
Empirical Investigation of Scrumban in Global
Software Development

Ahmad Banijamali(B), Research Dawadi, Muhammad Ovais Ahmad,
Jouni Similä, Markku Oivo, and Kari Liukkunen

M3S Research Unit, Faculty of Information Technology and Electrical Engineering,
University of Oulu, PO box 4500, 90014 Oulu, Finland

{ahmad.banijamali,muhammad.ahmad,jouni.simila,markku.oivo,
kari.liukkunen}@oulu.fi, research.dawadi@student.oulu.fi

Abstract. Scrumban combines two Agile approaches (Scrum and
Kanban) to create a management framework for improving software engi-
neering practices. Scrumban is expected to override both Scrum and
Kanban, as it inherits the best features of both. However, there is little
understanding of the possible impact of Scrumban on software develop-
ment in prior studies. This study first makes a comparison among Scrum,
Kanban, and Scrumban and then investigates the impact of Scrumban
on six major challenges of global software development. This study was
conducted in a distributed project at two Software Factories in two uni-
versities in Finland and Italy. The results show that Scrumban could
positively affect issues such as evenness of different sites, communication,
and cultural issues as well as leveraging resources among sites. However,
there are still few challenges that require alternative methodologies and
tools other than Scrumban to be overcome.

Keywords: Agile · Distributed software development · Kanban ·
Scrum · Scrumban · Software factory

1 Introduction

The success of software development projects depends heavily on the use of appro-
priate software development methodology. According to a report by Standish
Group, 42% of project cases which have used an Agile approach were success-
ful, which is considerably more than what has been achieved using traditional
project management methods [1]. Agile methods are iterative, incremental, and
enhance collaboration between self-organizing cross-functional teams [2]. Scrum is
the most frequently used Agile method in software development [3]. Scrum reaches
its objective through time-boxed iterations based on continuous feedback and task
prioritization [4].

Kanban, on the other hand, has not been widely adopted in software develop-
ment [5]. In 2004,Kanban entered into theAgile realmwhenDavidAnderson intro-
duced it in practice while assisting a software development team at Microsoft [6].

c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 229–248, 2017.
DOI: 10.1007/978-3-319-66302-9 12



230 A. Banijamali et al.

Kanban proposes to defer the project commitments, set constraints on the amount
of work in progress (WIP), and limit the project promises that cause project failure
[7]. The high expectations for Kanban are the result of its adaptability regarding
changes in requirements, its ability to visualize project processes, and its role in
increasing communication and cooperation among team members [8].

A study by Ladas [9] combined Scrum and Kanban to introduce a methodol-
ogy which represents the best elements of those methodologies. According to that
study, Scrumban is more appropriate for teams that are already using Scrum.
Scrumban applies Scrum as a prescriptive method of team-work to complete
the work, while it encourages process improvements through Kanban to allow
projects to continuously optimize the processes and number of tasks [10].

There are limitations with respect to Scrum which can be mitigated by using
Kanban alongside it. For example, Scrum does not consider the organization as
a whole during its implementation [11] and has limitations such as lack of work
visibility and changing task priorities [12]. Scrumban thus inhibits companies
from embracing change and establishing better relationships between business
and information technology departments [13]. Scrum and Kanban can be com-
bined for high throughput and visibility into the development process.

Geographically distributed teams with poorly planned coordination often end
up with unmatched deadlines, cost overruns, and even cancelled projects [14].
Distributed software development settings (DSD) often have additional chal-
lenges such as different locations, times, cultures, and languages among team
members which can add more complexities to software development [15]. The
idea of utilizing manpower from different locations is tempting, but it creates
excessive coordination tasks in projects makes it difficult to ensure that everyone
has a clear idea of the project goals and is committed to achieving them.

A study conducted by Šmite et al. [16] compares the characteristics of Agile
and DSD and declares that communication in Agile projects is informal, face-to-
face, and synchronous, while DSD projects require formal, computer-mediated,
and often asynchronous communication. Moreover, Agile projects apply change-
driven and self-managed coordination and light-weight control. However, DSD
settings need plan-driven and standardized coordination among sites, which is
achieved through several command and control methods. Despite their opposing
characteristics, the combination of Agile and distributed development is of high
interest to companies [17].

Geographically distributed development, in itself, is a vague term because
there can be different types of distributed teams based on the time difference
between the involved team members [18]. Two configurations of distributed
teams that can be taken into consideration are North-South and East-West.
North-South distributed teams do not have a considerable difference in time-
zones, while the East-West configuration involves a significant time-zone dif-
ference [18]. Our investigated software factories (described in Sect. 3.1) were
distributed from the North to South of Europe; hence, the East-West setting is
beyond the scope of this research.



Empirical Investigation of Scrumban in Global Software Development 231

According to Šmite et al. [16], there is limited research and understanding
about the application of Agile methodologies in DSD. In addition, Scrumban is
a new development approach in the software engineering domain, and existing
literature provides little information on Scrumban’s impact on DSD projects.
Increasing interest in globally distributed software development practices has
motivated us to investigate the following research question: “How does Scrumban
methodology affect global software development?” As coordination among devel-
opers is a critical issue within those environments, we have mainly investigated
Scrumban from this perspective.

This paper is structured as follows: Sect. 2 presents an overview of previous
studies on Scrum, Kanban, and Scrumban in the context of software engineering
and similarities and differences among them. Further, it discusses global software
development. Section 3 provides a brief introduction to the Software Factory
settings and then elaborates on the T-Bix project case which has been used for
this research. Next, it shows the project coordination model and the applied
research approach. Section 4 presents findings of this study, the limitations, and
direction for future studies. Section 5 concludes the paper and highlights the
main contributions of our work.

2 Related Works

This section discusses Scrum, Kanban, and Scrumban with respect to their sim-
ilarities and differences. It also describes software development practices in a
global context.

2.1 Scrum

The first implementation of Scrum in the field of software development was
at Easel Corporation in the USA in 1993 [19]. Scrum advocates small teams
that work independently and create more efficiency at work [20]. Scrum is an
incremental Agile software development methodology that operates through a
series of iterations that require continuous planning, defined roles, and project
artefacts [21,22]. Scrum is the most frequently applied Agile software develop-
ment method [3] for achieving small but continuous deliverables. It facilitates
regular feedback after each iterative development process, called a “sprint” [23].
According to Rising and Janoff [20], Scrum is beneficial, particularly for projects
in which all the requirements are not clear in advance.

Implementation of Scrum allows self-organization which can result in a
high-performance team even if the team comprises average developers [19]. The
most important roles in Scrum include: (1) product owner, who serves as an
interface among developers and other stakeholders, (2) Scrum master, who is the
person responsible for leading scrum meetings, identifying tasks to be completed
within the sprints, and measuring progress [20], and (3) development team. Since
companies from Western countries often tend to outsource their software devel-
opment to Eastern countries [19], applying Scrum in such situations can induce
independency of teams as well as increase communication and productivity.



232 A. Banijamali et al.

2.2 Kanban

Kanban is a relatively new concept in the field of software engineering that
was originally applied in Lean manufacturing [6]. While Scrum focuses on one
iteration at a time, Kanban supports a continuous workflow [5]. Kanban provides
the flexibility of managing the workflow within teams. It limits WIP in each
activity to a maximum number of tasks or items at any given time. Moreover,
it does not suggest strictly defined roles and sprints [24]. It provides a clear
visualization of the phases in the project lifecycle.

Kanban reduces lead time and improves quality and productivity [25]. Kanban
helps team members to identify constraints of a process and focus on a single item
or task at a time [26]. In traditional software development methods, several works
are assigned to a team member, which is defined as a push method [26]. In that
case, the work to be completed is sent to the team member regardless of the sta-
tus of other work. On the other hand, Kanban suggests assigning a developer to
one particular job. When the work is completed, the developer can pull another
task from the Kanban board and work on it. According to Polk [27], provision of
a Kanban board changed the thinking of team members by making them realize
that they are not just developing code but developing a complete product. With
Kanban, team members, stakeholders, and customers can get a real-time view of
project progress [26]. Implementation of Kanban also lowers the risk of communi-
cation and coordination breakdown [28].

2.3 Scrumban

By combining Lean and Agile methodologies, project members can receive rapid
and iterative feedback while they have the ability to implement the necessary
changes and respond to the feedback. The combination of Agile and Lean in
co-located projects enhances coordination among team members, increases team
morale, and produces better outcomes [13]. Lean increases the scale of the devel-
opment process and makes it efficient, while Agile principles help to make the
process flexible [11].

Table 1 summarizes the key points of using Scrum and Kanban in the same
project by showing several examples from the literature. In Sect. 4.1, we will use
these points for our analysis in the context of distributed software development.

Scrum and Kanban are similar in the sense that both improve transparency,
aim to release software as soon as possible, work on the principle of breaking
work into pieces, and continuously optimize the project plan [29]. It is argued
that if Kanban is used alongside Scrum, they can complement each other [30].
Scrumban incorporates the iterative planning of Scrum but is more responsive
and adaptive to changes in user requirements. Project members who have had
good experience with Scrum can benefit from Scrumban, as it improves their
knowledge and capabilities [30]. By combining Scrum and Kanban, researchers
hope to create more flexibility in projects as well as maintaining the iterative
pace that Scrum has provided [30].



Empirical Investigation of Scrumban in Global Software Development 233

Table 1. Scrum and Kanban methodological elements.

ID Study place Key points Reference

P01 Vietnamese office of
a Swedish software
development company

Scrum:
Iterative and incremental
Regular feedback
Strict roles and rules
Kanban:
Visualization
Limiting WIP
Scrumban:
Self-organizing
Collaborative teamwork

Nikitina
et al. [24]

P02 Faculty of Computer
and Information Science,
University of Ljubljana

Scrum:
Incremental and iterative
Planned project
Regular feedback
Kanban:
Maximize workflow
Visualization
Limiting WIP

Mahnic [5]

P03 Arrk Group:
a multinational software
development company

Scrumban:
Limiting WIP
Optimal resource utilization
Collaborative teamwork
Quick decisions
Customer satisfaction

Joshi and
Maher [31]

P04 GoGo: offers
services such as Internet,
entertainment, messaging,
voice in the aviation
market

Scrumban:
Visualization of workflows
Transparency
Increased team participation

Brinker [32]

One factor that Scrumban inherits from Kanban is the visualization of work-
flows [10]. Scrum completes tasks through sprints that are planned in advance,
but Scrumban allows more flexibility and planning only for the following sprint.
This helps projects to limit WIP. When the limit of tasks in a particular work-
flow is reached, team members help each other to complete the tasks in that
workflow rather than starting a new one. This increases the coordination among
team members and also reduces the possibility of a bottleneck [10].

Scrumban, unlike Scrum, has no strict rules and roles and encourages self-
organized teams. As a result, team members manage their tasks by themselves
and make quicker decisions. According to Khan [10], Scrumban reduces the rele-
vant tasks of planning for the whole iteration (the same as Scrum), as meetings
are set only when required and tasks are changed depending on the output of
the ongoing sprint.



234 A. Banijamali et al.

A real case example of a company’s transition from Scrum to Scrumban [4]
reports that implementation of Scrumban provided a systematic improvement
in the performance of developers. Additional features of Scrumban over Scrum
such as WIP limit and pull-based task management are received well by the
team members. Table 2 has summarized findings from Yilmaz and O’Connor [4],
Reddy [7], and Ahmad et al. [33] to highlight the similarities and differences
between Scrum, Kanban, and Scrumban.

Table 2. Similarities and differences among Scrum, Kanban and Scrumban [4,7,33].

Kanban Scrum Scrumban

No predefined roles for
members

Predefined roles of Scrum
master and team members

Predefined roles of Scrum
master and team members
may vary within project
time

Continuous delivery Time-boxed sprints Task board-based
iterations

WIP limits amount of
work

Sprint limits amount of
work

WIP limits amount of
work

Changes can be made
at any time

No changes allowed
mid-sprint

Changes allowed
mid-sprint

Earlier planning and
documentation
necessary

Planning done after each
sprint

Planning on demand, also
within sprints

Kanban board is
persistent

Scrum board is reset after
each sprint

Scrumban board is
persistent

Size of task is not
limited

Size of task limited to a
sprint

Size of task is not limited

Pull-based work
management

Sprint backlog-based work
management

Pull-based work
management

The implementation of Scrumban, however, presents several challenges. The
flexibility regarding production changes can cause new challenges in, for example,
assigning resources and developing project time-tables. Because Lean method-
ology calls for considering the whole organization through implementation [34],
the combination of Kanban and Scrumban increases the complexities of planning
for activities across the whole organization. Moreover, it is not always possible to
include business personnel or management executives developing project back-
logs or contributing regular feedback [11].

2.4 Distributed Software Development

Finding resources globally creates the possibility of mobility in resources and of
accessing new knowledge of skilled people around the world [17]. Global software



Empirical Investigation of Scrumban in Global Software Development 235

development is applied through multi-geo, multicultural, and multi-temporal
environments to benefit from access to new markets, lower costs, increased oper-
ational efficiency, improved quality, and less time to markets [35].

DSD could have different configurational characteristics, which refers to the
structural properties of the global environment, different ways of distributing
developers, and differences in time and physical distance. A study by Ramasubbu
et al. [36] examined how configurational dimensions can affect productivity, qual-
ity, and profit outcomes of distributed projects. This study explains aspects of
dispersions including spatial dispersion to measure the physical distance, tempo-
ral dispersion to measure the time-zone difference, and configurational dispersion
to measure structural properties such as number of distributed sites and homo-
geneity of distributed people and skills across different sites.

Šmite et al. [17], Jiménez et al. [37], and Nakamura et al. [38] declare that
realizing the DSD benefits come with associated challenges in terms of com-
munication gaps between multiple sites, group awareness, software configura-
tion management, knowledge management, flexible coordination, collaboration,
project management, process support, tools support, quality management, and
risk management.

Coordination is a pressing issue in global software development. People at
the research and development center of Yahoo in Norway mentioned that the
time-zone difference was a major cause of problems when dealing with dislocated
teams [18]. According to Noll et al. [39], the main barriers to coordination in dis-
tributed projects are geographic, temporal, cultural, and linguistic differences.
That study proposed that project teams should enhance site visits, use synchro-
nous communication technology, and apply knowledge-sharing infrastructure to
transform implicit knowledge to explicit knowledge [39]. Other scholars such as
Mak and Kruchten [40], Redmiles et al. [41], and Sidhu and Volberda [42] have
argued that coordination issues come from (1) lack of flexibility and integration,
(2) poor role support, (3) decreasing informal communication and workplace
transparency, and (4) limitations imposed on formal communication. However,
the levels of impact of these issues are different in different dispersion configu-
rations; for example, a study conducted by Ramasubbu et al. [36] suggests that
establishing a project in an East-West geographical setting requires radically
more consideration of time-zone classifications than North-South settings.

There are several instances of the application of Scrum in distributed devel-
opment projects [1,16,18,43]. The American software consulting company Agile
Factori implemented a successful software development project using Agile
methodologies. The project was provided by Big Oil, an American company
consisting of four teams, two of which were located in America and the other
two in Brazil and Argentina. All four teams had a real-time video screen with
audio that showed activities at the other sites. In addition, one screen at each
site showed a dashboard of in-process software components. This allowed other
sites visualization, increased awareness, and better coordination among teams
[18].



236 A. Banijamali et al.

SirsiDynix (U.S) has successfully implemented distributed Scrum since 2005
[19,43]. Using distributed Scrum, SirsiDynix collaborated with the Russian com-
pany Exigen in 2005 for a large project [43] employing more than 50 members
in total and producing over one million lines of code. The output of this distrib-
uted team was estimated to be equivalent to the work of a 350 co-located-person
team working in a waterfall model [43].

An international Agile software development company, Xebia, located in
France, India, and the Netherlands, also implemented Scrum successfully
between 2006 and 2008 [43]. Distributed Scrum was used alongside XP program-
ming in multiple projects by Xebia, and the results showed that the distributed
teams were as effective as co-located teams. These instances show that glob-
ally distributed teams can be as productive as co-located teams when Scrum is
applied effectively [19,44].

3 Research Process

3.1 Software Factory

Software Factories (SF) include structured sets of related software assets to pro-
vide developers with a development setting consisting of domain-specific tools
that help to transform abstract models into implementations [26,45,46]. Through
the SF settings, reusable development practices such as patterns, models, guide-
lines, and transformations are accessible from the viewpoint of a specific aspect
in the development context. This enables domain-specific validation and guid-
ance delivery [47].

The SFs increase productivity from the business perspective, improve qual-
ity and consistency of architectures and designs, reduce development lifecycle,
and consolidate operational efforts [47]. Also, SFs established in the context of
universities are perfect avenues for exploiting technological research for innova-
tion. A study by Taibi et al. [48] declares that such an SF environment benefits
both business by receiving innovative, new ideas and academia by presenting
new skills, frameworks, and models. Therefore, academic Software Factories can
be additionally considered as a new concept of collaboration among universities
and companies [48].

3.2 T-Bix Project Case

A joint five-month software development project called T-Bix was initiated
between the University of Oulu, Finland and the University of Bolzano, Italy
in their respective Software Factories. The aim of the project was to develop a
single common platform for the time-banking system to be operational in South
Tyrol in Italy. The platform allows users to register their own profiles, search
for jobs and products, post jobs and products, send requests for jobs and prod-
ucts, and communicate their feedback. The target group was young, unemployed
people as well as senior citizens hit by the socio-economic crisis.



Empirical Investigation of Scrumban in Global Software Development 237

Because T-Bix project teams were located in Europe (North-South dispersion
configuration), they did not experience drastic temporal differences; however,
the long physical distance and diverse cultures, languages, and social behaviors
remained as challenges in the project. The Finnish team consisted of one PhD
candidate and four master’s degree students who were working locally in Oulu.
The team from Italy had a Software Factory coordinator with a PhD degree
and four master’s degree students. A member of the Italian team was work-
ing remotely from Lithuania. There was one student on each team with indus-
trial experience; however, the rest of the teams did not have prior experience in
industry. Each team comprised one project manager and three developers. The
Finnish team used Scrumban, while the other team used Scrum as the develop-
ment methodology in Italy. Teams frequently used available tools and assets in
SFs, including Rise Editor, Myeclipse, Dreamweaver, JIRA, and GitHub. There
was an Italian entrepreneur (customer of the T-Bix project) who was in direct
contact with both teams. The customer communicated his needs through meet-
ings and emails; teams attempted to interpret the customer’s requirements into
user stories and backlogs.

The front-end of the application was developed with direct contact with
the customer in Italy. The back-end, including the database development and
integration of the front-end and back-end, was developed in Finland. The codes
were shared on GitHub, where some feedback and comments were also shared.

An identical Kanban board was created in JIRA by the Oulu team and shared
with the team members in Bolzano. The Kanban board was updated regularly,
providing visibility of the board and tasks across both teams.

In addition to JIRA boards, the Software Factory in Oulu was equipped with
physical Kanban boards that were utilized throughout the project lifetime. The
boards were divided into four sections: backlog (features), to do, in progress
(WIP), and done, and was populated with user stories planned in each sprint.
Once each sprint was completed, the team in Finland updated the boards with
new tasks and shifting completed jobs to the “done” section. Figure 1 shows a
snapshot of the board.

Teams used collaboration tools such as Skype and Google Hangout to com-
municate and verify the requirements, monitor the project progress, present the
sprint deliverables, discuss the challenges, and set new milestones. After each
sprint, teams presented their respective outcomes and progress and received
feedback from both the customer and other team members.

Finding the best time for meetings is a major concern in global software
development [18]. Members from the T-Bix project met on a planned time-table
which considered the temporal difference between Italy, Finland, and Lithuania.
To accommodate other sites and the customer, the meetings were often held in
the afternoon. This ability to hold meetings during the daytime without much
time shifting is an advantage provided by North-South collaboration.



238 A. Banijamali et al.

Fig. 1. A physical Kanban board in Oulu software factory.

3.3 Project Coordination Model

The project was proposed by the customer to the University of Bolzano with the
aim of decreasing the rate of unemployment in South Tyrol. Subsequently, the
University of Bolzano had the idea of making the project a distributed Software
Factory project between the two universities.

The customer was in contact with the teams with respect to the elicitation
of requirements, acceptance testing, and the validation of artefacts. The user
interface of the website was designed and validated through regular meetings
with the customer. The codes and designs were continuously uploaded in GitHub,
in which both teams updated their latest work. The next sprint was planned
according to the feedback and suggestions made by the customer and both teams.
The following model (Fig. 2) shows how the project was carried out among the
teams.

3.4 Research Approach

This study exploits empirical software engineering methods. The authors have
applied semi-structured interviews to collect the data. The participants of this
study are members of the Oulu Software Factory who were interviewed after
completion of the project. The authors provided a set of open-ended questions
covering the scope and objectives of this paper. Four rounds of interviews were
conducted, which lasted from 45 min to 2 h. All interviews were recorded and
transcribed, enabling authors to analyze them based on the needs of this study.

A semi-structured interview format was preferred, as it provides a clear set of
instructions for the interviewer, who usually follows a paper-based interview guide
during the interview. The availability of questions beforehand makes the inter-
views easier for the interviewer and the openness of this type of interview provides
the interviewees with the freedom to express their views using their own terms.



Empirical Investigation of Scrumban in Global Software Development 239

Fig. 2. Project coordination model.

Table 3. Interviewees’ backgrounds.

Interviewee Role in the project Empirical experience Expertise

D1 Project manager 10 years Project management, UI
Design, JIRA&GitHub

D2 Programmer — PostgreSQL,
JIRA&GitHub

D3 Programmer — PostgreSQL, Java,
JIRA&GitHub

D4 UI Designer — UI Design, Java,
JIRA&GitHub

In addition, the comparable qualitative data obtained from semi-structured inter-
views is regarded as reliable for analysis [49]. Table 3 summarizes the roles, empir-
ical experiences, and expertise of the interviewees.

We have defined a set of the coding categories based on the top challenges
of the DSD projects. Those challenges have been extracted from prior studies in
the DSD domain. The categories were discussed and confirmed by two authors
of this paper. All challenges are defined in detail in the next section. Afterward,
authors read through the transcripts and underlined each fragment of relevant
information and specified which fragment fell into which DSD challenges cate-
gories. We have provided some examples of the specified fragments in the next
section. Finally, the reliability of the results was tested separately by two authors
of this paper, and they each found the same results.



240 A. Banijamali et al.

4 Results

This section summarizes key findings regarding Scrumban’s impact on the T-Bix
project as well as the limitations and opportunities for future research.

4.1 Findings

Table 4 explains how the impact of Scrumban has been realized in the coordi-
nation between North-South distributed sites. For this purpose, we have inves-
tigated the top issues in DSD projects as already introduced by other scholars,
including Carmel and Espinosa [18], Barcus and Montibeller [50], Espinosa et
al. [51], and Nidiffer and Dolan [52].

Table 4. Impact of Scrumban on coordination in DSD environments.

Scrumban

aspects

Issues in distributed software development

Strategic Project and

process

management

Communication Cultural Technical Security

Iterative and

incremental

development

Highly

improved

toward latest

sprints

Highly

improved

toward latest

sprints

More sprints,

smoother

More

iterations,

fewer

challenges

Slightly

improved

No evidence

Predictable

and

well-planned

project

No meaningful

impact on

leveraging

resources at

the other site

More

iterations,

more

improvement

Effective

communication for

the planned tasks

No

evidence

Slightly

improved

toward latest

sprints

No evidence

Transparency Positively

impacted

leveraging

resources at

both sites

Positively

impacted task

management

within sites

No evidence Slightly

reduced

challenges

No evidence No evidence

Regular

feedback

Slightly

improved

Positively

impacted task

management

within sites

Demands of both

formal and

informal feedback

Improved

toward

latest

sprints

No evidence No evidence

Limiting WIP Positively

impacted

resource

management

Decreased

challenges

slightly

No evidence No

evidence

No evidence No evidence

Self-organizing Slightly

improved

Positively

impacted task

management

within sites

Improved informal

communication

No

evidence

No evidence No evidence

Strategic issues within DSD settings are concerned with the difficulty in
leveraging available resources. Issues in which stakeholders can anticipate and
manage risks should be identified carefully [52]. Because T-Bix was an evolution-
ary project done through iterative sprints, teams were able to find new ways to
leverage available resources and skills. Within the initial meetings, two teams dis-
cussed the experience and expertise of their members, clarifying how the project



Empirical Investigation of Scrumban in Global Software Development 241

resources were divided between the two sites and how the project duties should
be assigned.

However, the team members mentioned their increasing responsibility during
the later sprints of the project. The project manager [D1] explained that they
were asked to accomplish some additional work on coding. Adapting to these
workflow changes made it difficult to complete the project. A developer [D4]
explained that after much discussion, the two teams decided to assign additional
tasks to the Oulu team, as they had more technical skills:

“After much discussion, we had to accept more work, as Bolzano was not able
to complete it. We should provide more deliverables at the end of the project. We
had no choice because we wanted the project done.”

The teams applied JIRA to establish the project structure and define the roles
of the two sites. Project tasks were assigned to the teams’ members according to
their roles and skills. Furthermore, JIRA created visibility in the WIP for each
role compared to other developers. The project manager [D1] confirmed this:

“Using JIRA, I could monitor the progress of different completed tasks with
respect to the roles. It provided me an opportunity to recognize the tasks that
required extra coordination.”

Project and process management in DSD involves discussing problem-
atic situations in synchronizing work between distributed sites [50]. Integrated
quality, shared workspaces for storing files, and engineering tools are potential
enablers of this issue. Complexity also arises from the fact that there should be
sufficient communication between two teams before they can prioritize project
tasks and decide which one is to be carried out by which team, as in the case of
the T-Bix project discussed. The teams had agreed upon a preliminary division of
work, but additional tasks were later added to the project by the customer. The
members mentioned that the added tasks caused several challenges in manag-
ing their ongoing tasks. To control the scope of the project, the involved teams
should manage changes in a planned way. Any changes in the project scope
may affect the priority and division of work among the sites. The project man-
ager [D1] declared the following primary decision criterion for allocating tasks
between sites:

“Consistency between the requested feature and available skills and knowledge
at the sites was our decision criterion for allocating tasks to sites.”

Using Kanban boards in JIRA improved the visualization and transparency
of the completed, ongoing, and planned tasks. One developer [D3] mentioned the
following:

“The Kanban board in JIRA was quite helpful because we could not frequently
update the pictures of the physical Kanban board for the other team. We applied
JIRA’s Kanban board to share the tasks we had completed and planned to do.”

Using JIRA and GitHub, project members received feedback on their jobs,
for example, for the codes that were uploaded in GitHub. One of the developers
[D2] stated the following:



242 A. Banijamali et al.

“For example, when the scripts in the database had problems, one of the
programmers in Bolzano was using GitHub to send feedback regarding the issues
and asking for solutions.”

Another developer [D4] also believed the following:
“JIRA is a tool developed for task management purposes, but you cannot

upload all project deliverables into it. It is not a shared platform, so we needed
to use other tools, in which we could share other data.”
Communication issues are related to the lack of effective communication
mechanisms. It is very important to convey information such as the current
state of the project as well as project challenges, schedule, and cost. In the case
of distributed projects, communication plays an important role in collaboratively
planning the project stages. Along with formal communication, informal com-
munication between team members and with stakeholders can ease the working
environment and facilitate coordination among them [29]. Applying Scrumban in
DSD projects demands both formal and informal styles of communication. Infor-
mal communication facilitates project implementation; however, formal commu-
nication creates a disciplined environment, which is necessary for coordination
in DSD sites.

Communication was regarded as an important tool for ensuring that the T-
Bix teams were placed at the same level of understanding regarding the project.
A developer [D4] highlighted the following:

“The Bolzano team had their own understanding of the project and we had
ours. We had discussions to resolve the discrepancies and create balance between
the two teams. Scrumban provoked us to have regular meetings with team mem-
bers as well as the customer. This increased the level of communication in the
project.” However, the project manager [D1] mentioned that different time-zones
created little discomfort for arranging meetings.

Scrumban leads to a great deal of communication. One developer [D4] argued
the following:

“At first, we had many problems in our communication because the project
members complained that the other site hindered the project progress and was
not completing its tasks well.”

However, new communication channels as well as more effective planning in
the project led to a higher level of communication between teams. It was claimed
that:

“We had many challenges in our discussions, but since people have had more
communication and became increasingly more acquainted with the way the other
team works, communication became smoother.”[D1]
Cultural issues involve the conflicting behavioral processes and technologies
among various team members [52]. Different socio-cultural backgrounds make
communication more complicated due to lack of understanding of other social
behaviors, cultures, and languages. The T-Bix project shows that people have
different expectations regarding working in multinational teams; for example,
one developer [D2] explained the following:



Empirical Investigation of Scrumban in Global Software Development 243

“It was quite good for distributed software development to include multiple
cultures. It was interesting to work with people with different backgrounds.”

However, other people found multi-cultural settings more difficult than co-
located projects.

Due to the nature of Software Factory projects, team members were com-
pletely new to each other and they were assigned to this project with no prior
knowledge of the other team members. At the beginning of the project, they
had several challenges in communicating with each other and establishing good
organization for their project; however, the evolution of the teams and the feed-
back on the requirements and skills alleviated cultural barriers after people had
met for several sprints.
Technical issues in DSD environments are related to incompatible data for-
mats and exchanges. Creating standards and web services could be seen as poten-
tial ways to resolve this issue. The T-Bix case shows that during different sprints,
teams progressively realized the technical abilities and needs of other sites. The
iterative nature of Scrumban helped them to meet those needs and prepare to
meet the internal project standards and agreements.
Security , on the other hand, involves ensuring electronic transmission confi-
dentiality and privacy [52]. It can be improved through emerging standards for
secure messaging. The T-Bix project did not provide meaningful evidence of
Scrumban’s impact on improving security issues in DSD settings. However, this
study was conducted with respect to coordination issues, and other project issues
are beyond its scope.

4.2 Limitations

The research was conducted in a Software Factory where we collected mem-
ber experiences from a business case with a real customer outside the univer-
sity. According to Fagerholm et al. [53], student selection process can serve as
a limitation in Software Factory projects because universities apply different
prerequisites and standards for their selection process. In our case, the two uni-
versities followed different selection methods, resulting in differences in the level
of knowledge and skills between the two teams.

The authors believe that the limited number of the interviewees is the most
critical limitation of this paper. The semi-structured interview design for the uni-
versity environment led to both the benefits and the limitations of this research.
Prior studies argue for the clear benefits of using students as empirical research
subjects [54,55]; although academic projects rarely can be defined on a large
scale. To that end, it is necessary to carry out further studies within a larger
context in an industrial setting to verify our findings.

This research was done within three European countries. Therefore, the DSD
configuration is North-South, with little difference in time-zones. We assume that
management of teams with a higher level of time variation, for example East-
West configuration, might have more issues. Greater differences in time-zones,
for instance from India to the U.S., will cause more coordination challenges for



244 A. Banijamali et al.

joint meetings and on-time responses to emails, as well as more drastic changes
in culture and languages.

4.3 Future Research

There are a limited number of studies and industrial practices on the applicabil-
ity, challenges and benefits of Scrumban in software engineering. The Software
Factory setting is an attractive concept for testing new ideas and methodolo-
gies related to software development. However, there are challenges related to
maintaining software artefacts after the completion of Software Factory projects
[56]. The authors believe that the results of the T-Bix project can be main-
tained in future academic research, for example, by involving other Software
Factories from different time-zones. It is important to continue studying the
impact of Scrumban on East-West distributed teams with a greater variation
in time-zones. In addition, companies with distributed sites suffer from similar
challenges; therefore, they would be the best candidates to apply Scrumban and
provide feedback for designing future Software Factory projects.

An interesting future study would be investigating how the results of this
study would work in a large industrial environment where there are multiple
sites involved at a variety of locations. We believe that those environments
could nicely validate the capability of Scrumban to improve coordination in
DSD projects.

This study primarily emphasized coordination aspects within distributed
sites. Other issues require further investigation with respect to proper method-
ologies, workflows, and tools. Also, we did not consider impact parameters such
as age, education, and years of experience on the use of Scrumban, which could
apparently be a very good research topic.

5 Conclusions

Current software companies tend to establish their production units in different
locations in order to optimize skilled workforces to produce products at higher
quality and lower cost. In that regard, companies need adequate methodolo-
gies, techniques, and tools to improve efficiency and decrease challenges in DSD.
Software Factory settings can reuse existing assets, architectures, knowledge,
and components to develop software artefacts by imitating industrial processes.

The current study has used Software Factories to investigate how coordina-
tion among distributed sites is effected by the combination of Scrum and Kanban.
Our research shows that the full extent of Scrumban capability is still unknown
because it has not been researched a great deal. Therefore, the results of this
research can be used as the initial steps for developing and validating an efficient
methodology for software engineering practices, particularly in distributed sites.

There are different issues which should be considered before companies decide
to locate their branches in various remote sites. This study argues that Scrumban
could alleviate some of those challenges, but further solutions are needed to make



Empirical Investigation of Scrumban in Global Software Development 245

DSD more reasonable than co-located developments. Furthermore, companies
must restructure their organizations to include proper roles and processes to
improve transparency, change management, communication, coordination, and
resources in DSD.

Future scholarly studies could investigate perspectives other than coordina-
tion for the usability of Scrumban. Moreover, they could propose new domain-
specific tools and approaches for DSD projects which impose different con-
straints, for example, East-West distributed projects. However, companies, as
the real users of Scrumban methodology, should be aware of its challenges as
well as its benefits in planning project deliverables and coordination among
teams.

Acknowledgements. This research was supported by the DIGILE Need for Speed
program, and partially funded by Tekes (the Finnish Funding Agency for Technology
and Innovation). We would like to thank DIGILE and Tekes for their support and the
University of Bolzano for its excellent collaboration.

References

1. Schwaber, K., Sutherland, J.: Software in 30 Days: How Agile Managers Beat the
Odds, Delight Their Customers, and Leave Competitors in the Dust. John Wiley
& Sons Press, Hoboken (2012)

2. Alam, S.S., Chandra, S.: Agile software development: novel approaches for software
engineering. Int. J. Eng. Sci. (IJES) 3(1), 36–40 (2014)

3. Rodriguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage
in finnish software industry. In: Proceedings of the ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement, pp. 139–148. ACM
Press (2012)

4. Yilmaz, M., O’Connor, R.: A Scrumban integrated gamification approach to guide
software process improvement: a Turkish case study. Tehnicki Vjesnik 23(1), 237–
245 (2016)

5. Mahnic, V.: Improving software development through combination of scrum and
Kanban. Recent Advances in Computer Engineering, Communications and Infor-
mation Technology, Spain (2014)

6. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in software development: A system-
atic literature review. In 39th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 9–16. IEEE Press (2013)

7. Reddy, A.: The Scrumban [R]Evolution: Getting the Most Out of Agile, Scrum,
and Lean Kanban. Addison-Wesley Professional, Boston (2015)

8. Kniberg, H., Skarin, M.: Kanban and Scrummaking the most of both. The InfoQ
Enterprise Software Development (2010)

9. Ladas, C.: Scrumban. Lean Software Engineering-Essays on the Continuous Deliv-
ery of High Quality Information Systems (2008)

10. Khan, Z.: Scrumban-adaptive agile development process: using scrumban to
improve software development process. Master’s Thesis, Finland (2014)

11. Rodriguez, P., Partanen, J., Kuvaja, P., Oivo, M.: Combining lean thinking and
agile methods for software development: a case study of a finnish provider of wire-
less embedded systems detailed. In: 47th Hawaii International Conference on Sys-
tem Sciences (HICSS 2014), pp. 4770–4779. IEEE Press (2014)



246 A. Banijamali et al.

12. Tripathi, N., Rodŕıguez, P., Ahmad, M.O., Oivo, M.: Scaling Kanban for software
development in a multisite organization: challenges and potential solutions. In:
Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp.
178–190. Springer (2015). doi:10.1007/978-3-319-18612-2 15

13. Auerbach, B., McCarthy, R.: Does agile+ lean= effective: an investigative study.
J. Comput. Sci. Inf. Technol. 2(2), 73–86 (2014)

14. Smith, J.L., Bohner, S., McCrickard, D.S.: Toward introducing notification tech-
nology into distributed project teams. In: 12th IEEE International Conference and
Workshops on the Engineering of Computer Based Systems (ECBS 2005), pp.
349–356. IEEE Press (2005)

15. Gupta, M., Fernandez, J.: How globally distributed software teams can improve
their collaboration effectiveness? In: 6th IEEE International Conference on Global
Software Engineering (ICGSE), pp. 185–189. IEEE Press (2011)

16. Šmite, D., Moe, N.B., Ågerfalk, P.J.: Fundamentals of agile distributed software
development. In: Šmite, D., Moe, N., Ågerfalk, P. (eds.) Agility Across Time and
Space. LNCS, pp. 3–7. Springer (2010). doi:10.1007/978-3-642-12442-6 1

17. Šmite, D., Moe, N.B., Agerfalk, P.J.: Agility Across Time and Space: Implementing
Agile Methods in Global Software Projects. Springer Science & Business Media,
Heidelberg (2010)

18. Carmel, E., Espinosa, J.A.: I’m Working While They’re Sleeping: Time Zone Sep-
aration Challenges and Solutions. Nedder Stream Press, Washington, DC (2011)

19. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed scrum: agile
project management with outsourced development teams. In: 40th Annual Hawaii
International Conference on System Sciences (HICSS 2007). IEEE Press (2007)

20. Rising, L., Janoff, N.S.: The scrum software development process for small teams.
IEEE Softw. 17(4), 26–32 (2000)

21. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond
(2004)

22. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Pearson Inter-
national Edition, New York (2002)

23. Nikitina, N., Kajko-Mattsson, M.: Guiding the adoption of software development
methods. In: Proceedings of the 2014 International Conference on Software and
System Process, pp. 109–118. ACM Press (2014)

24. Nikitina, N., Kajko-Mattsson, M., Strale, M.: From scrum to scrumban: a case
study of a process transition. In: Proceedings of the International Conference on
Software and System Process, pp. 140–149. IEEE Press (2012)

25. Sjøberg, D.I., Johnsen, A., Solberg, J.: Quantifying the effect of using kanban
versus scrum: a case study. IEEE Softw. 29(5), 47–53 (2012)

26. Ahmad, M.O., Liukkunen, K., Markkula, J.: Student perceptions and attitudes
towards the software factory as a learning environment. In: Global Engineering
Education Conference (EDUCON), pp. 422–428. IEEE Press (2014)

27. Polk, R.: Agile and Kanban in coordination. In: AGILE Conference, pp. 263–268
(2011)

28. Ikonen, M., Pirinen, E., Fagerholm, F., Kettunen, P., Abrahamsson, P.: On the
impact of Kanban on software project work: an empirical case study investigation.
In: 16th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 305–314. IEEE Press (2011)

29. Barash, I.: Use of agile with XP and Kanban methodologies in the same project.
PM World J. 2(2), 1–11 (2013)

30. Ladas, C.: Scrumban-Essays on Kanban Systems for Lean Software Development.
Modus Cooperandi Press, Seattle (2009)

http://dx.doi.org/10.1007/978-3-319-18612-2_15
http://dx.doi.org/10.1007/978-3-642-12442-6_1


Empirical Investigation of Scrumban in Global Software Development 247

31. Our Journey into Scrumban. http://www.arrkgroup.com/thoughtleadership/
our-journey-into-scrumban/

32. Using Scrumban (Scrum Kanban) for Agile Marketing - Chief Marketing Technol-
ogist. http://chiefmartec.com/2014/12/using-scrumbanlean-agile-marketing/

33. Ahmad, M.O., Kuvaja, P., Oivo, M., Markkula, J.: Transition of software mainte-
nance teams from scrum to Kanban. In: 49th Hawaii International Conference on
System Sciences (HICSS 2016), pp. 5427–5436. IEEE Press (2016)

34. Karvonen, T., Rodriguez, P., Kuvaja, P., Mikkonen, K., Oivo, M.: Adapting the
lean enterprise self-assessment tool for the software development domain. In: 38th
EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA), pp. 266–273. IEEE Press (2012)

35. Sutanto, J., Kankanhalli, A., Tan, B.C.: Deriving it-mediated task coordination
portfolios for global virtual teams. IEEE Trans. Prof. Commun. 54(2), 133–151
(2011)

36. Ramasubbu, N., Cataldo, M., Balan, R.K., Herbsleb, J.D.: Configuring global soft-
ware teams: a multi-company analysis of project productivity, quality, and profits.
In: Proceedings of the 33rd International Conference on Software Engineering, pp.
261–270. ACM Press (2011)

37. Jiménez, M., Piattini, M., Vizcaino, A.: Challenges and improvements in distrib-
uted software development: a systematic review. Adv. Soft. Eng. 2009, 3 (2009)

38. Nakamura, K., Fujii, Y., Kiyokane, Y., Nakamura, M., Hinenoya, K., Peck, Y.H.,
Choon-Lian, S.: Distributed and concurrent development environment via sharing
design information. In: The Twenty-First Annual International Computer Software
and Applications Conference, 1997, COMPSAC 1997, Proceedings, pp. 274–279.
IEEE Press (1997)

39. Noll, J., Beecham, S., Richardson, I.: Global software development and collabora-
tion: barriers and solutions. ACM Inroads 1(3), 66–78 (2010)

40. Mak, D.K., Kruchten, P.B.: Task coordination in an agile distributed software
development environment. In: Canadian Conference on Electrical and Computer
Engineering, CCECE 2006, pp. 606–611. IEEE Press (2006)

41. Redmiles, D., Van Der Hoek, A., Al-Ani, B., Hildenbrand, T., Quirk, S., Sarma, A.,
Filho, R., de Souza, C., Trainer, E.: Continuous coordination: a new paradigm to
support globally distributed software development projects. Wirtschafts Informatik
49(1), 28–38 (2007)

42. Sidhu, J.S., Volberda, H.W.: Coordination of globally distributed teams: a co-
evolution perspective on offshoring. Int. Bus. Rev. 20(3), 278–290 (2011)

43. Sutherland, J., Schoonheim, G., Rijk, M.: Fully distributed scrum: Replicating
local productivity and quality with offshore teams. In: 42nd Hawaii International
Conference on System Sciences (HICSS 2009), pp. 1–8. IEEE Press (2009)

44. Paasivaara, M.: Coaching global software development projects. In: 6th IEEE Inter-
national Conference on Global Software Engineering (ICGSE), pp. 84–93. IEEE
Press (2011)

45. Abrahamsson, P., Kettunen, P., Fagerholm, F.: The set-up of a software engineer-
ing research infrastructure of the 2010s. In: Proceedings of the 11th International
Conference on Product Focused Software, pp. 112–114. ACM Press (2010)

46. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer
Society (2007)

http://www.arrkgroup.com/thoughtleadership/our-journey-into-scrumban/
http://www.arrkgroup.com/thoughtleadership/our-journey-into-scrumban/
http://chiefmartec.com/2014/12/using-scrumbanlean-agile-marketing/


248 A. Banijamali et al.

47. Greenfield, J., Short, K.: Software factories: assembling applications with pat-
terns, models, frameworks, and tools. In: 3rd International Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM
Press (2004)

48. Taibi, D., Lenarduzzi, V., Ahmad, M.O., Liukkunen, K., Lunesu, I., Matta, M.,
Fagerholm, F., Münch, J., Pietinen, S., Tukiainen, M., Fernández-Sánchez, C.,
Garbajosa, J., Systä, K.: “Free” innovation environments: lessons learned from the
software factory initiatives. In: 10th International Conference on Software Engi-
neering Advances (ICSEA 2015), pp. 25–30 (2015)

49. Cohen, D., Crabtree, B.: Qualitative Research Guidelines Project. Robert Wood
Johnson Foundation, Princeton (2006)

50. Barcus, A., Montibeller, G.: Supporting the allocation of software development
work in distributed teams with multi-criteria decision analysis. Omega 36(3), 464–
475 (2008)

51. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Team knowledge and
coordination in geographically distributed software development. J. Manag. Inf.
Syst. 24(1), 135–169 (2007)

52. Nidiffer, K.E., Dolan, D.: Evolving distributed project management. IEEE Softw.
22(5), 63–72 (2005). IEEE Press

53. Fagerholm, F., Oza, N., Munch, J.: A platform for teaching applied distributed
software development: the ongoing journey of the Helsinki software factory. In:
3rd International Workshop on Collaborative Teaching of Globally Distributed
Software Development (CTGDSD), pp. 1–5. IEEE Press (2013)

54. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects a comparative study
of students and professionals in lead-time impact assessment. Empirical Softw.
Eng. 5(3), 201–214 (2000)

55. Madeyski, L.: Test-Driven Development: An Empirical Evaluation of Agile Prac-
tice. Springer Science & Business Media, Heidelberg (2009)

56. Chao, J., Randles, M.: Agile software factory for student service learning. In: 22nd
Conference on Software Engineering Education and Training (CSEET), pp. 34–40.
IEEE Press (2009)


	Empirical Investigation of Scrumban in Global Software Development
	1 Introduction
	2 Related Works
	2.1 Scrum
	2.2 Kanban
	2.3 Scrumban
	2.4 Distributed Software Development

	3 Research Process
	3.1 Software Factory
	3.2 T-Bix Project Case
	3.3 Project Coordination Model
	3.4 Research Approach

	4 Results
	4.1 Findings
	4.2 Limitations
	4.3 Future Research

	5 Conclusions
	References


