
Schedulability Analysis of Pre-runtime
and Runtime Scheduling Algorithm
of an Industrial Real Time System

Stefano Pepi(B) and Alessandro Fantechi(B)

DINFO, University of Florence, Via S. Marta 3, Florence, Italy
{stefano.pepi,alessandro.fantechi}@unifi.it

Abstract. The configuration of a complex, generic, real-time applica-
tion into a specifically customized signalling embedded application has
an important impact on time to market, deployment costs and safety
guarantees for a railway signalling manufacturer. In this paper we focus
on the aspect of real-time schedulability analysis, that takes an important
portion of the time dedicated to configuration in this kind of systems. We
propose an approach based on rigorous modelling of the scheduling algo-
rithms, aimed at substituting possibly unreliable and costly empirical
tuning. In order to comply with the needs of our industrial partners, we
have resorted to the use of variants of Petri Nets with associated avail-
able tools: Timed Petri Nets (TPN) and Coloured Petri Nets (CPN),
supported by open source tools, respectively TINA and CPN Tools 4.0
have been exploited for the modelling of the pre-runtime and the run-
time scheduling algorithms implemented in the industrial platform. The
comparison of models produced with the two tools has concluded that
the Coloured Petri Nets are more suited to the adopted schedulability
analysis approach, for both scheduling algorithms.

Keywords: Petri Nets · Timed Petri Nets · Coloured Petri Nets · Real
Time Systems · Scheduling algorithm · Modelling · Formal verification ·
Railway signalling

1 Introduction

Real-Time Systems (RTS) are those computer-based systems where correct oper-
ation does not only depend on the correctness of the results obtained, but also
on the time at which the results are produced [21].

The interest for real-time systems is motivated by many applications that
require that computations satisfy given time constraints, in domains such as
automotive, avionics, communications, railway signalling etc.

The most important property of a RTS is predictability. Predictability is the
ability to determine in advance if the computation will be completed within
the time constraints required. Predictability depends on several factors, ranging
from the architectural characteristics of the physical machine, to the mechanisms
c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 46–69, 2017.
DOI: 10.1007/978-3-319-66302-9 3



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 47

of the core, up to the programming language. Predictability can be measured as
the percentage of processes for which the constrains are guaranteed.

In this article we report the experience made in collaboration with our indus-
trial partner, a railway signalling manufacturing company, in the implementation
of a generic real-time platform based on a proprietary microkernel Real Time
Operating System; in particular we present a method for schedulability analysis.

With the recent expansion of markets to Asia and Africa, the company has
experienced a growing need for a versatile system that can be configurable for
each different application. The transition from a traditional “main loop”-based
system to a general purpose platform has allowed low-cost configuration, simply
by changing the application inside and the hardware to interact with. With the
same Hw/Sw platform both ground and on-board systems can be built, either for
urban (like metro) or main line applications, meeting the signalling regulations
of different countries.

Experience has however shown that guaranteeing predictability for the differ-
ent customizations of the platform takes a considerable portion of the customiza-
tion effort, if based only on testing every time the newly customized software on
the platform.

We have therefore considered the possibility of building a generic model of
the scheduling algorithms employed in the platform, that is going to be instan-
tiated on the temporal constraints and tasks numbers of the different specific
applications (that is, customizations), in order to support the validation of pre-
dictability by means of proper model simulation tools.

Basing on the wide literature about modelling real-time systems with Petri
Nets (see, for example, [3,5,10,11]) and on the availability of related tools, we
have chosen to experiment two Petri Nets dialects for the modelling of the
scheduling algorithms, in order to predict schedulability of the set of tasks gov-
erning a new specific application. Both Timed Petri Nets (TPN) and Coloured
Petri Nets (CPN) have been evaluated for this purpose, together with their sup-
port tools, favouring at the end the adoption of Coloured Petri Nets.

Due to the limited time available to conduct the experiments, in order to sat-
isfy stringent temporal requirements from our industrial partner, we have chosen
not to investigate other temporal modelling formalisms, such as timed automata
[2]. The results obtained by these experiments were however judged sufficiently
satisfactory to consider the adoption of the technique inside the development
process of our industrial partner.

This paper is structured as follows: the next section introduces the industrial
context that has motivated our work on modelling scheduling algorithms; in
Sect. 3 we present the background of the modelling method, namely the two
considered variants of Petri Nets, while in the next two sections we present the
models of the pre-runtime and runtime scheduling policies. Section 6 compares
the models obtained with the two Petri Nets variants, and Sect. 7 draws some
conclusions.



48 S. Pepi and A. Fantechi

2 Scheduling in Safety-Related RT Applications

A real-time process is characterized by a fixed time limit, which is called deadline.
A result produced after its deadline is not only late, but can be harmful to the
environment in which the system operates. Depending on the consequences of a
missed deadline, real-time processes are divided into two types:

– Soft real-time: if producing the results after its deadline has still some utility
for the system, although causing a performance degradation, that is, the
violation of the deadline does not affect the proper functioning of the system;

– Hard real-time: if producing the results after its deadline may cause
catastrophic consequences on the system under control.

To meet real-time requirements, scheduling plays an important role. Depending
on the assumption done on the processes and on the type of hardware archi-
tecture that supports the application, the scheduling algorithms for real-time
systems can be classified according to the following orthogonal characteristics:

– Uniprocessor vs. Multiprocessor
– Preemptive vs. No preemptive
– Static vs. Dynamic
– Pre-runtime (offline) vs. Runtime (online)
– Best-Effort vs. Guaranteed

For what concerns the fourth characteristic, in pre-runtime scheduling all
decisions are taken before the process activation on the basis of information
known a priori. The schedule is stored in a table which will be integrated into
a run-time kernel. The kernel has one component called dispatcher which takes
tasks from the table and loads them onto the processing elements, according
to specified timing constraints. The Runtime category represents instead those
algorithms in which the scheduling decisions are made at runtime on all cur-
rently active processes. The ordering of tasks is then recalculated for each new
activation.

In our case the platform is able to manage both these two types of scheduling.
In fact according to the type of field application it is possible to enable one or
the other algorithm. The choice is made based on the level of safety that the
system must ensure.

CENELEC EN50128 is the standard that specifies the procedures and the
technical requirements for the development of programmable electronic devices
to be used in railway control and signalling protection [7]. This standard is
part of a family, and it refers only to the software components and to their
interaction with the whole system. The basic concept of the standard is the
SIL (Safety Integrity Level). Integrity levels characterize software modules and
functions according to their criticality, and range is defined from 0 to 4, where 0
is the lowest level, which refers to software functions for which a failure has no
safety effects and 4 is the maximum level, for which a software failure can have
severe effects on the safety of system, resulting in possible loss of human life.



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 49

The pre-runtime scheduling algorithm is used for those application that are
classified at SIL 4, since it gives the possibility to fully demonstrate predictabil-
ity, which is a must in a safety-critical environment. Indeed, with pre-runtime
scheduling it is possible to exhibit to an assessor the analyses conducted on the
considered set of tasks in order to establish that tasks, with the a priori fixed
execution order, do not miss their deadlines. On the other hand, with run-time
scheduling algorithms, evidences provided simply by running tests can be not
convincing about their coverage of all possible cases, due to possible different
run-time scheduling choices. For this reason the run-time scheduling is used for
applications of lower SIL.

Indeed, the present paper aims to show a method to strengthen the analysis
on pre-runtime and runtime scheduling to a high level of confidence. In partic-
ular, we present a method that can be used to verify the pre-runtime schedu-
lability of a task set that contains only periodic tasks with time and priority
constrains. The method can be used also to simulate the behaviour of a runtime
scheduler with a given taskset, in order to improve confidence on their run-time
schedulability.

The motivations for this approach come also from the high variability of
installations of the same signalling system at different locations or controlling dif-
ferent stations or lines. Indeed, in railway signalling systems, a distinction is often
done between generic applications and specific applications (as in the already
cited CENELEC EN50128 [7] guidelines): generic software is software which
can be used for a variety of installations purely by the provision of application-
specific data and/or algorithms. A specific application is defined as a generic
application plus configuration data, or plus specific algorithms, that instantiate
the generic application for a specific purpose.

While the platform is part of a generic application, and hence it is validated
once for all, for each specific application the satisfaction of real-time constraints
must be verified from scratch.

Indeed, quite often in everyday work it is necessary to revise the schedule
of some systems, and all this is routinely done in an empirical way. It is clear
that each specific application has a different way to interact with the platform
and especially with its resources, such as, for example, input/output drivers for
different hardware. It is for this reason that the schedule of real-time tasks should
be revised at any new specific application.

The adopted empirical approach includes actions to be taken when config-
uring the platform for a new specific application, such as: get a new schedule
configuration offline and test it on the target. It rarely happens that the first
test is successful.

The estimated effort required for the identification and testing of a new
scheduling configuration can be summarized with the following parameters:

– Offline Identification Time: time needed in order to design the new sched-
ule, it is usually about 30 min (not necessary for runtime scheduling).

– Flashing Time: the time needed to load the scheduling on the target, 15 min.
– Startup Time: start-up time of the platform, 1.5 min.



50 S. Pepi and A. Fantechi

– Running Time: time during which the system must run without exhibiting
timing problems, 30 min/1 h.

– Attempts: average number of attempts to get the scheduling, 3.

Summing all the times shown above we get that for each test scheduling, the
whole process easily reaches 8 h, which means an entire working day. This process
can be automated by a tool that, given a task set and a number of constraints,
is able to produce a feasible scheduling. This would mean a huge saving in terms
of man hours used to refine the scheduling. Moreover, an empirical evaluation
of schedulability of a given dataset does not guarantee that the deadlines are
met in any case, putting in danger the overall safety of the system. Using a
rigorous approach to the analysis of the schedulability will improve hence the
conformance, of a specific application, to safety guidelines.

3 Proposed Method

The rigorous approach we propose is based on the use of Petri Nets to build a
model of the scheduling algorithm. A Petri Net [17–19] is a mathematical repre-
sentation of a distributed discrete system. As a modelling language, it describes
the structure of a distributed system as a bipartite graph with annotations. A
Petri Net consists of places, transitions and directed arcs. There may be arcs
between places and transitions but not between places and places or transitions
and transitions.

The places can hold a certain number of tokens and the distribution of tokens
on all the places of the network it’s named marking. Transitions act on input
tokens according to a rule, that is named firing rule.

A transition is enabled if you can fire it, that is, if there are tokens in every
input place. When a transition fires, it consumes tokens from its input places
and places a token in each of its output places.

p0

t0

t1

p3p1

t3

p2 p4

t2 2

Fig. 1. Representation of an ordinary Petri Net.



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 51

Figure 1 shows an example of an ordinary Petri Net. The execution of Petri
Nets is nondeterministic, that is, if there are more transitions enabled at the
same time any of them can fire. Since taking a transition is not predictable in
advance, Petri Nets are well suited for modelling the concurrent behavior of
distributed systems.

Formally we can define a Petri Net as a tuple PN = (P, T, F,W,M0) where:

– P is a finite set of places;
– T is a finite set of transition;
– F ⊆ (PxT ) ∪ (TxP ) is a set of arcs;
– W : F → N represents the weight of the flow relation F.
– M0 : P → N is the initial marking vector, which represents the initial state

of system.
– P ∩ T = ∅ and P ∪ T �= ∅.

3.1 TPN

A Timed Petri Net is a Petri Net extended with time. In Timed Petri Nets, the
transitions fire in “real-time”, i.e., there is a (deterministic or random) firing
time associated with each transition, the tokens are removed from input places
at the beginning of firing, and are deposited into output places when the firing
terminates. Formally we can define a Timed Petri Net [20] as a tuple TPN =
(PN, I) where:

p16

Thread 5 _1_Application

p20

Thread 1_2

t0

[0,0]

p4

Thread 2_1_tx

t3

[0,0]

p5

Exec

t4

[5,5]

p6

p7

Exec

p2

t5[0,0]

Thread 2_1_rx

p8

Thread 3_1_tx

t6

[0,0]

p9

Exec

t7

[16,16]

p10

t8[0,0]

Thread 3_1_rx

p11

Exec

t24

[5,5]

p32 p33

t26

[4,4]

p12

Thread 4_1

t9

[0,0]

p13

Exec

t10

[24,24]

p14

t12

[0,0]

p18

t13

[38,38]

p17

Exec

p34

Epoch 1 - Control time

t27

[100,100]

t15

[0,0]

p21

Exec

t16

[6,6]

p22

p37

Thread 4_2

p38

Thread 2_2_tx

t30

[0,0]

p39

Exec

t31

[5,5]

p40

p41

Exec

t32[0,0]

Thread 2_2_rx

p42

Thread 3_2_tx

t33

[0,0]

p43

Exec

t34

[16,16]

p44

t35[0,0]

Thread 3_2_rx

p45

Exec

t36

[5,5]

p46 p47

t37

[4,4]

p48

Thread 5_2

t38

[0,0]

p49

Exec

t39

[40,40]

p50

t40

[0,0]

p51

t41

[8,8]

p52

Exec

t42

[0,0]

p53

Epoch 2 - Control time

t43

[100,100] p55

p56

Thread 7_2

p57

Thread 6_2

t44

[0,0]

p58

Exec

t45

[10,10]

p59

t46

[0,0]

p60

t47

[4,4]

p61

Exec

p35

p0

Thread 1_1

p1

Exec

t1

[6,6]

p19

t2

[80,80]

p24

t20

[0,0]

t21

[0,0]

p31

p64

t23

[65,65]

T3_1_TX-RX

t25

[0,0]

p65

p66

t29

[95,95]

p67

T3_2_RX-RX

t48

[0,0]

t17

[0,0]

t14

[0,0]

p28

T5_1 - T5_2

p29

p69

t49

[90,90]

p70

T4_1

t50

[0,0]

p72

t51

[140,140]

p73

T4_2

t52

[0,0]

p74

p75

t53

[95,95]

p76

T3_1_TX-TX

t54

[0,0]

p77

p78

t55

[95,95]

p79

T3_1_RX-RX

t56

[0,0]

p80

p81

t57

[95,95]

p82

T3_2_TX-TX

t58

[0,0]

p84

t59

[65,65]

p85

T3_2_TX-RX

t60

[0,0]

p86p68

p62

p30

p36

t28

[0,0]

p83p71

p54

Fig. 2. Timed Petri Net model for a fixed scheduler.



52 S. Pepi and A. Fantechi

– PN is a standard Petri Net;
– I : T → N × N is a function that maps each transition to a bounded static

interval
– P ∩ T = ∅ and P ∪ T �= ∅.

3.2 CPN

An ordinary PN has no types and no modules, only one kind of tokens and the
net is flat. With Coloured Petri Nets (CPNs) it is possible, instead, to use data
types and complex data manipulation. In fact each token has attached a data
value called the token colour of a given data type: the type defines the range of
values that the attributes can assume and the operations applicable in the same
way of a variable type in any programming language. The types can be basic
types or structured types, the latter defined by the user. The token colour values
can be inspected and modified by the occurring transitions.

Formally we can define a Coloured Petri Net as a tuple CPN =
(P, T, F,Σ,C,N, E,G, I) where:

– P is a finite set of places;
– T is a finite set of transition;
– F ⊆ (PxT ) ∪ (TxP ) is a set of arcs;
– Σ is a set of data types (colour domains).
– C is a colour function. It maps places in P into colours in Σ.
– N is a node function. It maps A into (PxT ) ∪ (TxP ).
– E is an arc expression function. It maps each arc a ∈ A into an expression

e with values in Σ. The input and output types of the arc expressions must
correspond to the type of the nodes the arc is connected to.
The node function and the arc expression function allows multiple arcs to
connect the same pair of nodes with different arc expressions.

– G is a guard function. It maps each transition t ∈ T into a guard expression
g, evaluated to a boolean value.

– I is an initialization function. It maps each place p ∈ P into an initializa-
tion expression i. The initialization expression must evaluate to a multiset of
tokens with a colour corresponding to the colour C(p) of the place p.

With CPNs it is possible to build a hierarchical description, so that a large model
can be easily obtained by combining a set of submodels.

4 Modelling the Pre-runtime Scheduling

We provide now the taskset and the constraints for the fixed scheduler, and then
the related models, expressed in the two variants of Petri Nets.



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 53

4.1 Taskset and Constraints Specification

In our system the application is decomposed into a set of tasks τi : i = 1, ...n and
for this paper we only consider periodic tasks, and we assume that non-periodic
tasks are carried out by a periodic server, or processed in the background [6].
The temporal model mostly used in real-time scheduling theory is an extension
of the model of Liu and Layland [16] where each task τi is characterized by the
following parameters:

– Ri: first release time of τi;
– Ci: run time of τi, which is its worst case execution time (WCET);
– Di: relative deadline of τi, the maximum time elapsed between the release of

an instance of τi and its completion;
– Pi: release period of τi.

In the following we use as a running example the case of a real signalling applica-
tion, an interlocking system. An interlocking system is the safety-critical system
that controls the movement of trains in a station and between adjacent stations.
The interlocking monitors the status of the objects in the railway yard (e.g.,
points, switches, track circuits) and allows or denies the routing of trains in
accordance with the railway safety and operational regulations that are generic
for the region or country where the interlocking is located. The instantiation of
these rules on a station topology is stored in the part of the system named con-
trol table that is specific for the station where the system resides. We refer to [9]
for a review on the vast literature on formal modelling of interlocking systems.
In this context, we are interested instead to focus on the characteristics of the
task set of this application, consisting of 7 threads which have the following goal:

– T1 is in charge of operating on the Ethernet channel;
– T2 is one of the most important thread and it is in charge of the safety of the

system;
– T3 implements a protocol stack for the receipt and transmission of messages;
– T4 is in charge of copying the value received in the input of the Business Logic

and preparing the output for the transmission.
– T5 is the application thread that contains the logic of the system.
– T6 is a diagnostic thread;
– T7 is a USB driver used for logging data in a key.

The scheduler operates by dividing processor time into epochs. Within each
epoch, every task can execute up to its time slice. In this case, the scheduler has
two epochs of 100 ms and the taskset have the following constraints:

– The total time of scheduling cycle is 200 ms.
– Each epoch needs to last exactly 100 ms.
– The first execution of T3 in the first and second epoch must terminate within

95 ms.
– The second execution of T3 in the first and second epoch must terminate

within 95 ms.



54 S. Pepi and A. Fantechi

– The second execution of T3 in the first and second epoch must execute at
least 65 ms after the first one.

– T4 in the first epoch must terminate within 90 ms and in the second epoch in
140 ms.

– The total processor time assigned to T5 in the two epochs must be of at least
90 ms.

The taskset used in our example is defined in the Tables 1 and 2 with the
relative scheduling order and parameters.

Table 1. TaskSet in first epoch.

Epoch1 Ri Ci Di

T1 0 6 6

T2 6 5 11

T3 11 16 27

T2 27 5 32

T3 32 4 36

T4 36 24 60

T5 60 40 100

Table 2. TaskSet in second epoch.

Epoch2 Ri Ci Di

T1 0 6 6

T2 6 5 11

T3 11 16 27

T2 27 5 32

T3 32 4 36

T5 36 40 76

T4 76 8 84

T6 84 10 94

T7 94 6 100

The constraints and parameters given for the taskset are the basis on which
a model of the scheduling algorithm can be built. We resorted to the use of
Petri Nets, that result quite intuitive in the modelling of scheduling algorithms
[5,10,15,23]. In order to represent time, we have investigated the use of both-
Timed Petri Nets (TPN) [20] and Coloured Petri Nets (CPN) [13]. In the fol-
lowing we illustrate the two kinds of models by means of this running example,
giving a comparison between the two modelling approaches.



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 55

4.2 Presentation of Fixed Scheduler Models

In Fig. 2 the model generated with the tool TINA [4,22] for a fixed scheduler
[1,3,11] is reported. As we can see the representation with TPN is a little bit
chaotic and representing larger sets of tasks could be very difficult. Looking at the
model we can underline some diagram parts which are used for the verification
of constraints [23]:

– Check for the Total Time
The network used to control the time of each epoch consists of two transitions
and respectively five and three places. Taking into consideration the network
(a) in Fig. 3, the transition t27 counts the total time available for the execu-
tion in the epoch. When the available time expires, the token content in place
p34 is moved to place p35 inhibiting the passage of the token coming from
the last running thread to places p36, p62 and p30.
If this happens it means that the execution time has not respected the con-
straints for this epoch. If, instead, the execution ends before the deadline, the
transition t28 will not be inhibited by place p35 and will allow tokens to go
in places p36, p62 and p30, establishing the positive conclusion of the first
epoch and the start of the second one.

– Check Constraints on T3

The network in Fig. 4 models the various checks on the execution times for
T3. For example the last block checks that between the first execution of T3 in
the first epoch and the second execution in the second epoch, at least 65 ms
have expired. The transition t25 is enabled when the task is running and, if
the task completes before the time set in the transition t23, scheduling can
continue. Otherwise, if the task does not complete within the specified time,
the inhibitor arc starting from p65 does not allow the scheduler to continue.

– Checking the Scheduled Time between Two Epochs
The network in Fig. 5 monitors the execution time of a task between the
two epochs. The transitions t14 and t17 are enabled when the task is run in
both the first and the second period. This starts the timer of transition t2. If
the task completes before the time set in the transition, the scheduling can
continue. Otherwise, if the task does not complete within the specified time,
the inhibitor arc starting from p19 does not allow the scheduler to continue.

The simulation of this model by means of the TINA tool ends either with a
token at place p54, which means that the hypothesized schedule is correct, or
by stopping as soon as an error is generated, with a different marking.

We show now the corresponding model described as a CPN. In Fig. 6 the
model of the running example generated with CPN tools 4.0 [8,14] is reported.
As we can see the representation with CPN is more compact than the one seen
with TPN, for example by using only one place we can represent all the tasks of
the set. The tasks are represented as a list of objects, and each one is represented
by a token having as colour two attributes: a string that contains the name and
one integer that represents the WCET Ci of the task.



56 S. Pepi and A. Fantechi

p34

Epoch 1 - Control time

t27

[100,100]

t42

[0,0]

p53

Epoch 2 - Control time

t43

[100,100] p55p35

p62

p30

p36

t28

[0,0] p54

Fig. 3. Diagram of epoch control block.

p64

t23

[65,65]

T3_1_TX-RX

t25

[0,0]

p65

p75

t53

[95,95]

p76

T3_1_TX-TX

t54

[0,0]

p77

p78

t55

[95,95]

p79

T3_1_RX-RX

t56

[0,0]

p80

Fig. 4. Diagram of block for the verification of constraints on task T3.

p19

t2

[80,80]

p24

t20

[0,0]

t21

[0,0]

t17

[0,0]

t14

[0,0]

p28

T5_1

p29

T5_2

Fig. 5. Check block for the scheduled time between two epochs for task T5.



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 57

Fig. 6. Coloured Petri Net model for a fixed scheduler.

Inhibitor arcs are not provided by CPNs (as supported by CPNTools); since
they are extensively used in our modelling, we have used a pattern that allows to
simulate their behaviour: the Antiplace pattern, natively provided by CPNTools.
This is exemplified in Fig. 7, where the execution of a thread at a certain time is
achieved by simulating an inhibitor arc on place Run by using the Antiplace
pattern () initialized with a token: when a thread is executed, the token is
removed from Antiplace, so that the transition Put is not enabled until the
thread finishes executing (so the token spends in place Run a time equal to its
value Ci, represented by the variable t), and then it enables the transition End;
at this point a token is put back in Antiplace, allowing the next thread to run.
In Fig. 6 the Antiplace pattern is used in the modelling of both the first epoch
(top Antiplace) and of the second (bottom Antiplace).

The second epoch performs its scheduling after 100 time units have elapsed.
Time is not inherently modelled in CPNs as is in Timed Petri Nets. Hence a time-
passing simulating pattern has been used; the pattern shown in Fig. 8 implements
a timer that increments by 1 at each simulation step, till the simulated time has
reached 100, in which case the transition CountTime is disabled. The Timer
pattern has been used in Fig. 6 to start the second epoch at time 100. The
place C containing a token value 100 allows threads to run, as long as the other
constraints on the transition Put are respected; in particular the threads of the
first portion of the schedule (first epoch) must have all finished running.

Due to the absence of the built-in timing mechanisms of TPNs, verification of
the constraints on the execution time of the thread need to be explicitly realized
by means of some functions listed on the transitions. On the first and second
transitions named “Put”, for example, we can find respectively the functions
called [verifyTh3 ()] and [verify2Th3 ()]. These two functions implement the



58 S. Pepi and A. Fantechi

Fig. 7. Antiplace pattern used to simulate an inhibitor arc.

Fig. 8. Timer pattern.

constraint that between the two executions of T3 cannot elapse less than 65 ms.
The functions are defined as follows:

fun verifyTh3((n,t)::l) =

if n="Thread3" andalso

intTime() > 65

then false else true

fun verify2Th3(((n,t)::l)) =

if n="Thread3" andalso

(intTime()-100) > 65

then false else true

The function checks if the token in input to the transition represents the
task 3, and verifies that the current simulation time (obtained with the function
intTime()) is less than 65 units. If the constraint is not respected, the transition
is not enabled.

On the transition “End” we can find a function named [verifyTime()] that
checks all the other constraints (the function is similar to the one above).

An exception is the constraint on T5 that is represented by function
[verifyTh5ctime()] placed as guard on the same transition. The modelling of
this last constraint, specific for task T5, requires to save in a variable the time
at which the token of the T5 exits from the “Run” place in the first epoch.
This has been achieved through the transition “T” with label pattern input,
output, action where we take a variable in input (variable n) and by the action
(getTime() function) we generate an output (variable ctime). This transition is



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 59

enabled only for T5 as we can see from the guard on the arch. So the variable
that we have obtained has be used in the function:

fun verifyTh5 ((n, t), ctime)=

if n = "Thread5" andalso

(intTime () - ctime) >= 90

{then false else true}

Similarly to the modelling done with TPN, also the simulation of the CPN
model by means of the CPN Tools 4.0 stops if one of the constraint is not
satisfied, so the user is able to understand where the problem is located.

5 Modelling the Runtime Scheduling

As previously said, the platform also implements a runtime (on-line) scheduling
algorithm: a round robin scheduling with priority levels, deadlines, a preemption
mechanism and a donation mechanism. Runtime scheduling is used for applica-
tions of the platform that do not require stringent hard real-time requirements.
Although scheduling predictability in these applications is less urgent, we have
applied the same modelling framework used for the pre-runtime algorithm to
this case: having a certain level of predictability at a low cost can anyway avoid
annoying (although not safety-critical) software bugs due to poor scheduling
performances, that could anyway increase software maintenance costs.

Also in this case we have used both TPNs and CPNs in order to complete the
comparison of the two modelling frameworks also in this other case. The following
sections provide the generated models with Petri Nets for three variants of the
Round Robin algorithm, namely with FIFO queue, with prioritized FIFO queue,
and adding preemption. The experiments are conducted on a reduced taskset of
three tasks, starting from the simpler variant, by inserting then various functions
incrementally.

5.1 Round Robin with FIFO Queue

The first variant considered is a round robin without priority, without preemption
but with the introduction of a FIFO queue for arriving tasks. Figure 9 shows the
diagram of execution time for this variant, assuming the following taskset data:

– The first process arrives at time 20 and has a duration of 8 time units,
– The second arrives at time 25 and has a duration of 12 time units,
– The third arrives at time 20 and has a duration of 16 time units.

The time slice assigned to each task at run time is 4 time units. In the Timed
Petri net of Fig. 10 a FIFO queue for the management of the processes during
their arrival and their displacement has been introduced in the WAIT places.
Three FIFO queues have actually been implemented (highlighted by a box), one
for each task, given the impossibility to use only one for all the tasks, due to the fact
that in TPN it is not possible to distinguish tokens representing different tasks.



60 S. Pepi and A. Fantechi

Fig. 9. Temporal schema of a RR with three tasks with FIFO queue.

Fig. 10. Timed Petri Net relative to a RR with three tasks with FIFO queue.

Each queue is formed by three places and two transitions. The places are used to
store the position of the task in the queue and transitions allow the progress of the
task in the queue, moving the token. To simulate the correct order of tasks in the
queue, inhibitors arcs have been used, which inhibit the passage of the token to
the next place if the other queues already contain a token in a place of the same
level.

The same round robin variant was modelled with CPNs and the result is
shown in Fig. 11. The tasks are represented by tokens of type Sting*int defined
as: colset T = product STRING*INT timed;, where the string is the task identifier
and the integer represents the time slice. The FIFO queue in this case can be
programmed as a single token having as type a list structure: the management



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 61

Fig. 11. Coloured Petri Net relative to a RR with FIFO queue, and three tasks.

of the queue is represented by the place fifo, which takes token type LT defined
as: colset LT = list T timed or rather an object list of type T .

Tokens have an initial timestamp representing their time of arrival. They
are put in the list by the concatenation function lˆˆ[(p, t)], where l is the token
associate to the place FIFO. If there are no tokens in the place Run, the transition
Get is enabled, the element at the head of the FIFO is extracted by the function
(p, t) :: l, and the updated list is sent back to the place FIFO. Before being
added to Run every input token receives a timestamp, and the time slice value
is decremented. If the remaining time is less than the timeslice, it receives a
timestamp value equal to the remaining time, and the integer value of the token,
represented by the variable t, is brought to 0. In this way, once elapsed the
timestamp, the token will not be placed back in the queue but will be eliminated
through the transition DeleteTh.

5.2 Round Robin with Priority FIFO Queue

Figure 12 shows the timing diagram of a Round Robin scheduling with FIFO
queues to which priority has been added. Similarly to the previous example,
there are three processes:



62 S. Pepi and A. Fantechi

Fig. 12. Temporal schema of a RR with three tasks with FIFO queue and priority.

– The first arrives at time 20 and has a duration of 8 time units,
– The second arrives at time 25 and has a length of 12 time units,
– The third arrives at 20 and has a duration of 16 time units.
– The second and third process have equal priority and greater than the first

one.

The quantum of CPU time assigned to each of them at run time is 4 time units.
The Timed Petri Net of Fig. 13 is the model of the round robin variant

with priority and FIFO queue. The boxes show queues formed by nine places
arranged in three rows and connected together with instant transitions. This is
a generalization of the previous modelling of a single queue for the three tasks
case, where in principle the three tasks can have three different priority levels:
the priority levels are represented by the three columns in each box. The task
priority is expressed by including a link to the first place of the queue related
to the actual task priority: If the arc is connected with the first (last) vertical
row of places, the process will have the lowest (highest) priority. In the case
under consideration, the first task has a lower priority than the other two tasks,
that have equal priority. Notice that only one of the columns is connected, so
the other two are useless, but this design is maintained for easy modification of
tasks’priorirty. As for the simple FIFO queue of Fig. 10, inhibitor arcs are used
to enforce the correct priority and FIFO policy.

The corresponding CPN model for this case is shown in Fig. 14. The model
must then insert the thread into a ready queue based on their order of arrival
and an integer value representing the priority of the thread. A token that has
a priority value higher than those already present in the queue will be inserted
in the head, and then perform first. Hence the management of the priority and
FIFO policy is implemented through a data structure instead of the convolutes
net layout of the TPN case. The structure of the model is virtually unchanged
compared to the case without priority, the differences are basically two, namely
the label on the arcs in input to the place that represent the tail and a different
type to define the task. In this model, threads are represented by token type
colset T = product STRING*INT*INT timed where last INT value is associated
to the task priority. In the previous model the insertion was performed by con-
catenation function and the token was placed at the tail of the queue. In the
version with priorities a check on the value that represents the priority is needed



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 63

Fig. 13. Timed Petri Net relative to a RR with three tasks with FIFO queue and
priority.

Fig. 14. Coloured Petri Net relative to RR scheduling model with with FIFO queue
and priority.



64 S. Pepi and A. Fantechi

in order to determine the location in the queue, and this is achieved with the
sort function sort((p, t, x), l) defined as follow: funsort((p, t, x), []) = [(p, t, x)]|

sort((p, t, x), ((m, s, q) :: l)) =
ifhigherPr(x, q)then(p, t, x) :: (m, s, q) :: l else(m, s, q) :: (sort((p, t, x), l));

where higherPr(x,q) is another function that performs a comparison between
two integer values that represent the degree of priority and returns a boolean
value, thus defined: funhigherPr(x, y) = (x > y);. The sort() function takes
as parameters the variables (p, t, x), respectively, of type String, int, int that
represent the three attributes of a thread, and the variable l of type LT , which
represents the list. If l matches the empty list, the token will be inserted in the
list, otherwise, will run the function sort ((p, t, x), ((m, s, q) :: l)); that makes
the comparison with the element that is currently leading the list. If the priority
value of the token to be inserted is higher than that in front of the list, then
it will be placed in front of the latter. Instead, if the value is lower, the sort()
function will be called through that list, with the exception of the head element
in the head, recursively until it finds a token with a lower priority or the list is
empty.

5.3 Round Robin with Priority FIFO Queue and Preemption

The last variant is a round robin scheduling with priority FIFO queues and
preemption, whose time schema is given in Fig. 15. We use the same example
taskset data of the previous variant.

Fig. 15. Temporal schema of a RR with three tasks with FIFO queue, priority and
preemption.

The Timed Petri Net of Fig. 16 adds to the previous model the preemption
technique: the box highlights the transitions designed for this purpose. If a task
of higher priority arrives in WAIT place, transitions t28 and t43 are activated,
triggering the move of the token representing task 1, with lower priority, from
the place EXEC to WAIT, which represents preemption.

The model of this variant by means of CPNs is shown in Fig. 17. Compared
to Sect. 5.2 a transition CheckPr and a place called Count have been added.



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 65

Fig. 16. Timed Petri Net modelling a RR with FIFO queue, priority and preemption,
with three tasks.

The place is used to simulate the continuous flowing of time, with time increasing
of a time until at each simulation step. Indeed, the model of Sect. 5.2 advances
the time at each simulation step of the amount of time needed to reach a change
of system status, while preemption requires to check the status of the tasks at
any simulation step. When the integer token contained in Count reaches four
(the value attributed to the timeslice), it enables the transition Back in Run and
the token is queued by the sort() function. For every unit of time, through the
transition CheckPr a comparison is made between the priority of the running
threads and that of the thread at the top of the queue. If the priority of the
latter is lower, the token currently in Run will decrease the execution time of
1 and its timestamp will be incremented by 1. The transition CheckPr remains
enabled as long as the executing thread will have an execution time greater than
0 or until it will have spent the whole time slice. In case a token is in the Run
place and a token with higher priority arrives in the queue, the time counting
is stopped and the replacement is done instantly, by inserting the token with
the higher priority in Run and inserting the other in the queue via the sort()
function. The verification of the priority value is executed, via inscriptions on
the arcs, by the function higherPr(x, y) defined earlier. The same function is
used to determine the value of the timestamp on the token in Run and Count,
and to decrease or not the execution time of the thread. If in fact the function
returns true, it means that they will be replaced, and the value of the token t in
execution will not be decreased.



66 S. Pepi and A. Fantechi

Fig. 17. Coloured Petri Net relative to RR scheduling model with FIFO queue, priority
and preemption.

6 Comparison Between TPN and CPN

The experiments have allowed a comparison between the two Petri Nets dialects
and related supporting tools, in particular enlightening the following points:

The TPN model is difficult to read, and the addition of further tasks would
result in a huge increase of the places and transitions number, making it more
and more unreadable. This increase is due to the following reasons:

– Any place can hold a single token and the execution of a thread must be
reproduced a number of times equal to the number of modelled processes;
indeed in TPNs it is not possible to express an attribute that differentiates
the identity of a token.

– Time management for each thread is left to time constraints on the transitions
themselves.

– It is not possible to create aggregate objects: a FIFO queue, for example, can
be realized only through checks by inhibitors arcs with a number of places



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 67

that depends on how many threads should be modelled (the number of places
to represent the queue is equal to n2 where n is the number of threads).

– With the inclusion of the priority, it is noted that for each thread nine places
and seven transitions with inhibitor arcs between them are needed for three
thread. In this case we have a cubic relation of the net size to the number
of threads, although optimizations can be done by loosing flexibility of the
approach.

The CPNs instead can represent a queue using a single place that contains a
token of type list. Time management is shifted to the token colour using an
integer and a timestamp. This allows a large number of tasks to be represented
by simply adding tokens to the initial marking, leaving the structure of the model
unaffected.

As cons the CPN Tools software does not support the inhibitors arcs, so it
was necessary to simulate them through the Antiplace pattern. The increase of
the size due to the use of this pattern is however only locally additive, and the
absence of replicated instances of inhibitor arcs typical of TPN models allows
for containing the usage of the pattern to a few units.

CPNs do not natively support time, so time constraints (modelled in TPN
through places and transitions) have to be expressed in auxiliary functions, but
this in the end simplifies the model.

With TINA and TPNs the management of time during simulation allows to
easily understand the global state of the system. The time is increased at any
simulation step of a time unit. In CPNTools and CPNs if there are no transitions
enabled at the current time, the simulated time count is increased in one step,
up to the time at which at least one transition is activated. In one case we had
to enforce simulation of step by step time advance by means of a specific Timer
mechanism.

CPNs however resulted to be more advantageous in terms of time spent in
model design or in changes, mainly for two reasons:

1. constraints can be simply modelled by a guard on the transition, expressed
by a function written in pseudo code, which is easier to express;

2. populating the model with new tasks does not require to draw new graphic
elements but just add an entry to the related place;

We have experienced that the time spent in CPN modelling is at the end less
than half that spent in TPN modelling.

7 Conclusions

We have applied the two modelling options sketched above to different scheduling
algorithms, a fixed one and a Round Robin, and different sets of tasks as well. The
quite straightforward conclusion is that the CPN modelling is more advantageous
in terms of size and readability of the model, and in terms of adaptability of the
model to different task sets.



68 S. Pepi and A. Fantechi

It is indeed easier with CPN to instantiate the same model, for the same
scheduling algorithms, on a different set of tasks, and this is what is important
in the daily application of this modelling framework. Since essentially only the
taskset data need to be changed for a new, or modified, specific application, the
overall time to analyse a new taskset, summing up the time to produce a model
of the schedule of a new specific application, to run a simulation and to analyse
the simulation, is about two hours with a TPN modelling and about one hour
with the CPN modelling. Anyway, this time compares with the much longer time
(eight hours) needed by the previously used empirical approach, and therefore
is convenient in both cases.

Even if some rework is needed in case of a negative response of the simula-
tion, the information returned by the simulation helps understanding where the
problem lies, indicating the solution to the problem. Usually one rework cycle is
at most needed, so the overall cost is anyway reduced.

For this reason we have not considered convenient to investigate solutions
based on counterexample generated by a model checker [12], able to provide
automatically the taskset parameters satisfying the scheduling requirements.

The low cost of the simulation based solution has an obvious positive impact
on the costs of the process of instantiating a generic application to a new specific
application for marketing a new product or variant.

Regarding the Round Robin runtime scheduling algorithm, we have shown
the modelling, with the two Petri Net variants, for a taskset of three tasks. It
is already evident from the presented models that for real application tasksets,
such as one that we have addressed, containing 16 tasks, with 32 priority levels,
the TPN model cannot be feasible, while the CPN model is an easy extension
of the one presented.

The design process based on this modelling approach is currently under
experimentation by our industrial partner, with the aim of introducing it in
the routine customization process. An help for this introduction could come
from providing tools to support an easier instantiation of the generic models
into specific ones, so that the use of CPN is transparent to the final user who
only sees the simulation results. This objective requires also a facility to explain
the reasons of a negative response without showing the underlying CPN model.
This is considered as future work.

Although motivated by specific needs of a railway signalling company, we
believe that this approach can be ported to other domain as well, as soon as
configurable real-time applications have to be designed on top of available real-
time scheduling algorithms.

Acknowledgements. We wish to thank Marco Bartolozzi, Daniele Marchetti and
Luca Santi for their contribution to the conducted modelling experiments.

References

1. van der Aalst, W.M.P.: Petri net based scheduling. Oper. Res. Spektrum 18, 219–
229 (1996). Springer



Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 69

2. Alur, R., Dill, D.: The theory of timed automata. In: Bakker, J.W., Huizing, C.,
Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73. Springer,
Heidelberg (1992). doi:10.1007/BFb0031987

3. Barreto, R., Cavalcante, S., Maciel, P.: A time Petri Net approach for finding
preruntime schedules in embedded hard real-time systems. In: Proceedings of Dis-
tributed Computing Systems Workshops, pp. 846–851. IEEE (2004)

4. Berthomieu, B., Vernadat, F.: Time petri nets analysis with TINA. In: Quantitative
Evaluation of Systems, pp. 123–124. IEEE (2006)

5. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent system
using time petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991). IEEE

6. Buttazzo, G.: Hard Real-Time Computing System, 3rd edn. Springer, New York
(2011)

7. Cenelec: Cenelec EN 50128:2011. In: Railway Applications - Communications, Sig-
nalling and Processing Systems - Software for Railway Control and Protection
Systems (2011)

8. CPNTools (2015). http://cpntools.org/
9. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:

Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Cham (2014). doi:10.1007/978-3-319-05032-4 13

10. Felder, M., Mandrioli, D., Morzenti, A.: Proving properties of real-time systems
through logical specifications and petri net models. IEEE Trans. Softw. Eng. 20(2),
127–141 (1994)

11. Grolleau, E., Choquet-Geniet, A.: Off-line computation of real-time schedules using
Petri Nets. Discrete Event Dyn. Syst. 12(3), 311–333 (2002). Springer

12. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: a tool for analyzing time
petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005). doi:10.1007/11513988 41

13. Jensen, K.: Coloured petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 254. Springer, Heidelberg (1987)

14. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.
9(3), 213–254 (2007). Springer

15. Leveson, N.G., Stolzy, J.L.: Safety analysis using Petri Nets. IEEE Trans. Softw.
Eng. 13(3), 386–397 (1987)

16. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973). ACM

17. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989). IEEE

18. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
Upper Saddle River (1981)

19. Petri, C.A.: Kommunikation mit automaten. Ph.D. thesis. Universitat Hamburg
(1962)

20. Ramchandani, C.: Analysis of asynchronous concurrent systems by Timed Petri
Nets. Massachusetts Institute of Technology (1974)

21. Stankovic, J.: Misconceptions about real-time computing. IEEE Comput. 21, 10–
19 (1988). IEEE

22. TINA (2015). http://projects.laas.fr/tina/
23. Tsai, J., Yang, S.J., Chang, Y.-H.: Timing constraint Petri Nets and their appli-

cation to schedulability analysis of real-time system specifications. IEEE Trans.
Softw. Eng. 21(1), 32–49 (1995). IEEE

http://dx.doi.org/10.1007/BFb0031987
http://cpntools.org/
http://dx.doi.org/10.1007/978-3-319-05032-4_13
http://dx.doi.org/10.1007/11513988_41
http://projects.laas.fr/tina/

	Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm of an Industrial Real Time System
	1 Introduction
	2 Scheduling in Safety-Related RT Applications
	3 Proposed Method
	3.1 TPN
	3.2 CPN

	4 Modelling the Pre-runtime Scheduling
	4.1 Taskset and Constraints Specification
	4.2 Presentation of Fixed Scheduler Models

	5 Modelling the Runtime Scheduling
	5.1 Round Robin with FIFO Queue
	5.2 Round Robin with Priority FIFO Queue
	5.3 Round Robin with Priority FIFO Queue and Preemption

	6 Comparison Between TPN and CPN
	7 Conclusions
	References


