
Software Testing Techniques Revisited for OWL
Ontologies

Cesare Bartolini(B)

Interdisciplinary Centre for Security, Reliability and Trust (SnT), Université du
Luxembourg, Luxembourg, Luxembourg

cesare.bartolini@uni.lu

Abstract. Ontologies are an essential component of semantic knowledge
bases and applications, and nowadays they are used in a plethora of
domains. Despite the maturity of ontology languages, support tools and
engineering techniques, the testing and validation of ontologies is a field
which still lacks consolidated approaches and tools. This paper attempts
at partly bridging that gap, taking a first step towards the extension of
some traditional software testing techniques to ontologies expressed in a
widely-used format. Mutation testing and coverage testing, revisited in
the light of the peculiar features of the ontology language and structure,
can can assist in designing better test suites to validate them, and overall
help in the engineering and refinement of ontologies and software based
on them.

Keywords: Mutation testing · Coverage testing · Ontology · OWL ·
Mutant generation

1 Introduction

The use of semantics in information technology is greatly enhancing the expres-
siveness of knowledge bases, especially with respect to information representation
and retrieval. Information is classified according to domain-specific structures
which describe the concepts and the relations between them, and this organiza-
tion allows an efficient access to such information. Cross-domain organization is
also made possible through the use of formal languages to describe the domains.
Nowadays, knowledge bases structured according to description logic [1] are pop-
ular, and they can also be generated using Natural Language Processing (NLP)
techniques to classify unstructured documents.

Semantic knowledge is a wide field of research and application, and it is based
on a multi-layered framework of components and technologies. However, at the
very basic level, there is the need to describe the domains. This result is achieved
by means of ontologies. Ontologies are a general concept to denote the definition
of a domain, describing it at various level of abstraction.

Of course, to be used in computer systems, ontologies need to be described
according to some formal language. Early attempts at defining a language to
c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 132–153, 2017.
DOI: 10.1007/978-3-319-66302-9 7



Software Testing Techniques Revisited for OWL Ontologies 133

structure knowledge resulted in the Resource Description Framework (RDF)
language [2]. However, the purpose of RDF is mainly to describe resources by
means of metadata, and it is too low level to provide an efficient means of
describing an ontology. For that purpose, the Web Ontology Language (OWL)
specification [3] has been defined.

OWL, that was developed starting from another ontology language [4] called
DAML+OIL [5], is a family of abstract languages which are expressed in several
different syntaxes, some of which are based on eXtensible Markup Language
(XML). The primary syntax is RDF/XML, which easily maps onto RDF con-
cepts and integrates with other XML languages.

It is widely known that there is no “right” way of defining an ontology.
Its definition really depends on the domain, the desired level of abstraction,
the purpose for which the ontology is intended, and a number of choices by
the developer. In other words, the same domain could be represented by sev-
eral totally different ontologies, which would result in different structures of the
respective knowledge bases (and consequently, with different results when clas-
sifying and querying information). However, for ontology-based applications to
be integrated, it is necessary that they are based on the same ontology.

Ontologies have a number of uses, primarily that of describing some domain
of knowledge from a specific perspective. In this sense, they act much like a
vocabulary, similarly to a database. They have found their place as the basis of
knowledge representation in many application fields, from web searches to the
medical and legal domains [6].

Ontologies are also used for decision support [7], therefore it is important
that they are as complete as possible (within their domain and purpose), and
also that they do not contain errors. Previous experiences [8] have highlighted
the risks of using an incorrect ontology as a structure for a knowledge base.
However, despite the acknowledged importance of the correctness of ontologies,
few methodologies and tools exist for the testing and validation of ontologies.

This paper aims at partly filling this void by proposing an extension of some
popular software testing techniques to the domain of OWL ontologies. Namely,
this work is focused on adapting mutation testing and coverage testing to ontolo-
gies.

Mutation testing is a well-known testing method that assesses the validity of a
test suite by generating mutants, i.e., incorrect versions of the System Under Test
(SUT), by introducing single errors in the trustworthy version. The ontology-
based software could then be linked to the mutants generated in this way, and run
against the test suite. The mutants thus killed can provide important information
about the ontology and the program using it, including coverage details and fault
detection.

Coverage testing aims at evaluating what portion of the SUT is exercised
by a test suite. Such knowledge can be used to determine if the test suite is
fit for validating the SUT, or if additional tests need to be designed. On the
other hand, coverage testing may reveal some parts of the SUT which are use-
less or redundant, thus suggesting some possible optimizations. This paper does



134 C. Bartolini

not introduce a detailed approach for measuring the coverage of ontologies, but
rather a preliminary idea focused mainly on classes, leaving further developments
to future work.

The paper is organized as follows. Section 2 provides a survey of existing
literature in ontology testing and mutation testing. Section 3 offers a high-level
description of mutation testing. Section 3.1 describes the proposed methodology,
explaining the various operators used for the mutation of an OWL ontology.
It also contains a high-level description of the implementation of the mutation
tool. Section 4 proposes a basic methodology to measure the coverage of an
ontology by a test suite, with a sample application in Sect. 4.1. Section 5 shows
the methodology in action, applying the mutation operators to various ontologies
in different domains. Finally, Sect. 6 summarizes the results and envisions some
directions for future research.

2 Related Work

Although knowledge bases and semantic applications are a very consolidated
domain nowadays, it appears that there has been little attention to the validation
of ontologies [9].

The World Wide Web Consortium (W3C) provides a set of test cases for
evaluating the OWL ontology from a structural point of vies [10]. [11] defines
an algorithm to “debug” ontologies in search of inconsistent classes. [12] offer a
means of ontology validation through user-defined test cases, whereas [13] defines
an approach to merge large ontologies and find inconsistencies.

A lot of research addresses metrics and benchmarks for ontologies. The work
proposed by [14] defines some measures for assessing an ontology, and evaluates
these measures by means of a meta-ontology against which the ontology under
validation is compared. This work does not seem to address the semantic correct-
ness of the ontology but mainly its structure and engineering methodology. A
similar approach, but with a greater attention to semantics, is proposed by [15].
[16] defines a benchmark for the analysis of ontologies based on two different
semantics, OWL Lite and OWL DL.

In [9], the authors propose a methodology and tool for testing an ontology.
The methodology addresses three main perspectives: verification of the Compe-
tency Question (CQs) to which the ontology is supposed to provide an answer,
verification of the inferences by means of an OWL reasoner, and provocation of
errors. The last perspective differs significantly from the current work because
it does not modify the ontology structure, but rather introduces test data that
are inconsistent with the ontology.

A significant model-checking methodology to validate the design of an ontol-
ogy is OntoClean [17]. It consists in introducing annotations in the ontology
which allow to perform a consistency check.

An interesting approach is described in [18]. The authors have built a testing
tool which tries to search for potential pitfalls in ontology development. The list
of pitfalls has been introduced by the authors in [19]. Although different from



Software Testing Techniques Revisited for OWL Ontologies 135

the idea of introducing errors in the ontology, their work can provide interesting
suggestions for the definition of mutation operators.

An approach that combines ontology evaluation with software engineering
techniques is described by [20], which introduces a proposal to adapt unit testing
to OWL ontologies. In the past, several tools have been developed for ontology
unit testing, although it does not appear to be a mainstream testing approach
for ontologies. Another interesting approach is presented in [21]: instances are
generated from an ontology, and hypotheses are formulates on these instances.
The validation of the generated hypotheses is then fed as an input to refine the
ontology.

Some previous work concerning mutation testing in the OWL language can be
found in [22]. The methodology does not apply to the general ontology language
OWL, but rather to a specific ontology called OWL-S [23] which can be used
as a semantic descriptor for web services, and it applies mutation to classes,
conditions, control flows and data flows. The purpose of that paper is not to
improve an ontology and its related test suite, but rather to detect errors in the
web service specification. However, some of the concepts introduced in that work
are similar to those introduced in the current work.

Concerning coverage testing, again, there does not appear to be any relevant
work on the topic. As per mutation testing, some works exist to measure the
coverage of web services in OWL-S [24], but the issue of measuring the actual
coverage of an ontology appears to be unexplored so far.

3 Mutation Testing

Mutation testing is a testing technique originally proposed in [25,26], although
allegedly the initial idea can be traced back to a few years earlier [27]. It is
classified either among the syntax-based testing techniques [28], or among the
error-based or fault-based testing techniques [29,30]. It is normally, but not
exclusively, meant for unit testing [31].

In its essence, it is a methodology in which small parts of a software code are
changed. Its main purpose is not to test the SUT proper, but the quality of its
test suite. However, it has an indirect benefit on the SUT, because the detection
of faults in the test suite can often also lead to detecting errors in the SUT.

According to the description provided by [28], mutation is carried out by
applying a set of mutation operators to a ground string. The ground string is
expressed in the grammar, and a mutation operator is “[a] rule that specifies
syntactic variations of strings generated from a grammar”. These operators can
also be applied directly to the grammar if no ground string exists. Mutation can
be used to generate both invalid strings and strings that are valid but different
from the ground string. In both cases, the strings thus generated are called
mutants.

The mutants generated from the SUT are then executed on the test suite,
and the test results are compared against those of the original code. Those
mutants which behave differently with respect to the test suite are killed by



136 C. Bartolini

the test suite. An ideal test suite would kill n out of n generated mutants. The
whole process is generally automated by means of batch scripts, because the
generation of a high number of mutants and the execution of the test suite on
each is a complex and tedious process which is well-suited for automatization.
Mutation can be also carried out by introducing simplifications that reduce the
number of mutants [32,33] to lower the complexity of the testing process.

Mutation testing has generally been applied to software code, particularly
to Java [34,34]. Previous research [28,35] has identified a set of operators for
mutation.

Traditional mutation testing operates at the syntax level, by introducing
errors in the code. However, techniques for semantic mutation testing have also
been defined [36–38], in which mutation operators affect the semantics of the
code. In other words, the code is still syntactically correct, but its functionality
is different from the intended one.

3.1 Mutation Testing Applied to OWL

To apply the mutation testing methodology to an ontology, some premises are
in order.

First off, the mutation operators will be applied to the ontology. However, the
testing can be carried out in two different ways: either by viewing the ontology as
the SUT, independently of what it is used for; or when the SUT is the knowledge
base or software that relies upon the ontology. Choosing either perspective has
significant consequences in the testing and the test suite that is used.

The mutation proposed in this paper is a kind of semantic mutation. The
syntax of an ontology is managed satisfactorily by the various parsers and editors
available, so unless the SUT is a new OWL editor or parser there would be little
need for a syntactic mutation testing. What is significantly more interesting is the
evaluation of the ontology definition. Additionally, using OWL as the underlying
specification, there is no point in working at the syntax level because OWL does
not have a syntax per se, but can be built according to different syntaxes. In fact,
the proposed methodology has been executed using the OWL/RDF, OWL/XML
and Manchester [39] syntaxes with identical results.

The mutation operators have therefore been defined as a set of operations
that conceptually modify the ontology. An ontology refers to entities, which are
the main building blocks used to represent real-world objects. The ontology does
not define the entities, which are defined by the domain itself. For the purposes
of this work, the following entity types have been used as the ground string for
mutation:

classes represent the core concepts in the ontology. A class is the abstraction
which subsumes all individuals of a given type;

individuals are the real-world objects, single instances of a class;
object properties describe the relationships between individuals;
data properties are used to associate information data to classes.



Software Testing Techniques Revisited for OWL Ontologies 137

In addition to entity-specific mutation operators, it is also possible to define
some general operators. In particular, some static information can be added
to any entity by means of annotations. Typical annotations include label and
comment, which are part of RDF Schema (RDFS) and are language specific.

All mutation operators affect some axiom, which is the base expression in
the ontology. Axioms are connections between entities, and some examples of
axioms are:

– a subclass relationship between two classes;
– the belonging of an individual to a class;
– the domain or the range of an object or data property;
– association of an annotation with its entity.

3.2 Mutation Operators

This section describes the various classes of mutation operators defined for
OWL mutation testing. Entities in OWL can be declared using either a human-
readable Internationalized Resource Identifier (IRI), or an auto-generated one.
When using the latter naming convention, which is recommended by the Protégé
software, the domain-specific names must be referred to by means of label anno-
tations. This solution is very versatile, because it does not force a naming, but an
entity can have a number of names, also in different languages. However, when
referring to entities using labels, the absence of a label can cause errors.

Table 1 offers an overview of all the mutation operators.
Some of the mutation operators produce identical mutants: for instance, the

ORI operator, when applied to a class and to its inverse, generates two identical
mutants.

Entities. Some mutation operators are general and can be applied to any entity:

ERE. Remove entity. This operator deletes the declaration of an entity from
the ontology, be it a class, property, or individual. All axioms concerning the
deleted entity are removed as well.

ERL. Remove label. This operator removes a label annotation from an entity.
ECL. Change label language. A label annotation is composed by the actual

label and a language attribute. This operator removes the language attribute,
setting it to a meaningless value.

While it is possible to also apply mutation operators to comment annotations,
comments are generally not meant for processing purposes, but only to provide a
description to the human user. Therefore, no mutation on comment annotations
has been introduced in this work. Similarly, no mutation operators have been
defined for other annotations such as versionInfo or seeAlso.



138 C. Bartolini

Table 1. List of mutation operators.

Entity Operator Effect

Any entity ERE Remove the entity and all its axioms

ERL Remove entity labels

ECL Change label language

Class CAS Add a single subclass axiom

CRS Remove a single subclass axiom

CSC Swap the class with its superclass

CAD Add disjoint class

CRD Remove disjoint class

CAE Add equivalent class

CRE Remove equivalent class

Object property OND Remove a property domain

ONR Remove a property range

ODR Change property domain to range

ORD Change property range to domain

ODP Assign domain to superclass

ODC Assign domain to subclass

ORP Assign range to superclass

ORC Assign range to subclass

ORI Remove inverse property

Data property DAP Assign property to superclass

DAC Assign property to subclass

DRT Remove data type

Individual IAP Assign to superclasses

IAC Assign to subclasses

IRT Remove data type

Classes. Classes are entities which describe the conceptual abstraction of real-
world objects. Class relations can be described in hierarchical terms, from the
general to the particular. In other words, a class can be defined as the subclass
of another class, by means of an “is a” relationship. Classes can be subclasses
of more than one superclass. If a class is not defined as a subclass, then it is
implicitly a subclass of the top-level class, Thing. A class can also be the subclass
of an anonymous class, i.e., a class defined “on the fly” using properties.

In addition to the mutation operators applicable to all entities, the following
operators have been defined for class entities:

CAS. Add subclass axiom. This operator introduces a subclass axiom between
one class and any other class of which it is not already asserted as being a
subclass.



Software Testing Techniques Revisited for OWL Ontologies 139

CRS. Remove subclass axiom. This operator removes a subclass axiom, thus
changing the hierarchical structure of the ontology. If the class has a single
superclass, then it will become a subclass of the top-level class.

CSC. Swap subclass axiom. This operator exchanges a class with one of its
superclasses. Simply put, it reverses part of the hierarchical structure.

CAD. Add disjoint class. A class can be asserted as being disjoint with other
classes. This operator introduces a disjointness relation between one class and
another with which the former is not already disjoint.

CRD. Remove disjoint class. This operator erases a disjoint declaration, so the
two classes are no longer disjoint.

CAE. Add equivalent class. A class can be asserted as being equivalent to other
classes. This operator introduces an equivalence relation between one class
and another to which the former is not already equivalent.

CRE. Remove equivalent class. This operator erases an equivalent declaration,
so the two classes are no longer equivalent.

Object Properties. Object properties represent relations between classes
which cannot be in hierarchical terms. All relations except “is a” must be defined
in terms of object properties.

An object property normally has at least one domain and one range. The
domain represents the classes (which can also be anonymous classes, defined
for example using set operations) to which the object property applies. A range
represents the possible values that the property can have. In other words, domain
and ranges are limitations to the individuals to which the property can be applied
and to the individuals that it can have as its values, respectively.

The following mutation operators specific to object properties have been
defined:

OND. Remove domain. One domain (set of entities to which the property can
apply) is removed from the object property. Since the actual domain is the
intersection of all ranges, this operator actually widens the possible entities
to which the property can apply.

ONR. Remove range. One range is removed from the object property. Since the
actual range is the intersection of all ranges, this operator actually widens the
possible values that the property can have.

ODR. Change domain to range. One of the domains of the property is changed
to a range, actually restricting its possible values but increasing the classes
it can apply to.

ORD. Change range to domain. One of the ranges of the property is changed
to a domain.

ODP. Assign to superclass. One of the domains of the property is replaced with
one of the superclasses of that domain. This operator cannot be applied to
anonymous domains or to domains which are only subclass of the top-level
class.

ODC. Assign to subclass. One of the domains of the property is replaced with
one of the subclasses of that domain. This operator cannot be applied to
anonymous domains.



140 C. Bartolini

ORP. Set range to superclass. One of the ranges of the property is replaced
with one of the superclasses of that range. This operator cannot be applied
to anonymous ranges or to range which are only subclass of the top-level
class.

ORC. Set range to subclass. One of the ranges of the property is replaced
with one of the subclasses of that range. This operator cannot be applied to
anonymous ranges.

ORI. Remove inverse property. The property can be declared as being inverse
to another one. This operator removes the inverse declaration, but it does not
remove the other property.

Data Properties. Data properties are used to describe additional features of
an entity. Technically, they represent a connection between entities and literals
(such as XML strings and integers). Data properties have a domain which limits
the entities it can be applied to, and a range which limits the set of possible
literals it can have as values.

In addition to the general operators, the following operators have been
defined for data properties:

DAP. Assign to superclass. One of the domains of the property is replaced with
one of the superclasses of that domain. This operator cannot be applied to
anonymous domains or to domains which are only subclass of the top-level
class.

DAC. Assign to subclass. One of the domains of the property is replaced with
one of the subclasses of that domain. This operator cannot be applied to
anonymous domains.

DRT. Remove data range. One of the data ranges of the property is removed,
and it is implicitly replaced with the top-level literal rdfs:Literal, actually
increasing the set of possible literals that this property can have.

Individuals. Individuals represent single instances of a class (including anony-
mous classes). Individuals are very similar to classes, but they represent a single
object and not an abstract generalization. Therefore, they can be defined as
belonging to one or more classes.
The following specific operators have been defined for individuals.

IAP. Assign to superclass. One of the types of the individual is replaced with
one of its superclasses. This operators can be applied only to those types
which have a superclass different from the top-level class.

IAC. Assign to subclass. One of the types of the individual is replaced with one
of its subclasses.

IRT. Remove type. One of the types to which the individual belongs is removed
(both named and anonymous classes). If the individual is of a single type, then
it becomes an individual of the top-level class.



Software Testing Techniques Revisited for OWL Ontologies 141

4 Measuring the Coverage

Although not strictly related to mutation testing, coverage testing [40,41] can
be used to assist in analysing the results of mutation testing.

The purpose of coverage testing is to evaluate what parts of the SUT are
exercised by the test suite. However, different meanings can be attributed to
the concept of coverage, each requiring its own criterion. Traditionally, coverage
testing is applied to software code, which can be structured as a graph [42]. In
this context, several coverage criteria have been defined and classified according
to their perspective. Some of the coverage criteria, such as node coverage (also
called statement coverage in some literature [40]), edge coverage [43] or path
coverage [44], measure the structural coverage of a graph. Other criteria, such
as the definition-usage path coverage, focus on the flow of the data within the
software [45]. A detailed description of the most relevant coverage criteria is
presented in [46].

When coverage testing is performed on software code, this occurs through
instrumentation, i.e., adding extra code (either statically, or dynamically at run-
time [47]) which does not change the behaviour of the software, but collects some
significant information [48] which is used to measure the coverage.

The idea to evaluate the coverage of an OWL ontology does not appear to
have been explored in the past. Traditional coverage testing techniques must be
revisited to allow such an analysis, primarily because there is no code which
can be instrumented in an ontology. An ontology is essentially a knowledge base
which can be used by software tools. Additionally, the peculiar structure of the
ontology calls for new coverage criteria: although ontologies can certainly be
represented as a graph, there is no standard way to do so, and nodes and edges
can have different meanings in different representations. As stated in Sect. 3,
OWL ontologies are made up of entities, and axioms which represent relations
between entities. Both these components can be too generic and abstract to offer
a clear coverage criterion.

The main focus of this paper is on mutation testing, and as such it does
not intend to define a complete coverage testing approach for OWL ontologies.
Rather, a basic coverage testing criterion for the limited scope of analysing the
mutation testing results will be proposed. For the purposes of this paper, there-
fore, a coverage criterion which only takes into account the classes (which are
generally the most relevant entities in an ontology) has been introduced. More
specifically, the criterion will measure the coverage of the named classes, exclud-
ing the anonymous classes created by means of a restriction. This criterion will
be called Named Class Coverage (NCC).
Preliminarily, the concept of visiting a named class can be expressed as follows.

Definition 1. A test suite TS visits a given class Ci if at least one test T ∈ TS
is based on a query which retrieves Ci.



142 C. Bartolini

This definition applies both when the SUT is the ontology itself and when it
is a software which makes use of the ontology. In the former perspective, a test
case will directly query the ontology and retrieve some entities and axioms. In
the latter perspective, a test case may or may not exercise some code segment
which queries the ontology.

Given this definition, the test requirement for class coverage is

TR = {visits class C1, . . . , visits class Cn}, (1)

where n is the number of named classes in the ontology.

Definition 2 Named Class Coverage (NCC): TR visits every named class
asserted in the ontology.

Therefore, the coverage of an ontology by a test suite TS is the percentage of
named classes that are retrieved by the queries executed by the test suite.

Measuring this amount is not straightforward, and depends on the structure
of the test suite. An example of how the coverage can be measured in a specific
setup is shown in the following section.

The coverage of an ontology can be used to further derive test cases. In
particular, the uncovered portions of the ontology are the ones that new test
cases should explore. However, given the lack of literature in the topic of ontology
coverage, there is currently no means to derive new test cases based on coverage.

4.1 An Application of NCC

To show a sample application of the NCC coverage criterion, the setup used in
Sect. 5.4 will be used. The SUT will be the ontology itself, and the test suite will
be made up of a set of SPARQL Protocol and RDF Query Language (SPARQL)
queries.

A SPARQL query operates much like a query in a relational database: it
accesses the knowledge base searching for content that matches the requested
pattern, and produces an output in some format. However, the query needs to
be modified to measure the coverage, because:

1. on one side, the SPARQL query may access more entities (including named
classes) than those that are actually produced as output;

2. on the other side, during its search, the query will access some components
of the ontology (e.g., other entities) that are not included in NCC.

Therefore, from the first perspective, the outputs of the query must be
widened, to include all the classes which are searched but then left out of the
report. From the second perspective, the query must be purged of all those
elements of the ontology (e.g., labels and object properties) that are not class
entities.



Software Testing Techniques Revisited for OWL Ontologies 143

This normalization process is based on the following steps:

1. remove all FILTER operations (since they remove part of the results from
the output);

2. only retrieve the named classes, ignoring any anonymous class;
3. remove search patterns based on label annotations and only retrieve the class

IRIs;
4. change sub-queries into separate queries. For example, the MINUS operator

executes a subquery which subtracts some results from the main query. How-
ever, these results are actually processed by the query, and if they contain
class entities they must be accounted for, and not subtracted, to measure the
coverage.

Additional changes were made for the ease of processing:

1. replace all blank nodes with identifiers;
2. purge the output format of the query of anything that is not a class entity;
3. split queries whose result format contains more than one result into a set

of queries whose output format contains just one result. The queries thus
generated will be identical, but each will output only one of the results of the
original query;

4. remove namespace prefixes, using only full namespaces;
5. add a DISTINCT keyword (if not already present) to the query, to ensure

that no duplicates are retrieved.

After these changes, each SPARQL query simply returns a set of named class
entities. The union of all the result sets from the queries (ignoring any cross-
query duplicates) is the complete set of named class entities involved by the test
suite. Comparing this set to the total number of class entities gives a measure
of the coverage.

5 Experiments

The proposed testing methodologies have been implemented and executed on
several existing ontologies. This section describes the test platform, the reference
ontologies and the results of the application of the mutation and coverage testing.

5.1 Experimental Setup

The implementation of the proposed mutation testing approach was done using
Eclipse 4.5 (Mars) as a development environment. The programming language
used is Java (Sun Java 1.8). The setup is platform-independent and has been
successfully tested on Windows 7, Ubuntu Linux 14.04 and Mac OS X 10.10
machines, both at 32 and 64 bit.



144 C. Bartolini

The implementation is lightweight and only requires the following libraries,
managed through Maven1:

– OWL API2, for general processing of the ontologies;
– JFact3, to parse inferred axioms within the ontologies;
– Apache Jena4, to process the SPARQL query language.

The mutation testing tool, called Mutating OWLs, is available as a public
Git repository5. The repository also contains the test ontologies described below.

5.2 Reference Ontologies

The proposed methodology has been executed on three different ontologies.

Data Protection. The data protection ontology has been introduced in [49,
50]. The European Union is currently undergoing a reform of the protection of
personal data. The main legislative document of the reform is the General Data
Protection Regulation (GDPR), which was very recently approved, introducing
significant changes in the duties of the controller [51]. The ontology has been
defined to describe the new reform; however, it does not aim at modeling the
whole domain of data protection in the European Union, but only focuses on
the requirements of the data controller.

The ontology is preliminary and subject to change, especially given that the
reform is very recent and it lacks interpretation yes. It is mainly made up of
hierarchical relations, and contains a number of object properties that relate the
duties of the controller with the corresponding rights of the data subject.

Entities in the ontology are named using an auto-generated IRI, and labels
contain the human-readable names.

Passenger Rights. The second ontology used as an experimental base has
been introduced in [52,53] to describe the legal framework for flight incidents. In
particular, the ontology addresses the perspective of the rights of the passenger.

This ontology has a more complex structure, and is split into three files.
Since the import links were actually broken, some changes had to be made to
the ontology to allow the OWL API to access local files. Specifically, the ontology
had to be converted from Turtle syntax [54] to an XML serialization because of
some limitations of OWL API in parsing non-XML syntaxes.

The naming convention differs from the previous ontology in that the IRIs are
human-readable terms in English language, and no labels are used throughout
the ontology.

1 https://maven.apache.org/.
2 http://owlapi.sourceforge.net/.
3 http://jfact.sourceforge.net/.
4 https://jena.apache.org/.
5 https://github.com/guerret/lu.uni.owl.mutatingowls.

https://maven.apache.org/
http://owlapi.sourceforge.net/
http://jfact.sourceforge.net/
https://jena.apache.org/
https://github.com/guerret/lu.uni.owl.mutatingowls


Software Testing Techniques Revisited for OWL Ontologies 145

Pizza. Finally, the proposed methodology has been run against the well-known
pizza ontology6, which is the one provided as a standard example for OWL
and Protégé tutorials. The naming convention used in this ontology is based
on English-language identifiers for the entities, but entities also feature label
annotations in Portuguese.

Summary. Table 2 displays a summary of the main features of the three ontolo-
gies used.

Table 2. Summary of the test ontologies.

Data protection Passenger rights Pizza

Total number of axioms 848 541 940

Classes 88 89 100

Object properties 42 26 8

Data properties 3 31 0

Individuals 16 14 5

Subclass axioms 114 83 259

5.3 Experimental Results

The mutation operators defined in Sect. 3.2 have been applied to the three test
ontologies, generating mutants for each. The total number of mutants per muta-
tion operator is displayed in Table 3.

Some considerations are offered by the very structure of the three ontolo-
gies. For example, the data protection ontology, as mentioned earlier, uses auto-
generated IRIs as identifiers, and labels for descriptive purposes. The pizza ontol-
ogy uses English terms as identifiers, but entities also have Portuguese labels.
Finally, the passenger rights ontology does not use label annotations. For this
reason, the ERL and ECL operators do not generate any mutant in the latter.
Similarly, no mutant is generated by the IAP, IAC and IRT operators in the
passenger rights ontology because the individuals are not assigned to any class.

The data protection ontology makes a very limited use of data properties,
so very few mutants are generated from the data property entity; the same is
not true for the passenger rights entity, which has a significant number of data
properties but less object properties. The pizza ontology does not have any data
properties at all, and few object properties. However, the classes that make up
the domain and range of some of the object properties have a large number of
subclasses, hence many mutants from the ODC and ORC operators.

6 http://protege.stanford.edu/ontologies/pizza/pizza.owl.

http://protege.stanford.edu/ontologies/pizza/pizza.owl


146 C. Bartolini

Table 3. Mutants by mutation operator.

Operator Data protection Passenger rights Pizza

ERE 145 67 112

ERL 145 0 95

ECL 145 0 95

CAS 7102 886 8151

CRS 114 33 255

CSC 101 33 83

CAD 7084 886 7404

CRD 18 0 753

CAE 7076 886 8134

CRE 37 0 41

OND 41 10 6

ONR 37 8 7

ODR 41 10 6

ORD 37 8 7

ODP 31 8 6

ODC 228 54 250

ORP 31 5 7

ORC 126 22 253

ORI 0 0 0

DAP 1 29 0

DAC 3 3 0

DRT 2 13 0

IAP 12 0 0

IAC 30 0 0

IRT 12 0 10

5.4 Validation

The proposed approach was validated by testing the ontologies themselves and
not an application running on top of them. Specifically, the validation was per-
formed on the data protection ontology and on the pizza ontology. For the SUT
to be an ontology, the simplest approach to test it is to have a set of SPARQL
queries [55] which retrieve data from the ontology.

For the most part, the queries for the data protection ontology are the
SPARQL representation of the competency questions that have been introduced
in [50], to perform the assessment of that ontology.

On the other hand, unfortunately, no SPARQL test suite is readily available
in literature for the pizza ontology. A set of queries exists as the test suite for an



Software Testing Techniques Revisited for OWL Ontologies 147

alternative query language7. These could be used as a basis to assess the validity
of the approach presented in this paper. The queries in that test suite were thus
converted back to SPARQL. However, two more queries were added to the test
suite, because the existing queries only search for very small parts of the ontology.

The complete experimental setup is available in the repository (see footnote 5).
To measure the coverage, the approach to measure the NCC of a set of

SPARQL queries, as described in Sect. 4.1, was used. In both examples, this
requires to slightly alter the structure of the SPARQL queries, as detailed in
Sect. 4.1. Such a modification does not affect the content of the queries.

The NCC coverage of the set of SPARQL queries for the data protection
ontology was measured as 62.50%. This means that the test suite (and, therefore,
the competency questions from [50]) cover little more than half the named classes
of the ontology. By measuring the coverage on the mutants, the results are
highly variable: the minimum coverage is 31.03%, whereas the maximum one is
81.82%. The minimum coverage is reached on a single mutant of type ERE; the
maximum coverage is reached on 17 mutants of type CAE and 9 mutants of type
CAS. However, most of the mutants have the same coverage as the original SUT
(62.50%).

On the other hand, the NCC coverage of the set of SPARQL queries for the
pizza ontology was measured as 96.97%. This means that the test suite queries
almost the whole set of named classes of the pizza ontology. With this SUT, The
coverage on the mutants displays a very slight variation: the minimum coverage
for the mutants is 95.96%, while the maximum is 97.96%. Specifically, all 95
mutants generated by the ERL operator (and only those) have the minimum
coverage; whereas the maximum coverage is achieved by three of the mutants
generated by the ERE operator.

The results of the validation is shown in Table 4, and a summary of killed
mutants is shown in Fig. 1(a) and (b).

(a) Data protection ontology. (b) Pizza ontology.

Fig. 1. Overview of killed mutants.

7 https://code.google.com/p/twouse/wiki/SPARQLASExamples.

https://code.google.com/p/twouse/wiki/SPARQLASExamples


148 C. Bartolini

Table 4. Results of the mutation testing.

Operator Data protection Pizza

Killed Total Percent Killed Total Percent

ERE 61 145 42.07% 108 112 96.43%

ERL 60 145 41.38% 95 95 100%

ECL 62 145 42.76% 95 95 100%

CAS 3542 7102 49.87% 8073 8151 99.04%

CRS 52 114 45.61% 253 255 99.22%

CSC 58 101 57.43% 83 83 100%

CAD 0 7084 0% 4536 7404 61.26%

CRD 0 18 0% 471 753 62.55%

CAE 5678 7076 80.24% 8133 8134 99.99%

CRE 13 37 35.14% 41 41 100%

OND 4 41 9.76% 0 6 0%

ONR 2 37 5.41% 0 7 0%

ODR 6 41 14.63% 0 6 0%

ORD 4 37 10.81% 0 7 0%

ODP 4 31 12.90% 0 6 0%

ODC 18 228 7.89% 1 250 0.40%

ORP 2 31 6.45% 0 7 0%

ORC 18 126 14.29% 1 253 0.40%

DAP 0 1 0% 0 0 0

DAC 0 3 0% 0 0 0

DRT 0 2 0% 0 0 0

IAP 0 12 0% 0 0 0

IAC 0 30 0% 0 0 0

IRT 0 12 0% 0 10 0%

Total 9,584 22,599 42.41% 21,890 25,675 85.26%

A brief analysis of the results elicits some interesting considerations. First,
it is clear that the test suites mainly address classes, with little attention to the
properties, especially in the pizza ontology. Thus, in both cases, additional tests,
especially for the object properties, are required. Also, concerning the classes,
the tests in the data protection ontology mostly cover some specific branches
of the hierarchy, while almost no tests search through other branches. Finally,
some considerations can be done on the ontologies themselves. For example,
by examining the live mutants generated by the ERE operator on the pizza
ontology, it emerges that some object properties are not used by any of the
SPARQL queries. Depending on the purposes of the ontology, this might suggest
that those properties are irrelevant and would call for a structural change in the



Software Testing Techniques Revisited for OWL Ontologies 149

ontology design. More significant insights could be offered by using richer test
suites (possibly deriving the test cases from the coverage analysis), which are
not currently available for the selected ontologies.

6 Conclusions and Future Work

The work presented in this paper extends and adapts some popular testing tech-
niques from the software testing domain, namely mutation testing and coverage
testing, to ontologies defined using the OWL language. The paper first gives a
brief overview of the essentials of OWL ontologies. It then introduces a method-
ology and operators for mutation testing, and a possible approach to measure
the coverage of an OWL ontology. Finally, it describes an implementation of
the mutation and coverage testing techniques, and some basic experiments on
previously-defined ontologies and SPARQL test suites.

The benefits of mutation testing are manifold: by analyzing the patterns of
killed and alive mutants, testers can detect errors in the SUT and in the test
suite. Equivalent mutants can help detect redundancies in the ontology, which
may not be errors but still facilitate errors, for example when creating instances
of the ontology.

On the other hand, combining mutation testing with coverage testing can
assist in measuring the effectiveness of the test suite. In particular, measuring
the coverage can help find the kinds of tests that need to be added to the test
suite, and this in turn can lead to a higher percentage of killed mutants.

More in general, the extension of software engineering and testing approaches
to ontologies and semantic knowledge bases can pave the way to the formalization
of integrated design and testing patterns for semantics-based applications.

This work is at its initial stages, with many opportunities for future devel-
opment. First off, the proposed methodology needs to be expanded to support
a full test suite: a significant set of SPARQL queries, if the SUT is the ontol-
ogy itself; or, if the SUT is an ontology-based software, testing it with its own
test suite. The purpose would be to compare the outputs of the test suite when
executed against the original ontology and against the mutants. In this phase,
it is possible that the complexity of the mutation testing is excessive and causes
performance problems, and it might be necessary to apply or develop algorithms
designed to reduce the number of mutants.

Second, the mutation methodology can be improved, by extending it with
additional mutation operators. With respect to the work presented in [56], addi-
tional mutation operators have been introduced, and these currently make up
the bulk of the mutants generated. However, some features of the OWL lan-
guage have not been exploited yet. For example, the mutation operators do not
currently address annotations other than labels, or the value and cardinality
constraints. Some of these OWL features can have a significant effect in the
ontology definition, and mutants thus created might be useful in assessing the
ontology.

Third, every mutation testing approach should be coupled with an algorithm
to detect equivalent mutants, and the one proposed here makes no difference.



150 C. Bartolini

In particular, the newly-defined mutation operators (CAS, CAD and CAE) gen-
erate a very large number of mutants, possibly introducing performance issues.
Identifying and removing equivalent mutants would then be of primary impor-
tance. In the specific domain of OWL ontologies, it is possible that the use of
reasoners can provide an efficient means of detecting mutants.

Fourth, the mutation testing should take into account the peculiarities of
ontology engineering. In particular, while the domain certainly imposes some
constraints on the ontology developer, many decisions are based on discretionary
choices, balancing different aspects such as human readability and efficiency
of the ontology. Traditional mutation testing techniques might be extended to
embrace these features, for example by separating those mutant operators that
are likely to introduce errors in the domain (for example swapping a class with
its parent) from those that simply change the ontology structure without making
it inconsistent with the domain. If such a partition were possible, then mutation
testing techniques could be used not only to detect errors in the design, but also
to suggest different ontology architectures that the designer might overlook.

Finally, stretching along the line of the previous point, an extended muta-
tion technique could be designed which alters the structure of the ontology.
For example, there might be circumstances where using a hierarchical relation-
ship (subclass axiom) might be an alternative to using an object property. An
extended mutation technique that generates mutants based on a different struc-
ture of the ontology might offer a fast way to compare a wide number of ontology
designs.

An even more significant amount of work would concern coverage testing.
A very basic approach has been introduced in this work, which only takes into
account OWL named classes, but measuring the coverage should involve much
more than classes, e.g., addressing properties and individuals. Therefore, addi-
tional coverage criteria need to be defined.

Implementation-wise, OWL coverage testing also needs a lot of improve-
ments. Specifically, due to the lack of instrumenting methodologies and tools
for OWL ontologies, the coverage analysis currently requires to restructure the
SPARQL queries so that it is possible to count the classes used. A more correct
implementation would introduce instrumentation code that generates the cover-
age results. However, since SPARQL queries are not executable code but require
a SPARQL engine to be run, the instrumentation should be performed on the
latter. Since several SPARQL engines (including the one used in this work) have
an open source implementation, such instrumentation is possible.

References

1. Quillian, M.R.: Word concepts: a theory and simulation of some basic semantic
capabilities. Behav. Sci. 12, 410–430 (1967)

2. World Wide Web Consortium (W3C): RDF 1.1 concepts and abstract syntax
(2014)

3. World Wide Web Consortium (W3C): OWL 2 Web Ontology Language document
overview, 2nd edn. (2012)



Software Testing Techniques Revisited for OWL Ontologies 151

4. Antoniou, G., van Harmelen, F.: Web Ontology Language: OWL. In: Staab, S.,
Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Informa-
tion Systems, pp. 67–92. Springer, Heidelberg (2004)

5. Horrocks, I.: DAML+OIL: a description logic for the semantic web. Bull. Tech.
Committee Data Eng. 25, 4–9 (2002)

6. Horrocks, I.: What are ontologies good for? In: Küppers, B.O., Hahn, U., Artmann,
S. (eds.) Evolution of Semantic Systems, pp. 175–188. Springer, Heidelberg (2013)

7. Rospocher, M., Serafini, L.: An ontological framework for decision support. In:
Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol.
7774, pp. 239–254. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37996-3 16

8. Kershenbaum, A., Fokoue, A., Patel, C., Welty, C., Schonberg, E., Cimino, J., Ma,
L., Srinivas, K., Schloss, R., Murdock, J.W.: A view of OWL from the field: use
cases and experiences. In: Cuenca Grau, B., Hitzler, P., Shankey, C., Wallace, E.
(eds.) Proceedings of the Second Workshop on OWL: Experiences and Directions
(OWLED), vol. 216. CEUR Workshop Proceedings (2006)

9. Blomqvist, E., Seil Sepour, A., Presutti, V.: Ontology testing - methodology and
tool. In: Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M.,
Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol.
7603, pp. 216–226. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33876-2 20

10. World Wide Web Consortium (W3C): OWL Web Ontology Language test cases
(2004)

11. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging
OWL-DL ontologies: a heuristic approach. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer,
Heidelberg (2005). doi:10.1007/11574620 53

12. Garćıa-Ramos, S., Otero, A., Fernández-López, M.: OntologyTest: a tool to eval-
uate ontologies through tests defined by the user. In: Omatu, S., Rocha, M.P.,
Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN
2009. LNCS, vol. 5518, pp. 91–98. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02481-8 13

13. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and
testing large ontologies. In: Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 483–493
(2000)

14. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology eval-
uation and validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol.
4011, pp. 140–154. Springer, Heidelberg (2006). doi:10.1007/11762256 13

15. Burton-Jones, A., Storey, V.C., Sugumaran, V., Ahluwalia, P.: A semiotic metrics
suite for assessing the quality of ontologies. Data Knowl. Eng. 55, 84–102 (2005)

16. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL
ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol.
4011, pp. 125–139. Springer, Heidelberg (2006). doi:10.1007/11762256 12

17. Guarino, N.: An overview of ontoclean. In: Staab, S., Studer, R. (eds.) Handbook
on Ontologies. International Handbooks on Information Systems, 2nd edn, pp.
201–220. Springer, Heidelberg (2009)

18. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Validating ontolo-
gies with OOPS!. In: Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H.,
d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW
2012. LNCS, vol. 7603, pp. 267–281. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33876-2 24

http://dx.doi.org/10.1007/978-3-642-37996-3_16
http://dx.doi.org/10.1007/978-3-642-33876-2_20
http://dx.doi.org/10.1007/11574620_53
http://dx.doi.org/10.1007/978-3-642-02481-8_13
http://dx.doi.org/10.1007/978-3-642-02481-8_13
http://dx.doi.org/10.1007/11762256_13
http://dx.doi.org/10.1007/11762256_12
http://dx.doi.org/10.1007/978-3-642-33876-2_24
http://dx.doi.org/10.1007/978-3-642-33876-2_24


152 C. Bartolini

19. Poveda, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Common pitfalls in ontol-
ogy development. In: Meseguer, P., Mandow, L., Gasca, R.M. (eds.) CAEPIA
2009. LNCS, vol. 5988, pp. 91–100. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14264-2 10

20. Vrandečić, D., Gangemi, A.: Unit tests for ontologies. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM 2006. LNCS, vol. 4278, pp. 1012–1020. Springer, Heidelberg
(2006). doi:10.1007/11915072 2

21. Granitzer, M., Scharl, A., Weichselbraun, A., Neidhart, T., Juffinger, A.,
Wohlgenannt, G.: Automated ontology learning and validation using hypothesis
testing. In: Wegrzyn-Wolska, K.M., Szczepaniak, P.S. (eds.) Advances in Intelli-
gent Web Mastering. Advances in Soft Computing, vol. 43, pp. 130–135. Springer,
Heidelberg (2007)

22. Lee, S., Bai, X., Chen, Y.: Automatic mutation testing and simulation on OWL-S
specified web services. In: Proceedings of the 41st Annual Simulation Symposium
(ANSS), pp. 149–156. IEEE (2008)

23. World Wide Web Consortium (W3C): OWL-S: Semantic markup for web services
(2004)

24. Wang, Y., Bai, X., Li, J., Huang, R.: Ontology-based test case generation for testing
web services. In: Proceedings of the 8th International Symposium on Autonomous
Decentralized Systems (ISADS), pp. 43–50 (2007)

25. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 11, 34–41 (1978)

26. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Trans. Softw.
Eng. SE-3, 279–290 (1977)

27. Lipton, R.: Fault diagnosis of computer programs. Technical report. Carnegie
Mellon University (1971)

28. Ammann, P., Offutt, A.J.: 5. In: Syntax-Based Testing, pp. 170–212. Cambridge
University Press, Cambridge (2008)

29. Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Trans.
Softw. Eng. SE-8, 371–379 (1982)

30. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Software Eng. 37, 649–678 (2011)

31. Offutt, A.J.: A practical system for mutation testing: help for the common pro-
grammer. In: Proceedings of the International Test Conference (ITC). IEEE Com-
puter Society, pp. 824–830 (1994)

32. Offutt, A.J., Untch, R.H.: Mutation 2000: Uniting the orthogonal. In: Wong, W.E.
(ed.) Mutation Testing for the New Century. The Springer International Series on
Advances in Database Systems, vol. 24, pp. 34–44. Springer, US (2001)

33. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based valida-
tion of web services compositions: perspectives and examples. In: Lemos, R.,
Giandomenico, F., Gacek, C., Muccini, H., Vieira, M. (eds.) WADS 2007.
LNCS, vol. 5135, pp. 298–325. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85571-2 13

34. Ma, Y.S., Offutt, A.J., Kwong, Y.R.: Mujava: an automated class mutation system.
Softw. Test. Verification Reliab. 15, 97–133 (2005)

35. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental
determination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 5, 99–118 (1996)

36. Offutt, A.J., Hayes, J.H.: A semantic model of program faults. SIGSOFT Softw.
Eng. Notes 21, 195–200 (1996)

http://dx.doi.org/10.1007/978-3-642-14264-2_10
http://dx.doi.org/10.1007/978-3-642-14264-2_10
http://dx.doi.org/10.1007/11915072_2
http://dx.doi.org/10.1007/978-3-540-85571-2_13
http://dx.doi.org/10.1007/978-3-540-85571-2_13


Software Testing Techniques Revisited for OWL Ontologies 153

37. Mottu, J.-M., Baudry, B., Traon, Y.: Mutation analysis testing for model transfor-
mations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 376–390. Springer, Heidelberg (2006). doi:10.1007/11787044 28

38. Clark, J.A., Dan, H., Hierons, R.M.: Semantic mutation testing. In: Proceedings
of the 3rd IEEE International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW), pp. 100–109. IEEE (2010)

39. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.H.:
The manchester OWL syntax. In: OWL: Experiences and Directions Workshop
(OWLED) (2006)

40. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29, 366–427 (1997)

41. Yang, Q., Jenny Li, J., Weiss, D.M.: A survey of coverage-based testing tools.
Comput. J. 52, 589–597 (2009)

42. Ledgard, H.F., Marcotty, M.: A genealogy of control structures. Commun. ACM
18, 629–639 (1975)

43. Huang, J.C.: An approach to program testing. ACM Comput. Surv. 7, 113–128
(1975)

44. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4, 178–187 (1978)

45. Osterweil, L.J.: Data flow analysis as an aid in documentation, assertion, genera-
tion, validation, and error detection. Technical Report CU-CS-055-74, University
of Colorado, Boulder, Colorado 80302 (1974)

46. Ammann, P., Offutt, A.J.: 2. In: Graph Coverage, pp. 27–103. Cambridge University
Press, Cambridge (2008)

47. Tikir, M.M., Hollingsworth, J.K.: Efficient instrumentation for code coverage test-
ing. In: Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), pp. 86–96 (2002)

48. Ammann, P., Offutt, A.J.: 8. In: Building Testing Tools, pp. 268–279. Cambridge
University Press, Cambridge (2008)

49. Bartolini, C., Muthuri, R.: Reconciling data protection rights and obligations: an
ontology of the forthcoming EU regulation. In: Proceedings of the Workshop on
Language and Semantic Technology for Legal Domain (LST4LD), Recent Advances
in Natural Language Processing (RANLP) (2015)

50. Bartolini, C., Muthuri, R., Santos, C.: Using ontologies to model data protection
requirements in workflows. In: Proceedings of the Ninth International Workshop on
Juris-informatics (JURISIN), pp. 27–40 (2015). Extended version to be published
in LNAI book

51. Reding, V.: The upcoming data protection reform for the European Union. Inter-
national Data Privacy Law (2010)

52. Rodŕıguez-Doncel, V., Santos, C., Casanovas, P.: A model of air transport passen-
ger incidents and rights. In: Proceedings of the 27th International Conference on
Legal Knowledge and Information Systems (JURIX), pp. 55–60. IOS Press (2014)

53. Rodŕıguez-Doncel, V., Santos, C., Casanovas, P.: Ontology-driven legal support-
system in the air transport passenger domain. In: Proceedings of the International
Workshop on Semantic Web for the Law (SW4Law) (2014)

54. World Wide Web Consortium (W3C): RDF 1.1 Turtle (2014)
55. World Wide Web Consortium (W3C): Sparql query language for rdf (2008)
56. Bartolini, C.: Mutating OWLs: semantic mutation testing for ontologies. In: Pro-

ceedings of the workshop on domAin specific Model-based AppRoaches to vErifi-
caTion and validaTiOn (AMARETTO), pp. 43–53 (2016)

http://dx.doi.org/10.1007/11787044_28

	Software Testing Techniques Revisited for OWL Ontologies
	1 Introduction
	2 Related Work
	3 Mutation Testing
	3.1 Mutation Testing Applied to OWL
	3.2 Mutation Operators

	4 Measuring the Coverage
	4.1 An Application of NCC

	5 Experiments
	5.1 Experimental Setup
	5.2 Reference Ontologies
	5.3 Experimental Results
	5.4 Validation

	6 Conclusions and Future Work
	References


