6)–(7) let us linearize
the system of Eqs. (4) and (5) in the vicinity of the equilibrium solution α = α0,
β = β0, γ = γ0. We represent α, β, and γ in the form α = α0 + ᾱ, β = β0 + β̄,
γ = γ0+γ̄, where ᾱ, β̄ and γ̄ are small deviations from the equilibrium orientation
of the satellite α = α0, β = β0, γ = γ0.

After rather exhausting symbolic transformations, the linearized system of
equations of motion takes the following form:

θA ¨̄α sin β0 + [2(θC − 1)a22a23 + k1a21] ˙̄α + 3(θC − 1)(a12a33 + a13a32)ᾱ

+ cos β0[(θA + θC − 1) − 2(θC − 1) sin2 γ0] ˙̄β + cos β0[(θC − 1)

[(1 + 3 sin2 α0) sin β0 sin 2γ0 − 3
2

sin 2α0 cos 2γ0] + k1]β̄ + θA ¨̄γ + k1 ˙̄γ

+(θC − 1)[(a2
23 − a2

22) − 3((a2
33 − a2

32)]γ̄ = 0,

¨̄αa22 + [2(θA − θC)a21a23 + k2a22] ˙̄α + 3(θA − θC)(a13a31 + a11a33)ᾱ

+¨̄β sin γ0 + [(θA + θC − 1) sin β0 cos γ0 + k2 sin γ0] ˙̄β − [(θA − θC)

[(1 + 3 sin2 α0) cos 2β0 sin γ0 +
3
2

sin 2α0 sin β0 cos γ0] + k2 sin β0 cos γ0]β̄

+(θA + θC − 1)a23 ˙̄γ + [(θC − θA)(a21a22 − 3a31a32) + k2a23]γ̄ = 0,

θC ¨̄αa23 + cos 2β0[2(1 − θA) sin β0 cos γ0 − k3 sin γ0] ˙̄α + θC
¨̄β cos γ0

+[(θC − θA + 1) sin β0 sin γ0 + k3 cos γ0] ˙̄β

+[(1 − θA)[(1 + 3 sin2 α0) cos 2β0 cos γ0 − 3
2

sin 2α0 sinβ0 sin γ0]

+k3 sinβ0 sin γ0]β̄ + 3(1 − θA)(a11a32 + a12a31)ᾱ
−(θA + θC − 1)a22 ˙̄γ + [(1 − θA)(a21a23 − 3a31a33) − k3a22]γ̄ = 0. (18)

Now let us consider small oscillations of the satellite in the vicinity of the
specific equilibrium orientation, when the principal axes of inertia of the satellite
coincide with the orbital coordinate system:

α0 = β0 = γ0 = 0. (19)

178 S.A. Gutnik and V.A. Sarychev

This is one of the equilibrium solutions from (9), when a22 = 1, a11 = 1, and
a33 = 1. Taking into account expressions (1) for solution (19), we get sin α0 = 0,
sin β0 = 0, sin γ0 = 0, and linearized equations (18) take the form

¨̄α + k2 ˙̄α + 3(θA − θC)ᾱ = 0,

θC
¨̄β + k3

˙̄β − (θA + θC − 1) ˙̄γ + (1 − θA)β̄ − k3γ̄ = 0,

θA ¨̄γ + k1 ˙̄γ + (θA + θC − 1) ˙̄β + 4(1 − θC)γ̄ + k1β̄ = 0. (20)

The characteristic equation of system (20)

[λ2 + k2λ + 3(θA − θC)](A0λ
4 + A1λ

3 + A2λ
2 + A3λ + A4) = 0 (21)

decomposes into quadratic and 4th degree equations. Here the following nota-
tions are introduced:

A0 = θAθC , A1 = k1θC + k3θA,

A2 = k1k3 + (θA + θC − 1)2 + θA(1 − θA) + 4θC(1 − θC),
A3 = k1θC + k3(θA − 3θC + 3), A4 = k1k3 + 4(1 − θA)(1 − θC).

The necessary and sufficient conditions for asymptotic stability (Routh–
Hurwitz criterion) of the equilibrium solution (19) take the following form:

k2 > 0, θA − θC > 0,

Δ1 = A1 = k1θC + k3θA > 0,

Δ2 = A1A2 − A0A3 = k2
1k3θC + k1k

2
3θA

+ (1 − θC)[k1θC(3θC − θA + 1) + k3θA(1 − θA)] > 0,

Δ3 = A1A2A3 − A0A
2
3 − A2

1A4 = 3(1 − θC)[k2
1k

2
3θC + k1k

3
3θA

+ k2
1θ

2
C(θA + θC − 1) + k1k3θC [(θA + θC − 1)(2θA − 1)

+ 3θC(1 − θC)] − k2
3θA(1 − θA)(θA + θC − 1)] > 0,

Δ4 = Δ3A4 > 0, A4 = k1k3 + 4(1 − θA)(1 − θC) > 0. (22)

Let us consider the special case when k1 = k2 = k3 = k. In this case,
conditions (22) take a simpler form

k > 0, θA − θC > 0,

Δ1 = k(θC + θA) > 0,

Δ2 = k[k2 + (1 − θC)2]θA
+ k[k2 + (1 − θC)(1 + 3θC)]θC − k(1 − θC)θ2A > 0,

Δ3 = 3k2(1 − θC)[θ3A + (3θC − 2)θ2A
+ [k2 + (1 − θC)(1 − 3θC)]θA
+ θC [k2 + (1 − θC)(1 + 2θC)]] > 0,

Δ4 = Δ3A4 > 0, A4 = k2 + 4(1 − θA)(1 − θC) > 0. (23)

Influence of Damping Torques on Satellite Dynamics 179

Fig. 4. The region of fulfillment of the asymptotic stability conditions for k = 0.5

Fig. 5. The region of fulfillment of the asymptotic stability conditions for k = 1.0

The detailed analysis of the regions where necessary and sufficient condi-
tions of stability (23) hold is studied in the plane of two dimensionless iner-
tia parameters (θA, θC) at different values of damping coefficient k. It is evi-
dent that along with (23), the triangle inequalities should also be satisfied:

180 S.A. Gutnik and V.A. Sarychev

Fig. 6. The transitional process of damping oscillations for k = 0.5

θA + θC > 1, θC + 1 > θA, θA + 1 > θC . One may disregard the third trian-
gle inequality, since when θA > θC it holds automatically. Thus, the region is
limited by the straight lines

θC = 1 − θA, θC = θA, θC = θA − 1. (24)

An example of such a region and also all the lines on which one of inequalities
(23) converts into equality are shown in Figs. 4 and 5. The region where the
necessary and sufficient conditions of stability are satisfied is marked out by
gray color. In Fig. 4, the region of fulfillment of the necessary and sufficient
conditions of stability (23) for k = 0.5 is bounded by the straight lines (24) and
by hyperbola A4 = 0. In Fig. 5 for k = 1, the region where stability conditions
(23) hold is bounded only by the straight lines (24).

The numerical integration of system (4) and (5) has been done in the special
case when k1 = k2 = k3 = k. The different types of transition decay processes
of spatial oscillations of the satellite at different damping parameters have been
investigated numerically. Figure 6 shows an example of transition decay processes
of spatial oscillations for k = 0.5 and for inertia parameters θA = 1, θC =
0.5 where conditions of asymptotic stability (23) hold. The system in this case
reaches the equilibrium position (19) at all three angles at the τ value, equal
to 25.

Influence of Damping Torques on Satellite Dynamics 181

6 Conclusion

In this paper, we have analyzed the rotational motion of the satellite relative
to the center of mass in a circular orbit due to gravity and active damping
torques. The main focus is the study of satellite equilibrium orientations and
the conditions for their stability. A computer algebra method (based on the
construction of Gröbner bases) has been proposed to determine all the equilibria
of the satellite in the orbital coordinate system for the given values of the active
damping torque vector in the general case; the conditions of their existence have
been obtained.

The two-dimensional cross sections of domains with equal number of equilib-
rium orientations using algebraic methods for the construction of discriminant
hypersurfaces have been classified. We have made a detailed analysis of the evo-
lution of different domains of existence of equilibrium orientations in the plane
of parameters k1 and k3 for the fixed values of parameter k2.

Necessary and sufficient conditions for asymptotic stability of the equilib-
rium orientations were obtained with the help of the Routh–Hurwitz criterion.
The transition decay processes of spatial oscillations of the satellite have been
investigated numerically. The results of this study can be used for a preliminary
design of gravitational systems to control the satellite’s orientation and make it
possible to simulate the influence of the damping torque on its orientation.

Acknowledgements. The authors thank the reviewers for very useful remarks and
suggestions and Professor V. Gerdt for the advice on the effectiveness of methods and
algorithms of Gröbner basis construction.

References

1. Beletsky, V.V.: Attitude Motion of Satellite in Gravitational Field. MGU Press,
Moscow (1975)

2. Sarychev, V.A.: Problems of orientation of satellites. Itogi Nauki i Tekhniki. Ser.
“Space Research”, 11 (1978). VINITI, Moscow

3. Gutnik, S.A., Guerman, A., Sarychev, V.A.: Application of computer algebra
methods to investigation of influence of constant torque on stationary motions
of satellite. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2015. LNCS, vol. 9301, pp. 198–209. Springer, Cham (2015). doi:10.1007/
978-3-319-24021-3 15

4. Chen, C., Maza, M.M.: Semi-algebraic description of the equilibria of dynamical
systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2011. LNCS, vol. 6885, pp. 101–125. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23568-9 9

5. El Kahoui, M., Weber, A.: Symbolic equilibrium point analysis of parameterized
polynomial vector fields. In: Ganzha, V., Mayr, E.W., Vorozhtsov, E.V. (eds.)
Computer Algebra in Scientific Computing (CASC 2002), pp. 71–83. Institut für
Informatik. Technische Universität München, Garching (2002)

http://dx.doi.org/10.1007/978-3-319-24021-3_15
http://dx.doi.org/10.1007/978-3-319-24021-3_15
http://dx.doi.org/10.1007/978-3-642-23568-9_9
http://dx.doi.org/10.1007/978-3-642-23568-9_9

182 S.A. Gutnik and V.A. Sarychev

6. Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive tri-
angular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-75187-8 7

7. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bull. 10(3), 19–29 (1976)

8. Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M.: Maple
Reference Manual. Watcom Publications Limited, Waterloo (1992)

9. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–30
(1992)

10. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Com-
put. 42(6), 636–667 (1992)

11. Meiman, N.N.: Some problems on the distribution of the zeros of polynomials.
Uspekhi Mat. Nauk 34, 154–188 (1949)

12. Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing Company,
New York (1959)

13. Batkhin, A.B.: Parameterization of the discriminant set of a polynomial. Program.
Comput. Softw. 42(2), 65–76 (2016)

http://dx.doi.org/10.1007/978-3-540-75187-8_7
http://dx.doi.org/10.1007/978-3-540-75187-8_7

Characteristic Set Method for Laurent
Differential Polynomial Systems

Youren Hu(B) and Xiao-Shan Gao

KLMM, UCAS, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China

huyouren14@mails.ucas.ac.cn

Abstract. In this paper, a characteristic set method for Laurent (dif-
ferential) polynomial systems is given. In the Laurent polynomial case,
the concept of Laurent regular chain is introduced and a characteristic
set algorithm for Laurent polynomial system is given. In the Laurent
differential polynomial case, we give a partial method to decide whether
a Laurent differential chain A is Laurent regular.

Keywords: Characteristic set · Gröbner basis · Laurent differential
polynomial · Laurent regular

1 Introduction

The characteristic set method can be used to decompose the zero set of a
general polynomial set into the union of zero sets of polynomials in triangu-
lar form. This method has applications in automated reasoning, robotics, com-
puter vision, computer-aided design, and analysis of cryptosystems, etc [20]. The
characteristic set method was proposed by Ritt and was extensively studied in
the past thirty years for polynomial systems [7,18,19,21], semi-algebraic sets
[6], polynomial systems over finite fields [9,15], differential polynomial systems
[2,3,8,13,17,23], and difference polynomial systems [11].

In this paper, we consider the characteristic set method for Laurent polyno-
mial systems and Laurent differential polynomial systems. This is motivated by
the work on difference binomial ideals [10], where the characteristic set method
in the Laurent case plays a key role.

In the Laurent polynomial case, we introduce the concept of Laurent regular
chain (or triangular set) and prove that it has similar properties with regular
chains in the non-Laurent case. Then, a characteristic set algorithm is given to
decompose the zero set of a Laurent polynomial system into the union of zero
sets of Laurent regular chains. We also introduce the concept of Laurent Gröbner
basis for a Laurent polynomial ideal and use it to give a minimal triangular
set decomposition for the zero set of a Laurent polynomial system. Laurent

Partially supported by an NSFC grant No. 11688101.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 183–195, 2017.
DOI: 10.1007/978-3-319-66320-3 14

184 Y. Hu and X.-S. Gao

Gröbner bases were defined in [16,22]. The method given in [16] is direct but
quite complicated. The method given in [22] is similar to our definition, but our
treatment is simpler and more direct.

In the Laurent differential polynomial case, we introduce the concept of
Laurent regular differential chain. But, the problem of deciding whether a Lau-
rent differential chain is Laurent regular is quite difficult and is still open. We
first show that deciding whether a Laurent differential chain is Laurent regular
can be reduced to deciding whether a univariate differential polynomial f(z) is
Laurent regular, then give a partial method to decide whether f(z) is Laurent
regular, which is complete when f(z) is of the first order. The method is based
on the work of Cano [4,5] and Grigoriev-Singer [12], where a special type of
Newton polygon is introduced to describe the minimal monomial of the series
solution to a differential equation.

It should be noticed that the extension of the characteristic set method [11]
to Laurent difference polynomial systems is straightforward. The reason is that
if a difference polynomial f is invertible w.r.t a proper irreducible regular and
coherent difference chain A , then σkf is also invertible w.r.t A for the difference
operator σ and any k ∈ N [11], which is not true in the differential case.

The paper is organized as follows. In Sect. 2, we present the characteristic set
method for Laurent polynomial systems. In Sect. 3, we present the characteristic
set method for Laurent differential polynomial systems.

2 Laurent Polynomial Systems

2.1 Laurent Regular Chain

In this section, we will define and prove the basic properties of Laurent regu-
lar chains. For the basic concepts about the characteristic set, please refer to
[2,3,18,19].

Let k be a field and Y = {y1, . . . , yn} a set of indeterminates. We denote
k[Y] = k[y1, . . . , yn] to be the polynomial ring in Y and k[Y±] the Laurent
polynomial ring in Y. For F ⊆ k[Y] and G ⊆ k[Y±], we denote by (F) or
(G)k[Y±] to be the ideals generated by F or G in k[Y] or k[Y±], respectively.

A polynomial f ∈ k[Y] is called monomial-primitive if no yi divides f . The
normal form of a Laurent polynomial f =

∑s
i=1 ai

mi

ni
∈ k[Y±], where mi, ni are

monomials in k[Y] and gcd(mi, ni) = 1, is the monomial-primitive polynomial
f lcm(n1,...,ns)
gcd(m1,...,ms)

, denoted by f̃ .

As in the characteristic set theory, we fix a variable order y1 < · · · < yn. For
f ∈ k[Y], denote lv(f) to be the largest variable occurring in f .

Definition 1. A Laurent ascending chain, or simply a Laurent chain A =
A1, . . . , Ap in k[Y±] is a chain in k[Y] such that A1, . . . , Ap ∈ k[Y] are monomial-
primitive. A characteristic set of a Laurent polynomial set P ⊆ k[Y±] is defined
to be the characteristic set of P̃.

Characteristic Set Method for Laurent Differential Polynomial Systems 185

A Laurent polynomial f is said to be reduced w.r.t a Laurent chain A if f̃
is reduced w.r.t A . We define the pseudo-remainder of a Laurent polynomial f
w.r.t a Laurent chain A as lprem(f,A) = prem(f̃ ,A), where prem(f̃ ,A) is the
usual pseudo-remainder.

Assume A = A1, . . . , Ap in k[Y] is a chain and let xi be the leading variable
of Ai, X = {x1, . . . , xp} and U = Y − X. U and X are called the parameter
set and the leading variable set of A respectively. We denote k[Y] as k[U, X].
A polynomial f ∈ k[U, X] is said to be invertible w.r.t A if either f ∈ k[U]
or (f,A1, . . . , As)

⋂
k[U] �= {0} where lv(f) = lv(As). A is called regular if

the initial of Ai is invertible w.r.t A , for i = 1, . . . , n. Regular chains have the
following nice properties [1,3].

Lemma 1. The following statements are equivalent.

1. A is a regular chain.
2. A is a characteristic set of sat(A), where sat(A) is the saturation ideal of A .
3. If a polynomial N is invertible w.r.t A such that Nf ∈ sat(A), then f ∈

sat(A).

Lemma 2. A polynomial f is not invertible w.r.t a regular chain A if and only
if there exists a nonzero polynomial N reduced w.r.t A , such that Nf ∈ (A).

Let A be a Laurent chain and IA the product of the initials of A . The
Laurent saturation ideal of A in k[Y±] is defined as follows

lsat(A) = {f ∈ k[Y±] | ∃s ∈ N, Is
A f ∈ (A)k[Y±]}.

Definition 2. A Laurent chain A is called a Laurent regular chain if it is a
regular chain in k[Y] and yi is invertible w.r.t A for any i = 1, . . . , n. Let A

be a Laurent regular chain, H ∈ k[Y±] is said to be invertible w.r.t A if H̃ is
invertible w.r.t A in k[Y].

A Laurent regular chain has similar properties to that of a regular chain.

Lemma 3. If A is a Laurent regular chain, then f ∈ lsat(A) if and only if
lprem(f,A) = 0.

Proof. It is obvious that if lprem(f,A) = 0, then f ∈ lsat(A). We need only to
prove the converse implication. Let f ∈ lsat(A). Then there exists a monomial
M and m ∈ N such that Im

A Mf̃ ∈ (A), or equivalently Mf̃ ∈ sat(A). Because
A is Laurent regular and M is invertible w.r.t A , by Lemma 1, f̃ ∈ sat(A). By
Lemma 1, prem(f̃ ,A) = 0, that is lprem(f,A) = 0. ��
Lemma 4. Assume A is a Laurent regular chain and let U be the parameter
set of A and D ∈ k[U±], then PD ∈ lsat(A) implies P ∈ lsat(A).

Proof. Suppose H = lprem(P,A), then there exists m ∈ N such that Im
A P̃ −H ∈

(A). So DP ∈ lsat(A) implies DH ∈ lsat(A). Since A is Laurent regular and
DH is reduced w.r.t A , by Lemma 3, DH = 0. So H = 0, which means that
P ∈ lsat(A). ��

186 Y. Hu and X.-S. Gao

Lemma 5. Let A be a Laurent regular chain. Then P ∈ k[Y±] is not invertible
w.r.t A if and only if there exists a nonzero Laurent polynomial Q reduced w.r.t
A , such that QP ∈ (A)k[Y±].

Proof. First, suppose that P ∈ k[Y±] is not invertible w.r.t A . By Lemma 2,
there exists a nonzero polynomial Q ∈ k[Y] reduced w.r.t A , such that P̃Q ∈
(A), so PQ ∈ (A)k[Y±]. To prove the inverse implication, consider some P
invertible w.r.t A . Then there exist U ∈ k[U] and A ∈ k[Y] such that U −
AP̃ ∈ (A). So for nonzero Laurent polynomial Q reduced w.r.t A , we have
UQ − AP̃Q ∈ (A)k[Y±] ⊆ lsat(A). By Lemmas 3 and 4, UQ cannot be in
lsat(A), which implies P̃Q cannot be in lsat(A). So PQ cannot be in (A)k[Y±],
which is a contradiction. ��
Theorem 1. A Laurent chain A is Laurent regular if and only if A is the
characteristic set of lsat(A).

Proof. Assume that A is Laurent regular. By Lemma 3, for P ∈ lsat(A),
lprem(P,A) = 0. Thus A is the characteristic set of lsat(A). Now suppose
that A is the characteristic set of lsat(A). Then A is the characteristic set
of sat(A). By Lemma 1, A is regular. If some monomial M is not invertible
w.r.t A , by Lemma 5, there exists a nonzero Laurent polynomial Q reduced
w.r.t A such that MQ ∈ (A)k[Y±] ⊆ lsat(A). Thus Q ∈ lsat(A), which is a
contradiction. ��

Let A = {A1, . . . , Ap} be a regular chain in k[Y] = k[U, X], where U is the
parameter set of A . A polynomial P is called reducible modulo A if there exist
0 �= M ∈ k[U], P1, P2 ∈ k[Y] with the same leading variable as P and the initials
of Pi, i = 1, 2 are invertible w.r.t A such that MP = P1P2 mod(A). If such
M,P1, P2 do not exist, P is called irreducible modulo A . A is called irreducible
if A1 is irreducible as a polynomial in k[U][x1] and Ai is irreducible modulo
Ai−1 = {A1, . . . , Ai−1}, i = 2, . . . , p.

Let K be an algebraically closed extension of k and K∗ = K \ {0}. For a
Laurent polynomial set S ⊂ k[Y±], we use LZero(S) to denote the elements
e ∈ (K∗)n, which are zeros of the Laurent polynomials in S.

2.2 Characteristic Set Method

In this subsection, we present the characteristic set method for Laurent poly-
nomial systems, which is basically the same as that given in [7,19], and the
correctness can be similarly proved. We first show how to check whether a poly-
nomial is invertible w.r.t a regular chain.

Algorithm 1. Invert(f,A)
Input: a polynomial f and a regular chain A .
Output: a pair (test,g) such that

test = true, if f is invertible w.r.t A , and g = 0.

Characteristic Set Method for Laurent Differential Polynomial Systems 187

test = false, if f is not invertible w.r.t A , and g is a nonzero polynomial
reduced w.r.t A such that fg ∈ (A).
Begin

w := a new indeterminate;
P (U,w) = Res(w − f,A), and Res(g,A): the resultant of g w.r.t A [21].
If P (U, 0) �= 0, then test := true and g = 0
else test := false and g = prem(P (f),A), where P (U,w) = P (U,w)/w.

End.

The above algorithm is based on methods in [3,21], where the details could
be found. We now show how to check whether a chain is Laurent regular.

Algorithm 2. LRegular(A)
Input: A chain A = f1(U, x1), . . . , fp(U, x1, . . . , xp) ⊆ k[U, x1, . . . , xp].
Output: If A is Laurent regular, output (∅, ∅). Otherwise let i be the largest
number such that Ai−1 = f1, . . . , fi−1 is Laurent regular. If Ii = init(fi) is not
invertible w.r.t Ai−1, output (Ii, g) such that Iig ∈ (Ai−1) and g is reduced
w.r.t Ai−1. If xi is not invertible w.r.t Ai−1, then output (xi, g) such that xig ∈
(Ai−1), where g is reduced w.r.t Ai−1.

Begin
Let s be the largest integer such that xs

1|f1.
If s > 0, then return (x1, f1/xs

1).
i=2;
while i ≤ p

(test1, g1) = Invert(Ii,Ai−1). If test1 = false return (I, g) = (Ii, g1)
(test2, g2) = Invert(xi,Ai−1) If test2 = false return (I, g) = (xi, g2)
i = i + 1

end while
if i = p + 1 then return (∅, ∅)

End.

We now give the main algorithm.

Algorithm 3. ZDec(P)
Input: a finite set P of Laurent polynomials in k[Y±].
Output: W = {T1, . . . , Tk} such that each Ti is a Laurent regular chain and

LZero(P) =
⋃k

i=1 LZero(lsat(Ti)).
Begin

P = Normalize(P): returns normal forms of the polynomials in P .
C = Charset(P): C is a Wu-characteristic set of P [19].
C = Normalize(C): Remove the monomial factors from elements in C.
(I, g) = LRegular(C).

If I = yi for some i then W = ZDec(P
⋃{g}⋃

C).
If I �= ∅ then W = ZDec(P

⋃{I}⋃
C)

⋃
ZDec(P

⋃{g}⋃
C).

If I = ∅ then W = {C}⋃ ⋃
I∈IC

ZDec (P
⋃{I}⋃

C),
where Ic is the set of initials of C.

End.

188 Y. Hu and X.-S. Gao

2.3 Laurent Gröbner Basis and Minimal Decomposition

To obtain a minimal zero decomposition, we need the concept of Laurent Gröbner
basis.

Definition 3. A finite set G of monomial-primitive polynomials is said to be a
Laurent Gröbner basis of the Laurent polynomial ideal I ⊆ k[Y±] if G ⊆ I and
for any f ∈ I, grem(f̃ , G) = 0, where grem(f̃ , G) is the normal form of f̃ w.r.t
G as defined in the Gröbner basis theory in the polynomial ring.

Assuming that F = {f1, . . . , fs} ⊆ k[Y±], we can compute the Laurent
Gröbner basis of (F)k[Y±] as follows.

Theorem 2. Let G0 be the reduced Gröbner basis of (f̃1, . . . , f̃s, yizi − 1, i =
1, . . . , n) ⊆ k[y1, . . . , yn, z1, . . . , zn] w.r.t some monomial order satisfying yi ≺ zj

for i, j = 1, . . . , n and G = G0

⋂
k[y1, . . . , yn]. Then G is a Laurent Gröbner

basis of (F)k[Y±].

Proof. We claim G ⊆ (F)k[Y±]. Since G ⊆ (f̃1, . . . , f̃s, yizi − 1, i = 1, . . . , n),
any g ∈ G can be written as g =

∑s
i=1 aif̃i +

∑n
i=1 bi(yizi − 1), where

ai, bi ∈ k[y1, . . . , yn, z1, . . . , zn]. Substituting 1/yi for zi, we get Mg =
∑s

i=1 ãif̃i,
where M is a monomial in k[y1, . . . , yn] and ãi ∈ k[y1, . . . , yn]. So the claim
is proved. For any f ∈ (F)k[Y±], there exists a monomial N in k[y1, . . . , yn]
such that Nf =

∑s
i=0 cif̃i, where ci ∈ k[y1, . . . , yn]. By the definition of

f̃ , we have Hf̃ = Nf, for some monomial H in k[y1, . . . , yn]. Assume that
H = yi0H1, for some i0. Then yi0H1f̃ =

∑s
i=0 cif̃i, we have zi0yi0H1f̃ =

∑s
i=0 cizi0 f̃i. Then H1f̃ =

∑s
i=0 cizi0 f̃i − (yi0zi0 − 1)H1f̃ ∈ (f̃1, . . . , f̃s, yizi −

1, i = 1, . . . , n)
⋂

k[y1, . . . , yn]. Repeating the above process, we have f̃ ∈
(f̃1, . . . , f̃s, yizi − 1, i = 1, . . . , n)

⋂
k[y1, . . . , yn]. Since G is a Gröbner basis

of (f̃1, . . . , f̃s, yizi − 1, i = 1, . . . , n) under the order yi ≺ zj , for i, j = 1, . . . , n,
grem(f̃ , G0) = 0 which implies grem(f̃ , G) = 0.

We prove that G0 is monomial-primitive. If g ∈ G0 is not monomial-primitive,
then there exists an i ∈ {1, . . . , n} and a g′ ∈ k[Y] such that g = yig

′.
So we have g′ = zig + (1 − yizi)g′ ∈ (f̃1, . . . , f̃s, yizi − 1, i = 1, . . . , n) ⊆
k[y1, . . . , yn, z1, . . . , zn], which implies that there exists a q ∈ G0 such that
lt(q)|lt(g′)|lt(g). It is a contradiction to the fact that G0 is a reduced Gröbner
basis. Thus G0 is monomial-primitive. ��
Example 1. Let F = {y1y3 − y2, y2y4 − y1}. Then F is already a Gröbner basis,
but not a Laurent Gröbner basis. With the method given in Theorem2, we can
compute the Laurent Gröbner basis of (F)k[Y±]: {y3y4 − 1, y1y3 − y2, y2y4 − y1}.

Remark: To obtain a minimal decomposition, we first compute a decomposition
LZero(P) =

⋃k
i=1 LZero(lsat(Ti)), where Ti are irreducible [19]. Then, compute

the Laurent Gröbner basis Bi of lsat(Ti) with Theorem 2. We have LZero(P) =⋃
LZero(Bi) and a minimal decomposition can be obtained easily.

Characteristic Set Method for Laurent Differential Polynomial Systems 189

3 Differential Polynomial Systems

3.1 Laurent Regular Differential Chains

In this section, we will extend the characteristic set method to the Laurent
differential case. For details of differential characteristic set method, please refer
to [2,8,13,17].

Let F be a differential field with the differential operator δ, Y = {y1, y2, . . . ,
yn} differential indeterminates, and F{Y} the differential polynomial ring in Y

over F . Let f ∈ F{Y}, denote ld(f) to be the leader of f and ord(f, yi) the
order of f in yi.

Let A = f1, . . . , fp be a differential chain, ci = ord(fi, ld(fi)), and o ∈ N.
Then denote

A (o) = f1, f
(1)
1 , . . . , f

(ô−c1)
1 , . . . , fp, f

(1)
p , . . . , f (ô−cp)

p

where ô = max{o, c1, . . . , cp}. Note that A (o) is a chain in the polynomial ring
F [Y, . . . , Y(ô)]. Let f ∈ F{Y}. Then f is called invertible w.r.t A if f is invertible
w.r.t A (ord(f)) in the polynomial ring F [Θ(Y)].

Definition 4. If the initials and separants of a differential chain A are invert-
ible w.r.t A , then A is called differential regular. Besides, if y

(j)
i is invertible

w.r.t A , for any i = 1, . . . , n, j ∈ N, A is called Laurent regular. If A consists
of only one element, then this polynomial is called a Laurent regular polynomial.

Let A be a differential chain and HA be the product of the initials and
separants of A . We define the Laurent saturation ideal of A to be

ldsat(A) = [A] : H∞
A = {f ∈ F{Y

±} | ∃m ∈ N, s.t. Hm
A f ∈ [A]F{Y±}}.

Theorem 1 can be easily extended to the following differential version.

Theorem 3. A is Laurent differential regular if and only if A is the charac-
teristic set of ldsat(A).

If we can solve the following problem, then we can extend the characteristic
set method to the Laurent differential case.

Problem LR. For an irreducible and differential regular chain A , either decide
A is Laurent regular or find some y

(e)
c which is not invertible w.r.t A .

The decision of whether a differential chain A is Laurent differential regular
is still open and we will give some partial answers to this problem in the rest of
this paper. We first give an example to show why the problem is difficult.

Example 2. Let f = xy′
1 − ky1, k ∈ N. Then f (i) = xy

(i+1)
1 + (i − k)y(i) for

i = 1, . . . , k. Hence f (k) = xy
(k+1)
1 . That is, y

(k+1)
1 is not invertible w.r.t f and

f is not a Laurent regular differential polynomial.

In this section, a differential chain A is always irreducible and regular.

190 Y. Hu and X.-S. Gao

Lemma 6. A differential regular chain A is not Laurent differential regular if
and only if prem(y(m)

i ,A) = 0 for some i ∈ {1, . . . , n} and m ∈ N.

Proof. If A is not Laurent differential regular, then y
(m)
i is not invertible w.r.t

A for some i ∈ [1, n] and m ∈ N. By Lemma 2, there exists an N reduced w.r.t
A and Ny

(m)
i ∈ [A]. Since A is regular and irreducible, we have y

(m)
i ∈ dsat(A)

and thus prem(y(m)
i ,A) = 0. On the other hand, assume prem(y(m)

i ,A) = 0.
Then we have Hy

(m)
i = 0 mod [A], where H is a power of the product of

the initials and separants of A . Since A is regular, H is invertible w.r.t A . By
Lemma 1, y

(m)
i is not invertible w.r.t A and hence A is not Laurent regular. ��

As a consequence, we have the following results.

Corollary 1. If y
(m)
p is not invertible w.r.t A , then dsat(A)

⋂ F{yp} �= {0}.

Corollary 2. If f ∈ F{Y} is irreducible and there are more than one differential
indeterminate in f , then f is Laurent regular.

Theorem 4. Let A be a differential regular and irreducible differential chain.
Then deciding whether A is Laurent regular can be reduced to deciding whether
a univariate differential polynomial is Laurent regular.

Proof. Let U = {u1, . . . , uq} be the parameter set of A and X = Y \ U =
{x1, . . . , xp}(p + q = n). Then A can be written as A = f1(U, x1), f2(U, x1, x2),
. . . , fp(U, x1, . . . , xp) with ld(fi) = x

(oi)
i . By Lemma 6 and Corollary 1, u

(j)
i , i =

1, . . . , q, j ∈ N is invertible w.r.t A . We now consider whether x
(e)
c , c =

1, . . . , p, e ∈ N is invertible w.r.t A . For each c, we can use the change of order
algorithm given in [2] to compute a regular and irreducible differential chain Ac

under the variable order U < xc < x1 < · · · xc−1 < xc+1 < · · · < xp such that
dsat(A) = dsat(Ac). Since A is irreducible, it is clear that

Ac = g1(U, xc), g2(U, xc, x1), . . . , fp(U, xc, x1, . . . , xc−1, xc+1, . . . , xp).

Since Ac is differential regular, we have dsat(A)∩F{xc} = dsat(Ac)∩F{xc} =
dsat(g1) ∩ F{xc}. If g1 contains some ui, then dsat(Ac) ∩ F{xc} = dsat(g1) ∩
F{xc} = {0}. By Corollary 1, x

(e)
c is invertible w.r.t A for any e ∈ N. If g1 ∈

F{xc}, then dsat(Ac)∩F{xc} = dsat(g1)∩F{xc} = dsat(g1). By Lemma 6, x
(e)
c

is invertible w.r.t A if and only if it is invertible w.r.t g1, that is, g1 is Laurent
regular. The theorem is proved. ��

3.2 Decision of Univariate Laurent Regular Differential Polynomial

Let z be a differential indeterminate and F = Q(x) with δ = d
dx , and f(z) ∈

F{z} a univariate irreducible differential polynomial. In this section, we will give
a partial solution to decide whether f(z) is Laurent regular.

Characteristic Set Method for Laurent Differential Polynomial Systems 191

Let n = ord(f) and zi = z(i) for i ∈ N with z0 = z. Then, we can write f as
a polynomial in Q[x, z, z1, . . . , zn]:

f(z) =
∑

(α,β)∈N×Nn+1

cα,βxαzβ0
0 . . . zβn

n (1)

where β = (β0, . . . , βn) and cα,β ∈ Q are not zero for a finite number of terms.
Note that zm ∈ sat(f) if and only if f(z) = 0 has a generic polynomial

solution. Therefore, we need to give a method to find polynomial solutions of
f(z) = 0. Following [4,5], we define a special Newton polygon.

Definition 5. For f(z) given in (1), we set

ε(f(z)) = {P (α, β) = (α − β1 − 2β2 − . . . − nβn, β0 + . . . + βn) : c(α,β) �= 0}.

Define NP (f(z)) to be the convex hull of ε(f(z)) in R
2. In the rest of this paper,

we use u and v to represent horizontal and vertical axes of R
2, respectively.

Example 3. Assume f(z) = z′2−2z′ −4z+4x. Then ε(f) = {(−2, 2), (−1, 1), (0,
1), (1, 0)} and NP (f) is given in Fig. 1.

Fig. 1. NP (f(z)) in Example 3 Fig. 2. NP (f(z)) in Example 4

Definition 6. Given f(z) as before and μ ∈ R, a straight line L(f, μ) in R
2 is

called feasible for f(z) if L(f, μ) is a line with slope −1/μ, which has the defining
equation u + μv = w, for some w ∈ R, and L(f, μ) left-supports NP (f(z)), that
is, NP (f(z))

⋂
L(f, μ) �= ∅ and NP (f(z)) lies in the left side of L(f, μ).

Example 4. Assume that f is defined in Example 3. The μ corresponding to the
feasible lines in Fig. 2 are 2 and 4/3.

Definition 7. Let f(z) be defined as in (1). We denote the vertices of NP (f)
from the top-right to the right-most as P1, . . . , Pt clockwise, where Pi = (ui, vi).
Then the line PiPi+1, i = 1, . . . , t − 1, is denoted li and its slope is vi+1−vi

ui+1−ui
< 0.

We set si = −ui+1−ui

vi+1−vi
> 0, for i = 1, . . . , t − 1, s0 = +∞ and st = 0, for t ≥ 2.

If t = 1, set s1 = 0.

192 Y. Hu and X.-S. Gao

It is easy to see that

Lemma 7. We have s0 > s1 > . . . > st−1 > st and the lines

L(f, δi) : u + δiv = ui + δivi, δi ∈ [si, si−1), i = 1, . . . , t − 1

are all the feasible lines whose slopes are negative.

Associated to Pi = (ui, vi), we define the polynomials

Φi(μ) =
∑

P (α,β)=(ui,vi)

cα,β(μ)β1
1 . . . (μ)βn

n ∈ Q[μ], (2)

where i = 1, . . . , t and (μ)k = μ(μ − 1) . . . (μ − k + 1).

Example 5. Let f be defined in Example 3. Then P1 = (−2, 2), P2 = (0, 1), P3 =
(1, 0), s0 = +∞, s1 = 2, s2 = 1, s3 = 0 and Φ1 = μ2, Φ2 = −4, Φ3 = 4.

We first consider a differential polynomial of first order, for which there exists
a complete method to decide whether f(z) has a polynomial solution.

Theorem 5. Assuming f(z) =
∑

(α,β)∈N×N2 cα,βxαzβ0
0 zβ1

1 and P1, . . . , Pt be
defined as in Definition 7, then associated to Pi, Φi becomes

Φi = cui,vi,0 + cui+1,vi−1,1μ + · · · + cui+vi,0,vi
μvi . (3)

If there exists an n ∈ (si, si−1)
⋂

N such that Φi(n) = 0, we denote ηi to be the
maximal number satisfying the condition. Otherwise, ηi = si. Let m be the first
positive integer in the sequence η1, . . . , ηt. Then m is an upper bound for the
polynomial solutions of f(z) = 0.

Proof. If such an m exists, then ∃i0 ∈ {1, . . . , t} such that m = ηi0 ∈ [si0 , si0−1).
Suppose that there is a number m < μ0 ∈ N such that z̃ = aμ0x

μ0 + · · ·+ a0 is a
polynomial solution of f(z) = 0. Then μ0 must be in [si, si−1) for some i ≤ i0.
Substitute z̃ into f(z) and we get

f(z̃) =
∑

cα,β0,β1x
α(aμ0x

μ0 + . . . + a0)β0(μ0aμ0x
μ0−1 + . . . + a1)β1 .

The leading term in the expansion of cα,β0,β1x
αzβ0zβ1

1 in f(z̃) is

cα,β0,β1a
β0+β1
μ0

μβ1
0 xα−β1+μ0(β0+β1).

If we choose the maximal number in {α − β1 + μ0(β0 + β1) : cα,β0,β1 �= 0},
denoted by u0 + μ0v0, where u0 = α − β1, v0 = β0 + β1 for some cα,β0,β1 �= 0.
Then u + μ0v ≤ u0 + μ0v0, for any (u, v) ∈ ε(f). So we can define the line
L(f, μ0) : u+μ0v = u0 +μ0v0, which is feasible for f(z). Because μ0 ∈ [si, si−1),
(u0, v0) = (ui, vi) or (ui+1, vi+1). Then we consider the coefficient of xu0+μ0v0

in the expansion of f(z̃): H =
∑

α−β1+μ0(β0+β1)=u0+μ0v0
cα,β0,β1μ

β1
0 aβ0+β1

μ0
=

∑
(α−β1,β0+β1)∈L(f,μ0)

cα,β0,β1μ
β1
0 aβ0+β1

μ0
, and it must be zero. Now we consider

two cases.

Characteristic Set Method for Laurent Differential Polynomial Systems 193

1. If there exists only one vertex (u0, v0) ∈ L(f, μ0)
⋂

NP (f), then H can be
written as H =

∑v0
k=0 cu0+k,v0−k,kμk

0a
v0
μ0

= av0
μ0

Φi(μ0). So μ0 must be a zero
of Φi. Thus if i < i0, we have m < μ0 ≤ ηi ∈ N, a contradiction to the choice
of m. Otherwise, i = i0 implies m ≥ μ0, a contradiction to the choice of μ0.

2. If L(f, μ0)
⋂

NP (f) is an edge of NP (f), μ0 = si. If i = i0, μ0 = si0 ≤ m <
μ0, a contradiction. If i < i0, m < μ0 ≤ ηi ∈ N, a contradiction to the choice
of m. ��

Example 6. Let f be defined in Example 3. We have η1 = 2, η2 = 1, η3 = 0.
By Theorem 5, an upper bound for the degrees of the polynomial solutions of
f(z) = 0 is 2.

We now consider the general case and a partial solution is given.

Theorem 6. For f(z) ∈ F{z} of order n as defined in (1),

Φ1(μ) =
∑

P (α,β)=(u1,v1)

cα,β(μ)β1
1 . . . (μ)βn

n .

Use the notations in Definition 7. Then

1. If Φ1 is not the zero polynomial and t ≥ 2, let m be the maximal integer root
of Φ1(μ) = 0 in [s1,+∞). If such a number exists, then it is an upper bound
of the polynomial solutions of f(z) = 0. Otherwise, m = �s1� is an upper
bound of the polynomial solutions of f(z) = 0.

2. If Φ1 is not the zero polynomial and t = 1, let m be the maximal integer root
of Φ1(μ) = 0 in (0,+∞). If such a number exists, then it is an upper bound
of the polynomial solutions of f(z) = 0. Otherwise, f = 0 has no polynomial
solutions.

3. If Φ1 ≡ 0 and t ≥ 2, let m = �s1�. If prem(zm+1, f) = 0, then m is an upper
bound for the polynomial solutions of f(z) = 0.

Proof. 1. If M > s1 and z̃ =
∑M

i=0 aix
i is a polynomial solution of f(z) = 0

with aM �= 0. Then u1 + Mv1 > u + Mv for any (u1, v1) �= (u, v) ∈ ε(f).
Indeed, from the line L(f, s1) : u + s1v = u1 + s1v1, we have u + s1v ≤
u1 + s1v1, for any (u1, v1) �= (u, v) ∈ ε(f). Then u1 + Mv1 = u1 + s1v1 +
(M − s1)v1 ≥ u+ s1v +(M − s1)v1 > u+ s1v +(M − s1)v = u+Mv, for any
(u1, v1) �= (u, v) ∈ ε(f). So as in the proof of Theorem5, the leading term
of f(z̃) is

∑
P (α,β)=(u1,v1)

cα,β(M)β1
1 . . . (M)βn

n av1
Mxu1+Mv1 . Because f(z̃) = 0

and aM �= 0, we have

Φ1(M) =
∑

P (α,β)=(u1,v1)

cα,β(M)β1
1 . . . (M)βn

n = 0.

So if Φ1(μ) has no positive integer roots larger than s1, the degree of the
polynomial solutions of f(z) = 0 is not larger than s1. Otherwise, the number
m exists and we have M < m by the choice of m.

194 Y. Hu and X.-S. Gao

2. t = 1 implies that L(f, δ) : u + δv = u1 + δv1, 0 < δ < +∞ are all the
feasible lines and L(f, δ)

⋂
NP (f) = {(u1, v1)}, which means that for any

(u′, v′) ∈ NP (f), (u′, v′) �= (u1, v1) we have u′ + δv′ < u1 + δv1. Then if
z′ =

∑N
i=0 aix

i is a solution of f(z) = 0, where aN �= 0, substitute z′ into
f(z) and we have the leading term of f(z′(x)) is av1

N Φ1x
u1+Nv1 . So Φ1(N) = 0.

Because Φ1 is not the zero polynomial, we have N ≤ m. Note that case 3 is
trivial.

Remark: An upper bound for the polynomial solutions is not given if Φ1 ≡ 0,
t ≥ 2 and prem(zm+1, f) �= 0 or Φ1 ≡ 0 and t = 1.

Example 7. For f(y) = x2y′4 − 2xyy′3 − x2y2y′′2 + y2y′2, ε(f(y)) has one point
(−2, 4) and Φ1 ≡ 0 and t = 1. For g(y) = x2y′4 − 2xyy′3 − x2y2y′′2 + y2y′2 + x6,
ε(g(y)) has two points P1 = (−2, 4) and P2 = (6, 0) and Φ1 ≡ 0. We have m
which is 2 and prem(y′′′, g) �= 0. Then, we can not bound the degrees of the
polynomial solutions of f = 0 and g = 0 in these two cases.

After an upper bound d for the degrees of the polynomial solutions of f(z) = 0
is given, we can check whether f is Laurent regular with the following theorem.

Theorem 7. Let f(z) be an irreducible differential polynomial in F{z}, n =
ord(f), d = deg(f, {z, z1, . . . , zn}), and m ∈ N>0. Then f(z) = 0 has a generic
polynomial solution of degree no more than m if and only if prem(z(m+1), f(z)) =
0, which can be done with 22.4[2(d + 1)m+3]2.4(n+m+2) F-arithmetic operations.

Proof. If z̃ is a generic polynomial solution of f(z) = 0 with degree not larger
than m, then z̃(m+1) = 0. Suppose g = prem(z(m+1), f). Then g =

∑
aif

(i) +
Hz(m+1), where ai ∈ F{z} and H is a power of the product of the initial and
separant of f . So we have g(z̃) = 0. But g is reduced w.r.t f and f is irreducible,
thus g = 0. Assume prem(z(m+1), f(z)) = 0. Then we have

∑
bif

(i) = H ′z(m+1),
for some bi ∈ F{z} and H ′ a power of the product of the initial and separant of
f . So if z̃ is a generic zero of f(z) = 0, then H ′(z̃) �= 0, because f is irreducible.
Thus we have z̃(m+1) = 0, which implies that z̃ is a polynomial of order less than
m + 1. The complexity follows from [14, Theorem 3.15]. ��

References

1. Aubry, P., Lazard, D., Maza, M.M.: On the theories of triangular sets. J. Symb.
Comput. 28, 105–124 (1999)

2. Boulier, F., Lemaire, F., Maza, M.M.: Computing differential characteristic sets
by change of ordering. J. Symb. Comput. 45, 124–149 (2010)

3. Bouziane, D., Kandri Rody, A., Maârouf, H.: Unmixed-dimensional decomposition
of a finitely generated perfect differential ideal. J. Symb. Comput. 31, 631–649
(2010)

4. Cano, J.: An extension of the Newton-Puiseux polygon construction to give solu-
tions of Pfaffian forms. Ann. Inst. Fourier 43, 125–142 (1993)

5. Cano, J.: On the series defined by differential equations, with an extension of the
Puiseux polygon construction to these equations. Analysis 13, 103–120 (1993)

Characteristic Set Method for Laurent Differential Polynomial Systems 195

6. Chen, C., Davenport, J.H., May, J.P., Maza, M.M., Xia, B., Xiao, R.: Triangular
decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

7. Chou, S.-C., Gao, X.-S.: Ritt-Wu’s decomposition algorithm and geometry theorem
proving. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 207–220. Springer,
Heidelberg (1990). doi:10.1007/3-540-52885-7 89

8. Chou, S.C., Gao, X.S.: Automated reasoning in differential geometry and mechan-
ics: part I. An improved version of Ritt-Wu’s decomposition algorithm. J. Autom.
Reason. 10, 161–172 (1993)

9. Gao, X.S., Huang, Z.: Characteristic set algorithms for equation solving in finite
fields. J. Symb. Comput. 47, 655–679 (2012)

10. Gao, X.S., Huang, Z., Yuan, C.M.: Binomial difference ideals. J. Symb. Comput.
80, 665–706 (2017)

11. Gao, X.S., Luo, Y., Yuan, C.: A characteristic set method for difference polynomial
systems. J. Symb. Comput. 44, 242–260 (2009)

12. Grigoriev, D.Y., Singer, M.: Solving ordinary differential equations in terms of
series with real exponents. Trans. AMS 327, 329–351 (1991)

13. Hubert, E.: Factorization-free decomposition algorithms in differential algebra. J.
Symb. Comput. 129, 641–662 (2000)

14. Li, W., Li, Y.H.: Computation of differential chow forms for ordinary prime differ-
ential ideals. Adv. Appl. Math. 72, 77–112 (2016)

15. Li, X., Mou, C., Wang, D.: Decomposing polynomial sets into simple sets over
finite fields. Comput. Math. Appl. 60, 2983–2997 (2010)

16. Pauer, F., Unterkircher, A.: Gröbner bases for ideals in Laurent polynomial rings
and their application to systems of difference equations. AAECC 9, 271–291 (1999)

17. Sit, W.: The Ritt-Kolchin theory for diffferential polynomials. In: Differential Alge-
bra and Related Topics, pp. 1–70 (2002)

18. Wang, D.: Elimination Methods. Springer Science & Business Media, Heidelberg
(2012)

19. Wu, W.T.: Mathematics Mechanization. Science Press/Kluwer, Beijing (2001)
20. Wu, W.T., Gao, X.S.: Mathematics mechanization and applications after thirty

years. Front. Comput. Sci. 1, 1–8 (2007)
21. Yang, L., Zhang, J.: Searching dependency between algebraic equations. ICTP,

IC/91/6 (1991)
22. Zampieri, S.: A solution of the Cauchy problem for multidimensional discrete linear

shift-invariant systems. Linear Algebra Appl. 202, 143–162 (1994)
23. Zhu, W., Gao, X.S.: A triangular decomposition algorithm for differential poly-

nomial systems with elemenray complexity. J. Syst. Sci. Complex. 30, 464–483
(2017)

http://dx.doi.org/10.1007/3-540-52885-7_89

Sparse Polynomial Interpolation with Finitely
Many Values for the Coefficients

Qiao-Long Huang(B) and Xiao-Shan Gao

KLMM, UCAS, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China

huangqiaolong13@mails.ucas.ac.cn

Abstract. In this paper, we give new sparse interpolation algorithms
for black box polynomial f whose coefficients are from a finite set. In the
univariate case, we recover f from one evaluation f(β) for a sufficiently
large number β. In the multivariate case, we introduce the modified Kro-
necker substitution to reduce the interpolation of a multivariate polyno-
mial to that of the univariate case. Both algorithms have polynomial
bit-size complexity.

Keywords: Sparse polynomial interpolation · Modified Kronecker sub-
stitution · Polynomial time algorithms

1 Introduction

The interpolation for a sparse multivariate polynomial f(x1, . . . , xn) given as a
black box is a basic computational problem. Interpolation algorithms were given
when we know an upper bound for the terms of f [3] and upper bounds for the
terms and the degrees of f [12]. These algorithms were significantly improved
and these works can be found in the references of [1].

In this paper, we consider the sparse interpolation for f whose coefficients are
taken from a known finite set. For example, f could be in ZZ[x1, . . . , xn] with an
upper bound on the absolute values of coefficients of f , or f is in Q[x1, . . . , xn]
with upper bounds both on the absolute values of coefficients and their denom-
inators. This kind of interpolation is motivated by the following applications.
The interpolation of sparse rational functions leads to interpolation of sparse
polynomials whose coefficients have bounded denominators [6, p. 6]. In [7], a
new method is introduced to reduce the interpolation of a multivariate polyno-
mial f to the interpolation of univariate polynomials, where we need to obtain
the terms of f from a larger set of terms and the method given in this paper is
needed to solve this problem.

In the univariate case, we show that if β is larger than a given bound depend-
ing on the coefficients of f , then f can be recovered from f(β). Based on this idea,
we give a sparse interpolation algorithm for univariate polynomials with ratio-
nal numbers as coefficients, whose bit complexity is O((td log H(log C + log H))

Partially supported by an NSFC grant No. 11688101.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 196–209, 2017.
DOI: 10.1007/978-3-319-66320-3 15

Sparse Polynomial Interpolation 197

or ˜O(td), where t is the number of terms of f , d is the degree of f , C and H
are upper bounds for the coefficients and the denominators of the coefficients
of f . It seems that the algorithm has the optimal bit complexity ˜O(td) in all
known deterministic and exact interpolation algorithms for black box univariate
polynomials as discussed in Remark 2.

In the multivariate case, we show that by choosing a good prime, the inter-
polation of a multivariate polynomial can be reduced to that of the univariate
case in polynomial-time. As a consequence, a new sparse interpolation algorithm
for multivariate polynomials is given, which has polynomial bit-size complexity.
We also give its probabilistic version.

There exist many methods for reducing the interpolation of a multivariate
polynomial into that of univariate polynomials, like the classical Kronecker sub-
stitution, randomize Kronecker substitutions [2], Zipple’s algorithm [12], Klivans-
Spielman’s algorithm [9], Garg-Schost’s algorithm [4], and Giesbrecht-Roche’s
algorithm [5]. Using the original Kronecker substitution [10], interpolation for
multivariate polynomials can be easily reduced to the univariate case. The main
problem with this approach is that the highest degree of the univariate polyno-
mial and the height of the data in the algorithm are exponential. In this paper,
we give the following modified Kronecker substitution

xi = xmod((D+1)i−1,p), i = 1, 2, . . . , n

to reduce multivariate interpolations to univariate interpolations. Our approach
simplifies and builds on previous work by Garg-Schost [4], Giesbrecht-Roche
[5], and Klivans-Spielman [9]. The first two are for straight-line programs. Our
interpolation algorithm works for the more general setting of black box sampling.

The rest of this paper is organized as follows. In Sect. 2, we give interpola-
tion algorithms about univariate polynomials. In Sect. 3, we give interpolation
algorithms about multivariate polynomials. In Sect. 4, experimental results are
presented.

2 Univariate Polynomial Interpolation

2.1 Sparse Interpolation with Finitely Many Coefficients

In this section, we always assume

f(x) = c1x
d1 + c2x

d2 + · · · + ctx
dt (1)

where d1, d2, . . . , dt ∈ IN, d1 < d2 < · · · < dt, and c1, c2, · · · , ct ∈ A, where
A ⊂ C is a finite set. Introduce the following notations

C := max
a∈A

(|a|), ε := min(ε1, ε2) (2)

where ε1 := mina,b∈A,a�=b |a − b| and ε2 := mina∈A,a�=0 |a|.
Theorem 1. If β ≥ 2C

ε + 1, then f(x) can be uniquely determined by f(β).

198 Q.-L. Huang and X.-S. Gao

Proof. Firstly, for k = 1, 2, · · · , we have β ≥ 2C
ε +1 =⇒ β − 1 ≥ 2C

ε =⇒ β − 1 >
2C
ε

βk−1
βk =⇒ εβk > 2C βk−1

β−1 =⇒ εβk > 2C(βk−1 + βk−2 + · · · + β + 1).
From (1), we have f(β) = c1β

d1 + c2β
d2 + · · · + ctβ

dt . Assume that there is
another form f(β) = a1β

k1 + a2β
k2 + · · · + asβ

ks , where a1, a2, . . . , as ∈ A and
k1 < k2 < · · · < ks. It suffices to show that ctβ

dt = asβ
ks . The rest can be proved

by induction. First assume that dt �= ks. Without loss of generality, let dt > ks.
Then we have 0 = |(c1βd1 +c2β

d2 + · · ·+ctβ
dt)−(a1β

k1 +a2β
k2 + · · ·+asβ

ks)| ≥
|ct|βdt − C(βdt−1 + · · · + β + 1) − C(βks + · · · + β + 1) ≥ |ct|βdt − 2C(βdt−1 +
· · · + β + 1) > |ct|βdt − εβdt ≥ 0. It is a contradiction, so dt = ks.

Assume ct �= as, then 0 = |(c1βd1 + c2β
d2 + · · · + ctβ

dt) − (a1β
k1 + a2β

k2 +
· · · + asβ

ks) ≥ |ct − as|βdt − 2C(βdt−1 + · · · + β + 1) > |ct − as|βdt − εβdt ≥ 0.
It is a contradiction, so ct = as. The theorem has been proved. ��

2.2 The Sparse Interpolation Algorithm

The idea of the algorithm is first to obtain the maximum term m of f , then
subtract m(β) from f(β) and repeat the procedure until f(β) becomes 0.

We first show how to compute the leading degree dt.

Lemma 1. Assume β ≥ 2C
ε + 1. If k ≤ dt, then | f(β)

βk | > ε
2 ; if k > dt, then

| f(β)
βk | < ε

2 .

Proof. From |f(β)| = |c1βd1 + c2β
d2 + · · · + ctβ

dt | ≤ C(βdt + · · · + β + 1) =
C(βdt+1−1

β−1) and |f(β)| = |c1βd1 + c2β
d2 + · · ·+ ctβ

dt | ≥ |ct|βdt −C(βdt−1 + · · ·+
β + 1) = |ct|βdt − C βdt −1

β−1 , we have |ct|βdt − C βdt −1
β−1 ≤ |f(β)| ≤ C(βdt+1−1

β−1).

When k ≤ dt, | f(β)
βk | ≥ |ct|βdt−k − C

β−1 (βdt−k − 1
βk) ≥ εβdt−k − ε

2 (βdt−k −
1

βk) ≥ ε
2βdt−k + ε

2
1

βk > ε
2 . When k > dt, | f(β)

βk | ≤ C
β−1 (βdt+1−k − 1

βk) ≤
ε
2 (βdt+1−k − 1

βk) ≤ ε
2βdt+1−k − ε

2
1

βk < ε
2 . ��

If we can use logarithm, we can change the above lemma into the following
form.

Lemma 2. If β ≥ 2C
ε + 1, then dt =
logβ

2|f(β)|
ε �.

Proof. By Lemma 1, we know |f(β)|
βdt

> ε
2 and |f(β)|

βdt+1 < ε
2 . Then we have

logβ
|f(β)|
βdt

> logβ
ε
2 and logβ

|f(β)|
βdt+1 < logβ

ε
2 , this can be reduced to logβ

2|f(β)|
ε −

1 < dt < logβ
2|f(β)|

ε . As dt is an integer, then we have dt =
logβ
2|f(β)|

ε �. ��
Based on Lemma 2, we have the following algorithm which will be used in

several places.

Algorithm 2 (UDeg)

Input: f(β), ε, where β ≥ 2C
ε + 1.

Output: the degree of f(x).

Sparse Polynomial Interpolation 199

Step 1: return
logβ(2|f(β)|
ε)�.

Remark 1. If we cannot use logarithm operation, then it is easy to show that we
need O(log2 D) arithmetic operations to obtain the degree based on Lemma 1.
In the following section, we will regard logarithm as a basic step.

Now we will show how to compute the leading coefficient ct.

Lemma 3. If β ≥ 2C
ε +1, then ct is the only element in A that satisfies | f(β)

βdt
−

ct| < ε
2 .

Proof. First we show that ct satisfies | f(β)
βdt

− ct| < ε
2 . We rewrite f(β) as f(β) =

ctβ
dt +g(β), where g(x) := ct−1x

dt−1 +ct−2x
dt−2 +· · ·+c1x

d1 . So f(β)
βdt

= ct+
g(β)
βdt

.

As deg(g) < dt, by Lemma 1, we have | g(β)
βdt

| < ε
2 . So | f(β)

βdt
−ct| < ε

2 . Assume there

is another c ∈ A also have | f(β)
βdt

−c| < ε
2 , then |ct−c| ≤ | f(β)

βdt
−c|+| f(β)

βdt
−ct| < ε.

This can only happen when ct = c, so we have proved the uniqueness. ��
Based on Lemma 3, we give the algorithm to obtain the leading coefficient.

Algorithm 3 (ULCoef)

Input: f(β), β, ε, dt

Output: the leading coefficient of f(x)

Step 1: Find the element c in A such that | f(β)
βdt

− c| < ε
2 .

Step 2: Return c.

Now we can give the complete algorithm.

Algorithm 4 (UPolySI)

Input: A black box univariate polynomial f(x), whose coefficients are in A.
Output: The exact form of f(x).

Step 1: Find the bounds C and ε of A, as defined in (2).
Step 2: Let β := 2C

ε + 1.
Step 3: Let g := 0, u := f(β).
Step 4: while u �= 0 do

d :=UDeg(u, ε, β); c :=ULCoef(u, β, ε, d); u := u − cβd; g := g + cxd;
end do.

Step 5: Return g.

Note that the complexity of Algorithm 3 depends on A, which is denoted by
OA. Note that OA ≤ |A|. We have the following theorem.

Theorem 5. The arithmetic complexity of the Algorithm4 is O(tOA) ≤
O(t|A|), where t is the number of terms in f .

Proof. Since finding the maximum degree needs one operation and finding the
coefficient of the maximum term needs OA operations, and finding the maximum
term needs O(OA) operations, we have proved the theorem. ��

200 Q.-L. Huang and X.-S. Gao

2.3 The Rational Number Coefficients Case

In this section, we assume that the coefficients of f(x) are rational numbers in

A = { b

a
| 0 < a ≤ H, | b

a
| ≤ C, a, b ∈ ZZ} (3)

and we have ε = 1
H(H−1) . Notice that in Algorithm4, only Algorithm 3

(ULCoef) needs refinement. We first consider the following general problem
about rational numbers.

Lemma 4. Let 0 < r1 < r2 be rational numbers. Then we can find the small-
est d > 0 such that a rational number with denominator d is in (r1, r2) with
computational complexity O(log(r2 − r1)).

Proof. We consider three cases.

1. If one of the r1 and r2 is an integer and the other one is not, then the smallest
positive integer d such that (r2 − r1)d > 1 is the smallest denominator, and
d = � 1

r2−r1
.

2. Both of r1, r2 are integers. If r2 − r1 > 1, then 1 is the smallest denominator.
If r2 − r1 = 1, then 2 is the smallest denominator.

3. Both of r1, r2 are not integers. This is the most complicated case.

First, we check if there exists an integer in (r1, r2). If �r1 < r2, then �r1 is
in the interval which has the smallest denominator 1.

Now we consider the case that (r1, r2) does not contain an integer. Assume
r1 < d1

d < r2, where d > 1 is the smallest denominator. Denote w :=trunc(r1),
ε1 := r1 − w,ε2 := r2 − w. Then ε1 < ε2 < 1 and d is smallest positive integer
such that (dr1, dr2) contains an integer. Since dr1 = d(w + ε1), dr2 = d(w + ε2),
d is the smallest positive integer such that interval (dε1, dε2) contains an integer.
We still denote it d1. Then dε1 < d1 < dε2, so d1

ε2
< d < d1

ε1
, and we can see that

d1 is the the smallest integer such that (d1
ε2

, d1
ε1

) contains an integer. Suppose we
know how to compute the number d1. Then d = �d1

ε2
 when d1

ε2
is not an integer,

and d = d1
ε2

+ 1 when d1
ε2

is an integer.
Note that d1 is the smallest denominator such that some rational number d

d1

is in (1
ε2

, 1
ε1

). To find d1, we need to repeat the above procedure to (1
ε2

, 1
ε1

) and
obtain a sequence of intervals (r1, r2) → (1

ε2
, 1

ε1
) → · · · . The denominators of end

points of the intervals becomes smaller after each repetition. So the algorithm
will terminate.

Now we prove that the number of operations of the procedure is O(log(r2 −
r1)). First, we know the length of the interval (r1, r2) is r2−r1. Now we prove that
every time we run one or two recursive steps, the length of the new interval will
be 2 times bigger. Let (b1

a1
, b2

a2
) be the first interval. If it contains an integer, then

we finish the algorithm. We assume that case does not happen, so we can assume
| b1
a1

| ≤ 1, | b2
a2

| ≤ 1. Then the second interval is (a2
b2

, a1
b1

). Now the new interval

length is a1
b1

− a2
b2

. If b1
a1

≤ 1
2 , then we have

a1
b1

− a2
b2

b2
a2

− b1
a1

=
a1b2−a2b1

b1b2
a1b2−a2b1

a1a2

= a1a2
b1b2

≥ 2.

Sparse Polynomial Interpolation 201

If b1
a1

> 1
2 , then we let a1 = b1 + c1, a2 = b2 + c2 and the third interval is

(b1
c1

, b2
c2

).

Then we have
b2
c2

− b1
c1

b2
a2

− b1
a1

=
c1b2−c2b1

c1c2
a1b2−a2b1

a1a2

= a1a2
c1c2

> 2. In this case, if we have an

interval whose length is bigger than 1, then the recursion will terminate. So if
(r2 − r1)2k ≥ 1, then 2k is the upper bound of the number of recursions. So the
complexity is O(log(r2 − r1)). We proved the lemma. ��

Based on Lemma 4, we present a recursive algorithm to compute the rational
number in an interval (r1, r2) with the smallest denominator.

Algorithm 6 (MiniDenom)

Input: r1, r2 are positive rational numbers.
Output: the minimum denominator of rational numbers in (r1, r2)

Step 1: if one of r1, r2 is an integer and the other one is not an integer then
return � 1

r2−r1
.

Step 2: if both of r1 and r2 are integers and r2 − r1 > 1 then return 1.
if both of r1 and r2 are integers and r2 − r1 = 1 then return 2.

Step 3: if �r1 < r2, then return 1.
Step 4: let w :=trunc(r1), ε1 := r1 − w,ε2 := r2 − w;

d1 := MiniDenom(1
ε2

, 1
ε1

);
if d1

ε2
is a integer then return d1

ε2
+ 1 else return �d1

ε2
.

We now show how to compute the leading coefficient of f(x).

Lemma 5. Suppose ct = b
a , where gcd(a, b) = 1, a > 0, and Ii = (f(β)

βdt
i −

ε
2 i, f(β)

βdt
i + ε

2 i), i = 1, 2, . . . , H. Then Ia ∩ ZZ = {b} and if Ia0 ∩ ZZ = {b0} then
b
a = b0

a0
.

Proof. By Lemma 3, we have f(β)
βdt

− ε
2 < b

a < f(β)
βdt

+ ε
2 , so f(β)

βdt
a − ε

2a < b <
f(β)
βdt

a + ε
2a, and the existence is proved. The length of (f(β)

βdt
a − ε

2a, f(β)
βdt

a + ε
2a)

is < 2 ε
2a ≤ εH ≤ 1

H−1 ≤ 1, so b is the unique integer in the interval.

Assume that there is another a0 ∈ {1, 2, . . . ,H}, such that (f(β)
βdt

a0 −
ε
2a0,

f(β)
βdt

a0+ ε
2a0) contains the integer b0. Then f(β)

βdt
a0− ε

2a0 < b0 < f(β)
βdt

a0+ ε
2a0,

so f(β)
βdt

− ε
2 < b0

a0
< f(β)

βdt
+ ε

2 . If a
b �= a0

b0
, then |a

b − a0
b0

| = |ab0−a0b
bb0

| ≥ 1
H(H−1) = ε,

which contradicts that the length of the interval is less than ε. ��
Let r1 := f(β)

βdt
− ε

2 , r2 := f(β)
βdt

+ ε
2 . By Lemma 5, if a0 is the smallest positive

integer such that (a0r1, a0r2) contains the unique integer b0, then we have ct =
b0
a0

. Note that a0 is the smallest integer such that (a0r1, a0r2) contains the unique
integer b0 if and only if a0 is the smallest integer such that b0/a0 is in (r1, r2),
and such an a0 can be found with Algorithm6. This observation leads to the
following algorithm to find the leading coefficient of f(x).

202 Q.-L. Huang and X.-S. Gao

Algorithm 7 (ULCoefRat)

Input: f(β)
βdt

, ε, dt

Output: the leading coefficient of f(x).

Step 1: if f(β)
βdt

> 0, then r1 := f(β)
βdt

− ε
2 , r2 := f(β)

βdt
+ ε

2 ; else r1 := − f(β)
βdt

− ε
2 ,

r2 := − f(β)
βdt

+ ε
2 ;

Step 2: Let a := MiniDenom (r1, r2);

Step 3: Return
�a(

f(β)

βdt
− ε

2)�
a

Replacing Algorithm ULCoef with Algorithm ULCoefRat in Algorithm
UPolySI, we obtain the following interpolation algorithm for sparse polynomials
with rational coefficients.

Algorithm 8 (UPolySIRat)

Input: A black box polynomial f(x) ∈ Q[x] whose coefficients are in A given in
(3).
Output: The exact form of f(x).

Theorem 9. The arithmetic operations of Algorithm8 are O(t log H) and the
bit complexity is O(td log H(log C + log H)), where d is the degree of f(x).

Proof. In order to obtain the degree, we need one log arithmetic operation in
field Q, while in order to obtain the coefficient, we need O(log H) arithmetic
operations, so the total complexity is O(t log H). Assume f(β) = a1

h1
βd1+ a2

h2
βd2+

· · · + at

ht
βdt and let Hi := h1 · · · hi−1hi+1 · · · ht. Then we have

f(β) =
a1H1β

d1 + a2H2β
d2 + · · · + atHtβ

dt

h1h2 · · · ht

Then |a1H1β
d1 + a2H2β

d2 + · · · + atHtβ
dt | ≤ Ht−1C(βdt + · · · + β + 1) =

Ht−1 C
β−1 (βdt+1 − 1), so its bit length is O(t log H + d log C + d log H). It is easy

to see that the bit length of h1h2 · · · ht is O(t log H). So the total bit complex-
ity is O((t log H)(t log H + d log C + d log H)). As t ≤ d, the bit complexity is
O(td log H(log C + log H)). ��
Corollary 1. If the coefficients of f(x) are integers in [−C,C], then Algo-
rithm8 computes f(x) with arithmetic complexity O(t) and with bit complexity
O(td log C).

Remark 2. The bit complexity of Algorithm 8 is ˜O(td), which seems to be the
optimal bit complexity for deterministic and exact interpolation algorithms for
a black box polynomial f(x) ∈ Q[x]. For a t-sparse polynomial, t terms are
needed and the arithmetic complexity is at least O(t). For β ∈ C, we have
|f(β)| ≤ C βd+1−1

β−1 , where C is defined in (2). If |β| �= 1, then the height of f(β)

is d| log β|+log C or ˜O(d). For a deterministic and exact algorithm, β satisfying
|β| = 1 seems not usable. So the bit complexity is at least ˜O(td). For instance,
the height of the data in Ben-or and Tiwari’s algorithm is already ˜O(td) [3,8].

Sparse Polynomial Interpolation 203

3 Multivariate Polynomial Sparse Interpolation with
Modified Kronecker Substitution

In this section, we give a deterministic and a probabilistic polynomial-time reduc-
tion of multivariate polynomial interpolation to univariate polynomial interpo-
lation.

3.1 Find a Good Prime

We will show how to find a prime number which can be used in the reduction.
We assume f(x1, x2, . . . , xn) is a multivariate polynomial in Q[x1, x2, . . . , xn]

with a degree bound D, a term bound T , and p is a prime. We use the substitution

xi = xmod((D+1)i−1,p), i = 1, 2, . . . , n. (4)

For convenience of description, we denote

fx,p := f(x, xmod((D+1),p), . . . , xmod((D+1)n−1,p)). (5)

Then the degree of fx,p is no more than D(p − 1) and the number of terms of
fx,p is no more than T .

If the number of terms of fx,p is the same as that of f(x1, x2, . . . , xn), there
is no collision in different monomials and we call such prime as a good prime for
f(x1, x2, . . . , xn).

If p is a good prime, then we can consider a new substitution:

xi = qix
mod((D+1)i−1,p), i = 1, 2, . . . , n, (6)

where qi, i = 1, 2, . . . , n is the i-th prime. In this case, each coefficient will change
according to monomials of f . Note that in [4], the substitution is

f(x, x(D+1), . . . , x(D+1)n−1
)mod(xp − 1). With this substitution, the substi-

tution (6) cannot be used.
We show how to find a good prime p. We first give a lemma.

Lemma 6. Suppose p is a prime. If mod(a1+a2(D+1)+ · · ·+an(D+1)n−1, p)
�= 0, then a1 + a2mod(D + 1, p) + · · · + anmod((D + 1)n−1, p) �= 0.

Proof. If a1+a2mod(D+1, p)+· · ·+anmod((D+1)n−1, p) = 0, then mod(a1+
a2(D + 1) + · · · + an(D + 1)n−1, p) = 0, which contradicts to the assumption. ��

Now, we have the following theorem to find the good prime.

Theorem 10. Let f(x1, . . . , xn) be polynomial with degree at most D and t ≤ T
terms. If

N >
T (T − 1)

2
log2[(D + 1)n − 1] − 1

4
T 2 +

1
2
T

then there at least one of N distinct odd primes p1, p2, . . . , pN is a good prime
for f .

204 Q.-L. Huang and X.-S. Gao

Proof. Assume m1,m2, . . . ,mt are all the monomials in f , and mi = x
ei,1
1 x

ei,2
2

· · · xei,n
n . In order for p to be a good prime, we need ei,1 + ei,2(mod(D +

1, p)) + · · · + ei,n(mod((D + 1)n−1, p)) �= ej,1 + ej,2(mod(D + 1, p)) + · · · +
ej,n(mod((D + 1)n−1, p)), for all i �= j. This can be changed into (ei,1 − ej,1) +
(ei,2 − ej,2)(mod(D + 1, p)) + · · · + (ei,n − ej,n)(mod((D + 1)n−1, p)) �= 0. By
Lemma 6, it is enough to show

mod((ei,1 − ej,1) + (ei,2 − ej,2)(D + 1) + · · · + (ei,n − ej,n)(D + 1)n−1, p) �= 0, i �= j

Firstly, |(ei,1 − ej,1) + (ei,2 − ej,2)(D + 1) + · · · + (ei,n − ej,n)(D + 1)n−1| ≤
D(1 + (D + 1) + · · · + (D + 1)n−1) = (D + 1)n − 1.

We assume that f(x) = a1x
k1 + a2x

k2 + · · · + atx
kt is the polynomial after

the Kronecker substitution, where ki = ei,1 + ei,2(D + 1) + · · · + ei,n(D + 1)n−1.
If t = 2, it is trivial. So now we assume t > 2 and we analyse how many kinds
of primes the number

∏

i>j(ki − kj) has. Without loss of generality, assume
k1, k2 . . . , kw are even, kw+1, kw+2 . . . , kt are odd, denote v := t − w. It is easy
to see that ki − kj has factor 2 if 1 ≤ i �= j ≤ w or w + 1 ≤ i �= j ≤ t. If one
of w and v is zero, then

∏

i>j(ki − kj) has a factor 2
t(t−1)

2 . If both w, v are not

zero, then
∏

i>j(ki − kj) has a factor 2
w(w−1)

2 +
v(v−1)

2 . We give a lower bound of
w(w−1)

2 + v(v−1)
2 .

As w(w−1)
2 + v(v−1)

2 = w2+v2−t
2 ≥ 1/2(w+v)2−t

2 = 1
4 t2 − 1

2 t,
∏

i>j(ki − kj) at
least has a factor 2

1
4 t2− 1

2 t. Since |ki−kj | ≤ (D+1)n−1, we have
∏

i>j(ki−kj) ≤
[(D + 1)n − 1]

t(t−1)
2 . If p1, p2, . . . , pN are distinct primes satisfying p1p2 . . . pN >

[(D+1)n−1]
t(t−1)

2

2
1
4 t2− 1

2 t
, then at least one of the primes is a good prime. Since pi ≥ 2,

N > t(t−1)
2 log2[(D + 1)n − 1] − 1

4 t2 + 1
2 t. As we just know the upper bound T

of t, we can choose T − t different positive integer kt+1, kt+2, . . . , kT which are
different from k1, k2, . . . , kt. So we still can use T as the number of the terms.
We have proved the lemma. ��

3.2 A Deterministic Algorithm

Lemma 7. Assume f = c1
H1

xd1 + c2
H2

xd1 + · · · + ct

Ht
xdt , where c1, c2, . . . , ct ∈

ZZ,H1,H2, . . . , Ht ∈ ZZ+, d1, d2, . . . , dt ∈ IN, d1 < d2 < · · · < dt, | ci

Hi
| ≤ C,

H1,H2, . . . , Ht, d1, d2, . . . , dt are known. Let Hmax := max{H1,H2, . . . , Ht}. If
β ≥ 2CHmax + 1, then we can recover c1, c2, . . . , ct from f(β).

Proof. It suffices to show that ct can be recovered from f(β). As β − 1 ≥
2CHmax ≥ 2CHt, then 1

2 ≥ CHt

β−1 . So |f(β)Ht − ctβ
dt | = | c1Ht

H1
βd1 + c2Ht

H2
βd2 +

· · · + ct−1Ht

Ht−1
βdt−1 | ≤ CHt(βdt −1

β−1) ≤ 1
2 (βdt − 1). So | f(β)Ht

βdt
− ct| < 1

2 . That is
f(β)Ht

βdt
− 1

2 < ct < f(β)Ht

βdt
+ 1

2 . Since ct is an integer, ct = � f(β)Ht

βdt
− 1

2. The rest
can be proved by induction. ��

Sparse Polynomial Interpolation 205

Algorithm 11 (MPolySIMK)

Input: A black box polynomial f(x1, x2, . . . , xn) ∈ A[x1, x2, . . . , xn], whose coef-
ficients are in A given in (3), an upper bound D for the degree, an upper bound
T of the number of terms, a list of n different primes q1, q2, . . . , qn(q1 < · · · < qn).
Output: The exact form of f(x1, x2, . . . , xn).

Step 1: Randomly choose N different odd primes p1, p2, . . . , pN , where N =

T (T−1)

2 log2[(D + 1)n − 1] − 1
4T 2 + 1

2T � + 1.
Step 2: for i = 1, 2, . . . , N let fi := UPolySIRat(fx,pi

, A, T) via Algorithm 8,
where fx,pi

is defined in (5).
Step 3: Let S := {};

for i = 1, 2, . . . , N do if fi �= failure, then S := S
⋃{fi}. end do;

Step 4: Repeat:
Choose one integer i such that fi has the most number of the terms in S.
if fi(j) = fx,pi

(j) for j = 1, 2, . . . ,D(pi − 1) + 1 then break Repeat;
S := S\{fi}
end Repeat
Let i0 be the integer found and fi0 = c1

H1
xd1 + c2

H2
xd2 + · · ·+ ct

Ht
xdt , d1 < d2 <

· · · < dt

Step 5: Let β := 2CqD
n max{H1,H2, . . . , Ht} + 1. [Lemma 7]

Denote g = f(q1x, q2x
mod(D+1,pi0), . . . , qnxmod((D+1)n−1,pi0)) and let u :=

g(β);
Step 6: Let h := 0;

for i = t, t − 1, . . . , 1 do
Let b := � u

βdi
Hi − 1

2. Factor b
ci

into qe1
1 qe2

2 · · · qen
n .

h := h + ci

Hi
xe1
1 xe2

2 · · · xen
n . u := u − b

Hi
βdi .

Step 7: return h.

Remark 3. If pi is not a good prime for f , then the substitution fx,pi
of f has

collisions. fx,pi
may have some coefficients not in A. So we need to modify step 4

of Algorithm 8 as follows, with T as an extra input. For c = a
b , if |c| > C, |b| > H,

or the number of the terms of fi are more than T , then we let fi = failure.

Theorem 12. Algorithm11 is correct and its bit complexity is ˜O(n2T 5D log H
log C + n2T 5D log2 H + n3T 6D2).

Proof. First, we show the correctness. If pi is a good prime for f , then all the coef-
ficients of fx,pi

are in A. So in step 2, Algorithm8 can be used to find fi = fx,pi
.

It is sufficient to show that the prime pi0 corresponding to i0 obtained in step 4 is
a good prime. In step 4, if there exists a j0 such that fi(j0) �= fx,pi

(j0), then fi �=
fx,pi

. This only happens when some of the coefficients of fx,pi
are not in A. That

is, pi is not a good prime for f . So we throw it away. If fi0(j) = fx,pi0
(j) for j =

1, 2, . . . ,D(pi0−1)+1 for some i0. Since deg fi0 ≤ D(pi0−1), we have fi0 = fx,pi0
.

Assume by contradiction that pi0 is not a good prime for f , then the num-
ber of terms of fi0 is less than that of f . Since S includes at least one fi1 such
that pi1 is a good prime for f , the number of terms in fi1 is more than fi0 .

206 Q.-L. Huang and X.-S. Gao

It contradicts that fi0 has the most number of the terms in S. So pi0 is a good
prime for f .

As fi0 = c1
H1

xd1 + c2
H2

xd2 + · · · + ct

Ht
xdt , d1 < d2 < · · · < dt, we can assume

f = c1
H1

m1+ c2
H2

m2+· · ·+ ct

Ht
mt, where mi = x

ei,1
1 x

ei,2
2 · · · xei,n

n . We can write g as

g = f(q1x, q2x
mod(D+1,pi0), . . . , qnxmod((D+1)n−1,pi0)) = c1q

e1,1
1 q

e1,2
2 ···qe1,n

n

H1
xd1 +

c2q
e2,1
1 q

e2,2
2 ···qe2,n

n

H2
xd2+· · ·+ ctq

et,1
1 q

et,2
2 ···qet,n

n

Ht
xdt . Since | ciq

ei,1
1 q

ei,2
2 ···qei,n

n

Hi
| ≤ CqD

n , by
Lemma 7, in step 6, b = ciq

ei,1
1 q

ei,2
2 · · · qei,n

n . By Factoring b
ci

= q
ei,1
1 q

ei,2
2 · · · qei,n

n ,
we obtain the degrees of mi. We have proved the correctness.

We now analyse the complexity. In step 2, we call Algorithm UPolySIRat
O(nT 2 log D) times. The degree of fx,pi

is bounded by D(pi − 1). Since the
i-th prime is O(i log i) and we use at most O(nT 2 log D) primes, the degree
bound is ˜O(nT 2D). So by Theorem9, the bit complexity of getting all fi

is ˜O((nT 3D log H)(log C + log H)(nT 2 log D)), that is ˜O(n2T 5D log H log C +
n2T 5D log2 H).

In step 4, since deg fi is ˜O(nT 2D), by fast multipoint evaluation [11, p.
299], it needs ˜O(nT 2D) operations. The number of the fi that we need to
check is at most ˜O(nT 2 log D), so the total arithmetic operations for evalu-
ations is ˜O(n2T 4D). As the coefficients of fi are in A and the number of
terms is less than T , the data is ˜O(TC(nT 2D)nT 2DHT). So the height of
the data is ˜O(nT 2D + log C + T log H). The total bit complexity of step 4 is
˜O(n3T 6D2 + n2T 4D log C + n2T 5D log H).

In step 6, we need to obtain t terms of g. We analyse the bit complex-
ity of one step of the cycle. To obtain b, we need O(1) arithmetic opera-
tions. The height of the data is ˜O(nT 2D(log C + D log n + log H)), so the bit
complexity is ˜O(nT 2D log C + nT 2D2 + nT 2D log H). To factor b

ci
, we need

n log2 D operations. The data of b and ci is ˜O(CqD
n H), so the bit complexity is

˜O(n log2 D log C + nD + n log2 D log H). So the total bit complexity of step 6 is
˜O(nT 3D log C + nT 3D2 + nT 3D log H).

Therefore, the bit complexity is ˜O(n2T 5D log H log C+n2T 5D log2 H+n3T 6

D2). ��
Remark 4. If A = {a|C ≥ |a|, a ∈ ZZ}, we can modify Algorithm 11. Assume
AT = {a|TC ≥ |a|, a ∈ ZZ}. In step 2, we let fi := UPolySIRat(fx,pi

, AT).
Note that fx,pi

is an integer polynomial with coefficients bounded by TC, fi =
fx,pi

. So in step 4, we just find the smallest integer i0 that fi0 has the most
number of the terms in S. In this case, pi0 is a good prime for f . The bit
complexity of the algorithm will be ˜O(n2T 5D log C + nT 3D2).

3.3 Probabilistic Algorithm

Giesbrecht and Roche [5, Lemma 2.1] proved that if λ = max{21, 5
3nT (T −

1) ln D}, then a prime p chosen at random in [λ, 2λ] is a good prime for f(x1, . . . ,
xn) with probability at least 1

2 . Based on this result, we give a probabilistic
algorithm.

Sparse Polynomial Interpolation 207

Algorithm 13 (ProMPolySIMK)

Input: A black box polynomial f(x1, . . . , xn) ∈ A[x1, . . . , xn], whose coefficients
are in A given in (3), an upper bound D for the degree, an upper bound T of
the number of terms, a list of n different primes q1, q2, . . . , qn(q1 < · · · < qn).
Output: The exact form of f(x1, . . . , xn) with probability ≥ 1

2 .

Step 1: Let λ := max{21, 5
3nT (T − 1) ln D}, randomly choose a prime p in

[λ, 2λ].
Step 2: Let fp := UPolySIRat(fx,p, A, T) via Algorithm 8.

if fp = failure then return failure;
Assume fp = c1

H1
xd1 + c2

H2
xd2 + · · · + ct

Ht
xdt , d1 < d2 < · · · < dt

Step 3: Let β := 2CqD
n max{H1,H2, . . . , Ht} + 1. [Lemma 7]

Denote g(x) = f(q1x, q2x
mod(D+1,p), . . . , qnxmod((D+1)n−1,p)). Let u := g(β);

Step 4: Let s := 0;
for i = t, t − 1, . . . , 1 do
Let b := � u

βdi
Hi − 1

2
Factor b

ci
= kqe1

1 qe2
2 · · · qen

n , where qi � k, i = 1, 2, . . . , n
if k �= 1 or e1 + e2 + · · · + en > D then return failure;
s := s + ci

Hi
xe1
1 xe2

2 · · · xen
n .

u := u − b
Hi

xdi .
end do;
if u = 0 then return s else return failure;

Theorem 14. The bit complexity of Algorithm13 is ˜O(nT 3D log H log C +
nT 3D log2 H + nT 3D2).

Proof. In step 2, the degree of fx,p is bounded by D(p−1). As p is O(nT 2 log D),
the degree bound is ˜O(nT 2D). By Theorem 9, the complexity is ˜O((nT 3D log H)
(log C + log H)), or ˜O(nT 3D log H log C + nT 3D log2 H).

In step 4, we need to obtain t terms of g. We analyse the bit complexity
of one step of the cycle. To obtain b, we need O(1) arithmetic operations. The
height of the data is ˜O(nT 2D(log C + D log n + log H)), so the bit complexity is
˜O(nT 2D log C+nT 2D2+nT 2D log H). To factor b

ci
, we need n log2 D operations.

The height of b and ci is ˜O(CqD
n H), so the bit complexity is ˜O(n log2 D log C +

nD + n log2 D log H). So the total bit complexity of step 4 is ˜O(nT 3D log C +
nT 3D2 + nT 3D log H).

Therefore, the total bit complexity of the algorithm is ˜O(nT 3D log H log C +
nT 3D2 + nT 3D log2 H). ��
Remark 5. In Algorithm 13, we also modify step 4 of Algorithm 8 as in Remark 4.

4 Experimental Results

In this section, practical performances of the algorithms will be presented. The
data are collected on a desktop with Windows system, 3.60 GHz Core i7 – 4790

208 Q.-L. Huang and X.-S. Gao

CPU, and 8 GB RAM memory. The implementations in Maple can be found in
http://www.mmrc.iss.ac.cn/∼xgao/software/sicoeff.zip

We randomly construct five polynomials, then regard them as black box
polynomials and reconstruct them with the algorithms. The average times are
collected. The results for univariate interpolation are shown in Figs. 1, 2, 3 and
4. In each figure, three of the parameters C,H,D, T are fixed and one of them is
variable. From these figures, we can see that Algorithm UPolySIRat is linear
in T , approximately linear in D, logarithmic in C and H. The results in the
multivariate case are shown in Figs. 5 and 6. We just test the probabilistic algo-
rithm. From these figures, we can see that the Algorithm ProMPolySIMK is
polynomial in T and D.

Fig. 1. UPolySIRat: average running
times with varying T

Fig. 2. UPolySIRat: average run-
ning times with varying D

Fig. 3. UPolySIRat: average running
times with varying C

Fig. 4. UPolySIRat: average run-
ning times with varying H

Fig. 5. ProMPolySIMK: average
running times with varying T

Fig. 6. ProMPolySIMK: average
running times with varying D

http://www.mmrc.iss.ac.cn/~xgao/software/sicoeff.zip

Sparse Polynomial Interpolation 209

5 Conclusion

In this paper, a new type of sparse interpolation is considered, that is, the coef-
ficients of the black box polynomial f are from a finite set. Specifically, we
assume that the coefficients are rational numbers such that the upper bounds of
the absolute values of these numbers and their denominators are given, respec-
tively. We first give an interpolation algorithm for a univariate polynomial f ,
where f is obtained from one evaluation f(β) for a sufficiently large number β.
Then, we introduce the modified Kronecker substitution to reduce the interpola-
tion of a multivariate polynomial into the univariate case. Both algorithms have
polynomial bit-size complexity and the algorithms can be used to recover quite
large polynomials.

References

1. Arnold, A.: Sparse polynomial interpolation and testing. Ph.D. thesis, Waterloo
Unversity, Canada (2016)

2. Arnold, A., Roche, D.S.: Multivariate sparse interpolation using randomized Kro-
necker substitutions. In: ISSAC 2014, 23–25 July, Kobe, Japan (2014)

3. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polyno-
mial interpolation. In: 20th Annual ACM Symposium on Theory of Computing,
pp. 301–309 (1988)

4. Garg, S., Schost, É.: Interpolation of polynomials given by straight-line programs.
Theoret. Comput. Sci. 410(27–29), 2659–2662 (2009)

5. Giesbrecht, M., Roche, D.S.: Diversification improves interpolation. In: Proceed-
ings of the ISSAC 2011, pp. 123–130. ACM Press (2011)

6. Huang, Q.L., Gao, X.S.: Sparse rational function interpolation with finitely many
values for the coefficients arXiv:1706.00914 (2017)

7. Huang, Q.L., Gao, X.S.: New algorithms for sparse interpolation and identity test-
ing of multivariate polynomials. Preprint (2017)

8. Kaltofen, E., Yagati, L.: Improved sparse multivariate polynomial interpolation
algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 467–474. Springer,
Heidelberg (1989). doi:10.1007/3-540-51084-2 44

9. Klivans, A.R., Spielman, D.: Randomness efficient identity testing of multivariate
polynomials. In: Proceedings of the STOC 2001, pp. 216–223. ACM Press (2001)

10. Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Grössen.
J. Reine Angew. Math. 92, 1–122 (1882)

11. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (1999)

12. Zippel, R.: Interpolating polynomials from their values. J. Symbolic Comput. 9(3),
375–403 (1990)

http://arxiv.org/abs/1706.00914
http://dx.doi.org/10.1007/3-540-51084-2_44

On Stationary Motions of the Generalized
Kowalewski Gyrostat and Their Stability

Valentin Irtegov and Tatyana Titorenko(B)

Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov str., Irkutsk 664033, Russia

{irteg,titor}@icc.ru

Abstract. The stationary motions of the Kowalewski gyrostat in two
constant force fields are studied. It is revealed that the equations of
motion of the gyrostat have the families of permanent rotations when
the force fields are parallel, and the families of equilibria when these
fields have special directions. It is shown that all the found solutions
belong to an intersection of two invariant manifolds of codimension 2.
The analysis of stability in the Lyapunov sense for these solutions is
conducted.

1 Introduction

The problem of the rotational motion of a gyrostat (a rigid body with a sym-
metrical rotor placed inside it) in two constant force fields is considered. Mass
distribution in the body is subject to the Kowalewski conditions [1]. Similar prob-
lems arise, e.g., in space dynamics [2], quantum mechanics [3]. The equations of
motion of the gyrostat represent a completely Liouville integrable system: an
additional first integral of the problem has been found in [4]. It should be noted
that so far this system is poorly studied because of computational difficulties
arising in the process of its investigation. There exists a series of works devoted
to the topological analysis of the system (see, e.g., [5,6]). We conduct the quali-
tative analysis for the equations of motion of the gyrostat. Our approach to the
study of similar problems is based on solving an extremum problem for the ele-
ments of the algebra of the problem’s first integrals that enables us to reduce the
problem of the qualitative analysis of differential equations to an algebraic one
and to apply computer algebra tools in our study. In the present work, within
the framework of the qualitative analysis of the system under consideration, we
study the stationary motions of the gyrostat and their stability. By stationary
motions, we mean solutions of the equations of motion on which the first inte-
grals (or their combinations) in the problem under study take stationary values.
The latter allows one to use these integrals for obtaining a Lyapunov function
to investigate the stability of such solutions. All computations represented in
this paper have been performed with “Mathematica” computer algebra system
(CAS) as well as the software package [7].

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 210–224, 2017.
DOI: 10.1007/978-3-319-66320-3 16

On Stationary Motions of the Generalized Kowalewski Gyrostat 211

2 Formulation of the Problem

For describing the motion of the gyrostat, an inertial coordinate system with its
origin at a fixed point O of the body is introduced. The Oxyz frame is rigidly
attached to the body. The axes of the frame are directed along the principal
axes of inertia of the body. The rotor axis coincides with the Oz axis. The
inertia moments of the gyrostat are related as follows: A = B = 2C.

The equations of motion of the gyrostat in the Oxyz frame can be written as:

2ṗ = q (r − λ) + b δ3, γ̇1 = γ2r − γ3q, δ̇1 = δ2r − δ3q,

2q̇ = x0γ3 − p (r − λ), γ̇2 = γ3p − γ1r, δ̇2 = δ3p − δ1r,

ṙ = −bδ1 − x0γ2, γ̇3 = γ1q − γ2p, δ̇3 = δ1q − δ2p.

(1)

Here p, q, r are the projections of the angular velocity vector onto the axes of
the Oxyz frame; γi (i = 1, 2, 3) are the components of the direction vector of the
1st force field; δi (i = 1, 2, 3) are the components of the direction vector of the
2nd force field; (x0, 0, 0), (0, b, 0) are the radius vectors of the 1st and 2nd force
centers, respectively; λ = const is the gyrostatic parameter.

Equation (1) admit the following first integrals:

2H = 2(p2 + q2) + r2 + 2(x0γ1 − b δ2) = 2h,
V1 = (p2 − q2 − x0γ1 − b δ2)2 + (2p q − x0γ2 + b δ1)2

+2λ[(p2 + q2)(r − λ) + 2(b qδ3 − p x0γ3)] = c1,
V2 = γ2

1 + γ2
2 + γ2

3 = 1, V3 = δ21 + δ22 + δ23 = 1,
V4 = γ1δ1 + γ2δ2 + γ3δ3 = c2,
V5 = x2

0 [pγ1 + qγ2 + 1
2 (r + λ)γ3]2 + b2 [pδ1 + qδ2 + 1

2 (r + λ)δ3]2

−x0b (r − λ)[(γ2δ3 − γ3δ2)p + (γ3δ1 − γ1δ3)q + 1
2 (r + λ)(γ1δ2 − γ2δ1)]

+x0b
2γ1(δ21 + δ22 + δ23) − x2

0b δ2(γ2
1 + γ2

2 + γ2
3)

−bx0(bδ1 − γ2x0)(δ1γ1 + δ2γ2 + δ3γ3) = c3,

(2)

where V5 is the additional first integral found in [4], h, c1, c2, c3 are some con-
stants.

Note, as c2 is an arbitrary constant, Eq. (1) together with the integral V4 = c2
describe the motion of the gyrostat in the constant force fields having special
directions (according to the value of the parameter c2). Thus, system (1), (2)
can be considered as a family of the systems parameterized by c2.

When b = 0, system (1), (2) corresponds to an integrable case in the problem
of motion of the Kowalewski gyrostat in a gravitational force field [8].

The purpose of this work is to find the stationary solutions of Eq. (1) and to
investigate their qualitative properties.

3 Finding the Stationary Solutions

Traditionally, stationary solutions can be obtained from the conditions of station-
arity for the first integrals of a problem (see, e.g., [9]). In the case under consid-
eration, following this technique, we should solve a system of 9 nonhomogeneous
cubic equations with respect to the phase variables p, q, r, γi, δi (i = 1, 2, 3). In
the given work, we apply another technique represented below.

212 V. Irtegov and T. Titorenko

3.1 Permanent Rotations

For finding the desired solutions, we equate the right-hand sides of differential
Eq. (1) to zero, and add relations V2 = 1, V3 = 1 (2) to them. For the polyno-
mials of a resulting system (the system of quadratic equations), we construct a
lexicographical Gröbner basis with respect to some part of the phase variables,
e.g., δ1, δ2, δ3, γ1, γ2, γ3, p, q with the “Mathematica” procedure GroebnerBasis.
A result will be a system which is decomposed into two subsystems:

(I) b4r2 − q2(λ − r)2 [b2(q2 + r2) + x2
0q

2] = 0, bp − x0q = 0,
b γ3 + q (λ − r) = 0, b rγ2 + q2 (λ − r) = 0, b2 rγ1 + x0q

2 (λ − r) = 0,
b δ3 − q (λ − r) = 0, b rδ2 − q2 (λ − r) = 0, −b2 rδ1 + x0q

2 (λ − r) = 0.
(3)

(II) b4r2 − q2(λ − r)2 [b2(q2 + r2) + x2
0q

2] = 0, bp + x0q = 0,
b γ3 − q (λ − r) = 0, b rγ2 − q2 (λ − r) = 0, b2 rγ1 − x0q

2 (λ − r) = 0,
b δ3 − q (λ − r) = 0, b rδ2 − q2 (λ − r) = 0, −b2 rδ1 − x0q

2 (λ − r) = 0.
(4)

As can easily be verified by invariant manifold (IM) definition, Eqs. (3), (4) define
2 one-dimensional IMs of Eq. (1).

The vector field on each IM is given by the equation ṙ = 0. It has the following
family of solutions:

r = r0 = const. (5)

Hence, geometrically, IMs (3), (4) in space R9 correspond to 2 curves, over each
point of which the family of solutions (5) is defined.

Equations (3) with (5) represent 4 families of solutions for the equations of
motion (1):

p = ∓x0 α1 r
1/2
0 (λ − r0)−1/2, q = ∓b α1 r

1/2
0 (λ − r0)−1/2, r = r0,

γ1 = −x0 α2
1, γ2 = −b α2

1, γ3 = ±[r0 (λ − r0)]1/2α1, δ1 = x0 α2
1,

δ2 = b α2
1, δ3 = ∓[r0 (λ − r0)]1/2α1; (6)

p = ±x0 α2 r
1/2
0 (r0 − λ)−1/2, q = ±b α2 r

1/2
0 (r0 − λ)−1/2, r = r0,

γ1 = x0 α2
2, γ2 = b α2

2, γ3 = ±[r0 (r0 − λ)]1/2α2, δ1 = −x0 α2
2,

δ2 = −b α2
2, δ3 = ∓[r0 (r0 − λ)]1/2α2. (7)

Here r0 is the parameter of the families, α1 = ρ1 β, α2 = ρ2 β, β = [2 (b2 +
x2
0)]

−1/2, ρ1 = [r0 (r0 − λ) + (4(b2 + x2
0) + (λ − r0)2r20)

1/2]1/2,
ρ2 = [r0 (λ − r0) + (4(b2 + x2

0) + (λ − r0)2r20)
1/2]1/2.

Equations (4), (5) determine the following 4 families of solutions for
system (1):

p = ±x0 α1r
1/2
0 (λ − r0)−1/2, q = ∓b α1r

1/2
0 (λ − r0)−1/2, r = r0,

γ1 = −x0 α2
1, γ2 = b α2

1, γ3 = ∓[r0 (λ − r0)]1/2α1, δ1 = −x0 α2
1,

δ2 = b α2
1, δ3 = ∓[r0 (λ − r0)]1/2α1; (8)

On Stationary Motions of the Generalized Kowalewski Gyrostat 213

p = ∓x0 α2 r
1/2
0 (r0 − λ)−1/2, q = ±b α2 r

1/2
0 (r0 − λ)−1/2, r = r0,

γ1 = x0 α2
2, γ2 = −b α2

2, γ3 = ∓[r0 (r0 − λ)]1/2α2,

δ1 = x0 α2
2, δ2 = −b α2

2, δ3 = ∓[r0 (r0 − λ)]1/2α2. (9)

On substituting solutions (6), (7) into integral V4 (2), the latter is identically
equal to −1. On solutions (8), (9), this integral becomes identically 1. So, with
mechanical viewpoint, the elements of the families of solutions (6)–(9) corre-
spond to the permanent rotations of the gyrostat in the parallel (or opposite in
direction) force fields. The gyrostat rotates around the coinciding (or opposite)
directions of the force fields with the angular velocity ω2 = r0 (ρ21/(2(λ−r0))+r0)
(ω2 = r0 (ρ22/(2(r0−λ))+r0)). The axis position of rotation in the body depends
on the parameter r0 and does not coincide with the principal axes of inertia of
the body.

Now, we show that all the solutions found above are stationary. First, we
consider the families of solutions (6).

Let

2K = 2λ0H − λ1V1 − λ2V2 − λ3V3 − 2λ4V4 − 4λ5V5 (10)

be the family of the problem’s first integrals, where λi (i = 0, . . . , 5) are the
parameters of the family.

We write down the necessary conditions for the integral K to have an
extremum with respect to the phase variables

∂K

∂p
= 0,

∂K

∂q
= 0,

∂K

∂r
= 0,

∂K

∂γi
= 0,

∂K

∂δi
= 0, (i = 1, 2, 3) (11)

and find the values of λ2, λ3, λ5

λ2 = x2
0 χ + λ4, λ3 = b2 χ + λ4, λ5 =

1
(λ2 − r20 + ρ21)

[2λ0

ρ21
− λλ1

(λ − r0)

]
,

under which solutions (6) satisfy equation (11). Here χ = [2(r20−λ2)λ0−λρ21(λ−
3r0)λ1] [ρ1 (λ − r0)]−2.

Having substituted the above expressions into (10), we have the following
family of integrals:

2K1 = 2K̃1 − (V2 + V3 + 2V4)λ4,

where 2K̃1 = 2
[
H +

(λ + r0)(x2
0V2 + b2V3)

ρ21(λ − r0)
− 4V5

ρ21(λ2 − r20 + ρ21)

]
λ0

+
[λ (λ − 3r0)(x2

0V2 + b2V3)
(λ − r0)2

− V1 +
4λV5

(λ − r0)(λ2 − r20 + ρ21)

]
λ1.

(12)

It is split up into 3 subfamilies of the integrals which correspond to the coeffi-
cients of λ0, λ1, λ4, respectively. The elements of both the family of the integrals

214 V. Irtegov and T. Titorenko

K1 and its subfamilies take stationary values on the elements of families (6). The
latter is verified by direct computation. So, the solutions under consideration are
stationary. The family K1 and its subfamilies – both individually and in combi-
nation – can be used for obtaining a Lyapunov function to analyze stability of
solutions (6).

In a similar manner, we prove the stationarity of solutions (7)–(9). Note that
IM (3) and IM (4), which the families of solutions under consideration belong
to, are stationary. The integrals V2 +V3 +2V4 and V2 +V3 − 2V4 take stationary
values on these IMs, respectively.

3.2 Equilibria

Using the technique chosen, we have found another group of the stationary
solutions of differential Eq. (1) in the case when p = q = r = 0.

The equations

p = 0, q = 0, r = 0, γ3 = 0, δ3 = 0,

x0γ2 + bδ1 = 0, b2δ21 + x2
0 (γ2

1 − 1) = 0, δ21 + δ22 = 1 (13)

define one-dimensional IM of Eq. (1). Likewise as above, it can be verified by IM
definition. The vector field on this IM is described by the equation δ̇1 = 0 which
has the following family of solutions:

δ1 = δ01 = const. (14)

Equations (13) with (14) determine 4 families of solutions for the equations
of motion (1):

p = 0, q = 0, r = 0, γ1 = ∓(x2
0 − b2δ0

2

1)1/2x0
−1, γ2 = −b δ01x

−1
0 , γ3 = 0,

δ1 = δ01 , δ2 = (1 − δ0
2

1)1/2, δ3 = 0; (15)

p = 0, q = 0, r = 0, γ1 = ∓(x2
0 − b2δ0

2

1)1/2x−1
0 , γ2 = −b δ01x

−1
0 , γ3 = 0,

δ1 = δ01 , δ2 = −(1 − δ0
2

1)1/2, δ3 = 0. (16)

Here δ01 is the family parameter, |δ01 | ≤ 1 and |δ01 | ≤ |x0b
−1| are the conditions

for the solutions to be real.
With mechanical viewpoint, the elements of the families of solutions (15),

(16) correspond to the equilibria of the gyrostat.
The integral V4 takes the values ±δ01x

−1
0 b (1 − δ0

2

1)1/2 ± (x2
0 − b2δ0

2

1)1/2 on
the corresponding elements of the families of solutions (15), (16). So, each equi-
librium corresponds to a definite angle between the directions of the force fields.
In [5], four equilibria of the above families for the case of the orthogonal force
fields are presented.

With the aid of the technique described above, we have found the families of
the integrals the elements of which take stationary values on the corresponding
elements of families (15), (16). Below, one of these families is represented.

On Stationary Motions of the Generalized Kowalewski Gyrostat 215

2K2 =
[2 [4V5 − ((λ2 + 4z)z − 2(b2 + x2

0))H]
λ2 + 2z

− V1

]
λ1

+
[4V5 − 2[(λ2 + 3z)z − (b2 + x2

0)]H
x2
0 (λ2 + 2z)

− V2 − b2V3

x2
0

]
λ2 +

[z̄V3

δ01x0

+2
(1

δ01x0
− 2 [δ0

2

1 z − (x2
0 − b2δ0

2

1)1/2]
δ01x0(λ2 + 2z)

)
H − 2V4 − 4(1 − δ0

2

1)1/2V5

b δ01x0(λ2 + 2z)

]
λ4.

(17)

Here z = b (1 − δ0
2

1)1/2 + (x2
0 − b2δ0

2

1)1/2, z̄ = b (1 − δ0
2

1)1/2 − (x2
0 − b2δ0

2

1)1/2.
The elements of the family K2 and its subfamilies (the coefficients of

λ1, λ2, λ4) assume stationary values on the elements of the 1st family of solutions
(15). The corresponding families of the integrals for other solutions (15), (16)
are similar to the above family.

4 On Invariant Manifolds of Codimension 2

Let us show that all the solutions found above belong to two IMs of codimension
2 of the equations of motion (1). We shall obtain these IMs from the station-
ary conditions for integral K (10) by resolving them with respect to part of the
phase variables and the parameters λi. The given technique, based on Gröbner
basis method, was already applied by the authors repeatedly (see, e.g., [10]).
In the problem under study, its direct application reduces to cumbersome com-
putations. In order to avoid these difficulties, we replace the initial problem’s
variables with the following ones:

x1 = −(x0γ1 + bδ2) − i(x0γ2 − bδ1), x2 = −(x0γ1 + bδ2) + i(x0γ2 − bδ1),
y1 = −(x0γ1 − bδ2) − i(x0γ2 + bδ1), y2 = −(x0γ1 − bδ2) + i(x0γ2 + bδ1),
z1 = −x0γ3 + ib δ3, z2 = −x0γ3 − ib δ3, w1 = p + iq, w2 = p − iq, w3 = r.

(18)

These are similar to (3.8) [5].
In the above variables, the equations of motion and the problem’s first inte-

grals can be written as

2ẇ1 = i(w1(λ − w3) − z1), ẋ1 = i(w1z1 − w3x1), ẏ1 = i(w1z2 − w3y1),
2ẇ2 = i(w2(w3 − λ) + z2), ẋ2 = i(w3x2 − w2z2), ẏ2 = i(w3y2 − w2z1),
2ẇ3 = i(y2 − y1), 2ż1 = i(w2x1 − w1y2), 2ż2 = i(w2y1 − w1x2)

(19)

and

2H̃ = 2w1w2 + w2
3 − y1 − y2 = 3h̃,

Ṽ1 = (w2
1 + x1)(w2

2 + x2) + 2λ [w2z1 + w1(w2w3 + z2)] − 2λ2w1w2 = c̃1,

Ṽ2 = (x1 + y1)(x2 + y2) + (z1 + z2)2 = 1,

Ṽ3 = (x1 − y1)(x2 − y2) − (z1 − z2)2 = 1,

Ṽ4 = x1y2 − x2y1 + z21 − z22 = c̃2,

Ṽ5 = x1y1(2w2
2 + x2) + x2y2(2w2

1 + x1) − y1y2(y1 + y2)
+ 2w1(w2x1x2 + w2y1y2 + 2w3x2z1) + 4w2w3x1z2 − 2(y1 + y2)z1z2

(20)

216 V. Irtegov and T. Titorenko

+ 2(x2z
2
1 + x1z

2
2) + (λ2 − w2

3)(x1x2 − y1y2) + 2(λ2 + w2
3)z1z2

+ 4λ(w2y1z1 + w1y2z2 + w3z1z2) = c̃3,

respectively.
Let K̂ be integral K (10) in variables (18). We write down the stationary

conditions for the integral K̂

∂K̂

∂w1
= 0,

∂K̂

∂w2
= 0,

∂K̂

∂w3
= 0,

∂K̂

∂xi
= 0,

∂K̂

∂yi
= 0,

∂K̂

∂zi
= 0 (i = 1, 2)

which represent a system of nonhomogeneous cubic equations with respect to the
variables w1, w2, w3, x1, x2, y1, y2, z1, z2 with the parameters λ, λi (i = 0, . . . , 5),
and then, for the polynomials of this system, construct a lexicographical Gröbner
basis with respect to λ0, λ1, λ2, λ3, λ4, y1, y2. A result will be a system which is
split up into two subsystems.

The 1st subsystem:

fi(w1, w2, w3, x1, x2, z1, z2, λ0, λ1, λ2, λ3, λ4, λ) = 0(i = 1, . . . , 5) (21)

w2 (λ − w3)(w2x1 + w1y2) + (λ + w3)(λw2 − w2w3 − z2)z1 − w1x2z1
−w2x1z2 = 0,
w1 (λ − w3)(w1x2 + w2y1) + (λ + w3)(λw1 − w1w3 − z1)z2 − w1x2z1
−w2x1z2 = 0.

(22)

The 2nd subsystem:

gi(w1, w2, w3, x1, x2, z1, z2, λ0, λ1, λ2, λ3, λ4, λ) = 0(i = 1, . . . , 5) (23)

λy2(w1w2 + λw3)(w1x2 + λz2) − w1(w2
2 + x2) [(w2x1 + λz1)z2

+ (w1x2 + λz2)z1 − w3x1x2] − λx1(w2w3 + z2)(w2z2 − w3x2)
+λ2z1(w2

3x2 − 2w2w3z2 − z22) = 0,
λy1(w1w2 + λw3)(w2x1 + λz1) − w2(w2

1 + x1) [(w2x1 + λz1)z2
+ z1(w1x2 + λz2) − w3x1x2] − λx2(w1w3 + z1)(w1z1 − w3x1)
+λ2z2(w2

3x1 − 2w1w3z1 − z21) = 0.

(24)

Here fi = 0, gi = 0 (i = 1, . . . , 5) are the linear equations with respect to
λ0, λ1, λ2, λ3, λ4.

Equations (22), (24) define two IMs of codimension 2 of differential Eq. (19).
Equations (21), (23) enable us to obtain the first integrals of vector fields on
these IMs. For this purpose, it is necessary to resolve the equations with respect
to λ0, λ1, λ2, λ3, λ4.

In the initial variables, Eq. (22) can be written as:

F + iG = 0, F − iG = 0, where
F = −b (b δ3 + qr)σ2 + x0[2b (p (γ2δ3 − γ3δ2) + q (γ3δ1 − γ1δ3)) + p rσ1]

−x2
0γ3σ1 + λ2(bqδ3 − x0pγ3) + λ [b (2q (pδ1 + qδ2) − bδ23)

−x0 (x0γ
2
3 + 2p (pγ1 + qγ2))],

G = −r (bp σ2 + x0q σ1) + 2λ [x0q(pγ1 + qγ2) + bp (pδ1 + qδ2)]
+λ2 (bpδ3 + x0qγ3).

Here σ1 = 2pγ1 + 2qγ2 + rγ3,σ2 = 2pδ1 + 2qδ2 + rδ3.

On Stationary Motions of the Generalized Kowalewski Gyrostat 217

It is not difficult to verify that the equations F = 0, G = 0 define IM of
codimension 2 of the equations of motion (1). In order to represent the IM
equations in more compact form, we have constructed a lexicographical basis for
the polynomials of left-hand sides of these equations, e.g., with respect to the
variables γ2, δ1. As a result, we have:

2b p (γ2δ3 − γ3δ2) − (p (λ − r) + x0γ3) [2 (pγ1 + qγ2) + (λ + r)γ3] = 0,
2x0 q (γ1δ3 − γ3δ1) + (q (r − λ) + bδ3) [2 (p δ1 + qδ2) + δ3 (λ + r)] = 0. (25)

After analogous transformations of Eq. (24), we obtain:

(p (p2 + q2) + b (δ1q − δ2p) − x0(γ1p + γ2q))σ + λ (�0λ2

+�1λ + �2) = 0,
(q (p2 + q2) + b (δ1p + δ2q) − x0 (pγ2 − qγ1))σ − λ (�̄0λ2

+�̄1λ + �̄2) = 0.

(26)

Here σ, �j , �̄j are the expressions of p, q, r, γi, δi. Their full form is given in the
Appendix.

Equation (26) define IM of codimension 2 of the equations of motion (1) that
is verified by IM definition.

Integral V4 (2) does not turn into any constant on IM (25). Hence, Eq. (25)
together with this integral can be considered as a family of IMs. Each element
of the given family corresponds to some element of the family of systems (1), (2)
(according to the value of the parameter c2). The above statement is also true
for IM (26).

Now, we resolve Eqs. (3) and (4) with respect to the variables p, q, γi, δi (i =
1, 2, 3), and then substitute the obtained expressions into (25) and (26). The
latter equations turn into identities. Hence, IMs (3), (4) are submanifolds of both
IM (25) and IM (26), i.e., they belong to their intersection. As the integral V4 is
identically equal to 1 (or −1) on IMs (3), (4), then IMs (25), (26) have to also
satisfy this condition. In other words, the result under discussion corresponds to
the cases c2 = ±1 of the initial problem.

Analogously, one can show that IM (13) belongs to an intersection of IM (25)
and IM (26). As the integral V4 takes the form ±[b (1 − δ21)

1/2±(x2
0 − b2δ21)

1/2] δ1
x−1
0 = c2 on IM (13), then IMs (25), (26) have to also satisfy the latter condition.

5 On Stability of the Stationary Solutions

In this section, we investigate the stability of the above found stationary solu-
tions by the 2nd Lyapunov method [11] and on the base of the Lyapunov stability
theorem for linear approximation [12]. The 2nd Lyapunov method requires con-
structing a function (Lyapunov’s function) possessing special properties. There is
no method for obtaining such function, besides some approaches. We construct
a Lyapunov’s function from the first integrals of the problem. Here, e.g., the
following problem arises. To find a combination of the integrals which provides
“softest” sufficient stability conditions, i.e. these conditions are close to neces-
sary ones. For this purpose, it is necessary to make a series of computational
experiments. In this case, computer algebra tools provide essential help.

218 V. Irtegov and T. Titorenko

5.1 On Stability of the Permanent Rotations

Let us investigate the stability for the elements of the 1st family of permanent
rotations (6)

p = −x0 α1 r
1/2
0 (λ − r0)−1/2, q = −b α1 r

1/2
0 (λ − r0)−1/2, r = r0,

γ1 = −x0 α2
1, γ2 = −b α2

1, γ3 = [r0 (λ − r0)]1/2α1, δ1 = x0 α2
1,

δ2 = b α2
1, δ3 = −[r0 (λ − r0)]1/2α1

(27)

by the 2nd Lyapunov method. From now and further, the denotations of the
Subsect. 3.1 are used.

For obtaining a Lyapunov function, we shall use integral K1 (12) at the
following constraints on the parameters: λ0 = (λρ21λ1)/(2(λ − r0)), λ4 = 0.
Under these conditions, the integral takes the form:

2F1 =
λ (ρ21H + 2(x2

0V2 + b2V3)
λ − r0

− V1.

Introduce

y1 = δ1 − x0 α2
1, y2 = δ2 − b α2

1, y3 = δ3 + [r0 (λ − r0)]1/2α1,

y4 = γ1 + x0 α2
1, y5 = γ2 + b α2

1, y6 = γ3 − [r0 (λ − r0)]1/2α1,

y7 = p + x0 α1 r
1/2
0 (λ − r0)−1/2, y8 = q + b α1 r

1/2
0 (λ − r0)−1/2,

the deviations from the elements of family (27).
In the above deviations, the 2nd variation of the integral F1 in the neigh-

bourhood of the elements of the family under study on the linear manifold

δH = (λ − r0)1/2 (x0y4 − by2) − 2 r
1/2
0 α1 (x0y7 + by8) = 0,

δV3 = 21/2ρ1 (b2 + x2
0) [α1 (x0y1 + by2) − [r0 (λ − r0)]1/2y3] = 0

can be written as:

δ2F1 = a11y
2
1 + a12y1y2 + a22y

2
2 + (1 − λ r−1

0)x2
0y1y4 + a24y2y4 + a44y

2
4

+bx0y1y5 + x2
0y2y5 − x3

0 b−1y4y5 + (λ + r0)x2
0 [2(λ − r0)]−1y2

5

+λx2
0(λ − r0)−1y2

6 + a17y1y7 + a27y2y7 + a47y4y7 + a57y5y7

+2λx0y6y7 + a77y
2
7 . (28)

Here the coefficients aij depend on the parameters b, x0, r0, λ (see Appendix).
The conditions for the quadratic form δ2F1 to be positive definite are suffi-

cient for the stability of the elements of family (27). In the form of the Sylvester
inequalities, they are:

λD > 0, λ (λ + r0)D2 > 0,
λD2

2 b2

[
λ2 x2

0 (λ2 − r20) + 2σ1

]
> 0,

λ2D3

b2 r0

[
(λ − r0) [b2λ (λ − r0)2 − 2r0 x2

0 (λ − 2r0)(λ + r0)] + 4α1r0σ2

]
> 0,

On Stationary Motions of the Generalized Kowalewski Gyrostat 219

λ3D5

r0 x2
0

[
(λ − 2 r0) (λ − r0) [α2

1 (b2 (λ − 2 r0) − r0 x2
0) − r20 (λ − r0)] + α4

1σ2

]
> 0,

−b2 λ4D6

r0 x4
0

(λ − 2r0) [2 r0 (λ − r0) + ρ21]
2 > 0, (29)

where D = x2
0 (λ − r0)−1, σ1 = λ (b2 + x2

0)
2 + 4b2r0x

2
0,

σ2 = λ (b2 − x2
0)

2 − 2x4
0 (λ − r0) + 4b2r0x2

0.
The solutions under study are real when λ < 0 and λ < r0 ≤ 0 or λ > 0 and

0 ≤ r0 < λ. With these conditions we find that inequalities (29) are compatible
at the following constraints on the parameters b, x0, r0, λ:

b �= 0, x0 �= 0 and ((λ < 0, 2λ < r0 < λ) or (λ > 0, λ < r0 < 2λ)).

These isolate some subfamily from the family of solutions (27), the elements of
which are stable.

The above conditions are also sufficient for the stability of the elements of
the 2nd family of solutions (6) when the same integral (the integral F1) is used
to construct a Lyapunov function. In a similar manner, we have analyzed the
stability for the elements of the families of permanent rotations (7)–(9).

Using the integrals V2 + V3 ± 2V4 for obtaining Lyapunov functions, it is
possible to investigate the stability of IMs (3), (4) which the families of solutions
(6)–(9) belong to.

For the equations of perturbed motion, the variation of the integral F =
V2 + V3 + 2V4 in the neighbourhood of IM (3) is:

2ΔF = (y1 + y4)2 + (y2 + y5)2 + (y3 + y6)2,

where y1 = δ1 − x0 ᾱ2
1, y2 = δ2 − b ᾱ2

1, y3 = δ3 + [r (λ − r)]1/2ᾱ1, y4 = γ1 +
x0 ᾱ2

1, y5 = γ2 + b ᾱ2
1, y6 = γ3 − [r (λ − r)]1/2ᾱ1, y7 = p + x0 ᾱ1 r1/2 (λ −

r)−1/2, y8 = q+b ᾱ1 r1/2 (λ−r)−1/2 are the deviations from the IM under study,
ᾱ1 = ρ̄1 β, ρ̄1 = [r (r − λ) + (4(b2 + x2

0) + (λ − r)2r2)1/2]1/2.
Since the quadratic form ΔF is sign-definite for the variables appearing in

it, then IM (3) is stable with respect to the variables δ1 + γ1, δ2 + γ2, δ3 + γ3.
The latter means that the IM keeps stability when the directions of the force
fields are perturbed. Analogously, the stability of IM (4) with respect to part of
the variables is proved.

5.2 On Stability of the Equilibria

Now, we analyze the stability for the elements of the 1st family of equilibria (15)

p = 0, q = 0, r = 0, γ1 = −(x2
0 − b2δ0

2

1)1/2x0
−1, γ2 = −b δ01x

−1
0 ,

γ3 = 0, δ1 = δ01 , δ2 = (1 − δ0
2

1)1/2, δ3 = 0 (30)

by the 2nd Lyapunov method.

220 V. Irtegov and T. Titorenko

For constructing a Lyapunov function, we use integral K2 (17) at the follow-
ing constraints: λ2 = −2λ1x

2
0, λ4 = 0. Under these conditions, the integral is:

2F2 = 2 [zH + x2
0V2 + b2V3] − V1.

From now and further, the denotations of the Subsect. 3.2 are used.
For the equations of perturbed motion, the 2nd variation of the integral F2

in the neighbourhood of the elements of the family under study on the linear
manifold

δH = x0y4 − by2 = 0, δV1 = 2 [2b δ01 (by1 − x0y5) + (by2 + x0y4) z̄] = 0,
δV2 = −2 [(x2

0 − b2δ01
2)1/2 y4 + b δ01y5] = 0, δV3 = 2 [δ01y1 + (1 − δ01

2)1/2y2] = 0

can be written as: δ2F2 = Q1 + Q2, where

Q1 = b2y2
3 + x2

0y
2
6 + 2λ(x0y6y7 − by3y8) + [λ2 + 2b(1 − δ0

2

1)1/2] y2
7

−4b δ01y7y8 + [λ2 + 2(x2
0 − b2δ0

2

1)1/2] y2
8 , 2Q2 =

z2y2
2

δ01
2 + zy2

9 .

Here yi (i = 1, . . . , 9) are the deviations from the elements of family (30).
The conditions for the quadratic form δ2F2 to be positive definite

Δ1 = b2 > 0, Δ2 = b3x2
0 > 0, Δ3 = b3x2

0 (1 − δ01
2
)1/2 > 0,

Δ4 = b3x2
0 [(1 − δ01

2
)1/2(x2

0 − b2δ01
2
)1/2 − b δ01

2
] > 0, z > 0 and δ01 �= 0 (31)

are sufficient for the stability of the elements of the family under consideration.
Taking into account the conditions for solution (30) to be real, we find that

inequalities (31) are compatible when b > 0, x0 �= 0 and ((−σ < δ01 < 0 or
0 < δ01 < σ)). Here σ = |x0| (b2 + x2

0)
−1/2.

As mentioned before, the integral V4 takes the form −[b (1 − δ21)
1/2 + (x2

0−
b2δ21)

1/2] δ1 x−1
0 = c2 on solutions (30). This relation together with the above

constraints sets the boundaries of varying the angles between the directions of
the force fields, within of which the elements of family (30) are stable. Similar
stability conditions have been obtained for the elements of the 1st family of
solutions (16).

For the rest of the families of the equilibria, we have derived the conditions
of their instability on the base of the Lyapunov stability theorem for linear
approximation.

Consider the 2nd family of solutions (15). We introduce the deviations

y1 = δ1 − δ01 , y2 = δ2 − (1 − δ01
2
)1/2, y3 = δ3, y4 = γ1 − (x2

0 − b2δ01
2
)1/2x−1

0 ,

y5 = γ2 + bδ01x
−1
0 , y6 = γ3, y7 = p, y8 = q, y9 = r

On Stationary Motions of the Generalized Kowalewski Gyrostat 221

from the elements of the family under study, and write down the equations of
1st approximation in the neighbourhood of the elements of the family:

ẏ1 = (1 − δ01
2
)1/2 y9, ẏ2 = −δ01y9, ẏ3 = δ01y8 − (1 − δ01

2
)1/2 y7,

ẏ4 = −b δ01 x−1
0 y9, ẏ5 = −(x2

0 − b2δ01
2
)1/2 x−1

0 y9,

ẏ6 = [b δ01y7 + (x2
0 − b2δ01

2
)1/2 y9]x−1

0 , 2ẏ7 = b y3 − λy8,

2ẏ8 = x0y6 + λy7, ẏ9 = −(by1 + x0y5). (32)

The characteristic equation of system (32) has the form:

x3 [4x6 + x4(6z̄ + λ2) +
1
2
x2 [(5z̄ + 2λ2) z̄ − (b2 + x2

0)] − (2 b2 δ0
2

1 − x2
0) z̄

−(b2 − x2
0) (x2

0 − b2δ0
2

1)1/2] = 0. (33)

It is split up into two equations:

x3 = 0,

4ζ6 + ζ4(6z̄ + λ2) +
1
2
ζ2 [(5z̄ + 2λ2) z̄ − (b2 + x2

0)] − (2 b2 δ0
2

1 − x2
0) z̄

−(b2 − x2
0) (x2

0 − b2δ0
2

1)1/2 = 0, (34)

where ζ = x2.
Consider the free term of the latter equation:

R = −(2 b2 δ0
2

1 − x2
0) z̄ − (b2 − x2

0) (x2
0 − b2δ0

2

1)1/2.

Taking into consideration the conditions for the solutions under study to be
real, we find that R > 0 when 0 < b < |x0|and |δ01 | ≤ 1. The latter means
that Eq. (34) (and also (33)) has no less than one positive root. So, the elements
of the family under consideration are unstable over the above range of varying
the parameter δ01 . Similar conditions of instability have been obtained for the
elements of the 2nd family of solutions (16).

The above algorithms for the stability analysis of stationary solutions by
the Lyapunov methods have been encoded in “Mathematica” as the software
package mentioned before. This package is intended for the qualitative analy-
sis of phase spaces of dynamical systems having first integrals. The package
contains programs for the stability analysis of stationary solutions on the base
of Lyapunov’s linear stability theorems and the 2nd Lyapunov method. In the
considered stability problems, using a solution under study and a combination
of the first integrals as input data, the package returns the conditions for the
sign-definiteness of the quadratic form (Sylvester’s inequalities). The resulting
inequalities are analyzed with the aid of the corresponding computer algebra
tools. In a similar manner, the package is employed for the stability analysis
of stationary solutions on the base of Lyapunov’s stability theorems for linear
approximation.

222 V. Irtegov and T. Titorenko

6 Conclusion

With the aid of computer algebra methods and the software package developed
on the base of “Mathematica” CAS, the analysis of the stationary motions of
the Kowalewski gyrostat in two force fields has been performed. Such motions
have been found directly from the equations of motion by Gröbner basis method.
These represent the families of permanent rotations and equilibria. It has been
revealed that the elements of these families correspond to both the parallel force
fields and to the fields of special directions. It has been also shown that all the
found solutions belong to an intersection of two IMs of codimension 2 of the
equations of motion.

The stability of the stationary solutions has been analyzed on the base of
Lyapunov’s stability theorems. For the elements of the families of permanent
rotations, the sufficient conditions of their stability have been obtained. For
the elements of the families of equilibria, both the sufficient conditions of their
stability, and the conditions of their instability have been derived.

The obtained results as well as the approaches and methods which were
applied in this paper, can be used in the analysis of similar problems, in partic-
ular, at the stage of preliminary design of satellite systems.

Acknowledgements. This work was supported by the RFBR (Project 16-07-00201a)
and the Program for the Leading Scientific Schools of the Russian Federation (NSh-
8081.2016.9).

7 Appendix

The coefficients of Eq. (26):

σ = b2 [(δ21 + δ22) r − 2δ3 (p δ1 + qδ2)] + 2b x0 [p (δ3γ2 − δ2γ3) + q (δ1γ3 − δ3γ1)
+ r (δ2γ1 − δ1γ2)] + x2

0 [(γ2
1 + γ2

2) r − 2γ3 (pγ1 + qγ2)],
�0 = r (b2 δ1δ3 + b x0 (δ3γ2 − δ2γ3) + x2

0γ1γ3),
�1 = b2 [p r (δ21 − δ22 − δ23) + δ1(δ3 (p2 + q2 + r2) + 2q r δ2) − δ23(p r − x0γ3)]

+ b x0 (p2 + q2 − r2)(δ3γ2 − δ2γ3) + x2
0 [p r (γ2

1 − γ2
2 − γ2

3) + γ1 (γ3 (p2 + q2

+ r2) + 2q rγ2) − γ2
3(p r − x0γ3)],

�2 = b3δ23 (δ2p − δ1q) + b2 [(p2 + q2) [p (δ21 − δ22) + 2 (qδ1δ2 − p δ23)]
+ δ1δ3r (q2 − p2) + p r (r (δ21 + δ22) − 2δ2δ3q)] + b2x0 [δ3 (2γ3(δ1p + δ2q)
+ δ3 (pγ1 + qγ2)) − rγ3(δ21 + δ22)] + b x0 r [(p2 − q2) (δ3γ2 − δ2 γ3)
+ 2p [γ1 (r δ2 − q δ3) + δ1 (q γ3 − r γ2)]] + b x2

0 γ3 [3γ3 (pδ2 − qδ1)
− 2[δ3 (p γ2 − q γ1) + r (γ1 δ2 − γ2 δ1)]]
+x2

0 [(p2 + q2) [p (γ2
1 − γ2

2 − γ2
3) + 2q γ1γ2] + r γ3 (γ1 (q2 − p2) − 2p qγ2)

+ p r2 ((γ2
1 + γ2

2) − γ2
3(p2 + q2))] + x3

0 r γ3 [3γ3(pγ1 + qγ2) − (γ2
1 + γ2

2)],
�̄0 = −r(b2 δ2δ3 + b x0 (δ1γ3 − δ3γ1) + x2

0γ2γ3),
�̄1 = b2 [q r (δ21 − δ22 + δ23) − δ2 (δ3 (p2 + q2 + r2) + 2p r δ1) + δ23 (q r + b δ3)]

+ b x0 (p2 + q2 − r2)(δ3γ1 − δ1γ3) + x2
0 [q r (γ2

1 − γ2
2 + γ2

3) − γ2 (γ3 (p2 + q2

+ r2) + 2p r γ1) + γ2
3 (q r + b δ3)],

�̄2 = b3 δ3 [3 δ3 (p δ1 + q δ2) − r (δ21 + δ22)] + b2 [(p2 + q2) [q (δ21 − δ22 + δ23)

On Stationary Motions of the Generalized Kowalewski Gyrostat 223

− 2p δ1δ2] + r δ3 [δ2 (q2 − p2) + 2p q δ1] − q [r2 (δ21 + δ22) − δ23 (p2 + q2)]]
+ b2x0 δ3 [2γ3 (p δ2 − q δ1) + 3 δ3 (2r (δ1γ2 − δ2γ1) − (p γ2 − q γ1))]
+ b x0 r [(p2 − q2) (δ1γ3 − δ3γ1) + 2q (γ2 (r δ1 − p δ3) + δ2 (p γ3 − r γ1))]
+ b x2

0 [γ3 [γ3 (p δ1 + q δ2) + 2δ3 (p γ1 + q γ2)] − r δ3 (γ2
1 + γ2

2)]
+x2

0 [(p2 + q2) [q (γ2
1 − γ2

2 + γ2
3) − 2p γ1γ2] + r γ3 [γ2 (q2 − p2) + 2p q γ1]

− q [r2 (γ2
1 + γ2

2) − γ2
3 (p2 + q2)]] + x3

0γ
2
3(qγ1 − pγ2).

The coefficients of quadratic form (28):

a11 =
b2

2(λ − r0)

[
λ + r0 +

2λx2
0α

2
1

r0 (λ − r0)

]
, a22 =

b2

r0 (λ − r0)

[
(λ − r0)2

+r20 +
b2α2

1 λ

λ − r0

]
+

(λ − r0)
2r0

[
x2
0 + 2−1λ (λ − r0)α−2

1

]
,

a44 = x2
0

[λ

λ − r0
+

λ − r0
2 b2r0

(
x2
0 + 2−1λ (λ − r0)α−2

1

)]
,

a77 =
b2 + x2

0

b2
[λ (λ − r0) + ρ21], a12 =

λ b x0

r0

[(2−1b2 α2
1

(λ − r0)2
+

r0
λ

)
− 1

]
,

a17 = 21/2α1 [b2r0 + x2
0(λ − r0)] [r0 (λ − r0)]−1/2,

a24 = − 2x0

b r0 α2
1

[λ (λ − r0)2 + 2α2
1 (b2λ + x2

0 (λ − r0))],

a27 = x0 [λ (λ − r0)2 + 2α2
1 (b2 (2λ − 3r0) + x2

0 (λ − r0))] (b α1)−1

×[r0 (λ − r0)]−1/2,

a47 = −x2
0 [λ (λ − r0)2 + 2α2

1 (b2 (λ + r0) + x2
0 (λ − r0))] (b2α1)−1

×[r0 (λ − r0)]−1/2, a57 = 2 r
1/2
0 x0 α1 (x2

0 − b2) b−1(λ − r0)−1/2.

References

1. Kowalewski, S.: Sur le probleme de la rotation d’un corps solide autour d’un point
fixe. Acta Math. 12, 177–232 (1889)

2. Sarychev, V.A., Gutnik, S.A.: Dynamics of a satellite subject to gravitational and
aerodynamic torques. Investigation of equilibrium positions. Cosm. Res. 53(6),
449–457 (2015)

3. Adler, V.E., Marikhin, V.G., Shabat, A.B.: Quantum tops as examples of com-
muting differential operators. Theoret. Math. Phys. 3(172), 1187–1205 (2012)

4. Bobenko, A.I., Reyman, A.G., Semenov-Tian-Shansky, M.A.: The Kowalewski top
99 years later: a lax pair, generalizations and explicit solutions. Commun. Math.
Phys. 122, 321–354 (1989)

5. Kharlamov, M.P.: Critical subsystems of the Kowalevski gyrostat in two constant
fields. J. Nonlin. Dyn. 3(3), 331–348 (2007)

6. Kharlamov, M.P., Ryabov, P.E., Savushkin, A.Y., Smirnov, G.E.: Types of critical
points of the Kowalevski gyrostat in double field. NAS of Ukraine. Mech. Solids
41, 26–37 (2011)

7. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: Software pack-
age for finding and stability analysis of stationary sets. Certificate of State Regis-
tration of Software Programs. FGU-FIPS. No. 2011615235 (2011)

224 V. Irtegov and T. Titorenko

8. Komarov, I.V.: A generalization of the Kovalevskaya top. Phys. Lett. A 1(123),
14–15 (1997)

9. Irtegov, V.D., Titorenko, T.N.: On one approach to investigation of mechanical
systems. The institute of mathematics of NAS of Ukraine. Electron. J. Symmetry
Integr. Geom.: Methods Appl. 2, 049 (2006)

10. Irtegov, V., Titorenko, T.: Qualitative analysis of the Reyman – Semenov–Tian–
Shansky integrable case of the generalized Kowalewski top. In: Gerdt, V.P., Koepf,
W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 289–
304. Springer, Cham (2016). doi:10.1007/978-3-319-45641-6 19

11. Lyapunov, A.M.: On permanent helical motions of a rigid body in fluid. Collected
works. USSR Acad. Sci. Moscow-Leningrad 1, 276–319 (1954)

12. Lyapunov, A.M.: The general problem of motion stability. Collected works. USSR
Acad. Sci. Moscow-Leningrad 2, 7–263 (1956)

http://dx.doi.org/10.1007/978-3-319-45641-6_19

Computing the Integer Points
of a Polyhedron, I: Algorithm

Rui-Juan Jing1,2(B) and Marc Moreno Maza2

1 KLMM, UCAS, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, China

2 University of Western Ontario, London, Canada
rjing8@uwo.ca, moreno@csd.uwo.ca

Abstract. Let K be a polyhedron in R
d, given by a system of m linear

inequalities, with rational number coefficients bounded over in absolute
value by L. In this series of two papers, we propose an algorithm for
computing an irredundant representation of the integer points of K, in
terms of “simpler” polyhedra, each of them having at least one integer
point. Using the terminology of W. Pugh: for any such polyhedron P ,
no integer point of its grey shadow extends to an integer point of P . We
show that, under mild assumptions, our algorithm runs in exponential
time w.r.t. d and in polynomial w.r.t m and L. We report on a software
experimentation. In this series of two papers, the first one presents our
algorithm and the second one discusses our complexity estimates.

1 Introduction

The integer points of polyhedral sets are of interest in many areas of mathe-
matical sciences, see for instance the landmark textbooks of Schrijver [19] and
Barvinok [3], as well as the compilation of articles [4]. One of these areas is the
analysis and transformation of computer programs. For instance, integer pro-
gramming [7] is used by Feautrier in the scheduling of for-loop nests [8] and
Barvinok’s algorithm [2] for counting integer points in polyhedra is adapted by
Köppe and Verdoolaege in [16] to answer questions like how many memory loca-
tions are touched by a for-loop nest. In [17], Pugh proposes an algorithm, called
the Omega Test, for testing whether a polyhedron has integer points. In the
same paper, Pugh shows how to use the Omega Test for performing dependence
analysis [17] in for-loop nests. Then, in [18], he uses the Omega Test for deciding
Presburger arithmetic formulas.

In [18], Pugh also suggests, without stating a formal algorithm, that the
Omega Test could be used for quantifier elimination on Presburger formulas.
This observation is a first motivation for the work presented in this series of
two papers: we adapt the Omega Test so as to describe the integer points of a
polyhedron via a projection scheme, thus performing elimination of existential
quantifiers on Presburger formulas. Projections of polyhedra and parametric

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 225–241, 2017.
DOI: 10.1007/978-3-319-66320-3 17

226 R.-J. Jing and M. Moreno Maza

programming are tightly related problems, see [13]. Since the latter is essential
to the parallelization of for-loop nests [7], which is of interest to the authors [5],
we had here a second motivation for developing the proposed algorithm.

In [9], Fischer and Rabin show that any algorithm for deciding Presburger
arithmetic formulas has a worst case running time which is doubly exponential
in the length of the input formula. However, this worst case scenario is based
on a formula alternating existential and universal quantifiers. Meanwhile, in
practice, the original Omega Test (for testing whether a polyhedron has integer
points) can solve “difficult problems” as shown by Pugh in [18] and others, e.g.
Wonnacott in [22]. This observation brings our third motivation: determining
realistic assumptions under which our algorithm, based on the Omega Test,
could run in a single exponential time.

Our algorithm takes as input a system of linear inequalities Ax ≤ b where
A is a matrix over Z with m rows and d columns, x is the unknown vector
and b is a vector of m coefficients in Z. The points x ∈ R

d satisfying Ax ≤ b
form a polyhedron K and our algorithm decomposes its integer points (that is,
K ∩Z

d) into a disjoint union (K1 ∩Z
d1) ⊍ ⋯ ⊍ (Ke ∩Z

de), where K1, . . . ,Ke are
“simpler” polyhedra such that Ki ∩Z

d
≠ ∅ holds and di is the dimentions of Ki,

for 1 ≤ i ≤ e. To use the terminology introduced by W. Pugh for the Omega test,
no integer point of the grey shadow of any polyhedron Ki extends to an integer
point of Ki. As a consequence, applying our algorithm to Ki would return Ki

itself, for 1 ≤ i ≤ e. Let us present the key principles and features of our algorithm
through an example. Consider the polyhedron K of R4 given below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

2x + 3y − 4z + 3w ≤ 1
−2x − 3y + 4z − 3w ≤ −1

−13x − 18y + 24z − 20w ≤ −1
−26x − 40y + 54z − 39w ≤ 0
−24x − 38y + 49z − 31w ≤ 5
54x + 81y − 109z + 81w ≤ 2

.

A first procedure, called IntegerNormalize, detects implicit equations and
solves them using techniques based on Hermite normal form, see Sects. 3
and 4.1. In our example 2x + 3y − 4z + 3w = 1 is an implicit equation and
IntegerNormalize(Ax ≤ b) returns a triple (t,x = Pt + q, Mt ≤ v) where t is
a new unknown vector, the linear system x = Pt+q gives the general form of an
integer solution of the implicit equation(s) and Mt ≤ v is obtained by substitut-
ing x = Pt +q into Ax ≤ b. In our example, the systems x = Pt+q and Mt ≤ v
are given by:

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

x = −3t1 + 2t2 − 3t3 + 2
y = 2t1 + t3 − 1
z = t2

w = t3

and

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

3t1 − 2t2 + t3 ≤ 7
−2t1 + 2t2 − t3 ≤ 12
−4t1 + t2 + 3t3 ≤ 15

−t2 ≤ −25

.

Computing the Integer Points of a Polyhedron, I: Algorithm 227

A second procedure, called DarkShadow, takes Mt ≤ v as input and returns a
couple (t′,Θ) where t′ stands for all t-variables except t1, and Θ is a linear
system in the t′-variables such that any integer point solving Θ extends to an
integer point solving Mt ≤ v. In our example, t′ = {t2, t3} and Θ is given by:

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

2t2 − t3 ≤ 48
−5t2 + 13t3 ≤ 67

−t2 ≤ −25
.

The polyhedron D of R
2 defined by Θ, and the inequalities of Mt ≤ v

not involving t1, is called the dark shadow of the polyhedron defined by Mt ≤ v.

Fig. 1. The real, the dark and the grey shadows of a polyhedron.

On the left-hand side of Fig. 1, one can see the polyhedron defined in R
3 by

Mt ≤ v together with its dark shadow D (shown in dark grey) as well as its
projection on the (t2, t3)-plane, denoted by R and called real shadow by W. Pugh.
The right-hand side of Fig. 1 gives a planar view of D and R. As we will see in
Sect. 4.4, if M′t′ ≤ v′ is the linear system generated by applying Fourier-Motzkin
elimination (without removing redundant inequalities) to Mt ≤ v (in order to
eliminate t1) then Θ is given by a linear system of the form M′t′ ≤ w′. This
explains why, on the right-hand side of Fig. 1, each facet of the dark shadow D is
parallel to a facet of the real shadow R. While this property is observed on almost
all practical problems, in particular in the area of analysis and transformation
of computer programs, it is possible to build examples where this property does
not hold. We have examples in Sect. 5 of the second paper.

On the right-hand side of Fig. 1, one observes that the region R ∖ D, called
grey shadow, contains integer points. Some of them, like (t2, t3) = (29,9), do not
extend to an integer solution of Mt ≤ v. Indeed, plugging (t2, t3) = (29,9) into
Mt ≤ v yields 37

2
≤ t1 ≤

56
3

, which has no integer solutions. However, other integer
points of R∖D may extend to integer solutions of Mt ≤ v. In order to determine
them, a third procedure, called GreyShadow, considers in turn the negation of
each inequality θ of Θ. However, for each θ of Θ, instead of simply making a
recursive call to the entire algorithm applied to Mt ≤ v ∪ {θ}, simplifications
(involving θ and the inequalities from which θ is derived) permit to replace this

228 R.-J. Jing and M. Moreno Maza

recursive call by several ones in lower dimension, thus guaranteeing termination
of the whole algorithm. Details are given in Sects. 4.5 and 4.6.

Returning to our example, the negation of the inequality 2t2 − t3 ≤ 48 from
Θ, combined with the system Mt ≤ v, yields the following

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

−2t1 + 2t2 − t3 = 12
3t1 − 2t2 + t3 ≤ 7

−4t1 + t2 + 3t3 ≤ 15
−t2 ≤ −25

,

which, by means of IntegerNormalize, rewrites to:

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

t1 = t4

t2 = t5 + 1
t3 = −2t4 + 2t5 + 1

, and

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

t4 ≤ 8
−10t4 + 7t5 ≤ 11

−t5 ≤ −24
,

where t4, t5 are new variables. Continuing in this manner with the GreyShadow
procedure, a decomposition of the integer points of Mt ≤ v is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

3t1 − 2t2 + t3 ≤ 7
−2t1 + 2t2 − t3 ≤ 12
−4t1 + t2 + 3t3 ≤ 15

2t2 − t3 ≤ 48
−5t2 + 13t3 ≤ 67

−t2 ≤ −25
2 ≤ t3 ≤ 17

,

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

t1 = 15
t2 = 27
t3 = 16

,

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

t1 = 18
t2 = 33
t3 = 18

,

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

t1 = 14
t2 = 25
t3 = 15

,

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

t1 = 19
t2 = 50 + t6

t3 = 50 + 2t6

−25 ≤t6 ≤ −16.

.

Denoting these 5 systems respectively by S1, . . . , S5, the integer points of K are
finally given by the union of the integer points of the systems x = Pt+q ∪ Si, for
1 ≤ i ≤ 5. The systems S2, . . . , S5 look simple enough to be considered as solution
sets. What about S1? The system S1, as well as S2, . . . , S5, satisfies a “back-
substitution” property which is similar to that of a regular chain in the theory
of polynomial system solving [1]. This property (formally stated in Sect. 4.2),
when applied to S1, says that for all 2 ≤ i ≤ 3, every integer point of R4−i solving
all the inequalities of S1 involving ti, . . . , t3 only, extends to an integer point of
R

5−i solving all the inequalities of S1 involving ti−1, . . . , t3.
With respect to the original Omega Test [17], our contributions are as follows.

1. We turn the decision procedure of the Omega Test into an algorithm decom-
posing all the integer points of a polyhedron.

2. Our decomposition is disjoint whereas the recursive calls in the original
Omega Test may search for integer points in intersecting polyhedral regions.

3. The original Omega Test uses an ad-hoc routine for computing the integer
solutions of linear equation systems, while we rely on Hermite normal form
for this task. Consequently, we deduce complexity estimates for that task.

Computing the Integer Points of a Polyhedron, I: Algorithm 229

4. We also provide complexity estimates for the procedures GreyShadow and
DarkShadow under realistic assumptions. From there, we derive complexity
estimates for the entire algorithm, whereas no complexity estimates were
known for the original Omega Test.

We report our work in a series of two papers. The present one describes and
proves our algorithm. The second one establishes our complexity estimates.

2 Polyhedral Sets

This section is a review of the theory of polyhedral sets. It is based on the books
of Grünbaum [10] and Schrijver [19], where proofs of the statements below can
be found.

Given a positive integer d, we consider the d-dimensional Euclidean space R
d

equipped with the Euclidean topology. Let K be a subset of Rd. The dimension
dim(K) of K is a − 1 where a is the maximum number of affinely independent
points in K. Let a ∈ R

d, let b ∈ R and denote by H the hyperplane defined by
H = {x ∈ R

d
∣ aTx = b}. We say that the hyperplane H supports K if either

sup{aTx ∣ x ∈ K} = b or inf{aTx ∣ x ∈ K} = b holds, but not both.
From now on, let us assume that K is convex. A set F ⊆ K is a face if either

F = ∅ or F = K, or if there exists a hyperplane H supporting K such that we
have F = K ∩ H. The set of all faces of K is denoted by F(K). We say that
F ∈ F(K) is proper if we have F ≠ ∅ or F ≠ K. We note that the intersection of
any family of faces of K is itself a face of K.

We say that K is a polyhedral set or a polyhedron if it is the intersection of
finitely many closed half-spaces of Rd. We say that K is full-dimensional, if we
have dim(K) = d, that is, if the interior of K is not empty. The proper faces of
K that are ⊆-maximal are called facets and those of dimension zero are called
vertices. We observe that every face of K is also a polyhedral set.

Let H1, . . . ,Hm be closed half-spaces such that the intersection ∩
i=m
i=1 Hi is

irredundant, that is, ∩
i=m
i=1 Hi ≠ ∩

i=m
i=1,j≠i Hi for all 1 ≤ j ≤ m. We observe that this

intersection is closed and convex. For each i = 1⋯m, let ai ∈ R
d and bi ∈ R such

that Hi is defined by aT
i x ≤ bi. We denote by A the m×d matrix (aT

i ,1 ≤ i ≤ m)

and by b the vector (b1, . . . , bd)
T .

From now on, we assume that K = ∩
i=m
i=1 Hi holds. Such an irredundant

decomposition of a polyhedral set can be computed from an arbitrary inter-
section of finitely many closed half-spaces, in time polynomial in both d and
m, using linear programming, see Khachian in [15]. The following property is
essential. For every face F of K, there exists a subset I of {1, . . . ,m} such that
F corresponds to the set of solutions to the system of equations and inequalities

aT
i x = bi for i ∈ I, and aT

i x ≤ bi for i /∈ I.

This latter property has several important consequences. For each i = 1⋯m, the
set Fi = K ∩ {aT

i x = bi} is a facet of K and the border of K equals ∪
i=m
i=1 Fi. In

particular, each proper face of K is contained in a facet of K. Each facet of a

230 R.-J. Jing and M. Moreno Maza

facet of K is the intersection of two facets of K. Moreover, if the (m×d)-matrix
A has full column rank, then the ⊆-minimal faces are the vertices. The set F(K)

is finite and has at most 2m elements.
For a ∈ R

d and b ∈ R, we say that aTx ≤ b is an implicit equation in Ax ≤ b
if for all x ∈ R

d we have
Ax ≤ b �⇒ ax = b. (1)

Following [19], we denote by A= (resp. A+) and b= (resp. b+) the rows of A
and b corresponding to the implicit (resp. non-implicit) equations. The follow-
ing properties are easy to prove. If K is not empty, then there exists x ∈ K
satisfying both

A=x = b= and A+x < b+.

The facets of K are in 1-to-1 correspondence with the inequalities of A+x ≤

b+. In addition, if K is full-dimensional, then A+ = A and b+ = b both hold;
moreover the system of inequalities Ax ≤ b is a unique representation of K, up to
multiplication of inequalities by positive scalars.

From now on and in the sequel of this paper, we assume that variables are
ordered as x1 > ⋯ > xd. We call initial coefficient, or simply initial, of an inequal-
ity aT

i x ≤ bi, for 1 ≤ i ≤ m, the coefficient of aT
i x in its largest variable. Following

the terminology of Pugh in [17], if v is the largest variable of the inequality
aT

i x ≤ bi, we say that this inequality is an upper (resp. lower) bound of v when-
ever the initial c of aT

i x ≤ bi is positive (resp. negative); indeed, we have v ≤
γ
c

(resp. v ≥
γ
c
) where γ = bi − aT

i x − c v.

Canonical Representation. Recall that we assume that none of the inequal-
ities of Ax ≤ b is redundant. If K is full-dimensional and if the initial of each
inequality in Ax ≤ b is 1 or −1, then we call Ax ≤ b the canonical representation of
K w.r.t. the variable ordering x1 > ⋯ > xd and we denote it by can(K;x1, . . . , xd).

We observe that the notion of canonical representation can also be expressed
in a more geometrical and less algebraic way, that is, independently of any coor-
dinate system. Assume again that K is full-dimensional and that the inter-
section ∩

i=n
i=1 Hi = K of closed half-spaces H1, . . . ,Hn is irredundant. Since K

is full-dimensional, the supporting hyperplane of each facet of K must be the
frontier of one half-space among H1, . . . ,Hn. Clearly, two (or more) half-spaces
among H1, . . . ,Hn may not have the same frontier without contradicting one of
our hypotheses (K is full-dimensional, ∩

i=n
i=1 Hi is irredundant). Therefore, the

half-spaces H1, . . . ,Hn are in one-to-one correspondence with the facets of K.
This implies that there is a unique irredundant intersection of closed half-spaces
equaling K and we denote it by can(K).

Projected Representation. Let again Ax ≤ b be the canonical representation
of the polyhedral set K w.r.t. the variable ordering x1 > ⋯ > xd. We denote
by Ax1 (resp. A<x1) and bx1 (resp. b<x1) the rows of A and b corresponding
to the inequalities whose largest variable is x1 (resp. less than x1). For each
upper bound cx1 ≤ γ of x1 and each lower bound −ax1 ≤ −α of x1 (where c > 0,
a > 0, γ ∈ R[x2, . . . , xd] and α ∈ R[x2, . . . , xd] hold), we have a new inequality
cα−aγ ≤ 0. Augmenting A<x1 with all inequalities obtained in this way, we obtain

Computing the Integer Points of a Polyhedron, I: Algorithm 231

a new linear system which represents a polyhedral set which is the standard
projection of K on the d − 1 least coordinates of Rd, namely (x2, . . . , xd); hence
we denote this latter polyhedral set by Πx2,...,xdK and we call it the real shadow
of K, following the terminology of [17]. The procedure by which Πx2,...,xdK
is computed from K is the well-known Fourier-Motzkin elimination procedure,
see [15]. We call projected representation of K w.r.t. the variable ordering x1 >

⋯ > xd and denote by proj(K;x1, . . . , xd) the linear system given by Ax1x ≤ bx1

if d = 1 and, by the conjunction of Ax1x ≤ bx1 and proj(Πx2,...,xdK;x2, . . . , xd),
otherwise.

3 Integer Solutions of Linear Equation Systems

We review how Hermite normal forms [6,19] can be used to represent the integer
solutions of systems of linear equations. Let A = (ai,j) and H = (hi,j) be two
matrices over Z with m rows and d columns, and let b be a vector over Z with
d coefficients. We denote by r the rank of A and by h the maximum bit size of
coefficients in the matrix [A b]. Definition 1 is taken from [14], see also [12].

Definition 1. The matrix H is called a column Hermite normal form (abbr.
column HNF) if there exists a strictly increasing map f from [d− r + 1, d] ∩Z to
[1,m] ∩Z satisfying the following properties for all j ∈ [d − r + 1, d] ∩Z:

1. for all integer i such that 1 ≤ i ≤ m and i > f(j) both hold, we have hi,j = 0,
2. for all integer k such that j < k ≤ d holds, we have hf(j),j > hf(j),k ≥ 0,
3. the first d − r columns of H are equal to zero.

We say that H is the column Hermite normal form of A if H is a column Hermite
normal form and there exists a uni-modular d× d-matrix U over Z such that we
have H = AU . When those properties hold, we call {f(d − r + 1), . . . , f(d)} the
pivot row set of A.

Remark 1. The matrix A admits a unique column Hermite normal form. Let H
be this column Hermite normal form and let U be the uni-modular (d×d)-matrix
given in Definition 1. Let us decompose U as U = [UL, UR] where UL (resp. UR)
consist of the first d − r (resp. last r) columns of U . Then we define HL ∶= AUL

and HR ∶= AUR. We have HL = 0m,d−r, where 0m,d−r is the zero-matrix with
m rows and d − r columns. We observe that UR is a full column-rank matrix.
Moreover, if A is full row-rank, that is, if r = m holds, then HR is non-singular.

Lemma 2 shows how to compute the integer solutions of the system of linear
equations Ax = b when A is full row-rank. In the general case, one can use
Lemma 1 to reduce to the hypothesis of Lemma 2. While the construction of
this latter lemma relies on the HNF, alternative approaches are available. For
instance, one can use the equation elimination procedure of the Omega Test [17],
However, no running-time estimates are known for that procedure.

232 R.-J. Jing and M. Moreno Maza

Notation 1. For I ⊆ {1, . . . ,m}, we denote by AI (resp. bI) the sub-matrix
(resp. vector) of A (resp. b) consisting of the rows of A (coefficients of b) with
indices in I.

Lemma 1. Let I be the pivot row set of A, as given in Definition 1. Assume
that Ax = b admits at least one solution in R

d. Then, for any x ∈ R
d, we have

Ax = b ⇐⇒ AIx = bI .

Proof. We clearly have {x ∣ Ax = b} ⊆ {x ∣ AIx = bI}. We prove the reversed
inclusion. Since I is the pivot row set of A, one can check that rank(A) =

rank(AI) holds. Since Ax = b admits solutions, we have rank(A) = rank([A b]).
Similarly, we have rank(AI) = rank([AI bI]). Therefore, we have rank([A b]) =

rank([AI bI]). Hence, any equation aTx = b in Ax = b is a linear combination
of the equations of AIx = bI , thus {x ∣ AIx = bI} ⊆ {x ∣ Ax = b} holds.

Lemma 2. We use the same notations as in Definition 1 and Remark 1. We
assume that HR is non-singular. Then, the system Ax = b has an integer solution
if and only if H−1R b is integral. In this case, all integral solutions to Ax = b are
given by x = Pt + q where

1. the columns of P consist of a Z-basis of the linear space {x ∶ Ax = 0},
2. q is a particular solution of Ax = b, and
3. t = (t1, . . . , td−r) is a vector of d − r unknowns.

The maximum absolute value of any coefficient in P (resp. q) can be bounded
over by rr+1L2r (resp. rr+1L2r), where L is the maximum absolute value of any
coefficient in A (resp. in either A or b). Moreover, P and q can be computed
within O(mdr2(log r + logL)

2
+ r4(log r + logL)

3
) bit operations.

Proof. Except for the coefficient bound and running time estimates, we refer
to [11] for a proof of this lemma. The running time estimate follows from The-
orem 19 of [20] whereas the coefficient bound estimates are taken from [21]. ⊓⊔

Example 1. Let A, H and U be as follows:

A =

⎛

⎜
⎜
⎜
⎜
⎜

⎝

3 4 −4 −1
2 −2 8 4
5 2 4 3
3 5 −5 −2
2 −3 9 5

⎞

⎟
⎟
⎟
⎟
⎟

⎠

, H =

⎛

⎜
⎜
⎜
⎜
⎜

⎝

0 −18 −1 −15
0 18 2 16
0 0 1 1
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟

⎠

, U =

⎛

⎜
⎜
⎜

⎝

−1 30 −3 −25
1 −37 4 31
0 −19 2 16
1 0 0 0

⎞

⎟
⎟
⎟

⎠

.

The matrix H is the column HNF of A, with unimodular matrix U and pivot
row set [2,4,5]. We denote by HR the sub-matrix of H whose coefficients are
in bold fonts. Applying Lemma1, we deduce that for any vector b such that
Ax = b admits one rational solution, we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

3x1 + 4x2 − 4x3 − x4 = b1

2x1 − 2x2 + 8x3 + 4x4 = b2

5x1 + 2x2 + 4x3 + 3x4 = b3

3x1 + 5x2 − 5x3 − 2x4 = b4

2x1 − 3x2 + 9x3 + 5x4 = b5

⇔

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

2x1 − 2x2 + 8x3 + 4x4 = b2

3x1 + 5x2 − 5x3 − 2x4 = b4

2x1 − 3x2 + 9x3 + 5x4 = b5

. (2)

Computing the Integer Points of a Polyhedron, I: Algorithm 233

We apply Lemma 2: if Ax = b is consistent over Q and if H−1R [b2, b4, b5]
T is inte-

gral, then all the integer solutions of the second equation system in Relation (2)
are given by x = Pt +q, where P = [−1,1,0,1]T , q = [

5
3
b2 −

19
3

b4 −
155
3

b5,−
37
18

b2 +

73
9

b4 +
575
9

b5,−
19
18

b2 +
37
9

b4 +
296
9

b5]
T , t = (t1) and t1 is a new variable.

4 Integer Solutions of Linear Inequality Systems

In this section, we present an algorithm for computing the integer points of a
polyhedron K ⊆ R

d, that is, the set K ∩ Z
d. To do so, we adapt the Omega

Test invented by Pugh [17] for deciding whether or not a polyhedral set has an
integer point. Our algorithm decomposes the set K ∩ Z

d into a disjoint union
(K1 ∩Z

d
) ∪⋯ ∪ (Ks ∩Z

d
), where K1, . . . ,Ks are polyhedral sets in R

d, for which
the integer points can be represented in a sense specified in Sect. 4.2. Section 4.3
states the specifications of the main procedure while Sects. 3, 4.1, 4.4, 4.5 and
4.6. describe its main subroutines and its proof. We use the same notations as in
Sect. 2. However, from now on, we assume that all matrix and vector coefficients
are integer numbers, that is, elements of Z. To be precise, we have the following.

Notation 2. We consider a polyhedral set K ⊆ R
d given by an irredundant

intersection K = ∩
i=m
i=1 Hi of closed half-spaces H1, . . . ,Hm such that, for each

i = 1, . . . ,m, the half-space Hi is defined by aT
i x ≤ bi, with ai ∈ Z

d and bi ∈ Z.
The conjunction of those inequalities forms a system of linear inequalities that we
denote by Ax ≤ b, as well as Σ. We do not assume that K is full-dimensional.

4.1 Normalization of Linear Inequality Systems

The purpose of the procedure IntegerNormalize, presented below, is to solve the
system consisting of the equations of Ax ≤ b and substitute its solutions into
the system consisting of the inequalities of Ax ≤ b. This process is performed
by Steps (S2) to (S6) and relies on Lemmas 1 and 2; this yields Proposition 1,
which provides the output specification of IntegerNormalize. Step (S1) is an opti-
mization: performing it is not needed, but improves performance in practice.

When applied to Ax ≤ b, the IntegerNormalize procedure proceeds as follows.

(S1) It computes proj(K;x1, . . . , xd), obtaining a new system of linear inequali-
ties that we denote again by Σ; if this proves that K has no rational points,
then the procedure stops and returns (∅,∅,∅) implying that K ∩ Z

d is
empty,

(S2) for every inequality ax ≤ b, let g be the absolute value of the GCD of
coefficients in a: if g > 1, replace ax ≤ b by a

g
x ≤ ⌊

b
g
⌋.

(S3) Every pair of inequalities of the form (aT
i x ≤ bi,−aT

i x ≤ −bi) is replaced by
the equivalent equation, that is, aT

i x = bi; Every pair of inequalities of the
form (aT

i x ≤ bi,aT
i x ≤ bj) is replaced by aT

i x ≤ min(bi, bj).
(S4) Equations and inequalities form, respectively, a system of linear equations

A=x = b= and a system of linear inequalities A≤x ≤ b≤, as specified in
Notation 3, so that the conjunction of these two systems is equivalent to Σ.

234 R.-J. Jing and M. Moreno Maza

(S5) If A=x = b= is empty, that is, if Σ has no equations, then the procedure
stops returning (x,∅,A≤x ≤ b≤).

(S6) Proposition 1 is applied to A=x = b=; if this proves that this latter sys-
tem has no integer solutions, then the procedure stops returning (∅,∅,∅),
otherwise the change of variables given by (3) is applied to A≤x ≤ b≤;
as a result, the output of the IntegerNormalize procedure is the triple
(t,x = Pt + q,Mt ≤ v), where t,P,q,M,v are defined in Proposition 1.

Notation 3. From now we consider an equation system A=x = b= and an
inequality system A≤x ≤ b≤. The matrices A=,A≤ as well as the vectors b=,b≤

have integer coefficients. The total number of rows in both A= and A≤ is m,
each of A=,A≤ has d columns, and A≤ has e rows. We denote by L and h the
maximum absolute value and maximal bit size of any coefficient in the matrix in
either [A= b=] or [A≤ b≤] respectively. We define r ∶= rank(A=).

Proposition 1. One can decide whether or not A=x = b= has integer solutions.
If this system has integer solutions, then, for any ε > 0, one can compute

1. a matrix P ∈ Z
d×(d−r) within O(mdr2+ε h3

) bit operations,
2. a vector q ∈ Z

d within O(mdr2+ε h3
) bit operations,

3. a matrix M ∈ Z
e×(d−r), whose coefficients can be bounded over by drr+1L2r+1,

within O(md2 r1+εh3
) bit operations,

4. a vector v ∈ Z
e, whose coefficients can be bounded over by 2drr+1L2r+1, within

O(md2 r1+εh3
) bit operations,

such that an integer point (x1, . . . , xd) ∈ Z
d solves A=x = b= and A≤x ≤ b≤ if

and only if there exists an integer point (t1, . . . , td−r) ∈ Z
d−r such that we have

{
(x1, . . . , xd)

T
= P(t1, . . . , td−r)

T
+ (q1, . . . , qd)

T

M(t1, . . . , td−r)
T

≤ (v1, . . . , ve)
T . (3)

That is, one can perform the IntegerNormalize procedure within O(md2 r1+ε h3
)

bit operations.

Proof. We first observe that one can decide whether or not A=x = b= has solu-
tions in R

d, using standard techniques, say Gaussian elimination. If A= is not full
row-rank, this observation allows us to apply Lemma1 and thus to reduce to the
case where A= is full row-rank, via the computation of the column HNF of A=.
Hence, from now on, we assume that A= is full row-rank. We apply Lemma 2
which yields the matrix P and the vector q. Next, we compute M and v as
follows: M ∶= A≤P and v ∶= −A≤q+b. The coefficient bounds and cost estimates
for M and v follow easily from Lemma 2 and the inequality r ≤ d. ⊓⊔

4.2 Representing the Integer Points

Applying IntegerNormalize to Ax ≤ b produces a triple (t,x = Pt + q,Mt ≤ v),
with P,q,M,v as in Proposition 1. Assume t ≠ ∅. Since the system x = Pt + q
solves the x-variables as functions of the t-variables, we turn our attention to
Mt ≤ v. Definition 2 states conditions on M under which we view (x = Pt + q,
Mt ≤ v) as a “solved system”, that is, a system describing its integer solutions.

Computing the Integer Points of a Polyhedron, I: Algorithm 235

Definition 2. Let K̂ be the polyhedron of Z2d−r defined by the system of linear
equations and inequalities given by x = Pt+q and Mt ≤ v, in Relation (3). We
say that this system is a representation of the integer points of the polyhedron
K̂ whenever M has the following form:

⎛

⎜
⎜
⎜
⎜
⎜

⎝

M11 M12 ⋯ M1,�−1 M1,�

M22 ⋯ M2,�−1 M2,�

⋱ ⋮ ⋮

M�−1,�−1 M�−1,�

M�,�

⎞

⎟
⎟
⎟
⎟
⎟

⎠

, (4)

where for each i, j with 1 ≤ i, j ≤ 	, the block Mi,j has mi rows and kj columns
such that the following six assertions hold:

(i) k1, . . . , k�−1 ≥ 1, k� ≥ 0 and k1 + ⋯ + k� = d − r;
(ii) m1, . . . ,m�−1 ≥ 2 and m� ≥ 0;
(iii) for 1 ≤ i < 	, each column in Mi,i has both positive coefficients and negative

coefficients, but no null coefficients;
(iv) if m� > 0 holds, then in each column of M�,�, all coefficients are non-zero

and have the same sign;
(v) (Consistency) the system Mt ≤ v admits at least one integer point in Z

d−r;
(vi) (Extensibility) for all 1 < i < d − r, every integer point of R

d−r−i solving
all the inequalities of Mt ≤ v involving ti+1, . . . , td−r only extends to an
integer point of R

d−r−i+1 solving all the inequalities of Mt ≤ v involving
ti, . . . , td−r.

More generally, we say that x = Pt+q and Mt ≤ v form a representation of the
integer points of K̂ if M satisfies (i) to (vi) up to a permutation of its columns.

Remark 2. Assume that the above matrix M satisfies the properties (i) to (vi)
of Definition 2. Then, the values of the first k1+⋯+k�−1 (resp. last k�) variables of
t are bounded (resp. unbounded) in the polyhedron given by Mt ≤ v. For these
reasons, we call those variables bounded and unbounded in Mt ≤ v, respectively.
Clearly, the original polyhedron Ax ≤ b is bounded if and only if m� = k� = 0.

4.3 The IntegerSolve Procedure: Specifications

We are ready to specify the main algorithm presented in this paper. This pro-
cedure, called IntegerSolve will be formally stated in Sect. 4.6. When applied to
Ax ≤ b, with the assumptions of Notation 2, IntegerSolve produces a decompo-
sition of the integer points of the polyhedron K in the sense of the following.

Definition 3. Let A,x,b,K be as in Notation 2. A sequence of pairs (y1,Σ1),
. . ., (ys,Σs) is called a decomposition of the integer points of the polyhedron K
whenever the following conditions hold:

(i) yi is a sequence of di ≥ d independent variables x1, . . . , xd, xd+1, . . . , xdi

thus starting with x,

236 R.-J. Jing and M. Moreno Maza

(ii) Σi is a system of linear inequalities with yi as unknown,
(iii) Σi is a representation of the integer points of a polyhedral set Ki,

and we have VZ(Σ) = VZ(Σ1,x) ∪ ⋯ ∪ VZ(Σs,x), where VZ(Σ) denotes the set
of the integer points of Σ and where VZ(Σi,x) is defined as the set of the points
(x1, . . . , xd) ∈ Z

d such that there exists a point (xd+1, . . . , xdi
) ∈ Z

di−d such that
(x1, . . . , xd, xd+1, . . . , xdi

) solves Σi.

In the sequel of Sect. 4, we shall propose and prove an algorithm satisfying
the above specifications. The construction is by induction on d ≥ 1. We observe
that the case d = 1 is trivial. Indeed, in this case, K is necessarily an interval
of the real line. Then, either K ∩ Z is empty and IntegerSolve(Σ) returns the
empty set, or K ∩ Z is not empty and the system Σ is clearly a representation of
the integer points of K in the sense of Definition 2. The case d > 1 will be treated
in Sect. 4.6, after presenting the main subroutines of the IntegerSolve procedure.

4.4 The DarkShadow Procedure

Let M,v be as in Proposition 1. Recall that we write t = (t1, . . . , td−r) and assume
0 ≤ r < d. The system Mt ≤ v represents a polyhedral set that we denote by
Kt. We order the variables as t1 > ⋯ > td−r. We call DarkShadow the procedure
stated by Algorithm 1, for which Proposition 2 serves as output specification. In
Algorithm 1, the polyhedral set represented by M<t1t ≤ v<t1 (resp. Θ) is called
the dark shadow of Kt, denoted as Dt1 when case 1 (resp. case 2) holds.

Algorithm 1. DarkShadow(Mt ≤ v)

1: case 1: for all 1 ≤ i ≤ d − r, the inequalities in ti are either all lower bounds of ti
or all upper bounds of ti

2: return ((t2, . . . , td−r),M
<t1t ≤ v<t1).

3: case 2: otherwise
4: re-order the variables, such that t1 has both lower bounds and upper bounds.
5: initialize Δ to the empty set.
6: for each upper bound c t1 ≤ γ of t1, where c > 0, γ ∈ Z[t2, . . . , td−r] do
7: for each lower bound −a t1 ≤ −α of t1, where a > 0, α ∈ Z[t2, . . . , td−r] do
8: let Δ ∶=Δ ∪ {cα − aγ ≤ −(c − 1)(a − 1)}.
9: end for

10: end for
11: Let Θ0 ∶=Δ ∪ M<t1t ≤ v<t1

12: Let Θ be the system obtained by removing from Θ0 all redundant inequalities.
13: return ((t2, . . . , td−r),Θ).

For the inequalities in the set Δ in Algorithm 1, we have the following.

Lemma 3 Pugh [17]. Let c t1 ≤ γ be an upper bound of t1 and −a t1 ≤ −α be a
lower bound of t1, where c > 0, a > 0, γ ∈ Z[t2, . . . , td−r] and α ∈ Z[t2, . . . , td−r]
hold. Then, every integer point (t2, . . . , td−r) satisfying cα− aγ ≤ −(c− 1)(a− 1)
extends to an integer point (t1, t2, . . . , td−r) satisfying both c t1 ≤ γ and −a t1 ≤ α.

Computing the Integer Points of a Polyhedron, I: Algorithm 237

Proposition 2. Let ((t2, . . . , td−r),Θ) be the output of the DarkShadow proce-
dure. Then, every integer point of VZ(Θ, (t2, . . . , td−r)) extends to an integer
point solving Ax ≤ b.

Proof. If the DarkShadow procedure returns at Line 2 of Algorithm1, the claim
holds easily. Lemma 3 shows that any integer point (t2, . . . , td−r) solving Δ can
be extended to an integer point solving Mt ≤ v, thus with Proposition 1, to an
integer point solving Ax ≤ b. Therefore, if the DarkShadow procedure returns at
Line 13, the claim also holds.

4.5 The GreyShadow Procedure

Let M, t, v, Kt,Dt1 be as in Sect. 4.4. We call grey shadow of Kt, denoted
by Gt1 , the set-theoretic difference (Πt2,...,td−rKt)∖Dt1 . Algorithm 2 states the
GreyShadow procedure, for which Lemma 4 serves as output specification.

Lemma 4. Let G = {(u1, t = P1u1+q1,M1u1 ≤ v1), . . . , (us,t=Psus+qs,Msus≤

vs)} be the output of Algorithm2. Then, the disjoint union ⊍
1≤i≤s

VZ(t = Piui +

qi ∪Miui ≤ vi, t) forms the set of the integer points of the grey shadow Gt1 .

Proof. The correctness of case 1 follows from the fact that Gt1 is empty when
all t-variables are unbounded. From now on, we consider case 2. At Line 12,
all the t-variables are solved by IntegerNormalize as functions of new variables
ui. The fact that ⋃

1≤i≤s
VZ(t = Piui + qi ∪ Miui ≤ vi, t) equals Gt1 follows

Algorithm 2. GreyShadow(Mt ≤ v)

1: case 1: for all 1 ≤ i ≤ d − r, the inequalities in ti are either all lower bounds of ti
or all upper bounds of ti

2: return (∅,∅,∅)

3: case 2: otherwise
4: Re-order the variables, such that t1 has both lower bounds and upper bounds.
5: Initialize both Υ and G to the empty set; the former set will be a set of linear

inequalities while the latter will form the result of the procedure.
6: for each upper bound c t1 ≤ γ of t1, where c > 0, γ ∈ Z[t2, . . . , th] do
7: for each lower bound −a t1 ≤ −α of t1, where a > 0, α ∈ Z[t2, . . . , th] do
8: let Θ2 ∶= Υ ∪ Mt ≤ v ∪ {cα − aγ > −(c − 1)(a − 1)},
9: for each non-negative integer i ≤ ca−c−a

c
do

10: check whether at1 = α + i is consistent over Z using Lemma 2,
11: case no: move to the next iteration,

12: case yes: let G ∶= G ∪ IntegerNormalize({at1 = α + i} ∪ Θ2),

13: end for
14: let Υ ∶= Υ ∪ {cα − aγ ≤ −(c − 1)(a − 1)}.
15: end for
16: return G.
17: end for

238 R.-J. Jing and M. Moreno Maza

from Sect. 2.3.1. of [17]. Now, at Line 8 of Algorithm2, we add the constraint
cα−aγ > −(c− 1)(a− 1) to Θ2, while at Line 14, we use cα−aγ ≤ −(c− 1)(a− 1)
to construct Υ in the next loop iteration. From that construction of Θ2 and Υ ,
we easily deduce that the above union is disjoint.

4.6 The IntegerSolve Procedure: Algorithm

We are ready to state an algorithm satisfying the specifications of Integer-
Solve introduced in Sect. 4.3. The recursive nature of this algorithm leads us
to define an “inner procedure”, called IntegerSolve0, of which IntegerSolve is a
wrapper function. The procedure IntegerSolve0 takes as input the system to be
solved, namely Ax ≤ b, together with another system of linear equations and
inequalities, denoted by E, see Notation 4. This second system E keeps track
of the relations between those variables that have already been solved and those
that remain to be solved. To be more precise, the procedure IntegerSolve0, see
Algorithm 3, relies on IntegerNormalize and thus introduces new variables when
solving systems of linear equations over Z. For this reason, variables appearing
in E may not be present in x and we need another vector of variables, namely
y = (y1, . . . , yd′), to denote the unknowns of E that are regarded as “solved”.

Notation 4. We denote by E a second system of linear equations and inequal-
ities, with coefficients in Z and with y ⊕ x as “unknown” vector, where y ⊕ x
denotes the concatenated vector (y1, . . . , yd′ , x1, . . . , xd). In fact, the variables of
y are regarded as solved by the equations and inequalities of E, meanwhile those
of x remain to be solved. Hence, we can view the conjunction of the systems
Ax ≤ b and E as a system of linear equations and inequalities with y ⊕ x as
unknown vector, defining a polyhedron KE in R

d′+d.

Theorem 1 states, that Algorithm 3 returns a decomposition (in the sense of
Definition 3) of the integer points of the polyhedron KE , defined in Notation 4.
From Algorithm 3, we easily implement the IntegerSolve procedure (as specified
in Sect. 4.3) with the call IntegerSolve0({ },{ },x,Ax ≤ b).

Theorem 1. Algorithm3 terminates and returns a decomposition of the integer
points of the polyhedron KE.

Proof. We first prove termination. Lines 1 to 21 in Algorithm3 handle the case
where Ax ≤ b has a single unknown. This is simply done by case inspection.
Consider now the case where Ax ≤ b has more than one variable. The calls to
the procedures DarkShadow and GreyShadow at Lines 29 and 32 generate the
input to the recursive calls. From Lines 2 and 13 of Algorithm 1, and Lines 2
and 12 of Algorithm2, we deduce that the number of unknowns decreases at
least by one after each recursive call. Therefore, Algorithm3 terminates.

Next we prove that Algorithm 3 is correct. Let (y1,Σ1), . . ., (ys,Σs) be the
output of Algorithm3 where each Σi is a system of linear inequalities with yi

as unknown. The fact that each Σi is a representation of the integer points of

Computing the Integer Points of a Polyhedron, I: Algorithm 239

Algorithm 3. IntegerSolve0(y, E, x, Ax ≤ b)

1: Let d be the cardinality of x;
2: case d = 1
3: let x = {x}, solve Ax ≤ b over R,
4: case only lower bounds of x exist in Ax ≤ b
5: the solution to Ax ≤ b over R is {x ∶ −x ≤ q1} for some q1 ∈ R,
6: y ∶= y ⊕ x and E ∶= E ∪ {−x ≤ ⌊q1⌋};
7: return {(y, E)}

8: case only upper bounds of x exist in Ax ≤ b
9: the solution to Ax ≤ b over R is {x ∶ x ≤ q2} for some q2 ∈ R,

10: y ∶= y ⊕ x and E ∶= E ∪ {x ≤ ⌊q2⌋};
11: return {(y, E)}

12: case both lower bounds and upper bounds of x exist in Ax ≤ b
13: the solution to Ax ≤ b over R is {x ∶ x ≤ q3 and −x ≤ q4} for some q3, q4 ∈ R,
14: case ⌊q3⌋ > −⌊q4⌋
15: y ∶= y ⊕ x and E ∶= E ∪ {x ≤ ⌊q3⌋, −x ≤ ⌊q4⌋};
16: return {(y, E)}

17: case ⌊q3⌋ = −⌊q4⌋
18: y ∶= y ⊕ x, E ∶= eval(E,x = ⌊q3⌋) ∪ {x = ⌊q3⌋},
19: return {(y, E)}

20: case ⌊q3⌋ < −⌊q4⌋
21: return {(∅,∅)}

22: case d > 1
23: (t,x = Pt + q, Mt ≤ v) ∶= IntegerNormalize(Ax ≤ b),
24: case (t,x = Pt + q, Mt ≤ v) = (∅,∅,∅)
25: return {(∅,∅)}

26: case (t,x = Pt + q, Mt ≤ v) ≠ (∅,∅,∅)
27: y ∶= y ⊕ x, E ∶= eval(E, x = Pt + q) ∪ x = Pt + q ∪ Mt1t ≤ vt1 ,
28: G ∶= ∅,
29: (t′,Θ) ∶= DarkShadow(Mt ≤ v),
30: y ∶= y ⊕ {t1},
31: G ∶= G ∪ IntegerSolve0(y,E, t′,Θ);
32: for (u,Eu,Muu ≤ vu) ∈ GreyShadow(Mt ≤ v) do
33: G ∶= G ∪ IntegerSolve0(y ∪ t,E ∪Eu,u,Muu ≤ vu)

34: end for
35: return G

the polyhedron it defines, can be established by induction on the length of yi.
To give more details, the properties required by Definition 2 are easy to check in
the case d = 1. For the cases d > 1, these properties, in particular the consistency
and the extensibility, follow from the way the set E is incremented at Lines 27
and 33, as well as from Proposition 2. Finally, the fact that the integer points
of the input system of the initial call to Algorithm3 are given by the integer
points of Σ1, . . . ,Σs can be established by induction on the length of yi, thanks
to Lemma 4.

240 R.-J. Jing and M. Moreno Maza

Software

We have implemented the algorithm presented in the first paper within the
Polyhedra library in Maple. This library is publicly available in source on the
download page of the RegularChains library at www.regularchains.org.

Acknowledgements. The authors would like to thank IBM Canada Ltd (CAS
project 880) and NSERC of Canada (CRD grant CRDPJ500717-16), as well as the
University of Chinese Academy of Sciences, UCAS Joint PhD Training Program, for
supporting their work.

References

1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comput. 28, 105–124 (1999)

2. Barvinok, A.I.: A polynomial time algorithm for counting integral points in poly-
hedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

3. Barvinok, A.I.: Integer Points in Polyhedra. Contemporary Mathematics. Euro-
pean Mathematical Society (2008)

4. Beck, M.: Integer Points in Polyhedra-Geometry, Number Theory, Representa-
tion Theory, Algebra, Optimization, Statistics: AMS-IMS-SIAM Joint Summer
Research Conference, 11–15 June 2006, Snowbird. Utah. Contemporary mathe-
matics - Amer. Math, Soc. (2008)

5. Chen, C., Chen, X., Keita, A., Moreno Maza, M., Xie, N.: MetaFork: a compilation
framework for concurrency models targeting hardware accelerators and its applica-
tion to the generation of parametric CUDA kernels. In: Proceedings of CASCON
2015, pp. 70–79 (2015)

6. Cohen, H.: A Course in Computational Algebraic Number Theory, vol. 138.
Springer Science & Business Media, Heidelberg (2013)

7. Feautrier, P.: Parametric integer programming. RAIRO Recherche Opérationnelle
22 (1988). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.9957&re
p=rep.1&type=pdf

8. Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R.,
Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp.
79–103. Springer, Heidelberg (1996). doi:10.1007/3-540-61736-1 44. http://dl.acm.
org/citation.cfm?id=647429.723579

9. Fischer, M.J., Fischer, M.J., Rabin, M.O.: Super-exponential complexity of pres-
burger arithmetic. Technical report, Cambridge, MA, USA (1974)

10. Grünbaum, B.: Convex Polytops. Springer, New York (2003)
11. Hung, M.S., Rom, W.O.: An application of the hermite normal form in integer

programming. Linear Algebra Appl. 140, 163–179 (1990)
12. Jing, R.-J., Yuan, C.-M., Gao, X.-S.: A polynomial-time algorithm to compute

generalized hermite normal form of matrices over Z[x]. CoRR, abs/1601.01067
(2016)

13. Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: On polyhedral projection and para-
metric programming. J. Optim. Theory Appl. 138(2), 207–220 (2008)

14. Kannan, R., Bachem, A.: Polynomial algorithms for computing the smith and
hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979)

www.regularchains.org
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.9957&rep=rep.1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.9957&rep=rep.1&type=pdf
http://dx.doi.org/10.1007/3-540-61736-1_44
http://dl.acm.org/citation.cfm?id=647429.723579
http://dl.acm.org/citation.cfm?id=647429.723579

Computing the Integer Points of a Polyhedron, I: Algorithm 241

15. Khachiyan, L.: Fourier-motzkin elimination method. In: Floudas, C.A., Parda-
los, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 1074–1077. Springer,
Heidelberg (2009). doi:10.1007/978-0-387-74759-0 187

16. Köppe, M., Verdoolaege, S.: Computing parametric rational generating functions
with a primal Barvinok algorithm. Electr. J. Comb. 15(1), R16 (2008)

17. Pugh, W.: The omega test: a fast and practical integer programming algorithm
for dependence analysis. In: Martin, J.L. (ed.) Proceedings Supercomputing 1991,
Albuquerque, NM, USA, 18–22 November 1991, pp. 4–13. ACM (1991)

18. Pugh, W.: Counting solutions to presburger formulas: how and why. In: Sarkar,
V., Ryder, B.G., Soffa, M.L. (eds.) Proceedings of the ACM SIGPLAN 1994 Con-
ference on Programming Language Design and Implementation (PLDI), Orlando,
Florida, USA, 20–24 June 1994, pp. 121–134. ACM (1994)

19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
20. Storjohann, A.: A fast practical deterministic algorithm for triangularizing integer

matrices. Citeseer (1996)
21. Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, Swiss Federal

Institute of Technology Zürich (2000)
22. Wonnacott, D.: Omega test. In: Encyclopedia of Parallel Computing, pp. 1355–

1365 (2011)

http://dx.doi.org/10.1007/978-0-387-74759-0_187

Computing the Integer Points
of a Polyhedron, II: Complexity Estimates

Rui-Juan Jing1,2(B) and Marc Moreno Maza2

1 KLMM, UCAS, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, China

2 University of Western Ontario, London, Canada
rjing8@uwo.ca, moreno@csd.uwo.ca

Abstract. Let K be a polyhedron in R
d, given by a system of m linear

inequalities, with rational number coefficients bounded over in absolute
value by L. In this series of two papers, we propose an algorithm for
computing an irredundant representation of the integer points of K, in
terms of “simpler” polyhedra, each of them having at least one integer
point. Using the terminology of W. Pugh: for any such polyhedron P ,
no integer point of its grey shadow extends to an integer point of P . We
show that, under mild assumptions, our algorithm runs in exponential
time w.r.t. d and in polynomial w.r.t m and L. We report on a software
experimentation. In this series of two papers, the first one presents our
algorithm and the second one discusses our complexity estimates.

1 Introduction

In the first paper of that series of two, we have presented an algorithm, called
IntegerSolve, for decomposing the set of integer points of a polyhedron. See Sect. 4
of the first paper. This second paper is dedicated to complexity estimates con-
sidering both running time and output size. Our main result is Theorem1, which
states an exponential time complexity1 for IntegerSolve, under Hypothesis 1, that
we call Pugh’s assumption. Before discussing this hypothesis and stating the the-
orem, we set up some notations.

Notation 1. Recall that we consider a polyhedral set K ⊆ R
d given by an irre-

dundant intersection K = ∩i=m
i=1 Hi of closed half-spaces H1, . . . , Hm such that,

for each i = 1, . . . , m, the half-space Hi is defined by aT
i x ≤ bi, with ai ∈ Z

d and
bi ∈ Z. The conjunction of those inequalities forms a system of linear inequalities
that we denote by Ax ≤ b. Let L (resp. h) be the maximum absolute value (resp.
maximum bit size) of a coefficient in either A or b. Thus h = �log2(L)� + 2.

Hypothesis 1. We assume that during the execution of the function call
IntegerSolve(K), for any polyhedral set K ′, input of a recursive call, each facet
of the dark shadow2 of K ′ is parallel to a facet of the real shadow of K ′.
1 To be precise, in the EXP complexity class.
2 The notions of real shadow, dark shadow and grey shadow are presented in Sect. 3

of the first paper.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 242–256, 2017.
DOI: 10.1007/978-3-319-66320-3 18

Computing the Integer Points of a Polyhedron, II: Complexity Estimates 243

The figure in the introduction of the first paper shows a polyhedron for which
each facet of its dark shadow is parallel to a facet of its real shadow. This property
is commonly observed in practice, see Sect. 5. In [9], W. Pugh observes that it
is possible to build polyhedra K that challenge the Omega Test by generating
many recursive calls when searching for integer points of K that extend integer
points of its grey shadow. But he notices that, in practice, this combinatorial
explosion is rare, due to the fact that the grey shadow of K is often empty (or at
least for most of the recursive calls of the Omega test, when searching for integer
points in K). This experimental observation leads us to Hypothesis 1 which is
less strong than the property observed by W. Pugh, while being sufficient to
guarantee that our algorithm runs in exponential time.

We believe that this running estimate could still hold with the following even
weaker hypothesis: during the execution of the function call IntegerSolve(K), for
any polyhedral set K ′, input of a recursive call, the number of facets of the
dark shadow of K ′ is in “big-O” of the number of facets of its real shadow.
Investigating this question is left for future work.

To state our main result, we need a notation for the running time of solving
a linear program. Indeed, linear programming is an essential tool for removing
redundant inequalities generated by Fourier-Motzkin elimination, see [7].

Notation 2. For an input linear program with total bit size H and with d vari-
ables, we denote by LP(d,H) an upper bound for the number of bit operations
required for solving this linear program. For instance, in the case of Karmarkar’s
algorithm [6], we have LP(d,H) ∈ O(d3.5H2 · log H · log log H).

Theorem 1. Under Hypothesis 1, the call function IntegerSolve(K) runs within
O(m2d2

d4d3
L4d3

LP(d,mdd4(log d + log L))) bit operations.

The running time estimate in Theorem 1 is exponential w.r.t. d but poly-
nomial w.r.t m and L. Since our algorithm transforms the Omega Test from a
decision procedure into a system solving algorithm, our result also holds for the
original Omega Test. To our knowledge, this is the first complexity estimate for
the whole Omega Test procedure.

The proof follows from a series of results established in Sects. 2, 3 and 4. We
believe that some of them are interesting on their own.

Section 2 deals with the following problem. Let F be a k-dimensional face
of K, for 0 ≤ k < d. What is the computational cost of projecting F onto a
k-dimensional linear subspace of R

d?
Section 3 gives complexity estimates for Fourier-Motzkin elimination (FME).

While it is known that FME can run in single exponential time [5,7], we are
not aware of running time estimates for FME in the literature. Thanks to
Hypothesis 1, our FME estimates applies to the DarkShadow sub-routine of Inte-
gerSolve.

Section 4 gathers results for completing the proof of Theorem1. The recursive
nature of this algorithm leads us to give upper bounds for three quantities: the
number of nodes in the tree of the recursive calls, the number of facets of each
polyhedron input of a recursive call, the maximum absolute value of a coefficient
in a linear system defining such a polyhedron.

244 R.-J. Jing and M. Moreno Maza

2 Properties of the Projection of Faces of a Polyhedron

This section gathers preliminary results towards the complexity analysis of the
IntegerSolve algorithm. Some of these results are probably not new, but we could
not find a reference for them in the literature.

Definition 1. Let I be a subset of {1, . . . , m} and denote by BI the affine space
{x ∈ R

d | aT
i x = bi for i ∈ I}. If BI ∩ K is not empty, then BI ∩ K is a face

of K. We call such an index set I a defining index set of the face BI ∩ K.

Let F be a k-dimensional face of K for an integer 0 ≤ k < d and let I be
a defining index set of F with maximum cardinality. Consider the set OI given
by:

OI = BI ∩ {x |aT
i x < bi, i �∈ I}. (1)

Proposition 1. The set OI is not empty.

Proof. The assumption on I implies that for all i �∈ I the equality aT
i x = bi is

not an implicit equation of F . Indeed, if aT
i x = bi were an implicit equation of

F , then the set {i}∪I would be a defining index set of F as well, a contradiction.
From Sect. 8.1 of [10] and since no equation aT

i x = bi for i �∈ I is an implicit
equation of F defined by I, we deduce that the set OI is not empty.
�

Using Gaussian elimination, we can compute a parametric representation of
OI where dim(BI) variables are treated as parameters; we denote by x′ those
parameters. The other d − dim(BI) variables are referred as main variables or
leading variables, following the terminology of the theory of regular chains [2].
Once we substitute the main variables by their linear forms in the parameters
(solved from BI) into the system {x |aT

i x < bi, i �∈ I}, we obtain a consistent
strict inequality system in the parameters, whose solution set, that we call Oo,
is of dimension dim(BI) in the parameter space.

Proposition 2. We have dim(BI) = dim(OI) = dim(Oo) = dim(F) = k.

Proof. Note that the set Oo is the image of OI in the standard projection onto
the parameter space and that Oo is open in that space (equipped with the
Euclidean topology). Hence, we have dim(BI) = dim(OI) = dim(Oo). In fact,
this elimination-and-substitution process shows that OI is the solution set of a
so-called regular semi-algebraic system [4] where the regular chain part is given by
a regular chain of height d−dim(BI). Meanwhile, we have dim(BI) ≥ dim(F) ≥
dim(OI), since BI ⊇ F ⊇ OI holds by definition. Moreover, we have dim(OI) ≥
dim(Oo) = dim(BI) since Oo is the image of OI . Finally, since dim(F) = k holds
by assumption, we deduce dim(BI) = dim(F) = k.
�

The following lemma was found by the authors independently of the work of
Imbert [5] but it is likely that our result could be derived from that paper.

Lemma 1. Let F be a k-dimensional face of K for some integer 0 ≤ k < d.
Then, the face F admits a defining index set with cardinality d − k.

Computing the Integer Points of a Polyhedron, II: Complexity Estimates 245

Proof. First, we shall prove that there exists a defining index set with cardinal-
ity at least d − k. Assume that I is a defining index set of F with maximum
cardinality. From Proposition 2, we have dim(BI) = k, hence I has at least d−k
elements. Assume I = {i1, i2, . . . , it}, with t ≥ d − k. Since dim(BI) = k holds,
one can easily deduce that the rank of the matrix

(aT
i1 ,a

T
i2 , . . . ,a

T
it)

and the rank of the matrix

(aT
i1 ,a

T
i2 , . . . ,a

T
it , (bi1 , bi2 , . . . , bit)

T)

are both d − k. Thus, we can further assume w.l.o.g. that

(aT
i1 ,a

T
i2 , . . . ,a

T
id−k

)

has rank d − k. Then clearly, the set I∗ = {i1, i2, . . . , id−k} is also a defining
index set of F . That is, the k-dimensional face F admits a defining index set
with cardinality d − k.
�

Corollary 1 follows immediately from Lemma 1.

Corollary 1. Let 0 ≤ k < d be an integer. Let fd,m,k be the number of k-
dimensional faces of K. Then, we have

fd,m,k ≤
(

m

d − k

)
.

Therefore, we have

fd,m,0 + fd,m,1 + · · · + fd,m,d−1 ≤ md.

Note that, from now on, when we say a defining index set of a k-dimensional
face of K, we shall always refer to one with cardinality d − k. Let FP be the
closure of Oo in the Euclidean topology. Then, FP is the projection of F on the
coordinates x′, where x′ stand for the parameters introduced above. Thus, FP is
a polyhedron and Corollary 2 gives upper-bound estimates on a representation
of FP with a system of linear inequalities.

Corollary 2. One can compute a matrix C over Z and a vector d over Z such
that the integer points of FP are given by Cx′ ≤ d and the maximum absolute
value of a coefficient in either C or d is no more than (d − k + 1)

d−k+1
2 Ld−k+1,

where L is the maximum absolute value of a coefficient in either A or b.

Proof. Without loss of generality, assume I = {1, . . . , d−k}. From Proposition 2,
we have dim(FP) = k. From the proof of Lemma 1, the rank of the matrix
(aT

1 ,aT
2 , . . . ,aT

d−k) and the rank of matrix (aT
1 ,aT

2 , . . . ,aT
d−k, (b1, b2, . . . , bd−k)T)

are both equal to d − k. Without loss of generality, assume that the first d − k
rows of each of the above two matrices are linearly independent. Therefore, we
have x′ = [xd−k+1, . . . , xd]T . It follows that FP can be defined by the inequality

246 R.-J. Jing and M. Moreno Maza

system Cx′ ≤ d obtained by Fraction-Free Gaussian Elimination, where C and
d are given by:

C = (ci,j)d−k<i,j≤d, where ci,j is the determinant of

⎛
⎜⎜⎜⎝

a11 · · · a1,d−k a1,j

...
...

...
...

ad−k,1 · · · ad−k,d−k ad−k,j

ai,1 · · · ai,d−k ai,j

⎞
⎟⎟⎟⎠,

d = [dd−k+1, . . . , dd]
T , where di is the determinant of

⎛
⎜⎜⎜⎝

a11 · · · a1,d−k b1
...

...
...

...
ad−k,1 · · · ad−k,d−k bd−k

ai,1 · · · ai,d−k bi

⎞
⎟⎟⎟⎠.

Using Hadamard’s inequality, the absolute value of any ci,j and dj can be
bounded by (d − k + 1)

d−k+1
2 Ld−k+1.
�

3 Complexity Estimates for Fourier-Motzkin Elimination

Proposition 4 states a running time estimate for computing the linear inequality
system proj(K;x1, . . . , xd) defined in Sect. 2 of the first paper. Note that the arti-
cle [7] states that Fourier-Motzkin elimination can be run in single exponential
time but without giving a running time estimate. Let k < d be a positive integer.
Following the notations of Sect. 2 of the first paper, we denote by Πxk+1,...,xd the
standard projection from R

d to R
d−k mapping (x1, . . . , xd) to (xk+1, . . . , xd).

Proposition 3. Assume that K is full-dimensional. Then, we have:

(i) The projected polyhedron Πxk+1,...,xdK admits at most
(

m
d−k−1

)
facets.

(ii) Any facet of Πxk+1,...,xdK can be given by a system consisting of one linear
equation and m−k−1 linear inequalities, all in R

d−k, such that the absolute
value of any coefficient in those constraints is at most (k + 1)

k+1
2 Lk+1.

Proof. Let G be a facet of Πxk+1,...,xdK. There exists a face F of K such that G
is the projection of F . Since K is full-dimensional, it is clear that Πxk+1,...,xdK
is full-dimensional as well. Hence, we have dim(G) = d − k − 1 ≤ dim(F).
Clearly, choosing F with minimum dimension implies d − k − 1 = dim(F). With
Corollary 1, we deduce (i). Now we prove (ii). It follows from Lemma 1 that one
can choose a defining index set I of F with cardinality d − (d − k − 1) = k + 1.
Thus, we have BI ∩ K = F , with BI given in Definition 1. Consider, then, the
set OI given by (1). We know from Proposition 1 that OI is not empty and
from Proposition 2 that dim(BI) = d − k − 1. Consider now the system of linear
equations given by:

GI = BI ∩ {x |aT
i x = bi, i �∈ I}. (2)

Using Fraction-Free Gaussian Elimination on GI and since dim(BI) = d − k − 1
holds, one can use the k+1 equations defining BI to eliminate x1, . . . , xk from the

Computing the Integer Points of a Polyhedron, II: Complexity Estimates 247

inequalities {x |aT
i x < bi, i �∈ I} and, in addition, obtain one equation involving

the variables xk+1, . . . , xd only. Clearly, the resulting inequalities and equation
exactly define G. Using Hadamard’s inequality as in the proof of Corollary 2, we
deduce (ii).
�
Definition 2. Let θ be an inequality in the irredundant representation of the
projected polyhedron Πxk+1,...,xdK. Let G be the facet of Πxk+1,...,xdK associated
with θ. There exists a (k+1)-dimensional face G′ of K such that Πxk+1,...,xdG′ =
G holds. We call defining index set of θ any defining index set of G′.

Lemma 2. Let v ∈ R
d and s ∈ R such that h is also the maximum bit size

of any coefficient in v and s. Hence, the total bit size of the linear program
sup{−(vx − s) | Ax ≤ b} is H ∈ O(h m d). Moreover, deciding whether the
inequality vx ≤ s is implied by Ax ≤ b or not can be done within O(LP(d,H))
bit operations.

Proof. The estimate H ∈ O(h m d) clearly holds. On the other hand, the inequal-
ity vx ≤ s is implied by Ax ≤ b if only if sup{−(vx − s) | Ax ≤ b} is zero.

�
Proposition 4. Within O(d2 m2d LP(d, 2dhd2md)) bit operations, the projected
representation proj(K;x1, . . . , xd) of K can be computed.

Proof. Following the notations of Sect. 2 of the first paper, the process of elimi-
nating x1 in Ax ≤ b generates at most m2

4 new inequalities. Augmenting A<x1

with all these new inequalities and, making this augmented system irredundant,
we obtain a total number of inequalities that we denote by c2. We define c1 := m,
m1 := c1 and m2 := c1 + c2. We observe that:

1. generating all the new inequalities (irredundant or not) amounts to at most
O(m2

1
4 d h2

1) bit operations, and

2. removing the redundant ones amounts to at most to O(m2
1

4 LP(d, h1 d m1))
bit operations, thanks to Lemma 2.

Similarly, during the process of eliminating x2, we observe that:

1. generating all the new inequalities (irredundant or not) amounts to at most
O(c22

4 d h2
2) bit operations, and

2. removing the redundant ones amounts to at most to O(c22
4 LP(d, h2 d m2)) bit

operations and yields a total number of c3 inequalities in x3.

Continuing in this manner, we deduce that for successively eliminating x1, . . . ,
xd−1,

1. generating all the new inequalities (irredundant or not) amounts to at most

O(
c21
4

d h2
1 + · · · +

c2d−1

4
d h2

d−1), (3)

248 R.-J. Jing and M. Moreno Maza

2. removing the redundant ones amounts to at most to

O(
c21
4
LP(d, h1 d m1) + · · · +

c2d−1

4
LP(d, hd−1 d md−1)), (4)

where mi := c1 + · · · + ci, for 1 ≤ i < d, as well as h0 := h and hi+1 ≤ 2hi + 1,
for 0 ≤ i < d. We observe that ci is bounded over by the number of facets
of Πxi,...,xdK, for 1 ≤ i < d. Observe also that, for 1 < i < d, each facet
of Πxi,...,xdK is the projection of a face of Πxi−1,...,xdK. Using Lemma 1, we
deduce that, for all 1 ≤ i < d, we have: ci ≤ md. Therefore, the running
time estimates of (3) and (4) can be bounded over by O(d2 m2d d (2dh)2) and
O(d2 m2d LP(d, (2dh)d(dmd))). The latter dominates the former; the conclusion
follows.
�

4 Proof of Theorem1

We use Fig. 1 and Notation 3 to provide further explanation on Algorithm
IntegerSolve0, presented in the first paper.

Fig. 1. Diagram

Notation 3. Fig. 1 illustrates the tree of recursive calls for the IntegerSolve0
procedure. The root of the tree is labelled with S, which stands for the input
system. The left (resp. right) child of a node, other than a leaf, is labelled by
D (resp. G) which stands for the output of the DarkShadow procedure (resp.
the GreyShadow procedure). Since the DarkShadow procedure generates one input
system for IntegerSolve, we use a simple → arrow as an edge to a D-node. How-
ever, the GreyShadow procedure may generate several linear inequality systems,
leading to several recursive calls to IntegerSolve0. Thus, we use a ⇒ arrow as an
edge to a G-node. The numbers on the right-hand side of Fig. 1 stand for the
levels in the tree.

Let Ax ≤ b,m, d be as in Notation 1. Let L and h denote the maximum
absolute value and height of any coefficient in either A or b.

Computing the Integer Points of a Polyhedron, II: Complexity Estimates 249

Notation 4. Recall that Fig. 1 depicts the tree of recursive calls in Algorithm
IntegerSolve0. Let N denote any node in that tree, whether it is labelled S, D or
G. If N is labelled with S or D, it is associated with a single linear system denoted
by MNtN ≤ vN. If N is labelled with G, it is associated with a sequence of linear
systems produced by the GreyShadow procedure and we denote by MNtN ≤ vN

any of those systems. For any linear system MNtN ≤ vN (whether N is labelled
S, D or G), we denote by mN and dN the number of rows and columns of MN.
We denote by LN (resp. �N) be the maximum absolute value of any coefficient in
MN (resp. in either MN or vN). We denote by hN = �log2 �N�+1 the maximum
bit size of a coefficient in either MN or vN. The system MNtN ≤ vN encodes
a polyhedron KN in R

dN and we denote by FN an arbitrary facet of KN. Every
path from the root to a leaf Nr in the tree depicted in Fig. 1 can be labelled
S → N1 → · · · → Nr for some r ≤ d − 1. Note that a leaf (that is, a node with
no children) may have level less than d − 1. For simplicity, for the node Nr, we
write dr, Lr, �r, hr, tr, Mr, vr, Kr, Fr instead of dNr

, LNr
, �Nr

, hNr
, tNr

,
MNr

, vNr
, KNr

, FNr
respectively, when there is no ambiguity.

In particular, let d0, L0, �0, h0, t0, M0, v0, K0, F0 denote the corresponding
values of node S.

Without loss of generality, we assume the polyhedron K is full-dimensional,
that is, dim(K) = d and, thus, that the input system S has no implicit equa-
tions. Then, each call to the DarkShadow or GreyShadow procedures at level 1
reduces the dimension of the ambient space by one. Similarly, at every level, we
assume that the input system of inequalities of IntegerSolve0 (that is, the fourth
argument of this procedure) is full-dimensional. Hence at Line 23 of Algorithm
IntegerSolve0, the output of IntegerNormalize(Ax ≤ b) is (∅, ∅, Ax ≤ b).

This full-dimensionality assumption has two consequences. First, along any
path S → N1 → · · · → Nr we have dk+1 = dk − 1, for 1 ≤ k < r, and thus, we
have dk = d − k. Second, at node Nk, the input system is Mk−1tk−1 ≤ vk−1

(while the output is Mktk ≤ vk).
It is easy to see that this full-dimensionality assumption is a worst case

scenario as far as running time is concerned. Indeed, when this assumption does
not hold, for at least one path S → N1 → · · · → Nr, implicit equations will be
discovered at Line 23 of Algorithm IntegerSolve0 in the first paper, and dimension
will drop by more than one at one node of that path.

To prove Theorem 1 we shall establish a series of intermediate results.
Lemmas 5, 7, 8 provide upper bounds for the absolute values of any coefficient
in the systems MNtN ≤ vN while Lemmas 3, 4, 9, 10 deal with running time
estimates. We start with Lemmas 3 and 4, which give running time estimates for
the DarkShadow and GreyShadow procedures at level k. The proof of Lemma 3
follows that of Proposition 4.

Lemma 3. For any non-negative integer k < d − 1, the DarkShadow procedure
at level k + 1 runs within O(m2

k

4 LP(dk, dkhkmk)) bit operations.

Proof. The input system of Dk+1 is Mktk ≤ vk, which has mk inequalities and
hk as maximum coefficient size in either Mk or vk. The process of

250 R.-J. Jing and M. Moreno Maza

(E) eliminating the first variable of tk in Mktk ≤ vk,
(A) adding the at most m2

k

4 resulting inequalities to those of Mktk ≤ vk where
the first variable of tk does not appear, and

(R) removing all redundant inequalities,

yields Mktk ≤ vk, see Algorithm DarkShadow. Observe that Steps (E) and (R)
amount to at most O(m2

k

4 dk h2
k) and O(m2

k

4 LP(dk, hk dk mk)) bit operations,
respectively. The latter dominates the former. The conclusion follows.
�
Lemma 4. For any non-negative integer k < d − 1, the GreyShadow procedure
at level k + 1 runs within O(m2

kd3+ε
k h3

k) bit operations.

Proof. For the GreyShadow procedure at level k + 1, we need to call at most mk

times the IntegerNormalize procedure. Then, the lemma follows from Proposi-
tion 1 in the first paper.
�
Lemma 5. Consider a path of the form

S → D1 → · · · → Dr, (5)

where all nodes, except the first one, are labelled by D. Then, for all 1 ≤ k ≤ r,
we have mk ≤ mk+1 and the maximum absolute value Lk of any coefficient in
Mk is no more than (k + 1)

k+1
2 Lk+1.

Proof. Let 1 ≤ k ≤ r. Under Hypothesis 1, each facet of Kk is parallel to a
facet of the real shadow of Kk−1. Inductively, each facet of Kk is parallel to a
facet of the projection Πxk+1,...,xdK. By Proposition 3, we have mk ≤ mk+1 and
Lk ≤ (k + 1)

k+1
2 Lk+1.
�

Next, we will consider an arbitrary path:

S → D1 → · · · → Dj1−1 → Gj1 → · · · → Gjs → Djs+1 → · · · → Dr. (6)

In the path (6), only the subscripts j1, j2, . . . , js correspond to the GreyShadow
procedures.

To make things simpler, instead of setting Θ2 := Υ ∪ Mt ≤ v ∪ {cα − aγ >
−(c − 1)(a − 1)} in Line 8 of Algorithm GreyShadow in the first paper, we let
Θ2 := Mt ≤ v. This simplification cannot guarantee that VZ(t = Pkuk + qk ∪
Mkuk ≤ vk, t) for k = 1, . . . , s form a disjoint union. However, it will endow
Mk with good structural properties, as we will see later. Actually, since all the
inequalities in Υ and the negation of cα − aγ > −(c − 1)(a − 1) can be obtained
by the DarkShadow procedure and since we are doing the worst case complexity
analysis, all the coming conclusions apply to our algorithm as it was originally
stated in the first paper.

First, we consider the sub-path of (6): S → D1 → · · · → Dj1−1 → Gj1 . We
assume the variable order is x1 > x2 > · · · > xd. Thus, we can denote the variable
set tj1−1 for the input system of node Dj1−1 as: tj1−1 = [xj1 , xj1+1, . . . , xd]T

since tj1−1 ⊂ x. For the node Gj1 , we need to add one equation based on the

Computing the Integer Points of a Polyhedron, II: Complexity Estimates 251

output system Mj1−1tj1−1 ≤ vj1−1 of node Dj1−1. Without loss of generality,
we assume the new equation is mtj1−1 = v + i for some non-negative integer
i ≤ Lj1−1, where mtj1−1 ≤ v is the first inequality in the system Mj1−1tj1−1 ≤
vj1−1. Let I be the defining index set of mtj1−1 ≤ v, which has cardinality j1.

Recall that M0t0 ≤ v0 is the input system of node D1. Let M(1)
0 and M(2)

0

be the sub-matrices of M0 consisting of the first j1 − 1 columns and the last
d − j1 + 1 columns, respectively. Denote by (v0)I (resp. (M0)I) the sub-vector
(resp. sub-matrix) of v0 (resp. M0) with index (resp. row index) I. Let Qj1−1

be a matrix whose columns consist of a Z-basis of the space {x : (M0)I x = 0 }.
We have assumed that the input polyhedron K is full-dimensional, which implies
that the rank of M0 is d. By the definition of defining index set I, we can easily
deduce that the rank of (M0)I is j1, that is, Qj1−1 is an integer matrix with
d rows and d − j1 columns. Let Q′

j1−1 be the sub-matrix consisting of the last
d−j1+1 rows of Qj1−1. Let V1 := [e1, . . . , ej1−1,

(
0

Q′
j1−1

)
] ∈ Z

d×(d−1). Let S1 be

a node associated with the system M(1)
0 [x1, . . . , xj1−1] + M(2)

0 Q′
j1−1tj1+1 ≤ v′

0,
i.e. M0V1[x1, . . . , xj1−1, tj1+1]T ≤ v′

0. For j1 ≤ k < j2, let M′
kt

′
k ≤ v′

k be the
output system of the node Dk−1 in the path: S1 → D1 → · · · → Dk−1.

Lemma 6. With the above notations, we have Mj1 = M′
j1

. Consequently,
Mk = M′

k for j1 ≤ k < j2.

Proof. The second statement will follow once the first lemma is valid.
Following the algorithm DarkShadow in the first paper, there exists a matrix

U ∈ Z
mj1−1×m0 , such that UM(1)

0 = 0 and Mj1−1 = UdUM(2)
0 , where

Ud = DiagonalMatrix(1
gcd1

, . . . , 1
gcdmj1−1

) and gcdi is the gcd of all the coef-

ficients in the i-th row of UM(2)
0 for 1 ≤ i ≤ mj1−1. Let u ∈ Z

m0 be the
first row of U . Then, m = 1

gcd1
uM(2)

0 since mtj1−1 ≤ v is the first inequal-

ity of Mj1−1tj1−1 ≤ vj1 . Then, m = 1
gcd1

uI(M
(2)
0)I . Solving the equation

mtj1−1 = v+i by Lemma 2 in the first paper, we have tj1−1 = Pj1−1 tj1 + qj1−1,
where Pj1−1 ∈ Z

(d−j1+1)×(d−j1) whose columns consist of a Z-basis for {y :
my = 0} = {y : uI(M

(2)
0)Iy = 0}. Therefore, Mj1tj1 ≤ vj1 comes from

Mj1−1Pj1−1tj1 ≤ vj1−1 − Mj1−1qj1−1, i.e. UdUM(2)
0 Pj1−1tj1 ≤ vj1−1 −

Mj1−1qj1−1.
Next, we will show that Pj1−1 can be replaced by Q′

j1−1 introduced above.

Since uI(M
(1)
0)I = 0, we have any y ∈ Z

d satisfying uI(M0)Iy = 0 is equivalent
to uI(M

(2)
0)Iy(2) = 0, where y(2) is the last d − j1 + 1 elements of y. Thus,

[e1, . . . , ej1−1,
(

0
Pj1−1

)
] is a Z-basis for the space {y : u(M0)Iy = 0}. For any row

vector y ∈ Z
d such that uI(M0)Iy = 0, either 0 �= (M0)Iy ∈ { z : uIz = 0 }

or (M0)Iy = 0. For the first case, e1, . . . , ej1−1 is a Z-basis for the solutions
of y, where ek ∈ Z

d is the k-th standard basis for 1 ≤ k ≤ j1 − 1. For the
second case, columns of Qj1−1 consisting of a Z-basis for the solutions of y.
Thus, [e1, . . . , ej1−1,Qj1−1] is a Z-basis for the space {y : uI(M0)Iy = 0}.
Consequently, Pj1−1 is equivalent to Q′

j1−1, which is the last d − j1 + 1 rows of

252 R.-J. Jing and M. Moreno Maza

Qj1−1. That is, the integer solutions to mtj1−1 = v + i can be represented by
tj1−1 = Q′

j1−1 tj1 + qj1−1, where |Q′
j1−1| ≤ jj1+1

1 L2j1 . Therefore, we can make

Mj1 = UdUM(2)
0 Q′

j1−1.
Remember that S1 is associated with the system M0V1[x1, . . . , xj1−1, tj1+1]T

≤ v0, where V1 := [e1, . . . , ej1−1,
(

0
Q′

j1−1

)
], and M′

kt
′
k ≤ v′

k is the output system

of the node Dk−1 in the path: S1 → D1 → · · · → Dk−1. We have M′
j1

=

UdUM(2)
0 Q′

j1
. Consequently, M′

k = Mk for any integer k : j1 ≤ k < j2.
�
Then, we have the following lemma:

Lemma 7. For j1 ≤ k < j2, the maximum absolute value of any coefficient in
Mk can be bounded over by dkk2k2

L3k2
. Moreover, we have mk ≤ mk+1.

Proof. By Lemma 5, the maximum absolute value of any coefficient in M′
k = Mk

can be bounded over by |Mk| ≤ k
k
2 (d − j1 + 1)kjkj1+k

1 L2kj1+k ≤ dkk2k2
L3k2

.
Moreover, mk ≤ mk+1 follows from the equivalent path S1 → D1 → · · · →

Dk−1 for integer k : j1 ≤ k < j2.
�
For any 1 ≤ t ≤ s, we assume that the new equation is mttjt−1 = vt + it

for some non-negative integer it ≤ Ljt−1, where mttjt−1 ≤ vt comes from the
input system Mjt−1tjt−1 ≤ vjt−1 of the node Gjt . Let It be the defining index
set of the inequality mttjt−1 ≤ vt, with cardinality jt. Let Qt ∈ Z

d×(d−jt)

consist of the columns of a Z-basis of space {y : (M0)Ity = 0}. For any 1 ≤
t ≤ s, we define Vt = [e1, . . . , ej1−1,Q

(1)
1 , . . . ,Q(t−1)

t−1 ,Q(t)
t] ∈ Z

d×(d−t) and
tt := [x1, . . . , xj1 , t

(1)
j1−1, . . . , t

(t)
jt−1]

T as follows:

1. When k < t, we let Q′
k be the sub-matrix consisting of the last d − jk + 1

rows and (jk+1 − jk − 1) columns of Qk. Let Q(k)
k ∈ Z

d×(jk+1−jk−1) be the
matrix

(
0
Q′

k

)
, where 0 is a zero matrix which has jk −1 rows and jk+1 − jk −1

columns.
2. When k = t, we let Q′

t be the sub-matrix consisting of the last d − jt + 1
rows of Qt. Let Q(t)

t ∈ Z
d×(d−jt) be the matrix

(
0
Q′

t

)
, where 0 is a zero matrix

which has jt − 1 rows and d − jt columns.
3. Denote by t(k)jk−1 (resp. tjt−1) the set of jk+1 − jk − 1 (resp. d − jt) variables.

and the variables in tt are independent variables.

Let St be the system represented by M0Vttt ≤ v0 for 1 ≤ t ≤ s.

Lemma 8. The maximum absolute value of any coefficient in |Mk| (resp. |vk|)
can be bounded by dkk2k2

L3k2
(resp. d3k2

k4k3
L6k3

) for 1 ≤ k ≤ r. Moreover, we
have mk ≤ mk+1.

Proof. Similar to the notations defined before Lemma6, for 1 ≤ t ≤ s and
jt ≤ k < jt+1, let M′

kt
′
k ≤ v′

k be the output system of the path: St → D1 →
· · · → Dk−t, where js+1 is defined as r + 1.

Computing the Integer Points of a Polyhedron, II: Complexity Estimates 253

We claim Mjt = M′
jt

for any 1 ≤ t ≤ s, where Mjttjt ≤ vjt is the output
system of the path: S → D1 → · · · → Dj1−1 → Gj1 → · · · → Gjt . This claim
is valid if t = 1 by Lemma 6. We suppose it is valid for t = 1, . . . , s − 1. Then,
we have Mjs−1 = M′

js−1, where M′
js−1t

′
js−1 ≤ v′

js−1 is the output system of
the node Djs−s in the path: Ss−1 → D1 → · · · → Djs−s. Let M′′

js
t′′
js

≤ v′′
js

be
the output system of node Gjs−s+1 in the path: Ss−1 → D1 → · · · → Djs−s →
Gjs−s+1. Note that Ss−1 is associated with M0Vs−1ts−1 ≤ v0 and the input
system of node Gjs−s+1 is M′

js−1t
′
js−1 ≤ v′

js−1, i.e. Mjs−1t′
js−1 ≤ v′

js−1. We
have M′′

js
= Mjs immediately, since both of them come from the output system

of node Gjs−s+1 of the path: Ss−1 → D1 → · · · → Djs−s → Gjs−s+1. By the
proof of Lemma 6, M′′

js
can be obtained from the output system of the path: S′

s →
D1 → · · · → Djs−s, where S′

s is associated with M0[Vs−1[e1, . . . , ejs−s],Qs]ts ≤
v0, i.e. M0Vsts ≤ v0, which associates to the label Ss. Then, we have M′′

js
=

M′
js

. The claim is valid. That is, Mjs can be obtained from the output system
of the path: Ss → D1 → · · · → Djs−s.

By Proposition 1 of the first paper, we know that the maximum absolute value
of any coefficient in M0Vt can be bounded by djjt+1

t L2jt+1. Thus, by Lemma 5,
for any 1 ≤ t ≤ s and jt ≤ k < jt+1, we have the maximum absolute value of any
coefficient in Mk can be bounded by (k − t)

k−t
2 (djjt+1

t L2jt+1)k−t ≤ dkk2k2
L3k2

.
The first statement is valid.

Let 1 ≤ k ≤ r. For the node Dk, we have |vk| ≤ L2
k−1 + 2Lk−1|vk−1|. For

the node Gk, we have |vk| ≤ 2dkL2
k−1|vk−1| since we only need to solve one

equation. That is, for any node Nk, we will have |vk| ≤ 2dkL2
k−1|vk−1|. Thus,

|vk| ≤ 2kdkL2
k−1 · · · L2

1|v0|2 ≤ d3k2
k4k3

L6k3
for any 1 ≤ k ≤ r.
�

Until now, we can safely say that any coefficient in Mr (resp.vr) produced
by each path in Fig. 1 can be bounded over by Lr ≤ drr2r2

L3r2
(resp. �r ≤

d3r2
r4r3

L6r3
). That is, the coefficient size associated with the node Nr can be

bounded over by hr ≤ 6r3(log d + log L). Moreover, we can have at most mr

inequalities in Mrtr ≤ vr. The following lemma shows the complexity estimates
for implementing each path of the tree in Fig. 1:

Lemma 9. The path (6) can be implemented within O(m2r+2d3+εr10(log d +
log L)3) + O(rm2r+2LP(d, dmrr3(log d + log L))) bit operations.

Proof. By Lemma 3 (resp. Lemma 4), each node Dk (resp. Gk) can be imple-
mented with O(m2

k

4 LP(dk, dkhkmk)) (resp. O(m2
kd3+ε

k h3
k)) bit operations. Thus,

the path (6) can be implemented within

r · O(m2
rd

3+ε
r h3

r) + r · O(
m2

r

4
LP(d, dhrmr))

≤ O(m2r+2d3+εr10(log d + log L)3) + O(rm2r+2LP(d, dm2r+2r3(log d + log L)))

bit operations.
�
Let Tr be the total number of nodes in the r-th level. In particular, we have

T0 = 1, T1 ≤ mL. We have the following lemma:

254 R.-J. Jing and M. Moreno Maza

Lemma 10. We have: Tr+1 ≤ mr+1drr2r2
L3r2

Tr for r = 0, . . . , d−2. Thus, we
have Td−1 ≤ md2

d3d3
L3d3

.

Proof. By Lemma 8, each node can have at most mr+1 inequalities as the
input and each inequality has coefficient bound Lr. Following the Algorithm
IntegerSolve0 and Fig. 1, each node can give out at most mr+1Lr branches.
Considering we have Tr nodes in the r-th level, we can easily deduce that
Tr+1 ≤ mr+1LrTr ≤ mr+1drr2r2

L3r2
Tr. The second statement follows easily.

�
Now we give the proof for Theorem 1:

Proof. Under Hypothesis 1, by Lemmas 9 and 10, the complexity estimates for
IntegerSolve(K) can be bounded over

Td−1O(m2r+2d3+εr10(log d + log L)3)+

Td−1O(m2r+2rLP(d, dmr+1r3(log d + log L)))

≤O(m2d2
d4d3

L4d3
LP(d,mdd4(log d + log L))) bit operations, since r < d.

The theorem is valid.
�

5 Experimentation

We have implemented the algorithm presented in the first paper within the
Polyhedra library in Maple. This library is publicly available in source on the
download page of the RegularChains library at www.regularchains.org.

We have used test-cases coming from various application areas: regular poly-
topes (first 5 examples in Table 1), examples from Presburger arithmetic (next
5 examples in Table 1), random polytopes (next 5 examples in Table 1), random
unbounded polyhedra (next 5 examples in Table 1), examples from text-books
(next 3 examples in Table 1) and examples from research articles on automatic
parallelization of for-loop nests (last 4 examples in Table 1).

For each example, Table 1 gives the number of defining inequalities (Column
m), the number of variables (Column d), the maximum absolute value of an
input coefficient (Column L), the number of polyhedra returned by IntegerSolve
(Column mo), the maximum absolute value of an output coefficient (Column
Lo) and whether Hypothesis 1 holds or not (Column ?Hyp).

Recall from Sect. 4.1 of the first paper that Step (S4) of the IntegerNormalize
procedure can use either the HNF method introduced in Lemma 2 of the first
paper, or the method introduced by Pugh in [9]. We implemented both of them.
It is important to observe that Pugh’s method does not solve systems of linear
equations according to our prescribed variable order, in contrast to the HNF
method. In fact, Pugh’s method determines a variable order dynamically, based
on coefficient size considerations. In Table 1, the columns tH and tP correspond
to the timings for the HNF and Pugh’s method, respectively.

www.regularchains.org

Computing the Integer Points of a Polyhedron, II: Complexity Estimates 255

Table 1. Implementation

Example m d L mo Lo ?Hyp tH tP

Tetrahedron 4 3 1 1 1 Yes 0.695 0.697

Cuboctahedron 14 3 2 1 2 Yes 1.855 1.846

Octahedron 8 3 1 1 1 Yes 1.357 1.357

TruncatedOctahedr. 14 3 3 1 1 Yes 1.995 1.977

TruncatedTetrahedr. 8 3 1 1 1 Yes 1.461 1.468

Presburger 1 3 2 2 1 1 Yes 0.083 0.082

Presburger 2 3 2 20 1 20 Yes 0.184 0.182

Presburger 3 3 2 18 3 4 Yes 0.287 0.260

Presburger 4 3 4 5 2 12 Yes 0.706 0.871

Presburger 6 4 5 89 6 35 Yes 0.893 0.746

Bounded 5 6 3 19 4 224 Yes 16.433 15.091

Bounded 7 8 3 19 3 190 No 138.448 239.637

Bounded 8 4 3 25 5 67 Yes 6.462 3.821

Bounded 9 6 3 18 6 74 No 23.574 16.763

Bounded 10 4 3 15 1 176 Yes 0.559 0.558

Unbounded 2 3 4 10 61 2255 No 0.547 0.600

Unbounded 3 4 4 20 1 20 No 0.981 0.987

Unbounded 4 6 5 2 1 2 No 0.722 0.510

Unbounded 5 5 4 8 1 8 No 1.321 1.319

Unbounded 6 10 4 8 1 8 No 1.494 1.479

P91 12 3 96 5 96 No 19.318 15.458

Sys1 6 3 15 2 67 Yes 2.413 1.915

Sys3 8 3 1 1 1 Yes 1.481 1.479

Automatic 8 2 999 1 999 Yes 0.552 0.549

Automatic2 6 4 1 1 2 Yes 1.115 1.113

Automatic3 3 4 1 1 1 Yes 0.130 0.135

Automatic4 3 5 1 1 1 Yes 0.227 0.232

From Table 1, we make a few observations:

1. Hypothesis 1 holds for most examples while it usually does not hold for ran-
dom ones.

2. For 16 out of 27 examples, IntegerSolve produces a single component, which
means that each such input polyhedron has no integer points in its grey
shadow; this is, in particular, the case for regular polytopes and for examples
from automatic parallelization.

3. When a decomposition consists of more than one component, most of those
components are points; for example, the decomposition of Unbounded 2 has
61 components and 46 of them are points.

256 R.-J. Jing and M. Moreno Maza

4. Coefficients of the output polyhedra are usually not much larger than the
coefficients of the corresponding input polyhedron.

5. Among the challenging problems, some of them are solved faster when Inte-
gerNormalize is based on HNF (e.g. Bounded 7) while others are solved faster
when IntegerNormalize is based on Pugh’s method (e.g. Bounded 9) which
suggests that having both approaches at hand is useful.

To the best of our knowledge, there are two other published software libraries
which are capable of describing the integer points of a polyhedron: one is 4ti2 [1]
and the other is Normaliz [3]. Both softwares rely on Motzkin’s theorem [8] which
expresses any rational polyhedron as the Minkowski sum of a rational polytope
and a rational cone. Hence, they do not decompose a polyhedron in the sense of
our algorithm IntegerSolve.

Acknowledgements. The authors would like to thank IBM Canada Ltd (CAS
project 880) and NSERC of Canada (CRD grant CRDPJ500717-16), as well as the
University of Chinese Academy of Sciences, UCAS Joint PhD Training Program, for
supporting their work.

References

1. 4ti2 team. 4ti2–a software package for algebraic, geometric and combinatorial prob-
lems on linear spaces. www.4ti2.de

2. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comput. 28, 105–124 (1999)

3. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz. Algorithms for
rational cones and affine monoids. https://www.normaliz.uni-osnabrueck.de

4. Chen, C., Davenport, J.H., May, J.P., Moreno Maza, M., Xia, B., Xiao, R.: Trian-
gular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

5. Imbert, J.-L.: Fourier’s elimination: which to choose? pp. 117–129 (1993)
6. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Pro-

ceedings of the Sixteenth Annual ACM Aymposium on Theory of Computing.
STOC 1984, pp. 302–311. ACM, New York, NY, USA (1984)

7. Khachiyan, L.: Fourier-motzkin elimination method. In: Floudas, C.A., Pardalos,
P.M. (eds.) Encyclopedia of Optimization, pp. 1074–1077. Springer, Heidelberg
(2009). doi:10.1007/978-0-387-74759-0 187

8. Motzkin, T.S.: Beiträge zur Theorie der linearen Ungleichungen. Azriel Press,
Jerusalem (1936)

9. Pugh, W.: The omega test: a fast and practical integer programming algorithm
for dependence analysis. In: Martin, J.L. (ed.), Proceedings Supercomputing 1991,
Albuquerque, NM, USA, 18–22 November 1991, pp. 4–13. ACM (1991)

10. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

www.4ti2.de
https://www.normaliz.uni-osnabrueck.de
http://dx.doi.org/10.1007/978-0-387-74759-0_187

Non-linearity and Non-convexity in Optimal
Knots Selection for Sparse Reduced Data

Ryszard Kozera1,2(B) and Lyle Noakes3

1 Faculty of Applied Informatics and Mathematics,
Warsaw University of Life Sciences-SGGW,

Nowoursynowska Str. 159, 02-776 Warsaw, Poland
ryszard.kozera@gmail.com

2 School of Computer Science and Software Engineering,
The University of Western Australia, 35 Stirling Highway, Crawley,

Perth, WA 6009, Australia
3 School of Mathematics and Statistics, The University of Western Australia,

35 Stirling Highway, Crawley, Perth, WA 6009, Australia
lyle.noakes@uwa.edu.au

Abstract. The problem of fitting sparse reduced data in arbitrary
Euclidean space is discussed in this work. In our setting, the unknown
interpolation knots are determined upon solving the corresponding opti-
mization task. This paper outlines the non-linearity and non-convexity of
the resulting optimization problem and illustrates the latter in examples.
Symbolic computation within Mathematica software is used to generate
the relevant optimization scheme for estimating the missing interpolation
knots. Experiments confirm the theoretical input of this work and enable
numerical comparisons (again with the aid of Mathematica) between var-
ious schemes used in the optimization step. Modelling and/or fitting
reduced sparse data constitutes a common problem in natural sciences
(e.g. biology) and engineering (e.g. computer graphics).

Keywords: Reduced sparse data · Optimization · Interpolation · Knots
selection · Symbolic computation

1 Problem Formulation

A sequence of interpolation points M = {x0, x1, x2, . . . , xn} (here n ≥ 2) in
Euclidean space Em is called reduced data if the corresponding interpolation
knots {ti}n

i=0 are not given (see e.g. [6,10,12,13,20,23,25,29,30]). Let the class
of admissible curves γ (denoted by IT) form the set of piece-wise C2 curves
γ : [0, T] → Em interpolating M with the ordered free unknown admissible
knots {ti}n

i=0 satisfying γ(ti) = xi. Here ti < ti+1 are free with, upon re-scaling
t0 = 0 and tn = T set to an arbitrary constant T > 0. More precisely, for each
choice of ordered knots, the curve γ is assumed to be C2 except of being only at
least C1 over {ti}n

i=0. The analysis to follow is not restricted to a thinner class

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 257–271, 2017.
DOI: 10.1007/978-3-319-66320-3 19

258 R. Kozera and L. Noakes

of γ ∈ C2([t0, tn]) due to the ultimate choice of computational scheme (called
herein Leap-Frog - see [18,24,27,28]) which effectively deals with the optimiza-
tion problem (1). However, the computed optimum by Leap-Frog belongs to the
tighter class of functions coinciding with C2([t0, tn]) as addressed in [17,18].

Assume now, we search for an optimal γopt ∈ IT to minimize:

JT (γ) =
∫ T

t0

‖γ̈(t)‖2dt =
n−1∑
i=0

∫ ti+1

ti

‖γ̈(t)‖2dt. (1)

The latter defines an infinite dimensional optimization task over IT . The
unknown interpolation knots {ti}n

i=0 (t0 = 0 and 0 < tn = T can be fixed)
belong to:

ΩT
t0 = {(t1, t2, . . . , tn−1) ∈ R

n−1 : t0 = 0 < t1 < t2 < . . . < tn−1 < tn = T < ∞}. (2)

For any affine reparameterization φ : [0, T] → [0, T̃] defined as φ(t) = tT̃ /T
(with t = φ−1(s) = sT/T̃) φ−1′ ≡ T/T̃ and φ−1′′ ≡ 0, formula (1), for γ̃(s) =
(γ ◦ φ−1)(s) reads:

JT̃ (γ̃) =
n−1∑
i=0

∫ si+1

si

‖¨̃γ(s)‖2ds =
T 3

T̃ 3

n−1∑
i=0

∫ t̃i+1

t̃i

φ−1′
(s)‖(γ̈ ◦ φ−1)(s)‖2ds

=
T 3

T̃ 3
JT (γ). (3)

Thus, a curve γopt ∈ IT is optimal to JT if and only if a corresponding γ̃opt ∈
IT̃ is optimal for JT̃ . Hence tn = T can be taken as arbitrary, and with the
additional affine mapping φ(t) = t − t0, one can also set t0 = 0.

Recall now a cubic spline interpolant γCi

T = γC
T |[ti,ti+1] (see e.g. [3]), which for

given temporarily fixed admissible interpolation knots T = (t0, t1, . . . , tn−1, tn)
reads as:

γCi

T (t) = c1,i + c2,i(t − ti) + c3,i(t − ti)2 + c4,i(t − ti)3, (4)

and fulfills (for i = 0, 1, 2, . . . , n − 1; cj,i ∈ R
m, where j = 1, 2, 3, 4)

γCi

T (ti+k) = xi+k, γ̇Ci

T (ti+k) = vi+k, k = 0, 1

with the assumed unknown velocities v0, v1, v2, . . . , vn−1, vn ∈ R
m. The coeffi-

cients cj,i (with Δti = ti+1 − ti) are defined as follows:

c1,i = xi, c2,i = vi,

c4,i =
vi + vi+1 − 2xi+1−xi

Δti

(Δti)2
, c3,i =

(xi+1−xi)
Δti

− vi

Δti
− c4,iΔti. (5)

Adding n− 1 conditions γ̈
Ci−1
T (ti) = γ̈Ci

T (ti) over x1, x2, . . . , xn−1 yields m tridi-
agonal linear systems (see [3]) of n − 1 equations in n + 1 vector unknowns

Non-linearity and Non-convexity for Sparse Reduced Data 259

v0, v1, . . . , vn ∈ R
m:

vi−1Δti + 2vi(Δti−1 + Δti) + vi+1Δti−1 = bi,

bi = 3
(

Δti
xi − xi−1

Δti−1
+ Δti−1

xi+1 − xi

Δti

)
. (6)

In case of the so-called natural cubic spline interpolant (denoted as γC
T = γNS

T),
two extra constraints involving v0 and vn stipulate that γ̈C

T (0) = γ̈C
T (T) = 0

which leads to:

2v0 + v1 = 3
x1 − x0

Δt0
, vn−1 + 2vn = 3

xn − xn−1

Δtn−1
. (7)

The resulting m linear systems (i.e. (6) and (7)), each of size (n + 1) × (n + 1),
determine unique vectors v0, v1, v2, . . . , vn (see [3, Chap. 4]), which when fed into
(5) and then passed to (4) determine explicitly a natural cubic spline γNS

T (with
fixed T). Visibly all computed velocities {vi}m

i=0 (and, thus, γNS
T) with the aid

of the above procedure depend in fact on the interpolation knots {ti}m
i=0 and

fixed data M . It is well known (see e.g. [3]) that if the respective knots {ti}m
i=0

are frozen the optimization task (1) is minimized by a unique natural spline γNS
T

defined by {ti}n
i=0 and M . Therefore, upon relaxing all internal knots {ti}n−1

i=1

in (1) (for arbitrarily fixed terminal knots to e.g. t0 = 0 and tn = T) one arrives
at the following (see [3,17–19]):

Theorem 1. For a given M with points in Euclidean space Em, the subclass of
natural splines I NS ⊂ IT satisfies

min
γ∈IT

JT (γ) = min
γNS∈INS

JT (γNS), (8)

which reduces to the finite dimensional optimization in Ĵ = (t1, t2, . . . , tn−1)
over non-compact ΩT

t0 introduced in (2):

JT (γNS
opt) = min

T̂ ∈ΩT
t0

J F
T (t1, t2, . . . , tn−1)

= min
T̂ ∈ΩTc

t0

4
n−1∑
i=0

(−1
(Δti)3

(−3‖xi+1 − xi‖2 + 3〈vi + vi+1|xi+1 − xi〉Δti

−(‖vi‖2 + ‖vi+1‖2 + 〈vi|vi+1〉)(Δti)2
)
, (9)

for which at least one global minimum Ĵopt = (topt
1 , topt

2 , . . . , topt
n−1) ∈ ΩT

t0 exists.

We take here the computed optimal values of Ĵopt, as estimates {t̂i}m
i=0 ≈

{ti}m
i=0. In this paper, we demonstrate strong non-linearity and non-convexity

effects built-in the optimization scheme (9). The relevant examples and the-
oretical insight is supplemented to justify the latter. Sufficient conditions for
convexity (or unimodality) of (9) are proved at least for n = 2. The complexity

260 R. Kozera and L. Noakes

of the optimization scheme (9) not only impedes its theoretical analysis but also
impacts on the choice of feasible numerical scheme handling computationally
(9). Finally, this work is supplemented with illustrative examples and numerical
tests used to fit input sparse reduced data M for various n and m = 2, 3.

Related work on fitting reduced data M (sparse or dense) can also be found in
[8,9,15,16,21,22,26,33,34]. Some applications in computer vision and graphics,
image processing, engineering, physics, and astronomy are discussed e.g. in [1,2,
5,7,11,21,31,32].

2 Non-Linearity of J F
T and Numerical Difficulties

First we demonstrate a high non-linearity featuring the optimization task (9).
This is accomplished by generating an explicit formula for (9) whose complexity
is substantial even for n small and gets complicated for n incremented. The latter
is illustrated by the next two examples followed by pertinent computational tests.

Example 1. Consider four data points (i.e. here n = 3) M = {x0, x1, x2, x3} in
Em. Formula for J F

T (see (9)) reads here as J F,3
Tc

(T̂) = J 3
0 +J 3

1 +J 3
2 (with

T̂ = (t0, t1, t2, t3) and t0 = 0 and e.g. t3 = T = Tc - see (12)), where

J 3
0 =

1
(t0 − t1)3

(−3‖x0‖2 − 3‖x1‖2 + (t0 − t1)(3〈v0|x0〉 − 3〈v0|x1〉 + 3〈v1|x0〉

−3〈v1|x1〉 + (‖v0‖2 + ‖v1‖2 + 〈v0|v1〉)(t1 − t0)) + 6〈x0|x1〉),
J 3

1 =
1

(t1 − t2)3
(−3‖x1‖2 − 3‖x2‖2 + (t1 − t2)(3〈v1|x1〉 − 3〈v1|x2〉 + 3〈v2|x1〉

−3〈v2|x2〉 + (‖v1‖2 + ‖v2‖2 + 〈v1|v2〉)(t2 − t1)) + 6〈x1|x2〉),
J 3

2 =
1

(t2 − t3)3
(−3‖x2‖2 − 3‖x3‖2 + (t2 − t3)(3〈v2|x2〉 − 3〈v2|x3〉 + 3〈v3|x2〉

−3〈v3|x3〉 + (‖v2‖2 + ‖v3‖2 + 〈v2|v3〉)(t3 − t2)) + 6〈x2|x3〉). (10)

The missing velocities {v0, v1, v2, v3} for natural spline γNS
T (see (4)) are deter-

mined here by the following four matrix equations, with i = 1, . . . ,m (see (6)
and (7))

⎛
⎜⎜⎝

2 1 0 0
t2 − t1 2(t2 − t0) t1 − t0 0

0 t3 − t2 2(t3 − t1) t2 − t1
0 0 1 2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

vi
0

vi
1

vi
2

vi
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

3
xi
1−xi

0
t1−t0

3(
(t2−t1)(x

i
1−xi

0)

t1−t0
+

(t1−t0)(x
i
2−xi

1)

t2−t1
)

3(
(t3−t2)(x

i
2−xi

1)

t2−t1
+

(t2−t1)(x
i
3−xi

2)

t3−t2
)

3
xi
3−xi

2
t3−t2

⎞
⎟⎟⎟⎟⎟⎠

yielding (with the aid of symbolic computation in Mathematica - see [35]) a
unique solution. For the sake of this example, we consider exclusively the case
of m = 1. This can be easily extended to m > 1, since both square of norms and
dot products (appearing in non-reduced form of J F

Tc
(T̂)) are additive by each

vector component. Upon substituting computed velocities from the last matrix

Non-linearity and Non-convexity for Sparse Reduced Data 261

equations into J F,3
Tc

(as previously we set t0 = 0 and t3 = Tc - see (12)) and
taking into account that m = 1, Mathematica FullSimplify (see [35]) function
yields an explicit formula for

J F,3
Tc

(t1, t2) = N3(t1, t2)/(t21(t1 − t2)2(t2 − Tc)2((t1 + t2)2 − 4Tct2)),

where

N3(t1, t2) = (3(−T 3
c t22(x0 − x1)

2 + 2T 2
c t32(x0 − x1)

2 + Tct
4
2(x0 − x1)(x1 − x0)

+t31(−Tc(x0 + x1 − 2x2) + t2(x0 + x1 − 2x3))(Tc(x2 − x0) + t2(x0 − x3))

−t21(T
3
c (x0 − x2)

2 − 3Tct
2
2(x0 − x2)(x0 − x3)

+t32(x0 − x3)(2x0 − x2 − x3)) + t1(2T 3
c t2(x0 − x1)(x0 − x2)

−3T 2
c t22(x0 − x1)(x0 − x2) + t42(x0 − x1)(x0 − x3)

−Tct
3
2(x0 − x1)(x2 − x3)) − t41(Tc(x2 − x0) + t2(x0 − x3))(x2 − x3))).

Note that N3(t1, t2) is a 5th order polynomial in t1 and t2. �

Example 2. Let five data points (i.e. here n = 4) M = {x0, x1, x2, x3, x4} be
given in Em. Formula (9) reads here J F,4

Tc
(T̂) = J 4

0 + J 4
1 + J 4

2 + J 4
3 (for

T̂ = (t0, t1, t2, t3, t4) with t0 = 0 and t4 = Tc - see (12)), where J 4
k = J 3

k , for
k = 0, 1, 2 (see (10)) and

J 4
3 =

1
(t3 − t4)3

(−3‖x3‖2 − 3‖x4‖2 + (t3 − t4)(3〈v4|x3〉 − 3〈v3|x4〉 + 3〈v4|x3〉

−3〈v4|x4〉 + (‖v3‖2 + ‖v4‖2 + 〈v3|v4〉)(t4 − t3)) + 6〈x3|x4〉).
Again the missing velocities {v0, v1, v2, v3, v4} for the natural spline γNS

T defined
by (4) are determined here by five matrix equations, with i = 1, . . . ,m (see (6)
and (7)):

⎛
⎜⎜⎜⎜⎝

2 1 0 0 0
t2 − t1 2(t2 − t0) t1 − t0 0 0

0 t3 − t2 2(t3 − t1) t2 − t1 0
0 0 t4 − t3 2(t4 − t2) t3 − t2
0 0 0 1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

vi
0

vi
1

vi
2

vi
3

vi
4

⎞
⎟⎟⎟⎟⎠ = Bi, (11)

where

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3xi
1−xi

0
t1−t0

3((t2−t1)(x
i
1−xi

0)
t1−t0

+ (t1−t0)(x
i
2−xi

1)
t2−t1

)

3((t3−t2)(x
i
2−xi

1)
t2−t1

+ (t2−t1)(x
i
3−xi

2)
t3−t2

)

3((t4−t3)(x
i
3−xi

2)
t3−t2

+ (t3−t2)(x
i
4−xi

3)
t4−t3

)

3xi
4−xi

3
t4−t3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Again the system (11) renders a unique solution {v0, v1, v2, v3, v4} (found e.g.
upon using Mathematica software - see [35]). As previously only the case of m = 1

262 R. Kozera and L. Noakes

is here considered. Upon substituting computed velocities from (11) into J F,4
Tc

and setting t0 = 0 and t4 = Tc (see (12)) Mathematica FullSimplify function
yields an explicit formula for J F,4

Tc
(t1, t2, t3) =

N4(t1, t2, t3)

4t21(t1 − t2)2(t2 − t3)2(t3 − Tc)2(t2(t3 − t1)(t1 + 2t2 + t3) + Tc((t1 + t2)2 − 4t2t3))
.

It can be checked that N4(t1, t2, t3) is an 8th order polynomial in t1, t2 and
t3. We omit here to present a full explicit formula for N4(t1, t2, t3) since it takes
more than one A4 format page size. �

Examples 1 and 2 indicate the growing complexity of the non-linearity in (9)
while n increases. Thus, in a search for global minimum of (9), any numerical
optimization scheme relying on derivative computation (irrespectively of an ini-
tial guess) faces the computational difficulties for n getting bigger. The latter
is demonstrated in the next Example 3 for n = 7, where Mathematica Find-
Minimum applied with Newton Method fails (see [35]). Similar effects appear
when Mathematica Minimize[f,constraints,variables] is invoked (see [35]) which
works efficiently for both minimized function and imposed constraints (such as
inequality or equations) expressed as polynomials. The latter happens with the
numerator of the derivative of (9). To alleviate this problem and to efficiently
optimize (9) we invoke first a multidimensional version of the Secant Method (not
relying on derivative computation) given in Mathematica software e.g. for two
free variables as FindMinimum[f, {{var1, 2num1}, {var, 2num2}}] - see [35].
Its super-linear convergence order (e.g. for m = 1 equal to ((1+

√
5)/2) ≈ 1.618)

though slower than Newton quadratic rate, makes it still both faster and com-
putationally feasible as opposed to most standard optimization techniques based
on derivative calculation. In the last section of this paper, we compare the Secant
Method with a Leap-Frog Algorithm (see [18,27,28])). One of the advantages of
Leap-Frog over the Secant Method is a faster execution time (see also [17,18]).

In order to set up a computationally feasible numerical optimization scheme
a good initial guess is needed. In particular, for the Secant Method for each free
variable, two numbers are needed to be selected. A possible choice is the so-called
cumulative chord Tc = {tci}n

i=0 (see e.g. [13,14,20,25]):

tc0 = 0, tci+1 = tci + ‖xi+1 − xi‖, i = 0, . . . , n − 1, (12)

with T c =
∑n−1

i=0 ‖xi+1−xi‖. Cumulative chord parameterization in a normalized
form Tcc reads tcc

i = tci/T c (for i = 0, 1, . . . , n). Here an additional assumption
about reduced data M i.e. xi = xi+1 is also drawn. For the Secant Method and
each free knot ti appearing in (9) (here i = 1, 2, . . . , n−1) we choose two starting
numbers as tci − ε and tci + ε, with some prescribed small value for ε.

The next example illustrates expected computational difficulties in optimiz-
ing (9).

Example 3. (a) Consider four 2D reduced data points (i.e. here n = 3):

M3 = {(−4, 0), (−0.5,−4), (0.5,−3), (−0.5, 4)}.

Non-linearity and Non-convexity for Sparse Reduced Data 263

The cumulative chord knots (see (12)) based on M3 coincide with Tc =
{0, 5.31507, 6.72929, 13.8004}. In fact, here we have only two free variables
{t1, t2} corresponding to the unknown knots at points xi (i = 1, 2). Find-
Minimum (Newton Method) applied to (9) with the initial guess as cumula-
tive chords Tc yields the following optimal knots (with optimal energy value
J F

Tc
(T̂opt) = 0.741614):

Topt = {0, 5.3834, 8.2118, 13.8004}, (13)

where T̂opt = {5.3834, 8.2118}. The execution time TN
M3

= 3.012858 s. Find-
Minimum for the Secant Method (with two numbers associated to each free
variables taken as ε = ±0.5 variation of (12)) gives exactly the same optimal
knots (13) (with the same J F

Tc
(T̂opt) = 0.741614) but shorter execution time

TS
M3

= 0.647756 s. Finally, Minimize with constraints 0 < t1 < t2 < 13.8004
gives optimal knots (13) with J F

Tc
(T̂opt) = 0.741614. The execution time

amounts here TM
M3

= 9.229526 s > TN
M3

> TS
M3

.
(b) Consider now six 2D reduced data points (i.e. here n = 5):

M5 = {(0, 0), (−0.5,−4), (0.5,−4), (−0.5, 4), (0.5, 4), (−1, 3.8)}.

The resulting cumulative chord knots (based on (12) and M5) are equal here to
Tc = {0, 4.03113, 5.03113, 13.0934, 14.0934, 15.6067} with internal knots T̂c =
{4.03113, 5.03113, 13.0934, 14.0934}. In this case, there are four free variables
{t1, t2, t3, t4} corresponding to the unknown knots at points xi (i = 1, . . . , 4).
FindMinimum (Newton Method) applied to (9) with initial guess as Tc yields
the following optimal knots (with optimal energy value J F

Tc
(T̂opt) = 4.65476):

Topt = {0, 2.9185, 5.12397, 11.1964, 13.507}, (14)

where T̂opt = {2.9185, 5.12397, 11.1964}. The execution time TN
M5

= 29.946006 s.
FindMinimum (Secant Method) (here again ε = ±0.5 is added to cumula-
tive chord initial guess along each free knot ti) yields exactly the same opti-
mal knots (14) (with J F

Tc
(T̂opt) = 4.65476) and again shorter execution time

TS
M5

= 6.385922 s. As previously, Minimize with constraints 0 < t1 < t2 < t3 <

t4 < 13.507 yields optimal knots (14) and J F
Tc

(T̂opt) = 4.65476. The execution
time here reads TM

M5
= 358.390915 s >> TN

M5
> TS

M5
.

(c) Finally, consider now eight 2D reduced data points (i.e. here n = 7):

M6 = {(0, 0), (−0.5,−4), (0.5,−4), (−0.5, 4),
(0.5, 4), (−1, 3.8), (0.3, 0.3), (0.5, 0.5)}.

By (12) Tc = {0, 4.03113, 5.03113, 13.0934, 14.0934, 15.6067, 19.3403, 19.6231}.
As previously T̂c = {4.03113, 5.03113, 13.0934, 14.0934, 15.6067, 19.3403}. For
both optimization schemes FindMinimum (Newton Method) and Minimize no
result was reported within 60 min. FindMinimum (Secant Method) (with as pre-
viously ε = ±0.5 variations of cumulative chords for each free variable) yields

264 R. Kozera and L. Noakes

optimal knots (with energy J F
Tc

(T̂opt) = 8.27118):

Topt = {0, 2.67713, 4.69731, 10.3221, 12.3943, 14.8132, 19.0316, 19.6231},

where Topt = {2.67713, 4.69731, 10.3221, 12.3943, 14.8132}. The execution time
is TS

M7
= 35.708519 s. �

The above experiments illustrate that for n ≥ 7, FindMinimum (Secant
Method) offers a feasible computational scheme to optimize (9). In Sect. 4 of
this paper, we compare the performance of already discussed Secant Method
with Leap-Frog Algorithm (see [17,18,27,28]).

3 Non-Convexity of J F
T

We demonstrate in this section that J F
Tc

introduced in (9) may not be convex.
In doing so, a simple degenerate case of (9) with n = 2 is examined. Three points
M = {x0, x1, x2} are admitted with one relaxed internal knot t1 ∈ [t0 = 0, t2 =
Tc] (see (12)).

Example 4. For n = 2 and arbitrary natural m ≥ 1 (using Mathematica pack-
age), by (9) the energy J F

Tc
(t1) = (Tc − t0)−3(Ẽdeg ◦ φ−1)(t1), where Ẽdeg(s1) =

3‖x0−x1
s1

+ x2−x1
1−s1

‖2 - here t1 ∈ (t0, t2 = Tc), and s1 = φ(t1) = (t−t0)(Tc−t0)−1 ∈
(0, 1). Obviously since φ−1′ ≡ Tc − t0 > 0 and φ−1′′ ≡ 0 the convexity (non-
convexity) of Ẽdeg is inherited by J F

Tc
. Take now for m = 1 the following points

x0 = −1, x1 = 0 and x2 = 20 (here (x0 −x1)(x2 −x1) = −20 < 0). The graph of
the energy Ẽdeg(s1) = 3(−1

s1
+ 20

1−s1
)2 over the interval (0, 1) is plotted in Fig. 1(a).

The non-convexity is better visible in Fig. 1(b) with the graph of the energy Ẽdeg

localized over the sub-interval (0.05, 0.35). Finally the change of sign in the sec-
ond derivative Ẽ ′′

deg is also illustrated in Fig. 1(c). In fact, Ẽ ′′
deg(0.21) = 1338.7

and Ẽ ′′
deg(0.20) = −1640.63. Thus, Ẽdeg is not convex which also implies non-

convexity of J F
Tc

in the general case. �

Fig. 1. The graph of the non-convex energy Ẽdeg for x0 = −1, x1 = 0, and x2 = 20 (a)
over the interval (0, 1), (b) in the proximity of non-convexity sub-interval (0.05, 0.35)
(c) and the graph of the corresponding changing signs second derivative Ẽ ′′

deg in the
proximity of (0.05, 0.35)

Non-linearity and Non-convexity for Sparse Reduced Data 265

Fig. 2. The graph of the convex energy Ẽdeg for x0 = 2, x1 = 0, and x2 = 5 (a) over
the interval (0, 1), (b) and the graph of the corresponding second derivative Ẽ ′′

deg ≥ 0
over (0, 1)

The next example formulates sufficient conditions to enforce convexity of
J F

Tc
, but only for m = 1 and n = 2. The latter can be extended to the general

case of m ≥ 1 and n = 2. Such general case is here omitted due to the paper
length limitation.

Example 5. (i) For m = 1 it is easy to show that Ẽdeg is convex (and so thus J F
Tc

)
if (x0−x1)(x2−x1) ≥ 0 - under this constraint, we have exactly one critical point
for Ẽdeg. Indeed, recalling that Ẽdeg(s1) = 3f2(s1) with f(s1) = x0−x1

s1
+ x2−x1

1−s1
it suffices to show that f is either convex and f ≥ 0 or it is concave and f ≤ 0,
for s1 ∈ (0, 1). Indeed the latter combined with Ẽ ′′

deg = 3(f2)′′ = 6(f ′)2 + 6ff ′′

yields the convexity of J F
Tc

given non-negativity of ff ′′ over s1 ∈ (0, 1) which
follows from (x0 − x1)(x2 − x1) ≥ 0 applied both to f ′′(s1) = x0−x1

s3
1

+ x2−x1
(1−s1)3

and f . Figure 2(a) shows that convexity of Ẽdeg(s1) = 3(2
s1

+ 5
1−s1

)2 indeed
follows for x0 = 2, x1 = 0 and x2 = 5 with (x0 − x1)(x2 − x1) ≥ 0 clearly
fulfilled. As expected Ẽ ′′

deg ≥ 0 over (0, 1) - see Fig. 2(b). The corresponding
sufficient conditions guaranteeing the convexity of Ẽdeg for m ≥ 1 and n = 2 can
also be formulated (though omitted here) - see [19]. As it turns out, the vector
generalization 〈x0 − x1|x2 − x1〉 ≥ 0 of scalar inequality (x0 − x1)(x2 − x1) ≥ 0
assures the convexity of Ẽdeg and thus of J F

Tc
.

(ii) In case of scalar data (i.e. when m = 1) if (x0 − x1)(x2 − x1) < 0 holds
then the existence of exactly one critical point (and thus one global minimum -
see Theorem 1) of Ẽdeg (and so of J F

Tc
) follows, which yields the unimodality of

Ẽdeg = 3f2 (see [4]). Indeed, assume that (x0 −x1)(x2 −x1) < 0. Since now x0 =
x1 and x1 = x2 we have x0 −x1 = 0 and x2 −x1 = 0. To show unimodality of f2

we need to prove the existence of exactly one critical point s1 ∈ (0, 1) satisfying
(f2)′(s1) = 2f(s1)f ′(s1) = 0. Taking into account (x0 − x1)(x2 − x1) < 0 we
have that f ′(s1) = −x0−x1

s2
1

+ x2−x1
(1−s1)2

is either always positive or negative over
(0, 1). Hence for unimodality of f2 it suffices to show that f(s1) = 0 has one
root s01 ∈ (0, 1) defining a unique global minimum of f2 = 0 (and of Ẽdeg). In
this case as Ẽdeg(s1) = 3f2(s1) the energy Ẽdeg also vanishes at s01. The latter
may not be the case for the convexity case, since another factor f ′(s1) = 0 may
contribute to (f2)′(s1) = 0. A simple inspection shows that

266 R. Kozera and L. Noakes

s01 =
(x0 − x1)

(x0 − x1) − (x2 − x1)
. (15)

Note that the denominator x0 −x2 in (15) does not vanish due to (x0 −x1)(x2 −
x1) < 0. Of course, s01 > 0 since (x0 − x1)(x2 − x1) < 0. To justify s01 < 1
two cases are here considered, namely either x0 − x1 > 0 and x2 − x1 < 0 or
x0 − x1 < 0 and x2 − x1 > 0. In the first (second) case s01 < 1 in (15) leads to a
true inequality x2 − x1 < 0 (x2 − x1 > 0). Figure 1 confirms the unimodality of
Edeg for (x0 − x1)(x2 − x1) = −20 < 0. As proved the global minimum of (9) is
attained at s01 = 1/21 ≈ 0.047619 nullifying J F

Tc
.

Note that in case of convexity (enforced by (x0 − x1)(x2 − x1) ≥ 0), the
unique global minimum s01 can also be found in analytic form. Indeed as x0 = x1

and x1 = x2 it suffices to assume a stronger inequality (x0 − x1)(x2 − x1) > 0.
The latter results in either f > 0 or f < 0. Consequently for 6f ′f to vanish we

need to solve f ′(s1) = 0 over (0, 1) which leads to s01 =
√

|x0−x1|√
|x2−x1|+

√
|x0−x1| ∈

(0, 1). Thus, f2 is unimodal (and so Ẽdeg) since (f2)′ = 2ff ′ vanishes at exactly
one point s01 ∈ (0, 1). The unimodality of Ẽdeg can also be proved in case of
〈x0 − x1|x2 − x1〉 < 0 for arbitrary data with m ≥ 1 and n = 2. �

4 Numerical Experiments for Fitting Sparse Reduced
Data

All experiments are conducted in Mathematica - see [35]. The numerical tests
compare the Leap-Frog algorithm (see [17,18]) with the Secant Method both used
to optimize (9). Only sparse reduced data points M in E2,3 are admitted here,
though the entire setting is applicable for arbitrary m, i.e. for reduced data M
in arbitrary Euclidean space.

The first example admits reduced data M in E2 (i.e. for m = 2).

Fig. 3. Natural splines interpolating data points M2D3 (a) γNS
Tuni

with uniform knots

Tuni, (b) γNS
Tc

with cumulative chords Tc, (c) γNS
T LF

opt
with optimal knots T LF

opt = T SM
opt

(thus γNS
T LF

opt
= γNS

T SM
opt

) (d) γNS
T LF

opt
and γNS

Tc
plotted together

Non-linearity and Non-convexity for Sparse Reduced Data 267

Example 6. Assume for n = 6, the following 2D points (see dotted points in
Fig. 3):

M2D3 = {(−3,−3), (−3.1,−2.6), (2.5,−2.6), (2.4,−2.8), (−3, 2.8), (−3, 2.6)}.

The uniform interpolation knots, {t̂i = i
6Tc}6i=0 (rescaled to Tc - see (12)) taken

as a blind guess of {ti}6i=0, read as:

Tuni = {0, 2.84308, 5.68615, 8.52923, 11.3723, 14.2154}
and the initial guess based on cumulative chord Tc (see (12)) coincides with:

Tc = {0, 0.412311, 6.01231, 6.23592, 14.0154, 14.2154}.

Here T̂uni (and T̂c) is defined as Tuni (and Tc) stripped from its terminal values.
The natural splines γNS

Tuni
(based on Tuni) and γNS

Tc
(based on Tc) yield the fol-

lowing energies J F
Tc

(T̂uni) = 15.4253 > J F
Tc

(T̂c) = 8.51108. Both interpolants
γNS
Tuni

and γNS
Tc

are shown in Fig. 3(a) and (b), respectively.
One expects that the Secant Method with two initial numbers tci ± 0.5 may

produce a bad solution as |tc0 − tc1| < 0.5, |t2 − t3| < 0.5 and |t4 − t5| < 0.5.
Indeed the Secant Method returns topt

1 = −8.2211 < t0 = 0, which is disallowed.
Upon adjusting tci ± 0.05 the Secant Method yields (for (9)) the optimal knots
T̂ SM

opt augmented by terminal times t0 = 0 and t5 = Tc as:

T SM
opt = {0, 0.737027, 6.07314, 7.14642, 13.5208, 14.2154}

with the optimal energy J F
Tc

(T̂ SM
opt) = 5.04331. The execution time amounts to

TSM = 9.204045 s. The resulting curve γS
T SM

opt
is plotted in Fig. 3(c). In fact, for

general data it is safer for each free variable optimized by the Secant Method to
choose a pair of numbers tci ± 0.5min0≤i≤n−1{|tci+1 − tci |}.

Leap-Frog decreases the initial energy to J F
Tc

(T̂ LF
opt) = J F

Tc
(T̂ SM

opt) (as for
the Secant Method) with the iteration stopping conditions T̂ LF

opt = T̂ SM
opt (up to

6th decimal point) upon 38 iterations. The respective execution time amounts
to TLF = 3.247230 < TSM . The 0th (i.e. J F

Tc
(T̂c)), 1st, 2nd, 10th, 18th, and

38th iterations of Leap-Frog decrease the energy to:

{8.51108, 5.91959, 5.23031, 5.04455, 5.04331, 5.04331}
with again only the first three iterations contributing to the major correction of
the initial guess knots Tc. The resulting natural spline γNS

T LF
opt

(clearly the same

as γNS
T SM

opt
yielded by the Secant Method) based on T LF

opt is shown in Fig. 3(c) and

also visually compared with γNS
Tc

in Fig. 3(d).
Again if Leap-Frog iteration bound condition is changed e.g. to make current

Leap-Frog energy equal to J F
Tc

(T̂ SM
c) (say up to 5th decimal place) then only 18

iterations are needed here with shorter execution time TLF
E = 1.785042 < TSM

and with optimal times

T LFE
opt = {0, 0.736394, 6.0697, 7.14349, 13.5205, 14.2154}.

268 R. Kozera and L. Noakes

We miss out here a bit on a precise estimation of the optimal knots but we
accelerate the Leap-Frog execution time by obtaining almost the same interpo-
lating curve as the optimal one (as T̂ LFE

opt ≈ T̂ SM
opt). For other iteration stopping

criteria accelerating the execution of Leap-Frog at almost no cost in difference
between computed and optimal curve see [19]. �

We pass now to an example of reduced data in E3 (i.e. with m = 3).

Fig. 4. Natural splines interpolating data points M3D3 (a) γNS
Tuni

with uniform knots

Tuni, (b) γNS
Tc

with cumulative chords Tc, (c) γNS
T LF

opt
with optimal knots T LF

opt = T SM
opt

(thus γNS
T LF

opt
= γNS

T SM
opt

) (d) γNS
T LF

opt
and γNS

T SM
c

plotted together

Example 7. Consider for n = 7 the following 3D points (see dotted points in
Fig. 4):

M3D3 = {(0, 0, 1), (0, 0, −1), (0, 0, −0.8), (1, 0, 0), (1, 0.2, 0), (1, 0.4, 0), (1, 0.8, 0.2),

(1, 1, 0)}.

The uniform interpolation knots {t̂i = i
7Tc}7i=0 ≈ {ti}7i=0 (rescaled to t0 = 0 and

to Tc – see (12)) read as:

Tuni = {0, 0.658669, 1.31734, 1.97601, 2.63467, 3.29334, 3.95201, 4.61068}
and the initial guess based on cumulative chords Tc is equal to:

Tc = {0, 2, 2.2, 3.48062, 3.68062, 3.88062, 4.32784, 4.61068}.

Here T̂uni = {0.658669, 1.31734, 1.97601, 2.63467, 3.29334, 3.95201}, while
the other one T̂c = {0, 2, 2.2, 3.48062, 3.68062, 3.88062, 4.32784, 4.61068}. The
natural splines γNS

Tuni
(based on Tuni) and γNS

Tc
(based on Tc) yields the fol-

lowing energies J F
Tc

(T̂uni) = 46.7919 > J F
Tc

(T̂c) = 22.3564. Both interpolants
γNS
Tuni

and γNS
Tc

are shown in Fig. 4(a) and(b), respectively. Noticeably the energy
based on blind guess of knots (i.e. for uniform knots) is far from the optimal one.

The Secant Method yields for (9) the optimal knots T̂ SM
opt (augmented by

terminal knots t0 = 0 and t7 = Tc - see (12))

T SM
opt = {0, 1.34728, 1.82093, 3.12718, 3.39487, 3.62307, 4.19613, 4.61068}

Non-linearity and Non-convexity for Sparse Reduced Data 269

with the optimal energy J F
Tc

(T̂ SM
opt) = 15.407. The execution time amounts to

TSM = 128.804084 s. The resulting curve γNS
T SM

opt
is plotted in Fig. 4(c). Note that

for each free variable, the Secant Method uses here two initial numbers tci ± 0.1.
Leap-Frog decreases the initial energy to J F

Tc
(T̂ LF

opt) = J F
Tc

(T̂ SM
opt) (as for

the Secant Method) with the iteration stopping conditions T̂ LF
opt = T̂ SM

opt (up to
5th decimal point) upon 620 iterations. The execution time amounts to TLF =
73.749111 s < TSM . The 0th (i.e. J F

Tc
(T̂c)), 1st, 2nd, 10th, 50th, 40th and

100th, 200th, 281th and 620th iterations of Leap-Frog decrease the energy to:

{22.3564, 18.5598, 18.274, 17.4628, 15.8596.15.5049, 15.409115.407, 15.407}

with again only the first three iterations contributing to major correction of the
initial guess knots Tc. The resulting natural spline γNS

T LF
opt

(clearly the same as

γNS
T SM

opt
yielded by the Secant Method) based on T LF

opt2 is shown in Fig. 4(c) and

also visually compared with γNS
Tc

in Fig. 4(d). The optimal curve does not vary
too much from the initial guess curve based on cumulative chord knots.

Again if Leap-Frog iteration bound condition is changed e.g. to make current
Leap-Frog energy equal to J F

Tc
(T̂ SM

c) (say up to 4th decimal place) then only
281 iterations are needed here with shorter execution time TLF

E = 33.931990 s <
TSM and with optimal knots:

T LFE
opt = {0, 1.348043, 1.82195, 3.12892, 3.39651, 3.62453, 4.19679, 4.61068}.

As previously, we lose here slightly on a precise estimation of the optimal knots
but we accelerate the Leap-Frog execution time by obtaining almost the same
interpolating curve as the optimal one (as T LFE

opt ≈ T SM
opt). For other iteration

stopping criteria accelerating the execution of Leap-Frog at almost no cost in
difference between computed curve and optimal curve see [19]. �

5 Conclusions

In this paper, we discuss the method of estimating the unknown interpolation
knots {ti}n

i=0 by {t̂i}n
i=0 to fit reduced sparse data M = {qi}n

i=0 with the nat-
ural cubic spline in arbitrary Euclidean space Em. As indicated here, the above
task is transformed into the corresponding finite-dimensional constrained opti-
mization task (9) in (t1, t2, . . . , tn−1)-variables, subject to the satisfaction of the
inequalities t0 < t1 < t2, < . . . < tn−1 < tn. We first demonstrate a high non-
linearity and possible non-convexity of (9) - Sects. 1, 2, and 3. Consequently, the
latter hinders the use of standard optimization techniques like Newton Method to
deal with such optimization task. Finally, two computationally feasible schemes
are implemented, i.e. Leap-Frog and the Secant Method to examine the quality
of the reconstructed interpolants. The derivation of the explicit formula in (9)
including its particular forms examined in Examples 1 and 2 relies on Mathemat-
ica symbolic computation - see [35]. All numerical computations performed in

270 R. Kozera and L. Noakes

Examples 3, 6 and 7 resort to the numerical functions supplied by Mathematica
software (see [35]). In addition, sufficient conditions to enforce the convexity (or
unimodality) of (9) are generated for the special case of n = 2 - see Example 5.
Future work involves the analysis of a more general case i.e. when n is arbitrary.
Alternatively one may also consider to derive a similar to (9) optimization task
set for a complete spline interpolant (see [3]), with the initial velocities v0 and
vn either a priori given or approximated according to [15].

References

1. Bézier, P.E.: Numerical Control: Mathematics and Applications. Wiley, New York
(1972)

2. Boehm, E., Farin, G., Kahmann, J.: A survey of curve and surface methods in
CAGD. Comput. Aided Geom. Des. 1(1), 1–60 (1988)

3. de Boor, C.: A Practical Guide to Spline. Springer, New York (1985)
4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,

Cambridge (2004)
5. Budzko, D.A., Prokopenya, A.N.: On the stability of equilibrium positions in

the circular restricted four-body problem. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 88–100. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23568-9 8

6. Epstein, M.P.: On the influence of parameterization in parametric interpolation.
SIAM J. Numer. Anal. 13, 261–268 (1976)

7. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, San Diego (1993)

8. Farouki, R.T.: Optimal parameterizations. Comput. Aided Geom. Des. 14(2), 153–
168 (1997)

9. Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA J.
Numer. Anal. 26, 25–33 (2006)

10. Hoschek, J.: Intrinsic parametrization for approximation. Comput. Aided Geom.
Des. 5(1), 27–31 (1988)

11. Janik, M., Kozera, R., Kozio�l, P.: Reduced data for curve modeling - applications
in graphics, computer vision and physics. Adv. Sci. Tech. 7(18), 28–35 (2013)

12. Kocić, L.M., Simoncinelli, A.C., Della, V.B.: Blending parameterization of poly-
nomial and spline interpolants. Facta Universitatis (NIŠ), Ser. Math. Inform. 5,
95–107 (1990)

13. Kozera, R.: Curve modelling via interpolation based on multidimensional reduced
data. Stud. Informatica 25, 1–140 (2004). (4B(61))

14. Kozera, R., Noakes, L.: Piecewise-quadratics and exponential parameterizations
for reduced data. Appl. Maths Comput. 221, 620–638 (2013)

15. Kozera, R., Noakes, L.: C1 Interpolation with cumulative chord cubics. Funda-
menta Informaticae 61(3–4), 285–301 (2004)

16. Noakes, L., Kozera, R.: Interpolating sporadic data. In: Heyden, A., Sparr, G.,
Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 613–625.
Springer, Heidelberg (2002). doi:10.1007/3-540-47967-8 41

17. Kozera, R., Noakes, L.: Optimal knots selection for sparse reduced data. In: Huang,
F., Sugimoto, A. (eds.) PSIVT 2015. LNCS, vol. 9555, pp. 3–14. Springer, Cham
(2016). doi:10.1007/978-3-319-30285-0 1

http://dx.doi.org/10.1007/978-3-642-23568-9_8
http://dx.doi.org/10.1007/3-540-47967-8_41
http://dx.doi.org/10.1007/978-3-319-30285-0_1

Non-linearity and Non-convexity for Sparse Reduced Data 271

18. Kozera, R., Noakes, L.: Modeling reduced sparse data. In: Romaniuk, R.S. (ed.)
Photonics, Applications in Astronomy, Communications, Industry, and High-
Energy Physics Experiments 2016. SPIE 2016, vol. 10031. Society of Photo-Optical
Instrumentation Engineers, Bellingham (2016)

19. Kozera, R., Noakes, L.: Fitting Data via Optimal Interpolation Knots. (Submitted)
20. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific,

Singapore (2000)
21. Kuznetsov, E.B., Yakimovich, A.Y.: The best parameterization for parametric

interpolation. J. Comp. Appl. Maths 191, 239–245 (2006)
22. Marin, S.P.: An approach to data parameterization in parametric cubic spline

interpolation problems. J. Approx. Theory 41, 64–86 (1984)
23. Mørken, K., Scherer, K.: A general framework for high-accuracy parametric inter-

polation. Math. Comput. 66(217), 237–260 (1997)
24. Noakes, L.: A global algorithm for geodesics. J. Math. Austral. Soc. Ser. A 64,

37–50 (1999)
25. Noakes, L., Kozera, R.: Cumulative chords piecewise-quadratics and piecewise-

cubics. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Proper-
ties from Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 59–75.
Springer, The Netherlands (2006)

26. Noakes, L., Kozera, R.: More-or-less uniform sampling and lengths of curves. Quar.
Appl. Maths 61(3), 475–484 (2003)

27. Noakes, L., Kozera, R.: Nonlinearities and noise reduction in 3-source photometric
stereo. J. Math. Imag. Vis. 18(3), 119–127 (2003)

28. Noakes, L., Kozera, R.: 2D leap-frog algorithm for optimal surface reconstruction.
In: Latecki, M.J. (ed.) SPIE 1999. Vision Geometry VIII, vol. 3811, pp. 317–328.
Society of Industrial and Applied Mathematics, Bellingham (1999)

29. Lee, E.T.Y.: Corners, cusps, and parameterization: variations on a theorem of
Epstein. SIAM J. Numer. Anal. 29, 553–565 (1992)

30. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Comput. Aided
Geom. Des. 21, 363–370 (1989)

31. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)
32. Prokopenya, A.N.: Hamiltonian normalization in the restricted many-body prob-

lem by computer algebra methods. Program. Comput. Softw. 38(3), 156–166
(2012)

33. Rababah, A.: High order approximation methods for curves. Comput. Aided Geom.
Des. 12, 89–102 (1995)

34. Schaback, R.: Optimal geometric Hermite interpolation of curves. In: Dæhlen, M.,
Lyche, T., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces
II, pp. 1–12. Vanderbilt University Press, Nashville (1998)

35. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)

The Convergence Conditions of Interval
Newton’s Method Based on Point Estimates

Zhe Li1,2(B), Baocheng Wan2,3, and Shugong Zhang2

1 School of Science, Changchun University of Science and Technology,
Changchun 130022, China

lizhe@amss.ac.cn
2 School of Mathematics, Key Laboratory of Symbolic Computation

and Knowledge Engineering, Jilin University, Changchun 130012, China
wanbaocheng@163.com, sgzh@jlu.edu.cn

3 Jilin Agricultural University, Changchun 130118, China

Abstract. Both Smale’s alpha theory and Rump’s interval theorem pro-
vide the conditions which guarantee the existence of a simple solution
of a square nonlinear system. In this paper, we generalize the conclusion
provided by Rall to reveal the relationship between Smale’s alpha the-
ory and Rump’s interval theorem. By point estimates, we propose the
conditions under which the condition of Rump’s interval theorem holds.
Furthermore, using only the information of the given system at the ini-
tial approximate point, we give the convergence conditions of interval
Newton’s algorithm proposed by Rump.

Keywords: Newton iteration · Alpha theory · Interval algorithm · Point
estimate · Verification

1 Introduction

Solving a nonlinear system in the form f(x) = 0 with f = (f1, f2, . . . , fn)T

and x = (x1, . . . , xn)T is one of the most fundamental problems in scientific
computing. In this paper, we assume that f : Rn → R

n and f1, f2, . . . , fn have
all order continuous partial derivatives. Denote the Jacobian matrix of f at x
by f ′(x).

Newton’s method and its modifications have long played an important role
in solving nonlinear systems. Under certain conditions, Newton’s method con-
structs a sequence of iteration points that will converge to a solution of the
given nonlinear system. In 1948, the author of [2] established the Kantorovich
theorem based on the assumption that the Jacobian matrix of the nonlinear

Z. Li—This research was supported by Chinese National Natural Science Foundation
under Grant Nos. 11601039, 11671169, 11501051, by the open fund Key Lab. of Sym-
bolic Computation and Knowledge Engineering under Grant No. 93K172015K06,
and by the Education Department of Jilin Province, “13th Five-Year” science and
technology project under Grant No. JJKH20170618KJ.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 272–284, 2017.
DOI: 10.1007/978-3-319-66320-3 20

The Convergence Conditions of Interval Newton’s Method 273

system is Lipschitz continuous on some domain. The Kantorovich theorem first
gives the condition to ensure that a simple solution exists close to the initial
point and the Newton iteration sequence quadratically converges to this simple
solution. Using the technique of point estimates, Smale et al. [15–17] developed
the alpha theory to locate and approximate simple solutions. The alpha theory
requires only information concerning the nonlinear system at the initial point of
the Newton iteration. By introducing the dominating sequence technique, Wang
and Han [18] improved both the condition and conclusion of the alpha theory.
With the aid of Schröder operator, Giusti et al. [3] provided a criterion for locat-
ing clusters of solutions of univariate nonlinear functions. Later on, Giusti et al.
[4] generalized their results to locate breadth-one singular solutions of multivari-
ate nonlinear systems. For the performance of the alpha theory, Hauenstein and
Sottile [6] described the program alphaCertified to certify solutions of polyno-
mial systems. Recently, Hauenstein and Levandovskyy [5] extended the program
alphaCertified to verify solutions to polynomial-exponential systems.

Interval arithmetic is another important tool of verification methods. In
1960s, Krawczyk [9] first introduced an interval version of Newton’s method for
verifying the existence of simple solutions. Moore [10] proposed computationally
verifiable sufficient condition for interval Newton’s method given by Krawczyk.
Rump [12] made interval Newton’s method perform better in practice, which
is called Rump’s interval theorem and included in verifynlss function in INT-
LAB toolbox [13] in Matlab. Based on the deflation technique using smoothing
parameters, Rump and Graillat [14] described a verification algorithm to ver-
ify multiple solutions of univariate nonlinear functions and double solutions of
multivariate nonlinear systems. Further, Li and Zhi [8] provided an algorithm
to verify breadth-one singular solutions of polynomial systems, which had been
generalized to deal with the verification of isolated singular solutions in [7].
By combining interval algorithms with some other methods, Yang et al. [19]
investigated the verification for real solutions of positive-dimensional polynomial
systems.

In 1980, Rall [11] exhibited the relationship between the Kantorovich theorem
and Moore’s interval theorem. By the quantities of the Kantorovich theorem,
Rall provided the conditions under which Moore’s verifiable sufficient condition
holds. For an initial approximate x(0) ∈ R

n and a radius ρ > 0, let Xρ denote
the set {x : ‖x − x(0)‖∞ < ρ}, and let η, B, κ be the constants such that

‖f ′(x(0))
−1

f(x(0))‖∞ ≤ η,

‖f ′(x(0))
−1‖∞ ≤ B,

‖f ′(u) − f ′(v)‖∞ ≤ κ‖u − v‖, u,v ∈ Ω,

where Ω is a sufficiently large region containing x(0). Rall’s conclusion is that if

h = Bκη <
1
4
,

then

x(0) − f ′(x(0))
−1

f(x(0)) + (I − f ′(x(0))
−1

f ′(Xρ))(Xρ − x(0)) ⊂ Xρ

274 Z. Li et al.

holds for any ρ satisfying the inequality

1 − √
1 − 4h

2h
η ≤ ρ ≤ 1 +

√
1 − 4h

2h
η.

Since the alpha theory and Rump’s interval theorem are respectively the
generalization of the Kantorovich theorem and Moore’s interval theorem, we
generalize Rall’s conclusion to discuss the relationship between the alpha theory
and Rump’s interval theorem in this paper. By only the information of the given
system at the initial approximate point, we provide the conditions to guarantee
that we can obtain an approximate point after finite Newton’s iterations, where
this approximate iteration point corresponds to an interval solution satisfying the
condition of Rump’s interval theorem. The next section will give some notation
and background results.

2 Notation and Preliminaries

First of all, we emphasize that the norm ‖ ·‖ of the vector and the matrix in this
paper are both the infinite norm ‖ · ‖∞ since the metric for the interval vector
is closely related to the infinite norm.

Henceforward, we use boldface letters to express tuples and denote their
entries by the same letter with subscripts, for example α = (α1, . . . , αn)T .
Denote the usual product order on R

n by ≤, that is, for arbitrary α,β ∈ R
n,

α ≤ β if and only if αi ≤ βi for 1 ≤ i ≤ n.
For x ∈ R

n, if f ′(x) is nonsingular, then define

α(f ,x) = β(f ,x)γ(f ,x),

β(f ,x) = ‖f ′(x)−1
f(x)‖,

γ(f ,x) = sup
k≥2

‖f ′(x)−1f (k)(x)
k!

‖
1/(k−1)

.

Given the initial approximate x(0) with the associated simple root x∗ of f , we
let α, β and γ to stand for α(f ,x(0)), β(f ,x(0)) and γ(f ,x(0)), respectively.
Applying Newton’s method for f can get the Newton iteration sequence {x(k)},
that is,

x(k+1) = x(k) − f ′(x(k))
−1

f(x(k)), k ∈ N.

The alpha theory provides the convergence conditions which ensure the sequence
{x(k)} converges to x∗ only with the values α, β and γ. The dominating sequence
technique is a powerful tool for improving the alpha theory. The dominating
sequence {t(k)} is produced by the Newton iteration with the initial approximate
t(0) = 0 for the univariate function

h(t) = β − t +
γt2

1 − γt
,

The Convergence Conditions of Interval Newton’s Method 275

where the equation h(t) = 0 has the following two solutions

t∗ =
2β

1 + α +
√

1 − 6α + α2
, t∗∗ =

1 + α +
√

1 − 6α + α2

4γ
. (1)

The following theorem is a version of the alpha theory given by Wang and Han,
where the condition on the quantity α is best possible.

Theorem 1. [4,18] If 0 < α < 3 − 2
√

2, then for any t∗ ≤ ρ < t∗∗, the system
f(x) = 0 has exactly one simple root x∗ in B(x(0), ρ). In addition, the New-
ton iteration sequence {x(k)} converges quadratically to x∗, and the dominating
sequence {t(k)} increases and converges quadratically to t∗. Furthermore, for all
k ∈ N,

‖x(k+1) − x(k)‖ ≤ t(k+1) − t(k),

‖x(k+1) − x(k)‖ ≤ q(α)2
k−1

β

with
q(α) =

4α

(1 − α +
√

1 − 6α + α2)
2 . (2)

Denote the set of intervals by IR. An interval vector X = [x,x] ∈ IR
n with

x,x ∈ R
n and x ≤ x is defined by

X = [x,x] = {x ∈ R
n : x ≤ x ≤ x}.

For x ∈ R
n, X = [x,x] ∈ IR

n, x + X = [x + x,x + x]. Let Yρ = {y ∈ R
n :

‖y‖ ≤ ρ}, then B(x, ρ) = x + Yρ.
The norm of the interval vector X = [x,x] is defined by

‖X‖ = ‖[x,x]‖ = max{‖x‖ : x ∈ X}.

Besides int(X) designates the interior of the interval vector X. Given a set Z ⊂
R

n, the interval hull of Z is the narrowest interval vector containing Z, namely,

hull(Z) =
⋂

{X ∈ IR
n : X ⊇ Z}.

Given a continuous mapping g : Rn → R
m and an interval vector X, the interval

vector g(X) ∈ IR
m is defined as

g(X) = hull{g(x) : x ∈ X}.

Given an interval matrix A ∈ IR
m×n and an interval vector X ∈ IR

n, the
interval vector AX is defined by

AX = hull{Ax : A ∈ A,x ∈ X}.

Specially, the norm of the interval matrix A is defined as

‖A‖ = max{‖A‖ : A ∈ A}.

The following theorem is a version of the interval Newton’s method given by
Rump.

276 Z. Li et al.

Theorem 2. [12] Given x(0) ∈ R
n, Y ∈ IR

n with 0 ∈ Y, R ∈ R
n×n, if

S(Y,x(0)) := −Rf(x(0)) + (I − Rf ′(x(0) + Y))Y ⊆ int(Y),

then there exists a unique x∗ ∈ x(0) + Y such that f(x∗) = 0.

3 Main Results

To give the main results of this paper, we need the following functions,

ψ(u) = 2u2 − 4u + 1,

g1(α) = α2 − 4α + 10,

g2(α) = α3 − 6α2 + 21α + 28,

g3(α) = 4α3 − 25α2 + 88α − 8,

θ(α) =
1
3

arccos(
g2(α)√
g1(α)3

),

ω1(α) =
√

g1(α) cos(θ(α) +
2π

3
) + 2 +

α

2
,

ω2(α) =
√

g1(α) cos(θ(α) +
4π

3
) + 2 +

α

2
,

ω3(α) =
√

g1(α) cos(θ(α)) + 2 +
α

2
.

Here we give some lemmas and one proposition from which the main theorem
will easily follow.

Lemma 1. [15] Given x̃ ∈ R
n, if γ‖x̃ − x(0)‖ < 1 − √

2/2, then

γ(f , x̃) ≤ γ

ψ(γ‖x̃ − x(0)‖)(1 − γ‖x̃ − x(0)‖)
.

Lemma 2. If 0 < α < 3 − 2
√

2, then for all k ≥ 1,

γ‖x(k) − x(0)‖ < 1 −
√

2
2

, (3)

γ(f,x(k)) ≤ γ

ψ(γ‖x(k) − x(0)‖)(1 − γ‖x(k) − x(0)‖)
. (4)

Proof. If 0 < α < 3 − 2
√

2, then by Theorem 1,

‖x(k) − x(0)‖ ≤
k∑

j=1

‖x(j) − x(j−1)‖ ≤
k∑

j=1

(t(j) − t(j−1))

≤ t(k) ≤ t∗.

The Convergence Conditions of Interval Newton’s Method 277

Therefore
γ‖x(k) − x(0)‖ ≤ 2α

1 + α +
√

1 − 6α + α2
.

Since the right hand side of the above inequality monotonously increases from 0
to 1 − √

2/2 as α goes from 0 to 3 − 2
√

2, it follows that (3) holds. By means of
Lemma 1, (4) follows. ��
Lemma 3. If

0 < ρ <
1 − √

2/2
γ

, (5)

β + ρ(
1

(1 − γρ)2
− 1) < ρ, (6)

then
S(Yρ,x

(0)) ⊆ int(Yρ). (7)

Proof. Given an arbitrary real vector y ∈ Yρ, we expand the Jacobian matrix
f ′(x(0) + y) into power series and get

f ′(x(0))
−1

f ′(x(0) + y) = f ′(x(0))
−1

(f ′(x(0)) +
∞∑

k=2

f (k)(x(0))
yk−1

(k − 1)!
)

= I +
∞∑

k=2

kf ′(x(0))
−1

f (k)(x(0))
yk−1

k!
.

If (5) holds, then

‖I − f ′(x(0))
−1

f ′(x(0) + y)‖ ≤
∞∑

k=2

k‖f ′(x(0))
−1f (k)(x(0))

k!
‖‖y‖k−1

≤
∞∑

k=2

k(γρ)k−1

=
1

(1 − γρ)2
− 1.

Suppose that (5) (6) hold, then for an arbitrary real vector y ∈ Xρ, we can infer
that

‖ − f ′(x(0))
−1

f ′(x(0)) + (I − f ′(x(0))
−1

f ′(x(0) + y))y‖ < ρ,

which implies that (7) holds. ��
Lemma 4. Let

α∗ = − 1
12

(22247 + 1320
√

330)
1/3

+
431

12(22247 + 1320
√

330)
1/3

+
25
12

(8)

≈ 0.093347623,

278 Z. Li et al.

then for an arbitrary 0 < α < α∗, we have

g1(α∗) < g1(α) < g1(0),
g2(0) < g2(α) < g2(α∗),
g3(0) < g3(α) < g3(α∗) = 0,

θ(α∗) < θ(α) < θ(0),
ω1(0) < ω1(α) < ω1(α∗),

ω2(α∗) < ω2(α) < ω2(0) < 3 − 3
√

2
2

,

ω3(α) > 3 − 3
√

2
2

.

Proof. According to Cartan’s root-finding formula, the equation g3(α) = 0 has
only a positive real root α∗ as in (8). Obviously, g′

1(α) < 0 and g′
2(α) > 0 for all

0 < α < α∗. Thus both θ(α) and ω2(α) monotonously decrease on the interval
(0, 3 − 2

√
2). A routine computation gives rise to

ω′
1(α) =

(4 − 2α)
√−3g3(α) sin(θ(α) + π

6) + (84 − 36α) cos(θ(α) + π
6)

2
√−3g1(α)g3(α)

+
1
2
,

then for all 0 < α < α∗, ω′
1(α) > 0. This lemma follows immediately from what

we have proved. ��
Proposition 1. Under the condition (5), the inequality (6) holds if and only if

0 <α < α∗, (9)
ω1(α)

3γ
<ρ <

ω2(α)
3γ

. (10)

Proof. Define Δ = (q/2)2 + (p/3)3 with

p = −1
3
(
4 + βγ

−2γ
)
2

+
1 + 2βγ

2γ2
,

q = 2(
4 + βγ

−6γ
)
3

+
β

2γ2
− (4 + βγ)(1 + 2βγ)

−12γ3
,

then

p = −g1(α)
12γ2

, q = − g2(α)
108γ3

, Δ =
g3(α)

1728γ6
.

It follows by Lemma 4 that for all α > 0, p < 0 and q < 0, then we have three
cases to consider.

Case I: α > α∗. In this case, Δ > 0 and the equation

ρ3 − 4 + βγ

2γ
ρ2 +

1 + 2βγ

2γ2
ρ − β

2γ2
= 0 (11)

The Convergence Conditions of Interval Newton’s Method 279

has only one real solution

ρ∗ = 3

√
−q

2
+

√
Δ + 3

√
−q

2
−

√
Δ.

An easy computation yields that for all α > α∗, ρ∗ > (1 − √
2/2)/γ. Therefore,

in this case, (6) holds if and only if ρ > ρ∗, which contradicts the condition (5).
Case II: α = α∗. In this case, Δ = 0 and (11) has only two unequal real

solutions

− 3

√−q

2
, 2 3

√−q

2
.

Clearly,

− 3

√−q

2
< 0, 2 3

√−q

2
>

1 − √
2/2

γ
.

Hence in this case, (6) can not hold under the condition (5).
Case III: 0 < α < α∗. In this case, Δ < 0 and (11) has three unequal real

solutions
ω1(α)

3γ
,

ω2(α)
3γ

,
ω3(α)

3γ
.

Recalling Lemma 4, we know that for all 0 < α < α∗,

ω3(α)
3γ

>
1 − √

2/2
γ

,

ω2(α)
3γ

<
1 − √

2/2
γ

,

0 <
ω1(α)

3γ
<

ω2(α)
3γ

.

Thus in this case, (6) holds if and only if (10) holds.
As a whole, under the condition (5), the inequality (6) holds if and only if

(9) and (10) hold. ��
On the basis of α, β and γ, the following theorem provides the conditions

such that (7) holds, which is an immediate conclusion of Proposition 1.

Theorem 3. If 0 < α < α∗, then for any ρ satisfying the inequality

ω1(α)
3γ

< ρ <
ω2(α)

3γ
,

the condition (7) holds.

The following corollary indicates that the alpha theory is of greater preci-
sion than Rump’s interval theorem, which can be directly deduced by an easy
computation.

280 Z. Li et al.

Corollary 1. If 0 < α < α∗, then

ω1(α)
3γ

> t∗.

For the Newton iteration sequence {x(k)}, define

ρ∗(f ,x(k)) =
ω1(α(f ,x(k)))
3γ(α(f ,x(k)))

, ρ∗∗(f ,x(k)) =
ω2(α(f ,x(k)))
3γ(α(f ,x(k)))

. (12)

In view of the quantity α of the alpha theory proposed by Wang and Han [18], we
give the following convergence condition of interval Newton’s algorithm proposed
by Rump.

Proposition 2. Let �·� be the integer ceiling function, p(α) be defined by

p(α) =
2α

1 + α +
√

1 − 6α + α2
,

and q(α) be defined in (2). If 0 < α < 3 − 2
√

2, then for any

k ≥ �log2(
ln α∗ + ln(1 − p(α)) + lnψ(p(α)) − ln α

ln q(α)
+ 1)�, (13)

the condition
S(Yρ(k) ,x(k)) ⊆ int(Yρ(k)) (14)

holds for any ρ(k) satisfying the inequality

ρ∗(f ,x(k)) < ρ(k) < ρ∗∗(f ,x(k)). (15)

Proof. By Theorem 1 and Lemma 2, we know that if 0 < α < 3 − 2
√

2, then for
any k ∈ N,

α(f ,x(k)) ≤ αq(α)2
k−1

ψ(γ‖x(k) − x(0)‖)(1 − γ‖x(k) − x(0)‖)
.

If 0 < α < 3 − 2
√

2, then for all k ∈ N,

γ‖x(k) − x(0)‖ ≤ p(α) < 1 −
√

2
2

,

which implies that for all k ∈ N,

ψ(γ‖x(k) − x(0)‖)(1 − γ‖x(k) − x(0)‖) ≥ ψ(p(α))(1 − p(α)).

Hence if 0 < α < 3 − 2
√

2, then for all k ∈ N,

α(f ,x(k)) ≤ αq(α)2
k−1

ψ(p(α))(1 − p(α))
,

which implies that 0 < α(f ,x(k)) < α∗ holds if the iteration number k satisfies
the inequality (13). Our conclusion will follow from Theorem 3. ��

The Convergence Conditions of Interval Newton’s Method 281

With the aid of the quantity α of the alpha theory given in [1], the conclusion
of the above proposition can be improved as follows.

Proposition 3. If 0 < α ≤ (13 − 3
√

17)/4, then for any k ≥ 3, the condition
(14) holds for any ρ(k) satisfying the inequality (15).

Proof. Since the function α/ψ(α)2 monotonously increases on the interval [0, 1−√
2/2), it follows that α/ψ(α)2 < 1 for any 0 < α ≤ (13 − 3

√
17)/4. Recalling

Proposition 1 in [15], we can deduce that if 0 < α ≤ (13 − 3
√

17)/4, then for
any k ∈ N,

α(f ,x(k)) ≤ (
α

ψ(α)2
)
2k−1

α.

As a result, if 0 < α ≤ (13 − 3
√

17)/4, then 0 < α(f ,x(3)) < α∗. ��

4 Example

In this section, we propose some examples to illustrate our conclusion, which are
done in Matlab R2012a with INTLAB V6 under Windows 7. In these examples,
the true interval of the display as −0.0059 is obtained by subtracting
and adding 1 to the last displayed digit, namely,

−0.0059 = [−0.00600000000000,−0.00580000000000].

Example 1. Let

f1 = x2
1 + x2 − 2 = 0,

f2 = x1 − x2 = 0,

and x(0) = (1.8, 1.8)T . The program of the alpha theory computes

α∗ < α = 0.1436672967 <
13 − 3

√
17

4
,

then by Proposition 3, we can immediately deduce that 0 < α(f ,x(3)) < α∗. The
values of α(f ,x(k)), ρ∗(f ,x(k)), ρ∗∗(f ,x(k)), k = 1, 2, 3, are shown in Table 1,
and the values of x(k), ρ(k), S(Yρ(k) ,x(k)), k = 1, 2, 3, are shown in Table 2.

Example 2. [11] Let

fi(x) = xi − 0.7xi

9∑

j=1

ai,jxj − 1 = 0, i = 1, 2 . . . , 9,

with

ai,j =
3
4

ti(1 − t2j)
2
wj

ti + tj
,

282 Z. Li et al.

Table 1. The values of α(f , x(k)), ρ∗(f , x(k)) and ρ∗∗(f , x(k)) about Example 1

k α(f , x(k)) ρ∗(f , x(k)) ρ∗∗(f , x(k))

1 0.04063913776 0.1474393618 0.8654682610

2 0.001956685388 0.005916476543 0.8785582303

3 0.000003858607108 0.00001157539288 0.8785582303

Table 2. The values of x(k), ρ(k) and S(Yρ(k) , x(k)) about Example 1

k x(k) ρ(k) S(Y
ρ(k) , x(k))

1

(
1.13913043490000

1.13913043490000

)
0.147440361800000

(
[−0.14648800759416, −0.11996338231131]

[−0.14648800759416, −0.11996338231131]

)

2

(
1.00590473980000

1.00590473980000

)
0.005917476543000

(
−0.0059

−0.0059

)

3

(
1.00001157619900

1.00001157619900

)
1.257539288000000e-05 1.0e-005 ∗

(
−0.11576

−0.11576

)

where ti, wi, i = 1, 2, . . . , 9, are respectively the nodes and weights of Gaussian
integration rule of order 17 on the interval [0, 1] (See Table 3).

For the initial approximate

x(0) = [1.36, 1.36, 1.36, 1.36, 1.36, 1.36, 1.36, 1.36, 1.36]T ,

we have

α∗ < α = 0.144327213206543 <
13 − 3

√
17

4
.

It follows by Proposition 3 that 0 < α(f ,x(3)) < α∗. To be precise,

α(f ,x(3)) = 9.771724278220212e-10,

ρ∗(f ,x(3)) = 2.106476714805001e-09,

ρ∗∗(f ,x(3)) = 0.721018979786819.

Choose ρ(3) = 2.206476714805001e-09, then S(Yρ(3) ,x(3)) ⊆ int(Yρ(3)). The
values of x(3) and S(Yρ(3) ,x(3)) are shown in Table 4, where i stands for the
coordinate index.

Example 3. Let

fi = x2
i + xi+1 − 2 = 0, i = 1, 2, . . . , 99,

f100 = x99 − x100 = 0.

Given x(0) with x
(0)
i = 1.28, i = 1, 2, . . . , 100, it follows that

13 − 3
√

17
4

< α = 0.165370210314031 < 3 − 2
√

2.

The Convergence Conditions of Interval Newton’s Method 283

Table 3. The values of ti, wi of Example 2

i ti wi

1 0.015919880000000 0.040637193262940

2 0.081984445000000 0.090324080584283

3 0.193314285000000 0.130305351576427

4 0.337873290000000 0.156173536255424

5 0.500000000000000 0.165119676661738

6 0.662126710000000 0.156173536254610

7 0.806685715000000 0.130305351576465

8 0.918015555000000 0.090324080583571

9 0.984080120000000 0.040637193262741

Table 4. The values of x(3) and S(Yρ(3) , x(3)) about Example 2

i x(3) S(Yρ(3) , x(3))

1 1.03266743259998 1.0e-008 ∗ -0.2175469960

2 1.10583043469589 1.0e-008 ∗ 0.058000438

3 1.17693975483393 1.0e-008 ∗ 0.074880771

4 1.23474234890867 1.0e-008 ∗ -0.046156608

5 1.27801354526920 1.0e-008 ∗ 0.033335094

6 1.30888887603008 1.0e-008 ∗ -0.052842004

7 1.32995480221212 1.0e-008 ∗ 0.015004650

8 1.34328756776955 1.0e-008 ∗ -0.029283159

9 1.35027189327776 1.0e-008 ∗ 0.057999652

Recalling Proposition 2, we know that there exists k ∈ N such that α(f ,x(k)) <
α∗. Indeed, for the first-step iteration point x(1), we have

α(f ,x(1)) = 0.0209408111113277 < α∗,

ρ∗(f ,x(1)) = 0.0229019461130693,

ρ∗∗(f ,x(1)) = 0.291551749088838.

Choose ρ(1) = 0.0229019461130694, then S(Yρ(1) ,x(1)) ⊆ int(Yρ(1)).

References

1. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, New York (1998)

2. Kantorovich, L.V.: Functional analysis and applied mathematics. Uspehi. Mat.
Nauk. 3(6), 89–185 (1948)

284 Z. Li et al.

3. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation
of clusters of zeros of analytic functions. Found. Comput. Math. 5(3), 257–311
(2005)

4. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation
of clusters of zeros: case of embedding dimension one. Found. Comput. Math. 7(1),
1–58 (2007)

5. Hauenstein, J.D., Levandovskyy, V.: Certifying solutions to square systems of
polynomial-exponential equations. J. Symb. Comput. 79(3), 575–593 (2015)

6. Hauenstein, J.D., Sottile, F.: Algorithm 921: alphacertified: certifying solutions to
polynomial systems. ACM Trans. Math. Softw. 38(4), 1–20 (2011)

7. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial
systems: case of breadth one. Theor. Comput. Sci. 479, 163–173 (2013)

8. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial
systems. SIAM J. Numer. Anal. 52(4), 1623–1640 (2014)

9. Krawczyk, R.: Newton-algorithmen zur bestimmung von nullstellen mit fehler-
schranken. Computing 4, 187–201 (1969)

10. Moore, R.E.: A test for existence of solutions to nonlinear system. SIAM J. Numer.
Anal. 14(4), 611–615 (1977)

11. Rall, L.B.: A comparison of the existence theorems of Kantorvich and Moore. SIAM
J. Numer. Anal. 17(1), 148–161 (1980)

12. Rump, S.M.: Solving algebraic problems with high accuracy. In: Kulisch, W.L.,
Miranker, W.L. (eds.) A New Approach to Scientific Computation, pp. 51–120.
Academic Press, San Diego (1983)

13. Rump, S.M.: INTLAB-Interval Laboratory. Springer, Netherlands, Berlin (1999)
14. Rump, S.M., Graillat, S.: Verified error bounds for multiple roots of systems of

nonlinear equations. Numer. Algorithm 54, 359–377 (2009)
15. Smale, S.: Newton method estimates from data at one point. The Merging of

Disciplines: New Directions in Pure, Applied and Computational Mathematics,
pp. 185C–196C. Springer, Berlin (1986)

16. Shub, M., Smale, S.: Computational complexity: on the geometry of polynomials
and a theory of cost. I. Ann. Sci. Ècole Norm. Sup. 18(1), 107–142 (1985)

17. Shub, M., Smale, S.: Computational complexity: on the geometry of polynomials
and a theory of cost. II. SIAM J. Comput. 15(1), 145–161 (1986)

18. Wang, X.H., Han, D.F.: On dominating sequence method in the point estimate
and Smale theorem. Sci. China Ser. A 33(2), 135–144 (1990)

19. Yang, Z., Zhi, L., Zhu, Y.: Verfied error bounds for real solutions of positive-
dimensional polynomial systems. In: The 2013 International Symposium on Sym-
bolic and Algebraic Computation, pp. 371–378. ACM press, San Jose (2013)

Normalization of Indexed Differentials Based
on Function Distance Invariants

Jiang Liu(B)

Department of Systems Science, University of Shanghai for Science and Technology,
Shanghai 200093, China

jliu113@126.com

Abstract. This paper puts forward the method of function distance
invariant, and develops an efficient normalization algorithm for indexed
differentials. The algorithm allows us to determine the equivalence of
indexed differentials in R2[/∂], and is mainly based on two algorithms.
One is an index replacement algorithm. The other is a normalization
algorithm with respect to monoterm symmetries, whose complexity is
lower than known algorithms.

1 Introduction

Differential geometry often involves massive calculation of indexed differentials,
such as tensor verification problem or the problem of finding transformation
rules of indexed functions under the transformation of local coordinates. The
following examples are typical in differential geometry.

Example 1. Let hi
j be a (1, 1)-typed tensor. Prove that

Hi
jk = −1

8
(hp

j∂ph
i
k − hp

k∂ph
i
j) +

1
8
(hi

p∂jh
p
k − hi

p∂kh
p
j)

is a (1, 2)-typed tensor, i.e., it satisfies the following transformation rule of
(1, 2)-typed tensor:

Hi′
j′k′ − /∂i′

i /∂j
j′ /∂

k
k′Hi

jk = 0. (1)

Example 2. A Riemannian manifold Mn admits an almost complex structure
Ji
j . Let Hi

jk be 1/8 times the Nijenhuis tensor of Ji
j . The “torsional derivative”

of a tensor field on Mn is defined as follows:

T i1...ia
j1...jb||rs = Hp

rs

∂T i1...ia
j1...jb

∂xp
+

a∑

u=1

T
i1...iu−1piu+1...ia
j1...jb

hiu
prs −

b∑

v=1

T i1...ia
j1...jv−1pjv+1...jb

hp
jvrs

,

where hi
jrs has the following “rather strange” definition:

2hi
jrs = Ji

p(J
q
j

∂Hp
rs

∂xq
− Hq

rs

∂Jp
j

∂xq
+ Hp

qs

∂Jq
j

∂xr
− Hp

qr

∂Jq
j

∂xs
) − ∂Hi

rs

∂xj
.

What is the transformation rule of hi
jrs under coordinate transformation?

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 285–300, 2017.
DOI: 10.1007/978-3-319-66320-3 21

286 J. Liu

However, the simplification of indexed differential expressions is tricky and
cumbersome to perform by manual calculations. For example, it is not easy to
prove that the following two monomials are equivalent:

∂2xf

∂xf∂xc′
∂2xc′

∂xa′∂xb

∂2xr

∂xq∂xp′
∂2xp′

∂xs′∂xr

∂xq

∂xq′
∂2xs′

∂xl′∂xs

∂xs

∂xk′
∂2xb

∂xj∂xd′
∂2xd′

∂xg′∂xh

∂2xj

∂xm∂xn′ ;

∂2xf ′

∂xf ′∂xc

∂2xc

∂xb′∂xa′
∂2xr

∂xs′∂xq′
∂2xs′

∂xr∂xs

∂2xs

∂xl′∂xk′
∂2xb′

∂xj′∂xd

∂2xd

∂xh∂xg′
∂2xj′

∂xn′∂xm
.

Then a natural problem is that in computer algebra, how can we judge the
equivalence of indexed differential expressions?

Symbolic manipulation of indexed expressions, e.g. tensor expressions, is one
of the oldest research topics in computer algebra [1–13]. It remains to be a
challenging problem, for the reason as follows: In order to compute the canonical
form of an indexed polynomial, we need to find a finite Gröbner basis for the
ideal generated by the basic syzygies. But unfortunately, the ideal cannot be
finitely generated, mainly due to the property of dummy index renaming. Efforts
have been made to describe algorithms for simplifying tensor expressions. For
example, Refs. [5,6] presented algorithms to put tensor expressions into canonical
forms with respect to monoterm symmetries and cyclic symmetry. However,
those algorithms are not applicable for indexed differential expressions, because
index elimination is indispensable for simplifying them.

Liu [14] presented a normalization algorithm for indexed differential expres-
sions in R2[/∂], which consists of two parts. In the first part, a polynomial is
rewritten modulo monoterm symmetries. In the second part, we compute the
canonical form of a polynomial with respect to monoterm symmetries. Then two
polynomials are equal if and only if they have the same canonical forms.

However, the algorithm with respect to monoterm symmetries in [14] has
a factorial complexity. More precisely, suppose that f is a monomial indexed
with i, j, k, where i is the number of functions, j is the number of pairs of
dummy indices, and k is the number of pairs of commutable lower indices. Since
we need to compare all the monomials equivalent to f , the complexity is at least
O(i! × j! × 2k). An other method for computing canonical forms with respect to
monoterm symmetries is due to [6]: First replacing the dummy indices by num-
bers according to the index positions, the tensor names and index classes, then
finding the smallest element in the equivalence class, i.e., finding the smallest
from i!n1! . . . nk! objects. So the complexity is at least O(i!n1! . . . nk!), where k
is the number of groups of pairwise interchangeable lower indices, and ni is the
number of indices in each group.

The reason for such factorial complexity in some of these algorithms is that
dummy indices within an indexed polynomial f are described either by original
letters or by integers according to the order of their appearance. Neither of the
descriptions is invariant. In other words, they vary when we rewrite f . Conse-
quently, to find the canonical form, we need to list and compare all the elements
in the equivalence class of f .

Normalization of Differentials Using Function Distance Invariants 287

So a question arises: How do we describe an invariant (with respect to
monoterm symmetries), and provide an efficient normalization algorithm based
on the invariants?

Besides, the normalization algorithm in [14] depends on a skillful and tricky
classification of 2nd-order partial differential functions according to their con-
nections (e.g. circle, chain, maximum lower tree and so on). But the classification
is no longer valid for higher order. It appears infeasible to classify partial differ-
ential functions for each order.

Then another question arises: How can we provide a normalization algorithm
that is independent of function classifications?

To answer the questions, we first define the distance from one indexed func-
tion to another, and define the type list. Then we prove that they are both invari-
ants. Next, we present an index replacement algorithm, and use it to develop
a normalization algorithm with respect to monoterm symmetries for polynomi-
als in R[/∂], whose complexity is less than the factorial complexity of existing

algorithms, and reduces to at most O(i2) or O(
k∏

j=1

C2
nj

). Finally, by the method

of index replacement, a normalization algorithm is provided for polynomials in
R2[/∂], which is independent of function classifications.

2 Indexed Differential Polynomial Ring

In this section we briefly review some notions in [14].
An indexed function is composed of four parts: a function name, a sequence

of upper indices, a sequence of lower indices, and variables. For example, the
Christoffel symbol Γ i

kh = Γ i
kh(x) has the function name Γ , upper index i, lower

indices k, h, and variable x. An indexed monomial is the product of indexed func-
tions and obeys Einstein summation convention. A sub-monomial refers to the
product of some indexed functions within an indexed monomial. In an indexed
monomial, a free index occurs only once, and a dummy index occurs twice, as an
upper index and a lower one respectively. If a free index occurs as a lower (or
upper) index, then it is called a covariant (or contravariant) free index.

Einstein summation convention has a basic property of renaming dummy
indices (Ren): If f(i) is an indexed monomial taking i as a dummy index, then
for any j which does not occur in f(i),

f(i) = f(j). (2)

Let A be a non-associative ring generated by indexed functions, and I be
the two-sided ideal generated by (2). The quotient ring A/I is called Ein-
stein summation ring. The multiplication induced in A/I is called Einstein
multiplication.

Let two overlapping local coordinate neighborhoods on an n-dimensional dif-
ferentiable manifold be (x1, x2, . . . , xn) and (x1′

, x2′
, . . . , xn′

). The former coor-
dinate component indices are denoted by small letters while the latter by small

288 J. Liu

letters with apostrophes. If there is no need to make a distinction between dif-
ferent coordinate systems, the indices are denoted by capital letters.

A partial differential function /∂B
A1...Ar

is defined by

/∂B
A1...Ar

:= ∂A1...Ar
xB .

The product of partial differential functions of order at most r is called an
rth order partial differential polynomial.

All partial differential polynomials form a commutative ring under Einstein
multiplication, which is denoted by R[/∂]. The subring composed of partial dif-
ferential polynomials of order at most r is denoted by Rr[/∂]. In particular, M[/∂]
and Mr[/∂] denote the monoids of monomials in R[/∂] and Rr[/∂], respectively.

As an algebraic ring, R[/∂] can be formally defined by the following syzygies.

(i) Evaluations (Eval): If Ar and B are indices of the same coordinate system,
then /∂B

A1...Ar
equals 0 if r > 1, and equals δBA1

if r = 1.
(ii) Unifying symmetry (US): If Ai1 , Ai1+1, . . . , Ai1+s are indices in the same

coordinate system, 1 ≤ i1 ≤ r − s, and Aj0 , Aj1 , . . . , Ajs is a permutation
of Ai1 , Ai1+1, . . . , Ai1+s, then

/∂B
A1...Ar

= /∂B
A1...Aj0Aj1 ...Ajs ...Ar

. (3)

(iii) Kronecker rule (Kron): For any indexed monomial MB1...Br

A1...As
, if 1 ≤ i ≤ r

and 1 ≤ j ≤ s, then

δAi

Bj
MB1...Br

A1...As
= MB1...Br

A1...Ai−1BjAi+1...As
= M

B1...Bj−1AiBj+1...Br

A1...As
.

(iv) Jacobi rule:
/∂j′
i /∂B

j′A1...As
= /∂B

iA1...As
.

(v) Leibniz rule: For any sequence of indices I = C1C2 . . . Ct,

t∑

i=0

∑

(i,t−i)�I

/∂j′
I(1)i

/∂B
I(2)j′A1...As

= /∂B
IiA1...As

.

On the other hand, R[/∂] obviously is also a differential ring, with the partial
differential operator formally defined by the following properties.

(i’) Evaluations (Eval): If f is a constant, e.g. f = δji , then ∂Af = 0.
(ii’) Unifying symmetry (US): If for some 1 ≤ i1 < i2 ≤ r, Ai1 , Ai1+1, . . . , Ai2

are indices of the same coordinate system, then ∂A1...Ar
is symmetric in

Ai1 , Ai1+1,. . . , Ai2 .
(iii’) Jacobi rule:

/∂j′
i ∂j′ = ∂i.

Normalization of Differentials Using Function Distance Invariants 289

(iv’) Leibniz rule: For any differentiable functions f, g, and any sequence of
indices I = C1C2 . . . Ct,

∂I(fg) =
t∑

i=0

∑

(i,t−i)�I

(∂I(1)f)(∂I(2)g).

The following is a generated syzygy.
(v’) Bottom antisymmetry (BS):

/∂j′
k′i∂j′ = −/∂j

ik′∂j . (4)

By commutativity of multiplication (Com), we mean

/∂B
A1A2...Am

/∂D
C1C2...Cn

= /∂D
C1C2...Cn

/∂B
A1A2...Am

, (5)

where /∂B
A1A2...Am

, /∂D
C1C2...Cn

are two partial differential functions in an indexed
monomial.

In what follows, we refer to Ren, US and Com as monoterm symmetries.

3 Distances Between Indexed Functions

In this section, we prove that the type lists and the distances are both invariants
with respect to monoterm symmetries.

Definition 1. Let f = /∂B
A1A2...Am

be a partial differential indexed function.
Suppose f has i lower dummy indices and j upper dummy indices. Define the
type list of f as

(m, i, j, LFdn , LF ′
dn , LFup , LF ′

up),

and denote it by TL(f), where LFdn (or LF ′
dn) denotes the sequence of all the

covariant free indices without (or with) apostrophes in alphabetical order, and
LFup (or LF ′

up) denotes the sequence with respect to contravariant free indices.

Definition 2. Suppose f ∈ M[/∂], and the indexed functions from left to right of
f are f1, f2, . . . , fn. If f i has m lower dummy indices occurring as upper ones
in f j, then define the distance from f i to f j as m, and denote it by d〈f i, f j〉 = m.

Suppose {g1, g2, . . . , gt} is an indexed function sequence. We define the adja-
cency matrix of the sequence by letting the (i, j)th element of the matrix be
d〈gi, gj〉 (i, j = 1, 2, . . . , t).

For any two n × n adjacency matrices A and B, if there exist i0, j0 � n, s.t.
ai0j0 < bi0j0 ; for i = i0, j < j0 and for i < i0, aij = bij, then define A < B.

Definition 3. Let f i and f j be two indexed functions. (d〈f i, f j〉, d〈f j , f i〉) is
called the distance pair between f i and f j, and denoted by D(f i, f j).

290 J. Liu

Example 3. Consider the monomial /∂b′
b′c/∂c

eas′ /∂a
d′ /∂x

tpqr′ /∂w′
xl /∂r′

w′zg. The indexed
functions from left to right are denoted by f1, f2,. . .,f6 respectively. Accord-
ing to Definition 2, we get the following nonzero distances

d〈f1, f1〉 = 1, d〈f1, f2〉 = 1, d〈f2, f3〉 = 1,

d〈f4, f6〉 = 1, d〈f5, f4〉 = 1, d〈f6, f5〉 = 1.

Notation. If f1, f2 ∈ M[/∂] are equivalent with respect to monoterm symme-
tries, i.e., f1 − f2 ∈ 0̄ = 0 + Smon, where Smon is the ideal generated by (2), (3)

and (5), then denote it by f1
mon∼ f2. Similarly, we write f1

mon,BS∼ f2 if they are
equivalent with respect to BS and monoterm symmetries.

Lemma 1. If f1, f2 ∈ M[/∂] and f1
mon,BS∼ f2, then f1 can be rewritten as f2 in

a finite number of steps by Eqs. (2), (3), (4) and (5).

Proof. We adapt the proof for M2[/∂] in [15] to this case. In what follows, two
indexed monomials are called like terms if they are identical except for constant
coefficients.

Since f1, f2 are equivalent,

f1 − f2 = r1(Ā1 − B̄1) + r2(Ā2 − B̄2) + . . . + rn(Ān − B̄n),

where r1, r2, . . . , rn are nonzero monomials in M[/∂], Āi and B̄i are the two
sides of one of the Eqs. (2), (3), (4) and (5). Obviously, riĀi and riB̄i are not
like terms. Denote the set {riĀi,−riB̄i|i = 1, . . . , n} by E, and call riĀi the
matching monomial of −riB̄i. For any subset X of E, the matching monomials
of all elements in X form a subset of E\X, and we denote it by X̃.

If both f1 and f2 can be rewritten as 0, the conclusion holds obviously.
Otherwise, without loss of generality, assume that f1 cannot be rewritten as

0. In E, let E1 be {kf1 | k ∈ C} ⋂
E, and let E2 be Ẽ1. If none of the elements in

E2 is a product of a constant and f2, then we can construct E3 and E4 as follows.

First in E\
2⋃

i=1

Ei, we can find the subset E3, such that the sum of all elements

in E3 is the opposite of the sum of those in E2. Then, let E4 be Ẽ3

⋂
(E\E3).

Obviously E4 ⊆ E\
3⋃

i=1

Ei, since Ẽ3 ⊆ E\
2⋃

i=1

Ei.

We claim that E4 is not empty, for the reason as follows.
We find all the groups of like terms in E2, and denote them by

∑
1,

∑
2, . . . ,∑

p. Let xi be the term obtained by omitting the coefficient of any element in∑
i (i = 1, . . . , p). Since f1 cannot be rewritten as 0, for any element kxi ∈ E2

(k �= 0), there is a unique nonzero ki such that the matching monomial of kxi

is k
ki

f1. Let the sum of all elements in E2 be a1k1x1 + a2k2x2 + . . . + apkpxp,
then by the definitions of E1 and E2, we get a1 + a2 + . . . + ap = −1. On the
other hand, assume that E4 is empty. Then any element in E3 has its matching
monomial lying in E3. Besides, the matching monomial of kixi can only be kjxj

(i �= j), therefore a1 + a2 + . . . + ap = 0, contradicting a1 + a2 + . . . + ap = −1.
Hence E4 cannot be empty.

Normalization of Differentials Using Function Distance Invariants 291

From the proof of the claim, we also get the following: Let a′
1k1x1 + . . . +

a′
pkpxp be the result of collecting the like terms of Ẽ4, then a′

1 + . . . + a′
p = 1,

since (−a1 − a′
1) + . . . + (−ap − a′

p) = 0.
Similar to the process of constructing E3 and E4 from E2, if none of the

elements in E4 is a product of a constant and f2, we construct E5 and E6 from

E4 (E6 ⊆ E\
5⋃

i=1

Ei). E6 must be non-empty, as otherwise any element in E5

has its matching monomial lying in E5, and it follows that a′
1 + . . . + a′

p = 0,
contradicting a′

1 + . . . + a′
p = 1.

Generally, if none of the elements in E2n (n ∈ N) is a product of a constant

and f2, we can obtain a non-empty set E2n+2 (E2n+2 ⊆ E\
2n+1⋃

i=1

Ei). Since E is

finite, such a process cannot be endless, i.e., there exists m such that at least one
element in E2m is a product of a constant and f2. Therefore by the definitions
of Ei, f1 can be rewritten as cf2 (c �= 0). c must equal to 1, which can be proved
by contradiction. Let us assume that c is unequal to 1. Then f1 is equivalent to
0 since f1 and f2 are equivalent. Consequently, f1 can be rewritten as a product
of a constant and 0, contradicting that f1 cannot be rewritten as 0.

Proposition 1. Suppose f1
mon∼ f2.

(i) There is a bijection Ψ from the set of indexed functions of f1 to that of f2.
For any indexed function f i of f1, TL(f i) = TL(Ψ(f i)).

(ii) For any two indexed functions f i and f j, we have d〈f i, f j〉 = d〈Ψ(f i), Ψ(f j)〉
(i may equal j).

Proof. According to Lemma 1, f1 can be rewritten as f2 in several steps. If
the ith step is generated from US (see Eq. (3)), then define Ψi(/∂B

A1...Ar
) =

/∂B
A1...Aj0Aj1 ...Ajs ...Ar

, and for any other indexed function f , define Ψ i(f) = f .

Such Ψi is a bijection, and keeps invariant of type lists.
Since US does not involve interchange of indices among indexed functions,

by the definition of distance, we have d〈f i, f j〉 = d〈Ψ(f i), Ψ(f j)〉.
A similar argument is applied to Ren and Com.
Then the composition of all the mappings Ψn ◦ . . . ◦ Ψ2 ◦ Ψ1 forms a bijection

denoted by Ψ , and d〈f i, f j〉 = d〈Ψ1(f i), Ψ1(f j)〉 = d〈Ψ2 ◦ Ψ1(f i), Ψ2 ◦ Ψ1(f j)〉 =
. . . = d〈Ψ(f i), Ψ(f j)〉.

4 Normalization with Respect to Monoterm Symmetries

As mentioned in [14], to find the canonical form of a polynomial in R2[/∂], it
is sufficient to consider the problem in M2[/∂]. Hence in this section, we only
consider M[/∂] and M2[/∂].

According to Proposition 1, the type list and the distance are both invari-
ants with respect to monoterm symmetries. In what follows, firstly we will sort
indexed functions of a monomial based on the invariants, and then replace the

292 J. Liu

indices with numbers according to the order on indexed functions. Finally an
algorithm with respect to monoterm symmetries is presented, whose complexity
is showed to be smaller than existing algorithms.

Notation. The result of applying Step 1 of the following Algorithm I to f is
denoted by f (tri).

Algorithm I. Indexed function rearrangement algorithm.
Input: All the indexed functions of f .
Output: A sequence of indexed functions.
Step 1. Let Ω = ∅. Rewrite all the sub-monomials /∂A

A and /∂A1
A /∂A2

A1
. . . /∂A

Ar

(except for names of indices) (r ≥ 1) as 0 and n respectively, and denote the
new monomial by f (tri).

Step 2. Suppose f i, f j are two indexed functions. Then f i < f j if and only if
one of the following conditions holds:
(a) TL(f i) < TL(f j).
(b) TL(f i) = TL(f j), and d〈f i, f i〉 < d〈f j , f j〉.

Step 3. All the indexed functions of f (tri) are classified as Γ1, Γ2, . . . , Γm,
such that the order on each class has not been defined, and if i < j, then all
elements in Γi are smaller than those in Γj .

Step 4. For each element f
(i1)

j of Γi1, sort the elements of the set {D(f
(i1)

j ,

f
(i2)

k)|∀f
(i2)

k ∈ Γi2} in ascending order, and get a sequence denoted by

L(D
(i1,i2)
j). Define f

(i1)

j < f
(i1)

l , if and only if

L(D
(i1,1)
j) < L(D

(i1,1)
l),

or

L(D
(i1,1)
j) = L(D

(i1,1)
l), . . . , L(D

(i1,h−1)
j) = L(D

(i1,h−1)
l), L(D

(i1,h)
j) < L(D

(i1,h)
l).

Step 5. If for each i, there is only one element in Γi, then put the sequence
into Ω; If for each i, the order on Γi has not been defined, then go to Step 6.
Otherwise, return to Step 3.

Step 6. Suppose the classes whose elements contain covariant free indices are
Γ

(Fdn)
1 , Γ

(Fdn)
2 , . . . , Γ

(Fdn)
s . Consider all possible orders on each class, i.e.,

m1! × m2! × . . . × ms! possible orders, where mi is the number of elements of
Γ

(Fdn)
i . Under each possibility, return to Step 3.

Step 7. Find the smallest among the adjacency matrices of the elements of Ω,
and output the corresponding sequences, denoted by [f](min)

1 , [f](min)
2 , . . .,

[f](min)
p .

Example 4. Sort the indexed functions of

f = /∂x′
ca/∂y′

ab
/∂c
y′ghae′ /∂b

m′pqhx′ . (6)

Normalization of Differentials Using Function Distance Invariants 293

Step 1. Denote the indexed functions of f from left to right by f1, f2, f3, f4.
By comparing type lists, we get f1, f2 < f4 < f3.

Step 2. The indexed functions of f are classified as Γ1={f1, f2}, Γ2={f4},
Γ3 = {f3}.

Step 3. L(D
(1,2)
1) = {(0, 1)}, L(D

(1,2)
2) = {(1, 0)}. Hence, L(D

(1,2)
1) < L(D

(1,2)
1),

f1 < f2.

The following proposition prepares for the complexity analysis of the
algorithms.

Proposition 2. The set Ω in Step 7 of Algorithm I must be non-empty. In
another word, if the order on Γ

(Fdn)
j (j = 1, 2, . . . , s) of Step 6 is defined, then

by Algorithm I, the order on all indexed functions is defined.

Proof. (a) Firstly, if f has a lower dummy index occurring in g, and the order
on the class containing g is defined, then by Algorithm I, the order on the class
containing f can be defined. The reason is as follows. Suppose f

′
and f are in

the same class, then d〈f, g〉 = 1 �= 0 = d〈f ′
, g〉, consequently D(f, g) �= D(f

′
, g).

Hence by Algorithm I, f and f
′
are ordered.

(b) If each element of a class Γi of Step 3 does not contain covariant free
indices, then for any element f0 ∈ Γi, there must exist an sequence {f1, f2,
. . . ,fr}, satisfying: f i has a lower dummy index occurring in f i+1, 0 ≤ i ≤ r−1,
and fr contains covariant free indices. Assume that such sequence does not
exist, then it can be derived that f (tri) must contain the submonomial /∂A

A or
/∂A1
A /∂A2

A1
. . . /∂A

Ar
(except for index names), contradicting Step 1.

The class containing fr belongs to {Γ
(Fdn)
j |j = 1, 2, . . . , s}, and the order on

it is defined. Therefore, according to (a), the order on the class containing fr−1

can be defined by Algorithm I, and then it holds for fr−2, and so on, finally the
order on the class Γi containing f0 is defined. This completes the proof.

Corollary 1. If the covariant free indices in a monomial f have different
names, then Step 6 and Step 7 can be skipped.

Proof. Any two indexed functions have no covariant free indices in common, so
their type lists must be different. Hence, the order on Γ

(Fdn)
i of Step 6 is defined

by Step 2, and there is only one possibility in Step 6, which implies that Steps
6 and 7 can be skipped.

Algorithm II. Index replacement algorithm.
Input: f ∈ M[/∂], with an order on its indexed functions.
output: f .
Step 1. Replacement of the free indices of f .

1. Remove apostrophes from the free indices.
2. Replace the contravariant free indices alphabetically by 1, . . . , N (Fup)

(among which a positive integer may occur more than once, since some
contravariant free indices may have identical names), N (Fup) ≥ 0.

294 J. Liu

3. Replace the covariant free indices alphabetically by 1+N (Fup), 2+N (Fup),
. . . , N (Fdn)+N (Fup), where N (Fdn) is the number of covariant free indices.

4. Put apostrophes back.
Step 2. Replacement of the dummy indices of f .

1. Sort the indexed functions of f in ascending order.
2. Determine the order of replacement as follows. For any dummy index D,

occurring as an upper index of the i(D)th indexed function, as a lower
one of the j(D)th function, it corresponds to a pair (i(D), j(D)). Then for
any two dummy indices D1,D2, the replacement of D2 is behind D1 if
and only if i(D1) < i(D2), or i(D1) = i(D2) and j(D1) < j(D2).

3. Remove apostrophes from the dummy indices.
4. Replace the upper dummy indices in the order of replacement (determined

in 2 of Step 2) by N (Fdn) + N (Fup) + 1, N (Fdn) + N (Fup) + 2, . . . , N (Fdn) +
N (Fup) + N (Dup), where N (Dup) is the number of upper dummy indices.

5. Replace the lower dummy indices in the order of replacement by N (Fdn)+
N (Fup) + N (Dup) + 1, . . . , N (Fdn) + N (Fup) + 2N (Dup).

6. Put apostrophes back, and to avoid ambiguity, commas are added between
any two neighbor lower indices within an indexed function.

Notation. In Algorithm II, each index is replaced by a positive integer n with
or without an apostrophe. Denote the set {i, i′|i ∈ N} by N′.

Definition 4. A total order ≺ on the set N′ is defined as follows. For any two
positive integers a and b, define a ≺ b′ if and only if b − a > 0.

Definition 5. Suppose f ∈ M[/∂], and its indices are elements in N′. The
numerical list of f , denoted by Lf , is identical to C, if Rep(f) is identical to a
constant C. Otherwise list all the indices of f according to the order of appear-
ance from left to right, and bottom to top.

Definition 6. A total order ≺ on the set of numerical lists is defined as follows.
Suppose f1, f2 ∈ M[/∂], and ni is the number of elements of Lfi (i = 1, 2).
Lf1 ≺ Lf2 if and only if

n1 < n2

or

n1 = n2, Lf1 [1] < Lf2 [1]

or

n1 = n2, Lf1 [1] = Lf2 [1], . . . , Lf1 [j] = Lf2 [j];Lf1 [j + 1] < Lf2 [j + 1],

where j ≥ 1, Lfi [k] denotes the kth element in the list Lfi .

Normalization of Differentials Using Function Distance Invariants 295

Algorithm III. Normalization with respect to monoterm symmetries.
Input: f ∈ M[/∂].
Output: f .
Step 1. Apply Algorithm I to f to get indexed function sequences [f](min)

1 ,
[f](min)

2 , . . ., [f](min)
p .

Step 2. Apply Algorithm II to [f](min)
1 , [f](min)

2 , . . . , [f](min)
p , and get f

(Rep)
1 ,

f
(Rep)
2 , . . ., f

(Rep)
p respectively.

Step 3. For each f
(Rep)
i (1 ≤ i ≤ p), carry out the following steps to get f

(US)
i .

1. In each partial differential function /∂N0
N1...Ns

, where Ni ∈ N′, find all the
indices Ni1, Ni1+1,. . ., Ni1+r s.t. Ni1+k (0 ≤ k ≤ r, i1 ≥ 1) are in the
same coordinate system, while Ni1−1 and Ni1+r+1 are in another one.

2. Sort Ni1, Ni1+1,. . ., Ni1+r in ascending order.
Step 4. Let L

f
(US)
q

be the smallest among L
f
(US)
i

(1 ≤ i ≤ p). Output f
(US)
q .

Example 5. Normalize the monomial in (6) with respect to monoterm
symmetries.

Step 1. By Example 4, f1 < f2 < f4 < f3.
Step 2. Replace the covariant free indices a, e′, g, h,m′, p, q alphabetically by

1, 2′, 3, 4, 5′, 6, 7.
Step 3. The dummy indices c, x′, b, y′ correspond to (4, 1), (3, 1), (3, 2), (4, 2)

respectively. Hence x′ < b < c < y′. Replace the upper indices x′, b, c, y′ by
8′, 9, 10, 11′ respectively, the lower ones by 12′, 13, 14, 15′.

Step 4. Rewrite /∂9
5′,6,7,4,12′ , /∂10

15′,3,4,1,2′ as /∂9
5′,4,6,7,12′ , /∂10

15′,1,3,4,2′ respectively.
Step 5. Output

/∂8′
1,14 /∂11′

1,13 /∂9
5′,4,6,7,12′ /∂10

15′,1,3,4,2′ .

Now we analyze the complexity of Algorithm III.
Let i be the number of indexed functions in a monomial, m the number of

indexed functions that contain covariant free indices, k the number of groups
of pairwise interchangeable lower indices, and ni the number of indices in each
group.

As mentioned in Sect. 1, the complexity of the algorithm in [6] is O(i!
k∏

j=1

nj !)

(which does not include the complexity of index replacement step in [6]). Hence,
to compare with [6], we only need to consider Algorithm I and Step 3 of
Algorithm III.

The indexed differential monomials that we have met in differential geometry
all satisfy that the covariant free indices have different names, therefore we have
the following consideration.

(i) When the covariant free indices have different names, by Corollary 1, only
Steps 1–5 of Algorithm I are needed. Step 2 compares indexed functions in
type list and distances, so the complexity is at most C2

i . The order on the
indexed functions that contain covariant free indices is defined in Step 2.

296 J. Liu

Step 4 compares indexed functions of the same class in distance pair
sequence. It is carried out for at most (i−m)

2 times, since according to the
proof of Proposition 2, once it is carried out, the order on at least one class
(whose elements do not contain covariant free indices) is defined. Hence the
complexity of Algorithm I is at most C2

i + (i−m)
2 C2

i−m, or O(i3), much smaller

than O(i!
k∏

j=1

nj !).

Step 3 of Algorithm III compares interchangeable indices inside partial dif-

ferential functions, so the complexity is
k∏

j=1

C2
nj

, also much smaller than

O(i!
k∏

j=1

nj !).

(ii) When some covariant free indices have identical names, Step 6 of Algorithm I

considers
s∏

j=1

mj ! possible orders. Step 7 chooses the smallest from
s∏

j=1

mj !

objects, whose complexity is
s∏

j=1

mj ! − 1. Therefore the complexity of Algo-

rithm I is at most C2
i +

s∏

j=1

mj !
(i−m)

2 C2
i−m +

s∏

j=1

mj ! − 1). It must be less

than O(i!), since (i−m)
2 C2

i−m < (i − m)! < (i − m1 − m2 − . . . − ms)!.

The complexity of Step 3 in Algorithm III is p
k∏

j=1

C2
nj

, also smaller than

O(i!
k∏

j=1

nj !), since p <
s∏

j=1

mj ! < i!.

Notation. The result of applying Algorithm III to f is denoted by f (mon).

Proposition 3. Suppose f1, f2 ∈ M[/∂]. If f1
mon∼ f2, then f

(tri)
1

mon∼ f
(tri)
2 .

Proof. Since the sub-monomials /∂A
A or /∂A1

A /∂A2
A1

. . . /∂A
Ar

have no common indices
with other sub-monomials, fi (i = 1, 2) can be divided into two independent
parts. If f1

mon∼ f2, then the part composed of /∂A
A or /∂A1

A /∂A2
A1

. . . /∂A
Ar

in f1 is
equivalent to that in f2 with respect to monoterm symmetries. So is the other
part. This implies f

(tri)
1

mon∼ f
(tri)
2 .

Theorem 1. Suppose f1, f2 ∈ R[/∂]. If f1
mon∼ f2, then f1, f2 are rewritten as

identical forms by Algorithm III. Conversely, if two polynomials are rewritten as
identical forms, they must be equivalent.

Proof. By Proposition 3, f
(tri)
1

mon∼ f
(tri)
2 . Therefore by Proposition 1, there is a

bijection Ψ from the set of indexed functions of f
(tri)
1 to that of f

(tri)
2 , and Ψ

keeps invariant of type lists and distances.
In Algorithm I, the order on indexed functions is determined only by type lists

and distances. Therefore, if the sequence {f11, . . . , f1k} is among the output of

Normalization of Differentials Using Function Distance Invariants 297

applying Algorithm I to f
(tri)
1 , i.e., it belongs to {[f1]

(min)
1 , [f1]

(min)
2 , . . . , [f1]

(min)
p },

then

{Ψ(f11), . . . , Ψ(f1k)} ∈ {[f2]
(min)
1 , [f2]

(min)
2 , . . . , [f2](min)

p }.

Let f ′
1 be the product of f11, . . ., f1k, and f ′

2 be the product of Ψ(f11), . . .,
Ψ(f1k). Because the replacement of dummy indices in Algorithm II is uniquely
determined by the order on functions, f ′

1, f
′
2 are rewritten as equivalent monomi-

als with respect to US, and finally as identical forms by Step 3 of Algorithm III.

5 Normalization

In this section, we present a normalization algorithm for monomials in M2[/∂]
by using the method of index replacement.

According to Proposition 4.1 in [14], suppose f1 and f2 are equivalent, if
we rewrite fi as f ′

i (i = 1, 2) successively by elimination, mixed rewriting
of unmixed interior circle, and coordinate system unification of self-restrained
dummy indices, then f

′
1

mon,BS∼ f
′
2. Hence in order to find the canonical form of

any monomial, we only need to develop a normalization algorithm with respect
to BS and monoterm symmetries.

Suppose g
mon,BS∼ f . Since g(mon) and f (mon) have identical set of indices, the

set
{

g(mon)|g mon,BS∼ f
}

is finite. Therefore we can choose the element associated
with the smallest numerical list from the set as the canonical form of f , and have
the following normalization algorithm.

Algorithm IV. Normalization with respect to BS and monoterm symmetries.
Input: f ∈ M2[/∂], assuming all the covariant free indices have different names.
Output: The canonical form of f with respect to BS and monoterm symmetries.
Step 1. Apply Algorithm III to f to get f (Rep) and f (mon).
Step 2. Let S1 = {Lf(mon)}, S2 = ∅, R1 = {(f (Rep), 0)}, R2 = ∅, Θ = 1, and

N (Dup) be the number of upper dummy indices of f (Rep).
Step 3. Let R2 = R1, R1 = ∅, Θ = (−1)Θ.
Step 4. For the first component g of each element (g, n(g)) in R2, carry out the

following steps.
1. In g, find the pairs of functions in one of the four forms

(a) /∂
n

′
3

n
′
1n2

and /∂N6

n
′
4N5

,

(b) /∂
n

′
3

n
′
1n2

and /∂N6

n
′
5n

′
4
,

(c) /∂n3

n1n
′
2

and /∂N6
n4N5

,

(d) /∂n3

n1n
′
2

and /∂N6
n5n4

,

such that ni (i = 1, . . . , 5) is a positive integer, n3 �= n(g), n4 = n3 +
N (Dup), and N5, N6 ∈ N′.

298 J. Liu

2. Rewrite the couple functions by

/∂
n

′
3

n
′
1n2

/∂N6

n
′
4N5

−→ −/∂n3

n2n
′
1
/∂N6
n4N5

,

/∂
n

′
3

n
′
1n2

/∂N6

n
′
5n

′
4

−→ −/∂n3

n2n
′
1
/∂N6

n4n
′
5
,

/∂n3

n1n
′
2
/∂N6
n4N5

−→ −/∂
n

′
3

n
′
2n1

/∂N6

n
′
4N5

,

/∂n3

n1n
′
2
/∂N6
n5n4

−→ −/∂
n

′
3

n
′
2n1

/∂N6

n
′
4n5

respectively, and denote the new monomial by g′.
3. Apply Algorithm III to g′, and get g′(mon).
4. If Θ = −1 and Lg′(mon) /∈ S2, then add Lg′(mon) and the ordered pair

(g′, n3) to S2 and R1 respectively.
5. If Θ = 1 and Lg′(mon) /∈ S1, then add Lg′(mon) and the ordered pair (g′, n3)

to S1 and R1 respectively.
Step 5. If R1 = ∅, let Lh be the smallest among S1

⋃ S2, and output h. Other-
wise, return to Step 3.

Remark 1

(i) In the above algorithm, Θ is the sign symbol of a monomial. Two monomi-
als with different sign symbols are impossibly identical, hence are put into
different sets S1 and S2.

(ii) Suppose f can be rewritten as g. When we rewrite g, to prevent the result
from being f , we use the positive integer n(g) as a criterion.

Due to Algorithm IV, we directly have the following normalization algorithm.

Algorithm V. Normalization algorithm.
Input: f ∈ M2[/∂].
Output: The canonical form of f .
Step 1. Apply the simplification algorithm in [14] to f .
Step 2. Carry out the mixed rewriting of unmixed interior circle and coordinate

system unification of self-restrained dummy indices [14]:

/∂
a

′
2

b1a1
/∂a3

b
′
2a

′
2
/∂
a

′
4

b3a3
. . . /∂

a
′
2k

b2k−1a2k−1
/∂a1

b
′
2ka

′
2k

−→

/∂a2

b1a
′
1
/∂
a

′
3

b
′
2a2

/∂a4

b3a
′
3
. . . /∂a2k

b2k−1a
′
2k−1

/∂
a

′
1

b
′
2ka2k

,

and
/∂d
dc′ /∂c′

b′a −→ /∂d′
d′c/∂c

ab′ .

Step 3. Divide the covariant free indices into groups by name. The order of
replacement of indices in different groups are alphabetical, and the order
within each group is arbitrary.

Step 4. Under all the possible orderings, apply Algorithm IV, and denote all
the outputs by f1, . . . , fp.

Normalization of Differentials Using Function Distance Invariants 299

Step 5. Let fs (1 ≤ s ≤ p) be the monomial which has the smallest numerical
list among Lfi (i = 1, . . . , p). Output fs.

Example 6. Put f = /∂r′
a′
1a2

/∂t′
a′
3a4

/∂d
dt′ /∂c

r′s′ /∂
p
ce′ /∂

l
k′ into canonical form.

Step 1. By the first two steps of Algorithm V, /∂t′
a′
3a4

/∂d
dt′ is rewritten as /∂t

a4a′
3
/∂d′
d′t.

Step 2. According to Algorithm IV, rewrite f by BS. And among all the
results, we find that h(mon) = /∂1

8′ /∂10
4,3′ /∂11

6,5′ /∂2
7′,16′ /∂12′

9′,14 /∂13′
17′,15 has the small-

est numerical list. Since the numbers from 1 to 9 denote the free indices
l, p, k′, a′

1, a2, a
′
3, a4, e

′, s′, output /∂l
k′ /∂10

a2a′
1
/∂11
a4a′

3
/∂p
e′,16′ /∂

12′
s′,14 /∂13′

17′,15.

Example 7. Prove that Hi
jk in Example 1 is a (1, 2)-typed tensor.

It suffices to verify Eq. (1).
Since h is a (1, 1)-typed tensor, hi′

j′ = /∂j
j′ /∂

i′
i hi

j . Substituting the expressions
of Hi

jk, Hi′
j′k′ (given in Example 1) and hi′

j′ into the left side of (1), we get a
polynomial with 16 terms, denoted by f . Each term of f is in M2[/∂, h], which
is a monoid composed of the partial derivatives of h and M2[/∂] (see also [14]).
Note that Algorithm III is independent of the differential function name /∂ (or
we can take h as /∂). Besides, the simplification algorithm has been extended
to M2[/∂, h], as presented by [14]. Hence, Algorithm V can put f into canonical
form. For each term of f , we find that there is another term such that the sum
of their canonical forms is 0. For instance, the two terms /∂i′

i /∂s
p′hi

s/∂k
k′ /∂

p′
j′ph

p
k and

/∂m′
t /∂k

k′ht
k /∂j

m′j′ /∂
i′
i hi

j have the canonical forms ∓/∂4
k′ /∂i′

9 h5
11h

6
8 /∂7

10,j′ . Therefore, the
canonical form of f is 0.

Acknowledgements. The author is grateful to the reviewers for helpful comments.
This work was supported by Natural Science Foundation of Shanghai (15ZR1401600).

References

1. Fulling, S.A., King, R.C., Wybourne, B.G., Cummins, C.J.: Normal forms for
tensor polynomials: I. The Riemann tensor. Class. Quantum Grav. 9, 1151–1197
(1992)

2. Christensen, S., Parker, L.: MathTensor, A System for Performing Tensor Analysis
by Computer. Addison-Wesley, Boston (1994)

3. Ilyin, V.A., Kryukov, A.P.: ATENSOR-REDUCE program for tensor simplifica-
tion. Comput. Phys. Commun. 96, 36–52 (1996)

4. Jaén, X., Balfagón, A.: TTC: symbolic tensor calculus with indices. Comput. Phys.
12, 286–289 (1998)

5. Portugal, R.: An algorithm to simplify tensor expressions. Comput. Phys. Com-
mun. 115, 215–230 (1998)

6. Portugal, R.: Algorithmic simplification of tensor expressions. J. Phys. A: Math.
Gen. 32, 7779–7789 (1999)

7. Portugal, R.: The Riegeom package: abstract tensor calculation. Comput. Phys.
Commun. 126, 261–268 (2000)

300 J. Liu

8. Balfagón, A., Jaén, X.: Review of some classical gravitational superenergy tensors
using computational techniques. Class. Quantum Grav. 17, 2491–2497 (2000)

9. Manssur, L.R.U., Portugal, R., Svaiter, B.F.: Group-theoretic approach for sym-
bolic tensor manipulation. Int. J. Mod. Phys. C. 13, 859–880 (2002)

10. Manssur, L.R.U., Portugal, R.: The Canon package: a fast kernel for tensor manip-
ulators. Comput. Phys. Commun. 157, 173–180 (2004)

11. Mart́ın-Garćıa, J.M., Portugal, R., Manssur, L.R.U.: The Invar tensor package.
Comput. Phys. Commun. 177, 640–648 (2007)

12. Mart́ın-Garćıa, J.M., Yllanes, D., Portugal, R.: The Invar tensor package: differ-
ential invariants of Riemann. Comput. Phys. Commun. 179, 586–590 (2008)

13. Liu, J., Li, H.B., Zhang, L.X.: A complete classification of canonical forms of a class
of Riemann tensor indexed expressions and its applications in differential geometry
(in Chinese). Sci. Sin. Math. 43, 399–408 (2013)

14. Liu, J., Li, H.B., Cao, Y.H.: Simplification and normalization of indexed differen-
tials involving coordinate transformation. Sci. China Ser. A. 52, 2266–2286 (2009)

15. Liu, J.: Simplification and normalization of indexed polynomials. Ph.D. Thesis,
Chinese Academy of Sciences, Beijing (2009)

Symbolic-Numeric Integration of the Dynamical
Cosserat Equations

Dmitry A. Lyakhov1(B), Vladimir P. Gerdt3,4, Andreas G. Weber5,
and Dominik L. Michels1,2

1 Visual Computing Center, King Abdullah University of Science and Technology,
Al Khawarizmi Building, Thuwal 23955-6900, Kingdom of Saudi Arabia

{dmitry.lyakhov,dominik.michels}@kaust.edu.sa
2 Department of Computer Science, Stanford University, 353 Serra Mall, Stanford,

CA 94305, USA
michels@cs.stanford.edu

3 Laboratory of Information Technologies, Joint Institute for Nuclear Research,
6 Joliot–Curie St., Dubna 141980, Russian Federation

4 Peoples’ Friendship University of Russia, 6 Miklukho–Maklaya St.,
Moscow 117198, Russian Federation

gerdt@jinr.ru
5 Institute of Computer Science II, University of Bonn, Friedrich-Ebert-Allee 144,

53113 Bonn, Germany
weber@cs.uni-bonn.de

Abstract. We devise a symbolic-numeric approach to the integration of
the dynamical part of the Cosserat equations, a system of nonlinear par-
tial differential equations describing the mechanical behavior of slender
structures, like fibers and rods. This is based on our previous results on
the construction of a closed form general solution to the kinematic part
of the Cosserat system. Our approach combines methods of numerical
exponential integration and symbolic integration of the intermediate sys-
tem of nonlinear ordinary differential equations describing the dynamics
of one of the arbitrary vector-functions in the general solution of the
kinematic part in terms of the module of the twist vector-function. We
present an experimental comparison with the well-established general-
ized α-method illustrating the computational efficiency of our approach
for problems in structural mechanics.

Keywords: Analytical solution · Cosserat rods · Dynamic equations ·
Exponential integration · Generalized α-method · Kinematic equations ·
Symbolic computation

1 Introduction

Deformable-body dynamics can be considered as a subarea of continuous
mechanics that studies motion of deformable solids subject to the action of
internal and external forces (cf. [11]). The equations describing the dynamics of
c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 301–312, 2017.
DOI: 10.1007/978-3-319-66320-3 22

302 D.A. Lyakhov et al.

such solids are nonlinear partial differential equations (PDEs) whose independent
variables are three spatial coordinates and time. Given a particular deformable
mechanical structure, to describe its dynamics, it is necessary to satisfy these
equations at each point of the structure together with appropriate boundary
conditions. For a mechanical structure having special geometric properties, it is
worthwhile to exploit these properties to develop a simplified but geometrically
exact mechanical model of the structure. Classical examples of such models are
Cosserat theories of shells and rods; see e.g. [18] and references therein.

Rods are nearly one-dimensional structures whose dynamics can be described
by the Cosserat theory of (elastic) rods (cf. [1], Chap. 8; [18], Chap. 5; and the
original work [5]). This is a general and geometrically exact dynamical model
that takes bending, extension, shear, and torsion into account, as well as rod
deformations under external forces and torques. In this context, the dynamics of
a rod is described by a governing system of twelve first-order nonlinear partial
differential equations (PDEs) with a pair of independent variables (s, t), where s
is the arc-length and t the time parameter. In this PDE system, the two kinematic
vector equations ((9a)–(9b) in [1], Chap. 8) are parameter free and represent the
compatibility conditions for four vector functions κ,ω,ν,v in (s, t). Whereas the
first vector equation only contains two vector functions κ and ω, the second one
contains all four vector functions κ,ω,ν,v. The remaining two vector equations
in the governing system are dynamical equations of motion and include two
more dependent vector variables m̂(s, t) and n̂(s, t). Moreover, these dynamical
equations contain parameters (or parametric functions of s) to characterize the
rod and to include the external forces and torques. Studying the dynamics of
Cosserat rods has various scientific and industrial applications, for example, in
civil and mechanical engineering (cf. [2]), microelectronics and robotics (cf. [3]),
biophysics (cf. [7] and references therein), and visual computing (cf. [15]).

Because of its inherent stiffness caused by different deformation modes, the
treatment of the underlying equations usually requires the application of specific
solvers; see e.g. [16]. In order to reduce the computational overhead caused by
the stiffness, we employed Lie symmetry based integration methods (cf. [9,17])
and the theory of completion to involution (cf. [19]) to the two kinematic vector
equations (cf. [1], Chap. 8, Eq. (9a)–(9b)) and constructed their general and
analytic solution in [13,14], which depends on two arbitrary vector functions in
(s, t).

In this contribution, we exploit the general analytic solution to the kine-
matic part of the governing Cosserat system constructed in [13,14] and develop
a symbolic-numeric approach to the integration of the dynamical part of the sys-
tem. Our approach combines the ideas of numerical exponential integration (see
e.g. [8,12] and references therein) and symbolic integration of the intermediate
system of nonlinear ordinary differential equations describing the dynamics of the
arbitrary vector function in the general solution to the kinematic part in terms
of the module of the twist vector function. The symbolic part of the integration
is performed by means of Maple. We present an experimental comparison of the

Symbolic-Numeric Integration of the Dynamical Cosserat Equations 303

computational efficiency of our approach with that of the generalized α-method
for the numerical integration of problems in structural mechanics (see e.g. [20]).
This paper is organized as follows. In Sect. 2, we present the governing PDE sys-
tem in the special Cosserat theory of rods and analytic solution to its kinematic
part constructed in [13,14]. In Sect. 3, we show first that the (naive) straight-
forward numerical integration of the dynamical part of Cosserat system has
a severe obstacle caused by a singularity in the system. Then we describe a
symbolic-numeric method to integrate the dynamical equations based on the
ideas of exponential integration and the construction of a closed form analytic
solution to the underlying nonlinear dynamical system. In doing so, we show
that this symbolic-numeric method is free of the singularity problem. In Sect. 4,
we present an experimental comparison of our method with the generalized α-
method. Some concluding remarks are given in Sect. 5.

2 Governing Cosserat Equations and the General
Solution of Their Kinematic Part

The governingPDE system in the special Cosserat theory of rods (cf. [1,3,5,13,14])
can be written in the following form:

κt = ωs − ω × κ, (1a)
νt = vs + κ × v − ω × ν, (1b)
ρJ · ωt = m̂s + κ × m̂ + ν × n̂ − ω × (ρJ · ω) + L, (1c)
ρAvt = n̂s + κ × n̂ − ω × (ρAv) + F . (1d)

Here, the independent variable t denotes the time and another independent
variable s the arc-length parameter identifying a material cross section of the rod,
which consists of all material points whose reference positions are on the plane
perpendicular to the rod at s. The Darboux vector-function κ =

∑3
k=1 κkdk

and the twist vector-function ω =
∑3

k=1 ωkdk are determined by the kinematic
relations

∂sdk = κ × dk, ∂tdk = ω × dk,

where the vectors d1, d2, and d3 := d1 × d2 form a right-handed orthonor-
mal moving frame. These vectors are called directors. The use of the triple
(d1, d2, d3) is natural for the intrinsic description of the rod deformation. More-
over, r describes the motion of the rod relative to the fixed frame (e1, e2, e3).
This is illustrated in Fig. 1.

In doing so, the motion of a rod is defined by the mapping

[a, b] × R � (s, t) �→ (r(s, t), d1(s, t), d2(s, t),d3(s, t)) ∈ E
3.

Furthermore, the governing system (1a)–(1d) includes additional vector-
valued dependent variables: linear strain ν of the rod and the velocity v of
the material cross-section:

ν := ∂sr =
3∑

k=1

νkdk, v := ∂tr =
3∑

k=1

vkdk.

304 D.A. Lyakhov et al.

r(s, t)r(s, t)d1d1

d2d2
d3d3

e1e1 e2e2

e3e3

s = as = a s = bs = b

Fig. 1. The vector set {d1, d2, d3} forms a right-handed orthonormal basis. The direc-
tors d1 and d2 span the local material cross-section, whereas d3 is perpendicular to
the cross-section. Note that in the presence of shear deformations d3 is unequal to the
tangent ∂sr of the centerline of the rod.

The components of the strain variables κ and ν describe the deformation
of the rod: the flexure with respect to the two major axes of the cross section
(κ1, κ2), torsion (κ3), shear (ν1, ν2), and extension (ν3).

The kinematic part of the governing Cosserat system consists of equa-
tions (1a)–(1b) ((9a)–(9b) in [1], Chap. 8). The remaining equations (1c)–(1d)
((9c)–(9d) in [1], Chap. 8) make up the dynamical part of the governing equa-
tions. For a rod density ρ(s) and cross section A(s), these equations follow from
Newton’s laws of motion:

ρ(s)A(s)∂tv = ∂sn(s, t) + F (s, t),
∂th(s, t) = ∂sm(s, t) + ν(s, t) × n(s, t) + L(s, t), (2)

where m(s, t) =
∑3

k=1 mk(s, t)dk(s, t) are the contact torques, n(s, t) =
∑3

k=1 nk(s, t)dk(s, t) are the contact forces, h(s, t) =
∑3

k=1 hk(s, t)dk(s, t) are
the angular momenta, and F (s, t) and L(s, t) are the external forces and torque
densities.

The contact torques m(s, t) and contact forces n(s, t) corresponding to the
internal stresses, are related to the extension and shear strains ν(s, t) as well as
to the flexure and torsion strains κ(s, t) by the constitutive relations

m(s, t) = m̂ (κ(s, t),ν(s, t), s) , n(s, t) = n̂ (κ(s, t),ν(s, t), s) .

Under certain reasonable assumptions (cf. [1,3,13]) on the structure of the right-
hand sides in (2), they take the form (1c)–(1d) in which J is the inertia tensor
of the cross section per unit length. Unlike the kinematic part, the dynamical
part contains parameters characterizing the rod under consideration: ρ,A and
J together with the external force F and torque L, whereas the kinematic part
is parameter free.

In our previous papers [13,14], by treating the kinematic Cosserat equa-
tions (1a)–(1b) with computer algebra aided methods of the modern Lie sym-
metry analysis (cf. [9,17]) and the theory of completion of partial differential

Symbolic-Numeric Integration of the Dynamical Cosserat Equations 305

systems to involution (cf. [19]), we constructed the following closed form of an
analytical solution to the kinematic part and proved its generality:

ω = pt +
p − sin(p)

p3
(
p (p · pt) − p2 pt

) − 1 − cos(p)
p2

p × pt, (3a)

κ = ps +
p − sin(p)

p3
(
p (p · ps) − p2 ps

) − 1 − cos(p)
p2

p × ps, (3b)

ν = q × κ − qs, (3c)
v = q × ω − qt,

where p(s, t) and q(s, t) are arbitrary analytic vector functions, and

p =
√

p21 + p22 + p23.

For the efficient numerical solving of the dynamical Cosserat equations (1c)–
(1d), we use the following fact: the vector equation (3a) uniquely defines pt in
terms of p and ω. We formulate this fact as the following statement.

Proposition 1. The temporal derivative pt of the vector function p, as a solu-
tion of (3a), reads

pt =
p · ω

p2
p +

1
2

p × ω − p

2
cot

(p

2

)
· p × (p × ω)

p2
. (4)

Proof. The vector function pt occurs linearly in (3a). In the component form, it
is a linear system of three equations in three unknowns (p1)t, (p2)t, (p3)t whose
matrix has a non-singular determinant (cf. formula (11) in [14])

2
cos(p) − 1

p2
. (5)

The vector form of pt as a solution to equality (3a) is given by (4). This can
be verified either by hand computation or by using the routines of the Maple
package VectorCalculus after the substitution of (4) into the right-hand side
of (3a) and simplification of the obtained expression to ω. ��

Instead of system (1a)–(1d) for unknowns (ω,κ,ν,v), we are going to solve
the equivalent system

pt =
p · ω

p2
p +

1
2

p × ω − p

2
cot

(p

2

)
· p × (p × ω)

p2
, (6a)

qt = q × ω − v, (6b)
ρJ · ωt = m̂s + κ × m̂ + ν × n̂ − ω × (ρJ · ω) + L, (6c)
ρAvt = n̂s + κ × n̂ − ω × (ρAv) + F (6d)

for unknown vector functions (p, q,ω,v), where κ and ν are given by (3b)–(3c).

306 D.A. Lyakhov et al.

3 Symbolic-Numeric Integration Method

3.1 Naive Approach: Explicit Numerical Solving

Suppose we know the values of the vector-functions ω and p on a time layer t.
Then pt in (6a) can be approximated by the forward Euler difference

pt → p(s, t + �t) − p(s, t)
�t

.

However, since Eq. (6a) has a singularity at p = 2π related with vanishing (5),
there is a restriction to the time step Δt caused by the condition

p(s, t + �t) ∈ (0, 2π) (7)

to be held for all values of s. This is a severe problem for the numerical solving of
the governing Cosserat system, because in the course of solving, one must control
the time step at every value of s to keep the values of p(s, t) within the interval
indicated in (7). This problem is resolved in the symbolic-numeric integration
method described in the next subsection.

3.2 Advanced Approach Based on Exponential Integration

To avoid the problem of controlling the condition (7) we use the differential
equation (6a) for p(t) and rewrite it in terms of p and the unit vector e where
p = pe. It leads to the following differential system:

pt = e · ω,

2et = e × ω − cot
(p

2

)
e × (e × ω).

Now assume that the vector ω is independent of t on the time interval Δt and
choose the Cartesian coordinate system e1,e2,e3 such that e3||ω:

e = A1 e1 + A2 e2 + A3 e3, ω = ω e3, ω :=
√

ω2
1 + ω2

2 + ω2
3 .

Then, we obtain the following system of four first-order differential equations:

2 (A1)t = A2 ω − cot
(p

2

)
A1A3 ω, (9a)

2 (A2)t = −A1 ω − cot
(p

2

)
A2A3 ω, (9b)

2 (A3)t = − cot
(p

2

)
(A2

3 − 1)ω, (9c)

pt = A3 ω. (9d)

From the Eqs. (9c)–(9d) it follows

2A3(A3)t

A2
3 − 1

= − cot
(p

2

)
pt,

Symbolic-Numeric Integration of the Dynamical Cosserat Equations 307

and hence,
(1 − A2

3) sin2
(p

2

)
= C, Ct = 0. (10)

Equation (10) immediately implies the following statement providing fulfillment
of (7).

Proposition 2. If C 	= 0, then p(t) ∈ (0, 2π) for all t ≥ t0 if p(t0) ∈ (0, 2π).

If one substitutes A3 = pt/ω from (9c) and replaces p with q := cos
(

p
2

)
, then

(10) takes the form
4 q2t = ω2

(
1 − q2 − C

)
.

This equation is easily solvable by the Maple routine dsolve which outputs
four solutions. These solutions can be unified into the general solution

q =
√

1 − C sin
(

1
2
ω(C1 − t)

)

, (C1)t = 0.

Then, the whole system (9a)–(9d) admits the following general analytic solution

A1(s, t) = −
√

C · sin(12ω(C2 − t))
√

ω2 cos2(12ω(C1 − t)) + C sin2(12ω(C1 − t))
, (11a)

A2(s, t) =

√
C · cos(12ω(C2 − t))

√
ω2 cos2(12ω(C1 − t)) + C sin2(12ω(C1 − t))

, (11b)

A3(s, t) =

√
ω2 − C · cos(12ω(C1 − t))

√
ω2 cos2(12ω(C1 − t)) + C sin2(12ω(C1 − t))

, (11c)

p(s, t) = 2 arccos

(√
ω2 − C sin(12ω(C1 − t))

ω

)

, (11d)

where C, C1, C2 are functions of s. These functions are determined by the
following initial data:

C(s) := ω2
(
1 − A2

3(s, t0)
)
sin2

(
p(s, t0)

2

)

,

C1(s) := t0 +
A3(s, t0)| sin(p(s, t0))|√

ω2 − C(s)
,

C2(s) := t0 +
2
ω

arctan
(

A1(s, t0)
A2(s, t0)

)

.

Proposition 3. C(s) ≡ 0 if and only if A3(s, t) = ±1 which corresponds to a
degenerated solution

A1(s, t) = 0, A2(s, t) = 0, p(s, t) = p(s, t0) ± ωt.

308 D.A. Lyakhov et al.

Computationally, this solution is not of interest, since it is unstable: a small (e.g.
numerical) deviation of A3(s, t0) from ±1 converts the solution into a generic
one.

Proof. The solution

p(s, t) = p(s, t0) ± ωt,A3(s, t) = ±1, A2(s, t) = A1(s, t) = 0

is singular. Unlike the generic solution, the value of |p(t)| in this solution may
increase indefinitely. However, it is unstable, since any small perturbation ε > 0
to the initial value A3(s, t0) = ± (1 − ε(s)) leads to the generic case when p(t)
remains bounded.

�

Our symbolic-numeric approach to the derivation of equations (9a)–(9d) and
the construction of their explicit analytic solution (11a)–(11d) is in accord with
the general principles of exponential integration (see e.g. [8]). The basic idea
behind exponential integration is the identification of a prototypical differential
system which has the stiffness properties similar to those in the original equation
and which admits explicit solving.

In our case, the stiffness properties of the differential system (9a)–(9d) are
similar to those in system (6a)–(6d). In doing so, the last system belongs to the
second class of stiff problems (cf. [8], p. 210) whose stiffness is caused by the
highly oscillatory behavior of their solutions. For such problems both explicit
and implicit Euler schemes fail to provide the required stability unless the step
size is strongly reduced to provide the resolution of all the oscillations in the
solution. Thereby, the standard numerical treatment of the equations (1a)–(1d)
and hence equations (6a)–(6d) is computationally inefficient. Just by this reason,
special numerical solvers have been designed (cf. [10,20]) for the Eqs. (1a)–(1d).

Figure 2 illustrates the stiffness of the differential system (6a)–(6d). The
behavior is shown, at ω = 1, of the functions p(s0, t) and A3(s0, t) as solu-
tions of (9c)–(9d) for the initial conditions p(s0, 0) = 1 and A3(s0, 0) = 0.99. As
illustrated, the solution oscillates and changes drastically over time. A numeri-
cal reconstruction of such a behavior is possible only for very small step sizes of
difference approximations.

4 Numerical Comparison with the Generalized α-Method

In 1993, Chung and Hulbert (cf. [4]) presented the generalized α-method as a
new integration algorithm for problems from structural mechanics. It is char-
acterized primarily by a controllable numerical dissipation of high-frequency
components in the numerical solution. These occur, for example, in the con-
text of finite element-based simulations, when the high-frequency states are too
roughly resolved. Such methods usually improve the convergence behavior of
iterative solving strategies for nonlinear problems.

The generalized α-method is well-established in the field of structural
mechanics and has the major advantage of unconditional stability as well as

Symbolic-Numeric Integration of the Dynamical Cosserat Equations 309

Fig. 2. Illustration of the temporal evolution of p(s0, t) (left) and A3(s0, t) (right).

user controllable numerical damping. The idea of the introduction of a con-
trollable numerical damping in the integration process is not new and found,
among other things, realization in α-HHT (cf. [6]) or in the WBC-α-method
(cf. [21]). The aim of the development of such methods is to maximize the
attenuation of high-frequency components while preserving the important low-
frequency components. Using the generalized α-method, this ratio is optimal,
i.e., for a given attenuation of the high-frequency components, the attenuation of
the low-frequency components is minimized. A brief specification of this method
for general problems in structural mechanics is given in AppendixA.

Following [20], using a state vector

x(s, t) = (v(s, t),ω(s, t),κ(s, t),n(s, t))T

describing the rod, we can rewrite its equations of motion (1a)–(1d) in terms of
a system

M̂∂tx(s, t) + K̂∂sx(s, t) + Λ(s, t) = 0. (12)

Here

M̂ = diag(ρA, ρA, ρA, ρI1, ρI2, ρI3, 1, 1, 1, 0, 0, 0)

is the mass matrix and K̂ = −adiag(1, 1,K, 1) is the stiffness matrix with K =
diag(EI1, EI2, Gμ), in which the bending stiffness in the direction of the principal
components of the cross section A is denoted by EI1,2, and the torsional stiffness
by Gμ. As above, the rod’s density is given by ρ, the Young’s modulus by E, and
the shear modulus by G. The nonlinear terms are included in the nonlinearity Λ.
We do not explicitly write out the resulting equations here for brevity and refer
to [20] for the explicit form of (12). In the generalized α-method, the update

310 D.A. Lyakhov et al.

schemes of positions and velocities at point i in time correspond to those of
the classical Newmark integrator. Its accurate and efficient application in the
context of the simulation of elastic rods was demonstrated in [20].

According to [20], we consider four different test cases: (i) a sine-like shaped
rod which is released under gravity from a horizontal position (no damping);
(ii) a highly damped helical rod subject to a time-varying end point load (the
damping is obtained by setting the integration parameters (see AppendixA) of
the generalized α-method to α := αm = αf = 0.4, β = 0, and γ = 1.0); (iii) a
straight rod (45 cm) subject to a time-varying torque; (iv) a helical rod with low
damping that is excited by a force parallel to the axis of the helix and released
after 0.1 s showing the typical oscillating behavior of a steel-like coil spring.

We simulate these scenarios using the generalized α-method and the
symbolic-numeric integration scheme presented in this contribution. All fibers are
discretized using 100 individual segments. Using the symbolic-numeric method,
damping is incorporated using the linear Rayleigh damping as described in [15].
We enforce a maximally tolerated relative L2-error of 1% in the position and
velocity space in order to ensure sufficient accuracy and measure the required
computation time on a machine with an Intel(R) Xeon E5 with 3.5 GHz and 32
GB DDR-RAM without parallelization. For all test cases, we obtain significant
speedups of the presented symbolic-numeric method (“snm”) compared to the
generalized α-method (“α”), in particular:

(i) speedup of a factor more than 20 (α: 4.1 s; snm: 0.2 s);
(ii) speedup of over 21× (α: 4.3 s; snm: 0.2 s);
(iii) speedup of approx. 19× (α: 3.8 s; snm: 0.2 s);
(iv) speedup of approx. 34× (α: 6.8 s; snm: 0.2 s).

Please note that the computation time of 0.2 s of the presented symbolic-numeric
method is constant for all test cases (with identical duration of 8 s).

5 Conclusison

Based on the closed form solution to the kinematic part (1a)–(1b) of the gov-
erning Cosserat system (1a)–(1d) and with assistance of Maple, we have devel-
oped a new symbolic-numeric method for their integration. Our computational
experiments demonstrate the superiority of the new method over the general-
ized α-method for the accurate and efficient integration of Cosserat rods. Its
application prevents from numerical instabilities and allows for highly accurate
and efficient simulations. This clearly shows the usefulness of the constructed
analytic solution to the kinematic equations and should enable more complex
and realistic Cosserat rod-based scenarios to be explored in scientific computing
without compromising efficiency.

Acknowledgements. The authors appreciate the insightful comments of the anony-
mous referees. This work has been partially supported by the King Abdullah Univer-
sity of Science and Technology (KAUST baseline funding), the Max Planck Center

Symbolic-Numeric Integration of the Dynamical Cosserat Equations 311

for Visual Computing and Communication (MPC-VCC) funded by Stanford Univer-
sity and the Federal Ministry of Education and Research of the Federal Republic of
Germany (BMBF grants FKZ-01IMC01 and FKZ-01IM10001), the Russian Founda-
tion for Basic Research (grant 16-01-00080) and the Ministry of Education and Science
of the Russian Federation (agreement 02.a03.21.0008).

A Generalized α-Method

In this appendix, we briefly explain the application of the generalized α-method
for the common case of a system described by the standard equation from struc-
tural mechanics,

Mẍ + Dẋ + Kx + Λ(t) = 0, (13)

in which M , D, and K denote the mass, damping, and stiffness matrices. The
time-dependent displacement vector is given by x(t), and its first- and second-
order temporal derivatives describe velocity and acceleration. The vector Λ(t)
describes external forces acting on the system at time t. We are searching for
functions x(t), υ(t) = ẋ(t), and a(t) = ẍ(t) satisfying (13) for all t with initial
conditions x(t0) = x0 and υ(t0) = υ0.

For the employment of the generalized α-method, we can write the integration
scheme with respect to (13) as follows:

Ma1−αm
+ Dx1−αf

+ Kx1−αf
+ Λ(t1−αf

) = 0,

with the substitution rule (·)1−α := (1−α)(·)i +α(·)i−1 and the approximations

xi = xi−1 + Δtvi−1 + Δt2
((

1
2

− α

)

ai−1 + βai

)

,

υi = υi−1 + Δt ((1 − γ) ai−1 + γai) .

The parameters αm, αf , γ, and β are integration coefficients.

References

1. Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences,
vol. 107. Springer, Heidelberg (1995). doi:10.1007/0-387-27649-1

2. Boyer, F., De Nayer, G., Leroyer, A., Visonneau, M.: Geometrically exact Kirchhoff
beam theory: application to cable dynamics. J. Comput. Nonlinear Dyn. 6(4),
041004 (2011)

3. Cao, D.Q., Tucker, R.W.: Nonlinear dynamics of elastic rods using the Cosserat
theory: modelling and simulation. Int. J. Solids Struct. 45, 460–477 (2008)

4. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics
with improved numerical dissipation: the generalized-α method. J. Appl. Mech.
60(2), 371–375 (1993)

5. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)
6. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for

time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5,
283–292 (1977)

http://dx.doi.org/10.1007/0-387-27649-1

312 D.A. Lyakhov et al.

7. Hilfinger, A.: Dynamics of cilia and flagella. Ph.D. thesis, Technische Universität
Dresden (2006)

8. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–
286 (2010)

9. Ibragimov, N.H.: A Practical Course in Differential Equations and Mathematical
Modelling. Classical and New Methods. Nonlinear Mathematical Models. Symme-
try and Invariance Principles. Higher Education Press/World Scientific, Beijing
(2009)

10. Lang, H., Linn, J., Arnold, M.: Multibody Dynamics Simulation of Geometri-
cally Exact Cosserat Rods. Berichte des Fraunhofer ITWM, vol. 209. Fraunhofer,
Munich (2011)

11. Luo, A.C.J.: Nonlinear Deformable-Body Dynamics. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12136-4

12. Michels, D.L., Desbrun, M.: A semi-analytical approach to molecular dynamics. J.
Comput. Phys. 303, 336–354 (2015)

13. Michels, D.L., Lyakhov, D.A., Gerdt, V.P., Sobottka, G.A., Weber, A.G.: Lie
symmetry analysis for cosserat rods. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 324–334. Springer, Cham
(2014). doi:10.1007/978-3-319-10515-4 23

14. Michels, D.L., Lyakhov, D.A., Gerdt, V.P., Hossain, Z., Riedel-Kruse, I.H., Weber,
A.G.: On the general analytical solution of the Kinematic Cosserat equations. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS,
vol. 9890, pp. 367–380. Springer, Cham (2016). doi:10.1007/978-3-319-45641-6 24

15. Michels, D.L., Mueller, J.P.T., Sobottka, G.: A physically based approach to the
accurate simulation of stiff fibers and stiff fiber meshes. Comput. Graph. 53B,
136–146 (2015)

16. Michels, D.L., Sobottka, G.A., Weber, A.G.: Exponential integrators for stiff elas-
todynamic problems. ACM Trans. Graph. 33, 7:1–7:20 (2014)

17. Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts
in Mathematics, vol. 107, 2nd edn. Springer, Heidelberg (1993). doi:10.1007/
978-1-4684-0274-2

18. Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer Academic Pub-
lishers, Dordrecht (2000)

19. Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Heidelberg (2010). doi:10.1007/978-3-642-01287-7

20. Sobottka, G.A., Lay, T., Weber, A.G.: Stable integration of the dynamic Cosserat
equations with application to hair modeling. J. WSCG 16, 73–80 (2008)

21. Wood, W.L., Bossak, M., Zienkiewicz, O.C.: An alpha modification of Newmarks
method. Int. J. Numer. Methods Eng. 15, 1562–1566 (1981)

http://dx.doi.org/10.1007/978-3-642-12136-4
http://dx.doi.org/10.1007/978-3-319-10515-4_23
http://dx.doi.org/10.1007/978-3-319-45641-6_24
http://dx.doi.org/10.1007/978-1-4684-0274-2
http://dx.doi.org/10.1007/978-1-4684-0274-2
http://dx.doi.org/10.1007/978-3-642-01287-7

Algorithms for Zero-Dimensional Ideals Using
Linear Recurrent Sequences

Vincent Neiger1(B), Hamid Rahkooy2, and Éric Schost2

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

vinn@dtu.dk
2 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

Abstract. Inspired by Faugère and Mou’s sparse FGLM algorithm, we
show how using linear recurrent multi-dimensional sequences can allow
one to perform operations such as the primary decomposition of an ideal,
by computing of the annihilator of one or several such sequences.

1 Introduction

In what follows, K is a perfect field. We consider the set S = K
N

n

of n-
dimensional sequences u = (um)m∈Nn , and the polynomial ring K[X1, . . . , Xn],
and we are interested in the following question. Let I ⊂ K[X1, . . . , Xn] be a zero-
dimensional ideal. Given a monomial basis of Q = K[X1, . . . , Xn]/I, together
with the corresponding multiplication matrices M1, . . . ,Mn, we want to compute
the Gröbner bases, for a target order >, of pairwise coprime ideals J1, . . . , JK

such that I = ∩1≤k≤KJk.
Faugère et al.’s paper [11] shows how to solve this question with K = 1 (so

J1 is simply I) in time O(nD3), where D = deg(I); here, the degree deg(I) is the
K-vector space dimension of Q. More recently, algorithms have been given with
the cost bound O (̃nDω) [9,10,20], where the notation O˜ hides polylogarithmic
factors, still with K = 1. The algorithms in this paper allow splittings (so K > 1
in general) and assume that > is a lexicographic order.

To motivate our approach, assume that the algebraic set V (I) is in shape
position, that is, the coordinate Xn separates the points of V (I). Then, the Shape
Lemma [14] implies that the Gröbner basis of the radical

√
I for the lexicographic

order X1 > · · · > Xn has the form 〈X1−G1(Xn), . . . , Xn−1−Gn−1(Xn), P (Xn)〉,
for some squarefree polynomial P , and some G1, . . . , Gn−1 of degrees less than
deg(P). The polynomials P and G1, . . . , Gn−1 can be deduced from the values
(�(Xi

n))0≤i≤2D and (�(XjX
i
n))1≤j<n,0≤i<D, for a randomly chosen linear form

� : Q → K, in time O (̃D) [4]. The algorithms in the latter reference use baby
steps/giant steps techniques for the calculation of the values of �.

Similar ideas were developed in [12]; the algorithms in this reference make no
assumption on I but may fail in some cases, then falling back on the FGLM algo-
rithm. For instance, if I itself (rather than

√
I) is known to have a lexicographic

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 313–328, 2017.
DOI: 10.1007/978-3-319-66320-3 23

314 V. Neiger et al.

Gröbner basis of the form 〈X1 − H1(Xn), . . . , Xn−1 − Hn−1(Xn), Q(Xn)〉, the
algorithms in [12] recover this basis, also by considering values of linear forms
�i : Q → K. A key remark made in that reference is that the values of the linear
forms �i that we need can be computed efficiently by exploiting the sparsity of
the multiplication matrices M1, . . . ,Mn; this sparsity is then analyzed, assum-
ing the validity of a conjecture due to Moreno-Soćıas [18]. These techniques are
related as well to Rouillier’s Rational Univariate Representation algorithm [21],
which uses values of a specific linear form Q → K called the trace. However, com-
puting the trace (that is, its values on the monomial basis of Q) is non-trivial,
and using random choices instead makes it possible to avoid this issue.

In this paper, we work in the continuation of [4]. Assuming V (I) is in shape
position, the results in that reference allow us to compute the Gröbner basis of√

I, and our goal here is to recover Gröbner bases corresponding to a decom-
position of I as stated above. Following [1,12], we discuss the relation of this
question to instances of the following problem: given sequences u1, . . . ,us in S ,
find the Gröbner basis of their annihilator ann(u1, . . . ,us) ⊂ K[X1, . . . , Xn], for
a target order >. The annihilator, discussed in the next section, is a polynomial
ideal corresponding to the linear relations which annihilate all sequences.

A direct approach to solve the FGLM problem using such techniques would
be to pick initial conditions at random; knowing multiplication matrices modulo
I allows us to compute the values of a sequence u, for which I is contained in
ann(u). If I = ann(u) holds, computing sufficiently many values of u and feeding
them into an algorithm such as Sakata’s [22] would solve our problem. This is
often, but not always, possible: there exists a sequence u for which I = ann(u)
if and only if Q = K[X1, . . . , Xn]/I is a Gorenstein ring, a notion going back
to [15,16] (see e.g. [5, Proposition 5.3] for a proof of the above assertion). This
is for instance the case if I is a complete intersection, or if I is radical over a
perfect field [8]; however, an ideal such as I = 〈X2

1 ,X1X2,X
2
2 〉 ⊂ K[X1,X2] is

not Gorenstein.
To remedy this, we may have to use more than one sequence, so as to be able

to recover I as I = ann(u1, . . . ,us). However, proceeding directly in this manner,
we do not expect the algorithm to be significantly better than applying directly
the FGLM algorithm (the techniques we will use for computing annihilators
follow essentially the same lines as the FGLM algorithm itself). We will see that
starting from the Gröbner basis of

√
I, we will be able to decompose I into

e.g. primary components (assuming we allow the use of factorization algorithms
over K), and that our approach is expected to be competitive in those cases
where the multiple components of I have low degrees.

2 Generalities on Sequences and Their Annihilators

Define the shift operators s1, . . . , sn on S in the obvious manner, by setting
si(u) = (um+ei

)m∈Nn , where e1, . . . , en are the unit vectors. This makes S a
K[X1, . . . , Xn]-module, by setting f ·u = f(s1, . . . , sn)(u). For f =

∑
m fmXm,

the entries of f ·u are thus (〈u | Xmf〉)m∈Nn , where we write Xm = Xm1
1 · · ·Xmn

n

Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences 315

and 〈u |f〉 =
∑

m′ fm′um′ . To a sequence u = (um)m∈Nn in S , we can then
associate its annihilator ann(u), defined as the ideal of all polynomials f in
K[X1, . . . , Xn] such that f · u = 0. If we consider several sequences u1, . . . ,us

in S , we then define ann(u1, . . . ,us) = ann(u1) ∩ · · · ∩ ann(us).
We will also occasionally discuss kernels of sequences. For u ∈ S , the kernel

ker(u) is the K-vector space formed by all polynomials f in K[X1, . . . , Xn] such
that 〈u|f〉 = 0; this is not an ideal in general. If we consider several sequences
u1, . . . ,us, we will write ker(u1, . . . ,us) = ker(u1) ∩ · · · ∩ ker(us).

Let I be a zero-dimensional ideal in K[X1, . . . , Xn]. Define the residue class
ring Q = K[X1, . . . , Xn]/I and let D = deg(I) = dimK(Q). Consider also the
dual Q∗ = homK(Q,K). To a linear form � in Q∗, we associate the sequence u�

defined by u� = (�(Xm mod I))m∈Nn .
For any linear form � on Q, and any g in Q, define the linear form g ·� ∈ Q∗ by

(g ·�)(h) = �(gh). This induces a Q-module structure on Q∗, and we remark that
we have the equality g·u� = u(g mod I)·� for any g in K[X1, . . . , Xn]. Following [23]
(where it is described with n = 1), we call this operation transposed product.

For � in Q∗, we can then define annQ(�) as the set of all g in Q such that
g · � = 0; this is an ideal of Q. The following lemma clarifies the relation between
ann(u�) ⊂ K[X1, . . . , Xn] and annQ(�) ⊂ Q; it implies that ann(u�) is generated
by I and any element of annQ(�) lifted to K[X1, . . . , Xn].

Lemma 1. With notation as above, for f in K[X1, . . . , Xn], f is in ann(u�) if
and only if f mod I is in annQ(�).

Proof. Take f in K[X1, . . . , Xn]. Then f is in ann(u�) if and only if f · u� = 0,
that is, if and only if u(f mod I)·� = 0, if and only if (f mod I) · � itself is zero. 	

When Q∗ is a free Q-module of rank one, we say that Q is a Gorenstein ring,
and that I is Gorenstein. In this case, there exists a linear form λ such that
Q∗ = Q · λ; by the previous lemma, ann(uλ) = I. Conversely, if ann(uλ) = I,
annQ(λ) = {0}, so that Q∗ = Q · λ (and Q∗ is free of rank one). For instance, it
is known that if I is radical, or I a complete intersection, then I is Gorenstein.
On the other hand, if I = 〈X2

1 ,X1X2,X
2
2 〉, the inclusion I ⊂ ann(u�) is strict

for any linear form �. Using several sequences, we can however always recover I.

Lemma 2. Let �1, . . . , �D be linearly independent in Q∗, and let u1, . . . ,uD be
the corresponding sequences. Then ann(u1, . . . ,uD) = ker(u1, . . . ,uD) = I.

Proof. Note first that the inclusion I ⊂ ann(u1, . . . ,uD) = ann(u1) ∩ · · · ∩
ann(uD) is a direct consequence of Lemma 1, and that ann(u1, . . . ,uD) is con-
tained in ker(u1, . . . ,uD). For the converse, let ω1, . . . , ωD be the basis of Q dual
to �1, . . . , �D. Suppose that f is in ker(u1, . . . ,uD), and assume without loss of
generality that f has been reduced by I, so that f is a linear combination of the
form f1ω1 + · · · + fDωD. Fix i in 1, . . . , D and apply �i to f ; we obtain fi. On
the other hand, because f is in ker(ui), �i(f) must vanish. So we are done. 	

We may however need less than D linear forms, as explained in the following
discussion, which generalizes the comments we made in the Gorenstein case.

316 V. Neiger et al.

Let B = (b1, . . . , bD) be a monomial basis of Q. Given a linear form � in
Q∗, we define K� as the D × D matrix whose (i, j)th entry is �(bibj); this is the
matrix of the mapping f ∈ Q �→ f · � ∈ Q∗, so that its nullspace is annQ(�).
More generally, given a positive integer s and linear forms �1, . . . , �s, we define
K�1,...,�s

as the D × sD matrix obtained as the concatenation of K�1 , . . . , K�s
;

this is the matrix of the mapping (f1, . . . , fs) ∈ Qs �→ f1 · �1 + · · · + fs · �s ∈ Q∗.

Lemma 3. For any linear forms (�1, . . . , �s), with all �i in Q∗, ann(u�1 , . . . ,u�s
)

= I if and only if (�1, . . . , �s) are Q-module generators of Q∗.

Proof. (�1, . . . , �s) are Q-module generators of Q∗ if and only if K�1,...,�s
has rank

D, if and only if K⊥
�1,...,�s

has a trivial nullspace. The nullspace of this matrix
is the intersection of those of the matrices K⊥

�1
, . . . , K⊥

�s
. All these matrices are

symmetric, and we saw that for all i, the nullspace of K⊥
�i

= K�i
is annQ(�i); thus,

the condition above is equivalent to annQ(�1) ∩ · · · ∩ annQ(�s) = {0}. Lemma 1
shows that this is the case if and only if ann(u�1) ∩ · · · ∩ ann(u�s

) = I. 	

Proposition 1. There exists a unique integer τ ≤ D such that for a generic
choice of linear forms (�1, . . . , �τ), with all �i in Q∗, the sequence of ideals
(ann(u�1 , . . . ,u�t

))1≤t≤τ is strictly decreasing, with ann(u�1 , . . . ,u�τ
) = I.

Proof. Remark first that if τ exists with the properties above, it is necessar-
ily unique. Let (L1,1, . . . , L1,D), . . . , (LD,1, . . . , LD,D) be new indeterminates, let
L = K(L1,1, . . . , LD,D) and define the matrices KL1 , . . . , KLD

as follows. Let
QL = Q ⊗K L; this allows us to define the linear forms L1, . . . , LD in Q∗

L
by

Lt(bj) = Lt,j , for 1 ≤ t ≤ D; then KLt
is the matrix with entries Lt(bibj). The

entries of KLt
are linear forms in Lt,1, . . . , Lt,D.

Define KL1,...,Lt
as we did for K�1,...,�t

. Then, for any linear forms �1, . . . , �t

in Q∗, the matrix K�1,...,�t
is obtained by evaluating KL1,...,Lt

at Lt,j = �t(bj),
for all t, j. The rank of K�1,...,�t

(over K) is at most that of KL1,...,Lt
(over L).

We can then let τ be the smallest integer such that the matrix KL1,...,Lτ
has

full rank D. Such an index exists, and is at most D, since by Lemma 2 (and by
the remarks of the above paragraph) KL1,...,LD

has rank D.
Let �1, . . . , �τ be such that K�1,...,�τ

has rank D (this is our genericity con-
dition); in this case, by the previous lemma, ann(u�1 , . . . ,u�τ

) = I. To con-
clude, it suffices to prove that the sequence of ideals (ann(u�1 , · · · ,u�t

))1≤t≤τ

is strictly decreasing. Suppose it is not the case, so that ann(u�1 , . . . ,u�t
) =

ann(u�1 , . . . ,u�t+1) for some t < τ . Then, ann(u�1 , . . . ,u�t
,u�t+2 , . . . ,u�τ

) = I.
Let us define �′

1 = �1, . . . , �
′
t = �t, �

′
t+1 = �t+2, . . . , �

′
τ−1 = �τ . Then, we have

ann(u�′
1
, . . . ,u�′

τ−1
) = I, so that K�′

1,...,�′
τ−1

has rank D. This in turn implies (by
the discussion above) that KL1,...,Lτ−1 has rank D, a contradiction. 	

If Q is a local algebra with maximal ideal m, we can define the socle of Q as
the K-vector space of all elements f in Q such that mf = 0. For instance, if Q
is local, the integer τ in the previous lemma is the dimension of the socle of Q.
(we omit the proof, since we will not use this result in the rest of the paper).

Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences 317

3 Computing Annihilators of Sequences

Consider sequences (u1, . . . ,ut) with ui ∈ S for all i, let J be the annihilator
ann(u1, . . . ,ut) ⊂ K[X1, . . . , Xn], and suppose that it has dimension zero; our
goal is to compute a Gröbner basis of it. We first review an algorithm due to
Marinari et al. [17], then introduce a modification of it that relaxes some of
its assumptions. As a result, the algorithms in this section work under slightly
different assumptions, and feature slightly different runtimes.

An algorithm with cost (nt deg(J))O(1) would be highly desirable, but we are
not aware of any such result. Most approaches (ours as well) involve reading a
number of values of u1, . . . ,ut and looking for dependencies between the columns
of what is often called a generalized Hankel matrix, built using these values; the
delicate question is how to control the size of the matrix.

Consider for instance the case t = 1, 〈u1 | Xm1
1 · · · Xmn

n 〉 = 1 for m1 + · · · +
mn < δ and 〈u1 | Xm1

1 · · · Xmn
n 〉 = 0 otherwise. The annihilator J = ann(u1)

admits the lexicographic Gröbner basis 〈X1 − Xn, . . . , Xn−1 − Xn,Xδ
n〉, so we

have deg(J) = δ; on the other hand, this sequence takes
(
deg(J)+n−1

n

)
non-zero

values, so taking them all into account leads us to an exponential time algorithm.
In the case t = 1, Mourrain in [19] associates a Hankel operator to a sequence

such that the kernel of the Hankel operator corresponds to the annihilator of the
sequence. Algorithm 2 in that paper computes a border basis for the kernel of
such a Hankel operator, taking as input its values over a finite set of monomials.
As in the FGLM algorithm, this algorithm looks for linear dependencies between
the monomials in the border of already computed linearly independent mono-
mials. However, for examples as in the previous paragraph, we are not aware of
how to avoid taking into account up to

(
deg(J)+n−1

n

)
values.

Several algorithms were also proposed in [1] for computing an annihilator
ann(u1), and partly extended to arbitrary t in [2]. A first algorithm relies on
the Berlekamp-Massey Algorithm, by means of a change of coordinates, which
may require an exponential number of value of u1. The other algorithms extend
the idea of FGLM, considering maximal rank sub-matrices of a truncated multi-
Hankel matrix to compute a basis for the quotient algebra and a Gröbner basis.
An algorithm with certified outcome (Scalar-FGLM) is presented; it considers the
values of u1 at all monomials up to a given degree �deg(J), so the issue pointed
out above remains. An “adaptive” version uses fewer values of the sequence,
but may fail in some cases (the conditions that ensure success of this algorithm
seem to be close to the genericity assumptions we introduce in Subsect. 3.2).
A comparison of Scalar-FGLM and Sakata’s algorithm is presented in [3].

3.1 A First Algorithm

The first solution we discuss requires a strong assumption (written H1 below):
for any i and for any monomial b in X1, . . . , Xn, b · ui is in the K-span of
(u1, . . . ,ut); as a result, the annihilator J of (u1, . . . ,ut) equals the nullspace
ker(u1, . . . ,ut). For this situation, Marinari et al. gave in [17] an algorithm that
computes a Gröbner basis of J , for any order (for definiteness, we refer here

318 V. Neiger et al.

to their second algorithm); it is an extension of both the Buchberger-Möller
interpolation algorithm and the FGLM change of order algorithm.

Assumption H1 above implies that deg(J) ≤ t, and the runtime of the algo-
rithm, expressed in terms of n and t, is O(nt3) operations in K, together with
the computation of all values 〈ui | b〉, 1 ≤ i ≤ t, for O(nt) monomials b. These
evaluations are done in incremental order, in the sense that for any monomial b
for which we need all 〈ui | b〉, there exists j ∈ {1, . . . , n} such that b = Xjb

′ and
all 〈ui | b′〉 are known.

We will need the following property of this algorithm. Suppose that
(u1, . . . ,ut) is a subsequence of a larger family of sequences (u1, . . . ,ut′) that
satisfies H1, but that (u1, . . . ,ut) itself may or may not, and that (u1, . . . ,ut)
and (u1, . . . ,ut′) have different K-spans. Then, on input (u1, . . . ,ut), the algo-
rithm will still run its course, and at least one of the elements in the output will
be a polynomial g that does not belong to ann(u1, . . . ,ut′).

3.2 An Algorithm Under Genericity Assumptions

We now give a second algorithm for computing J = ann(u1, . . . ,ut), whose
runtime is polynomial in n, t,D = deg(J) and an integer B ≤ deg(J) defined
below. We do not assume that H1 holds, but we will require other assumptions;
if they hold, the output is the lexicographic Gröbner basis G of J for the order
X1 > · · · > Xn. Our first assumption is:

H2. We are given an integer B such that the minimal polynomial of Xj in
K[X1, . . . , Xn]/J has degree at most B for all j.

For j in 1, . . . , n, we will denote by Jj the ideal ann(πj(u1), . . . , πj(ut)) ⊂
K[Xj , . . . , Xn], where for all i, πj(ui) is the sequence N

n−j+1 → K defined
by 〈πj(ui) | (mj , . . . , mn)〉 = 〈ui | (0, . . . , 0,mj , . . . , mn)〉 for all (mj , . . . , mn)
in N

n−j+1; in particular, J1 = J . We write deg(Jj) = Dj ≤ D, we let Gj be the
lexicographic Gröbner basis of Jj , and we let Bj be the corresponding monomial
basis of K[Xj , . . . , Xn]/Jj .

We can then introduce our genericity property; by contrast with H2, we will
not necessarily assume that it holds, and discuss the outcome of the algorithm
when it does not. We denote this property by H3(j), for j = 1, . . . , n − 1.

H3(j). We have the equality Jj ∩ K[Xj+1, . . . , Xn] = Jj+1.

Remark that the inclusion Jj ∩ K[Xj+1, . . . , Xn] ⊂ Jj+1 always holds.
Suppose that for some j in 1, . . . , n, we have computed a sequence of mono-

mials B′
j+1 in K[Xj+1, . . . , Xn] (if j = n, we let B′

j+1 = (1)). Since we will
use them repeatedly, we define properties P and P′ as follows, the latter being
stronger than the former.

P(j + 1). The cardinality D′
j+1 of B′

j+1 is at most Dj+1.
P′(j + 1). The equality B′

j+1 = Bj+1 holds.

Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences 319

We describe in the following paragraphs a procedure that computes a new family
of monomials B′

j , and we give conditions under which they satisfy P(j) and P′(j).
We call a family of monomials B in K[Xj , . . . , Xn] independent if their images

are K-linearly independent modulo Jj (we call it dependent otherwise). We
denote by MB the matrix with entries 〈ui|bb′〉, with rows indexed by i = 1, . . . , t
and b′ in Cj+1 = B′

j+1 × (1,Xj , . . . , X
B−1
j), and columns indexed by b in B (for

any monomial b in K[Xj , . . . , Xn], Mb is the column vector defined similarly).

Lemma 4. If B is dependent, the right nullspace of MB is non-trivial. If both
P′(j + 1) and H3(j) hold, the converse is true.

Proof. Any K-linear relation between the elements of B induces the same rela-
tion between the columns of MB, and the first point follows.

By definition, a polynomial f in K[Xj , . . . , Xn] belongs to Jj if and only if
it annihilates πj(u1), . . . , πj(ut), that is, if 〈πj(ui) | X

mj

j . . . Xmn
n f〉 = 0 for all

(mj , . . . , mn) in N
n−j+1 and all i = 1, . . . , t. Now, assumptions P′(j +1), H2 and

H3(j) imply that Cj+1 generates K[Xj , . . . , Xn]/Jj , so that f is in Jj if and only
if 〈ui | bf〉 = 0, for all b in Cj+1 and all i = 1, . . . , t. 	

The following lemma, that essentially follows the argument used in the proof
of the FGLM algorithm [11], will be useful to justify our algorithm as well.

Lemma 5. Suppose that b1 < · · · < bu < bu+1 are the first u + 1 standard
monomials of K[Xj , . . . , Xn]/Jj, for the lexicographic order induced by Xj >
· · · > Xn, with b1 = 1. Then for any monomial b such that bu < b < bu+1,
{b1, . . . , bu, b} is a dependent family.

Proof. We prove the result by induction on u ≥ 0, the case u = 0 being vacuously
true. Assuming the claim is true for some index u ≥ 0, we prove it for u + 1.
We proceed by contradiction, and we let b be the smallest monomial such that
bu < b < bu+1 and {b1, . . . , bu, b} is an independent family (b exists by the
well-ordering property of monomial orders).

We will use the fact that any monomial c less than b can be rewritten as a
linear combination of b1, . . . , bi, with bi < c, for some i ≤ u: if c < bu, this is by
the induction assumption; if c = bu, this is obvious; if bu < c < b, this is by the
definition of b.

Now, either b is the leading term of an element in the Gröbner basis of Jj , or
it must be of the form b = Xeb

′, for some monomial b′ not in {b1, . . . , bu}. We
prove that in both cases, b can be rewritten as a linear combination of b1, . . . , bu,
which is a contradiction. In the first case, b rewrites as a linear combination
of smaller monomials, say c1, . . . , cv, and by the previous remark, all of them
can be rewritten as linear combinations of b1, . . . , bu. Altogether, b itself can be
rewritten as a linear combination of b1, . . . , bu, a contradiction.

In the second case, b = Xeb
′, for some monomial b′ not in {b1, . . . , bu}. As

above, b′ can be rewritten modulo Jj as a linear combination of monomials
b1, . . . , bi, for some i ≤ u, with bi < b′. Then, b = Xeb

′ is a linear combination
of Xeb1, . . . , Xebi. Since bi < b′, we get Xeb1 < · · · < Xebi < Xeb

′ = b, so all of

320 V. Neiger et al.

Xeb1, . . . , Xebi can be rewritten as linear combinations of b1, . . . , bu. As a result,
this is also the case for b itself, so we get a contradiction again. 	

Suppose that P(j+1) holds. Then, the algorithm at step j proceeds as follows.
We compute the reduced row echelon form of MCj+1 . Using assumption P(j +1),
this matrix has at most tBDj+1 rows and at most BDj+1 columns, and it has
rank at most Dj (by the first item of Lemma 4). This computation can be done
in time O(tB2D2

j+1Dj) ∈ O(tB2D3). The column indices of the pivots allow us
to define the monomials B′

j = (b′
1 < · · · < b′

D′
j
), for some D′

j ≤ Dj .

Lemma 6. Property P(j) holds, and if P′(j + 1) and H3(j) hold, then P′(j)
holds.

Proof. The first item is a restatement of the inequality D′
j ≤ Dj . To prove the

second item, assuming that P′(j + 1) and H3(j) hold, we deduce from Lemma 4
that the columns indexed by the genuine Bj form a column basis of MCj+1 , and
we claim that it is actually the lexicographically smallest column basis (this will
prove that Bj = B′

j). Indeed, write Bj = (b1, . . . , bDj
), and let (f1, . . . , fDj

)
be another subsequence of Cj+1 whose corresponding columns form a column
basis of MCj+1 . Let m be the smallest index such that bm �= fm. Then, applying
Lemma 5 to (b1, . . . , bm−1) and fm, we deduce that bm < fm (otherwise, since
they are different, we must have bm−1 < fm < bm, which implies that fm is a
linear combination of (b1, . . . , bm−1) = (f1, . . . , fm−1), a contradiction). 	

Thus, running this procedure for j = n, . . . , 1, we maintain P(j); this implies
that the running time is O(ntB2D3), computing the values 〈ui|b〉, for 1 ≤ i ≤ t,
for O(nB2D2) monomials b (with the same monotonic property as in the previous
subsection). If H3(j) holds for all j, the second item in the last lemma proves
that B′

1 = B1, the monomial basis of K[X1, . . . , Xn]/J .
Once B′

1 is known, we compute and return a family of polynomials G′ defined
as follows. We determine the sequence Δ of elements in X1B′

1∪· · ·∪XnB′
1−B′

1,
all of whose factors are in B′

1 (finding them does not require any operation
in K; this can be done by using e.g. a balanced binary search tree with the
elements of B′

1, using a number of comparisons that is quasi-linear time in nD).
Then, we rewrite each column Mb, for b in Δ, as a linear combination of the
form

∑
1≤i≤D′

1
ciMb′

i
and we put b −

∑
1≤i≤D′

1
cib

′
i in G′. If the reduction is not

possible, the algorithm halts and returns fail. Using the reduced row echelon
form of MC2 , each reduction takes time O(D2

1) ∈ O(D2) operations in K, for a
total of O(nD3).

If H3(j) holds for all j, since B1 = B′
1, the fact that G′ = G follows from

Lemma 4. Assume now that G′ differs from G; we prove that there exists an
element in G not in J (we will use this in our main algorithm to detect failure
cases). Indeed, in this case, B′

1 must be different from B1, and since B′
1 has

cardinality at most equal to that of B1, there exists a monomial b in B1 not
in B′

1. This in turn implies that there exists an element g in G′ that divides b,
and thus with leading term in B1. Reducing g modulo G, we must then obtain
a non-zero remainder, so that g does not belong to J .

Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences 321

4 Main Algorithm

4.1 Representing Primary Zero-Dimensional Ideals

Let I be a zero-dimensional ideal in K[X1, . . . , Xn]; we assume that I is m-
primary, for some maximal ideal m, and we write D = deg(I). In this paragraph,
we briefly mention some possible representations for I (our main algorithm will
compute either one of these representations).

The first, and main, option we will consider is simply the Gröbner basis G
of I, for the lexicographic order induced by X1 > · · · > Xn. As an alterna-
tive, consider the following construction. Our assumption on I implies that the
minimal polynomial R of Xn in K[X1, . . . , Xn]/I takes the form R = P e, for
some irreducible polynomial P in K[Z], of degree say f (remark that R(Xn) is
also the last polynomial in G). Let L = K[Z]/〈P 〉; this is a field extension of
degree f of K, and the residue class ζ of Z in L is a root of P . We then let I ′

be the ideal I + 〈(Xn − ζ)e〉 in L[X1, . . . , Xn], and let D′ be its degree. Then,
a second option is to compute the lexicographic Gröbner basis G′ of I ′, for the
order X1 > · · · > Xn. The following lemma relates D and D′.

Lemma 7. The ideal I ′ has degree D′ = D/f .

Proof. Let M be the splitting field of P and let ζ1, . . . , ζf be the roots of P in
M. The ideals Ji = I + 〈(Xn − ζi)e〉 ⊂ [X1, . . . , Xn] are such that deg(J1)+ · · ·+
deg(Jf) = deg(I). On the other hand, there exist f embeddings σ1, . . . , σf of L
into M, with σi given by ζ �→ ζi; as a result, deg(I ′) = deg(Ji) holds for all i,
and the claim follows. 	

The point behind this construction is to lower the degree of the ideal we
consider, at the cost of working in a field extension of K. This may be beneficial,
as the cost of the main algorithm (which essentially relies on the one in the
previous section) will be a polynomial of rather large degree with respect to the
degree of the ideal, whereas computation in a field extension such as K → L is
a well-understood task of cost ranging from quasi-linear to quadratic.

Our last option aims at producing a “simpler” Gröbner basis, by means of a
change of coordinates. For this, we will assume that Xn separates the points of
V (m) (over an algebraic closure of K). As a result, the ideal m being maximal,
it admits a lexicographic Gröbner basis of the form 〈X1 − G1(Xn), . . . , Xn−1 −
Gn−1(Xn), P (Xn)〉. Define ξ1 = G1(ζ), . . . , ξn−1 = Gn−1(ζ), ξn = ζ, for ζ ∈ L as
above; then, (ξ1, . . . , ξn) is the unique zero of I ′ (in fact, I ′ is m′-primary, with
m′ = 〈X1 − ξ1, . . . , Xn − ξn〉). We can then apply the change of coordinates that
replaces Xi by Xi + ξi in I ′, for all i, and call I ′′ the ideal thus obtained (so that
I ′′ is generated by the polynomials f(X1 + ξ1, . . . , Xn + ξn), for f in I, and Xe

n).
Now, I ′′ is m′′-primary, with m′′ = 〈X1, . . . , Xn〉; one of our options will be to
compute the Gröbner basis G′′ of I ′′.

322 V. Neiger et al.

Example 1. Consider the polynomials in Q[X1,X2]

X2
1 − 2X1X2 − 2X1 + X2

2 + 2X2 + 1,

X1X
2
2 + X1X2 + 2X1 − X3

2 − 2X2
2 − 3X2 − 2,

X4
2 + 2X3

2 + 5X2
2 + 4X2 + 4,

the last of them being P (X2)2 = (X2
2 + X2 + 2)2, and let I be the ideal they

define. The polynomials above are the lexicographic Gröbner basis G of I for the
order X1 > X2. Let L = Q[Z]/〈Z2 + Z + 2〉, and let ζ be the image of Z in L;
then, the ideal I ′ = I + 〈(X2 − ζ)2〉 in L[X1,X2] admits the Gröbner basis G′

X2
1 − 2X1ζ − 2X1 + ζ − 1,

X1X2 − X1ζ − X2ζ − X2 − 2,

X2
2 − 2X2ζ − ζ − 2.

Here, we have e = 2, f = 2, D = 6 and D′ = 3. The ideal I is m-primary,
where m admits the Gröbner basis 〈X1 − X2 − 1,X2

2 + X2 + 2〉, so that we have
(ξ1, ξ2) = (ζ +1, ζ), and I ′ is m′-primary, with m′ = 〈X1−ξ1,X2−ξ2〉. Applying
the change of coordinates (X1,X2) ← (X1 + ξ1,X2 + ξ2), the resulting ideal
I ′′ admits the Gröbner basis G′′ = 〈X2

1 ,X1X2,X
2
2 〉, from which we can readily

confirm that it is 〈X1,X2〉-primary.

4.2 The Algorithm

We consider a zero-dimensional ideal I in K[X1, . . . , Xn]. We assume that we
know a monomial basis B = (b1, . . . , bD) of Q = K[X1, . . . , Xn]/I, so that
we let D = dimK(Q), together with the corresponding multiplication matri-
ces M1, . . . ,Mn of respectively X1, . . . , Xn. We assume that the last variable Xn

has been chosen generically; in particular, Xn separates the points of V = V (I).
The algorithm in this section computes a decomposition of I into primary

components J1, . . . , JK . Each such component Jk will be given by means of one
of the representations described in the previous subsection; we will emphasize the
first of them, the lexicographic Gröbner basis of Jk, and mention how to modify
the algorithm in order to obtain the other representations. In order to find the
primary components of I, we cannot avoid the use of factorization algorithms
over K; if desired, one may avoid this by relying on dynamic evaluation tech-
niques [7], replacing for instance the factorization into irreducibles used below by
a squarefree factorization (thus producing a decomposition of I into ideals that
are not necessarily primary). In that case, if one wishes to compute descriptions
such as the second or third ones introduced above, involving algebraic numbers
as coefficients, one should take into account the possibility of splittings of the
defining polynomials, as is usual with this kind of approach (a complete descrip-
tion of the resulting algorithm, along the lines of [6], is beyond the scope of this
paper).

The Ideal I and Its Primary Decomposition. Let Pmin ∈ K[Xn] be the
minimal polynomial of Xn in Q, let P be its squarefree part, and let polynomials

Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences 323

G1, . . . , Gn−1 in K[Xn], with deg(Gi) < deg(P) for all i, be such that
√

I admits
the lexicographic Gröbner basis 〈X1 − G1(Xn), . . . , Xn−1 − Gn−1(Xn), P (Xn)〉.
We write Pmin = P e1

1 · · · P eK

K , with the Pk’s pairwise distinct irreducible poly-
nomials in K[Xn] and ek ≥ 1 for all k. In particular, the factorization of P is
P1 · · · PK ; we write fk = deg(Pk) for all k.

Correspondingly, let V1, . . . , VK be the K-irreducible components of V and
for k = 1, . . . , K, let mk be the maximal ideal defining Vk; hence, the reduced
lexicographic Gröbner basis of mk is 〈X1−(G1 mod Pk), . . . , Xn−1−(Gn−1 mod
Pk), Pk〉. We can then write I = J1 ∩· · ·∩JK , with Jk mk-primary for all k; note
that the ideal Jk is defined by Jk = I + 〈P ek

k 〉. In what follows, we explain how
to compute a Gröbner basis of this ideal by means of the results of the previous
section. Without loss of generality, assume that L is such that ek = 1 for k > L
and ek ≥ 2 for k = 1, . . . , L. The fact that Xn is a generic coordinate implies
that for k > L, Jk = mk, so there is nothing left to do for such indices; hence,
we are left with showing how to use the algorithms of the previous section to
compute Gröbner bases of J1, . . . , JL.

Data Representation. An element f of Q is represented by the column vector
vf of its coordinates on the basis B, whereas a linear form � : Q → K is repre-
sented by the row vector w� = [�(b1), . . . , �(bD)]. Computing �(f) is then done
by means of the dot product w� · vf . Multiplying f by Xi amounts to computing
Mivf , and the linear form Xi · � : g �→ �(Xig) is obtained by computing the
vector wXi·� = w�Mi.

In terms of complexity, we assume that multiplying any matrix Mi by a vector
(either on the left or on the right) can be done in m operations in K. The naive
bound on m is O(D2), but the sparsity properties of these matrices often result
in much better estimates; see [12] for an in-depth discussion of this question. On
the other hand, we assume D ≤ m.

Computing. Pmin and G1, . . . , Gn−1. First, we compute generators of
√

I.
We choose a random linear form �1 : Q → K, and we compute the values
(�1(Xi

n))0≤i<2D and �1(X1X
i
n), . . . , �1(Xn−1X

i
n), for 0 ≤ i < D. This is done by

computing 1,Xn, . . . , X2D−1
n by repeated applications of Mn, which amounts

to O(Dm) operations, and doing the corresponding dot products with �,X1 ·
�, . . . , Xn−1 · �. For the latter, we have to compute the linear forms Xi · � in
O(nm) operations, then do a D ×D by D × (n+1) matrix product, which costs
O(nD2) operations (without using fast linear algebra).

Using the algorithm given in [4], given these values, we can compute the
minimal polynomial Pmin, as well as the polynomials G1, . . . , Gn−1 describing
V (I) in O (̃D) operations in K. Then, as per the discussion in the preamble,
we assume that we have an algorithm for factoring polynomials over K, so that
(P1, e1), . . . , (PK , eK) and P can be deduced from Pmin.

Constructing the Orthogonal of Jk. For k = 1, . . . , K, we will write Qk =
K[X1, . . . , Xn]/Jk. Any linear form � : Q → K induces a linear form ϕk(�) :
Qk → K, defined as follows.

324 V. Neiger et al.

Let Tk be the polynomial Pmin /P ek

k . For f in Qk, let f̂ be any lift of f to
K[X1, . . . , Xn], and define ϕk(�)(f) = �(Tkf̂ mod I). Notice that this expression
is well-defined: indeed, any two lifts of f differ by an element δ of Jk = I +〈P ek

k 〉,
so that Tkδ is in I, since TkP ek

k = Pmin is.

Lemma 1. The mapping ϕk : Q∗ → Q∗
k is K-linear and onto.

Proof. Linearity is clear by construction; we now prove that ϕk is onto. Let
indeed Ak, Bk in K[Xn] be such that AkTk +BkP ek

k = 1 (they exist by definition
of Tk). Consider λ in Q∗

k, and define � in Q∗ by �(f) = λ(Akf mod Jk). Since
P ek

k vanishes modulo Jk, we have AkTk = 1 mod Jk, so �(f) = λ(f mod Jk)
holds for all f in Q; this in turn readily implies that ϕk(�) = λ. 	

We saw in Subsect. 2 how to associate to an element � ∈ Q∗ a sequence u� ∈
S , by letting 〈u� | m〉 = �(m mod I). The following tautological observation will
then be useful below: for � in Q∗, the sequences uTk·� and uϕk(�) coincide, where
uϕk(�) is defined starting from the linear form ϕk(�) ∈ Q∗

k. Indeed, take any
monomial m in X1, . . . , Xn; then, ϕk(�)(m mod Jk) is defined as �(Tkm mod I),
which is equal to (Tk · �)(m mod I). We will use this remark to compute values
of ϕk(�), through the computation of values of Tk · � instead.

In algorithmic terms, computing a single transposed product by a polynomial
T (Xn), that is, T ·�, can be done using Horner’s rule, using d right-multiplications
by Mn, with d = deg(T); this takes O(dm) operations in K. If several transposed
products are needed, such as for instance computing T1 · �, . . . , TL · � as below,
the cost becomes O(LDm), using D as an upper bound on deg(T1), . . . ,deg(TL).
One can actually do better, by computing inductively and storing the products
Xi

n · �, for i = 0, . . . , D − 1. Then, the coefficients of T1 · �, . . . , TL · � can be
computed as the product of the D × d′ matrix of coefficients of (Xi

n · �)0≤i<D by
the matrix of coefficients of T1, . . . , TL; the cost is O(Dm + LD2).

One can improve this idea further using subproduct tree techniques, since
the polynomials T1, . . . , TL have a very specific structure. Recall that we
defined Tk = Pmin /P ek

k . Hence, all of T1, . . . , TL share a common factor
R = P

eL+1
L+1 · · · P eK

K . We can then treat the common factor R separately, by writ-
ing Tk = RUk for all these indices k, and computing U1 · �′, . . . , UL · �′ instead,
with �′ = R · �. The cost to compute �′ is O(Dm).

The polynomials U1, . . . , UL have no common factor anymore, but they are
all of the form P e1

1 · · · P ek−1
k−1 P

ek+1
k+1 P eL

L . We can then define a subproduct tree as
in [13, Chap. 10], that is, a binary tree T having the polynomials (P ek

k)1≤k≤L

at its leaves, and where each node is labeled by the product of the polynomials
at its two children. We proceed in a top-down manner: we associate �′ to the
root of the tree, and recursively, if a linear form λ has been assigned to an inner
node of T , we associate to each of its children the transposed product of λ by the
polynomial labelling the other child. At the leaves, this gives us UL ·�′, . . . , UK ·�′,
as claimed. The total cost at each level is O(Dm), for a total of O(D log(L)m).

The Main Procedure, Using the Algorithm of Subsect. 3.1. The first
version of the main procedure determines the Gröbner bases of JL, . . . , JK by
applying the algorithm of Subsect. 3.1 to successive families of linear forms.

Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences 325

We maintain a list of “active” indices S, initially set to S = (1, . . . , L);
these are the indices for which we are not done yet. The algorithm proceeds
iteratively; at step i ≥ 1, we pick a random linear form �i ∈ Q∗, and compute
all �k,i = Tk · �i, for k in S. We then apply the algorithm of Subsect. 3.1 to
(u�k,1 , . . . ,u�k,i

), for all k independently, and obtain families of polynomials
Gk,i as output. For verification purposes, we also choose a random �0 ∈ Q∗, and
compute the corresponding �k,0.

Write Dk = deg(Jk), for k ≤ K. Combining Lemma 2 and the equality
u�k,i

= u(ϕk(�i)) seen above, we deduce that for a generic choice of �1, . . . , �Dk
,

(�k,1, . . . , �k,Dk
) satisfies assumption H1 needed for our algorithm, and that Gk,Dk

is a Gröbner basis of Jk. In view of the discussion in Subsect. 3.1, for any i < Dk,
Gk,i contains a polynomial g not in Jk. Since �0 was chosen at random, �k,0 will
in general not vanish at g; hence, at every step i, we evaluate �k,0 at all elements
of Gk,i, and continue the algorithm for this index k if we obtain a non-zero value;
else, we remove k from our list S, and append Gk,i to the output.

In terms of complexity, we will have to apply the process in the previ-
ous paragraph to μ linear forms �D1 , . . . , �μ, with μ = maxk≤L(Dk), for a
cost O(μDm log(L)). Then, we will exploit a feature of Marinari-Möller-Mora’s
second algorithm: it is incremental in the number of linear forms given as
input, so that the overall runtime of our Dk successive invocations is the
same as if we called it once with �1, . . . , �Dk

. For a given k, it adds up to
O(nD2

km + nD3
k) = O(nD2

km), where the first term describes the cost of the
evaluations of the linear forms we need (since each new value requires the prod-
uct by one of the Mi). Overall, the runtime is O(μD log(L)m + n

∑
k≤L D2

km).
This supports the comment made in the introduction: if the degrees of the mul-
tiple components are small, say Dk = O(1) for all k, this is O(nD log(D)m).

Using the Algorithm of Subsect. 3.2. We can adapt our main procedure in
order to use the algorithm of Subsect. 3.2 instead; the main difference is that we
expect to use fewer linear forms.

For k ≤ K, let indeed tk ≤ Dk be the maximum of τ(Qk,≥1), . . . , τ(Qk,≥n),
with Qk,≥j = K[Xj , . . . , Xn]/Jk∩K[Xj , . . . , Xn], and with τ defined as in Propo-
sition 1 (for instance, if I is a complete intersection ideal, tk = 1 for all k). The
main algorithm proceeds as in the previous variant: we choose random linear
forms �1, . . . and deduce �k,i = Tk · �i; we will compute the Gröbner basis Gk of
Jk as ann(u�k,1 ,u�k,2 , . . .). We claim that we only need tk linear forms �1, . . . , �tk

in order to recover Gk.
To confirm this, we consider again assumptions H2 and H3 made in Sub-

sect. 3.2. The appendix of [4] implies that the minimal polynomial of any variable
Xi in Qk has degree at most ek, except for Xn. We already know the minimal
polynomial P ek

k of Xn in Qk, so we skip the first pass in the loop of the algorithm
of Subsect. 3.2, and use the value B = ek.

Regarding H3, we prove that if �1, . . . , �tk
are chosen generically, assumption

H3(j) holds for j = 1, . . . , n. For i ≥ 1 and j = 1, . . . , n, define �k,i,j as the linear
form in Q∗

k,≥j induced by restriction of ϕk(�i) ∈ Q∗
k. Applying Proposition 1

to Qk,≥j shows that there exists a Zariski open Ωk,j ⊂ Q∗
k,≥j

tk such that if

326 V. Neiger et al.

�k,1,j , . . . , �k,tk,j are in Ωk,j , they generate Q∗
k,≥j as a Qk,≥j-module, and thus

(Lemma 3) Jk ∩K[Xj , . . . , Xn] = ann(u�k,1,j
, . . . ,u�k,tk,j

). If this is true for some
index k and all j, H3(j) follows as well for these indices. Now, the mapping
Δk,j : (�1, . . . , �tk

) �→ (�k,1,j , . . . , �k,tk,j) is K-linear and onto (we proved above
that (�1, . . . , �tk

) �→ (ϕk(�1), . . . , ϕk(�tk
)) is onto, and the surjectivity of the

projection is straightforward), so that the preimage Δ−1
k,j(Ωk,j) is Zariski open

in Q∗tk for all k, j. In other words, for generic �1, . . . , �tk
, H3(j) holds for all j

and all k, so the algorithm of Subsect. 3.2 computes Gk for all k.
We still need to discuss what happens when applying this algorithm to

�k,1, . . . , �k,i for some i < tk. In this case, as per the discussion in Sub-
sect. 3.2, either we get generators of ann(u�k,1 , . . . ,u�k,i

), which is a strict super-
set of Jk, or at least one of the polynomials in the output does not belong to
ann(u�k,1 , . . . ,u�k,i

). In any case, the output contains at least one polynomial g
not in Jk, so we can use the same stopping criterion as in the previous paragraph,
using a linear form �0 to test termination.

To control the complexity, at the ith step, we now use linear forms �1, . . . , �2i ;
as a result, we need to go up to i = t, with t = maxk(tk), and the overall runtime
is proportional to that at i = t. The cost of preparing the linear forms �k,i is
O(tDm log(L)), and the cost of computing annihilators is O(nt

∑
k≤L e2kD2

km).
The first term is better than the equivalent term for our first algorithm, but the
second one is obviously worse. On the other hand, the analysis in Subsect. 3.2
can be refined significantly, and possibly lead to improved estimates.

Using a Scalar Extension. To conclude, we discuss (without giving proofs)
how to put to practice the idea introduced in Subsect. 4.1 of computing Gröbner
bases of ideals of smaller degree over larger base fields, in the context (for defi-
niteness) of the algorithm of the previous paragraph.

Let �k,1, . . . , �k,tk
be defined as before, let u�k,1 , . . . ,u�k,tk

be the corre-
sponding sequences, and assume that these linear forms are such that the
annihilator of u�k,1 , . . . ,u�k,tk

is Jk. Let further Lk be the field extension
K[Z]/Pn(Z), and let ζk be the residue class of Z in Lk Then, the annihila-
tor of J ′

k = Jk + 〈Xn − ζk〉ek in L[X1, . . . , Xn] has degree Dk/fk by Lemma 7,
so we might want to compute it instead of Jk. To accomplish this, we need
sequences whose annihilator would be J ′

k; we do this following the same strat-
egy as above. Define Sk = Pk/(Xn − ζk) ∈ Lk[Xn], as well as the linear form
�′
k,i = Sek

k · �k,i : L[X1, . . . , Xn]/I → L, for i ≥ 1. Then, one verifies that
ann(u�′

k,1
, . . . ,u�′

k,tk
) is indeed J ′

k.
Our last comment discusses the translation mentioned in Subsect. 4.1. The

ideal J ′
k is m′-primary, with m′ = 〈X1 − ξ1, . . . , Xn − ξn〉, as in Subsect. 4.1. To

replace J ′
k by a 〈X1, . . . , Xn〉-primary ideal, we need to modify the sequences

u�′
k,1

, . . . ,u�′
k,tk

. For i ≥ 1, let Uk,i ∈ L[[X1, . . . , Xn]] be the generating series

of u�′
k,i

, and let Ũk,i = 1
(1+ξ1X1)···(1+ξnXn)Uk,i(X1

1+ξ1X1
, . . . , Xn

1+ξnXn
). Letting ũk,i

be the sequence whose generating series is Ũk,i, ann(ũk,1, . . . , ũk,tk
) is indeed

the 〈X1, . . . , Xn〉-primary ideal J ′′
k obtained by translation by (ξ1, . . . , ξn) in J ′

k.

Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences 327

Acknowledgements. We thank the reviewers for their remarks and suggestions. The
third author is supported by an NSERC Discovery Grant.

References

1. Berthomieu, J., Boyer, B., Faugère, J.-C.: Linear algebra for computing Gröbner
bases of linear recursive multidimensional sequences. J. Symb. Comput. 83, 36–67
(2016)

2. Berthomieu, J., Faugère, J.-C.: Guessing linear recurrence relations of sequence
tuples and P-recursive sequences with linear algebra. In: ISSAC 2016, pp. 95–102.
ACM (2016)

3. Berthomieu, J., Faugère, J.-C.: In-depth comparison of the Berlekamp-Massey-
Sakata and the Scalar-FGLM algorithms: the non adaptive variants. hal-01516708,
May 2017

4. Bostan, A., Salvy, B., Schost, É.: Fast algorithms for zero-dimensional polynomial
systems using duality. AAECC 14, 239–272 (2003)

5. Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E.: Symmetric tensor decompo-
sition. Linear Algebra Appl. 433(11), 1851–1872 (2010)

6. Dahan, X., Moreno Maza, M., Schost, É., Xie, Y.: On the complexity of the D5
principle. In: Transgressive Computing, pp. 149-168 (2006)

7. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in
algebraic number fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204,
pp. 289–290. Springer, Heidelberg (1985). doi:10.1007/3-540-15984-3 279

8. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geome-
try, vol. 150. Springer Science & Business Media, New York (2013). doi:10.1007/
978-1-4612-5350-1

9. Faugère, J.-C., Gaudry, P., Huot, L., Renault, G.: Polynomial Systems Solving by
Fast Linear Algebra (2013). https://hal.archives-ouvertes.fr/hal-00816724

10. Faugère, J.-C., Gaudry, P., Huot, L., Renault, G.: Sub-cubic change of ordering for
Gröbner basis: a probabilistic approach. In: ISSAC 2014, pp. 170-177. ACM (2014)

11. Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

12. Faugère, J.-C., Mou, C.: Sparse FGLM algorithms. J. Symb. Comput. 80(3), 538–
569 (2017)

13. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, Cambridge (2013)

14. Gianni, P., Mora, T.: Algebrric solution of systems of polynomirl equations using
Groebher bases. In: Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, pp.
247–257. Springer, Heidelberg (1989). doi:10.1007/3-540-51082-6 83

15. Gröbner, W.: Über irreduzible Ideale in kommutativen Ringen. Math. Ann. 110(1),
197–222 (1935)

16. Macaulay, F.S.: Modern algebra and polynomial ideals. Math. Proc. Camb. Philos.
Soc. 30(1), 27–46 (1934)

17. Marinari, M.G., Mora, T., Möller, H.M.: Gröbner bases of ideals defined by func-
tionals with an application to ideals of projective points. AAECC 4, 103–145 (1993)

18. Moreno-Soćıas, G.: Autour de la fonction de Hilbert-Samuel (escaliers d’ideaux
polynomiaux). Ph.D. thesis, École polytechnique (1991)

19. Mourrain, B.: Fast algorithm for border bases of Artinian Gorenstein algebras.
ArXiv e-prints, May 2017

http://dx.doi.org/10.1007/3-540-15984-3_279
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://dx.doi.org/10.1007/978-1-4612-5350-1
https://hal.archives-ouvertes.fr/hal-00816724
http://dx.doi.org/10.1007/3-540-51082-6_83

328 V. Neiger et al.

20. Neiger, V.: Bases of relations in one or several variables: fast algorithms and appli-
cations. Ph.D. thesis, École Normale Supérieure de Lyon, November 2016

21. Rouillier, F.: Solving zero-dimensional systems through the rational univariate rep-
resentation. AAECC 9(5), 433–461 (1999)

22. Sakata, S.: Extension of the Berlekamp-Massey algorithm to N dimensions. Inform.
Comput. 84(2), 207–239 (1990)

23. Shoup, V.: A new polynomial factorization algorithm and its implementation. J.
Symb. Comput. 20(4), 363–397 (1995)

Symbolic-Numerical Analysis of the Relative
Equilibria Stability in the Planar Circular

Restricted Four-Body Problem

Alexander N. Prokopenya1,2(B)

1 Department of Applied Informatics, Warsaw University of Life Sciences – SGGW,
Nowoursynowska Str. 159, 02-776 Warsaw, Poland

alexander prokopenya@sggw.pl
2 Collegium Mazovia Innovative Higher School,

Sokolowska Str. 161, 08-110 Siedlce, Poland

Abstract. We study the stability of relative equilibrium positions in
the planar circular restricted four-body problem formulated on the basis
of the Euler collinear solution of the three-body problem. The stabil-
ity problem is solved in a strict nonlinear formulation in the framework
of the KAM theory. We obtained algebraic equations determining the
equilibrium positions and showed that there are 18 different equilibrium
configurations of the system for any values of the two system parame-
ters µ1, µ2. Canonical transformation of Birkhoff’s type reducing the
Hamiltonian of the system to the normal form is constructed in a gen-
eral symbolic form. Combining symbolic and numerical calculations, we
showed that only 6 equilibrium positions are stable in Lyapunov’s sense if
parameters µ1 and µ2 are sufficiently small, and the corresponding points
in the plane Oµ1µ2 belong to the domain bounded by the second order
resonant curve. It was shown also that the third order resonance results
in instability of the equilibrium positions while in case of the fourth order
resonance, either stability or instability can take place depending on the
values of parameters µ1 and µ2. All relevant symbolic and numerical cal-
culations are done with the aid of the computer algebra system Wolfram
Mathematica.

1 Introduction

The circular restricted three-body problem is a well-known model of celestial
mechanics (see, for example, [21]). Recall that we are interested in motion of the
particle P3 of negligible mass in the gravitational field of two massive particles
P0 and P1 having masses m0, m1, respectively, and moving uniformly on cir-
cular Keplerian orbits around their common center of mass. A general solution
of the problem cannot be written in symbolic form but there exist five exact
particular solutions known as the homographic ones [22]. In the rotating frame
of reference, where the particles P0 and P1 have rest, these solutions determine
the equilibrium positions of the particle P3 (or relative equilibrium positions)

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 329–345, 2017.
DOI: 10.1007/978-3-319-66320-3 24

330 A.N. Prokopenya

which are called the points of libration Lj (j = 1, 2, . . . , 5). The libration points
are of great interest for applications and so their stability was a subject of many
papers during the past two hundred years. As a result, it was proven that three
points L1, L2, L3 situated at the line P0P1 (collinear equilibrium positions) are
unstable while the libration points L4, L5 (triangular equilibrium positions) may
be stable if the mass ratio μ1 = m1/m0 is sufficiently small (see [14,21]).

The systems of particular interest in Celestial Mechanics and Cosmic Dynam-
ics usually contain more than three bodies. So it makes sense to add the third par-
ticle P2 of mass m2 to the system P0P1P3 and to analyze its influence on stability
of equilibrium positions of the particle P3. Note that the collinear and triangular
equilibrium configurations exist also in a general case of the three-body problem.
Moreover, both of them are realized in the Solar System (see [17]). So the particle
P2 may be situated in any of the five equilibrium positions of the corresponding
three-body problem which coincide with the libration points L1, . . . , L5 in case
of m2 = 0. In this way, we obtain the restricted four-body problem that has
been a subject of many papers (see, for example, [1,5,10,18,19]). It should be
emphasized that in the framework of this model, motion of the massive parti-
cles P0, P1, P2 is given and is determined by the corresponding solutions of the
three-body problem.

The case when the particle P2 is situated in the vertex L4 of the equilateral
triangle P0P1L4 was studied in detail in [2,4,7,18]. It was shown that four new
equilibrium positions of particle P3 arise from the point of libration L4 if the
second mass parameter μ2 = m2/m0 becomes greater than zero. The rest four
libration points L1, L2, L3, and L5 only change their positions depending on the
values of parameters μ1 and μ2. Besides, one or two new equilibrium positions
may arise inside the triangle P0P1P2. Stability of all these equilibrium positions
was completely investigated in [5,6] on the basis of the KAM theory [3,15] that
is widely used for solving similar problems, starting from the famous works [8,
13]. In particular, it was shown that all equilibrium positions situated near the
collinear libration points L1, L2, L3 remain unstable for any values of parameters
μ1, μ2. A special case of the stability problem when μ1 = μ2 was investigated
in [1,19]. Note that only two points (μ1, μ2) in the plane Oμ1μ2 remain for which
theorems of Arnold [3] and Markeev [14] cannot be applied, and the stability
problem for the corresponding equilibrium positions has not been solved yet
(see [5]).

To complete investigation of the influence of the particle P2 on the motion
of particle P3 one needs to consider the case when particle P2 is situated in one
of the collinear libration points L1, L2, L3, and this is the main research task of
the present paper. Although such positions of particle P2 are unstable, its quasi-
periodic orbits near the collinear libration points may exist. So it is a matter of
interest to investigate an influence of the particle P2 mass on the equilibrium
positions of particle P3 and their stability. In addition, the problem is interesting
from the theoretical point of view because it differs essentially from the case of
triangular configuration of the particles P0, P1, P2. Actually, in the latter case,
the particles P0, P1, P2 are fixed in the vertices of the equilateral triangle for

Symbolic-Numerical Analysis of Stability in a Planar Four-Body Problem 331

any values of parameters μ1, μ2, while in the collinear case, mutual distances
between particles depend on these parameters. Therefore, given the values of
μ1, μ2 we have to look for both equilibrium configuration of the massive particles
P0, P1, P2 and equilibrium positions of the particle P3 as solutions of the corre-
sponding algebraic equations. Only afterwards we can analyze the Hamiltonian
function in the neighborhood of the equilibrium configuration and conclude on
stability or instability of equilibrium positions applying theorems of the KAM
theory [3,15]. Realization of such an approach involves very advanced symbolic
and numerical calculations (see [5,12,16]) which can be reasonably performed
only with computers and modern software such as the computer algebra system
Wolfram Mathematica [23], for example.

Note that if two particles P1 and P2 have the same mass and are situated
symmetrically with respect to the particle P0, the problem is simplified consid-
erably because the system has only one parameter μ = μ1 = μ2 and positions
of the massive particles are fixed. Just such a case of the stability problem was
considered earlier in linear approximation [11] and in a strict nonlinear formula-
tion (see [9,20]). In case of μ1 = μ2, our results agree completely with the results
of [20] and correct some inaccuracies in the computations performed in [9].

The paper is organized as follows. In Sect. 2, we obtain algebraic equations
determining equilibrium configuration of the system and analyze their solutions
for different values of parameters μ1 and μ2. Then in Sect. 3, we analyze the
system stability in linear approximation and determine the domains of stability
in the plane Oμ1μ2 for different positions of the particle P2. Section 4 is devoted
to calculation of the third order term in the Hamiltonian expansion and analysis
of the equilibrium positions’ stability under the third order resonance. In Sect. 4,
we consider the fourth order term of the Hamiltonian expansion and conclude on
stability of the equilibrium positions applying theorems of Arnold and Markeev.
At last, we conclude in Sect. 5.

2 Equilibrium Solutions

In the rotating frame of reference, where the particles P0, P1, P2 have rest in
the Oxy plane at the points (0, 0), (1, 0), (a, 0), respectively, the Hamiltonian
function of the system can be written in the form

H =
1
2

(
p2x + p2y

) − xpy + ypx − 1
κ

(
1

√
x2 + y2

+ μ1

(
1

√
(x − 1)2 + y2

− x

)

+ μ2

(
1

√
(x − a)2 + y2

− ax

|a|3
))

, (1)

where x, px and y, py are two pairs of canonically conjugate dimensionless coor-
dinate and momentum, parameter κ is given by

κ = 1 + μ1 + μ2

(
a

|a|3 +
1 − a

|1 − a|3
)

, (2)

332 A.N. Prokopenya

and dimensionless parameter a determining position of the particle P2 at the Ox
axis, is a real root of the equation

1 + μ1 + μ2

(
a

|a|3 +
1 − a

|1 − a|3
)

=
1 + μ2

|a|3 +
μ1

a

(
1 +

a − 1
|a − 1|3

)
. (3)

We assume here that both parameters μ1 and μ2 belong to the interval 0 <
μ1,2 ≤ 1, and this enables us to consider all physically different configurations
of the system.

Equation (3) arises in the three-body problem (see [14,21]) and has three
different real roots for any values of parameters μ1, μ2. Each of the three intervals
0 < a < 1, a > 1 and a < 0 contains only one root, and in case of μ2 = 0, these
roots determine the collinear points of libration L1, L2, L3, respectively. For
μ2 > 0, equilibrium positions of the particle P2 are shifted from the points
L1, L2, L3 but the geometrical configuration of particles P0, P1, P2 doesn’t
change. Note that symbolic solution of nonlinear equation (3) cannot be found
but each of the three roots may easily be calculated numerically with necessary
precision using the built-in function FindRoot (see [23]).

Using the Hamiltonian (1), one can easily write the equations of motion of
particle P3 and show that its equilibrium coordinates (x, y) are determined by
the following system of two algebraic equations

x

(x2 + y2)3/2
− κx + μ1

(
1 +

x − 1
((x − 1)2 + y2)3/2

)

+μ2

(
a

|a|3 +
x − a

((x − a)2 + y2)3/2

)
= 0,

y

(
1

(x2 + y2)3/2
− κ +

μ1

((x − 1)2 + y2)3/2
+

μ2

((x − a)2 + y2)3/2

)

= 0. (4)

In case of μ2 = 0, system (4) reduces to the equations determining the
libration points in the restricted three-body problem (see [14,21]). If particle P2

is situated at the collinear point of libration Lj , (j = 1, 2, 3) then for μ2 > 0, two
new collinear equilibrium positions arise from the point Lj , and the other two
collinear libation points change their positions at the Ox axis. The x-coordinates
of the four collinear equilibrium positions as functions of parameter μ2 are shown
in Fig. 1 for a fixed value of parameter μ1 and the particle P2 being located
between P0 and P1 (0 < a < 1). Note that position of P2 also changes when
parameter μ2 grows (dashed curve in Fig. 1). Similar pictures are obtained for
other positions of the particle P2 and different values of μ1.

If μ2 = 0 and particle P2 is situated in one of the libration points L1, L2,
L3 the particle P3 may also stay in equilibrium in each of the triangular points
of libration L4, L5. Numerical analysis of the system (4) shows that increasing
of parameter μ2 results in shifting of the corresponding libration points in the
Oxy plane (see Fig. 2). Three bold arrows starting at the points L4, L5 show
equilibrium positions of the particle P3 in the cases when particle P2 is situated in
the neighbourhood of one of the libration points L1, L2, L3. The corresponding

Symbolic-Numerical Analysis of Stability in a Planar Four-Body Problem 333

Fig. 1. Four collinear equilibrium positions of the particle P3 arising from the libration
points L1, L2, L3 if particle P2 is situated at the point L1, µ1 = 0.2, 0 ≤ µ2 ≤ 1.

Fig. 2. Equilibrium positions of particle P3 arising from the libration points L4, L5 if
particle P2 is situated at one of the libration points L1, L2, L3, µ1 = 0.2, 0 ≤ µ2 ≤ 1.

shifts of particle P2 on the Ox axis are also shown by arrows starting at the
points L1, L2, L3.

Note that three cases of the particle P2 localization in the neighbourhood
of the libration points L1, L2, L3 describe all physically different collinear geo-
metrical configurations of the massive particles P0, P1, P2. For each of these
configurations, system (4) determines four collinear and two non-collinear equi-
librium positions of particle P3, geometrically they are represented as points of
intersections of the solid and dashed curves (see Fig. 3) determined by the equa-
tions of system (4). Therefore, there are 18 different equilibrium solutions in
the restricted four-body problem, where positions of the three massive particles

334 A.N. Prokopenya

Fig. 3. Four collinear (S1, S2, S3, S4) and two non-collinear (S5, S6) equilibrium posi-
tions of the particle P3 if particle P2 is situated in the neighbourhood of the libration
point L3 (a < 0), µ1 = 0.4, µ2 = 0.2.

are determined by the corresponding Euler solutions of the three-body problem.
Similar results were obtained earlier in [18].

3 Stability Analysis in Linear Approximation

Let us denote an equilibrium position of particle P3 in the xOy plane by (x0, y0).
The corresponding stationary values of the momenta can easily be found from
the equations of motion determined by the Hamiltonian (1) and are equal to
px0 = −y0, py0 = x0. To analyze stability of this equilibrium solution we per-
form in the Hamiltonian (1) a substitution written in terms of the Wolfram
language [23] as the following list of rules

rul1 = {x → x0 + δx, y → y0 + δy, px → −y0 + δpx, py → x0 + δpy}; (5)

The variables x, y, px, py in the right-hand side of each rule in (5) are small
deviations from to the equilibrium solution. To simplify calculation and to be
able to extract in the Hamiltonian expansion in power series in terms of the
perturbations the kth order term Hk (k = 0, 1, . . .), we add to each variable
x, y, px, py a multiplier δ. Then it is sufficient to expand the Hamiltonian in
the power series in terms of δ in the neighborhood of the point δ = 0. The
corresponding command written in the Wolfram Language is given by

H = Series[H/. rul1, {δ, 0, 4}] // Normal;

Symbolic-Numerical Analysis of Stability in a Planar Four-Body Problem 335

Here we obtain the Hamiltonian expansion up to the fourth order, and the kth
order term is extracted by application of the built-in function Coefficient

Hk = Coefficient[H, δ, k];

As a result, we calculate the Hamiltonian (1) in the form of power series in the
neighborhood of equilibrium point, and it is represented in the form

H = H2 + H3 + H4 + . . . , (6)

where Hk is the kth order homogeneous polynomial with respect to canonical
variables x, y, px, py. Note that zero-order term H0 in (6) has been omitted as a
constant, which does not influence the equations of motion, and the first-order
term H1 is equal to zero owing to Eq. (4) determining equilibrium positions.
Therefore, the first non-zero term in expansion (6) is a quadratic one that has
the form

H2 =
1
2

(
p2x + p2y

) − pyx + pxy + h20x
2 + h11xy + h02y

2, (7)

where coefficients h20, h11, and h02 are given by

h20 = − 2x2
0 − y2

0

2κ(x2
0 + y2

0)5/2
− μ1

2κ

2(x0 − 1)2 − y2
0

((x0 − 1)2 + y2
0)5/2

− μ2

2κ

2(x0 − a)2 − y2
0

((x0 − a)2 + y2
0)5/2

,

h11 = −3y0
κ

(
x0

(x2
0 + y2

0)5/2
+

μ1(x0 − 1)
((x0 − 1)2 + y2

0)5/2
+

μ2(x0 − a)
((x0 − a)2 + y2

0)5/2

)
, (8)

h02 =
x2
0 − 2y2

0

2κ(x2
0 + y2

0)5/2
+

μ1

2κ

(x0 − 1)2 − 2y2
0

((x0 − 1)2 + y2
0)5/2

+
μ2

2κ

(x0 − a)2 − 2y2
0

((x0 − a)2 + y2
0)5/2

.

One can readily check that the linearized equations of motion determined
by the quadratic part H2 of the Hamiltonian (6) form the fourth-order linear
system of differential equations with constant coefficients. Characteristic expo-
nents λ1, . . . , λ4 for such a system can easily be found (see [5,6]) and may be
represented in the form

λ1,2 = ±iσ1, λ3,4 = ±iσ2, (9)

where the frequencies σ1 and σ2 are given by

σ1,2 =
(

1 + h20 + h02 ±
√

h2
20 + h2

02 + h2
11 − 2h20h02 + 4h20 + 4h02

)1/2

. (10)

Recall that equilibrium position (x0, y0) may be stable for some values of
parameters μ1 and μ2 only if the corresponding characteristic exponents (9) are
different purely imaginary numbers or the frequencies σ1 and σ2 are different real
numbers. As coefficients h20, h11, and h02 depend on both the mass parameters

336 A.N. Prokopenya

μ1 and μ2 and geometrical parameters a, x0, y0 which are also functions of μ1 and
μ2 (see (2), (3), (4)), it is very difficult to check the conditions of the equilibrium
positions’ stability in analytic form. To estimate the values of parameters μ1 and
μ2 for which the equilibrium positions may be stable we can choose a grid with
small step in the plane Oμ1μ2 and calculate numerically the frequencies σ1 and
σ2 in the grid nodes.

Fig. 4. Stability boundary and resonance curves for equilibrium positions S5, S6 if
particle P2 is situated in the neighbourhood of the libration points L1 (0 < a < 1) or
L2 (a > 1). The curve f = 0 corresponds to the points for which condition (30) is not
fulfilled.

Numerical analysis of the frequencies (10) in the domain 0 < μ1,2 ≤ 1 has
shown that for the collinear equilibrium points S1, S2, S3, S4, at least one of the
frequencies σ1 and σ2 has an imaginary part for any values of parameters μ1 and
μ2 and any of the three possible equilibrium positions of particle P2. Therefore,
all twelve collinear equilibrium positions are unstable in Lyapunov’s sense. Due
to the symmetry of the system with respect to the Ox axis, the equilibrium points
S5 and S6 have the same properties, and they are stable in linear approximation
if parameters μ1 and μ2 are smaller than their values on the stability boundaries
which are determined from the condition σ1 = σ2. The corresponding curves for
the equilibrium points S5 and S6 have been found numerically and are shown as
dashed curves in the Oμ1μ2 plane in Figs. 4 and 5. It should be noted that the
stability domains are the same if particle P2 is situated in the neighbourhood of
the libration points L1 and L2. It is quite natural because one case is obtained
from another one by means of mutual replacement μ1 → μ2, μ2 → μ1 and the

Symbolic-Numerical Analysis of Stability in a Planar Four-Body Problem 337

scale transformation a → 1/a. Besides, both domains of stability shown in Figs. 4
and 5 are symmetrical with respect to the line μ2 = μ1.

Fig. 5. Stability boundary and resonance curves for equilibrium positions S5, S6 if
particle P2 is situated in the neighbourhood of the libration point L3 (a < 0).

4 Normalization of the Hamiltonian

The most-used method for studying the Hamiltonian systems of nonlinear dif-
ferential equations is the Poincaré method of normal forms (see [14]). It includes
constructing a real-valued canonical transformation, reducing the Hamiltonian of
the system to the Birkhoff normal form, and applying theorems of the KAM the-
ory [3,15]. As in the neighbourhood of the equilibrium position the Hamiltonian
is represented in the form of expansion (6), we have to normalize successively
the terms H2, H3, H4, . . .

Canonical transformation normalizing the quadratic part H2 of the Hamil-
tonian may be constructed in symbolic form, the corresponding algorithm has
been described in detail in [14,16]. Doing necessary symbolic calculations, we
obtain the transformation in the form

x = 2c1p1 + 2c2p2,

y = −2σ1u1q1 + 2σ2u2q2 + h11u1p1 + h11u2p2,

px = −v1q1 + v2q2 − h11u1p1 − h11u2p2,

py = −h11σ1u1q1 + h11σ2u2q2 + g1p1 + g2p2, (11)

338 A.N. Prokopenya

where p1, q1 and p2, q2 are two pairs of new canonically conjugated variables,

uk =
2ck(1 − h20 + σ2

k)
h2
11 + 4σ2

k

, vk =
2ckσk(−2 + 4h20 + h2

11 + 2σ2
k)

h2
11 + 4σ2

k

,

gk =
2ck(h2

11 + (2 + 4h20)σ2
k − 2σ4

k)
h2
11 + 4σ2

k

,

ck =
(

(−1)k(h2
11 + 4σ2

k)
4σk(−3 + h2

11 + 4h20 + 4h2
20 + 2(1 − 2h20)σ2

k + σ4
k)

)1/2

, k = 1, 2.

Applying this transformation to (7), we reduce the quadratic part of the
Hamiltonian H2 to the normal form

H2 =
1
2

(
σ1(p21 + q21) − σ2(p22 + q22)

)
. (12)

It should be emphasized that the quadratic form (12) is neither a positive
nor negative definite function and, hence, one cannot conclude on stability or
instability of equilibrium solutions, using the principle of linearized stability.
Therefore, we have to solve the problem in a strict nonlinear formulation.

To normalize the third-order term H3 in the Hamiltonian (6) we use the
method of constructing the real-valued canonical transformation of Birkhoff’s
type described in [5,6,9]. We start from the term H3 in (6) given by

H3 =
(

2x3
0 − 3y2

0

(x2
0 + y2

0)7/2
+

μ1(x0 − 1)(2(x0 − 1)2 − 3y2
0)

((x0 − 1)2 + y2
0)7/2

+
μ2(x0 − a)(2(x0 − a)2 − 3y2

0)
((x0 − a)2 + y2

0)7/2

)
x3

2κ

+
(

4x3
0 − y2

0

(x2
0 + y2

0)7/2
+

μ1(4(x0 − 1)2 − y2
0)

((x0 − 1)2 + y2
0)7/2

+
μ2(4(x0 − a)2 − y2

0)
((x0 − a)2 + y2

0)7/2

)
3y0x

2y

2κ

−
(

x3
0 − 4x0y

2
0

(x2
0 + y2

0)7/2
+

μ1(x0 − 1)((x0 − 1)2 − 4y2
0)

((x0 − 1)2 + y2
0)7/2

+

+
μ2(x0 − a)((x0 − a)2 − 4y2

0)
((x0 − a)2 + y2

0)7/2

)
3xy2

2κ

−
(

3x3
0 − 2y2

0

(x2
0 + y2

0)7/2
+

μ1(3(x0 − 1)2 − 2y2
0)

((x0 − 1)2 + y2
0)7/2

+
μ2(3(x0 − a)2 − 2y2

0)
((x0 − a)2 + y2

0)7/2

)
y0y

3

2κ
.

(13)

On substituting the coordinates x, y from (11) into (13) and simplifying the
expression obtained, we reduce the third-order term H3 to the form

H3 =
∑

i+j+k+l=3

h
(3)
ijklq

i
1q

j
2p

k
1p

l
2. (14)

As transformation (11) is linear, the coefficients h
(3)
ijkl in (14) are determined

only by the corresponding coefficients from (13) and coefficients of q1, q2, p1, p2

Symbolic-Numerical Analysis of Stability in a Planar Four-Body Problem 339

in (11). The expressions obtained for h
(3)
ijkl are quite bulky, so we do not write

them here. Similar, though more cumbersome calculations are performed with
the fourth-order term H4 and the transformation (11) reduces it to the form

H4 =
∑

i+j+k+l=4

h
(4)
ijklq

i
1q

j
2p

k
1p

l
2. (15)

Note that canonical transformation (11) does not mix the terms of different
orders H2, H3, H4 in the Hamiltonian (6).

The next step is to construct a canonical transformation that eliminates the
third-order term H3 in the Hamiltonian expansion. In addition to linear terms,
such a transformation must contain the second-degree terms in new canonical
variables and may be obtained with the aid of the following generating function

S(p̃1, p̃2, q1, q2) = q1p̃1 + q2p̃2 +
∑

i+j+k+l=3

s
(3)
ijklq

i
1q

j
2p̃

k
1 p̃

l
2, (16)

where coefficients s
(3)
ijkl are to be found. The function (16) determines new

momenta p̃1, p̃2 and coordinates q̃1, q̃2 according to the relationships

q̃1 =
∂S

∂p̃1
, q̃2 =

∂S

∂p̃2
, p1 =

∂S

∂q1
, p2 =

∂S

∂q2
, (17)

which form a system of algebraic equations with respect to the old canonical
variables q1, q2, p1, p2. Solution of this system can be sought in the form of
polynomials in terms of the new canonical variables q̃1, q̃2, p̃1, p̃2. To find an
expression for the third-order term H3 in new variables it is sufficient to consider
the polynomials of second degree but the third-degree terms also should be
taken into account because they influence the fourth-order term H4 that will be
normalized at the next step. In general, to calculate the term Hk in new variables
one needs to consider solutions of system (17) in the form of polynomials of the
(k − 1)th degree.

Applying the method of iterations and doing quite standard symbolic calcula-
tion, we solve system (17) and obtain the old canonical variables q1, q2, p1, p2 as
functions of the new ones q̃1, q̃2, p̃1, p̃2 which in linear approximation determine
an identical canonical transformation. Then we substitute these variables into
the Hamiltonian expansion H = H2 +H3 +H4, where H2, H3, and H4 are given
by (12), (14), and (15), respectively, and expand the expression obtained into
the power series in terms of new variables q̃1, q̃2, p̃1, p̃2 up to the fourth order.
One can easily check that the second-order term H̃2 in new variables retains the
normal form (12) while coefficients h̃

(3)
ijkl in the term H̃3 represented in the form

(14) become linear functions of h
(3)
ijkl and unknown coefficients s

(3)
ijkl determining

the generating function (16). Equating the coefficients h̃
(3)
ijkl to zero, we obtain a

system of linear equations with respect to the coefficients s
(3)
ijkl. The calculations

show that if the frequencies σ1, σ2 satisfy the conditions

σ1 ± 2σ2 �= 0, 2σ1 ± σ2 �= 0, σ1 ± σ2 �= 0, (18)

340 A.N. Prokopenya

and σ1 �= 0, σ2 �= 0 then this system has a unique solution. It means that real-
ization of canonical transformation (17) with the found coefficients s

(3)
ijkl elimi-

nates the third-order term H3 in the Hamiltonian expansion. The corresponding
expressions for coefficients s

(3)
ijkl are given in [5,6,16].

Analyzing frequencies (10), we obtain that there are such points (μ1, μ2) in
the Oμ1μ2 plane in the domain of linear stability of the equilibrium positions S5,
S6 for which the condition of third-order resonance σ1 − 2σ2 = 0 is fulfilled (see
Figs. 4 and 5). For such values of parameters μ1 and μ2, some coefficients h̃

(3)
ijkl

cannot be equal to zero and, therefore, it is not possible to eliminate the term H̃3

completely (see [5,16]). There are six such coefficients and they should be chosen
in such a way that the Hamiltonian H takes the form admitting application of
Markeev’s theorem on instability of equilibrium positions under the third-order
resonance [14]. Requiring the following conditions to be fulfilled

h̃
(3)
0012 =

B1

2
√

2
, h̃

(3)
0210 = − B1

2
√

2
, h̃

(3)
1101 = − B1√

2
,

h̃
(3)
0111 =

B2√
2
, h̃

(3)
1002 =

B2

2
√

2
, h̃

(3)
1200 = − B2

2
√

2
, (19)

where B1, B2 are some constants, and solving the system of equations (19), we
obtain the corresponding coefficients s

(3)
ijkl of the generating function (16) and

find the constants B1, B2 as

B1 =
1√
2
(h(3)

0012 − h
(3)
0210 − h

(3)
1101), B2 =

1√
2
(h(3)

0111 + h
(3)
1002 − h

(3)
1200). (20)

Then the Hamiltonian (6) takes a form

H̃ =
1
2
σ1

(
q̃21 + p̃21

) − 1
2
σ2

(
q̃22 + p̃22

)
+

B1

2
√

2

(
p̃1p̃

2
2 − p̃1q̃

2
2 − 2q̃1q̃2p̃2

)

+
B2

2
√

2

(
q̃1p̃

2
2 − q̃1q̃

2
2 + 2q̃2p̃1p̃2

)
+ H̃4 + (21)

Numerical analysis of parameter B =
√

B2
1 + B2

2 for the equilibrium points
S5 and S6 has shown that it is not equal to zero for all points (μ1, μ2) belonging
to the resonance curves σ1 − 2σ2 = 0 for any of the three possible collinear
configurations of the particles P0, P1, P2. According to Markeev’s theorem [14],
we can conclude that equilibrium points S5 and S6 in the circular restricted
four-body problem formulated on the basis of Euler’s collinear configurations
are unstable under third-order resonance of the form σ1 − 2σ2 = 0.

Let us consider the points (μ1, μ2) in the domain of linear stability of equi-
librium positions S5, S6 for which the condition σ1 �= 2σ2 is fulfilled, and there
is no resonance in the system up to the third order inclusively. Then after nor-
malization of the second and third order terms, we obtain the Hamiltonian (6)
in the form

H̃ = H̃2 + H̃4 + . . . , (22)

Symbolic-Numerical Analysis of Stability in a Planar Four-Body Problem 341

where the second-order term

H̃2 =
1
2

(
σ1(p̃21 + q̃21) − σ2(p̃22 + q̃22)

)
(23)

has the normal form, the third-order term H̃3 is absent, and the fourth-order
term H̃4 may be written as

H̃4 =
∑

i+j+k+l=4

h̃
(4)
ijklq̃

i
1q̃

j
2p̃

k
1 p̃

l
2. (24)

The sum (24) contains 35 terms but coefficients h̃
(4)
ijkl are very cumbersome, and

we do not write them here. Now we look for the fourth-degree polynomial

S(p∗
1, p

∗
2, q̃1, q̃2) = q̃1p

∗
1 + q̃2p

∗
2 +

∑

i+j+k+l=4

s
(4)
ijklq̃

i
1q̃

j
2p

∗k
1 p∗l

2 , (25)

generating the canonical transformation reducing the fourth order term H̃4 to
the simplest form. New momenta p∗

1, p
∗
2 and coordinates q∗

1 , q
∗
2 are determined

by the relationships

q∗
1 =

∂S

∂p∗
1

, q∗
2 =

∂S

∂p∗
2

, p̃1 =
∂S

∂q̃1
, p̃2 =

∂S

∂q̃2
. (26)

Resolving (26) with respect to the old canonical variables q̃1, q̃2, p̃1, p̃2 in the
neighborhood of the point q∗

1 = q∗
2 = p∗

1 = p∗
2 = 0 and substituting the solution

into (22), we expand the Hamiltonian H̃ in the Taylor series in terms of q∗
1 , q∗

2 ,
p∗
1, p∗

2. Obviously, the second order term H∗
2 in this expansion retains the form

(23), the third order term H∗
3 is absent, and the fourth order term H∗

4 is a sum
of 35 terms of the form

h
∗(4)
ijkl q

∗i
1 q∗j

2 p∗k
1 p∗l

2 (i + j + k + l = 4),

where new coefficients h
∗(4)
ijkl are linear functions of h̃

(4)
ijkl and unknown coefficients

s
(4)
ijkl, determining the generating function (25).

Analysis of the coefficients h
∗(4)
ijkl shows that they are divided into several

independent groups, and each group forms a system of equations determining
some coefficients s

(4)
ijkl. If the following conditions

σ1 �= 0, σ2 �= 0, σ1 ± σ2 �= 0, σ1 ± 3σ2 �= 0, 3σ1 ± σ2 �= 0, (27)

are fulfilled we can solve the equations h
∗(4)
ijkl = 0 and find coefficients s

(4)
ijkl of the

canonical transformation (26) eliminating the corresponding terms in (24). Nev-
ertheless, there are ten terms in the expansion (24) which cannot be eliminated.
They can be only simplified in such a way that the fourth order term H̃4 takes
the form (see [5,16])

H∗
4 =

1
4

(
c20(p∗2

1 + q∗2
1)2 + c11(p∗2

1 + q∗2
1)(p∗2

2 + q∗2
2) + c02(p∗2

2 + q∗2
2)2

)
.

342 A.N. Prokopenya

Then, using the standard canonical transformation

q∗
1 =

√
2τ1 sin ϕ1, p∗

1 =
√

2τ1 cos ϕ1,

q∗
2 =

√
2τ2 sin ϕ2, p∗

2 =
√

2τ2 cos ϕ2, (28)

we rewrite the Hamiltonian (22) as

H∗ = σ1τ1 − σ2τ2 + c20τ
2
1 + c11τ1τ2 + c02τ

2
2 + H∗

5 (ϕ1, ϕ2, τ1, τ2) + (29)

Recall that Arnold’s theorem [3] states that in the case of absence of res-
onances up to the fourth order inclusively (conditions (18),(27) are fulfilled),
equilibrium positions are stable if

f = c20σ
2
2 + c11σ1σ2 + c02σ

2
1 �= 0. (30)

Numerical analysis of parameter f shows that for equilibrium points S5 and S6,
there exist such values of parameters μ1 and μ2, for which f = 0 (see Figs. 4
and 5). For such μ1, μ2 the fifth and higher order terms in the Hamiltonian
expansion (6) need to be analyzed to conclude on stability or instability of equi-
librium solution. The corresponding calculations are very cumbersome, and this
case will be analyzed in our next paper.

Besides, there are curves in the Oμ1μ2 plane (see Figs. 4 and 5), where the
condition of fourth-order resonance of the form σ1 = 3σ2 is fulfilled. In this case,
eight additional terms appear in the expression for H∗

4 because the following
coefficients h

∗(4)
ijkl do not vanish and are expressed via two parameters A1, A2

h
∗(4)
0013 = −1

3
h

∗(4)
0211 = −1

3
h

∗(4)
1102 = h

∗(4)
1300 =

A1

4
,

h
∗(4)
1003 =

1
3
h

∗(4)
0112 = −1

3
h

∗(4)
1201 = −h

∗(4)
0310 =

A2

4
. (31)

Solving system (31), we find the corresponding coefficients s
(4)
ijkl, and parameters

A1 and A2 are obtained in the form

A1 =
1
2
(h̃(4)

0013 − h̃
(4)
0211 − h̃

(4)
1102 + h̃

(4)
1300),

A2 =
1
2
(h̃(4)

0112 − h̃
(4)
0310 + h̃

(4)
1003 − h̃

(4)
1201).

Finally, the Hamiltonian (22) is reduced to the form

H∗ =
3σ2

2
(
p∗2
1 + q∗2

1

) − σ2

2
(
p∗2
2 + q∗2

2

)

+
1
4

(
c20(p∗2

1 + q∗2
1)2 + c11(p∗2

1 + q∗2
1)(p∗2

2 + q∗2
2) + c02(p∗2

2 + q∗2
2)2

)

+
A1

4
(
p∗
1p

∗3
2 − 3q∗2

2 p∗
1p

∗
2 − 3q∗

1q
∗
2p

∗2
2 + q∗

1q
∗3
2

)

+
A2

4
(
q∗
1p

∗3
2 − 3q∗

1q
∗2
2 p∗

2 + 3q∗
2p

∗
1p

∗2
2 − p∗

1q
∗3
2

)
. (32)

Symbolic-Numerical Analysis of Stability in a Planar Four-Body Problem 343

According to the theorem of Markeev [14], stability of the equilibrium
solutions under the fourth-order resonance depends on the values of c20 +3c11 +
9c02 and 3

√
3(A2

1 + A2
2). Our calculations show that if the particle P2 is situated

in the neighborhood of the points of libration L1 and L2, an inequality

c20 + 3c11 + 9c02 < 3
√

3(A2
1 + A2

2)

takes place for all points (μ1, μ2) belonging to the resonant curve σ1 = 3σ2 (see
Fig. 4). It means that the fourth-order resonance results in instability of equilib-
rium positions S5, S6 for such collinear configurations of the massive particle.
The same result is obtained in the case when the particle P2 is situated in the
neighborhood of the point L3, and the point (μ1, μ2) is located at the resonant
curve σ1 = 3σ2 to the left of the points C1 and C2 (see Fig. 5). However, for the
points (μ1, μ2) belonging to the arc C1C2, we obtain

c20 + 3c11 + 9c02 > 3
√

3(A2
1 + A2

2),

and equilibrium positions S5 and S6 are stable in Liapunov’s sense.

5 Conclusion

In the present paper, we have studied stability of the equilibrium positions in the
planar circular restricted four-body problem formulated on the basis of the Euler
collinear solutions of the three-body problem. We have proved that all collinear
equilibrium positions of particle P3 are unstable for any values of the system
parameters μ1 and μ2. Similar results were obtained earlier in the restricted
three-body problem (see [14,21]). The equilibrium positions S5 and S6 (see
Fig. 3) are stable in Liapunov’s sense if parameters μ1 and μ2 are sufficiently
small and belong to the domains bounded by the curves σ1 = σ2 (Figs. 4 and 5).
However, in these domains, there are such values of parameters μ1 and μ2 for
which the conditions of the third- or fourth-order resonances are fulfilled. The
third-order resonance results in instability of equilibrium points S5 and S6 for
any collinear position of the particle P2 while in case of the fourth-order reso-
nance, stability of these points may take place if the particle P2 is situated in
the neighborhood of the point of libration L3, and the point (μ1, μ2) is located
at the resonant curve between the points C1 and C2.

There are also such values of parameters μ1 and μ2 for which the conditions
of Arnold’s theorem are not fulfilled (curves f = 0 in Figs. 4 and 5), and analysis
of the fifth and higher order terms in the Hamiltonian expansion is required for
the entire solution of the stability problem. Such analysis will be done in our
next paper.

Note that all relevant calculations and visualization of the obtained results
are performed with the computer algebra system Wolfram Mathematica.

344 A.N. Prokopenya

References

1. Alvares-Ramirez, M., Skea, J.E.F., Stuchi, T.J.: Nonlinear stability analysis in
a equilateral restricted four-body problem. Astrophys. Space Sci. (2015). doi:10.
1007/s10509-015-2333-4

2. Arenstrof, R.E.: Central configurations of four bodies with one inferior mass.
Celest. Mech. 29, 9–15 (1982)

3. Arnold, V.I.: Small denominators and problems of stability of motion in classical
and celestial mechanics. Russ. Math. Surv. 18(6), 85–191 (1963)

4. Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical analysis of equilibrium solu-
tions in a restricted four-body problem. Program. Comput. Softw. 36(2), 68–74
(2010)

5. Budzko, D.A., Prokopenya, A.N.: On the stability of equilibrium positions in the
circular restricted four-body problem. In: Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 88–100. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-23568-9 8

6. Budzko, D.A., Prokopenya, A.N.: Stability of equilibrium positions in the spatial
circular restricted four-body problem. In: Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 72–83. Springer, Heidel-
berg (2012). doi:10.1007/978-3-642-32973-9 7

7. Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical methods for searching equi-
librium states in a restricted four-body problem. Program. Comput. Softw. 39(2),
74–80 (2013)

8. Deprit, A., Deprit-Bartholomé, A.: Stability of the triangular Lagrangian points.
Astron. J. 72(2), 173–179 (1967)

9. Gadomski, L., Grebenikov, E.A., Prokopenya, A.N.: Studying the stability of equi-
librium solutions in the planar circular restricted four-body problem. Nonlinear
Oscil. 10(1), 66–82 (2007)

10. Grebenikov, E.A., Ikhsanov, E.V., Prokopenya, A.N.: Numeric-symbolic computa-
tions in the study of central configurations in the planar newtonian four-body prob-
lem. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS,
vol. 4194, pp. 192–204. Springer, Heidelberg (2006). doi:10.1007/11870814 16

11. Kozak, D., Oniszk, E.: Equilibrium points in the restricted four-body problem.
Sufficient conditions for linear stability. Rom. Astron. J. 8(1), 27–31 (1998)

12. Kozera, R., Noakes, L., Klette, R.: External versus internal parameterizations for
lengths of curves with nonuniform samplings. In: Asano, T., Klette, R., Ronse, C.
(eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp.
403–418. Springer, Heidelberg (2003). doi:10.1007/3-540-36586-9 26

13. Leontovich, A.M.: On the stability of Lagrangian periodic solutions of the restricted
three-body problem. Soviet Math. Dokl. 3, 425–429 (1962)

14. Markeev, A.P.: Libration points in Celestial Mechanics and Cosmodynamics.
Nauka, Moscow (1978). (in Russian)

15. Moser, J.: Lectures on the Hamiltonian systems. Mir, Moscow (1973). (in Russian)
16. Prokopenya, A.N.: Hamiltonian normalization in the restricted many-body prob-

lem by computer algebra methods. Program. Comput. Softw. 38(3), 156–166
(2012)

17. Roy, A.E.: Orbital Motion, 4th edn. Institute of Physics Publishing, Bristol/
Philadephia (2005)

18. Simo, C.: Relative equilibrium solutions in the four body problem. Celest. Mech.
18, 165–184 (1978)

http://dx.doi.org/10.1007/s10509-015-2333-4
http://dx.doi.org/10.1007/s10509-015-2333-4
http://dx.doi.org/10.1007/978-3-642-23568-9_8
http://dx.doi.org/10.1007/978-3-642-32973-9_7
http://dx.doi.org/10.1007/11870814_16
http://dx.doi.org/10.1007/3-540-36586-9_26

Symbolic-Numerical Analysis of Stability in a Planar Four-Body Problem 345

19. Singh, J., Vincent, A.E.: Effect of perturbations in the Coriolis and centrifugal
forces on the stability of equilubrium points in the restricted four-body problem.
Few-Body Syst. 56, 713–723 (2015)

20. Schmidt, D., Vidal, C.: Stability of the planar equilibrium solutions of a restricted
1 + N body problem. Regul. Chaotic Dyn. 19(5), 533–547 (2014)

21. Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Acad-
emic Press, New York/London (1967)

22. Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton Math-
ematical Series, vol. 5. Princeton University Press, Princeton (1941)

23. Wolfram, S.: An Elementary Introduction to the Wolfram Language, 2nd edn.
Wolfram Media, Champaign (2017)

The Method of Collocations and Least Residuals
Combining the Integral Form of Collocation

Equations and the Matching Differential
Relations at the Solution of PDEs

Vasily P. Shapeev1,2 and Evgenii V. Vorozhtsov1(B)

1 Khristianovich Institute of Theoretical and Applied Mechanics,
Russian Academy of Sciences, Novosibirsk 630090, Russia

{shapeev,vorozh}@itam.nsc.ru
2 Novosibirsk National Research University, Novosibirsk 630090, Russia

Abstract. To increase the accuracy of computations by the method
of collocations and least residuals (CLR) it is proposed to increase the
number of degrees of freedom with the aid of the following two tech-
niques: an increase in the number of basis vectors and the integration of
the linearized partial differential equations (PDEs) over the subcells of
each cell of a spatial computational grid. The implementation of these
modifications, however, leads to the necessity of increasing the amount
of symbolic computations needed for obtaining the work formulas of the
new versions of the CLR method. The computer algebra system (CAS)
Mathematica has proved to be successful at the execution of all these
computations. It is shown that the proposed new symbolic-numeric ver-
sions of the CLR method possess a higher accuracy than the previous
versions of this method. Furthermore, the version of the CLR method,
which employs the integral form of collocation equations, needs a much
lesser number of iterations for its convergence than the “differential”
CLR method.

Keywords: Computer algebra system · Symbolic-numerical algorithm ·
Collocation of integral relations · Preconditioner · Krylov subspaces ·
Multigrid

1 Introduction

At present, the numerical simulation of various processes in technologies and
industry with the aid of the numerical solution of the initial- and boundary-value
problems for the systems of nonlinear partial differential equations (PDEs) has
gained widespread acceptance. In particular, some applied tasks involving the
solution of the Navier–Stokes equations are very computationally intensive and
require a CPU time from several weeks to one year [2,14]. In this connection,
the development of more efficient methods for the numerical solution of the PDE

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 346–361, 2017.
DOI: 10.1007/978-3-319-66320-3 25

The Method of Collocations and Least Residuals 347

systems, which would enable a significant reduction of the needed CPU times,
is urgent as before.

At the derivation of the work formulas of complex high-accuracy numerical
methods, the errors are practically unavoidable in the cases when the above
formulas are derived by a mathematician “by hand” with the aid of pen and
paper. There are already by now fairly many works the authors of which have
shown a substantial benefit from using computer algebra systems (CASs) in the
process of deriving the formulas of new numerical algorithms, their realization
and verification of the corresponding computer codes [1,7,8,25].

The CLR method, which was proposed in [15] and developed further in the
subsequent works of other authors, is one of the methods which enable the effi-
cient solution of PDEs [10,16,17,19–24]. The works [10,20–23] have shown the
usefulness of the application of a CAS to the derivation of formulas of the differ-
ent versions of the CLR method. The versions of the method were constructed,
which have enabled the obtaining of the solutions of the 2D and 3D benchmark
problems, which are among the most accurate ones at present [3,18].

During the last three decades, a class of the numerical techniques named
LSFEM (Least-Squares Finite Element Method) [11,12] has gained a fairly wide
acceptance. In this class of methods, the FEM (Finite Element Method) is com-
bined with the method of least squares. In FEM, the PDEs to be solved are at
first integrated over each finite element, which represents a subregion of the spa-
tial computational region. This approach has stimulated the present authors to
consider the following versions of the CLR method: (i) a version in which all the
collocation equations derived from the PDE system are replaced with their inte-
gral counterparts, which are obtained at the integration of the PDEs over several
subcells, into which each cell of the spatial grid is partitioned; (ii) a version in
which both the collocation equations obtained from the PDEs and the equations
obtained by integrating over the subcells are employed. All the analytic compu-
tations needed for obtaining the work formulas of the above modifications of the
CLR method have been carried out with the aid of corresponding Mathematica
codes to avoid any errors and to speed up all the needed jobs.

We describe below in the present work both the original “differential” CLR
method and the CLR methods in which the “differential” version is combined
with the integral form of collocation equations and the differential forms of
matching conditions. The computational examples are presented, which show
that the new modifications of the CLR method enable the obtaining of more
accurate results than in the case of the “differential” versions of the CLR method.

2 The “Differential” CLR Method

2.1 Description of the Method

Consider a boundary-value problem for the system of Navier–Stokes equations

(V · ∇)V + ∇p =
1

Re
ΔV − f , divV = 0, (x1, x2) ∈ Ω, (1)

V
∣
∣
∂Ω

= g (2)

348 V.P. Shapeev and E.V. Vorozhtsov

in the region Ω with the boundary ∂Ω. In Eq. (1), x1, x2 are the Cartesian spatial
coordinates, V = (v1(x1, x2), v2(x1, x2)) is the velocity vector; p = p(x1, x2)
is the pressure, f = (f1, f2) is the given vector function, Re is the Reynolds
number, Δ = ∂2

∂x2
1

+ ∂2

∂x2
2
, (V · ∇) = v1

∂
∂x1

+ v2
∂

∂x2
. System (1) is solved under

the Dirichlet boundary conditions (2), where g = g(x1, x2) = (g1, g2) is a given
vector function. The pressure is determined from (1) and (2) with the accuracy
up to a constant. We will choose this constant in the following in such a way
that the following condition is satisfied:

∫∫

Ω
p dx1dx2 = 0. (3)

The square
Ω = {(x1, x2), 0 ≤ xi ≤ L, i = 1, 2}, (4)

is taken as the problem solution region, where L > 0 is the given length of the
square side. The quantity L was used in specific computations as the reference
length at the non-dimensionalization of variables, and it enters the definition of
the Reynolds number Re in (1) in a natural way. We will term in the following
the boundary-value problem for the PDE the differential problem.

In the given problem (1)–(4), region (4) is discretized by a grid with square
cells Ωij , i, j = 1, . . . , I, I ≥ 1. It is convenient to introduce the local coordinates
y1 and y2 in each cell Ωij . The dependence of local coordinates on global spatial
variables x1 and x2 is specified by relations ym = (xm − xm,i,j)/h, m = 1, 2,
where xm,i,j is the value of the coordinate xm at the center of cell Ωij , and h
is the halved length of the square cell side. Let u(y1, y2) = (u1, u2) = V(hy1 +
x1,i,j , hy2 + x2,i,j), q(y1, y2) = p(hy1 + x1,i,j , hy2 + x2,i,j). The Navier–Stokes
equations then take the following form:

Δum − Reh
(

u1
∂um

∂y1
+ u2

∂um

∂y2
+

∂q

∂ym

)

= Re · h2fm, m = 1, 2; (5)

1
h

(
∂u1

∂y1
+

∂u2

∂y2

)

= 0, (6)

where Δ = ∂2

∂y2
1

+ ∂2

∂y2
2
. The Newton linearization of Eq. (5) gives the equation

ξ[Δus+1
m − (Re · h)(us

1u
s+1
m,y1

+ us+1
1 us

m,y1
+ us

2u
s+1
m,y2

+ us+1
2 us

m,y2
+ qs+1

ym
)] = ξFm, (7)

where m = 1, 2, and s is the number of the iteration over the nonlinearity,
s = 0, 1, 2, . . ., us

1, u
s
2, q

s is the known approximation to the solution at the
sth iteration starting from the chosen initial guess with index s = 0, Fm =
Re

[

h2fm−h
(

us
1u

s
m,y1

+ us
2u

s
m,y2

)]

, um,yl
= ∂um/∂yl, qym

= ∂q/∂ym, l,m =
1, 2. The user-specified parameter ξ has been introduced here as in [24] for the
purpose of controlling the magnitude of the condition number of a system of
linear algebraic equations (SLAE), which must be solved in each cell Ωij .

The Method of Collocations and Least Residuals 349

The approximate solution in each cell Ωi,j is sought in the form of a linear
combination of the basis vector functions ϕl:

(us
1, u

s
2, q

s)T =
∑mb

l=1 bs
i,j,lϕl, (8)

where the superscript T denotes the transposition operation, and mb is the user-
specified number of the basis vector functions. In the given version of the method,
the ϕl are the polynomials. Thus, the approximate solution is a piecewise poly-
nomial. In the work [24], the second-degree polynomials in variables y1, y2 were
employed for the approximation of velocity components, and the first-degree
polynomial was used for the pressure approximation so that the total number of
the basis vector functions in (8) amounted to mb = 12.

It was shown previously in [10] that it is possible to increase the accuracy of
the numerical solution obtained by the CLR method by using the polynomials of
higher degrees. In this connection, we use in the present paper the second-degree
polynomial also for the pressure approximation. In this case, there are eighteen
basis functions in total. Since the coefficients are constant in the continuity
equation, which has a simple form, it is easy to satisfy it at the expense of the
choice of basis polynomials ϕl. It is not difficult to find that it is required to
this end that they satisfy three linear relations. There will finally remain only
fifteen independent basis polynomials from the original eighteen ones. They are
presented in Table 1. One can term their set a solenoidal basis because div ϕl = 0.
The set of basis functions, which was employed in [24], is obtained from the set
presented in Table 1 if one sets mb = 12 in (8), that is if one retains in Table 1
only the first 12 basis vector functions.

Table 1. The form of basis functions ϕl

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ϕl 1 y1 y2 y2
1 −2y1y2 y2

2 0 0 0 0 0 0 0 0 0

0 −y2 0 −2y1y2 y2
2 0 1 y1 y2

1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 y1 y2 y2
1 y1y2 y2

2

The number of collocation points and their location inside the cell may vary
in different versions of the method. In the given work, three versions of the
specification of the collocation point coordinates have been implemented. Denote
by Nc the number of collocation points inside each cell. In the case when Nc =
2, the coordinates of collocation points are as follows: (ω, ω), (−ω, ω), where
0 < ω < 1. At Nc = 4, the local coordinates of collocation points have the
form (±ω,±ω). In the case of Nc = 8, the coordinates of collocation points were
specified in the following way: the locations of the first four points were the
same as at Nc = 4, and the coordinates of the next four points were specified by
formulas (±ω, 0), (0,±ω).

350 V.P. Shapeev and E.V. Vorozhtsov

Substituting (8) as well as the numerical values of the coordinates of each
collocation point in (7) we obtain 2Nc linear algebraic equations:

∑mb

m=1 a
(1)
ν,m · bs+1

m = fs
ν , ν = 1, . . . , 2Nc. (9)

By analogy with [24] let us augment the system of equations of the approx-
imate problem in the Ωij cell by the conditions of matching with the solutions
of the discrete problem, which are taken in all cells adhering to the given cell.
We will write these conditions at separate points (called the matching points)
on the sides of the Ωij cell, which are common with its neighboring cells. The
matching conditions are taken here in the form

h∂(u+)n

∂n + η(u+)n = h∂(u−)n

∂n + η(u−)n, (10)

h∂(u+)τ

∂n + (u+)τ = h∂(u−)τ

∂n + (u−)τ , (11)
q+ = q−. (12)

Here h ∂
∂n = h

(

n1
∂

∂x1
+ n2

∂
∂x2

)

= n1
∂

∂y1
+ n2

∂
∂y2

, n = (n1, n2) is the external
normal to the side of the Ωij cell, (·)n, (·)τ are the normal and tangential com-
ponents of the velocity vector with respect to the cell side, u+, u− are the limits
of the function u as its arguments tend to the matching point from inside and
outside the Ωij cell. The user-specified parameter η has been introduced here as
in [24] for the purpose of controlling the magnitude of the condition number of
a SLAE, which must be solved in each cell Ωij .

For the uniqueness of the pressure determination in the solution, we either
specify its value at a single point of the region or approximate condition (3) by
the formula

1
h

(∫∫

Ωi,j
q dy1dy2

)

= 1
h

(

−I∗ +
∫∫

Ωi,j
q∗dy1dy2

)

. (13)

Here I∗ is the integral over the entire region, which is computed as a sum of
the integrals over each cell at the foregoing iteration, q∗ is the pressure in a cell
from the foregoing iteration.

Denote by Nm the number of matching points for the velocity vector com-
ponents on the sides of each cell. At Nm = 4, the coordinates of these matching
points are specified by the formulas (±1, 0), (0,±1). At Nm = 8, the coordinates
of matching points are as follows: (±1,−ζ), (±1, ζ), (−ζ,±1), (ζ,±1), where
0 < ζ < 1. In the computational examples presented below, the value ζ = 1/2
was used. The matching conditions for pressure (12) are set at four points with
coordinates (±1, 0), (0,±1).

Using Eq. (8), we substitute the coordinates of these points in each of three
matching conditions (10)–(12). We obtain from the first two conditions 2Nm

linear algebraic equations for velocity components. The substitution of represen-
tation (8) in (12) also yields four linear algebraic (matching) equations.

In the present work, the pressure was specified at the vertex of the Ω1,1 cell
or condition (13) was used. If the cell side coincides with the boundary of region

The Method of Collocations and Least Residuals 351

Ω, then the boundary conditions are written at the corresponding points instead
of the matching conditions for the discrete problem solution: um = gm, m = 1, 2.

Uniting the equations of collocations, matching, and the equations obtained
form the boundary conditions, if the cell Ωij is the boundary cell, we obtain in
each cell a SLAE of the form

Ai,j · Xs+1
i,j = f s,s+1

i,j , (14)

where Xs+1
i,j = (bs+1

i,j,1, . . . , b
s+1
i,j,mb

)T . In the versions studied in the present work,
system (14) is overdetermined. The symbolic expressions for the coefficients of
all equations of SLAE (14) were derived on computer in Fortran form by using
symbolic computations with Mathematica. At the obtaining of the final form
of the formulas for the coefficients of the equations, it is useful to perform the
simplifications of the arithmetic expressions of polynomial form to reduce the
number of the arithmetic operations needed for their numerical computation. To
this end, we employed standard functions of the Mathematica system, such as
Simplify[...] and FullSimplify[...] for the simplification of complex symbolic
expressions arising at the symbolic stages of the construction of the formulae of
the method. Their application enabled a two-three-fold reduction of the length
of polynomial expressions.

For the numerical solution of the SLAE of the discrete problem a process was
applied which may be called conventionally the Gauss–Seidel iteration scheme.
One global (s + 1)th iteration meant that all the cells were considered sequen-
tially in the computational region Ω. In each cell, SLAE (14) was solved by
the orthogonal method (of Givens or Householder), and the values known at the
solution construction at the (s+1)th iteration were taken in the right-hand sides
of Eqs. (10)–(12) as the u− and q− in a given cell.

2.2 Preconditioners for the CLR Method

It is necessary to solve in each cell Ωij the SLAE of the form (14). Let us omit
in (14) the superscripts and subscripts for the sake of brevity:

AX = f . (15)

The condition number of a rectangular matrix A is calculated by the formula

κ(A) =
√

‖ A1 ‖ · ‖ A−1
1 ‖, (16)

where it is assumed that matrix A1 = AT A is non-singular. In our case, we
have a preconditioner involving the parameters ξ and η. A simple algorithm was
described in [24] for finding the optimal values ξopt and ηopt in any cell from the
requirement of minimizing the condition number κ(ξ, η). The value κ(ξopt, ηopt)
typically satisfied the inequalities 3 < κ(ξopt, ηopt) < 10. It has turned out that
the optimal values ξopt and ηopt depended weakly on the location of a specific
cell in the spatial grid, at least in the cases of those test and benchmark problems
which were considered in [24]. Some properties of the preconditioner were then
investigated in [24]. In particular, it was shown that a reduction of Nc affects
more significantly the value ξopt than the value ηopt.

352 V.P. Shapeev and E.V. Vorozhtsov

2.3 Convergence Acceleration Algorithm Based on Krylov’s
Subspaces

To accelerate the convergence of the iterations used for the approximate solution
construction we have used in all new versions of the CLR method, which are
discussed in the present paper, a new variant of the well-known method [13] based
on Krylov’s subspaces, which was previously presented in detail in [22,26]. We
present in the following a very brief description of the corresponding algorithm.
Let the SLAE have the form X = TX + f , where the vector X is the sought
solution, T is a square matrix, and f is a column vector. Let the matrix T have
a full rank, and let the following iteration process converge: Xn+1 = TXn + f ,
n = 0, 1, . . ., in which Xn is the approximation for the solution at the nth
iteration. By the definition, r n = TX n +f −X n = X n+1−X n is the residual
of equations X = TX +f , and it is not difficult to obtain the following relation
from the above formulas: r n+1 = T r n. Let us assume that k + 1 iterations
have been made starting from some initial guess X0, that is the quantities X1,
X2, . . ., Xk+1 and r 0, r 1, . . . , r k have been computed. The value Xk+1 is
then refined by the formula X∗k+1 = Xk+1+Y k+1. One employs the correction
of the form

Y k+1 =
k∑

i=1

αi r i (17)

with indefinite coefficients α1, . . ., αk that are found from the condition of the
minimization of the residual functional Φ(α1, . . . , αk) =‖ X ∗k+1 − TX ∗k+1 −
f ‖22, which arises at the substitution of X ∗k+1 into the system X = TX + f .
Here ||u||2 is the Euclidean norm of the vector u of dimension N . The refined
vector of the k + 1th approximation X ∗k+1 is used as the initial approximation
for further continuation of the sequence of iterations.

2.4 Convergence Acceleration by Using the Multigrid Algorithm

The main idea of multigrid is the selective damping of the error harmonics
[5,27]. In the CLR method, as in other methods, the number of iterations nec-
essary for reaching the given accuracy of the approximation to the solution
depends on the initial guess. As a technique for obtaining a good initial guess
for the iterations on the finest grid among the grids used in a multigrid complex
we have applied the prolongation operations along the ascending branch of the
V-cycle — the computations on a sequence of refining grids. The passage from
a coarser grid to a finer grid is made with the aid of the prolongation operators.
Let us illustrate the algorithm of the prolongation operation by the example of
the velocity component u1(y1, y2, b1, . . ., b15). Let h1 = h, where h is the half-
step of the coarse grid, and let h2 = h1/2 be the half-step of the fine grid on
which one must find the expansion of function u1 over the basis.
Step 1. Let X1 and X2 be the global coordinates of the coarse grid cell center.
We make the following substitutions into the polynomial expression for u1:

yl = (xl − Xl)/h1, l = 1, 2. (18)

The Method of Collocations and Least Residuals 353

As a result, we obtain the polynomial

U1(x1, x2, b1, . . . , b15) = u1

(
x1−X1

h1
, x2−X2

h1
, b1, . . . , b15

)

. (19)

Step 2. Let (X̃1, X̃2) be the global coordinates of the center of any of the four
cells of the fine grid, which lie in the coarse grid cell. We make the substitution in
(19) xl = X̃l+ỹl ·h2, l = 1, 2. As a result, we obtain the second-degree polynomial
Ũ1 = P (ỹ1, ỹ2, b̃1, . . . , b̃15) in variables ỹ1, ỹ2 with coefficients b̃1, . . . , b̃15. After
the collection of terms of similar structure it turns out that the coordinates
X1,X2 and X̃1, X̃2 enter b̃l (l = 1, . . . , 15) only in the form of combinations
δxl = (Xl − X̃l)/h1. According to (18), the quantity −δxl = (X̃l −Xl)/h1 is the
local coordinate of the fine grid cell center in the coarse grid cell.

Let us present the expressions for coefficients b̃j (j = 1, . . . , 15) of the
solution representation in a fine grid cell with the half-step h2 in terms of the
coefficients b1, . . . , b15 of the solution representation in a cell with the half-step
h1 = 2h2:

b̃1 = b1 − δx1(b2 − b4δx1) − δx2(b3 + 2b5δx1 − b6δx2), b̃2 = σ1(T1 + b5δx2),
b̃3 = σ1[b3 + 2(b5δx1 − b6δx2)], b̃4 = σ2b4, b̃5 = σ2b5, b̃6 = σ2b6,

b̃7 = b7 − δx1(b8 − b9δx1) + δx2T1, b̃8 = σ1(b8 − 2b9δx1 + 2b4δx2),
b̃9 = σ2b9, b̃10 = b10 − δx1T2 − δx2(b12 − b15δx2), b̃11 = σ1(T2 − b13δx1),

b̃12 = σ1(b12 − b14δx1 − 2b15δx2), b̃13 = σ2b13, b̃14 = σ2b14, b̃15 = σ2b15,

where σ1 = h2/h1, σ2 = σ2
1 , T1 = b2−2b4δx1+b5δx2, T2 = b11−b13δx1−b14δx2.

The analytic expressions for coefficients b̃1, . . . , b̃15 were found efficiently with the
aid of the Mathematica functions Expand[...], Coefficient[...], Simplify[...].
To reduce the length of obtained coefficients we have applied a number of trans-
formation rules as well as the Mathematica function FullSimplify[...]. As a
result, the length of the final expressions for b̃1, . . . , b̃15 proved to be three times
shorter than the length of the original expressions. Note that the above expres-
sions for b̃1, . . . , b̃9 coincide with the expressions which were presented in [24,26]
for the case of mb = 12 in (8).

3 The Use of the Integral Form of Collocation Equations

The “differential” version of the CLR method, in which the collocation equations
(7) were obtained from the differential equations (5), was described in Sect. 2. By
analogy with the LSFEM [11,12], one can use instead of collocation equations
(7) their integral counterparts, which are obtained by integrating equations (5)
over several subregions, and the consideration of collocation equations at several
user-defined collocation points is replaced with the consideration of collocation
relations, which account for the influence of the entire area of each cell Ωij of
the spatial computational grid.

Furthermore, it was shown in [26] that the inclusion of the approximation
(13) of the integral condition (3) in the overdetermined SLAE (14) instead of

354 V.P. Shapeev and E.V. Vorozhtsov

specifying the pressure at a single point speeds up considerably the iteration
process convergence.

Let us at first introduce a uniform computational grid in each cell, which
subdivides each cell face into Nsub intervals, where Nsub > 1 is the user-specified
number of cells along each local coordinate yk, k = 1, 2. The lines of this grid
subdivide the Ωij cell into Nc = N2

sub subcells Ω
(l)
ij , l = 1, . . . , Nc. The Nsub

value must be specified in such a way that the quantity N2
sub be comparable

with the number of unknown coefficients mb in (8) or be higher than mb. After
that, the integration of Eq. (7) is carried out in each cell Ω

(l)
ij :

ξ

∫ ∫

Ω
(l)
ij

[

Δus+1
m − (Re · h)(us

1u
s+1
m,y1

+ us+1
1 us

m,y1
+ us

2u
s+1
m,y2

+ us+1
2 us

m,y2

+ qs+1
ym

)
]

dy1dy2 = ξ

∫ ∫

Ω
(l)
ij

Fmdy1dy2, m = 1, 2; l = 1, . . . , Nc. (20)

It is to be noted that the integration of the left-hand side of (20) can be per-
formed in the analytic form because the integrand involves only the polyno-
mial expressions according to Table 1, and the use of the Mathematica function
Integrate[...] proves to be efficient here.

It turns out that there are in the obtained 2 · N2
sub collocation equations

many common subexpressions. To reduce the CPU time needed for the numerical
computation of the entries of the matrix Aij in SLAE (14) it is reasonable to
perform the common subexpression elimination (CSE) in (20). The basic idea
is here to evaluate common subexpressions only once and put the results in
temporary variables [6]. We have implemented an interactive CSE technique. As
a result, 15 temporary variables have been introduced, and most of them are the
functions of other temporary variables. This has resulted in a considerable (by
factors from 2 to 5) reduction of the lengths of the expressions for the entries of
the matrix Aij .

The built-in Mathematica function ReplaceRepeated(//.) repeatedly per-
forms replacements until the expression no longer changes. But our practice
shows that this function is not reliable, it performs not all replacements of com-
mon subexpressions with temporary variables. For illustration, let us consider
the following very simple example: let us take the expression expr = 6*y1L -
6*y1R. The transformation rule y1L - y1R -> dy1 enables the replacement of
the subexpression y1L - y1R with the temporary variable dy1. However, the
application of the command expr = expr//. {y1L - y1R -> dy1} leaves the
original expression unchanged. This situation can be rectified owing to the avail-
ability in CAS Mathematica of many other built-in functions performing elemen-
tary transformations, and their combination enables one, as a rule, to obtain the
needed result. In the specific example considered above, the application of the
built-in function Factor[...] has enabled us to obtain the needed result: expr
= Factor[expr]/.y1L - y1R -> dy1 yields the desired result expr = 6*dy1.

At the symbolic implementation of the stages of deriving the work formu-
las of the versions of the CLR method, which are described in Sects. 2 and 3,

The Method of Collocations and Least Residuals 355

we have used the following built-in Mathematica functions for symbolic com-
putation and manipulation: AppendTo[...], Coefficient[...], D[...], Det[...],
Expand[...], Factor[...], FortranForm[...], FullSimplify[...], Input
Form[...], Integrate[...], Inverse[...], Length[...], Norm[...], Replace
Repeated(//.), Sum[...], Table[...], ToExpression[...], ToString[...],
Transpose[...].

It is to be noted that the analogs of the above functions are available also in
such well-known CASs as Maple, REDUCE, and in a number of other general-
purpose CASs. Thus, the researcher wishing to implement the above-described
symbolic-numeric methods for solving the Navier–Stokes equations has a pos-
sibility to choose a specific CAS; this choice, in turn, depends on his personal
experience in the matter of using one or other CAS. Although each of the CASs
mentioned here has its individual advantages depending on a problem to be
solved, the capabilities which Mathematica possesses were sufficient for doing
with its aid the job presented in the given paper.

4 Results of Numerical Experiments

Consider the following exact solution of the Navier–Stokes equations (1) [4]:

u1 =
−2(1 + x1)

(1 + x1)2 + (1 + x2)2
, u2 =

2(1 + x1)
(1 + x1)2 + (1 + x2)2

,

p = − 2
(1 + x1)2 + (1 + x2)2

, 0 ≤ x1, x2 ≤ 1. (21)

Note that the functions u1(x1, x2) and u2(x1, x2) describe the divergence-free
velocity field. Furthermore,

∫ 1

0

∫ 1

0

p dx1dx2 = 4G − π ln 2 − 2i

[

Li2

(

− i

2

)

− Li2

(
i

2

)]

≈ −0.46261314677281549872,

where i =
√−1, G is the Catalan’s constant [28], G ≈ 0.91596559417721901505,

Li2(z) is the polylogarithmic function. To ensure the satisfaction of Eq. (3) with
an error not exceeding the error of machine computations, the pressure p in (3)
was replaced with the quantity p̄ = p + 0.4626131467728155.

The root-mean-square solution errors were calculated as

Err(u(h)) =
[1
2M2

M∑

i=1

M∑

j=1

2∑

ν=1

(uν,i,j − uex
ν,i,j)

2
] 1

2
,

Err(p(h)) =
[1
M2

M∑

i=1

M∑

j=1

(pi,j − pex
i,j)

2
] 1

2
,

where M is the number of cells along each coordinate direction, uex
i,j and pex

i,j

are the velocity vector and the pressure according to the exact solution (21).

356 V.P. Shapeev and E.V. Vorozhtsov

The quantities ui,j and pi,j denote the numerical solution obtained by the CLR
method described above. The convergence orders νu and νp are computed by the
well-known formulas [21,23]. Let bs

i,j,l, s = 0, 1, . . . be the values of the coefficients
bi,j,l in (8) at the sth iteration. The following condition was used for termination
of the iterations: δbs+1 < ε, where δbs+1 = maxi,j(max1≤l≤mb

|bs+1
i,j,l −bs

i,j,l|), and
ε < h2 is a small positive quantity. We will call the quantity δbs+1 the pseudo-
error of the approximate solution.

Along with the criterion δbs+1 < ε, we have also applied the following crite-
rion for the termination of iterations:

δun+1 =‖ un+1 − un ‖< ε2,

where ‖ · ‖ is the Euclidean norm of the vector, ε2 is a user-specified small
positive quantity.

In the work [26], we have introduced the definition of the overdetermination or
underdetermination ratio of system (15) as the quantity χ(A) = mr/mc, where
mr and mc are, respectively, the number of rows and the number of columns of
the matrix A. We have investigated the influence of the quantity χ(A) on the
condition number (16) when the “differential” CLR method is employed, and
mb = 12 in (8). This study was carried out by using the Dirichlet boundary
conditions corresponding to the analytic solution (21).

For the sake of brevity, we omit the obtained tabular data and only enumerate
the conclusions summarizing the above study.
1◦. The convergence rate of the iteration process in the “differential” CLR
method depends significantly on the condition numbers of the SLAEs to be
solved in each cell.
2◦. In cases where the matrix A includes only the rows corresponding to the
collocation equations and one row corresponding to approximation (13) of the
pressure integral, a very large condition number of the order of 105 is obtained
depending on the number of collocation points, that is the matrix A is ill-
conditioned. The inclusion in the matrix A of the rows corresponding to matching
conditions results in a reduction of the condition number by three – five decimal
orders depending on the number of grid cells and the number of collocation and
matching points. It is this considerable reduction of the condition number which
ensures the performance of the CLR method at the solution of boundary-value
problems for linear and nonlinear partial differential equations.
3◦. The condition number in boundary cells is always higher than in internal
cells.
4◦. At Nc = 4 and Nmat = 1, the convergence of the CLR method slows down
significantly in comparison with the case of Nc = 8 and Nmat = 2.
5◦. The data obtained present a practical proof of the fact that at the use of an
overdetermined system in the approximate problem (χ(A) > 1), the correspond-
ing SLAE of the approximate problem proves to be better conditioned than in
the case when the SLAE is not overdetermined. This is an important advantage
of the method of collocations and least squares (and the CLR method) over

The Method of Collocations and Least Residuals 357

the collocation method, which does not use the overdetermined SLAE in the
approximate problem.

To study the convergence and accuracy properties of the above-presented
versions of the CLR method numerous numerical experiments were performed
with the use of the analytic solution (21). The following names were used for
different versions of the CLR method: CLRD12 is the “differential” CLR method
of [24,26] employing twelve basis vectors, that is mb = 12 in (8); CLRD15 is the
“differential” CLR method with mb = 15 in (8); and, finally, CLRI15 is the
“integral” CLR method with mb = 15 in (8).

Tables 2, 3, and 4 present the results of numerical experiments, in which
only two of the above-described techniques for convergence acceleration were
used: the two-parameter preconditioner and the Krylov subspace method. In
these computations, it was assumed that the Reynolds number Re = 1000 and
L = 1 in (4). These computations were done with Nc = 8 in the case of methods
CLRD12 and CLRD15 and with Nc = N2

sub = 16 in the case of method CLRI15.
The satisfaction of the inequality δbn < 10−9 was the criterion for termination of
the computations by the versions of the CLR method. Comparing Table 2 with
Tables 3 and 4 one can see that the 25% increase in the number of basis vector
functions (from 12 to 15) reduces the error in the pressure and velocity in the
numerical solution by the factors ranging from two to three orders of magnitude.

Figure 1 shows the solution obtained by the method CLRD15 by symbols 	
(v1), ◦ (v2), and ∇ (p); the curves of the exact solution are depicted by the

Table 2. The errors Err(un),
Err(pn) and their convergence
orders νu and νp on a sequence of
grids, Re = 1000, L = 1, Nc = 8.
Method CLRD12

M Err(un) Err(pn) νu νp

10 1.309e−02 9.754e−03

20 5.484e−03 3.664e−03 1.26 1.41

40 1.869e−03 1.135e−03 1.55 1.69

80 4.938e−04 2.870e−04 1.92 1.98

Table 3. The errors Err(un),
Err(pn) and their convergence orders
νu and νp on a sequence of grids,
Re = 1000, L = 1, Nc = 8. Method
CLRD15

M Err(un) Err(pn) νu νp

10 2.947e−05 4.731e−05

20 6.971e−06 2.168e−05 2.08 1.13

40 2.289e−06 1.046e−05 1.61 1.05

80 9.816e−07 4.950e−06 1.21 1.09

Table 4. The errors Err(un), Err(pn) and their convergence orders νu and νp on a
sequence of grids, Re = 1000, L = 1, Nc = 8. Method CLRI15

M Err(un) Err(pn) νu νp

10 2.910e−05 5.437e−05

20 6.807e−06 2.249e−05 2.10 1.27

40 2.325e−06 1.076e−05 1.55 1.06

80 9.877e−07 4.893e−06 1.24 1.14

358 V.P. Shapeev and E.V. Vorozhtsov

x1

0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

Fig. 1. Comparison of the approxi-
mate and exact solution profiles at
x2 = L/2. The 40 × 40 grid

x2

v1

0 0.5 1.

0.2

0.4

0.6

0.8

1.0

Fig. 2. Solution of the benchmark problem
by the method CLRI15 at Re = 100 on
the 40 × 40 grid: the profile of the velocity
component v1 along the centerline x1 = 0.5
(solid line); (◦ ◦ ◦) Ghia et al. [9]

solid, dashed, and dash-dot lines for v1, v2, and p, respectively. One can see here
a good agreement between the numerical results and the analytic solution.

In the 2D driven cavity problem, the computational region is the cavity,
which is a square (4) with side L = 1, the coordinate origin lies in its left lower
corner. The upper lid of the cavity moves with unit velocity in dimensionless
variables in the positive direction of the Ox1 axis. The other sides of cavity (4)
are at rest. The no-slip conditions are specified on all sides: v1 = 1, v2 = 0 at
x2 = L and vm = 0, m = 1, 2 on the remaining sides.

The lid-driven cavity flow has the singularities in the region upper corners.
Their influence on the numerical solution accuracy enhances with increasing
Reynolds number. Therefore, at high Reynolds numbers, it is necessary to apply
adaptive grids for obtaining a more accurate solution: the grids with finer cells
in the neighborhood of singularities. Only the uniform grids were applied here.

Table 5. The error δu1 obtained at the use of different versions of the CLR method,
Re = 100

Method ξ η κ(ξ, η) Kmgr k Nit CPU time, s δu1

CLRD12 2.0 3.5 8.536 4 8 2336 53.59 1.726e−02

CLRD15 2.0 3.5 10.590 4 8 2540 99.59 1.150e−02

CLRI15 0.25 1.75 6.774 4 9 1700 110.38 8.521e−03

We have compared the accuracy of different versions of the CLR method,
which were presented in the foregoing sections, in the case when the Reynolds
number Re = 100. For our comparisons, we have used the numerical results from
[9]. Let us introduce the error δu1 = maxj |u1,Ghia(0.5, x2j) − u1,CLR(0.5, x2j)|,
where the coordinates x2j were taken from [9]. In all computations whose results

The Method of Collocations and Least Residuals 359

are presented in Table 5, we have used the combination of all three acceleration
techniques, which were presented briefly above in Subsects. 2.2, 2.3, and 2.4. The
grids, which were used in the multigrid complex, were as follows: 5 × 5, 10 ×
10, 20 × 20, and 40 × 40 grids; Kmgr is the number of sequentially used grids in
the multigrid complex. Nit is the number of iterations, which are necessary to
satisfy the inequality δbn < 10−9. The value k is the number of residuals used in
the Krylov’s method (see Eq. (17)). The optimal values of the parameters ξ and
η entering the two-parameter preconditioner were found using the algorithm
of [24]. The condition number κ(ξ, η) was computed for all three methods by
formula (16) in the cell with indices (20, 20) on the 40×40 grid after the execution
of 200 iterations on this grid. One can see from Table 5 that the method CLRI15
ensures the best accuracy among three considered versions of the CLR method
(see also Fig. 2). In addition, it ensures the least condition number κ. This is the
important property of the CLRI15 method, which extends the capabilities of the
CLR method at the solution of ill-conditioned problems.

5 Conclusions

New versions of the CLR method have been presented. A large amount of sym-
bolic computations, which arose at the derivation of the basic formulae of the
new versions of the method, was done efficiently with Mathematica. It is very
important that the application of CAS has facilitated greatly this work, reduced
at all its stages the probability of errors usually introduced by the mathemati-
cian at the development of a new algorithm and also reduced the time needed
for the development of new Fortran programs implementing the numerical stages
of the CLR method. It is shown by examples of numerous computations that
the new proposed versions of the CLR method produce more accurate numerical
solutions than the previous “differential” version CLRD12 of the CLR method.

References

1. Amodio, P., Blinkov, Y., Gerdt, V., La Scala, R.: On consistency of finite difference
approximations to the Navier-Stokes equations. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 46–60. Springer,
Cham (2013). doi:10.1007/978-3-319-02297-0 4

2. Bailly, O., Buchou, C., Floch, A., Sainsaulieu, L.: Simulation of the intake and
compression strokes of a motored 4-valve SI engine with a finite element code. Oil
Gas Sci. Technol. 54, 161–168 (1999)

3. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow.
Comput. Fluids 27, 421–433 (1998)

4. Chiu, P.H., Sheu, T.W.H., Lin, R.K.: An effective explicit pressure gradient scheme
implemented in the two-level non-staggered grids for incompressible Navier-Stokes
equations. J. Comput. Phys. 227, 4018–4037 (2008)

5. Fedorenko, R.P.: The speed of convergence of one iterative process. USSR Comput.
Math. Math. Phys. 4(3), 227–235 (1964)

http://dx.doi.org/10.1007/978-3-319-02297-0_4

360 V.P. Shapeev and E.V. Vorozhtsov

6. Fritzson, P., Engelson, V., Sheshadri, K.: MathCode: a system for C++ or Fortran
code generation from Mathematica. Math. J. 10, 740–777 (2008)

7. Ganzha, V.G., Mazurik, S.I., Shapeev, V.P.: Symbolic manipulations on a com-
puter and their application to generation and investigation of difference schemes.
In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 335–347. Springer,
Heidelberg (1985). doi:10.1007/3-540-15984-3 290

8. Gerdt, V.P., Blinkov, Y.A.: Involution and difference schemes for the Navier–
Stokes Equations. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2009. LNCS, vol. 5743, pp. 94–105. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04103-7 10

9. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using
the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–
411 (1982)

10. Isaev, V.I., Shapeev, V.P.: High-accuracy versions of the collocations and least
squares method for the numerical solution of the Navier-Stokes equations. Comput.
Math. Math. Phys. 50, 1670–1681 (2010)

11. Jiang, B., Lin, T.L., Povinelli, L.A.: Large-scale computation of incompressible
viscous flow by least-squares finite element method. Comput. Meth. Appl. Mech.
Eng. 114(3–4), 213–231 (1994)

12. Jiang, B.N.: The Least-Squares Finite Element Method: Theory and Applications
in Computational Fluid Dynamics and Electromagnetics. Springer, Berlin (1998).
doi:10.1007/978-3-662-03740-9

13. Krylov, A.N.: On the numerical solution of the equation, which determines in
technological questions the frequencies of small oscillations of material systems.
Izv. AN SSSR, Otd. matem. i estestv. nauk 4, 491–539 (1931). (in Russian)

14. Li, K., Li, Q.: Three-dimensional gravity-jitter induced melt flow and solidification
in magnetic fields. J. Thermophys. Heat Transf. 17(4), 498–508 (2003)

15. Plyasunova, A.V., Sleptsov, A.G.: Collocation-grid method of solving the nonlinear
parabolic equations on moving grids. Modelirovanie v mekhanike 18(4), 116–137
(1987)

16. Semin, L., Shapeev, V.: Constructing the numerical method for Navier —
Stokes equations using computer algebra system. In: Ganzha, V.G., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 367–378. Springer, Hei-
delberg (2005). doi:10.1007/11555964 31

17. Semin, L.G., Sleptsov, A.G., Shapeev, V.P.: Collocation and least -squares method
for Stokes equations. Comput. Technol. 1(2), 90–98 (1996). (in Russian)

18. Shapeev, A.V., Lin, P.: An asymptotic fitting finite element method with exponen-
tial mesh refinement for accurate computation of corner eddies in viscous flows.
SIAM J. Sci. Comput. 31, 1874–1900 (2009)

19. Shapeev, V.: Collocation and least residuals method and its applications. EPJ Web
Conf. 108, 01009 (2016). doi:10.1051/epjconf/201610801009

20. Shapeev, V.P., Isaev, V.I., Idimeshev, S.V.: The collocations and least squares
method: application to numerical solution of the Navier-Stokes equations. In: Eber-
hardsteiner, J., Böhm, H.J., Rammerstorfer, F.G. (eds.) CD-ROM Proceedings of
the 6th ECCOMAS, September 2012. Vienna University of Technology (2012).
ISBN: 978-3-9502481-9-7

21. Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the
collocations and least residuals method for the solution of 3D Navier–Stokes
equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2013. LNCS, vol. 8136, pp. 381–392. Springer, Cham (2013). doi:10.1007/
978-3-319-02297-0 31

http://dx.doi.org/10.1007/3-540-15984-3_290
http://dx.doi.org/10.1007/978-3-642-04103-7_10
http://dx.doi.org/10.1007/978-3-642-04103-7_10
http://dx.doi.org/10.1007/978-3-662-03740-9
http://dx.doi.org/10.1007/11555964_31
http://dx.doi.org/10.1051/epjconf/201610801009
http://dx.doi.org/10.1007/978-3-319-02297-0_31
http://dx.doi.org/10.1007/978-3-319-02297-0_31

The Method of Collocations and Least Residuals 361

22. Shapeev, V.P., Vorozhtsov, E.V., Isaev, V.I., Idimeshev, S.V.: The method of collo-
cations and least residuals for three-dimensional Navier-Stokes equations. Vychis-
lit. metody i programmirovanie 14, 306–322 (2013). (in Russian)

23. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numeric implementation of the method
of collocations and least squares for 3D Navier–Stokes equations. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp.
321–333. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32973-9 27

24. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numerical optimization and realiza-
tion of the method of collocations and least residuals for solving the Navier–
Stokes equations. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2016. LNCS, vol. 9890, pp. 473–488. Springer, Cham (2016). doi:10.1007/
978-3-319-45641-6 30

25. Valiullin, A.N., Ganzha, V.G., Meleshko, S.V., Murzin, F.A., Shapeev, V.P.,
Yanenko, N.N.: Application of Symbolic Manipulations on a Computer for Genera-
tion and Analysis of Difference Schemes. Prepr. Inst. Theor. Appl. Mech. Siberian
Branch of the USSR Acad. Sci., Novosibirsk No. 7 (1981). (in Russian)

26. Vorozhtsov, E.V., Shapeev, V.P.: On combining the techniques for convergence
acceleration of iteration processes during the numerical solution of Navier-Stokes
equations. Vychislit. metody i programmirovanie 18, 80–102 (2017). (in Russian)

27. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)
28. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media Inc., Champaign

(2003)

http://dx.doi.org/10.1007/978-3-642-32973-9_27
http://dx.doi.org/10.1007/978-3-319-45641-6_30
http://dx.doi.org/10.1007/978-3-319-45641-6_30

A Special Homotopy Continuation Method
for a Class of Polynomial Systems

Yu Wang1, Wenyuan Wu2(B), and Bican Xia1

1 LMAM & School of Mathematical Sciences, Peking University, Beijing, China
yuxiaowang@pku.edu.cn, xbc@math.pku.edu.cn

2 Chongqing Institute of Green and Intelligent Technology Chinese Academy of
Sciences, Chongqing, China
wuwenyuan@cigit.ac.cn

Abstract. A special homotopy continuation method, as a combination
of the polyhedral homotopy and the linear product homotopy, is proposed
for computing all the isolated solutions to a special class of polynomial
systems. The root number bound of this method is between the total
degree bound and the mixed volume bound and can be easily computed.
The new algorithm has been implemented as a program called LPH using
C++. Our experiments show its efficiency compared to the polyhedral
or other homotopies on such systems. As an application, the algorithm
can be used to find witness points on each connected component of a
real variety.

1 Introduction

In many applications in science, engineering, and economics, solving systems
of polynomial equations has been a subject of great importance. The homotopy
continuation method was developed in 1970s [1,2] and has been greatly expanded
and developed by many researchers (see for example [3–7]). Nowadays, homotopy
continuation method has become one of the most reliable and efficient classes
of numerical methods for finding the isolated solutions to a polynomial system
and the so-called numerical algebraic geometry based on homotopy continuation
method has been a blossoming area. There are many famous software packages
implementing different homotopy methods, including Bertini et al. [8], Hom4PS-
2.0 [9], HOMPACK [10], PHCpack [11], etc.

Classical homotopy methods compute solutions in complex spaces, while in
applications, it is quite common that only real solutions have physical mean-
ing. Computing real roots of an algebraic system is a difficult and fundamental
problem in real algebraic geometry. In the field of symbolic computation, there
are some famous algorithms dealing with this problem. The cylindrical algebraic
decomposition algorithm [12] is the first complete algorithm which has been
implemented and used successfully to solve many real problems. However, in

The work is partly supported by the projects NSFC Grants 11471307, 11290141,
11271034, 61532019 and CAS Grant QYZDB-SSW-SYS026.

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 362–376, 2017.
DOI: 10.1007/978-3-319-66320-3 26

A Special Homotopy Continuation Method 363

the worst case, its complexity is doubly exponential in the number of variables.
Based on the ideas of Seidenberg [13] and others, some algorithms for computing
at least one point on each connected component of an real algebraic set were
proposed through developing the formulation of critical points and the notion
of polar varieties, see [14–17] and references therein. The idea behind is study-
ing an objective function (or map) that reaches at least one local extremum on
each connected component of a real algebraic set. For example, the function of
square of the Euclidean distance to a randomly chosen point was used in [18,19].
On the other hand, some homotopy based algorithms for real solving have been
proposed in [20–25]. For example, in [24], a numerical homotopy method to find
the extremum of Euclidean distance to a point as the objective function was
presented. More recently, the Euclidean distance to a plane was proposed as a
linear objective function in [26].

Such critical point/plane approaches introduced above lead to a special class
of polynomial systems. The main contribution of this paper is to give a special
homotopy method for solving the system of that type efficiently by combining
the polyhedral homotopy and the linear product homotopy. The root number
bound of this method is not only easy to compute but also much smaller than
the total degree bound and close to the BKK bound [27] when the polynomials
defining the algebraic set are not very sparse. This key observation enables us
to design an efficient homotopy procedure to obtain critical points numerically.
The ideas and algorithms we proposed in this article avoid a great number of
divergent paths to track compared with the total degree homotopy and save the
great time cost for mixed volume computation compared with the polyhedral
homotopy. The new algorithm has been implemented as a program called LPH
using C++. Our experiments show its efficiency compared to the polyhedral or
other homotopies on such systems.

The rest of this paper is organized as follows. Section 2 describes some pre-
liminary concepts and results. Section 3 introduces a special type of polynomial
systems we are considering. The new homotopy for these polynomial systems is
also presented. It naturally leads to an algorithm which is described in Sect. 4.
Based on this algorithm, in Sect. 5, we present a method to find real witness
points of positive dimensional varieties, together with an illustrative example.
The experimental performance of the software package LPH, which is an imple-
mentation of the method in C++, is given in Sect. 6.

2 Preliminary

2.1 Algebraic Sets and Genericity

For a polynomial system f : Cn → Ck, let V (f) = {x ∈ Cn|f(x) = 0} and
VIR(f) = V (f) ∩ IRn = {x ∈ IRn|f(x) = 0} be the set of complex solutions and
the set of real solutions of f(x) = 0, respectively. A set X ⊂ Cn is called an
algebraic set if X = V (g), for some polynomial system g.

An algebraic set X is irreducible if there does not exist a decomposition
X1 ∪ X2 = X with X1,X2 �= X of X as a union of two strict algebraic subsets.

364 Y. Wang et al.

An algebraic set is reducible, if there exist such a decomposition. For example,
the algebraic set V (xy) ⊂ C2 is consisting of the two coordinate axes, and is
obviously the union of V (x) and V (y), hence reducible.

For an irreducible algebraic set X, the subset of smooth (or manifold) points
Xreg is dense, open and path connected (up to the Zariski topology) in X. The
dimension of an irreducible algebraic set X is the dimension of Xreg as a complex
manifold.

Let Jf (x) denote the n × k Jacobian matrix of f evaluated at x. By the
Implicit Function Theorem, for an irreducible algebraic set X defined by a
reduced system f , x ∈ Xreg ⇔ rank(Jf (x)) = n − dim X. When n = k, the
system f is said to be a square system. In this case, a point x ∈ V (f) is nonsin-
gular if det(Jf (x)) �= 0, and singular otherwise.

On irreducible algebraic sets, we can define the notion of genericity, adapted
from [6].

Definition 1. Let X be an irreducible algebraic set. Property P holds generically
on X, if the set of points in X that do not satisfy property P are contained in
a proper algebraic subset Y of X. The points in Y are called nongeneric points,
and their complements X\Y are called generic points.

Remark 1. From the definition, one sees that the notion of generic is only mean-
ingful in the context of property P in question.

Every algebraic set X has a (uniquely up to reordering) expression X =
X1 ∪ . . . ∪ Xr with Xi irreducible and Xi �⊂ Xj for i �= j. And Xi are the
irreducible components of X. The dimension of an algebraic set is defined to be
the maximum dimension of its irreducible components. An algebraic set is said
to be pure-dimensional if each of its components has the same dimension.

2.2 Trackable Paths

In homotopy continuation methods, the notion of path tracking is fundamental,
the following definition of trackable solution path is adapted from [28].

Definition 2. Let H(x, t) : Cn × C → Cn be polynomial in x and complex
analytic in t, and let x∗ be nonsingular isolated solution of H(x, 0) = 0, we
say x∗ is trackable for t ∈ [0, 1) from 0 to 1 using H(x, t) if there is a smooth
map ξx∗ : [0, 1) → Cn such that ξx∗(0) = x∗, and for t ∈ [0, 1), ξx∗(t) is a
nonsingular isolated solution of H(x, t) = 0. The solution path started at x∗is
said to be convergent if lim

t→1
ξx∗(t) ∈ Cn, and the limit is called the endpoint of

the path.

2.3 Witness Set and Degree of an Algebraic Set

Let X ⊂ Cn be a pure i-dimensional algebraic set, given a generic co-dimension
i affine linear subspace L ⊂ Cn, then W = L ∩ X consists of a well-defined

A Special Homotopy Continuation Method 365

number d of points lying in Xreg. The number d is called the degree of X and
denoted by deg(X). We refer to W as a set of witness points of X, and call L
the associated (n − i)-slicing plane, or slicing plane for short [6].

It will be convenient to use the notations adapted from ([6], Chap. 8), when
we prove the theorems in Sect. 3.

1. Let 〈e1, . . . , en〉 be the n dimensional vector space having basis elements
e1, . . . , en with complex coefficients. That is, a point in this space may be

written as
n∑

i=1

ciei, with ci ∈ C for i = 1, . . . , n. Note that we have not

specified anything about the basis elements, it could be individual variables,
monomials, or polynomials.

2. Let {p1, . . . , pn} ⊗ {q1, . . . , qm} be the product of two sets, that is, the set
{pi · qj |i = 1, . . . , n; j = 1, . . . , m}. In Sect. 3 we take this product as the image
inside the ring of polynomials; that is, x ⊗ y = xy is just the product of two
polynomials.

3. Define P ×Q = {pq|p ∈ P, q ∈ Q}. Accordingly, we have 〈P 〉×〈Q〉 ⊂ 〈P ⊗ Q〉.
4. For repeated products, we use the shorthand notations P (2) = P ⊗P ,〈P 〉(2) =

〈P 〉 × 〈P 〉, and similar for three or more products.
5. For a square polynomial system P , we denote by MV (P) the mixed volume

of the system P .

2.4 Critical Points

Let X ⊂ Cn be an algebraic set defined by a reduced polynomial system f =
{f1, . . . , fk}, and objective function Φ is polynomial function restricted to X.

Definition 3. A point x ∈ X is a critical point of Φ if and only if x ∈ Xreg

and rank[∇Φ(x)T ,Jf (x)] = rank[∇Φ(x)T ,∇fT
1 , . . . ,∇fT

k] � k, where ∇Φ(x) is
the gradient vector of Φ evaluated at x.

Let Y denote the zero dimensional critical sets of Φ. One way to compute the
critical points is to introduce auxiliary unknowns and consider a zero dimensional
variety Ŷ and then project Ŷ onto Y . We use Lagrange Multipliers to define a
squared system as follows

F (x, λ) :=
[

f

λ0∇Φ(x)T + λ1∇fT
1 + . . . + λk∇fT

k

]

(1)

Note that if x∗ ∈ X is a critical point of Φ, then there exist λ∗ ∈ IPk, such that
F (x∗, λ∗) = 0 by the Fritz John condition [29]. In the affine patch where λ0 = 1,
the system F becomes a square system, and its solution (x∗, λ∗) projects to the
critical point x∗. We will use system (1) in Sect. 5 with an objective function Φ
defined by a linear function, and consider the affine patch where λ0 = 1, to find
at least one point on each component of VIR(f).

366 Y. Wang et al.

3 Main Idea

In this section, we give a description of our idea. First we introduce a family of
polynomial equations that we will be considering. In fact, such type of polynomial
systems appears naturally when using the Method of Lagrange Multipliers in
mathematical optimization, if the constraints are algebraic equations.

Thus, we consider the following class of polynomial systems:

F (x, λ) =
{

f
J · λ − β

(2)

where

1. f = {f1, . . . , fk} are polynomials in C [x1, . . . , xn], and V (f1, . . . , fk) is a pure
n − k dimension algebraic set in Cn.

2. J =

⎛

⎜
⎝

g11 · · · g1k
...

. . .
...

gn1 · · · gnk

⎞

⎟
⎠ and gij(1 � i � n, 1 � j � k) are polynomials in

C [x1, . . . , xn] with max
i,j

deg(gij) = d.

3. β = (β1, . . . , βn)T is a nonzero constant vector in Cn, λ = (λ1, . . . , λk)T are
unknowns, and n > k � 1.

Remark 2. Note that, for any invertible n×n matrix A, F (x, λ) = {f, J · λ − β}
and F ′(x, λ) = {f,A · (J · λ − β)} have the same solutions. It’s easy to know
that there exists an invertible matrix A such that A · β = (0, . . . , 0, 1)T. So
without loss of generality, we may assume that β = (0, . . . , 0, 1)T. Then, J · λ − β

has n − 1 equations in
〈
{x1, . . . , xn, 1}d ⊗ {λ1, . . . , λk}

〉
and one equation in

〈
{x1, . . . , xn, 1}d ⊗ {λ1, . . . , λk, 1}

〉
.

Theorem 1. Let F (x, λ) = {f, J · λ − β} be given as in (2), β = (0, . . . , 0, 1)T,
and G = {f, g} where g = {g1, . . . , gn}. For each i = 1, . . . , n − 1, gi =
li1 · · · lidhi ∈ 〈x1, . . . , xn, 1〉d × 〈λ1, . . . , λk〉, where li1, ..., lid are linear func-
tions in C[x1, . . . , xn] with randomly chosen coefficients, and hi is a homoge-
neous linear function in C[λ1, . . . , λk] with randomly chosen coefficients. And

gn =
k∑

i=1

λigni − 1, where gni is the (n, i)th entry of J .

Let H : Cn × Ck × C → Cn+k be the homotopy defined by H(x, λ, t) =
G · (1 − t) + F · γ · t where γ is a randomly chosen complex number for Gamma
Trick (see [6], Chap. 7 for details). Then, generically the following items hold,

1. The set S ⊆ Cn+k of roots of H(x, λ, 0) = G(x, λ) is finite and each is a
nonsingular solution of H(x, λ, 0).

2. The number of points in S is equal to the maximum number of isolated solu-
tions of H(x, λ, 0) as coefficients of lij, hi, (i = 1, . . . , n − 1, j = 1, . . . , d)
and γ vary over C.

A Special Homotopy Continuation Method 367

3. The solution paths defined by H starting, with t = 0, at the points in S are
trackable.

Proof. As for item 1, since f has k equations only in x, and V (f1, . . . , fk) is a
pure n−k dimension algebraic set in Cn. To solve system G, it needs only n−k
linear functions L in g from different gi with i ∈ {1, . . . , n − 1} to determine x.
{f, L} is a n × n square system, V (f, L) is a finite witness set for the algebraic
set V (f1, . . . , fk), and each of the points is a nonsingular solution of V (f, L)
(see [6], Chap. 13 for details). And, we finally determine λ by solving a square
system of linear equations. As for item 2, and item 3, it’s a trivial deduction of
Coefficient-Parameter Continuation [30]. ��
Remark 3. From the proof of Theorem 1, the number of points of the finite set
V (f, L) is the degree of V (f), and is independent of the choice of L. Thus, based
on the number of different choices of L, and item 2, we can give a root count
bound of system F (x, λ) as in the following theorem, which is similar to the
bound in [31].

Theorem 2. For a system F (x, λ) = {f, J · λ − β} as in (2), the number of
complex roots is bounded by

(
n − 1
n − k

)

dn−kD (3)

where D is the degree of V (f).

Due to Theorem 1, its proof and the remarks, we can design an efficient proce-
dure to numerically find the isolated solutions of system F (x, λ) = {f, J · λ − β}
in the form of (2). First, we solve a square system {f, L}, where L are n − k
randomly generated linear functions. Then for each group of n − k linear func-
tions L′ chosen in g from different gi with i ∈ {1, . . . , n − 1}, we construct a
linear homotopy from {f, L} to {f, L′}, starting from points of V (f, L), and
solve the square linear equation of λ respectively. Let S be the set that con-
sists of all the pairs of x and λ, i.e. (x, λ). Finally construct a linear homotopy
H(x, λ, t) = G · (1 − t) + F · γ · t starting from points in S, thus the endpoints
of the convergent paths of homotopy H(x, λ, t) are isolated solutions of system
F (x, λ) = {f, J · λ − β}. We put a specific description of this procedure in the
next section.

4 Algorithm

From Theorem 1, its proof and Remarks 2 and 3, we propose an approach
for computing isolated solutions of system F (x, λ) as described in the end of
last section. For consideration of the sparsity, we use the polyhedral homotopy
method for solutions of the square system {f, L}. Actually, we use polyhedral
homotopy method only once. Now we describe our algorithms.

368 Y. Wang et al.

Algorithm 1. LPH (Linear Product Homotopy)
input : (n + k) × (n + k) square polynomial system

F (x, λ) = {f, J · λ − β} as in (2);
output: finite subset V (F) of Cn+k

1 Let L = {l1, . . . , ln−k} where li are linear equations with randomly chosen
coefficients in C;

2 Solve system {f, l} by polyhedral homotopy method and denote the
solution set as M ;

3 Let F ′(x, λ) = {f,A · (J · λ − β)}, G = {f, g}, A ∈ GLn(C) such that
A · β = (0, . . . , 0, 1), g = {g1, . . . , gn}.
gi = li1 · · · lid · hi ∈ 〈x1, . . . , xn, 1〉d × 〈λ1, . . . , λk〉 for i = 1, . . . , n − 1 with
coefficients randomly chosen in C, and gn is the last equation of
A · (J · λ − β);

4 Let C =
{

I

∣
∣
∣
∣I = (α1, . . . , αn−1) ∈ {0, 1}n−1

,
n−1∑

i=1

αi = n − k

}

, and Ω = ∅;

5 repeat
6 Pick one vector I = (α1, . . . , αn−1) from C, and C = C\I;
7 Let L′ = ∅;
8 for i from 1 to n − 1 do
9 if αi = 1 then

10 pick one linear equation li
′ from {li1, . . . , lid} and

L′ = L′ ∪ {li
′}.

11 end
12 end
13 Construct linear homotopy H1(x, t) = {f, L} · (1 − t) + {f, L′} · γ1 · t

starting at points in M . γ1 is a randomly chosen complex number for
gamma trick. Let the set of endpoints of the tracked paths be M ′;

14 Take every point x∗ = (x∗
1
, . . . , x∗

n
) in M ′ into the system G = {f, g}

and resolve λ∗ = (λ∗
1, . . . , λ

∗
k). Ω = Ω ∪ {(x∗, λ∗)}. ;

15 until C = ∅;
16 Construct linear homotopy H2(x, λ, t) = G · (1 − t) + F · γ2 · t starting at

points in Ω, γ2 is a randomly chosen complex number for gamma trick.
Let the set of convergent endpoints of the tracked paths be V (F);

17 return V (F);

Remark 4. #C =
(

n − 1
n − k

)

, and in Step 5, I = (α1, . . . , αn−1) has exactly n−k

entries αi = 1. When αi = 1, we choose linear equation in gi, and there are

d candidates {li1, . . . , lid} to choose. It adds up to be
(

n − 1
n − k

)

dn−k different

{f, L′}. Each {f, L′} has the same number D = deg(V (f)) of isolated roots as
{f, L}, so the homotopy in Step 13 will have no path divergent. Thus we have(

n − 1
n − k

)

dn−kD points in Ω, which is the root bound we mention in Theorem

A Special Homotopy Continuation Method 369

2. Should it so happen that some of the homotopy paths are divergent in Step
16, the method of end games for homotopy should be used [32–35].

5 Real Critical Set

In this section, we will combine the LPH algorithm in Sect. 4 and methods in [26]
to compute a real witness set which has at least one point on each irreducible
component of a real algebraic set, and give an illustrative example.

5.1 Critical Points on a Real Algebraic Set

We make the following assumptions (adapted from [26]). Let f : Cn → Ck be a
polynomial system, and f = (f1, . . . , fk) in IR[x1, . . . , xn] satisfying the so-called
Full Rank Assumption:

1. VIR(f1, . . . , fi) has dimension n − i for i = 1, . . . , k;
2. the ideal I(f1, . . . , fi) is radical for i = 1, . . . , k.

Under these assumptions, (∇fT
1 , . . . ,∇fT

i) has rank i for a generic point
p ∈ V (f1, . . . , fi) for i = 1, . . . , k.

The main problem we consider is finding at least one real witness point on
each connected component of VIR(f). For this purpose, we choose Φ in Definition
3 to be a linear function with Φ = x · β + c, where β is a random vector in IRn,
and c is a random real number. Then system (1) becomes

F =

{

f,

k∑

i=1

λi∇fi − β

}

= 0. (4)

It may happen that there is no critical points of Φ in some connected com-
ponent of VIR(f1, . . . , fk). In that case, we add Φ to f and construct a system
with k + 1 equations

f (1) = {f, x · β + c} . (5)

Then, recursively, we choose another linear function Φ1, compute the critical
points of Φ1 with respect to V (f (1)); and so on.

We give a concrete definition of the set of real witness points WIR(f) we are
going to compute (see [26]).

Definition 4. Let f : Cn → Ck be a polynomial system, k � n, and f =
(f1, . . . , fk) in IR[x1, . . . , xn] satisfying Full Rank Assumption. F and f (1) defined
as in (4) and (5). We define WIR(f) as follows:

1. WIR(f) = VIR(f) if n = k;
2. WIR(f) = VIR(F) ∪ WIR(f (1)) if k < n.

370 Y. Wang et al.

It is obvious from the definition that we can recursively solve the square
system (4), and apply plane distance critical points formulation of f (1) to finally
get the set of witness points WIR(f) which contains finitely many real points on
VIR(f), and there is at least one point on each connected component of VIR(f).
Since the formulation introduces auxiliary unknowns, it increases the size of
the system and leads to computational difficulties. For example, when n = 15
and k = 10, the size of system (4) becomes 25, which is challenging for general
homotopy software. Combining the LPH algorithm, Theorems 1 and 2, we have
the following algorithm and an upper bound of number of points in WIR(f), as
in [31].

Algorithm 2. RWS (Real Witness Set)
input : a polynomial system f = (f1, . . . , fk), k � n, which satisfies the

full rank assumption;
output: a finite subset WIR(f) of IRn, which contains at least one point

on each connected component of the real algebraic set VIR(f)

1 Let WIR(f) = ∅;
2 while k � n do
3 VIR ← LPH(f,Jf (x) · λ − β);
4 WIR(f) ← WIR(f) ∪ VIR;
5 f ← {f, x · β + c} where n is a random vector in IRn, and c is a

random real number;
6 k ← k + 1;
7 end
8 return WIR(f)

Remark 5. Algorithm 2 is essentially a recursive calling of Algorithm 1.

Theorem 3 ([31] Theorem 2.1). For a system f = (f1, . . . , fk) with n variables
and degrees di = deg(fi) for i = 1, . . . , k, the number of complex roots of system
(4) is bounded by (

n − 1
n − k

)

(d − 1)n−kD (6)

where d = max{d1, . . . , dk} > 1 and n > k > 0, D is the degree of the pure n−k
dimensional component of V = V (f).
Moreover, the total number of points in WIR(f) is bounded by

n−k∑

j=0

(
n − 1 − j
n − k − j

)

(d − 1)n−k−j
D. (7)

Obviously we have the following inequalities:

MV (F) �
(

n − 1
k − 1

)

(d − 1)n−kD �
(

n − 1
k − 1

)

(d − 1)n−k
k∏

i=1

di � dn
k∏

i=1

di.

A Special Homotopy Continuation Method 371

If f is dense, the equalities hold. And if f is sparse, they vary considerably most of
the time. For example, let f ={−62xy+97y−4xyz−4, 80x−44xy+71y2−17y3+2}
with d = 3, n = 3, k = 2. We have MV (F) = 11,

(
n − 1
k − 1

)

(d − 1)n−kD = 28,
(

n − 1
k − 1

)

(d − 1)n−k
k∏

i=1

di = 36, and dn
k∏

i=1

di = 243.

5.2 Illustrative Example

In this subsection, we present an illustrative example for Algorithm 2.

Example 1. Consider the hypersurface defined by f = (y2 − x3 − ax − b) ·
((x − y + e)3 + x + y), e = 6, a = −4, b = −1. Clearly, VIR(f) is the combination
of a cubic ellipse (y2 − x3 − ax − b), and a cubic curve (x − y + e)3 + x + y, as
plotted in Fig. 1. We show how to compute WIR(f) by Algorithm 2.

– For computing VIR = LPH(f), we randomly choose a line l in C2 and solve
L = {f, l} by polyhedral homotopy, which follows D = 6 paths. Then to com-

pute Ω by linear homotopy, we follow
(

2 − 1
2 − 1

)

(6 − 1)2−16 = 30 convergent

paths, and for VIR by linear homotopy, we follow 30 paths, of which 6 are
convergent and 19 divergent. Then

VIR =
{

(−1.44299,−1.32941), (−0.781143, 1.28371)
}

.

– For computing WIR(f), we solve f (1) = {f, x · β + c} by polyhedral homotopy,
with x · β + c = 0.874645x + 1.0351y − 3.9825 and

WIR(f (1)) =
{

(2.4052801, 1.815026), (−1.992641, 5.531208)
}

.

So WIR(f) = WIR(f (1)) ∪ VIR, which has at least one point in each connected
component of VIR(f) as in Fig. 1.

Fig. 1. n = 10, k = 4, deg = 2

372 Y. Wang et al.

6 Experiment Performance

As shown in Sect. 5, to compute the set WIR(f), the key and most time con-

suming steps are solving the system F =
{

f,
k∑

i=1

λi∇fi − β

}

in Algorithm

1. In this section, given f = {f1, . . . , fk}, we solve the square system F ={

f,
k∑

i=1

λi∇fi − β

}

. We compare our program LPH which implements Algorithm

1 to Hom4PS-2.0 (available at http://users.math.msu.edu/users/li/). All the
examples were computed on a PC with Intel Core i5 processor (2.5GHz CPU, 4
Cores and 6 GB RAM) in the Windows environment. We mention that LPH is
a program written in C++, available at http://arcnl.org/PDF/LHP.zip, and an
interface of Maple is provided on this site.

6.1 Dense Examples

In Table 1, we provide the timings of LPH and Hom4ps-2.0 for solving systems

F =
{

f,
k∑

i=1

λi∇fi − β

}

, where f = (f1, . . . , fk) consists of dense polynomials

of degree 2, n = 2, . . . , 14 and 1 � k � n − 1. T1 ,T2 are the the timings for
LPH and Hom4ps-2.0, respectively, and RAT is the ratio of T1 to T2. ‘overflow’
means running out of memory. When T2=overflow, we set RAT=ε.

It may be observed that LPH is much faster than Hom4ps-2.0 when k > 1.
Note also that LPH is a little bit slower than Hom4ps-2.0 when k = 1. The main
reason is obvious. That is, the root number bound of LPH, i.e.

(
n − 1
n − k

)

(d − 1)n−kD,

is close to the mixed volume MV (F) when F is dense but the computation of
MV (F) is very time-consuming.

6.2 Sparse examples

In Table 2, we provide the timings of LPH and Hom4ps-2.0 on sparse examples:
Czapor Geddes2, Morgenstern AS(3or), Gerdt2, Hairer1, and Hawes2 which are
available at: http://www-sop.inria.fr/saga/POL/. #1 and #2 is the number of
curves followed by LPH and Hom4ps-2.0, respectively. # is the number of roots
of the Jacobian systems constructed from the examples. ‘d’ means the minimal
and maximal degree of the example. “term” means the minimal and maximal
number of terms of the example. T1 and T2 are the timings of LPH and Hom4ps-
2.0, respectively. RAT means the ratio of T1 to T2.

Note that LPH is much slower than Hom4ps on these sparse examples. The
main reason is that LPH pays the overhead cost for the Ω and homotopy

H2(x, λ, t) = G · (1 − t) + F · γ2 · t.

http://users.math.msu.edu/users/li/
http://arcnl.org/PDF/LHP.zip
http://www-sop.inria.fr/saga/POL/

A Special Homotopy Continuation Method 373

Table 1. Dense Examples (n: number of variables; k: number of polynomials; T1: time
for LHP; T2: time for Hom4PS-2.0; RAT: ratio of T1 to T2.)

374 Y. Wang et al.

Table 2. Sparse examples

Ex n k d term #1 #2 # T1 T2 RAT

C2 5 4 4–5 7–32 2*1767 692 383 16.6s 19.4 s 0.85

M3 9 5 2 2–7 2*2240 368 32 69 s 6 s 11

G2 5 2 4 8–9 2*1080 17 15 8.4 s 0.2 s 31.8

H1 8 6 1–3 2–4 2*400 15 15 9.8 s 0.18 s 52

H2 8 5 2–4 3–5 2*12320 148 80 5m49 s 1.2s 267

Moreover, LPH executes 2∗
(

n − 1
k − 1

)

(d − 1)n−kD times of curve following, while

Hom4ps does only MV (F) times of curve following.
(

n − 1
k − 1

)

(d − 1)n−kD is

not tight for these sparse examples and much greater than MV (F).

6.3 RAT/Density

In Fig. 2, we present the changes of ratio of T1 to T2 as terms increase. We
randomly generate f = (f1, . . . , fk) with different n, k and degrees, and increase
the number of terms from 2 to dense.

Fig. 2. LPH vs Hom4ps-2.0 with the growth of density

It can be observed that, when the polynomials are not very sparse, e.g. the

number of terms are more than 10% of
(

n + d
d

)

, LPH is faster than Hom4ps-2.0.

A Special Homotopy Continuation Method 375

Actually, when the polynomials are not very sparse, the root number bound(
n − 1
k − 1

)

(d − 1)n−kD is close to MV (F).

Acknowledgement. We gratefully acknowledge the very helpful suggestions of Hoon
Hong on this paper with emphasis on Sect. 6. We also thank Changbo Chen for his
helpful comments. And the authors would like to thank the anonymous reviewers for
their constructive comments that greatly helped improving the paper.

References

1. Garcia, C.B., Zangwill, W.I.: Finding all solutions to polynomial systems and other
systems of equations. Math. Program. 16(1), 159–176 (1979)

2. Drexler, F.J.: Eine Methode zur Berechnung sämtlicher Lösungen von Polynom-
gleichungssystemen. Numer. Math. 29(1), 45–58 (1977)

3. Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical algebraic geometry. In:
The Mathematical of Numerical Analysis. Lectures in Applied Mathematics, vol.
32, pp. 749–763. AMS (1996)

4. Allgower, E.L., Georg, K.: Introduction to numerical continuation methods.
Reprint of the 1979 original. Society for Industrial and Applied Mathematics (2003)

5. Li, T.: Numerical solution of polynomial systems by homotopy continuation meth-
ods. In: Handbook of Numerical Analysis, vol. 11, pp. 209–304 Elsevier (2003)

6. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific, Singapore (2005)

7. Morgan, A.: Solving Polynominal Systems Using Continuation for Engineering and
Scientific Problems. Society for Industrial and Applied Mathematics, Philadelphia
(2009)

8. Bates, D.J., Haunstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving
Polynomial Systems with Bertini. Society for Industrial and Applied Mathematics,
Philadelphia (2013)

9. Lee, T.L., Li, T.Y., Tsai, C.H.: Hom4ps-2.0: a software package for solving polyno-
mial systems by the polyhedral homotopy continuation method. Computing 83(2),
109 (2008)

10. Morgan, A.P., Sommese, A.J., Watson, L.T.: Finding all isolated solutions to poly-
nomial systems using hompack. ACM Trans. Math. Softw. 15(2), 93–122 (1989)

11. Verschelde, J.: Algorithm 795: Phcpack: a general-purpose solver for polynomial
systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276
(1999)

12. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). doi:10.1007/3-540-07407-4 17

13. Seidenberg, A.: A new decision method for elementary algebra. Ann. Math. 60(2),
365–374 (1954)

14. El Din, M.S., Schost, É.: Polar varieties and computation of one point in each
connected component of a smooth real algebraic set. In: Proceedings of ISSAC
2003, pp. 224–231. ACM, New York (2003)

15. El Din, M.S., Spaenlehauer, P.J.: Critical point computations on smooth varieties:
degree and complexity bounds. In: Proceedings of ISSAC 2016, pp. 183–190. ACM,
New York (2016)

http://dx.doi.org/10.1007/3-540-07407-4_17

376 Y. Wang et al.

16. Bank, B., Giusti, M., Heintz, J., Pardo, L.M.: Generalized polar varieties and an
efficient real elimination. Kybernetika 40(5), 519–550 (2004)

17. Bank, B., Giusti, M., Heintz, J., Pardo, L.: Generalized polar varieties: geometry
and algorithms. J. Complex. 21(4), 377–412 (2005)

18. Rouillier, F., Roy, M.F., El Din, M.S.: Finding at least one point in each connected
component of a real algebraic set defined by a single equation. J. Complex. 16(4),
716–750 (2000)

19. El Din, M.S., Schost, É.: Properness defects of projections and computation of
at least one point in each connected component of a real algebraic set. Discrete
Comput. Geom. 32(3), 417–430 (2004)

20. Li, T.Y., Wang, X.: Solving real polynomial systems with real homotopies. Math.
Comp. 60(202), 669–680 (1993)

21. Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a
complex curve. Technical report. In: Algebra, Geometry and Their Interactions
(2006)

22. Bates, D.J., Sottile, F.: Khovanskii-rolle continuation for real solutions. Found.
Comput. Math. 11(5), 563–587 (2011)

23. Besana, G.M., Rocco, S., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Cell
decomposition of almost smooth real algebraic surfaces. Numer. Algorithms 63(4),
645–678 (2013)

24. Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl.
Math. 125(1), 105–119 (2013)

25. Shen, F., Wu, W., Xia, B.: Real root isolation of polynomial equations based on
hybrid computation. In: Feng, R., Lee, W., Sato, Y. (eds.) Computer Mathematics,
pp. 375–396. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43799-5 26

26. Wu, W., Reid, G.: Finding points on real solution components and applications
to differential polynomial systems. In: Proceedings of ISSAC 2013, pp. 339–346.
ACM, New York (2013)

27. Bernshtein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl.
9(3), 183–185 (1975)

28. Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regeneration homotopies for
solving systems of polynomials. Math. Comp. 80(273), 345–377 (2011)

29. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Giorgi,
G., Kjeldsen, T.H. (eds.) Traces and Emergence of Nonlinear Programming, pp.
197–215. Springer, Basel (2014). doi:10.1007/978-3-0348-0439-4 9

30. Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation.
Appl. Math. Comput. 29(2), 123–160 (1989)

31. Wu, W., Reid, G., Feng, Y.: Computing real witness points of positive dimen-
sional polynomial systems. Theoretical Computer Science (2017). http://doi.org/
10.1016/j.tcs.2017.03.035. Accessed 31 Mar 2017

32. Morgan, A.P., Sommese, A.J., Wampler, C.W.: A power series method for comput-
ing singular solutions to nonlinear analytic systems. Numer. Math. 63(1), 391–409
(1992)

33. Morgan, A.P.: A transformation to avoid solutions at infinity for polynomial sys-
tems. Appl. Math. Comput. 18(1), 77–86 (1986)

34. Huber, B., Verschelde, J.: Polyhedral end games for polynomial continuation.
Numer. Algorithms 18(1), 91–108 (1998)

35. Bates, D.J., Hauenstein, J.D., Sommese, A.J.: A parallel endgame. Contemp. Math.
556, 25–35 (2011). AMS, Providence, RI

http://dx.doi.org/10.1007/978-3-662-43799-5_26
http://dx.doi.org/10.1007/978-3-0348-0439-4_9
http://doi.org/10.1016/j.tcs.2017.03.035
http://doi.org/10.1016/j.tcs.2017.03.035

Penalty Function Based Critical Point Approach
to Compute Real Witness Solution Points

of Polynomial Systems

Wenyuan Wu1,2, Changbo Chen1,2(B), and Greg Reid3

1 Chongqing Key Laboratory of Automated Reasoning and Cognition,
Chongqing Institute of Green and Intelligent Technology,

Chinese Academy of Sciences, Chongqing, China
{wuwenyuan,chenchangbo}@cigit.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 Applied Mathematics Department, Western University, London, Canada

reid@uwo.ca

Abstract. We present a critical point method based on a penalty func-
tion for finding certain solution (witness) points on real solutions compo-
nents of general real polynomial systems. Unlike other existing numerical
methods, the new method does not require the input polynomial system
to have pure dimension or satisfy certain regularity conditions.

This method has two stages. In the first stage it finds approximate
solution points of the input system such that there is at least one real
point on each connected solution component. In the second stage it
refines the points by a homotopy continuation or traditional Newton iter-
ation. The singularities of the original system are removed by embedding
it in a higher dimensional space.

In this paper we also analyze the convergence rate and give an error
analysis of the method. Experimental results are also given and shown
to be in close agreement with the theory.

1 Introduction

Computational real algebraic geometry is the study of the global structure of
real solution sets of polynomial systems, including positive dimensional solution
components (see [2] for a background text on algorithms for exact real alge-
braic geometry). This paper is a contribution to the development of numerical
algorithms for computational real algebraic geometry directed at numerically
describing such global structure. In contrast, conventional numerical methods
seek local solutions which are points, and generally do not give information on
positive dimensional solution components.

Numerical algebraic geometry [16,29] was pioneered by Sommese, Wampler,
Verschelde and others (see the texts [9,27] for references and background). They
first considered the easier characterization of complex solution components of
each possible dimension, by slicing the solution set with appropriate random

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 377–391, 2017.
DOI: 10.1007/978-3-319-66320-3 27

378 W. Wu et al.

planes, that intersected the solution components in complex points called witness
points. The complex points are computed by homotopy continuation solvers. For
example, a one dimensional circle, x2+y2−1 = 0 in C

2 is intersected by a random
line in two such witness points, but this method obviously fails for (x, y) ∈ R

2

since a real line can miss the circle.
Instead the method in [31,32] yields real witness points as critical points of

the distance from a random hyperplane to the real variety. The reader can easily
see this yields two real witness points for the circle example. An alternative
numerical approach where the witness points are critical points of the distance
from a random point to the real variety has been developed in [15]. The works
[15,31,32] use Lagrange multipliers to set up the critical point problem.

A contribution of our current paper is to remove the assumptions in [15,
31,32] by developing a penalty function based critical point method where the
singularities are removed by embedding systems in a higher dimensional space.
The method has two stages. In the first stage it finds approximate solution points
of the input system such that there is at least one real point on each connected
solution component. In the second stage it refines the points by a homotopy
continuation or traditional Newton iteration. We also analyze the convergence
rate and give an error analysis of our method. Experimental results are given
and shown to closely agree with the theory.

Critical point methods in Lagrange form appeared previously in important
symbolic works [24–26]. In those works, the systems are analyzed using Gröbner
Bases. Ultimately numerical methods have to be used to approximate points on
components, but only after application of symbolic algorithms to the systems,
instead of the fully numerical methods used here and in [15,31,32]. Also see the
early related symbolic works [1,6] and the recent work [5,11].

More distantly related symbolic approaches for computational real alge-
braic geometry include cylindrical algebraic decomposition (CAD) introduced
by Collins [13] and improved by many others. Recent improvement of CAD by
using triangular decompositions are given in [12] for solving semi-algebraic sys-
tems. But the double exponential cost of the CAD algorithm [14] is the main
barrier to its application.

Numerical methods based on moment matrices and semi-definite program-
ming techniques have been developed to approximate real radical ideals of zero
dimensional systems, e.g. [20,21]. For a positive dimensional system, an app-
roach is given in [7] which combines numerical algebraic geometry and sums of
squares programming to test whether the input is real radical or not. Also see
[23,33], based on moment matrices, and [22].

As a development of critical point approaches [15,24–26,31], this article will
propose an approximation method to compute real witness points of polynomial
systems without any regularity assumption [31,32] or pure dimension assumption
[15]. In Sect. 2, we will describe how the polynomial systems are embedded in a
higher dimensional space. In Sect. 3, we will describe error control with a rank
assumption. In Sect. 4, this rank assumption is removed and error control is

A Critical Point Approach to Compute Real Witness Solution Points 379

provided for general systems. In Sect. 5, our method is illustrated with examples
and concluding remarks are given in Sect. 6.

2 Augmented System

In this section we introduce our augmented system, that involves adding a vari-
able to each equation, so the original system is obtained when these slack vari-
ables are set to zero. The resulting augmented system has solution set that is a
smooth real manifold. We alert the reader that this is different to the embedding
systems of (complex) numerical algebraic geometry. To avoid confusion with the
well known embedding systems of the complex case we have used a different
name for our systems, Augmented System.

Let x = (x1, . . . , xn). Let f = {f1, . . . , fk} be a set of polynomials in the ring
R[x]. We construct the following augmented system g for f with slack variables
z = (z1, . . . , zk):

g = {f1 + z1, f2 + z2, . . . , fk + zk}. (1)

Note that g ⊂ R[x, z] holds.

Lemma 1. The Jacobian matrix of g w.r.t. the variables (x1, . . . , xn, z1, . . . , zk)
has rank k at any point of VR(g) and VR(g) is a smooth submanifold of R

n+k

with dimension n.

Proof. Firstly, VR(g) �= ∅ since {x1 = 0, . . . , xn = 0, z1 = −f1(0), . . . , zk =
−fk(0)} is a real solution. Secondly, it is easy to see that the Jacobian matrix

∂g
∂(x,z) has full rank k at any solution (x∗, z∗) ∈ VR(g), which implies that VR(g) is
a smooth submanifold of Rn+k with dimension n by the regular level set theorem
(see pp. 113–114 of [19]). ��

By Lemma 1, the augmented system g satisfies the regularity assumptions A1

and A2 of [31]. Moreover, any point on VR(g) being smooth is a crucial property
for numerical stability of numerical methods applied to VR(g).

Using the critical point technique [24], we choose a random point a =
(a1, . . . , an), where a �∈ VR(f), in x-space and consider the minimal distance
from VR(f) to this point. As the norm of the slack variables z approaches zero,
the corresponding point of VR(g) approaches VR(f). To force the slack variables
z to be very small, we introduce a penalty function β · (z21 + · · · + z2k)/2 with
penalty factor β � 0 and formulate the following optimization problem

min μ = (β · (z21 + · · · + z2k) +
∑n

i=1
(xi − ai)2)/2 (2)

s.t. g = 0.

To solve the optimization problem above, we can use Lagrange multiplier
techniques:

380 W. Wu et al.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 − a1
...

xn − an

β z1
...

β zk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1/∂x1 · · · ∂fk/∂x1

...
. . .

...
∂f1/∂xn · · · ∂fk/∂xn

1
. . .

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n+k)×k

·

⎛

⎜⎝
λ1

...
λk

⎞

⎟⎠ . (3)

Then (3) implies that λi = βzi = −βfi. Substituting this solution back into the
Eq. (3) above yields a square system with n variables

⎛

⎜⎝
x1

...
xn

⎞

⎟⎠ + β · J t ·

⎛

⎜⎝
f1
...

fk

⎞

⎟⎠ =

⎛

⎜⎝
a1
...
an

⎞

⎟⎠ . (4)

where the n × k matrix J t is the transpose of the Jacobian of f .
The optimization problem (2) is equivalent to the following unconstrained

optimization problem (will be used in the next two sections):

min μ = (β · (f2
1 + · · · + f2

k) +
∑n

i=1(xi − ai)2)/2. (5)

Setting the gradient of μ to be zero, we also obtain Eq. (4).
Note that the left hand side of Eq. (4) defines a smooth mapping M : Rn → R

n.

Lemma 2. For a random point a = (a1, . . . , an) /∈ VR(f), Problem (2) has
solutions and M−1(a) �= ∅. Moreover, every point of the real variety M−1(a) is
a regular point of M with probability 1.

Proof. Let zi = wi/
√

β, i = 1, . . . , k, and substitute them into (2). Let h =
{√

βf1 + w1, . . . ,
√

βfk + wk}. We obtain another equivalent form of Problem
(2), where the objective function is now formulated as a distance function:

min (w2
1 + · · · + w2

k +
∑n

i=1
(xi − ai)2)/2 (6)

s.t. h = 0.

By Lemma 1, VR(g) is a smooth submanifold of Rn+k with dimension n. So
is VR(h). For any a /∈ VR(f), the point (x = a, w = 0) does not belong to VR(h).
Thus, (6) always has minimum distance from (a, 0) to VR(h) by completeness
of the real numbers, which implies that the minimal value of (2) can always be
attained. Since the Jacobian matrix of g has full rank at any point of VR(g),
a solution {x∗, z∗} of Problem (2) must be a solution of Eq. (3), which implies
that x∗ is a solution of Eq. (4).

Thus M−1(a) �= ∅. By Sard’s Theorem [30], for almost all a, every point of
the real variety M−1(a) is regular point of M . ��

A Critical Point Approach to Compute Real Witness Solution Points 381

Lemma 2 implies that all the solutions of Eq. (4) can be obtained by applying
homotopy continuation methods.

Among these solutions, we look for solutions with small residuals i.e. ‖z‖ � 1.
It is possible that such points do not exist, which then provides strong evidence
that VR(f) is empty. Intuitively, this is because if VR(f) is not empty, increasing
the penalty factor β will force ‖z‖ to be close to zero.

A theoretical study on the relationship between the magnitude of the residual
‖z‖ and the emptiness of VR(f) is out of the scope of this paper and will be
treated in a future work. In the rest of this paper, we always assume
that VR(f) �= ∅. A natural question is how to estimate the distances of the local
minima of Problem (5) to VR(f). We divide this problem into two cases w.r.t.
the rank of the Jacobian and will address them in the next two sections.

Note that, throughout this paper, the norm ‖ · ‖ always means the 2-norm.

3 Error Control with Rank Assumption

Since Problem (5) with penalty function is different from the goal of finding
real witness points of the original system f = 0, it is of great importance to
study the difference between their solutions. In this section, we will give an error
estimate of the approximate answer given by solving Problem (5) under a rank
assumption. In the next section, we will remove this assumption and give an
error estimate for general systems.

For a smooth point x on VR(f), let the local dimension of VR(f) at point x
be �. The Jacobian matrix at x is a k×n matrix denoted by Jx. Suppose its rank
is m, where m ≤ min{k, n}. Then we say that x satisfies the rank condition,
if m = n − �, i.e.

rankJx = n − dim VR(f)x (7)

If any smooth point on VR(f) satisfies the rank condition, then we say the
system f satisfies the rank condition. For example this occurs if f = {x−y, x2 −
y2}. This means that f can be an over-determined system and even generate a
non-radical ideal (e.g. consider f = {(x2 + 1)2(x − y)}). Note that f = (x − y)2

does not satisfy the rank condition, although its graph is a smooth line. Such
systems will be discussed in the next section.

For a random point a ∈ R
n, there is at least one point on each connected

component of VR(f) with minimal distance to a satisfying the following problem:

min
n∑

i=1

(xi − ai)2 (8)

s.t. x ∈ VR(f).

Let us consider such a point p of (8) with local minimal distance to a. For
this point, there exists a constant c and we have ‖fi(p+Δx)‖ < c‖Δx‖ for each
polynomial fi when Δx is sufficiently small. The value of the target function μ
at p of (5) is D2/2 where D = ‖p−a‖. If we move p towards a with a sufficiently
small distance Δx to p′ then

382 W. Wu et al.

μ(p′) = β‖f(p′)‖2/2 + (p′ − a)2/2 < βc2 Δx2/2 + (D − Δx)2/2 < D2/2. (9)

It means that p of Problem (8) is not a local minimum of Problem (5). Let
p′ be a local minimum of (5) for a given β. Consequently, p′ /∈ VR(f). But we
have the following result.

Corollary 1. Let p be a local minimum of (8). There exists a local minimum p′

of (5) for sufficiently large β, such that ‖p − p′‖ can be arbitrarily small.

Proof. For any small δ > 0, consider the sphere S of a ball centered at p with
radius δ. Let D = ‖p− a‖, where a /∈ VR(f) is the given point for both problems
(5) and (8). The sphere S can be divided into two sets: S1 = {x ∈ S : ‖x − a‖ ≤
D} and S2 = {x ∈ S : ‖x − a‖ > D}. Since p obtains the local minimum
distance from VR(f) to a, we have S1 ∩ VR(f) = ∅ for a small enough δ. Let
s = minx∈S1(

∑
j fj(x)2). So s > 0. When βs + (D − δ)2 > D2, i.e. β > 2δD−δ2

s ,
we have μ(x) > D2/2 = μ(p) for any point x on the sphere S. Since the ball is
a compact set, the local minimal value of μ must be attained at p′ inside this
ball. ��

We now consider how to estimate the error ‖p−p′‖ for a given β. First let us
consider a simple case when a local minimum p of (8) satisfies the rank condition
(7). Then, we have the following result.

Theorem 2. Suppose p is a local minimum of (8) satisfying the rank condition
(7). Then there is at least one real solution p′ of Eq. (4) such that ‖p − p′‖ <

D
βσ2

m+1 , where D = ‖p − a‖ and σm is the smallest nonzero singular value of Jp.

Proof. Without loss of generality, we assume that p is the origin o. Because of
the rank condition, the local dimension at p is equal to n − rankJp = n − m.
Moreover, the null-space of Jp is the tangent space T at p. Let N be the orthog-
onal complement of T in R

n. Since p ∈ T has the minimum distance to a, the
vector a belongs to N .

Let UT JpV = Σk×n = diag(σ1, . . . , σm, 0, . . . , 0) be the singular value
decomposition of the Jacobian matrix at p, where U = ([u1| · · · |uk]) ∈ R

k×k

and V = ([v1| · · · |vn]) ∈ R
n×n. Then, the space N is spanned by {v1, . . . , vm}.

By Corollary 1 for sufficiently large β, there exists a local minimum p′ of (5)
such that ‖p′ − p‖ = δ � 1 and f(p′) = f(p) + Jp · p′ + O(δ2) since p is the
origin.

Let p′ = t + b, where t ∈ T, b ∈ N . Recall that a ∈ N and N⊥T . Then
we have Jp · p′ = Jp · b and ‖p′ − a‖2 = ‖t‖2 + ‖a − b‖2. Since a, b ∈ N ,
we choose {v1, . . . , vm} as the coordinates of N and suppose a = (a1, . . . , am),
b = (b1, . . . , bm). Thus, ignoring high order errors we have

‖f(p′)‖2 = ‖Jp · b‖2 = bT V Σ2V T b =
m∑

i=1

σ2
i b2i .

A Critical Point Approach to Compute Real Witness Solution Points 383

Hence, p′ is a point near p satisfying the following problem

min
t,b

μ =
(
β(

m∑

i=1

σ2
i b2i) +

m∑

i=1

(ai − bi)2 + ‖t‖2)/2.

It is straightforward to show that when bi = ai

βσ2
i+1

and t = 0, the function μ

attains the minimum
∑

i
βσ2

i

βσ2
i+1

a2
i /2, which is less than μ(p) =

∑
i a2

i /2 = D2/2.
Therefore,

‖p′ − p‖2 =
∑

i

b2i =
∑

i

(
ai

βσ2
i + 1

)2 ≤
∑

i

(
ai

βσ2
m + 1

)2 = (
D

βσ2
m + 1

)2.

Moreover, p′ can be found by solving Eq. (4). ��
Example 1. Consider the system f = {x2 + y2 − 2x, 2x2 + 2y2 − 4x} and
a = (−0.8, 0.6). In this case m < k holds. The real variety is a circle centered at
(1, 0) with radius 1. The point p = (1− 3

√
10

10 ,
√
10
10) has the minimal distance to a.

Consequently, we have D = 1, σm = 4.472 and r = ‖p − p′‖ ≤ e = 1
20β+1 . The

behaviors of both the actual error r and the estimated error e with increasing of
β are given in Fig. 1, where the differences between the log of estimated errors
and the log of actual errors are greater than 0.047 and less than 0.048. That is
0.895e < r < 0.897e. Thus, the theoretical estimation is quite sharp.

Here increasing the value of β and producing more and more accurate roots
aim to verify Theorem 2. Since the local minimum satisfies the rank condition,
we can simply apply Gauss-Newton iteration [4] to improve the accuracy.

Remark 1. Since we only have a local minimum p′ which is an approximation of
p, a good estimate of σm can be obtained by Jp′ for sufficiently small ‖p − p′‖
because of Weyl’s theorem [28].

This theorem only works for σm > 0. However, if σm is close to zero because
of singularity of p or non-radicalness of the system f , the convergence will be
very slow as β → ∞. But Corollary 1 still applies.

Example 2. In an example of [31], f = {x2
2 + x2

3 − (2x1 − x2
1)

3} and a =
(−0.5,−1, 0.1). The point p = (0, 0, 0) with the minimal distance to a is singular
in VR(f). To see the asymptotic behavior of the error given in Corollary 1, we
plot the magnitude of the actual error against the magnitude of the penalty fac-
tor β in Fig. 2. Applying the CurveFitting[LeastSquares] command in Maple
yields log(r) .= −0.538 − 0.202 log(β).

4 Error Control for General Systems

Previously, we know that if a local minimum of (8) satisfies the rank condition
m = n − �, the estimated error is of order O(1/β) as can be observed in Fig. 1.

384 W. Wu et al.

Fig. 1. For Example 1, the log of the estimated error, log(e) (resp. actual error, log(r))
is decreasing linearly with the increase of the magnitude of penalty factor β.

Fig. 2. The actual error log(r) for Example 2 is decreasing slowly with slope −0.202.

For this case, although increasing the value of β can improve the accuracy, the
Gauss-Newton iteration will improve convergence.

However, whether the input system satisfies the regularity assumptions or
not, a local minimum of Problem (5) could be close to singularities (as in Exam-
ple 2) which means m < n − �. Since such singularities are unavoidable, we will
address the convergence for general systems with no assumptions in this section.

4.1 Degree Index

In Problem (5), the residual of f is amplified by a penalty factor β when x does
not belong to VR(f). In this section we will give a lower bound of the residual
first. Then it leads to an error control of our method for general systems.

A Critical Point Approach to Compute Real Witness Solution Points 385

Let f ∈ R[x1, . . . , xn]. Suppose f(0) = 0. If we write f = fm + fm+1 + . . .
with fα homogeneous of degree α and fm �= 0, then m is the multiplicity of f at
the origin. For example f = x2 + y3 has a cusp at the origin with multiplicity 2.

Here we will consider the value of f near the origin. Let a direction be
v = (a, b) with a2 + b2 = 1. Then the bivariate polynomial f = x2 + y3 becomes
a univariate polynomial a2t2+b3t3 = t2(a2+b3t) by substituting (x = at, y = bt).
For a generic direction v, the magnitude of f will be O(t2) as t → 0. Here the
degree 2 coincides with the multiplicity. But a lower bound is obtained for the
direction v = (0, 1) where the value of f = t3 is even smaller of order 3.

In general we define degree index to study multiplicity discussed above.

Definition 3. Let fv = f(vt) which is a polynomial in R[t] by substituting
x = vt into f with v �= 0 ∈ R

n. The lowest degree of nonzero terms of fv is
denoted by degmin(fv). We define the degree index of f to be

degind(f) = max
v

degmin(fv) (10)

Furthermore, for any polynomial f and a point p ∈ R
n, if f(p) = 0 then we

define the degree index of f at p to be degind(f(x + p)).

For instance, degind(x2 − y2) = 2, degind(x2 + y2) = 2, and degind(x2 + y3) = 3,
etc. But it is difficult to compute the degree index of an arbitrary multivariate
polynomial f . It can be reduced to finding a nonzero common real root of the
sequence {fm = 0, fm+1 = 0, . . .}. However, by definition, if deg(f) = d > 0,
then we have 1 ≤ degind(f) ≤ d, which gives a simple bound.

Suppose fv(t) = a0t
α0 + a1t

α1 + · · · + aktαk is not a zero polynomial and
degmin(fv) = α0 < α1 < · · · < αk. The lowest degree term is a0t

α0 which is the
dominant term when t � 1. Thus, we have the following result.

Proposition 4. Let f ∈ R[x1, . . . , xn] and f(0) = 0. For any direction v �= 0 ∈
R

n, if fv(t) = f(vt) is not a zero polynomial, then there is a constant c > 0 such
that |fv(t)| > c tdegind(f) for sufficiently small t > 0.

As in Sect. 3, suppose the point p ∈ VR(f) minimizing distance to a random
point a is singular. Let p′ be the corresponding local minimum close to p of
Problem (5). We have the following estimation for ‖p − p′‖.

Theorem 5. For a random point a ∈ R
n and a sufficiently large β, suppose

p ∈ VR(f) attains the local minimal distance to a. Then there is a solution p′ of
Eq. (4) such that ‖p′ − p‖ ≤ O(2I−1

√
1/β), where I = max{degind(fi(x+ p)), i =

1, . . . , k}.
Proof. By Eq. (5), μ(p′) = (β

∑
i fi(p′)2 + ‖p′ − a‖2)/2. Let D = ‖p − a‖. The

relationship between points p and p′ is shown in Fig. 3, where r = ‖p′ −p‖. Since
D is the local minimal distance from VR(f) to a and μ(p′) < μ(p) = D2/2, we
have ‖p′ − a‖ < D and p′ /∈ VR(f) and the angle θ between pp′ and pa is less

386 W. Wu et al.

Fig. 3. The minimum value μ is attained at p′ which is not a zero of f .

than π/2. Then 2μ(p′) = (D − r cos θ)2 + r2 sin2 θ + β
∑

i fi(p′)2 < D2 = 2μ(p),
which is equivalent to β

∑
i fi(p′)2 + r2 < 2r cos θD.

Thus β
∑

i fi(p′)2 < 2rD holds. Since f(p′) �= 0, there is at least one nonzero
fi(p′). Recall that r = ‖p′ − p‖, thus for the direction v = (p′ − p)/‖p − p′‖,
fi(vr + p) = fi(p′) �= 0, which implies that fi(vt + p) is a nonzero polynomial
in t. By Proposition 4, when r is small enough, we have

fi(p′)2 = fi(vr + p)2 > c2 r2 degind(fi(x+p)) ≥ c2 r2I .

Thus, we get βc2 r2I < 2rD ⇒ r2I−1 < O(1/β). ��
Remark 2. If the input system f satisfies the rank condition, then we have I = 1
and ‖p′ − p‖ ≤ O(1/β) in Theorem 5, which is in consistent with Theorem 2.
But Theorem 2 provides a more precise estimation in this case.

Recall Example 2 in Sect. 3, I = degind(f) = 3. By Theorem 5, r =
C 2I−1

√
1/β for some constant C. Then log(r) = log(C) − 1

2I−1 log(β) = log(C) −
0.2 log(β) which is in close agreement with the experimental results.

4.2 Improve Accuracy

In contrast to Sect. 3, the input polynomial system may not satisfy the rank
assumption. Consequently it is difficult to apply local methods such as Newton
iteration to improve accuracy. For example if f = x2 + y2 and an approximate
root of f = 0 close to 0 is given, it is still difficult to determine how to update
the root because there is only one equation in f .

By Corollary 1, theoretically we can use Eq. (4) to update the approximate
root x′ by increasing β. But introducing a very large β will lead to numerical
instability. To ease this difficulty, we substitute β = 1/t into Eq. (4). Multiplying
by t gives

t

⎛

⎜⎝
x1 − a1

...
xn − an

⎞

⎟⎠ + J t ·

⎛

⎜⎝
f1
...

fk

⎞

⎟⎠ = 0. (11)

A Critical Point Approach to Compute Real Witness Solution Points 387

which can be considered as a homotopy with initial points in the form of (t0, x0),
where t0 = 1/β with β � 0 and x0 is a real solution of Eq. (4). When t → 0,
the homotopy path x(t) will approach VR(f). The invertibility of the Jacobian
along the homotopy path is guaranteed by Lemma 2.

Let us reduce the value of t by a half at each step i.e. t = 1
2sβ after s steps.

Combining with the result of Theorem 5, we have the following result.

Corollary 6. Let τ = 2−1/(2d−1) < 1. After s steps of path tracking, the error
of root is reduced to O(τs r), where r is the initial error ‖p′ − p‖.
Example 3. Next we consider a sum of squares f = x2 + y2 with a = (−1, 0.5).
When β = 1000, the solution of (4) is the real point (x = −0.0719, y = 0.0359)
with a small residual f(x, y) = 0.00646. By tracking the path of the homotopy
(11), it yields a sequence of points shown in Fig. 4. After 30 steps, we obtain the
point (x = 0.0000517, y = 0.000103) with residual f(x, y) = 1.34 × 10−8.

The CurveFitting[LeastSquares] command in Maple gives the formula
log(r) .= −0.101 − 0.331 log(β), where the coefficient −0.331 is very consistent
with the formula − 1

2I−1 = −0.333 in Theorem 5, where I = degind(x2 +y2) = 2.

Fig. 4. The error for f = x2 + y2 in Example 3.

5 Examples

In this section, we demonstrate the generalized critical point method for finding
real witness points of a general system on several examples. The numerical tool
for solving the zero dimensional system (4) can be found in [18].

5.1 ISSAC 2016 System

Let us consider an interesting example f = {xyz, z(x2 + y2 + z2 + y), y(y + z)}
in [7]. The real variety consists of a line {y = 0, z = 0} and an isolated point
(0,−1/2, 1/2). We verify this result by RealTriangularize [12] in Maple 18.

388 W. Wu et al.

To obtain the initial approximation, we set β = 10000, a = (1, 0.5, 2) and
solve the corresponding system (4) by Hom4ps2 [18] with the output {[x =
0.00159, y = −0.499, z = 0.500], [x = 0.999, y = 0.0286, z = 0.000169]}. The
first is an isolated solution with full rank Jacobian, so it can be refined simply.
But the Jacobian at the second point is close to singular with singular val-
ues {1.03, 0.057, 0.0000045}. Using the homotopy (11), we can refine this point
to (1.0, 0.000044, 0.0) after 30 steps of path tracking. At the exact solution
(1, 0, 0) the degree index is 2. Hence, by Corollary 6 we have τ = 0.794 and
τ30 × 0.0286 = 0.000028 which has the same magnitude with 0.000044.

5.2 Seiler System

The system is f = {x2
3 +x2x3 −x2

1, x1x3 +x1x2 −x3, x2x3 +x2
2 +x2

1 −x1} whose
real variety is a curve. We use RealTriangularize to obtain a triangular set

{(x2 + x3)x1 − x3, x
3
2 + 3x3x

2
2 + 3x2

3x2 + x3
3 − x3}.

Our method gives three initial points when β = 10000 and a = (1, 1, 1), namely
p1 =(0.233, 0.37, 0.113), p2 =(0.0546,−0.22,−0.013) and p3 =(1.12, 0.13,−1.19)
with residuals ‖f(p1)‖ = 0.000096, ‖f(p2)‖ = 0.00013, ‖f(p3)‖ = 0.000014. The
rank of the Jacobian at p1 is 2 with singular values {3.47, 2.06, 4.16 × 10−6}
which means f satisfies the rank condition. By Theorem 2, the accuracy can
be improved quickly as β approaches infinity by the homotopy (11). In our
experiment, the new residual becomes ‖f(p′

1)‖ = 1.35 × 10−11 after 20 steps of
path tracking. A similar situation happens for p2 and p3.

5.3 Larger Examples

Let f1, f2 and f3 be random linear polynomials in variables {x1, . . . , xn} (where
n ≥ 4) and f = {(x2

1 − x2)2 + f2
1 + f2

2 , f2
2 − f2

3 }. Since the first polynomial is a
sum of squares, it implies that x2

1 − x2 = 0, f1 = 0, f2 = 0, f3 = 0 which defines
an n − 4 dimensional real variety of degree two. Let f1 = 97x1 − 67x2 + 58x3 +
29x4+37, f2 = 5x1−36x2−57x3+85x4+80, f3 = 90x1+74x2+27x3+9x4−91.

Applying RealTriangularize to f yields a triangular set T in 3.6 s:
{876997x1+665882x4+70645 = 0, 876997x2−321399x4−932414 = 0, 876997x3−
1046403x4 − 635783 = 0, 443398837924x2

4 − 187783491023x4 − 812733564733 =
0}. Thus, there are two isolated solutions:

(0.799123750840176, 0.638598769156873,−0.657417515791706,−1.15857484076095),
(−1.28179034942671, 1.64298649988345, 2.61264348189493, 1.58208404954058).

Let β = 10000 and a = (0, 1, 0.21,−0.053) and solve the correspond-
ing square system (4) numerically by Hom4ps2 in 3.09 s to obtain 4 real
solutions, which are (0.775, 0.642,−0.613,−1.12), (0.775, 0.642,−0.613,−1.12),
(0.781, 0.650,−0.614,−1.12) and (−1.24, 1.60, 2.53, 1.49).

A Critical Point Approach to Compute Real Witness Solution Points 389

We cannot refine these roots directly since f consists of only two equations.
To improve the accuracy we apply the techniques introduced in Sect. 4.2 and
after 30 steps of path tracking the refined roots are

(0.799096390527587, 0.638616146725934,−0.657352004837882,−1.15851537630920),
(0.799085595521195, 0.638625438788475,−0.657323985904906,−1.15848904058360),
(0.799096848516397, 0.638616471399574,−0.657351954804033,−1.15851596503370),
(−1.28174450424170, 1.64292754794384, 2.61255064161436, 1.58197011638993).

Apparently, the first three are multiple roots.
When n = 5, numerical solving for approximate points costs 17.6 s and refine-

ment costs 0.26 s. It gives two real witness points. On the other hand, if we still
use RealTriangularize to compute the triangular set of f , after 2902 s Maple
18 displayed an Error message and indicated that “Maple was unable to allocate
enough memory to complete this computation”.

Moreover, numerical solving stage costs 129 and 559 s for n = 6 and n = 7
respectively. Since it is difficult to compute the exact solutions, we verify the
output by substituting the refined witness points back to f and the residuals are
less than 10−7.

6 Conclusions

This paper is part of a series in which we develop algorithms for numerical
algebraic geometry. In current paper, we present a new formulation with penalty
function, which is a development of critical point techniques. Comparing with
existing numerical critical point methods, this method does not require the input
system to have pure dimension or satisfy regularity assumptions. It leads to a
kind of penalty function approximation method. The convergence rate of the
method is given and it is in close agreement with our experimental results.

We plan to apply our method to larger systems, and those with approximate
coefficients, which are beyond limitations of current (e.g. symbolic computa-
tion) based approaches. Since a non-radical polynomial system does not satisfy
the rank condition, it is still difficult to move the obtained approximate real
witness points on positive dimensional components to detect more geometric
information. Extracting such information will be a focus of future work. In the
second stage of our method, we assume local convergence of Newton iteration.
An interesting research problem is to compare our approach with the certified
path tracking approach [10].

Acknowledgements. The authors would like to thank the anonymous reviewers
for their constructive comments that greatly helped improving the paper. This
work is partially supported by the projects NSFC (11471307, 11671377, 61572024),
cstc2015jcyjys40001, and the Key Research Program of Frontier Sciences of CAS
(QYZDB-SSW-SYS026).

390 W. Wu et al.

References

1. Aubry, P., Rouillier, F., El Din, M.S.: Real solving for positive dimensional systems.
J. Symb. Comput. 34(6), 543–560 (2002)

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Heidelberg
(2006). doi:10.1007/3-540-33099-2

3. Besana, G.M., DiRocco, S., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Cell
decomposition of almost smooth real algebraic surfaces. Numer. Algorithms 63(4),
645–678 (2013)

4. Bjorck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia
(1996)

5. Bank, B., Giusti, M., Heintz, J.: Point searching in real singular complete intersec-
tion varieties - algorithms of intrinsic complexity. Math. Comput. 83(286), 873–897
(2014)

6. Bank, B., Giusti, M., Heintz, J., Mbakop, G.-M.: Polar varieties, real equation
solving, and data structures: the hypersurface case. J. Complex. 13, 5–27 (1997)

7. Brake, D.A., Hauenstein, J.D., Liddell, A.C.: Numerically validating the complete-
ness of the real solution set of a system of polynomial equations. ISSAC 2016,
143–150 (2016)

8. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multi-
precision path tracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)

9. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solv-
ing Polynomial Systems with the Software Package Bertini. SIAM, Philadelphia
(2013)

10. Beltrán, C., Leykin, A.: Robust Certified Numerical Homotopy Tracking. Found.
Comput. Math. 13(2), 253–295 (2013)

11. Basu, S., Roy, M.-F., El Din, M.S., Schost, É.: A baby step-giant step roadmap algo-
rithm for general algebraic sets. Found. Comput. Math. 14(6), 1117–1172 (2014)

12. Chen, C., Davenport, J.H., May, J.P., Moreno Maza, M., Xia, B., Xiao, R.: Trian-
gular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

13. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). doi:10.1007/3-540-07407-4 17

14. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comp. 5, 29–35 (1988)

15. Hauenstein, J.: Numerically computing real points on algebraic sets. Acta Appl.
Math. 125(1), 105–119 (2013)

16. Hauenstein, J., Sommese, A.: What is numerical algebraic geometry? J. Symb.
Comp. 79, 499–507 (2017). Part 3

17. Hong, H.: Improvement in CAD-Based Quantifier Elimination. Ph.D. thesis. Ohio
State University, Columbus, Ohio (1990)

18. Li, T.Y., Lee, T.L.: Homotopy method for solving Polynomial Systems software.
http://www.math.msu.edu/∼li/Software.htm

19. Lee, J.M.: Introduction to Smooth Manifolds, vol. 218. Springer, Heidelberg (2003).
doi:10.1007/978-0-387-21752-9

20. Lasserre, J.B., Laurent, M., Rostalski, P.: Semidefinite characterization and compu-
tation of zero-dimensional real radical ideals. Found. Comput. Math. 8(5), 607–647
(2008)

http://dx.doi.org/10.1007/3-540-33099-2
http://dx.doi.org/10.1007/3-540-07407-4_17
http://www.math.msu.edu/~li/Software.htm
http://dx.doi.org/10.1007/978-0-387-21752-9

A Critical Point Approach to Compute Real Witness Solution Points 391

21. Lasserre, J.B., Laurent, M., Rostalski, P.: A prolongation-projection algorithm for
computing the finite real variety of an ideal. Theoret. Comput. Sci. 410(27–29),
2685–2700 (2009)

22. Lu, Y.: Finding all real solutions of polynomial systems. Ph.D thesis. University of
Notre Dame (2006). Results of this thesis appear. In: (with Bates, D.J., Sommese,
A.J., Wampler, C.W.), Finding all real points of a complex curve, Contemp. Math.
vol. 448, pp. 183–205 (2006)

23. Ma, Y., Zhi, L.: Computing Real Solutions of Polynomial Systems via Low-rank
Moment Matrix Completion. In: ISSAC, pp. 249–256 (2012)

24. Rouillier, F., Roy, M.-F., El Din, M.S.: Finding at least one point in each connected
component of a real algebraic set defined by a single equation. J. Complex. 16(4),
716–750 (2000)

25. El Din, M.S., Schost, É.: Polar varieties and computation of one point in each
connected component of a smooth real algebraic set. In: ISSAC 2013, pp. 224–231
(2003)

26. El Din, M.S., Schost, É.: Properness defects of projection functions and computa-
tion of at least one point in each connected component of a real algebraic set. J.
Discrete Comput. Geom. 32(3), 417–430 (2004)

27. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific Press (2005)

28. Stewart, G.W.: Perturbation theory for the singular value decomposition. In: SVD
and Signal processing, II: Algorithms, Analysis and Applications, pp. 99–109. Else-
vier (1990)

29. Sommese, A.J., Verschelde, J., Wampler, C.W.: Introduction to numerical algebraic
geometry. In: Bronstein, M., et al. (eds.) Solving Polynomial Equations. AACIM,
vol. 14, pp. 339–392. Springer, Heidelberg (2005). doi:10.1007/3-540-27357-3 8

30. Sternberg, S.: Lectures on Differential Geometry. Prentice-Hall, Englewood Cliffs
(1964)

31. Wu, W., Reid, G.: Finding points on real solution components and applications to
differential polynomial systems. In: ISSAC, pp. 339–346 (2013)

32. Wu, W., Reid, G., Feng, Y.: Computing real witness points of positive dimensional
polynomial systems. Accepted by Theoretical Computer Sciences (2017). http://
doi.org/10.1016/j.tcs.2017.03.035

33. Yang, Z., Zhi, L., Zhu, Y.: Verified error bounds for real solutions of positive-
dimensional polynomial systems. In: ISSAC, pp. 371–378 (2013)

http://dx.doi.org/10.1007/3-540-27357-3_8
http://doi.org/10.1016/j.tcs.2017.03.035
http://doi.org/10.1016/j.tcs.2017.03.035

Computing Multiple Zeros of Polynomial
Systems: Case of Breadth One

(Invited Talk)

Lihong Zhi1,2(B)

1 Key Laboratory of Mathematics Mechanization,
Academy of Mathematics and System Sciences, Beijing, China

2 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100190, China
lzhi@mmrc.iss.ac.cn

Abstract. Given a polynomial system f with a multiple zero x whose
Jacobian matrix at x has corank one, we show how to compute the
multiplicity structure of x and the lower bound on the minimal distance
between the multiple zero x and other zeros of f . If x is only given with
limited accuracy, we give a numerical criterion to guarantee that f has
μ zeros (counting multiplicities) in a small ball around x. Moreover, we
also show how to compute verified and narrow error bounds such that a
slightly perturbed system is guaranteed to possess an isolated breadth-
one singular solution within computed error bounds. Finally, we present
modified Newton iterations and show that they converge quadratically
if x is close to an isolated exact singular solution of f . This is joint work
with Zhiwei Hao, Wenrong Jiang, Nan Li.

1 Introduction

Let If be an ideal generated by polynomials f = {f1, . . . , fn}, where fi ∈
C[X1, . . . , Xn]. An isolated zero of multiplicity μ for f is a point x ∈ C

n such that

1. f(x) = 0,
2. there exists a ball B(x, r) of radius r > 0 such that B(x, r) ∩ f−1(0) = {x},
3. μ = dim(C[X]/Qf,x),

where
B(x, r) := {y ∈ C

n : ‖y − x‖ < r},

and Qf,x is a primary component of the ideal If whose associate prime is

mx = (X1 − x1, . . . , Xn − xn).

This research was supported in part by the National Key Research Project of China
2016YFB0200504 (Zhi) and the National Natural Science Foundation of China under
Grants 11571350 (Zhi).

c© Springer International Publishing AG 2017
V.P. Gerdt et al. (Eds.): CASC 2017, LNCS 10490, pp. 392–405, 2017.
DOI: 10.1007/978-3-319-66320-3 28

Computing Multiple Zeros of Polynomial Systems: Case of Breadth One 393

Let dα
x : C[X] → C denote the differential functional defined by

dα
x (g) =

1
α1! · · · αn!

· ∂|α|g
∂xα1

1 · · · ∂xαn
n

(x), ∀g ∈ C[X], (1)

where x ∈ C
n and α = [α1, . . . , αn] ∈ N

n. We have

dα
x

(
(X − x)β

)
=

{
1, if α = β,
0, otherwise. (2)

The local dual space of If at a given isolated singular solution x is a subspace
Df,x of Dx = span

C
{dα

x} such that

Df,x = {Λ ∈ Dx | Λ(g) = 0, ∀g ∈ If}. (3)

When the evaluation point x is clear from the context, we write dα1
1 · · · dαn

n

instead of dα
x for simplicity.

Let D(k)
f,x be the subspace of Df,x with differential functionals of orders

bounded by k, we define

1. breadth κ = dim
(
D(1)

f,x \ D(0)
f,x

)
,

2. depth ρ = min
({

k | dim
(
D(k+1)

f,x \ D(k)
f,x

)
= 0

})
,

3. multiplicity μ = dim
(
D(ρ)

f,x

)
.

If x is an isolated singular solution of f , then 1 ≤ κ ≤ n and ρ < μ < ∞.
We recall α-theory below according to [1] and refer to [16,37–41,43] for more

details.
Let Df(x) denote the Jacobian matrix of f at x. Suppose Df(x) is invertible,

x is called a simple (regular) zero of f . The Newton’s iteration is defined by

Nf (x) = x − Df(x)−1f(x). (4)

Shub and Smale [37] defined

γ(f, x) = sup
k≥2

∥
∥
∥
∥Df(x)−1 · Dkf(x)

k!

∥
∥
∥
∥

1
k−1

, (5)

where Dkf denotes the k-th derivative of f which is a symmetric tensor whose
components are the partial derivatives of f of order k, ‖ · ‖ denotes the classical
operator norm.

According to [1, Theorem 1], if

‖z − x‖ ≤ 3 − √
7

2γ(f, x)
, (6)

then Newton’s iterations starting at z will converge quadratically to the simple
zero x.

If y is another zero of f , according to [1, Corollary 1], we have

‖y − x‖ ≥ 5 − √
17

4γ(f, x)
, (7)

which separates the simple zero x from other zeros of f .

394 L. Zhi

Furthermore, according to [1, Theorem 2], if only a system f and a point x
are given such that

α(f, x) ≤ 13 − 3
√

17
4

≈ 0.157671, (8)

where α(f, x) = β(f, x)γ(f, x) and

β(f, x) = ‖x − Nf (x)‖ = ‖Df(x)−1f(x)‖,

then Newton’s iterations starting at x will converge quadratically to a simple
zero ξ of f and

‖x − ξ‖ ≤ 2β(f, x).

It is a challenge to extend α-theory for polynomial systems with singular solu-
tions. When Df(x) is not invertible, many modifications of Newton’s iteration
to restore the quadratic convergence for singular solutions have been proposed
in [2,6–8,12–14,29–33,36,46]. Recently, some symbolic-numeric methods based
on deflated systems have also been proposed for refining approximate isolated
singular solutions to high accuracy [3–5,10,11,18–20,25]. For example, as shown
in [19], let r = rank(Df(x)), with probability one, there exists a unique vec-
tor λ = (λ1, λ2 . . . , λr+1)T such that (x, λ) is an isolated solution of a deflated
polynomial system, i.e.,

⎧
⎨

⎩

f(x) = 0,
Df(x)Bλ = 0,

hT λ = 1,
(9)

where B ∈ C
n×(r+1) is a random matrix, h ∈ C

r+1 is a random vector. If (x, λ)
is still a singular solution of (9), the deflation is repeated. Furthermore, they
proved that the number of deflations needed to derive a regular solution of an
augmented system is strictly less than the multiplicity of x. Dayton and Zeng
showed that the depth of Df,x is a tighter bound for the number of deflations [5].

In [44,45], we present a method based on the reduction to geometric invo-
lutive form to compute the primary component and a basis of the local dual
space of a polynomial system at an isolated singular solution. We also present
an algorithm based on correctly computed multiplicity structure such as index
and multiplicity at an approximate singular solution to restore the quadratic
convergence of Newton’s iterations.

In this paper, we introduce some recent contributions related to extend-
ing α-theory for polynomial systems with singular zeros satisfying f(x) = 0,
dim ker Df(x) = 1. It is also called breadth-one singular zero in [5] as

dim(D(k)
f,x \ D(k−1)

f,x) = 1, k = 1 . . . , ρ, ρ = μ − 1. (10)

Therefore, the local dual space of If at x is

Df,x = span
C
{Λ0, Λ1, . . . , Λμ−1},

where deg(Λk) = k and Λ0 = 1.

Computing Multiple Zeros of Polynomial Systems: Case of Breadth One 395

As pointed out in [11], the breath one case is the least degenerate one and
therefore most likely to be of practical significance. Moreover, it is also the worst
case for the deflation method [5,19,29,30] since the deflation always terminates
at step μ − 1. Hence the size of the matrices grows extremely fast with the
multiplicity.

2 Local Dual Space

Let us introduce a morphism Φσ : Dx → Dx which is an anti-differentiation
operator defined by

Φσ(dα1
1 · · · dαn

n) =
{

dα1
1 · · · dασ−1

σ · · · dαn
n , if ασ > 0,

0, otherwise.

Computing a closed basis of the local dual space is done essentially by matrix-
kernel computations based on the stability property of Df,x [26,28,42]:

∀Λ ∈ D(k)
f,x, Φσ(Λ) ∈ D(k−1)

f,x , σ = 1, . . . , n. (11)

Let D(k)
f,x be the subspace of Df,x with differential functionals of orders

bounded by k. Let Ψσ : Dx → Dx be a differential operator defined by

Ψσ(dα1
1 · · · dαn

n) =
{

dασ+1
σ · · · dαn

n , if α1 = · · · = ασ−1 = 0,
0, otherwise.

We deal with multiple zeros satisfying f(x) = 0, dim ker Df(x) = 1. The
local dual space of If at a given isolated singular solution x is

Df,x = span
C
{Λ0, Λ1, . . . , Λμ−1},

where deg(Λk) = k and Λ0 = 1.
As shown in [23, Theorem 3.4], suppose Λ1 = a1,1d1 + · · · + a1,ndn, without

loss of generality, we assume a1,1 = 1, ak,1 = 0, k = 2, . . . , n. Then for k =
2, . . . , μ − 1, we have

Λk = Δk + ak,2d2 + · · · + ak,ndn, (12)

where

Δk =
n∑

σ=1

Ψσ(a1,σΛk−1 + · · · + ak−1,σΛ1), (13)

and ak,2, . . . , ak,n are determined by solving the linear system obtained from
setting Λk(fi) = 0, i = 1, . . . , n:

⎛

⎜
⎝

d2(f1) · · · dn(f1)
...

. . .
...

d2(fn) · · · dn(fn)

⎞

⎟
⎠

⎛

⎜
⎝

ak,2

...
ak,n

⎞

⎟
⎠ = −

⎛

⎜
⎝

Δk(f1)
...

Δk(fn)

⎞

⎟
⎠ . (14)

396 L. Zhi

Definition 1 [15]. For a polynomial function f : C
n → C

n, suppose f(x) =
0,dim kerDf(x) = 1. Then Df(x) has a normalized form if

Df(x) =
(

0 Df̂(x)
0 0

)
, (15)

Df̂(x) is the nonsingular Jacobian matrix of polynomials f̂ = {f1, . . . , fn−1}
with respect to variables X2, . . . , Xn.

If x is a multiple zero of multiplicity μ for f and Df(x) has the normalized
form (15), which is always possible to obtain by performing unitary transforma-
tions when dim kerDf(x) = 1, see [15, Sect. 2.3], then we have Δk(fn) = 0, for
k = 2, . . . , μ − 1, Δμ(fn) �= 0, and the linear system (14) for getting the values
of ak,2, . . . , ak,n can be simplified to:

⎛

⎜
⎝

d2(f1) · · · dn(f1)
...

. . .
...

d2(fn−1) · · · dn(fn−1)

⎞

⎟
⎠

⎛

⎜
⎝

ak,2

...
ak,n

⎞

⎟
⎠ = −

⎛

⎜
⎝

Δk(f1)
...

Δk(fn−1)

⎞

⎟
⎠ . (16)

3 Local Separation Bound and Cluster Location

In [9], Dedieu and Shub gave quantitative results for simple double zeros satis-
fying f(x) = 0 and

(A) dim ker Df(x) = 1,
(B) D2f(x)(v, v) /∈ imDf(x),

where ker Df(x) is spanned by a unit vector v ∈ C
n. They generalized the

definition of γ in (5) to

γ2(f, x) = max

(

1, sup
k≥2

∥
∥
∥
∥A(f, x, v)−1 · Dkf(x)

k!

∥
∥
∥
∥

1
k−1

)

, (17)

where
A(f, x, v) = Df(x). +

1
2
D2f(x)(v,Πv), (18)

is a linear operator which is invertible at the simple double zero x, and Πv

denotes the Hermitian projection onto the subspace [v] ⊂ C
n.

In [9, Theorem 1], Dedieu and Shub also presented a lower bound for sepa-
rating simple double zeros x from the other zeros y of f ,

‖y − x‖ ≥ d

2γ2(f, x)2
, (19)

where d ≈ 0.2976 is a positive real root of
√

1 − d2 − 2d
√

1 − d2 − d2 − d = 0. (20)

Computing Multiple Zeros of Polynomial Systems: Case of Breadth One 397

In [9, Theorem 4], Dedieu and Shub showed that if the following criterion is
satisfied at a given point x and a given vector v

‖f(x)‖ + ‖Df(x)v‖ d

4γ2(f, x, v)2
<

d3

32γ4
2‖B(f, x, v)−1‖ , (21)

then f has two zeros in the ball of radius

d

4γ2(f, x)2
, (22)

around x. Let us set
B(f, x, v) = A(f, x, v) − L,

where L(v) = Df(x)v, L(w) = 0 for w ∈ v⊥, and

γ2(f, x) = max

(

1, sup
k≥2

∥
∥
∥
∥B(f, x, v)−1 · Dkf(x)

k!

∥
∥
∥
∥

1
k−1

)

. (23)

Based on the multiplicity structure of the singular zero x of f computed in
the last section, we generalize Dedieu and Shub’s results to multiple zeros with
arbitrary large multiplicity.

Let f : C
n → C

n, and x be a singular zero of f of multiplicity μ, where

Df(x) has the normalized form Df(x) =
(

0 Df̂(x)
0 0

)
, Df̂(x) is invertible and

Δk(fn) = 0, for k = 2, . . . , μ − 1, Δμ(fn) �= 0. (24)

Let y be another vector in C
n and y �= x. Recall that ϕ = dP (v, y − x),

v = (1, 0, . . . , 0)T and w = x − y = (ζ, η2, . . . , ηn)T , η = (η2, . . . , ηn)T , then we
have |ζ| = ‖w‖ sin ϕ, ‖η‖ = ‖w‖ cos ϕ. Let

A =

(√
2Df̂(x) 0

0 1√
2
Δμ(fn)

)

,

and γμ = max(γ̂μ, γμ,n), where

γ̂μ = γ̂μ(f, x) = max

⎛

⎝1, sup
k≥2

∥
∥
∥
∥
∥
Df̂(x)−1 Dkf̂(x)

k!

∥
∥
∥
∥
∥

1
k−1

⎞

⎠ , (25)

where Dkf̂(x) for k ≥ 2 denote the partial derivatives of f̂ of order k with
respect to X1,X2, . . . , Xn evaluated at x, and

γμ,n = γμ,n(f, x) =

(

1, sup
k≥2

∥
∥
∥
∥

1
Δμ(fn)

· Dkfn(x)
k!

∥
∥
∥
∥

1
k−1

)

, (26)

398 L. Zhi

Definition 2 [15, Defintion 3]. We define d = min(d1, d2, d3), where

d1 =

√
1

c2μ−1,1 + 1
, d2 =

√
1

μ − 1
,

and d3 is the smallest positive real root of the polynomial

p(d) = (1 − d2)
μ
2 −

∑

i+j=μ,j>0

ci,jd(1 − d2)
i
2 dj−1 (27)

− d

⎛

⎝
∑

1≤i≤μ−2

ti,0 +
∑

1≤i+j≤μ−2,j>0

ti,j(1 − d2)
i
2 dj + 1

⎞

⎠ ,

where ci,j and ti,j can be obtained by the method given in [15, Case 2].

Theorem 1 [15, Theorem 5]. Let x be a multiple zero of f of multiplicity μ,
dim ker Df(x) = 1, and y be another zero of f , then

‖y − x‖ ≥ d

2γμ
μ

.

Remark 1. For μ = 2, we have [15, Sect. 3.3]

p(d) = 1 − 2d2 − 2d
√

1 − d2 − d. (28)

The smallest positive real root of p(d) is

d ≈ 0.2865.

For μ = 3, we have [15, Lemma 3]

p(d) = (1 − 2d − 8d2)
√

1 − d2 − 9d − d2 + 6d3. (29)

The smallest positive root of p(d) is

d ≈ 0.08507.

Theorem 2 [15, Theorem 8]. Given f : Cn → C
n, x ∈ C

n, such that Df̂(x) is
invertible, and Δμ(fn) �= 0. Let

H1 =

(
∂f̂(x)
∂X1

0
∂fn(x)
∂X1

∂fn(x)

∂X̂

)

,

Hk =

⎛

⎜
⎝

(
0 0

Δk(fn) 0

)
0n × · · · × n︸ ︷︷ ︸

k

×(n − 1)

⎞

⎟
⎠ , 2 ≤ k ≤ μ − 1,

Computing Multiple Zeros of Polynomial Systems: Case of Breadth One 399

and polynomials

g(X) = f(X) − f(x) −
∑

1≤k≤μ−1

Hk(X − x)k.

Let γμ = γμ(g, x), if

‖f(x)‖ +
∑

1≤k≤μ−1

‖Hk‖
(

d

4γμ
μ

)k

<
dμ+1

2 (4γμ
μ)μ ‖A−1‖ , (30)

then f has μ zeros (counting multiplicities) in the ball of radius d
4γμ

μ
around x.

4 Verified Error Bound

Let IR be the set of real intervals, and let IR
n and IR

n×n be the set of real
interval vectors and real interval matrices, respectively. Standard verification
methods for nonlinear systems are based on the following theorem.

Theorem 1 [17,27,34]. Let f : Rn → R
n be a system of nonlinear equations.

Suppose x ∈ R
n, X ∈ IR

n with 0 ∈ X and R ∈ R
n×n are given. Let M ∈ IR

n×n

be given such that

{Dfi(y) : y ∈ x + X} ⊆ Mi,:, i = 1, . . . , n. (31)

Denote by In the n × n identity matrix and assume

− Rf(x) + (In − RM)X ⊆ int(X). (32)

Then there is a unique x̃ ∈ x + X satisfying f(x̃) = 0. Moreover, every matrix
M̃ ∈ M is nonsingular. In particular, the Jacobian matrix Df(x̃) is nonsingular.

Theorem 1 is restricted to verifying the existence of a simple solution of a
square and regular system. Notice that Theorem 1 is valid over complex numbers
with the necessary modifications. In [35], by introducing a smoothing parameter,
Rump and Graillat developed a verification method for computing verified and
narrow error bounds, such that a slightly perturbed system is proved to possess
a double root within computed error bounds.

In [23], by adding a univariate polynomial in one selected variable with some
smoothing parameters to one selected equation of the original system, we gen-
eralized the algorithm in [35] to compute guaranteed error bounds such that
a slightly perturbed system is proved to have a breadth-one isolated singular
solution within computed error bounds.

For a polynomial function f : C
n → C

n, where fi ∈ C[X1, . . . , Xn], and
suppose x is a zero of f of multiplicity μ and satisfying dim kerDf(x) = 1.
Suppose the i-th column of Df(x) can be written as a linear combination of the
other n − 1 columns, then we choose xi as the variable. Similarly, suppose the
j-th row of Df(x) can be written as a linear combination of the other n − 1

400 L. Zhi

linearly independent rows, then we add the perturbed univariate polynomial in
xi to fj . Finally, we permute

x1 ↔ xi and f1 ↔ fj

to construct a deflated system below.
We introduce μ − 1 smoothing parameters b0, b1, . . . , bμ−2 and construct a

deflated system G(X, b, a) with μn variables and μn equations:

G(X, b, a) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

F1(X, b) = f(X) −
(∑μ−2

ν=0
bνxν

1
ν!

)
e1

F2(X, b, a1)
F3(X, b, a1, a2)

...
Fμ(X, b, a1, . . . , aμ−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (33)

where e1 = (1, 0, . . . , 0)T , b = (b0, b1, . . . , bμ−2), a = (a1, a2, . . . , aμ−1), a1 =
(1, a1,2, . . . , a1,n)T , ak = (0, ak,2, . . . , ak,n)T for 1 < k ≤ μ, and

Fk(X, b, a1, . . . , ak−1) = Lk−1(F1), (34)

where Lk are differentiation operators corresponding to Λk defined by (12).

Theorem 2 [23, Theorem 4.3]. Suppose G(x, b̃, ã) = 0. If the Jacobian matrix
of the deflated polynomial system G(X, b, a) at (x, b̃, ã) is nonsingular, then x
is an isolated root of the perturbed polynomial system F (X) = F1(X, b̃) with
multiplicity μ and the corank of DF (x) is one.

Theorem 3 [23, Theorem 4.5]. Suppose Theorem 1 is applicable to G(X, b, a)
in (33) and yields inclusions for x, b̃ and ã such that G(x, b̃, ã) = 0. Then x is
an isolated breadth-one root of F (X) = F1(X, b̃) with multiplicity μ.

5 Modified Newton Iterations

In [22], we presented a symbolic-numeric method to refine an approximate iso-
lated singular solution x̃ = (x1, . . . , xn) of a polynomial system f = {f1, . . . , fn}
when the Jacobian matrix of f evaluated at x̃ has corank one approximately.
Our approach is based on the regularized Newton iteration and the computa-
tion of differential conditions satisfied at the approximate singular solution. The
size of matrices involved in our algorithm is bounded by n × n. The algorithm
converges quadratically if x̃ is close to the isolated exact singular solution of f .

Theorem 4 [22, Theorem 3.16]. If the Jacobian matrix of f evaluated at x has
corank one and the approximate singular solution x̃ of f satisfying

‖x̃ − x‖ = ε � 1,

where the positive number ε is small enough such that there are no other solutions
of f nearby, then the refined singular solution x̃ returned by Algorithm 1 satisfies

‖Nf (x̃) − x‖ = O(ε2).

Computing Multiple Zeros of Polynomial Systems: Case of Breadth One 401

Algorithm 1. Modified Newton’s Iterations for Breadth-one Multiple Zero
Input:

f : a polynomial system;
x̃: an approximate singular zero of f ;
μ: the multiplicity

Output:
Nf (x̃): a refined solution after one iteration;

1: solve the regularized least squares problem

(Df(x̃)∗Df(x̃) + σnIn)ỹ = Df(x̃)∗b,

where b = −f(x̃), In is the n × n identity matrix and σn is the smallest singular
value of Df(x̃);

2: compute the singular value decomposition of Df(x̃ + ỹ) = U · Σ · V ∗, let

g(X) = f(W · X), W = (vn, v1, . . . , vn−1),

and set z̃ ← W ∗(x̃ + ỹ);
3: construct Δµ and a closed approximate basis of the local dual space

Dg,z̃ = Span(Λ0, Λ1, . . . , Λµ−1),

by Algorithm MultiplicityStructureBreadthOneNumeric in [21];
4: solve the linear system

[
Δµ(g),

∂g(z̃)

∂z2
, . . . ,

∂g(z̃)

∂zn

]
δ = −Λµ−1(g)

5: update the zero of g

z̃1 ← z̃1 +
δ1
μ

, z̃i ← z̃i, 2 ≤ i ≤ n

and
Nf (x̃) ← W · z̃.

The proof of Theorem 4 in [22] is based on studying zeros of deflated sys-
tems. It is difficult to quantify the quadratical convergence of Algorithm 1. In
[15], we present a new algorithm for refining an approximate singular zero whose
Jacobian matrix has corank one. The main idea is to perform the unitary trans-
formations to both variables and equations defined at the approximate singular
solutions, then define the modified Newton’s iteration which are very similar to
Step 4 in Algorithm 1.

Theorem 3. Given an approximate zero z of a polynomial system f associated
to a multiple zero ξ of multiplicity μ and satisfying f(ξ) = 0, dim ker Df(ξ) = 1.
Suppose

γ̂μ(f, z)‖z − ξ‖ <
1
2
,

402 L. Zhi

Algorithm 2. Modified Newton’s Iteration for Breadth-one Multiple Zeros
Input:

f : a polynomial system;
z: an approximate singular zero of f;
μ: the multiplicity;

Output:
Nf (z): a refined solution after one iteration;

1: compute the singular value decomposition

Df(z) = U ·
(

Σn−1 0
0 σn

)
· V ∗, W† = (vn, v1, . . . , vn−1);

2: perform the unitary transformations to equations and variables

f(X) ← U∗ · f(W† · X), z ← W ∗
† z;

3: update the last n − 1 elements of the approximate zero

N1(f̂ , ẑ) ← ẑ − Df̂(z)−1f̂(z), y = (y1, ŷ) ← (z1, N1(f̂ , ẑ));

4: compute the singular value decomposition

Df(y) = U ·
(

Σn−1 0
0 σn

)
· V ∗, W‡ = (vn, v1, . . . , vn−1);

5: perform the unitary transformations to equations and variables:

g(X) ← U∗ · f(W‡ · X), w = (w1, ŵ) ← W ∗
‡ y;

6: update the first element of the approximate zero

N2(gn, w) ← w1 − 1

μ
Δµ(gn)−1Δµ−1(gn), x = (x1, x̂) ← (N2(gn, w), ŵ);

7: update the zero of f
Nf (z) ← W† · W‡ · x.

where γ̂μ(f, z) is defined by (25), then the refined singular solution Nf (z)
returned by Algorithm 2 satisfies

‖Nf (z) − ξ‖ = O(‖z − ξ‖2). (35)

In [15, Theorem 12], we give a quantified quadratic convergence proof of the
Algorithm 2 for simple triple zeros. There is no significant obstacle to extend
the proof to multiple zeros of higher multiplicities. However, the computation
will become more complicated.

Theorem 4 [15, Theorem 12]. Given an approximate zero z of a system f
associated to a simple triple zero ξ of multiplicity 3 and satisfying f(ξ) = 0,
dim ker Df(ξ) = 1. Let u = max{γ3(f, ξ)3‖ξ − z‖, Lγ3(f, ξ)2‖ξ − z‖}, where L
is the Lipschitz constant of the function Df(X).

Computing Multiple Zeros of Polynomial Systems: Case of Breadth One 403

(1) If u < u3 ≈ 0.0137,
then the output of Algorithm 2 satisfies:

‖Nf (z) − ξ‖ < ‖z − ξ‖ .

(2) If u < u′
3 ≈ 0.0098 then after k times of iteration we have

∥
∥Nk

f (z) − ξ
∥
∥ <

(
1
2

)2k−1

‖z − ξ‖ .

6 Conclusion

The Maple code of algorithms mentioned in the paper and test results are avail-
able http://www.mmrc.iss.ac.cn/∼lzhi/Research/hybrid.

Although the algorithms and proofs of quadratic convergence given in the
paper are for polynomial systems with exact multiple zeros, examples are given
to demonstrate that our algorithms are also applicable to analytic systems and
polynomial systems with a cluster of simple roots.

References

1. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, New York (1998)

2. Chen, X., Nashed, Z., Qi, L.: Convergence of Newton’s method for singular smooth
and nonsmooth equations using adaptive outer inverses. SIAM J. Optim. 7(2),
445–462 (1997)

3. Corless, R.M., Gianni, P.M., Trager, B.M.: A reordered Schur factorization method
for zero-dimensional polynomial systems with multiple roots. In: Küchlin, W.W.
(ed) Proceedings of ISSAC 1997, pp. 133–140. ACM, New York (1997)

4. Dayton, B., Li, T., Zeng, Z.: Multiple zeros of nonlinear systems. Math. Comput.
80, 2143–2168 (2011)

5. Dayton, B., Zeng, Z.: Computing the multiplicity structure in solving polynomial
systems. In: Kauers, M. (ed) Proceedings of ISSAC 2005, pp. 116–123. ACM, New
York (2005)

6. Decker, D.W., Kelley, C.T.: Newton’s method at singular points I. SIAM J. Numer.
Anal. 17, 66–70 (1980)

7. Decker, D.W., Kelley, C.T.: Newton’s method at singular points II. SIAM J.
Numer. Anal. 17, 465–471 (1980)

8. Decker, D.W., Kelley, C.T.: Convergence acceleration for Newton’s method at sin-
gular points. SIAM J. Numer. Anal. 19, 219–229 (1982)

9. Dedieu, J.P., Shub, M.: On simple double zeros and badly conditioned zeros of
analytic functions of n variables. Math. Comput. 70(233), 319–327 (2001)

10. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation
of clusters of zeros of analytic functions. Found. Comput. Math. 5(3), 257–311
(2005)

11. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation
of clusters of zeros: case of embedding dimension one. Found. Comput. Math. 7(1),
1–58 (2007)

http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid

404 L. Zhi

12. Griewank, A.: On solving nonlinear equations with simple singularities or nearly
singular solutions. SIAM Rev. 27(4), 537–563 (1985)

13. Griewank, A.: Analysis and modification of Newton’s method at singularities.
Australian National University, thesis (1980)

14. Griewank, A., Osborne, M.R.: Newton’s method for singular problems when the
dimension of the null space is >1. SIAM J. Numer. Anal. 18, 145–149 (1981)

15. Hao, Z., Jiang, W., Li, N., Zhi, L.: Computing simple multiple zeros of polynomial
systems (2017). https://www.arxiv.org/pdf/1703.03981.pdf

16. Hauenstein, J.D., Sottile, F.: Algorithm 921: AlphaCertified: certifying solutions
to polynomial systems. ACM Trans. Math. Softw. 38(4), 28:1–28:20 (2012)

17. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-
schranken. Computing 4(3), 187–201 (1969)

18. Lecerf, G.: Quadratic Newton iteration for systems with multiplicity. Found. Com-
put. Math. 2(3), 247–293 (2002)

19. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated
singularities of polynomial systems. Theoret. Comput. Sci. 359(1), 111–122 (2006)

20. Leykin, A., Verschelde, J., Zhao, A.: Higher-order deflation for polynomial systems
with isolated singular solutions. In: Dickenstein, A., Schreyer, F.O., Sommese, A.J.
(eds.) Algorithms in Algebraic Geometry. IMA, vol. 146, pp. 79–97. Springer, New
York (2008)

21. Li, N., Zhi, L.: Compute the multiplicity structure of an isolated singular solution:
case of breadth one. J. Symb. Comput. 47, 700–710 (2012)

22. Li, N., Zhi, L.: Computing isolated singular solutions of polynomial systems: case
of breadth one. SIAM J. Numer. Anal. 50(1), 354–372 (2012)

23. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial
systems: case of breadth one. Theoret. Comput. Sci. 479, 163–173 (2013)

24. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial
systems. SIAM J. Numer. Anal. 52(4), 1623–1640 (2014)

25. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros of
polynomial systems. In: Leykin, A. (ed.) Proceedings of ISSAC 2011, pp. 249–256.
ACM, New York (2011)

26. Marinari, M.G., Mora, T., Möller, H.M.: Gröbner duality and multiplicities in
polynomial system solving. In: Proceedings of ISSAC 1995, pp. 167–179. ACM,
New York (1995)

27. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer.
Anal. 14(4), 611–615 (1977)

28. Mourrain, B.: Isolated points, duality and residues. J. Pure Appl. Algebra 117,
469–493 (1996). 117

29. Ojika, T.: Modified deflation algorithm for the solution of singular problems. i.
a system of nonlinear algebraic equations. J. Math. Anal. Appl. 123(1), 199–221
(1987)

30. Ojika, T., Watanabe, S., Mitsui, T.: Deflation algorithm for the multiple roots of
a system of nonlinear equations. J. Math. Anal. Appl. 96(2), 463–479 (1983)

31. Rall, L.B.: Convergence of the Newton process to multiple solutions. Numer. Math.
9(1), 23–37 (1966)

32. Reddien, G.W.: On Newton’s method for singular problems. SIAM J. Numer. Anal.
15(5), 993–996 (1978)

33. Reddien, G.W.: Newton’s method and high order singularities. Comput. Math.
Appl. 5(2), 79–86 (1979)

https://www.arxiv.org/pdf/1703.03981.pdf

Computing Multiple Zeros of Polynomial Systems: Case of Breadth One 405

34. Rump, S.M.: Solving algebraic problems with high accuracy. In: Proceedings of the
Symposium on A New Approach to Scientific Computation, pp. 51–120. Academic
Press Professional Inc., San Diego (1983)

35. Rump, S.M., Graillat, S.: Verified error bounds for multiple roots of systems of
nonlinear equations. Numer. Algorithms 54(3), 359–377 (2010)

36. Shen, Y.Q., Ypma, T.J.: Newton’s method for singular nonlinear equations using
approximate left and right nullspaces of the Jacobian. Appl. Numer. Math. 54(2),
256–265 (2005)

37. Shub, M., Smale, S.: Complexity of bezout’s theorem IV: probability of success;
extensions. SIAM J. Numer. Anal. 33(1), 128–148 (1996)

38. Shub, M., Smale, S.: Computational complexity: on the geometry of polynomials
and a theory of cost: I. Ann. Sci. Éc. Norm. Supér. 18(1), 107–142 (1985)

39. Shub, M., Smale, S.: Computational complexity: on the geometry of polynomials
and a theory of cost: II. SIAM J. Comput. 15(1), 145–161 (1986)

40. Smale, S.: The fundamental theorem of algebra and complexity theory. Bull. Amer.
Math. Soc. 4(1), 1–36 (1981)

41. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E.,
Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines: New Directions in
Pure, Applied, and Computational Mathematics. Springer, New York (1986)

42. Stetter, H.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)
43. Wang, X., Han, D.: On dominating sequence method in the point estimate and

smale theorem. Sci. China Ser. A 33(2), 135–144 (1990)
44. Wu, X., Zhi, L.: Computing the multiplicity structure from geometric involutive

form. In: Jeffrey, D. (ed) Proceedings of ISSAC 2008, pp. 325–332. ACM, New
York (2008)

45. Wu, X., Zhi, L.: Determining singular solutions of polynomial systems via symbolic-
numeric reduction to geometric involutive forms. J. Symb. Comput. 47(3), 227–238
(2012)

46. Yamamoto, N.: Regularization of solutions of nonlinear equations with singular
Jacobian matrices. J. Inf. Process. 7(1), 16–21 (1984)

Author Index

Abramov, S.A. 1

Banshchikov, Andrei V. 16
Briani, Matteo 27
Bruno, Alexander D. 40

Chen, Changbo 51, 377
Cheng, Jin-San 66
Chuluunbaatar, G. 134, 151
Chuluunbaatar, O. 134, 151
Cuyt, Annie 27

Derbov, V.L. 134, 151
Dong, Rina 77
Dou, Xiaojie 66

Edneral, Victor F. 40
England, Matthew 93
Epure, Raul 109
Errami, Hassan 93

Fan, W.L. 118
Feng, Yong 51

Gao, Xiao-Shan 183, 196
Gerdt, Vladimir P. 134, 151, 301
Góźdź, A. 134, 151
Grigoriev, Dima 93
Gusev, A.A. 134, 151
Gutnik, Sergey A. 167

Hu, Youren 183
Huang, Qiao-Long 196

Irtegov, Valentin 210

Jeffrey, D.J. 118
Jing, Rui-Juan 225, 242

Kozera, Ryszard 257

Lee, Wen-shin 27
Li, Zhe 272

Liu, Jiang 285
Lyakhov, Dmitry A. 301

Michels, Dominik L. 301
Moreno Maza, Marc 225, 242
Mou, Chenqi 77

Neiger, Vincent 313
Noakes, Lyle 257

Postma, Erik 118
Prokopenya, Alexander N. 329

Radulescu, Ovidiu 93
Rahkooy, Hamid 313
Reid, Greg 377
Ren, Yue 109
Romanovski, Valery G. 40

Sarychev, Vasily A. 167
Schönemann, Hans 109
Schost, Éric 313
Shapeev, Vasily P. 346
Sturm, Thomas 93

Titorenko, Tatyana 210

Vinitsky, S.I. 134, 151
Vorozhtsov, Evgenii V. 346

Wan, Baocheng 272
Wang, Yu 362
Weber, Andreas G. 93, 301
Wu, Wenyuan 51, 362, 377

Xia, Bican 362

Zhang, Shugong 272
Zhi, Lihong 392

	Preface
	Organization
	Contents
	Linear Differential Systems with Infinite Power Series Coefficients (Invited Talk)
	1 Introduction
	2 Algorithmic Representation
	2.1 Computable Infinite Power Series in the Role of Coefficients of Linear Differential Systems
	2.2 Procedures for Constructing Local Solutions

	3 Approximate (Truncated) Representation
	3.1 Strongly Non-singular Matrices
	3.2 When only a Truncated System Is Known

	4 The Width
	References

	On the Asymptotic Stability of a Satellite with a Gravitational Stabilizer
	1 Introduction
	2 Description and Construction of a Symbolical Model
	3 Formulation of the Problem
	4 Regions of System's Instability
	5 Parametric Analysis of Asymptotic Stability Conditions
	5.1 Stabilization in the ``Pitch'' Subsystem
	5.2 Stabilization in the ``Yaw-and-Roll'' Subsystem

	6 Conclusion
	References

	Sparse Interpolation, the FFT Algorithm and FIR Filters
	1 Sparse Interpolation
	2 Divide and Conquer Approach
	3 The FFT Algorithm
	4 An Analog Version of the Splitting Technique
	5 Connection to FIR Filters
	6 Conclusion
	References

	On New Integrals of the Algaba-Gamero-Garcia System
	1 Introduction
	2 Problem Statement
	3 Necessary Conditions of Local Integrability
	4 Sufficient Conditions of Integrability
	5 Case b2=2/3, Subcase 3 a0 - 2 b0 = b(3 a1 - 2 b1)
	6 Analytical Properties of the Integrals
	7 Conclusions
	References

	Full Rank Representation of Real Algebraic Sets and Applications
	1 Introduction
	2 Full Rank Representation of Real Algebraic Sets
	3 Compute Full Rank Representation
	4 Applications on Plotting Singular Plane and Space Curves
	5 Experimentation
	6 Conclusion and Future Work
	References

	Certifying Simple Zeros of Over-Determined Polynomial Systems
	1 Introduction
	2 Preliminaries
	3 Transforming Over-Determined Polynomial Systems into Square Ones
	4 Certifying Simple Zeros of Over-Determined Systems
	References

	Decomposing Polynomial Sets Simultaneously into Gröbner Bases and Normal Triangular Sets
	1 Introduction
	2 Preliminaries
	2.1 Triangular Set and Triangular Decomposition
	2.2 Gröbner Basis and W-Characteristic Set
	2.3 (Strong) Characteristic Decomposition and Characterizable Gröbner Basis

	3 Algorithm for (Strong) Characteristic Decomposition
	3.1 Algorithm to Handle the Variable Ordering Condition
	3.2 Algorithms for Characteristic Decomposition
	3.3 Algorithm for Strong Characteristic Decomposition
	3.4 An Illustrative Example

	4 Implementation and Experimental Results
	References

	Symbolic Versus Numerical Computation and Visualization of Parameter Regions for Multistationarity of Biological Networks
	1 Introduction
	2 The Systems for the Case Studies
	2.1 Biomod-26
	2.2 Biomod-28

	3 Graph-Theoretical Symbolic Preprocessing
	4 Determination of Multiple Steady States
	4.1 Numerical Approach
	4.2 Symbolic Approach
	4.3 Comparison
	4.4 Going Further

	5 Conclusion and Future Work
	References

	The Polymake Interface in Singular and Its Applications
	1 Introduction
	2 An Interface to Polymake
	3 User Defined Types in Singular: Polyhedral Divisors
	4 Quasihomogeneous Isolated Hypersurface Singularities
	4.1 Finding Quasihomogeneous Isolated Hypersurface Singularities
	4.2 Reconstruction of QHIS from the Milnor Algebra

	References

	Computation of Some Integer Sequences in Maple
	1 Introduction
	1.1 Definitions of Numbers

	2 Stirling Partition Numbers
	2.1 Sequence Calculation

	3 Stirling Cycle Numbers
	3.1 Singleton Computation
	3.2 A Finite Sum
	3.3 Sequence Calculation

	4 Associated Stirling Numbers
	4.1 Singleton Stirling 2-Partition and 2-Cycle
	4.2 Sequence Calculation of 2-Partition and 2-Cycle Numbers
	4.3 Singleton Stirling r-Partition and r-Cycle Numbers
	4.4 Sequence Calculation of r-Partition and r-Cycle Numbers
	4.5 Implementation in Maple

	5 A Multiple Threads Approach to Sequence Calculations
	6 Implementation of Eulerian Numbers
	6.1 Timings for Eulerian Number Calculations

	References

	Symbolic-Numerical Algorithm for Generating Interpolation Multivariate Hermite Polynomials of High-Accuracy Finite Element Method
	1 Introduction
	2 Setting of the Problem
	3 FEM Calculation Scheme
	3.1 Lagrange Interpolation Polynomials
	3.2 Algorithm for Calculating the Basis of Hermite Interpolating Polynomials
	3.3 Example: HIP for d=2
	3.4 Piecewise Polynomial Functions

	4 Results and Discussion
	5 Conclusion
	References

	Symbolic-Numerical Algorithms for Solving the Parametric Self-adjoint 2D Elliptic Boundary-Value Problem Using High-Accuracy Finite Element Method
	1 Introduction
	2 FEM Algorithm for Solving the Parametric 2D BVP
	3 Fully Symmetric High-Order Gaussian Quadratures
	4 The Algorithm for Calculating the Parametric Derivatives of Eigenfunctions and Effective Potentials
	5 Benchmark Calculations of Helium Atom Ground State
	6 Conclusion
	References

	A Symbolic Study of the Satellite Dynamics Subject to Damping Torques
	1 Introduction
	2 Equations of Motion
	3 Equilibrium Orientations of Satellite
	4 Conditions for the Existence of Equilibrium Orientations of the Satellite
	5 Necessary and Sufficient Conditions of Asymptotic Stability of the Equilibrium Orientations of Satellite
	6 Conclusion
	References

	Characteristic Set Method for Laurent Differential Polynomial Systems
	1 Introduction
	2 Laurent Polynomial Systems
	2.1 Laurent Regular Chain
	2.2 Characteristic Set Method
	2.3 Laurent Gröbner Basis and Minimal Decomposition

	3 Differential Polynomial Systems
	3.1 Laurent Regular Differential Chains
	3.2 Decision of Univariate Laurent Regular Differential Polynomial

	References

	Sparse Polynomial Interpolation with Finitely Many Values for the Coefficients
	1 Introduction
	2 Univariate Polynomial Interpolation
	2.1 Sparse Interpolation with Finitely Many Coefficients
	2.2 The Sparse Interpolation Algorithm
	2.3 The Rational Number Coefficients Case

	3 Multivariate Polynomial Sparse Interpolation with Modified Kronecker Substitution
	3.1 Find a Good Prime
	3.2 A Deterministic Algorithm
	3.3 Probabilistic Algorithm

	4 Experimental Results
	5 Conclusion
	References

	On Stationary Motions of the Generalized Kowalewski Gyrostat and Their Stability
	1 Introduction
	2 Formulation of the Problem
	3 Finding the Stationary Solutions
	3.1 Permanent Rotations
	3.2 Equilibria

	4 On Invariant Manifolds of Codimension 2
	5 On Stability of the Stationary Solutions
	5.1 On Stability of the Permanent Rotations
	5.2 On Stability of the Equilibria

	6 Conclusion
	7 Appendix
	References

	Computing the Integer Points of a Polyhedron, I: Algorithm
	1 Introduction
	2 Polyhedral Sets
	3 Integer Solutions of Linear Equation Systems
	4 Integer Solutions of Linear Inequality Systems
	4.1 Normalization of Linear Inequality Systems
	4.2 Representing the Integer Points
	4.3 The IntegerSolve Procedure: Specifications
	4.4 The DarkShadow Procedure
	4.5 The GreyShadow Procedure
	4.6 The IntegerSolve Procedure: Algorithm

	References

	Computing the Integer Points of a Polyhedron, II: Complexity Estimates
	1 Introduction
	2 Properties of the Projection of Faces of a Polyhedron
	3 Complexity Estimates for Fourier-Motzkin Elimination
	4 Proof of Theorem1
	5 Experimentation
	References

	Non-linearity and Non-convexity in Optimal Knots Selection for Sparse Reduced Data
	1 Problem Formulation
	2 Non-Linearity of JTF and Numerical Difficulties
	3 Non-Convexity of JTF
	4 Numerical Experiments for Fitting Sparse Reduced Data
	5 Conclusions
	References

	The Convergence Conditions of Interval Newton's Method Based on Point Estimates
	1 Introduction
	2 Notation and Preliminaries
	3 Main Results
	4 Example
	References

	Normalization of Indexed Differentials Based on Function Distance Invariants
	1 Introduction
	2 Indexed Differential Polynomial Ring
	3 Distances Between Indexed Functions
	4 Normalization with Respect to Monoterm Symmetries
	5 Normalization
	References

	Symbolic-Numeric Integration of the Dynamical Cosserat Equations
	1 Introduction
	2 Governing Cosserat Equations and the General Solution of Their Kinematic Part
	3 Symbolic-Numeric Integration Method
	3.1 Naive Approach: Explicit Numerical Solving
	3.2 Advanced Approach Based on Exponential Integration

	4 Numerical Comparison with the Generalized alpha-Method
	5 Conclusison
	A Generalized alpha-Method
	References

	Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences
	1 Introduction
	2 Generalities on Sequences and Their Annihilators
	3 Computing Annihilators of Sequences
	3.1 A First Algorithm
	3.2 An Algorithm Under Genericity Assumptions

	4 Main Algorithm
	4.1 Representing Primary Zero-Dimensional Ideals
	4.2 The Algorithm

	References

	Symbolic-Numerical Analysis of the Relative Equilibria Stability in the Planar Circular Restricted Four-Body Problem
	1 Introduction
	2 Equilibrium Solutions
	3 Stability Analysis in Linear Approximation
	4 Normalization of the Hamiltonian
	5 Conclusion
	References

	The Method of Collocations and Least Residuals Combining the Integral Form of Collocation Equations and the Matching Differential Relations at the Solution of PDEs
	1 Introduction
	2 The ``Differential'' CLR Method
	2.1 Description of the Method
	2.2 Preconditioners for the CLR Method
	2.3 Convergence Acceleration Algorithm Based on Krylov's Subspaces
	2.4 Convergence Acceleration by Using the Multigrid Algorithm

	3 The Use of the Integral Form of Collocation Equations
	4 Results of Numerical Experiments
	5 Conclusions
	References

	A Special Homotopy Continuation Method for a Class of Polynomial Systems
	1 Introduction
	2 Preliminary
	2.1 Algebraic Sets and Genericity
	2.2 Trackable Paths
	2.3 Witness Set and Degree of an Algebraic Set
	2.4 Critical Points

	3 Main Idea
	4 Algorithm
	5 Real Critical Set
	5.1 Critical Points on a Real Algebraic Set
	5.2 Illustrative Example

	6 Experiment Performance
	6.1 Dense Examples
	6.2 Sparse examples
	6.3 RAT/Density

	References

	Penalty Function Based Critical Point Approach to Compute Real Witness Solution Points of Polynomial Systems
	1 Introduction
	2 Augmented System
	3 Error Control with Rank Assumption
	4 Error Control for General Systems
	4.1 Degree Index
	4.2 Improve Accuracy

	5 Examples
	5.1 ISSAC 2016 System
	5.2 Seiler System
	5.3 Larger Examples

	6 Conclusions
	References

	Computing Multiple Zeros of Polynomial Systems: Case of Breadth One (Invited Talk)
	1 Introduction
	2 Local Dual Space
	3 Local Separation Bound and Cluster Location
	4 Verified Error Bound
	5 Modified Newton Iterations
	6 Conclusion
	References

	Author Index

