
123

Slimane Hammoudi
Luís Ferreira Pires
Bran Selic
Philippe Desfray (Eds.)

4th International Conference, MODELSWARD 2016
Rome, Italy, February 19–21, 2016
Revised Selected Papers

Model-Driven Engineering
and Software Development

Communications in Computer and Information Science 692

Communications
in Computer and Information Science 692

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
Nanyang Technological University, Singapore

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Slimane Hammoudi • Luís Ferreira Pires
Bran Selic • Philippe Desfray (Eds.)

Model-Driven Engineering
and Software Development
4th International Conference, MODELSWARD 2016
Rome, Italy, February 19–21, 2016
Revised Selected Papers

123

Editors
Slimane Hammoudi
Université d’Angers/ESEO
Angers
France

Luís Ferreira Pires
Faculty of EEMCS
University of Twente
Enschede
The Netherlands

Bran Selic
Malina Software Corp.
Nepean, ON
Canada

Philippe Desfray
SOFTEAM
Paris
France

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-66301-2 ISBN 978-3-319-66302-9 (eBook)
DOI 10.1007/978-3-319-66302-9

Library of Congress Control Number: 2017952392

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The present book contains extended and revised versions of selected papers from the
fourth International Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD 2016), held in Rome, Italy during February 19–21, 2016.

MODELSWARD received 118 paper submissions from 38 countries, of which 14%
have been included in this book. The papers were selected by the event chairs, and this
selection was based on a number of criteria that included the evaluation and comments
provided by the Program Committee members, the session chairs’ assessment, and also
the program chairs’ global view of all papers included in the technical program. The
authors of selected papers were then invited to submit a revised and extended version
of their papers, which had to contain at least 30% additional material.

The purpose of the International Conference on Model-Driven Engineering and
Software Development is to provide a platform for researchers, engineers, academics,
as well as industrial professionals from all over the world to present their research
results and development activities in using models and model-driven engineering
techniques for software development. We are confident that the papers included in this
volume will strongly contribute to the understanding of some current research trends in
model-driven engineering and software development, including:

– models syntax and semantics;
– theories and tooling for model verification;
– combined use of ontologies and metamodeling;
– software development automation/code generation;
– application of MDE to different areas, like web services, learning, IoT security, and

industrial real-time systems.

We would like to thank all the authors for their contributions and also express our
gratitude to the reviewers, who have helped to ensure the quality of this publication.

February 2017 Slimane Hammoudi
Luís Ferreira Pires

Bran Selic
Philippe Desfray

Organization

Conference Co-chairs

Bran Selic Malina Software Corp., Canada
Philippe Desfray SOFTEAM, France

Program Co-chairs

Slimane Hammoudi ESEO, MODESTE, France
Luis Ferreira Pires University of Twente, The Netherlands

Program Committee

Silvia Abrahão Universitat Politecnica de Valencia, Spain
Achilleas P. Achilleos University of Cyprus, Cyprus
Hamideh Afsarmanesh University of Amsterdam, The Netherlands
Guglielmo De Angelis CNR - IASI, Italy
Keijiro Araki Kyushu University, Japan
Marco Autili University of L’Aquila, Italy
Elarbi Badidi United Arab Emirates University, UAE
Luca Berardinelli Vienna University of Technology, Austria
Alexandre Bergel University of Chile, Santiago, Chile
Antonia Bertolino Italian National Research Council - CNR, Italy
Lorenzo Bettini Università di Firenze, Italy
Paolo Bocciarelli University of Rome Tor Vergata, Italy
Jan Bosch Chalmers University of Technology, Sweden
Jean-Pierre Bourey Ecole Centrale de Lille, France
Mark van den Brand Eindhoven University of Technology, The Netherlands
Antonio Brogi Università di Pisa, Italy
Achim D. Brucker SAP Research, Germany
Bernd Bruegge Technische Universität München, Germany
Philipp Brune University of Applied Sciences Neu-Ulm, Germany
Christian Bunse University of Applied Sciences Stralsund, Germany
Dumitru Burdescu University of Craiova, Romania
Juan Manuel Gonzalez

Calleros
Universidad Autónoma de Puebla, Mexico

W.k. Chan City University of Hong Kong, Hong Kong
Hassan Charaf BME, Hungary
Yuting Chen Shanghai Jiaotong University, China
Dickson Chiu The University of Hong Kong, Hong Kong
Antonio Cicchetti Malardalen University, Sweden
Tony Clark Sheffield Hallam University, UK

Bernard Coulette Université Toulouse Jean Jaurès, France
Kevin Daimi University of Detroit Mercy, USA
Andrea D’Ambrogio Università di Roma “Tor Vergata”, Italy
Florian Daniel University of Trento, Italy
Leonidas Deligiannidis Wentworth Institute of Technology, USA
Birgit Demuth TU Dresden, Germany
Giovanni Denaro University of Milano-Bicocca, Italy
Enrico Denti Università di Bologna, Italy
Zinovy Diskin McMaster University and University of Waterloo,

Canada
Dimitris Dranidis CITY College, Int. Faculty of the University

of Sheffield, Greece
Schahram Dustdar Vienna University of Technology, Austria
Sophie Ebersold IRIT, France
Holger Eichelberger Universität Hildesheim, Germany
Maria Jose Escalona University of Seville, Spain
Rik Eshuis Eindhoven University of Technology, The Netherlands
Angelina Espinoza Universidad Autónoma Metropolitana, Iztapalapa

(UAM-I), Spain
Vladimir Estivill-Castro Griffith University, Australia
Anne Etien CRIStAL, University Lille 1 - Inria - CNRS, France
Dirk Fahland Eindhoven University of Technology, Netherlands
João Faria FEUP - Faculty of Engineering of the University

of Porto, Portugal
Gianluigi Ferrari University of Parma, Italy
Stephan Flake Redknee Germany OS GmbH, Germany
Piero Fraternali Politecnico di Milano, Italy
Jicheng Fu University of Central Oklahoma, USA
Carlo A. Furia ETH Zurich, Switzerland
Paola Giannini University of Piemonte Orientale, Italy
Cesar Gonzalez-Perez Institute of Heritage Sciences (Incipit), Spanish

National Research Council (CSIC), Spain
Carmine Gravino University of Salerno, Italy
Klaus Havelund NASA/Jet Propulsion Laboratory, USA
Brian Henderson-Sellers University of Technology, Sydney, Australia
Jose R. Hilera University of Alcala, Spain
Bernhard Hoisl WU Vienna, Austria
Pavel Hruby DXC Technology, Denmark
Marianne Huchard CNRS and Université de Montpellier, France
Javier Gonzalez Huerta Blekinge Institute of Technology, Sweden
Emilio Insfran Universitat Politècnica de València, Spain
Stefan Jablonski University of Bayreuth, Germany
George Kakarontzas Technological Educational Institute of Thessaly,

Greece
Teemu Kanstren VTT, Finland
Georgia Kapitsaki University of Cyprus, Cyprus

VIII Organization

Jacek Kesik Lublin University of Technology, Poland
In-Young Ko Korea Advanced Institute of Science and Technology,

South Korea
Jun Kong North Dakota State University, USA
Jochen Kuester University of Applied Sciences in Bielefeld, Germany
Uirá Kulesza Federal University of Rio Grande do Norte (UFRN),

Brazil
Anna-Lena Lamprecht Lero - The Irish Software Research Centre, Ireland
Philip Langer EclipseSource Services GmbH, Austria
Lior Limonad IBM, Israel
Claudia Linnhoff-Popien Ludwig-Maximilians-Universität Munich, Germany
Dongxi Liu CSIRO, Australia
Francesca Lonetti National Research Council (CNR) Pisa, Italy
Roberto Lopez-Herrejon École de Technologie Supérieure, Canada
Der-Chyuan Lou Chang Gung University, Taiwan
Frederic Mallet Université Nice Sophia Antipolis, France
Eda Marchetti ISTI-CNR, Italy
Beatriz Marin Universidad Diego Portales, Chile
Steve McKeever Uppsala University, Sweden
Stephen Mellor Freeter, UK
Dragan Milicev University of Belgrade, Serbia
Dugki Min Konkuk University, South Korea
Valérie Monfort LAMIH Valenciennes UMR CNRS 8201, France
Andrzej Niesler Wroclaw University of Economics, Poland
Halit Oguztüzün Middle East Technical University, Turkey
Olaf Owe University of Oslo, Norway
Gordon Pace University of Malta, Malta
Alexander Petrenko ISPRAS, Russian Federation
Rob Pettit The Aerospace Corp., USA
Elke Pulvermueller University of Osnabrueck, Germany
Iris Reinhartz-Berger University of Haifa, Israel
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Colette Rolland Université Paris 1 Panthéon-Sorbonne, France
Jose Raul Romero University of Cordoba, Spain
Gustavo Rossi Lifia, Argentina
Davide Di Ruscio University of L’Aquila, Italy
Houari Sahraoui Université de Montreal, Canada
Rick Salay University of Toronto, Canada
Comai Sara Politecnico di Milano, Italy
Anthony Savidis Institute of Computer Science, FORTH, Greece
Jean-Guy Schneider Swinburne University of Technology, Australia
Martina Seidl Johannes Kepler University Linz, Austria
Peter Sestoft IT University of Copenhagen, Denmark
Marten van Sinderen University of Twente, The Netherlands
John Slaby Raytheon, USA
Stefan Sobernig WU Vienna, Austria

Organization IX

Arnor Solberg Sintef, Norway
Richard Soley Object Management Group, Inc., USA
Stéphane Somé University of Ottawa, Canada
Jean-Sébastier Sottet Luxembourg Institute for Science and Technology,

Luxembourg
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
James Steel University of Queensland, Australia
Alin Stefanescu University of Pitesti, Romania
Arnon Sturm Ben-Gurion University of the Negev, Israel
Hiroki Suguri Miyagi University, Japan
Eugene Syriani University of Montreal, Canada
Massimo Tivoli University of L’Aquila, Italy
Andreas Tolk MITRE Corporation, USA
Mario Trapp Fraunhofer IESE, Germany
Salvador Trujillo Ikerlan, Spain
Naoyasu Ubayashi Kyushu University, Japan
Sabrina Uhrig Universität Bayreuth, Germany
Andreas Ulrich Siemens AG, Germany
Gianluigi Viscusi EPFL Lausanne, Switzerland
Shuai Wang Simula Research Lab, Norway
Christiane Gresse von

Wangenheim
UFSC - Federal University of Santa Catarina, Brazil

Viacheslav Wolfengagen Institute JurInfoR, Russian Federation
Amiram Yehudai Tel Aviv University, Israel
Tao Yue Simula Research Lab, Norway
Gefei Zhang Hochschule für Technik und Wirtschaft Berlin,

Germany
Chunying Zhao Western Illinois University, USA
Haiyan Zhao Peking University, China
Kamil Zyla Lublin University of Technology, Poland

Additional Reviewers

Michele Amoretti University of Parma, Italy
Onder Babur Eindhoven University of Technology, The Netherlands
Anne-Lise Courbis École des Mines d’Alès, France
Yanja Dajsuren TU/e, The Netherlands
Adel Ferdjoukh University of Montpellier, France
Yannis Lilis Institute of Computer Science, FORTH, Greece
Hong Lu Software Engineer Institute, China
Jacopo Soldani Università di Pisa, Italy
Yannis Valsamakis Institute of Computer Science, FORTH, Greece
Sylvain Vauttier LGI2P, France

X Organization

Invited Speakers

Manfred Broy Technische Universität München, Germany
Paola Inverardi Università dell’Aquila, Italy
Lionel Briand Université du Luxembourg, Luxembourg

Organization XI

Contents

Modeling Languages, Tools and Architectures

Survey on the Applicability of Textual Notations for the Unified
Modeling Language. 3

Stephan Seifermann and Henning Groenda

Using Workflows to Automate Activities in MDE Tools 25
Miguel Andrés Gamboa and Eugene Syriani

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm
of an Industrial Real Time System . 46

Stefano Pepi and Alessandro Fantechi

Cognitive Feedback and Behavioral Feedforward Automation Perspectives
for Modeling and Validation in a Learning Context 70

Gayane Sedrakyan and Monique Snoeck

Automatically Testing of Multimodal Interactive Applications 93
Le Thanh Long, Nguyen Thanh Binh, and Ioannis Parissis

Automated Web Service Composition Testing as a Service 114
Dessislava Petrova-Antonova, Sylvia Ilieva, and Denitsa Manova

Software Testing Techniques Revisited for OWL Ontologies 132
Cesare Bartolini

Certification of Cash Registers Software . 154
Isabella Biscoglio, Giuseppe Lami, and Gianluca Trentanni

Methodologies, Processes and Platforms

Meta-Tool for Model-Driven Verification of Constraints Satisfaction 171
César Cuevas Cuesta, Patricia López Martínez, and José M. Drake

A Model-Driven Adaptive Approach for IoT Security 194
Bruno A. Mozzaquatro, Carlos Agostinho, Raquel Melo,
and Ricardo Jardim-Goncalves

Identifying Performance Objectives to Guide Service Oriented
Architecture Layers . 216

Tehreem Masood, Chantal Bonner Cherifi, and Néjib Moalla

http://dx.doi.org/10.1007/978-3-319-66302-9_1
http://dx.doi.org/10.1007/978-3-319-66302-9_1
http://dx.doi.org/10.1007/978-3-319-66302-9_2
http://dx.doi.org/10.1007/978-3-319-66302-9_3
http://dx.doi.org/10.1007/978-3-319-66302-9_3
http://dx.doi.org/10.1007/978-3-319-66302-9_4
http://dx.doi.org/10.1007/978-3-319-66302-9_4
http://dx.doi.org/10.1007/978-3-319-66302-9_5
http://dx.doi.org/10.1007/978-3-319-66302-9_6
http://dx.doi.org/10.1007/978-3-319-66302-9_7
http://dx.doi.org/10.1007/978-3-319-66302-9_8
http://dx.doi.org/10.1007/978-3-319-66302-9_9
http://dx.doi.org/10.1007/978-3-319-66302-9_10
http://dx.doi.org/10.1007/978-3-319-66302-9_11
http://dx.doi.org/10.1007/978-3-319-66302-9_11

Applications and Software Development

Empirical Investigation of Scrumban in Global Software Development 229
Ahmad Banijamali, Research Dawadi, Muhammad Ovais Ahmad,
Jouni Similä, Markku Oivo, and Kari Liukkunen

Verifying Atomicity Preservation and Deadlock Freedom of a Generic
Shared Variable Mechanism Used in Model-To-Code Transformations 249

Dan Zhang, Dragan Bošnački, Mark van den Brand, Cornelis Huizing,
Bart Jacobs, Ruurd Kuiper, and Anton Wijs

Process Oriented Training with ADOxx: A Model-Based Realisation
in Learn PAd . 274

Robert Woitsch, Nesat Efendioglu, and Damiano Falcioni

Model-Based Architecture for Learning in Complex Organization 293
Francesco Basciani and Gianni Rosa

An Assessment Environment for Model-Based Learning Management 312
Antonello Calabrò, Sarah Zribi, Francesca Lonetti, Eda Marchetti,
Tom Jorquera, and Jean-Pierre Lorré

An Ontology-Based and Case-Based Reasoning Supported Workplace
Learning Approach . 333

Sandro Emmenegger, Knut Hinkelmann, Emanuele Laurenzi,
Andreas Martin, Barbara Thönssen, Hans Friedrich Witschel,
and Congyu Zhang

Author Index . 355

XIV Contents

http://dx.doi.org/10.1007/978-3-319-66302-9_12
http://dx.doi.org/10.1007/978-3-319-66302-9_13
http://dx.doi.org/10.1007/978-3-319-66302-9_13
http://dx.doi.org/10.1007/978-3-319-66302-9_14
http://dx.doi.org/10.1007/978-3-319-66302-9_14
http://dx.doi.org/10.1007/978-3-319-66302-9_15
http://dx.doi.org/10.1007/978-3-319-66302-9_16
http://dx.doi.org/10.1007/978-3-319-66302-9_17
http://dx.doi.org/10.1007/978-3-319-66302-9_17

Modeling Languages, Tools and
Architectures

Survey on the Applicability of Textual Notations
for the Unified Modeling Language

Stephan Seifermann(B) and Henning Groenda

FZI Research Center for Information Technology, Software Engineering,
Haid-und-Neu-Str. 10-14, Karlsruhe, Germany

{seifermann,groenda}@fzi.de

Abstract. The Unified Modeling Language (UML) is the most com-
monly used software description language. Today, textual notations for
UML aim for a compact representation that is suitable for developers.
Many textual notations exist but their applicability in engineering teams
varies because a standardized textual notation is missing. Evaluating
notations in order to find a suitable one is cumbersome and guidelines
found in surveys do not report on applicability. This survey identifies
textual notations for UML that can be used instead of or in combina-
tion with graphical notations, e.g. by collaborating teams or in different
contexts. Additionally, it rates the notation’s applicability with respect
to UML coverage, user editing experience, and applicability focused on
engineering teams. Our results facilitate the otherwise unclear selection
of a notation tailored for specific scenarios and enables trade-off deci-
sions. We identified and characterized 21 known notations and 12 nota-
tions that were not covered in previous surveys. We used 20 categories
to characterize the notations. Our findings show that a single notation
does not cover more than 3 UML diagram types (mean 2.6), supports
all surveyed state of the art editing features (only one notation supports
all), and fits into existing tool chains.

Keywords: UML · Textual notation · Survey · Editing experience

1 Introduction

The Unified Modeling Language (UML) has become the de-facto standard for
describing software systems. The specification defines a graphical but no textual
notation for fully representing the model. Researchers such as Spinellis [1] argue
that textual notations provide compact and intuitive alternatives. For instance,
Erb represents UML activity diagram-like service behavior specifications textu-
ally in a developer-friendly way and more compact than graphics.

The absence of a standard leads to many textual notations that do not fully
cover UML modeling partially but focus on supporting documentation, being
compact, or serving as input for code generation. They largely differ in syntax,
UML coverage, user editing experience, and applicability in engineering teams.

c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 3–24, 2017.
DOI: 10.1007/978-3-319-66302-9 1

4 S. Seifermann and H. Groenda

The latest surveys covering textual UML notations were performed by Luque,
et al. [2–4]. The former two [2,3] focus on the accessibility of UML for blind stu-
dents in e-learning and classrooms, respectively. The latter [4] surveyed tools
for use-case and class diagrams used in industry at 20 companies in the state
of Sao Paolo (Brazil). All surveys target notations used in practice. The liter-
ature studies rely on existing studies on the accessibility domain but do not
search for scientifically published notations. The survey of Mazanec and Macek
[5] focuses on textual notations in general but is a few years old and covers few
notations. It does not represent the current development state and available vari-
ety of notations and modeling environments. The surveys illustrate the variety
of specialized textual notations but do not analyze the editing experience in an
objective way. The editing experience is, however, crucial for engineering teams
and is hard to survey. The latter degrades the selection quality because it limits
the amount of notations to be tested because of time constraints.

The contribution of this survey is the identification and classification of tex-
tual UML notations including the user experience. Engineering teams can use
the classification for identifying appropriate notations for their usage scenarios.
The classification scheme is tailored to support this selection. This survey exam-
ines usability of notations with respect to their syntax, editors, and modeling
environment. Usability in realistic scenarios is determined by covered diagram
types, supported data formats for information exchanges such as XMI, and syn-
chronization approaches with other notations. It additionally evaluates whether
non-necessary parts of the notation can be omitted. This support for sketching
models eases low-overhead discussion and brainstorming. For instance, the UML
specification allows to omit the types of the class attributes.

This survey extends the trade-off selection discussion and includes two addi-
tional notations with respect to our previously published survey [6]. The two
new notations stem from the latest survey from Luque et al. [2] that we became
aware of in the meantime. This adds two new notations that we reviewed with
the same 20 categories covering applicability in engineering teams. Considering
that survey, we identified 12 notations not covered in surveys of other authors.
We rewrote and extended the discussion to identify drawbacks of the notations
that limit applicability. This allows practitioners to focus their notation evalua-
tions on critical aspects. Tool vendors can identify unique features. Researchers
can develop approaches on how to make notations more applicable.

The remainder of this survey is structured as follows: Sect. 2 describes the
survey’s review method by defining objectives and the review protocol consisting
of three phases. Section 3 describes the classification scheme based on the defined
objectives. Section 4 presents the extended analysis results in terms of classified
textual notations. Section 5 covers our new extensive discussion of the findings
and discusses the validity of the results. Finally, Sect. 6 concludes the paper.

2 Review Method

The review process follows the guidelines of Kitchenham and Charters [7]
for structured literature reviews (SLR) in software engineering based on the

Survey on the Applicability of Textual Notations 5

guidelines in the field of medical research. Their guidelines cover the planning,
conduction, and writing of reviews. Planning involves defining research objec-
tives and creating a review protocol describing the activities in each review step.

The following sections describe our implementation of the SLR and mapping
to the proposed method. The results of our search activities are documented and
available for reproducibility at http://cooperate-project.de/CCIS2016.

2.1 Objectives

Our objectives are to determine each notation’s (O1) coverage of the UML,
(O2) user editing experience and (O3) applicability in an engineering team.
The reasoning requires an analysis of the textual notations and of the modeling
environments. Section 3 presents the detailed classification scheme based on the
objectives and instructions on information extraction from literature.

2.2 Review Protocol

Figure 1 shows an overview of our review protocol. We distinguish three phases
during the conduction: classic SLR, Quality Assurance and Complement.

Fig. 1. The three phases of the review conduction process used in this survey.

The classic SLR follows the guidelines of review conduction by Kitchenham,
et al. [7]. We extend the SLR with two additional phases in order to increase the

http://cooperate-project.de/CCIS2016

6 S. Seifermann and H. Groenda

quality of the results and to take notations into account that are mainly used
in (industrial) practice: The Quality Assurance phase focuses on incoming and
outgoing literature references as suggested by the Snowballing search approach
[8]. In contrast to the original proposal, we use Snowballing only to cross-check
our SLR search strategy. The Complement phase focuses on textual notations
that are available in practice but are not scientifically published.

2.3 Phase 1: SLR

Reviews according to [7] consist of the five activities marked as SLR in Fig. 1.
The Identification of Research describes the search strategy for collecting

literature. We chose a keyword-based search approach using the search engines
ACM Digital Library, IEEExplorer, CiteSeer, ScienceDirect, SpringerLink and
Google Scholar. These search engines cover relevant journals and are suggested
by Kitchenham and Charters for the software engineering domain. We did not
include EI Compendex and Inspec as we could not query these search engines
without subscriptions. Their focus is on high-qualitative entries and metadata
and they do not belong to a not-covered established publishing authority. We
are confident that the selected search engines and their metadata are sufficient.

We defined a set of keywords T for identifying textual notations and another
one U for identifying the usage of UML. Table 1 presents both sets as variations
of our original terms textual notation, and UML. They are based on commonly
used terminology in the modeling domain. A search query is given by ∨ti ∧ ∨ui

with ti ∈ T ∧ ui ∈ U . The query enforces the exact matching of keywords.
It considers abstracts and titles because this restricts the search to literature
that focuses on textual notations for UML. Google Scholar has API restrictions
that limit queries on abstracts to papers that have been released at most one
year ago. This restriction does not apply to our title-based search. We restrict
ScienceDirect queries to computer science papers. We implemented a search on
the SpringLink results enabling keyword identification in the abstract. After
collecting the results of all search engines, we merge them and filter duplicates.

Table 1. Keyword groups used in search queries.

Group Keywords

Textual T CTS, textual modeling, textual modelling, text-based modeling,
text-based modelling, textual notation, text-based notation, textual
UML, text-based UML, textual syntax

UML U UML, unified modeling language, unified modelling language

Study Selection covers a rough screening based on titles and abstracts to
allow spending more time on relevant literature. We focus on textual notations
for graphical parts of the UML specification [9, p. 683]. We exclude all textual
notations only extending UML or its elements rather than expressing UML itself.

Survey on the Applicability of Textual Notations 7

We exclude all notations that are not related to UML. We exclude notations not
intended for human usage such as data transfer containers, e.g. XMI serialization
[10]. We include (a) primary papers describing a single textual notation, and (b)
secondary survey-like papers including their references as primary sources.

The Study Quality Assessment considers title, abstract, and the content of
the full paper. We decide on in-/exclusion of the remaining papers in this step.

Data Extraction is the process of determining the information required to
judge about the fulfillment of the objectives. Section 3 shows the analyzed fea-
tures of the notations, their hierarchy, and individual decision basis in detail.
We reason on the modeling environment based on information found directly
in literature, implemented prototypes, prototype websites, and source code. We
identify prototypes, their website, and the source code by: (a) following links in
the papers, (b) mining the website of the institute or company of the authors,
(c) and searching for the name of the notation (full name and abbreviation if
used) via the Google search engine and on Githuband visit the first one hundred
search results. Data extraction takes place for the declared primary editor. If
there is more than one prototype, we use the declared primary editor and an
IDE-integrated editor. We assume the latter to profit from advanced accessibil-
ity features of the IDE. If there are editors for several IDEs, we decide in favor
of the Eclipse-based one because Eclipse is open source, highly extensible, and
offers many accessibility features1.

Data Synthesis summarizes the information. We show and summarize the
analysis results according to the classification given in Sect. 3.

2.4 Phase 2: Quality Assurance

The Quality Assurance phase is based on the Snowballing approach [8] of Wohlin
for literature identification. Wohlin suggests starting with an initial set of rele-
vant literature and including relevant forward and backward references. We do
not use Snowballing as primary source for relevant literature because its quality
heavily depends on the initial literature set as described by Wohlin. Instead,
we accept the overhead of a prior SLR phase with broad search terms and use
Snowballing to verify the quality of our SLR phase as described below.

Build Reference Closure determines the completeness of results from the SLR
phase. We collect all directly referenced and referencing literature for the ana-
lyzed papers. We derive the referenced literature from the references section of
the paper. We use Google Scholar to determine incoming references.

The Study Selection and Study Quality Assessment from phase SLR are
applied to identify additional notations.

We perform Data Extraction on selected papers as in the SLR phase and add
the notation to our database.

Data Synthesis summarizes the information as carried out in the SLR phase.

1 https://wiki.eclipse.org/Accessibility.

https://wiki.eclipse.org/Accessibility

8 S. Seifermann and H. Groenda

Reasoning addresses why newly identified notations have been missed in the
SLR phase. Section 5 presents the results. This phase is different from Wohlin’s
Snowballing approach and allows verifying the quality of our SLR phase.

2.5 Phase 3: Complement

Identification of Unpublished Approaches focuses on textual notations that are
available in practice but are not scientifically published. We use the Google
search engine to identify the top 5 pages for ‘UML textual notation’, ‘UML
textual notations’, ‘UML textual notations list’. We mine the resulting websites
to identify new approaches. We follow the links from the identified websites
looking for notations or comparisons of notations.

Additionally, we search for unrecognized scientific surveys or notation com-
parisons. We perform a full-text search via Google Scholar with the names of
the three most popular non-scientific notations. We assume that recent surveys
including non-scientific notations cover them and thereby will be included in the
search results. We determine a notation’s popularity by querying Google with
the name of the notation and comparing the announced results with the amount
of other notations. We only included notations that claim to relate to the UML.

In Check Availability, we filter all potential notations with dead links.
We perform Data Extraction for new notations, analyze the information, and

add the notation to our database.
Data Synthesis summarizes the information as carried out in the SLR phase.

3 Classification

This section presents the classification and information extraction goals derived
from the three objectives presented in Sect. 2.1. The objectives cover aspects of
what can be edited based on the textual notation definition (O1, O2) as well as
how it can be edited based on modeling environments (O2, O3). We use feature
modeling to represent the evaluation classes, their hierarchy, and possible values.
The resulting overview is depicted in Fig. 2. The features themselves and how
their values are evaluated for the notations are presented in the following.

Each Textual Notation is defined by a Language (O1, O2) and an optional
Implementation (O2, O3) in a modeling environment.

The Implementation is optional and covers all aspects with respect to a mod-
eling environment for a notation. It can have Recent Activity (O3), a License
(O3), and can support Change Propagation (O2, O3) between different nota-
tions, data Format Exchange (O2), and Editor (O2) features.

We divide the classification of the implementation into two parts for a better
overview: integration aspects, and the editor itself. The former covers the features
relevant for integrating an implementation into a tool chain. The latter covers
the editing experience of the editors.

The following subsections will cover the language, integration, and the editor
in that order.

Survey on the Applicability of Textual Notations 9

Fig. 2. Feature model for analyzed characteristics and their hierarchy.

3.1 Language

The mandatory Language definition describes the language’s syntax. It consists
of UML Support (O1) for diagram types, can have Sketch Support (O2), inte-
grated Layout Information (O2), and be Similar to UML Graphics (O2).

UML Support is mandatory and describes the supported UML diagram types.
At least one type has to be supported. A type is supported if the documenta-
tion states it to be supported or the modeling environment allows the creation
of a corresponding type. The considered diagram types are based on the UML
specification [9, p. 682]. The abbreviations are based on the official abbrevia-
tions from [9, p. 682], or self-made if there is no official one: Activity Diagram
(ACT), Class Diagram (CLS), Communication Diagram (COM), Component
Diagram (CMP), Composite Structure Diagram (COS), Deployment Diagram
(DEP), Interaction Overview Diagram (INT), Object Diagram (OBJ), Pack-
age Diagram (PKG), Profile Diagram (PRO), Sequence Diagram (SEQ), State
Machine Diagram (STM), Timing Diagram (TIM), and Use Case Diagram (UC).

Sketch Support is optional and can ease the notation’s usage during discus-
sions. Discussions benefit from quick interaction. Formal full-fledged modeling

10 S. Seifermann and H. Groenda

can extend the interaction time. There is support if only mandatory elements of
UML’s abstract syntax are required.

Layout Information is optional and states if the textual model can contain
graphical layout information. This information allows to improve graphical pre-
sentations of textual statements. The information is irrelevant to describe the
model itself. The interpretation is difficult as only graphic notations illustrate
graphical positions. The information can be either Mixed with model elements
or kept Separated. It is marked as Mixed if at least one element has mandatory
layout information.

Similar to UML Graphics is optional and denotes if ASCII art memes graph-
ical elements such as arrows in the textual notation. For instance, the characters
<>--> are similar to the UML graphical representation for an aggregation. This
can work well for people knowing the graphical representation but has adverse
effects when typing or for people using accessibility tools like Braille displays. A
notation is marked as similar if there is at least one ASCII art mapping.

3.2 Integration

The integration covers all features that are relevant for integrating an imple-
mentation into a tool chain. Such a decision is based on the costs, extensibility,
support, maintainability and compatibility to existing tools. The following fea-
tures cover these aspects in more detail.

The Recent Activity is optional and indicates the support status. In contrast
to a maintained project, a discontinued project will not receive bugfixes and
might be incompatible to recent software such as new versions of an IDE. We
determine three activity dates that allow judging project activity. One of them
has to be identifiable: Release Activity relates to the date of the last release.
A release can be a proper release, snapshot, or nightly build. Ticket Activity is
determined by the date of the most recently closed ticket. Commit Activity is
given if we can determine the most recent commit.

The License is optional and can be crucial for using and maintaining the
modeling environment. Open Source licenses allow own bug fixing and the devel-
opment of extensions and adaptations. The individual requirements for a license
depend heavily on the usage context of the modeling environment. An expert
review is required to check for a notation of interest if it applies to the own use
case. We therefore differentiate solely between Open Source and Closed Source
licenses. We rely on the list of the Open Source Initiative [11]. If the license is
listed on their website, we treat the project as open source. All other licenses
are considered Closed Source.

Change Propagation can be supported and addresses transferring changes
from one notation into another. The modification in the modeling environment
for a textual notation can therefore result in an according change in a graphical
notation of the same content. This targets a consistent view of the content and
allows different team members to work with different notations during discussion.
This can mean updates in real-time for close collaboration or based on export-
ing and importing models in different environments. We consider the three cases:

Survey on the Applicability of Textual Notations 11

Textual to Graphical, Graphical to Textual, and Via Import/Export propaga-
tion. Textual to Graphical and Graphical to Textual apply if the modeling envi-
ronment includes a textual and a graphical editor. We consider it supported if
changes in one editor are reflected in the other one. Via Import/Export applies if
there is an import or export functionality and notations can be updated sequen-
tially. It is marked if it provides import and export function for UML models in
the standardized XMI data format.

Data Format Exchange is optional and allows integrating the modeling
results into other tools or existing tool chains. We only consider fully-automated
exchange procedures provided by the implementation itself. We do not consider
other procedures such as the error-prone manual translation between notations
or tools that is usually done by assistants. A modeling environment can sup-
port the Import or Export of a different set of data formats. This feature can
have the value UML XMI as standardized UML data exchange and can list
Custom formats supported by the tools. The values are selected based on the
documentation or file extensions provided in the editing environment.

3.3 Editor

Editor categorizes properties related to user input, interaction, and presentation.
They can be Textual (O2), Graphical (O2) or both. An editor is considered
textual if it contains only text and no graphical elements. Text coloring may be
used. This ensures that textual editors are accessible by accessibility techniques
such as screen readers. Otherwise, it is treated as Graphical.

Textual editors address several features to increase user experience and acces-
sibility. A textual editor can support Visualization (O2), Refactoring (O2) of
the model, and user Navigation (O2) within the model. Previous surveys did
not focus on the editing experience in detail. Therefore, we selected the features
according to our objectives.

A Visualization is optional and allows focused presentation of content by
means of information hiding. It can support Folding (O2), and Syntax High-
lighting (O2).

Folding (un)hides selected partitions of the model, eases comprehension for
complex models and focused presentation. It is selected if there is at least one
partition in a model that can be hidden or shown based on the editor’s UI.

Syntax Highlighting highlights keywords or important structural parts of the
model. It eases comprehension and identifying the structure of models. It is
selected if colors or text formats highlight at least one keyword of the language.

Refactoring is optional and addresses batch changes to the model. For
instance, all occurrences of a model element can be replaced with another one
in one single step instead of using a manual search and replace approach. This
feature exists if there is at least one supported refactoring.

Navigation is optional and addresses navigation to model elements and pro-
viding an overview to users. There can be support for Code Completion (O2),
overviews on model elements by Outline (O2), and model element navigation by
Goto (O2). Navigation is selected if at least one of its child features is selected.

12 S. Seifermann and H. Groenda

Code Completion is optional and provides completion of a language’s syntax
or referenced model elements. It can provide hints on keywords of the Syntax
or model Elements allowed at the current position. It aids users in specifying
correct models and speeds up changes. We consider two types of values: Syntax -
based and Element-based completion. They are selected if there is at least one
corresponding code completion feature in the editor.

Outline is optional and provides an overview of the elements in a model. This
can include their hierarchical structure. It is selected if there is at least a list of
all top-level elements in a model depicted in the editor.

Goto is optional and allows direct navigation or jumps to specific model
elements. This eases comprehension and look-up of elements. It is selected if
there is navigation or jump support for at least one element type. It is included
if it is directly in the textual notation and excluded if its only in the Outline.

Graphical editors are optional and allow displaying and editing graphical
version of the models. There are many advanced graphical UML editors available
based on the formal UML specification. [12] gives a good overview in his survey of
interoperability of UML tools. [13] illustrates the features of various UML tools.
There are many comparisons between few selected tools such as IBM Rational
Software Architect, MagicDraw, and Papyrus in [14] or between Rational Rose,
ArgoUML, MagicDraw, and Enterprise Architect in [15]. This survey focuses on
the synchronization aspect with textual languages and their editors (O3). Our
categories show if the editor is mainly a pure static presentation of the model
or allows interactions. We distinguish for Graphical editors if their content is
Editable (O2) and Persistable (O2). This feature is selected if there is a graphical
presentation of the model in the modeling environment.

Editable is optional and denotes if the graphical content can be modified, e.g.
a user can rename elements. This feature is selected if at least some elements in
the graphical editor can be modified.

Layoutable is optional and denotes if modifications to the graphical layout,
e.g. the position of model elements, can be done. Users can structure the graphi-
cal representation in this way. This feature is selected if elements can be moved.

4 Analysis Results

This chapter presents the analysis results for all notations. Tables 2 and 3 provide
an overview and show the determined characteristics for all notations. The fol-
lowing paragraphs provide short notation descriptions. They point out features
or provide comments, which are not already covered by the overview.

Alf [16] has been specified by the OMG and is the UML action language. It is
based on Foundational UML (fUML). There is no official editor implementation.

Alloy [17] is a model finder and solver based on the Z notation [18] instead
of UML. The author compares it to UML in Sects. 4.1 and 6.4 and states that
“Alloy is similar to OCL, the Object Constraint Language (OCL) of UML”2.

2 http://alloy.mit.edu/alloy/faq.html.

http://alloy.mit.edu/alloy/faq.html

Survey on the Applicability of Textual Notations 13

Table 2. Language and textual editor implementation characteristics of analyzed tex-
tual UML notations. Characteristics are: not extractable (-), given (�), or not given
(×). Layout information is: mixed (m) or separated (s).

Language Textual Editor
Vis. Navigation

N
ot
at
io
n

U
M
L
Su

pp
or
t

Sk
et
ch

Su
pp

or
t

L
ay
ou

tI
nf
or
m
at
io
n

G
ra
ph

.S
im

ila
ri
ty

Sy
nt
ax

H
ig
hl
ig
ht
in
g

F o
ld
in
g

C
om

pl
. (
Sy

nt
ax
)

C
om

pl
. (
E
le
m
en
t)

O
ut
lin

e
G
ot
o

R
ef
ac
to
ri
ng

Alf CLS, ACT, PKG � × × - - - - - - -
Alloy × × × × � × × × × × ×
AUML SEQ × × × � × × × × × ×
AWMo CLS × × × - - - - - - -
blockdiag: seqdiag, actdiag SEQ, ACT � m � - - - - - - -

Clafer CLS, OBJ × × × � × × × × × ×
cwknc SEQ × × × � × × × × × ×
Dcharts STM � × × - - - - - - -
Earl Grey CLS, SEQ, STM × × × � � � � � � �
EventStudio SEQ, STM, UC × s � � × × × × × ×

Finite State Machine
Diagram Editor

STM � × × � × × × × × ×

HUTN all � × × - - - - - - -
IOM/T SEQ × × × - - - - - - -
js-sequence-diagrams SEQ � m � - - - - - - -

MetaUML CLS, STM, ACT, UC, CMP, PKG � m × - - - - - - -
modsl CLS, COM � × × � � � × � � �
Nomnoml CLS, OBJ, STM, UC, PKG � m � - - - - - - -
pgf-umlcd CLS � m × � × × × × × ×
pgf-umlsd SEQ � m × � × × × × × ×

PlantUML CLS, OBJ, SEQ, STM, ACT, UC,
CMP, DEP

� m � - - - - - - -

Quick Sequence Diagram Editor SEQ � × × - - - - - - -
TCD CLS � × � - - - - - - -
TextUML CLS, STM × × × � × � × � × ×
tUML CLS, STM, COS × × × � � × × � � ×

txtUML CLS, STM, ACT × × × � � × × � � ×
UML/P CLS, OBJ, SEQ, STM, ACT � s � � � � × � � ×
UMLet CLS, OBJ, UC, PKG � m × � × × × × × ×
UMLGraph CLS, SEQ � m × - - - - - - -
uml-sequence-diagram-dsl-txl SEQ � m � � � � × � � ×

Umple CLS, STM, COS � s � � × × × × × ×
USE CLS × s × � × × × × × ×
WebSequenceDiagrams SEQ � m � - - - - - - -
yUML CLS, ACT, UC � × � - - - - - - -

14 S. Seifermann and H. Groenda

Table 3. Implementation characteristics (without textual editor) of analyzed textual
UML notations. Characteristics are: not extractable (-), given (�), or not given (×).
The License is: open (O) or closed (C) source.

Graph. Format Exchange
Editor

N
ot
at
io
n

R
ec
en
t A

ct
iv
ity

L
ic
en
se

C
ha
ng

e
Pr
op

ag
.

E
di
ta
bl
e

L
ay
ou

ta
bl
e

E
xp

or
t

Im
po

rt

Alf - - - - - - -
Alloy 2015 O × × � dot, xml als
AUML 2014 - T2G - - png ×
AWMo 2013 C T2G,G2T - - × ×
blockdiag: seqdiag,
actdiag

2015 O T2G - - png, svg, pdf ×

Clafer 2015 O × - - own, Python Z3, Choco JS, alf,
dot

×

cwknc 2013 O T2G - - png ×
Dcharts - - - - - - -
Earl Grey 2012 O × - - × ×
EventStudio 2016 C T2G - - pdf, emf, xml, html ×

Finite State Machine
Diagram Editor

2015 O T2G,G2T � × own own

HUTN - - - - - - -
IOM/T - - - - - - -
js-sequence-diagrams 2015 O T2G - - svg ×

MetaUML 2015 O T2G - - × ×
modsl 2009 O T2G - - png, jpg ×
Nomnoml 2015 C T2G - - png ×
pgf-umlcd 2015 O T2G - - × ×
pgf-umlsd 2015 O T2G - - × ×

PlantUML 2015 O T2G - - uml, svg, eps, txt, html ×
Quick Sequence
Diagram Editor

2015 O × - - pdf, (e)ps, svg, swf, emf, gif,
jpg

×

TCD - - IE - - uml uml
TextUML 2015 O × - - uml ×
tUML - - T2G,IE × × uml uml

txtUML 2015 - T2G - - uml ×
UML/P - C T2G � × × ×
UMLet 2015 O × � � bmp, eps, gif, jpg, pdf, png uxf
UMLGraph 2014 O T2G - - png, svg, emf, ps, gif, jpg, fig ×
uml-sequence-diagram-
dsl-txl

2009 × T2G - - xml, Code ×

Umple 2015 O T2G,G2T � � uml, tuml, uxf, als, use, emf,
code, yUML

×

USE 2015 O T2G � × pdf ×
WebSequenceDiagrams - × T2G - - × ×
yUML - - T2G - - png, pdf, jpg, json, svg ×

Survey on the Applicability of Textual Notations 15

It provides a graphical and textual notation but no support for any UML dia-
grams. It has a MIT license and does not provide access to source code.

AUML [19] is an extension to UML SEQ diagrams. Winikoff defined a textual
notation for AUML that has been included in the Prometheus Design Tool3. It
provides a PNG export but no mechanism to import or export a model.

Ckwnc [20] is a web editor that allows specifying UML SEQ diagrams with
a programming language-like syntax. Users can export graphics.

Clafer [21] is a modeling language for CLS diagrams and constraints. The
online tool4 provides no graphical view but offers a GraphViz export.

DCharts [22] specifies a meta-model in AToM (see footnote 3)5 and a graphi-
cal and textual notation. The textual notation is the leading one and the graphi-
cal implemented only partially [22, p. 35]. No tool or files could be found actually
implementing the theoretical concept. We could not find an advanced textual
editor with collaboration features for the self-defined language. The publication
claims that there is a transformation from the meta-model to UML state charts.

Earl Grey [5] is a proof of concept for an accessible textual notation. The
Eclipse implementation creates a model during editing but there is no export.

EventStudio [23] is a commercial tool suite for modeling object and message
flows. It supports SEQ, STM, and UC diagrams and can generate images. The
images, however, do not correspond to the official UML graphical syntax.

HUTN [24] is an OMG standard for text-based representation of MOF-based
meta-models, which covers the UML meta-model. Humans can use it easier than
XMI. There is no official reference implementation of an editor.

IOM/T [25] allows specifying protocols for agent communication. It covers
AUML [19] sequence diagrams partially, which we consider as SEQ support. The
notation seems to consist of two papers, the latest in 2007.

MetaUML [26] is a DSL leveraging TeX in the background. It creates graphics
in UML style but no UML models.

modsl6 is a text to diagram sketch tool based on Java code specifications.
The proposed default editing environment is Eclipse. It creates graphics in UML
style but no UML models.

pgf-umlcd7 and pgf-umlsd8 are both based on PGF/TikZ. They leverageTEX
interpreters. This has a major influence on its syntax and structure. They create
graphics in UML style but no UML models.

PlantUML [27] is a textual notation to diagram tool. CLS diagrams can
be exported as UML files for the StarUML and ArgoUML tools. Imports and
synchronization mechanisms are not available. There are various standalone and
integrated editor implementations.

3 https://sites.google.com/site/rmitagents/software/prometheusPDT.
4 http://t3-necsis.cs.uwaterloo.ca:8094.
5 http://atom3.cs.mcgill.ca/.
6 https://code.google.com/p/modsl/.
7 https://github.com/xuyuan/pgf-umlcd.
8 https://code.google.com/p/pgf-umlsd.

https://sites.google.com/site/rmitagents/software/prometheusPDT
http://t3-necsis.cs.uwaterloo.ca:8094
http://atom3.cs.mcgill.ca/
https://code.google.com/p/modsl/
https://github.com/xuyuan/pgf-umlcd
https://code.google.com/p/pgf-umlsd

16 S. Seifermann and H. Groenda

Quick Sequence Diagram Editor9 is a text to diagram sketch tool written in
Java. It creates graphics in UML style but no UML models.

TCD [28] is an ASCII-art converter for CLS diagrams. It provides conversions
from and to UML XMI representations. The implementation is not available.

TextUML [29] exports standard UML models but does not provide a graphi-
cal view. Services such as Cloudfier10 use it as alternative for graphical modeling.

tUML [30] focusses on modeling for validation and verification purposes. The
mentioned prototype is not available.

txtUML [31] uses regular Java syntax for modeling. Java Annotations provide
additional information. There is no dedicated textual or graphical editor but a
Papyrus model can be exported.

UML/P [32] is a textual notation claiming to merge programming and model-
ing by enriching UML models with Java expressions. The Eclipse plugin provides
textual and graphical editors but no import or export.

UMLet11 [33] is a graphical UML sketch tool. It provides graphical UML
shapes. A selected shape is shown in a textual view, which allows to modify the
element. The textual view covers only the selected element. It create graphics in
UML style but no UML models.

UMLGraph [1] uses Java source files and customized JavaDoc comments to
create diagrams. It creates graphics in UML style but no UML models.

uml-sequence-diagram-dsl-txl12 is a command-line based text to diagram
sketch tool written in the transformation language TXL. The Eclipse IDE plug-
in was not available. The table lists the mentioned features of the guide13. It
creates graphics in UML style but no UML models.

Umple [34] is a model-to-code generator with textual notations. UML ele-
ments not relevant for code generation such as aggregations are omitted. The
online tool synchronizes the textual and graphical notation.

USE [21] aims for specifying systems with including OCL constraints. The
official tool does not provide an editor but textual and graphical views.

AWMo [35]14 is a Web application targeting the collaboration of blind and
sighted users. The Web tool does not work, there is no included documentation.
The characteristics have been determined based on the source code, available pre-
sentations and the paper. They define their own simplistic meta-model inspired
by CLS diagrams for their proof of concept. Collaboration is realized via store
and load mechanism, which maps to Import and Export in the table.

blockdiag15 has the subprojects seqdiag16 and actdiag17. Both are written
in Python and convert textual diagram descriptions to graphics. The syntax is

9 http://sdedit.sourceforge.net/.
10 http://doc.cloudfier.com/creating/language/.
11 www.umlet.com.
12 http://www.macroexpand.org/doku.php.
13 http://www.txl.ca/eclipse/TXLPluginGuide.pdf.
14 http://garapa.intermidia.icmc.usp.br:3000/awmo/.
15 http://blockdiag.com/en/.
16 https://bitbucket.org/blockdiag/seqdiag.
17 http://blockdiag.com/en/actdiag/index.html.

http://sdedit.sourceforge.net/
http://doc.cloudfier.com/creating/language/
www.umlet.com
http://www.macroexpand.org/doku.php
http://www.txl.ca/eclipse/TXLPluginGuide.pdf
http://garapa.intermidia.icmc.usp.br:3000/awmo/
http://blockdiag.com/en/
https://bitbucket.org/blockdiag/seqdiag
http://blockdiag.com/en/actdiag/index.html

Survey on the Applicability of Textual Notations 17

Graphviz’s DOT format. The code and release activities are taken from seqdiag
only being representative. It creates graphics in UML style but no UML models.

Finite State Machine Diagram Editor and Source Code Generator18 has
an own XML Schema Definition, which defines their textual language called
FsmML. Conforming XML documents can be Imported and Exported. Links to
model elements are realized via String matching.

js-sequence-diagrams19 is a text to diagram sketch tool written in Java Script.
It is inspired by the commercial WebSequenceDiagram. It parses plain text and
can report basic parsing errors. Its shared with an own license title as simplified
BSD. It creates graphics in UML style but no UML models.

nomnoml20 is a text to diagram sketch tool written in Java Script. The syntax
is oriented at the graphical UML shapes. It creates graphics in UML style but
no UML models.

WebSequenceDiagrams21 is a text to diagram sketch tool written in Java
Script. It creates graphics in UML style but no UML models. A free alternative
is js-sequence-diagrams.

yUML [36] is a text to diagram sketch tool. It creates graphics in UML style
but no UML models.

5 Discussion of Findings

This section discusses the results of the survey presented in the previous section.
We use the results to reason about the applicability in engineering teams and
especially identify open points and potential improvements. Additionally, we dis-
cuss threats to validity. Section 5.1 focuses on the UML coverage of the found
notations. The quality of the provided user editing experience is covered in
Sects. 5.2 and 5.3 illustrates the issues of using the notations in engineering
teams. Threats to internal and external validity are discussed in Sect. 5.4.

5.1 UML Coverage

The benefit of a high coverage of UML diagram types is a wide range of applicable
scenarios. This stems from an increased probability that a diagram type required
for a scenario is supported by a notation. The results of our survey with respect
to the UML coverage are shown in Fig. 3. We discovered that most notations
(14 out of 31) only support a single diagram type. This prohibits modeling dif-
ferent aspects of a system such as structure and behavior in a single model.
Relations between elements describing different aspects are hard to express. The
conceptional HUTN notation supports all diagram types but provides no imple-
mentation. In summary, only six notations support four or more diagram types
and are, therefore, not restricted to specific application scenarios.
18 http://www.stateforge.com/.
19 https://bramp.github.io/js-sequence-diagrams/.
20 https://github.com/skanaar/nomnoml.
21 https://www.websequencediagrams.com/.

http://www.stateforge.com/
https://bramp.github.io/js-sequence-diagrams/
https://github.com/skanaar/nomnoml
https://www.websequencediagrams.com/

18 S. Seifermann and H. Groenda

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

#
Su

pp
or
tin

g
N
ot
at
io
ns

Supported UML Diagram Types

0

5

10

15

20

C
L
S

SE
Q

ST
M

A
C
T

U
C

O
B
J

PK
G

C
M
P

C
O
S

C
O
M

D
E
P

IN
T

PR
O

T
IM

#
Su

pp
or
tin

g
N
ot
at
io
ns

UML Notation

Fig. 3. UML coverage of the surveyed notations.

We found that the most supported diagram types are class (20) and sequence
diagrams (15) as well as state machines (13). Only few notations support other
diagram types as shown in Fig. 3. No implementation exists for TIM, PRO, and
INT diagrams. The focus of the notations is in line with research on graphical
UML usage: Dobing and Parsons [37] as well as Erickson and Siau [38] already
identified the class diagram as most commonly used diagram. Both consider
sequence diagrams and state machines to be in the top five used diagram types.
Reggio et al. [39] achieved similar results and stress that practitioners only use
small subsets of the UML elements. As a consequence, vendors of textual nota-
tions tailor their notations to support the commonly used UML diagram types
and elements in order to facilitate usage. Potential users of the notation have,
nevertheless, to carefully check if it supports the elements required for the envi-
sioned usage scenario.

5.2 User Editing Experience

Even if using state of the art editors increases efficiency when working with
textual representations, only about half of the notations (18 of 33) provide spe-
cialized editors. The support for specific features is visualized in Fig. 4.

Basic Features. All implementations support syntax highlighting. Around a third
of the implementations provide navigation support including outlines and goto
links. The same amount provides view customization such as folding. This most
probably stems from textual editing frameworks such as Xtext22 generating these
features automatically and without additional effort.

22 https://eclipse.org/Xtext.

https://eclipse.org/Xtext

Survey on the Applicability of Textual Notations 19

Syntax Highlighting
Folding

Refactoring
Code Completion (Syntax)

Code Completion (Element)
Outline

Goto

0 5 10 15 20

Fig. 4. Amount of notations that support specific textual editor features.

Large Model Handling. Most editors, however, lack features required for working
with more complex models as given within industrial contexts. We consider code
completion and refactorings to be such features because they free the user from
knowing the whole model in order to finish their modeling tasks. The support
for code completion is twofold: About 25% of the implementations support code
completion for syntactical elements such as keywords but lack support for code
completion for elements. Therefore, a user has to remember all usable elements
or has to look them up. Only one surveyed editor supports code completion for
elements. Only two editors support refactorings such as renaming of elements.
The results indicate that the models created with most of the surveyed notations
have a limited maintainability: Refactorings ease restructuring or fixing typos
but the majority of editors do not support them. Finding applicable elements
becomes cumbersome without advanced code completion. Therefore, most nota-
tions should be used for small to medium sized models or for simple models
without complex relationships between elements.

Coupling with Graphical Notation. Seven implementations include a graphical
editor to visualize the modeled UML diagram and five implementations allow
editing it. In contrast, 22 implementations provide the export of graphics. This
indicates that graphical representations are still in the focus but mostly for
documentation purposes.

5.3 Applicability in Engineering Teams

Active development is crucial to get bug fixes and helps when it comes to upgrad-
ing the editing environment. About half of our surveyed notations had recent
activity in 2015 and later, which means they are actively developed. Unfortu-
nately, only two-thirds of the notations provide a clear license statement, which
is crucial for using a notation and its implementation in professional contexts.

The integration in existing tool chains mainly depends on supported import
and export formats. Two-thirds (22) of the surveyed implementations provide
exports in various formats and only five implementations support imports.
Roundtrip engineering, however, requires both features and usage of well-structur-
ed formats. Only 8 out of 22 notations provide well-structured formats for exports.

20 S. Seifermann and H. Groenda

Four out of five notations allow the import of well-structured formats. The remain-
der uses graphics for information exchange. The most prominent well-structured
exchange format are serialized UML models. Basically, this means that only four
notations are ready for integration in existing tool chains that enable collabora-
tive modeling in various notations, for instance. Information exchange is only par-
tial and requires human intervention to reconstruct missing information includ-
ing graphical positions, changes in one format or information not expressible in
graphics.

5.4 Threats to Validity

We address four common threats to internal validity: incomplete selection, incon-
sistent measurements, biased experimenter, and incomplete information.

We addressed incomplete selection with two additional phases that check the
completeness of search results. During the survey, we found a total of 33 textual
UML notations. Two notations originate from including the latest survey of
Luque et al. [2] in this extended version. These notations are not published
scientifically and therefore did not originate from the first two phases that focus
scientific notations. In addition, they are not popular enough to be listed in the
very first Google search results that we used to find industrial notations. We
would, however, have found the survey of Luque et al. in earlier phases if it had
been published at the time we conducted our literature study.

We found half of the remaining 31 notations in the SLR phase. In the Qual-
ity Assurance phase, we found four new papers and three new notations. The
first phase did not reveal three of these papers [17,25,40] because their main
contribution was not about a textual UML notation. Therefore, they did not
clearly indicate that they also cover a textual UML notation in their title or
abstract. The remaining paper [31] is not indexed by the search engines that we
used. The major new result of the completion phase was the textual UML tool
list [41] provided by Jordi Cabot, a professor with research interests in model-
driven software engineering at the ICREA research institute. We found eleven
new notations compared to the previous phase. We did not find ten of them in
earlier phases because of their scientific focus. The found notations of the third
phase have not been scientifically published. The remaining notation [35] did use
the term textual language, which we consider to broad for our research subject.
Nevertheless, we consider the keywords of the SLR phase and the whole notation
finding process to be successful and appropriate.

The Complement phase did not include an extensive search strategy because
we focus on scientifically published notations in this survey. We complement
previous intensive search strategies with the most common notations used in
industry. To achieve this, we imitate the common search strategy that covers
the very first popular results only. We included all notations of previous surveys
[3–5] in the analysis. In total, we found 12 new notations compared to previous
surveys: Alloy, AUML, Clafer, Dcharts, IOM/T, pgf-umlcd, pgf-umlsd, TCD,
tUML, txtUML, UML/P, and uml-sequence-diagram-dsl-txl.

Survey on the Applicability of Textual Notations 21

We addressed inconsistent measurements and biased experimenter with a
rigorous review protocol and instructions for the characteristics extraction. The
characteristics for the notations can be determined in an objective way. Mazanec
et al. [5], however, used subjective characteristics such as readability or simplicity
and did not mention how they have been determined.

We addressed incomplete information by using multiple information sources.
We characterized all 33 notations by extracting information from the papers,
and mining websites and source code (if possible). The former is the standard
approach during a SLR but the two latter allow filling the gaps left by the
scientific papers. Especially, the project’s activity and editor features are most
commonly not covered by publications. Only Alf, Dcharts, HUTN, IOM/T, and
TCD did not provide sufficient information to determine these characteristics.

The external validity requires generalizable results. The survey results are
applicable for scenarios that cover collaborative UML editing with textual nota-
tions in general because the characteristics do not focus on a specific scenario.
This is a benefit over the previous surveys [2–4] that focused on teaching UML to
visually impaired people or focused on specific UML diagram types in industry.
The fuzzy characteristics in [5] lead to a limited generalization and applicability.

6 Conclusions

The Unified Modeling Language (UML) is the most commonly used modeling
language. Its specification defines a graphical but no complete textual notation.
Many specialized textual notations evolved but they are incompatible and highly
fragmented with respect to UML coverage, editing experience, and applicabil-
ity in engineering teams. There is no notation that clearly dominates the other
notations in every aspect. Therefore, practitioners have to select a notation per
usage scenario and do many trade-off decisions. This survey facilitates the selec-
tion of notations by providing a comprehensive list of 33 UML notations and
their 20 characteristics related to applicability. The characteristics do not focus
on a specific application domain but provide objective selection criteria.

The review method used in the survey produces reproducible and reliable
results. We applied a classic systematic literature review in order to identify
scientifically published approaches. In the second phase, we used snowballing
to build a reference closure in order to find publications not covered by the
keyword-based search from the first phase and to validate the keywords. In a
third phase, we used Google searches to find not-scientifically published notations
and complement our existing results. This approach is beneficial because we
identified about half of the notations in the latter two phases.

The major insights we gained by analyzing our results are: (a) Users have
to know the UML diagram types they require in their scenearios because most
notations only support a single diagram type and there is no single implemented
notation that supports all types. (b) Using the surveyed notations for complex
UML models degrades the maintainability because almost all implementing tools
do not provide editing support for complex tasks such as refactoring models or

22 S. Seifermann and H. Groenda

referencing existing elements. (c) Teams can integrate the textual notation in
existing tool chains mostly by using imports and exports of UML models but only
few notations provide this feature. We could, however, not find a single notation
that is applicable without restrictions and clearly dominates all other notations.
Instead, many notations simply focus on graphics generation for documentation
purposes and do not allow modeling and processing of the modeled information.
A scenario-specific selection process is still necessary.

Practitioners, tools vendors, and researchers can benefit from this survey:
Practitioners can focus on evaluating important characteristics of notations
instead of struggling with finding notations and extracting the information with
respect to UML coverage, editing experience, and applicability in engineering
teams. Even if the survey does not cover all relevant aspects, it provides a con-
siderable foundation for preselecting notations. This lowers the evaluation effort,
allows to evaluate more notations within given time constraints, and therefore
enables better selections.

Tool vendors for notations can identify seldom supported features and either
advertise their support for these features or can try to integrate them in order
to increase their market share.

Researchers can identify seldom supported features and can investigate the
reason for the bad coverage. For instance, if tool vendors worry about the com-
plexity of their notation when including further diagram types, researchers can
develop approaches for integrating views in textual modeling frameworks.

We identified two tasks as future work: First, we see a need for notations that
target proper UML modeling. This means a considerable UML diagram type
coverage as well as support for import and export of standard UML models.
Engineering teams cannot integrate other tools into their existing environments.
Second, we need a systematic comparison and rating approach for the supported
UML elements. This requires a definition of the UML elements usually contained
in a UML diagram type and a set of sample models for elements. If the notation
cannot represent the model, it does not support the corresponding element. We
plan to develop guidelines and example models for assessing the UML coverage
of UML notations.

Acknowledgements. This work is funded by the German Federal Ministry of Labour
and Social Affairs under grant 01KM141108.

References

1. Spinellis, D.: On the declarative specification of models. IEEE Softw. 20, 94–96
(2003)

2. Luque, L., Brandāo, L., Tori, R., Brandāo, A.: On the inclusion of blind people in
UML e-learning activities. In: RBIE 2015, vol. 23, p. 18 (2015)

3. Luque, L., Brandāo, L.O., Tori, R., Brandāo, A.A.F.: Are you seeing this? what is
available and how can we include blind students in virtual UML learning activities.
In: SBIE 2014 (2014)

Survey on the Applicability of Textual Notations 23

4. Luque, L., Veriscimo, E.S., Pereira, G.C., Filgueiras, L.V.L.: Can we work together?
on the inclusion of blind people in UML model-based tasks. In: Langdon, P.M.,
Lazar, J., Heylighen, A., Dong, H. (eds.) Inclusive Designing, pp. 223–233.
Springer, Cham (2014). doi:10.1007/978-3-319-05095-9 20

5. Mazanec, M., Macek, O.: On general-purpose textual modeling languages. In:
DATESO 2012, pp. 1–12 (2012)

6. Seifermann, S., Groenda, H.: Survey on textual notations for the unified modeling
language. In: MODELSWARD 2016, pp. 28–39. SciTePress (2016)

7. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering (version 2.3). EBSE Technical report, EBSE-2007-
01, Keele University (2007)

8. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: EASE 2014, pp. 38:1–38:10. ACM (2014)

9. OMG: Unified Modeling Language (UML) - Version 2.5. (2015). http://www.omg.
org/spec/UML/2.5/PDF

10. OMG: XML Metadata Interchange (XMI) - Version 2.5.1. (2015). http://www.
omg.org/spec/XMI/2.5.1/PDF

11. Open Source Initiative: Licenses by name (2015). http://opensource.org/licenses/
alphabetical. Accessed 04 Aug 2015

12. Kern, H.: Study of interoperability between meta-modeling tools. In: FedCSIS 2014,
pp. 1629–1637 (2014)

13. Wikipedia: List of unified modeling language tools (2015). https://en.wikipedia.
org/wiki/List of Unified Modeling Language tools. Accessed 04 Aug 2015

14. Safdar, S.A., Iqbal, M.Z., Khan, M.U.: Empirical evaluation of UML mod-
eling tools–a controlled experiment. In: Taentzer, G., Bordeleau, F. (eds.)
ECMFA 2015. LNCS, vol. 9153, pp. 33–44. Springer, Cham (2015). doi:10.1007/
978-3-319-21151-0 3

15. Khaled, L.: A comparison between UML tools. In: ICECS 2009, pp. 111–114 (2009)
16. OMG: Action language for foundational UML (ALF). PDF (2013). http://www.

omg.org/spec/ALF/1.0.1/
17. Jackson, D.: Alloy: a lightweight object modelling notation. ACM TOSEM 11,

256–290 (2002)
18. Information technology - z formal specification notation - syntax, type system and

semantics. Standard, International Organization for Standardization (2002)
19. Winikoff, M.: Towards making agent UML practical: a textual notation and a tool.

In: NASA/DoD Conference on Evolvable Hardware, pp. 401–412 (2005)
20. Walton, D.: CKWNC - UML sequence diagram editor (2013). http://www.ckwnc.

com
21. Zayan, D.O.: Model evolution: comparative study between clafer and textual

UML (2012). http://gsd.uwaterloo.ca/sites/default/files/Model%20Evolution;
%20Clafer%20versus%20Textual%20UML.pdf. Project Report

22. Feng, H.: DCharts, a formalism for modeling and simulation based design of
reactive software systems. Master’s thesis, School of Computer Science, McGill
University, Montreal, Canada (2004)

23. EventHelix: Eventstudio system designer 6 (2016). https://www.eventhelix.com/
EventStudio

24. Vieritz, H., Schilberg, D., Jeschke, S.: Access to UML diagrams with the HUTN. In:
Jeschke, S., Isenhardt, I., Hees, F., Henning, K. (eds.) Automation, Communication
and Cybernetics in Science and Engineering 2013/2014, pp. 751–755. Springer,
Cham (2014). doi:10.1007/978-3-319-08816-7 58

http://dx.doi.org/10.1007/978-3-319-05095-9_20
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/XMI/2.5.1/PDF
http://www.omg.org/spec/XMI/2.5.1/PDF
http://opensource.org/licenses/alphabetical
http://opensource.org/licenses/alphabetical
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
http://dx.doi.org/10.1007/978-3-319-21151-0_3
http://dx.doi.org/10.1007/978-3-319-21151-0_3
http://www.omg.org/spec/ALF/1.0.1/
http://www.omg.org/spec/ALF/1.0.1/
http://www.ckwnc.com
http://www.ckwnc.com
http://gsd.uwaterloo.ca/sites/default/files/Model%20Evolution;%20Clafer%20versus%20Textual%20UML.pdf
http://gsd.uwaterloo.ca/sites/default/files/Model%20Evolution;%20Clafer%20versus%20Textual%20UML.pdf
https://www.eventhelix.com/EventStudio
https://www.eventhelix.com/EventStudio
http://dx.doi.org/10.1007/978-3-319-08816-7_58

24 S. Seifermann and H. Groenda

25. Doi, T., Yoshioka, N., Tahara, Y., Honiden, S.: Bridging the gap between AUML
and implementation using IOM/T. In: Bordini, R.H., Dastani, M., Dix, J., Fallah
Seghrouchni, A. (eds.) ProMAS 2004. LNCS (LNAI), vol. 3346, pp. 147–162.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-32260-3 8

26. Gheorghies, O.: MetaUml - GitHub (2015). https://github.com/ogheorghies/
MetaUML. Accessed 14 Aug 2015

27. Roques, A.: PlantUml: Open-source tool that uses simple textual descriptions to
draw UML diagrams (2015). http://plantuml.com/. Accessed 14 Aug 2015

28. Washizaki, H., Akimoto, M., Hasebe, A., Kubo, A., Fukazawa, Y.: TCD: a text-
based UML class diagram notation and its model converters. In: Kim, T., Kim,
H.-K., Khan, M.K., Kiumi, A., Fang, W., Śl ↪ezak, D. (eds.) ASEA 2010. CCIS, vol.
117, pp. 296–302. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17578-7 29

29. Chaves, R.: TextUml toolkit (2015). http://abstratt.github.io/textuml/readme.
html. Accessed 14 Aug 2015

30. Jouault, F., Delatour, J.: Towards fixing sketchy UML models by leveraging textual
notations: application to real-time embedded systems. In: OCL 2014, pp. 73–82
(2014)

31. Dévai, G., Kovács, G.F., An, Á.: Textual, executable, translatable UML. In: OCL
2014, pp. 3–12 (2014)

32. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Text-based mod-
eling. CoRR abs/1409.6623 (2014)

33. Auer, M., Tschurtschenthaler, T., Biffl, S.: A flyweight UML modelling tool for
software development in heterogeneous environments. In: EUROMICRO 2003, pp.
267–272. IEEE (2003)

34. Lethbridge, T.: Umple: an open-source tool for easy-to-use modeling, analysis, and
code generation. In: MoDELS 2014 (2014)

35. Nero Grillo, F., Mattos Fortes, R.P.: Tests with blind programmers using
AWMo: an accessible web modeling tool. In: Stephanidis, C., Antona, M. (eds.)
UAHCI 2014. LNCS, vol. 8513, pp. 104–113. Springer, Cham (2014). doi:10.1007/
978-3-319-07437-5 11

36. Harris, T.: Create UML diagrams online in seconds, no special tools needed (2015).
http://yuml.me. Accessed 14 Aug 2015

37. Dobing, B., Parsons, J.: How UML is used. Commun. ACM 49, 109–113 (2006)
38. Erickson, J., Siau, K.: Can UML be simplified? practitioner use of UML in separate

domains. In: EMMSAD 2007, pp. 89–98 (2007)
39. Reggio, G., Leotta, M., Ricca, F., Clerissi, D.: What are the used UML diagram

constructs? a document and tool analysis study covering activity and use case
diagrams. In: MODELSWARD 2014, pp. 66–83 (2014)

40. He, Y.: Comparison of the modeling languages alloy and UML. In: SERP 2006,
pp. 671–677 (2006)

41. Cabot, J.: Modeling languages - UML tools (2015). https://modeling-languages.
com/uml-tools. Accessed 04 Aug 2015

http://dx.doi.org/10.1007/978-3-540-32260-3_8
https://github.com/ogheorghies/MetaUML
https://github.com/ogheorghies/MetaUML
http://plantuml.com/
http://dx.doi.org/10.1007/978-3-642-17578-7_29
http://abstratt.github.io/textuml/readme.html
http://abstratt.github.io/textuml/readme.html
http://dx.doi.org/10.1007/978-3-319-07437-5_11
http://dx.doi.org/10.1007/978-3-319-07437-5_11
http://yuml.me
https://modeling-languages.com/uml-tools
https://modeling-languages.com/uml-tools

Using Workflows to Automate Activities
in MDE Tools

Miguel Andrés Gamboa and Eugene Syriani(B)

Université de Montréal, Montreal, Canada
{gamboagm,syriani}@iro.umontreal.ca

Abstract. Model-driven engineering (MDE) enables to generate soft-
ware tools by systematically modeling and transforming this models. How-
ever, the usability of these tools is far from efficient. Common MDE activi-
ties, such as creating a domain-specific language, are non-trivial and often
require repetitive tasks. This results in unnecessary increases of develop-
ment time. The goal of this paper is to increase the productivity of mod-
elers in their every day activities by automating the tasks they perform
in current MDE tools. We propose an MDE-based solution where the user
defines a reusable workflow that can be parametrized at run-time and exe-
cuted. Our solution works for frameworks that support two level meta-
modeling as well as deep metamodeling. We implemented our solution in
the MDE tool AToMPM. We also performed an empirical evaluation of
our approach and showed that we reduce both mechanical and thinking
efforts of the user. The ideas and concepts of this paper were introduced
at the MODELSWARD conference [1] and are extended in this paper.

1 Introduction

Model-Driven Engineering (MDE) has been advocating faster software devel-
opment times through the help of automation [2]. MDE technologies combine
domain-specific languages (DSL), transformation engines and code generators to
produce various software artifacts. Although some studies report success stories
of MDE [3], some of the less satisfactory results include the presence of a plethora
of MDE tools. Each tool defines its own development and usage process, which is
a burden on the user who needs to adapt himself to every tool. To be successful,
MDE needs tools that are not only well adapted to the tasks to perform, but also
tools that increase the productivity of modelers in their day-to-day activities.

Modeling tools and frameworks, such as AToMPM [4], EMF [5], GME [6], and
MetaEdit+ [7], provide many functionalities, such as DSL creation, model edit-
ing, or model transformations. Although based on common foundational princi-
ples, the process for performing these tasks differs greatly depending on the tool
used. For example, to create a DSL in AToMPM [8], the language designer has
to load the class diagram formalism and graphically build the metamodel. He
generates the abstract syntax of the DSL from that metamodel by loading the
compiler toolbar. Then he has to load the concrete syntax formalism and assign
a concrete syntax to each individual class and association from the metamodel
c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 25–45, 2017.
DOI: 10.1007/978-3-319-66302-9 2

26 M.A. Gamboa and E. Syriani

by drawing shapes. He then generates the domain-specific modeling environment
by loading the compiler toolbar. In contrast, the steps are different to create a
DSL in EMFText [9]. The language designer first creates a new project by speci-
fying the project settings in the wizard dialog. He then creates an Ecore diagram
file and graphically builds the metamodel. He then needs to create a generator
model from the metamodel file. To define the concrete syntax, he creates a file
specifying the textual grammar. Once completed, he executes the generators to
create the domain-specific environment that needs to be launched as a separate
Eclipse instance initiated from the generated Java code.

Many of these activities involve repetitive tasks and a lot of user interac-
tions with the user interface of the MDE tool. These are non-trivial activities.
They involve long sequences of tasks, often repetitive tasks. Additionally, they
require context-dependent decisions leading to a lot of user interactions with
the user interface of the MDE tool. The processes to follow are complex for all
users, whether they are language engineers (i.e., MDE savvy) or domain-specific
modelers (i.e., end-users). They require heavy mental loads and tasks that are
error-prone. In the end, users are spending more time on development than nec-
essary. It is therefore mandatory to try to automate MDE tasks and processes
as much as possible, thus decreasing the accidental complexity of the tools used
and letting the user focus on the essential complexities of the domain problem.

To solve this issue, tools can implement automated workflows for each MDE
activity that involves a complex process or repetitive tasks. Many of the tools
already partially support this with the help of wizards [5] or scripts [10]. How-
ever, even these wizards become quite complex offering too many options that
the user has to manually input each time he wants to repeat an activity, as in
Eclipse based tools. There are also several languages to define processes, such as
SPEM [11], but do not support their execution (or enactment) natively. Other
executable process languages like BPEL [12] are too complex for the tasks we
want to achieve in modeling tools. Workflow languages, such as UML activity
diagrams, can be enacted [13], but the execution relies on programming individ-
ual actions which hampers porting a process from one tool to another.

We therefore propose to define a DSL, inspired from activity diagrams, that
fits exactly the purpose of designing workflows for common tasks in MDE tools.
The tasks encompass simple operations, such as opening, closing or saving mod-
els, and more complex tasks, such as generating the artifacts for a DSL. We
noted that several tasks occur in different workflows, especially common oper-
ations e.g., open and close. Therefore we opted for a reuse mechanism, where
the user defines workflows that can be parametrized at run-time to minimize the
number of workflows to create. Since our solution follows the MDE paradigm,
the execution of workflows is entirely modeled through model transformation.
Ultimately, users spend less time performing the activity by focusing on essen-
tial model management tasks rather than wasting time interacting with the tool.
The ideas and concepts of this paper were introduced at the MODELSWARD
conference [1] and are extended in this paper.

The paper is organized as follows. In Sect. 2, we describe the details of our
solution and discuss how we solved challenges we faced. In Sect. 3, we report

Using Workflows to Automate Activities in MDE Tools 27

on the improved implementation of our approach in AToMPM. Specifically in
Sect. 4, we discuss how model refactoring is automated. In Sect. 5, we perform a
preliminary empirical evaluation of the impact our approach has on improving
the user productivity in AToMPM. Finally, we discuss related work in Sect. 6
and conclude in Sect. 7.

2 Design of a Reusable Workflow Language

We propose an MDE-based solution where the user defines workflows that can be
parametrized at run-time and executed. In this section, we describe a DSL that is
adaptable to a specific modeling tool. We also describe the general process of how
to design reusable workflows to semi-automate MDE activities. Furthermore, we
discuss how to enact workflows using model transformation.

2.1 Language for Semi-automated Workflows

We model the DSL for defining activities that can be performed in MDE tools.
A workflow is composed of tasks, to define concrete actions to be performed, and
control nodes, to define the flow of tasks. The metamodel in Fig. 1 resembles that
of a simplification of UML activity diagrams since, semantically, an instance of
this metamodel is to be interpreted similarly to the control flow in UML activity
diagrams. Additional well-formedness constraints are not depicted in the figure
e.g., a cycle between tasks must involve an iteration node, there must be exactly
one initial and one final node.

AutomaticTask

GenericTask
WFParams: string

RTParams@2: string

extension: string

location@2: string

SaveModel

EditModel

InitialNode FinalNode

DecisionNode

condition: Constraint id: int

IterationNode
iterations: int = 1

ControlNode

0..1 0..1

0..1 *

0..1

0..1 0..1

2..*2
*

**

2..*

1 1

1

ManualTask
message: string

duration: int =

executing: bool = False

∞

*0..1

2..*

Task
name: string

id: int

JoinNode

ForkNode

Flow
chosen: bool = False

Dependency
srcParam: string

tarParam: string

1

Element

RTParamList: dict

Parameters

Alternative
isTrue: bool = False

next

Fig. 1. Generic metamodel of workflows for modeling tools.

28 M.A. Gamboa and E. Syriani

There are different kinds of tasks in an MDE tool. As for any modern soft-
ware, there are tasks specific to the user interface, such as opening, closing, and
saving models or windows. There are also tasks that are specific to models, such
as editing (CRUD operations) models, constraints, or transformations. There are
also tasks that are specific to the particular modeling tool used, such as loading
or executing a transformation, generating code from a model, or synthesizing
a domain-specific environment from a DSL. Furthermore, we want to automate
users’ activities as much as possible, therefore most of the tasks are automatic:
they do not require human interaction. For example, loading a formalism to
create a metamodel is (e.g., Ecore in EMF or Class Diagrams in AToMPM) is
a task that can be automated, since the location of that formalism is known.
Shaded classes in Fig. 1 (SaveModel and EditModel) are examples of tasks that
may vary from one MDE tool to another. Otherwise, this is a generic metamodel
implementable in any MDE tool.

Nevertheless, some tasks are hard, even impossible, to automate and thus
must remain manual. These are typically tasks specific to a particular model,
such as deciding what new element to add in the model. A message is specified to
guide the user during manual tasks. A maximum duration can also be specified
to limit the time spent on a manual task.

A workflow conforming to this metamodel starts from the initial node and
terminates at the final node. Tasks can be sequenced one after the other. A
decision node can be placed to provide alternative flows (one true and one false)
depending on a Boolean condition evaluated at run-time. Repetitions are possible
with an iteration node. This node repeats the flow along the true alternative as
long as the condition is satisfied. A common condition is to limit the number of
iterations: e.g., self.iterations <= 2. The cycle ends when either the specified
number of iterations is reached or a terminating condition is satisfied. Fork
and join nodes provide non-determinism when the order of execution of tasks
is not relevant. Fork node is a control node that splits a flow into multiple
concurrent flows and join node is a control node that synchronizes multiple flows.
These correspond to the common basic control flow patterns for workflows [14].
Although not supported in our current implementation, tasks may be executed
concurrently, except if the concurrent tasks are manual.

2.2 Parameters

One issue that may slow down the development time of users using workflows, is
that many tasks require parameters. For example, the task SaveModel requires
the location of where to save the model (path and name) and the extension to
be used. The extension is generally known from the context of the workflow. For
example, a generic model ends with .ecore in EMF and .model in AToMPM,
but a domain-specific model may have a specific extension in EMF. The designer
of the workflow can thus set the value of this attribute at design-time. However,
the location of the model is generally unknown to the workflow designer because
it is a decision often left at the discretion of the domain user. We therefore

Using Workflows to Automate Activities in MDE Tools 29

distinguish between workflow parameters that are fixed for all executions of the
workflows and run-time parameters that are specific to individual executions of
the workflow.

Within the same workflow, several tasks may share the same parameters.
Workflow parameters are specified once per workflow. However, run-time para-
meters must be manually specified each time the workflow is executed. Therefore,
a Dependency link can be specified between different tasks that share the same
run-time parameters. A dependency link specifies which attribute from the tar-
get task gets its value from an attribute in the source task. For example, the
location of the SaveModel task is the same as the location of the OpenModel
when saving a model we just opened and modified.

2.3 Activities as Workflows

To set the values of run-time parameters, we need an intermediate model of
workflows that is an instance of the metamodel presented, but where some para-
meters are left for further assignment. As explained in [15], the commonly used
technique of two-level metamodeling does not allow us to represent this need.

An attractive solution is to apply techniques from deep metamodeling [16],
and in particular, the approach defining metamodels with potency [17]. We assign
a potency of 2 to attributes representing run-time parameters and a potency of
1 to those representing workflow parameters, as depicted in Fig. 1. This way,
the workflow designer only needs to create one workflow for saving models with
the extension set to e.g., .model and the user can execute the workflow only
caring of the location where to save the model and not bother what the right
extension is. In this setup, an instance of the workflow metamodel in Fig. 1 is a
workflow. A workflow is itself the metamodel of its instantiation at run-time. The
enactment of a workflow therefore consists in providing the run-time parameters
to a workflow and executing it. These definitions are consistent with what the
Workflow Management Coalition specifies [18].

2.4 Workflow Enactment by Model Transformation

In this section, we describe how workflows are instantiated with run-time para-
meters and executed.

Deep Instantiation. The issue with the above solution is that not many
modeling frameworks (e.g., AToMPM1 and EMF) support deep metamodeling
with potency like metadepth [20] or Melanee [21] do. Therefore, we propose a
workaround to enact workflows by emulating deep metamodeling with potency
for tools that do not natively support it. The solution is to add a Parameters
class to the metamodel that is instantiated once per workflow enactment. Its
1 In [19], the authors proposed a deep metamodeling solution for the Modelverse of

AToMPM, but no usable implementation was available at the time of writing this
paper.

30 M.A. Gamboa and E. Syriani

attributes are populated dynamically for the enactment. They consist of all the
run-time parameters of every task in the workflow. The parameter object is used
to generate a wizard prompting for all run-time parameters needed in the tasks
of a workflow.

Once a workflow has been created by the workflow designer, a user can enact
the workflow. He creates a parameter object to specify run-time parameters
and executes the workflow. We have modeled the enactment of workflows by
model transformation. Figure 2 depicts the transformation in MoTif [22], a rule-
based graph transformation language in AToMPM. Rules are defined with a
pre-condition pattern on the left and a post-condition pattern on the right.
Constraints Const and actions Act on attributes are specified in Python. A
scheduling structure controls the order of execution of rules. Figure 2 shows the
two-step transformation that retrieves all run-time parameters of the workflow.
The transformation on the left of the figure populates all attribute fields of
the parameter object (the icon with two gears) by visiting each task in the
workflow model. The first rule makes sure a depended run-time parameter is not
added to the parameter list of the parameter object. For each parameter, we
store the task type, its task name (in case multiple instances of the same task
type are in the workflow), and the name of the parameter. We make use of the
setAttr and getAttr functions that allows us to get and set attribute values
using the attribute name as a string. This information is then used to render a
wizard prompting for their corresponding values to the user. Once the user enters
all parameters, the transformation on the right of the figure copies the values
entered in the source run-time parameters to the target run-time parameters.
This makes sure that all run-time parameters of all tasks are set. Note that the
transformations uses FRules to make sure that each task is visited exactly once,
which is why no negative application condition is needed.

LoadRTParams:

LoadRTParams

Act: for a in PostNode(1).getAttrs():
 if '@2' in a and getAttr(a,PostNode(1)) != ' ' :
 PostNode(2).RTParamList.add(
{ PostNode(1).getType() + PostNode(1).name : a[:-2] })

Task1

2

Task1

2

F

F
SkipDependParam:

SkipDependParam

Task1

2

Task1

2Task Task
Act: setAttr(getAttr(PostNode(3).srcParam,
 PostNode(3)),' ',PostNode(2))'

AddDependParam

Task1

2

Task1

2Task Task

 Act: PostNode(4).RTParamList.add({(PostNode(2).getType(),
 PostNode(2).name,PostNode(3).tarParam) :
 PostNode(4)[(PostNode(1).getType(),
 PostNode(1).name,PostNode(3).srcParam)]})

AddDependParam: F

33 3 3

4 4

Fig. 2. Transformation for loading run-time parameters in MoTif.

Using Workflows to Automate Activities in MDE Tools 31

Execution. With all run-time parameters set, there are two ways to execute
the workflow. One is to transform the workflow into a model transformation
that gets executed, as done in [23]. In this case, a higher-order transformation
takes as input the workflow and parameter object, generates a rule for each
task, and schedules the rules according to the order of the tasks in the workflow.
This is possible in MoTif since rules and scheduling are specified in separate
models. Although this approach has the advantage to reuse built-in execution
mechanisms from the MDE tool, a new transformation must be generated for
each workflow and, in particular, if the designer makes changes to the workflow
model.

In this work, we have implemented an alternative solution: we define the oper-
ational semantics of a workflow and execute it as a simulation. Figure 3 illustrates
the overall structure of this transformation and Fig. 4 depicts some of the rules.
The process starts from the element (task or control node) marked with the ini-
tial node. The rule GetInitialElement is responsible for this and specifies only
a pre-condition. The general idea is that then, each task to process each element
in the order of the workflow by advancing the current pointer called pivot in
MoTif, with the rule GetNextElement. The simulation ends when the final node
is reached, satisfying the rule IsFinalElement. Executing an automatic task,
such as save model depicted in rule ExecuteSaveModel, is performed by call-
ing the corresponding API operation of the MDE tool with the corresponding
run-time parameters. We assume that the MDE tool offers an API for interact-

: GetInitialElement
?

: GetNextElement

: IsFinalElement

B

B

: EvalCtrlNode

: ExecAutoTask

: ExecManTask

: TerminateManTask

?

: EvalDecisionNode

: EvalFlowNode

: EvalCtrlNode

: FalseAlternative

: EvalFlowNode

: FlowIncomplete

: ChooseFlow : Join

: EvalDecisionNode

: Iterate

: TrueAlternative

Fig. 3. Control structure of the transformation in MoTif that executes a workflow.

32 M.A. Gamboa and E. Syriani

TerminateManTask

Const: PreNode(1).executing==True
Act: PostNode(1).executing=False

current1

1

GetInitialElement

current

Element

ExecuteSaveModel

Act: _saveModelInNewWindow(
 PostNode(2)[(PostNode(1).getType(),
 PostNode(1).name, 'location')])

current

1

2

1

2

ExecuteEditModel

Act: PostNode(1).executing=True

current

1

2

1

2

GetNextElement
current

current

Element

Element

Element

Element

IsFinalElement

current

Element

current

Join

current
Element

Element

Element

Element

ChooseFlow

Const: PostNode(1).chosen==False
Act: PreNode(1).chosen=True

current

current

1

Element

Element

Element

Element

Iterate

Const: eval(PreNode(1).condition)==True
 and PreNode(2).isTrue==True
Act: PostNode(1).iterations+=1

current
1

2 Element

Element
1

2 Element

Element

current

F

T

F

T

FalseAlternative

Const: eval(PreNode(1).condition)==False
 and PreNode(2).isTrue==False

current

1

Element

Element
1

2 Element

Element
currentF

T

F

T
2

TrueAlternative

Const: eval(PreNode(1).condition)==True
 and PreNode(2).isTrue==True

current
1

2 Element

Element
1

2 Element

Element

current

F

T

F

T

FlowIncomplete

Const: PreNode(1).id==PreNode(2).id
 and PreNode(3).chosen==False

2

3
Element

current

1

Element

2

3
Element

current

1
Element

Fig. 4. Transformation rules in MoTif that execute a workflow.

ing with it programmatically (e.g., Python API for AToMPM and Java API for
EMF).

When a control node is the current element to process, we need to decide
on which element is next to be processed. For a decision node, if the condition
is true, then the next element along the true branch is selected. Otherwise, it
is the next element along the false branch. This assignment is the same for
iteration nodes, except that the iterations count is incremented as long as
the condition is satisfied. In our implementation, the semantics of a fork is to
choose non-deterministically one of the flows, execute all tasks in that flow in
order, and then choose another flow. The rules in EvaluateFlowNode ensure this
logic: when a join node is reached, we make sure that all flows outgoing from
the corresponding fork are complete as expressed by rule FlowIncomplete.

This process runs autonomously as long as there are automatic tasks. How-
ever, manual tasks require interruption of the transformation in real-time so
that the user can complete the task at hand and then resume the transformation.
Automating such a process requires to be able to pause and resume the transfor-
mation from the rules being executed. Although some transformation languages

Using Workflows to Automate Activities in MDE Tools 33

support real-time interruption [24], most do not. Therefore, as depicted in Fig. 3,
we extend the logic to handle manual tasks separately. If the next task to exe-
cute is manual, the corresponding rule simply flags the task as executing, as rule
ExecuteEditModel shows, and the transformation terminates. The user notifies
the MDE tool that his manual task is complete by restarting the transforma-
tion. Consequently, the transformation executes the first rule TerminateManTask
which resumes the execution from the task that was last marked as executing.
The executing attribute for manual tasks allows the workflow model to keep
track of the last manual task executed after the transformation is stopped.

2.5 Extensions and Exceptions

The approach presented here is evolution safe. MDE tools evolve with new fea-
tures added. If a new feature is available via the API and is needed in an
workflow, then there are only two steps the designer is required to perform
to support that feature. He shall add a new sub-class of automatic or man-
ual task in the metamodel of Fig. 1 and add a rule under ExecAutoTask or
ExecManTask in Fig. 3 that calls the appropriate API function to perform the
operation. ExecAutoTask (respectively ExecManTask) is a BRule that contains
all the rules to execute automatic (respectively manual) tasks. BRules execute at
most one of their inner rules unless none of them are applicable. The modularity
of this design reduces significantly the effort of workflow designers who wish to
provide additional tasks available via new features of the MDE tool.

Although it is common to explicitly model exceptional cases in workflows
[25,26], we have decided not to do that at the workflow model level. Exceptions
can only occur if a task execution fails because the user is constrained to do
exactly what the workflow allows as next action. In this version of our imple-
mentation, if an exception occurs, the workflow execution stops at the failing
task in the workflow, as depicted by the circled crosses in Fig. 3. The user must
then manually recover from the error and restart the execution of the workflow.
Nevertheless, run-time parameters are retained.

3 Implementation in AToMPM

We implemented a prototype in the MDE tool AToMPM [4], since it offers a
graphical concrete syntax for DSLs, which is best suited for workflow languages,
and a backdoor API to programmatically interact with the tool in headless mode.
Nevertheless, our approach can be implemented in any MDE tool as long as it
offers an accessible API to perform operations that their user interface allows to.
We implemented the workflow DSL following the metamodel in Fig. 1. Figure 5
shows the graphical representation used for each task, each control node, and
parameter object.

We analyzed several processes and noted the user interactions needed to per-
form each task, e.g., creation of DSL. We had to decide on what level of granular-
ity we want to present tasks. One option is to go to the level of mouse movements

34 M.A. Gamboa and E. Syriani

GeneratePMM

VerifyAS OpenTransformation

ForkNode JoinNodeFinalNodeInitialNode DecisionNode

Control nodes

LoadToolbar

Automatic tasks

Workflow execution

LoadParametersExecuteWorkflow

Manual tasks

ManualTask EditModel

CompleteManual

OpenModel SaveModel GenerateAS GenerateCS

Parameters

IterationNode

ExecuteTransformation RefactorModel

Fig. 5. Concrete syntax of the workflow DSL in AToMPM.

(graphically moving objects), clicks (selections), and keystrokes (textual editing).
Although this would enable us to model nearly any user interaction AToMPM
allows for, this would make the workflows very verbose and complex for design-
ers. We therefore opted for tasks to represent core functionalities instead. Subse-
quently, the most common tasks we noted are opening models, loading toolbars
and formalisms, saving models, generating concrete and abstract syntax of DSLs,
as listed in Fig. 5. All these operations can be automated, since they require a
location as run-time parameter. SaveModel also has a workflow parameter for
the extension of the model file. Additionally, a task to edit models is needed,
but cannot be automated since it is up to the user to create or edit the model.

3.1 Process

Our prototype is to be used as follows. The designer defines workflows by creat-
ing instances of the workflow DSL. A user (a language engineer in this example)
then selects which workflow he desires to enact. To set the run-time parameters,
he pushes the LoadParameters button. This creates an instance of the parameter
object and pops up a dialog prompting for all required parameters, following the
transformation from Fig. 2. Upon pushing ExecuteWorkflow button, the simula-
tion (presented in Fig. 3) executes the workflow autonomously. When a manual
task is reached, a new AToMPM window is opened with all necessary toolbars
pre-loaded. A message describing the manual task to perform is displayed to the
user and the simulation stops. After the user completes the task, he pushes the
CompleteManual button. Then, the window closes and the simulation restarts.

3.2 Example Workflow for Creating a DSL

Figure 6 shows the workflow that specifies how to create a DSL and generate a
modeling environment for it in AToMPM. The first task is LoadToolbar. Its loca-
tion parameter is already predefined with the class diagram toolbar, since this is
the standard formalism with which one creates a metamodel in AToMPM. The
following task is EditModel. In this manual task, the user creates the metamodel
of the DSL using class diagrams. Once this is complete, the workflow restarts

Using Workflows to Automate Activities in MDE Tools 35

executing from that task and proceeds with SaveModel. This task requires a
run-time parameter to specify the location of where the metamodel is saved.
The user sets the value in the popup dialog wizard. Now that the metamodel is
created, a fork node proposes two flows: one for creating the concrete syntax of
the DSL and one to generate the abstract syntax from the metamodel. Recall
that the simulation chooses one flow and then the other in no specific order. Sup-
pose the former flow is chosen. Then, a LoadToolbar task is executed to load the
concrete syntax toolbar, the standard formalism in AToMPM. This is followed
by an EditModel so the user can manually create the shapes of each element
of the metamodel. Once this is complete, the workflow restarts and proceeds
with a SaveModel task. Recall that the location is a run-time parameter to save
the concerte syntax model with a predefined extension. In the popup dialog, we
distinguish between different task with their type, and in this case their name
(1 and 2). The following task in this flow is GenerateCS. It takes as run-time
parameter the location of where the generated artifact must be output. Specif-
ically, the name used will be also the name of the toolbar that will be used to
create a model with this DSL. Therefore, the location of the generated concrete
syntax is the same as the location of the concrete syntax model the user cre-
ated manually. The dependency link prevents the user from having to duplicate
parameter values in the wizard. When the join node is reached, the simulation
notices that the second flow was not executed yet. Therefore the next task to
be executed is GenerateAS. Its location parameter uses the same value of the
location attribute of SaveModel 1, as depicted by the dependency link between
these two tasks. When the join node is reached again, this time all flows were
executed and proceeds with the final task LoadToolbar 3. As stated before, its
location parameter use the same value of the location attribute of SaveModel 2.
The simulation ends on a new window open with the new DSL loaded, ready for
the user to create his domain-specific model.

Fig. 6. Workflow to create a DSL.

36 M.A. Gamboa and E. Syriani

4 Automating Refactoring Tasks

Refactoring is common operation on modeling artifacts that improves the struc-
ture of a model while preserving its external behavior [27]. In MDE, refactoring
is either done manually on a model or through the application of a model trans-
formation [28]. There exists several techniques to perform refactoring on generic
or domain-specific models [29], and even a catalog of refactoring patterns on
metamodels [30].

AutomaticTask

MacroTask

TransformationLocation: string

ModelLocation@2: string

ModelExtension: string

RefactorModel

Fig. 7. Generic metamodel of Refactoring Model.

Refactoring is an activity that can be automated in our workflow system.
By default, this can be done through a manual task. However, we also support
automating this task for the user. To do so, we extend the metamodel of Fig. 1
with the concept of a MacroTask as depicted in Fig. 7. A macro task is an implicit
workflow of other tasks. For example, as illustrated in Fig. 8, RefactorModel is
decomposed into opening the model to refactor, loading the transformation that
implements the refactoring, and executing that transformation on the model.
For the RefactorModel task, the location of the transformation is a workflow
parameter specified by the workflow designer. Additionally, this task requires
the location of the model to refactor, but this is a run-time parameter that the
user specifies. The extension of the model is generally known from the context
of the workflow.

A macro task serves as syntactic sugar to simplify the workflow of the user.
The semantics of a macro task is modeled by a transformation executed dur-
ing the simulation in Fig. 3. The implicit transformation that is executed for

RefactorModel

Automatic Refactoring Tasks

OpenModel OpenTransformation ExecuteTransformation

Fig. 8. Generic metamodel of Refactoring Model.

Using Workflows to Automate Activities in MDE Tools 37

RefactorModel can be defined on the meta-metamodel level (e.g., class diagram
in AToMPM or Ecore in EMF) so that it is syntactically applicable on any given
model. The burden is on the user who needs to define a meaningful transfor-
mation that can be applied on the desired model. For example, if the model is
a metamodel, then a refactoring can add a unicity constraint. If the model is
a concrete syntax assignment, then a refactoring can create a default concrete
syntax to every class of the metamodel.

5 Evaluation of the Improvement of MDE Activities

5.1 Research Question

The goal of the experiment is to determine whether the productivity of the user
is increased when performing complex or repetitive tasks. Thus, our research
question is “is the time for mechanical and cognitive efforts of the user reduced
when automating activities with workflows?” Therefore, we conduct the exper-
iment to verify that these efforts are reduced when using our approach versus
when not.

5.2 Metrics

The total time T spent by a user to perform one activity is one way to quantify
the effort the user produces. T is mainly made up of the mechanical time Tm

(hand movements) and cognitive effort time Tt (thinking time) of the user, thus
T = Tm + Tt, assuming there are no interruptions or distractions.

Since AToMPM only presents a web-based graphical user interface and most
interactions are performed with a mouse, we can apply Fitts Law [31] to measure
the time of mouse movements tFL = a + b × log2(1 + D/S). D is the distance
from a given cursor position to the position of a widget to reach (e.g., button,
text field) and S is the smallest value of the width or height of the widget. We
denote TFL as the sum of all the tFL for each useful mouse movement to perform
one activity.

Another useful metric we noted for the mechanical effort is the number of
clicks c needed to complete the activity. Relying on empirical data from an online
benchmark [32], the average time to click reactively is 258 ms. Thus we denote
Tc = 258 × c the time spent clicking during an activity.

Therefore a rough estimate of the time spent on mouse actions in an activity
is Tm = TFL + Tc for every straight line distance D between two clicks and the
size S of the widget at every even click.

Delays between mechanical actions is a rough estimate of the time the user
spent thinking during the activity. Hence, we deduce the thinking time Tt =
T − Tm.

Finally, we measure the complexity N of a task by the number of automatic
tasks it requires the user to perform.

38 M.A. Gamboa and E. Syriani

These metrics are far from accurate, but serve at least as a preliminary eval-
uation of our approach to discard the null hypothesis: Tm, Tc and Tt are smaller
for performing an MDE activity in AToMPM using workflows than without
workflows.

5.3 Experimental Setup

We performed all experiments on a 15.6” laptop monitor with a resolution of
1920 × 1080. The machine was an ArchLinux virtual machine using 2 cores and
4 GB of RAM, running on Windows 10 quad-core computer at 2.4 GHz with
16 GB of RAM. Given this performance, we neglected the computation time of
AToMPM triggered by each click. To keep a fair comparison, the experiments
using the workflow did not take into account the mouse activity and time spent
during manual tasks. This is the time after the simulation terminates and before
the notification from the CompleteManual button is received.

5.4 Data Collection

To calculate t using Fitts law, the coefficients a and b must be determined empir-
ically. For that, we recorded the straight line distances between meaningful clicks
(e.g., center of canvas to toolbar button) as well as different sizes of clickable
elements (e.g., model elements on the canvas) in AToMPM. We recorded 12
distances ranging from 79 to 1027 pixels and 5 sizes ranging from 20 to 305
pixels. We then placed on an empty screen a point and a rectangle of sizes and
at distances that correspond to these measurements. We measured the time it
took to click on the initial point and move the cursor as fast as possible to click
inside the opposite rectangle. This data collection was performed by the first
author who is an expert in AToMPM. We repeated each of the 57 cases 20 times
(excluding those where D ≤ S). The maximum variation in the same case was
less than 9%. We determined by regression analysis the values a = 166.75 and
b = 155.93 with correlation R2 = .9106 with a median and average margin of
error of 8%.

In our prototype, we implemented the five most common tasks in AToMPM
shown in Fig. 5. There is an infinite number of possible combinations of these
tasks because tasks can be repeated and the order matters. Therefore, we reduced
the number of cases to only meaningful combinations of tasks in AToMPM. We
identified 4 meaningful for activities with one task (compiling the concrete syntax
requires a model to be opened), 9 for activities with two tasks (e.g., open then
save model), 13 for activities with three tasks, 4 for activities with four tasks, 5
for activities with five tasks, 3 for activities with six tasks, and 3 for activities
with seven tasks. Hence we ran our experiments on 38 distinct activities varying
up to seven automatic tasks.

The most complex activity we evaluated is for the creation of a DSL in
AToMPM modeled with the workflow in Fig. 6, consisting of seven automatic
tasks. The workflow starts by loading the Class Diagram formalism. It lets
the user manually create the appropriate class diagram model to define the

Using Workflows to Automate Activities in MDE Tools 39

metamodel. When the user completes that task, the metamodel is saved (loca-
tion provided at run-time) and the abstract syntax is generated. Then the
ConcreteSyntax formalism is loaded and the user creates the shapes for links
and icons. When the user completes that task, the concrete syntax model is
saved (name provided at run-time) and the GenerateCS task generates the code
for the new DSL environment. Finally, the new formalism is loaded in a new
window showing the new generated DSL environment to the user. Note that in
this situation, the first LoadToolbar object does not require a run-time parame-
ter, but a workflow parameter for the location of the Class Diagram formalism.
We therefore suggest to create two classes in the metamodel for the same task
when we want to give the option to set either run-time or workflow parameters
depending on the context.

5.5 Results

The two plots in Fig. 9 report the time performances for each case. We aggregated
the times by the number of tasks because there was very few variability between
activities with the same number of tasks: the highest coefficient of variability
20% was obtained for activities with three tasks since this was the most populous
set, while all the others remained under 5%. Both plots confirm that the use of
workflows does reduce the time to perform the activity, as the complexity of the
activity increases.

0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7

Tm (s)

NWithout workflow With workflow

(a)

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7

Tt (s)

NNo workflow Workflow

(b)

Fig. 9. Mechanical (a) and cognitive (b) efforts with respect to the number of tasks in
a workflow.

The results obtained correspond to what one would expect when adding
automation in a development process. The mechanical effort is greater when
using workflows for simple activities that have up to three tasks. However, after
that point, the mechanical effort remains almost identical as the number of tasks
increases. This behavior, depicted in Fig. 9(a), is due to the overhead to open
the appropriate workflow and set all run-time parameters. The reason why Tm

plateaus after N = 5 is that the only mechanical effort needed is to specify

40 M.A. Gamboa and E. Syriani

additional run-time parameters. However, this is done by typing the values with
the keyboard which we haven’t taken into account in this experiment. When
performing the experiments, we noted that the slowest task performed manually
was for loading toolbars.

Figure 9(b) reports on the non-mechanical effort needed by the user to per-
form each activity. We note a trend similar to the mechanical effort. However,
the flip point where less effort is needed when using workflows occurs as early
as activities with more than one task. The cognitive effort increases linearly for
activities with more than three tasks. An interesting result is that, when not
using workflows, the cognitive effort is always greater than the mechanical effort
for N > 1 and that gap keeps on increasing as there are more tasks. On the
contrary, when using workflows, the mechanical effort is greater for activities
with up to two tasks, but when the cognitive effort is greater for N > 2, the
gap remains almost identical. When performing the experiments, we noted that
most of the time was spent searching on the screen to select toolbars to load,
even for an expert user who knows exactly their locations.

To complement this information, Table 1 details each metric for the most
complex activities we evaluated. It shows that, although using workflows
improves all the metrics, the cognitive time is the most improved component.

Table 1. Time measurements in seconds and improvements when using workflows for
N = 7 tasks.

T TFL Tc Tm Tt

No workflow 138 29 11 41 98

Workflow 66 18 6 24 42

Improvement 52% 38% 45% 41% 57%

We conclude that our hypothesis is verified and answer our research question:
for the extent of the experiments we conducted, the time for mechanical and
cognitive efforts of the user is reduced when automating activities with our
approach by half.

5.6 Threats to Validity

There are several threats to the construct validity of this preliminary evaluation.
First, the metrics we used are not sufficient to assess the complete mechanical
effort. Keystrokes can also be taken into account since there is an effort needed
to set the values of run-time parameters. However, the length of the string of
each depends on the file paths of the host machines and the operating system
used. We discarded this metric for its lack of generalization. Further mechanical
metrics could be used such as eye movements, but we lacked the proper hard-
ware to perform eye-tracking experiments. We further mitigated these threats
by using Fitts Law to achieve an objective measure of time mouse movements.

Using Workflows to Automate Activities in MDE Tools 41

We measured cognitive effort by considering it as all non-mechanical effort, which
is not a completely true statement. Otherwise, this would have required more
fine grained measurements of brain activity. We also did not include the time
and effort for manual tasks, which may have a negative influence on the results
if they take longer than the automatic tasks. The data collection was performed
by only one person, but this was only necessary to calculate t since all other
metrics are obtained using Fitts Law, without needing to perform the activities.
This threat only affects the absolute time, but does not affect the improvement
ratio.

With respect to threats internal validity, the selection and configuration of the
tools for time measurements has a weak influence on the results. We calibrated
the parameters based on a pilot experiment and our experience. However, this
should not strongly affect the time because we took care of configuring the tools
in a way that corresponds to the empirical data from an online benchmark.
We also pre-processed inconsistent times (e.g., clicks outside target) in order to
eliminate false positives. Nevertheless, this only reduces the chances that we can
answer our research question positively.

As far as threats to external validity are concerned, the activities were obvi-
ously not sampled randomly from all possible MDE tools activities, but we relied
on our knowledge in MDE tools. Hence, the set of activities is not completely
representative. The results of this study can only be generalized to the extent
of AToMPM. Nevertheless, all five tasks we considered are part of the most
common activities in the majority of MDE tools, such as EMF. We further miti-
gated this threat by including tasks with different complexity (i.e., Open Model
vs Compile Abstract Syntax) and focusing on their meaningful combinations.

6 Related Work

A lot of work can be found in the literature on workflow definition and enact-
ment [33–35]. In [36], the authors proposed a textual DSL for workflow definition
that supports sequencing and iteration. It is not meant to be enacted, but serves
as specification for subsequent code generators. Workflow enactment has been
particularly applied in process modeling.

Various techniques exist to service the execution of workflows, such as dis-
tributing the execution on the cloud [37,38]. However, none of these approaches
models workflow enactment explicitly as we did using model transformation.

We proposed a model transformation as a novel workaround for tools that do
not support deep instantiation of metamodels. An alternative is to define meta-
models following the Type-Object pattern [39] where both types and instances
are explicitly modeled in the metamodel. This is similar to the notion of clab-
ject [40] which generalizes this approach.

From an implementation point of view, the closest work to ours automates
transformation chains in AToMPM [23]. They developed a formalism transfor-
mation graph (FTG) that specifies a megamodel indicating the transformations
between languages and a process model (PM) that specifies the control and data

42 M.A. Gamboa and E. Syriani

flow to schedule the order of execution of model transformations. The execu-
tion of an FTG+PM instance is modeled as a higher-order transformation that
converts the FTG+PM model into a model transformation instance, whereas
our approach executes workflows by simulation. The authors also distinguish
automatic actions from manual ones, but the latter are not modeled in the
transformation.

Similarly to FTG+PM, Wires [41] supports the specification and execution
of model transformation workflows. Wires is graphical executable language for
ATL transformations that provides mechanisms to create model transformations
chains. Kepler [42] is a tool to create and execute scientific workflows. Since it
is based on the Ptolemy II multi-paradigm simulation system, a coordinator
must be hand-written in Java to define the semantics of the workflow, unlike our
approach that makes use of model transformation.

In our approach, activities essentially encapsulate model management tasks.
The Epsilon language suite [43] can be used to perform model management
tasks such as CRUD operations, transformations, comparisons, merging, val-
idation, refactoring, evolution, and code generation. To combine and integrate
these different tasks into workflows, the user defines Ant scripts. In our approach,
users define workflows in a DSL specific to the features the MDE tool provides.
As such, it reduces accidental complexity imposed by Ant and is accessible to
a broader set of users that do not know Ant. One particular language is the
Epsilon Wizard Language (EWL) [44] whose purpose is to refactor, refine, and
update models. EWL allows users to define wizards that serve as encapsulation
of EOL scripts, the action language in Epsilon. Wizards are similar to activities
in our case. EWL provide feedback that can drive the execution of a model man-
agement operation using a context-independent user input. It is a command line
user input interface. In our approach, the user-input method is a popup dialog
with several parameters. Their approach has a more fine-grained wizard selec-
tion process, since a wizard can have a guard that must be satisfied in order to
execute it. Nevertheless, EWL does not support the explicit modeling of manual
tasks. EWL is especially designed for refactoring models automatically. These
model refactorings are applied on model elements that are explicitly selected by
the user. Typical supported refactoring patterns include adding the stereotypes,
attributes and operations. EWL has constructs specifically to refactor model ele-
ments. In our approach, workflows rely on a model transformation to express the
modification to the model. Therefore the user only needs to specify the model,
and not individual model elements.

7 Conclusion

In this paper, we presented a model-based environment for automating daily
activities of language engineers and domain-specific modelers. Designers define
workflow templates conforming to a DSL to increase the productivity of users.
Users enact workflows to perform tasks automatically. Our framework also sup-
ports the integration of manual tasks. The execution of workflows is entirely

Using Workflows to Automate Activities in MDE Tools 43

modeled as a model transformation, making it reusable and portable on various
MDE tools. Preliminary results of our prototype indicate that, using workflows,
users reduce cognitive and mechanical effort to perform common activities in
the MDE tool AToMPM.

We are integrating more features of AToMPM in our prototype to allow
designers define workflows for nearly any interaction process the tool can do. As
future work, we plan to implement this approach in other MDE frameworks, such
as EMF, in order to further generalize the reusability aspect of the metamodel
of activities and their enactment by model transformation.

References

1. Gamboa, M.A., Syriani, E.: Automating activities in MDE tools. In: Model-Driven
Engineering and Software Development, SciTePress, pp. 123–133 (2016)

2. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39, 25–31 (2006)
3. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven

engineering. IEEE Softw. 31, 79–85 (2014)
4. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., Ergin, H.:

AToMPM: a web-based modeling environment. In: Invited Talks, Demonstration
Session, Poster Session, and ACM Student Research Competition, MODELS 2013,
vol. 1115, pp. 21–25. CEUR-WS.org (2013)

5. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison Wesley Professional, Boston (2008)

6. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C.,
Nordstrom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. In:
Workshop on Intelligent Signal Processing, WISP 2001, vol. 17 (2001)

7. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ a fully configurable multi-user and
multi-tool CASE and CAME environment. In: Constantopoulos, P., Mylopoulos,
J., Vassiliou, Y. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg
(1996). doi:10.1007/3-540-61292-0 1

8. AToMPM tutorial (2013). http://www.slideshare.net/eugenesyriani/atompm-
introductory-tutorial. Accessed 07 Aug 2015

9. EMFText screencast (2014). http://www.emftext.org/index.php/EMFText Gett-
ing Started Screencast. Accessed 07 Aug 2015

10. JetBrains MPS (2015). https://www.jetbrains.com/mps/ Accessed 07 Aug 2015
11. OMG: Software & Systems Process Engineering Metamodel specification 2.0 edn.

(2008)
12. OASIS: Web Services Business Process Execution Language, 2nd edn. (2007)
13. Syriani, E., Ergin, H.: Operational semantics of UML activity diagram: an appli-

cation in project management. In: RE 2012 Workshops, pp. 1–8. IEEE (2012)
14. Russell, N., van der Aalst, W., ter Hofstede, A., Mulyar, N.: Workflow Control-

Flow Patterns: A Revised View. Technical report BPM-06-22, BPM Center (2006)
15. Gonzalez Perez, C., Henderson Sellers, B.: Metamodelling for Software Engineer-

ing. Wiley Publishing, Hoboken (2008)
16. Lara, J.D., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling.

ACM Trans. Softw. Eng. Methodol. 24, 1–46 (2014)
17. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,

Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001). doi:10.1007/3-540-45441-1 3

http://dx.doi.org/10.1007/3-540-61292-0_1
http://www.slideshare.net/eugenesyriani/atompm-introductory-tutorial
http://www.slideshare.net/eugenesyriani/atompm-introductory-tutorial
http://www.emftext.org/index.php/EMFText_Getting_Started_Screencast
http://www.emftext.org/index.php/EMFText_Getting_Started_Screencast
https://www.jetbrains.com/mps/
http://dx.doi.org/10.1007/3-540-45441-1_3

44 M.A. Gamboa and E. Syriani

18. WMC: Terminology and glossary. Technical report, WFMC-TC-1011, Workflow
Management Coalition (1999)

19. Van Mierlo, S., Barroca, B., Vangheluwe, H., Syriani, E., Kühne, T.: Multi-level
modelling in the modelverse. In: Workshop on Multi-Level Modelling, MULTI 2014,
vol. 1286, pp. 83–92. CEUR-WS.org (2014)

20. Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13953-6 1

21. Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and ontology engineering
environment. In: International Master Class on Model-Driven Engineering: Mod-
eling Wizards, MW 2012, pp. 7:1–7:2. ACM (2012)

22. Syriani, E., Vangheluwe, H.: A modular timed model transformation language. J.
Softw. Syst. Model. 12, 387–414 (2011)

23. Lúcio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.: FTG+PM: an inte-
grated framework for investigating model transformation chains. In: Khendek, F.,
Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 182–202.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38911-5 11

24. Syriani, E., Vangheluwe, H.: Programmed graph rewriting with time for
simulation-based design. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT
2008. LNCS, vol. 5063, pp. 91–106. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69927-9 7

25. Russell, N., Aalst, W., Hofstede, A.: Workflow exception patterns. In: Dubois, E.,
Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer, Heidelberg
(2006). doi:10.1007/11767138 20

26. Syriani, E., Kienzle, J., Vangheluwe, H.: Exceptional transformations. In: Tratt, L.,
Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 199–214. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13688-7 14

27. von Pilgrim, J., Ulke, B., Thies, A., Steimann, F.: Model/code co-refactoring: an
MDE approach. In: Automated Software Engineering, pp. 682–687. IEEE (2013)

28. Mens, T.: On the use of graph transformations for model refactoring. In: Lämmel,
R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 219–257.
Springer, Heidelberg (2006). doi:10.1007/11877028 7

29. Zhang, J., Lin, Y., Gray, J.: Generic and domain-specific model refactoring using a
model transformation engine. In: Beydeda, S., Book, M., Gruhn, V. (eds.) Model-
Driven Software Development, pp. 199–217. Springer, Heidelberg (2005)

30. Metamodel refactoring catalog (2016). http://www.metamodelrefactoring.org/?
page id=584. Accessed 19 May 2016

31. MacKenzie, I.S.: Fitts’ law as a research and design tool in human-computer inter-
action. Hum.-Comput. Interact. 7, 91–139 (1992)

32. Benchmark, H.: (2015). http://www.humanbenchmark.com/tests/reactiontime/
statistics

33. WMC: Process Definition Interface - XML Process Definition Language 2.00. Tech-
nical report, WFMC-TC-1025, Workflow Management Coalition (2005)

34. Mahmud, M., Abdullah, S., Hosain, S.: GWDL: a graphical workflow definition lan-
guage for business workflows. In: Gaol, F. (ed.) Recent Progress in Data Engineer-
ing and Internet Technology. LNEE, vol. 156, pp. 205–210. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-28807-4 29

35. Russell, N., Aalst, W.M.P., Hofstede, A.H.M., Edmond, D.: Workflow resource
patterns: identification, representation and tool support. In: Pastor, O., Falcão e
Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg
(2005). doi:10.1007/11431855 16

http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1007/978-3-540-69927-9_7
http://dx.doi.org/10.1007/978-3-540-69927-9_7
http://dx.doi.org/10.1007/11767138_20
http://dx.doi.org/10.1007/978-3-642-13688-7_14
http://dx.doi.org/10.1007/11877028_7
http://www.metamodelrefactoring.org/?page_id=584
http://www.metamodelrefactoring.org/?page_id=584
http://www.humanbenchmark.com/tests/reactiontime/statistics
http://www.humanbenchmark.com/tests/reactiontime/statistics
http://dx.doi.org/10.1007/978-3-642-28807-4_29
http://dx.doi.org/10.1007/11431855_16

Using Workflows to Automate Activities in MDE Tools 45

36. Jacob, F., Gray, J., Wynne, A., Liu, Y., Baker, N.: Domain-specific languages
for composing signature discovery workflows. In: Workshop on Domain-Specific
Modeling, pp. 61–64. ACM (2012)

37. Alajrami, S., Romanovsky, A., Watson, P., Roth, A.: Towards cloud-based software
process modelling and enactment. In: Model-Driven Engineering on and for the
Cloud, CloudMDE 14, vol. 1242, pp. 6–15 (2014)

38. Martin, D., Wutke, D., Leymann, F.: A novel approach to decentralized work-
flow enactment. In: Enterprise Distributed Object Computing, pp. 127–136. IEEE
(2008)

39. Johnson, R., Woolf, B.: The type object pattern. In: EuroPLoP (1996)
40. Atkinson, C.: Meta-modelling for distributed object environments. In: Enterprise

Distributed Object Computing Workshop, pp. 90–101. IEEE (1997)
41. Rivera, J.E., Ruiz Gonzalez, D., Lopez Romero, F., Bautista, J., Vallecillo, A.:

Orchestrating ATL model transformations. In: Proceedings of MtATL, vol. 9, pp.
34–46 (2009)

42. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system:
research articles. Concurrency Comput.: Pract. Exp. Workflow Grid Syst. 18,
1039–1065 (2006)

43. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Novel features in languages of the
epsilon model management platform. In: Modeling in Software Engineering, pp.
69–73. ACM (2008)

44. Kolovos, D.S., Paige, R.F., Polac, F.A., Rose, L.M.: Update Transformations in
the Small with the Epsilon Wizard Language. J. Object Technol. 6, 53–69 (2007)

Schedulability Analysis of Pre-runtime
and Runtime Scheduling Algorithm
of an Industrial Real Time System

Stefano Pepi(B) and Alessandro Fantechi(B)

DINFO, University of Florence, Via S. Marta 3, Florence, Italy
{stefano.pepi,alessandro.fantechi}@unifi.it

Abstract. The configuration of a complex, generic, real-time applica-
tion into a specifically customized signalling embedded application has
an important impact on time to market, deployment costs and safety
guarantees for a railway signalling manufacturer. In this paper we focus
on the aspect of real-time schedulability analysis, that takes an important
portion of the time dedicated to configuration in this kind of systems. We
propose an approach based on rigorous modelling of the scheduling algo-
rithms, aimed at substituting possibly unreliable and costly empirical
tuning. In order to comply with the needs of our industrial partners, we
have resorted to the use of variants of Petri Nets with associated avail-
able tools: Timed Petri Nets (TPN) and Coloured Petri Nets (CPN),
supported by open source tools, respectively TINA and CPN Tools 4.0
have been exploited for the modelling of the pre-runtime and the run-
time scheduling algorithms implemented in the industrial platform. The
comparison of models produced with the two tools has concluded that
the Coloured Petri Nets are more suited to the adopted schedulability
analysis approach, for both scheduling algorithms.

Keywords: Petri Nets · Timed Petri Nets · Coloured Petri Nets · Real
Time Systems · Scheduling algorithm · Modelling · Formal verification ·
Railway signalling

1 Introduction

Real-Time Systems (RTS) are those computer-based systems where correct oper-
ation does not only depend on the correctness of the results obtained, but also
on the time at which the results are produced [21].

The interest for real-time systems is motivated by many applications that
require that computations satisfy given time constraints, in domains such as
automotive, avionics, communications, railway signalling etc.

The most important property of a RTS is predictability. Predictability is the
ability to determine in advance if the computation will be completed within
the time constraints required. Predictability depends on several factors, ranging
from the architectural characteristics of the physical machine, to the mechanisms
c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 46–69, 2017.
DOI: 10.1007/978-3-319-66302-9 3

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 47

of the core, up to the programming language. Predictability can be measured as
the percentage of processes for which the constrains are guaranteed.

In this article we report the experience made in collaboration with our indus-
trial partner, a railway signalling manufacturing company, in the implementation
of a generic real-time platform based on a proprietary microkernel Real Time
Operating System; in particular we present a method for schedulability analysis.

With the recent expansion of markets to Asia and Africa, the company has
experienced a growing need for a versatile system that can be configurable for
each different application. The transition from a traditional “main loop”-based
system to a general purpose platform has allowed low-cost configuration, simply
by changing the application inside and the hardware to interact with. With the
same Hw/Sw platform both ground and on-board systems can be built, either for
urban (like metro) or main line applications, meeting the signalling regulations
of different countries.

Experience has however shown that guaranteeing predictability for the differ-
ent customizations of the platform takes a considerable portion of the customiza-
tion effort, if based only on testing every time the newly customized software on
the platform.

We have therefore considered the possibility of building a generic model of
the scheduling algorithms employed in the platform, that is going to be instan-
tiated on the temporal constraints and tasks numbers of the different specific
applications (that is, customizations), in order to support the validation of pre-
dictability by means of proper model simulation tools.

Basing on the wide literature about modelling real-time systems with Petri
Nets (see, for example, [3,5,10,11]) and on the availability of related tools, we
have chosen to experiment two Petri Nets dialects for the modelling of the
scheduling algorithms, in order to predict schedulability of the set of tasks gov-
erning a new specific application. Both Timed Petri Nets (TPN) and Coloured
Petri Nets (CPN) have been evaluated for this purpose, together with their sup-
port tools, favouring at the end the adoption of Coloured Petri Nets.

Due to the limited time available to conduct the experiments, in order to sat-
isfy stringent temporal requirements from our industrial partner, we have chosen
not to investigate other temporal modelling formalisms, such as timed automata
[2]. The results obtained by these experiments were however judged sufficiently
satisfactory to consider the adoption of the technique inside the development
process of our industrial partner.

This paper is structured as follows: the next section introduces the industrial
context that has motivated our work on modelling scheduling algorithms; in
Sect. 3 we present the background of the modelling method, namely the two
considered variants of Petri Nets, while in the next two sections we present the
models of the pre-runtime and runtime scheduling policies. Section 6 compares
the models obtained with the two Petri Nets variants, and Sect. 7 draws some
conclusions.

48 S. Pepi and A. Fantechi

2 Scheduling in Safety-Related RT Applications

A real-time process is characterized by a fixed time limit, which is called deadline.
A result produced after its deadline is not only late, but can be harmful to the
environment in which the system operates. Depending on the consequences of a
missed deadline, real-time processes are divided into two types:

– Soft real-time: if producing the results after its deadline has still some utility
for the system, although causing a performance degradation, that is, the
violation of the deadline does not affect the proper functioning of the system;

– Hard real-time: if producing the results after its deadline may cause
catastrophic consequences on the system under control.

To meet real-time requirements, scheduling plays an important role. Depending
on the assumption done on the processes and on the type of hardware archi-
tecture that supports the application, the scheduling algorithms for real-time
systems can be classified according to the following orthogonal characteristics:

– Uniprocessor vs. Multiprocessor
– Preemptive vs. No preemptive
– Static vs. Dynamic
– Pre-runtime (offline) vs. Runtime (online)
– Best-Effort vs. Guaranteed

For what concerns the fourth characteristic, in pre-runtime scheduling all
decisions are taken before the process activation on the basis of information
known a priori. The schedule is stored in a table which will be integrated into
a run-time kernel. The kernel has one component called dispatcher which takes
tasks from the table and loads them onto the processing elements, according
to specified timing constraints. The Runtime category represents instead those
algorithms in which the scheduling decisions are made at runtime on all cur-
rently active processes. The ordering of tasks is then recalculated for each new
activation.

In our case the platform is able to manage both these two types of scheduling.
In fact according to the type of field application it is possible to enable one or
the other algorithm. The choice is made based on the level of safety that the
system must ensure.

CENELEC EN50128 is the standard that specifies the procedures and the
technical requirements for the development of programmable electronic devices
to be used in railway control and signalling protection [7]. This standard is
part of a family, and it refers only to the software components and to their
interaction with the whole system. The basic concept of the standard is the
SIL (Safety Integrity Level). Integrity levels characterize software modules and
functions according to their criticality, and range is defined from 0 to 4, where 0
is the lowest level, which refers to software functions for which a failure has no
safety effects and 4 is the maximum level, for which a software failure can have
severe effects on the safety of system, resulting in possible loss of human life.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 49

The pre-runtime scheduling algorithm is used for those application that are
classified at SIL 4, since it gives the possibility to fully demonstrate predictabil-
ity, which is a must in a safety-critical environment. Indeed, with pre-runtime
scheduling it is possible to exhibit to an assessor the analyses conducted on the
considered set of tasks in order to establish that tasks, with the a priori fixed
execution order, do not miss their deadlines. On the other hand, with run-time
scheduling algorithms, evidences provided simply by running tests can be not
convincing about their coverage of all possible cases, due to possible different
run-time scheduling choices. For this reason the run-time scheduling is used for
applications of lower SIL.

Indeed, the present paper aims to show a method to strengthen the analysis
on pre-runtime and runtime scheduling to a high level of confidence. In partic-
ular, we present a method that can be used to verify the pre-runtime schedu-
lability of a task set that contains only periodic tasks with time and priority
constrains. The method can be used also to simulate the behaviour of a runtime
scheduler with a given taskset, in order to improve confidence on their run-time
schedulability.

The motivations for this approach come also from the high variability of
installations of the same signalling system at different locations or controlling dif-
ferent stations or lines. Indeed, in railway signalling systems, a distinction is often
done between generic applications and specific applications (as in the already
cited CENELEC EN50128 [7] guidelines): generic software is software which
can be used for a variety of installations purely by the provision of application-
specific data and/or algorithms. A specific application is defined as a generic
application plus configuration data, or plus specific algorithms, that instantiate
the generic application for a specific purpose.

While the platform is part of a generic application, and hence it is validated
once for all, for each specific application the satisfaction of real-time constraints
must be verified from scratch.

Indeed, quite often in everyday work it is necessary to revise the schedule
of some systems, and all this is routinely done in an empirical way. It is clear
that each specific application has a different way to interact with the platform
and especially with its resources, such as, for example, input/output drivers for
different hardware. It is for this reason that the schedule of real-time tasks should
be revised at any new specific application.

The adopted empirical approach includes actions to be taken when config-
uring the platform for a new specific application, such as: get a new schedule
configuration offline and test it on the target. It rarely happens that the first
test is successful.

The estimated effort required for the identification and testing of a new
scheduling configuration can be summarized with the following parameters:

– Offline Identification Time: time needed in order to design the new sched-
ule, it is usually about 30 min (not necessary for runtime scheduling).

– Flashing Time: the time needed to load the scheduling on the target, 15 min.
– Startup Time: start-up time of the platform, 1.5 min.

50 S. Pepi and A. Fantechi

– Running Time: time during which the system must run without exhibiting
timing problems, 30 min/1 h.

– Attempts: average number of attempts to get the scheduling, 3.

Summing all the times shown above we get that for each test scheduling, the
whole process easily reaches 8 h, which means an entire working day. This process
can be automated by a tool that, given a task set and a number of constraints,
is able to produce a feasible scheduling. This would mean a huge saving in terms
of man hours used to refine the scheduling. Moreover, an empirical evaluation
of schedulability of a given dataset does not guarantee that the deadlines are
met in any case, putting in danger the overall safety of the system. Using a
rigorous approach to the analysis of the schedulability will improve hence the
conformance, of a specific application, to safety guidelines.

3 Proposed Method

The rigorous approach we propose is based on the use of Petri Nets to build a
model of the scheduling algorithm. A Petri Net [17–19] is a mathematical repre-
sentation of a distributed discrete system. As a modelling language, it describes
the structure of a distributed system as a bipartite graph with annotations. A
Petri Net consists of places, transitions and directed arcs. There may be arcs
between places and transitions but not between places and places or transitions
and transitions.

The places can hold a certain number of tokens and the distribution of tokens
on all the places of the network it’s named marking. Transitions act on input
tokens according to a rule, that is named firing rule.

A transition is enabled if you can fire it, that is, if there are tokens in every
input place. When a transition fires, it consumes tokens from its input places
and places a token in each of its output places.

p0

t0

t1

p3p1

t3

p2 p4

t2 2

Fig. 1. Representation of an ordinary Petri Net.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 51

Figure 1 shows an example of an ordinary Petri Net. The execution of Petri
Nets is nondeterministic, that is, if there are more transitions enabled at the
same time any of them can fire. Since taking a transition is not predictable in
advance, Petri Nets are well suited for modelling the concurrent behavior of
distributed systems.

Formally we can define a Petri Net as a tuple PN = (P, T, F,W,M0) where:

– P is a finite set of places;
– T is a finite set of transition;
– F ⊆ (PxT) ∪ (TxP) is a set of arcs;
– W : F → N represents the weight of the flow relation F.
– M0 : P → N is the initial marking vector, which represents the initial state

of system.
– P ∩ T = ∅ and P ∪ T �= ∅.

3.1 TPN

A Timed Petri Net is a Petri Net extended with time. In Timed Petri Nets, the
transitions fire in “real-time”, i.e., there is a (deterministic or random) firing
time associated with each transition, the tokens are removed from input places
at the beginning of firing, and are deposited into output places when the firing
terminates. Formally we can define a Timed Petri Net [20] as a tuple TPN =
(PN, I) where:

p16

Thread 5 _1_Application

p20

Thread 1_2

t0

[0,0]

p4

Thread 2_1_tx

t3

[0,0]

p5

Exec

t4

[5,5]

p6

p7

Exec

p2

t5[0,0]

Thread 2_1_rx

p8

Thread 3_1_tx

t6

[0,0]

p9

Exec

t7

[16,16]

p10

t8[0,0]

Thread 3_1_rx

p11

Exec

t24

[5,5]

p32 p33

t26

[4,4]

p12

Thread 4_1

t9

[0,0]

p13

Exec

t10

[24,24]

p14

t12

[0,0]

p18

t13

[38,38]

p17

Exec

p34

Epoch 1 - Control time

t27

[100,100]

t15

[0,0]

p21

Exec

t16

[6,6]

p22

p37

Thread 4_2

p38

Thread 2_2_tx

t30

[0,0]

p39

Exec

t31

[5,5]

p40

p41

Exec

t32[0,0]

Thread 2_2_rx

p42

Thread 3_2_tx

t33

[0,0]

p43

Exec

t34

[16,16]

p44

t35[0,0]

Thread 3_2_rx

p45

Exec

t36

[5,5]

p46 p47

t37

[4,4]

p48

Thread 5_2

t38

[0,0]

p49

Exec

t39

[40,40]

p50

t40

[0,0]

p51

t41

[8,8]

p52

Exec

t42

[0,0]

p53

Epoch 2 - Control time

t43

[100,100] p55

p56

Thread 7_2

p57

Thread 6_2

t44

[0,0]

p58

Exec

t45

[10,10]

p59

t46

[0,0]

p60

t47

[4,4]

p61

Exec

p35

p0

Thread 1_1

p1

Exec

t1

[6,6]

p19

t2

[80,80]

p24

t20

[0,0]

t21

[0,0]

p31

p64

t23

[65,65]

T3_1_TX-RX

t25

[0,0]

p65

p66

t29

[95,95]

p67

T3_2_RX-RX

t48

[0,0]

t17

[0,0]

t14

[0,0]

p28

T5_1 - T5_2

p29

p69

t49

[90,90]

p70

T4_1

t50

[0,0]

p72

t51

[140,140]

p73

T4_2

t52

[0,0]

p74

p75

t53

[95,95]

p76

T3_1_TX-TX

t54

[0,0]

p77

p78

t55

[95,95]

p79

T3_1_RX-RX

t56

[0,0]

p80

p81

t57

[95,95]

p82

T3_2_TX-TX

t58

[0,0]

p84

t59

[65,65]

p85

T3_2_TX-RX

t60

[0,0]

p86p68

p62

p30

p36

t28

[0,0]

p83p71

p54

Fig. 2. Timed Petri Net model for a fixed scheduler.

52 S. Pepi and A. Fantechi

– PN is a standard Petri Net;
– I : T → N × N is a function that maps each transition to a bounded static

interval
– P ∩ T = ∅ and P ∪ T �= ∅.

3.2 CPN

An ordinary PN has no types and no modules, only one kind of tokens and the
net is flat. With Coloured Petri Nets (CPNs) it is possible, instead, to use data
types and complex data manipulation. In fact each token has attached a data
value called the token colour of a given data type: the type defines the range of
values that the attributes can assume and the operations applicable in the same
way of a variable type in any programming language. The types can be basic
types or structured types, the latter defined by the user. The token colour values
can be inspected and modified by the occurring transitions.

Formally we can define a Coloured Petri Net as a tuple CPN =
(P, T, F,Σ,C,N, E,G, I) where:

– P is a finite set of places;
– T is a finite set of transition;
– F ⊆ (PxT) ∪ (TxP) is a set of arcs;
– Σ is a set of data types (colour domains).
– C is a colour function. It maps places in P into colours in Σ.
– N is a node function. It maps A into (PxT) ∪ (TxP).
– E is an arc expression function. It maps each arc a ∈ A into an expression

e with values in Σ. The input and output types of the arc expressions must
correspond to the type of the nodes the arc is connected to.
The node function and the arc expression function allows multiple arcs to
connect the same pair of nodes with different arc expressions.

– G is a guard function. It maps each transition t ∈ T into a guard expression
g, evaluated to a boolean value.

– I is an initialization function. It maps each place p ∈ P into an initializa-
tion expression i. The initialization expression must evaluate to a multiset of
tokens with a colour corresponding to the colour C(p) of the place p.

With CPNs it is possible to build a hierarchical description, so that a large model
can be easily obtained by combining a set of submodels.

4 Modelling the Pre-runtime Scheduling

We provide now the taskset and the constraints for the fixed scheduler, and then
the related models, expressed in the two variants of Petri Nets.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 53

4.1 Taskset and Constraints Specification

In our system the application is decomposed into a set of tasks τi : i = 1, ...n and
for this paper we only consider periodic tasks, and we assume that non-periodic
tasks are carried out by a periodic server, or processed in the background [6].
The temporal model mostly used in real-time scheduling theory is an extension
of the model of Liu and Layland [16] where each task τi is characterized by the
following parameters:

– Ri: first release time of τi;
– Ci: run time of τi, which is its worst case execution time (WCET);
– Di: relative deadline of τi, the maximum time elapsed between the release of

an instance of τi and its completion;
– Pi: release period of τi.

In the following we use as a running example the case of a real signalling applica-
tion, an interlocking system. An interlocking system is the safety-critical system
that controls the movement of trains in a station and between adjacent stations.
The interlocking monitors the status of the objects in the railway yard (e.g.,
points, switches, track circuits) and allows or denies the routing of trains in
accordance with the railway safety and operational regulations that are generic
for the region or country where the interlocking is located. The instantiation of
these rules on a station topology is stored in the part of the system named con-
trol table that is specific for the station where the system resides. We refer to [9]
for a review on the vast literature on formal modelling of interlocking systems.
In this context, we are interested instead to focus on the characteristics of the
task set of this application, consisting of 7 threads which have the following goal:

– T1 is in charge of operating on the Ethernet channel;
– T2 is one of the most important thread and it is in charge of the safety of the

system;
– T3 implements a protocol stack for the receipt and transmission of messages;
– T4 is in charge of copying the value received in the input of the Business Logic

and preparing the output for the transmission.
– T5 is the application thread that contains the logic of the system.
– T6 is a diagnostic thread;
– T7 is a USB driver used for logging data in a key.

The scheduler operates by dividing processor time into epochs. Within each
epoch, every task can execute up to its time slice. In this case, the scheduler has
two epochs of 100 ms and the taskset have the following constraints:

– The total time of scheduling cycle is 200 ms.
– Each epoch needs to last exactly 100 ms.
– The first execution of T3 in the first and second epoch must terminate within

95 ms.
– The second execution of T3 in the first and second epoch must terminate

within 95 ms.

54 S. Pepi and A. Fantechi

– The second execution of T3 in the first and second epoch must execute at
least 65 ms after the first one.

– T4 in the first epoch must terminate within 90 ms and in the second epoch in
140 ms.

– The total processor time assigned to T5 in the two epochs must be of at least
90 ms.

The taskset used in our example is defined in the Tables 1 and 2 with the
relative scheduling order and parameters.

Table 1. TaskSet in first epoch.

Epoch1 Ri Ci Di

T1 0 6 6

T2 6 5 11

T3 11 16 27

T2 27 5 32

T3 32 4 36

T4 36 24 60

T5 60 40 100

Table 2. TaskSet in second epoch.

Epoch2 Ri Ci Di

T1 0 6 6

T2 6 5 11

T3 11 16 27

T2 27 5 32

T3 32 4 36

T5 36 40 76

T4 76 8 84

T6 84 10 94

T7 94 6 100

The constraints and parameters given for the taskset are the basis on which
a model of the scheduling algorithm can be built. We resorted to the use of
Petri Nets, that result quite intuitive in the modelling of scheduling algorithms
[5,10,15,23]. In order to represent time, we have investigated the use of both-
Timed Petri Nets (TPN) [20] and Coloured Petri Nets (CPN) [13]. In the fol-
lowing we illustrate the two kinds of models by means of this running example,
giving a comparison between the two modelling approaches.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 55

4.2 Presentation of Fixed Scheduler Models

In Fig. 2 the model generated with the tool TINA [4,22] for a fixed scheduler
[1,3,11] is reported. As we can see the representation with TPN is a little bit
chaotic and representing larger sets of tasks could be very difficult. Looking at the
model we can underline some diagram parts which are used for the verification
of constraints [23]:

– Check for the Total Time
The network used to control the time of each epoch consists of two transitions
and respectively five and three places. Taking into consideration the network
(a) in Fig. 3, the transition t27 counts the total time available for the execu-
tion in the epoch. When the available time expires, the token content in place
p34 is moved to place p35 inhibiting the passage of the token coming from
the last running thread to places p36, p62 and p30.
If this happens it means that the execution time has not respected the con-
straints for this epoch. If, instead, the execution ends before the deadline, the
transition t28 will not be inhibited by place p35 and will allow tokens to go
in places p36, p62 and p30, establishing the positive conclusion of the first
epoch and the start of the second one.

– Check Constraints on T3

The network in Fig. 4 models the various checks on the execution times for
T3. For example the last block checks that between the first execution of T3 in
the first epoch and the second execution in the second epoch, at least 65 ms
have expired. The transition t25 is enabled when the task is running and, if
the task completes before the time set in the transition t23, scheduling can
continue. Otherwise, if the task does not complete within the specified time,
the inhibitor arc starting from p65 does not allow the scheduler to continue.

– Checking the Scheduled Time between Two Epochs
The network in Fig. 5 monitors the execution time of a task between the
two epochs. The transitions t14 and t17 are enabled when the task is run in
both the first and the second period. This starts the timer of transition t2. If
the task completes before the time set in the transition, the scheduling can
continue. Otherwise, if the task does not complete within the specified time,
the inhibitor arc starting from p19 does not allow the scheduler to continue.

The simulation of this model by means of the TINA tool ends either with a
token at place p54, which means that the hypothesized schedule is correct, or
by stopping as soon as an error is generated, with a different marking.

We show now the corresponding model described as a CPN. In Fig. 6 the
model of the running example generated with CPN tools 4.0 [8,14] is reported.
As we can see the representation with CPN is more compact than the one seen
with TPN, for example by using only one place we can represent all the tasks of
the set. The tasks are represented as a list of objects, and each one is represented
by a token having as colour two attributes: a string that contains the name and
one integer that represents the WCET Ci of the task.

56 S. Pepi and A. Fantechi

p34

Epoch 1 - Control time

t27

[100,100]

t42

[0,0]

p53

Epoch 2 - Control time

t43

[100,100] p55p35

p62

p30

p36

t28

[0,0] p54

Fig. 3. Diagram of epoch control block.

p64

t23

[65,65]

T3_1_TX-RX

t25

[0,0]

p65

p75

t53

[95,95]

p76

T3_1_TX-TX

t54

[0,0]

p77

p78

t55

[95,95]

p79

T3_1_RX-RX

t56

[0,0]

p80

Fig. 4. Diagram of block for the verification of constraints on task T3.

p19

t2

[80,80]

p24

t20

[0,0]

t21

[0,0]

t17

[0,0]

t14

[0,0]

p28

T5_1

p29

T5_2

Fig. 5. Check block for the scheduled time between two epochs for task T5.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 57

Fig. 6. Coloured Petri Net model for a fixed scheduler.

Inhibitor arcs are not provided by CPNs (as supported by CPNTools); since
they are extensively used in our modelling, we have used a pattern that allows to
simulate their behaviour: the Antiplace pattern, natively provided by CPNTools.
This is exemplified in Fig. 7, where the execution of a thread at a certain time is
achieved by simulating an inhibitor arc on place Run by using the Antiplace
pattern () initialized with a token: when a thread is executed, the token is
removed from Antiplace, so that the transition Put is not enabled until the
thread finishes executing (so the token spends in place Run a time equal to its
value Ci, represented by the variable t), and then it enables the transition End;
at this point a token is put back in Antiplace, allowing the next thread to run.
In Fig. 6 the Antiplace pattern is used in the modelling of both the first epoch
(top Antiplace) and of the second (bottom Antiplace).

The second epoch performs its scheduling after 100 time units have elapsed.
Time is not inherently modelled in CPNs as is in Timed Petri Nets. Hence a time-
passing simulating pattern has been used; the pattern shown in Fig. 8 implements
a timer that increments by 1 at each simulation step, till the simulated time has
reached 100, in which case the transition CountTime is disabled. The Timer
pattern has been used in Fig. 6 to start the second epoch at time 100. The
place C containing a token value 100 allows threads to run, as long as the other
constraints on the transition Put are respected; in particular the threads of the
first portion of the schedule (first epoch) must have all finished running.

Due to the absence of the built-in timing mechanisms of TPNs, verification of
the constraints on the execution time of the thread need to be explicitly realized
by means of some functions listed on the transitions. On the first and second
transitions named “Put”, for example, we can find respectively the functions
called [verifyTh3 ()] and [verify2Th3 ()]. These two functions implement the

58 S. Pepi and A. Fantechi

Fig. 7. Antiplace pattern used to simulate an inhibitor arc.

Fig. 8. Timer pattern.

constraint that between the two executions of T3 cannot elapse less than 65 ms.
The functions are defined as follows:

fun verifyTh3((n,t)::l) =

if n="Thread3" andalso

intTime() > 65

then false else true

fun verify2Th3(((n,t)::l)) =

if n="Thread3" andalso

(intTime()-100) > 65

then false else true

The function checks if the token in input to the transition represents the
task 3, and verifies that the current simulation time (obtained with the function
intTime()) is less than 65 units. If the constraint is not respected, the transition
is not enabled.

On the transition “End” we can find a function named [verifyTime()] that
checks all the other constraints (the function is similar to the one above).

An exception is the constraint on T5 that is represented by function
[verifyTh5ctime()] placed as guard on the same transition. The modelling of
this last constraint, specific for task T5, requires to save in a variable the time
at which the token of the T5 exits from the “Run” place in the first epoch.
This has been achieved through the transition “T” with label pattern input,
output, action where we take a variable in input (variable n) and by the action
(getTime() function) we generate an output (variable ctime). This transition is

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 59

enabled only for T5 as we can see from the guard on the arch. So the variable
that we have obtained has be used in the function:

fun verifyTh5 ((n, t), ctime)=

if n = "Thread5" andalso

(intTime () - ctime) >= 90

{then false else true}

Similarly to the modelling done with TPN, also the simulation of the CPN
model by means of the CPN Tools 4.0 stops if one of the constraint is not
satisfied, so the user is able to understand where the problem is located.

5 Modelling the Runtime Scheduling

As previously said, the platform also implements a runtime (on-line) scheduling
algorithm: a round robin scheduling with priority levels, deadlines, a preemption
mechanism and a donation mechanism. Runtime scheduling is used for applica-
tions of the platform that do not require stringent hard real-time requirements.
Although scheduling predictability in these applications is less urgent, we have
applied the same modelling framework used for the pre-runtime algorithm to
this case: having a certain level of predictability at a low cost can anyway avoid
annoying (although not safety-critical) software bugs due to poor scheduling
performances, that could anyway increase software maintenance costs.

Also in this case we have used both TPNs and CPNs in order to complete the
comparison of the two modelling frameworks also in this other case. The following
sections provide the generated models with Petri Nets for three variants of the
Round Robin algorithm, namely with FIFO queue, with prioritized FIFO queue,
and adding preemption. The experiments are conducted on a reduced taskset of
three tasks, starting from the simpler variant, by inserting then various functions
incrementally.

5.1 Round Robin with FIFO Queue

The first variant considered is a round robin without priority, without preemption
but with the introduction of a FIFO queue for arriving tasks. Figure 9 shows the
diagram of execution time for this variant, assuming the following taskset data:

– The first process arrives at time 20 and has a duration of 8 time units,
– The second arrives at time 25 and has a duration of 12 time units,
– The third arrives at time 20 and has a duration of 16 time units.

The time slice assigned to each task at run time is 4 time units. In the Timed
Petri net of Fig. 10 a FIFO queue for the management of the processes during
their arrival and their displacement has been introduced in the WAIT places.
Three FIFO queues have actually been implemented (highlighted by a box), one
for each task, given the impossibility to use only one for all the tasks, due to the fact
that in TPN it is not possible to distinguish tokens representing different tasks.

60 S. Pepi and A. Fantechi

Fig. 9. Temporal schema of a RR with three tasks with FIFO queue.

Fig. 10. Timed Petri Net relative to a RR with three tasks with FIFO queue.

Each queue is formed by three places and two transitions. The places are used to
store the position of the task in the queue and transitions allow the progress of the
task in the queue, moving the token. To simulate the correct order of tasks in the
queue, inhibitors arcs have been used, which inhibit the passage of the token to
the next place if the other queues already contain a token in a place of the same
level.

The same round robin variant was modelled with CPNs and the result is
shown in Fig. 11. The tasks are represented by tokens of type Sting*int defined
as: colset T = product STRING*INT timed;, where the string is the task identifier
and the integer represents the time slice. The FIFO queue in this case can be
programmed as a single token having as type a list structure: the management

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 61

Fig. 11. Coloured Petri Net relative to a RR with FIFO queue, and three tasks.

of the queue is represented by the place fifo, which takes token type LT defined
as: colset LT = list T timed or rather an object list of type T .

Tokens have an initial timestamp representing their time of arrival. They
are put in the list by the concatenation function lˆˆ[(p, t)], where l is the token
associate to the place FIFO. If there are no tokens in the place Run, the transition
Get is enabled, the element at the head of the FIFO is extracted by the function
(p, t) :: l, and the updated list is sent back to the place FIFO. Before being
added to Run every input token receives a timestamp, and the time slice value
is decremented. If the remaining time is less than the timeslice, it receives a
timestamp value equal to the remaining time, and the integer value of the token,
represented by the variable t, is brought to 0. In this way, once elapsed the
timestamp, the token will not be placed back in the queue but will be eliminated
through the transition DeleteTh.

5.2 Round Robin with Priority FIFO Queue

Figure 12 shows the timing diagram of a Round Robin scheduling with FIFO
queues to which priority has been added. Similarly to the previous example,
there are three processes:

62 S. Pepi and A. Fantechi

Fig. 12. Temporal schema of a RR with three tasks with FIFO queue and priority.

– The first arrives at time 20 and has a duration of 8 time units,
– The second arrives at time 25 and has a length of 12 time units,
– The third arrives at 20 and has a duration of 16 time units.
– The second and third process have equal priority and greater than the first

one.

The quantum of CPU time assigned to each of them at run time is 4 time units.
The Timed Petri Net of Fig. 13 is the model of the round robin variant

with priority and FIFO queue. The boxes show queues formed by nine places
arranged in three rows and connected together with instant transitions. This is
a generalization of the previous modelling of a single queue for the three tasks
case, where in principle the three tasks can have three different priority levels:
the priority levels are represented by the three columns in each box. The task
priority is expressed by including a link to the first place of the queue related
to the actual task priority: If the arc is connected with the first (last) vertical
row of places, the process will have the lowest (highest) priority. In the case
under consideration, the first task has a lower priority than the other two tasks,
that have equal priority. Notice that only one of the columns is connected, so
the other two are useless, but this design is maintained for easy modification of
tasks’priorirty. As for the simple FIFO queue of Fig. 10, inhibitor arcs are used
to enforce the correct priority and FIFO policy.

The corresponding CPN model for this case is shown in Fig. 14. The model
must then insert the thread into a ready queue based on their order of arrival
and an integer value representing the priority of the thread. A token that has
a priority value higher than those already present in the queue will be inserted
in the head, and then perform first. Hence the management of the priority and
FIFO policy is implemented through a data structure instead of the convolutes
net layout of the TPN case. The structure of the model is virtually unchanged
compared to the case without priority, the differences are basically two, namely
the label on the arcs in input to the place that represent the tail and a different
type to define the task. In this model, threads are represented by token type
colset T = product STRING*INT*INT timed where last INT value is associated
to the task priority. In the previous model the insertion was performed by con-
catenation function and the token was placed at the tail of the queue. In the
version with priorities a check on the value that represents the priority is needed

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 63

Fig. 13. Timed Petri Net relative to a RR with three tasks with FIFO queue and
priority.

Fig. 14. Coloured Petri Net relative to RR scheduling model with with FIFO queue
and priority.

64 S. Pepi and A. Fantechi

in order to determine the location in the queue, and this is achieved with the
sort function sort((p, t, x), l) defined as follow: funsort((p, t, x), []) = [(p, t, x)]|

sort((p, t, x), ((m, s, q) :: l)) =
ifhigherPr(x, q)then(p, t, x) :: (m, s, q) :: l else(m, s, q) :: (sort((p, t, x), l));

where higherPr(x,q) is another function that performs a comparison between
two integer values that represent the degree of priority and returns a boolean
value, thus defined: funhigherPr(x, y) = (x > y);. The sort() function takes
as parameters the variables (p, t, x), respectively, of type String, int, int that
represent the three attributes of a thread, and the variable l of type LT , which
represents the list. If l matches the empty list, the token will be inserted in the
list, otherwise, will run the function sort ((p, t, x), ((m, s, q) :: l)); that makes
the comparison with the element that is currently leading the list. If the priority
value of the token to be inserted is higher than that in front of the list, then
it will be placed in front of the latter. Instead, if the value is lower, the sort()
function will be called through that list, with the exception of the head element
in the head, recursively until it finds a token with a lower priority or the list is
empty.

5.3 Round Robin with Priority FIFO Queue and Preemption

The last variant is a round robin scheduling with priority FIFO queues and
preemption, whose time schema is given in Fig. 15. We use the same example
taskset data of the previous variant.

Fig. 15. Temporal schema of a RR with three tasks with FIFO queue, priority and
preemption.

The Timed Petri Net of Fig. 16 adds to the previous model the preemption
technique: the box highlights the transitions designed for this purpose. If a task
of higher priority arrives in WAIT place, transitions t28 and t43 are activated,
triggering the move of the token representing task 1, with lower priority, from
the place EXEC to WAIT, which represents preemption.

The model of this variant by means of CPNs is shown in Fig. 17. Compared
to Sect. 5.2 a transition CheckPr and a place called Count have been added.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 65

Fig. 16. Timed Petri Net modelling a RR with FIFO queue, priority and preemption,
with three tasks.

The place is used to simulate the continuous flowing of time, with time increasing
of a time until at each simulation step. Indeed, the model of Sect. 5.2 advances
the time at each simulation step of the amount of time needed to reach a change
of system status, while preemption requires to check the status of the tasks at
any simulation step. When the integer token contained in Count reaches four
(the value attributed to the timeslice), it enables the transition Back in Run and
the token is queued by the sort() function. For every unit of time, through the
transition CheckPr a comparison is made between the priority of the running
threads and that of the thread at the top of the queue. If the priority of the
latter is lower, the token currently in Run will decrease the execution time of
1 and its timestamp will be incremented by 1. The transition CheckPr remains
enabled as long as the executing thread will have an execution time greater than
0 or until it will have spent the whole time slice. In case a token is in the Run
place and a token with higher priority arrives in the queue, the time counting
is stopped and the replacement is done instantly, by inserting the token with
the higher priority in Run and inserting the other in the queue via the sort()
function. The verification of the priority value is executed, via inscriptions on
the arcs, by the function higherPr(x, y) defined earlier. The same function is
used to determine the value of the timestamp on the token in Run and Count,
and to decrease or not the execution time of the thread. If in fact the function
returns true, it means that they will be replaced, and the value of the token t in
execution will not be decreased.

66 S. Pepi and A. Fantechi

Fig. 17. Coloured Petri Net relative to RR scheduling model with FIFO queue, priority
and preemption.

6 Comparison Between TPN and CPN

The experiments have allowed a comparison between the two Petri Nets dialects
and related supporting tools, in particular enlightening the following points:

The TPN model is difficult to read, and the addition of further tasks would
result in a huge increase of the places and transitions number, making it more
and more unreadable. This increase is due to the following reasons:

– Any place can hold a single token and the execution of a thread must be
reproduced a number of times equal to the number of modelled processes;
indeed in TPNs it is not possible to express an attribute that differentiates
the identity of a token.

– Time management for each thread is left to time constraints on the transitions
themselves.

– It is not possible to create aggregate objects: a FIFO queue, for example, can
be realized only through checks by inhibitors arcs with a number of places

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 67

that depends on how many threads should be modelled (the number of places
to represent the queue is equal to n2 where n is the number of threads).

– With the inclusion of the priority, it is noted that for each thread nine places
and seven transitions with inhibitor arcs between them are needed for three
thread. In this case we have a cubic relation of the net size to the number
of threads, although optimizations can be done by loosing flexibility of the
approach.

The CPNs instead can represent a queue using a single place that contains a
token of type list. Time management is shifted to the token colour using an
integer and a timestamp. This allows a large number of tasks to be represented
by simply adding tokens to the initial marking, leaving the structure of the model
unaffected.

As cons the CPN Tools software does not support the inhibitors arcs, so it
was necessary to simulate them through the Antiplace pattern. The increase of
the size due to the use of this pattern is however only locally additive, and the
absence of replicated instances of inhibitor arcs typical of TPN models allows
for containing the usage of the pattern to a few units.

CPNs do not natively support time, so time constraints (modelled in TPN
through places and transitions) have to be expressed in auxiliary functions, but
this in the end simplifies the model.

With TINA and TPNs the management of time during simulation allows to
easily understand the global state of the system. The time is increased at any
simulation step of a time unit. In CPNTools and CPNs if there are no transitions
enabled at the current time, the simulated time count is increased in one step,
up to the time at which at least one transition is activated. In one case we had
to enforce simulation of step by step time advance by means of a specific Timer
mechanism.

CPNs however resulted to be more advantageous in terms of time spent in
model design or in changes, mainly for two reasons:

1. constraints can be simply modelled by a guard on the transition, expressed
by a function written in pseudo code, which is easier to express;

2. populating the model with new tasks does not require to draw new graphic
elements but just add an entry to the related place;

We have experienced that the time spent in CPN modelling is at the end less
than half that spent in TPN modelling.

7 Conclusions

We have applied the two modelling options sketched above to different scheduling
algorithms, a fixed one and a Round Robin, and different sets of tasks as well. The
quite straightforward conclusion is that the CPN modelling is more advantageous
in terms of size and readability of the model, and in terms of adaptability of the
model to different task sets.

68 S. Pepi and A. Fantechi

It is indeed easier with CPN to instantiate the same model, for the same
scheduling algorithms, on a different set of tasks, and this is what is important
in the daily application of this modelling framework. Since essentially only the
taskset data need to be changed for a new, or modified, specific application, the
overall time to analyse a new taskset, summing up the time to produce a model
of the schedule of a new specific application, to run a simulation and to analyse
the simulation, is about two hours with a TPN modelling and about one hour
with the CPN modelling. Anyway, this time compares with the much longer time
(eight hours) needed by the previously used empirical approach, and therefore
is convenient in both cases.

Even if some rework is needed in case of a negative response of the simula-
tion, the information returned by the simulation helps understanding where the
problem lies, indicating the solution to the problem. Usually one rework cycle is
at most needed, so the overall cost is anyway reduced.

For this reason we have not considered convenient to investigate solutions
based on counterexample generated by a model checker [12], able to provide
automatically the taskset parameters satisfying the scheduling requirements.

The low cost of the simulation based solution has an obvious positive impact
on the costs of the process of instantiating a generic application to a new specific
application for marketing a new product or variant.

Regarding the Round Robin runtime scheduling algorithm, we have shown
the modelling, with the two Petri Net variants, for a taskset of three tasks. It
is already evident from the presented models that for real application tasksets,
such as one that we have addressed, containing 16 tasks, with 32 priority levels,
the TPN model cannot be feasible, while the CPN model is an easy extension
of the one presented.

The design process based on this modelling approach is currently under
experimentation by our industrial partner, with the aim of introducing it in
the routine customization process. An help for this introduction could come
from providing tools to support an easier instantiation of the generic models
into specific ones, so that the use of CPN is transparent to the final user who
only sees the simulation results. This objective requires also a facility to explain
the reasons of a negative response without showing the underlying CPN model.
This is considered as future work.

Although motivated by specific needs of a railway signalling company, we
believe that this approach can be ported to other domain as well, as soon as
configurable real-time applications have to be designed on top of available real-
time scheduling algorithms.

Acknowledgements. We wish to thank Marco Bartolozzi, Daniele Marchetti and
Luca Santi for their contribution to the conducted modelling experiments.

References

1. van der Aalst, W.M.P.: Petri net based scheduling. Oper. Res. Spektrum 18, 219–
229 (1996). Springer

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 69

2. Alur, R., Dill, D.: The theory of timed automata. In: Bakker, J.W., Huizing, C.,
Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73. Springer,
Heidelberg (1992). doi:10.1007/BFb0031987

3. Barreto, R., Cavalcante, S., Maciel, P.: A time Petri Net approach for finding
preruntime schedules in embedded hard real-time systems. In: Proceedings of Dis-
tributed Computing Systems Workshops, pp. 846–851. IEEE (2004)

4. Berthomieu, B., Vernadat, F.: Time petri nets analysis with TINA. In: Quantitative
Evaluation of Systems, pp. 123–124. IEEE (2006)

5. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent system
using time petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991). IEEE

6. Buttazzo, G.: Hard Real-Time Computing System, 3rd edn. Springer, New York
(2011)

7. Cenelec: Cenelec EN 50128:2011. In: Railway Applications - Communications, Sig-
nalling and Processing Systems - Software for Railway Control and Protection
Systems (2011)

8. CPNTools (2015). http://cpntools.org/
9. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:

Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Cham (2014). doi:10.1007/978-3-319-05032-4 13

10. Felder, M., Mandrioli, D., Morzenti, A.: Proving properties of real-time systems
through logical specifications and petri net models. IEEE Trans. Softw. Eng. 20(2),
127–141 (1994)

11. Grolleau, E., Choquet-Geniet, A.: Off-line computation of real-time schedules using
Petri Nets. Discrete Event Dyn. Syst. 12(3), 311–333 (2002). Springer

12. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: a tool for analyzing time
petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005). doi:10.1007/11513988 41

13. Jensen, K.: Coloured petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 254. Springer, Heidelberg (1987)

14. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.
9(3), 213–254 (2007). Springer

15. Leveson, N.G., Stolzy, J.L.: Safety analysis using Petri Nets. IEEE Trans. Softw.
Eng. 13(3), 386–397 (1987)

16. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973). ACM

17. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989). IEEE

18. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
Upper Saddle River (1981)

19. Petri, C.A.: Kommunikation mit automaten. Ph.D. thesis. Universitat Hamburg
(1962)

20. Ramchandani, C.: Analysis of asynchronous concurrent systems by Timed Petri
Nets. Massachusetts Institute of Technology (1974)

21. Stankovic, J.: Misconceptions about real-time computing. IEEE Comput. 21, 10–
19 (1988). IEEE

22. TINA (2015). http://projects.laas.fr/tina/
23. Tsai, J., Yang, S.J., Chang, Y.-H.: Timing constraint Petri Nets and their appli-

cation to schedulability analysis of real-time system specifications. IEEE Trans.
Softw. Eng. 21(1), 32–49 (1995). IEEE

http://dx.doi.org/10.1007/BFb0031987
http://cpntools.org/
http://dx.doi.org/10.1007/978-3-319-05032-4_13
http://dx.doi.org/10.1007/11513988_41
http://projects.laas.fr/tina/

Cognitive Feedback and Behavioral
Feedforward Automation Perspectives

for Modeling and Validation
in a Learning Context

Gayane Sedrakyan(&) and Monique Snoeck

Department of Decision Sciences and Information Management,
Research Center for Management Informatics, KU Leuven, Leuven, Belgium

{gayane.sedrakyan,monique.snoeck}@kuleuven.be

Abstract. State-of-the-art technologies have made it possible to provide a
learner with immediate computer-assisted feedback by delivering a feedback
targeting cognitive aspects of learning, (e.g. reflecting on a result, explaining a
concept, i.e. improving understanding). Fast advancement of technology has
recently generated increased interest for previously non-feasible approaches for
providing feedback based on learning behavior observations by exploiting
different traces of learning processes stored in information systems. Such learner
behavior data makes it possible to observe different aspects of learning processes
in which feedback needs of learners (e.g. difficulties, engagement issues, inef-
ficient learning processes, etc.) based on individual learning trajectories can be
traced. By identifying problems earlier in a learning process it is possible to
deliver individualized feedback helping learners to take control of their own
learning, i.e. to become self-regulated learners, and teachers to understand
individual feedback needs and/or adapt their teaching strategies. In this work we
(i) propose cognitive computer-assisted feedback mechanisms using a combi-
nation of MDE based simulation augmented with automated feedback, and
(ii) discuss perspectives for behavioral feedback, i.e. feedforward, that can be
based on learning process analytics in the context of learning conceptual
modeling. Aggregated results of our previous studies assessing the effectiveness
of the proposed cognitive feedback method with respect to improved under-
standing on different dimensions of knowledge, as well as feasibility of
behavioral feedforward automation based on learners behavior patterns, are
presented. Despite our focus on conceptual modeling and specific diagrams, the
principles of the approach presented in this work can be used to support edu-
cational feedback automation for a broader spectrum of diagram types beyond
the scope of conceptual modeling.

Keywords: Conceptual modeling � Model driven development � Simulation �
Simulation feedback � Rapid prototyping � Model testing/validation � Feedback
automation � Learning process analytics � Smart learning environments

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 70–92, 2017.
DOI: 10.1007/978-3-319-66302-9_4

1 Introduction

During a learning process feedback can be provided in a variety of types (e.g., veri-
fication of response accuracy, explanation of the correct answer, hints, worked
examples, etc.), in a variety of forms (verbal/written text, graphics, audio, video, ani-
mation, simulation, etc.), at various times (e.g., immediately following an answer, at
the end of a module, etc.) [1], by different people (e.g. teacher, peer, self,…) [2]. The
role of feedback in linking learners’ past and future work, and helping them to create a
progressive developmental trajectory, means that timeliness should be central to any
discussion of feedback [3]. Research has shown that the sooner students receive
feedback the more effective it is for their learning [4]. Usually feedback is not available
during a learning task completion process but is given after a certain learning task has
been completed, thus having the form of outcome feedback. Outcome feedback is a
minimal form of external guidance, stating if an achieved solution/answer is correct or
not and why. In feedback research the effectiveness of more informative types of
feedback that can guide a learning process is highlighted [1, 5, 6]. Different theories
have attempted to explain the process of how people learn. Even though psychologists
and educators are not in complete agreement, most do agree that learning may be
explained by a combination of two basic approaches: cognitive theories, i.e. con-
structivism, that view the learning process as a step by step knowledge construction
process, and behavioral theories, i.e. behaviorism, in which learning is defined as a
change of the behavior of a learner by reinforcing some aspect of his/her behavior. In
the context of feedback research these approaches translate into two major forms:
(1) explanations that are targeting at improving cognitive dimensions of knowledge
(e.g. understanding), and (2) guidance that intend influencing a learner’s behavior, e.g.
engaging in a specific type of activity that is believed to be related to a successful
learning path. As learning is multifaceted these approaches are often combined. For
instance, in theories on (self-)regulation of learning that are closely intertwined with
research on feedback and improved learning outcomes, learners are no longer viewed
as repositories for information but rather they are proactive and active processors of
information acting as constructors of their own knowledge by reinforcing themselves
for goal-directed behavior. Self-regulated learning is defined as the ability of a learner
to monitor and evaluate own progress with respect to self-improvement needs in the
process of knowledge construction [7].

State-of-the-art technologies have made it possible to provide a learner with
immediate computer-assisted feedback in the context of different learning tasks, by
delivering a feedback targeting cognitive aspects of learning, (e.g. reflecting on a
result, explaining a concept, i.e. improving understanding). Fast advancement of
technology has recently generated increased interest for previously non-feasible
approaches for providing feedback based on learning behavior observations by
exploiting different traces of learning processes stored in information systems (IS).
Such learner behavior data makes it possible to observe different aspects of learning
processes in which feedback needs of learners (e.g. difficulties, engagement issues, etc.)
based on individual learning trajectories can be traced. By identifying problems earlier
in a learning process it is possible to deliver individualized feedback helping learners to

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 71

take control of their own learning, i.e. to become self‐regulated learners, and teachers to
understand individual feedback needs and/or adapt their teaching strategies.

In this paper we present computer assisted feedback perspectives for learning
conceptual modeling. We first review the general feedback needs of novices based on
the challenges of learning/teaching found in the literature. Subsequently, we aim
proposing computer-assisted feedback perspectives with respect to: (1) cognitive
aspects of learning processes (concept understanding) that can address the identified
challenges (“what” aspect that allows comparing current vs. good performance, i.e.
what is achieved vs, what is expected), and (2) behavioral aspects of learning by
grounding the idea of feedback on learning process analytics, more specifically by
identifying learning behavior paths that can be indicative for better/worse learning
outcomes (“how” aspect in terms of “how a good performance is achieved”).

The proposed approach of feedback is based on the definitions of process-oriented
cognitive feedback and behavioral feedforward by [8] in which the term
process-oriented in the context of feedback refers to immediate feedback needs during
a task completion (e.g. problem solving) process, that a learner can either be aware
(learner knows whenever s/he needs a feedback) or unaware (learner does not realize
that s/he needs a correction) of. We refer here to computer-assisted feedback possi-
bilities that can be achieved before a teacher feedback can be available. Subsequently
our research aims are defined as follows:
RA1: Exploring process-oriented (immediate) feedback mechanisms for addressing

the learning/teaching challenges from the perspective of cognitive aspects of
learning.

RA2: Exploring process-oriented (immediate) feedback perspectives based on
behavioral characteristics of novices’ learning processes that, in addition to
being directed to a learner, can also help a teacher to observe learning
processes and based on identified inefficient processes to also rethink/adapt
instructional materials/processes.

The cognitive feedback is achieved by a combination of MDE-based simulation
and automated feedback. The implications for behavioral feedforward perspectives are
further discussed based on the findings of our previous research proposing adopting
process analytics view on learning modeling [8–10].

2 Reviewing Cognitive Feedback Needs Through the Prism
of Learning Challenges

While experienced requirements engineers and business analysts manage to mentally
picture the prospective system in their mind when transforming requirements into
formal conceptual models, such ability to truly understand the consequences of mod-
eling choices can only be achieved through extensive experience. However, the tacit
knowledge experts have developed over time is difficult to transfer to junior analysts.
While teaching such knowledge and skills to junior analysts is already a challenging
task considering that system analysis is by nature an inexact field of science,

72 G. Sedrakyan and M. Snoeck

transferring the academic knowledge and skills to real world businesses is yet another
concern as the classroom and real world situations are not identical. In their early career
the error-prone problem-solving patterns of juniors lead to incomplete, inaccurate,
ambiguous, and/or incorrect specifications [11, 12]. When detected later in the engi-
neering process such requirements and modeling errors can be expensive and
time-consuming to resolve. This significant gap between the knowledge and skills of
novices and experts triggers the question of how analysis and modeling skills can be
trained to facilitate the fast progression of novice analysts into advanced levels of
expertise. Amongst the factors affecting modeling process quality and learning out-
comes of novices are:

– Lack of Comprehension Methodologies: Understandability (a model’s ability to be
easily understood) has been extensively evaluated in the literature both for static and
dynamic aspects of modeling pointing out to comprehension difficulties both by
practitioners and juniors due to the lack of comprehension methodologies [13];

– The Cognitive Aspects of Modeling: Studies on comparing model quality checking
approaches of novices and experts indicate the poorly adapted cognitive schemata
of novice modelers to identify relevant triggers for verifying the quality of models
[11];

– The Complexity of Modeling Tools: being too “noisy” with various concepts, which
can result in misusing concepts and creation of unintended models [13, 14] thus
making them less effective in supporting a teaching process [15];

– Lack of Understanding of Domain Requirements: Students have a hard time for
achieving a thorough understanding of a set of given requirements. Absence of
intensive trial and error rehearsals in the classroom [11] and the lack of possibilities
to interview stakeholders in a requirements gathering process are considered the
major source of limitation in novices modeling experience;

– The Lack of Validation Procedures and Tool Support: In addition, the lack of
established validation procedures [16] makes the conceptual modeling for novices
very difficult to learn.

– Additionally, several researchers correlated novices learning achievements in
modeling with the lack of technical insights considering the absence of technical
components (such as computer-assisted learning) from education as a major con-
tributing factor to the lack of preparedness of their skills [17]. Furthermore, there
are aspects that cannot be obtained through reading and lecturing alone, e.g. the
dynamic representation of a system.

3 Simulation as a Cognitive Feedback

Cognitive feedback gives information to learners about their success or failure con-
cerning the task at hand provided through prompts, cues, questions, etc. that helps
learners reflect on the quality of the problem solving processes and solutions so that they
construct more effective cognitive schemas to improve future performance. Cognitive
feedback targets at improved understanding of intermediate solutions of a learner
allowing improving a problem solving process and its outcomes [18]. Simulation is

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 73

known to be an excellent technique allowing understanding complex structures and
behaviors and has been successfully used in a variety of learning domains, such as science
education [19], mining engineering [20], aerospace engineering [21], biological engi-
neering [22], etc. Among key education benefits of simulation is the ability to provide
feedback and deliberate practice [23]. The interventions of simulation in a learning
process can be described as an ability to produce externally observable outcomes that can
trigger internal feedback engaging self-regulatory learning mechanisms of learning
(e.g. self-assessing of own performancewith respect to the expected performance in terms
of capability of achieving a satisfactory quality of a prospective system, identifying needs
for improvement and adapting in terms of engaging in further trial/error activities for
adapting a model of a prospective system that served an input for simulation). The
externally observable outcomes in the form of simulation serve as a cognitive feedback in
terms of improving understanding of a problem by reflecting on intermediate solutions of
learners during a learning process and as such are also learning process oriented. Sim-
ulation is also known to allow skill acquisition that accompany knowledge. Some skills
follow from conceptual knowledge whereas others involve intricate activities to develop,
i.e. experience [24]. Thanks to realistic scenarios and equipment, simulation allows for
expertise training through deliberate, repetitive and evidence-based practice (e.g.
retraining till one canmaster the procedure or skill) [23] that is also coupledwith cognitive
feedback. Achieving cognitive process-oriented feedback through simulation requires:

– designing and building an simulation instrument,
– ensuring its support for the intended goal as a cognitive feedback,
– ensuring its support for the intended goal as a process-oriented feedback.

In the context of conceptual modeling learning achievements can be measured by
the capability of producing physical models with high semantic quality, i.e. the level to
which the statements in a model reflect the real world in a valid and complete way [25].
In order to check a model for validity, a person needs to read and understand the
model and compare his/her understanding of the model with his/her understanding of
the given domain description. On the knowledge side, this requires an appropriate level
of modeling knowledge, modeling language knowledge (e.g. understanding the mod-
eling concepts, graphical notation) and domain knowledge among others [26]. To our
knowledge, no research can be found in the context of courses that use simulation of
object-oriented multi-view conceptual models (i.e. combining structural and behavioral
aspects), nor empirically proven learning benefits have been reported for a certain
simulation tool. The reason is that the existing standards for simulation technologies
also introduce a number of shortcomings. The major disadvantages include:

– simulation is too complex and time consuming to achieve by novice modelers
whose technical expertise is limited.

– it is sometimes difficult to interpret the simulation results.

Among different types of simulation (symbolic or graphical animation, execution,
prototyping), the method of prototyping is capable of achieving the most concrete
form of a prospective system. Semantic prototyping method and tool was introduced
by [27] with the goal to improve conceptual model comprehensibility however aiming
at facilitating communication with stakeholders rather than a support for learning.

74 G. Sedrakyan and M. Snoeck

Among the variety of forms of prototypes in this research we refer to the definition of a
prototype as “fully functional to prove a concept” [28]. This goal is achieved through
the creation of an experimental full-scale working exemplar of a model that illustrates
the typical qualities of the prospective system based on the design of its model. Pro-
totyping is also thought of as a type of design language [29]. The learning context of
prototyping as a design language includes testing of a function of a prototype with the
purpose to identify potential issues concerned with problem understanding with respect
to its design [28]. We will therefore use the terms “simulated model” and “prototype”
interchangeably.

3.1 MDE-Based Simulation for Conceptual Modeling: CodeGen

We followed the principles of Design Science in Information Systems research which
proposes two main guidelines 1. building and 2. (re)evaluating novel artefacts to help
understanding and solving knowledge problems [30]. In this work we refer to simulation
of a conceptual model as a process of generating prototype applications using a con-
ceptual model as input. The Model-driven architecture (MDA) is the collection of
current OMG standards for model-driven engineering (MDE), enabling, among others,
code generation. MDA allows designing platform independent models (PIM) as the
main representation of a system-to-be that have a sufficient level of completeness to
generate other models or code from them; MDE focuses on transformation(s) (map-
pings) from platform independent to platform specific models or code, a process that
may pass through a number of mappings before a software artefact can be generated.
However, existing MDA/MDE solutions require extensive training due to the large set
of skills required for using accepted standard MDA/MDE technologies, such as Unified
Modeling Language (UML). As stated in [31]: “The technical complexity of UML has
been held responsible for modeling adoption issues. Few expert modelers can rapidly
evolve an application from requirements to code. Many of today’s modelers are casual
in their approach; MDA, however, requires increased rigor and training in UML
modeling”. Among the other fundamental deficiencies of UML is that it is unclear how
to combine interactive, structural and behavioral aspects together in a single model [32].
The same holds true for the OMG’s MOF and XMI standards which are used to store,
transport and exchange models between tools, that are also associated with issues like
semantic mismatches, version incompatibilities (XMI/UML/MOF), human-readability,
etc., e.g. [33–36]. The new standards providing key technology for expressing appli-
cation domains in a platform independent manner that are in addition executable include
executable UML (xUML), foundational UML (fUML) - an executable UML standard
that specifies precise semantics for an executable subset of UML, and Action language
for fUML (Alf) - an executable UML standard that specifies a textual action language
with fUML semantics. These however do not bring the MDE any closer to the novice
modelers or simplify it such as making model validation by means of rapid prototyping
easily feasible for business domain experts who lack technical expertise. Still a very
detailed diagramming with fUML is required and a solid knowledge of both fUML and
Alf is required to make further transformation of UML to code. Thus, the practical utility
of MDE is still limited by the fact that:

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 75

– UML lacks a methodology to achieve a right design within a short time to be further
processed with an MDA/MDE approach.

– MDE model-to-model and model-to-code transformations are hard to write,
trace/debug, maintain and reuse.

In this research to achieve an in-house prototyping solution, i.e. designed and
implemented rather than relying on third party code generation tools [8], we rely on the
MERODE methodology [37], as the benefits models designed in MERODE specific
JMermaid environment include:

– Starting from a high-level PIM (close to a Computational Independent Model (CIM))
allows removing or hiding details irrelevant for a conceptual modeling view.

– It relies on a domain specific language and proprietary MERODE modeling envi-
ronment that uses a restricted part of UML adapted to conceptual modeling goals.

– It provides a framework for combining structural and behavioral views into a
single model using two prominent UML diagrams – 1. a class diagram, 2. state-
charts, and a CRUD-matrix based collaboration view called Object-Event
Table (OET) that defines how statecharts interact (see Fig. 1).

– It allows achieving executable PIM that have a sufficient level of abstraction, while
being sufficiently complete to enable applying transformation(s) from platform
independent to platform specific models or code.

In the learning context of prototyping-based teaching, this research builds on, and
tackles the issues of the experiences from the first iteration of conceptual model pro-
totyping. The first version of the prototyping environment was achieved by means of the
AndroMDA open source code generation tool combining its existing XMI-based car-
tridges and a MERODE-specific cartridge that provides an XMI transformation from a
model designed in a MERODE environment and specifies a functionality of generated
prototypes such as basic interface consisting of buttons, corresponding input windows
they trigger and event handling mechanisms that ensure the functionality [39].

Fig. 1. Modeling views within MERODE modeling environment: class diagram, Object-Event
Table (OET) and a Finite State Machine (FSM) [38].

76 G. Sedrakyan and M. Snoeck

The tool already demonstrated certain positive effects in a learning context (with student
evaluations of the usefulness of the tool from two academic years resulting on average
3.46 and 3.7 in the range of 5-point Likert scale). However, despite its merits, a number
of usability issues negatively impacted the intended utility in the learning context,
among them being time-consuming in terms of requiring multiple steps to achieve and
launch a generated prototype, and issues with the intuitiveness of the user interfaces to
support easy navigation and testing, e.g. it was not clear how the prototype links to a
model, making it difficult to apply the method in a teaching/learning context. As a result,
the evaluation survey revealed that the majority of students seemed to be reluctant in
using the tool in their learning process resulting mostly in the “didn’t use” answers while
assessing the tool. In this paper an in-house prototyping method is introduced based on a
template-based transformation [8] going straight from model to code (i.e. a
model-to-text transformation) allowing to generate a prototype with a single click [8, 38,
40]. Such instant prototype production serves as a quick simulation technique that raises
the usability as it lowers the required skill-set for its use and allows verifying the
conformance of conceptual designs and the description of the domain in a fast and easy
way. By enabling a fully functional output the method also serves as a rapid prototyping
and simulation instrument. This allows assessing the generated prototype (simulation
results) with respect to the expected outcome. In case of a semantic mismatch the desired
outcome can be achieved through a trial and error correction process by means of
modification, regeneration and verification loops.

Such an approach yields additional benefits such as better support for process-
oriented assistance allowing developing modeling competences by engaging a learner
in a “trial and error learning process” [41], test the incrementally modified (growing)
prototypes and letting him/her check the semantic conformance of a model with the
domain description. In addition, user interfaces were adapted to support maximally
intuitive user experience. A user interacts with the generated application through the
graphical user interface (GUI) which offers basic functionality like triggering the

Fig. 2. The main GUI of the prototype application [38].

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 77

creating and ending of objects, and triggering other business events. Figure 2 shows the
main interface of a generated prototype.

3.2 Enhancing Simulation with Feedback to Facilitate Interpretation
of Simulation Results

It is known that simulation accompanied with feedback can result in better learning
outcomes [17, 18, 22, 42]. More commonly, human instructors provide feedback for
simulations usually with a post-simulation debriefing [46]. However, feedback
automation methods that can guide a learning process with simulation are to our
knowledge absent. In this research we present a feedback automation method that
embeds a feedback generation mechanism into a simulation of a model thus allowing
achieving feedback-enabled simulation. We make use of negative corrective feedback
[47, 48] based on two type of formats: (1) textual explanations of the causes for the
errors (execution failures as a result of constraint violations) that explain the involved
modeling constructs and their implications with respect to execution outcomes [49] and
(2) improved transparency between a prototype and its model by means of graphical
visualization that links the execution results to their causes in the model [49]. The
inclusion of textual/visual feedback into simulation is achieved by the generation of
feedback as a response to execution failures in a prototype application targeting a
facilitation of interpretation of testing (simulation) results. The errors include event
execution failures that result from constraint violations, which are regarded as invalid
actions from the domain perspective. The goal of the incorporated feedback in the
simulation loop is to facilitate the process of verification of semantic validity of the
model allowing to detect errors in a model’s design.

3.3 What Is needed to Set up an Automated Simulation Feedback?

In this chapter we present the architectural design of the automated feedback approach
[49]. Thereto we identify assessed by comparing two such sets, goals being completeness
and validity. For semantic quality, completeness is achieved if the physical represen-
tation (the model) contains all the statements of the domain, and validity is achieved if
what is true or false according to the model is respectively also true or false according to
the domain rules. Model simulation can be used to assess model completeness by simply
verifying the presence of desired functionality in the prototype. the model elements used
to set up an automated feedback. According to [26], in the conceptual modeling quality
framework each framework element can be considered as a set of statements. Model
quality is assessed by comparing two such sets, goals being completeness and validity.
For semantic quality, completeness is achieved if the physical representation (the model)
contains all the statements of the domain, and validity is achieved if what is true or false
according to the model is respectively also true or false according to the domain rules.
Model simulation can be used to assess model completeness by simply verifying the
presence of desired functionality in the prototype. Assessing the validity of the model
requires verifying the truthfulness of a statement in the prototype. In other words, if
something should be allowed according to domain rules, then this should be allowed
according to the model as well, and if something is forbidden according to domain rules,

78 G. Sedrakyan and M. Snoeck

then a corresponding constraint should be included in the model. To verify validity, a
modeler needs to define test scenarios and define an oracle (desired outcome) for each
scenario according to the domain rules. The results of the execution of the test scenario
are compared to the oracle to determine the semantic correspondence between model and
domain. While novice modelers seem at ease with using a fast prototyping approach for
the verification of model completeness, we witnessed that novice modelers have diffi-
culties in understanding why a test scenario fails and relating the cause of the failure to
model constructs.

Test scenario failure finds its origins in constraint violation. For example, if a
course can be attributed to at most one teacher, then assigning a second teacher to a
course will result in a constraint violation and a failed test scenario. Therefore, the first
step in our architectural design includes the identification of the constraints that are
supported by a diagram type. Next, the typology of errors with respect to the constraint
types are specified. We also need to identify the diagram properties that take part in
those constraints. The error type can be described as a constraint violation scenario.
The error type contains a reference to the violated constraint type and also encapsulates
the properties that participate in the context of the event execution and those that cause
the error (execution failure).

Figure 3 depicts the generic meta-model on how error types are related to the
corresponding model elements. As mentioned earlier in this paper we realize our
approach in the context of one specific type of models, namely, conceptual models, that
combine structural and behavioral aspects of a system. The modeling approach uses a
combination of a class diagram (to realize the structural aspects) and multiple inter-
acting statecharts (to support a system’s dynamics). In the class diagram, constraints are
captured as cardinality constraints (mandatory one, maximum one) and referential
integrity constraints (creation dependency and restricted delete). In the case of a stat-
echart, constraints are captured as sequence constraints. For each of these constraints, a
corresponding error type and explanations used for feedback can be constructed as
shown in Table 1. Explanations include model properties (underlined in column
“Explanation & model properties”).

Fig. 3. Model-elements used for a feedback [49].

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 79

3.4 How the Approach Can Be Realized: Inclusion and Generation
of Simulation Feedback

The feedback generation mechanism is handled by inclusion of a feedback generation
package in the output of the model-to-code transformation and is illustrated by the
conceptual model shown in Fig. 4. This package is responsible for 1. capturing the
execution errors (failures) and mapping them with corresponding causes; 2. identifying
the causing model properties as well as those being involved/affected; 3. matching the
causes with relevant feedback template for a textual feedback; 4. generating feedback
dialogs with the textual explanation and 5. further extending the textual explanation
with its graphical visualization.

In the model-to-code transformation the event execution process is supported by the
event handler which is responsible for the transaction logic specified by a model. Error
messages are generated in case of failed precondition checks. The model-to-code
transformation is presented in our previous work [38] and, as it is not the core subject
of this paper, the transformation process therefore will not be covered in detail. We will
however refer to some aspects of the model-to-code transformations that are relevant
for feedback generation. This includes the notion of a parser and Data Access Objects
(DAO) in the generated transformation. DAOs provide a simplified access to model
properties stored in a database layer of the transformed code (e.g. key-value maps
containing a collection of object properties such as a name, collections of attributes,
events, dependencies, states, etc.) which are also used for feedback purposes.

Table 1. Examples of model elements used to construct feedback for class diagram and
statecharts [49].

Diagram Constraint type Error type Explanation and model properties

Class
diagram

Cardinality of
minimum 1

Create-event
execution
failure

an object of type A is attempted to be
created without choosing an object of type
B it is associated with

Cardinality of
maximum 1

Create-event
execution
failure

an object of type A is attempted to be
created for which an object of type B
associated with a cardinality of max 1 is
chosen which already has been assigned
another instance of an object of type A

Referential integrity
for creation
dependency

Create-event
execution
failure

an object is attempted to be created before
the objects it refers to were created

Referential integrity
for restricted delete

End-event
execution
failure

an object is attempted to be ended before
its “living” referring objects (objects that
did not reach the final state of their
lifecycle) are ended

Statechart
diagram

Sequence constraint Event
execution
failure

an event is attempted to be executed for an
object whose state does not enable a
transition for that event

80 G. Sedrakyan and M. Snoeck

These properties are constructed during the transformation process using a parser
and Apache Velocity Templates and are accessible in the final code. In the generated
application the execution failures are implemented as exceptions. The exception han-
dler contains the cause of the exception such as a reference to the corresponding
constraint type along with the model properties involved in the constraint violation in a
lightweight data-interchange format (comma separated string). The exception handler
identifies the exception type and in case a model related execution failure is detected
(there can be code related exceptions too) further links to the corresponding error
processor responsible for model related errors. The error processor further derives the
necessary properties error message data stream, converts them into appropriate formats
and forwards to the feedback processor. The feedback processor uses a feedback
template to provide a textual explanation on the corresponding parts of the diagram
along with the properties of a diagram causing the execution failure as well as those
being involved/affected. Sample textual feedback templates are presented in Figs. 5 and
6. Using the model parser the coordinates of model properties from the GUI model of a
diagram are passed to a 2D graphics object. The parser is used to access any other
model properties that are required to provide a hint for a possible correction scenario
(e.g. if an event execution fails due to an object state, the state(s) in which the execution
is allowed are used to construct a hint). The 2D graphics object is used to access the
coordinate, color and font management system of the buffered image (an image with an
accessible buffer of image data) of a diagram. This allows to highlight the parts of the
diagram that contains the constraint that causes the error as well as to visualize the
suggested hints for the correction of the error. The color scheme is consistent with the
textual feedback which makes it easier to trace between the textual explanation and its
graphical visualization. Sample generated textual and corresponding graphical feed-
back is presented in Fig. 8. The architecture of the proposed realization model also

Fig. 4. Architecture of the feedback generation in the context of MDE-based simulation [49].

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 81

allows the feedback generation package to be easily plugged in/out in the final output.
The exception handler can serve as a (dis)connection gate (Fig. 7).

3.5 Locating Simulation Feedback in the Validation Process

In terms of positioning the proposed feedback technique with respect to the modeling
and semantic validation process, the following sequence is implied (see Fig. 8): the
user starts with analyzing a textual description of requirements. S/he will then trans-
form the requirements into a conceptual model containing both the static and dynamic

Fig. 5. Sample textual feedback template for a sequence constraint violation [49].

Fig. 6. Sample textual feedback template for a cardinality constraint violation [49].

Fig. 7. Sample generated textual and graphical feedback for a UML class diagram and a finite
state machine (FSM) [49].

82 G. Sedrakyan and M. Snoeck

representations of a system. At any step during the modeling process the user can
simulate the model by means of prototype generation. The prototype is then used to test
a model in terms of its semantic conformance with the requirements. The model is
revisited/refined if semantic errors are detected. The feedback is intended to facilitate
the interpretation of the causes of the detected errors. Such repetitive trial/error loops
will also allow to reflect on the requirements in terms of detection of ambiguous,
missing or contradictory requirements.

3.6 Assessing the Effectiveness of Feedback - Enabled Simulation
as Means for Process-Oriented Cognitive Feedback

An experimental study method was used to evaluate the feedback-enabled simulation
with respect to learning effectiveness and usability. Six studies were conducted in the
course of three academic years with participation of 201 master-level final year students
from two Management Information Systems programs at KU Leuven. The effectiveness
of the feedback-enabled simulation was assessed with respect to novices’ comprehen-
sion of (i) structural aspects of a system represented as a class diagram [45], (ii) be-
havioral aspects of a system represented as multiple interacting statecharts [42], as well
as understanding the interplay aspects between structural and behavioral views of a
model [42] and (iii) hidden dependencies represented through inheritance hierarchies
[44]. A classical pre/post-test control group experimental design was used in combi-
nation with a two-group and factorial designs [50]. During the experiments students had
to validate a proposed model against given requirements by answering a set of questions
(requirements reformulated as questions). The test results were scored in the range of
min = 0, max = 8. The effectiveness of the proposed simulation method was measured
by comparing students’ test results between experimental cycles (without and with the
use of simulation). A confirmatory analysis has been conducted to assess the validity of
hypothesized effects. The results of the experimental studies showed a significant
positive impact of the inclusion of the feedback on the semantic validation process of
novices resulting in the average magnitude of effect of 2.33 out of 8 for validating the
structural consistency (class diagram) [45], 4 out of 8 for validating the behavioral
consistency (statecharts) and the consistency of behavioral aspects with the structural
view of a system (contradicting constraints) [42], 2.33 out of 8 for validating hidden

Fig. 8. Positioning of the feedback in the modeling and validation process [49].

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 83

dependencies in a model represented through inheritance hierarchies [44]. This suggests
that the proposed simulation method supports its intended goal as a cognitive feedback.

Despite a tool’s benefits, user acceptance however can be another important factor
affecting its success. In the studies we chose to control important variables dealing with
user acceptance. To test and evaluate the proposed design of the feedback-enabled
simulation with respect to its subjective perceptions of usability by users (perceived
easiness of use, perceived utility, preference and satisfaction) yearly evaluations were
performed. Ease of use and usefulness are widespread and validated acceptance beliefs
from the Technology Acceptance Model [51–53], referring to the required effort to
interact with a technology and its efficiency and effectiveness respectively. We used the
concept of preference as another success dimension, as proposed by [54, 55]. Prefer-
ence is defined as “the positive and preferred choice for the continued use of simulation
tool in the classroom”. User satisfaction is another key success measure that has been
defined as the feelings and attitudes that stem from aggregating all the efforts and
benefits that an end user receives from using an system [56, 57]. Thereto a question-
naire was used including three questions per measurable dimension, each of which
measured with a six-position Likert-type scale. Furthermore, context information about
personal characteristics such as gender, previous knowledge, and the level of computer
self-efficacy, was collected. Exploratory correlation analyses have been performed to
study the correlation of the test results (relative advantage in score when using simu-
lation) with user acceptance and personal characteristics. The findings from our anal-
yses showed significant positive effects of the proposed feedback-enabled simulation
on learning outcomes of novices regardless of personal characteristics and attitudes.

User acceptance of the feedback-enabled simulation tool was repeatedly evaluated in
the course of several years of usage. The students found the tool useful and preferred its
use (mean scores above 4.5 in six-position Likert-type scale). User satisfaction, pref-
erence, perceived usefulness and perceived ease of use were evaluated resulting
respectively on average of 4.77, 4.78, 4.78 and 4.68 (with Cronbach Alpha above 0.84
and factor loadings per item above 0.86). The highest score in the anonymous evalu-
ations was attributed by students to the incorporated feedback in the prototype (5.58 on
average). Reliability and validity of the acceptance measures were assessed by factor
analysis using SPSS. The findings from our analysis of acceptance variables show that,
in addition, the students found the tool useful and preferred its continuous use during
their learning process which suggests that the proposed simulation method supports its
intended goal as a process-oriented feedback. In addition, the use of CodeGen [8]
during a learning process allows benefiting from the advantages of simulation-based
learning by providing a learner with the opportunity to practice the obtained knowledge
in order to obtain experience-based skills in the domain of conceptual modeling. As
opposed to paper exercises which limit the scope of model understanding to a static view
of a model, the dynamic testing with simulation fosters a more thorough understanding
(cfr. challenge for teaching experience). In addition, the proposed method serves as a
validation instrument allowing verifying the conformance of a model with the
requirements (cfr. challenge for absence of validation tools). Using the insights from the
testing a learner can either refine a model or reflect on the requirements by looking for
instance for conflicting or missing requirements, allowing to improve the understanding
of the domain to be engineered (cfr. challenge for lack in domain knowledge).

84 G. Sedrakyan and M. Snoeck

The textual and visual feedback that is generated as a response to the errors during a
testing process, allows linking the error with the causes in a model by also explaining the
implications of the modeling constructs involved in the causes of the error (cfr. chal-
lenge for modeling language difficulties).

The reader is referred to [43–45, 58–61] for more details on these experimental
evaluations.

4 Behavioral Feedforward Perspectives Based on Learning
Process Analytics

While in the previous chapters cognitive feedback opportunities were investigated, in
this chapter we discuss the perspectives for behavioral feedback based on learning
process observation for modeling, i.e. feedforward opportunities that can reinforce a
successful learning behavior.

Observing learning processes is however a challenging task considering the fact
that learning is (meta)cognitive in nature. In order to observe learning processes several
questions need to be answered:

– What is to be considered a learning process?
– What type of data is needed to observe a learning process?

In the context of this research we refer to the definition of a cognitive activity as “an
operation that affects mental content, e.g. thinking, the cognitive operation of
remembering, problem solving”; and to a learning process as “a composite cognitive
activity that is concerned with acquisition of problem-solving abilities by which
knowledge is acquired”. In order to observe learning processes in the context of this
research we make use of the traces produced during the problem-solving process of
novices. We use the term “cognitive learning process” to refer to the set of modeling
activities a learner performed within a modeling environment during his/her
problem-solving process which are used as a proxy for the cognitive learning pro-
cess [8]. During the semester students were assigned to a group project in which they
were assigned the task of constructing a semantically correct conceptual model that
reflects the structural and dynamic view of the given domain described in an
approximately 5 page specification document based on real-world requirements.
Modeling behavior data have been collected through the logging functionality of the
MERODE modeling environment throughout a semester of study while students were
working on their group’s project. In order to observe the modeling process (how the
novices created their models) interactions with the modeling tool have been logged
conforming the actor-event-target-timestamp. As modeling manifests itself in the
creation of modeling elements, in our logs we capture a modeling process as a sequence
of create, edit, delete, undo, redo, and copy events. These events are further abstracted
into CREATE and EDIT (grouping events edit, delete, undo, redo, copy) representa-
tions. For experimental data collection purposes the CodeGen simulation environment
[8, 38, 40] was integrated within the MERODE modeling environment JMermaid
allowing to, besides tracking only the modeling activities, log also simulation activities

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 85

and thus observing the validation (also referred to as self-regulation) activities within
the task completion process.

Conceptual modeling event data of 36 cases (event logs of students’ group works)
from 2 academic years, 28.455 events in total have been subject to a three-dimension
analysis using learning process analytics and process mining techniques in particular: 1.
data has been examined at different abstraction levels (activities grouped for different
modeling views such as structural or behavioral, fine-grained analysis zooming into each
view in isolation), further expanded by diagram type information (class diagram –EDG,
statecharts –FSM, interaction view), event type information (e.g. create/edit/delete/
simulate),element type (object, attribute, association, event, state, transitions, etc.), 2.
contrast analysis to identify differences based on modeling performance (best vs. worst
scoring groups), 3. time trend analysis by making distinction between “early” and “late”
sessions allowing to capture a change of behavior over time [9, 10].

The analysis resulted in identification of learning (i.e. modeling and simulation)
behavior patterns indicative for worse/better learning outcomes. These first insights
from our empirical studies suggest that the learning achievements, in addition to being
related to cognitive aspects of learning, can be also associated with behavioral aspects
[8–10] such as:

– Pattern 1 (modeling approach): best performance being associated with a more
iterative way of modeling manifested in more frequent switches between different
model views (such as structural and behavioral) as opposed to worst performance
characterized by sequential way of working (targeting one task/view at a time).

– Pattern 2 (validation approach): best performance being characterized by earlier
engagement n validation (simulation) activities with a broader coverage of testing
targeting both structural and behavioral views of a model as opposed to worst
performance characterized by limited coverage of model testing.

– Pattern 3 (validation target): best performance being characterized by the intention
to test recent changes, and the validation effort being positioned around the in-
terplay effects between views as opposed to worst performance characterized by a
general (unstructured) test and disconnected way of testing targeting either struc-
tural or behavioral views.

– Pattern 4 (engagement styles): best performance being associated with an earlier
and systematic engagement in modeling activities as opposed to worst performance
characterized by deadline-oriented engagement.

– Pattern 5 (effort distribution across time): best performance being characterized by
more effort put in the modeling process with a tendency to decrease over time as
opposed to worst performance associated with less effort in earlier stages of project
with a tendency of continuous or increased effort presumably indicating difficulties
in achieving a right solution.

– Pattern 6 (effort distribution within modeling tasks): best performance being
associated with a broader coverage of transforming requirements into a model in the
early stages of the modeling process and continuing to adapt the model in later
sessions, as opposed to worst performance associated with partial capturing of
concepts and actively expanding the model in later sessions, by also supplying
irrelevant concepts not required by requirements.

86 G. Sedrakyan and M. Snoeck

The findings showed that process analytics based feedback is feasible. Such a
feedback can complement cognitive content related feedback (What is wrong and why?)
with a suggestive feedback targeting behavioral aspects, i.e. detecting inefficient
learning processes and proposing recommendations on corrective actions (How to act?),
i.e. feedforward. The findings are suggested as guidelines to improve teaching practices
for multi-view conceptual modeling. The learning behavior patterns can also be used for
construction of machine feedback targeting a modeling process in a learning context.
However, more research is needed towards 1. identification of more generic behavior
patterns, 2. automation perspectives for learning behavior pattern detection that can be
used to provide advanced real time individualized guidance throughout a learning
process. The reader is referred to [8–10] for more details on these empirical studies.

5 Conclusion

The results of our research both for cognitive and behavioral aspects of learning
suggest that validation (i.e. self-regulation using simulation) is positively associated
with learning outcomes. MDE-based feedback-enabled simulation helps to improve
knowledge of modeling concepts and modeling language by improving model
understanding through reflecting on intermediate results (what is wrong ?) during a
learning process (cfr. RA1). The findings of learning process analytics learning
(modeling and validation) processes of novices establish the feasibility for feedback
that can reflect on the procedural aspects of learning (how to do it the right way ?)
thus complementing a cognitive feedback (cfr. RA2). While behavioral feedback based
on the learning behavior patterns presented in our research would not be mature yet,
however this research can serve as a platform to guide future research in the domain of
learning process analytics and learning process analytics based feedback.

Two conclusions are obtained:

1. Simulation can serve a cognitive feedback throughout a learning process, if it is
instant, easy to use and is easy to interpret (i.e. enhanced with a feedback that
facilitates the interpretation of simulation results) (cfr. RA1).

2. Feedback perspectives based on learning process analytics are feasible. Process
analytics (and process mining techniques in particular) make it possible to detect
(in)efficient behavior during learning processes thus allowing to identify and
address potential feedback needs earlier during a learning process (e.g. during a
problem solving process) as opposed to learning process outcome feedback (pro-
vided only after a problem has been solved and its outcome is presented for
assessment).

From a theoretical perspective the results of the first part of the research contribute
to improving knowledge on the cognitive aspects of conceptual modeling providing
empirical support for the use of simulation in learning/teaching processes for con-
ceptual modeling with respect to supporting model understandability and thus also
model validity. The results also contribute to the research on model-driven develop-
ment with respect to its applicability to research on simulation and feedback
automation. The research is also to be situated in the domain of simulation with respect

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 87

to (1) empirical support for the use of augmented feedback in simulation, and (2) with
respect to addressing the difficulties in interpretation of simulation results. Since our
approach relies on process related data captured during a learning process, this study is
also to be situated in the context of learning analytics.

While the findings of the experiments showed a significant improvement in students’
model-based validation capabilities when using feedback-enabled simulation, we still
observed certain issues. One issue is related to addressing the “completeness” dimension
of a model’s semantic quality. Since the completeness of a model can be demonstrated
through testing scenarios, and the simulation only serves as instrument to execute the
scenarios, transforming requirements into test scenarios is yet an additional skill that is
required to benefit from the instrument. Our observations from the experiments revealed
certain difficulties among students in developing testing scenarios for verifying their
models with the use of simulation resulting in either (1) Omitted simulation cycle; or
(2) Partial testing with the use of prototype characterized by incomplete testing scenarios
such as a test scenario limited to only a confirmatory rather than exploratory analysis of
the functionality, insufficient exploration of dependencies in a model, etc. [43, 58–61].
The observations of testing patterns of students thus suggest that combining the method
of feedback-enabled simulation with the teaching of high level testing knowledge and
skills will result in even better learning outcomes.

The main limitation with respect to our observations and analysis of behavioral
aspects of learning include the missing perspectives on (1) individual learning processes
since only group level information could be derived from the logs of the project file;
(2) learning activities outside the learning environment (since learning is not limited to the
scope of learning environments), which however would be very challenging to obtain.

The work presented in this paper can be expanded along several directions. Since the
self-regulated activities (i.e. validation with the use of simulation) of novices were found
to be key to distinguishing worse/better learning approaches, automated assistance can
be investigated to provide tool support for (coverage) test scenario generation that will
allow checking the “completeness” of a model with respect to the requirements. While
findings showed that certain behavioral patterns can indeed be associated with
better/worse outcomes in terms of reaching a satisfactory model quality, further exam-
inations are needed to evolve towards more exhaustive and generic patterns for a broader
learning context [62, 63]. Analysis of the testing logs from the simulation environment
will provide more insights on (in)efficient testing processes which can be used to expand
the simulation feedback (“What/why is not correct?”) with feedforwarding possibilities
during a modeling process (e.g. “When/what/how to test?”). Since learning processes are
not limited to the scope of learning environments, correlating online with offline data
(e.g. reasoning, perceiving, understanding, solving, reflecting, checking, …) can be
another area of future research. The simulation and simulation feedback automation
method proposed in this research can be extended to support a broader context of models,
diagrams. Exploring perspectives of feedback personalization by means of studies at
individual rather than group level can be another area of research. Advanced feedback
mechanisms, can be explored using adaptive systems and learning reinforcement algo-
rithms that also consider physiological indicators of learners, such as cognitive load,
stress levels, affective states [64, 65], etc. Ultimately, the results of our research can be
inspirational beyond the scope of conceptual modeling.

88 G. Sedrakyan and M. Snoeck

References

1. Shute, V.J.: Focus on formative feedback. Rev. Educ. Res. 78(1), 153–189 (2008)
2. Nicol, D.J., Macfarlane-Dick, D.: Formative assessment and self-regulated learning: a model

and seven principles of good feedback practice. Stud. High. Educ. 31(2), 199–218 (2006)
3. Eyers, D., Jordan, J., Hendry, K.: What are student perceptions of the timeliness of

feedback? (2016). http://learning.cf.ac.uk/developing-educators/pcutl/project-reports/what-
are-student-perceptions-of-the-timeliness-of-feedback/. Cited Apr 2016

4. Irons, A.: Enhancing Learning Through Formative Assessment and Feedback. Routledge
(2007)

5. Narciss, S.: Feedback strategies for interactive learning tasks. In: Handbook of Research on
Educational Communications and Technology, pp. 125–144 (2008)

6. Butler, D.L., Winne, P.H.: Feedback and self-regulated learning: a theoretical synthesis. Rev.
Educ. Res. 65(3), 245–281 (1995)

7. Zimmerman, B.J.: Investigating self-regulation and motivation: historical background,
methodological developments, and future prospects. Am. Educ. Res. J. 45(1), 166–183
(2008)

8. Sedrakyan, G.: Process-Oriented Feedback Perspectives Based on Feedback-Enabled
Simulation and Learning Process Data Analytics. KU, Leuven (2016)

9. Sedrakyan, G., De Weerdt, J., Snoeck, M.: Process-mining enabled feedback: “tell me what I
did wrong” vs. “tell me how to do it right”. Comput. Hum. Behav. 57(C), 352–376 (2016)

10. Sedrakyan, G., Snoeck, M., De Weerdt, J.: Process mining analysis of conceptual modeling
behavior of novices - empirical study using JMermaid modeling and experimental logging
environment. Comput. Hum. Behav. 41(C), 486–503 (2014)

11. Schenk, K.D., Vitalari, N.P., Davis, K.S.: Differences between novice and expert systems
analysts: what do we know and what do we do? J. Manage. Inf. Syst. 15(1), 9–50 (1998)

12. Wang, W., Brooks, R.J.: Empirical investigations of conceptual modeling and the modeling
process. In: Simulation Conference, pp. 762–770, Winter 2007

13. Erickson, J., Keng, S.: Can UML be simplified? practitioner use of uml in separate domains.
In: Proceedings of the 12th Workshop on Exploring Modeling Methods for Systems
Analysis and Design (EMMSAD 2007), held in Conjunctiun with the 19th Conference on
Advanced Information Systems (CAiSE 2007), Trondheim, Norway (2007)

14. Wilmont, I., Hengeveld, S., Barendsen, E., Hoppenbrouwers, S.: Cognitive mechanisms of
conceptual modelling. In: Ng, W., Storey, Veda C., Trujillo, Juan C. (eds.) ER 2013. LNCS,
vol. 8217, pp. 74–87. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41924-9_7

15. Siau, K., Loo, P.-P.: Identifying Difficulties in Learning Uml. Inf. Syst. Manage. 23(3), 43–
51 (2006)

16. Shanks, G., Tansley, E., Weber, R.: Using ontology to validate conceptual models.
Commun. ACM 46(10), 85–89 (2003)

17. Barjis, J., et al.: Innovative Teaching Using Simulation and Virtual Environments. Interdisc.
J. Inf. Knowl. Manage. 7, 237–255 (2012)

18. Van Merriënboer, J.J., Kirschner, P.A.: Ten Steps to Complex Learning: A Systematic
Approach to Four-Component Instructional Design. Routledge (2012)

19. Rutten, N., van Joolingen, W.R., van der Veen, J.T.: The learning effects of computer
simulations in science education. Comput. Educ. 58(1), 136–153 (2012)

20. Akkoyun, O., Careddu, N.: Mine simulation for educational purposes: a case study. Comput.
Appl. Eng. Educ. (2014)

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 89

http://learning.cf.ac.uk/developing-educators/pcutl/project-reports/what-are-student-perceptions-of-the-timeliness-of-feedback/
http://learning.cf.ac.uk/developing-educators/pcutl/project-reports/what-are-student-perceptions-of-the-timeliness-of-feedback/
http://dx.doi.org/10.1007/978-3-642-41924-9_7

21. Okutsu, M., DeLaurentis, D., Brophy, S., Lambert, J.: Teaching an aerospace engineering
design course via virtual worlds: a comparative assessment of learning outcomes. Comput.
Educ. 60(1), 288–298 (2013)

22. Datta, A.K., Rakesh, V., Way, D.G.: Simulation as an integrator in an undergraduate
biological engineering curriculum. Comput. Appl. Eng. Educ. 21(4), 717–727 (2013)

23. Lateef, F.: Simulation-based learning: just like the real thing. J. Emergencies, Trauma Shock
3(4), 348 (2010)

24. Gaba, D.M.: The future vision of simulation in healthcare. Simul. Healthc. 2(2), 126–135
(2007)

25. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling.
IEEE Softw. 11(2), 42–49 (1994)

26. Nelson, H.J., et al.: A conceptual modeling quality framework. Softw. Qual. J. 20(1), 201–
228 (2012)

27. Lindland, O.I., Krogstie, J.: Validating conceptual models by transformational prototyping.
In: Rolland, C., Bodart, F., Cauvet, C. (eds.) CAiSE 1993. LNCS, vol. 685, pp. 165–183.
Springer, Heidelberg (1993). doi:10.1007/3-540-56777-1_9

28. Hess, T.A.: Investigation of Prototype Roles in Conceptual Design Using Case Study and
Protocol Study Methods. Clemson University (2012)

29. Yang, M.C.: A study of prototypes, design activity, and design outcome. Des. Stud. 26(6),
649–669 (2005)

30. Hevner, A.R., et al.: Design science in information systems research. MIS Q. 28(1), 75–105
(2004)

31. Borland: Keeping your business relevant with Model Driven Architecture (MDA) (2004).
http://www.omg.org/mda/presentations.htm

32. Gustas, R.: Conceptual modeling and integration of static and dynamic aspects of service
architectures. In: Sicilia, M.-A., Kop, C., Sartori, F. (eds.) ONTOSE 2010. LNBIP, vol. 62,
pp. 17–32. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16496-5_2

33. Alanen, M., Porres, I.: Model interchange using OMG standards. In: 31st EUROMICRO
Conference on Software Engineering and Advanced Applications. IEEE (2005)

34. Desfray, P.: UML Profiles versus Metamodel extensions: an ongoing debate. In OMG’s
UML Workshops: UML in the .com Enterprise: Modeling CORBA, Components,
XML/XMI and Metadata Workshop (2000)

35. Huang, S., Gohel, V., Hsu, S.: Towards interoperability of UML tools for exchanging
high-fidelity diagrams. In: Proceedings of the 25th Annual ACM International Conference
on Design of Communication. ACM (2007)

36. Lundell, B., Lings, B., Persson, A., Mattsson, A.: UML model interchange in heterogeneous
tool environments: an analysis of adoptions of XMI 2. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 619–630. Springer, Heidelberg
(2006). doi:10.1007/11880240_43

37. Snoeck, M.: Enterprise Information Systems Engineering: The MERODE Approach 2014.
Springer, Cham (2014)

38. Sedrakyan, G., Snoeck, M.: A PIM-to-Code requirements engineering framework. In:
Proceedings of Modelsward 2013–1st International Conference on Model-driven Engineer-
ing and Software Development-Proceedings (2013)

39. Snoeck, M., et al.: Computer aided modelling exercises. Inf. Educ. 6(1), 231–248 (2007)
40. Sedrakyan, G., Snoeck, M.: Lightweight semantic prototyper for conceptual modeling. In:

Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 298–302. Springer, Cham
(2014). doi:10.1007/978-3-319-12256-4_32

41. Prather, D.C.: Trial-and-error versus errorless learning: Training, transfer, and stress. Am.
J. Psychol., 377–386 (1971)

90 G. Sedrakyan and M. Snoeck

http://dx.doi.org/10.1007/3-540-56777-1_9
http://www.omg.org/mda/presentations.htm
http://dx.doi.org/10.1007/978-3-642-16496-5_2
http://dx.doi.org/10.1007/11880240_43
http://dx.doi.org/10.1007/978-3-319-12256-4_32

42. Sedrakyan, G., Poelmans, S., Snoeck, M.: Assessing the influence of feedback-inclusive
rapid prototyping on understanding the semantics of parallel UML statecharts by novice
modellers. Inf. Softw. Technol. 82, 159–172 (2016)

43. Sedrakyan, G., Snoeck, M.: Do we need to teach testing skills in courses on requirements
engineering and modelling? In: CEUR Workshop Proceedings (2014)

44. Sedrakyan, G., Snoeck, M.: Effects of simulation on novices’ understanding of the concept
of inheritance in conceptual modeling. In: Jeusfeld, Manfred A., Karlapalem, K. (eds.) ER
2015. LNCS, vol. 9382, pp. 327–336. Springer, Cham (2015). doi:10.1007/978-3-319-
25747-1_32

45. Sedrakyan, G., Snoeck, M., Poelmans, S.: Assessing the effectiveness of feedback enabled
simulation in teaching conceptual modeling. Comput. Educ. 78, 367–382 (2014)

46. Stefanidis, D.: Optimal acquisition and assessment of proficiency on simulators in surgery.
Surg. Clin. North Am. 90(3), 475–489 (2010)

47. Ellis, R.: Corrective Feedback and Teacher Development. L2 J. 1(1) (2009)
48. Ellis, R.: A typology of written corrective feedback types. ELT J. 63(2), 97–107 (2009)
49. Sedrakyan, G., Snoeck, M.: Enriching model execution with feedback to support testing of

semantic conformance between models and requirements: Design and evaluation of feedback
automation architecture. In: Modelsward 2016 - 4th International Conference on
Model-driven Engineering and Software Development, Rome, Italy (2016)

50. Trochim, W.M.: The Research Methods Knowledge Base, http://trochim.human.cornell.edu/
kb/index.htm. Version 2 Aug 2000

51. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q. 13(3), 319–340 (1989)

52. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a
comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)

53. Venkatesh, V., et al.: User acceptance of information technology: toward a unified view.
MIS Q. 27(3) (2003)

54. Hsu, C.-L., Lu, H.-P.: Consumer behavior in online game communities: a motivational factor
perspective. Comput. Hum. Behav. 23(3), 1642–1659 (2007)

55. Bourgonjon, J., et al.: Students’ perceptions about the use of video games in the classroom.
Comput. Educ. 54(4), 1145–1156 (2010)

56. Ives, B., Olson, M.H., Baroudi, J.J.: The measurement of user information satisfaction.
Commun. ACM 26(10), 785–793 (1983)

57. Wixom, B.H., Todd, P.A.: A theoretical integration of user satisfaction and technology
acceptance. Inf. Syst. Res. 16(1), 85–102 (2005)

58. Sedrakyan, G., Snoeck, M.: Technology-enhanced support for learning conceptual
modeling. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer,
P., Wrycza, S. (eds.) BPMDS/EMMSAD -2012. LNBIP, vol. 113, pp. 435–449. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31072-0_30

59. Snoeck, M., Sedrakyan, G.: Tutorial: boosting requirements analysis and validation skills
through feedback-enabled semantic prototyping (2015)

60. Snoeck, M., Sedrakyan, G.. Tutorial: novel way of training conceptual modeling skills by
means of feedback-enabled simulation (2015)

61. Sedrakyan, G., Snoeck, M.: Feedback-enabled MDA-prototyping effects on modeling
knowledge, In: Enterprise, Business-Process and Information Systems Modeling,
pp. 411–425. Springer (2013)

62. Sedrakyan, G., Järvelä, S., Kirschner, P.,: Conceptual framework for feedback automation
and personalization for designing learning analytics dashboards. In: Conference EARLI SIG
27, Online Measures of Learning Processes (2016)

Cognitive Feedback and Behavioral Feedforward Automation Perspectives 91

http://dx.doi.org/10.1007/978-3-319-25747-1_32
http://dx.doi.org/10.1007/978-3-319-25747-1_32
http://trochim.human.cornell.edu/kb/index.htm
http://trochim.human.cornell.edu/kb/index.htm
http://dx.doi.org/10.1007/978-3-642-31072-0_30

63. Sedrakyan, G., Malmberg, J., Noroozi, O., Verbert, K., Järvelä, S., and Kirschner, P.:
Designing a learning analytics dashboard for feedback to support learning regulation (2017)
(submitted)

64. Sedrakyan, G., Leony, D., Munoz-Merino, P. J., Delgado Kloos, K. Verbert, K.: Evaluating
student-facing learning dashboards of affective states. In: 12th European Conference on
Technology Enhanced Learning (ECTEL’17) - Data Driven Approaches in Digital
Education, Tallinn, Estonia (2017)

65. Leony, D., Sedrakyan, G., Munoz-Merino, P. J., Delgado Kloos, K., Verbert, K.: Evaluating
usability of affective state visualizations using AffectVis, an affect-aware dashboard for
students. J. Res. Innovative Teach. Learn. (2017)

92 G. Sedrakyan and M. Snoeck

Automatically Testing of Multimodal
Interactive Applications

Le Thanh Long1(&), Nguyen Thanh Binh2, and Ioannis Parissis3

1 Department of Computing, Duy Tan University,
182 Nguyen Van Linh, Da Nang, Viet Nam

lthanhlong@gmail.com
2 IT Faculty, The University of Danang - University of Science and Technology,

54 Nguyen Luong Bang, Da Nang, Viet Nam
ntbinh@dut.udn.vn

3 Univ. Grenoble Alpes, LCIS, 26902 Valence, France
ioannis.parissis@grenoble-inp.fr

Abstract. Testing interactive multimodal applications is particularly important
and requires a lot of effort. Automating this activity can result to significant
development cost reduction and quality improvement. In this paper, we propose
an approach for automating the test generation of such multimodal applications.
This approach is based on the definition of a test modeling language, TTT. The
objective of the TTT language is to provide a means for expressing abstract test
scenarios for interactive multimodal applications, including non-deterministic
choices and action occurrence probabilities that can be used to automate the test
generation. Then, we built the TTTEST tool that supports to generate tests for
multimodal events and to check the validity of CARE properties of this kind of
applications. The approach is illustrated on a case study.

Keywords: Interactive multimodal applications � Test modeling language �
CARE properties

1 Introduction

Interactive Multimodal Applications (IMA) support communication with the user
through different modalities, such as voice or gesture. They have the potential to greatly
improve human-computer interaction, because they can be more intuitive, natural,
efficient, and robust. Multimodality brings an intuitive, natural affinity between the
machine and the user, such as in virtual reality mobile application. Efficiency is
obtained when the user can use equivalent modalities for the same tasks while
robustness can result from the integration of redundant or complementary inputs.

The CARE properties (Complementarity, Assignment, Redundancy, and Equiva-
lence) can be used as a measure to assess the usability of the multimodal interaction [1].
Equivalence and Assignment represent the availability and, respectively, the absence of
choice between multiple modalities for performing a task while Complementarity and
Redundancy express relationships between modalities. The flexibility and robustness of

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 93–113, 2017.
DOI: 10.1007/978-3-319-66302-9_5

multimodal applications result in an increasing complexity of the design, development
and testing. Therefore, ensuring their correctness requires thorough validation.

Approaches based on formal specifications automating the development and the
validation activities have been proposed to deal with this complexity. They adapt
existing formalisms to the particular context of interactive applications. Examples of
such approaches are the Formal System Modeling analysis [2], the Lotos Interactor
Model (LIM) [3], the Interactive Cooperative Objects (ICO) [10] or formal methods
such as B [12]. Model-based testing methods focusing on the specification of the user
behavior have also been studied. For instance, the method presented in [11] relies on
the specification of a finite state machine.

In [13], Maurice H. TerBeek et al. propose stochastic modeling and model
checking to predict measures of the disruptive effects of interruptions on user behavior.
The approach also provides a way to compare the resilience of different interaction
techniques to the presence of external interruptions that users need to handle. In [15],
P. Palanque et al. presents an approach for investigating in a predictive way potential
disruptive effects of interruptions on task performance in a multitasking environment.

In [16], N. Kamel et al. propose a formal model allowing representing the input
multimodal user interaction task and the CARE usability properties. Once the multi-
modal interaction task model is designed, the corresponding property is checked using
the SMV (Symbolic Model Verifier) model-checker. They also propose an approach
for checking adaptability properties of multimodal User Interfaces (UIs) for systems
used in dynamic environments like mobile phones and PDAs. The approach is based on
a formal description of both the multimodal interaction and the property. The SMV
model-checking formal technique is used for the verification process of the property. In
[17], L. Mohand-Oussaïd et al. present a generic approach to design output multimodal
interfaces. This approach is based on a formal model, composed of two other models:
semantic fission model for information decomposition process and allocation model for
modalities and media allocation to composite information. An Event-B formalization
has been proposed for the fission model and for allocation model. This Event-B for-
malization extends the generic model and supports the verification of some relevant
properties such as safety or liveness.

The synchronous approach has been proposed to model and verify by
model-checking some properties of interactive applications [7], but its applicability is
limited to small pieces of software.

In [6], Laya Madani et al. present a technique of test case generation for testing
CARE properties by means of a synchronous approach. According to the proposed
approach, CARE properties are translated into an enhanced version of the Lustre
synchronous language. An improved method presented in [8] uses Task trees and a
fusion model to perform test data generation for interactive multimodal applications.

As an additional improvement to this previous research work, we have recently
proposed an automatic test generation approach based on a test modeling language,
TTT (Task Tree based Test). The main new feature of the TTT language is that it
supports conditional probability specifications, used to express advanced
operational profiles. Such conditional specifications may depend on the history of the
user actions. A test generation engine makes it possible to produce test data compliant
with such a description. For this, user actions are stored during the test execution.

94 L.T. Long et al.

We have extended the above work in order to take into account multimodality [5].
The TTT language is extended to specify multimodal events of IMA and CARE
properties as well as to check the validity of CARE properties [5]. In this paper, we
present how to automate the approach in order to test interactive multimodal appli-
cations, using the TTT language.

The paper is organized as follows: In Sect. 2, we provide the necessary back-
ground. Section 3 presents an interactive multimodal application, Memo, used as a
running example. Section 4 presents the TTT language. Section 5 presents the exten-
sion of the TTT language for generating tests and checking the validity of CARE
properties. Section 6 presents the test execution environment including the translation
from TTT into C. A case study is presented in Sect. 7.

2 Background

2.1 Task Trees

Task trees are often used in the design of interactive software applicationsesign of
interactive software applications [14] to hierarchically build task models.
A well-known notation for such task models is ConcurTaskTree (CTT). CTT includes
four kinds of tasks: User tasks (no interaction with the application, just an internal
cognitive activity such as thinking about how to solve a problem), application tasks
(application performance, such as generating the results of a query, no interaction with
the user), interaction tasks (involving user actions with immediate feedback from the
application, such as editing a document) and abstract tasks (tasks composed of other
subtasks). A CTT abstract task is composed of subtasks connected by means of tem-
poral operators, for example, there is an enabling operator denoted by >> which
specifies that one task enables a second one when it terminates.

A CTT model is mainly intended to help designers to define interactive applica-
tions. However, it has been shown that the same notation can be also used to define test
models describing the interaction between the user and the application and providing
valuable information about the possible user behavior.

2.2 Finite State Machines

Finite State Machines (FSMs) are widely used to model the behavior of interactive
applications. This model includes the states, the actions and the transitions presented by
a state diagram [6]. When an interactive application is specified by a finite state
machine, the states represent an abstraction of the operating status of interactive
applications. The operations can be repeated, so the states can also be repeated. Initial
state is a state that interactive applications begin to be used. Final state is the state
where the interactive application ends. Inputs are the user’s tasks and outputs are
application tasks.

Automatically Testing of Multimodal Interactive Applications 95

2.3 Multimodal Interaction: Care Properties

An interactive multimodal application uses at least two modalities (keyboard, speech,
mouse…) for a given direction (input or output). Within a multimodal application,
modalities can be used independently, but the availability of several modalities natu-
rally raises the issue of their combined use (fusion of modalities). When talking about
test data generation, we are mainly concerned with inputs, so in this paper we focus on
multimodal input interaction.

The combined use of modalities is constrained by temporal constraints. It can be
carried out sequentially or concurrently [1] within a Temporal Window (TW), that
defines a time interval. The modalities of a set M are used concurrently if they are used
at the same instant. The modalities of a set M are used sequentially within the TW, if
there is at most one active modality at every instant and if all the modalities in this set
are used within the TW. The concurrency and the sequencing express a constraint on
the interaction space. The absence of a temporal constraint means that the duration of
the TW is infinite. The CARE properties form an interesting set of relations that are
relevant when characterizing multimodal applications. The Assignment implies that a
single modality is assigned to a task. The Equivalence of modalities implies that the
user can perform a task using a modality chosen amongst a set of modalities. The
Complementarity denotes several modalities that convey complementary chunks of
information. The complementary modalities must be used simultaneously or sequen-
tially within the same TW. The Redundancy indicates that the same piece of infor-
mation is conveyed by several modalities. Redundant modalities must also be used
simultaneously or sequentially within the same TW.

2.4 Operational Profiles

Operational profiles [9] provide information about the effective usage of an application.
In particular, they can be used to guide the test process. For the particular case of
interactive applications, operational profiles can be easily defined by assigning
occurrence probabilities to some of the described behaviors. In [6], the CTT notation
was extended with occurrence probabilities to make possible to specify operational
profiles.

2.5 Generating Test Data for IMA

Task trees are used in the design of interactive applications. To generate automatically
the test data from task trees, the task tree is translated into a probabilistic finite state
machine (PFSM).

It is assumed that the PFSM is simulated while the interactive application under test
is executed and that inputs and outputs are exchanged between them on-the-fly. During
the simulation, assuming the PFSM to be in a given state, an input is chosen according
to the probabilities of the outgoing transitions of this state. The chosen input is then
sent to the interactive application, the resulting application outputs are read and the next
state computed, and so on.

96 L.T. Long et al.

3 The Interactive Multimodal Application Memo

The interactive application “Memo” [6] makes it possible to annotate physical locations
with digital stickers (“post it”-like notes). Once a digital sticker has been set to a
physical location, it can be read/carried/removed by other users. A Memo user is
equipped with a GPS and a magnetometer enabling the application to compute his/her
location and orientation. S/he is also wearing a head mounted semi-transparent display
(HMD) enabling the fusion of computer data (the digital notes) with the real envi-
ronment. Memo provides three main tasks: (1) orientation and localization of the
mobile user, so that the application is able to display the visible notes according to the
current position and orientation of the mobile user (2) manipulation of a note (get, set
and remove a note) and (3) exiting the application. So, the mobile user can get a note
and carry it while moving. S/he can set a carried note to a specific place or delete a
visible or carried note.

Figure 1 shows an extended CTT for the Memo application (interaction tasks are
represented by), that is, operators are assigned probability values. To generate test
data, the task tree is translated into a PFSM (transitions are assigned probability values
consistent with the extended CTT). The PFSM is simulated while the interactive
application under test is executed and that inputs and outputs are exchanged between
them on-the-fly. It is thus possible to describe abstract interaction scenarios as task
trees, and observe the behavior of the interactive application under test. Figure 2 shows
a PFSM example for the Memo application.

Fig. 1. Example of Task Tree model.

Automatically Testing of Multimodal Interactive Applications 97

Figure 3 shows a fusion model for the Memo application.

4 Taking into Account Conditional Probabilities

The above presented approach uses several notations, inspired from existing modeling
languages, to build test models: a model of the application behavior (a task tree), a
model of the interactive tasks (FSM), operational profiles (annotations on the task tree),
and modality specifications. The variety of notations makes the modeling process hard.
Moreover, operational profiles cannot be defined using conditions (however, an
occurrence probability is often assigned to an event according to a condition).

In Table 1, we propose a new syntax and semantics to assign conditional proba-
bilities to CTT operators [4].

As an additional improvement to this work, we have proposed the test modeling
language TTT [4] to express:

– Scenarios for interactive applications.
– Conditional probability specifications for task trees.
– The “traces” of the user actions and read-only functions on these traces.
– Expected properties of the application.

Move/-0.45

µ/memoCarried 0.18

remove/

memoRemoved 0.18

remove/

memoRemoved 0.63

q

q3

q2

Move/-0.45

µ/memoCarried

0.18

sisµ/memoDisplayed

0.27

Displayed

0.27

get/memoTaken 0.72

set/memoSet0.27

q1

exit/-0.1

exit/-0.1

Turn/0.09

q4

exit/-0.1

q0

Fig. 2. FSM example for the Memo application.

Tasks (get, set, remove, move, turn, exit);
Modalities (Speech(get, set, remove),
Mouse(get, set, remove),
Keyboard(get, set, remove, move, turn, exit));
Equivalence ((Speech, Mouse, Keyboard),
(get, set, remove));
Assignment ((Keyboard), (move, turn, exit));

Fig. 3. Example of fusion model.

98 L.T. Long et al.

The conditional probability specifications for task trees must be defined in the test
model. This means that the TTT language is designed to allow the definition of vari-
ables, for example, Cond = (X > 5), where X is an application input or output variable.
Moreover, more complex conditions need to be expressed, for example, Cond = F
(parameter) > 5 where F is a function that can return a float value.

4.1 The TTT Language

A basic structure of a TTT model consists of a TESTCTT block and one or more
FUNCTIONs. TESTCTT is defined by a set of clauses and the general form of a
TESTCTT.

<tttmodel> ::= <testctt><function>+
<testctt> ::= <testctt_name><testctt_set>
<testctt_var><testctt_init><begin_end>
<testctt_name> ::= TESTCTT <name>
<testctt_set> ::= set <basic_type>+ ;
<testctt_var> ::= var<local_variable>+ ;
<testctt_init> ::= init<initial_state>+ ;
<begin_end> ::= begin <statement>+ end;
<function> ::= <function_name><function_var><begin_end>
<function_name> ::= FUNCTION <name> (<input>+) returns
(<output>);
<function_var> ::= var<local_variable>+;
<begin_end> ::= begin <statement>+ end;
<name> ::= <letter> | <name><letter> | <name><digit>
<letter> ::= ‘A’ | … |’Z’|’a’| … |’z’
<digit> ::= ‘0’ | … | ‘9’
<sut_output> ::= <name>

Table 1. CTT operators with conditional probabilities.

CTT operators Notations CTT operators with conditional probabilities

Choice T1[]T2 T1[](PA1,PB1|cond1),(PA2, PB2|cond2),…, (PAn,

PBn|condn),(PA0,PB0) T2

Independent concurrency T1|||T2 T1jjj(PA1,PB1|cond1),(PA2, PB2|cond2),…, (PAn,

PBn|condn),(PA0,PB0) T2

Concurrency with
information exchange

T1|[]|T2 T2|[]|(PA1,PB1|cond1),(PA2, PB2|cond2),…, (PAn,

PBn|condn),(PA0,PB0) T2

Order independence T1|=|T2 T2|=|(PA1,PB1|cond1),(PA2, PB2|cond2),…, (PAn,

PBn|condn),(PA0,PB0) T2

Deactivation T1[>T2 T1[>(PA1|cond1),(PA2|cond2),…, (PAn|condn),(PA0)T2

Suspend-resume T1|>T2 T1 |>(PA1|cond1),(PA2|cond2),…, (PAn|condn),(PA0) T2

Optional tasks [T] [T] (PA1|cond1),(PA2|cond2),…, (PAn|condn),(PA0)

Automatically Testing of Multimodal Interactive Applications 99

<sut_input> ::= <name>
<basic_type> ::= <boolean> | <interger> | <enumerated>
<local_variable> ::= <variable> : <basic_type>;
<variable> ::= <name> | <variable> , <name>
<initial_state> ::= <expression>
<basic_type> ::= char| short| int| long| float| bool

We define the syntax for describing the CTT operators, which take into account
conditional probabilities. The ctt_operators are used to create tasks from con-
ditional operational profiles where the selection of the program inputs is performed
with respect to probabilities specified by the testers.

<ctt_operator> ::= <choice> | <concurrency> |
<deact> | <sr> | <option> | <enabling> | <iteration> |
<fiteration>

We save all the past actions of the users and build functions on them. Functions are
intended to be part of the conditions. We use an SQL-like language to update and
search the data. We inherit and reduce the following SQL statements:

<sql_statement> ::= <create_table> | <alter_table> |
<drop_table> | <insert> | <delete> | <update>| <select>

4.2 Transformation Rules from CTT to Test Model by Using the TTT
Language

Interactive applications are often specified by using CTT. Thus, we propose the fol-
lowing transformation rules in order to map tasks from CTT into statements in TTT
language.

Rule 1. Interaction tasks in CTT are transformed into outputs of TESTCTT.
Rule 2. Application tasks in CTT are transformed into inputs of TESTCTT.
Rule 3. States in CTT are mapped into state variables of the TESTCTT. They are
declared in the VAR clause of TESTCTT.
Rule 4. Operators with conditional probabilities in CTT are represented as prede-
fined functions in TESTCTT.
Rule 5. Invariant properties of the application inputs are modeled with the INVAR
operator.

We summarize these transformation rules in Table 2.

100 L.T. Long et al.

5 Taking into Account Multimodality

While testing IMA, the number of input events may increase dramatically. Indeed, each
input can be produced in several modalities so the number of possible input event
combinations can be much bigger than in the case of single modalities. Moreover, the
fusion mechanism of IMA depends on temporal windows (TW) within which the user
event occurs. For example, when two modalities are used in a redundant way, the
resulting events must be combined only when they occur in the same TW.

The above observations suggest that there are two different issues when testing
IMA: (1) generating tests for multimodal events, (2) checking the validity of the CARE
properties. While the first issue is strictly related to test generation, the second one
should be part of a test oracle. In [5], we propose to extend the TTT language to deal
with both issues, as described in the following subsection.

5.1 Generating Tests for Multimodal Events

To simulate user behaviors for IMA, we use a test data generation technique based on
conditional operational profiles. We add the operator modalities to the TTT language to
generate tests for multimodal events. The syntax of modalities operator is the fol-
lowing:

<modalities>::=modalities (<expression-list>)

The tester can use modalities(EM1, EM2,…, EMn, p1, p2,…, pn, cond1, p11, p12,…,
p13, cond2, p21, p22,…, p23), where i 2 [1, n] EMi are events, pi are probabilities; condi
are conditions; and pi, j (i 2 [1, n], j 2 [1, n]) are conditional probabilities. The
semantics of this operator are expressed as follows:

Table 2. Transformation rules.

Rule CTT Test model

1 Interaction tasks Outputs
2 Application tasks Inputs
3 States State variables
4 Operators with conditional probabilities Predefined functions
5 Invariant properties INVAR operator

Automatically Testing of Multimodal Interactive Applications 101

Input:p1, p2,…, pn, cond1, p11,p12,…,p13, cond2, p21,p22,…,p23

Output: EM1, EM2,…,EMn
Method:

{ n is a random real number in [0,1]

n= rand(1)

if (Cond1== TRUE) {

if (n<= P11) EM1= 1 else EM1 = 0;

if (n<= P12) EM2= 1 else EM2 = 0;

…

if (n<= P1n) EMn= 1 else EMn= 0;

}

elseif (Cond2== TRUE) {

if (n<= P21) EM1= 1 else EM1 = 0;

if (n<= P22) EM2= 1 else EM2 = 0;

…

if (n<= P2n) EMn= 1 else EMn= 0;

}

else {

if (n<= P1) EM1= 1 else EM1 = 0;

if (n<= P2) EM2= 1 else EM2 = 0;

…

if (n<= Pn) EMn= 1 else EMn= 0;

}

}

Consider the following example:
Modalities(speech(Remove),mouse(Remove),keyboard(Remove),
0.5,0.5,0.5,note_nb() =0,0,0,0,note_nb()>=5,0.5,0.9,0.7);

The events Speech(remove), Mouse(remove) and Keyboard(remove) are generated
along probabilities 0.5, 0.5, 0.5 respectively. If there is no note, the user cannot remove
any note, so probabilities are 0, 0, 0. But if there are more than 5 notes, the user will use
other probabilities for these events. The events generated are presented in Table 3.

Table 3. Events are generated by Modalities operator.

Time sR mR kR Memo

1 0 0 0 …

2 0 0 0 Se
3 0 1 1 Tak

102 L.T. Long et al.

In Table 3, we use the abbreviation sR, mR and kR respectively for speech
(Remove), mouse(Remove) and keyboard(Remove). At time 1, there is no note in the
Memo, the user do not use any event. But at time 3 when a note is visible (Set
(Se) occurred in the previous step) the user takes it (Tak) by mouse(Remove) and
keyboard(Remove).

5.2 Checking the Validity of CARE Properties

Equivalence. Let M1, M2 be two modalities. Let EM1, EM2 be two expressions along
M1, M2 respectively. Two modalities M1, M2 are equivalent with respect to task T, if
every task t 2 T can be activated by EM1 or EM2. Equivalence admits a single input
event to be propagated. We add the operator TestEquivalence(EM1, EM2, T, tw) into
TTT language to check the validity of the Equivalence property.
The syntax of TestEquivalence operator is the following:

<TestEquivalence> :: = TestEquivalence(<expr>,<expr>,<expr>,<expr>)
The testers can use TestEquivalence(EM1, EM2, T, tw) and the meaning of this

operator is expressed as follows:

Input: EM1, EM2, TW, T.

Output: The Equivalence of two events EM1, EM2.

Method:

1.begin

2. T1 <- select distinct Tout from U_ACTIONS

where EM1= EM1 and time between(now()–tw)and now();
3. T2 <- select distinct Tout from U_ACTIONS

where EM2 = EM2 and time between(now()-tw)and now();
4. if ((T == T1) and (T ==T2))

5. IsEquivalence= True

6. else

7. begin

8. output(“EM1 and EM2 are not equivalent”);

9. stop program;

10.end

11.end

T1 and T2 are two tasks corresponding to two events E1 and E2 in U_ACTIONS
table (lines 2, 3). If task T1 is different from task T2, events E1 and E2 are not equivalent
(line 8). The program under test will be stopped (line 9).

Table 4 shows an extract example of the execution trace, the result of TestEquiv-
alence(speech, mouse, get, 7).

It can be observed that when the user does speech(get), Tout is equal to “get” in
time 1. When the user uses the mouse to choose “get” (mouse(get)), Tout is equal
to“get” in time 3. So event speech(get) is equivalent to event mouse(get).

Automatically Testing of Multimodal Interactive Applications 103

Redundancy-Equivalence. If there are several input events, redundancy requires the
fusion process to choose one event among those of all the available modalities.
Equivalence admits a single input event to be propagated. The
Redundancy-Equivalence input events which are temporally close are merged and the
associated output task is enabled as soon as the required inputs have been identified.
The occurrence of one event of every modality in the current TW is enough to enable
the output task. It is possible that several events of the same modality occur in this
window. In that case, the task is computed according to the last event of each modality.

We add operator TestRedundant_EquivalenceEarly into TTT to test the
Redundancy-Equivalence of two events EM1 and EM2 in early fusion strategies. The
syntax of TestRedundant_EquivalenceEarly operator is the following:

<testRE>::= TestRedundant_EquivalenceEarly
(<expr>,<expr>,<expr>,<expr>)

The testers can use TestRedundant_EquivalenceEarly(EM1, EM2, TaskTM1M2, tw)
and the semantics of this operator are as follows:

Input: EM1, EM2, TaskTM1M2, tw
Output: The Redundancy-Equivalence of two events EM1,
EM2.
Method:
1.begin
2.T_out<- select distinct Tout from U_ACTIONS

where((EM1 = EM1)or (EM2 =EM2))and
(time between(now() – tw)and now())

3.T_out_nb<- select count(Tout) from U_ACTIONS
where((EM1 = EM1)or(EM2 = EM2))and
(time between(now() – tw)and now())

4.if((Tout_nb==1)and(T_out==taskTM1M2))then
5. output (“EM1 and EM2 are redundant -equivalent”);
6.else
7.begin
8. output (“EM1, EM2 are not redundant-equivalent”);
9. stop program;
10.end
11.end

Table 4. The result of Test Equivalence.

Time Speech(get) Mouse(get) Tout TestEquivalence

1 1 get
2 Speech(get)=Mouse(get)
3 1 get

104 L.T. Long et al.

T_out is the task that is generated in TW. Tout_nb is the number of tasks generated
from the event EM1 or EM2 (line 3). The Redundancy-Equivalence property of two
events EM1 and EM2 is tested by condition (line 4): ((Tout_nb == 1) and (T_out =
taskTM1M2)). If there is only one task generated in TW and T_out is the taskTM1M2,
EM1 and EM2 are Redundant-Equivalent. Table 5 shows an extract of the execution
trace resulting from TestRedundant_EquivalenceEarly (Speech_T, Mouse_T,
TaskTM1M2, 5) with Tw = 5.

Complementarity(C). Let M1, M2 be two modalities. Let EM1, EM2 be two expres-
sions along M1, M2 respectively. Two modalities M1, M2 are complementary with
respect to a set of Tasks T, if every task t 2 T can be activated by EM1 and EM2…EM1

and EM2 must occur in the same TW, i.e. Abs((time(EM1) – time(EM2)) < TW.
The complementary input events which are temporally close are merged and the

associated output task is enabled as soon as the required inputs have been identified.
The occurrence of one event of every modality in the current TW is enough to enable
the output task. It is possible that several events of the same modality occur in this
window. In that case, the task is computed according to the last event of each modality.

We add operator TestcomplementaryEarly (EM1, EM2, TaskTM1M2, tw) into TTT
language to test the complementary of two events EM1 and EM2. The syntax of Test-
complementaryEarly operator is the following:

<testcom>::=TestcomplementaryEarly(<expr>,<expr>,<expr>,<
expr>)

The testers can use TestcomplementaryEarly (EM1, EM2,TaskTM1M2, tw) and the
behavior of this operator is as follows:

Table 5. The result of Test Redundant_EquivalenceEarly.

Time EM1 EM2 Tout TESTRedundantEquivalenceEarly

1 Speech_Task 1 Task
2 Mouse_Task Speech_Task, Mouse_Task are

Redundant-Equivalent
3 Speech_Task
4 Speech_Task
5 Mouse_Task

Automatically Testing of Multimodal Interactive Applications 105

Input: EM1, EM2, TW, T.
Output: The complementarity of two events EM1, EM2.
Method:
1.begin
2.EM1_out<- select top 1 EM1 from U_ACTIONS

where(time between (now()–tw) and now ())
order by time desc

3.EM2_out <- select top 1 EM2 from U_ACTIONS
where(time between (now()–tw) and now ())
order by time desc

4.T_out <- select distinct Tout from U_ACTIONS
5.if ((EM1== EM1_out) and (EM2 == EM2_out)
and(T_out ==taskTM1M2))then
6. output (“EM1 and EM2 are complementary”);
7.else
8. begin
9. output (“EM1 and EM2 are complementary”);
10. stop program;
11. end
12.end

EM1_out and EM2_out are the last events occurred in the TW. T_out is the task
occurred in the TW. The Complementarity of two events EM1 and EM2 is tested by
condition (line 5): ((EM1 == EM1_out) and (EM2 == EM2_out)and(T_out == task)). If
EM1 and EM2 are last events in TW and Tout is the taskTM1M2 then EM1 and EM2 are
complementary. Table 6 shows an extract example of the execution trace resulting
from TestComplementaryEarly (Speech_T1, Mouse_T2, Task12, 5) with TW = 5.

6 Test Execution Environment

For the purpose of testing interactive applications, we propose the test environment,
called TTTEST (TTT-based Test), in Fig. 4.

Table 6. The result of Test Complementary Early.

Time EM1 EM2 Tout TestComplementaryEarly

1 Speech_T1
2 Mouse_T2 Speech_T1, Mouse_T2 are complememtary
3 Speech_T1
4 Speech_T1
5 Mouse_T2 TaskT12

106 L.T. Long et al.

The TTTEST testing environment consists of four basic components: TESTCTT
model specified by TTT language, C program translated from TESTCTT models,
interactive multimodal application under test, traces of the action user. The TTTEST
environment activities are described as follows:
Step 1: The TESTCTT model is translated into a C program which is executed.
Step 2: The C program produces output data X from its internal state.
Step 3: Output X is translated into input data for IMA.
Step 4: IMA receives and processes input X and generates output Y.
Step 5: Program C receives Y as input data, updates internal state variable of the

model and returns to Step 2.

A TESTCTT model is specified with TTT language. We translate a TESTCTT
model into a C program which implements the corresponding test generator. The
details of the translation are presented as follows.

6.1 Translation from TTT into C

TESTCTT model is specified by TTT language. However, instead of implementing a
test generator based on TTT, we translate TESTCTT model into C program so that C
program can be compiled in order to generate test data. To do the translation, we have
built the TTTEST tool that support feature translate. Translation is a component of the
environment TTTEST (Fig. 4). TESTCTT model is translated into C program, which
can be executed by compiler C to generate test data. The translation from TTT into C
language has four problems as follows.

The first problem is lexical substitutions. Keywords in TTT are replaced by cor-
responding C operators. In addition, the TTT keywords set, function, var, init are
replaced with the null string.

The second problem of translation involves syntactic transformations. Certain
constructs in TTT have equivalent constructs in C, but with differing orders of the
tokens.

The third problem is translating the CTT operators and functions of TTT into
equivalent C functions. These “higher-level” CTT operators constructs in TTT which
must be translated down into lower-level constructs in C.

Output

Input

IMATestCTT

Model

C program
Translation

Trace of user actions

Fig. 4. The TTTEST testing environment.

Automatically Testing of Multimodal Interactive Applications 107

The final problem of the translation is the creation of the database connecting
environment for the newly converted C program. Then we translate insert,
update, delete, select statements from TTT language to C program.

6.2 Automatic Translation Solution

To implement the translation from the model TESTCTT into a C program, we use two
tools Lex and Yacc. The automatic translation from TESTCTT model into C program is
presented as Fig. 5.

Lex generates C code for a lexical analyzer, or scanner. It uses patterns that match
strings in the input and converts the strings to tokens. Tokens are numerical repre-
sentations of strings, and simplify processing. As Lex finds identifiers in the input
stream, it enters them in a symbol table. The symbol table may also contain other
information such as data type and location of the variable in memory.

The first phase in a compiler reads the input source and converts strings in the
source to tokens. Using regular expressions, we can specify patterns to Lex that allow it
to scan and match strings in the input. To identify the token, the lexical analyzer
developed for each token a translation diagram. A translation diagram including states
and denoted by circles connected the arrow next to the states. There are many trans-
lation diagrams, each diagram specifies a token group. If a translation diagram fails, the
lexical analyzer translated back pointer to the initial state of this diagram, then activate
the next translation diagram. If there is a failure in all the service diagram as a lexical
error was detected.

Yacc generates C code for a syntax analyzer, or parser. Yacc uses grammar rules
that allow it to analyze tokens from Lex and create a syntax tree. A syntax tree imposes
a hierarchical structure on tokens. Yacc uses two stacks in memory: symbol stack and
values stack. Symbol stack contains the terminal symbols and nonterminal symbols,
perform analyzes current status. Value stack contains the corresponding values of the
symbols in the symbol stack. To parse an expression, it needs to do the reverse
operation. Instead of starting with a single nonterminal (start symbol) and generating an

TESTCTT Model

SyntacticAnalysisµ/ memo-Displayed

Lex

Yacc

C code Generation exit/-0.1

Lexical Analysisµ/ memoDisplayed

Fig. 5. Transforming TESTCTT model into C program.

108 L.T. Long et al.

expression from a grammar, it needs to reduce an expression to a single nonterminal.
This is known as bottom-upor shift-reduce parsing, and uses a stack for storing terms.

The next step, code generation, does a depth-first walk of the syntax tree to generate
code. Figure 6 illustrates the file naming conventions used by Lex and Yacc. First, we
need to specify all pattern matching rules for Lex and grammar rules for Yacc. To do
that, we wrote a TTT.l for lex and a TTT.y for yacc.

7 Testing the Memo Application

The TESTCTT model of Memo is built through four steps: (1) selecting a test target;
(2) designing notations of activity in the model; (3) designing the state variables and
selecting data types for variables; (4) writing test scripts for each activity. Figure 7
presents a part of this test model.

Based on the tool described in Sect. 4.2, TESTCTT model is transformed into a
program written in C. After the translation is completed, then C program is executed to
generate test data.

Table 7 shows an extract of the execution trace and the result of TestEquivalence
(lines 40).

Table 8 shows an extract of the execution trace and the result of TestRedun-
dantEquivalenceEarly (lines 41).

The test data in Table 7 is suitable to testing the equivalence properties of Memo
application. The result Speech(get) = Mouse(get) means Speech(get) and
Mouse(get) are equivalent. The test data in Table 8 is suitable to testing the
Redundant-Equivalence properties of Memo application. For instance, when the user
moves and a note appears on Memo M_Displayed (line 1). TESTCTT model
generates input data Speech_get (choice between get or remove in the state q2).
In lines (2, 3, 4) because of the redundancy mode, the user actions Speech_get,
Mouse_get are sent through the Memo causing only one action Get and Memore-
turns output M_Taken (line 2). TESTCTT model calculates and determines the

TTT.y

TTT.l

TESTCTT

y.tab.h

Yacc

Lex

C program

Lex.y

y.tab.c

gcc trans.exe

Fig. 6. Translating TESTCTT to C program with Lex/Yacc.

Automatically Testing of Multimodal Interactive Applications 109

1. TESTCTT Memo;
2. VAR
3. q0, q1, q2, q3, q4 : bool;
4. T, Tout: char;
5. tw : integer;
6. begin
7. INIT (Tout=’D’)
8. do
9. begin
10. q0=(Tout<>'D' and Tout <> 'C' and T <>'o');
11. q1=(T=='o')or(Tout=='G'and T =='g') or (Tout=='R'and T=='r')or(Tout=='S'and

T=='s');
12. q2 = (Tout=='D');
13. q3 = (Tout=='C');
14. if (q0)
15. begin
16. T = Choice(‘o’,’’,0.5, note_nb()=0,1,note_nb()>=5,0.1);
17. insert into U_ACTIONS(input) values(T);
18. end
19. if (q1)
20. begin
21. T = Choice((‘o’ ,’’,0.5, note_nb()=0,1,note_nb()>=5,0.1);
22. insert into U_ACTIONS(input) values(T);
23. end
24. if (q2)
25. begin
26. T = choice('g' ,'r',0.8,note_nb()=0, 1, note_nb()>=5,0.1);
27. if T =’g’
28. begin
29. tw=1;
30. do
31. begin
32. Modalities(Speech_get,Mouse_get,0.3,0.7,note_nb()=0,0,0,note_nb()>=5,0.2,0.8);
33. Tout = call_Memo(T);
34. Insert into U_ACTIONS(M1,M2,input,output)values(Speech_get,Mouse_get,T,Tout);
35. Tw =tw+1;
36. end
37. while (tw<=3)
38. TestRedundantEquivalenceEarly(Speech, Mouse, get, 3)
39. end
40. else
41. begin
42. Tw=1;
43. do
44. begin
45. Modalities(Speech_remove,Mouse_remove,0.8,0.9,note_nb()=0,0,0,
46. note_nb()>=5,0.9,0.7);
47. Tout = call_Memo(T);
48. insert into U_ACTIONS(M1,M2,input,ouput)
49. values(Speech_remove,Mouse_remove,T,Tout);
50. Tw=tw+1;
51. end
52. while (tw<=3);
53. TestRedundantEquivalenceEarly(Speech, Mouse, remove, 3);
54. end;
55. while (T<>’E’);
56. end
57. FUNCTION note_nb() returns (note_nb: int);
58. Varget_nb, remove_nb :int;
59. begin
60. get_nb= select count(*) from U_ACTIONS where input =”g”;
61. remove_nb= select count(*) from U_ACTIONS where input =”r”;
62. note_nb= get_nb- remove_nb
63. end

Fig. 7. The test model for Memo in TTT.

110 L.T. Long et al.

application is in state q1. In state q1, TESTCTT model generates input data move
(choice between move or “-” in the state q1). When the user moves, a note appears on
the Memo (M_Display) (line 5). The user removes this note (lines 6, 7). The user
actions Speech_remove, Mouse_remove are sent through the Memo causing two
actions Remove and Memo returns two outputs M_Remove. So Mouse_remove,
Speech_remove are not Redundant-Equivalence, therefore the C program stops the
Memo application and displays a message “Mouse_remove and Speech_remove
are not Redundant-Equivalence”.

8 Conclusion

Interactive multimodal applications are intuitive, natural, efficient, and robust. The
flexibility and robustness of multimodal applications are increasing the complexity of
the design, development and testing. Based on previous work, we have built a new
modeling language TTT to test interactive applications and we have extended it to deal
with multimodal applications. More precisely, TTT supports automatic test data gen-
eration for IMA as well as test oracles checking for CARE properties validity. We built
the prototype TTTEST tool and conducted a first experiment on the memo application.

As future work, we plan to conduct more extensive experimental studies on other
IMA.

Table 7. The result of TestEquivalence.

Time EM1 EM2 Tout TestEquivalence

1 Speech(get) get
2
3 Mouse(get) get Speech(get)=Mouse(get)

Table 8. An extract of the execution trace and the result of TestRedundantEquivalenceEarly.

Time EM1 EM2 TM1M2 Output

1 Move M_Displayed
2 Speech_get Get M_Taken
3 Mouse_get
4 Mouse_get
5 Move M_Display
6 Speech_remove Remove M_Remove
7 Mouse_remove Remove M_Remove

Automatically Testing of Multimodal Interactive Applications 111

References

1. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.M.: Four easy pieces for
assessing the usability of multimodal interaction: the care properties. In: INTERACT,
pp. 115–120. Chapman & Hall (1995)

2. Duke, D.J., Harrison, M.D.: Abstract interaction objects. Comput. Graph. Forum 12(3), 25–
36 (1993)

3. Paternò, F., Faconti, G.: On the use of LOTOS to describe graphical interaction. In: HCI
1992: Proceedings of the Conference on People and Computers VII, pp. 155–173.
Cambridge University Press, New York (1993)

4. Le, T.L., Nguyen, T.B., Parissis, I.: A new test modeling language for interactive
applications based on task trees. In: Proceedings of the 4th International Symposium on
Information and Communication Technology, pp. 285–293 (2013)

5. Le, T.L., Binh, N.T., Parissis, I.: Testing Multimodal Interactive Applications By Means of
The TTT Language, Domain Specific Model-Based Approaches To Verification And
Validation - Amaretto 2016. In: Conjunction with the 4th International Conference on
Model-Driven Engineering and Software Development - MODELSWARD 2016, Rome,
Italy, 19 February 2016

6. Madani, L., Parissis, I.: Automatically testing interactive applications using extendedtask
trees. J. Log. Algebr. Program. 78(6), 454–471 (2009)

7. Madani, L., Oriat, C., Parissis, I., Bouchet, J., Nigay, L.: Synchronous testing of multimodal
systems: an operational profile-based approach. In: 16th International Symposium on
Software Reliability Engineering (ISSRE 2005), Chicago, IL, USA, pp. 325–334, 8–11
November 2005

8. Madani, L., Parissis, I.: Automatically testing interactive multimodal systems using task
trees and fusion models. In: 6th International Workshop on Automation of Software Test
(AST 2011), Hawai, USA (2011)

9. Musa, J.: Operational profiles in software-reliability engineering. IEEE Softw. 10, 14–32
(1993)

10. Palanque, P., Bastide, R.: Verification of interactive software by analysis of its formal
specification. In: INTERACT 1995, Norway (1995)

11. Shehady, R.K., Siewiorek, D.P.: A method to automate user interface testing using variable
finite state machines. In: FTCS 1997: Proceedings of the 27th International Symposium on
Fault-Tolerant Computing (FTCS 1997), p. 80, Washington, DC, USA. IEEE Computer
Society (1997)

12. Aıt-Ameur, Y., Kamel, N.: A generic formal specification of fusion of modalities in a
multimodal HCI. In: Jacquart, R., (ed.) IFIP Congress Topical Sessions, pp. 415–420.
Kluwer (2004)

13. TerBeek, M.H., Faconti, G.P., Massink, M., Palanque, P.A., Winckler, M.: Resilience of
interaction techniques to interrupts: a formal model-based approach. In: Gross, T., Gulliksen,
J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, ROliveira, Winckler, M. (eds.)
INTERACT 2009, Part I. LNCS, vol. 5726, pp. 494–509. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03655-2_56

14. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: a diagrammatic notation for
specifying task models. In: Howard, S., Hammond, J., Lindgaard, G. (eds.) Proceedings of
the 6th IFIP TC 13 International Conference on Human-Computer Interaction (INTERACT
1997), Sydney, Australia, pp. 362–369. Chapman & Hall, Boca Raton (1997)

112 L.T. Long et al.

http://dx.doi.org/10.1007/978-3-642-03655-2_56

15. Palanque, P., Winckler, M., Ladry, J.-F., TerBeek, M.H., Faconti, G., Massink, M.: A formal
approach supporting the comparative predictive assessment of the interruption-tolerance of
interactive systems. In: Calvary, G., Graham, T.C.N., Gray, P. (eds.) Proceedings of the
ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2009),
Pittsburgh, PA, USA, pp. 211–220. ACM Press (2009)

16. Kamel, N., AïtAmeur, Y., Selouani, S.-A., Hamam, H.: A formal model to handle the
adaptability of multimodal user interfaces. In: Liang, B., Whitaker, R.M. (eds.) Proceedings
of the 1st International ICST Conference on Ambient Media and Systems (AMBI-SYS
2008), Quebec, Canada (2008)

17. Mohand-Oussaïd, L., Aït-Sadoune, I., AïtAmeur, Y., Ahmed-Nacer, M.: A formal model for
output multimodal HCI - an Event-B formalization. Computing 97, 713–740 (2015)

Automatically Testing of Multimodal Interactive Applications 113

Automated Web Service Composition
Testing as a Service

Dessislava Petrova-Antonova1(&), Sylvia Ilieva1,2,
and Denitsa Manova3

1 Sofia University, Sofia, Bulgaria
d.petrova@fmi.uni-sofia.bg, sylvia@acad.bg

2 IICT-BAS, Sofia, Bulgaria
3 Rila Solutions, Sofia, Bulgaria

denitsat@rila.bg

Abstract. Cloud computing brings new business opportunities and services on
infrastructure, platform and software level. It provides a new way for testing
software applications known as Testing-as-a-Service (TaaS). TaaS eliminates
the need of installing and maintaining testing environments on customer’s side
and reduces the testing cost on pay-per-use basis. Availability of on-demand
testing services allows testers to provide raw cloud resources at run time, when
and where needed. This paper addresses TaaS benefits by proposing a
TaaS-enabled framework offering cloud-based testing services. The framework,
called Testing as a Service Software Architecture (TASSA), supports testing of
web service compositions described with Business Process Execution Language
for Web Services (WS-BPEL). It consists of two main components: (1) TaaS
functionality for fault injection and dependencies isolation of the application
under test and (2) Graphical User Interface (GUI) for test case design and
execution. TASSA framework could be installed on a local computer or used for
building a cloud test lab on a virtual machine. Its feasibility is proved through a
case study on a sample business process from wine industry.

Keywords: Cloud computing � Service-oriented architecture �
Testing-as-a-Service � Web services � Web service compositions � WS-BPEL

1 Introduction

Nowadays, the cloud computing is one of the hot topics in software development. It
provides a new way for building software applications known also as Software-as-a-
Service (SaaS). The challenges and business opportunities that cloud computing brings
affect all activities of software engineering, including software testing. A new
on-demand testing model, called Testing-as-a-Service (TaaS) became available.

In general, the software testing faces various difficulties due to lack of time and
testing experience, limited resources and unclearly defined requirements and testing
criteria. But, the most significant difficulties could appear before beginning of the
testing itself. The missing access to the hardware, different software configurations or
building a test environment are examples of common problems surrounding the testing

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 114–131, 2017.
DOI: 10.1007/978-3-319-66302-9_6

process of SaaS. However, with the emergence of cloud computing, the software
testing gains new benefits represented by the TaaS:

• Access to virtual environments providing a variety software and hardware
configurations;

• Possibility for deployment and/or usage different testing environments;
• Availability of on-demand testing services allowing testers to provide raw cloud

resources at run time, when and where needed;
• Availability of multi-tenant testing services following given QoS requirements and

Service Level Agreements (SLAs);
• Reduced cost of testing due to pay-per-use basis of testing services.

Following the current trends in software testing provided by TaaS, this paper
proposes a methodology for testing web service compositions that can be applied in a
cloud environment. It is implemented in a framework, called Testing as a Service
Software Architecture (TASSA). The last three TaaS benefits listed above are available
in TASSA framework by implementation of its core functionality as cloud-based
testing services.

Testing web service compositions is a challenging task, since their implementation
follows the Service-Oriented Architecture (SOA). Although many research efforts are
focused on SOA testing in the past few years, the following difficulties still remain
unsolved:

• Distributed and Heterogeneous Nature of SOA Applications. Implementation of
SOA applications requires composition of web services that are built and deployed
on heterogeneous platforms. These web services are outside organization bound-
aries and are hard to be tested since they are owned by different stakeholders.
Furthermore, they could be unavailable for a given period of time or in the worst
case could be undeployed by their provider. This in turn complicates the testing due
to the needof emulation of the missing or unavailable web services. TASSA
framework addresses it through support of dependency isolation and fault injection
of software under test from external web services.

• Lack of Knowledge about Testing Artefacts. When testing traditional applica-
tions the testers rely heavily on their GUIs. However, SOA testers miss such
convenience since the web services expose programming interfaces defined with
Web Service Description Language (WSDL). In addition, they do not have access
to the design documents and source code of the integrated software components,
which often decreases the testing efficiency. Again, dependency isolation func-
tionality of TASSA framework addresses this challenge.

• Difficulties to Reproduce Testing Environments. Typically, SOA solutions inte-
grate products from different vendors following complex technical specifications and
standards. That is why, it is difficult to test all software configurations and varying
load on SOA infrastructure and underlying network. Thus, high technical compe-
tence is required from the testers and more attention on performance, robustness and
security testing is needed. The Graphical User Interface (GUI) of TASSA framework
is fully integrated with Eclipse Integrated Development Environment (IDE). Thus,
end-to-end testing environment for web service compositions provided.

Automated Web Service Composition Testing as a Service 115

• Lack of Full Automation. Although various approaches and tools for web service
composition testing have been proposed, most of them provide partial solutions
covering single testing activities such as test path analysis, test case generation, web
service emulation, fault injection, etc. However, in order to perform efficient testing,
it is important to integrate all testing activities in a common testing environment,
which is the TASSA framework case.

TASSA framework provides end-to-end testing environment for web service
compositions, described with Business Process Execution Language for Web Services
(WS-BPEL) that takes the benefits of the TaaS model. It consists of two main
components:

• Graphical User Interface (GUI) for test case specification and execution that is
available as a plugin for Eclipse IDE;

• TaaS functionality for fault injection and dependencies isolation that is available as
web services deployed on a cloud infrastructure.

The rest of the papers is organized as follows. Section 2 outlines the related work.
Section 3 is devoted to TASSA methodology for testing web service compositions. The
architecture of TASSA framework is described in Sect. 4. Section 5 presents the
implementation of the TaaS functionality for fault injection and dependencies isolation.
Section 6 describes a case study of testing sample business process with TASSA
framework as a proof of concept. Section 7 concludes the paper and gives directions
for future work.

2 Related Work

The related work, presented in this section, covers approaches and frameworks fol-
lowing the TaaS concept.

An extensive overview of recently proposed approaches and tools for functional,
structural and security testing of web services is presented in [16]. The authors of [17]
survey the current solutions for testing web service compositions. Themost work in these
surveys are focused on web service signatures, namely WSDL descriptions [18–23].
However, WSDL interface does not provide a semantic information for web services and
a behavioral description of them, which is important when testing web service orches-
trations. In contrast, TASSA framework is focused on testing of web service composi-
tions, described with WS-BPEL. This approach of SOA testing is adopted by several
works. In order to perform control and data flow testing, the authors of [24] propose the
use of model checkers for test cases generation from BPEL descriptions. Other
approaches [25, 26, 28, 29] focus on analysis of test paths derived from graph models
representing the composition specification. In this direction, [26] propose a graph-search
based approach transforming the BPEL into an extension of a control flow graph and
generating test data for each path by using constraint solvers. Other approaches, e.g. [27],
propose online testing algorithms for web services composition using BPEL.

Currently, the TaaS benefits focus the attention of both industry and academic
communities on building cloud-based solutions for software testing. Recently, a

116 D. Petrova-Antonova et al.

considerable number of definitions for TaaS were proposed. Each of them emphasizes
on different TaaS perspectives. According to [1] TaaS implies two ideas: first, pro-
viding software testing as a web service that is competitive and easily accessible, and
second, performing automated testing using the huge, elastic resources of cloud
infrastructure. TaaS is viewed as a cloud-based service that automates the software
testing in [2]. The migration of software testing to the cloud is presented from the
following points of view – the characteristics of the software under test and the type of
testing performed on the software. As pointed in [3] TaaS is “a new model to provide
testing capabilities to end users”. A more thorough definition of TaaS is provided in
[4]. On one hand, TaaS is explained as a service model for software testing available
on-demand. On the other hand, TaaS is described as a new business model for software
testing providing cost-sharing and cost-reduction due to its pay-as-you-test abilities.

A framework of TaaS as a new model to improve the efficiency of software testing
is proposed in [5]. It consists of four layers: Test Service Tenant and Contribution layer,
Testing Service Bus layer, Testing Service Composite layer, and Testing Service Pool
layer. The idea of the framework is similar to the one of Universal Description Dis-
covery and Integration (UDDI) registry. Its main functionality includes registering,
matching, reasoning, classifying and scheduling of testing services in order to provide
TaaS-based service compositions to the end users. The authors of [30] apply similar
approach by proposing a framework for collaborative testing of web services. The
framework uses various test services that interoperate to complete the testing tasks.
They are registered, discovered, and invoked at runtime in order to achieve testing
on-the-fly with a high degree of automation. Prescriptions for implementation of TaaS
strategy by the software organizations are introduced in [6].

Although there are a number of recently published research papers addressing TaaS
issues, challenges, and needs, there is a very few published papers focusing on web
service composition testing. In [7] requirements for web service load testing are
identified and a WS-TaaS platform for such type of testing is pro-posed. The platform
is based on an existing Cloud PaaS platform, called Ser-vice4All. Unfortunately, it
does not support testing of web service compositions and its functionality is limited to
that provided by the Apache JMeter [8]. A cloud platform for testing Service-Oriented
Architecture (SOA) orchestrations, called MIDAS, is proposed in [9]. The MIDAS
platform adopts SOA paradigm, so all its functionality is exposed as services deployed
on a cloud infrastructure. The supported types of testing are functional testing, security
testing and usage-based testing. A limitation of the MIDAS platform is that it allows
testing of service interactions with SOAP messages. The test methods require speci-
fication of input models using UML-based language, called MIDAS DSL. This is a
drawback of the MIDAS platform, since usually the SOA orchestrations are described
with languages such as WS-BPEL, Business Process Modelling Notation (BPMN) and
Windows Workflow Foundation (WWF).

There are several cloud-based commercial platforms on the market providing TaaS.
SOASTA CloudTest [10] and IBM Rational Performance Tester [12] are solutions for
load and performance testing. Sauce Labs is a platform for testing mobile and web
applications [11]. It allows testers to create test manually or using Appium, Selenium or
JavaScript unit. Oracle provides a platform covering the testing process end-to-
end [13]. It automates the provisioning of so called test labs, which includes the

Automated Web Service Composition Testing as a Service 117

application under test and the software tools for functional and load testing. The most
powerful solution for cloud testing is provided by Parasoft [14]. Their testing platform
is designed to support functional, performance, load and security testing of all the
protocols and technologies that make cloud-based applications possible (HTTP/S, JMS,
MQ, ESB, PoX, JDBC, RMI, Tibco, SMTP, .NET WCF, SOAP/WSDL, REST/
WADL, etc.). In addition, the behavior of dependent applications (third-party services,
mainframes, database, etc.) can be emulated using Parasoft’s service virtualization.

The commercial cloud-based solutions presented above are focused on building test
labs mainly by installing the currently provided testing tools on cloud infrastructure.
Most of them do not provide support for testing of web service compositions, which is
the main purpose of TASSA framework. In addition, TASSA framework follows SOA
paradigm similar to MIDAS platform and exposes its core functionality as a web
services deployed on the cloud. Its GUI could be accessed from a local computer or
used for building a cloud test lab on a virtual machine.

3 TASSA Methodology

TASSA methodology covers the following testing activities: (1) test template design,
(2) test case generation, and (3) test case execution. Figure 1 shows the execution
sequence of the methodology’s steps as follows:

(1) Selection of business process to be tested.
(2) Selection of test strategy that determines how test scenarios should be generated in

order to satisfy given reliability or coverage goal.
(3) Selection of test scenario.
(4) Identification of process variables and constants, which affect the execution of

selected scenario.
(5) Design of test template for the scenario.
(6) Generation of test cases from the test template

(6:1) Specification of test input containing values that satisfy the execution of the
business process according to the selected scenario and are consistent with
the data types defined in its XSD schema.

(6:2) Specification of expected test output that will be used for test verdict.
(6:3) Definition of test assertions.

(7) Execution of the test cases.
(8) Collection and assessment of test results.
(9) Test analysis and follow-up.

Some of the partner web services of the process under test could be unavailable for a
given period of time or under development. Also their execution in testing envi-
ronment could require additional payments to their providers. In such situations the
proposed methodology suggests simulation of the missing or unavailable web
service behavior through execution of the following additional steps within step 5:

(5:1) Identification of the invoke activities that correspond to the partner web
services that should be isolated.

118 D. Petrova-Antonova et al.

(5:2) Generation of appropriate data, which will replace the actual responses
expected from the partner web services.

(5:3) Generation of version of the original business process in which the depen-
dencies from the partner web services are removed.

If reliability or robustness testing should be performed the following additional
steps should be executed within step 5:

(5:1) Specification of faults that will be injected in the business process in order to
simulate unexpected behavior.

(5:2) Generation of version of the original business process with injected faults
specified on the previous step.

Selection of
Business process

Specification of Test
output

Definition of Test goal
and selection of

Test strategy

Selection of
Test scenario

Identification of
process variables and

constants

Design of
Test templates

Specification of
Test input

Definition of
Test assertions

Generation of
Test cases

Execution of
Test cases

Assessment of
Test results

Test analysis and
Follow-up

Identification of
Invoke activities of

isolated web services

Generation of
Message data for isolat-

ed web services

Transformation of
Original business

process

Specification of
Faults for injection

Test goal
achieved?

End

yes

no

Fig. 1. TASSA methodology.

Automated Web Service Composition Testing as a Service 119

4 Architecture of TASSA Framework

TASSA is a cloud-based framework for testing web services orchestrations, described
with WS-BPEL. It reduces the testing effort by providing functionality for automation
and tracing of testing steps performed during test project lifecycle.

The high level architecture of TASSA framework is presented in Fig. 2. It consists
of two main components:

• GUI for test case specification and execution;
• TaaS functionality for fault injection and dependencies isolation.

The GUI provides functionality that is separated in three layers: Test template
design; Test case generation; and Test case execution. It is implemented as a plugin for
Eclipse IDE.

At test template design layer a version of the business process under test, called
template, is created by transformations over original *.bpel file. Following TASSA
methodology two types of transformations are supported: Isolation of activity and Fault
injection. The isolation is performed through invocation of appropriate operation of
Simulate web service, while the fault injection is provided by the ProxyInvoke web
service. The deployment model of TASSA framework is shown in Fig. 3.

TASSA GUI
Test templates design Test case generation Test case execution

TaaS functionality

Fault injection

Dependencies isolation

Test Input
Specification

Test Output
Specification

Test Assertions
Specification

Execution Set
Generation

Test Results
Exploration

Fig. 2. Architecture of TASSA framework.

Eclipse IDE

TASSA GUI

BPEL Designer

Dependencies isolationFault injection

TaaS

TASSA Test Client Non-TASSA Test Client

Simulate
WS

Proxy Invoke
WS

Fig. 3. Deployment model of TASSA framework.

120 D. Petrova-Antonova et al.

The Simulate and ProxyInvoke web services are deployed on an application server
using Amazon EC2. Thus, the time to obtain and boot a new server instances is reduced
allowing capacity to be scaled quickly as the computing requirements change [15].

When a new test project is created a default read only template, called Original, is
generated. It holds the original *.bpel file and all files from which its deployment and
execution depend on. It can be used as a base for creation of new test templates or test
cases. When a new test template is created, a folder structure is associated with it. It
contains the following items:

• Dependencies folder, which contains all files the business process’s deployment
and execution depend on.

• deploy.xml file, which is the deployment descriptor for the Apache ODE Server;
• *.tm file, which represents the created test template and describes the actions, called

steps, that are applied to the business process;
• *.bpel file, which corresponds to a transformed business process that will be used

during test execution.

At the next layer, the test cases are generated automatically from the test templates.
The test assertions can be specified manually by the tester in two ways:

• Defining an XPath expression over a particular business process’s variable that will
be evaluated during test case execution;

• Directly editing fields of particular business process’s variable using provided XML
editor.

The test assertions are useful in order to validate the response messages returned by
the partner web services. They are stored in XML file with root element, called
ListOfAssertions. Each assertion starts with Assert element that has three child ele-
ments: variable, XPath and document. The variable element of the assertion keeps the
name of the business process’s variable for which the test assertion is defined. The
xPath element contains an XPath expression, if such is defined. If the test assertion is
specified by directly editing of the business process’s variable, the document element is
filled with the content of that variable.

The test cases need to be added to execution set in order to be executed. The
execution sets allow test cases to be grouped for simultaneous execution. The result
from execution of each test case is stored in XML document, which elements are
following:

• testCaseName – name of the test case;
• request – request to the business process;
• response – response from the business process;
• executionTime – duration time of the test case;
• compareResult – test verdict: true, if the test is passed, and false – otherwise;
• traceEnabled – indication for tracing ability activation;
• activitiesPassed – activities that have been called during BPEL process execution;
• asserts – test case assertions;
• executionDate – execution date.

Automated Web Service Composition Testing as a Service 121

5 TaaS Functionality of TASSA Framework

The TaaS features of TASSA framework are implemented by two web services. The
Simulate web service isolates the business process from dependencies of partner web
services. The ProxyInvoke web service provides functionality for fault injection.

5.1 Dependency Isolation

Dependency isolation provides a temporary removal of business process dependencies
from one or more partner web services. This allows the tester to control the web service
returned results and pre-determine the possible routines in the business process, as well
as to continue testing even if a particular web service is missing. The business process’s
dependencies on external web services can be described as follows:

• Synchronous execution of operation provided by an external service (Invoke
activity in the business process description);

• Asynchronous execution of operation provided by an external service (combination
of Invoke and Receive activity in the business process description);

• Unforced message receipt from external service (Pick activity);
• Sending message to external service (resulting from an ingoing message);
• HumanTask activity, which requires human intervention and which affects the

application through its output data (operator-entered values).

Invoke activity is modeled with following expression:

o¼ f i1; i2; . . .; in;Rð Þ ð1Þ

where f denotes the functionality of the operation provided by the external web service,
i1 � in are the input parameters of the operation, o is the returned result, and R is
additional parameters of the activity not directly related to the operation execution.

To eliminate the dependency upon f the following modifications are necessary to
isolate the business process:

• Modification of the process, where the relevant Invoke activity is replaced with
Assign activity to assign the output variable o specific values set by the user;

• When isolating the process from one activity a test artifact is created – a version of
the business process, in which the Invoke activity is replaced by an Assign activity.

The other dependencies are handled in a similar way – e.g. in the asynchronous
mode for web service operation call (Invoke and Receive), the Invoke activity is
replaced by the Empty activity (as it does not influence it) and Receive activity is
replaced by Assign activity. Table 1 illustrates the replacement of the business process
activities during dependencies isolation.

122 D. Petrova-Antonova et al.

5.2 Fault Injection

The main goal of fault injection is to simulate faults during message exchange between
the business process under test and its partner web services. The possible situations that
can be simulated are (1) overload of the communication channel that leads to delay of
sending or receiving a message, (2) failure of the communication channel that leads to
impossibility of sending or receiving a message, (3) noise in communication channel
that leads to receiving a message with invalid structure, and (4) wrong business logic
that leads to sending or receiving a message with invalid data.

The fault injection process consists of the following steps:

• Identification of message exchanged when the failure is simulated;
• Modification of communication channel, so that the failure expected by the tester

occurs;
• Modification of an activity that corresponds to the message in order to send message

to the proxy created between the message sender and receiver;
• Serialization of input arguments of the real receiver (marshalling);
• Invocation of ProxyInvoke web service;
• Deserialization of output arguments (unmarshalling) and sending a message to the

real receiver.

Similar steps are performed for the response of the invocation. The formal repre-
sentation of the process of marshalling and unmarshalling is as follows:

o¼ invoke i1; i2; . . .; inð Þ) o¼Unmarshal(ProxyInvoke Marshal i1; i2; . . .; inð Þ;Rð ÞÞ
ð2Þ

where i1, i2, …, in are the real arguments of the modified Invoke activity, o is the
original output data, Marshal and Unmarshal are the embedded BPEL functions for
marshalling and unmarshalling, and ProxyInvoke is the call of the proxy web service
with failure parameters specified by R.

The proposed approach is applicable only to invoke activities because their cor-
responding exchange of the messages is initiated by the business process. It is nec-
essary condition for the realization of the approach because activities for marshalling
and unmarshalling need to be placed round the initiator of the message exchange.

Table 1. Replacement of the business process activities.

Original activity Replacement activity

Synchronous invoke Assign
Asynchronous invoke Empty
Receive Assign
Reply Empty
Pick/On alarm Wait and On alarm branch
Pick/On message Assign and On message branch
HumanTask Invoke

Automated Web Service Composition Testing as a Service 123

6 Case Study

This section presents a proof of concept of TASSA framework through a case study
using a business process, called Grapes Order. The business process serves by wine
companies while deciding to buy grapes.

6.1 Business Process Under Test

The Grapes Order is a synchronous business process that calls three partner web
services, namely Grape Producer North, Grape Producer South and Perform Order.
Its graphical view is shown in Fig. 4.

It takes as an input information about the grapes variety, the quantity and the
delivery address. Then the Grape Producer North and Grape Producer South partner
web services are invoked in parallel flow to check the price of the grapes. After that an
order is placed in the inventory with the cheaper grape, again using one of the partner
web services. Finally, Perform Order partner web service finalizes the order by cal-
culating the total price and the expected delivery date.

6.2 Test Template Design

The test template includes a version of the business processes described with the BPEL
language and all accompanied documents like WSDL descriptions, XSD schemas, etc.
Using TASSA framework it is possible to transform the original BPEL file to isolate

Fig. 4. Wine producer business process.

124 D. Petrova-Antonova et al.

the business process from its external dependencies or to simulate faults. Each trans-
formation actually produces a valid BPEL file that imitates the behavior of the initial
one in testing conditions.

In order to test the business process workflow, the dependencies from the partner
web services need to be removed. The Grapes Order business process has three partner
web services and five invokes to them. At isolation an Invoke activity should be
selected and then substitution values should be specified. As a result, the Simulate web
service of TASSA framework transforms the BPEL file so that the partner web service
invocation is removed. Figure 5 shows the BPEL code of the Invoke activity that calls
the checkAvailabilityNorth operation of Grape Producer North partner web service,
while Fig. 6 presents its transformation.

Similar transformations are performed regarding checkAvailabilitySouth operation
of Grape Producer South, PlaceOrderNorth operation of Perform Order partner web
service, PlaceOrderSouth operation of Perform Order partner web service and Invo-
keOrder operation of Perform Order partner web service.

TASSA framework supports robustness testing providing functionality for another
transformation. In such case the BPEL file is transformed so that the call to a partner
web service is replaced with a call to a ProxyInvoke web service. Thus, the fault
injection is performed.

Fig. 5. Original “checkAvailabilityNorth” activity.

Fig. 6. Transformed “checkAvailabilityNorth” activity.

Automated Web Service Composition Testing as a Service 125

The Grapes order business process is injected with four type of faults supported by
TASSA framework. The simulation of delay in the response from Grape Producer
South web service is performed by replacement of corresponding Invoke activity with
two Assign activities and one new Invoke activity. The first Assign activity provides
configuration information to the ProxyInvoke web service as follows:

• Wait interval – an integer value that defines the delay of message in seconds;
• Error factor – an integer value that defines the kind of errorwill be injected (1 � 100:

insert random errors in the data, which would possible break the XML structure; 0:
usually used withWait interval to delay the message; - 1: replace the original values in
the message; - 2: interrupt the communication with partner web service)

• End point address – an end point address of the partner web service;
• Activity variable – input variable of the partner web service, which invocation is

injected with faults.

The second Assign activity copies the result from invocation of ProxyInvoke web
service to the output variable of the partner web service, which invocation is injected
with faults. The Invoke activity calls ProxyInvoke web service.

Similar transformations are performed regarding Grape Producer North and Per-
form Order partner web services.

Test templates created for the business process under test are listed in Table 2.

TASSA framework also supports generation of test templates from the existing one.
Thus, a rollback to the previous version of the business process under test could be
performed.

6.3 Test Case Definition

Test cases created with TASSA framework are in correlation with test templates. Each
test case is linked to exactly one test template. It consists of test input, expected output
and assertions if any. During test case execution the BPEL file from the test template is

Table 2. Test templates (TT).

TT Description

TT1 Original business process without any transformation
TTI1 Isolation of all partner web services
TTI2 Isolation of Perform Order partner web service
TTI3 Isolation of Grape Produces North partner web service
TTI4 Isolation of Grape Produces South partner web service
TTF1 Simulation of small delay in the response from partner web service
TTF2 Simulation of large delay in the response from partner web service
TTF3 Simulation of missing partner web service
TTF4 Simulation of low level noise in the response from partner web service
TTF5 Simulation of high level noise in the response from partner web service
TTF6 Simulation of response with wrong data from partner web service

126 D. Petrova-Antonova et al.

deployed on the application server, the test input from the test case is sent as a request
to the business process, its response is compared to the expected output and the
assertions from the test case are checked.

Actually, many test cases could be created from the same test template. Thus,
several requests with different test inputs will be send to the same version of the
business process (deployed BPEL file). Using this feature of TASSA framework a set
of test cases are created from the test templates described above.

Two test cases for the test templates that isolate Grape Producer North and the
Grape Producer South web services are created (TCI1 and TCI2). They provide full
path coverage of the business process since both True and False branches of the If
activity are executed. The same test scenarios are designed when the partner web
services are available and their operations are actually invoked (TC1 and TC2).

Several test cases with invalid data are also created (negative test cases):

• TCN1 – send request with zero quantity;
• TCN2 – send request with quantity over availability;
• TCN3 – send request with invalid grape type;
• TCN4 – send request with invalid quantity;
• TCN5 – send request with invalid delivery type.

In order to perform robustness testing the following test cases are defined using
fault injection features of TASSA framework:

• TCF1 – simulates a small wait interval;
• TCF2 – simulates a big wait interval;
• TCF3 – simulates missing partner web service;
• TCF4 – simulates low level noise in the response from partner web service;
• TCF5 – simulates high level noise from partner web service;
• TCF6 – simulates response from partner web service with random data.

As it was already mentioned, TASSA testing framework supports specification of
test assertions, namely XML assertions and XPath assertions. Figure 7 shows a sample
assertion defined for the response from Perform Order partner web service.

Fig. 7. GUI for writing an assertion.

Automated Web Service Composition Testing as a Service 127

XML Assertion compare the specified XML message with the received one. In
many cases, especially when dynamic data such as IDs or Dates are used, it is better to
check only part of the XML message. In such cases the XPath assertion is recom-
mended to be used.

6.4 Test Case Execution

Test cases are grouped in Execution sets. The execution set is a list of test cases, which
are executed in the order specified in the list. The test cases in the execution set can be
logically grouped. For example all negative test could be arranged in one execution set
and all tests performing isolation could be arranged in other execution set. This feature
of TASSA framework is especially useful when it is applied to test cases that should be
executed in proper order. For example, one may need to execute a test which adds some
quantity for a given item and then to execute a test in which this item is sold. Similarly
to the test templates, the test cases are reusable. Single test case can be placed in more
than one execution set.

When execution sets are ready to run on the application server, for each test case
the results are collected and the assertions are checked. The results are written in log
files that are grouped according to the execution set they belong to.

Table 3 shows the results from execution of the test cases when partner web
services are isolated and when partner web services are actually invoked and the
business process receives valid test data. Using TASSA framework the isolation is
performed in a way that the business process acts in the same way as when the real
partner services are available and called.

Table 4 shows the results from execution of test cases when the business process
receives invalid data (negative test cases).

Table 3. Test cases showing isolation of partner web services.

Test case Input Expected output Received output

TCI1 white,1,fast reserved, north,48 h reserved, north,48 h
TCI2 red,2,normal reserved, south,48 h reserved, south,48 h
TC1 white,1,fast reserved, north,48 h reserved, north,48 h
TC2 red,2,normal reserved, south,72 h reserved, south,72 h

Table 4. Test cases with invalid data.

Test case Input Expected output Received output

TCN1 white,0,fast informative message reserved, north,48 h
TCN2 red,99999,normal informative message log error
TCN3 123,1,fast informative message log error
TCN4 red,A,normal error message log error
TCN5 red,1,123 informative message log error

128 D. Petrova-Antonova et al.

Usually a well formed business process should catch exceptions and send proper
messages when incorrect action is performed. That is why, an informative or error
message is expected to be received in case of testing with invalid values. After per-
forming the negative tests (those with invalid test data) and checking the execution
logs, it was found that the business process does not catch several exceptions.

Table 5 shows the results from robustness testing of the business process. Such
testing suppose that the system under test should not crash and respond with error
message, overcoming violations if it is possible.

The Grapes Order business process acts properly in case of small delays of the
response from a partner web service. It returns an expected output with a delay specified
with the wait interval parameter of the Proxy Invoke web service of the TASSA
framework. In case of long message delay from partner web service, missing partner
web service or noise in the communication channel the business process crashes and the
server logs should be explored in order to fix the problems. Test results obtained when
random invalid data is injected in the response form partner web service show differ-
ences between the expected and the received outputs. It is expected that when a random
invalid data is sent, the process should respond with informative or error message. As
Table 4 shows the business process accepts such data and responds with a common
output. Therefore, additional fixtures should be done in the business process.

7 Conclusions

The paper presents TASSA methodology for testing web service compositions
described in cloud environment. It is automated by a framework, which core func-
tionality is implemented as web services deployed on a cloud infrastructure. A case
study over a business process serving a wine company is used as a proof of concept. It
shows the usefulness and benefits of the proposed solution as follows:

• Ability to test web service compositions even if partner web services are unavail-
able or under development through provided functionality for dependency isolation;

Table 5. Test cases performing robustness testing.

Test
case

Failure
parameter

Expected output Received output

TCF1 Wait = 10 s Delayed common output Delayed common output
TCF2 Wait = 20 m Time elapsed Time elapsed
TCF3 Interrupt Error message Error message
TCF4 Noise

range = 1%
Log error/common
output/informative msg

Log error

TCF5 Noise
range = 60%

Log error Log error

TCF6 Random Informative message/error output Common output

Automated Web Service Composition Testing as a Service 129

• Ability to perform robustness testing through provided functionality for fault
injection;

• Availability of on-demand testing services allowing testers to provision raw cloud
resources at run time, when and where needed;

• Reduced cost of testing due to pay-per-use basis of testing services.

The future work includes evaluation of performance and efficiency of TASSA
framework in comparison with other automated testing tools as well as manual testing.
Additional functionality for load testing and runtime monitoring is planned to be
implemented.

Acknowledgments. The authors acknowledge the financial support by the Scientific Fund of
Sofia University under agreement no. 180/13.04.2016.

References

1. Candea, G., Bucur, S., Cristian, Z.: Automated software testing as a service (TaaS). In: 2010
Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 155–160 (2010)

2. Parveen, T., Tilley, S.: When to migrate software testing to the cloud? In: Third International
Conference on Software Testing, Verification, and Validation Workshops (ICSTW),
pp. 424–427 (2010)

3. Yu, L., Tsai, W., Chen, X., Liu, L., Zhao, Y., Tang, L., Zhao, W.: Testing as a service over
cloud. In: Proceedings of the Fifth IEEE International Symposium on Service Oriented
System Engineering, pp. 181–188 (2010)

4. Gao, J., Bai, X., Tsai, W.: Testing as a service (TaaS) on clouds, In: Proceedings of the
Seventh IEEE International Symposium on Service-Oriented System Engineering, pp. 212–
222 (2013)

5. Yu, L., Zhang, L., Xiang, H., Su, Y., Zhao, W., Zhu, J.: A framework of testing as a service.
In: Proceeding of the Conference of Information System Management (2009)

6. Sathe, A., Kulkarni, R.: Study of testing as a service (TaaS) - cost effective framework for
TaaS in cloud environment. Int. J. Appl. Innov. Eng. Manage. (IJAIEM) 2(5), 239–243
(2013)

7. Yan, M., Sun, H., Wang, X., Liu, X.: Building a TaaS platform for web service load testing.
In: Proceeding of the IEEE International Conference on Cluster Computing, pp. 576–579
(2012)

8. Apache JMeter. http://jmeter.apache.org/. Accessed 11 June 2015
9. Herbold, S., et al.: The MIDAS cloud platform for testing SOA applications. In: Proceedings

of the IEEE 8th International Conference on Software Testing, Verification and Validation
(ICST), pp. 1–8 (2015)

10. SOASTA CloudTest. https://www.soasta.com/wp-content/uploads/2015/05/CT-Data-Sheet.
pdf. Accessed 12 Mar 2016

11. SOASTA CloudTest. https://saucelabs.com/downloads/one_pager_sales_sheet.pdf. Acces-
sed 12 Mar 2016

12. IBM Rational Performance Tester. https://www.ibm.com/developerworks/cloud/library/cl-
loadtest-softlayer-trs/. Accessed 14 Apr 2016

13. Oracle Testing as a Service. http://www.oracle.com/technetwork/oem/cloud-mgmt/ds-
oracletesting-as-a-service-1905796.pdf. Accessed 14 Apr 2016

130 D. Petrova-Antonova et al.

http://jmeter.apache.org/
https://www.soasta.com/wp-content/uploads/2015/05/CT-Data-Sheet.pdf
https://www.soasta.com/wp-content/uploads/2015/05/CT-Data-Sheet.pdf
https://saucelabs.com/downloads/one_pager_sales_sheet.pdf
https://www.ibm.com/developerworks/cloud/library/cl-loadtest-softlayer-trs/
https://www.ibm.com/developerworks/cloud/library/cl-loadtest-softlayer-trs/
http://www.oracle.com/technetwork/oem/cloud-mgmt/ds-oracletesting-as-a-service-1905796.pdf
http://www.oracle.com/technetwork/oem/cloud-mgmt/ds-oracletesting-as-a-service-1905796.pdf

14. Parasoft Cloud Testing. http://www.parasoft.com/capability/cloud-testing/. Accessed 15 Oct
2015

15. Amazon EC2. http://aws.amazon.com/ec2/. Accessed 15 Apr 2016
16. Bartolini, C., Bertolino, A., Lonetti, F., Marchetti, E.: Approaches to functional, structural

and security SOA testing. In: Cardellini, V., Casalicchio, E., Lucas Jaquie Cast Branco, K.
R., Estrella, J.C., Monaco, F.J. (eds.) Performance and Dependability in Service Computing:
Concepts, Techniques and Research Directions. IGI Global, Hershey, pp. 381–401 (2012)

17. Bucchiarone, A., Melgratti, H., Severoni, F.: Testing service composition. In: Proceedings of
the 8th Argentine Symposium on Software Engineering (ASSE) (2007)

18. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: Towards automated WSDL-based
testing of web services. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008.
LNCS, vol. 5364, pp. 524–529. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89652-
4_41

19. Dong, W.: Testing WSDL_based web service automatically. In: Proceedings of the 2009
WRI World Congress on Software Engineering, pp. 521–525 (2009)

20. Noikajana, S., Suwannasart, T.: An improved test case generation method for Web service
testing from WSDL-S and OCL with pair-wise testing technique. In: Proceeding of the 33rd
Annual IEEE International Computer Software and Applications Conference, pp. 115–123
(2009)

21. Bai, X., Dong, W., Tsai, W.-T., Chen, Y.: WSDL-based automatic test case generation for
Web Services testing. In: Proceedings of the IEEE International Workshop on
Service-Oriented System Engineering, pp. 215–220 (2005)

22. Lopez, M., Ferreiro, H., Francisco, M.A., Castro, L.M.: Automatic generation of test models
for web services using WSDL and OCL. In: Proceedings of the 11th International
Conference on Service-Oriented Computing (ICSOC), pp. 483–490 (2013)

23. Masood, T., Nadeem, A., Ali, S.: An automated approach to regression testing of Web
services based on WSDL operation changes. In: Proceeding of the IEEE 9th International
Conference on Emerging Technologies (ICET), pp. 1–5 (2013)

24. García-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for BPEL
compositions of web services using SPIN. In: International Workshop on Web Services
Modelling and Testing, pp. 83–94 (2006)

25. Hou, S.-S., Zhang, L., Lan, Q., Mei, H., Sun, J.-S.: Generating effective test sequences for
BPEL testing. In: Proceeding of QSIC 2009, pp. 331–340 (2009)

26. Yuan, Y., Li, Z., Sun, W.: A graph-search based approach to BPEL4WS test generation. In:
Proceeding of ICSEA 2006, pp. 14–22 (2006)

27. Cao, T.-D., Felix, P., Castanet, R., Berrada, I.: Online testing framework for web services.
In: Proceeding of ICST 2010, pp. 363–372 (2010)

28. Karam, M., Safa, H., Artail, H.: An abstract workflow-based framework for testing
composed web services. In: Proceedings of International Conference on Computer Systems
and Applications, pp. 901–908 (2007)

29. Li, Z.J., Tan, H.F., Liu, H.H., Zhu, J., Mitsumori, N.M.: Business-process-driven gray-box
SOA testing. IBM Syst. J. 47, 457–472 (2008)

30. Zhu, H., Zhang, Y.: Collaborative testing of web services. IEEE Trans. Serv. Comput. 5(1),
116–130 (2012)

Automated Web Service Composition Testing as a Service 131

http://www.parasoft.com/capability/cloud-testing/
http://aws.amazon.com/ec2/
http://dx.doi.org/10.1007/978-3-540-89652-4_41
http://dx.doi.org/10.1007/978-3-540-89652-4_41

Software Testing Techniques Revisited for OWL
Ontologies

Cesare Bartolini(B)

Interdisciplinary Centre for Security, Reliability and Trust (SnT), Université du
Luxembourg, Luxembourg, Luxembourg

cesare.bartolini@uni.lu

Abstract. Ontologies are an essential component of semantic knowledge
bases and applications, and nowadays they are used in a plethora of
domains. Despite the maturity of ontology languages, support tools and
engineering techniques, the testing and validation of ontologies is a field
which still lacks consolidated approaches and tools. This paper attempts
at partly bridging that gap, taking a first step towards the extension of
some traditional software testing techniques to ontologies expressed in a
widely-used format. Mutation testing and coverage testing, revisited in
the light of the peculiar features of the ontology language and structure,
can can assist in designing better test suites to validate them, and overall
help in the engineering and refinement of ontologies and software based
on them.

Keywords: Mutation testing · Coverage testing · Ontology · OWL ·
Mutant generation

1 Introduction

The use of semantics in information technology is greatly enhancing the expres-
siveness of knowledge bases, especially with respect to information representation
and retrieval. Information is classified according to domain-specific structures
which describe the concepts and the relations between them, and this organiza-
tion allows an efficient access to such information. Cross-domain organization is
also made possible through the use of formal languages to describe the domains.
Nowadays, knowledge bases structured according to description logic [1] are pop-
ular, and they can also be generated using Natural Language Processing (NLP)
techniques to classify unstructured documents.

Semantic knowledge is a wide field of research and application, and it is based
on a multi-layered framework of components and technologies. However, at the
very basic level, there is the need to describe the domains. This result is achieved
by means of ontologies. Ontologies are a general concept to denote the definition
of a domain, describing it at various level of abstraction.

Of course, to be used in computer systems, ontologies need to be described
according to some formal language. Early attempts at defining a language to
c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 132–153, 2017.
DOI: 10.1007/978-3-319-66302-9 7

Software Testing Techniques Revisited for OWL Ontologies 133

structure knowledge resulted in the Resource Description Framework (RDF)
language [2]. However, the purpose of RDF is mainly to describe resources by
means of metadata, and it is too low level to provide an efficient means of
describing an ontology. For that purpose, the Web Ontology Language (OWL)
specification [3] has been defined.

OWL, that was developed starting from another ontology language [4] called
DAML+OIL [5], is a family of abstract languages which are expressed in several
different syntaxes, some of which are based on eXtensible Markup Language
(XML). The primary syntax is RDF/XML, which easily maps onto RDF con-
cepts and integrates with other XML languages.

It is widely known that there is no “right” way of defining an ontology.
Its definition really depends on the domain, the desired level of abstraction,
the purpose for which the ontology is intended, and a number of choices by
the developer. In other words, the same domain could be represented by sev-
eral totally different ontologies, which would result in different structures of the
respective knowledge bases (and consequently, with different results when clas-
sifying and querying information). However, for ontology-based applications to
be integrated, it is necessary that they are based on the same ontology.

Ontologies have a number of uses, primarily that of describing some domain
of knowledge from a specific perspective. In this sense, they act much like a
vocabulary, similarly to a database. They have found their place as the basis of
knowledge representation in many application fields, from web searches to the
medical and legal domains [6].

Ontologies are also used for decision support [7], therefore it is important
that they are as complete as possible (within their domain and purpose), and
also that they do not contain errors. Previous experiences [8] have highlighted
the risks of using an incorrect ontology as a structure for a knowledge base.
However, despite the acknowledged importance of the correctness of ontologies,
few methodologies and tools exist for the testing and validation of ontologies.

This paper aims at partly filling this void by proposing an extension of some
popular software testing techniques to the domain of OWL ontologies. Namely,
this work is focused on adapting mutation testing and coverage testing to ontolo-
gies.

Mutation testing is a well-known testing method that assesses the validity of a
test suite by generating mutants, i.e., incorrect versions of the System Under Test
(SUT), by introducing single errors in the trustworthy version. The ontology-
based software could then be linked to the mutants generated in this way, and run
against the test suite. The mutants thus killed can provide important information
about the ontology and the program using it, including coverage details and fault
detection.

Coverage testing aims at evaluating what portion of the SUT is exercised
by a test suite. Such knowledge can be used to determine if the test suite is
fit for validating the SUT, or if additional tests need to be designed. On the
other hand, coverage testing may reveal some parts of the SUT which are use-
less or redundant, thus suggesting some possible optimizations. This paper does

134 C. Bartolini

not introduce a detailed approach for measuring the coverage of ontologies, but
rather a preliminary idea focused mainly on classes, leaving further developments
to future work.

The paper is organized as follows. Section 2 provides a survey of existing
literature in ontology testing and mutation testing. Section 3 offers a high-level
description of mutation testing. Section 3.1 describes the proposed methodology,
explaining the various operators used for the mutation of an OWL ontology.
It also contains a high-level description of the implementation of the mutation
tool. Section 4 proposes a basic methodology to measure the coverage of an
ontology by a test suite, with a sample application in Sect. 4.1. Section 5 shows
the methodology in action, applying the mutation operators to various ontologies
in different domains. Finally, Sect. 6 summarizes the results and envisions some
directions for future research.

2 Related Work

Although knowledge bases and semantic applications are a very consolidated
domain nowadays, it appears that there has been little attention to the validation
of ontologies [9].

The World Wide Web Consortium (W3C) provides a set of test cases for
evaluating the OWL ontology from a structural point of vies [10]. [11] defines
an algorithm to “debug” ontologies in search of inconsistent classes. [12] offer a
means of ontology validation through user-defined test cases, whereas [13] defines
an approach to merge large ontologies and find inconsistencies.

A lot of research addresses metrics and benchmarks for ontologies. The work
proposed by [14] defines some measures for assessing an ontology, and evaluates
these measures by means of a meta-ontology against which the ontology under
validation is compared. This work does not seem to address the semantic correct-
ness of the ontology but mainly its structure and engineering methodology. A
similar approach, but with a greater attention to semantics, is proposed by [15].
[16] defines a benchmark for the analysis of ontologies based on two different
semantics, OWL Lite and OWL DL.

In [9], the authors propose a methodology and tool for testing an ontology.
The methodology addresses three main perspectives: verification of the Compe-
tency Question (CQs) to which the ontology is supposed to provide an answer,
verification of the inferences by means of an OWL reasoner, and provocation of
errors. The last perspective differs significantly from the current work because
it does not modify the ontology structure, but rather introduces test data that
are inconsistent with the ontology.

A significant model-checking methodology to validate the design of an ontol-
ogy is OntoClean [17]. It consists in introducing annotations in the ontology
which allow to perform a consistency check.

An interesting approach is described in [18]. The authors have built a testing
tool which tries to search for potential pitfalls in ontology development. The list
of pitfalls has been introduced by the authors in [19]. Although different from

Software Testing Techniques Revisited for OWL Ontologies 135

the idea of introducing errors in the ontology, their work can provide interesting
suggestions for the definition of mutation operators.

An approach that combines ontology evaluation with software engineering
techniques is described by [20], which introduces a proposal to adapt unit testing
to OWL ontologies. In the past, several tools have been developed for ontology
unit testing, although it does not appear to be a mainstream testing approach
for ontologies. Another interesting approach is presented in [21]: instances are
generated from an ontology, and hypotheses are formulates on these instances.
The validation of the generated hypotheses is then fed as an input to refine the
ontology.

Some previous work concerning mutation testing in the OWL language can be
found in [22]. The methodology does not apply to the general ontology language
OWL, but rather to a specific ontology called OWL-S [23] which can be used
as a semantic descriptor for web services, and it applies mutation to classes,
conditions, control flows and data flows. The purpose of that paper is not to
improve an ontology and its related test suite, but rather to detect errors in the
web service specification. However, some of the concepts introduced in that work
are similar to those introduced in the current work.

Concerning coverage testing, again, there does not appear to be any relevant
work on the topic. As per mutation testing, some works exist to measure the
coverage of web services in OWL-S [24], but the issue of measuring the actual
coverage of an ontology appears to be unexplored so far.

3 Mutation Testing

Mutation testing is a testing technique originally proposed in [25,26], although
allegedly the initial idea can be traced back to a few years earlier [27]. It is
classified either among the syntax-based testing techniques [28], or among the
error-based or fault-based testing techniques [29,30]. It is normally, but not
exclusively, meant for unit testing [31].

In its essence, it is a methodology in which small parts of a software code are
changed. Its main purpose is not to test the SUT proper, but the quality of its
test suite. However, it has an indirect benefit on the SUT, because the detection
of faults in the test suite can often also lead to detecting errors in the SUT.

According to the description provided by [28], mutation is carried out by
applying a set of mutation operators to a ground string. The ground string is
expressed in the grammar, and a mutation operator is “[a] rule that specifies
syntactic variations of strings generated from a grammar”. These operators can
also be applied directly to the grammar if no ground string exists. Mutation can
be used to generate both invalid strings and strings that are valid but different
from the ground string. In both cases, the strings thus generated are called
mutants.

The mutants generated from the SUT are then executed on the test suite,
and the test results are compared against those of the original code. Those
mutants which behave differently with respect to the test suite are killed by

136 C. Bartolini

the test suite. An ideal test suite would kill n out of n generated mutants. The
whole process is generally automated by means of batch scripts, because the
generation of a high number of mutants and the execution of the test suite on
each is a complex and tedious process which is well-suited for automatization.
Mutation can be also carried out by introducing simplifications that reduce the
number of mutants [32,33] to lower the complexity of the testing process.

Mutation testing has generally been applied to software code, particularly
to Java [34,34]. Previous research [28,35] has identified a set of operators for
mutation.

Traditional mutation testing operates at the syntax level, by introducing
errors in the code. However, techniques for semantic mutation testing have also
been defined [36–38], in which mutation operators affect the semantics of the
code. In other words, the code is still syntactically correct, but its functionality
is different from the intended one.

3.1 Mutation Testing Applied to OWL

To apply the mutation testing methodology to an ontology, some premises are
in order.

First off, the mutation operators will be applied to the ontology. However, the
testing can be carried out in two different ways: either by viewing the ontology as
the SUT, independently of what it is used for; or when the SUT is the knowledge
base or software that relies upon the ontology. Choosing either perspective has
significant consequences in the testing and the test suite that is used.

The mutation proposed in this paper is a kind of semantic mutation. The
syntax of an ontology is managed satisfactorily by the various parsers and editors
available, so unless the SUT is a new OWL editor or parser there would be little
need for a syntactic mutation testing. What is significantly more interesting is the
evaluation of the ontology definition. Additionally, using OWL as the underlying
specification, there is no point in working at the syntax level because OWL does
not have a syntax per se, but can be built according to different syntaxes. In fact,
the proposed methodology has been executed using the OWL/RDF, OWL/XML
and Manchester [39] syntaxes with identical results.

The mutation operators have therefore been defined as a set of operations
that conceptually modify the ontology. An ontology refers to entities, which are
the main building blocks used to represent real-world objects. The ontology does
not define the entities, which are defined by the domain itself. For the purposes
of this work, the following entity types have been used as the ground string for
mutation:

classes represent the core concepts in the ontology. A class is the abstraction
which subsumes all individuals of a given type;

individuals are the real-world objects, single instances of a class;
object properties describe the relationships between individuals;
data properties are used to associate information data to classes.

Software Testing Techniques Revisited for OWL Ontologies 137

In addition to entity-specific mutation operators, it is also possible to define
some general operators. In particular, some static information can be added
to any entity by means of annotations. Typical annotations include label and
comment, which are part of RDF Schema (RDFS) and are language specific.

All mutation operators affect some axiom, which is the base expression in
the ontology. Axioms are connections between entities, and some examples of
axioms are:

– a subclass relationship between two classes;
– the belonging of an individual to a class;
– the domain or the range of an object or data property;
– association of an annotation with its entity.

3.2 Mutation Operators

This section describes the various classes of mutation operators defined for
OWL mutation testing. Entities in OWL can be declared using either a human-
readable Internationalized Resource Identifier (IRI), or an auto-generated one.
When using the latter naming convention, which is recommended by the Protégé
software, the domain-specific names must be referred to by means of label anno-
tations. This solution is very versatile, because it does not force a naming, but an
entity can have a number of names, also in different languages. However, when
referring to entities using labels, the absence of a label can cause errors.

Table 1 offers an overview of all the mutation operators.
Some of the mutation operators produce identical mutants: for instance, the

ORI operator, when applied to a class and to its inverse, generates two identical
mutants.

Entities. Some mutation operators are general and can be applied to any entity:

ERE. Remove entity. This operator deletes the declaration of an entity from
the ontology, be it a class, property, or individual. All axioms concerning the
deleted entity are removed as well.

ERL. Remove label. This operator removes a label annotation from an entity.
ECL. Change label language. A label annotation is composed by the actual

label and a language attribute. This operator removes the language attribute,
setting it to a meaningless value.

While it is possible to also apply mutation operators to comment annotations,
comments are generally not meant for processing purposes, but only to provide a
description to the human user. Therefore, no mutation on comment annotations
has been introduced in this work. Similarly, no mutation operators have been
defined for other annotations such as versionInfo or seeAlso.

138 C. Bartolini

Table 1. List of mutation operators.

Entity Operator Effect

Any entity ERE Remove the entity and all its axioms

ERL Remove entity labels

ECL Change label language

Class CAS Add a single subclass axiom

CRS Remove a single subclass axiom

CSC Swap the class with its superclass

CAD Add disjoint class

CRD Remove disjoint class

CAE Add equivalent class

CRE Remove equivalent class

Object property OND Remove a property domain

ONR Remove a property range

ODR Change property domain to range

ORD Change property range to domain

ODP Assign domain to superclass

ODC Assign domain to subclass

ORP Assign range to superclass

ORC Assign range to subclass

ORI Remove inverse property

Data property DAP Assign property to superclass

DAC Assign property to subclass

DRT Remove data type

Individual IAP Assign to superclasses

IAC Assign to subclasses

IRT Remove data type

Classes. Classes are entities which describe the conceptual abstraction of real-
world objects. Class relations can be described in hierarchical terms, from the
general to the particular. In other words, a class can be defined as the subclass
of another class, by means of an “is a” relationship. Classes can be subclasses
of more than one superclass. If a class is not defined as a subclass, then it is
implicitly a subclass of the top-level class, Thing. A class can also be the subclass
of an anonymous class, i.e., a class defined “on the fly” using properties.

In addition to the mutation operators applicable to all entities, the following
operators have been defined for class entities:

CAS. Add subclass axiom. This operator introduces a subclass axiom between
one class and any other class of which it is not already asserted as being a
subclass.

Software Testing Techniques Revisited for OWL Ontologies 139

CRS. Remove subclass axiom. This operator removes a subclass axiom, thus
changing the hierarchical structure of the ontology. If the class has a single
superclass, then it will become a subclass of the top-level class.

CSC. Swap subclass axiom. This operator exchanges a class with one of its
superclasses. Simply put, it reverses part of the hierarchical structure.

CAD. Add disjoint class. A class can be asserted as being disjoint with other
classes. This operator introduces a disjointness relation between one class and
another with which the former is not already disjoint.

CRD. Remove disjoint class. This operator erases a disjoint declaration, so the
two classes are no longer disjoint.

CAE. Add equivalent class. A class can be asserted as being equivalent to other
classes. This operator introduces an equivalence relation between one class
and another to which the former is not already equivalent.

CRE. Remove equivalent class. This operator erases an equivalent declaration,
so the two classes are no longer equivalent.

Object Properties. Object properties represent relations between classes
which cannot be in hierarchical terms. All relations except “is a” must be defined
in terms of object properties.

An object property normally has at least one domain and one range. The
domain represents the classes (which can also be anonymous classes, defined
for example using set operations) to which the object property applies. A range
represents the possible values that the property can have. In other words, domain
and ranges are limitations to the individuals to which the property can be applied
and to the individuals that it can have as its values, respectively.

The following mutation operators specific to object properties have been
defined:

OND. Remove domain. One domain (set of entities to which the property can
apply) is removed from the object property. Since the actual domain is the
intersection of all ranges, this operator actually widens the possible entities
to which the property can apply.

ONR. Remove range. One range is removed from the object property. Since the
actual range is the intersection of all ranges, this operator actually widens the
possible values that the property can have.

ODR. Change domain to range. One of the domains of the property is changed
to a range, actually restricting its possible values but increasing the classes
it can apply to.

ORD. Change range to domain. One of the ranges of the property is changed
to a domain.

ODP. Assign to superclass. One of the domains of the property is replaced with
one of the superclasses of that domain. This operator cannot be applied to
anonymous domains or to domains which are only subclass of the top-level
class.

ODC. Assign to subclass. One of the domains of the property is replaced with
one of the subclasses of that domain. This operator cannot be applied to
anonymous domains.

140 C. Bartolini

ORP. Set range to superclass. One of the ranges of the property is replaced
with one of the superclasses of that range. This operator cannot be applied
to anonymous ranges or to range which are only subclass of the top-level
class.

ORC. Set range to subclass. One of the ranges of the property is replaced
with one of the subclasses of that range. This operator cannot be applied to
anonymous ranges.

ORI. Remove inverse property. The property can be declared as being inverse
to another one. This operator removes the inverse declaration, but it does not
remove the other property.

Data Properties. Data properties are used to describe additional features of
an entity. Technically, they represent a connection between entities and literals
(such as XML strings and integers). Data properties have a domain which limits
the entities it can be applied to, and a range which limits the set of possible
literals it can have as values.

In addition to the general operators, the following operators have been
defined for data properties:

DAP. Assign to superclass. One of the domains of the property is replaced with
one of the superclasses of that domain. This operator cannot be applied to
anonymous domains or to domains which are only subclass of the top-level
class.

DAC. Assign to subclass. One of the domains of the property is replaced with
one of the subclasses of that domain. This operator cannot be applied to
anonymous domains.

DRT. Remove data range. One of the data ranges of the property is removed,
and it is implicitly replaced with the top-level literal rdfs:Literal, actually
increasing the set of possible literals that this property can have.

Individuals. Individuals represent single instances of a class (including anony-
mous classes). Individuals are very similar to classes, but they represent a single
object and not an abstract generalization. Therefore, they can be defined as
belonging to one or more classes.
The following specific operators have been defined for individuals.

IAP. Assign to superclass. One of the types of the individual is replaced with
one of its superclasses. This operators can be applied only to those types
which have a superclass different from the top-level class.

IAC. Assign to subclass. One of the types of the individual is replaced with one
of its subclasses.

IRT. Remove type. One of the types to which the individual belongs is removed
(both named and anonymous classes). If the individual is of a single type, then
it becomes an individual of the top-level class.

Software Testing Techniques Revisited for OWL Ontologies 141

4 Measuring the Coverage

Although not strictly related to mutation testing, coverage testing [40,41] can
be used to assist in analysing the results of mutation testing.

The purpose of coverage testing is to evaluate what parts of the SUT are
exercised by the test suite. However, different meanings can be attributed to
the concept of coverage, each requiring its own criterion. Traditionally, coverage
testing is applied to software code, which can be structured as a graph [42]. In
this context, several coverage criteria have been defined and classified according
to their perspective. Some of the coverage criteria, such as node coverage (also
called statement coverage in some literature [40]), edge coverage [43] or path
coverage [44], measure the structural coverage of a graph. Other criteria, such
as the definition-usage path coverage, focus on the flow of the data within the
software [45]. A detailed description of the most relevant coverage criteria is
presented in [46].

When coverage testing is performed on software code, this occurs through
instrumentation, i.e., adding extra code (either statically, or dynamically at run-
time [47]) which does not change the behaviour of the software, but collects some
significant information [48] which is used to measure the coverage.

The idea to evaluate the coverage of an OWL ontology does not appear to
have been explored in the past. Traditional coverage testing techniques must be
revisited to allow such an analysis, primarily because there is no code which
can be instrumented in an ontology. An ontology is essentially a knowledge base
which can be used by software tools. Additionally, the peculiar structure of the
ontology calls for new coverage criteria: although ontologies can certainly be
represented as a graph, there is no standard way to do so, and nodes and edges
can have different meanings in different representations. As stated in Sect. 3,
OWL ontologies are made up of entities, and axioms which represent relations
between entities. Both these components can be too generic and abstract to offer
a clear coverage criterion.

The main focus of this paper is on mutation testing, and as such it does
not intend to define a complete coverage testing approach for OWL ontologies.
Rather, a basic coverage testing criterion for the limited scope of analysing the
mutation testing results will be proposed. For the purposes of this paper, there-
fore, a coverage criterion which only takes into account the classes (which are
generally the most relevant entities in an ontology) has been introduced. More
specifically, the criterion will measure the coverage of the named classes, exclud-
ing the anonymous classes created by means of a restriction. This criterion will
be called Named Class Coverage (NCC).
Preliminarily, the concept of visiting a named class can be expressed as follows.

Definition 1. A test suite TS visits a given class Ci if at least one test T ∈ TS
is based on a query which retrieves Ci.

142 C. Bartolini

This definition applies both when the SUT is the ontology itself and when it
is a software which makes use of the ontology. In the former perspective, a test
case will directly query the ontology and retrieve some entities and axioms. In
the latter perspective, a test case may or may not exercise some code segment
which queries the ontology.

Given this definition, the test requirement for class coverage is

TR = {visits class C1, . . . , visits class Cn}, (1)

where n is the number of named classes in the ontology.

Definition 2 Named Class Coverage (NCC): TR visits every named class
asserted in the ontology.

Therefore, the coverage of an ontology by a test suite TS is the percentage of
named classes that are retrieved by the queries executed by the test suite.

Measuring this amount is not straightforward, and depends on the structure
of the test suite. An example of how the coverage can be measured in a specific
setup is shown in the following section.

The coverage of an ontology can be used to further derive test cases. In
particular, the uncovered portions of the ontology are the ones that new test
cases should explore. However, given the lack of literature in the topic of ontology
coverage, there is currently no means to derive new test cases based on coverage.

4.1 An Application of NCC

To show a sample application of the NCC coverage criterion, the setup used in
Sect. 5.4 will be used. The SUT will be the ontology itself, and the test suite will
be made up of a set of SPARQL Protocol and RDF Query Language (SPARQL)
queries.

A SPARQL query operates much like a query in a relational database: it
accesses the knowledge base searching for content that matches the requested
pattern, and produces an output in some format. However, the query needs to
be modified to measure the coverage, because:

1. on one side, the SPARQL query may access more entities (including named
classes) than those that are actually produced as output;

2. on the other side, during its search, the query will access some components
of the ontology (e.g., other entities) that are not included in NCC.

Therefore, from the first perspective, the outputs of the query must be
widened, to include all the classes which are searched but then left out of the
report. From the second perspective, the query must be purged of all those
elements of the ontology (e.g., labels and object properties) that are not class
entities.

Software Testing Techniques Revisited for OWL Ontologies 143

This normalization process is based on the following steps:

1. remove all FILTER operations (since they remove part of the results from
the output);

2. only retrieve the named classes, ignoring any anonymous class;
3. remove search patterns based on label annotations and only retrieve the class

IRIs;
4. change sub-queries into separate queries. For example, the MINUS operator

executes a subquery which subtracts some results from the main query. How-
ever, these results are actually processed by the query, and if they contain
class entities they must be accounted for, and not subtracted, to measure the
coverage.

Additional changes were made for the ease of processing:

1. replace all blank nodes with identifiers;
2. purge the output format of the query of anything that is not a class entity;
3. split queries whose result format contains more than one result into a set

of queries whose output format contains just one result. The queries thus
generated will be identical, but each will output only one of the results of the
original query;

4. remove namespace prefixes, using only full namespaces;
5. add a DISTINCT keyword (if not already present) to the query, to ensure

that no duplicates are retrieved.

After these changes, each SPARQL query simply returns a set of named class
entities. The union of all the result sets from the queries (ignoring any cross-
query duplicates) is the complete set of named class entities involved by the test
suite. Comparing this set to the total number of class entities gives a measure
of the coverage.

5 Experiments

The proposed testing methodologies have been implemented and executed on
several existing ontologies. This section describes the test platform, the reference
ontologies and the results of the application of the mutation and coverage testing.

5.1 Experimental Setup

The implementation of the proposed mutation testing approach was done using
Eclipse 4.5 (Mars) as a development environment. The programming language
used is Java (Sun Java 1.8). The setup is platform-independent and has been
successfully tested on Windows 7, Ubuntu Linux 14.04 and Mac OS X 10.10
machines, both at 32 and 64 bit.

144 C. Bartolini

The implementation is lightweight and only requires the following libraries,
managed through Maven1:

– OWL API2, for general processing of the ontologies;
– JFact3, to parse inferred axioms within the ontologies;
– Apache Jena4, to process the SPARQL query language.

The mutation testing tool, called Mutating OWLs, is available as a public
Git repository5. The repository also contains the test ontologies described below.

5.2 Reference Ontologies

The proposed methodology has been executed on three different ontologies.

Data Protection. The data protection ontology has been introduced in [49,
50]. The European Union is currently undergoing a reform of the protection of
personal data. The main legislative document of the reform is the General Data
Protection Regulation (GDPR), which was very recently approved, introducing
significant changes in the duties of the controller [51]. The ontology has been
defined to describe the new reform; however, it does not aim at modeling the
whole domain of data protection in the European Union, but only focuses on
the requirements of the data controller.

The ontology is preliminary and subject to change, especially given that the
reform is very recent and it lacks interpretation yes. It is mainly made up of
hierarchical relations, and contains a number of object properties that relate the
duties of the controller with the corresponding rights of the data subject.

Entities in the ontology are named using an auto-generated IRI, and labels
contain the human-readable names.

Passenger Rights. The second ontology used as an experimental base has
been introduced in [52,53] to describe the legal framework for flight incidents. In
particular, the ontology addresses the perspective of the rights of the passenger.

This ontology has a more complex structure, and is split into three files.
Since the import links were actually broken, some changes had to be made to
the ontology to allow the OWL API to access local files. Specifically, the ontology
had to be converted from Turtle syntax [54] to an XML serialization because of
some limitations of OWL API in parsing non-XML syntaxes.

The naming convention differs from the previous ontology in that the IRIs are
human-readable terms in English language, and no labels are used throughout
the ontology.

1 https://maven.apache.org/.
2 http://owlapi.sourceforge.net/.
3 http://jfact.sourceforge.net/.
4 https://jena.apache.org/.
5 https://github.com/guerret/lu.uni.owl.mutatingowls.

https://maven.apache.org/
http://owlapi.sourceforge.net/
http://jfact.sourceforge.net/
https://jena.apache.org/
https://github.com/guerret/lu.uni.owl.mutatingowls

Software Testing Techniques Revisited for OWL Ontologies 145

Pizza. Finally, the proposed methodology has been run against the well-known
pizza ontology6, which is the one provided as a standard example for OWL
and Protégé tutorials. The naming convention used in this ontology is based
on English-language identifiers for the entities, but entities also feature label
annotations in Portuguese.

Summary. Table 2 displays a summary of the main features of the three ontolo-
gies used.

Table 2. Summary of the test ontologies.

Data protection Passenger rights Pizza

Total number of axioms 848 541 940

Classes 88 89 100

Object properties 42 26 8

Data properties 3 31 0

Individuals 16 14 5

Subclass axioms 114 83 259

5.3 Experimental Results

The mutation operators defined in Sect. 3.2 have been applied to the three test
ontologies, generating mutants for each. The total number of mutants per muta-
tion operator is displayed in Table 3.

Some considerations are offered by the very structure of the three ontolo-
gies. For example, the data protection ontology, as mentioned earlier, uses auto-
generated IRIs as identifiers, and labels for descriptive purposes. The pizza ontol-
ogy uses English terms as identifiers, but entities also have Portuguese labels.
Finally, the passenger rights ontology does not use label annotations. For this
reason, the ERL and ECL operators do not generate any mutant in the latter.
Similarly, no mutant is generated by the IAP, IAC and IRT operators in the
passenger rights ontology because the individuals are not assigned to any class.

The data protection ontology makes a very limited use of data properties,
so very few mutants are generated from the data property entity; the same is
not true for the passenger rights entity, which has a significant number of data
properties but less object properties. The pizza ontology does not have any data
properties at all, and few object properties. However, the classes that make up
the domain and range of some of the object properties have a large number of
subclasses, hence many mutants from the ODC and ORC operators.

6 http://protege.stanford.edu/ontologies/pizza/pizza.owl.

http://protege.stanford.edu/ontologies/pizza/pizza.owl

146 C. Bartolini

Table 3. Mutants by mutation operator.

Operator Data protection Passenger rights Pizza

ERE 145 67 112

ERL 145 0 95

ECL 145 0 95

CAS 7102 886 8151

CRS 114 33 255

CSC 101 33 83

CAD 7084 886 7404

CRD 18 0 753

CAE 7076 886 8134

CRE 37 0 41

OND 41 10 6

ONR 37 8 7

ODR 41 10 6

ORD 37 8 7

ODP 31 8 6

ODC 228 54 250

ORP 31 5 7

ORC 126 22 253

ORI 0 0 0

DAP 1 29 0

DAC 3 3 0

DRT 2 13 0

IAP 12 0 0

IAC 30 0 0

IRT 12 0 10

5.4 Validation

The proposed approach was validated by testing the ontologies themselves and
not an application running on top of them. Specifically, the validation was per-
formed on the data protection ontology and on the pizza ontology. For the SUT
to be an ontology, the simplest approach to test it is to have a set of SPARQL
queries [55] which retrieve data from the ontology.

For the most part, the queries for the data protection ontology are the
SPARQL representation of the competency questions that have been introduced
in [50], to perform the assessment of that ontology.

On the other hand, unfortunately, no SPARQL test suite is readily available
in literature for the pizza ontology. A set of queries exists as the test suite for an

Software Testing Techniques Revisited for OWL Ontologies 147

alternative query language7. These could be used as a basis to assess the validity
of the approach presented in this paper. The queries in that test suite were thus
converted back to SPARQL. However, two more queries were added to the test
suite, because the existing queries only search for very small parts of the ontology.

The complete experimental setup is available in the repository (see footnote 5).
To measure the coverage, the approach to measure the NCC of a set of

SPARQL queries, as described in Sect. 4.1, was used. In both examples, this
requires to slightly alter the structure of the SPARQL queries, as detailed in
Sect. 4.1. Such a modification does not affect the content of the queries.

The NCC coverage of the set of SPARQL queries for the data protection
ontology was measured as 62.50%. This means that the test suite (and, therefore,
the competency questions from [50]) cover little more than half the named classes
of the ontology. By measuring the coverage on the mutants, the results are
highly variable: the minimum coverage is 31.03%, whereas the maximum one is
81.82%. The minimum coverage is reached on a single mutant of type ERE; the
maximum coverage is reached on 17 mutants of type CAE and 9 mutants of type
CAS. However, most of the mutants have the same coverage as the original SUT
(62.50%).

On the other hand, the NCC coverage of the set of SPARQL queries for the
pizza ontology was measured as 96.97%. This means that the test suite queries
almost the whole set of named classes of the pizza ontology. With this SUT, The
coverage on the mutants displays a very slight variation: the minimum coverage
for the mutants is 95.96%, while the maximum is 97.96%. Specifically, all 95
mutants generated by the ERL operator (and only those) have the minimum
coverage; whereas the maximum coverage is achieved by three of the mutants
generated by the ERE operator.

The results of the validation is shown in Table 4, and a summary of killed
mutants is shown in Fig. 1(a) and (b).

(a) Data protection ontology. (b) Pizza ontology.

Fig. 1. Overview of killed mutants.

7 https://code.google.com/p/twouse/wiki/SPARQLASExamples.

https://code.google.com/p/twouse/wiki/SPARQLASExamples

148 C. Bartolini

Table 4. Results of the mutation testing.

Operator Data protection Pizza

Killed Total Percent Killed Total Percent

ERE 61 145 42.07% 108 112 96.43%

ERL 60 145 41.38% 95 95 100%

ECL 62 145 42.76% 95 95 100%

CAS 3542 7102 49.87% 8073 8151 99.04%

CRS 52 114 45.61% 253 255 99.22%

CSC 58 101 57.43% 83 83 100%

CAD 0 7084 0% 4536 7404 61.26%

CRD 0 18 0% 471 753 62.55%

CAE 5678 7076 80.24% 8133 8134 99.99%

CRE 13 37 35.14% 41 41 100%

OND 4 41 9.76% 0 6 0%

ONR 2 37 5.41% 0 7 0%

ODR 6 41 14.63% 0 6 0%

ORD 4 37 10.81% 0 7 0%

ODP 4 31 12.90% 0 6 0%

ODC 18 228 7.89% 1 250 0.40%

ORP 2 31 6.45% 0 7 0%

ORC 18 126 14.29% 1 253 0.40%

DAP 0 1 0% 0 0 0

DAC 0 3 0% 0 0 0

DRT 0 2 0% 0 0 0

IAP 0 12 0% 0 0 0

IAC 0 30 0% 0 0 0

IRT 0 12 0% 0 10 0%

Total 9,584 22,599 42.41% 21,890 25,675 85.26%

A brief analysis of the results elicits some interesting considerations. First,
it is clear that the test suites mainly address classes, with little attention to the
properties, especially in the pizza ontology. Thus, in both cases, additional tests,
especially for the object properties, are required. Also, concerning the classes,
the tests in the data protection ontology mostly cover some specific branches
of the hierarchy, while almost no tests search through other branches. Finally,
some considerations can be done on the ontologies themselves. For example,
by examining the live mutants generated by the ERE operator on the pizza
ontology, it emerges that some object properties are not used by any of the
SPARQL queries. Depending on the purposes of the ontology, this might suggest
that those properties are irrelevant and would call for a structural change in the

Software Testing Techniques Revisited for OWL Ontologies 149

ontology design. More significant insights could be offered by using richer test
suites (possibly deriving the test cases from the coverage analysis), which are
not currently available for the selected ontologies.

6 Conclusions and Future Work

The work presented in this paper extends and adapts some popular testing tech-
niques from the software testing domain, namely mutation testing and coverage
testing, to ontologies defined using the OWL language. The paper first gives a
brief overview of the essentials of OWL ontologies. It then introduces a method-
ology and operators for mutation testing, and a possible approach to measure
the coverage of an OWL ontology. Finally, it describes an implementation of
the mutation and coverage testing techniques, and some basic experiments on
previously-defined ontologies and SPARQL test suites.

The benefits of mutation testing are manifold: by analyzing the patterns of
killed and alive mutants, testers can detect errors in the SUT and in the test
suite. Equivalent mutants can help detect redundancies in the ontology, which
may not be errors but still facilitate errors, for example when creating instances
of the ontology.

On the other hand, combining mutation testing with coverage testing can
assist in measuring the effectiveness of the test suite. In particular, measuring
the coverage can help find the kinds of tests that need to be added to the test
suite, and this in turn can lead to a higher percentage of killed mutants.

More in general, the extension of software engineering and testing approaches
to ontologies and semantic knowledge bases can pave the way to the formalization
of integrated design and testing patterns for semantics-based applications.

This work is at its initial stages, with many opportunities for future devel-
opment. First off, the proposed methodology needs to be expanded to support
a full test suite: a significant set of SPARQL queries, if the SUT is the ontol-
ogy itself; or, if the SUT is an ontology-based software, testing it with its own
test suite. The purpose would be to compare the outputs of the test suite when
executed against the original ontology and against the mutants. In this phase,
it is possible that the complexity of the mutation testing is excessive and causes
performance problems, and it might be necessary to apply or develop algorithms
designed to reduce the number of mutants.

Second, the mutation methodology can be improved, by extending it with
additional mutation operators. With respect to the work presented in [56], addi-
tional mutation operators have been introduced, and these currently make up
the bulk of the mutants generated. However, some features of the OWL lan-
guage have not been exploited yet. For example, the mutation operators do not
currently address annotations other than labels, or the value and cardinality
constraints. Some of these OWL features can have a significant effect in the
ontology definition, and mutants thus created might be useful in assessing the
ontology.

Third, every mutation testing approach should be coupled with an algorithm
to detect equivalent mutants, and the one proposed here makes no difference.

150 C. Bartolini

In particular, the newly-defined mutation operators (CAS, CAD and CAE) gen-
erate a very large number of mutants, possibly introducing performance issues.
Identifying and removing equivalent mutants would then be of primary impor-
tance. In the specific domain of OWL ontologies, it is possible that the use of
reasoners can provide an efficient means of detecting mutants.

Fourth, the mutation testing should take into account the peculiarities of
ontology engineering. In particular, while the domain certainly imposes some
constraints on the ontology developer, many decisions are based on discretionary
choices, balancing different aspects such as human readability and efficiency
of the ontology. Traditional mutation testing techniques might be extended to
embrace these features, for example by separating those mutant operators that
are likely to introduce errors in the domain (for example swapping a class with
its parent) from those that simply change the ontology structure without making
it inconsistent with the domain. If such a partition were possible, then mutation
testing techniques could be used not only to detect errors in the design, but also
to suggest different ontology architectures that the designer might overlook.

Finally, stretching along the line of the previous point, an extended muta-
tion technique could be designed which alters the structure of the ontology.
For example, there might be circumstances where using a hierarchical relation-
ship (subclass axiom) might be an alternative to using an object property. An
extended mutation technique that generates mutants based on a different struc-
ture of the ontology might offer a fast way to compare a wide number of ontology
designs.

An even more significant amount of work would concern coverage testing.
A very basic approach has been introduced in this work, which only takes into
account OWL named classes, but measuring the coverage should involve much
more than classes, e.g., addressing properties and individuals. Therefore, addi-
tional coverage criteria need to be defined.

Implementation-wise, OWL coverage testing also needs a lot of improve-
ments. Specifically, due to the lack of instrumenting methodologies and tools
for OWL ontologies, the coverage analysis currently requires to restructure the
SPARQL queries so that it is possible to count the classes used. A more correct
implementation would introduce instrumentation code that generates the cover-
age results. However, since SPARQL queries are not executable code but require
a SPARQL engine to be run, the instrumentation should be performed on the
latter. Since several SPARQL engines (including the one used in this work) have
an open source implementation, such instrumentation is possible.

References

1. Quillian, M.R.: Word concepts: a theory and simulation of some basic semantic
capabilities. Behav. Sci. 12, 410–430 (1967)

2. World Wide Web Consortium (W3C): RDF 1.1 concepts and abstract syntax
(2014)

3. World Wide Web Consortium (W3C): OWL 2 Web Ontology Language document
overview, 2nd edn. (2012)

Software Testing Techniques Revisited for OWL Ontologies 151

4. Antoniou, G., van Harmelen, F.: Web Ontology Language: OWL. In: Staab, S.,
Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Informa-
tion Systems, pp. 67–92. Springer, Heidelberg (2004)

5. Horrocks, I.: DAML+OIL: a description logic for the semantic web. Bull. Tech.
Committee Data Eng. 25, 4–9 (2002)

6. Horrocks, I.: What are ontologies good for? In: Küppers, B.O., Hahn, U., Artmann,
S. (eds.) Evolution of Semantic Systems, pp. 175–188. Springer, Heidelberg (2013)

7. Rospocher, M., Serafini, L.: An ontological framework for decision support. In:
Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol.
7774, pp. 239–254. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37996-3 16

8. Kershenbaum, A., Fokoue, A., Patel, C., Welty, C., Schonberg, E., Cimino, J., Ma,
L., Srinivas, K., Schloss, R., Murdock, J.W.: A view of OWL from the field: use
cases and experiences. In: Cuenca Grau, B., Hitzler, P., Shankey, C., Wallace, E.
(eds.) Proceedings of the Second Workshop on OWL: Experiences and Directions
(OWLED), vol. 216. CEUR Workshop Proceedings (2006)

9. Blomqvist, E., Seil Sepour, A., Presutti, V.: Ontology testing - methodology and
tool. In: Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M.,
Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol.
7603, pp. 216–226. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33876-2 20

10. World Wide Web Consortium (W3C): OWL Web Ontology Language test cases
(2004)

11. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging
OWL-DL ontologies: a heuristic approach. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer,
Heidelberg (2005). doi:10.1007/11574620 53

12. Garćıa-Ramos, S., Otero, A., Fernández-López, M.: OntologyTest: a tool to eval-
uate ontologies through tests defined by the user. In: Omatu, S., Rocha, M.P.,
Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN
2009. LNCS, vol. 5518, pp. 91–98. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02481-8 13

13. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and
testing large ontologies. In: Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 483–493
(2000)

14. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology eval-
uation and validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol.
4011, pp. 140–154. Springer, Heidelberg (2006). doi:10.1007/11762256 13

15. Burton-Jones, A., Storey, V.C., Sugumaran, V., Ahluwalia, P.: A semiotic metrics
suite for assessing the quality of ontologies. Data Knowl. Eng. 55, 84–102 (2005)

16. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL
ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol.
4011, pp. 125–139. Springer, Heidelberg (2006). doi:10.1007/11762256 12

17. Guarino, N.: An overview of ontoclean. In: Staab, S., Studer, R. (eds.) Handbook
on Ontologies. International Handbooks on Information Systems, 2nd edn, pp.
201–220. Springer, Heidelberg (2009)

18. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Validating ontolo-
gies with OOPS!. In: Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H.,
d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW
2012. LNCS, vol. 7603, pp. 267–281. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33876-2 24

http://dx.doi.org/10.1007/978-3-642-37996-3_16
http://dx.doi.org/10.1007/978-3-642-33876-2_20
http://dx.doi.org/10.1007/11574620_53
http://dx.doi.org/10.1007/978-3-642-02481-8_13
http://dx.doi.org/10.1007/978-3-642-02481-8_13
http://dx.doi.org/10.1007/11762256_13
http://dx.doi.org/10.1007/11762256_12
http://dx.doi.org/10.1007/978-3-642-33876-2_24
http://dx.doi.org/10.1007/978-3-642-33876-2_24

152 C. Bartolini

19. Poveda, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Common pitfalls in ontol-
ogy development. In: Meseguer, P., Mandow, L., Gasca, R.M. (eds.) CAEPIA
2009. LNCS, vol. 5988, pp. 91–100. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14264-2 10

20. Vrandečić, D., Gangemi, A.: Unit tests for ontologies. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM 2006. LNCS, vol. 4278, pp. 1012–1020. Springer, Heidelberg
(2006). doi:10.1007/11915072 2

21. Granitzer, M., Scharl, A., Weichselbraun, A., Neidhart, T., Juffinger, A.,
Wohlgenannt, G.: Automated ontology learning and validation using hypothesis
testing. In: Wegrzyn-Wolska, K.M., Szczepaniak, P.S. (eds.) Advances in Intelli-
gent Web Mastering. Advances in Soft Computing, vol. 43, pp. 130–135. Springer,
Heidelberg (2007)

22. Lee, S., Bai, X., Chen, Y.: Automatic mutation testing and simulation on OWL-S
specified web services. In: Proceedings of the 41st Annual Simulation Symposium
(ANSS), pp. 149–156. IEEE (2008)

23. World Wide Web Consortium (W3C): OWL-S: Semantic markup for web services
(2004)

24. Wang, Y., Bai, X., Li, J., Huang, R.: Ontology-based test case generation for testing
web services. In: Proceedings of the 8th International Symposium on Autonomous
Decentralized Systems (ISADS), pp. 43–50 (2007)

25. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 11, 34–41 (1978)

26. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Trans. Softw.
Eng. SE-3, 279–290 (1977)

27. Lipton, R.: Fault diagnosis of computer programs. Technical report. Carnegie
Mellon University (1971)

28. Ammann, P., Offutt, A.J.: 5. In: Syntax-Based Testing, pp. 170–212. Cambridge
University Press, Cambridge (2008)

29. Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Trans.
Softw. Eng. SE-8, 371–379 (1982)

30. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Software Eng. 37, 649–678 (2011)

31. Offutt, A.J.: A practical system for mutation testing: help for the common pro-
grammer. In: Proceedings of the International Test Conference (ITC). IEEE Com-
puter Society, pp. 824–830 (1994)

32. Offutt, A.J., Untch, R.H.: Mutation 2000: Uniting the orthogonal. In: Wong, W.E.
(ed.) Mutation Testing for the New Century. The Springer International Series on
Advances in Database Systems, vol. 24, pp. 34–44. Springer, US (2001)

33. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based valida-
tion of web services compositions: perspectives and examples. In: Lemos, R.,
Giandomenico, F., Gacek, C., Muccini, H., Vieira, M. (eds.) WADS 2007.
LNCS, vol. 5135, pp. 298–325. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85571-2 13

34. Ma, Y.S., Offutt, A.J., Kwong, Y.R.: Mujava: an automated class mutation system.
Softw. Test. Verification Reliab. 15, 97–133 (2005)

35. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental
determination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 5, 99–118 (1996)

36. Offutt, A.J., Hayes, J.H.: A semantic model of program faults. SIGSOFT Softw.
Eng. Notes 21, 195–200 (1996)

http://dx.doi.org/10.1007/978-3-642-14264-2_10
http://dx.doi.org/10.1007/978-3-642-14264-2_10
http://dx.doi.org/10.1007/11915072_2
http://dx.doi.org/10.1007/978-3-540-85571-2_13
http://dx.doi.org/10.1007/978-3-540-85571-2_13

Software Testing Techniques Revisited for OWL Ontologies 153

37. Mottu, J.-M., Baudry, B., Traon, Y.: Mutation analysis testing for model transfor-
mations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 376–390. Springer, Heidelberg (2006). doi:10.1007/11787044 28

38. Clark, J.A., Dan, H., Hierons, R.M.: Semantic mutation testing. In: Proceedings
of the 3rd IEEE International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW), pp. 100–109. IEEE (2010)

39. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.H.:
The manchester OWL syntax. In: OWL: Experiences and Directions Workshop
(OWLED) (2006)

40. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29, 366–427 (1997)

41. Yang, Q., Jenny Li, J., Weiss, D.M.: A survey of coverage-based testing tools.
Comput. J. 52, 589–597 (2009)

42. Ledgard, H.F., Marcotty, M.: A genealogy of control structures. Commun. ACM
18, 629–639 (1975)

43. Huang, J.C.: An approach to program testing. ACM Comput. Surv. 7, 113–128
(1975)

44. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4, 178–187 (1978)

45. Osterweil, L.J.: Data flow analysis as an aid in documentation, assertion, genera-
tion, validation, and error detection. Technical Report CU-CS-055-74, University
of Colorado, Boulder, Colorado 80302 (1974)

46. Ammann, P., Offutt, A.J.: 2. In: Graph Coverage, pp. 27–103. Cambridge University
Press, Cambridge (2008)

47. Tikir, M.M., Hollingsworth, J.K.: Efficient instrumentation for code coverage test-
ing. In: Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), pp. 86–96 (2002)

48. Ammann, P., Offutt, A.J.: 8. In: Building Testing Tools, pp. 268–279. Cambridge
University Press, Cambridge (2008)

49. Bartolini, C., Muthuri, R.: Reconciling data protection rights and obligations: an
ontology of the forthcoming EU regulation. In: Proceedings of the Workshop on
Language and Semantic Technology for Legal Domain (LST4LD), Recent Advances
in Natural Language Processing (RANLP) (2015)

50. Bartolini, C., Muthuri, R., Santos, C.: Using ontologies to model data protection
requirements in workflows. In: Proceedings of the Ninth International Workshop on
Juris-informatics (JURISIN), pp. 27–40 (2015). Extended version to be published
in LNAI book

51. Reding, V.: The upcoming data protection reform for the European Union. Inter-
national Data Privacy Law (2010)

52. Rodŕıguez-Doncel, V., Santos, C., Casanovas, P.: A model of air transport passen-
ger incidents and rights. In: Proceedings of the 27th International Conference on
Legal Knowledge and Information Systems (JURIX), pp. 55–60. IOS Press (2014)

53. Rodŕıguez-Doncel, V., Santos, C., Casanovas, P.: Ontology-driven legal support-
system in the air transport passenger domain. In: Proceedings of the International
Workshop on Semantic Web for the Law (SW4Law) (2014)

54. World Wide Web Consortium (W3C): RDF 1.1 Turtle (2014)
55. World Wide Web Consortium (W3C): Sparql query language for rdf (2008)
56. Bartolini, C.: Mutating OWLs: semantic mutation testing for ontologies. In: Pro-

ceedings of the workshop on domAin specific Model-based AppRoaches to vErifi-
caTion and validaTiOn (AMARETTO), pp. 43–53 (2016)

http://dx.doi.org/10.1007/11787044_28

Certification of Cash Registers Software

Isabella Biscoglio(&), Giuseppe Lami, and Gianluca Trentanni

Institute of Information Science and Technologies “Alessandro Faedo”
of the National Research Council, Pisa, Italy

{isabella.biscoglio,giuseppe.lami,

gianluca.trentanni}@isti.cnr.it

Abstract. This paper presents the Italian scenario of cash register software
certification. The basic concepts of certification are introduced together with
involved actors, requirements and possible objects to be certified. Subsequently,
the specific kind of fiscal device running fiscal software, that is the cash register,
is outlined, and its certification process is described. The current technological
adjustments of the cash register software according to the Italian legislation
modifications are introduced and discussed.

Keywords: Certification � Requirements � Legislation � Cash register

1 Introduction

The certification of products, processes or services plays different roles according to the
specific application domain. In the global market, the certification by independent and
reliable bodies can be an economical and social benefit. Indeed, the assurance that a
product, process or service is compliant with the requirements expressed by interna-
tional standards or national legislation, can represent a real added value.

However, in specific domains the certification is mandatory before a product can be
put into operation. E.g. in aviation, the new aircrafts must be certified before they are
allowed to fly.

In the Italian fiscal domain, the certification of the fiscal software by a third party
accredited body (an accredited University Lab or the National Research Council) is
mandatory. Therefore, the fiscal software running into electronic devices suitable for
storing, managing and tracing commercial transactions called fiscal meters, must be
compliant with a set of requirements specified by the related national legislation [1] and
must be certified before being put on the market. To this aim, by further laws and
decrees [2–11], the Italian national legislation established modalities and terms for the
release of fiscal meters, regulating both the record of the commercial transactions and
the certification process. They shall follow to get the final approval by the Italian
income revenue authority.

The software of a fiscal meter may implement also functionalities not directly
related to the incomes record (the so-called fiscal functions); such software part is
called “non-fiscal” software. The non-fiscal software usually carries out tasks related to
goods management, accounting capabilities and so on. In this case it must not affect the

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 154–167, 2017.
DOI: 10.1007/978-3-319-66302-9_8

correct fiscal behavior of the remaining fiscal software and the non-fiscal software is
not an object for the certification.

About the fiscal software, it is also opportune to specify that it runs on two types of
fiscal meters: cash registers and automated ticketing systems. In this paper, only the
first one will be considered.

Usually fiscal meters certification is carried out by accredited University Lab or the
National Research Council, and it is based on inspection, evaluation and verification
activities of both hardware and software components of the fiscal meter; it follows quite
similar steps to be performed and differentiates mainly by the kind of the test cases
applied for hardware or software components. The final approval for the market release
of a cash register is up to Italian Income Revenue Authority (IRA), and it requires that
both the certifications (the one related to hardware and the one related to software) end
successfully. Nevertheless, for simplicity, this paper only addresses the steps required
for the fiscal software certification (Fig. 1).

The aims of this paper are the followings:

1. to present, starting from general basic concepts of certification, the Italian fiscal
software certification scenario, and the involved actors.

2. to describe the object of the certification: the cash register, its characteristics, and
the requirements its software component shall comply with.

3. to illustrate the cash register certification process by means of a Business Process
Model [12] and the fiscal software Testing Suite.

4. to highlight the challenges implied in the technological advancements according to
the evolution of the Italian legislation.

In the following, the fiscal software certification scenario will be described. In
Sect. 3 the cash register and its components will be presented. In Sect. 4 some fiscal
requirements for cash register software will be listed and in Sect. 5 a Cash Registers
Certification Process will be illustrated. Finally, some questions on technological
evolution of the cash registers will be discussed and the conclusions will be provided.

2 Fiscal Software Certification Scenario

In this section, some general concepts about certification are introduced.
Starting from the general concept of certification, one more specific kind of soft-

ware certification is considered along with involved actors, requirements to be met and
objects to be certified.

2.1 Certification Basic Concepts

A generally accepted definition of certification can be taken from ISO [13]: “a pro-
cedure by which a third party gives written assurance that a product, process or
service conforms to specified requirements”.

Applied to the software area, the software certification is a procedure by which a
third party gives written assurance that a software product, process or service conforms
to specified software requirements.

Certification of Cash Registers Software 155

The “assurance” can be given as a result of an activity, the “conformity assess-
ment”, defined in the same Guide but refined by the standard [14] as “an activity that
provides demonstration that specified requirements relating to a product, process,
system, person or body are fulfilled”.

Nothing such as a “guarantee” is wanted. The “demonstration” should be perceived
as “confidence” instead of “proof”.

Besides the conformity assessment is a process which includes, but is not limited to,
testing and analysis of the objects to be certified. Indeed, the certification process
includes: (a) conformance assessment; (b) inspection and surveillance of the quality
management system; (c) verification and surveillance of projects and production pro-
cesses. In this context, independent testing laboratories or supplier/developer execute
many tests, and subsequently the evidences of their activities (plans, procedures,
reports) are used in the certification process.

In the software certification context, the certification purpose is to increment the
confidence about the conformance of software products, processes or services towards
some defined requirements.

Finally, the third-party certification should be meant as an independent assessment
asserting that specified requirements pertaining to a product, person, process or man-
agement system have been met. In general, the third-party certification should provide
more confidence than the supplier certification as there is no evidence that the supplier
adopts a defined, controlled and verified process to produce and certify an object.

2.2 Actors, Requirements and Objects of the Certification

The actors involved in the certification process can be divided in two groups, who want
to give confidence on the object of certification (certification and accreditation bodies,
suppliers, sellers, standard makers…) and who want to get confidence on the object of
certification (customers, users, end users, government…).

In the first group, there are different actors with corresponding different responsi-
bilities. Among them, the most important subjects are the certification body and the
accreditation body.

A certification body is an organism with internal rules, human/infrastructure
resources and specific skills apt to perform certification procedures. In order to assess
conformity in a repeatable and documented way, a certification body must follow a
defined process, and it is important that all the certification bodies follow the same rules
for the same object types. In some cases, the internal rules themselves might be
required to be compliant to defined standards. In such a case, the certification bodies
should be “accredited”, that is declared capable of performing certification activities,
upon periodical surveillance, by special organisms called accreditation bodies.

The accreditation increases the value of the product, process or service to be
certified. The accreditation bodies are specialized per product category, and, also the
accreditation bodies need the accreditation. As there are not many accreditation bodies,
they can accredit each other by executing periodical conformity assessments with a
“peer reviews” mechanism.

Among the actors that can give confidence on the object of certification, there are
also the independent testing laboratories. These laboratories can be accredited

156 I. Biscoglio et al.

according to opportune accreditation rules or standards by special accreditation bodies
(usually different from those that accredit certification bodies).

In the second group, among who want to get confidence on the object of certification,
there are customers, users, end users, government…. They are those who benefit from the
certification as they experience the good and affordable added value of the certified
products or processes or services. Among them, there are, for example, the customers or
also the responsible manufacturers and service providers. For them, having their prod-
ucts assessed and certified as conformant to a commonly accepted international standard
can allow to better distinguish themselves among less reputable suppliers.

Regarding the certification requirements, generally speaking, they are substantially
standards or legislation. The standards can be grouped in requirements standards for
products or requirements standards for processes, standards for enabling a certification
body to assess conformance of products or processes to their requirements, and stan-
dards usable as internal rules by certification bodies for their certification activities.

Other standards can be added to this list: (a) standards for the accreditation of the
software certification bodies; (b) standards for the accreditation of the software
testing/evaluation laboratories; (c) standards for using test execution techniques and
other evaluation processes. Besides, regarding the requirements standards for products,
they are functional standards or quality standards.

The first indicate what a product is expected to do in defined working conditions.
The latter cover specific product/process aspects that are relating to their performance,
usability, and so on.

The standards should meet the criteria of suitability. Therefore, they should be easy
to understand and to use, grounded on scientific bases, cost effective, able to capture
user needs and to support evolving techniques.

About the objects of the certification, they are usually processes, products, services
or organizations. In these cases, the certification concerns properties or attributes of
these objects, and through verification of conformance to one or more defined
requirement standard the conformity assessment is detailed.

The methods for assessing the conformance are depending on the application
domain. Then they could include analyses, tests, extended surveillance over quality
management systems, and so on. Changing the object of the certification, methods for
assessing their conformance and standard change as a consequence. So various types of
standards may be involved in a certification scheme.

In Fig. 1 the complete scenario is depicted.

2.3 Actors, Requirements and Objects of the Fiscal Software
Certification

In the contest of the software certification, the request of more confidence that the
software, during its exercise, be compliant to the requested requirements, is strong. In
many case as in the case of the fiscal software, the software certification is mandatory
before a product can be put into market.

In the Italian fiscal software certification scenario, the certification process is
approved by the Minister of Finances, and on its behalf the certification against the

Certification of Cash Registers Software 157

Italian fiscal legislation is provided. The Minister of Finances appoints the certification
bodies and performs a sort of control on their certification activities.

In the case of the fiscal software certification, the Italian Fiscal Legislation is the
reference as requirements collection. The conformity assessment that the legislation
requests for the fiscal software is functional and, consequently, the requirements
considered in the certification process express what a fiscal software is expected to do
during its life.

The above cited suitability criteria are not always satisfied since in many cases the
legislation (as it will be reported in the Sect. 6) is obsolete and not completely able to
support evolving techniques. This is a challenge that the legislation should handle as
soon as possible.

The certification body referred here is the System and Software Evaluation Centre
(SSEC) of the National Research Council, and the accreditation body is the Minister of
Finances. The SSEC has been working for a couple of decades in the 3rd party software
products and processes assessment, improvement and certification.

In the case of the fiscal software, the object to be certified is the fiscal software of a
cash register.

The graphic representation of the Certification and Accreditation scenario for the
cash registers is depicted in Fig. 2.

Fig. 1. Simplified certification scheme.

158 I. Biscoglio et al.

3 Cash Registers

First of all, it is opportune to define what a cash register is.
The current Italian legislation specifies what is a cash register, why it was intro-

duced, which are its components, what kind of documents it must issue, and the
specific normative requirements that each issued document should satisfy.

What It Is: The cash register is a fiscal device designed to record and process
numerical data entered by the keyboard or other suitable functional unit of infor-
mation acquisition, equipped with the device to print on special supports the same
data, and their total [3].
Why It was Introduced: in 1972 Italy has adjusted its tax policies to the other
countries tax policies introducing the value added tax (V.A.T.) [15]. By V.A.T.
introduction, a supplier of goods or services must charge to the customer the
payment of a tribute, and in turn the supplier must pay that tribute to the
Government. Subsequently to the V.A.T. introduction, the phenomenon of the tax
evasion quickly increased. It was necessary to monitor the revenues of the com-
mercial activities in order to check the regularity of their transactions in terms of
data integrity and security. In this context, the fiscal receipt was considered the
instrument to oppose the tax evasion since it allowed to keep trace of the payments
and to monitor the revenues of the commercial activities. As result of this exigency,
the law [1] established the duty for the cash register of issuing a fiscal receipt, at the

Fig. 2. SSEC certification and accreditation scenario.

Certification of Cash Registers Software 159

time of the payment, for the sale of goods, not being subject to the emission of an
invoice and occurring in shops or open public places.

Consequently, the cash register must satisfy some requirements of security and, in
particular, of integrity in order to prevent “unauthorized access to, or modification of,
computer programs or data” [16].

Its Components: the cash register is composed of indicating devices (typically
screens), a printing device, a fiscal memory and the casing. Each component must
satisfy specific normative requirements. In particular, the indicating devices must be
two and must be placed on the two opposite sides of the cash register in order to
allow to the purchaser an easy reading of the displayed amounts. The displayed
characters must be at least seven millimeters high.

The printing device provides for the release of the fiscal receipt, daily fiscal closing
report and of the electronic transactions register. Printed characters must be at least
twenty-five millimeters high and must present appropriate requirements of clarity and
easy readability.

The fiscal memory is an immovable affixed memory that contains fiscal data. It
must record and store the fiscal logotype, the serial number, the progressive accumu-
lation of the amount, etc. In order to guarantee the integrity of its data, the fiscal
memory must allow, without the possibility of cancellation, only progressive increasing
accumulations and the preservation of their contents over time.

Finally, the casing must foresee a unique fiscal seal by means of a single screw that
ensures the inaccessibility of all hardware components involved in the fiscal func-
tionalities of the cash register, except for the paper management. Also, onto the casing,
must be applied in a well visible place on the front toward the buyer, a slab with
reported data as mark of the manufacturer, machine serial number, data of the model
approval document and the service centre.

What Kind of Documents it must Issue: The cash registers have to be able to print
a fiscal receipt, a daily fiscal closing report, and an electronic transactions register.
Each document must contain mandatory information specified for single indention,
for instance: company name, owner name and surname, V.A.T. percentage and
company address, accounting data, date and time of the fiscal receipt issue, the fiscal
logotype, the total amount of the payments of the day, the cumulative total of the
amounts of the daily payments, etc.

The Italian legislation provides a detailed refinement of this generic descriptions
providing hardware and software requirements that better characterize the structure and
functionalities of a valid cash register [3]. In particular, the legislation requires two
separate certification processes: one for the hardware components and one for the
software layer. The two processes are quite similar in the steps to be performed and
differentiate mainly by the kind of the test cases to be applied. Only for aims of
clarifying, the hardware components testing requires, for instance, water tightness or
battery capacity, and evaluations of HW reliability, measured by Mean Time Between
Failure (MTBF).

160 I. Biscoglio et al.

For the software components, black-box tests are performed, according to the
software requirements required by legislation and below reported.

The certification of a cash register needs that both the processes terminate with
successful results. For aim of simplicity this paper only details the steps required for the
fiscal software certification.

4 Fiscal Requirements for Cash Registers Software

The cash register industrial life-cycle includes different situations like regular func-
tioning, exhausted fiscal memory, disconnected devices, etc. From the ministerial
decree [2] on, the Italian legislation has disciplined these different situations imposing
precise technological constraints with a subtle level of detail.

The complete list of requirements that the cash register must satisfy can be
extracted from the legislation, even though it is sometimes obscure and misunderstood.
Anyway the legislation remains the reference point for fiscal software developers and
certifiers.

In the following some extracted requirements will be introduced. These are orga-
nized according to the specific situations of the cash registers life-cycle.

During the Regular Fiscal Functioning (that is with a fiscal memory that records
and storages accounting data), a cash register must issue:

– a fiscal receipt with some of the following information specified for single inden-
tion: company, company name, name and surname of owner, V.A.T. number and
site of the company, accounting data, date, time of issuing of the fiscal receipt, fiscal
logotype (compliant with the model that the legislation requires) etc.

Fig. 3. Cash register scheme.

Certification of Cash Registers Software 161

– a daily fiscal closing report with some of the following information specified for
single indention: V.A.T. number and site of the company, eventual amounts of
sales, number of issued fiscal receipts, number of issued non-fiscal receipts, date
and time of issuing of the fiscal receipt, number of the fiscal resets, fiscal logotype
(compliant with the model that the legislation requires).

– an electronic transactions register with some of the following information specified
for single indention: accounting data, date, time of issuing of the fiscal receipt,
number of issued non-fiscal receipts, etc. The transactions electronic register was
introduced by the [17]. Before this date, the transaction register was papery.

During the Data Input, it must not be possible:

– To change time in impossible formats (for instance: 26:44).
– To change date in impossible formats (for instance: 31/09/2012).
– To issue the fiscal receipt with a series of articles whose sum is greater than fixed

max value per total of receipt (MAXSF).

Fiscal Memory Close to the Exhaustion (possible only from 2 to 5 closures to the
exhaustion):

– In the daily fiscal closing report must appear the message “memory close to the
point of exhaustion”.

– In the last daily fiscal closing report must appear the message “memory exhausted”.

With Exhausted Fiscal Memory:

– The command of issuing a fiscal receipt must not be executed.

After an Interruption of the Electricity:

– The fiscal receipt must be compliant to the legislation.
– Therefore, it must be report all information cited above.
– The last daily fiscal closing report must be compliant to the legislation.
– Therefore, it must report all information cited above.

If the Printing Device is Disconnected:

– Any issuing of fiscal documents by the cash register must be inhibited.
– Congruent warnings must be reported.

If the Indicating Device is Disconnected:

– Any issuing of fiscal documents by the cash register must be inhibited.
– Congruent warnings must be reported.

If the Fiscal Memory is Disconnected:

– Any issuing of fiscal documents by the cash register must be inhibited.
– Congruent warnings must be reported.

As mentioned above, these are only an extract of a broader collection of cash register
software requirements that the legislation requests. They have been reported in order to
underline the level of detail that the Italian legislation has identified in this matter.

162 I. Biscoglio et al.

The global collection constitutes a Requirements Repository that the SSEC keeps
continuously updated and aligned to the continuous modifications in the legislation
imposed by the designate authorities.

To each requirement collected in the requirements repository a set of specific test
cases and responses is associated and executed during the test phase.

5 Cash Registers Certification Process

In this section, the fiscal software certification process is described. With the aim of
making such a description clearer, a Business Process Model of the fiscal software
certification process is provided as well.

The principal stakeholders involved in the fiscal software certification process are:

• The Cash Register Producer (from here in after called the “producer”). It develops
the whole cash register including the fiscal software (the acquisition of fiscal
software from a supplier, is allowed too). The producer is in charge of applying to
the IRA to obtain the final approval. The cash register is expected to be completely
developed and tested by the producer.

• The certification body. It is in charge of performing the certification of the cash
register against the Italian fiscal legislation. Its activities consist of analysis of
technical documentation, code inspection and fiscal software functional testing. The
certification process described and discussed in this paper is related to the SSEC
certification body.

• The Income Revenue Authority (IRA). It is in charge of releasing the final approval
of the cash register. It can perform additional tests, mainly targeting special cases
and exceptions.

In the following a representation of the Business Process Model of the cash reg-
isters certification is provided along with the description of the single tasks performed
by the stakeholders involved in the cash register certification process.

5.1 The Certification Process Model

The fiscal software certification process can be divided into six steps:

• Cash Register Development. This step is performed by the Producer. The Producer,
once the cash register development ends, shall provide the certification body with
the fiscal software source code, and the technical documentation related to the cash
register. Such a technical documentation shall include, at least, the system and
software architectural design, the functional description of the fiscal software (e.g.
state charts, control flow diagrams), the functional instructions for the user (e.g. the
user manual of the cash register), and the maintenance procedures to be applied
during the operational stage of the cash register.

• Documentation analysis and code inspection. This step is performed by the certi-
fication body possibly in co-operation with the producer. The information about the
design, coding and functions implemented is gathered and analyzed by the

Certification of Cash Registers Software 163

certification body with the aim of evaluating the structural and functional charac-
teristics of the cash register, with particular focus on the fiscal part. Possible
characteristics that may affect correctness and reliability of the cash register are
pointed out.

• Test cases definition. The step is performed by the certification body. The knowl-
edge acquired in step 2. Is used to define the set of test cases to be executed.
Functions implemented and critical aspects of the technical solution adopted in the
development of the cash register are taken into account to tailor, and possibly
complete, a standard test suite prepared and maintained by the SSEC. Details on the
test suite are provided in Sect. 5.2.

• Testing fiscal software. This step is performed by the certification body. Test cases
are executed and results recorded. The test environment is the target cash register.
The test cases aim at verifying the fiscal software requirements through the exe-
cution of cash register functionalities.

• Release of the certificate. In the case of all tests passed, documentation analysis
passed and code inspection passed, the certification body releases a certificate of
compliance of the cash register. The version of fiscal software used in testing is
freezed and annexed to the certificate. In the case of test failure, the defect is
identified, the producer is requested to fix the defects and a test is repeated
according to a non regression testing strategy [18].

• Approval of the cash register. The IRA, taking into account the certificate of the
certification body and, possibly, performing additional tests, issues a decree of
approval of the cash register. Such a decree allows the cash register to be sold and
used in the Italian market.

In Fig. 4 the process is represented bymeans of a business process representation [12].

5.2 The Fiscal Software Testing Suite

The test suite has been developed by the SSEC taking into account the required
behavior of the cash register according to the law requirements and the possible
abnormal conditions and malicious actions.

Fig. 4. Cash registers certification business process model.

164 I. Biscoglio et al.

To increase the compliance in the completeness of the test suite, the traceability
between fiscal law requirements and test cases is established. The test suite in divided
into five parts.

Part 1. It addresses the set up phase and the behavior of the cash register in the
pre-fiscal mode (i.e. the state of the cash register before the initialization of the fiscal
me-mory). The transition from the pre-fiscal to thefiscalmode is also verified in Part 1.
Part 2. It addresses the nominal behavior of the cash register in fiscal mode. In this
phase the correctness and security of the counters is verified, as well as the layout
and contents of the fiscal documents produced.
Part 3. It addresses abnormal use of the cash register (i.e. possible anomalous and
malicious use of the cash register).
Part 4. It addresses boundary conditions and recoverability i.e. the behavior of the
cash register in case of exhausting resources (e.g. the fiscal memory exhaustion) or
adverse events (e.g. power interruption).
Part 5. It addresses the behavior in the case of physical disconnections of cash
register components (i.e. the DGFE or customer display).

6 Discussion

The paper reports an Italian experience of fiscal software certification inferring from the
background knowledge collected over several decades of activity. In this long expe-
rience many exceptions with respect the normal process execution have been experi-
enced. In the following, a not exhaustive list of some important challenges is discussed.

The first challenge concerns the legislation. Although it plays a central role in the
certification process, often it is still too generic to cover all the possible exceptions and
issues. Such a vagueness and incompleteness of the requirements determines misun-
derstandings, and may cause troubles in software development and errors in the final
product. In order to reduce this risk, the SSEC tries to keep updated and aligned with
the norms a proprietary Requirements Repository, that is the collection of cash register
normative requirements, both from the hardware and software point of view, so to keep
track of any possible non-compliance against the legislation. Besides, the SSEC col-
lects and updates a set of practices provided by the designate authorities to avoid
additional errors.

The second challenge concerns the documentation provided by the producers. The
system and software architectural design, the functional description of the fiscal soft-
ware, the functional instructions for the user (e.g. the user manual of the cash register),
and the maintenance procedures to be applied are sometimes affected by incomplete-
ness and ambiguity. As a consequence, the specification of software functionalities
implemented, may not result complete and accurate enough to define appropriate
software test cases. In these cases, the SSEC has to ask for important integrations to
identify implemented software functionalities and set up a customized test plan.

The third challenge concerns the error handling discovered during the test plan
execution. As in every testing activity, non-compliances or defects can be detected test
sessions. In case of non-compliances, the cash register producers are requested to fix

Certification of Cash Registers Software 165

the source code. This task may have a rather high cost, in terms of time and effort, spent
by both the certification body and the producer. Moreover the execution of regression
testing aimed at verifying that the fixing did not determine side effects invalidating the
already tested functionalities, is necessary. For these problems, the SSEC has adopted
the compartmentation of the source, i.e. wherever possible, by the analysis of the
available documentations as well as code inspection, source code is sliced into separate
components so that only the test cases related to a specific part are selected and
re-executed. However, this approach for test case selection and prioritization cannot be
easily adopted because most of times the source code is implemented as firmware or
middleware. Therefore, strengthening the actions in the previous directions (updating
of the legislation and integration of the missing documentation) can further limit new
problems during the testing session.

This list of challenges is partial but it can offer food for thought for the issues
regarding the fiscal software certification.

7 Conclusions

In the paper the current scenario of cash register certification in Italy has been pre-
sented. After having considered the main concepts of the software certification, its
actors and its requirements, the cash register, as object to be certified, has been
introduced and some its software requirements have been presented. Subsequently, a
Certification Process Model for the cash registers software and the Fiscal software
Testing Suite have been shown. Finally a discussion about the most current challenges
on this specific kind of software certification closes the paper. Although this is the
current process required by the legislation before a cash register can be put into market,
the same legislation is strengthening the transactions traceability as strategy to improve
the effectiveness of the fight against tax evasion. From this point of view, the abolition
of the fiscal receipt and the adoption of tools for the electronic invoice and the telematic
transmission of the incomes are considered an effective solution. These changes require
technological advancement and normative adjustments for the stakeholders involved in
the certification process. The developers must adapt the fiscal software of their cash
registers to the new normative issues, and the certification bodies must reorganize their
certification process for the legislation compliance check. So new challenges are
glimpsed in the cash registers software future [19].

References

1. L. 26 Gennaio 1983, n. 18. (Italian legislation, in Italian)
2. D.M. 03/23, Decreto Ministeriale 23 Marzo 1983 (1983). (Italian legislation, in Italian)
3. D.M. 03/23 all. A, Decreto Ministeriale 23 Marzo 1983, allegato A. (1983) (Italian

legislation, in Italian)
4. D.M. 19/06, Decreto Ministeriale 19 Giugno 1984 (1984). (Italian legislation, in Italian)
5. D.M. 14/01, Decreto Ministeriale 14 Gennaio 1985 (1985). (Italian legislation, in Italian)

166 I. Biscoglio et al.

6. D.L. 326, Decreto Legge 4 Agosto 1987, n. 326 (1987). (Italian legislation, in Italian)
7. D.M. 4/04, Decreto Ministeriale 4 Aprile 1990 (1990). (Italian legislation, in Italian)
8. D.M. 30/03, Decreto Ministeriale 30 Marzo 1992 (1992). (Italian legislation, in Italian)
9. D.M. 04/03, Decreto Ministeriale 04 Marzo 2002 (2002). (Italian legislation, in Italian)
10. P.M. 28/07, Provvedimento Ministeriale 28 Luglio 2003 (2003). (Italian legislation, in

Italian)
11. P.M. 16/05, Provvedimento Ministeriale 16 maggio 2005 (2005). (Italian legislation, in

Italian)
12. vom Brocke, J., Rosemann, M.: Handbook on Business Process Management 1:

Introduction, Methods and Information Systems. Springer, Germany (2014)
13. ISO/IEC Guide 2, Standardization and related activities – General vocabulary (1996)
14. ISO/IEC DIS 17000, Conformity assessment - Vocabulary and general principles (2004)
15. D.P.R. 633, Decreto del Presidente della Repubblica 26 Ottobre 1972, n. 633 (1972). (Italian

legislation, in Italian)
16. ISO/IEC FDIS 25010, Systems and software engineering -(SQuaRE)- System and software

quality models (2011)
17. P.M. 31/05, Provvedimento Ministeriale 31 Maggio 2002 (2002). (Italian legislation, in

Italian)
18. Pezzè, M., Young, M.: Software Testing and Analysis: Process, Principles, and Techniques.

Wiley (2008)
19. Prokin, M., Prokin, D.: GPRS terminals for reading fiscal registers. In: 2013 2nd

Mediterranean Conference on Embedded Computing (MECO), pp. 259–262. IEEE (2013)

Certification of Cash Registers Software 167

Methodologies, Processes and Platforms

Meta-Tool for Model-Driven Verification
of Constraints Satisfaction

César Cuevas Cuesta(&), Patricia López Martínez, and José M. Drake

Group of Software Engineering and Real-Time,
University of Cantabria, Santander, Spain

{cuevasce,lopezpa,drakej}@unican.es

Abstract. The work presented in this paper addresses the general problem of
verifying if models structurally compliant to a given meta-model also satisfy the
constraints specified on it, whether integrity or tool-specific ones. For accom-
plishing such constraints satisfaction verification, a completely model-driven
strategy is proposed, whose core idea is to perform the checking by applying an
M2M transformation to the model to verify, hence yielding a model which
represents the verification result. This output model encapsulates every detected
constraint violation, allowing their later manifestation, automatic fixing or any
other kind of processing. Besides providing a meta-model for formalizing those
diagnostic models gathering constraint violations, the presented methodology
enables the systematic and straightforward development of verification tools,
each one targeting a given couple of domain meta-model and constraints set.
Therefore, it supports the actual objective of this work: A strategy for the
development of a generic tool for the verification, suitable for any constraints set
or meta-model. The functional foundation for designing such a generic tool is
that it will be based on a generator (meta-tool) for the on-the-fly creation of the
required specific tool (M2M checking transformation), thanks to the Higher
Order Transformation (HOT) technique.

Keywords: MDSE � Meta-model � Constraints � Model transformation �
HOT � Verification

1 Introduction

When a domain formalization does not only consist of a meta-model but also of a set of
integrity constraints specified for it due to the existence of laxities within its formu-
lation (which happens in most cases), model conformity encompasses the basic com-
pliance to the meta-model structure as well as the satisfaction of every specified
constraint. This work focuses on this second aspect, proposing a full-fledged
model-driven strategy for verifying constraints satisfaction. This is a very important
topic since, in addition to integrity constraints, it is quite common that model pro-
cessing tools define additional specific constraints for proper actuation.

The core idea of the proposed strategy for constraints satisfaction verification is to
perform it by applying an M2M transformation to the model to verify. Hence, the
verification result is a new model, idea that is in complete agreement with the

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 171–193, 2017.
DOI: 10.1007/978-3-319-66302-9_9

MDSE principle [1, 2]. This output model does not only record which constraints have
been violated but also encapsulates the data needed for describing those violations
detected in the checked model. Since a meta-model is required in order to formalize the
structure of such diagnostic models describing constraint violations, the methodology
provides a preliminary and extensible one. Despite the extensibility feature, its initial
design aims to achieve a high level of generality.

The approach is basically dependent on the couple domain meta-model + con-
straints at hand, since a different M2M checking transformation must be developed for
each couple. Although at first glance it may contradict the benefits claimed by the
MDSE, especially the productivity-related ones, indeed the presented methodology
enables the systematic development of specific verification tools, being able in turn to
support the actual objective of this work: To design a strategy for the development of a
generic tool for constraints satisfaction verification, suitable for any constraints set or
even for any meta-model. The functional foundation for designing such a generic tool
is that it will be based on a generator for the on-the-fly creation of the required specific
tool (M2M checking transformation).

Figure 1 shows an overview of the proposed strategy, which provides three assets
that are applicable in any application domain:

• The ConstraintViolationDescription (CVD) meta-model. It is meant to formalize
the structure of the models obtained as result of the verification.

• The ConstraintCharacterization (CC) meta-model. The domain expert shown in
Fig. 1. is responsible for formulating the domain meta-model as well as the con-
straints. In our strategy, his responsibility goes one step forward and he must
characterize every constraint, decorating their formulation with description data, in
particular including the way in which their violations must be described, i.e.
defining a mapping between them and a suitable CVD class. This CC meta-model is
meant to support that collective characterization in model form.

• The tool generator that produces every specific verification tool. When the final
user attempts to check a model, the automatically generated tool is used.

Fig. 1. Strategy overview.

172 C.C. Cuesta et al.

This strategy is part of a more general work [3] about the design of generic MDSE
tools (able to operate on models compliant to different meta-models) for alleviating the
problems that meta-model evolution may induce in MDSE-based development envi-
ronments. The background motivation is contributing to foster the adoption of MDSE
as basis of domain-specific development environments by the domain experts who
push forward the methodologies in their corresponding domains by designing new
strategies, tools and environments. Although this wider context is largely out of the
scope of this paper, it is worth to mention that the work here is a proof of concept of a
technique for designing generic MDSE tools that receive instruction information for
each meta-model to be supported. Such information actually instructs the tool in how to
adapt itself for spanning its coverage to a new meta-model, thus being able to process
models compliant to it. In this instruction technique, the information is formulated in
model form and such models are formalized by means of an instruction meta-model
specific for each tool. In the presented scenario, the CC meta-model plays that role.

The rest of the paper is organized as follows. Section 1 introduces and justifies the
very frequent use of lax meta-models and specification of constraints while Sect. 2
describes the proposed approach for the systematic development of verification tools,
ranging from the model-based representation of a verification result to the meta-model
supporting these output models describing constraint violations. This section also
explains the way in which an M2M strategy can support the approach. Section 3
exposes the final goal of the work: a strategy for the development of a generic tool for
model verification. Section 4 addresses the implementation aspects using the ATLAS
Transformation Language (ATL). Section 5 presents an application example on top of
the MAST-2 meta-model. Finally, Sect. 6 is devoted to related work that can be found
in the MDSE literature and Sect. 7 ends giving some conclusions and future work lines.

2 Lax Meta-Models and Constraints Definition

The formulation of meta-models describing every semantic detail of the corresponding
target conceptual domain is an ideal situation where every instance model would
correspond to a valid scenario within the domain. However, this is very difficult if not
impossible to achieve, except for very simple cases. Hence, meta-models are usually
formulated by only reflecting the big picture of the modelled domain, without covering
every detail, which inevitably leads to the existence of laxities in them. Under this
circumstance, there can be models that, although compliant to such lax-formulated
meta-models, represent non-valid scenarios regarding the domain semantics.

As a trivial example, let’s consider a meta-model containing a Person class which
defines an integer age attribute. It is a clear laxity, because, although common sense
dictates that only positive values should be assigned to that attribute in the instance
models, nothing in the meta-model formulation establishes it and hence incoherent
models could be formulated (people of age < 0) but still compliant to the meta-model.

In order to tackle this problem, integrity constraints should be specified for any lax
meta-model, typically one constraint per laxity. When this specification is accom-
plished, the domain formalization is composed of the meta-model but also of the set of
integrity constraints specified for it and, in addition to the basic structural compliance to

Meta-Tool for Model-Driven Verification 173

the meta-model, model conformity also encompasses the satisfaction of every con-
straint. Hence, the existence of valid models representing invalid scenarios is avoided.

For enhancing the lax formulation of a domain meta-model by means of the speci-
fication of integrity constraints as well as for formulating tool-specific constraints, the
standard language is OCL. Although OCL distinguishes several types of constraints
(invariants, pre- and post-conditions, derivation rules, etc.), only invariants are consid-
ered in this work. Thus, in this paper invariant and constraint will be used indistinctly.

Since the problem of lax formulations is conveniently addressed by the use of
integrity constraints, it is quite common to find meta-models formulated with an even
greater degree of laxity than the one strictly due to the practical impossibility of a
comprehensive description of the domain. There are several reasons for it, as for example:

• Preserving as Simple as Possible the Meta-model Structure, in order to ease
future extensions and maintenance. If a meta-model is designed to cover the target
domain semantics very deeply, a very complex internal structure would be required,
featured by a large number of primitive types instead of the usual ones (int, real,
boolean, char, string, etc.), as well as a very deep hierarchy of class inheritance,
aiming at specializing at maximum the possible associations and their multiplicities.

• Using a Single Meta-model for supporting models that participate in different
processes where different tools are applied on them. Because of their implemen-
tation maturity or their particular scope, it is very common that each tool enforces
specific conditions or well-formedness rules on the models. In such context, it may
be better to use a single and quite lax meta-model according to the core nature of the
described system instead of defining a specialized meta-model for each tool. The
tools can instead formalize their particular preconditions as sets of constraints
analogous to the integrity ones but now called additional or tool-specific constraints.

As an example, Fig. 2 shows an overview of the MAST environment for analysis
and design of real-time systems, in which the verification methods proposed in this
work have been applied.

The environment is based on a meta-model, called MAST-2 [4], used to formalize
models describing the timing behaviour of systems with real-time requirements to
fulfil. The design of the meta-model tried to maintain a balance between faithfully
describing the target domain without yielding an overwhelming internal structure.

ResultMast2
System model

Mast2
Metamodel General Mast2

consistency rules

Offset-based
schedulability

consistency rules

Simulation
tool

Offset-based
schedulability

analysis

General verification Specific verification

Fig. 2. The MAST-2 environment.

174 C.C. Cuesta et al.

Currently, the meta-model contains 143 classes and is lax-formulated. However, a set
of OCL-formulated integrity constraints ensures that the models used to describe the
timing behaviour of the targeted real-time systems correspond to valid scenarios.
Section 5 will present a sample of those laxities/constraints.

In addition, the MAST environment is equipped with several real-time analysis and
design tools that operate on the models compliant to the MAST-2 meta-model. Some of
these tools, like the Simulator shown in Fig. 2, work on models that are simply
required to be fully compliant to MAST-2 (including constraints satisfaction). Other
tools, like the Offset-Based Schedulability Analysis Tool, can only work on models
that satisfy certain additional constraints. Under a strategy of strict meta-modelling, the
environment would have to manage tens of meta-models (very similar ones, but dif-
ferent), one for each available analysis tool, as well as the corresponding transforma-
tions between them. In contrast, using a lax meta-model only requires to specify an
appropriate list of constraints for each environment tool.

3 M2M-Based Constraints Satisfaction Verification

3.1 Verification Result in Model Form

The result of verifying constraints satisfaction in a model can adopt several different
forms. As depicted in Fig. 3, this work adopts the approach of representing it as
another model whose elements correspond to constraint violations occurred in the
verified model. This output model constitutes the base for a possible manifestation of
those violations, allowing its management by tools in an MDSE environment. The
provided information regarding the detected violations can be as rich as set in a
hypothetical meta-model that the output model must conform to.

The next subsection presents a meta-model for these models, output of the verifi-
cation process. It defines the data required for describing, at higher or lower level of
detail, the detected violations and it aims to cover the entire spectrum of constraints
violations that may appear in MDSE models.

3.2 The CVD Meta-Model

The CVD (Constraint Violation Description) meta-model constitutes an initial proposal
of meta-model for formalizing diagnostic models, i.e. those ones formulating the result

Fig. 3. Model representation of verification result.

Meta-Tool for Model-Driven Verification 175

of verifying if other models satisfy the constraints specified on their corresponding
domain meta-model.

The meta-model presents a conventional structure, with a main container class
(CVD_Model) and a class hierarchy oriented to model the data needed for the
description of constraint violations, the more depth in the hierarchy, the more detail.
This hierarchy has a root class (CVD) from which the rest of meta-model classes inherit.
Figure 4 shows both the CVD_Model and CVD classes along with the top subclasses of
the latter, which are briefly exposed below. Thus, a model compliant to CVD has a
single CVD_Model instance, which contains through its descriptions association
the rest of model elements, instances of CVD or of any of its subclasses.

• CVD: This class models violations generically, since it only has attributes for the
constraint identifier along with an optional textual description and the severity
assigned to the risen problem. It also references the model element where the
violation is

located (contextualModelElem) along with those other ones (ancestors)
that constitute the path from it towards the model main container. Actually, this
class is enough for formulating as a model the set of violations detected in another
model, since the described information is suitable for any kind of constraint,
regardless its nature, semantics or formulation.

• BasedOnIncompatibility: This class extends CVD by defining the set1
and set2 references, aimed at holding two sets of model elements that can be
reached from the contextual model element through association chains. Hence, it is
suitable for describing violations of constraints consisting in setting incompatibil-
ities between subclasses of two classes (typically abstract) that are connected to the
context class through association chains. The use of this class will be illustrated in
Sect. 5.

Fig. 4. CVD meta-model overview.

176 C.C. Cuesta et al.

• BasedOnContainmentRelation: This class extends CVD by defining the
brokenRelation attribute, meant to specify a type of containment relationship
(according to the ContainmentType enum), as well as the set1 and set2
references, aimed at holding two sets of equally typed model elements, which can
be reached from the contextual model element through association chains. Hence, it
is suitable for describing violations of constraints consisting in setting a contain-
ment relationship between the populations corresponding to the endpoints of two
association chains starting from the context class. The use of this class will be
illustrated in Sect. 5.

• ScopeBased: This class extends CVD by defining the scope containment ref-
erence, aimed at holding a scope definition, i.e. a population of model elements.
Hence, it is suitable for describing violations of constraints whose satisfaction
depends not only on the state of a model element but also on its siblings within the
scope in which the first one is immersed.

• BasedOnPropertiesOfContextClass: This class extends CVD by defining
the properties reference, aimed at holding properties of the context class. Thus,
it is suitable for describing violations of constraints specified on properties of the
context class.
In order to depict the class hierarchy more in depth, Fig. 5 shows the subclasses of
BasedOnPropertiesOfContextClass, which are briefly exposed below.
The CVD meta-model provides options for modelling violations of constraints
consisting in reducing a property multiplicity, restricting the validity range for an
attribute value or the valid types for a reference; or related to impose rules about the
coexistence of optional properties or the order that the values of numeric attributes
must hold.

Fig. 5. BasedOnPropertiesOfContextClass subclasses.

Meta-Tool for Model-Driven Verification 177

• MultiplicityRestriction: This class extends BasedOnProper-
tiesOfContextClass by defining the integer restrictedLowerBound
and restrictedUpperBound attributes, meant to specify the new multiplicity
limits for the context class property pointed through the properties reference.
Hence, it is suitable for describing violations of constraints reducing the multiplicity
of a context class property.

• AttributeValueValidity: This class extends BasedOnPropertiesOf
ContextClass by defining the validityRange containment reference, aimed
at holding a Range instance describing a validity interval for the values of the
context class attribute pointed through the properties reference. Hence, it is
suitable for describing violations of constraints consisting in narrowing the range of
values for a context class attribute. The use of this class will be illustrated in Sect. 5.

• ReferenceTypeValidity: This class extends BasedOnProper-
tiesOfContextClass by defining the validTypes reference, aimed at
holding subclasses of the type of the context class reference pointed through the
properties reference. Hence, it is suitable for describing violations of con-
straints consisting in selecting the valid subtypes for a context class reference.

• OptionalPropertiesCoexistence: This class extends BasedOnProp-
ertiesOfContextClass by defining the brokenRule attribute, meant to
specify a coexistence rule (according to the CoexistenceRule enum) that has
not been respected. Hence, it is suitable for describing violations of constraints
consisting in constraining the definition state of a set of optional properties of the
context class.

• RelationaOrderForAttributesValue: This class extends BasedOn
PropertiesOfContextClass by defining the brokenOrder attribute,
meant to specify a relational order (according to the RelationalOrder enum)
that has not been respected. Hence, it is suitable for describing violations of con-
straints consisting in enforcing a relational order for the values of a set of numeric
attributes of the context class. The use of this class will be illustrated in Sect. 5.

Due to space reasons, the CVD meta-model is not presented in its entirety. Its
complete specification and Ecore formulation can be found in [5].

3.3 Overview of the Verification as M2M Transformation

Representing the verification result by means of another model leads in a natural way to
contemplate the verification process as an M2M transformation, defined between the
meta-model of the model to be verified and the meta-model that the result model must
conform to (in this case, the CVD meta-model). Thus, as depicted in Fig. 6, this
checking M2M transformation, when applied on a given model (Sample model),
generates as result the corresponding model describing the constraint violations, if any.

Like in any other M2M transformation, visibility over the source and target
meta-models (DomainMMandCVD, respectively) is required (dotted arrows). However,
in this M2M strategy, the source meta-model is constraints-naked, i.e. it is not required
neither including nor attaching the constraints to it. It is enough that the developer knows
them in order to incorporate their verification to the checking transformation.

178 C.C. Cuesta et al.

3.4 Extension of the Approach

So far, using an M2M-based strategy, a verification methodology has been designed.
This solution solves the addressed conformity verification problem but without
sidestepping the fact that the strategy implies the development of a different verification
tool (implementation of a different checking transformation) for every pair domain
meta-model + set of constraints. Figure 7 (left side) shows this drawback.

Therefore, once that methodology for the systematic (but manual) development of
specific tools for model verification has been set, it seems logic to envision a step forward,
a generic tool that could be applied for the verification of models regardless their
meta-models and corresponding constraints, as shown in Fig. 7 (right side). Thus, the
design of a strategy that enables the development of such a generic tool for verification
has been accomplished. It is based on code generation, as explained in the next section.

4 Generic Tool for Verification

4.1 Foundation: Meta-Tool for Automating Tools Generation

Trying to abstract the infinite number of domain meta-models that the Domain-Specific
Language (DSL) approach promotes, does not seem a suitable option for creating a
generic tool for verification. Hence, our solution has been the development of a
meta-tool for the on-the-fly construction of the specific tool corresponding to each case.
Such a strategy (Fig. 8) leads to the area of code generation, in this case the code of a
checking M2M transformation.

Fig. 6. Checking M2M transformation in action.

Fig. 7. Specific verification tools vs. generic tool.

Meta-Tool for Model-Driven Verification 179

To perform this task, the meta-tool receives as input the constraints along with the
mapping between each constraint and a CVD class, i.e. the way selected to model the
violation of each constraint. More specifically, it is not only required information about
what type of violation description is assigned to a constraint, but also information
relative to which domain meta-model elements (typically attributes, associations or
association chains) are assigned to the properties of the CVD instance. This whole
information related to a constraint (its own data – name, OCL expression and context
class – as well as mapping data) constitutes the constraint characterization.

Thus, as shown in Fig. 9, our meta-tool for the generation of ad hoc tools accepts as
input the models encapsulating the set of constraint characterizations.

In order to formalize the structure of these characterization models, a meta-model
has been designed. It is called the ConstraintsCharacterization (CC) meta-model and its
role in the developed scenario is shown in Fig. 10.

Fig. 8. Meta-tool for tools generation.

Fig. 9. Input models for the meta-tool.

Fig. 10. CC meta-model role.

180 C.C. Cuesta et al.

The CC meta-model is exposed in the next subsection. Later, in Subsect. 4.3, the
design and operational mode of the created meta-tool is analysed. Since its purpose is
the on-the-fly generation of every specific tool for verification, the field of generation of
M2M transformations is naturally reached.

The elegance of the model-driven paradigm allows the reutilization of the same
transformation-based infrastructure. This technique is known as Higher Order Trans-
formation (HOT) [6], i.e. a transformation that operates on transformations – in this
work, a transformation that generates a transformation –. To achieve this objective, the
concept of M2M transformation needs to be extended with that of transformation
model, so that an M2M transformation is represented by a model compliant to the
meta-model of the used model transformation language (MTL).

4.2 The CC Meta-Model

The CC meta-model formalizes the models through which the constraints specified on a
domain meta-model are characterized, in order to feed the meta-tool. This meta-model
presents a structure closely aligned to the one of the CVDmeta-model, even maintaining
name parity between counterpart classes wherever possible. As CVD, it has a main
container class (CC_Model) and a hierarchy root class (CC) from which the rest of the
meta-model classes inherit. A model compliant to CC has a single CC_Model instance,
which contains through its constraintCharacterizations association the rest
of model elements, instances of CC or of any of its subclasses. This main container
instance also references the domain meta-model (an EPackage instance in Ecore).

Figure 11 shows the meta-model main container and root classes along with the
top-subclasses of the latter. Briefly said, each of them is appropriate to characterize
constraints whose violations will be described by the corresponding CVD

Fig. 11. CC meta-model overview.

Meta-Tool for Model-Driven Verification 181

counterpart class. The mapping could also be established to a superclass of the
counterpart one, although this option will lead to a loss of description information
available in the characterization. However, what is prohibited is to establish a mapping
to a subclass of the CVD counterpart. In this case, a problem about inexistent required
information would arise when trying to encode the generation of a violation description
instance during the automatic creation of the checking M2M transformation.

In order to depict the class hierarchy more in depth, Fig. 12 shows the subclasses of
BasedOnPropertiesOfContextClass. The meta-model offers options for
characterizing constraints whose violations will be described by instances of the CVD
counterpart classes, hence showing the alignment between both meta-models.

Due to space reasons, the CC meta-model is not presented in its entirety. Its
complete specification and Ecore formulation can be found in [5].

4.3 HOT as the Core of the Meta-Tool

In an M2M working context in which it is possible to represent a transformation as a
model – transformation model–, a HOT can be defined as an M2M transformation such
that its input and/or output models are themselves M2M transformations (transfor-
mation models) [7]. Hence, HOTs take 0..n transformation models as input, produce 0..
n as output or both. The HOT developed in this work follows the synthesis pattern [6].
It can be defined as the pattern corresponding to HOTs that generate a transformation
(model) from models that do not represent transformations.

Here, as shown in Fig. 13, there is a single input model for the HOT to accept, the
constraints characterization one, producing as output a model compliant to the
meta-model of the used MTL. This output model is the checking M2M transformation
corresponding to the input constraints characterization model, specific to the couple
domain meta-model + constraints along with the mapping decisions regarding how to
model their possible violations.

Fig. 12. BasedOnPropertiesOfContextClass subclasses.

182 C.C. Cuesta et al.

The final step is the serialization (extraction) of the produced model in order to
obtain the checking M2M transformation encoded in the MTL textual concrete syntax.

4.4 ATL Implementation

The widespread ATL is the MTL chosen in this work for implementing M2M trans-
formations: the HOT and consequently every generated M2M checking transformation.
ATL is the de facto standard for M2M purposes, belonging to the AMMA platform [8],
a complete modelling infrastructure very well integrated with Eclipse/EMF. ATL is
very suitable for developing HOTs because, although not all M2M transformation
frameworks provide a meta-model formalizing the abstract syntax of the transformation
language, AMMA/ATL indeed does. Another interesting feature is that the serialization
of an ATL model to its textual representation is also very well supported through the
AMMA technical projectors.

The ATL code for the HOT at the heart of the presented methodology as well as the
ATL code of a sample M2M checking transformation (the one corresponding to the
MAST-2 meta-model and its integrity constraints) can be found at [5]. For the gen-
erated M2M checking transformations, an implementation style based on helpers and
on called rules has been selected. One of the main advantages of this choice is that the
resultant ATL code has a very regular structure, following a uniform pattern easy to
automate. This structure is also properly documented at [5].

5 Use Case Example

In order to illustrate the presented methodology, let’s consider an example based on the
MAST-2 meta-model. The following Subsect. 5.1 reflects the lax nature of its for-
mulation by exposing a selection of four laxities along with the corresponding integrity
constraints. Subsection 5.2 addresses the CC model characterizing the MAST-2
integrity constraints, model from which the M2M checking transformation specific for
them is generated. In particular, it is shown the model portion corresponding to the four
constraints selected in Sect. 5.1. Subsection 5.3 introduces a very tiny MAST-2 model
which violates every considered constraint and Subsect. 5.4 focuses on the use of

Fig. 13. HOT generates checking M2M transformation.

Meta-Tool for Model-Driven Verification 183

Eclipse OCL for verification. Finally, Subsect. 5.5 shows the CVD model produced
when applying the checking transformation to the sample incoherent model.

5.1 The MAST-2 Lax Meta-Model

As exposed in Sect. 2, the MAST-2 meta-model has a non-trivial size (143 classes) and
it is lax-formulated, i.e. it presents several tens of laxities of different nature. Hence, a
set of integrity constraints has been specified for it. The complete documentation for
these laxities/constraints is accessible at [9]. Below, there is a reduced but represen-
tative sample of such laxities, along with the corresponding preventing constraints.

As shown in Fig. 14, the Regular_Processor class defines two integer-like
attributes for describing the managed interrupt priorities, namely Max_Inter-
rupt_Priority and Min_Interrupt_Priority. A laxity is located here
because any compliant model could present the incoherency of a minimum value
greater than the maximum (an analogous discussion arises when considering the three
ISR_Switch attributes). Thus, an integrity constraint (i_2_2_a) has been specified.
Its OCL formulation is trivial:

context Regular_Processor inv i_2_2_a:
Max_Interrupt_Priority >= Min_Interrupt_Priority

Figure 14 also shows that the Regular_Processor class inherits the
Speed_Factor attribute from the Processing_Resource abstract superclass.
This attribute represents the processing capacity of the processor regarding a reference
processor and, obviously, it cannot take a non-positive value. So another laxity is
located here because, since the attribute is typed as float, any compliant model could
have the incoherency of presenting a non-positive value for it. Thus, an integrity
constraint (i_1_1_a) has been specified. Its OCL formulation is also trivial:

context Processing_Resource inv i_1_1_a:
 Speed_Factor > 0.0

Finally, Fig. 14 also shows that the Regular_Processor class defines two
references of Timer type, namely Timer_List and System_Timer. The first one

Fig. 14. The Regular_Processor class.

184 C.C. Cuesta et al.

represents the set of timing objects associated to a processor, if any, while the second
one specifies the main one among them. Hence, a laxity is located here because any
MAST-2 model could present the incoherency of having processors specifying a
system timer among those ones in the model not included in the timers list. Thus, an
integrity constraint (i_4_1_a) has been specified. Its OCL formulation is also pretty
straightforward:

context Regular_Processor inv i_4_1_a:
if not System_Timer.oclIsUndefined() then
 Timer_List -> includes(System_Timer)

 else
true

endif

Next, Fig. 15 shows that both the Scheduler and Schedulable_Resource
classes have their Policy and Scheduling_Parameters references defined in
terms of the abstract classes Scheduling_Policy and Scheduling_Parame-
ters, allowing the assignment of objects of respectively any concrete type of policy or
parameters. However, a laxity emerges regarding the association between a scheduler
and a schedulable resource because the corresponding policy and scheduling param-
eters objects may be incompatible (the compatibilities are shown by dotted red lines in
Fig. 15) in a compliant model.

Consequently, a constraint (i_4_4_a) has been defined, setting the appropriate
correspondences. Its OCL code appears below:

Fig. 15. Compatibility between policy and parameters. (Color figure online)

Meta-Tool for Model-Driven Verification 185

5.2 CC Model

For generating the checking M2M transformation applicable to MAST-2 models, it is
necessary to feed the meta-tool with a CC model that encapsulates the characterization
of the MAST-2 integrity constraints. Figure 16 shows that model portion corre-
sponding to the four sample constraints considered above.

Fig. 16. Subset of the CC model for the MAST-2 constraints.

context Schedulable_Resource inv i_4_4_a:
self.Scheduling_Parameters.oclIsKindOf(Priority_Based_Params)
and

 self.Scheduler.Policy.oclIsTypeOf(Fixed_Priority_Policy)or
self.Scheduling_Parameters.oclIsKindOf(Priority_Based_Params)
and
self.Scheduler.Policy.oclIsTypeOf(FP_Packet_Based_Policy)or
self.Scheduling_Parameters.oclIsKinOf(Interrupt_Based_Params)
and

 self.Scheduler.Policy.oclIsTypeOf(Fixed_Priority_Policy)or
self.Scheduling_Parameters.oclIsKindOf(EDF_Based_Params)
and

 self.Scheduler.Policy.oclIsTypeOf(EDF_Policy)

186 C.C. Cuesta et al.

• The i_2_2_a constraint is characterized through an instance of CC::Rela-
tionalOrderForAttributesValue, referencing its context class as well as
the CVD class selected for describing any possible violation and formulating the
severity to be associated. It also defines the specific information required by the
concrete characterization class, which in this case applies for the attributes involved
in the constraint and the relational order to be respected.

Analogously:

• The i_1_1_a constraint is characterized through an instance of CC::
AttributeValueValidity.

• The i_4_1_a constraint is characterized through an instance of CC::
BasedOnContainmentRelation.

• The i_4_4_a constraint is characterized through an instance of CC::
BasedOnIncompatibility, which in addition to the severity, and context and
CVD classes, specifies association chains indicating how to reach the potentially
incompatible model elements from the contextual one.

It is worth remarking that, although the CC model could seem a bit complex, it
needs to be formulated only once, just like the domain meta-model itself, to generate
the corresponding M2M checking transformation, which will be later used multiple
times with any instance model.

5.3 MAST-2 Sample Model

A MAST-2 sample model for illustration purposes is partially shown in Fig. 17. It
represents a system consisting of a mono-processor platform with fixed-priority
scheduling policy. The platform is modelled by the processor Proc1 with its hosted
scheduler (Proc1_Sched) along with its scheduling policy object. The platform sub-
model also encompasses the timers associated to the processor. A schedulable resource
(Thread1), which is part of the reactive section of the model (not depicted), along with
its scheduling parameters object, and scheduled by the only existing scheduler,

Fig. 17. A sample incoherent MAST-2 model (partially shown).

Meta-Tool for Model-Driven Verification 187

completes this partial model visualization. As can be seen at a glance, the model
violates the four constraints presented above.

5.4 Validation with Eclipse OCL

The presented methodology has been implemented by means of the Eclipse/EMF [10]
modelling platform and its ATL component. Atop EMF resides another component,
Eclipse OCL, an implementation of the OMG OCL 2.3 specification for definition of
constraints in OCL and verification of models using conventional EMF tooling.
Therefore, it seems logical to briefly elaborate on its application, outlining some
shortcomings it may present and for which our approach can provide better capabilities.
This discussion is presented here, in the context of this use case example.

The default functionality provided by Eclipse OCL is completely trustworthy for
the detection of constraint violations, presenting in an error dialog box the corre-
sponding diagnostic report. However, it presents limitations. For instance, Fig. 18
shows the standard diagnostic report corresponding to the previous MAST-2 sample
model.

As it can be observed, the report only details the name of the violated invariants
(which could roughly indicate the essence of the problems but can also be totally
cryptic, as happens here) and the model object where each violation is located.
Moreover, no information is provided about the location of the involved objects within
the model, although it would be very useful because they could be nested within very
deep containment hierarchies, making it very difficult to find them when attempting to
solve the errors. In addition, no severity information is provided, since the OCL for-
mulation of the constraints is agnostic about the degree of importance in case of
violation. A more verbose and elaborated description of the problems may be necessary
or desirable.

Besides, it is worth remarking the potential benefits of having the verification result
in model form, such as for instance, enabling its participation in further model-driven
processes, depending on the specific needs that every domain application might
present.

Fig. 18. Eclipse OCL verification report.

188 C.C. Cuesta et al.

5.5 CVD Model

When applying the checking M2M transformation for MAST-2 (obtained from the CC
model partially presented in Subsect. 5.2) to the MAST-2 sample model in Sub-
sect. 5.3, the CVD model shown in Fig. 19 is produced as result. As it can be observed,
each constraint violation has produced a corresponding description object:

• For the interrupt priorities incoherency, i.e. the violation of the i_2_2_a constraint, an
instance of CVD::RelationalOrderForAttributesValue is generated.
As expected, it formulates the ID of the violated constraint, the severity assigned to
the risen problem and the contextual model element where the violation is located,
as well as the properties involved in the constraint (the attributes Max_Inter-
rupt_Priority and Min_Interrupt_Priority) and the relational order
that has been broken (max � min).

Analogously:

• For the speed factor incoherency, i.e. the violation of the i_1_1_a constraint, an
instance of CVD::AttributeValueValidity is generated.

• For the timers incoherency, i.e. the violation of the i_4_1_a constraint, an instance
of CVD::BasedOnContainmentRelation generated.

• For the violation of the i_4_4_a constraint, an instance of CVD::BasedOn
Incompatibility is generated. It points out the two incompatible model

Fig. 19. Resultant CVD model.

Meta-Tool for Model-Driven Verification 189

elements, in this case the EDF_Params and Fixed_Priority_Policy
instances.

In contrast to the Eclipse OCL report of Fig. 18, Table 1 shows a possible com-
prehensive report that could be presented to the modeller from the information
encapsulated in the prior CVD model.

6 Related Work

Addressing constraints satisfaction verification through an M2M transformation
approach is not new. To the best of our knowledge, it has already been outlined in [11]
and applied in later works, like [12, 13].

In Bézivin’s seminal work [11], applying an M2M transformation on the model to
verify yields as result a so called diagnostic model, compliant to a proposed meta-model,
called Problems. It is an extremely simple meta-model, with a single class that defines
three attributes, namely severity, location and description. Moreover, the
authors simply outline a pattern for implementing manually the transformation corre-
sponding to each case. Our work extends that core idea developing a much more
ambitious strategy built on top of a more complete target meta-model (CVD).

Table 1. Possible diagnostic report.

ERROR:
The i_1_1_a constraint has been violated on Proc1:Regular_Processor by attrib-
ute Speed_Factor. Its value -1.5 is not within the valid range (0, +inf).
Location: Sample model >> Proc1
Constraint explanation: …

ERROR:
The i_2_2_a constraint has been violated on Proc1:Regular_Processor by attrib-
utes Max_Interrupt_Priority and Min_Interrupt_Priority, which do not re-
spect the order >=.
Location: Sample model >> Proc1
Constraint explanation: …

ERROR:
The i_4_1_a constraint has been violated on Proc1:Regular_Processor by sets of
model elements: {Timer1} : Alarm_Clock and {Timer2, Timer3} : Alarm_Clock
because the 1st set is not included within the 2nd one.
Location: Sample model >> Proc1
Constraint explanation: …

ERROR:
The i_4_4_a constraint has been violated on Thread1:Thread by the incompatible
sets of model elements: {} : EDF_Params and {} : Fixed_Priority_Policy
Location: Sample model >> Thread1
Constraint explanation: …

190 C.C. Cuesta et al.

In Diguet’s work [12], in the context of a MARTE [14] to AADL [15] process, the
author proposes a diagnosis meta-model called VERIF and uses ATL for implementing
an M2M transformation for checking syntactic correctness constraints on input
MARTE models as a preliminary step before the main transformation. However,
although more elaborated than the Problems meta-model, the VERIF one is still quite
simple and, again, the work is only focused on a specific transformation for a specific
case, although it can be taken as a template. Our proposal goes beyond these works by
aiming at providing a generic solution independent of the domain formalization.

This genericity is also claimed in [13], which addresses the detection of modelling
problems through QVTr transformations from input models (conforming to any
MOF-based meta-model) to result models (conforming to the pResults meta-model)
where problem occurrences are reported in a structured and concise manner.

A relatively close work, although following a different approach is [16]. The
authors propose a method for efficient checking of OCL constraints by means of SQL.
The core idea consists in reducing the problem to check the emptiness of SQL queries.
Given an OCL constraint, it is possible to build an SQL query that returns all instances
that violate it. Hence, the OCL constraint is satisfied if and only if its corresponding
SQL query returns the empty set. Such queries are incrementally computed by a
relational DBMS.

An inspiring work for the design of the CVD meta-model is [17], where an
exhaustive constraints taxonomy is proposed in order to achieve well-formedness and
good quality of conceptual models. Our CVD meta-model is slightly different oriented.
It does not aim at revealing types of constraints but at providing suitable modelling of
the data needed for describing constraint violations, envisioning their later manifes-
tation or automatic treatment.

It should be remarked that the problem we address, i.e. the verification of invariants
satisfaction, does not deal with the validation of the domain formalization
(meta-model + constraints) itself. In this sense, when considering a set of invariants
specified on a domain meta-model, we suppose that set to be perfectly valid, satisfying
the typical correctness properties: syntactic correctness, no meta-model over-restriction
or under-restriction, consistency, independence, satisfiability, no subsumption, no
redundancy, etc. See [18] for a clear distinction between verification of instance models
vs. validation of domain formalization design. In fact, there exists an important amount
of published research on the topic of validation, like [19–21]. However, this dimension
is out of the scope of our work.

7 Conclusions and Future Work

A strategy for verifying constraints satisfaction along with a meta-tool implementing it
has been presented. The approach is based on the representation of the verification
result as a diagnostic model generated by means of a so called M2M checking
transformation. Although every couple of domain meta-model and constraints set
requires a specific verification tool (checking transformation), the proposed strategy
allows their systematic and straightforward development. Therefore, a HOT-based
generic tool for verification, regardless the domain meta-model or particular set of

Meta-Tool for Model-Driven Verification 191

constraints, has been implemented, allowing the generation of every required checking
transformation. The meta-models needed to support this model-driven approach have
been presented.

This strategy is part of a more general work [3] about the design of generic MDSE
tools to foster the adoption of MDSE as basis of domain-specific development envi-
ronments. The presented proposal, although domain independent, has been applied in
our research group as part of the development of a complete model-driven strategy and
infrastructure for the design of real-time systems. The asset at the core of this effort is
the MAST-2 meta-model. Due to its laxity, a set of integrity constraints has been
specified for it and in addition, the different analysis and design tools of the overall
MAST environment require specific conditions (tool-specific constraints) for the
models to be processed. The presented verification mechanism alleviates the imple-
mentation of future design and analysis tools since they will not be required to
implement a preliminary verification step. Moreover, the representation of the verifi-
cation result as a model allows an agile processing, in order, for instance, to give some
guidance to the user about how to solve the inconsistencies.

Since the approach has been only applied within our in-house real-time field, we are
looking forward to apply it in different domains in order to get valuable feedback about
the level of genericity of the CVD and CC meta-models and their potential extension.

From a purely functional viewpoint, we are currently assessing the applicability of
the OCL meta-model provided by the EclipseOCL component in order to inject textual
OCL specifications into model form and directly link them from our CC models.

Acknowledgements. This work has been partially funded by the Spanish Government and
FEDER funds, with references TIN2011-28567-C03-02 (HI-PARTES) &TIN2014-56158-C4-2-P
(M2C2).

References

1. Bézivin, J.: On the unification power of models. Softw. Syst. Modell. 4, 171–188 (2005)
2. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer 39, 25–31

(2006)
3. Cuevas, C.: Metaherramientas MDE para el diseño de entornos de desarrollo de sistemas

distribuidos de tiempo real. Ph.D. Thesis (2016)
4. Cuevas, C., Drake, J.M., López Martínez, P., Gutiérrez García, J.J., González Harbour, M.,

Medina, J.L., Palencia, J.C.: MAST 2 Metamodel (2012)
5. http://www.istr.unican.es/members/cesarcuevas/phd/3.2-constraintsVerification.html
6. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model

transformations. In: Model Driven Architecture-Foundations and Applications, pp. 18–33
(2009)

7. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
transformations? Transformation models!. In: Model Driven Engineering Languages and
Systems, pp. 440–453 (2006)

8. Bézivin, J., Jouault, F., Touzet, D.: An introduction to the ATLAS Model Management
Architecture. Research report, LINA, (05-01) (2005)

9. http://www.istr.unican.es/members/cesarcuevas/phd/artifactsMAST2.html

192 C.C. Cuesta et al.

http://www.istr.unican.es/members/cesarcuevas/phd/3.2-constraintsVerification.html
http://www.istr.unican.es/members/cesarcuevas/phd/artifactsMAST2.html

10. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd revised edition (rev) edn. Addison-Wesley Longman, Amsterdam, (2009)

11. Bézivin, J., Jouault, F.: Using ATL for checking models. Electron. Notes Theoret. Comput.
Sci. 152, 69–81 (2006)

12. Diguet, J.L.: Checking syntactic constraints on models using ATL model transformations.
In: Model Transformation with ATL, p. 140 (2009)

13. Elaasar, M., Briand, L., Labiche, Y.: Domain-specific model verification with QVT. In:
France, Robert B., Kuester, Jochen M., Bordbar, B., Paige, Richard F. (eds.) ECMFA 2011.
LNCS, vol. 6698, pp. 282–298. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21470-
7_20

14. formal/2011-06-02: UML Profile for MARTE: Modelling and Analysis of Real-time
Embedded Systems, v1.1 (2011)

15. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language (AADL):
an introduction (2006)

16. Oriol, X., Teniente, E.: Incremental checking of OCL constraints through SQL queries. In:
CEUR Workshop Proceedings, pp. 23–32 (2014)

17. Miliauskaite, E., Nemuraite, L.: Taxonomy of integrity constraints in conceptual models. In:
IADIS Virtual Multi Conference on Computer Science and Information Systems (2005)

18. Delmas, R., Pires, A.F., Polacsek, T.: A verification and validation process for model driven
engineering. In: Progress in Flight Dynamics, Guidance, Navigation, Control, Fault
Detection, and Avionics, pp. 455–468 (2013)

19. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, Douglas C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007). doi:10.1007/978-3-540-
75209-7_30

20. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of UML/OCL
models using constraint programming. In: Proceedings of the Twenty-Second IEEE/ACM
International Conference on Automated Software Engineering, pp. 547–548 (2007)

21. Pérez, C.A.G., Buettner, F., Clarisó, R., Cabot, J.: EMFtoCSP: a tool for the lightweight
verification of EMF models. In: Formal Methods in Software Engineering: Rigorous and
Agile Approaches (FormSERA) (2012)

Meta-Tool for Model-Driven Verification 193

http://dx.doi.org/10.1007/978-3-642-21470-7_20
http://dx.doi.org/10.1007/978-3-642-21470-7_20
http://dx.doi.org/10.1007/978-3-540-75209-7_30
http://dx.doi.org/10.1007/978-3-540-75209-7_30

A Model-Driven Adaptive Approach for IoT
Security

Bruno A. Mozzaquatro1(B), Carlos Agostinho2, Raquel Melo2,
and Ricardo Jardim-Goncalves1

1 Universidade Nova de Lisboa (UNL), DEE/FCT, 2829-516 Caparica, Portugal
b.mozzaquatro@campus.fct.unl.pt, {ram,rg}@uninova.pt

2 Centre of Technology and Systems, UNINOVA, 2829-516 Caparica, Portugal
ca@uninova.pt

Abstract. Internet of Things (IoT) and sensor networks are improv-
ing the cooperation between organizations, becoming more efficient and
productive for the industrial systems. However, high iteration between
human, machines, and heterogeneous IoT technologies increases the secu-
rity threats. The IoT security is an essential requirement to fully adop-
tion of applications, which requires correct management of information
and confidentiality. The system and devices’ variability requires dynam-
ically adaptive systems to provide services depending on the context
of the environment. In this paper, we propose a model driven adaptive
approach to offer security services for an ontology-based security frame-
work. Model-Driven Engineering (MDE) approach allows creating secure
capabilities more efficient with the generation of security services based
on security requirements in the knowledge base (IoTSec ontology). An
industrial scenario of C2NET project was analyzed to identify the trans-
formation of a system design of security solution in a platform specific
model.

Keywords: Model-driven engineering · Adaptive approach · Security
management · Internet of things · Ontology

1 Introduction

Smart devices integrated with different Future Internet technologies allow several
industrial applications with sensing, identification, localization, networking and
processing capabilities. The information technology (IT) standards have benefici-
ated the industrial manufacturing by the evolution of industrial systems [1]. The
adoption of the Internet creates new business opportunities as well as exploiting
collaborative work based on IT infrastructure in system environments. These
aspects have potential to develop industrial systems like environmental moni-
toring, healthcare service, inventory and production management, food supply
chain, transportation, workplace and home support, security and surveillance [2].

Nevertheless, heterogeneous environments with smart devices interconnected
with the Internet also increases the security threats. The main problem of IoT
c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 194–215, 2017.
DOI: 10.1007/978-3-319-66302-9 10

A Model-Driven Adaptive Approach for IoT Security 195

security is the high interaction between humans, machines and IoT technologies
with constraints in terms of connectivity, computational power, and energy [3].
Furthermore, IoT network is a dynamically changing environment and security
issues require making-decision systems to change security mechanisms at runtime
[4]. Therefore, it is necessary to learn and adapt for adjusting on-demand security
attributes and anticipate new threats in an information system [5]. In contrast,
severals security models, trust management, identity management and security
mechanisms are used to ensure the privacy and security, keeping security goals,
such as availability, confidentiality, integrity, authentication, non-repudiation,
and authenticity [6–8].

Information security is an important requirement to fully adoption of IoT
applications and must be considered by information system designers and by
administrators of organizations that depends on the correct management of
information security and confidentiality [7]. However, IoT is still in a concep-
tual phase. The field is very dynamic and security challenges are less structured,
somewhat disorganized causing confusion amongst concepts and terms to soft-
ware developers. Ontology characterizes an interesting domain with classes and
relationships among them and implements a data model to share a common base
knowledge in the particular domain [9].

Model-Driven Engineering (MDE) has relevant aspects that contribute to
design adaptive systems considering contextual information and to adopt suit-
able secure solutions at runtime [10]. In this context, the integration of MDE app-
roach with an ontology-based system to generate services from security require-
ments could improve the real-time detection of vulnerabilities, prediction, and
assessment of security risk management and intrusion detection [11–13]. MDE
consists of the principles of the generation of models in software development
[14]. However, this approach provides a way to generate models high-level of
abstraction to transform into code from system design models. The models are
commonly used to represent of real-world contexts. Therefore, several distinct
representations of the same context are possible. In Software Engineering, models
could be represented in differents Domain Specific Languages (DSL) or software
factories.

In this work we propose an ontology-based framework with an integrated
model-driven adaptive approach for IoT security, to identify common security
issues and become able to dynamically adapt security mechanisms and services
to possible threats. This approach explores the generation of security services
at runtime from security requirements models through an analysis in the IoT-
Sec ontology. The main contribution is an adaptive approach to transforming
dynamic changes on the context of the environment, generating security services
on demand to protect IT infrastructures.

The rest of paper is organized as follow: Sect. 2 presents the background of
security ontologies and adaptive security model. The related works are presented
in Sect. 2.3. Section 3 presents details of the C2NET project, which the supply
network optimization of manufacturing and logistic assets based on collabora-
tive demand, production and delivery plans. Section 4 describes the framework

196 B.A. Mozzaquatro et al.

proposed for ontology-based security framework. An adaptive form with the
use of MDE approach to generate security services from security requirements
models is presented in Sect. 4.2. Section 5 describes a case study with examples
coming from C2NET project. Finally, Sect. 6 presents the conclusion about this
work.

2 Background

This section describes main subjects involved in this work that contributes to
improve the security aspects in the context of Internet of Things. In Sect. 2.1
existing security ontologies (i.e. IoTSec ontology) are discussed and an adaptive
security model to adopt mechanisms in a suitable solution. Also, related works
are presented to demonstrate the positioning of the paper.

2.1 Security Ontologies

Security issues are important for all contexts with personal data exchanges and
sensitive information, but for IoT has differentiating characteristics and a big
concern with the high iteration between humans, machines, and IoT technologies.
It is justified by the heterogeneity of different smart devices connected to the
Internet. Therefore, ensuring security and privacy of applications and services is
critical to improving trust and use on the Internet.

In this context, the first step to mitigate these issues is to understand the
relation between the security aspects of security management and identify situa-
tions of misunderstood concepts around information security and IoT. For that,
ontology is an essential tool largely utilized for structuring an area of interest.
According to the state of the art, several existing security ontologies have been
proposed in the literature, but only a few are available (Fig. 1): security overview
ontology [15–18] and security ontology applied to specific domain [9,11,19,20].

Fig. 1. Existing security ontologies.

A Model-Driven Adaptive Approach for IoT Security 197

Some ontologies address only one part of security domain (e.g. computer
attacks) and others explore the overview of information security. [9] proposes
a reference ontology for security in the IoT (IoTSec) with harmonization of
ontologies based on ontology development methodology.

IoTSec Ontology. IoTSec ontology is a reference ontology for IoT security [9].
IoTSec ontology was proposed to explore aspects of relationships among basic
components of the risk analysis of ISO/IEC 13335-1:2004 and National Institute
of Standards and Technology (NIST) Special Publication 800-12 [21] such as
Assets, Threats, SecurityMechanism, Vulnerability and Risk. Figure 2 presents
an arrangement of top-level classes to modeling information security based in
works [15–19].

Fig. 2. Reference ontology for security in IoT [9].

IoTSec ontology was designed based on information security issues that can
be represented using a structured knowledge. It explores relationships among
classic components of risk analysis to provide an overview of the domain of
security in IoT. IoTSec ontology was developed using the OWL (Web Ontology
Language) ontology language.

These components allow identifying relations between relevant situations in
an IoT network with risk analysis of potential threats. For example, the vulnera-
bility class describes the potential weakness of M2M technologies associated with
Asset class (hasVulnerability property). In this ontology, many technologies are
considered assets such as Wi-Fi, Web, GSM (2G), UTMS (3G), LTE (4G), Eth-
ernet, Bluetooth, Sensor, etc. Assets require security properties to be considered
secure such as availability, confidentiality, integrity, etc. Vulnerabilities are flaws

198 B.A. Mozzaquatro et al.

in software or hardware and when they are discovered, vendors publish a patch
to fix it. For instance, vulnerability notes database (VND)1 is one example that
provides information about software vulnerabilities including summaries, tech-
nical details, remediation information, and lists of affected vendors.

Meanwhile, security mechanisms are used to avoid that threats exploit vul-
nerabilities found. These mechanisms are categorized according to the type of
defense to protect the assets. A security mechanism is composed of several types
of defense i.e., detective, preventive, corrective, recovery, response, etc.

Threat class describes information about attacks and others ways to exploit
the applications’ weakness and, sometimes, they explore one or more vulnera-
bilities. For instance, Wormhole attack replays messages from a system with the
vulnerability of unprotected communication channel of a sensor network of an
organization. This threat occurs in the network layer of OSI Model (occursIn
property). In this situation, SecurityMechanism class contains tools to protect
using cryptography algorithms, but need to consider their strengths and weak-
nesses such as energy consumption, flexibility, high cost, etc.

Organizations may prevent exploitation of its vulnerabilities using security
tools or algorithms to protect (mitigates property) the systems’ weakness. Miti-
gates property represents the relationship between SecurityMechanism and Vul-
nerability class. Vulnerabilities are qualified regarding its severity level (Sever-
ityScale class) to an organization. Sometimes, organizations need to monitor
the vulnerability with severity scale high, when systems have behavior unpre-
dictable, and they can have become exposed to new threats. Each threat affects
one or more security properties and the security mechanisms could satisfy these
security properties.

2.2 Adaptive Security

Adaptive security is an approach to adjust attributes based on the behavior at
runtime to respond to new and unusual threats in critical services [5,22,23].
This approach is found in the literature with concepts of self-adaptive software
[24,25] and autonomic computing [26]. It is a solution that learns and adapts to
the changing environment at runtime in face of changing threats, and anticipates
threats before they are manifested.

This approach is a continuous process to learn, adapt, prevent, identity and
respond to unusual and malicious behavior in runtime. For that, the adaptive
security model proposed by [22] is composed of four components as depicted in
Fig. 3: monitor, analyzer, adapter, and adaptive knowledge database. The moni-
tor collects attributes; the analyzer determines the adaptation requirements; and
the adapter decides the adaptation plan for execution.

The continuous cycle of security monitoring is needed for the use of suitable
mechanisms depending on the information about the context and status of IoT
devices. It is appropriated for IoT scenario because high interactions among het-
erogeneous devices and environment with critical risks to our lives. Monitoring

1 http://nvd.nist.gov/.

http://nvd.nist.gov/

A Model-Driven Adaptive Approach for IoT Security 199

Fig. 3. Adaptive and evolving security model [22].

information context at runtime allows to choose or adapt a suitable security
service to ensure one or more security properties.

According to [5] there is a little work on adaptive security mechanisms to
secure IoT. Each work proposed explores static platforms, and specific aspects
improve IoT security as well as security policies, encryption, secure communi-
cation, and intrusion detection. There is a need for IoT security to adapt and
adjust attributes when there is a change in the context. Nevertheless, the relia-
bility and performance of the adaptive security approaches are directly related
with security mechanisms used to identify the threats in the system.

Within the scope of Model-Driven Engineering (MDE), adaptive security
could be addressed to provide customization as a service in a runtime archi-
tecture. MDE is an approach composed of several theories and methodological
frameworks for industrialized software development using models inside of soft-
ware development cycle [27]. These models are described based on standard spec-
ification languages and code is generated automatically or semi-automatically
from others abstract models. One relevant aspect of MDD to the adaptive secu-
rity is the automation, which non-code artifacts are produced totally or partially
from models [27] such as: documentation, test artifacts, build and deployment
scripts, and other models.

2.3 Related Works

Ontologies have been explored in several aspects to improve information secu-
rity, identifying vulnerabilities of systems, assessment of the threat against tar-
gets using differents approaches, such as intrusion detection [11], correlation of
context-aware alert analysis [12], identification of complex network attacks [13].

200 B.A. Mozzaquatro et al.

The work [4] proposes an architectural approach for security adaptation in
smart spaces utilized for analyzing and planning access control decision at run-
time and design-time. The authors combine an adaptation loop of the adaptive
security model, Information Security Measuring Ontology (ISMO) to offer input
knowledge for the adaptation loop and a smart space security-control model to
enforce dynamic access control policies. However, the work only illustrates the
adaptive security approach from the authentication and authorization of users
of smart spaces.

EDAS [28] was proposed as an event driven adaptive security model to IoT
to protect devices against threat faced at runtime. The authors use an Open
Source Security Information Management (OSSIM) to filter and normalize events
collected from things. They explore an Adaptation Ontology to leverage risks’
information from the event correlation and adapt security settings regarding
usability, QoS, and security reliability. However, the authors do not consider
potential vulnerabilities that could prevent eventual threats in the environment.
In this case, the approach needs an occurrence to verify the suitable action to
mitigate it.

The work [29] proposes an MDS@run.time approach to intercept services
and identify security requirements are fitting the execution context. For that, the
authors consider security policies as models interpreted at runtime. Nevertheless,
the policy orchestration is integrated into cloud environment and different poli-
cies are attached to each execution context. The MDS@run.time was evaluated
in the framework OW2 FraSCAti middleware with relevant results compared
with other approaches to managing security in collaborative processes.

In this context, this work explores a knowledge base supported by a ref-
erence ontology for security in the IoT through a framework for IoT security.
It is composed of the basic components of risk management and the relation
between threat, vulnerability, asset, security mechanism, and security property.
It provides a knowledge base for making decision with the suggestion of poten-
tial solutions or identify weakness of resources, ensuring the secure environment
IoT-enabled industrial systems. Usually, these security recommendations need
adoption of security mechanisms to have an impact on the environment. For that,
the model-driven adaptive approach explores the generation of security services
identified through the queries on the ontology as essential in the environment. It
transforms platform specific models or code artifacts from security requirements
models.

3 C2NET Platform

C2NET2 (Cloud Collaborative Manufacturing Networks) is a research and devel-
opment project, funded by the European Commission H2020 programme. The
goal of the project is the design of cloud-enabled tools for supporting the small-
medium enterprises (SME) supply network optimization of manufacturing and
logistics assets based on collaborative demand, production, and delivery plans.
2 http://c2net-project.eu/.

http://c2net-project.eu/

A Model-Driven Adaptive Approach for IoT Security 201

The project consists of a scalable real-time architecture, platform and software
to optimize the manufacturing and logistics process by the collaborative compu-
tation through efficient delivery plans.

The main problem of traditional supply chains has centralized decision-
making approaches, which make difficult for companies to react to current highly
dynamic markets. C2NET platform is proposed to contribute in several aspects of
industrial manufacturing, exploring data collection of IoT devices on the compa-
nies’ shop floor, combining this information with contextual information of the
business environment to improve decision making. However, these devices are
vulnerable to several threats, and it needs to be addressed using a set of secu-
rity mechanisms. Moreover, some of these devices use different IoT technologies.
The C2NET platform ensures IoT interoperability by defining two components
of the entire C2NET system: Data Collection Client (DCC) and Data Collection
Framework (DCF). See [30] for more information on the C2NET DCC/DCF
architecture.

3.1 C2NET Data Collection Client

The C2NET Data Collection Client (DCC) is a component that provides services
for collecting and sending all the required data from the legacy systems of the
company (e.g. its planning, logistics and operations) and data arriving from
IoT devices on the shop floor (e.g. machine availability, performance, etc.). This
component can connect the different data sources (both legacy systems and IoT
devices), and will store the data gathered, submitting it to C2NET DCF when
needed (both on a periodical basis or under demand). Consequently, the C2NET
DCC will adopt an ESB pattern.

3.2 C2NET Data Collection Framework

The C2NET Data Collection Framework (DCF) is a domain module that offers
functionality for managing data from different heterogeneous sources and provid-
ing necessary information for other modules of the C2NET system. This module
enables uniform accessibility of structured information for data consumers. It
also resolves challenges concerning integration and interoperability across data
producers and consumers caused by differences in industrial processes, data mod-
els, methods, technologies, and devices. It takes into consideration the homoge-
nous integration of legacy systems and IoT devices.

3.3 Security Requirements

Being a real-time architecture, C2NET has several security aspects need to
be considered to ensure the security properties of its application. Hence, some
requirements will be described according to their relevance for the C2NET plat-
form:

– Access Control consists of two essential aspects of the security to identify users
and their permissions on the platform: authorization and authentication.

202 B.A. Mozzaquatro et al.

– Encryption is a security requirement responsible for providing the protection
of the information. It consists in the modification of the original content to
make incomprehensible for active/passive attackers, even though they have
access to the information. This requirement can also provide the integrity
because the attackers can not modify the original content.

– Digital Signature consists on a set of rules and parameters to identify the
sender and verify the integrity of the stored data as well as transmitted data.
It detects unauthorized manipulations during the transmission and shows the
evidence to the receiver of the signature is generated by the claimed sender.

4 Ontology-Based Security Framework for Adaptive
Security

The authors propose an ontology-based security framework, designed to use an
adaptive security model with an integrated model-driven approach. The security
model is suitable for the dynamic environment of IoT, monitoring the behavior of
the environment, learning and adapting security services to malicious behavior.
In this context, the support of an adaptive knowledge base enables to anticipate
threats before they are manifested in the IoT network. An approach of Model-
Driven Engineering (MDE) to transform security requirements found on the
ontology into security services is presented in Sect. 4.2.

Several industries are using IoT devices to different applications to provides
new opportunities based on sensing, ubiquitous identification, and communica-
tion capabilities [2]. IoT devices transmit sensitive information of companies, if
not addressed properly, can be vulnerable to internal and external attacks.

The ontology-based security framework proposed in this paper explores the
adaptive security model to making decisions based on knowledge base for infor-
mation security issues. For that, this security framework is integrated with the
platform of C2NET project, enriching it in regards to the security of IoT devices.
In this context, the architecture of ontology-based security framework is depicted
in Fig. 4. The architecture aims to improve security issues of industrial manu-
facturing integrated with the C2NET platform.

The C2NET platform uses IoT devices to collect data from the industrial
environment using a C2NET Data Collection middleware. Security mechanisms
(i.e. based on rules, security protocols) are applied in data communication to
protect sensitive information between IoT devices and middleware. Neverthe-
less, several vulnerabilities of devices and software appear every day, which is
making the assets vulnerable to attacks. Hence, continuous assessment and suit-
able adaptations need to be enforced to ensure the security properties such as
availability, confidentiality, and integrity.

The security framework is proposed with two approaches to improving secu-
rity issues of C2NET platform: design and execution. Follow specific character-
istics of each approach:

A Model-Driven Adaptive Approach for IoT Security 203

Fig. 4. An architecture of ontology-based security framework with MDE approach
proposed with the C2NET platform.

– Design: install an IoT device/sensor in the network, based on the IoTSec
ontology [9] to identify potential security solutions to protect itself and con-
figure the suitable security mechanisms of the DCC.

– Execution: the monitor module detects an anomaly behavior or vulnerabil-
ity if it can not resolve immediately in real time, then the analyzer module
consults to the ontology (actualized continuously), and the adapter module
generates new services with suitable security mechanisms for the middleware
to enforce those; the device needs to be stored momentaneously.

The design approach of the security framework explores the previous knowl-
edge to adopt new technologies or products considering security issues. On the
other hand, run time approach monitors IoT devices based on security metrics
and attributes to identify malicious behaviors in the smart environment. Conse-
quently, configurations and/or rules need to be adapted according to the knowl-
edge base, when security tools trigger alerts. For that, IoT ontology (IoTSec)
contributes to identifying relations between threat, asset, vulnerability, security
mechanism and security property. The adapter infers new information on the
knowledge base to deploy new approaches for specifics situations or malicious
behaviors. The runtime approach uses an analyzer module to identify anomaly

204 B.A. Mozzaquatro et al.

behavior based on security tools used in the environment (e.g. IDS, IPS, Fire-
walls, Proxies, and so on). In this context, security attributes are monitored
to detect malicious activities and, then, actions are triggered to adjust settings
using the model-driven adaptive approach of the security framework (described
in Sect. 4.2).

4.1 Adaptive and Evolving Security Modules

This section describes the three adaptive and evolving security modules respon-
sible for improving the security management of industrial systems.

Monitor Module. The Monitor module is responsible for monitor data
between IoT devices and enforce some suitable pre-defined rules to the IoT net-
work. These devices are used to gather information about security attributes of
the environment. The monitor only considers device’s information collected by
devices to identify potential vulnerabilities that could be explored by the threats.
Hence, raw data of the environment (e.g. shop floor) also is collected, but this
information only is filtered by the platform to verify the proper operation based
in the semantic of data.

This module uses a pre-defined set of security rules to ensure the secure data
communication between IoT devices. This approach is used in run time to make
the decision without delay. In this case, this set is fed with previous knowledge
of ontology according to device’s information of security attributes collected. For
that, monitor module realizes a fast analysis of parameters upward of threshold
defined to verify anomalies. For instance, any unusual behavior identified by
security tools like intrusion detection system or firewall are forwarded to DCF
component of C2NET platform to realize the deepest analysis of ontology-based
security framework.

Analyzer Module. The Analyzer module of the security framework is respon-
sible for consulting activities mapped in the knowledge base but in the case of
new occurrences (e.g. zero-day threats) reported by security tools, resulting in
unusual behavior for the security framework. So, it needs to be adapted to avoid
critical damage to the organizations.

Also, this module consists of the composition of queries semi-structured to
retrieve information about security solutions or security issues about the context
presented. Some IoT networks reveal severe problems according to the hetero-
geneity of devices used to data collection, enabling potential threats for the
organization. So, through the use of queries to the knowledge base, future secu-
rity issues can be avoided. For example, based on the specific device used in the
network, is possible to relate their vulnerabilities and potential security mecha-
nisms used to mitigate them specific security property. A semi-structure query
can be composed as follow:

�SecMechanism� ⇐=�AssetK� ∧ �V ulnerabilityY �∧
∧ �ThreatX� ∧ �SecPropertyZ� (1)

A Model-Driven Adaptive Approach for IoT Security 205

More information about the correlation between main security concepts of
ontology can be found in [9].

The DCF component of the C2NET platform manages the virtual instances
of IoT devices to control their behavior in the physical world. The Resource
Virtualization is responsible for minimizing the distance between physical devices
and their virtualized devices in the IoT network. This information is important
to analyzer module make decisions for adaptation for potential security solutions
between IoT devices.

Adapter Module. The Adapter module provides methods for selecting and
configure security mechanisms according to the security policies received by the
Analyzer module. It is responsible for the policy resolution, adoption of multiple
security mechanisms and relation of the security properties. This module has an
interface with Analyzer module to gather results of the queries on the knowl-
edge base according to the context identified. This module starts the adaptation
process that will be finalized using the MDE approach described in Sect. 4.2.

The correlation of potential security solutions and security property identi-
fied on the IoTSec ontology allows categorizing the results to select the security
components to generate artifacts from specific models. Hence, the security poli-
cies can be composed of several security mechanisms to be implemented using
security tools (Fig. 5). Each model used in this module is composed of one or
more security mechanisms to achieve the security requirements.

However, each adaptation of specific security and business services is neces-
sary to generate or deploy services at run time. Depending upon the security
analysis on the IoTSec ontology, new security services can be applied. Some

Security
Policies

Adoption of multiple
security mechanism

Relation with
security properties

Security
Components

Authentication
Component

Authorization
Component Component

Integrity
Component

NonRepudiation
Component

Identify security properties

Select security components

Adopt security mechanisms

Fig. 5. Continuous adaptation process to select and generate security solutions.

206 B.A. Mozzaquatro et al.

services can be deployed at run time [31]: authentication, authorization, confi-
dentiality, integrity, non-repudiation, and so on.

4.2 MDE Layer

The Model-Driven Engineering (MDE) layer consists of applying the principles
of models to the transformation for generation of software artifacts from systems
design models [14]. The main idea of this layer is to generate artifacts and codes
from requirements obtained on the knowledge base (IoTSec ontology) according
to the security needs of the IoT network in industrial systems.

A Model-Driven Adaptive Approach. The model-driven adaptive approach
is an integration of the MDE with an ontology-based security framework to
generate security services. MDE approach considers models as the core and its
manipulation at high-level of abstraction to transform into code. The models are
commonly used to represent of real-world contexts. Therefore, several distinct
representations of the same context are possible. In Software Engineering, models
could be represented in differents Domain Specific Languages (DSL) or software
factories.

Several changes are necessary to make a secure environment with dynamic
and heterogeneous devices. However, an adaptive way for the framework to gen-
erate, in a semi-automatic process, security services with adjustments in the
same service requiring a development of functionalities for some distinct tech-
nologies like C, Java, Python or devices as tiny devices or legacy systems. The
MDE approach has the potential to address this context. It has the ability to
synthesize artifacts and source codes from security models through transforma-
tion mapping and rules and helps ensure the consistency between application
implements and analysis information associated with security requirements by
models.

MDE follows the Model-Driven Architecture (MDA), from Object Manage-
ment Group (OMG), as the reference architecture to the development, inte-
gration, and interoperability of object-oriented software artifacts [32]. Figure 6
presents the MDA architecture instantiated with examples applied in the context
of IoT security.

Also following MDA, the adaptor module has three levels of abstraction to
transform models in the software development process. (i) Computation Inde-
pendent Model (CIM) level defines the functionalities that the system needs to
do (i.e. requirements); (ii) Platform Independent Model (PIM) presents how the
system achieves its requirements and technical details; and (iii) Platform Specific
Model (PSM) defines specific aspects of each platform or technology [33]. In the
context of security, it is following the approach of Model-Driven Security (MDS)
[34], a specialization of the MDE has already successfully resulted in industrial
systems [35], process-oriented systems [36], complex distributed systems [37],
multi-cloud systems [38], and using runtime models [29]. This concept allows
designers create system models according to security requirements to generate
system architectures from the models.

A Model-Driven Adaptive Approach for IoT Security 207

CIM

S
em

i-a
ut

om
at

ic
 g

en
er

at
io

n
p

ro
ce

ss
Transformation

rules

Transformation
rules

Transformation
rules

{Security Policies,
Security Requirements,
Constraints,
Access Control Rules

{
System Design,
Asset Model,
Threat Model,
State Analysis

Components,
Protocols (e.g. MQTT, CoAP),
IoT Devices (e.g. Pine64)
IoT platforms (e.g. Kaa platform)

{PSM

C
Artefacts and

 code{Java Python.NET <>

PSM

PIM PIM

Fig. 6. The model transformation process of MDA architecture.

5 Ontology-Based Adaptive IoT Security Scenario

In this section, the application of the ontology-based security framework and
model-driven adaptive security into a validation scenario of metalworking indus-
try to improve the security issues between IoT devices and C2NET platform.

The IoTSec ontology was designed to allow decision-making following main
classes of security: assets (K and X), vulnerabilities (Y), threats (Z), security
mechanisms (G), and security properties. For instance, a sensor K (K requires
some security properties J) based on technology X has vulnerabilities Y that
can threaten by attack Z, but if the company use a security mechanism G, he
could neutralize potential threats. Also, organizations need to define restrictions
that can be represented by security policies, and it means the security properties
addressed for security framework. Figure 7 presents a step-by-step of the data
flow of the security framework.

It demonstrates the application and the generation of security services
according to the contextual information collected in the environment. Also, the
integration of the IoTSec ontology with the framework. Here, this ontology has
an essential role to make support for decision making about the security issues
in the IoT security.

– 1◦ step: After the data collection of the monitoring of security attributes, a
primer analysis of security rules is realized to mitigates potential threats or
vulnerabilities found.

– 2◦ step: A brief set of security rules is used to apply in mechanisms to protect
devices and data transmissions. It is used with a run time approach, which
requires a fast decision-making based on the knowledge already queried.

208 B.A. Mozzaquatro et al.

Fig. 7. Step-by-step application of security framework.

– 3◦ step: In the case of the unusual behavior, so a deep analysis is required to
find other solutions. Thus, the knowledge base is checked to identify suitable
security mechanism that is related to a vulnerability or threat. Some queries
can be used to correlate with main security concepts.

– 4◦ step: SPARQL queries are used to collect information about unusual behav-
iors or vulnerabilities in specific technologies. IoTSec ontology gives sup-
port to decision-making using contextual information (security attributes)
collected by IoT devices.

– 5◦ step: Security solutions are suggested by the ontology to mitigate threats
or avoid exploitation of vulnerabilities. For that, security services need to be
selected for solve the problems found.

– 6◦ step: Based on the security requirements, a set of mechanisms and tools
are used to create new security services.

An overview of the scenario is described to understand the applicability of
security framework and what information are essential to monitoring for security
level assessment. According to the restrictions and contextual information, secu-
rity framework checks the knowledge base using SPARQL Protocol and RDF
Query Language (SPARQL)3 queries and relates with others queries to identify
suitable security mechanisms or potential threats, for example. Hence, in this
work the scenario presented is vulnerable only to digital threats, such as disclo-
sure information, replay attack, spoofing and others attacks to smart devices.

5.1 Non-conformity Scheduling Scenario

Non-conformity scheduling is a validation scenario composed of several IoT
devices/sensors to feed the C2NET platform with realtime detection of non-
conformity products during the production process. It reduces the quantity
of waste and non-conformity products that may arise during the production
process.

This scenario is the most critical in case of security issues because
the C2NET platform collects information about the shop-floor production.

3 http://www.w3.org/TR/rdf-sparql-query/.

http://www.w3.org/TR/rdf-sparql-query/

A Model-Driven Adaptive Approach for IoT Security 209

Then, any violation in data communication between IoT devices and C2NET
platform could compromise the production or to result critical problems to the
company. Figure 8 depicted a scenario of data collection using an IoT devices
in a sensor network about the shop-floor production to identify occurrences of
non-conformities.

Fig. 8. Communication aspects of a metalworking industry scenario [39].

This industrial scenario is composed of four steps to detect occurrences of
non-conformities in the production. The Step 1 of the scenario, C2NET platform
collects information about the shop-floor production. This information can be
gathered directly via sensor network, through the connection to legacy systems
or quality control workers can manually insert it. Considering to the platform
only verify the semantic of information. If non-conformities are detected in the
quality control by direct matching between what was expected in the production
and what is being produced, C2NET informs the Production Manager (Step 2).
At the same time, Step 3, C2NET can make suggestions to the Production
Manager about the actions to be performed related with the non-conformity
detected, such as: stop production, make an intervention on the machine, or
continue production. In Step 4, C2NET informs the Company Manager about
the non-conformities detected, and the actions took by the Production Manager.
Through earlier detection the Production Manager can act faster and reduce the
waste of raw materials, thus reducing costs.

To ensure all steps of this process of production, the main security properties
as well as integrity, confidentiality, and non-repudiation need to be ensured. The
integrity and confidentiality properties are two important aspects to avoid access
to the information transmitted. For that, security framework contributes to
choosing suitable security tools with the relation between vulnerabilities, threats
and security mechanisms. Algorithm 1.1 shows an SPARQL query and how this
information is obtained of IoTSec ontology, considering the variables ?threat
(threat), ?secmec (security mechanism) and ?secprop (security property).

210 B.A. Mozzaquatro et al.

Algorithm 1.1. SPARQL query on the IoTSec ontology.

SELECT DISTINCT ?threat ?secmec ?secprop

WHERE {

?threat rdfs:label ?label .

?threat iotsec:hasSecurityMechan ?secmec .

?secmec iotsec:satisfies ?secprop

}

In the case of confidentiality, if an attacker has got access to the informa-
tion transmitted, he can not understand this information because it must be
encrypted. Moreover, the authentication property is related only to the access
control of the information by the C2NET platform.

5.2 Evaluation of a Model-Driven Adaptive Approach

The validation of our proposal is used a metalworking industry scenario to the
adaptive generation of security services with the use of an ontology-based secu-
rity framework. Considering to the scenario present in Sect. 5.1, the flexibility
offered by a security framework is often very limited:

– Sensors and actuators do not need to be physically coupled, but they need
to be prepared to have any future reconfiguration or adaptation of the use of
different security tools (e.g. change a cryptographic algorithm).

– The architecture has a sensor network collecting information about the shop-
floor production with a central gateway server (i.e. data collection client). The
sensors need to communicate with a gateway to monitoring with security tools
(e.g. firewalls, IDS, IPS, Proxies) to execute event-driven security policies that
orchestrate the network. A security policy can change one or more security
mechanisms to attend a specific security requirements identified by the IoTSec
ontology.

The objective of security framework is to ensure the security management
between requirements and support dynamic adaptation of a running system with
the orchestration of security capabilities on heterogeneous devices independently
of each platform. Suppose that this scenario is totally unprotected, so the mon-
itoring with security tools will generate alerts of intrusion attempts, fraud and
information theft. Each alert will be queried on the IoTSec ontology to get sug-
gestions of the security approach to mitigate these problems.

To supply the security properties of confidentiality, non-repudiation, and
integrity, the security framework identified through the IoTSec ontology the
use of Digital Signature to the message authentication, ensuring the authentic-
ity of digital messages. Based on model-driven adaptive, Fig. 9 presents the class
diagram of the PIM to be deployed in a security service (Digital Signature).

The digital signature model employs asymmetric cryptography to provide
authenticity of digital messages that are sent through a non-secure commu-
nication channel. This model of security solution gives the receiver to believe

A Model-Driven Adaptive Approach for IoT Security 211

Fig. 9. PIM of a security service model of the Digital Signature.

the message was sent by the claimed sender. For instance, the model presented
uses specific algorithms (e.g. RSA, DSA, ECDSA, ElGamal) to create private
and public keys for the digital signature. Usually, these algorithms are modified
according to the context and device used in the environment.

The transformation process allows to generate code only changing a parame-
ter in the system design and each method in the class diagram is implemented
by the Java language. Algorithm 1.2 presents the main classes generated by the
model-driven adaptive approach.

Algorithm 1.2. Java code of the class diagram of the Digital Signature.

public class DigitalSignature {

/*

* Generate Digital Signature

*/

public static byte [] generateDigitalSignature (String

message , String keyPath) {

PrivateKey privKey = KeyFeatures.getPrivateKey (keyPath);

return signBytes = Utils.getSignature(message , privKey);

}

public static void main(String [] args){

KeyGenerator ();

String msg = args [0];

String keyPath = args [1]; // path to privatekey.key

byte [] signedMsg = generateDigitalSignature (msg ,

keyPath);

}

}

212 B.A. Mozzaquatro et al.

Our approach proposed takes advantage of the MDE approach to generation
of a security solution from a class diagram in different platform specific models
as C, Python, Java or also for others platforms.

6 Final Considerations

Industrial systems are adopting more and more smart devices to automatize
operations using information technology standards and creating business oppor-
tunities. The utilization of these devices with capabilities of sensing and con-
nected with the Internet increases the security concerns. In dynamic environ-
ments with heterogeneous devices providing critical services requires attention to
improving security using decision-making systems to improve the security man-
agement. The real-time approach of the security management allows realizing
fast changes through of policies or configurations to attend security requirements.
By another hand, to attend some security requirements, the availability of the
critical business services is affected when they need modifications in mechanisms
or tools. For that, the runtime approach involves security services provisioning,
the proposal in this paper, to generate new secure solutions to reach a security
requirement, even though the critical services of industrial systems need to stop,
but by a short time if it is compare with security software development of new
services.

The authors proposed a model-driven adaptive approach to provides secu-
rity services for the IoT security. This proposal uses an ontology-based security
framework to suggest security solutions at runtime and codes are generated
from security requirements according to the context environment. Nevertheless,
IoTSec ontology provides the relation between main concepts of risk management
using semantic web technologies. This knowledge base provides suggestions of
security solutions based on the contextual information identified by the security
framework.

This paper shows the main contribution of a model-driven engineering
applied in an industrial scenario to generate security services according to the
security recommendation of the ontology-based framework. The generation of
security services at runtime provides making decision and enforcement of new
solutions with less time of development and reconfiguration of resources because
transformation models are faster transition to create new source codes or config-
uration scripts of a security mechanism. Considering to the industrial scenario, it
has huge business impact ensuring the availability of providing critical services.
In future works, security service provisioning must be better analyzed to iden-
tify which are the mechanisms and tools appropriate for model-driven adaptive
approach.

Acknowledgements. The research leading to this work has received funding from
CAPES Proc. No.: BEX 0966/15-0 and European Commission’s Horizon 2020 Pro-
gramme (H2020/2014-2020) under grant agreement: C2NET No.: 636909.

A Model-Driven Adaptive Approach for IoT Security 213

References

1. Bi, Z., Xu, L.D., Wang, C.: Internet of things for enterprise systems of modern
manufacturing. IEEE Trans. Industr. Inf. 10, 1537–1546 (2014)

2. Xu, L.D., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans.
Industr. Inf. 10, 2233–2243 (2014)

3. Sicari, S., Rizzardi, A., Grieco, L., Coen-Porisini, A.: Security, privacy and trust
in internet of things: the road ahead. Comput. Netw. 76, 146–164 (2014)

4. Evesti, A., Ovaska, E.: Comparison of adaptive information security approaches.
ISRN Artificial Intelligence (2013)

5. Habib, K., Leister, W.: Adaptive security for the internet of things reference model.
Norsk informasjonssikkerhetskonferanse (NISK) 13–25 (2013)

6. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and
privacy in distributed internet of things. Comput. Netw. 57, 2266–2279 (2013)

7. Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for internet of
things. J. Netw. Comput. Appl. 42, 120–134 (2014)

8. Granjal, J., Monteiro, E., Silva, J.S.: Security in the integration of low-power wire-
less sensor networks with the internet: a survey. Ad Hoc Netw. 24, 264–287 (2014)

9. Mozzaquatro, B.A., Jardim-goncalves, R., Agostinho, C.: Towards a reference
ontology for security in the internet of things. In: IEEE International Workshop
on Measurement and Networking, pp. 1–6 (2015)

10. Soylu, A., De Causmaecker, P.: Merging model driven and ontology driven system
development approaches pervasive computing perspective. In: 2009 24th Interna-
tional Symposium on Computer and Information Sciences, ISCIS 2009, pp. 730–
735. IEEE (2009)

11. Undercoffer, J., Joshi, A., Pinkston, J.: Modeling computer attacks: an ontol-
ogy for intrusion detection. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) RAID
2003. LNCS, vol. 2820, pp. 113–135. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45248-5 7

12. Xu, H., Xiao, D., Wu, Z.: Application of security ontology to context-aware alert
analysis. In: 2009 Eighth IEEE/ACIS International Conference on Computer and
Information Science, ICIS 2009, pp. 171–176 (2009)

13. Frye, L., Cheng, L., Heflin, J.: An ontology-based system to identify complex net-
work attacks. In: 2012 IEEE International Conference on Communications (ICC),
pp. 6683–6688 (2012)

14. Bézivin, J.: Model driven engineering: an emerging technical space. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 36–64. Springer,
Heidelberg (2006). doi:10.1007/11877028 2

15. Herzog, A., Shahmehri, N., Duma, C.: An ontology of information security. J.
Inform. Secur. 1, 1–23 (2007)

16. Fenz, S., Ekelhart, A.: Formalizing information security knowledge. In: Proceedings
of the 4th International Symposium on Information, Computer, and Communica-
tions Security, ASIACCS 2009, pp. 183–194. ACM, New York (2009)

17. Kim, A., Luo, J., Kang, M.: Security ontology for annotating resources. In:
Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1483–1499.
Springer, Heidelberg (2005). doi:10.1007/11575801 34

18. Denker, G., Kagal, L., Finin, T., Paolucci, M., Sycara, K.: Security for DAML web
services: annotation and matchmaking. In: Fensel, D., Sycara, K., Mylopoulos, J.
(eds.) ISWC 2003. LNCS, vol. 2870, pp. 335–350. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-39718-2 22

http://dx.doi.org/10.1007/978-3-540-45248-5_7
http://dx.doi.org/10.1007/978-3-540-45248-5_7
http://dx.doi.org/10.1007/11877028_2
http://dx.doi.org/10.1007/11575801_34
http://dx.doi.org/10.1007/978-3-540-39718-2_22

214 B.A. Mozzaquatro et al.

19. Gyrard, A., Bonnet, C., Boudaoud, K.: An ontology-based approach for helping
to secure the ETSI machine-to-machine architecture. In: 2014 IEEE International
Conference on Internet of Things (iThings), and Green Computing and Commu-
nications (GreenCom), and Cyber, Physical and Social Computing(CPSCom), pp.
109–116. IEEE (2014)

20. Garćıa-Crespo, Á., Gómez-Berb́ıs, J.M., Colomo-Palacios, R., Alor-Hernández, G.:
Securontology: a semantic web access control framework. Comput. Stand. Inter-
faces 33, 42–49 (2011)

21. Stoneburner, G., Goguen, A.Y., Feringa, A.: Spp. 800–30. Risk management guide
for information technology systems (2002)

22. Abie, H.: Adaptive security and trust management for autonomic message-oriented
middleware. In: 2009 IEEE 6th International Conference on Mobile Adhoc and
Sensor Systems, pp. 810–817 (2009)

23. Shnitko, A.: Adaptive security in complex information systems. In: Proceedings of
2003 the 7th Korea-Russia International Symposium on Science and Technology,
KORUS 2003, pp. 206–210 (2003)

24. Laddaga, R., Robertson, P.: Self adaptive software: a position paper. In: SELF-
STAR: International Workshop on Self-* Properties in Complex Information Sys-
tems, vol. 31, p. 19 (2004)

25. Agostinho, C., Jardim-Goncalves, R.: Sustaining interoperability of networked
liquid-sensing enterprises: a complex systems perspective. Ann. Rev. Control 39,
128–143 (2015)

26. Dobson, S., Zambonelli, F., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E.,
Massacci, F., Nixon, P., Saffre, F., Schmidt, N.: A survey of autonomic communi-
cations. ACM Trans. Autonom. Adapt. Syst. 1, 223–259 (2006)

27. Picek, R., Strahonja, V.: Model driven development-future or failure of software
development. IIS 7, 407–413 (2007)

28. Aman, W., Snekkenes, E.: Event driven adaptive security in internet of things.
In: UBICOMM 2014: The Eighth International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, pp. 7–15 (2014)

29. Ouedraogo, W.F., Biennier, F., Merle, P.: Optimizing service protection with model
driven security@ run. time. In: 2015 IEEE Symposium on Service-Oriented System
Engineering (SOSE), pp. 50–58. IEEE (2015)

30. Ghimire, S., Melo, R., Ferreira, J., Agostinho, C., Goncalves, R.: Continuous data
collection framework for manufacturing industries. In: Ciuciu, I., Panetto, H.,
Debruyne, C., Aubry, A., Bollen, P., Valencia-Garćıa, R., Mishra, A., Fensel, A.,
Ferri, F. (eds.) OTM 2015. LNCS, vol. 9416, pp. 29–40. Springer, Cham (2015).
doi:10.1007/978-3-319-26138-6 5

31. Hafner, M., Memon, M., Breu, R.: Seaas-a reference architecture for security ser-
vices in SOA. J. Univ. Comput. Sci. (J.UCS) 15, 2916–2936 (2009)

32. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework.
In: 2001 Proceedings of the 16th Annual International Conference on Automated
Software Engineering, (ASE 2001), pp. 273–280. IEEE (2001)

33. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co. Inc., Boston
(2003)

34. Lúcio, L., Zhang, Q., Nguyen, P.H., Amrani, M., Klein, J., Vangheluwe, H., Traon,
Y.L.: Advances in model-driven security. Adv. Comput. 93, 103–152 (2014)

http://dx.doi.org/10.1007/978-3-319-26138-6_5

A Model-Driven Adaptive Approach for IoT Security 215

35. Clavel, M., Silva, V., Braga, C., Egea, M.: Model-driven security in practice:
an industrial experience. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 326–337. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69100-6 22

36. Basin, D., Doser, J., Lodderstedt, T.: Model driven security for process-oriented
systems. In: Proceedings of the Eighth ACM symposium on Access control models
and technologies, pp. 100–109. ACM (2003)

37. Lang, U., Schreiner, R.: Model driven security management: making security man-
agement manageable in complex distributed systems. In: Workshop on Model-
ing Security (MODSEC08)-International Conference on Model Driven Engineering
Languages and Systems (MODELS) (2009)

38. Ouedraogo, W.F., Biennier, F., Ghodous, P.: Model driven security in a multi-cloud
context. Int. J. Electron. Bus. Manage. 11, 178 (2013)

39. C2NET, P.: Deliverable D1.3: C2NET platform validation scenarios. Version R0.1
(2015)

http://dx.doi.org/10.1007/978-3-540-69100-6_22
http://dx.doi.org/10.1007/978-3-540-69100-6_22

Identifying Performance Objectives to Guide
Service Oriented Architecture Layers

Tehreem Masood(&), Chantal Bonner Cherifi, and Néjib Moalla

Decision and Information Sciences for Production Systems (DISP),
Université Lumière Lyon 2, Lyon, France

{tehreem.masood,chantal.bonnercherifi,

nejib.moalla}@univ-lyon2.fr

Abstract. Service oriented architecture is emerging as a powerful paradigm for
organizations that need to integrate their applications within and across orga-
nizational boundaries. Organizations need to take decisions more quickly and
need to change those decisions dynamicaly. Delivering an adequate level of
performance is a critical and significant challenge that requires monitoring along
the different layers of service oriented architecture. Current monitoring systems
are designed to support specific layers but do not fulfil the requirements of all
the layers of service oriented architecture. Ontologies on the semantic web
standardize and formalize the concepts and store domain knowledge for effec-
tive decision making. In this paper, we propose performance monitoring
framework for various layers of service oriented architecture. It integrates var-
ious ontologies to monitor the performance at the service oriented layers in order
to ensure their sustainability. We design a Service Performance Ontology that
captures all the information about the service domain. Along with that we design
ontologies for ensuring performance at service level, binding level, composition
level and server level. We conduct a performance evaluation over real web
services using suitable estimators for response time, delay, loss and more.

Keywords: Web services � Service Oriented Architecture (SOA) �
Performance � Decision making � Ontology

1 Introduction

Web Services is a software system designed to support interoperable machine to
machine interaction over a network [1]. It uses open standards like XML [2], SOAP
[3], WSDL [4]. Web-service based applications are applications built by using web
services provided by third-parties. The SOA Reference Architecture (SOA RA) has
nine layers that emerge in the process of designing an SOA solution or defining an
enterprise architecture standard [5]. SOA RA is shown in Fig. 1.

The component services access the Data abstraction layer to fetch and retrieve data.
Messaging through SOAP provides the ability to perform the necessary message
transformation to connect the service requestor to the service provider and to publish
and subscribe messages and events asynchronously [6]. In this way services are pub-
lished in the service layer. On the top level layer, BP applications provide process

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 216–226, 2017.
DOI: 10.1007/978-3-319-66302-9_11

orchestration mechanism to execute enterprise business processes. BP application use
Business Process Modeling Notation (BPMN) [7] to design their business processes.
Governance rules are the set of policies like service will be available for one year etc.
Security is used to provide some integrity to the system like authentication with the
help of user name and password. Quality of service layer is used to provide the agreed
quality as defined in service level agreements.

Ontologies play an important role in both semantic web applications and knowl-
edge engineering systems [8]. Numerous tasks such as information storage, processing,
retrieval, decision making etc. are done on the basis of ontologies.

Web service performance metrics are classified as client-side and server-side. Load
generators are used together with profiling tools to measure and optimize the perfor-
mance of web service based applications. Examples are JMeter [9], soapUI [10],
Eclipse TPTP [11] and JProbe [12].

Software performance engineering is a systematic approach to construct software
systems that meet performance objectives (PO’s). As part of software performance
engineering, we focus on establishing PO’s. PO’s can be monitored at service or
process execution time. PO’s that we have specified are related to availability, relia-
bility, response time, throughput, resource utilization and bandwidth of SOA layers. It
helps to determine that how the SOA layers performs under a particular workload. It
demonstrates that the system meets performance criteria.

Companies need to know the performance of web services for a number of reasons.
Some of the reasons are: Clients need to know and demand efficient PO’s. Multiple
service providers offering same or similar service take advantage. Also, It is required to
know the resource demands of the system at different workloads.

Fig. 1. SOA ref Layers [5].

Identifying Performance Objectives 217

The analysis of requirement phase shows the diversity of measurements that are
applied in different service networks together with the demand for a common frame-
work. It derives a list of performance objectives being of common interest. These
performance objectives can be retrieved by using different business activity monitoring
tools like Oracle Business Activity Monitoring [13], WSO2 server [14]. Performance
objectives of primary interest for the users are related to the performance degradations
that include availability, response time, delay, failure and loss of service.

Our objective in this research is to propose a decision-making model combining
service/process performance objectives in order to generate validation arguments for
the expansion of the service environment. Therefore in this paper, we propose a Per-
formance Monitoring Framework based on the Service SOA. The decision support
covers the unavailability of services, recommendation of services based on key per-
formance indicators and the composition of existing ones.

In this paper, we introduce a performance monitoring framework for SOA layers.
The framework consists of two major steps (i) Service monitoring ontology
(ii) Ontologies for performance measurement of service oriented activities.

The remaining of the paper is organized as follows: Sect. 2 includes related work.
Section 3 discusses our proposed performance monitoring framework. We conclude
our work in the last section.

2 Requirements

Performance monitoring framework that is addressed in this paper should be able to
fulfill the requirements of different user perspectives.

2.1 Service Network or Business Activity Users

In this case the framework shall provide a view of the service network which allows to
easily track the failing service by analyzing the network of services. Service network
involves service tasks and business processes. Service task issues a single business
action for the most part. Its interactions involve the execution of a single business
function or an inquiry against a single core business entity. Business Process is a
sequence of tasks triggered by business events. It issues a series of business actions that
could involve the invocation of one or more granular business services. This per-
spective is related to those users who are managing the network of services or business
activities to identify and replace the faulty service. This perspective is important to
address business activities are the core part of a value chain in the enterprise.

2.2 Performance Emergency Response Team (PERT)

It is important to gather the information from various sources to get clear view of
performance degradations. It can be done by setting up performance objectives for
monitoring along SOA layers. Performance objectives to analyze performance degra-
dations are availability, response time, delay, loss and many others. There are different
tools available to monitor these performance objectives. It is extremely important to

218 T. Masood et al.

manage the performance problems by providing some alternate solutions. Framework
shall provide a mechanism to recommend alternate solutions under these circumstances.

3 Related Work

This section is divided into four parts. The first part is related to the end user
requirement in performance monitoring. The second part deals with Performance based
monitoring projects related to SOA paradigm are evaluated. The third part deals with
the decision making models to support SOA. The fourth part evaluates the Ontology
based QoS Analysis Techniques.

3.1 Performance Based Monitoring Projects

INTERMON [15] project is inter-domain QoS monitoring. This project is based on
abstractions for traffic, topology. It centralizes the collection of pre-defined measure-
ments. It cannot be guaranteed that an entity has a complete control of other networks.

JRA1 [16] project is inter-domain QoS monitoring. This architecture uses
authentication and authorization rules, schedule new types of measurements. It pro-
vides metrics concatenation and aggregation. The constraint is requesting data for
day-to-day operation of the networks. Other constraints are to allow distributed policies
among the different networks, for exchange of monitoring data and access to
on-demand test tools.

The MonALISA project [17] also provide a framework for distributed monitoring.
It consists of distributed servers which handle the metric monitoring for each config-
ured host at their site and for WAN links to other MonALISA sites. This system relies
on JINI for its discovery service.

The PlanetLab [18] is a huge distributed platform over 568 nodes, located in 271
different sites. It enables people being members of the group to access the platform to
run networking experiments. PlanetLab infrastructure service is centralized and relies
on a single database. Similar to INTERMON it can therefore not be applied as is to a
multi-domain environment.

The perfSONAR framework [19] is a service-oriented monitoring architecture to
monitor the performance in multi-domain networks. It is mainly used in large-scale
environments and less suited for service monitoring where fine quality is important
(such as for video quality monitoring). The focus of perfSonar is on troubleshooting
across network boundaries.

Top-Hat [20] federate different measurement infrastructures to provide researchers
with valuable information during the discovery and selection of resources for their
experiments. It interconnects measurement systems to monitor performance in
multi-domain networks. It provides experiment support. This tool is used to ping a
large amount of hosts with the least possible resources.

Identifying Performance Objectives 219

3.2 Decision in SOA

Decision as a Service [21] separates the decisions logic from the application logic. The
decision process is completely put into one service. It is a method used to describe
decision logic in scenarios with many input parameters. It allows to use separate
services for every step of the process locally.

SOA+d [22] creates an approach bridge for the gap between SOA and decision
automation. They focus on intelligent design choice model of Simon to suggest this
meta-model. They integrate elements into two dimensions: conceptual and method-
ological. New concepts like concept of decision, intelligence, design and the choice
service. Meta model purpose is to define, organize and reuse knowledge about concepts
involved in the business processes and their decisional aspect as well as their design
and implementation based on services and the relationship between them.

3.3 Ontology Based QoS Analysis Techniques

MonONTO [23] provides ontology to propose recommendation for the advanced
internet applications users. They have considered information concerning the appli-
cation type, traffic generated and user profile along with network performance metrics.
Their expert system monitors the performance of advanced internet applications. Their
ontology serves as a support to a decision reference tool by providing high-level
information to the user about the agreement of the network facing the service level
demands. They have used a fixed list of network parameters. Therefore, it does not deal
with the heterogeneity and extensibility issues. Implementations of web services have
not been done by them. Additionally, it does not deal with QoS mapping.

Another technique named as Semantic Web Service Discovery Based on Agents
and Ontologies [24] considers the fuzzy constraints. Their framework is modelled by
adding semantics of QoS attributes with web service profiles. It describes the design
and implementation of a web service matchmaking agent. Agent uses an OWL-S based
ontology and an OWL reasoner to compare ontology based service descriptions. They
have used fuzzy constraints increases the efficiency of the web service discovery
approach by providing the customers the web services which are not actually satisfying
the input QoS constraints, but are close to the QoS constraints specification.

4 Performance Monitoring Framework

This section presents our Performance Monitoring Framework as shown in Fig. 2. The
first step of our framework is the requirement to use service or business process. This
analysis is typically performed on user requirement or business goals in a certain time
period to create a specification of requirements.

Next step is the identification, defining and collection of performance objectives.
Performance requirements of SOA layers are monitored in terms of PO’s. These PO’s
have target values that are required to achieve in a certain time period. We identify
PO’s at the service layer, orchestration layer, resource layer and binding level. We
design performance based ontologies for service oriented architecture layers.

220 T. Masood et al.

We classify these performance objectives and define decision rules based on these
ontological concepts to make recommendations like yes and no to reuse existing
service.

Major steps for the creation of performance profile are:

• Specifying ontological concepts
• Management of common concepts
• Quality assurance on the performance profile

In the following sub sections we explain service performance ontology and
ontologies at the service layer, orchestration layer, resource layer and binding level.

4.1 Service Performance Ontology

In this step we design Service Performance ontology (SPOnt) as a base infrastructure. It
aggregates the main concepts and relationships between them. QoS requirements,
service domain concepts, key performance indicators and performance levels are the
major concepts. SPOnt is shown in Fig. 3.

Service
This concept has various data type properties to capture different attributes in SPOnt. It
also has various object properties that links Service concept to other concepts. The
details are as follows:

Performance Level
This concept conceptualizes the level where a service network can be monitored. It has
various sub concepts, each for capturing the performance levels such as Domain Level,
Node level, Server Level, Service Level, Operation Level, and Messaging Level.

QoS Level
Quality of service model is classified as metrics into time based, size based and
combined (both time based and size based) metrics. Key performance indicator (KPI)

Fig. 2. Performance Monitoring Framework.

Identifying Performance Objectives 221

assessment model has classified the indicators as response time, delay, error, loss, SLA,
number of operations per second and average data blocks per time unit.

Time based
Time based classification includes all those indicators that can be measured in time
units like availability, delay, response time. Availability is defined as the total down
time per service. Delay is defined as downtime divided by uptime. Response time is
also called latency. It is the time perceived by a client to obtain a reply for a request for
a web service. It includes the transmission delays on the communication link. It is
measured in time units.

Fig. 3. Service Performance Ontology (SPOnt).

222 T. Masood et al.

Size based
Size based classification includes all those indicators that can be measured in size units.
For example reliability. Reliability can be analyzed as loss or error of service. It is
measured as number of successful invocations divided by total number of invocations.

Combined
Combined based classification includes all those indicators that can be measured by
both time and size units like bandwidth and throughput. Bandwidth is defined as the
tasks per time unit and average data blocks per time unit. Throughput is defined as the
number of operations per second.

4.2 Performance Objectives for SOA Layers

In this step, we explain the ontological concepts of the performance at service layer,
orchestration layer, resource layer and binding level. Ontologies for all these layers are
shown below step by step. Figure 4 shows the ontology of performance at service
layer. PO’s at service layer are explained below.

Response Time: captures the response time of a service/operation. It has three sub
concepts to record Maximum, Minimum and Average response time.

Request Count: shows the number of invocation of a service.
Response Count: shows the number of replies for an invocation of a service.
Fault Count: shows the number of invocations the service has not replied.
Deploy Time: shows when the service is deployed at the server
Up Time: shows the time period the service is available since its deployment

Fig. 4. Ontology of Performance at Service Layer.

Identifying Performance Objectives 223

Down Time: shows the time period of un-availability of a service since its deployment
Delay: shows the average response time of a service.
Loss: shows that the service is un-available (i.e., it cannot be invoked).

Figure 5 shows the ontology of performance at orchestration layer. PO’s at
orchestration layer are explained below.

Process-Response-Time: captures the response time of a business process. It has three
sub concepts to record Maximum, Minimum and Average response time.

Process-Up-Time: shows the time period the business process is available since its
deployment

Process-Down-Time: shows the time period of un-availability of a business process.
Process-Delay: shows the average response time of a business process.
Process-Loss: shows that the business process is un-available (i.e., it cannot be

invoked).
Process-Duration: shows the time duration of business process since it is deployed,

executed and remained in process.

Some other PO’s at service layer are also used in order to estimate their value at
composition level like availability and service response time.

Figure 6 shows the ontology of performance at binding level. Binding level means
at the messaging level. PO’s at transport messaging level are binding-throughput,

binding-reliable-messaging, binding-security (authentication, authorization, and
encryption) and binding-bandwidth.

Fig. 5. Ontology of Performance at Orchestration Layer.

224 T. Masood et al.

5 Conclusion

In this paper, we propose a framework to identify the performance objectives along the
service oriented architecture layers. The proposed research work accelerates the anal-
ysis of existing service networks in order to validate service reuse capabilities. First of
all we design our service performance ontology SPOnt to show the relationships of all
the concepts. Then we identify the performance objectives at the service layer,
orchestration layer, resource layer and binding level. Then we use performance
objectives of these aforementioned layers to provide decision making capabilities. We
will enhance our work to cover the recommendation based on the decision rules for
service reuse and service composition problem. We will implement our work by using
real time case study.

References

1. Gottschalk, K., Graham, S., Kreger, H., Snell, J.: Introduction to web services architecture.
IBM Syst. J. 41(2), 170–177 (2002)

2. Extensible Markup Language (XML) 1.1 (2nd edn.) (2006). World Wide Web Consortium.
http://www.w3.org/TR/xml11/

3. Simple Object Access Protocol (SOAP) 1.2, Part 0, Primer (2007). World Wide Web
Consortium. http://www.w3.org/TR/soap12-part0/

4. Web Services Description Language (WSDL) 2.0, part 1: Core Language (2007). World
Wide Web Consortium. http://www.w3c.org/TR/wsdl20/

5. https://www.opengroup.org/soa/source-book/soa_refarch/layers.htm
6. Tari, Z., Phan, A.K.A., Jayasinghe, M., Abhaya, V.G.: Benchmarking soap binding. In: On

the Performance of Web Services, pp. 35–58. Springer (2011)

Fig. 6. Ontology of Performance at Integration Layer.

Identifying Performance Objectives 225

http://www.w3.org/TR/xml11/
http://www.w3.org/TR/soap12-part0/
http://www.w3c.org/TR/wsdl20/
https://www.opengroup.org/soa/source-book/soa_refarch/layers.htm

7. Documents Associated with Business Process Model and Notation (BPMN) Version 2.0
Release date. January 2011. http://www.omg.org/spec/BPMN/2.0/PDF

8. Fahad, M., Qadir, M.A.: A Framework for Ontology Evaluation. ICCS Suppl. 354, 149–158
(2008)

9. http://jakarta.apache.org/jmeter/
10. http://www.soapui.org/
11. https://eclipse.org/tptp/
12. https://marketplace.eclipse.org/content/jprobe
13. http://www.oracle.com/technetwork/middleware/bam/downloads/index.html
14. http://wso2.com/products/application-server/
15. INTERMON project. http://www.intermon.org/
16. Joint Research Activity 4, Enabling Grids for E-SciencE (EGEE) project. http://egeejra4.

web.cern.ch/EGEE-JRA4/
17. MONitoring Agents using a Large Integrated Services Architecture (MonALISA). California

Institute of Technology. http://monalisa.caltech.edu/
18. PlanetLab project. http://www.planet-lab.org/
19. Hanemann, A., Boote, J., Boyd, E., Durand, J., Kudarimoti, L., Łapacz, R., Swany, D.,

Trocha, S., & Zurawski, J. PerfSONAR: a service oriented architecture for multidomain
network monitoring. In: Proceedings of 3rd International Conference Service Oriented
Computing (ICSOC 2005). Amsterdam, The Netherlands. doi:10.1007/11596141_19

20. Bourgeau, T., Augé, J., Friedman, T.: TopHat: supporting experiments through measurement
infrastructure federation. In: Proceedings of the 6th International ICST Conference on
Testbeds and Research Infrastructures for the Development of Networks and Communities
(TridentCom 2010)

21. Zarghami, A., Sapkota, B., Eslami, M. Z., van Sinderen, M.: Decision as a service:
separating decision-making from application process logic. In: EDOC, pp. 103–112. IEEE
(2012)

22. Boumahdi, F., Chalal, R., Guendouz, A., Gasmia, K.: SOA+d: a new way to design the
decision in SOA-based on the new standard Decision Model and Notation (DMN). SOCA 10
(1), 35–53 (2016). http://link.springer.com/search?query=Boumahdi&search-within=
Journal&facet-journal-id=11761

23. Moraes, P., Sampaio, L., Monteiro, J., Portnoi, M.: Mononto: A domain ontology for
network monitoring and recommendation for advanced internet applications users. In:
Network Operations and Management Symposium Workshops. IEEE (2008)

24. Benaboud, R., Maamri, R., Sahnoun, Z.: Semantic Web Service Discovery Basedon Agents
and Ontologies. Int. J. Innov. Manage. Technol. 3(4), 467–472 (2012)

226 T. Masood et al.

http://www.omg.org/spec/BPMN/2.0/PDF
http://jakarta.apache.org/jmeter/
http://www.soapui.org/
https://eclipse.org/tptp/
https://marketplace.eclipse.org/content/jprobe
http://www.oracle.com/technetwork/middleware/bam/downloads/index.html
http://wso2.com/products/application-server/
http://www.intermon.org/
http://egeejra4.web.cern.ch/EGEE-JRA4/
http://egeejra4.web.cern.ch/EGEE-JRA4/
http://monalisa.caltech.edu/
http://www.planet-lab.org/
http://dx.doi.org/10.1007/11596141_19
http://springerlink.bibliotecabuap.elogim.com/search?query=Boumahdi&search-within=Journal&facet-journal-id=11761
http://springerlink.bibliotecabuap.elogim.com/search?query=Boumahdi&search-within=Journal&facet-journal-id=11761

Applications and Software Development

Empirical Investigation of Scrumban in Global
Software Development

Ahmad Banijamali(B), Research Dawadi, Muhammad Ovais Ahmad,
Jouni Similä, Markku Oivo, and Kari Liukkunen

M3S Research Unit, Faculty of Information Technology and Electrical Engineering,
University of Oulu, PO box 4500, 90014 Oulu, Finland

{ahmad.banijamali,muhammad.ahmad,jouni.simila,markku.oivo,
kari.liukkunen}@oulu.fi, research.dawadi@student.oulu.fi

Abstract. Scrumban combines two Agile approaches (Scrum and
Kanban) to create a management framework for improving software engi-
neering practices. Scrumban is expected to override both Scrum and
Kanban, as it inherits the best features of both. However, there is little
understanding of the possible impact of Scrumban on software develop-
ment in prior studies. This study first makes a comparison among Scrum,
Kanban, and Scrumban and then investigates the impact of Scrumban
on six major challenges of global software development. This study was
conducted in a distributed project at two Software Factories in two uni-
versities in Finland and Italy. The results show that Scrumban could
positively affect issues such as evenness of different sites, communication,
and cultural issues as well as leveraging resources among sites. However,
there are still few challenges that require alternative methodologies and
tools other than Scrumban to be overcome.

Keywords: Agile · Distributed software development · Kanban ·
Scrum · Scrumban · Software factory

1 Introduction

The success of software development projects depends heavily on the use of appro-
priate software development methodology. According to a report by Standish
Group, 42% of project cases which have used an Agile approach were success-
ful, which is considerably more than what has been achieved using traditional
project management methods [1]. Agile methods are iterative, incremental, and
enhance collaboration between self-organizing cross-functional teams [2]. Scrum is
the most frequently used Agile method in software development [3]. Scrum reaches
its objective through time-boxed iterations based on continuous feedback and task
prioritization [4].

Kanban, on the other hand, has not been widely adopted in software develop-
ment [5]. In 2004,Kanban entered into theAgile realmwhenDavidAnderson intro-
duced it in practice while assisting a software development team at Microsoft [6].

c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 229–248, 2017.
DOI: 10.1007/978-3-319-66302-9 12

230 A. Banijamali et al.

Kanban proposes to defer the project commitments, set constraints on the amount
of work in progress (WIP), and limit the project promises that cause project failure
[7]. The high expectations for Kanban are the result of its adaptability regarding
changes in requirements, its ability to visualize project processes, and its role in
increasing communication and cooperation among team members [8].

A study by Ladas [9] combined Scrum and Kanban to introduce a methodol-
ogy which represents the best elements of those methodologies. According to that
study, Scrumban is more appropriate for teams that are already using Scrum.
Scrumban applies Scrum as a prescriptive method of team-work to complete
the work, while it encourages process improvements through Kanban to allow
projects to continuously optimize the processes and number of tasks [10].

There are limitations with respect to Scrum which can be mitigated by using
Kanban alongside it. For example, Scrum does not consider the organization as
a whole during its implementation [11] and has limitations such as lack of work
visibility and changing task priorities [12]. Scrumban thus inhibits companies
from embracing change and establishing better relationships between business
and information technology departments [13]. Scrum and Kanban can be com-
bined for high throughput and visibility into the development process.

Geographically distributed teams with poorly planned coordination often end
up with unmatched deadlines, cost overruns, and even cancelled projects [14].
Distributed software development settings (DSD) often have additional chal-
lenges such as different locations, times, cultures, and languages among team
members which can add more complexities to software development [15]. The
idea of utilizing manpower from different locations is tempting, but it creates
excessive coordination tasks in projects makes it difficult to ensure that everyone
has a clear idea of the project goals and is committed to achieving them.

A study conducted by Šmite et al. [16] compares the characteristics of Agile
and DSD and declares that communication in Agile projects is informal, face-to-
face, and synchronous, while DSD projects require formal, computer-mediated,
and often asynchronous communication. Moreover, Agile projects apply change-
driven and self-managed coordination and light-weight control. However, DSD
settings need plan-driven and standardized coordination among sites, which is
achieved through several command and control methods. Despite their opposing
characteristics, the combination of Agile and distributed development is of high
interest to companies [17].

Geographically distributed development, in itself, is a vague term because
there can be different types of distributed teams based on the time difference
between the involved team members [18]. Two configurations of distributed
teams that can be taken into consideration are North-South and East-West.
North-South distributed teams do not have a considerable difference in time-
zones, while the East-West configuration involves a significant time-zone dif-
ference [18]. Our investigated software factories (described in Sect. 3.1) were
distributed from the North to South of Europe; hence, the East-West setting is
beyond the scope of this research.

Empirical Investigation of Scrumban in Global Software Development 231

According to Šmite et al. [16], there is limited research and understanding
about the application of Agile methodologies in DSD. In addition, Scrumban is
a new development approach in the software engineering domain, and existing
literature provides little information on Scrumban’s impact on DSD projects.
Increasing interest in globally distributed software development practices has
motivated us to investigate the following research question: “How does Scrumban
methodology affect global software development?” As coordination among devel-
opers is a critical issue within those environments, we have mainly investigated
Scrumban from this perspective.

This paper is structured as follows: Sect. 2 presents an overview of previous
studies on Scrum, Kanban, and Scrumban in the context of software engineering
and similarities and differences among them. Further, it discusses global software
development. Section 3 provides a brief introduction to the Software Factory
settings and then elaborates on the T-Bix project case which has been used for
this research. Next, it shows the project coordination model and the applied
research approach. Section 4 presents findings of this study, the limitations, and
direction for future studies. Section 5 concludes the paper and highlights the
main contributions of our work.

2 Related Works

This section discusses Scrum, Kanban, and Scrumban with respect to their sim-
ilarities and differences. It also describes software development practices in a
global context.

2.1 Scrum

The first implementation of Scrum in the field of software development was
at Easel Corporation in the USA in 1993 [19]. Scrum advocates small teams
that work independently and create more efficiency at work [20]. Scrum is an
incremental Agile software development methodology that operates through a
series of iterations that require continuous planning, defined roles, and project
artefacts [21,22]. Scrum is the most frequently applied Agile software develop-
ment method [3] for achieving small but continuous deliverables. It facilitates
regular feedback after each iterative development process, called a “sprint” [23].
According to Rising and Janoff [20], Scrum is beneficial, particularly for projects
in which all the requirements are not clear in advance.

Implementation of Scrum allows self-organization which can result in a
high-performance team even if the team comprises average developers [19]. The
most important roles in Scrum include: (1) product owner, who serves as an
interface among developers and other stakeholders, (2) Scrum master, who is the
person responsible for leading scrum meetings, identifying tasks to be completed
within the sprints, and measuring progress [20], and (3) development team. Since
companies from Western countries often tend to outsource their software devel-
opment to Eastern countries [19], applying Scrum in such situations can induce
independency of teams as well as increase communication and productivity.

232 A. Banijamali et al.

2.2 Kanban

Kanban is a relatively new concept in the field of software engineering that
was originally applied in Lean manufacturing [6]. While Scrum focuses on one
iteration at a time, Kanban supports a continuous workflow [5]. Kanban provides
the flexibility of managing the workflow within teams. It limits WIP in each
activity to a maximum number of tasks or items at any given time. Moreover,
it does not suggest strictly defined roles and sprints [24]. It provides a clear
visualization of the phases in the project lifecycle.

Kanban reduces lead time and improves quality and productivity [25]. Kanban
helps team members to identify constraints of a process and focus on a single item
or task at a time [26]. In traditional software development methods, several works
are assigned to a team member, which is defined as a push method [26]. In that
case, the work to be completed is sent to the team member regardless of the sta-
tus of other work. On the other hand, Kanban suggests assigning a developer to
one particular job. When the work is completed, the developer can pull another
task from the Kanban board and work on it. According to Polk [27], provision of
a Kanban board changed the thinking of team members by making them realize
that they are not just developing code but developing a complete product. With
Kanban, team members, stakeholders, and customers can get a real-time view of
project progress [26]. Implementation of Kanban also lowers the risk of communi-
cation and coordination breakdown [28].

2.3 Scrumban

By combining Lean and Agile methodologies, project members can receive rapid
and iterative feedback while they have the ability to implement the necessary
changes and respond to the feedback. The combination of Agile and Lean in
co-located projects enhances coordination among team members, increases team
morale, and produces better outcomes [13]. Lean increases the scale of the devel-
opment process and makes it efficient, while Agile principles help to make the
process flexible [11].

Table 1 summarizes the key points of using Scrum and Kanban in the same
project by showing several examples from the literature. In Sect. 4.1, we will use
these points for our analysis in the context of distributed software development.

Scrum and Kanban are similar in the sense that both improve transparency,
aim to release software as soon as possible, work on the principle of breaking
work into pieces, and continuously optimize the project plan [29]. It is argued
that if Kanban is used alongside Scrum, they can complement each other [30].
Scrumban incorporates the iterative planning of Scrum but is more responsive
and adaptive to changes in user requirements. Project members who have had
good experience with Scrum can benefit from Scrumban, as it improves their
knowledge and capabilities [30]. By combining Scrum and Kanban, researchers
hope to create more flexibility in projects as well as maintaining the iterative
pace that Scrum has provided [30].

Empirical Investigation of Scrumban in Global Software Development 233

Table 1. Scrum and Kanban methodological elements.

ID Study place Key points Reference

P01 Vietnamese office of
a Swedish software
development company

Scrum:
Iterative and incremental
Regular feedback
Strict roles and rules
Kanban:
Visualization
Limiting WIP
Scrumban:
Self-organizing
Collaborative teamwork

Nikitina
et al. [24]

P02 Faculty of Computer
and Information Science,
University of Ljubljana

Scrum:
Incremental and iterative
Planned project
Regular feedback
Kanban:
Maximize workflow
Visualization
Limiting WIP

Mahnic [5]

P03 Arrk Group:
a multinational software
development company

Scrumban:
Limiting WIP
Optimal resource utilization
Collaborative teamwork
Quick decisions
Customer satisfaction

Joshi and
Maher [31]

P04 GoGo: offers
services such as Internet,
entertainment, messaging,
voice in the aviation
market

Scrumban:
Visualization of workflows
Transparency
Increased team participation

Brinker [32]

One factor that Scrumban inherits from Kanban is the visualization of work-
flows [10]. Scrum completes tasks through sprints that are planned in advance,
but Scrumban allows more flexibility and planning only for the following sprint.
This helps projects to limit WIP. When the limit of tasks in a particular work-
flow is reached, team members help each other to complete the tasks in that
workflow rather than starting a new one. This increases the coordination among
team members and also reduces the possibility of a bottleneck [10].

Scrumban, unlike Scrum, has no strict rules and roles and encourages self-
organized teams. As a result, team members manage their tasks by themselves
and make quicker decisions. According to Khan [10], Scrumban reduces the rele-
vant tasks of planning for the whole iteration (the same as Scrum), as meetings
are set only when required and tasks are changed depending on the output of
the ongoing sprint.

234 A. Banijamali et al.

A real case example of a company’s transition from Scrum to Scrumban [4]
reports that implementation of Scrumban provided a systematic improvement
in the performance of developers. Additional features of Scrumban over Scrum
such as WIP limit and pull-based task management are received well by the
team members. Table 2 has summarized findings from Yilmaz and O’Connor [4],
Reddy [7], and Ahmad et al. [33] to highlight the similarities and differences
between Scrum, Kanban, and Scrumban.

Table 2. Similarities and differences among Scrum, Kanban and Scrumban [4,7,33].

Kanban Scrum Scrumban

No predefined roles for
members

Predefined roles of Scrum
master and team members

Predefined roles of Scrum
master and team members
may vary within project
time

Continuous delivery Time-boxed sprints Task board-based
iterations

WIP limits amount of
work

Sprint limits amount of
work

WIP limits amount of
work

Changes can be made
at any time

No changes allowed
mid-sprint

Changes allowed
mid-sprint

Earlier planning and
documentation
necessary

Planning done after each
sprint

Planning on demand, also
within sprints

Kanban board is
persistent

Scrum board is reset after
each sprint

Scrumban board is
persistent

Size of task is not
limited

Size of task limited to a
sprint

Size of task is not limited

Pull-based work
management

Sprint backlog-based work
management

Pull-based work
management

The implementation of Scrumban, however, presents several challenges. The
flexibility regarding production changes can cause new challenges in, for example,
assigning resources and developing project time-tables. Because Lean method-
ology calls for considering the whole organization through implementation [34],
the combination of Kanban and Scrumban increases the complexities of planning
for activities across the whole organization. Moreover, it is not always possible to
include business personnel or management executives developing project back-
logs or contributing regular feedback [11].

2.4 Distributed Software Development

Finding resources globally creates the possibility of mobility in resources and of
accessing new knowledge of skilled people around the world [17]. Global software

Empirical Investigation of Scrumban in Global Software Development 235

development is applied through multi-geo, multicultural, and multi-temporal
environments to benefit from access to new markets, lower costs, increased oper-
ational efficiency, improved quality, and less time to markets [35].

DSD could have different configurational characteristics, which refers to the
structural properties of the global environment, different ways of distributing
developers, and differences in time and physical distance. A study by Ramasubbu
et al. [36] examined how configurational dimensions can affect productivity, qual-
ity, and profit outcomes of distributed projects. This study explains aspects of
dispersions including spatial dispersion to measure the physical distance, tempo-
ral dispersion to measure the time-zone difference, and configurational dispersion
to measure structural properties such as number of distributed sites and homo-
geneity of distributed people and skills across different sites.

Šmite et al. [17], Jiménez et al. [37], and Nakamura et al. [38] declare that
realizing the DSD benefits come with associated challenges in terms of com-
munication gaps between multiple sites, group awareness, software configura-
tion management, knowledge management, flexible coordination, collaboration,
project management, process support, tools support, quality management, and
risk management.

Coordination is a pressing issue in global software development. People at
the research and development center of Yahoo in Norway mentioned that the
time-zone difference was a major cause of problems when dealing with dislocated
teams [18]. According to Noll et al. [39], the main barriers to coordination in dis-
tributed projects are geographic, temporal, cultural, and linguistic differences.
That study proposed that project teams should enhance site visits, use synchro-
nous communication technology, and apply knowledge-sharing infrastructure to
transform implicit knowledge to explicit knowledge [39]. Other scholars such as
Mak and Kruchten [40], Redmiles et al. [41], and Sidhu and Volberda [42] have
argued that coordination issues come from (1) lack of flexibility and integration,
(2) poor role support, (3) decreasing informal communication and workplace
transparency, and (4) limitations imposed on formal communication. However,
the levels of impact of these issues are different in different dispersion configu-
rations; for example, a study conducted by Ramasubbu et al. [36] suggests that
establishing a project in an East-West geographical setting requires radically
more consideration of time-zone classifications than North-South settings.

There are several instances of the application of Scrum in distributed devel-
opment projects [1,16,18,43]. The American software consulting company Agile
Factori implemented a successful software development project using Agile
methodologies. The project was provided by Big Oil, an American company
consisting of four teams, two of which were located in America and the other
two in Brazil and Argentina. All four teams had a real-time video screen with
audio that showed activities at the other sites. In addition, one screen at each
site showed a dashboard of in-process software components. This allowed other
sites visualization, increased awareness, and better coordination among teams
[18].

236 A. Banijamali et al.

SirsiDynix (U.S) has successfully implemented distributed Scrum since 2005
[19,43]. Using distributed Scrum, SirsiDynix collaborated with the Russian com-
pany Exigen in 2005 for a large project [43] employing more than 50 members
in total and producing over one million lines of code. The output of this distrib-
uted team was estimated to be equivalent to the work of a 350 co-located-person
team working in a waterfall model [43].

An international Agile software development company, Xebia, located in
France, India, and the Netherlands, also implemented Scrum successfully
between 2006 and 2008 [43]. Distributed Scrum was used alongside XP program-
ming in multiple projects by Xebia, and the results showed that the distributed
teams were as effective as co-located teams. These instances show that glob-
ally distributed teams can be as productive as co-located teams when Scrum is
applied effectively [19,44].

3 Research Process

3.1 Software Factory

Software Factories (SF) include structured sets of related software assets to pro-
vide developers with a development setting consisting of domain-specific tools
that help to transform abstract models into implementations [26,45,46]. Through
the SF settings, reusable development practices such as patterns, models, guide-
lines, and transformations are accessible from the viewpoint of a specific aspect
in the development context. This enables domain-specific validation and guid-
ance delivery [47].

The SFs increase productivity from the business perspective, improve qual-
ity and consistency of architectures and designs, reduce development lifecycle,
and consolidate operational efforts [47]. Also, SFs established in the context of
universities are perfect avenues for exploiting technological research for innova-
tion. A study by Taibi et al. [48] declares that such an SF environment benefits
both business by receiving innovative, new ideas and academia by presenting
new skills, frameworks, and models. Therefore, academic Software Factories can
be additionally considered as a new concept of collaboration among universities
and companies [48].

3.2 T-Bix Project Case

A joint five-month software development project called T-Bix was initiated
between the University of Oulu, Finland and the University of Bolzano, Italy
in their respective Software Factories. The aim of the project was to develop a
single common platform for the time-banking system to be operational in South
Tyrol in Italy. The platform allows users to register their own profiles, search
for jobs and products, post jobs and products, send requests for jobs and prod-
ucts, and communicate their feedback. The target group was young, unemployed
people as well as senior citizens hit by the socio-economic crisis.

Empirical Investigation of Scrumban in Global Software Development 237

Because T-Bix project teams were located in Europe (North-South dispersion
configuration), they did not experience drastic temporal differences; however,
the long physical distance and diverse cultures, languages, and social behaviors
remained as challenges in the project. The Finnish team consisted of one PhD
candidate and four master’s degree students who were working locally in Oulu.
The team from Italy had a Software Factory coordinator with a PhD degree
and four master’s degree students. A member of the Italian team was work-
ing remotely from Lithuania. There was one student on each team with indus-
trial experience; however, the rest of the teams did not have prior experience in
industry. Each team comprised one project manager and three developers. The
Finnish team used Scrumban, while the other team used Scrum as the develop-
ment methodology in Italy. Teams frequently used available tools and assets in
SFs, including Rise Editor, Myeclipse, Dreamweaver, JIRA, and GitHub. There
was an Italian entrepreneur (customer of the T-Bix project) who was in direct
contact with both teams. The customer communicated his needs through meet-
ings and emails; teams attempted to interpret the customer’s requirements into
user stories and backlogs.

The front-end of the application was developed with direct contact with
the customer in Italy. The back-end, including the database development and
integration of the front-end and back-end, was developed in Finland. The codes
were shared on GitHub, where some feedback and comments were also shared.

An identical Kanban board was created in JIRA by the Oulu team and shared
with the team members in Bolzano. The Kanban board was updated regularly,
providing visibility of the board and tasks across both teams.

In addition to JIRA boards, the Software Factory in Oulu was equipped with
physical Kanban boards that were utilized throughout the project lifetime. The
boards were divided into four sections: backlog (features), to do, in progress
(WIP), and done, and was populated with user stories planned in each sprint.
Once each sprint was completed, the team in Finland updated the boards with
new tasks and shifting completed jobs to the “done” section. Figure 1 shows a
snapshot of the board.

Teams used collaboration tools such as Skype and Google Hangout to com-
municate and verify the requirements, monitor the project progress, present the
sprint deliverables, discuss the challenges, and set new milestones. After each
sprint, teams presented their respective outcomes and progress and received
feedback from both the customer and other team members.

Finding the best time for meetings is a major concern in global software
development [18]. Members from the T-Bix project met on a planned time-table
which considered the temporal difference between Italy, Finland, and Lithuania.
To accommodate other sites and the customer, the meetings were often held in
the afternoon. This ability to hold meetings during the daytime without much
time shifting is an advantage provided by North-South collaboration.

238 A. Banijamali et al.

Fig. 1. A physical Kanban board in Oulu software factory.

3.3 Project Coordination Model

The project was proposed by the customer to the University of Bolzano with the
aim of decreasing the rate of unemployment in South Tyrol. Subsequently, the
University of Bolzano had the idea of making the project a distributed Software
Factory project between the two universities.

The customer was in contact with the teams with respect to the elicitation
of requirements, acceptance testing, and the validation of artefacts. The user
interface of the website was designed and validated through regular meetings
with the customer. The codes and designs were continuously uploaded in GitHub,
in which both teams updated their latest work. The next sprint was planned
according to the feedback and suggestions made by the customer and both teams.
The following model (Fig. 2) shows how the project was carried out among the
teams.

3.4 Research Approach

This study exploits empirical software engineering methods. The authors have
applied semi-structured interviews to collect the data. The participants of this
study are members of the Oulu Software Factory who were interviewed after
completion of the project. The authors provided a set of open-ended questions
covering the scope and objectives of this paper. Four rounds of interviews were
conducted, which lasted from 45 min to 2 h. All interviews were recorded and
transcribed, enabling authors to analyze them based on the needs of this study.

A semi-structured interview format was preferred, as it provides a clear set of
instructions for the interviewer, who usually follows a paper-based interview guide
during the interview. The availability of questions beforehand makes the inter-
views easier for the interviewer and the openness of this type of interview provides
the interviewees with the freedom to express their views using their own terms.

Empirical Investigation of Scrumban in Global Software Development 239

Fig. 2. Project coordination model.

Table 3. Interviewees’ backgrounds.

Interviewee Role in the project Empirical experience Expertise

D1 Project manager 10 years Project management, UI
Design, JIRA&GitHub

D2 Programmer — PostgreSQL,
JIRA&GitHub

D3 Programmer — PostgreSQL, Java,
JIRA&GitHub

D4 UI Designer — UI Design, Java,
JIRA&GitHub

In addition, the comparable qualitative data obtained from semi-structured inter-
views is regarded as reliable for analysis [49]. Table 3 summarizes the roles, empir-
ical experiences, and expertise of the interviewees.

We have defined a set of the coding categories based on the top challenges
of the DSD projects. Those challenges have been extracted from prior studies in
the DSD domain. The categories were discussed and confirmed by two authors
of this paper. All challenges are defined in detail in the next section. Afterward,
authors read through the transcripts and underlined each fragment of relevant
information and specified which fragment fell into which DSD challenges cate-
gories. We have provided some examples of the specified fragments in the next
section. Finally, the reliability of the results was tested separately by two authors
of this paper, and they each found the same results.

240 A. Banijamali et al.

4 Results

This section summarizes key findings regarding Scrumban’s impact on the T-Bix
project as well as the limitations and opportunities for future research.

4.1 Findings

Table 4 explains how the impact of Scrumban has been realized in the coordi-
nation between North-South distributed sites. For this purpose, we have inves-
tigated the top issues in DSD projects as already introduced by other scholars,
including Carmel and Espinosa [18], Barcus and Montibeller [50], Espinosa et
al. [51], and Nidiffer and Dolan [52].

Table 4. Impact of Scrumban on coordination in DSD environments.

Scrumban

aspects

Issues in distributed software development

Strategic Project and

process

management

Communication Cultural Technical Security

Iterative and

incremental

development

Highly

improved

toward latest

sprints

Highly

improved

toward latest

sprints

More sprints,

smoother

More

iterations,

fewer

challenges

Slightly

improved

No evidence

Predictable

and

well-planned

project

No meaningful

impact on

leveraging

resources at

the other site

More

iterations,

more

improvement

Effective

communication for

the planned tasks

No

evidence

Slightly

improved

toward latest

sprints

No evidence

Transparency Positively

impacted

leveraging

resources at

both sites

Positively

impacted task

management

within sites

No evidence Slightly

reduced

challenges

No evidence No evidence

Regular

feedback

Slightly

improved

Positively

impacted task

management

within sites

Demands of both

formal and

informal feedback

Improved

toward

latest

sprints

No evidence No evidence

Limiting WIP Positively

impacted

resource

management

Decreased

challenges

slightly

No evidence No

evidence

No evidence No evidence

Self-organizing Slightly

improved

Positively

impacted task

management

within sites

Improved informal

communication

No

evidence

No evidence No evidence

Strategic issues within DSD settings are concerned with the difficulty in
leveraging available resources. Issues in which stakeholders can anticipate and
manage risks should be identified carefully [52]. Because T-Bix was an evolution-
ary project done through iterative sprints, teams were able to find new ways to
leverage available resources and skills. Within the initial meetings, two teams dis-
cussed the experience and expertise of their members, clarifying how the project

Empirical Investigation of Scrumban in Global Software Development 241

resources were divided between the two sites and how the project duties should
be assigned.

However, the team members mentioned their increasing responsibility during
the later sprints of the project. The project manager [D1] explained that they
were asked to accomplish some additional work on coding. Adapting to these
workflow changes made it difficult to complete the project. A developer [D4]
explained that after much discussion, the two teams decided to assign additional
tasks to the Oulu team, as they had more technical skills:

“After much discussion, we had to accept more work, as Bolzano was not able
to complete it. We should provide more deliverables at the end of the project. We
had no choice because we wanted the project done.”

The teams applied JIRA to establish the project structure and define the roles
of the two sites. Project tasks were assigned to the teams’ members according to
their roles and skills. Furthermore, JIRA created visibility in the WIP for each
role compared to other developers. The project manager [D1] confirmed this:

“Using JIRA, I could monitor the progress of different completed tasks with
respect to the roles. It provided me an opportunity to recognize the tasks that
required extra coordination.”

Project and process management in DSD involves discussing problem-
atic situations in synchronizing work between distributed sites [50]. Integrated
quality, shared workspaces for storing files, and engineering tools are potential
enablers of this issue. Complexity also arises from the fact that there should be
sufficient communication between two teams before they can prioritize project
tasks and decide which one is to be carried out by which team, as in the case of
the T-Bix project discussed. The teams had agreed upon a preliminary division of
work, but additional tasks were later added to the project by the customer. The
members mentioned that the added tasks caused several challenges in manag-
ing their ongoing tasks. To control the scope of the project, the involved teams
should manage changes in a planned way. Any changes in the project scope
may affect the priority and division of work among the sites. The project man-
ager [D1] declared the following primary decision criterion for allocating tasks
between sites:

“Consistency between the requested feature and available skills and knowledge
at the sites was our decision criterion for allocating tasks to sites.”

Using Kanban boards in JIRA improved the visualization and transparency
of the completed, ongoing, and planned tasks. One developer [D3] mentioned the
following:

“The Kanban board in JIRA was quite helpful because we could not frequently
update the pictures of the physical Kanban board for the other team. We applied
JIRA’s Kanban board to share the tasks we had completed and planned to do.”

Using JIRA and GitHub, project members received feedback on their jobs,
for example, for the codes that were uploaded in GitHub. One of the developers
[D2] stated the following:

242 A. Banijamali et al.

“For example, when the scripts in the database had problems, one of the
programmers in Bolzano was using GitHub to send feedback regarding the issues
and asking for solutions.”

Another developer [D4] also believed the following:
“JIRA is a tool developed for task management purposes, but you cannot

upload all project deliverables into it. It is not a shared platform, so we needed
to use other tools, in which we could share other data.”
Communication issues are related to the lack of effective communication
mechanisms. It is very important to convey information such as the current
state of the project as well as project challenges, schedule, and cost. In the case
of distributed projects, communication plays an important role in collaboratively
planning the project stages. Along with formal communication, informal com-
munication between team members and with stakeholders can ease the working
environment and facilitate coordination among them [29]. Applying Scrumban in
DSD projects demands both formal and informal styles of communication. Infor-
mal communication facilitates project implementation; however, formal commu-
nication creates a disciplined environment, which is necessary for coordination
in DSD sites.

Communication was regarded as an important tool for ensuring that the T-
Bix teams were placed at the same level of understanding regarding the project.
A developer [D4] highlighted the following:

“The Bolzano team had their own understanding of the project and we had
ours. We had discussions to resolve the discrepancies and create balance between
the two teams. Scrumban provoked us to have regular meetings with team mem-
bers as well as the customer. This increased the level of communication in the
project.” However, the project manager [D1] mentioned that different time-zones
created little discomfort for arranging meetings.

Scrumban leads to a great deal of communication. One developer [D4] argued
the following:

“At first, we had many problems in our communication because the project
members complained that the other site hindered the project progress and was
not completing its tasks well.”

However, new communication channels as well as more effective planning in
the project led to a higher level of communication between teams. It was claimed
that:

“We had many challenges in our discussions, but since people have had more
communication and became increasingly more acquainted with the way the other
team works, communication became smoother.”[D1]
Cultural issues involve the conflicting behavioral processes and technologies
among various team members [52]. Different socio-cultural backgrounds make
communication more complicated due to lack of understanding of other social
behaviors, cultures, and languages. The T-Bix project shows that people have
different expectations regarding working in multinational teams; for example,
one developer [D2] explained the following:

Empirical Investigation of Scrumban in Global Software Development 243

“It was quite good for distributed software development to include multiple
cultures. It was interesting to work with people with different backgrounds.”

However, other people found multi-cultural settings more difficult than co-
located projects.

Due to the nature of Software Factory projects, team members were com-
pletely new to each other and they were assigned to this project with no prior
knowledge of the other team members. At the beginning of the project, they
had several challenges in communicating with each other and establishing good
organization for their project; however, the evolution of the teams and the feed-
back on the requirements and skills alleviated cultural barriers after people had
met for several sprints.
Technical issues in DSD environments are related to incompatible data for-
mats and exchanges. Creating standards and web services could be seen as poten-
tial ways to resolve this issue. The T-Bix case shows that during different sprints,
teams progressively realized the technical abilities and needs of other sites. The
iterative nature of Scrumban helped them to meet those needs and prepare to
meet the internal project standards and agreements.
Security , on the other hand, involves ensuring electronic transmission confi-
dentiality and privacy [52]. It can be improved through emerging standards for
secure messaging. The T-Bix project did not provide meaningful evidence of
Scrumban’s impact on improving security issues in DSD settings. However, this
study was conducted with respect to coordination issues, and other project issues
are beyond its scope.

4.2 Limitations

The research was conducted in a Software Factory where we collected mem-
ber experiences from a business case with a real customer outside the univer-
sity. According to Fagerholm et al. [53], student selection process can serve as
a limitation in Software Factory projects because universities apply different
prerequisites and standards for their selection process. In our case, the two uni-
versities followed different selection methods, resulting in differences in the level
of knowledge and skills between the two teams.

The authors believe that the limited number of the interviewees is the most
critical limitation of this paper. The semi-structured interview design for the uni-
versity environment led to both the benefits and the limitations of this research.
Prior studies argue for the clear benefits of using students as empirical research
subjects [54,55]; although academic projects rarely can be defined on a large
scale. To that end, it is necessary to carry out further studies within a larger
context in an industrial setting to verify our findings.

This research was done within three European countries. Therefore, the DSD
configuration is North-South, with little difference in time-zones. We assume that
management of teams with a higher level of time variation, for example East-
West configuration, might have more issues. Greater differences in time-zones,
for instance from India to the U.S., will cause more coordination challenges for

244 A. Banijamali et al.

joint meetings and on-time responses to emails, as well as more drastic changes
in culture and languages.

4.3 Future Research

There are a limited number of studies and industrial practices on the applicabil-
ity, challenges and benefits of Scrumban in software engineering. The Software
Factory setting is an attractive concept for testing new ideas and methodolo-
gies related to software development. However, there are challenges related to
maintaining software artefacts after the completion of Software Factory projects
[56]. The authors believe that the results of the T-Bix project can be main-
tained in future academic research, for example, by involving other Software
Factories from different time-zones. It is important to continue studying the
impact of Scrumban on East-West distributed teams with a greater variation
in time-zones. In addition, companies with distributed sites suffer from similar
challenges; therefore, they would be the best candidates to apply Scrumban and
provide feedback for designing future Software Factory projects.

An interesting future study would be investigating how the results of this
study would work in a large industrial environment where there are multiple
sites involved at a variety of locations. We believe that those environments
could nicely validate the capability of Scrumban to improve coordination in
DSD projects.

This study primarily emphasized coordination aspects within distributed
sites. Other issues require further investigation with respect to proper method-
ologies, workflows, and tools. Also, we did not consider impact parameters such
as age, education, and years of experience on the use of Scrumban, which could
apparently be a very good research topic.

5 Conclusions

Current software companies tend to establish their production units in different
locations in order to optimize skilled workforces to produce products at higher
quality and lower cost. In that regard, companies need adequate methodolo-
gies, techniques, and tools to improve efficiency and decrease challenges in DSD.
Software Factory settings can reuse existing assets, architectures, knowledge,
and components to develop software artefacts by imitating industrial processes.

The current study has used Software Factories to investigate how coordina-
tion among distributed sites is effected by the combination of Scrum and Kanban.
Our research shows that the full extent of Scrumban capability is still unknown
because it has not been researched a great deal. Therefore, the results of this
research can be used as the initial steps for developing and validating an efficient
methodology for software engineering practices, particularly in distributed sites.

There are different issues which should be considered before companies decide
to locate their branches in various remote sites. This study argues that Scrumban
could alleviate some of those challenges, but further solutions are needed to make

Empirical Investigation of Scrumban in Global Software Development 245

DSD more reasonable than co-located developments. Furthermore, companies
must restructure their organizations to include proper roles and processes to
improve transparency, change management, communication, coordination, and
resources in DSD.

Future scholarly studies could investigate perspectives other than coordina-
tion for the usability of Scrumban. Moreover, they could propose new domain-
specific tools and approaches for DSD projects which impose different con-
straints, for example, East-West distributed projects. However, companies, as
the real users of Scrumban methodology, should be aware of its challenges as
well as its benefits in planning project deliverables and coordination among
teams.

Acknowledgements. This research was supported by the DIGILE Need for Speed
program, and partially funded by Tekes (the Finnish Funding Agency for Technology
and Innovation). We would like to thank DIGILE and Tekes for their support and the
University of Bolzano for its excellent collaboration.

References

1. Schwaber, K., Sutherland, J.: Software in 30 Days: How Agile Managers Beat the
Odds, Delight Their Customers, and Leave Competitors in the Dust. John Wiley
& Sons Press, Hoboken (2012)

2. Alam, S.S., Chandra, S.: Agile software development: novel approaches for software
engineering. Int. J. Eng. Sci. (IJES) 3(1), 36–40 (2014)

3. Rodriguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage
in finnish software industry. In: Proceedings of the ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement, pp. 139–148. ACM
Press (2012)

4. Yilmaz, M., O’Connor, R.: A Scrumban integrated gamification approach to guide
software process improvement: a Turkish case study. Tehnicki Vjesnik 23(1), 237–
245 (2016)

5. Mahnic, V.: Improving software development through combination of scrum and
Kanban. Recent Advances in Computer Engineering, Communications and Infor-
mation Technology, Spain (2014)

6. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in software development: A system-
atic literature review. In 39th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 9–16. IEEE Press (2013)

7. Reddy, A.: The Scrumban [R]Evolution: Getting the Most Out of Agile, Scrum,
and Lean Kanban. Addison-Wesley Professional, Boston (2015)

8. Kniberg, H., Skarin, M.: Kanban and Scrummaking the most of both. The InfoQ
Enterprise Software Development (2010)

9. Ladas, C.: Scrumban. Lean Software Engineering-Essays on the Continuous Deliv-
ery of High Quality Information Systems (2008)

10. Khan, Z.: Scrumban-adaptive agile development process: using scrumban to
improve software development process. Master’s Thesis, Finland (2014)

11. Rodriguez, P., Partanen, J., Kuvaja, P., Oivo, M.: Combining lean thinking and
agile methods for software development: a case study of a finnish provider of wire-
less embedded systems detailed. In: 47th Hawaii International Conference on Sys-
tem Sciences (HICSS 2014), pp. 4770–4779. IEEE Press (2014)

246 A. Banijamali et al.

12. Tripathi, N., Rodŕıguez, P., Ahmad, M.O., Oivo, M.: Scaling Kanban for software
development in a multisite organization: challenges and potential solutions. In:
Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp.
178–190. Springer (2015). doi:10.1007/978-3-319-18612-2 15

13. Auerbach, B., McCarthy, R.: Does agile+ lean= effective: an investigative study.
J. Comput. Sci. Inf. Technol. 2(2), 73–86 (2014)

14. Smith, J.L., Bohner, S., McCrickard, D.S.: Toward introducing notification tech-
nology into distributed project teams. In: 12th IEEE International Conference and
Workshops on the Engineering of Computer Based Systems (ECBS 2005), pp.
349–356. IEEE Press (2005)

15. Gupta, M., Fernandez, J.: How globally distributed software teams can improve
their collaboration effectiveness? In: 6th IEEE International Conference on Global
Software Engineering (ICGSE), pp. 185–189. IEEE Press (2011)

16. Šmite, D., Moe, N.B., Ågerfalk, P.J.: Fundamentals of agile distributed software
development. In: Šmite, D., Moe, N., Ågerfalk, P. (eds.) Agility Across Time and
Space. LNCS, pp. 3–7. Springer (2010). doi:10.1007/978-3-642-12442-6 1

17. Šmite, D., Moe, N.B., Agerfalk, P.J.: Agility Across Time and Space: Implementing
Agile Methods in Global Software Projects. Springer Science & Business Media,
Heidelberg (2010)

18. Carmel, E., Espinosa, J.A.: I’m Working While They’re Sleeping: Time Zone Sep-
aration Challenges and Solutions. Nedder Stream Press, Washington, DC (2011)

19. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed scrum: agile
project management with outsourced development teams. In: 40th Annual Hawaii
International Conference on System Sciences (HICSS 2007). IEEE Press (2007)

20. Rising, L., Janoff, N.S.: The scrum software development process for small teams.
IEEE Softw. 17(4), 26–32 (2000)

21. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond
(2004)

22. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Pearson Inter-
national Edition, New York (2002)

23. Nikitina, N., Kajko-Mattsson, M.: Guiding the adoption of software development
methods. In: Proceedings of the 2014 International Conference on Software and
System Process, pp. 109–118. ACM Press (2014)

24. Nikitina, N., Kajko-Mattsson, M., Strale, M.: From scrum to scrumban: a case
study of a process transition. In: Proceedings of the International Conference on
Software and System Process, pp. 140–149. IEEE Press (2012)

25. Sjøberg, D.I., Johnsen, A., Solberg, J.: Quantifying the effect of using kanban
versus scrum: a case study. IEEE Softw. 29(5), 47–53 (2012)

26. Ahmad, M.O., Liukkunen, K., Markkula, J.: Student perceptions and attitudes
towards the software factory as a learning environment. In: Global Engineering
Education Conference (EDUCON), pp. 422–428. IEEE Press (2014)

27. Polk, R.: Agile and Kanban in coordination. In: AGILE Conference, pp. 263–268
(2011)

28. Ikonen, M., Pirinen, E., Fagerholm, F., Kettunen, P., Abrahamsson, P.: On the
impact of Kanban on software project work: an empirical case study investigation.
In: 16th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 305–314. IEEE Press (2011)

29. Barash, I.: Use of agile with XP and Kanban methodologies in the same project.
PM World J. 2(2), 1–11 (2013)

30. Ladas, C.: Scrumban-Essays on Kanban Systems for Lean Software Development.
Modus Cooperandi Press, Seattle (2009)

http://dx.doi.org/10.1007/978-3-319-18612-2_15
http://dx.doi.org/10.1007/978-3-642-12442-6_1

Empirical Investigation of Scrumban in Global Software Development 247

31. Our Journey into Scrumban. http://www.arrkgroup.com/thoughtleadership/
our-journey-into-scrumban/

32. Using Scrumban (Scrum Kanban) for Agile Marketing - Chief Marketing Technol-
ogist. http://chiefmartec.com/2014/12/using-scrumbanlean-agile-marketing/

33. Ahmad, M.O., Kuvaja, P., Oivo, M., Markkula, J.: Transition of software mainte-
nance teams from scrum to Kanban. In: 49th Hawaii International Conference on
System Sciences (HICSS 2016), pp. 5427–5436. IEEE Press (2016)

34. Karvonen, T., Rodriguez, P., Kuvaja, P., Mikkonen, K., Oivo, M.: Adapting the
lean enterprise self-assessment tool for the software development domain. In: 38th
EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA), pp. 266–273. IEEE Press (2012)

35. Sutanto, J., Kankanhalli, A., Tan, B.C.: Deriving it-mediated task coordination
portfolios for global virtual teams. IEEE Trans. Prof. Commun. 54(2), 133–151
(2011)

36. Ramasubbu, N., Cataldo, M., Balan, R.K., Herbsleb, J.D.: Configuring global soft-
ware teams: a multi-company analysis of project productivity, quality, and profits.
In: Proceedings of the 33rd International Conference on Software Engineering, pp.
261–270. ACM Press (2011)

37. Jiménez, M., Piattini, M., Vizcaino, A.: Challenges and improvements in distrib-
uted software development: a systematic review. Adv. Soft. Eng. 2009, 3 (2009)

38. Nakamura, K., Fujii, Y., Kiyokane, Y., Nakamura, M., Hinenoya, K., Peck, Y.H.,
Choon-Lian, S.: Distributed and concurrent development environment via sharing
design information. In: The Twenty-First Annual International Computer Software
and Applications Conference, 1997, COMPSAC 1997, Proceedings, pp. 274–279.
IEEE Press (1997)

39. Noll, J., Beecham, S., Richardson, I.: Global software development and collabora-
tion: barriers and solutions. ACM Inroads 1(3), 66–78 (2010)

40. Mak, D.K., Kruchten, P.B.: Task coordination in an agile distributed software
development environment. In: Canadian Conference on Electrical and Computer
Engineering, CCECE 2006, pp. 606–611. IEEE Press (2006)

41. Redmiles, D., Van Der Hoek, A., Al-Ani, B., Hildenbrand, T., Quirk, S., Sarma, A.,
Filho, R., de Souza, C., Trainer, E.: Continuous coordination: a new paradigm to
support globally distributed software development projects. Wirtschafts Informatik
49(1), 28–38 (2007)

42. Sidhu, J.S., Volberda, H.W.: Coordination of globally distributed teams: a co-
evolution perspective on offshoring. Int. Bus. Rev. 20(3), 278–290 (2011)

43. Sutherland, J., Schoonheim, G., Rijk, M.: Fully distributed scrum: Replicating
local productivity and quality with offshore teams. In: 42nd Hawaii International
Conference on System Sciences (HICSS 2009), pp. 1–8. IEEE Press (2009)

44. Paasivaara, M.: Coaching global software development projects. In: 6th IEEE Inter-
national Conference on Global Software Engineering (ICGSE), pp. 84–93. IEEE
Press (2011)

45. Abrahamsson, P., Kettunen, P., Fagerholm, F.: The set-up of a software engineer-
ing research infrastructure of the 2010s. In: Proceedings of the 11th International
Conference on Product Focused Software, pp. 112–114. ACM Press (2010)

46. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer
Society (2007)

http://www.arrkgroup.com/thoughtleadership/our-journey-into-scrumban/
http://www.arrkgroup.com/thoughtleadership/our-journey-into-scrumban/
http://chiefmartec.com/2014/12/using-scrumbanlean-agile-marketing/

248 A. Banijamali et al.

47. Greenfield, J., Short, K.: Software factories: assembling applications with pat-
terns, models, frameworks, and tools. In: 3rd International Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM
Press (2004)

48. Taibi, D., Lenarduzzi, V., Ahmad, M.O., Liukkunen, K., Lunesu, I., Matta, M.,
Fagerholm, F., Münch, J., Pietinen, S., Tukiainen, M., Fernández-Sánchez, C.,
Garbajosa, J., Systä, K.: “Free” innovation environments: lessons learned from the
software factory initiatives. In: 10th International Conference on Software Engi-
neering Advances (ICSEA 2015), pp. 25–30 (2015)

49. Cohen, D., Crabtree, B.: Qualitative Research Guidelines Project. Robert Wood
Johnson Foundation, Princeton (2006)

50. Barcus, A., Montibeller, G.: Supporting the allocation of software development
work in distributed teams with multi-criteria decision analysis. Omega 36(3), 464–
475 (2008)

51. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Team knowledge and
coordination in geographically distributed software development. J. Manag. Inf.
Syst. 24(1), 135–169 (2007)

52. Nidiffer, K.E., Dolan, D.: Evolving distributed project management. IEEE Softw.
22(5), 63–72 (2005). IEEE Press

53. Fagerholm, F., Oza, N., Munch, J.: A platform for teaching applied distributed
software development: the ongoing journey of the Helsinki software factory. In:
3rd International Workshop on Collaborative Teaching of Globally Distributed
Software Development (CTGDSD), pp. 1–5. IEEE Press (2013)

54. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects a comparative study
of students and professionals in lead-time impact assessment. Empirical Softw.
Eng. 5(3), 201–214 (2000)

55. Madeyski, L.: Test-Driven Development: An Empirical Evaluation of Agile Prac-
tice. Springer Science & Business Media, Heidelberg (2009)

56. Chao, J., Randles, M.: Agile software factory for student service learning. In: 22nd
Conference on Software Engineering Education and Training (CSEET), pp. 34–40.
IEEE Press (2009)

Verifying Atomicity Preservation and Deadlock
Freedom of a Generic Shared Variable
Mechanism Used in Model-To-Code

Transformations

Dan Zhang1, Dragan Bošnački1(B), Mark van den Brand1, Cornelis Huizing1,
Bart Jacobs2, Ruurd Kuiper1, and Anton Wijs1

1 Eindhoven University of Technology, Eindhoven, Netherlands
D.Bosnacki@tue.nl

2 KU Leuven, Leuven, Belgium

Abstract. A challenging aspect of model-to-code transformations is to
ensure that the semantic behavior of the input model is preserved in the
output code. When constructing concurrent systems, this is mainly diffi-
cult due to the non-deterministic potential interaction between threads.
In this paper, we consider this issue for a framework that implements a
transformation chain from models expressed in the state machine based
domain specific language SLCO to Java. In particular, we provide a fine-
grained generic mechanism to preserve atomicity of SLCO statements in
the Java implementation. We give its generic specification based on sepa-
ration logic and verify it using the verification tool VeriFast. The solution
can be regarded as a reusable module to safely implement atomic opera-
tions in concurrent systems. Moreover, we also prove with VeriFast that
our mechanism does not introduce deadlocks. The specification formally
ensures that the locks are not reentrant which simplifies the formal treat-
ment of the Java locks.

Keywords: Model transformation · Code generation · Concurrency ·
Atomicity · Formal verification · Separation logic · Deadlock freedom

1 Introduction

Model transformation is a powerful concept in model-driven software engineering
[15]. Starting with an initial model written in a domain specific language (DSL),
other artifacts such as additional models, source code and test scripts can be
produced via a chain of transformations. The initial model is typically written
at a conveniently high level of abstraction, allowing the user to reason about
complex system behavior in an intuitive way. The model transformations are

D. Zhang, D. Bošnački, R. Kuiper and A. Wijs—This work was done with financial
support from the China Scholarship Council (CSC) and ARTEMIS Joint Undertak-
ing project EMC2 (grant agreement 621429).

c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 249–273, 2017.
DOI: 10.1007/978-3-319-66302-9 13

250 D. Zhang et al.

supposed to preserve the correctness of the initial model, thereby realising a
framework where the generated artifacts are correct by construction. A question
that naturally arises for model-to-code transformations is how to guarantee that
functional properties of the input models are preserved in the generated code [21].
In particular, this requires semantic conformance between the model and the
generated code. For models in the area of safety-critical concurrent systems, the
main complication to guarantee this equivalence involves the potential of threads
to non-deterministically interact with each other.

Specifically, when variables are shared among multiple threads, the absence
of race conditions is crucial to guarantee that no undesired updates of those vari-
ables can be performed. This relates to the notion of atomicity of the instructions
executed by the threads. For instance, if two threads both increment the value
of a variable x by one, then only when each of those increments can be per-
formed atomically is it ensured that the final value of x equals the initial value
plus two. Achieving atomicity of program instructions can be done using various
techniques, such as locks, semaphores, mutexes, or CPU instructions such as
compare-and-swap.

Also in modeling languages, atomicity is an important concept, to simplify
the reasoning about program instructions by abstracting away the atomicity
implementation details. Hence, an important requirement for model-to-code
transformations is that the atomicity of the statements in the modeling language
is preserved in the code. A conceptual solution would be to map each statement
to an atomic block in the implementation language. Strictly speaking, a block
of instructions is atomic if during its execution no instruction of another thread
is allowed to be executed. However, such a definition is too strong for practical
purposes, since it excludes the possibility for threads to run truly concurrently
in cases when they access different variables, and therefore do not interfere with
each other. For this reason, it is usually replaced with weaker notions that still
ensure non-interference. One such version, sometimes called serializability [2],
allows instruction blocks to be executed concurrently as long as their individual
results are not affected by the other blocks.

In this paper, we demonstrate how one can establish that a model-to-code
transformation transforms atomic statements in modeling languages to blocks of
program instructions that are serializable. To illustrate this, we focus on a DSL
called Simple Language of Communicating Objects (SLCO) [7], on the one hand,
and the Java programming language on the other hand. It should be stressed,
though, that our approach is suitable for any combination of a modern imperative
programming language with concurrency and a modeling language that is, like
SLCO, based on state machines that can be placed in parallel composition, and
can change state by firing transitions with atomic statements (for instance, UML
state machines).

SLCO was originally introduced to model complex embedded concurrent
systems by means of state machines in combination with variables. A tech-
nique to verify SLCO-to-SLCO transformations has been proposed in [20,26–28].
In this paper we focus on the correctness of a fully automated model-to-code

Verifying Atomicity Preservation and Deadlock Freedom 251

transformation in which each SLCO state machine is transformed to an individ-
ual Java thread. In order to define the transformation in a modular way, and
thereby improving its maintainability, we divide it into two parts, one part trans-
forming SLCO concepts into generic code, and the other part transforming the
aspects that are specific for the particular input SLCO model into specific code.
The specific code may refer to the generic code to use the model-independent
concepts. An example of a generic SLCO concept is the communication channel,
while a particular state machine is an example of a concept specific for a given
SLCO model. This way of working provides a clear maintenance advantage, as
the implementations of generic concepts can be updated without affecting the
overall transformation machinery. Another benefit is that the generic code needs
to be verified only once. Each class of the generic code can be specified and
verified in isolation, allowing for modular verification.

In the past, we have outlined the approach described above in [29], in which
we have also identified the main challenges. As a first step towards having com-
pletely verified generic code, we focused on the SLCO communication channel,
and formally verified, using the VeriFast tool [12], that its semantics is captured
by the Java construct to which we transform it [4].

Contributions. First, we discuss how we have implemented, specified, and verified
a protection mechanism to access shared variables in such a way that the code
blocks implementing atomic DSL statements are guaranteed to be serializable.
This generic mechanism is used in our framework to automatically transform
SLCO models into multi-threaded Java code, but the solution is general enough
to be used in other model-to-code transformations as well.

The mechanism employs a fine-grained ordered-locking approach. A coarse-
grained approach tends to negatively impact the performance of multi-threaded
software, while a lock-free approach, in particular using atomic instructions such
as compare-and-swap, is necessarily restricted to work only for statements that
involve a single shared variable.

Second, we show the feasibility to verify the atomicity of generic statements
by focusing on the SLCO assignment statement. We formally prove its imple-
mentation against a specification of non-interference using the VeriFast tool [12].
Being based on separation logic [22], VeriFast is suitable to deal with aliasing
and concurrency in Java, as well as with race conditions using the concept of
ownership of shared resources between multi-threaded programs.

Third, we introduce a wrapper class pattern to perform modular verification.
With the wrapper class, it is possible to encapsulate data structures that are used
in the code, but are not subjected to verification (for instance, because they have
already been verified at an earlier stage possibly using a different tool).

This paper is an extended version of previous work [30]. In addition to the
three contributions mentioned above, we also discuss how we can automatically
prove that our mechanism to ensure the atomicity of statements does not intro-
duce, what we call, lock-deadlocks. A lock-deadlock occurs when each thread
in a set S is blocked trying to acquire a lock which is held by another thread
in S. Since the methods involved in the mechanism are the only ones which

252 D. Zhang et al.

manipulate locks, the mechanism being free of lock-deadlocks implies that our
model-to-code transformation always produces programs that are lock-deadlock
free. In our previous work in [30] this was informally ensured by the assumption
that the locks are always acquired in a certain fixed order. Using the implemen-
tation in VeriFast [13] of several modular verification techniques [13,17], we are
able to formally specify this requirement in the contracts of the relevant methods
and to verify in a modular fashion that deadlocks are not introduced.

As an added value, we prove that in our generated programs there is no
need for reentrant locks. This allows us to simplify the formal specification of
the locks used in our mechanism. In [30], our verification already relied on this
observation, but the current specification formally ensures adherence to it.

The remainder of the paper is structured as follows. In Sect. 2 we briefly
explain SLCO, the model transformation from SLCO to Java, and the essentials
of separation logic and VeriFast. Section 3 describes the implementation of atom-
icity of SLCO statements in Java, as well as the implementation of the generic
wrapper class. In Sect. 4, we demonstrate how to specify and verify the Java
implementation with regard to the atomicity property. Section 5 contains the
specification and verification of the deadlock and reentrance avoidance. Related
work is discussed in Sect. 6, and Sect. 7 contains our conclusions and a discussion
about future work.

2 Preliminaries

2.1 SLCO

In SLCO, systems consisting of concurrent, communication components can be
described using an intuitive graphical syntax. Objects, as instances of classes,
can communicate via channels, over which they send and receive signals. Objects
are connected to channels via their ports. Each object consists of a number of
finite state machines and shared variables. The state machines in an object
can use private, local variables, and communicate with each other via the shared
variables in the object. Each transition of a state machine may have an associated
SLCO statement.1 SLCO offers five types of atomic statements: SendSignal,
ReceiveSignal, (Boolean) Expression, Assignment, and Delay.

State machines, like the ones in Fig. 1, are used to specify object behavior.
Each transition has a source and target state, and the statement associated
with a transition is executed when the transition is fired. Parallel execution of
transitions is formalized in the form of interleaving semantics. A transition is
enabled if the statement is enabled or there is no statement associated with the
transition. For communication between objects, there are statements for sending
and receiving signals. The statement send T(s) to InOut, for instance, sends
a signal named T with a single argument s via port InOut. Its counterpart

1 There is an extended version of SLCO allowing multiple statements per transition.
In this paper, we consider the basic language, since extended SLCO models can be
translated to basic SLCO models [7].

Verifying Atomicity Preservation and Deadlock Freedom 253

Fig. 1. Behaviour diagram of an SLCO model.

receive T(s) from InOut receives a signal named T from port InOut and
stores the value of the argument in variable s. Statements such as receive Q(m |
m >= 0) from In2 offer a form of conditional signal reception. In this example,
only those signals are accepted whose argument is at least equal to 0. Boolean
expressions, such as m=6, denote statements that block until the expression
holds. Assignment statements, such as m := m + 1, are always enabled, and
are used to assign values to variables. Finally, time is incorporated in SLCO by
means of delay statements. For example, the statement after 5 ms blocks until
5 ms have passed since the moment the source state was entered.

As already mentioned, variables can be shared by multiple state machines. In
Fig. 1, the three state machines in the left rectangle are part of the same object,
and m is shared by them: assigning a value to m in the second state machine
may affect the truth-value of the expression in the third. Statements of types
Expression, Assignment, ReceiveSignal and SendSignal can all refer to variables
shared by multiple state machines.

2.2 Model Transformation

Recently, we developed an automated model-to-code transformation from SLCO
models to multi-threaded Java programs.2 The transformation consists of mul-
tiple steps. Here we focus on the last step that transforms SLCO models to
Java code. The preceding steps are transformations from SLCO models to more
refined SLCO models using Xtend.3 These steps are used to deal with potential
semantic and platform differences.

After this problem has been resolved, the last step from SLCO to Java is
applied, which is implemented in the Epsilon Generation Language (EGL) [16]
based on Eclipse. The output is defined by means of templates that are used

2 The files can be obtained from http://www.mdsetechnology.org/attachments/
article/3/LockingUnlockingSpec.zip.

3 http://www.eclipse.org/xtend.

http://www.mdsetechnology.org/attachments/article/3/LockingUnlockingSpec.zip
http://www.mdsetechnology.org/attachments/article/3/LockingUnlockingSpec.zip
http://www.eclipse.org/xtend

254 D. Zhang et al.

by the generator to produce the Java code. The generator applies transforma-
tion rules, defined in the template, to all the meta model objects which results in
generation of the corresponding Java code. This Java code is constructed by com-
bining specific code implementing the behavior of the input model with generic
code implementing model-independent SLCO concepts. Examples of such con-
cepts are the communication channel, the various types of statements, and a list
datatype to store the shared variables owned by an object. The transformation
achieves a one-to-one mapping between the state machines in an SLCO model
and the threads in the derived program. Finally, the specific code is combined
with the generic code to obtain complete, executable code that should behave as
the SLCO model specifies. In order to guarantee that important properties of the
input model are preserved, the transformation needs to be verified. In this paper,
we focus on verifying that the atomic nature of SLCO statements is preserved
when they are transformed to blocks of Java instructions. The main complica-
tion when verifying this lies in the fact that the statements may access shared
variables, and hence can potentially interfere with each other when executed
concurrently. We use separation logic to specify the code blocks.

2.3 Separation Logic

Separation logic [18,22] is an extension of Hoare logic [19] that supports reason-
ing about shared memory which can be referenced from more than one location.
Therefore, separation logic is used to describe the heap – a mapping from object
IDs and object fields to values, where a value is an object or a constant. The
basic heap expressions are emp, the empty heap, satisfied by states having a
heap with no entries, and E �→ F (read as “E points to F”), a singleton heap,
satisfied by a state with a heap consisting of only one entry on address E with
content F . For instance, o.f �→ v means that field f of object o has value v.
To represent complex heaps (e.g., dynamic data structures) the logical operator
‘∗’, called separation conjunction is used. Expression P*Q asserts that the heap
contains disjoint parts such that P holds in one part and Q holds in the other.
So, unlike its counterpart o.f �→ v ∧ o.f �→ v, the expression o.f �→ v ∗ o.f �→ v
evaluates to false because the two heap components are not disjoint. In a con-
current setting, this is used to detect data races, i.e., a simultaneous access to
the same memory objects by two different threads.

In addition to the standard rules of the Hoare framework, separation logic has
the frame rule. It allows to extend the specification of a program segment C with
assertion R. The axiom requires that no free variable in R is modified by C :

{P} C {Q}
{P ∗ R} C {Q ∗ R} (frame)

Separation logic uses the principle of a minimal memory footprint, meaning
that a separation assertion describes a unique heap. For example, the assertion
o.f �→ a∗o.g �→ b describes a heap consisting of exactly two entries. This property
together with the requirement that the heaps of two separate threads are disjoint,

Verifying Atomicity Preservation and Deadlock Freedom 255

makes it possible to give a natural ownership interpretation of a shared resource.
If a separation logic assertion P holds at some program location on a thread, we
say that the thread owns the part of the heap described by P at that location.

The portions of the heap associated with each thread are always mutually
disjoint. When a thread acquires a shared object, it claims the ownership of the
state associated with the variable; when releasing the variable, it must return the
ownership of the corresponding piece of state. At all stages, our use of separation
logic ensures that each piece of the heap is accessed by at most one thread. It
thus becomes possible to reason about concurrent programs in which ownership
of a shared variable can be perceived to transfer dynamically between threads.
We achieve this dynamic transfer by associating invariants to locks of shared
objects. The invariant representing the environment of the thread expresses the
ownership of the shared variable.

By acquiring a lock, the verified program component also acquires the lock
invariant representing the heap that corresponds to the shared variables. The
invariant carries a full permission to change the actual shared variables. By
releasing the lock, the component releases, together with the invariant, also the
acquired ownerships. This is expressed by the following rules for the lock and
unlock operations

{emp} v.lock() {Iv(l)} (L)

{Iv(l)} v.unlock() {emp} (UL)

where Iv(l) is the invariant associated with lock l of variable v.
To specify read-only sharing of variables, fractional ownerships (permissions)

are used. A fractional permission with fraction φ is denoted by [φ]o.f �→ v, where
0 < φ ≤ 1. When φ = 1, the fraction is omitted and we obtain the usual o.f �→ v.
This case expresses full ownership, allowing both read and write access.

2.4 VeriFast

The VeriFast tool is a program verifier for sequential and concurrent C and
Java programs. Programs are annotated with assertions written as separa-
tion logic formulae. The verifier can check for NULLPointerException or
ArrayIndexOutOfBoundsException. For concurrent programs, it checks that
the program does not contain data races (memory safety). When the verifi-
cation succeeds and it reports no error, the assertions and method contracts
(preconditions and postconditions) are respected in every program execution.
In the verification, VeriFast executes method bodies symbolically. The symbolic
execution of a triple {P} C {Q} starts in the symbolic state corresponding to
the precondition P. If the triple is correct, each finite execution should eventually
reach a symbolic state implying Q.

3 Implementing SLCO Atomicity

In this section, we give the formal definition of atomicity of SLCO state-
ments as well as a semantically comparable form of non-interference called

256 D. Zhang et al.

serializability [2] for the Java blocks implementing those statements. Further-
more, to facilitate the transformation of SLCO statements to Java code, specif-
ically to handle accessing shared variables, we introduce the generic data struc-
ture SharedVariableList.

In our model-to-code transformation, each SLCO statement s in a state
machine M is transformed into a block of Java instructions σ = s0; s1; . . . ; sn
to be executed by a thread tM . Strictly speaking, preserving atomicity of s in σ
means that no instruction s′ of some thread t �= tM is allowed to be executed
between the beginning and end of the execution of σ.

However, implementing atomicity in this strict sense is undesirable when
constructing multi-threaded software, since it disallows true parallelism. That
is why we replace this strong atomicity requirement with serializability. Serial-
izability guarantees that for any concurrent execution of (atomic) Java blocks
there exists a sequential execution of those blocks that is indistinguishable from
the concurrent execution, in terms of the final effect on the global system state.
More explicitly, let σ and σ′ be two different instruction blocks to be executed
by different threads tM , t′M . Let q0 be a global state in the Java model in which
both σ and σ′ can start a concurrent execution and let q1 be a state in which the
system ends up after the execution of both σ and σ′. Then, q1 also is obtained
after sequential execution of the sequence σσ′ or σ′σ (or both). Hence, we may
reason about their execution as if σ was first completely executed before σ′ was
started, or vice versa. (Note that this also covers the case when σ may prevent
the execution of σ′ or vice versa.) The extension of the concept of serializability
to an arbitrary number of instruction blocks σi is straightforward.

The state of a system is determined by the values of its variables. In SLCO,
statements may access variables shared by multiple state machines (see Sect. 2)
(with respect to atomicity, accessing a channel is similar to accessing a shared
variable). Therefore, in the corresponding Java code, multiple threads may access
the same shared variables. In order to realize serializability in such a setting,
it must be ensured that an instruction s′ of some thread t cannot affect the
variables accessed by the instructions in a block σ of thread tM �= t running
concurrently.

The way in which shared variables are protected has a significant impact on
the overall performance of concurrent programs. For example, using one single
global lock to protect a list frequently accessed by several threads is likely to
scale much worse than when each element in that list is individually lockable.

SLCO statements may require access to just a subset of the shared variables
of an object. Therefore, each element in the list of shared variables is assigned its
own lock for read and write access. This gives a better performance than using a
single lock for the complete list. In this way we achieve serializability, as shown
in Sect. 4.2.

Individual locking may introduce deadlocks. We use the technique of ordered
locking [11] to prevent them. The ordered locking mechanism guarantees that
when multiple threads compete over a set of variables, one thread is always able

Verifying Atomicity Preservation and Deadlock Freedom 257

to acquire access to all of them. Of course, other threads requiring access to
different shared variables are able to access these concurrently.

Note that the locks can be released in an arbitrary order. Obviously there is
no deadlock during the releasing since at least one method - namely, unlockV is
active. After the locks are released we again have the situation in which multiple
threads compete for the locks in fixed order.

Our synchronization mechanism for shared variables is shown in Listing 1.1.
The SharedVariableList, as a wrapper class, is introduced to abstract away
how the list of shared variables is implemented. It can be used to encapsulate
Java data structures. The methods lockV and unlockV are used to acquire and
release each lock of the shared variables in the list.

Listing 1.1. Class Statement.

1 public abstract class Statement {
2 protected SharedVariableList variablesList;
3 ...
4 public void lockV() {
5 for (int i = 0; i < variablesList.size(); i++) {
6 variablesList.get(i).lock.lock();
7 }
8 }
9 public void unlockV () {

10 for (int i = 0; i < variablesList.size(); i++) {
11 variablesList.get(i).lock.unlock();
12 }
13 }
14 }

The class Assignment as a subclass of class Statement (Listing 1.2) contains
a method called lockAndAssign that can be used to safely assign a new value to
a shared variable. The abstract method assign is implemented in the subclass
which is related to a concrete SLCO assignment. When a thread attempts to exe-
cute the method assign, it will be delayed until all locks in the variablesList
of variables to be accessed by the assign method are not being used anymore
by other threads.

Listing 1.2. Class Assignment.

1 public abstract class Assignment extends Statement {
2 ...
3 public abstract void assign();
4 public void lockAndAssign () {
5 lockV();
6 assign();
7 unlockV ();
8 }
9 }

As already mentioned, to store shared variables, we use a wrapper class
SharedVariableList. Listing 1.3 shows its declaration. The concept of wrapper
classes is quite common in object-oriented programming and is a pattern in
object-oriented development. The wrapper class is used to hide information of
concrete Java data structures, which allows modular verification. Parts of the
code that use SharedVariableList can be verified without involving the data
structure; in fact, it may not even have been implemented yet. This helps to scale

258 D. Zhang et al.

verification to larger programs, since the wrapper class needs to be analyzed
only once, instead of once per call. Finally, modifying the implementation of the
data structure encapsulated by the wrapper class never breaks correctness of its
callers. This allows for simultaneous development and verification of code.

Listing 1.3. Declaration of class SharedVariableList.

1 final class SharedVariableList{
2 public SharedVariableList ();
3 public int size();
4 public SharedVariable get(int index);
5 boolean add(SharedVariable e);
6 }

4 Specifying and Verifying SLCO Atomicity

In the previous section, we explained how the atomicity of SLCO statements
can be implemented using serializability. We can use separation logic in VeriFast
to verify the serializability, i.e., the fact that there is non-interference between
different threads.

The interpretation of correctness depends crucially on rules L and UL for
the lock and unlock operations from Sect. 2.3. In our case in rules L and UL
invariant Iv(l) is of the form v �→ , i.e., expresses ownership of the variable v.
By rule L, Iv(l) is guaranteed to hold after lock, i.e., in the beginning of the
protected code block. This means that the corresponding thread acquires the
ownership of v. Similarly, at the end of the block, after unlock, the ownership of
v is released and the invariant Iv(l) is no longer guaranteed to hold. Let V be the
list of shared variables associated with the statement implemented in the block.
By executing lock for each variable in V , using a combination of the L and UL
rules and the frame rule from Sect. 2.3, an assertion IV is established which is the
conjunction of the invariants Iv(l), for all v ∈ V . IV can be seen as an invariant
of the list V which expresses ownership of all variables in V by the thread. The
concrete setting of our model transformation ensures that no shared variable in
V is acquired or released within the protected code block. This is achieved by
simply not using lock and unlock within the protected block, since these are
the only statements with which one can acquire or release ownership. Together
with the fact that invariant IV holds at the beginning and at the end of the
block, this implies non-interference since all variables are held exclusively by the
thread during the execution of the block.

VeriFast supports modular verification in the sense that each method is
verified separately. In this, each method relies on its environment to comply
with the invariant. This is checked during the verification when several threads
are combined. In the following sections, we specify and verify the atomicity of
Java constructs corresponding with SLCO statements using separation logic via
VeriFast.

In VeriFast, for each verified Java source file (.java) there is a corre-
sponding specification file (.javaspec). The .java file contains implementations,

Verifying Atomicity Preservation and Deadlock Freedom 259

specifications, annotations, and predicates, while the .javaspec file contains only
declarations of predicates and specifications of methods with a semicolon instead
of a method body. A .javaspec file can be used to verify client programs even
without having the corresponding .java file that contains the definitions and the
implementations mentioned in the .javaspec file. Thus, the client programs are
users of the .javaspec files. For example, we only need to provide a pure (i.e.,
containing no implementations) specification file SharedVariableList.javaspec to
VeriFast in order to verify the Statement class.

4.1 Class SharedVariableList Specification

Class SharedVariableList is specified in separation logic in a way that is
in fact independent of the Java programming language. In Listing 1.4, the
class SharedVariableList provides methods for modifying and querying its
instances, such as size, add and get.

Listing 1.4. Specification of class SharedVariableList.

1 final class SharedVariableList{
2 /*@ predicate List(list <SharedVariable > elements); @*/
3 public SharedVariableList ();
4 //@ requires true;
5 //@ ensures List(nil);
6 public int size();
7 //@ requires [?f]List(?es);
8 //@ ensures [f]List(es) &*& result == length(es);
9 public SharedVariable get(int index);

10 //@ requires [?f]List(?es) &*& 0 <= index &*& index < length(es);
11 //@ ensures [f]List(es) &*& result == nth(index , es);
12 boolean add(SharedVariable e);
13 //@ requires List(?es);
14 //@ ensures List(append(es, cons(e, nil))) &*& result;
15 }

The VeriFast specific text, e.g., specifications and declarations of auxiliary
variables introduced only for verification purposes, is located inside special com-
ments delimited by @.

We express the state of the sharedVariableList instances using a math-
ematical list predefined in VeriFast as follows: The empty list is denoted by
nil and a nonempty list starting by an element h and a tail t is denoted by
cons(h,t). In particular, predicate List is an abstract predicate that provides
an abstract representation of the contents of the list of shared variables. More
concretely, parameter elements is a mathematical list containing the actual
program variables that are stored in the list. The actual implementation can
be, for instance, a dynamic list or an array. Using the abstract predicate we can
hide such implementation details during the verification. Note that List remains
undefined in this specification stage. Its definition can be provided later together
with the implementation of SharedVariableList.

The pre- and postconditions form the contracts of the methods and are
denoted by the keywords requires and ensures, respectively, like in lines 4–5 in
Listing 1.4. This contract of the constructor guarantees that an object is created
corresponding to an empty list, regardless of the precondition.

260 D. Zhang et al.

The specification of size in lines 7 and 8 states that the method returns
the length of the list. Component assertions of pre- and postconditions are sep-
arated by the spatial conjunction denoted by &*&. Both [?f] and [f] are frac-
tional ownerships. The question mark ? in front of a variable means that the
matched value is bound to the variable and all later occurrences of that variable
in the contract refer to this matched value. In our case the value of the frac-
tional permission f in the precondition in line 7 must be the same as the one
in the postcondition in line 8. Hence, the precondition in line 7 [?f]List(?es)
expresses both that a fractional ownership with fraction f is required for the
shared variable list corresponding with the mathematical list es, and records f
and es. The postcondition specifies that the method returns the ownership of
es to the caller with the same fraction f and the result that is returned by size
is the length of es. result is a reserved variable name representing the return
value of the method.

The precondition of get (line 10) requires that a valid element index is
provided as an input parameter. The postcondition expresses that the element
at position index in list es is returned using the mathematical function nth.

Unlike for other methods, the precondition of add (line 13) requires full
ownership of the list es. As a result, the caller who owns es is allowed to insert
an element into the list. Finally the method add returns the ownership of a
new list that combines the list es with the newly inserted element e using the
function append.

4.2 Class Statement Specification

The specification of class Statement is shown in Listing 1.5. The predicate con-
structor lock inv in line 2 is essential for the preservation of serializability. It
defines the lock invariant Iv(l) associated with the lock of a variable v passed as
a parameter. The assertion v.value |-> asserts the full ownership of v.value.
The underscore ‘ ’ denotes an arbitrary value.

The recursive predicates locks and invariants in lines 3–4 and 5–6, respec-
tively, are used to specify data structures without static bound on their size. The
body of each predicate is a conditional assertion. If vs is null (the base case of
the induction) then the value of predicate locks is true (line 4); otherwise, the
inductive step asserts that the lock of the first element of the list vs, head(vs) is
partially owned. This is given by return []head(vs).lock |-> ?lock, where
[] denotes an unspecified fraction. Besides that, invariant lock inv(head(vs))
is associated with the lock of the first element, via the predicate ReentrantLock.
Predicate ReentrantLock is defined by VeriFast as a specification of the
ReentrantLock class. In a similar fashion, the recursive predicate invariants
states that a conjunction of invariants corresponding to the (locks of the) vari-
ables in list vs is recursively built. As mentioned above, for each variable the
corresponding invariant is given by the specification lock inv(head(vs)).

Predicate Statement lock() is actually defined in Listing 1.6 and denotes
that the Statement object is in a valid state corresponding to an abstract value
given by the mathematical object list of shared variable objects vs. The body

Verifying Atomicity Preservation and Deadlock Freedom 261

of method lockV needs to establish the above mentioned invariant IV of each
variable in list vs, which is expressed by the postcondition invariants(vs).
The postcondition invariants(vs) is also one part of the precondition in the
method unlockV. By calling the method unlockV, invariant Iv of each variable in
list vs is not guaranteed to hold anymore. After that, other threads can acquire
the ownership of those variables through the method lockV.

Listing 1.5. Abstract Specifications of Class Statement.

1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = v.value |-> _;
3 predicate locks(list <SharedVariable > vs;) =
4 vs == nil ? true : [_]head(vs).lock |-> ?lock &*& [_]lock.

ReentrantLock(lock_inv(head(vs))) &*& locks(tail(vs));
5 predicate invariants(list <SharedVariable > vs;) =
6 vs == nil ? true : lock_inv(head(vs))() &*& invariants(tail(vs));
7 @*/
8 class Statement {
9 //@ predicate Statement_lock(list <SharedVariable > vs);

10 void lockV();
11 //@ requires [_]Statement_lock (?vs);
12 //@ ensures invariants(vs);
13 void unlockV ();
14 //@ requires [_]Statement_lock (?vs) &*& invariants(vs);
15 //@ ensures true;
16 }

4.3 Class Statement Verification

Above we gave the formal specification of the class Statement in an abstract,
mathematically precise and implementation-independent way. The specification
of SharedVariableList is a critical factor to verify the implementation of class
Statement. Additional predicates and annotations are also needed to verify the
implementation of class Statement, as shown in Listing 1.6.

Listing 1.6. Verification annotations for class Statement.

1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = ...
3 predicate locks(list <SharedVariable > vs;) = ...
4 predicate invariants(list <SharedVariable > vs;) = ...
5 @*/
6 class Statement {
7 SharedVariableList variablesList;
8 //@ predicate Statement_lock(list <SharedVariable > vs) = this.

variablesList |-> ?a &*& a.List(vs) &*& locks(vs);
9 void lockV()

10 //@ requires [_]Statement_lock (?vs);
11 //@ ensures invariants(vs);
12 {
13 for (int i = 0; i < variablesList.size(); i++)
14 //@ requires [_]variablesList |-> ?b &*& [_]b.List(vs) &*& [_]locks(

drop(i,vs)) &*& i >= 0 &*& i <= length(vs);
15 //@ ensures invariants(drop(old_i , vs));
16 {
17 //@ drop_n_plus_one(i,vs);
18 variablesList.get(i).lock.lock();
19 }
20 }
21 void unlockV ()

262 D. Zhang et al.

22 //@ requires [_]Statement_lock (?vs) &*& invariants(vs);
23 //@ ensures true;
24 {
25 for (int i = 0; i < variablesList.size(); i++)
26 //@ requires [_]variablesList |-> ?b &*& [_]b.List(vs) &*& [_]locks(

drop(i,vs)) &*& invariants(drop(i,vs)) &*& i >= 0 &*& i <= length
(vs);

27 //@ ensures true;
28 {
29 //@ drop_n_plus_one(i,vs);
30 variablesList.get(i).lock.unlock();
31 }
32 }
33 }

The part in lines 1–5 in Listing 1.6 is identical to lines 1–7 in the spec-
ification Listing 1.5. Line 8 in Listing 1.6 contains the definition of pred-
icate Statement lock which in Listing 1.5 was only specified. The part
this.variablesList |-> ?a states that field variableList is defined. The
last two conjuncts a.List(vs) &*& locks(vs) relate variableList with the
mathematical variable vs of type list and moreover the variables in vs are
connected to their corresponding locks. The contract of method lockV in lines
10–11 is the same as the one in Listing 1.5.

In line 13 we use a for loop to obtain the lock of each element in the
SharedVariableList. Besides loop invariants, VeriFast supports also loop verifi-
cation by specifying a loop contract consisting of a precondition and a postcondi-
tion [24]. Then the loop is verified as if it were written using a local recursive func-
tion. The contract specifies the permissions used only by a specific recursive call
(i.e., corresponding to a specific value of the loop counter i). The precondition
in line 14 matches variablesList with variable b ([]variablesList |-> ?b),
relates b to vs ([]b.List(vs)), associates the variables from the i-th to the
vs.length-1-th in list vs ([]locks(drop(i,vs))) to their locks, and finally
limits the range of the counter i(i >= 0 &*& i <= length(vs)). The segment
vs from i to vs.length-1 is obtained using the built-in function on lists drop.
In a similar way in the postcondition in line 15, the list tail starting with old i
is obtained as an argument of the predicate invariants. Variable old i refers
to the value of the variable i at the start of the virtual function call (loop body).
After the top virtual recursive call backtracks, i.e., after the loop termination,
old i equals 0. This implies the validity of the conjunction of all lock invariants
and consequently the ownership of all variables in vs.

Lemma functions are used to help VeriFast transform one assertion to
another. The contract of a lemma function corresponds to a theorem, its body
to the proof, and a call to an application of the theorem. Lemma function
drop n plus one(i,vs) in line 17 tells the verifier that drop(n,vs) is equivalent
to the concatenation of the element nth(vs) with the list drop(n+1,vs).

The detailed annotation of unlockV (lines 21–32) uses the same concepts as
the annotation of lockV, therefore we do not discuss the former explicitly. It
expresses that in each iteration the loop invariant shrinks instead of growing
with the addition of a new conjunct, i.e., invariant associated to a lock.

Verifying Atomicity Preservation and Deadlock Freedom 263

The specification and annotation in the current section is sufficient to prove
that predicate invariants, which corresponds to IV , holds at the beginning
and at the end of the block implementing the statements. In Listing 1.2 this
means that invariants holds immediately after lockV in line 5 and immediately
before the unlockV in line 7. The validity of invariants ensures ownership
of the variables in sharedVariables. As discussed above, by construction of
our transformation (i.e., by not using lock and unlock within the protected
block of the statement translation) we ensure that the block does not release
this ownership. For example, in Listing 1.2 methods assign in line 6, as well
as the implementations of all other types of SLCO statements, satisfies this
property. VeriFast is able to verify that all relevant variables are held by the
thread executing the method corresponding to the implementation of the SLCO
statement. This implies serializability of the programs as can be seen from the
following arguments.

Consider two instruction blocks σ and σ′ which both implement an SLCO
statement. Hence, they both contain a lock protected code block. We show that
they are serializable. Let V and V ′ be the set of variables accessed by σ and
σ′, respectively. Consider first the case when V ∩ V ′ �= ∅. Suppose that σ first
acquires the ownership of all variables in V . Then σ′ must wait until those
variables are released. If there is some prefix σ′′ of σ′ which has been executed
before σ acquired the variables in V , then σ′ could have modified only variables
which are not in V . So, this prefix could have been executed after σ terminated
and therefore the sequence σσ′ will produce the same variable changes, i.e., the
same state as the concurrent execution of σ and σ′.

A similar argument can be used for the case V ∩ V ′ = ∅. In this case the
individual statements in σ and σ′ are independent of one another and can be
permuted in an arbitrary order. The set of possible sequences includes both σσ′

and σ′σ and they confluently lead to the same end state.

5 Specifying and Verifying Lock-Deadlock Freedom

In this section, we show how in addition to specifying and verifying atomicity
preservation, we can also verify that programs generated by our model-to-code
transformation are guaranteed to be free of lock-deadlocks. We first discuss the
theory behind the approach and after that we present the concrete specification
and verification in VeriFast.

5.1 Lock-Deadlock Freedom for Generated Code

Code generation from models should preserve deadlock freedom: if the model is
deadlock free, the generated code should be deadlock free. This places demands
on the generic code and on the translation.

Here, we consider an important category of deadlocks: lock-deadlock - a set
of threads is lock-deadlocked if all threads in the set are blocked because they
try to acquire locks that are already acquired by some thread in the set [13,17].

264 D. Zhang et al.

In the spirit of model-driven development we treat lock-deadlock freedom as
a property to be ensured by the code generation rather than having to establish
this for each specific instance of generated code.

A well-established way to obtain lock-deadlock freedom is putting an ordering
on acquiring locks. To achieve lock ordering at the level of code generation we
put requirements on the order of acquiring locks by means of the specification
of the lock, the lock API. This specification is such that any code (generated
or obtained otherwise) that satisfies the precondition of the lock method of this
API is lock-deadlock free. (Note that here the approach is SLCO independent
and not Java specific.) We show how these requirements are met by the generic
code and the way it is used in the translation from SLCO to Java.

Conditions for Lock-Deadlock Freedom. Let the locks be ordered by an
anti-reflexive partial order <. In the API specification of the lock, the aux-
iliary variable lockset(T) represents the locks acquired by thread T , which is
maintained by the methods lock() and unlock(). The following assumption is a
cornerstone of the lock-deadlock avoidance approach:

Assumption 1 (Lock Acquire Precondition). The precondition of method
lock of lock lck which is to be acquired implies that lck < l for any l in lockset(T),
where T is the current thread.

Theorem 1 (Lock-deadlock Freedom). Code adhering to the precondition
of method lock as in Assumption 1 is lock-deadlock free.

Proof. Suppose, by contradiction, that we have a lock-deadlock. Then there is
a set S of threads that are all waiting for each other. I.e., every thread in S is
waiting for a lock that has already been acquired by a thread in S. Call this
set of acquired locks L. We now construct a cycle in the order, which gives the
contradiction.

Suppose lock l1 in L is tried, by a call to lock(), by thread T1, which has
lockset LS1. LS1 is the set of locks acquired by T1. By the definition of S, there
has to be a lock L2 in LS1 that is in L. Then the precondition of lock() requires
that l1 < l2. Since l2 is in L, there is a thread T2 waiting for l2. By repeating
this argument we get an infinite chain l1 < l2 < Since all locks li are in L
and L is finite, there has to be a repetition in the chain: li < · · · < li So we have
a cycle in <, which is in contradiction with the fact that < is an anti-reflexive
partial order. ��

Lock-Deadlock Freedom for Java Code Generated from SLCO Models.
We show that code as generated from SLCO specifications adheres to the pre-
condition of method lock as in Assumption 1 and hence is, by Theorem1, lock-
deadlock free.

Verifying Atomicity Preservation and Deadlock Freedom 265

Lemma 1. If the precondition of lockV of class Statement in Listing 1.8 is sat-
isfied, the generic code adheres to the precondition of method lock as in Assump-
tion 1.

Proof (sketch). The only place where lock is called in the generic code is in the
method lockV. There lock methods are called in the designated order (since
the precondition implies the correct ordering of variables/locks) and hence the
locks will be acquired in the same correct descending order. The only possible
problem is the first lock to be acquired, if it is greater than some of the locks
in lockset(T). Therefore, the precondition of lockV additionally requires that all
locks that are acquired by lockV are below all locks in lockV. (Actually, in our
translator we enforce a stronger condition that lockset(T) is empty when lockV
is called.) ��

The proof sketch above has been carried on formally below using VeriFast
(Subsect. 5.2).

Lemma 2. The generated code adheres to the specification of class Statement.

Proof. Inspecting the translator shows that the methods of instance s of class
Statement are called only in the template method lockAndAssign as shown in
Listing 1.2. We give a pseudo-formal annotation, where V is the set of locks that
correspond to the variables of s.

{lockset(T) == ∅}
lockV();

{lockset(T) == V }
assign();

{lockset(T) == V }
unlockV();

{lockset(T) == ∅}
Method assign is implemented in the translation according to the specific

assignment statement in the SLCO model. Inspecting the translator shows that
it will not call lock, hence keeping the lockset invariant. To satisfy the above
annotation it is needed that the precondition of assign is implied by the postcon-
dition of lockV, and that the postcondition of assign implies the precondition
of unlockV, which can be shown straightforwardly by inspecting the code of the
translator. ��

Lemmas 1 and 2 and Theorem 1 imply lock-deadlock freedom immediately.

5.2 Formal Specification and Verification of Lock-Deadlock
Freedom in VeriFast

To implement the theoretical considerations from the previous section we use
the feature of VeriFast that ensures lock-deadlock freedom based on ordered lock

266 D. Zhang et al.

acquisition [13]. To this end we first need to adapt VeriFast’s lock specification
for C to Java.

Class ReentrantLock Specification. To simplify the specification we rely
on the fact that the locks in our mechanism are never reacquired, i.e., a thread
already holding a lock never attempts to acquire it again. Later, we prove that
the VeriFast specification is free of deadlocks, which formally guarantees absence
of lock reentrance. The specification of the class ReentrantLock is given in
Listing 1.7.

Listing 1.7. Abstract Specifications of Class Statement to Avoid Deadlock.

1 //@ predicate lockset(int threadId , list <ReentrantLock > lockIds);
2 public class ReentrantLock {
3 //@ predicate ReentrantLock(predicate () inv);
4 //@ predicate ReentrantLocked(predicate () inv , int threadId , real frac)

;
5 public ReentrantLock ()
6 //@ requires create_lock_ghost_args(?inv , ?ls, ?us) &*& inv() &*&

lock_all_below_all(ls, us) == true;
7 //@ ensures [_]ReentrantLock(inv) &*& lock_above_all(this , ls) == true

&*& lock_below_all(this , us) == true;
8

9 public void lock();
10 //@ requires [?f]ReentrantLock (?inv) &*& lockset(currentThread , ?locks)

&*& lock_below_top(this , locks) == true;
11 //@ ensures ReentrantLocked(inv , currentThread , f) &*& inv() &*&

lockset(currentThread , cons(this , locks));
12

13 public void unlock();
14 //@ requires ReentrantLocked (?inv , currentThread , ?f) &*& inv() &*&

lockset(currentThread , ?locks);
15 //@ ensures [f]ReentrantLock(inv) &*& lockset(currentThread , remove(

this , locks));
16 }

The abstract predicate lockset in line 1 is defined by the client that uses the
specification. It states that the ReentrantLock list lockIds contains the locks
held by thread threadId. The abstract predicate ReentrantLock associates the
invariant inv with the lock. Predicate ReentrantLocked denotes that the lock is
associated with invariant inv and it is held (owned) by threadId with fraction f.

The contract of the constructor ReentrantLock associates the created lock
with its invariant inv and places the lock in the partial ordering above the locks
in set ls and below the locks in set us. Ghost variables inv, ls, and us are
created in the precondition. A precondition for the lock creation is that inv
holds and also that the lower and upper limit of the lock are consistent, i.e., that
the locks in ls are all below all locks in us.

The precondition of method lock expresses the decreasing order of lock acqui-
sition, i.e., the requirement that the lock needs to be below all locks currently
held by the thread. Note that if the lock is reacquired, it is already held by the
current thread, i.e., included in locks, therefore an error will be signaled by
VeriFast. Hence, the specification also implies absence of reentrance. Predicate
ReentrantLock in the precondition expresses the fact that the lock is available
with fraction f. The postcondition states that the lock is owned (locked) with

Verifying Atomicity Preservation and Deadlock Freedom 267

fraction f, that the associated invariant holds at this point and that the lock is
added to the lockset held by the current thread.

The specification of unlock is a mirror image of the contract of lock in
the sense that basically the postcondition of postcondition of the former is a
precondition of the latter and vice versa.

Class Statement Specification. The updated specification of class Statement
is shown in Listing 1.8. Predicates lock inv in line 2 and invariants in lines
5–6 are the same as in Listing 1.5. The recursive predicate locks in lines 3–4
has an output parameter called ll that is a ReentrantLock list associated with
the SharedVariable list vs. The body of locks is a conditional assertion. If vs
is null then ll is null (line 4) too; otherwise, the inductive step asserts that
the lock of the first element of the list vs, head(vs) is added at the head of ll
denoted by ll == cons(lock, ll0). Besides that, lock above all is a fixpoint
function defined by VeriFast to ensure the level of lock is above the level of each
element in list ll0 which is the tail of ll. In a similar fashion, the recursive pred-
icate locked in lines 7–8 states that invariant lock inv(head(vs)) is associated
with the lock of the first element, via the predicate ReentrantLocked. Predicate
ReentrantLocked also states that thread t is the current thread holding the
lock of the first element. The semicolon (;) in the parameter list of predicate
locked is used to declare locked as precise, which enables VeriFast’s logic for
automatically opening and closing this predicate.

The lemma function extend upper bound at top in lines 9–14 states that if
the lock list ys is an upper bound of list xs, i.e., the level of each lock in list
xs is below the level of each lock in list ys, and the level of lock x is above
the level of locks in list xs, then we can add x at the top of ys and the new
list cons(x,ys) will remain an upper bound of xs. The lemma auto function is
another type of lemma which can be implicitly called by VeriFast. locks inv()
in lines 15–20 instructs VeriFast to always replace the chunk [?f]locks(?vs,
?ls) with [f]locks(vs, ls) &*& vs != nil || ls == nil. (The lemma is
proved by opening the predicate locks explicitly.)

Predicate Statement lock() in line 23 is similar to the one defined in List-
ing 1.5 but has two parameters in its parameter list. The list of ReentrantLock
objects ll is used to extract the list of locks associated with shared variable
objects vs.

The precondition of lockV, given in line 25, plays a crucial role in Lemma1.
The predicate lockset states that the list levelList is a list of locks acquired
so far by the current thread. Predicate lock all below all requires that levels
of the locks to be acquired in list ll are below levels of the locks in levelList,
i.e., the locks acquired so far by the current thread.

The postcondition of method lockV implies the correctness of the annotation
in Lemma 2. It asserts that all variables in vs are locked by the current thread
and that consequently each element in list ll is added to the list levelList. Ver-
iFast requires that the order of lock acquisition in list levelList is descending.
However, the order of locks in list ll is ascending, which is defined during the

268 D. Zhang et al.

SLCO-to-Java transformation. Therefore, the order of elements in list ll should
be reversed before appending the list ll to the list levelList. This is expressed
by the predicate lockset(currentThread,append(reverse(ll),levelList))
in line 26. Actually our transformation ensures that the list of acquired locks
levelList is always empty at the precondition in line 25. So, the requirement
that all locks in ll are below all locks in levelList is trivially satisfied.

The postcondition lockset(currentThread,?levelList) and invariants
(vs) of the method lockV are also part of the precondition in the method unlockV.
By calling the method unlockV, invariant Iv of each variable in list vs is not guar-
anteed to hold anymore and all locks in ll are also removed from the list levelList
as expressed by remove all(ll,levelList).

Listing 1.8. Abstract Specifications of Class Statement to Avoid Deadlock.

1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = v.value |-> _;
3 predicate locks(list <SharedVariable > vs; list <ReentrantLock > ll) =
4 vs == nil ? ll == nil : [_]head(vs).lock |-> ?lock &*& [_]lock.

ReentrantLock(lock_inv(head(vs))) &*& locks(tail(vs), ?ll0) &*&
ll == cons(lock ,ll0) &*& lock_above_all(lock ,ll0) == true;

5 predicate invariants(list <SharedVariable > vs;) =
6 vs == nil ? true : lock_inv(head(vs))() &*& invariants(tail(vs));
7 predicate locked(list <SharedVariable > vs, int t;) =
8 vs == nil ? true : [_]head(vs).lock |-> ?lock &*& lock.

ReentrantLocked(lock_inv(head(vs)), t, _) &*& locked(tail(vs),t);
9 lemma void extend_upper_bound_at_top(ReentrantLock x, list <ReentrantLock >

xs, list <ReentrantLock > ys)
10 requires lock_all_below_all(xs, ys) == true &*& lock_above_all(x,xs)==

true;
11 ensures lock_all_below_all(xs, cons(x, ys)) == true;
12 {
13 switch (xs) { case nil: case cons(h, t): extend_upper_bound_at_top(x,

t, ys); }
14 }
15 lemma_auto void locks_inv ()
16 requires [?f]locks(?vs, ?ls);
17 ensures [f]locks(vs, ls) &*& vs != nil || ls == nil;
18 {
19 open locks(vs, ls);
20 }
21 @*/
22 class Statement {
23 //@ predicate Statement_lock(list <SharedVariable > vs, list <

ReentrantLock > ll);
24 void lockV();
25 //@ requires [_]Statement_lock (?vs ,?ll) &*& lockset(currentThread ,?

levelList) &*& lock_all_below_all(ll,levelsList) == true;
26 //@ ensures invariants(vs) &*& lockset(currentThread ,append(reverse(ll)

,levelList)) &*& locked(vs,currentThread);
27

28 void unlockV ();
29 //@ requires [_]Statement_lock (?vs ,?ll) &*& invariants(vs) &*& lockset(

currentThread ,? levelList) &*& locked(vs,currentThread);
30 //@ ensures lockset(currentThread , remove_all(ll,levelList));
31 }

Verifying Atomicity Preservation and Deadlock Freedom 269

Class Statement Verification. Above we provide the formal specification of
the class Statement to avoid lock-deadlock in an abstract and modular way.
Here, we verify the implementation of this class, as shown in Listing 1.9.

The definition of predicates in lines 2–7 in Listing 1.9 can be found in List-
ing 1.8 in lines 2–20. Line 11 in Listing 1.9 shows the definition of predicate
Statement lock in line 23 in Listing 1.8. It states that the field variableList
of class Statement is defined (this.variablesList |-> ?a) and it is related
with the mathematical variable vs of type list (a.List(vs)). Moreover, the
variables in vs are connected to their corresponding locks which are stored in the
list ll (locks(vs, ll)). The precondition and postcondition of method lockV
in lines 13–14 are the same as the one in lines 15–26 in Listing 1.8.

Similar to the contract of the for loop for proving atomicity in Listing 1.6, we
introduce the level of locks associated with variablesList into the contract of
the for loop in Listing 1.9 to prove lock-deadlock freedom. In the precondition,
the conjunct []locks(drop(i,vs),?ll1) associates the variables in vs from
index i to vs.length-1 with their locks and stores them in the list ll1. In a
similar way in the postcondition in line 18, the list tail starting with old i is
obtained as an argument of the predicates invariants and locked. The pred-
icate invariants in the postcondition ensures the ownership of all variables
in vs. The predicate locked in the postcondition implies the validity of the
postcondition of each lock.lock() of all locks associated with vs. After the
execution of the for loop, levelList1 is updated by appending the lock list
ll1 to it. To ensure that the locks in list levelList1 are placed in descending
order, the order of list ll1 is reversed before appending it to the list levelList1
via reverse(ll1).

The switch statement in line 21 helps VeriFast to access the list levelList1
even if it is null. The lemma function extend upper bound at top in line 23
works as described in the specification above.

Another lemma function provided by VeriFast append assoc() states the
associative property of the append operator, which can append one list to
another.

Instead of using true as the postcondition of method unlockV for proving
the atomicity property, here we use the predicate lockset(currentThread,
remove all(ll1,levelList1)). It expresses that the locks of the vari-
ables in the list ll1 are removed from the list levelList1 after the exe-
cution of method unlockV. In each iteration of the for loop, the ele-
ment that is equal to the head of list ll1 is removed from levelList1.
The lemma function remove all head(ll1, levelList1) tells VeriFast
that remove all(ll1, levelList1) is equivalent to remove all(tail(ll1),
remove(head(ll1), levelList1)). The fixpoint function remove(head(ll1),
levelList1) removes the element that is equal to the head of ll1 from
levelList1 and remove all(ll1, levelList1) removes all elements that
occur in list ll1 from levelList1.

270 D. Zhang et al.

Listing 1.9. Verification annotations for class Statement to Avoid Deadlock.

1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = ...
3 predicate locks(list <SharedVariable > vs;) = ...
4 predicate invariants(list <SharedVariable > vs;) = ...
5 predicate locked(list <SharedVariable > vs, int t;) = ...
6 lemma void extend_upper_bound_at_top(ReentrantLock x, list <ReentrantLock >

xs, list <ReentrantLock > ys)...
7 lemma_auto void locks_inv ()...
8 @*/
9 class Statement {

10 SharedVariableList variablesList;
11 //@ predicate Statement_lock(list <SharedVariable > vs,list <ReentrantLock

> ll) = this.variablesList |-> ?a &*& a != null &*& a.List(vs) &*&
locks(vs,ll);

12 void lockV()
13 //@ requires [_]Statement_lock (?vs ,?ll) &*& lockset(currentThread ,?

levelsList) &*& lock_all_below_all(ll,levelsList) == true;
14 //@ ensures invariants(vs) &*& lockset(currentThread ,append(reverse(ll)

,levelsList)) &*& locked(vs,currentThread);
15 {
16 for (int i = 0; i < variablesList.size(); i++)
17 //@ requires [_]variablesList |-> ?b &*& [_]b.List(vs) &*& [_]locks(

drop(i,vs),?ll1) &*& i >= 0 &*& i <= length(vs)&*& lockset(
currentThread ,? levelsList1) &*& lock_all_below_all(ll1 ,
levelsList1) == true;

18 //@ ensures invariants(drop(old_i , vs)) &*& lockset(currentThread ,
append(reverse(ll1),levelsList1)) &*& locked(drop(old_i , vs),
currentThread);

19 {
20 //@ drop_n_plus_one(i,vs);
21 //@ switch (levelsList1) { case nil: case cons(h,t): }
22 //@open(locks(_,_));
23 // @extend_upper_bound_at_top(head(ll1), tail(ll1), levelsList1);
24 // @append_assoc(reverse(tail(ll1)), {head(ll1)}, levelsList1);
25 variablesList.get(i).lock.lock();
26 }
27 }
28

29 void unlockV ()
30 //@ requires [_]Statement_lock (?vs ,?ll) &*& invariants(vs) &*& lockset(

currentThread ,? levelList) &*& locked(vs,currentThread);
31 //@ ensures lockset(currentThread , remove_all(ll,levelList));
32 {
33 for (int i = 0; i < variablesList.size(); i++)
34 // @requires [_]variablesList |-> ?b &*& [_]b.List(vs) &*& [_]locks(

drop(i,vs),?ll1) &*& invariants(drop(i,vs)) &*& i >= 0 &*& i <=
length(vs) &*& lockset(currentThread ,? levelList1) &*& locked(drop
(i,vs),currentThread);

35 //@ ensures lockset(currentThread ,remove_all(ll1 ,levelList1));
36 {
37 //@ drop_n_plus_one(i,vs);
38 //@ open(locked(_,_));
39 //@ open(locks(_,_));
40 //@ remove_all_head(ll1 , levelList1);
41 variablesList.get(i).lock.unlock();
42 }
43 }
44 }

6 Related Work

The detection of race condition violations in concurrent code using the lock mech-
anism has been addressed by a number of type-based [9], static [1,8] and dynamic

Verifying Atomicity Preservation and Deadlock Freedom 271

analysis [6] tools. However, as shown in [10], a code block free of race conditions
may still contain errors caused by simultaneous access to shared objects. There-
fore, stronger concepts of non-interference are needed. In [10], a relaxed defini-
tion of atomicity was used and an atomic type system was implemented to check
it. The tool DoubleChecker [2] checks for serializability of concurrent programs
based on run-time information about the dependences between threads. The
above mentioned works check the correctness of programs a posteriori, i.e., after
they have been fully implemented. In contrast, our approach statically verifies
generic code to be used in the construction of complete programs.

There exists a substantial amount of work that deals with model-to-code
transformations. For an overview, see [21]. Here we focus on relevant work that
deals with model-to-code transformations and uses verification based on deduc-
tive methods, like theorem proving.

In [3], a formal verification using the Isabelle/HOL theorem prover is pre-
sented of a concrete algorithm that generates Java code from UML Statecharts.
It is shown that the source UML model and the generated Java code are bisim-
ilar. This is a one stage model transformation. In [23], a Java code generation
framework is presented. The framework is based on the transformation language
QVT. The theorem prover KIV is used to prove security properties and syntactic
correctness. In both these works, one of the major concerns is the scalability when
the transformations are applied on complex models. By splitting the transforma-
tion into producing generic and specific code, and verifying the generic concepts
in isolation, we aim to have a more scalable approach.

Finally, software model checking techniques, e.g., [5,14], offer a supporting
approach to verify code resulting from model-to-code transformations. These
techniques could in particular be useful to verify the generic code. Tools like Java
PathFinder [25] are natural candidates for this task. It remains to be investigated
how feasible it is to apply these techniques in a modular approach like ours.

7 Conclusions

We have presented an approach for the verification of atomicity preservation
in model-to-code transformations based on separation logic using the tool Veri-
Fast. We applied this approach in the transformation from the domain specific
language SLCO to Java.

To improve performance, we replaced the strong atomicity requirement of
SLCO with the semantically relaxed notion of serializability. This was imple-
mented by a fine-grained deadlock-free ordered locking mechanism allowing true
parallelism. We stated the serializability in terms of ownership of shared variables
expressed by means of lock invariants. Using VeriFast we verified non-interference
in the Java code.

A nice aspect of our approach is that we can also formally prove that our
mechanism does not introduce so-called lock-deadlocks caused by mutual block-
ing of threads waiting to acquire locks. We can do this in an automatic and
modular fashion using VeriFast. The same specification for showing absence of

272 D. Zhang et al.

lock-deadlocks allows us to prove that the locks are not reentrant. This simplifies
the specification and formal reasoning.

Future Work. Besides shared variables, SLCO also allows the use of channels
for communication. As a next step, we want to verify that programs generated by
our transformation using both locks and message-passing are free of deadlocks.
Another plan for future work is to address the verification of model-specific
code. This would allow us to conclude that our transformation is guaranteed to
produce correct code.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: static race detection
for java. ACM Trans. Program. Lang. Syst. 28(2), 207–255 (2006)

2. Biswas, S., Huang, J., Sengupta, A., Bond, M.D.: DoubleChecker: efficient sound
and precise atomicity checking. In: ACM SIGPLAN Notices, vol. 49, pp. 28–39.
ACM (2014)

3. Blech, J., Glesner, S., Leitner, J.: Formal verification of java code generation from
UML models. In: Fujaba Days, pp. 49–56 (2005)

4. Bošnački, D., Brand, M., Gabriels, J., Jacobs, B., Kuiper, R., Roede, S.,
Wijs, A., Zhang, D.: Towards modular verification of threaded concurrent
executable code generated from DSL models. In: Braga, C., Ölveczky, P.C. (eds.)
FACS 2015. LNCS, vol. 9539, pp. 141–160. Springer, Cham (2016). doi:10.1007/
978-3-319-28934-2 8

5. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. In: ICSE, pp. 385–395. IEEE (2003)

6. Choi, J.D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Effi-
cient and precise datarace detection for multithreaded object-oriented programs.
In: ACM SIGPLAN Notices, vol. 37, pp. 258–269. ACM (2002)

7. Engelen, L.: From Napkin sketches to reliable software. Ph.D. thesis, Eindhoven
University of Technology (2012)

8. Engler, D., Ashcraft, K.: RacerX: effective, static detection of race conditions and
deadlocks. In: ACM SIGOPS Operating Systems Review, vol. 37, pp. 237–252.
ACM (2003)

9. Farzan, A., Madhusudan, P.: Causal atomicity. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006). doi:10.
1007/11817963 30

10. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: ACM
SIGPLAN Notices, vol. 38, pp. 338–349. ACM (2003)

11. Havender, J.W.: Avoiding deadlock in multitasking systems. IBM Syst. J. 7(2),
74–84 (1968)

12. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 4

13. Jacobs, B., Bosnacki, D., Kuiper, R.: Modular termination verification: extended
version. Technical report, Department of Computer Science, KU Leuven (2015)

http://dx.doi.org/10.1007/978-3-319-28934-2_8
http://dx.doi.org/10.1007/978-3-319-28934-2_8
http://dx.doi.org/10.1007/11817963_30
http://dx.doi.org/10.1007/11817963_30
http://dx.doi.org/10.1007/978-3-642-20398-5_4

Verifying Atomicity Preservation and Deadlock Freedom 273

14. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
1–54 (2009)

15. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: the Model Driven Architecture:
Practice and Promise. Addison-Wesley Professional, Boston (2005)

16. Kolovos, D., Rose, L., Garca-Dominguez, A., Paige, R.: The Epsilon Book. Eclipse
(2011)

17. Leino, K.R.M., Müller, P., Smans, J.: Deadlock-free channels and locks. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 407–426. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-11957-6 22

18. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 1

19. Owicki, S., Gries, D.: Verifying properties of parallel programs: an axiomatic app-
roach. Commun. ACM 19(5), 279–285 (1976)

20. Putter, S., Wijs, A.: Verifying a verifier: on the formal correctness of an LTS
transformation verification technique. In: Stevens, P., W ↪asowski, A. (eds.) FASE
2016. LNCS, vol. 9633, pp. 383–400. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49665-7 23

21. Rahim, L., Whittle, J.: A survey of approaches for verifying model transformations.
Softw. Syst. Model. 14(2), 1003–1028 (2015)

22. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th Annual IEEE Symposium on Logic in Computer Science, pp. 55–74. IEEE
(2002)

23. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transforma-
tions for code generation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS
2011. LNCS, vol. 6981, pp. 533–547. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24485-8 39

24. Tuerk, T.: A formalisation of smallfoot in HOL. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 469–484.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 32

25. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

26. Wijs, A.: Define, verify, refine: correct composition and transformation of concur-
rent system semantics. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS,
vol. 8348, pp. 348–368. Springer, Cham (2014). doi:10.1007/978-3-319-07602-7 21

27. Wijs, A., Engelen, L.: Efficient property preservation checking of model refine-
ments. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
565–579. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 41

28. Wijs, A., Engelen, L.: REFINER: towards formal verification of model transfor-
mations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
258–263. Springer, Cham (2014). doi:10.1007/978-3-319-06200-6 21

29. Zhang, D., Bošnački, D., van den Brand, M., Engelen, L., Huizing, C., Kuiper, R.,
Wijs, A.: Towards verified java code generation from concurrent state machines. In:
AMT. CEUR Workshop Proceedings, vol. 1277, pp. 64–69. CEUR-WS.org (2014)

30. Zhang, D., Bošnački, D., van den Brand, M., Huizing, C., Jacobs, B., Kuiper, R.,
Wijs, A.: Verification of atomicity preservation in model-to-code transformations.
In: Fourth International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2016), pp. 578–588. SCITEPRESS (2016)

http://dx.doi.org/10.1007/978-3-642-11957-6_22
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/978-3-662-49665-7_23
http://dx.doi.org/10.1007/978-3-662-49665-7_23
http://dx.doi.org/10.1007/978-3-642-24485-8_39
http://dx.doi.org/10.1007/978-3-642-24485-8_39
http://dx.doi.org/10.1007/978-3-642-03359-9_32
http://dx.doi.org/10.1007/978-3-319-07602-7_21
http://dx.doi.org/10.1007/978-3-642-36742-7_41
http://dx.doi.org/10.1007/978-3-319-06200-6_21

Process Oriented Training with ADOxx:
A Model-Based Realisation in Learn PAd

Robert Woitsch(&), Nesat Efendioglu, and Damiano Falcioni

BOC Asset Management, Operngasse 20b, 1040 Vienna, Austria
{robert.woitsch,nesat.efendioglu,

damiano.falcioni}@boc-eu.com

Abstract. Process Oriented Training can be applied in two different approa-
ches: (a) processes describing the methodology of training and learning as well
as (b) processes describing the organizational context that need to be learned.
This paper introduces the results of the EU project Learn PAd that developed
prototypes of modelling tools enabling the latter - the usage of business pro-
cesses to describe the organizational context. Flexibility of business processes
have been introduced with case management and knowledge artefacts had been
integrated to provide a homogeneous modelling environment. The requirements
of such a modelling environment had been collected and implemented with the
meta-modelling platform ADOxx®. The meta-model approach has been used to
implement the modelling language as well as the mechanisms and the algo-
rithms. The architecture of the modeling tool is introduced and a use case
feedback is provided.

Keywords: Meta modelling � Modelling method development �
Process-Oriented learning

1 Introduction

This paper revisits the contents of [29] and extends it with findings of [6]. This paper
elaborates application scenarios for process-oriented training and learning, derives
relevant requirements for modelling languages and introduces how the Learn PAd
modelling method can be implemented with ADOxx® [2].

In [29] process oriented learning is introduced, which(1) compares the business
process with a curriculum, (2) exploit the so-called knowledge products within a
business process to define the required knowledge and (3) the knowledge sources to
identify the available knowledge. The end users are using the business processes and
the corresponding description for learning, whereas the responsible trainers manage the
training by appropriately configuring the business process models.

The EU project Learn PAd [19] applied this process-oriented training approach at
two governmental use cases, first at a University and second in a municipality.

The technological infrastructure is introduced and some guidelines for the change
towards process-oriented learning are highlighted.

This paper focus on the realisation of process oriented learning and training with
ADOxx®, by discussing application scenarios, modelling method requirements,

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 274–292, 2017.
DOI: 10.1007/978-3-319-66302-9_14

development tools, modelling features and their implementation and technical
deployment of realized prototype. Use case expertise is reflecting based on [6]. Public
results are introduced in form of proof of concept evaluation from the adoxx.org
community [2].

In Sect. 2 we present the identified scenarios on process oriented training. Section
3 introduces the meta-modelling approach as a realisation technique. In Sect. 4
implemented Learn PAd modelling method is introduced. Possible deployment
architecture is discussed in Sect. 5. Afterwards use case scenarios are briefly elaborated
in Sect. 6. Finally, outlook and conclusion is reflected in the last section.

2 Application Scenarios

In this section we shortly revisit the five application scenarios identified [30].

2.1 Individual Training

Individual training will support novices. The assessment of trainings enables much
better insights into training demands.

The education of new employees is time consuming, as new employee typically
lacks the organizational context. Hence, many questions or knowledge gaps are the
result of fundamentally missing baseline knowledge of the organization.

Individual training is supported by the definition of different learning goals for
different skill profiles, so that a learner can continuously improve their own skills
through executing the business process.

Learn PAd merges the training and working environments, so that changes to
business processes affect both the working environment for the daily tasks and the
corresponding training environment.

2.2 Organizational Evolution

This process-oriented approach can also be applied to the development of the whole
workforce within an organization.

In order to organizationally evolve the business process, learning goals need to
define which part of the business process is to be changed, and – by involving skill
profiles of team members – analyse how certain skill profiles are to be educated.

In addition to changes in the sequence of a particular process, knowledge of
existing business processes can also change. Here the situation is different to individual
training as users are very familiar with the process and usually claim that they know
exactly what to do. The challenge is therefore to increase sensibility to minor, but
important, changes.

Process Oriented Training with ADOxx 275

2.3 Business Process Support and Reflection

The use of business processes and their explanatory documents as learning objects
forces the public administration to critically reflect the current way of working and
enables the detection of error prone parts.

Learning goals are defined in order to support the performance and reflect on the
current business processes, which part needs to be improved.

An honest reflection on business process performance is usually very difficult as
employees ideally need to critically reflect on their daily business within a so-called
“failure-culture” in the organization – a culture that appreciates the identification of
failures instead of pseudo-blaming some responsible actors.

Performance analysis needs a guiding structure. Business processes are an ideal
candidate for such a structure as they enable a step-by-step analysis of daily operations
that must result in an efficient sequence of activities that achieve organizational goals.

2.4 Process Optimization and Improvement

Process optimization and improvements are closely linked to performance support and
reflection, which rely on the existing competencies of team members.

In order to support continuous improvement and optimization of a business process,
learning goals can be used to identify the organizational learning objectives and
identify the corresponding measures.

In this scenario, the team members use the learning platform as a communication
and collaboration portal. The intention is to use business process based collaborative
learning not only for the initial identification of improvements, but also to use those
improved processes when performing the aforementioned organizational learning
scenario.

2.5 Citizens Transparency

This use case is not a traditional training scenario but is an add-on use case with the aim
of addressing the citizen that interacts with the Public Administration.

Learning goals are defined in order to increase transparency for citizens, addressing
the misunderstandings reduction, incorrect submitted documents or increase
appreciation.

Under such special conditions, the collaborative process-oriented training platform
can be provided to citizens who interact with the administration.

Of course, the process will not be represented in detail, but on a higher abstraction
to only point out the relevant decisions for the citizens, as well as only including
high-level information.

276 R. Woitsch et al.

3 Realization Approach

3.1 Modelling Method Requirements

The five application scenarios on process-oriented training have been analysed using an
open requirement harvesting approach [7]. Modelling method relevant requirements
have been filtered, grouped and detailed to end up with the following high level list:

• Modelling Language requirements: (a) access rights on models, (b) filtered model
view to simplify the usage of the modelling tool, (c) questionnaire modelling,
(d) textual annotation of models to semantically lift the models (e) bar display to
have a better overview on used and created knowledge, (f) people-like view to
simplify the graphical representation for non-modelling experts and (g) realizing a
meta model that integrates the different relevant standards like BPMN, DMN,
CMMN and others.

• Mechanisms and Algorithms: (a) track changes to see enable collaborative mod-
elling, (b) process simulation to check consistency, (c) role based process skeleton
to identify role-specific tasks, (d) model validation check, (e) critical path analysis,
(f) model exchange with collaboration platform, (g) verification component and
(h) evaluation component using a dashboard.

In the following the realisation approach of aforementioned requirements is
introduced.

3.2 Conceptual Modelling as an Instrument

Conceptual models belong to the family of linguistic models that use an available set of
pre-defined descriptions to create a model, and enrich the pure textual models (such as
mathematical formula) with diagrammatic notations [9].

Hence, targeting aforementioned process-oriented training scenarios with concep-
tual models, means that pre-defined diagrammatic concepts are available that have a
specific meaning enabling to reconstruct relevant parts of the reality with these

Fig. 1. Modeling method framework based on [11].

Process Oriented Training with ADOxx 277

concepts in order to either (1) specify, (2) support execution, (3) represent knowledge
or (4) evaluate the different dimensions of process-oriented training. The generic
framework introduced in Fig. 1 enables the specification of conceptual models.

The framework identifies three building blocks: (1) the modelling language that is
most prominently associated with conceptual models, as available concepts to be used
for such models are pre-defined according their semantic, their syntax and their
graphical notation, (2) the modelling procedure defines the stepwise usage of the
modelling language and hence is not always available, this means there are modelling
languages that have not a pre-defined way of usage but leave the modeller freedom in the
sequence of modelling, (3) mechanisms and algorithms enable the computer-based
processing of models and hence provide an IT support for the aforementioned modelling
scenarios – specification, execution support, knowledge representation and evaluation.

3.3 Meta Models as Realization Approach

Meta modelling is introduced as a realization approach to develop domain-specific
modelling tools and hence enable IT-supported concept modelling [11]. Based on [12,
15, 24] Fig. 2 introduces the different layers.

Relevant parts of the real world – in our case the process oriented training – are
seen as layer 0. Relevant concepts are provided in form of a modelling language and
the corresponding mechanisms and algorithms to enable the creation of a model on
layer 1. The modelling language is understood as the meta model, as it is a model of the
concepts available for the model. This meta model is for example defined in a meta
model language like ALL [2]. The specification of the meta model can again be defined
by a model – the so called meta model or as a synonym meta2model.

ADOxx® provides a meta2model to simplify the development of modelling tools by
using the provided meta2model elements. Furthermore ADOxx® provides also an
abstract meta model, which defines the context and functional behaviour of concepts,
which can be used to inherit the own concepts.

The challenge is now to find the most appropriate abstract meta model classes to
realise the modelling approach that covers aforementioned process-oriented training
requirements.

Fig. 2. Meta model layers.

278 R. Woitsch et al.

3.4 Realization Technology with ADOxx®

This section introduces the development platform adoxx.org [2]. It is therefore seen as
a short overview on how to implement an individual modelling solution for
process-oriented training. Due to space restriction a brief overview is provided with the
intension to raise the interest for detailed reading in the tutorial sections of adoxx.org.

The modelling tool is realized by configuring the meta modelling platform with a
so-called application library. The model type is a package of modelling classes,
enabling the separation of concerns within the meta model. Modelling classes are
concepts of the meta model that are instantiated by the user while modelling. Each class
is defined by its attributes, which are instantiated with attribute values during mod-
elling. The user interface and interaction with the model concepts, are defined in the
so-called notebooks class attribute “AttrRep”. In the class attribute Graphical repre-
sentation (GraphRep), the graphical notation –with other words, the concrete syntax- of
the class is defined. The semantic of a model class is defined by the inheritance from
the pre-defined meta model.

3.4.1 Relevant Technology for Modelling Languages
The context, semantic as well as the functional behaviour of modelling classes are
realised by inheriting the most appropriate pre-defined meta model class, and adapting
the missing structural, semantical or functional elements. In the following the two
ADOxx abstract meta models are discussed. First, the dynamic meta model realizes a
directed graph and hence provides start, activity, decision, parallelism, merging, and
graph-end. Additional to these elements with operational graph-based semantic, there
are two classes with container semantic the aggregation and the swim lane that auto-
matically groups elements that are inside. Beside these two groups of classes there are
some additional objects.

The static meta model realizes an organizational structure with persons and
resources. Similar to the above mentioned containers there are aggregations and swim
lanes. A new meta model is developed, when inheriting from the pre-defined classes. In
case graph-based algorithms are used, the concepts are inherited from the dynamic
meta model. In case a tree-based algorithm is used the classes are inherited from the
static meta model. In case no corresponding class is found an own class hierarchy must
be implemented.

3.4.2 Relevant Technology for Mechanisms and Algorithms
In order to upgrade a simple model editor to a full fletched modelling tool, the pre-
viously defined modelling language is enriched with corresponding mechanisms and
algorithms. Generic functionality is provided for (a) modelling, (b) query, (c) trans-
formation and (d) simulation. Some features need no configuration like querying a
model or running a path analysis, whereas some functionality needs domain specific
configurations like the transformation of a model into another format.

Basic components and their configurations can be extended by a script language
called AdoScript that provide more than 400 APIs in form of message ports for:
(i) acquisition, (ii) modelling, (iii) analysis, (iv) simulation, (v) evaluation, (vi) im-
port/export, (vii) documentation and (viii) query. Ports for user interfaces are

Process Oriented Training with ADOxx 279

(i) AdoScript language, (ii) Core user interface and the (iii) Explorer, whereas APIs for
manipulating the models are (i) the Core – the actual model representation, (ii) the data
base and (iii) the user management. Finally the application API of the modelling tool is
provided in form of (i) drawing and (ii) application. This set of APIs provides the
functionality that can be implemented either within the modelling tool, or via APIs that
are accessed from third party components.

In third party components interact, there are three concepts available: (1) file based
communication that triggers the export in a specific format (e.g. XML), (2) batch mode,
where an AdoScript is invoked from outside the application or (3) via a
Web/REST-Service that enables the invocation of all AdoScript APIs. In this way also
SOAP messages can be exchanged and the modelling tool can be integrated into a
collaborative learning platform.

4 The Learn PAd Modelling Method

The Learn PAd modelling method applies business process management for process
oriented learning, hence the core concepts focuses on business process management.
As Learn PAd uses the business processes for learning aspects, the idea is to use also
the model-based approach for learning related modelling and identify applicable
relations between the business processes that represent the object under observation as
well as the learning models that describe the Learn PAd approach.

Business processes and learning models are both representatives of concept models
hence have a tight relationship with semantics. Therefore, the integration of so-called
modelling utilities such as ontologies or more human oriented knowledge acquisition
tools, seems appropriate.

This results in a hybrid modelling approach; combining (a) business process
related, (b) learning management related and (c) so-called modelling utilities together.

Figure 3 depicts current high level conceptual architecture on the Learn PAd
modelling method, indicating the conceptual environment of the Learn Pad modelling
method.

Fig. 3. High level building block of learn PAd modelling method.

280 R. Woitsch et al.

Business Process Related Modelling: The major aspect in business process-oriented
learning is the appropriate representation of a business process within the public
administration. Beside the typical standard approach in using BPMN 2.0 for covering
the business process management, Learn PAd additionally requires to specify relevant
knowledge and skill profiles. In particular the business goals, strategies and business
motivations, the organizational structure, the document and knowledge models are seen
as the context of the business process model in Learn PAd.

In order to enable collaboration mechanisms for models on the Wiki platform, the
corresponding concepts for such collaborative concepts need additionally to be
reflected in the business process modelling language.

As Learn PAd deals with differently structure business process, ranging from well
structure processes – that are typically covered in BPMN-like notations – but also
weakly structured processes – that may be covered in Case Management Model
Notation CMMN – there is the necessity to cover hybrid modelling within Learn PAd.

This conceptual concern is the basis of the Learn PAd modelling method.
Learning Related Modelling: deals with the specification of learning goals, defi-

nition of the learning content and the teaching path in presenting the content in the ideal
way for each individual learner. Typical aspects are learning goal, curricula, skill
profiles, teaching content and the packaging towards a learning management platform.
Current state of research is to continuously asses the learning progress and hence
combines the teaching path with assessment models that specify the goals that need to
be achieved and also the assessment method.

Depending on the level of detail, the learning management will be performed using
the ECAAD (Evidence Centred Design Methodology) [20, 21] method. Conceptual
linkage is foreseen, so that Learn PAd business processes are seen as content packages
of the ECAAD method, as well as different business processes models correspond to
different phases of the learning process in ECAAD.

Modelling Utilities are modelling concepts that may or may not be used and hence
can be flexibly added to the meta model. Current identified aspects are ontologies for
semantically lifted log mining or questionnaires models for a model-driven develop-
ment of tests.

Although those modelling utilities are not mandatory, the Learn PAd modelling
method foresees as possible interaction, such as using the so-called “semantic lifting”
approach to integrate ontologies, or to investigate a “graph rewriting” to export and
transform relevant parts of the business process to questionnaire models.

Understanding the Learn PAd modelling method within its conceptual environ-
ment, it is now possible to distinguish between concepts that must be included into the
Learn PAd modelling method (e.g. such as BPMN, CMMN, Roles and knowledge),
concepts that are may be included as nice to have (e.g. such as business motivation,
Key Performance Indicators, or skill profiles) and concepts that are not appropriate to
be put into the Learn PAd modelling method (e.g. learning goals, learning assessment
indicators, questionnaires).

Figure 4 introduces the conceptual Learn PAd Meta Model that introduces the high
level concepts (a) process in both forms – procedural and case based processes, (b) or-
ganisation that are responsible in performing the processes, (c) the competency and
required knowledge map appropriate organisations to processes, as well we as finally

Process Oriented Training with ADOxx 281

(d) the motivation and goals that guide the performance of processes and well as the
corresponding measurement.

The next section introduces some selected parts of the method conceptualization in
more detail.

4.1 Modelling Language

The modelling language has been developed following the meta model based approach
and is described in detail in D3.2 [18].

The core domain is the business process model (using BPMN [22]) and the flexible
case management (using CMMN [23]), which is linked to the business processes. Both
are performed by workers, who are described in the organizational (structure) model. In
order to perform skill-management, there is also a competence models, which details
the traditional work place description of the organizational model.

Document and knowledge models provide the organizational knowledge in order to
perform and execute the business processes and the cases.

In order to enable continues improvement, the business motivation model describes
goals, intensions and rules, whereas the KPI (Key Performance Indicator) model,
collects and aggregates measures and construct measurable indicators to assess the
evolution of the learning organization.

Some other model types like the process map or the knowledge system model are
introduced. Those model types do not carry own domain information but mainly act as
a navigation support to navigate between the different aforementioned models.

A sub-set of BPMN 2.0 has been realized in Learn PAd focusing on those aspects
which are relevant for human – learning – interaction, and leave out – technical –
aspects, which are not relevant.

Although all concepts are specified in the BPMN 2.0 standard, its realization
including abstract classes as well as references to other model types (– so called model
type weaving.

Fig. 4. The learn PAd meta model.

282 R. Woitsch et al.

More information on the BPMN realization is provided on the Learn PAd devel-
opment space at ADOxx.org [1], as well as in [18].

The use of flexible case management, hence the description and collection of
different cases introduces not only a flexibility into the business processes but also
enables collaboration in form of discussions, recommendations and lessons learned in
exceptional cases.

Due to the absence of appropriate standards that describe the organizational
structure, Learn PAd used the meta model from the first and most successful com-
munity business process management tool ADONIS® Community Edition.

Organizational units describe the different departments, sections or the enterprises,
hence define organizational boundaries. The roles describe the ideal representation of
competences, whereas the performer describes the current workplace holder and hence
describes the actual competences.

The Document and Knowledge Model type specification, that is interesting for
learning and/or knowledge management models, traditionally, is a document pool, that
lists all documents that are needed – either as input, as a resulting output, as a guidance
or as a support document – when executing a business process. This traditional view is
highly important in quality management scenarios or in keeping the business process
documentation clear and simple.

In the context of learning, we enriched this model type with elements from the
PROMOTE® modelling language [26]. A language that was first implemented in 2000
in a research project [25] and now founds its way into teaching and industrial projects.

Knowledge resources are described in three forms: (a) the document as an atomic
knowledge carrier with a unique identifier, (b) the knowledge source that is – often a
very large – container of documents, which collects, manages and encapsulates the big
amount of documents like databases, document management systems or file directories,
as well as (c) the knowledge resource, which represents not only complicated but also
complex knowledge carries such as humans, or communities.

The difference between knowledge source and knowledge resource is that a
knowledge source provided predictable results, hence a formal correct query into a
database or file repository, will result in a predicable list of documents. Knowledge
resource in contract, represent the complex knowledge resources and hence do not
provide predictable results. The assessment of the opinion of an “expert community”,
the forming of a “committee” or the “impressions of an exhibition” may be valuable
knowledge resources but in contract to a document by far not predictable. Hence those
artefacts can be described in the knowledge resource.

When realizing a knowledge management or learning environment, the pure
knowledge carrier like documents, sources or resources are often not relevant, but the
so-called knowledge products. The knowledge product is a successful artefact that
enables the consumption of knowledge in the similar way, like the consumption of any
other non-physical good [27, 28].

It is based on implicit and explicit knowledge, hence can be distinguished in
(a) information products that realize the internalization, (b) the service, that realizes the
socialization and finally (c) the application that realizes the combination of external
knowledge. For completeness reasons it is stated that (d) the externalization is not
considered as it is a knowledge production and not a knowledge consumption.

Process Oriented Training with ADOxx 283

Hence, typically a business process consumes knowledge products that are pre-
pared for the use. Information products are mainly provided as documents, services as
“responsible” colleagues and applications as “IT-resources” to be used.

As we consider the knowledge product as the essential carrier of knowledge and
hence the essential artefact for learning, which is important to be observed, supported
and measured, the consortium decided to include the knowledge product into the
document and knowledge model type although this seems not obvious from a business
process management point of view.

In that form, knowledge products can be integrated into the business processes and
into cases, their responsibilities can be defined in the organizational structure and their
quality and evolution can be measured with key performance indicators.

The full specification of the modelling can be downloaded in form of D3.2 [18]
from the Learn PAd webpage. Additional material and specification on aforementioned
modelling language implementation can be downloaded from the Learn PAd devel-
opment space of ADOxx.org [1].

4.2 Mechanisms and Algorithms

Mechanisms and algorithms implement the model value by processing the models and
by introducing features for modelling. Here, some relevant features are introduced.

4.2.1 People Oriented View
Business process models belong to the family of concept models, hence they consist of
a graphical representation of concepts, which are often unintuitive to agents from
public administration or to citizens. In order to ease the interpretation of business
processes, so-called people oriented view has been introduced that enables the switch
form a business process in the traditional graphical notation to a new graphical nota-
tion, where icons graphically describe the nature of the activity. Hence, instead of “blue
boxes”, an iconic representation of the action is provided, as shown in Fig. 5.

Fig. 5. Standard and people-like View of a business process.

284 R. Woitsch et al.

This is achieved, by a so-called semantic lifting of each concept, hence the relation
of a model object with an ontological description. A list of explanatory graphical icons
is also annotated to the same ontological description. Hence, when switching into the
people-like view, the images that are annotated with the model object are included in
the new graphical description.

Current set of graphical description is based on the artefact types in the BPMN 2.0
specification. As the approach is open, other graphics can be included.

A detailed instruction of this feature is described in the Learn PAd development
space in ADOxx.org.

4.2.2 Semantic Lifting of Business Processes
Semantic lifting is a form of a loose coupled model weaving, where concepts of a
business process – e.g. tasks – are semantically lifted. This semantic lift is implemented
by annotating the BPMN objects with an ontological concept [10].

There are different forms of semantic lifting, hence three cases that explain the
different nature of semantic lifting are explained.

First, the direct lifting within the model is a simple copy/paste of the ontology URI
into a generic or specially adapted attribute of the business process object. In this form,
no changes in the modelling languages are necessary, but the usability is low and error
prone is high.

The import ontological concept into the modelling tool and the selection of the
semantic concepts within one modelling tool – e.g. via the former introduced pointer
concept the so-called INTERREF – has the benefit that all concepts are safely managed
in one repository and in one tool. As concept modelling and semantic have differences
in the tool handling, it is likely that the ontology is maintained in the separate tool,
which raises redundancies, requires replications and raises challenges in maintaining
objects in the concept model repository. Therefore, this approach is not applicable if the
ontology changes, but is required to stay stable.

The third approach is the invocation of an ontology management system out of the
modelling environment. Hence, each model object of a business process, can access an
interface of an ontology management system and can select one of the concepts, which
are then stored in form of the URI in a special annotation attribute.

Finally, it has to be mentioned that there are many combinations of the introduced
approaches, where the second and third approaches are combined to realize also
complex scenarios and use the second approach as a pre-selection of stable part and the
third approach for the identification of the concrete concept.

A discussion on the different implementations in more detail as well as the nec-
essary development tools can be downloaded from the Learn PAd development space
form ADOxx.org.

4.2.3 Business Processes in Collaboration Portals
The graphical representations of business processes is used to simplify the introduction
of the business process tasks and link the corresponding description and attached
document to the graphical representation. Although this form of process documentation
is widely known and applied, the use within collaboration portals raises new challenges.

Process Oriented Training with ADOxx 285

The simple export of graphical representations and model information is typically
performed via Web-enabled APIs. In the ADOxx® case in form of Web-Services that
deliver the (a) table of content, (b) model image, (c) model information and (d) model
image map to enable click-able interaction in the Browser.

While user interface technology improves – e.g. Ext JS – the interaction possi-
bilities improve. Former file based interaction, or static Web-API approaches are now
exchanged by the attempt to continuously interact with a WIKI portal or realize
Widgets that run within different Web-user interfaces.

Traditional Web-Service interaction and creation of WIKI pages can be down-
loaded from the Learn Pad development space from the ADOxx.org community. The
mentioned Widget interaction is currently under development.

4.2.4 Business Process Verification
Business process design is an error prone process. The domain expert acting as modeler
of the BP can easily introduce logical errors especially on complex and high collab-
orative business processes, which can results in failures at the execution time.

Verifying some quality properties over a Business Process in a formal and rigorous
way is the safer way to avoid such kind of situations [5, 8].

The Learn PAd platform integrates a Formal Verification component in order to
provide such kind of functionality. This component interact with the Learn PAd
Modeling environment prototype through the Learn PAd platform in order to verify
some properties like soundness or critical path existence, and visualize the results on
the model.

The Fig. 6 is an example of the resulting of such interaction. In this case, deadlock
presence is checked on a Business Process model and the found trace that lead to
deadlock is shown on the model. Deadlock verification is only one of the supported
properties that can be verified. For a complete list, please refer to the Deliverable 4.1 of
the Learn PAd project.

The full support of this interaction scenario is under development. More details are
available on the Learn Pad development space from the ADOxx.org community.

Fig. 6. Deadlock trace highlight on business process.

286 R. Woitsch et al.

5 Process Oriented Learning Deployment

Process oriented Training and Learning has in principle two main categories with
different technical realization:

• Process Oriented Training and Learning, where the process describes the training
and learning method.

• Process Oriented Training and Learning, where the process describes the organi-
zational content.

The technical realization in the first case can be realized by a process oriented
training and learning methodology like ECAAD, (Evidence Centred Design Method-
ology) [20, 21] whereas the training and learning environment are Learn Management
Systems like Moodle or Blackboard [3].

The technical realization of the second case can be realized by using business
process modelling method like the extended BPMN 2.0 as developed in Learn PAd but
then faces the challenge to be integrated into an existing legacy application.

Learn PAd dealt with the latter case and hence had to challenge the installation of
this organizational learning-add on into existing legacy infrastructure.

5.1 High Level Reference Architecture

Learn PAd indicates functional capabilities for process oriented training and learning in
organization, based on the knowledge management high level reference architecture.

Figure 7 indicates the major building blocks from the reference architecture:
(1) Knowledge, Learning and Business Process Context that considers the complex and
heterogeneous operative legacy systems of the end users organization, (2) Collabora-
tive Business Process and Knowledge Based Learning that enables a process-oriented
learning from knowledge workers, (3) Business Process and Knowledge Based
Learning Modelling enables the definition of learning processes that are then realized in

Fig. 7. Tools and applications for process-oriented learning.

Process Oriented Training with ADOxx 287

the aforementioned execution environment, and finally (4) Business Process Learning
and Knowledge Assessment introduces monitoring and dashboard functionality to
identify improvements opportunities.

In the following the four building blocks are described:

– “Knowledge, Learning and Business Process Context”: is a collection of relevant
legacy applications that are necessary to execute the business process. In order to
enable the seamless implementation of process oriented learning within an orga-
nization, the available IT infrastructure has to be considered as it is, and the process
oriented learning framework has three choices to interact with the existing
applications.
First integration is a loose link from the learning system to the legacy applications.
This is most likely the first choice, ideally if the legacy application is a
Web-application. Hence, this will be a Hyperlink to the Web-interface of the legacy
application
Second integration is via an implemented API. This will be used if valuable learning
or feedback information is required from the concrete legacy application. In the case
where a social enterprise tool, enterprise wikis or similar are already in place, it may
be worth implementing an interface. (e.g. KPI container).
Third integration are learning system components that are added to the IT infras-
tructure, hence the integration is given by the use of the learning system.
Pragmatically, a Wiki environment that describes how to access the legacy systems
and providing the necessary links is the most appropriate way to start with a process
oriented learning system.

– “Collaborative Business Process and Knowledge Based Learning”: is a collabora-
tive platform that is specially configured to support business processes. Traditional
business process descriptions that are exported in collaborative Web-platforms are
enriched with learning functionalities, such as stepping through a process, starting
simulations, commenting on documents and knowledge as well as assessing
learning progress.
Business processes can be trained by the user either in a manual or automatic way.
The manual way is performed by stepping through a business process, reading the
documents and discussing with colleagues whether the decision that would have
been taken is the correct one. Automatic training of a business process is understood
as simulation, whereby the process is triggered and the trainees have to commit their
decisions into the system. Collaborative Business Process and Knowledge Based
Learning workspace provides all functional capabilities for a user-friendly entry
point into the process documentation, the manual stepper and the automatic sim-
ulation. Business processes are presented graphically, the corresponding docu-
ments, the required skill level and the capability to provide feedback and comments
in form of an intuitive Wiki are provided in the form of a collaborative environment.
Process Simulation for Learning is used by the knowledge worker in order to learn
how the process has to be executed. Depending on different skill levels the process
is simulated in a form that the knowledge worker performs each step with the
correlated content. Hence the process is not executed directly but simulated with the
aim to derive findings from recorded clicks and links. Focus is the end users

288 R. Woitsch et al.

interaction with the platform and with the process so that the user learns to perform
the process in practice.

– “Business Process and Knowledge Based Learning Modelling”: is used by trainers
to design business process models for public administration. Typical conceptual and
semantic modelling will be applied to define relevant conceptual artefacts that are
processed for management and improvement. Modelling covers typical capabilities
like (1) graphical visualization of models, (2) query and analysis features of models,
(3) simulations of graphs as well as (4) transformation into different input and
output formats. Depending on the platform and usage scenario the aforementioned
generic modelling feature are differently grouped or detailed. Collaboration and
Feedback transforms the previously made “Wiki-like” collaboration functionality
into the modelling tool. Hence track changes, ratings or comments may be con-
sidered in this group.

– “Business Process Learning & Knowledge Assessment”: is used by experts and
trainers to analyses the use of the business processes and assess which part of the
process is well supported and trained and which needs adjustments. A dashboard
displays key performance indicators that enable the assessment of the maturity,
skills and training levels of the process and its end users. It is seen as a cockpit for
the trainer that represents KPIs for learning and knowledge maturity in a Scorecard
like presentation.

The aforementioned grouping of high-level functional building blocks describes the
major components, which can be added into an existing working infrastructure and the
organization’s site.

5.2 Modelling Tool Deployment

This section introduces the business process and knowledge based learning modelling
tool, which can be downloaded in form of the first prototypes at the development space
of ADOxx.org, or can be tested in the online version at advisor.boc-group.eu.

There are two prototypes: (a) the standalone rich client installation, which can be
downloaded from the development space at ADOxx.org, as well as (b) the Web-based
training and learning modeller on advisor provide modelling features, shown in Fig. 8.

The deployment of the full fletched rich client is in form of a local installation of the
prototype. Export can be performed using the transformation features in order to
generate special formats for learning simulation engines or collaborative portals.
A server side installation may be required, in case the collaboration portal interacts with
the modelling tool not via file exchange using the transformation features, but via the
Web API. For such more complicated scenarios, additional effort is required to evolve
the current prototype to an operational execution environment.

The deployment of the Web-based training and learning prototype in Learn PAd is
a hosted deployment in form of a Web-application to flexibly instantiate modelling
tools for different organizations. Cloud technology is available, in case such a service
should be offered as SaaS.

In general, both modelling tools provide the basic concept modelling features,
which can be extended on both prototypes.

Process Oriented Training with ADOxx 289

http://www.advisor.boc-group.eu

Modelling features are distinguished in: (a) model repository and access manage-
ment, (b) Visualization, model management and graphical design, (c) Query, analysis
and semantic inference of models as well as (d) Transformation from the model
repository in requested output formats for documentation, execution or interchange.

Beside those generic functional capabilities, the feature details described in Sect. 3
are implemented in the standalone modelling prototype.

5.3 Use Case Realisation

The use case is the University of Camerino with strong background in BP modelling
and software engineering. The team consists of on Learn PAd modeller and five
so-called tellers who describe the organisational context and the processes.

The management of national and international research projects with the faculty
was the use case scenario that starts when receiving an invitation to a project, and ends
with archiving the finished project.

The processes deal with knowledge about research project form, the faculty council
report, the consortium agreement and the grant agreement.

There are two sub-divisions that have been modelled according persons and their
roles, hence each role described the required competence profile for executing the
corresponding tasks within the business process.

This classification of skills had been distinguished in (i) analytical skills referring to
selection and gathering of information, (ii) diagnostic skills referring to comprehension-
evaluation of working activities and (iii) Implementation skills referring to accom-
plishment of tasks and transformation into results with appropriate quality.

For the successful evaluation, the European Quality Framework (EQF) has been
used to formulate Key Performance Indicators that define the progress in individual and
organisational learning.

Fig. 8. Learn PAd prototype: modelling tool.

290 R. Woitsch et al.

After realising Learn PAd at the use case, the initial qualitative feedback is positive,
hence further use cases are currently identified to be worked out during the final phase
of the project and afterwards.

6 Conclusions

Process Oriented Training and Learning supports two approaches, one where process
models are used to describe the teaching and one, where process model are used to
describe the organizational context and content.

In Learn PAd the latter approach is applied for civil servants in five application
scenarios: (a) individual training, (b) organizational evolution, (c) support and reflec-
tion, (d) process optimization and improvements as well as (e) citizens transparency.

The Modelling Method with its core languages has been introduced and some
special features has been proposed, like the people oriented view, the semantic lifting
and the business process verification. In the end the deployed architecture has been
presented focusing on the high level architecture.

Acknowledgements. We thank the Learn PAd consortium for the fruitful research cooperation
within the project. Especially we thank Prof. Dr. Knut Hinkelmann and his team from
Fachhochschule Nordwestschweiz, which cooperated in the specification and development of
this prototype also outside the research project in a separate cooperation on ADOxx.org.

References

1. ADOxx.org Development Space (2015). www.adoxx.org/live/web/learnpad-developer-
space/space

2. ADOxx.org. 22 June (2015). www.adoxx.org
3. Blackboard (2015). blackboard.com
4. CompSysTech. CompSysTech. (2011). www.compsystech.org
5. Corradini, F., Polini, A., Polzonetti, A., Re, B.: Business processes verification for

e-Government service delivery. Inf. Syst. Manage. 27 (2010)
6. De Angelis, G., Pierantonio, A., Polini, A., Re, B., Thönssen, B., Woitsch, R.: Modelling for

learning in public administration - the learn PAd approach. In: Karagiannis, D., Mayr, C.H.,
Mylopoulos, J. (eds.) Domain-Specific Conceptual Modelling, pp. 575–594. Springer,
Heidelberg (2016)

7. De Angelis, B., Ferrari, A., Gnesi, S., Polini, A.: Software Requirements Elicitation in the
Context of a Collaboration Research Project: Technical Report, http://puma.isti.cnr.it/
dfdownloadnew.php?ident=/LPAd/2014-TR-001&langver=en&scelta=NewMetadata,
Accessed 28 May 2016

8. Falcioni, F., Polini, A., Polzonetti, A., Re, B.: Direct verification of BPMN processes
through an optimized unfolding technique. In: QSIC 2012 (2012)

9. Fill, H.G., Karagiannis, D.: On the conceptualistion of modelling methods using the adoxx
meta modelling platform, In: Enterpise Modelling and Information Systems Architectures,
vol. 8(1). SIG EMISA 2013, March 2013

Process Oriented Training with ADOxx 291

http://www.adoxx.org/live/web/learnpad-developer-space/space
http://www.adoxx.org/live/web/learnpad-developer-space/space
http://www.adoxx.org
http://www.blackboard.com
http://www.compsystech.org
http://puma.isti.cnr.it/dfdownloadnew.php%3fident%3d/LPAd/2014-TR-001%26langver%3den%26scelta%3dNewMetadata
http://puma.isti.cnr.it/dfdownloadnew.php%3fident%3d/LPAd/2014-TR-001%26langver%3den%26scelta%3dNewMetadata

10. Hrgovcic, V., Karagiannis, D., Woitsch, R.: Conceptual modeling of the organisational
aspects for distributed applications: the semantic lifting approach. In: IEE CAISE 2013
(2013)

11. Karagiannis, D.: Agile modelling method engineering. In: Proceedings of the 19th
Panhellenic Conference on Informatics. ACM, New York (2015)

12. Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M.,
Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, p. 182. Springer, Heidelberg (2002).
doi:10.1007/3-540-45705-4_19

13. Karagiannis, D., Woitsch, R.: Model-driven design applied for e-learning and experiences
from european projects. In: International Conference on Computer Systems and Technolo-
gies, CompSysTech 2011 (2011)

14. Mak, K., Robert, W.: Der Einsatz des prozessorientierten Wissensmanagementwerkzeuges
PROMOTE® in der Zentraldokumentation der Landesverteidigungsakademie. Schriftenreihe
der Landesverteidigungsakademie (2005)

15. Kühn, H.: Methodenintegration im Business Engineering. PhD Thesis. University of Vienna
(2004) (in German)

16. Learn PAd D1.1 Requirements Report (2015). www.learnpad.eu
17. Learn PAd D1.2 Requirement Assessment Report (2015). www.learnpad.eu
18. Learn PAd D3.2. Learn PAd Meta Model (2015). www.learnpad.eu
19. Learn PAd EU Project, 22 June (2015). www.learnpad.eu
20. Misley, R.J., Steinberg, L.S., Almond, R.G.: Evidence-Centered Assessment Design (2015).

www.education.umd.edu/EDMS/mislevy/papers/ECD_overview.html
21. NEXT TELL. Evidence Centered Design Methodology (2015). www.nexttell.eu
22. OMG BPMN (2015). http://www.omg.org/spec/BPMN/2.0/
23. OMG CMMN (2015). http://www.omg.org/spec/CMMN/1.0/
24. Strahringer, S.: Metamodellierung als Instrument des Methodenvergleichs: eine Evaluierung

am Beispiel objektorientierter Analysemethoden. Shaker, Aachen (1996)
25. Telesko, R., Karagiannis, D., Woitsch, R.: Knowledge management, concepts and tools: the

PROMOTE project. Forum Wissensmanagement, Systeme – Anwendungen – Technologien
(2001)

26. Woitsch, R.: Process-Oriented Knowledge Management: A Service-Based Approach.
Dissertation (2004)

27. Woitsch, R., Mak, K., Göllner, J.: Grundlagen zum Wissensmanagement, Teil 1: Ein
WM-Rahmenwerk aus der Sicht praktischer Anwendungen. Schriftenreihe der Landesvertei-
digungsakademie (2010)

28. Woitsch, R., Hrgovcic, V.: Knowledge product modelling for industry: the PROMOTE
approach. In: INCOM 2012 (2012)

29. Woitsch, R., Efendioglu, N.: Business process oriented learning: a collaborative approach of
organisational learning. In: Proceedings of the 15th International Conference on Knowledge
Technologies and Data-driven Business. I-KNOW 2015, pp. 491–494. ACM (2015)

30. Woitsch, R.: Business Oriented White Paper in Learn PAd, 22 June (2015)

292 R. Woitsch et al.

http://dx.doi.org/10.1007/3-540-45705-4_19
http://www.learnpad.eu
http://www.learnpad.eu
http://www.learnpad.eu
http://www.learnpad.eu
http://www.education.umd.edu/EDMS/mislevy/papers/ECD_overview.html
http://www.nexttell.eu
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/CMMN/1.0/

Model-Based Architecture for Learning
in Complex Organization

Francesco Basciani(B) and Gianni Rosa(B)

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, L’Aquila, Italy
{francesco.basciani,gianni.rosa}@univaq.it

Abstract. To improve their service quality modern organization
employees have to understand and put in action latest procedures
and rules while coping with quickly changing contexts and decreas-
ing resources. To this end a model-based architecture with interrelated
enriched models is required in order to fosters an informative learning
approach in the learning-by-doing paradigm. Such architecture enables
organization employees to learn by accessing and studying enriched busi-
ness process models and related material in a process-driven learning
approach. Zachman Framework is used to organize all the models through
the definition of the relations among them.

Keywords: Model driven engineering · Enterprise architecture ·
Zachman framework · Learning · Organizations

1 Introduction

In the complex organization domain it is increasingly demanded greater effort
in terms of quality and efficiency in the services provided by employees in doing
their jobs. To ensure this efficiency and this quality is necessary that employees
with expertise in a given task (process) can share their experience. To facilitate
both the knowledge elicitation and the learning process, a wide variety of models,
tools and techniques have to be provided and integrated. In this respect several
technical spaces are identifiable. This represents a major challenge because while
the informative content of the various models is comparable, the way they are
represented is based on different formats and standards. Furthermore, all these
artifacts at the same time may confuse organizations, because it is not very
obvious which one to choose or which purpose is served and bridging the different
notation presents intrinsic difficulties whenever the artifacts are not belonging
to the same technical space regardless of their content. Moreover, all the process
and its sub-processes have to be developed and managed independently from
other domains processes. Integrated models are needed, which put the various
approaches into perspective. Such integration is meant to improve the speed
of working, improve quality of documentation, products and processes, reduce
costs, enhance responsiveness to customer needs and handle the overall system
inherent complexity.
c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 293–311, 2017.
DOI: 10.1007/978-3-319-66302-9 15

294 F. Basciani and G. Rosa

In this paper we propose a model-based architecture conceived to provide a learn-
ing experience in which learner acquires knowledge while serving real requests,
supporting an informative learning approach besides the learning-by-doing par-
adigm. For being effective, the architecture must provide the requirements for a
modeling notation which describe the learners level, the acquired competencies
and knowledge to perform a procedure described by means of a business process.
This approach permits the learner to access and study these enriched models and
operate within a simulated environment reproducing real requests through the
promulgation of a process and monitoring activities in order to provide feedbacks
for the evaluation of learners, business processes, and associated learning con-
tents. To fulfill the need of share knowledge, manage and improve the processes in
enterprise, the Learning Architecture LA provide a machine-processable model
that exploit the correlation among the activities and/or concerns in order to pro-
vide enriched informations to the organization. The Zachman Framework [29] is
used to describe all the interrelations, that provides a logic structure for classi-
fying and organizing the knowledge about business activity of an organization
in different dimensions, and each dimension can be perceived in different per-
spectives with respect to the Enterprise Architecture.

Structure of the Paper. The paper is organized as follows. Next section
illustrates a motivating example related to a complex organization. In Sect. 3
we present an analysis of the required informations in order to design a LA;
in Sect. 4, we outline how are integrate all the artifacts involved in learning in
complex organizations using the Zachman Framework. Related work is discussed
in Sect. 5 and finally, in Sect. 6 we draw some conclusions and future work.

2 Motivating Example

In this section, we present an example where an organization submits a project
to the European Union (EU). To do that, the organization have to be aware of
the environment complexity in which it is working because the ability to deal
with this complexity is critical for the success of the project proposal. They
must be able to handle in different ways a process as well as use different tools,
models, reporting documentation and so on. Moreover, to successfully participate
in a project proposal and to support administrative reporting activities, for a
complex organization is required to involve a unit of administrative personal. For
this reason, and also due to the typical employees high mobility, the availability
of an electronic learning platform is therefore highly desired.

In order to better understand the complexity of managing public adminis-
trative procedures, a real world scenario is presented. Such scenario reference
the administrative offices of an Italian public research body and is related to
his participation to an European Project Budget Reporting (EPBR) [7]. We will
start from the University organization structure description to the detail of the
Business Process under analysis.

Model-Based Architecture for Learning in Complex Organization 295

Fig. 1. Organization model: university organization (partial).

Fig. 2. Grant management different level of detail.

Figure 1 denotes a fragment of the University organization in which there is
an administration and different schools (e.g. the Computer Science Division). In
turn, an administration may have several employees, each one with its own role.

This scenario engages different partners in the definition of models and doc-
umentation for a Business Process and will permit to assess applicability of the
proposed solution within real working contexts. For the sake of clarity, we are
going to explain only a portion of the entire process and, after a first analysis
of the domain, the Grant Management BP has been selected as reference point
(see Fig. 2). It includes some sub-process, such as: Periodic Report, Final Report,
Manage Payment and eventually Manage Amendment.

Without going into the details of each of the sub-processes involved in the
scenario (this is not the purpose of our work) we consider the Periodic Report
as motivating example. It is the data object representing the periodic report
written by each partner participating to the project. In this process are involved
different participants such as the officer, the coordinator (one pool), the grant
beneficiary (multiple in parallel) and optionally the third part. Figure 3 describes
how the coordinator organizes the process of periodic reports with respect to all
the involved stakeholders.

296 F. Basciani and G. Rosa

Fig. 3. Periodic report - choreography diagram.

Moreover, each Public Officer (PO) according to her experience, might have
her own view of the process for the production of her private periodic report
(Fig. 4 shows an example of a private process done by an EU public officer).
In this way, different versions of the same process could be created, so we may
have different diagrams for the same process. All these diagrams should have
documentation so we need other models for this purpose.

Fig. 4. Periodic report - private process of EU Officer.

In its turn, a documentation have to describe, textually and graphically, the
state of the data-object. In particular, Fig. 5 shows as the Periodic Report is
composed by a set of data-objects.

Fig. 5. Document model: periodic report.

Model-Based Architecture for Learning in Complex Organization 297

Focusing on the role of Coordinator, they can be determined specific data-
object: Amendment Template, Summary of Activities and Periodic Reports.
Finally, Fig. 6 shows the private process of the Coordinator in relation to these
documents.

Fig. 6. Periodic report - private process of coordinator relationship with documents.

This scenario shows the use of a wide variety of models and diagrams (i.e.
organization model, choreography diagram, collaboration diagram, Document
Model, etc.) at different levels of detail both in term of modelling and learning
(i.e. according to the learner skill you should focus on different abstraction level
regarding how to deal with reporting).

The disadvantage in using all these models is represented by the increase of
the whole process complexity and the problem of proper integration of all these
artifacts. In the next section, we will show how the complexity emerged in this
scenario is handled and the integration is done.

3 Learning Architecture

As illustrated in [17], in complex organisations there are many information
resources that represents the complete set of activities consumed to perform
missions, goals, and objectives. The knowledge must be systematically formal-
ized, organized and consistently categorized in order to support effectiveness in
learning. The architecture proposed in this paper supports:

– informative learning by which the learner can access and study the enriched
BP model and related material with additional descriptive contents and,

– procedural learning, by which the learner operate within a simulated envi-
ronment reproducing real requests through the enactment of a process and
monitoring activities (learn by doing approach). Such environment allows us
to capture useful feedback for the evaluation of: (i) learners, (ii) business
processes, and (iii) associated learning contents. To this end, open-source
communities principles and cooperation spirit will be fostered: contents are
produced by the community, and meritocracy is naturally promoted, with
leaders emerging because of their skill and expertise.

298 F. Basciani and G. Rosa

The above strategies, are off-line because the learner acquire such knowledge
before serving real requests. However the typical complexity of processes defeats
the human capacity to acquire a full knowledge on any aspect just through infor-
mative and procedural approaches. It is necessary that learner can retrieve and
process useful and context-dependent information while she is working on real
cases. The architecture therefore, must provide learning experience with on-line
strategies in which learner acquires knowledge while serving real requests, sup-
porting “training on the job” or “learn while doing” approach. To this end, it is
of crucial relevance to be able to provide the user with contextually selected task
and user-specific background knowledge [6]. In particular, the learner should be
able to access the required knowledge in an optimal manner. This can be achieved
by coupling the process (formal or informal) description with the descriptive
units about the kind of data and document type being considered by the process.
Ideally, the notion of context provided by the process permits users to know:

– what to do,
– who does what, and
– what to do after the task.

In this context arise the necessity to analyze the business process from a
knowledge-management perspective and this is largely recognized (for instance,
see [16]). In such a way the users engaged in their daily work routines have not to
spend much time and effort in knowledge, information retrieval and management
activities additional to their operative ones. Starting from the aforementioned
premises, the LA exploits models in order to have informative specifications (i)
for the learners and (ii) at the same time informations able to simulate and
monitor the processes in organizations. The architecture proposed in this paper
is composed by two main components as illustrated in Fig. 7:

Fig. 7. The learning architecture.

– the Modeling Environment ME adopts state-of-the-art techniques and tools
provided by the Eclipse Modeling Framework (EMF)1. The component pro-
vide metamodels, transformation and tools able to create a WIKI structure

1 https://eclipse.org/modeling/emf/.

https://eclipse.org/modeling/emf/

Model-Based Architecture for Learning in Complex Organization 299

representing the processes starting from the diagrammatic modeling stage.
The generation of e-learning artifacts out of specified business processes
will be performed by LA means of horizontal (Model-to-model) and verti-
cal (Model-to-code) model transformations as discussed in Sect. 4. Each of
them represents an overall process phase that, starting from a representation
of the modeled business process, create the XWiki structure from which will
be created the wiki pages. The availability of complex meta-models for repre-
senting the business process structure, its data, and its business rules, permits
to exploit its use also to assess the quality of the provided documentation with
natural language processing techniques;

– the integration of a WIKI platform as a space for collaborative learning.
The wiki-based content can be edited directly by the experts in order to
enrich the learning material and to provide support to colleagues. Sharing and
cooperation will be strongly fostered by the platform, introducing mechanisms
inspired by the open source and open model communities. The WIKI is able
to automatically reflect the structure of the specified BP.

The ME must be able to represent and transform by means of metamodels
and model knowledge used in complex organization including factual, concep-
tual, procedural and meta-cognitive artifacts. Following we briefly illustrate the
metamodeling architecture MMLEARN involved in organizations that represent
knowledge needed for learning as discussed in [24].
The models, as shown in Fig. 8, are obtained with an in-depth analysis of (a)
three business processes in the domain of the Italian Public Administration

Fig. 8. Models involved in learning.

300 F. Basciani and G. Rosa

(the family reunion, the grant citizenship, and the bouncer registration); and
(b) a number of relevant modeling notations [6]. The business modelling lan-
guage, defined to provide a process notation that could be easily understood by
all business stakeholders is BPMN 2.0 [1] as represented in Fig. 8(a). BPMN is a
standard for modeling processes described as a predefined sequences of activities
with decisions (gateways) to direct the sequence along alternative paths or for
iterations, flow of activities. Unfortunately, its semantic, as discussed in [6], is
limited, and it is not useful for some organizational aspects as for instance when
the activities in a process

– can occur in any order and/or in any frequency,
– are not predefined, repeatable and knowledge intensive,
– depend on evolving circumstances and ad-hoc decisions by knowledge workers

regarding a particular situation.

The standard notation CMMN [2] as depicted in Fig. 8(b), allows us to deal
with the aforementioned limits. As discussed in [27], the importance to intro-
duce intentional modeling in enterprise architecture entails potential benefits
and pitfalls. In learning context, it is of crucial relevance to model intentionality
providing a scheme for developing, communicating and managing business plans
in an organized manner. The BMM [3] focuses on that. It has been proposed
as a standard under the Object Management Group (OMG) and provides ele-
ments and relationships of intentional modeling as depicted in Fig. 8(c). Central
elements include Means, Ends, Influencer, Potential Impact and Assessments
that are specialized into more detailed elements as discussed in [24]. The mod-
elling notation in learning must be able to describe the learners level, acquired
competency and learning progress respect to a business process or procedure in
organizations. In Fig. 8(d), the Competency model unlike the other models is not
defined in specific standard leaving to the modeller the responsibility to define
such aspects. The implementation we take into account is defined in [5] and it
is partly based on the framework the European Committee for standardisation,
CEN WS-LT LTSO (Learning Technology Standards Observatory)2. To achieve
their means and ends, organizations are structured (often hierarchically) in units
where each one has a set of job functions or tasks assigned to a group of people
belonging to the organization. Therefore, an organization structure is composed
of units, each encompassing the relevant people who work to achieve the mission
of the organization [22]. The need to keep track of “who does what, how and
when” is demanded to in Organizational model as depicted in Fig. 8(e) whose
implementations is provided in [5]. About the management of knowledge and
documentation, instead of using the BPMN 2.0 data object element for mod-
eling information/documents used in a process, e.g. as input or output for an
activity, we use a separate model, as shown in Fig. 8(f). This allows to define
a data object (and its meta data), and adding more details, e.g. providing ref-
erences to operative templates or guidelines, knowledge products or resources,
which are utilized in the processes (input, output to activities etc.).
2 2EN WS-LT Learning Technology Standards Observatory. URL: http://www.

cen-ltso.net/Main.aspx. Main contact: University of Vigo 36213 SPAIN.

http://www.cen-ltso.net/Main.aspx
http://www.cen-ltso.net/Main.aspx

Model-Based Architecture for Learning in Complex Organization 301

4 Learning Using the Zachman Framework

The huge amount of informations and resources gathered from models in Sect. 3
is not independent because several technical spaces are identifiable. This repre-
sents a challenge because while the informative content of the various models
is comparable, the way they are represented is based on different formats and
standards. Bridging the different notation presents intrinsic difficulties whenever
the artifacts are not belonging to the same technical space regardless of their
content.

To fulfill the need of learning in enterprise, the Learning Architecture provides
a machine-processable model that exploits the correlation among the activities
and/or concerns in order to provide enriched informations to the organization.
In the following we use the Zachman [29] framework to describe:

– the interrelations of above mentioned models,
– the logic structure for classifying and organizing the knowledge about busi-

ness activity of an organization in different dimensions and perspectives with
respect to the Enterprise Architecture.

Specifically, the Zachman Framework is a framework for enterprise architec-
ture, which provides a formal and highly structured way of defining an enterprise.
In essence, the framework is a two dimensional matrix consisting of 6 rows and
6 columns which defines 6 levels relevant to any enterprise, as well as 6 aspects.
The structuring provided by the Zachman Framework provides that attention
is placed on all the relevant scales, as well as on all relevant aspects, of any
situation under consideration. Any Zachman Framework should be calibrated so
that all relevant scales occur within its boundaries. Each row represents a total
view of the enterprise from a particular perspective. These rows starting from
the top include: Planner’s View (Scope), Owner’s View (Enterprise or Business
Model), Designer’s View (Information Systems Model), Builder’s View (Technol-
ogy Model), Subcontractor’s View (Detail Representation), and Actual System
View (The Functioning Enterprise). The columns describe various abstractions
that define each perspective. These abstractions are based on six questions that
one usually asks when s/he wants to understand an entity. The columns include:
The Data Description (What?), The Function Description (How?), The Network
Description (Where?), The People Description (Who?), The Time Description
(When?), The Motivation Description (Why?). Further information and cell def-
initions of Zachman Framework can be found in [28]. The Zachman Framework
can form the backdrop for a decision making process, ensuring that no mistaken
collapse of attention occurs.

In this respect in Fig. 9 we outline how the models can be structured by
Zachman’s matrix [29]. The vertical dimension (the rows) in Fig. 9, describes the
perspectives in terms of the participants involved in the organization’s Informa-
tion Systems [18] that use the models or descriptions contained in the cells. The
top row represents the most generic perspective of an organization, while lower
rows are successively more concrete, i.e.:

302 F. Basciani and G. Rosa

Fig. 9. The learning architecture structured by Zachman’s matrix.

– Scope (Planner’s Perspective), the planner defines the catalogue of services
and the boundary of an organization which describe concrete information
about a specific organisation, the context of learning, and business scope.
The specification is written in natural languages and structured by means of
a table that gather the aforementioned information;

– Business Model (Owner’s Perspective), the owner is interested in modelling,
at high abstraction level, the services defined in the Scope. The relevant data
involved in a learning architecture, consists of a number of component meta-
models illustrated in Fig. 10. The following have been defined by adapting
current industrial standards:

– business motivation (BMM) [3];
– business process management and notation (BPMN) [1];
– case management and notation (CMMN) [2].

The remaining have been defined from scratch and are described in [24]:
– competency metamodel (CM);
– document and knowledge metamodel (DKM);
– key performance indicator metamodel (KPI);
– organization metamodel (OM).

The relations are implicit and, hence, a process defined in a service catalogue
(Scope Concepts level), may occur in the process description on the Business
Concepts level but that relation is not formalized and therefore hard to trace;

– System Model (Designer’s Perspective) the designer works with the specifi-
cations defined above, instantiating all elements involved in business orga-
nization to ensure that it will, in fact, fulfill the owner’s expectations.

Model-Based Architecture for Learning in Complex Organization 303

Fig. 10. The conceptual model.

The problem about tracing the relation between a process model on the Sys-
tem Logic Layer and the process description (at conceptual level), holds true;

– Technology Model (Builder’s Perspective) the builder manages the process of
define the language and functionalities able to satisfies the requirement of
the learning platform. To this respect, the model set defined in System Model
must be transformed in a standard exchange format, eg. XMI (see Sect. 4.2),
in order to be machine readable;

– Component (Learning platform’s Perspective) the learning architecture takes
the instance models provided by the Technology Model and enables process-
driven learning, fostering the cooperation and knowledge sharing among the
learners.

While the horizontal dimension in the Zachman Framework describe the par-
ticipants involved in the learning architecture, the columns provide a focus on
each dimension [15]: What, How, Where, Who, When, Why and each of them
is a descriptive of a single model. The architecture exploit a subset of them as
following:

– Data (What?): in this column, “Document and Knowledge” concepts are
defined. In particular, about the perspectives Business Model, System Model,
and Component, the enterprise’s informations about knowledge and resources
used for business activity;

– Function (How?): the process of the organization are defined in several
abstraction level. Starting from a service catalogue, the models are refined
and enriched with structured information. In such way, learner can retrieve
and process useful and context-dependent information while she is working
on real cases;

– People (Who?): describes who is involved in activities, assigning them to
business or IT perspective and classifying them w.r.t. to several aspects.

The matrix structure of the LA, allow us to perform an in depth analysis on
some intrinsic characteristics:

304 F. Basciani and G. Rosa

– horizontal relations: bridging the various modeling notations (and their rep-
resentation formats) between considered Business Objects;

– vertical relations: factorizing part of the transformation chaining in order to
produce artifact needed for learning;

– enhance relevant quality factors, e.g. maintenance, extendibility, etc.

4.1 Horizontal Relations

As already discussed in Sect. 3 there are many information resources in an enter-
prise that serve several purposes and that usually reside in different information
systems. The separation of concerns in software system modeling avoids the
construction of large and monolithic models which could be difficult to handle,
maintain and reuse. At the same time, having different models (each one describ-
ing a certain concern) requires their integration into a final model representing
the entire domain [25]. The integration in LA is made through horizontal rela-
tions in Zachman Framework and, for the sake of clarity, only relations between
models on the System Model layer will be discussed in this paper (see the related
row in Fig. 9). To make these relations explicit and machine processable we pro-
vided the specification in terms of weaving models for defining correspondences
between modeling elements belonging to different metamodels3.
The concept of weaving is not new. Typical applications of model weaving are
database metadata integration and evolution as in [21] which proposes Rondo, a
generic metamodel management approach which uses algebraic operators such as
Match and Merge to manage mappings and models. In [14] a UML extension is
introduced to express mappings between models using diagrams, and illustrates
how the extension can be used in metamodeling. The extension is inspired by
mathematical relations and is based upon ideas presented in [4] which proposes
an approach for defining transformation relationships between different compo-
nents of a language definition rendered as a metamodel. The definition of model
weaving that will be considered in this paper is that provided by Didonet Del
Fabro et al. in [12]. They leverage the need of a generic way to establish model
element correspondences by proposing a solution aimed at reaching a trade-off
between genericity, expressiveness and efficiency of mappings which are consid-
ered models that conform to a weaving metamodel. The weaving metamodel
is not fixed since it might be extended by means of a proposed composition
operation to reach dedicated weaving metamodels. A weaving model WM rep-
resent the mapping between the LeftMM and RightMM metamodels. Like other
models, this should conform to a specific weaving metamodel WMM.
In the context of horizontal relations we use the weaving models for specifying
some form of semantics of given modeling elements. For instance, in BPMN the
semantics of Lane is not precisely given, therefore we provide a weaving model
which can associate a Lane to an OrganizationalUnit deferring the semantics of

3 Implemented metamodel resources can be found in the repository: https://github.
com/LearnPAd/learnpad/tree/master/lp-model-transformer/src/main/resources/
metamodels.

https://github.com/LearnPAd/learnpad/tree/master/lp-model-transformer/src/main/resources/metamodels
https://github.com/LearnPAd/learnpad/tree/master/lp-model-transformer/src/main/resources/metamodels
https://github.com/LearnPAd/learnpad/tree/master/lp-model-transformer/src/main/resources/metamodels

Model-Based Architecture for Learning in Complex Organization 305

the former to the latter (see diagram in Fig. 13). This technique is a simplification
of the semantic anchoring [10] which adopts model transformations for anchoring
the meaning of a concept from a metamodel into a concept to another metamodel
(for which typically the semantics is already given). In other cases, the weaving is
more relational and serves the scope to link different entities, like a competence
profile which points to a document describing a job description.

Fig. 11. The dataInput weaving.

Fig. 12. The dataOutput weaving.

Fig. 13. The swimlane-lane weaving.

In the following, each weaving is given by means of a weaving metaclass
denoting the correspondences between two or more metaclasses in different meta-
models. The weaving models are given according to the component metamodels
defined in [24], and the definition of each model can encompass one or more
association:

– Business Process Modelling Notation (BPMN 2.0)4: several kinds of weav-
ing are defined; the link with Document Knowledge Model permit to have
the resources used as input (Fig. 11) and/or output (Fig. 12) in a process or
activity.
The lack of a specific semantic in the BPMN specification for the Lane con-
cept required the definition of the Lane-weaving (Fig. 13). Such intercon-
nection links a Lane in BPMN, with respectively (i) OrganizationalUnit,
(ii) the Perfomer, and (iii) the Role in the Organisational Model. Finally,
the Activity-weaving interconnects information linked to a given activity in
accordance with the Fig. 14. In particular, given an Activity, it denotes: (i)
the competencies needed for realizing it; (ii) the criteria used for evaluating
its performance; (iii) the organizational unit, which has been assigned the
responsibility; (iv) who is performing it; (v) the performer position and (vi)
her role.

4 http://www.omg.org/spec/BPMN/2.0/.

http://www.omg.org/spec/BPMN/2.0/

306 F. Basciani and G. Rosa

Fig. 14. The activity weaving.

– Case Management and Notation (CMMN)5: the ProcessTask-weaving denotes
the reference to an Activity (regular task) to be invoked by the process task
(Fig. 15).

– Organization Model: the Position-weaving links the Position described or
reported in a resource in a Document and Knowledge Model, e.g., a job
description (Fig. 16).

The above relations are just only a subset of all possible ones, according to moti-
vating scenario in Sect. 2. A more in depth analysis, and other kind of relationship
tailored for learning in complex organizations, like the Public Administrations,
are discussed in [5].

Fig. 15. The process task weaving.

Fig. 16. The process task weaving

4.2 Vertical Relations

The LA exploits models in order to have informative specifications for the
learners and, at the same time, informations able to simulate and monitor the
processes in organizations. As said, models in the Zachman matrix are orga-
nized using different abstraction levels, therefore, the learning contents that
describe multiple aspects of processes in organizations, should rely on adequate
means that automatically relate and trace over the multiple views. The gener-
ation of learning artifacts out of specified business processes will be performed
5 http://www.omg.org/spec/CMMN/.

http://www.omg.org/spec/CMMN/

Model-Based Architecture for Learning in Complex Organization 307

by means of vertical model transformations chain as depicted in Fig. 176. In
order to enhance the automation in finding model transformation chains, we
use the proposed process of deriving model transformation chaining depicted
in [8]. Moreover, there is the need of techniques introducing automation in the
management of artifacts that have to be kept consistent to each other.

In this respect the modeling facilities offered by the Eclipse Modeling Envi-
ronment (EMF) can be used in order to support the management of the arti-
facts involved in the vertical relations. Specifically, EMF is part of the Eclipse
project7, whose goal is to provide a highly integrated tool platform. With EMF
it is possible to explicitly define the domain model and this helps to provide clear
visibility of it. Indeed, EMF has a distinction between the metamodel and the
actual model: the metamodel describes the model structure (System and Tech-
nology Metamodel in Fig. 17(a)) while an actual model is a concrete instance
of this metamodel (System and Technology Model in Fig. 17(a)). Another ben-
efit is that EMF allows to persists the data model; the default implementation
uses a data format called XML Metadata Interchange (XMI) that is a standard
for exchanging meta-data information via Extensible Markup Language (XML).
The EMF integration in the platform offer the advantage to perform different
kind of transformations. For example, both the model-to-model and the model-
to-code transformations, or a combination of them. This leads to modularity
improvement, indeed, instead of making a single big transformation it can be
divided into smaller once increasing, also, the overall process maintenance.

Therefore, in the Zachman vertical dimension, model transformations play a
central role since they represent the glue between the several levels of abstrac-
tion and enable the generation of: (i) different artifacts for learning purposes
using ATL8 in Model2Model (see Fig. 17(a)) transformation languages and (ii)
the generation of implementation code [9] by means of Acceleo9 in Model2Code
transformation (see Fig. 17(b)).

5 Related Work

Many efforts have been done in order to support the integration of models, tools
and techniques used to describe various aspects of a complex organization.

[20] tackle the issue of integration of all the concepts and modelling tech-
niques used by architects to describe their architectural domains, presenting
an enterprise modelling approach. In this approach several abstract layers are
integrated combining several existing languages. Unlike the work presented in

6 Implemented ATL and Acceleo transformations resources can be respectively
found in the repository: https://github.com/LearnPAd/learnpad/blob/master/
lp-model-transformer/src/main/resources/transformation/ado2xwiki.atl and
https://github.com/LearnPAd/learnpad/blob/master/lp-model-transformer/src/
main/java/eu/learnpad/transformations/model2text/main/generate.emtl.

7 https://eclipse.org/.
8 https://eclipse.org/atl/.
9 https://eclipse.org/acceleo/.

https://github.com/LearnPAd/learnpad/blob/master/lp-model-transformer/src/main/resources/transformation/ado2xwiki.atl
https://github.com/LearnPAd/learnpad/blob/master/lp-model-transformer/src/main/resources/transformation/ado2xwiki.atl
https://github.com/LearnPAd/learnpad/blob/master/lp-model-transformer/src/main/java/eu/learnpad/transformations/model2text/main/generate.emtl
https://github.com/LearnPAd/learnpad/blob/master/lp-model-transformer/src/main/java/eu/learnpad/transformations/model2text/main/generate.emtl
https://eclipse.org/
https://eclipse.org/atl/
https://eclipse.org/acceleo/

308 F. Basciani and G. Rosa

Fig. 17. The vertical Zachman transformation chain.

this paper, they propose a workbench for enterprise architecture that supports
the integration of models in existing modelling languages and the integration of
existing modelling tools. We choose to perform a similar integration using the
Zachman Framework mainly because we are aware that the communication is
important.

Indeed, thanks to the Framework’s perspective, which allows us to answer
the what, how, where, who, when, and why questions, we are able to create
different descriptive representations (i.e., models), which translate from higher
to lower perspective. This guidance is both clear and complete and as result
these perspectives, in relation with these questions, determine a communication
matrix. Furthermore, the Zachman Framework permits us to understand where
completeness lies, and how to asses when we’ve achieved it. Indeed, “Zachman’s
framework suggests that an architecture can be considered a complete architecture
only when every cell in that architecture is complete. A cell is complete when it
contains sufficient artifacts to fully define the system for one specific player
looking at one specific descriptive focus” [26].

Although we do not use the tools which they have defined, we still followed the
method defined in [23]. In the article, in fact, they propose a method to achieve
an Enterprise Architecture Framework based on the Zachman Framework Busi-
ness. Furthermore, the authors identify a new concept related to this framework
defined as “anchor cell” that defines the semantic relationships existing between
cells on any of the framework’s perspectives. In our work, we developed this
“anchor cells” that represents vertical relationships with model transformations
that transform a model in a perspectives in another model in another perspec-
tive. Moreover we have horizontal relationships through the rows (dimensions)
using the weaving model [12].

6 Conclusion

In this paper, we presented a model-based architecture that fosters an informa-
tive learning approach based on simulation and monitoring besides the learning-
by-doing paradigm. This enables complex organization employees also a pro-
cedural learning by accessing and studying organized business process models

Model-Based Architecture for Learning in Complex Organization 309

and related material. However, the enriched business models might not convey
enough information to support on the one side the enactment of the represented
complex organization process, and on the other side the training of the civil
servant who is assigned to the tasks. Thus, it is of great relevance to be able to
trace and relate all the models and the informative artifacts that structure and
represent information with the specific tasks to which they refer. This is done by
means of advanced model-driven techniques able to keep aligned different views
(i.e., models specified at the same level of abstraction) and to manage multi-
scale models (i.e., models in which parts of the system are specified at different
level of detail) by means of bidirectional transformations [11] and uncertainty
management [13]. However, these approaches testify the benefits and advantages
of applying theory and results from MDE on learning [19].
The inherit complexity arising using these models both in horizontal and vertical
dimension is managed through the Zachman Framework adoption that helps in
the in the models organization through the definition of the relations among
them.

Acknowledgements. We thank our colleague Barbara Re from University of
Camerino who provided us model fragments in the scenario discussed in Sect. 2. We also
thank professor Alfonso Pierantonio for the precious comments that greatly improved
the manuscript.

This research was supported by the EU through the Model-Based Social Learning
for Public Administrations (Learn Pad) FP7 project (619583) For further informations
visit the website: http://www.learnpad.eu. It is possible to find the repository host-
ing the platform implementation, concerning the part described in this article, here:
https://github.com/LearnPAd/learnpad/tree/master/lp-model-transformer.

References

1. Business Process Model OMG. Notation (BPMN) 2.0. Object Management Group:
Needham, MA, 2494:34 (2011)

2. OMG. Case Management Model and Notation (CMMN), V 1.0. Technical report,
Object Management Group OMG (2013)

3. OMG. Business Motivation Model (BMM). Technical report, Object Management
Group OMG (2014)

4. Akehurst, D., Kent, S.: A relational approach to defining transformations in a
metamodel. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS,
vol. 2460, pp. 243–258. Springer, Heidelberg (2002). doi:10.1007/3-540-45800-X 20

5. Pierantonio, A., Rosa, G.: Design and initial implementation of metamodels for
describing business processes in public administrations. Deliverable D3.2 - EU FP7
Project Learn PAd

6. Pierantonio, A., Rosa, G.: Domain Analysis of business processes in public admin-
istrations. Deliverable D3.1 - EU FP7 Project Learn PAd

7. Re, B., Sergiacomi, A.: Demonstrators BP and Knowledge models. Deliverable
D8.1 - EU FP7 Project Learn PAd

http://www.learnpad.eu
https://github.com/LearnPAd/learnpad/tree/master/lp-model-transformer
http://dx.doi.org/10.1007/3-540-45800-X_20

310 F. Basciani and G. Rosa

8. Basciani, F., Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of model
transformations with incompatible metamodels. In: Dingel, J., Schulte, W., Ramos,
I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 602–618.
Springer, Cham (2014). doi:10.1007/978-3-319-11653-2 37

9. Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171–188
(2005)

10. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring
with model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA
2005. LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005). doi:10.1007/
11581741 10

11. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02408-5 19

12. Del Fabro, M.D., Bézivin, J., Jouault, F., Valduriez, P., et al.: Applying generic
model management to data mapping. In: Proceedings of the Journées Bases de
Données Avancées (BDA 2005) (2005)

13. Eramo, R., Pierantonio, A., Rosa, G.: Managing uncertainty in bidirectional model
transformations. In: Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Software Language Engineering, SLE 2015, pp. 49–58, New York, NY,
USA. ACM (2015)

14. Hausmann, J.H., Kent, S.: Visualizing model mappings in UML. In: Proceedings
of the 2003 ACM Symposium on Software Visualization, pp. 169–178. ACM Press
(2003)

15. Hay, D.C.: The Zachman Framework: An Introduction. The Data Administration
Newsletter, Issue 1. Essential Strategies Inc. (1997)

16. Heisig, P.: Process modelling for knowledge management
17. Hinkelmann, K., Merelli, E., Thönssen, B.: The role of content and context in enter-

prise repositories. In: Proceedings of 2nd International Workshop on Advanced
Enterprise Architecture and Repositories - AER 2010 (2010)

18. Inmon, W.H., Zachman, J.A., Geiger, J.G.: Data Stores, Data Warehousing and
the Zachman Framework: Managing Enterprise Knowledge. McGraw-Hill Inc., New
York (1997)

19. Laforcade, P., Choquet, C.: Next step for educational modeling languages: the
model driven engineering and reengineering approach. In: Null, pp. 745–747. IEEE
(2006)

20. Marc, M., Lankhorst, M.M.: Enterprise architecture modelling-the issue of inte-
gration. Adv. Eng. Inf. 18(4), 205–216 (2004)

21. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic
model management. In: Proceedings of International Conference on Management
of Data, pp. 193–204. ACM Press (2003)

22. Oh, S., Sandhu, R.: A model for role administration using organization structure.
In: Proceedings of the Seventh ACM Symposium on Access Control Models and
Technologies, pp. 155–162. ACM (2002)

23. Pereira, C.M., Sousa, P.: A method to define an enterprise architecture using the
Zachman framework. In: Proceedings of the 2004 ACM Symposium on Applied
Computing, pp. 1366–1371. ACM (2004)

24. Pierantonio, A., Rosa, G., Silingas, D., Thönssen, B., Woitsch, R.: Metamodeling
architectures for business processess in organizations. Projects Showcase@ STAF
2015, p. 27 (2015)

http://dx.doi.org/10.1007/978-3-319-11653-2_37
http://dx.doi.org/10.1007/11581741_10
http://dx.doi.org/10.1007/11581741_10
http://dx.doi.org/10.1007/978-3-642-02408-5_19
http://dx.doi.org/10.1007/978-3-642-02408-5_19

Model-Based Architecture for Learning in Complex Organization 311

25. Reiter, T., Kapsammer, E., Retschitzegger, W., Schwinger, W.: Model integration
through mega operations. In: Accepted for Publication at the Workshop on Model-
driven Web Engineering (MDWE 2005) (2005)

26. Tupper, C.: Data Architecture: from Zen to Reality. Elsevier, Amsterdam (2011)
27. Yu, E., Strohmaier, M., Deng, X.: Exploring intentional modeling and analysis for

enterprise architecture. In: 10th IEEE International Enterprise Distributed Object
Computing Conference Workshops, EDOCW 2006, pp. 32–32. IEEE (2006)

28. Zachman, J.A.: The framework for enterprise architecture-cell definitions. ZIFA
report (2003)

29. Zachman, J.A.: The Zachman Framework For Enterprise Architecture. A Primer
For Enterprise Engineering And Manufacturing (2012)

An Assessment Environment for Model-Based
Learning Management

Antonello Calabrò1, Sarah Zribi2, Francesca Lonetti1, Eda Marchetti1(B),
Tom Jorquera2, and Jean-Pierre Lorré2

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, Pisa, Italy
eda.marchetti@isti.cnr.it

2 Linagora, 75 Route de Revel, 31400 Toulouse, France

Abstract. Assessing the acquired competencies during a learning activ-
ity as well as the possibility of simulating difficult situations or scenarios
are important challenges in learning management. The current uses of
(semi) formal models representing the knowledge domain open the possi-
bility of advanced techniques of simulation and monitoring. In this paper,
we propose an assessment environment for model-based learning manage-
ment that integrates simulation and monitoring facilities. In particular,
we describe its architecture and main functionalities and its application
inside an ongoing EU project. The proposed framework allows for user-
friendly learning simulation with a strong support for collaboration and
social interactions. Moreover, it monitors the learners’ behavior during
simulation execution and it is able to compute the learning scores useful
for the learner knowledge assessment.

Keywords: Model-based learning · Simulation · Monitoring · Business
process

1 Introduction

Recently a lot of attention has been devoted to the monitoring of the acquired
competencies during a learning activity as well as to the possibility to learn-
ing by using simulation of difficult situations or scenarios. Independently by the
context, usually simulation attempts to mimic real-life or hypothetical behav-
ior to see how processes, systems or hardware devices can be improved and to
predict their performance under different circumstances. Commonly, monitoring
focuses on data collection and supervision of activities during the real-life execu-
tion of a process, systems or hardware components to ensure they are on-course
and on-schedule in meeting the objectives and performance targets. Currently,
inside the learning engineering area the use of Business Process Modeling Nota-
tion (BPMN) [1] makes easier the simulation and monitoring activities due to
the possibility of exploiting concise definitions and taxonomies, and developing
executable frameworks for overall management of the process itself. Indeed best
practice of Business Process modeling lets the use of methods, techniques, and
c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 312–332, 2017.
DOI: 10.1007/978-3-319-66302-9 16

An Assessment Environment for Model-Based Learning Management 313

tools to support the design, enactment and analysis of the business process and
to provide an excellent basis for simulation and monitoring purposes. Examples
can be found even in different environments such for instance the clinical one,
for assessing and managing the patient treatment, and the financial sector for
verifying and checking the bank processes. In all these application contexts, a
key role is played by the data collected during the business process execution or
simulation, which lets the possibility of reasoning about and/or improving the
overall performance of the business process itself.

In the specific area of learning management, simulation and monitoring
enhances student’s learning and improves their knowledge; they are also very
important for assessment of the teaching performance. Indeed different concep-
tual and mathematical models have been proposed for model-based learning
and several type of simulations, including discrete event and continuous process
simulations have been considered [2]. However, the main challenges of existing
learning simulation and monitoring proposals are about collaborative simula-
tion, gamification and the derived learning benefits. In particular, gamification
is becoming one of the main challenges in the simulation activity, that can be
incorporated with the aim of using game-based mechanisms and game thinking
to engage, motivate action, promote learning and solve problems [3]. Moreover,
rewarding strategies are encouraged in order to stimulate intrinsic motivations
within the members of a community.

In this paper, we address model-based learning management through the
evaluation of some performance indicators useful for learning assessment. We
present a Simulation and Monitoring framework able to support collaboration
and social interactions, as well as process visualization, monitoring and learning
assessment. The proposed approach can be compared to a collaborative game
where a team of players composed of one coach and any number of learners work
together in order to achieve a common goal. The main objective is consequently
to provide an easy to use and user-friendly environment for the learners in order
to let them take part of the process when their turn comes, assuming different
roles according to the content they have to learn. The principal contribution of
this paper is the architecture of a framework for simulation and monitoring of
model-based learning able to provide feedback for evaluating the learner com-
petency and the collaborative learning activities. The proposed simulation and
monitoring framework has been applied to a case study developed inside the
Learn PAd project in the context of Marche Region public administration and
important feedback and hints have been collected for the improvement of the
framework itself over the Learn PAd project duration.

In the rest of the paper we first briefly introduce some background concepts
and related work (Sect. 2), then is Sect. 3 we present the main components of the
simulation and monitoring framework architecture whereas in Sect. 4 we describe
its main functionalities. Finally, Sect. 5 shows the application of the proposed
framework to a case study and conclusion concludes the paper.

314 A. Calabrò et al.

2 Background and Related Work

The proposal of a simulation and monitoring framework for model-based learning
originated in the context of the Model-Based Social Learning for Public Admin-
istrations (Learn PAd) European project [4] addressing the challenges set out in
the “ICT-2013.8.2 Technology-enhanced learning” work programme. Learn PAd
project envisions an innovative holistic e-learning platform for Public Adminis-
trations (PAs) that enables process-driven learning and fosters cooperation and
knowledge sharing. The main Learn PAd objectives include: (i) a new concept of
model-based e-learning (both process and knowledge); (ii) an open and collabora-
tive e-learning content management; (iii) an automatic, learner-specific and col-
laborative content quality assessment; and finally (iv) an automatic model-driven
simulation-based learning and assessment. The developed Learn PAd platform
will support an informative learning approach based on enriched BP models, as
well as a procedural learning approach based on simulation and monitoring that
will allow users to learn by doing.

Recently other EU funded projects of 6th and 7th framework programmes
have been financed in the area of Technology Enhanced Learning. Among the
relevant ones there are: (i) MATURE [5] which interlinks individual learning
processes in a knowledge maturing process. In particular, the focus has been
in the maturing process and in building tools and services to reduce maturing
barriers, to embed learning more seamlessly in work processes and knowledge
management systems; (ii) Mirror [6] which delivered a set of real-time, interop-
erable learning applications, based on a conceptual model of holistic continu-
ous learning by reflection. The project incorporates in particular (collaborative)
knowledge construction and creative problem solving and innovation; (iii) Target
[7] which is based on a gaming activity so to deal with complex situations and
results in experiences that are gradually honed into knowledge; (iv) Prolix [8]
which aligned learning with business processes in order to enable organizations
to faster improve the competencies of their employees according to continuous
changes of work requirements. The solution to develop includes also workflows
for competence building, simulations, and games for process-oriented learning
and information exchange.

Considering the industrial and research learning context, BP simulation
approaches are very popular since learners prefer simulation exercises to either
lectures or discussions [9]. Simulations have been used to teach procedural skills
and for training of software applications and industrial control operations as well
as for learning domain specific concepts and knowledge, such as business man-
agement strategies [10]. Nowadays, more attention is given to business process
oriented analysis and simulation [11]. Studies have shown that the global purpose
of these existing business process simulation platforms is to evaluate BPs and
redesign them, whereas in the last years simulation/gaming is establishing as
a discipline [12]. However, these platforms present several shortcomings regard-
ing their applicability to a collaborative learning approach. Namely, no existing
platform regroups all of the main functionalities of a learning simulation solution
such as facilities for providing a controlled and flexible simulated environment

An Assessment Environment for Model-Based Learning Management 315

(for example allowing to switch between possible outcomes of a task, in order
to explore the different paths of a process), good visualization and monitoring
of a process execution flow (in order both to assist and evaluate the learners)
[12]. The main challenges of a learning simulation are about collaborative simu-
lation and the derived learning benefits. To answer all of these concerns a new
learning simulation and monitoring framework is designed in this paper, pro-
viding a flexible simulation framework with a strong support for collaboration
and social interactions, as well as process visualization, monitoring and learners
assessment.

Concerning monitoring, existing works [13] combine modeling and monitoring
facilities of business process. PROMO [13] allows to model, monitor and ana-
lyze business process. It provides an editor for the definition of interesting KPIs
(Key Performance Indicator) to be monitored as well as facilities for specifying
aggregation and monitoring rules. Our proposal is different since it addresses
a flexible, adaptable and dynamic monitoring infrastructure that is indepen-
dent from any specific business process modeling notation and execution engine.
Other approaches [14] focus on monitoring business constraints at runtime by
means of temporal logic and colored automata. They allow continuous compli-
ance with respect to predefined business process constraint model and recovery
after the first violation. Differently from these approaches, the proposed solu-
tion does not allow to take counter measures for recovering from violation of
defined performance constraints. Moreover, in our solution these constraints are
not specified in the business process but they are dynamically defined as moni-
toring proprieties that can be applied to different business process notations. In
the context of learning, monitoring solutions can be used for providing feedback
on training sessions and allow KPI evaluation. Some learning systems such as
that in [15] propose customized learning paths that learners can follow according
to their knowledge, learning requirements or learning disability. Changing and
management of learning pathways as well as adaptation of learning material are
made according to the monitored data. However, contemporary Learning Con-
tent Management Systems (LCMS) provide rather basic feedback and monitor-
ing facilities about the learning process, such as simple statistics on technology
usage or low-level data on students activities (e.g., page view). Some tools have
been developed for providing feedback on the learning tasks by the analysis of
the user tracking data and monitoring of the simulation activity. The authors
of [16], for instance, propose LOCO-Analyst, an educational tool aimed at pro-
viding educators with feedback on the relevant aspects of the learning process
taking place in a web-based learning environment such as the usage and the com-
prehensibility of the learning content or contextualized social interactions among
students (i.e., social networking). The main goal of these tools is to support edu-
cators for creating courses, viewing the feedback on those courses, and modifying
the courses accordingly. Differently from these solutions, other proposals [17,18]
focus on model-based learning and monitoring of business process execution.
Specifically, [17] presents a flexible and adaptable monitoring infrastructure for
business process execution and a critical comparison of the proposed framework

316 A. Calabrò et al.

with closest related works whereas [18] presents an integrated framework that
allows modeling, execution and analysis of business process based on a flexi-
ble and adaptable monitoring infrastructure. The main advantage of this last
solution is that it is independent from any specific business process modeling
notation and execution engine and allows for the definition and evaluation of
user-specific KPI measures. The monitoring framework presented in this paper
has been inspired by the monitoring architecture presented in [17,18]. It includes
new components specifically devoted to the computation of the evaluation scores
useful for the learning assessment.

3 Simulation and Monitoring Framework Architecture

Extending the preliminary version of [19] in this section, we describe the high
level architecture of the proposed Simulation and Monitoring framework, its
main components, their purpose, the interfaces they expose, and how they inter-
act with each others. In particular, as depicted in Fig. 1 each component is
exposed as a service and provides an API as a unique point of access. Inside the
Learn PAd infrastructure, the proposed simulation framework interacts with the
Learn PAd components by means of the Learn PAd Core Platform and specifi-
cally through the Bridge and the Core Facade interfaces. Moreover, in the Learn
PAd vision two levels of learners have been considered: the civil servant who
is the standard learner, and the civil servant coordinator who is a general-
ization of the civil servant who is in charge to activate and manage a simulation
session.

Fig. 1. Simulation Framework Architecture.

An Assessment Environment for Model-Based Learning Management 317

Fig. 2. Monitoring Framework Architecture.

The simulation framework components are:

SimulationGUI: it is in charge of the interactions between learners and sim-
ulator’s components. It provides different facilities that are: (i) Chat areas
that represents a space for learners to chat either one by one, one with the
group of civil servants or with experts connected to the current simulation;
(ii) Notification area which provides notifications to the learner; (iii) User
input/output panel: this area contains forms for learners interactions; (iv)
Context area: provides the documents related to the simulation, additional
information or links to material that may be useful during the simulation activ-
ity; (v) Simulation teams members: learners involved in the simulation have a
special placeholder so to distinguish them from the coordinator; (vi) Contextual
search: allows to search among different kinds of information depending on the
current displayed layout (users, processes, simulations, etc.); (vii) Simulation
lifecycle menu: it allows the learner to choose among different views that are:
Business process view allows to obtain a graphical representation of the current
BP; Play : allows to run a simulation as an instance of a given BP; Save: allow
to save the current simulation and restart it from the point in which it has been
saved; Pause allow to pause the running of the current simulation; Stop: allow
to stop the current simulation and exit; Coordinator : provides the name of the
coordinator of the current session and allows him/her to modify it. Only the
civil servant coordinator has the possibility to designate another civil servant to
be the new coordinator of the simulation session; Stats&Logs: using an analytic
dashboard, it allows the learner to display statistics and logs about all activities
carried out during the simulation.

PersistenceLayer: it stores the status of the simulation at each step (i.e. BP
executed task) in order to give to the civil servant the ability to stop it and
restart when needed. Its main sub-components are: (i) the Logger that is in

318 A. Calabrò et al.

charge of storing time-stamped event data coming from the simulation engine;
(ii) the BPStateStorage that allows to store/retrieve/delete/update the state
of a given simulation associated to a BP; (iii) the TestDataRepository that
collects the historical data that relate to the simulations executions.

RobotFramework: it allows to simulate the behavior of civil servants by means
of robots. The Robots are implemented on the basis of the availability of his-
torical data, i.e. the data saved in the TestDataRepository during a previous
simulation session and provided by an expert who takes the role of the civil
servant.

SimulationEngine: this is the core component of the simulation framework. It
enacts business processes and links activities with corresponding civil servants
or robots.

Monitoring: it collects the events occurred during the simulation and infers
rules related to the business process execution.

Communication Middleware: it provides event-based communication facili-
ties between the simulation components according to the publish/subscribe par-
adigm.

UserFacade: it is in charge of encapsulating real or simulated civil servants
(i.e. robots) in order to make the learner interaction transparent to the other
components of the architecture.

In the following more details about the simulation engine and monitor com-
ponents are provided. More details about the simulation and monitoring design
are in [20].

3.1 Simulation Engine

Simulation engine takes in charge the simulation of a given business process
instance. It takes the form of an orchestration engine that invokes treatments
associated to each activity of the current process. Such workflow may involve
multiple civil servants taking different roles that may be present or not. For
those that are not available, robots are used in order to mimic their behavior.
A simulation manager is provided in order to manage BP lifecycle according to
the current context (create, stop, resume, kill, etc.). Business processes are made
of two kinds of activities: (i) Human activities involve civil servants who should
provide information in order to complete the task. The concept of human activity
is used to specify work which has to be accomplished by people; (ii) Mocked
activities involve robots to compute the treatment associated to the activity.
When the simulation engine invokes a human activity the corresponding civil
servant is asked to provide input through a form. Those forms are managed by a
form engine that delegates task to a robot if necessary. All the state information
necessary to restart a specific simulation are stored “on the fly”. The civil servant
may decide to freeze a running simulation, to store it, to backtrack to a previous
stored state and to logout. He/she will be able to resume it later.

An Assessment Environment for Model-Based Learning Management 319

Business Process orchestrator takes in charge the step by step execution of a
given BP instance. Such BP instance is made of a BPMN description enriched
with necessary run-time information such as end-points of software applications
mocks, user id, etc. The BP engine is connected with the Forms Engine in order
to take in charge users and robots input/output. Different solutions for the
business process execution engine are: Activiti [21], Camunda [22] and jBPM
[23]. In this paper, we rely on Activiti [21]. In order to collect inputs from
learners during a simulation session, a form engine has been defined so to design
and run the proper corresponding forms. Forms Engine allows dynamic forms
creation and complex forms processing for web applications. The processing of a
form involves the verification of the input data, calculation of the input based on
the information from other input fields as well as dynamic activation or hiding
of the data fields depending on the user input. Inside our solution the javascript
Form editor, called FormaaS, has been adopted. It allows to design and run
javascript forms and to quickly define forms and executable code.

3.2 Monitoring

The simulation framework is equipped with a monitoring facility that allows
to provide feedback on the business process execution and learning activities.
Figure 2 shows the architecture of the proposed monitoring infrastructure. The
design of this monitoring infrastructure has been inspired by [17].

For aim of readability, we list below the monitoring components presented
in [17] and refer to [17] for the complete description of their functionalities:

– Complex Event Processor (CEP). It is the rule engine, which analyzes the
events, generated by the business process execution. Several rule engines can
be used for this task like Drools Fusion, VisiRule, RuleML. Our instance is
realized using Drools Fusion [24], that is able to detect patterns and monitor
the business process performance metrics.

– BPMN explorer. It is in charge to explore and save all the possible entities
(Activity Entity, Sequence Flow Entity, Path Entity) reachable on a BPMN.
Specifically, the extracted paths will be provided to the Rules Manager that
through the Rules Generator will create, using the templates of rules stored
into the Template Manager, a set of rules that aims to check the KPI defined
on the business process.

– Rules Generator. It is the component in charge to generate the rules needed
for the monitoring of the business process execution and the assessment of the
performance metrics. It uses the templates stored into the Rules Template
Manager. These rules are generated according to the specific performance
metrics to be assessed. A generic rule consists of two main parts: in the first
part the events to be matched are specified; the second part includes the
events/actions to be notified after the rules evaluation.

– Rules Template Manager. It is an archive of predetermined rules templates
that will be instantiated by the Rules Generator. A rule template is a rule
skeleton, the specification of which has to be completed by instantiating a set

320 A. Calabrò et al.

of template-dependent placeholders. The instantiation will refer to appropri-
ate values inferred from the specific performance metrics to be assessed. Once
the synthesis of the new set of rules is completed, the new rules are loaded
by the Rule Generator into the Rules Template Manager.

– Rules Manager. The complex event detection process depends directly from
the operation done by the Rules Manager component which is in charge to
load and unload a set of rules into the complex event processor and fire it
when needed.

– Response Dispatcher. It is a registry that keeps track of the requests for
monitoring sent to the monitoring infrastructure.

In this section a refined and complete design of the monitoring infrastructure
is presented as depicted in Fig. 2. It includes three new components (shown in
pink in Fig. 2) that are:

– DBController. This component has been introduced to satisfy the Learn PAd
requirements of having storage of simulation executions data. Specifically,
the DB Controller manages the updating of the civil servant score during a
simulation or the retrieval of historical data concerning the assessment level of
the civil servants. The DB Controller interacts with the Learner Assessment
Manager to get the different evaluation scores that will be defined in Sect. 3.2.

– Learner Assessment Manager. It evaluates the learner activities and it is in
charge to calculate the different scores. More details about this component
are in Sect. 3.2.

– Monitoring Manager component. It is the orchestrator of the overall Monitor-
ing Infrastructure. It interacts with the Learn PAd Core Platform through the
REST interfaces (core facade and bridge interface) and is in charge to query
the Rules Manager. It also interacts with the BPMN Explorer and the Rules
Generator. This component initializes the overall monitoring infrastructure
allocating resources, instantiating the Complex Event Processor and instru-
menting channel on which events coming from the simulation engine will flow.

Learner Assessment Manager. During learning simulation, it is important
to asses learning activities as well as to visualize to the civil servants their suc-
cess incrementally by displaying the achieved evaluation scores. To this end, the
proposed simulation and monitoring component integrates a scoring mechanism
in order to generate ranking of the civil servants and data useful for rewarding.
The Learner Assessment Manager component evaluates the learner activities and
is in charge to calculate different scores useful for the civil servant assessment.
In addition, independently from any ongoing simulation, this component is in
charge of retrieving the data necessary for the score evaluation and updating
them on a database. Data collected during monitoring of business process exe-
cution can be used for providing feedback for the continuous tracking of the
process behavior and measurement of learning-specific goals. All scores com-
puted by the Learner Assessment Manager are then stored in the DB by the
interaction with the DB Controller component. The evaluation scores computed

An Assessment Environment for Model-Based Learning Management 321

by the Learner Assessment Manager relate both to the simulation of a session
of the business process (session score(s)) and to the simulation of the overall
business process (Business Process scores). Specifically, we define the session
score(s) and Business Process score(s) as detailed below.

Session Scores. The civil servant may simulate different learning sessions on the
same business process, each one referring to a (different) path. During a simula-
tion session the Learner Assessment Manager computes the following scores:

– The session score (called session score), i.e. the ongoing session score of each
participating civil servant.

– An assessment value (called absolute session score) useful as boundary value
for the session score.

Specifically, the session score is calculated using a weighted sum of scores
attributed to the civil servant for each task of the Business Process realized
during the simulation. Considering n the number of tasks executed by the civil
servant during the learning session simulation and P the weight of the task, the
session score is computed as follows:

session score =
n∑

i=1

task scoreiPi

Each task of the Business Process is associated with a weight specified as
a metadata. These metadata are attributed in the Business Process definition
and defined by the modeler. The calculation of the score’s task is based on
several criteria, namely number of attempts, Success/Fail and finally some pre-
defined performance indicators named KPI (e.g. response time). The formula
below allows calculating this score:

task score = success ∗ (
1

nb attempts
+

k∑

i=1

expected KPI valuei
observed KPI valuei

)

where k is the number of KPI considered in the evaluation of the civil servants
performances and success is a Boolean. For what concerns the boundary values
useful for the learning assessment, the Learner Assessment Manager can provide
the absolute session score, which represents the maximum score that could be
assigned to the civil servant during a simulation session. Supposing that the max-
imum obtained value of the task score is equal to k+1, the absolute session score
is computed as:

absolute session score =
n∑

i=1

(k + 1)Pi

This absolute session score computes an accuracy measure of the ses-
sion score. A session score value closer to the absolute session score represents
a better performance of the civil servant for the considered simulation session.

322 A. Calabrò et al.

Business Process Scores. During the learning simulation, the civil servant can
execute different learning sessions on the same Business Process, each one refer-
ring to a different path. Therefore, the cumulative score obtained by the civil
servant on the executed sessions is a good indicator of the knowledge of the civil
servant about the overall Business Process. The learner assessment manager is
able to compute the following scores related to the business process:

– Business Process Score (called bp score), i.e. the cumulative score obtained
by the civil servant after the execution of different simulation sessions on the
same business process. It represents the degree of acquired knowledge of the
Business Process activities obtained by the civil servant.

– Two assessment values (called relative bp score and absolute bp score) used
as boundary values for the bp score to evaluate the acquired civil servant com-
petency on the executed business process. Specifically, the relative bp score
is the maximum score that the civil servant can obtain on the set of simu-
lated paths whereas the absolute bp score is the maximum score that the civil
servant can obtain on all the possible paths of the business process.

– A business process coverage percentage (called bp coverage), i.e. the percent-
age of different learning sessions (paths) executed by the civil servant during
the simulation of a business process. It represents the completeness of the
civil servant knowledge about the overall business process.

In the following we provide more details about the above-mentioned scores.
The bp score is computed as the sum of the maximum values of session score(s)
obtained by the civil servant during the simulation of a set of different k paths
(over the overall number of paths) on a business process, according to the fol-
lowing formula:

bp score =
k∑

i=1

max(session scorei)

Considering a bp score and the set of k paths to which the bp score is related
to, the relative bp score is the boundary value representing the maximum score
that the civil servant can obtain on the set of k paths. It is computed as the sum
of the absolute session score according to the following formula:

relative bp score =
k∑

i=1

absolute session scorei

Considering all paths of a business process to which a bp score is related
to, the absolute bp score is an additional boundary value representing the max-
imum score that the civil servant can reach. It is computed as the sum of the
absolute bp score for all the paths of the business process according to the fol-
lowing formula:

absolute bp score =
#path∑

i=1

absolute session scorei

An Assessment Environment for Model-Based Learning Management 323

The more the bp score is close to the relative bp score the more the civil ser-
vant reaches the maximum cumulative learning performance on the different sim-
ulated sessions. The more the values of bp score are close to the absolute bp score
the more the civil servant knowledge about the overall business process is com-
plete.

Finally, the bp coverage value is an additional measure for evaluating the
completeness of the civil servant knowledge about the overall business process.
It is computed as the percentage of different paths (k), executed by the civil
servant during the simulation of a business process, over the paths cardinality
as in the following:

bp coverage =
k

#path

When the civil servant executes all paths of the business process, the com-
puted bp coverage is 1. A bp coverage value closer to 1 represents a better per-
formance of the civil servant for the considered business process simulation.

4 Functional Specification of the Learning Simulation
and Monitoring Framework

The Simulation and Monitoring framework provides the subsystem where learn-
ers can simulate the business process interactively and is used by one or multiple
civil servant(s) in order to learn processes. As mentioned in Sect. 3, the Simula-
tion and Monitoring framework distinguishes between the two following actors:
the civil servant coordinator who is in charge of starting a simulation session and
the civil servant who represents a generic participant to a simulation session. In
particular, the civil servant coordinator can request to start a new simulation
execution of a Public Administration business process or he/she can manage
an ongoing one by for instance inviting/cancelling other civil servants. The civil
servant coordinator can also restart/stop a current simulation session and rede-
fine a new coordinator. On its turn, each civil servant has different possibilities
like for instance joining, disconnecting or pausing a simulation session, chatting,
asking for evaluation/help, or managing his/her own profile.

The Simulation and Monitoring framework functionalities have been split
into three different phases: (i) Initialization in which the simulation framework
is set up; (ii) Activation in which the participants to the simulation are invited;
(iii) Execution in which the participants effectively collaborate each other during
a learning session. During the Activation phase, the civil servant can select the
type of simulation he/she wants to execute. Specifically, three different types of
simulation are provided:

Individual Simulation. The civil servant decides to execute the simulation
without interacting with other human participants. In this case the other par-
ticipants are emulated by means of Robots (see Sect. 3 for more details). The
creation of robots instances is performed before the simulation execution.

Collaborative Simulation. This option of simulation involves the collab-
oration of several human participants (no robots instances are involved).

324 A. Calabrò et al.

During the collaborative simulation, users can interact between them using chat
instruments. This will improve performances of the overall learning session due
to the possibility to rapidly share experience between human participants. This
kind of simulation can be considered the most interesting from the learning point
of view, because cooperation can make learning procedures more intensive and
productive. Diversities will raise up and the opportunity to reflect upon encoun-
tered issues will help learners to improve their knowledge and better understand
the problem. For activating a simulation, the system requires that all the civil
servants involved have joined the session in order to provide an online collab-
orative environment. Moreover, the Simulation and Monitoring framework also
supports asynchronous tasks execution among simulation participants. If a civil
servant does not satisfy the simulation requirements or time constraints, the civil
servant coordinator may decide either to kick the civil servant, or to swap him
with another one among those available, or replace him with a Robot.

Mixed Simulation. This type of simulation requires the participation of both
humans and robots. This usually happens when there are not enough civil ser-
vants to cover all the necessary roles to execute a BP or if one or more civil
servants leave the ongoing simulation (disconnection or kick). The activation of
a mixed simulation can be done only if the following two constraints are met: (i)
the required instances of robots are ready; (ii) all the invited civil servants have
completed the connection procedures.

Both gamification and serious game concepts are also included in the pro-
posed Simulation and Monitoring framework so to engage civil servants during
training tasks and activities to be learned. Specifically, two main gamification
elements are included in the proposed simulation and monitoring framework for
educational purposes: (i) progression that allows the learner to see success visu-
alized incrementally by the achieved evaluation scores; (ii) virtual rewards that
allow learner who satisfies some conditions to be automatically awarded by the
platform with a specific certificate that gives to him/her additional rights. For
more details about the gamification model used in the proposed simulation and
monitoring framework we refer to [25]. During the different types of simulation,
the monitoring component checks if execution patterns will be respected during
the simulation of a business process. In order to do that, the simulation engine
interacts with the monitoring component through a pre-fixed set of messages
specifying the set of events, detected failures and time values useful for evalu-
ating the learner’s competency and assessing non-functional properties such as
the overall simulation time completion.

5 Learn PAd Simulation and Monitoring Framework:
The Application to Learn PAd Case Study

In this section, we show the application of the proposed Simulation and Monitor-
ing framework to a case study developed inside the Learn PAd project with the
collaboration of SUAP (Sportello Unico per le Attività produttive) officers from
both Public Administrations Senigallia and Monti Azzurri. The scenario refers

An Assessment Environment for Model-Based Learning Management 325

to the activities that the Italian Public Administrations have to put in place in
order to permit to entrepreneurs to set up a new company. In particular, the case
study is focused on the Titolo Unico process, i.e. the standard Italian procedure
to be applied so to start a business activity 1.

Fig. 3. Titolo Unico Business Process.

In this case, the entrepreneur notifies to the municipality and third parties
organizations the starting of a commercial business activity and self-certifies all
the required documentation. Then the entrepreneur has to wait for a decision
taken by the SUAP office before to really start the activity. If necessary, SUAP
office could require document integration or organize specific conference, called
Service Conference, for critical decisions. In this case the participants (munici-
pality offices, third parties administrations, and entrepreneur) discuss about the
specific situation and decide if the application is acceptable or not. In general, the
whole process has to be performed within 60 days: within 30 days the regularity
of the application must be verified and in the remaining 30 days the decision must
be prepared. If a conference has to be conducted, process duration is extended to
120 days. That is after the 30 days for verifying the regularity of the application,
60 more days are available for activating and performing the conference and for
reaching a common decision. A simplified BPM representation of the described
process is depicted in Fig. 3, in which sub-processes are not presented.

Using the proposed Simulation and Monitoring framework, the Marche
Region personnel has the possibility to learn the steps necessary to organize
a Service Conference and practice with the documentations and several critical-
ities and exceptions that could be encountered during the Titolo Unico process.

In the Learn PAd project the Simulation and Monitoring framework has been
integrated in the more complex project platform as depicted in Fig. 4; however it
can also be executed independently. It is out of the scope of this paper to provide
a complete description of the Learn PAd platform; however in this specific case
the Simulation and Monitoring framework interacts with the other components of
the platform by sending through the Learn PAd Core component the simulation
events and basic KPI evaluations using a REST event API.

1 Italian law D.P.R. 160/2010 in the article 7.

326 A. Calabrò et al.

Fig. 4. LearnPAd Platform.

In particular, the simulator interacts through the Learn PAd Core with the
Recommender component which is in charge of providing recommendations for
individual learners, suggesting learning material or activities to improve bad
learner’s performance scores. Moreover, recommendations can also be made for
entire organizational units like the SUAP office or the whole Public Adminis-
tration. They may refer to organizational activities recommended for improving
a bad KPI value. In this case study, because the Simulation and Monitoring
framework is integrated in Lean PAd, it is automatically instantiated as soon as
the platform is executed without requiring additional actions.

In the Titolo Unico process considered in this case study the main actors
involved in the simulation process are: (i) the learner, i.e. a Regione Marche
employee, who would practice on this BP; (ii) an expert called Expert1 who is a
Regione Marche domain expert employee who can provide suggestions or recom-
mendations trough the Recommender ; (iii) a second expert called Expert2 who is
again a Regione Marche domain expert employee and who actively participates
to the simulation.

An Assessment Environment for Model-Based Learning Management 327

Fig. 5. Create a simulation session of a process.

Interacting with the GUI the learner who wants to start a learning activity,
can create a new simulation session of selected BP process (see Fig. 5). In this
case, the Titolo Unico BP is by construction a single-user process, however col-
laborative and mixed simulation can also be executed by selecting other available
BPs. Thus the learner logs into the Learn PAd platform and starts running a
stand-alone simulation. For aim of simplicity the duration time of each task has
been reduced in proportion so to make the overall simulation completion time
within the range of minutes. The learner by a browsing mode decides to start a
new simulation session by clicking on the “simulate” button shown in the process
landing page (i.e. the summary page of a BPMN, where a picture of a process
is also shown). In particular, the user can configure the simulation session selec-
tion setting the different parameters of the process (see Fig. 6). Depending on
the selected BP, the framework is also configured with a set of test application
forms, along with their associated metadata info, which are completely separated
from the data of the historical cases provided to the Recommender.

When a simulation starts, the Simulator and Monitoring framework sends
“simulation session start” event with the associated metadata to the Learn PAd
platform. Then the learner can execute all tasks of the business process. In par-
ticular, the monitoring sub-component collects data of interest (as detailed in
Sect. 3.2) and updates the internal database accordingly. Once a task is com-
pleted, the associated scores are computed and updated. If all the inputs pro-
vided by the user during the task simulation have been evaluated correct, the
framework indicates that the task has been validated, and will display new tasks
corresponding to the continuation of the process (Fig. 7). Otherwise, the simu-
lator will indicate that the submission is incorrect. In such a way the Simulation
and Monitoring framework drives the learner through the process and assesses

328 A. Calabrò et al.

Fig. 6. Configuration of a simulation session.

his/her activities with respect to what it is expected (possibly using previous
correct runs of the same activities).

Once the simulation session is terminated, the final scores are shown through
the interface as reported in Fig. 8.

In the following, referring to Fig. 3, we describe in detail which are the tasks
of the business process executed by the learner during the simulation and for each
task the input and output data. When the simulation starts, the task “Receive
Instance” is executed using the available robots and metadata because it is not
in charge of learner. It passes directly to the execution of the task “Assess Appli-
cation”. The input data for this task is the pdf file with the application data.
The output of this task is a statement saying whether the application is accepted
or not, the values of relevant KPIs for this task, and in case the application is
not accepted, a motivation for rejecting the application. In this task, the learner
can ask to the Recommender which provides feedbacks according to use-case
formatted data.

The learner executes then the task “Send Communications of non-admissible
Instance to Third Parties”. The input data for this task is the pdf file with the
application data. The output of this task consists of the list of the third parties
involved and for each third party a referent person and a text message. During
the execution of this task the learner can ask the Recommender which gives
feedbacks about similar cases and third parties involved.

The learner executes the “Check Integration” task. The input data for this
task is the pdf file with the application data. The output of this task is a report
on the application data and decision about whether arrange or not the conference

An Assessment Environment for Model-Based Learning Management 329

Fig. 7. Simulation Execution.

of services, and if yes the motivation. Also in this case the learner can ask the
Recommender which gives feedbacks about similar cases.

The learner executes the task “Active Service Conference” that is included
in the sub-process, the input data for this task is again the pdf file with the
application data. The output of the execution of this task is a list of involved
third parties. Also in this case the learner can ask the Recommender which gives
feedbacks about similar case. Note that ranking of similar cases may change.

The learner then executes the task “Send Authorization Document”. In this
case, the input data for this task consists of the pdf file with the applica-
tion data and a document containing the minutes of the service conference.

330 A. Calabrò et al.

Fig. 8. Simulation session completion.

The output of the execution of this task is a summary of the service conference,
a document specifying if an integration is needed or not. In case an integration
is needed a message is sent to the sender of the application including integration
requirement. Also in this case, the learner can ask the Recommender which gives
feedbacks about similar cases.

At the end of each task and of the overall simulation the associated scores
are shown to the learner and the validation of the performed activity provided.

During this first validation, the Simulation and Monitoring framework has
been used by different end-users inside the Italian Public Administration and
comments and suggestions have been collected. If from one side all users agreed
that the framework represents a very good means for improving the understand-
ing and practice of the administrative process, from the other side requests for
improvements have been collected. This meanly concerns the usability of the
framework especially in case of collaborative simulation as well as score visual-
ization and management. This validation provides a positive assessment of the
Simulation and Monitoring framework and a very important starting point for
the next release of the learning system.

6 Conclusions

The paper presented a simulation and monitoring framework for assessing the
acquired competencies during a learning activity as well as simulating difficult
situations or scenarios. In particular a detailed description of the framework com-
ponents and main functionalities is provided. Differently from the other simu-
lation environment the proposal of this paper supports collaboration and social

An Assessment Environment for Model-Based Learning Management 331

interactions, as well as process visualization, monitoring of learning activities
and assessment. Specific attention has been devoted to the possibility of gamifi-
cation during the simulation of the business process to be learned, so to engage
more users while training them and improve their knowledge. A set of evaluation
scores for assessing the leaning activity has also been proposed. They refer to
both the simulation sessions and the overall business process simulation; relative
values are automatically computed and updated by the proposed simulation and
monitoring framework during each execution.

A version of the proposed framework, integrated into the generic architecture
of the Learn PAd project, has been presented and used for the learning assess-
ment activity of a case study developed inside the context of Marche Region
Public administration. Preliminary results collected evidenced its importance in
improving the understanding and practice of the administrative process, as well
as the possibility of executing collaborative simulation and providing learners
assessment. Moreover, this real case study also provided important feedbacks for
the improvement and extension of the framework itself during the project dura-
tion. Future works include: (i) improvement of some parts of the architecture,
such as the Test Data Repository and Robot; (ii) integration of usability concepts
as well as the improvement of evaluation score visualization and management;
(iii) enriching the set of learner’s evaluation scores considering for instance the
number of errors made during the execution of a path; and finally (iv) evaluation
of the industrial significance and benefits of the proposed framework in different
application areas of technology enhanced learning.

Acknowledgements. This work has been partially funded by the Model-Based Social
Learning for Public Administrations project (EU FP7-ICT-2013-11/619583).

References

1. vom Brocke, J., Rosemann, M.: Handbook on Business Process Management 1:
Introduction, Methods, and Information Systems (2014)

2. Blumschein, P., Hung, W., Jonassen, D.H.: Model-based approaches to learning:
using systems models and simulations to improve understanding and problem solv-
ing in complex domains. Sense Publishers (2009)

3. Kapp, K.M.: The gamification of learning and instruction: game-based methods
and strategies for training and education. Wiley (2012)

4. LearnPAd: (Model-Based Social Learning for Public Administrations European
Project (EU FP7-ICT-2013-11/619583)). http://www.learnpad.eu/

5. Mature Project mature. http://mature-ip.eu/
6. Mirror Project mirror. http://www.mirror-project.eu/
7. Target Project target. http://www.reachyourtarget.org/moodle/
8. Prolix Project prolix. http://www.prolixproject.org/
9. Anderson, P.H., Lawton, L.: Business simulations and cognitive learning: develop-

ments, desires, and future directions. Simulation & Gaming (2008)
10. Clark, R.C., Mayer, R.E.: E-learning and the science of instruction: proven guide-

lines for consumers and designers of multimedia learning. Wiley (2011)

http://www.learnpad.eu/
http://mature-ip.eu/
http://www.mirror-project.eu/
http://www.reachyourtarget.org/moodle/
http://www.prolixproject.org/

332 A. Calabrò et al.

11. Jansen-Vullers, M., Netjes, M.: Business process simulation-a tool survey. In: Work-
shop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
Aarhus, Denmark, vol. 38 (2006)

12. Crookall, D.: Serious games, debriefing, and simulation/gaming as a discipline.
Simulation & Gaming 41, 898–920 (2010)

13. Bertoli, P., Dragoni, M., Ghidini, C., Martufi, E., Nori, M., Pistore, M.,
Francescomarino, C.: Modeling and monitoring business process execution. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 683–687. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45005-1 60

14. Maggi, F.M., Montali, M., Westergaard, M., Aalst, W.M.P.: Monitoring business
constraints with linear temporal logic: an approach based on colored automata.
In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
132–147. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23059-2 13

15. Adesina, A., Molloy, D.: Capturing and monitoring of learning process through a
business process management (BPM) framework. In: Proceedings of 3rd Interna-
tional Symposium for Engineering Education (2010)

16. Ali, L., Hatala, M., Gašević, D., Jovanović, J.: A qualitative evaluation of evolution
of a learning analytics tool. Comput. Educ. 58, 470–489 (2012)

17. Calabrò, A., Lonetti, F., Marchetti, E.: Monitoring of business process execution
based on performance indicators. In: Proceedings of 41st Euromicro-SEAA, pp.
255–258 (2015)

18. Calabrò, A., Lonetti, F., Marchetti, E.: KPI evaluation of the business process
execution through event monitoring activity. In: Proceedings of Third International
Conference on Enterprise Systems (2015)

19. Calabrò, A., Lonetti, F., Marchetti, E., Zribi, S., Jorquera, T.: Model-based learn-
ing assessment management. In: Proceedings of the 4th International Conference
on Model-Driven Engineering and Software Development (MODELSWARD 2016)
(2016)

20. Zribi, S., Calabrò, A., Lonetti, F., Marchetti, E., Jorquera, T., Lorré, J.P.: Design
of a simulation framework for model-based learning. In: Proceedings of the 4th
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2016) (2016)

21. Activiti BPM Platform (2015). http://activiti.org/
22. Camunda (2015). http://camunda.org/
23. jBPM (2015). http://www.jbpm.org
24. Drools Fusion Complex Event Processor (2015). http://www.jboss.org/drools/

drools-fusion.html
25. Zribi, S., Jorquera, T., Lorré, J.P.: Towards a flexible gamification model for an

interoperable e-learning business process simulation platform. In: Proceedings of
I-ESA (2016)

http://dx.doi.org/10.1007/978-3-642-45005-1_60
http://dx.doi.org/10.1007/978-3-642-23059-2_13
http://activiti.org/
http://camunda.org/
http://www.jbpm.org
http://www.jboss.org/drools/drools-fusion.html
http://www.jboss.org/drools/drools-fusion.html

An Ontology-Based and Case-Based Reasoning
Supported Workplace Learning Approach

Sandro Emmenegger1, Knut Hinkelmann1,2,
Emanuele Laurenzi1,2,3(&), Andreas Martin1,4, Barbara Thönssen1,

Hans Friedrich Witschel1, and Congyu Zhang1

1 University of Applied Sciences and Arts Northwestern Switzerland,
Riggenbachstr. 16, 4600 Olten, Switzerland

{sandro.emmenegger,knut.hinkelmann,emanuele.laurenzi,

andreas.martin,barbara.thoenssen,

hansfriedrich.witschel,congyu.zhang}@fhnw.ch
2 Department of Informatics, University of Pretoria, Pretoria, South Africa

3 University of Applied Sciences St. Gallen,
Rosenbergstr. 59, 9001 St. Gallen, Switzerland

4 School of Computing, University of South Africa,
Roodepoort, Johannesburg, South Africa

Abstract. The support of workplace learning is increasingly relevant as the
change in every form determines today’s working world in the industry and public
administrations alike. Adapting quickly to a new job, a new task or a new team is a
significant challenge that must be dealt with ever faster. Workplace learning
differs significantly from school learning as it is aligned with business goals. Our
approach supports workplace learning by suggesting historical cases and pro-
viding recommendations of experts and learning resources. We utilize users’
workplace environment, we consider their learning preferences, provide them
with useful prior lessons, and compare required and acquired competencies to
issue the best-suited recommendations. Our research work follows a Design
Science Research strategy and is part of the European funded project Learn PAd.
The recommender system introduced here is evaluated in an iterative manner, first
by comparing it to previously elicited user requirements and then through prac-
tical application in a test process conducted by the project application partner.

Keywords: Workplace learning � Ontology supported learning � Personalized
learning � Recommender system � Case-based reasoning � Public
administration � Ontology-based Case-based reasoning

1 Introduction

Change is given and an employee’s working environment, his/her tasks and duties
changes quickly and ever often. According to the US Bureau of Labour Statistics [1],
“the median number of years that wage and salary workers had been with their current
employer was 4.6 years in January 2014”. Already in 2012, Forbes has reported that
according to a survey ninety-one percent of Millennials (born between 1977–1997)
expect to stay in a job even for less than three years [2]. However, not only ‘job

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 333–354, 2017.
DOI: 10.1007/978-3-319-66302-9_17

hobbing’ requires (workplace) learning but also taking over new responsibilities within
an organisation. In a survey conducted by Accenture [3] 91 percent of the respondents
consider the most successful employees to be those who can adapt to the changing
workplace. As pointed out by Tynjälä [4] workplace learning is different to school
learning as it is mostly informal in nature, as - for example - usually no formal
curriculum or prescribed outcomes exist, the emphasis is on work and experiences, it is
often performed collaboratively, and no distinction is made between knowledge and
skills. In our approach, we aim to formalize workplace learning by defining learning
goals that are related to business goals, objectives, and strategies. Competencies
required to reach the learning goals and hence, the business goals, are determined and
described in the job profiles respectively role profiles. From this, an employee’s
competence profile is derived in which the level of acquired competencies is reported,
for example in an objective agreement. Collaborative learning is supported by using a
wiki as a learning platform.

For implementation, we use a model driven approach [5]. That is, we extended
existing meta models, e.g. standard notations like Business Process Model and Nota-
tion (BPMN) [6] and Business Motivation Model (BMM) [7] or created new ones,
based on standards (for example, the Competency Meta Model is deduced from the
European Qualifications Framework (EQF) [8]) to model collaborative workplace
learning centred on business processes and their context. We then transformed the
models and relations between them into an ontological representation for machine
execution. We also transformed these models and relations into wiki pages and links.

With this approach we can integrate workplace learning deeply into daily business,
i.e. we consider a learner’s context regarding tasks he/she has to perform in business
processes combined with organizational knowledge about his/her position in the
organisation and his/her working experience. Based on this context information,
appropriate learning objects and learning material are determined and recommended to
the learner according to his/her learning preferences.

Additionally, we complemented our approach with ontology-based case-based
reasoning to identify and recommend the content of similar case from a case repository.
The application domain is Public Administration (PA) as this sector must support
extremely complex processes to provide services to citizens and companies. According
to our business partner, today it needs up to two years of learning to become fully
operational. These highly complex or knowledge-intensive processes demand the
utilisation of an approach the do not require a prior generalisation of training data and
previous acquisition of rules. Since such a rule acquisition task is difficult to manage
for knowledge-intensive processes, we suggest in this paper the use of case-based
reasoning, which requires a later manual or semi-automatic generalisation.

Workplaces in the industry and public administrations lack effective and not too
expensive approaches that support workers in learning how to perform daily tasks at
best. Unfortunately, no significant attention has been paid in the literature concerning
integrated learning approaches in public administrations. Therefore, an ontology-
based and case-based reasoning approach is needed that supports a collaborative
workplace learning platform. This work is part of the European funded project Learn
PAd (cf. http://www.learnpad.eu). The applied research method is Design Science
Research [9] complemented by the approach of Grüninger & Fox [10] for ontology

334 S. Emmenegger et al.

http://www.learnpad.eu

design and evaluation. In Learn PAd a learning platform is created to support Public
Administration (PA) with workplace learning. PA’s can access the platform via a wiki
interface (see Xwiki, http://www.xwiki.com/en/). The interface consists of two parts:
left and right (see Fig. 1). The left part contains the properties of a process task as well
as data input and output. The right part is what we call the recommendation panel
where context-related and personalized recommendations are provided.

We assess our approach in an iterative process in the context of the overall Learn
PAd project evaluation. A first evaluation was accomplished recently.

The paper at hand is structured as follows: In Sect. 2 we give an overview of related
work. Then we introduce an application scenario to illustrate our approach (Sect. 3). In
Sect. 4 we provide a specification of the recommender system, followed by a
description of its implementation (Sect. 5). First iterations of evaluation are described
in Sect. 6. We conclude in Sect. 7.

2 Literature Review

In our literature review we consider research on five aspects that are most relevant to
our work: recommenders, competency frameworks, imparting knowledge, learning
styles and ontology-based case-based reasoning.

2.1 Recommenders

There is today a broad agreement among researchers that e-learning content should
adapt to the learner’s context and that learners should be guided through learning
content based on such context. The recommendation of learning objects can be
regarded as a special case of business-process oriented knowledge management.
A wide array of recommenders have been proposed, all of which aim at recommending
the next learning activity – very often interaction with a learning object – to a learner
who is currently engaged with an e-learning system.

Such recommendations can be based purely on a history of the learner activities
within the same or previous sessions. Some approaches use content-based filtering;
they recommended learning items that have a content similar to that of learning objects
in the learner’s current session [11, 12]. Others are based on collaborative filtering or

Fig. 1. Recommender interface.

An Ontology-Based and Case-Based Reasoning Supported Workplace 335

http://www.xwiki.com/en/

association rule mining [12, 13], i.e. they recommend objects that other learners (with
similar interests) used together with the objects from the current history. A survey of
further approaches of this kind can be found in Sikka et al. [14].

Other researchers claim that – besides the current activities of the learner – addi-
tional information is needed to make useful recommendations:

– A profile of the learner including existing knowledge or skill levels, preferred
learning style, and current learning goal to enable proper personalization of rec-
ommendations [15, 16].

– Meta information about the learning objects including required previous knowl-
edge, content type and interactivity level to match them against the learner [15, 16].

– Information about the role of the learner and his/her position in the organization [15,
17, 18].

– Explicit information about the work context of the learner regarding a currently e.g.
executed task or business process [15, 17, 18].

The approaches mentioned above all use ontologies to model the required infor-
mation and rely on the computation of similarities between a learner’s profile (and
possibly work context) and the metadata provided with learning objects. Yu et al. [16]
additionally use the dependencies between learning objects to create a “learning path”
through all recommended learning objects.

Our approach is similar to the one in Schmidt & Winterhalter [15], which relies on
semantic modelling as described in Abecker et al. [18]. We propose to model and use
the same kind of information – i.e. we believe that all of the above-listed information is
indeed necessary to make didactically useful recommendations. We take that approach
further by concretising the meta models and ontologies required for modelling that
information and by proposing concrete matching procedures.

2.2 Competency Frameworks

In order to develop an appropriate competency model we carefully studied frameworks
related to competency, like the RDCEO (The Reusable Definition of Competency or
Educational Objective), TRACE (TRAnsparent Competences in Europe), DeSeCo
(The Definition and Selection of Competencies) [19], DIGCOMP (Developing and
Understanding Digital Competence in Europe) [20], e-CF [21], Bloom’s Taxonomy
[22] and EQF (The European Qualifications Framework) [8].

Since our application partner in the Learn PAd project already uses the EQF
framework, we decided to base the competency model on it. The European Qualifi-
cations Framework (EQF) is envisaged as a meta-framework that allows positioning
and comparing qualifications. It consists of eight reference levels which are described
regarding learning outcomes: knowledge, skills, and competences. For instance EQF
level 4 for knowledge is ‘‘Factual and theoretical knowledge in broad contexts within a
field of work or study’’; for skill is ‘‘A range of cognitive and practical skills required to
generate solutions to specific problems in a field of work or study’’; and finally for
competence is ‘‘Exercise self-management within the guidelines of work or study
contexts that are usually predictable, but are subject to change; supervise the routine

336 S. Emmenegger et al.

work of others, taking some responsibility for the evaluation and improvement of work
or study activities’’ [8].

2.3 Imparting of Knowledge

One of the most important aspects imparting knowledge is the notion of a Zone of
Proximal Development (ZPD), introduced by Vygotsky [23]. He defined the zone of
proximal development (ZPD) as ‘‘the distance between the actual developmental level
as determined by independent problem-solving and the level of potential development
as determined through problem-solving under adult guidance or in collaboration with
more capable peers’’ [23, p.86]. Vygotsky proofed that when a learner is in the ZPD for
a particular task, he can achieve it if appropriate assistance is provided.

Another important aspect imparting knowledge is scaffolding. Scaffolding was
coined by Wood et al. [24] whose conceptualization of scaffolding was consistent with
Vygotsky’s model of instruction and emphasizes the teacher’s role as a more knowl-
edgeable learner to help learners to solve problem-oriented tasks [25].

Quintana et al. stated, “the process by which a teacher or more knowledgeable peer
provides assistance that enables learners to succeed in problems that would otherwise
be too difficult” [26]. However, in workplace learning experts’ involvement is not
always feasible. As shown by Billett [27, p.53] one limitation of workplaces as learning
environments is the “reluctance by experts to guide and provide close interactions with
learners”. Hence, other learning aids - i.e. learning material created with certain didactic
considerations in mind, is to be recommended to support learners.

A rather young learning theory that also builds on the ZPD idea and that takes into
account the role of technology for learning is the so-called connectivism [28]. Con-
nectivism postulates that learning occurs when connections are made between nodes in
a learner’s network - where a node can be anything ranging from a piece of knowledge
in the learner’s mind to a digital artefact or another person. This implies that new
knowledge must be connected to existing knowledge or experiences – which can be
understood as a concretization of the ZPD and that such connection can be mediated by
links in the digital environment.

2.4 Learning Styles

The theory of learning styles describes ways in which learning can be different between
individuals and claims that hence different ways of supporting individual learning must
be developed and adapted to a learner’s individual preferences.

The Dunn & Dunn learning style model [29] describes several elements of learning
styles: the environmental domain, the emotional domain, the sociological domain, the
physiological domain and the psychological domain. People deal with information and
ideas in different ways because of their preference. These learning styles influence the
achievement of the learners. Using the right combination of learning preferences will
help the learners to achieve their learning goals.

An Ontology-Based and Case-Based Reasoning Supported Workplace 337

2.5 Case-Based Reasoning

According to Leake [30], case-based reasoning (CBR) can be seen as ‘‘reasoning by
remembering’’. It is a technology-independent methodology [31] for humans and
information systems. CBR is ‘‘[…] the ways people use cases to solve problems and
the ways [people] can make machines use them’’ [32, p.27].

With the use of CBR, one can utilise the experience (a lesson or case content) of
previously situations by characterising the current situation and by using this charac-
terisation to retrieve prior similar situations (former cases comprising of characterisa-
tion and content) from a case repository [33–35]. The retrieve phase is the first of the
four major phases of the CBR cycle of Aamodt and Plaza [33], which comprises of the
following four Rs:

1. Retrieve similar case(s) from the case repository.
2. Reuse the lesson from the retrieved case(s) as the suggested solution for the current

situation.
3. Revise the current case after evaluating it in the current situation.
4. Retain the current case in the case repository.

In structural CBR, which is one of three major CBR approaches [36], the cases are
described using a certain vocabulary or domain model [34]. However, such a model
needs to be acquired ex-ante and can lead to an acquisition bottleneck. Several
approaches, therefore, suggest the use of ontologies [37–39] or, more specific, the use of
enterprise ontologies, which provide a CBR system with enterprise-specific knowledge
[35, 40]. “The more knowledge is embedded into the system, the more effective [it] is
expected to be” [41, p.54]. However, enterprise ontologies need to be created before-
hand, and this can root in a knowledge bottleneck too. Therefore, several approaches
[35, 40, 42–44] suggest the reuse of enterprise architecture descriptions when creating
an enterprise ontology. Since architecture descriptions are descriptions of ‘‘[…] enter-
prise’s organisational structure, business processes, information systems, and infras-
tructure’’ [45, p.3], the architecture descriptions are a solid source of enterprise-specific
models and vocabulary. CBR systems that are utilising an ontology-based knowledge
container, called ontology-based case-based reasoning (OBCBR) systems, ‘‘[…] can
take advantage of this domain knowledge and obtain more accurate results’’ [41, p.54].
Several approaches, such as jCOLIBRI [46], myCBR [47], COBRA [48] and ICEBERG
[35] and other [49, 50] combine ontologies and CBR.

3 Application Scenario

The application scenario was developed based on a real case and as a result of several
interviews and workshops conducted with representatives of our application partner in
Italy, the Marche Region. The application scenario provides all information needed to
instantiate all kinds of meta model relevant for workplace learning, i.e. process models,
business motivation model, organisational model, document model and competency
model. We also introduced two personas: Barnaby, a PA officer who joined the Public

338 S. Emmenegger et al.

Administration of Monti Azzurri not long ago; and Susan, an entrepreneur who
requests a service from the PA.

Our illustration focusses on complex business process tasks that Barnaby performs
and will show what Barnaby should learn and how our approach supports him.

The business process in question is called “Titolo Unico” and aims at providing
permissions to activity requests of citizens, e.g. start a business, restructuring or
extending a commercial location. Depending on the case, the related process can get
rather complex. The most challenging tasks are as follows:

1. Assessing citizen’s application form of an activity request. This includes the aspect
of dealing with mistakes occurring in a form (e.g. declarations that are in contrast to
each other or missing documents that require further material from the citizen,
leading to time delays).

2. Involving appropriate organizational units (i.e. PA offices and/or private parties) for
providing consensus on the activity request.

3. Arranging a service-conference meeting. This is a meeting held if the involved
organizational units (a.k.a. third parties) do not reach a common agreement, or
someone does not respond to the opinion request. It includes the behaviour of
involved parties (e.g. did or did not attend the service conference and did or did not
reply to a PA officer request within a given time).

Performing these activities while complying with related time constraints and
taking right follow-up decisions is of crucial importance for successfully delivering the
service. The two ingredients that enable the PA officer coping with such complexity are
a comprehensive knowledge of the Italian law (i.e. national, regional, provincial and
municipal norms and regulations) and deep work experience in the field. The latter
applies mainly to the second activity on the above list, i.e. involving the appropriate
organizational units. In fact, in this task the PA officer deals with various PAs that differ
from the number of organizational units and the degree of specialization, i.e. PAs of the
major cities (e.g. Rome or Florence) embeds many more organizational units and more
ramified specializations than smaller cities (e.g. Ancona or Macerata). Additionally, in
small realities (e.g. towns like Amandola, Sarnano and San Ginesio) a PA spans several
municipalities, providing services together. Addressing the appropriate organisational
units would be a mission impossible for an unexperienced PA officer. Conversely, a
skilled PA officer knows the Italian law, the structure of the PA to be involved and the
responsible officers in the related organisational units. Additionally, establishing a
direct contact with responsible officers speeds up the execution of tasks (e.g. quicker
responses to requests and less bureaucracy). Therefore, we consider this knowledge -
although informal - highly relevant.

Finally, both accepted activity requests and reasons for the rejected ones help to
improve the acceptance rate of next activity requests. Hence, this knowledge is also
taken into account.

In the follow subsections we are going to introduce the three kinds of learning
support Barnaby receives to overcome the described complexity, i.e. recommending
experts, recommending learning resources and recommending historical cases.

An Ontology-Based and Case-Based Reasoning Supported Workplace 339

3.1 Learning Support

In our application scenario, the entrepreneur Susan requests approval of building a
chalet on the lake of Caccamo, which belongs to the municipality of Serrapetrona,
which is in the province of Macerata, Italy. Susan uses the application form provided at
the web-site of the PA, and we assume that she filled it out correctly.

By submitting the form, the business process at the PA of Monti Azzurri was
started. The PA officer Barnaby took over the task to assess the form. Due to his little
experience, Barnaby needs support to identify all the possible mistakes and/or missing
documents. The LearnPAd system supports Barnaby using historical cases.

Recommending Historical Cases
The LearnPAd system applies the Case-Based-Reasoning approach to retrieve the most
similar historical cases managed in all PAs. The specification of the approach will be
described in the next section. Barnaby looks at the recommendation panel (see
right-hand side of Fig. 1), which shows the case entitled “Building a chalet in a beach
area of Senigallia” as the most similar case successfully managed from the PA
Senigallia. Among other aspects, the retrieved case contains the “lesson learned”
section from which Barnaby learns how to avoid potential missing documents and
misinterpretation of law articles. Barnaby applies this useful information to accomplish
the assessment of the current application form.

Next, based on the type of request specific actions are to be taken. In our case the
type of request is “receptive tourism” and Barnaby knows this type always requires the
authorization of the municipality according to the Italian law (norm 9 of 2006).
However, Barnaby does not know the municipality of Serrapetrona and he is not sure
of which organisational units should be involved. He needs an expert to advise him.

Recommending Experts
Barnaby enters the Learn PAd system, moves to the task “Identify Organisational
Units” he has to perform and checks on the recommendation panel for help (see the
right-hand side of Fig. 1). In the panel contact details of two experts – Sarah Brown
and Laura Cruciani - are displayed. Sarah is a former PA officer of Monti Azzurri who
now works for the municipality of Sarnano. The recommendation system still considers
Sarah as an expert as she dealt with many cases concerning the municipality of Ser-
rapetrona. Laura, is the boss of Barnaby, working for the PA of Monti Azzurri for
many years.

Instead of searching internal phone books, asking around or applying the
trial-and-error method Barnaby can contact one of the experts, who will suggest which
organisational units to involve and to which law article it may refer. Additionally, the
contact details of the personnel could also be provided to start establishing a not too
formal business relationship.

Recommending Learning Resources
After Barnaby got advice which organisational units to involve, he sends requests to
obtain the opinion on the case of the involved parties. Responses are expected within
30 days.

340 S. Emmenegger et al.

However, Barnaby receives answers in time from all but one of the parties. Now he
needs help in how dealing with this situation. The Learn PAd system has a section in
the recommendation panel that refers to learning objects and learning material (see
Fig. 1). All models represented in the wiki are considered learning objects since the
learner needs to get familiar not only with a process, its structure and tasks but also
with the involved roles, organizational units, business documents, IT systems and so
on. For differentiation we call dedicated technical books, tutorials, learning audio and
video file and ‘learning material’.

Thus, Barnaby checks on the learning material provided by the Learn PAd system.
As recommendations in Learn PAd are context-sensitive and personalized the ZPD of a
learner is considered. More in detail, Barnaby has an acquired competency EQF level
of 3 in “Manage Specific Admin Procedure”. Learning material recommended in Learn
PAd is also related to competencies it fosters.

In our example the book “Regulation of Titolo Unico” - is related to the same
competence (“Manage Specific Admin Procedure”) but classified with level 4. The
difference of 1 between the competency levels is considered conform to the ZPD of the
learner. Since reading books falls within Barnaby’s preferences (preferences of PA
officers are also made explicit in the model), in the book “Regulation of Titolo Unico”,
Barnaby learns that if an organisational unit does respond, the “Silence and Consensus”
procedure can be applied, i.e. it is assumed that the not responding partner approves the
request of the entrepreneur. Since no further challenge comes to light, Barnaby finishes
the assessment of the application and finally sends the approval to Susan for realizing
her chalet on the lake of Caccamo.

4 Recommender System Specification

We learned from Vygotsky [23] and others that mentoring is very successful in sup-
porting individual learning. However, particularly in workplace learning, experts might
be too busy to provide the wishful support and spending their time with mentoring is
simply too costly. Hence, an efficient solution is needed that provides a) alternatives,
and b) guides to experts most capable of giving advice with respect to expert knowl-
edge but also regarding the Zone of Proximal Development (ZPD) of the learner.

In our approach for recommending relevant information supporting the user in
learning we consider three modes of learning: simulation (in a simulation environment
a learner can simulate to perform a business process task), browsing (a user can view
and navigate through wiki pages, represent his/her business environment like business
process, tasks, organisational charts, related documents, etc.), and execution mode
(using the wiki as a front end to perform a business service; often called learning by
doing).

Furthermore, we differentiate between learning objects, learning material, experts
and historical cases. As all Wiki articles correlate one-to-one to model elements, they
are regarded as learning objects related to these model elements. Learning material is

An Ontology-Based and Case-Based Reasoning Supported Workplace 341

information dedicated to learning, for example (training) books, audio, and video files.
Simulation and browsing are considered as interactive learning material.

Besides the characteristics of the wiki content (derived from the meta-model and
the models), the recommender ontology also represents characteristics of the learning
material as the EQF level of knowledge that is addressed. Furthermore, the ontology
contains profiles of the learner, i.e. the workers in the PA, including his/her EQF
specification, learning preferences and individual learning goals. With this holistic view
on learners, their working environment, and organizational network it is possible to
identify relevant learning objects, learning material and experts, appropriate for the
ZPD of the learner and according to her learning style.

Most recommendations rely on rules. The left side of these rules (precondition) is
defined regarding the learner’s context - i.e. his/her required and acquired competencies
(including levels) and learning style, as well as the context and application data of the
currently executed business process. The right side of rules (consequence) contains the
recommended material.

4.1 Basis for Recommendations

We start from the premise that in an organisation business goals and objectives are
defined. They can be modelled in a Business Motivation Model BMM [7]. We
extended the BMM meta model by introducing learning goals as new Course of Action.
Learning goals can be related to business goals and strategies that support them. To
achieve a learning goal certain competencies are needed. Note, that we use the term
competency to summarize the three learning outcomes (knowledge, skill, competence)
defined in EQF. Hence, learning goals defined in the BMM are related to the Com-
petency Model in which competencies are described according to EQF including their
levels (1–8).

We further assume that competency profiles are set-up for organisational units or
roles to specify a set of competencies required by this entity. We also maintain
competency profiles of employees which contain the acquired set of competencies. The
difference between the required competencies, of a role and the acquired competencies
of a person who has this role, determines the individual learning goal.

In addition, we can model specific competencies needed for example to perform
certain tasks and hence, related to an extended process model. In this manner we can
identify the knowledge gap, a learner has, the learning goals he/she is supposed to meet
and his/her learning preference that is also captured in the learner’s competency profile.

We finally assume that while a knowledge worker is handling a certain case (i.e. an
instance of a business process), we have information about the task-related and
case-related context. This comprises information about the current task the user is
working on and decisions that have been taken in previous tasks. In addition, it implies
that we have knowledge about the case and the application data that define it – in the
case of the Titolo Unico process introduced in Sect. 2.5, this refers to the filled-in forms
that the applicants submit to the SUAP office and on which Barnaby needs to decide.

342 S. Emmenegger et al.

Depending on the learning mode, recommendations differ in range. The more is
known about the learner’s working context, the better (filtered) the recommendations.
Thus, most valuable recommendations can be provided in the execution mode. Here the
recommender system knows exactly what task a learner is about to perform, what tasks
are already done, what decisions have been taken during the business process so far and
what application data is relevant. In best case within the simulation, such context
information can be ‘faked’, i.e. instead of real data fictional data is used but the same
kind of recommendations can be provided. A less accurate recommendation can be
made within the browsing mode as the learner is free to navigate within one or more
processes. Hence, no information is available about former actions and application
data.

In the following, we are going to introduce three examples of how recommenda-
tions are determined with respect to experts, learning material and historical cases.

4.2 Recommending Experts

The difficulty in recommending experts lies in identifying the appropriate expert.
Obviously, the choice of an expert depends on the work situation - and hence the
knowledge required - as well as on the level of knowledge of the learner and possibly
existing relationships between the learner and the expert. We consider three ways to
determine experts:

1. line managers from the same organisation the learner belongs to
2. colleagues having (had) the same role as the learner but having executed the very

task several times
3. persons having the same role as the learner but belonging to another PA

In the following the recommendation of an experienced colleague is described in
detail. As mentioned above for building the recommender we follow the approach of
Grüninger & Fox [10] for ontology design and evaluation.

Thus, in the following the informal competency question (CQ) is provided first,
followed then by its transformation into an SPARQL query.

Informal Competency Question
Given a user logged into the Learn PAd system and the role this user has in a task and
some constraints regarding task (e.g. the task a performer is about to execute) and work
experience (e.g. a performer’s work experience), what internal experts can be
recommended?

– rationale: the answer is used to recommend experts from the same organisation that
executed the tasks most often.

– decomposition: the name of the user, the user is an actor, an actor has a role in the
task, the role is assigned to more than one performer, the performer has task log.

An Ontology-Based and Case-Based Reasoning Supported Workplace 343

Formal competency question (SPARQL query)

The result of the query is a colleague of the performer, working in the same
organisation, having the same role and great work experience in the tasks the performer
is about to execute. In the recommendation panel, the name and contact details are
provided.

4.3 Recommending Learning Material

For recommending appropriate learning materials, the zone of proximal development
of a learner must be considered. That is, the level of competency that the learning
material fosters should be reasonably higher than the learner’s current level of this
competency (cf. application scenario described above). Furthermore, the learning
material should support the learner’s preferred style as, for example, the learning
material that matches his/her preferred learning style is listed on top of the list and the
link to it is presented in bold characters. It is also possible to completely filter out
learning material that doesn’t meet a learner’s learning style.

Informal Competency Question
Given a user logged into the Learn PAd system and her learning style and some
constraints regarding competencies (e.g. acquired and required, i.e. fostered compe-
tencies and their level), what information material is recommended?

– rationale: the answer is used to provide learning material (i.e. links to documents,
video files, simulation) that are relevant to the learner, i.e. fosters one or more
competencies she has to improve and the level of the fostered competency is exactly
one level higher than the level of the acquired competency.

– decomposition: the name of the user, the user is an actor, an actor has a profile, the
profile contains acquired competencies and their level and the user’s learning style,
learning the material, learning material fosters one or more competency at a certain
level suitable for a certain learning style.

344 S. Emmenegger et al.

Formal competency question (SPARQL query)

After giving two detailed examples of how we build recommendations we describe
the technical implementation of our approach.

4.4 Recommending Historical Cases

As already mentioned, the LearnPad system platform retrieves similar historical cases
by implementing the CBR approach. As we saw in Sect. 2.5, this approach draws upon
existing research, in particular on the approach by Martin et al. [35]. The adopted CBR
approach makes use of ontology for case retrieval and similarity determination, i.e.
OBCBR (see the second part of Sect. 2.5). Our already existing LearnPAd ontology
was extended with concepts representing characterisation of cases. For space reasons,
we show a limited number of both case characterisation concepts in Table 1 and case
content elements in Table 2.

While case characterizations are metadata that describe cases, case content relates
to information used to process a case, e.g. documents or links to external information
sources. Table 2 provides the content element and its manifestation, i.e. the case folder
as a pool containing information produced during case execution.

Extending the LearnPAd ontology with the case characterization concepts allows
inferring similar cases. This reflects the first phase of the CBR cycle in which a query
case is compared to historical cases (see Fig. 2) [35].

An Ontology-Based and Case-Based Reasoning Supported Workplace 345

Similarity Model
To retrieve similar cases, similarity measures were applied. We consider two types of
measures: global similarity measures, which are defined on the level of cases, and local
similarity measures, which are defined on the level of attributes. The global similarity
measure provides a way to aggregate all the local similarity values into one value. For
our application scenario, case characterizations are mostly simple attribute-value pairs –
hence, the global similarity measure can be a simple weighted average of local

Table 1. Case characterisation.

Concepts Descriptions

Applicant A person who submitted the application.
Application
type

Application type can relate to new productive systems (i.e. realization, (de)
localization) or modification of existing ones (i.e. restructuring, transformation,
reconversion, expansion, or quitting an activity).

ATECO ATECO is an Italian standard classification of economic activities issued by the
National Institute of Statistics (ISTAT) – http://www.istat.it/it/archivio/17888
available in Italian only)

Zone A zone can span one or more cities, provinces and regions, e.g. the National
Park of Monti Sibillini located across the two regions Marche and Umbria,
encompassing several provinces and cities.

… …

Table 2. Case content.

Content
element

Content manifestation

Case Folder Documents created, used and/or updated throughout the Titolo Unico process
Reports/notes about decisions, i.e. accepted or rejected application and
explanation
Descriptions of a lesson learned, i.e. missing documents and misinterpretation
of law articles.
…

Fig. 2. Comparison of a query case with historical cases [35].

346 S. Emmenegger et al.

http://www.istat.it/it/archivio/17888

similarities. However, for other scenarios where case characterizations are more com-
plex, more sophisticated functions can be used [51].

Regarding local similarity, applied functions depend on the attribute type. For
string attributes (i.e. free text to be entered by the user), we adopted string similarity
measures such as the Levenshtein string edit distance (which is the minimal number of
edit operations when transforming one string to another) or SOFTFIDFJaroWinkler
similarity [52]. The latter works well with names or text fields that consist of several
words, which might be syntactically arranged in different ways without impacting
semantic similarity. For categorical attributes where possible values are taken from the
predefined list, but not structured in a particular way, we used a simple equality
(corresponding to a similarity of 1) or inequality (similarity 0) of attribute values. Our
application scenario addressed two additional relevant attribute types - Categorical
attributes with taxonomic value range and Categorical attributes which can take more
than one value.

• Categorical attributes with taxonomic value range: those attribute values structured
hierarchically, e.g. via a taxonomy like in a tree structure. Among the existing
approaches that define local similarity measures, we followed the reasoning of
Bergmann [34]. Bergmann proposed to manually assign a similarity value to each
inner node of the tree-based on expert experience. This approach overcomes the
disadvantage of commonly adopted path length methods where nodes in deeper tree
branches are more dissimilar to other branches. In Bergmann approach, the simi-
larity of two leaf nodes is the value that is assigned to the lowest common parent
node of the two leaves – or 1 if the values are equal. As an example, let’s consider
the taxonomic structure of the attribute “Application Type” and its value range,
represented in Fig. 3. The rationale is that e.g. the introduction of a new business –
even if it is not the same sub-type – is more similar to another new business than to
a modification of an existing business. Hence, we defined:

– sim(Localization, Realization) = 0.8 > 0 = sim(Localization, Restructuring).

Categorical attributes which can take more than one value: there exists a 1:n rela-
tionship between a case and the attribute, i.e. the case can be associated with more than
one value of the attribute. We rely on our research [51], which is inspired by retrieval
functions in information retrieval. The main idea is that a historical case should not
be “punished” for having attribute values that are not shared with the new case

Fig. 3. Taxonomy with similarity values assigned to inner nodes.

An Ontology-Based and Case-Based Reasoning Supported Workplace 347

(which we call the “query case”). As long as the values of the historical case match
values of the query case, its additional values are neglected. For example, consider the
two historical cases C1 and C2 and its attribute “zone”. Value for “zone” in C1 is
“beach area”, and in C2 “Beach area” and “national park”. If a civil servant wants to
find cases that are similar to a new business which is located in a “beach area” (Q1), we
argue that both C1 and C2 should be equally similar to Q1 because both share the value
of the zone attribute (“beach area”). However, in case a civil servant wants to find cases
in which a new business is located in a “beach area” and in a “national park” (Q2), only
C2 should be provided as it covers more relevant aspects than C1.

The property of asymmetry of similarity is useful especially in cases where initial
case characterisations (queries) are incomplete. In our application domain, the PA
officer enters attribute values while performing the process. At the beginning of the
process, only a few attribute values might be available whereas in the end all might be
entered. Hence, asymmetry is useful for that domain, but not ensured by most similarity
measures that are traditionally used in CBR.

5 Recommender System Implementation

The recommender system is an integrated part of the Learn PAd system platform and
incorporates mainly the modelling environments, the transformation component, the
learning platform’s Wiki frontend and the ontology recommender component, which
includes a CBR component.

The core of the recommender system is the ontology and recommender (OR) com-
ponent. The platform independent meta-models and the conceptual meta-models are
represented in OWL [53] and loaded at runtime by the OR component. The component
is written in Java and uses the open source library Jena [54] which provides an API to
work with ontologies.

A new set of models published via the modelling environment is exported in a
proprietary XML format. These exported models are transformed in a generic way into
Wiki page representations based on the Eclipse Modelling Framework (EMF) [55]. The
transformation into the ontology instances is using XSLT [56] templates and an XSLT
Engine. This approach enables a straightforward transformation directly into the
specific target model and format of the ontology. The models are transformed into
RDFS [57] conform classes and are formatted in the Turtle format for a convenient
work with text -based version control systems. In a second step, a more generic
meta-meta model-based transformation is evaluated. After the transformation into the
ontology, an inferencing step is applied to run SPIN [58] rules and infer relations to
corresponding conceptual model classes and eventually already existing instance.
Examples of such existing instances might be an organisation’s employee directory
received from a human resource system. The combination of the platform independent
and conceptual models, as well as the transformed model objects, build the upper two
levels in our OR component knowledge base shown in Fig. 4.

348 S. Emmenegger et al.

Valuable recommendation rules require context information besides the informa-
tion from the enterprise models. Application data and logging information from process
executions can provide such information. This extended information is made available
for reasoning together with the ontology and model instances. However, here, we face
the problem of the missing support of multilayer ontologies by the ontology description
standards, like OWL. If we add execution data to our ontology, we have an instance of
an instance problem, i.e. the execution data represents one layer, the process, and other
model instance the next higher layer and our PIMM/LCMM meta-models the highest
layer. Fanesi et al. [59, 60] propose an approach with RDFS-FA respectively OWL-FA
to overcome that problem and still keep it decidable by reasoners. Executed processes
and tasks in our example are added as instances of the process instances. This allows
applying a counting rule which suggests a performer as an expert if the performer has
executed the task most often.

Another set of learning recommendations relies on a case base with historical cases.
The integrated CBR component allows retrieving historical cases of the public
administration stored in the case base. The case base and the similarity calculations are
all based on ontologies. The cases are stored as instances of the case ontology, and the
case characterizations are defined by applied annotations from the CBR ontology.

Fig. 4. Ontology levels and transformations.

An Ontology-Based and Case-Based Reasoning Supported Workplace 349

6 Evaluation

Before proposing the design of our recommender, we compiled requirements based on
literature (see Sect. 2) and the results of a questionnaire that was filled in by 52 civil
servants. In this section, we present a summary of how our recommender design
satisfies these requirements. This is followed by a summary of results from a qualitative
evaluation. The results presented here cover only the recommendations of experts and
learning materials – recommendations of historical cases are more complex to evaluate
and will be validated as part of the final validation of the entire Learn PAd approach.

6.1 Requirements Met

Regarding the interplay of the recommender with the platform that handles the exe-
cution of the business process and the necessary context awareness, the following
requirements were satisfied:

– Questionnaire respondents had stated that, while receiving recommendations on a
particular task, these recommendations should be detailed, but at the same time,
they would like to keep an overview of the whole process. This is satisfied by
presenting a process overview in the main window of the prototype and displaying
recommendations within a sidebar.

– Civil servants emphasized that they often not know where the information con-
tained in existing or new (learning) material should be applied. The recommender
helps them in this because recommendations are context-specific (i.e. they get the
recommendation where they need it). Context-sensitive recommendations are
enabled by rules whose conditions are matched to the learner’s current work context

Furthermore, requirements regarding the competence-awareness of the recommender
are satisfied as follows:

– The choice to use EQF for the definition of learners’ competence levels resulted in
the adoption of an EQF-based meta-model for modelling learner profiles

– Based on the definition of the zone of proximal development (ZPD) in Vygotsky
[23], we formulated the requirement that the recommender should recommend
learning objects aiming to teach the learner competencies at a level just above her
current level. This is satisfied by describing learning objects with intended out-
comes regarding EQF competency levels and making sure that this level is just
above the learner’s current EQF competence level for each recommended learning
object.

Another category of satisfied requirements concerned the adaptation of recommenda-
tions to the learner’s learning style:

– Since questionnaire participants expressed the desire to get recommendations for a
diverse range of content types, the recommender is able to suggest not only doc-
uments or multimedia learning objects but also experts (see below) and historical
cases.

350 S. Emmenegger et al.

– Based on the concepts proposed by connectionist learning [28] which imply the
need to make connections with a learner’s existing knowledge, the recommender
creates such connections e.g. by proposing historical cases.

Finally, requirements regarding expert guidance are satisfied as follows:

– Since questionnaire participants stated the need to have quick access to recom-
mended experts, the recommendations include contact information

– Based on the notion of ZPD [23] and scaffolding learning [24], we ensured that
recommended experts have a more advanced level of knowledge than the learner by
making rules dependent on experts’ EQF competence levels.

6.2 Qualitative Evaluation

The qualitative evaluation consisted of a workshop where civil servants interacted with
a prototype of the Learn PAd collaborative platform, which included – among other
functionalities – the features of the recommender. The interaction was performed along
the application scenario described in Sect. 2.5, and the corresponding application data
and learner context were known to the system. The recommender was integrated into
the prototype in the form of a sidebar where context-dependent suggestions were
displayed. Most of the participants’ feedback revolved around aspects of the recom-
mender that were not yet implemented in the prototype. Thus, participants commented
that there should be:

– a registration form where a user’s competencies can be assessed and then stored in a
profile

– more recommendations of multimedia content
– recommendations also on the level of the whole process.

We consider this feedback as a confirmation that these features will be perceived as
useful when implemented later.

7 Conclusion & Future Work

With our approach, we could show how workplace learning can be improved by
providing context-sensitive and personalized recommendations for learning in a col-
laborative environment. In the future, we plan to work on key performance indicators
for learning goals to assess learning progress. We intend to develop a cockpit to
identify for example goals that are not satisfied and the reasons that cause this effect.

Acknowledgements. This work is supported by the European Union FP7 ICT objective,
through the Learn PAd Project with Contract No. 619583.

An Ontology-Based and Case-Based Reasoning Supported Workplace 351

References

1. US Bureau of Labor Statistics: Employee Tenure in 2014. Washington, USA (2014) http://
www.bls.gov/news.release/pdf/tenure.pdf

2. Meister, J.: Job Hopping Is the ‘New Normal’ for Millennials: Three Ways to Prevent a
Human Resource Nightmare

3. Accenture: Career Capital 2014 Global Research Results (2014)
4. Tynjälä, P.: Perspectives into learning at the workplace. Educ. Res. Rev. 3, 130–154 (2008)
5. De Angelis, G., Pierantonio, A., Polini, A., Re, B., Thönssen, B., Woitsch, R.: Modelling for

Learning in Public Administrations – The Learn PAd approach. In: Karagiannis D., Mayr H.,
Mylopoulos J. (eds.) Domain-Specific Conceptual Modelling: Concepts, Methods, and
Tools. Springer, Cham (2015)

6. OMG: Business Process Model and Notation (BPMN) Version 2.0. Object Management
Group (2013) http://www.omg.org/spec/BPMN/2.0.2/

7. OMG: Business Motivation Model (BMM) Version 1.2. Object Management Group (2014)
http://www.omg.org/spec/BMM/1.2

8. European Comission: Descriptors defining levels in the European Qualifications Framework
(EQF) (2016) https://ec.europa.eu/ploteus/content/descriptors-page

9. Hevner, A., Chatterjee, S.: Design Research in Information Systems. Springer, Boston
(2010)

10. Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies. In:
Workshop on Basic Ontological Issues in Knowledge Sharing, IJCAI-1995, Montreal,
pp. 1–10 (1995)

11. Ghauth, K.I., Abdullah, N.A.: The Effect of incorporating good learners’ ratings in
e-learning content-based recommender system. Educ. Technol. Soc. 14, 248–257 (2010)

12. Khribi, M.K., Jemni, M., Nasraoui, O.: Automatic recommendations for e-learning
personalization based on web usage mining techniques and information retrieval. Educ.
Technol. Soc. 12, 30–42 (2009)

13. Zaíane, O.R.: Building a recommender agent for e-learning systems. In: Proceedings of the
International Conference on Computers in Education, p. 55. IEEE Computer Society (2002)

14. Sikka, R., Dhankhar, A., Rana, C.: A survey paper on e-learning recommender system. Int.
J. Comput. Appl. 47, 27–30 (2012)

15. Schmidt, A., Winterhalter, C.: User context aware delivery of e-learning material: Approach
and architecture. J. Univers. Comput. Sci. 10, 28–36 (2004)

16. Yu, Z., Nakamura, Y., Jang, S., Kajita, S., Mase, K.: Ontology-Based Semantic
Recommendation for Context-Aware E-Learning. In: Indulska, J., Ma, J., Yang, Laurence T.,
Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 898–907. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73549-6_88

17. Abecker, A., Bernardi, A., Hinkelmann, K., Kühn, O., Sintek, M.: Toward a well-founded
technology for organizational memories. IEEE Intell. Syst. Appl. 13, 40–48 (1998)

18. Abecker, A., Bernardi, A., Hinkelmann, K., Ku¨hn, O., Sintek, M.: Context-aware, proactive
delivery of task-specific information: the knowmore project. Inf. Syst. Front. 2, 253–276
(2000)

19. Rychen, D.S., Salganik, L.H.: Key competencies for a successful life and a well-functioning
society. OECD Defin. Sel. Competencies Final report. 1–20 (2003)

20. Ferrari, A.: DIGCOMP: A Framework For Developing And Understanding Digital
Competence in Europe. (2013)

21. European e-Competence Framework (e-CF), Version 3.0 (2016) http://www.ecompetences.
eu/

352 S. Emmenegger et al.

http://www.bls.gov/news.release/pdf/tenure.pdf
http://www.bls.gov/news.release/pdf/tenure.pdf
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BMM/1.2
https://ec.europa.eu/ploteus/content/descriptors-page
http://dx.doi.org/10.1007/978-3-540-73549-6_88
http://www.ecompetences.eu/
http://www.ecompetences.eu/

22. Forehand, M.: Bloom’s Taxonomy. Emerg. Perspect. Learn. Teaching Technol. 12 (2012)
23. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes,

p. 159. Harvard university press, Cambridge (1978)
24. Wood, D., Bruner, J.S., Ross, G.: The role of tutoring in problem solving. J. Child Psychol.

Psychiatry 17, 89–100 (1976)
25. Kim, M.C., Hannafin, M.J.: Scaffolding problem solving in technology-enhanced learning

environments (TELEs): bridging research and theory with practice. Comput. Educ. 56,
403–417 (2011)

26. Quintana, C., Reiser, B.J., Davis, E.A., Krajcik, J., Fretz, E., Duncan, R.G.: A scaffolding
design framework for software to support science inquiry. J. Learn. Sci. 13, 37–41 (2004)

27. Boud, D.: Current Issues and New Agendas in Workplace Learning, p. 163. National Centre
for Vocational Education Research, Leabrook (1998)

28. Siemens, G.: Connectivism: a learning theory for the digital age. Int. J. Instr. Technol.
Distance Learn. 2, 3–10 (2005)

29. Dunn, R., Dunn, K.J.: Teaching Students Through Their Individual Learning Styles: A
Practical Approach. Reston Pub. Co., Reston (1978)

30. Leake, D.B.: CBR in context: the present and future. In: Leake, D.B. (ed.) Case-Based
Reasoning: Experiences, Lessons, and Future Directions. pp. 1–35. AAAI Press/MIT Press,
Menlo Park (1996)

31. Watson, I.: Case-based reasoning is a methodology not a technology. Knowl.-Based Syst.
12, 303–308 (1999)

32. Kolodner, J.L.: Case-based reasoning. Morgan Kaufmann Publishers, San Mateo (1993)
33. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological

variations, and system approaches. AI Commun. 7, 39–59 (1994)
34. Bergmann, R.: Experience Management: Foundations, Development Methodology, and

Internet-Based Applications. Springer, Berlin Heidelberg, Berlin, Heidelberg (2002)
35. Martin, A., Emmenegger, S., Hinkelmann, K., Thönssen, B.: A viewpoint-based case-based

reasoning approach utilising an enterprise architecture ontology for experience management.
Enterp. Inf. Syst. 11, 1–25 (2016)

36. Bergmann, R., Althoff, K.-D., Breen, S., Göker, M., Manago, M., Traphöner, R., Wess, S.:
Developing Industrial Case-Based Reasoning Applications. Springer, Berlin Heidelberg,
Berlin, Heidelberg (2003)

37. Díaz-Agudo, B., González-Calero, P.A.: An Architecture for Knowledge Intensive CBR
Systems. In: Blanzieri, E., Portinale, L. (eds.) Advances in Case-Based Reasoning, pp. 37–
48. Springer, Berlin / Heidelberg, Berlin, Heidelberg (2000)

38. Recio-Garía, J.A., Díaz-Agudo, B.: Ontology based CBR with jCOLIBRI. In: Ellis, R.,
Allen, T., and Tuson, A. (eds.) Proceedings of AI-2006, The Twenty-sixth SGAI
International Conference on Innovative Techniques and Applications of Artificial Intelli-
gence, pp. 149–162. Springer, London (2007)

39. Gao, J., Deng, G.: Semi-automatic construction of ontology-based cbr system for knowledge
integration. Int. J. Electr. Electron. Eng. 4, 297–303 (2010)

40. Martin, A., Emmenegger, S., Wilke, G.: Integrating an enterprise architecture ontology in a
case-based reasoning approach for project knowledge. In: Proceedings of the First
International Conference on Enterprise Systems: ES 2013. pp. 1–12. IEEE, Cape Town
(2013)

41. Recio-García, J.A., Díaz-Agudo, B., González-Calero, P.: jCOLIBRI2 Tutorial, Group of
Artificial Intelligence Application (GAIA). University Complutense of Madrid. Document
Version 1.2 (2008)

42. Kang, D., Lee, J., Choi, S., Kim, K.: An ontology-based enterprise architecture. Expert Syst.
Appl. 37, 1456–1464 (2010)

An Ontology-Based and Case-Based Reasoning Supported Workplace 353

43. Feldkamp, D., Hinkelmann, K., Thönssen, B.: KISS – Knowledge-Intensive Service
Support: An Approach for Agile Process Management. In: Paschke, A., Biletskiy, Y. (eds.)
RuleML 2007. LNCS, vol. 4824, pp. 25–38. Springer, Heidelberg (2007). doi:10.1007/978-
3-540-75975-1_3

44. Thönssen, B.: An Enterprise Ontology Building the Bases for Automatic Metadata
Generation. In: Sánchez-Alonso, S., Athanasiadis, Ioannis N. (eds.) MTSR 2010. CCIS, vol.
108, pp. 195–210. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16552-8_19

45. Lankhorst, M.: Enterprise Architecture at Work. Springer, Heidelberg (2009)
46. Bello-Tomás, J.J., González-Calero, P.A., Díaz-Agudo, B.: JColibri: An object-oriented

framework for building CBR systems. In: Funk, P., González Calero, P. (eds.) Advances in
Case-Based Reasoning SE - 4, pp. 32–46. Springer, Berlin Heidelberg (2004)

47. Roth-Berghofer, T., Bahls, D.: Explanation capabilities of the open source case-based
reasoning tool myCBR. In: Petridis, M. and Wiratunga, N. (eds.) UK Workshop on
Case-Based Reasoning UKCBR 2008, pp. 23–34 (2008)

48. Assali, A.A., Lenne, D., Debray, B.: Heterogeneity in Ontological CBR Systems. In:
Montani, S., Jain, L. (eds.) Successful Case-based Reasoning Applications-I SE-5, pp. 97–
116. Springer, Berlin Heidelberg (2010)

49. Dıaz-Agudo, B., González-Calero, P.: Knowledge intensive CBR made affordable. In:
Weber, R., Gresse von Wangenheim, C. (eds.) Proceedings of the Workshop Program at the
Fourth International Conference on Case-Based Reasoning. Navy Center for Applied
Research in Artificial Intelligence Washington, DC, USA (2001)

50. Wang, Y., Hu, T., Zhang, S.: Ontology-based reconfigurable case-based reasoning system
for knowledge integration. In: SMC 2003 Conference Proceedings. 2003 IEEE International
Conference on Systems, Man and Cybernetics. Conference Theme - System Security and
Assurance (Cat. No.03CH37483), pp. 4878–4883. IEEE, New York(2003)

51. Witschel, H.F., Martin, A., Emmenegger, S., Lutz, J.: A new retrieval function for
ontology-based complex case descriptions. In: International Workshop Case-Based
Reasoning CBR-MD 2015. ibai-publishing, Hamburg (2015)

52. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance metrics for
name-matching tasks. In: Kambhampati, S., Knoblock, C.A. (eds.) Proceedings of IJCAI-03
Workshop on Information Integration on the Web, Acapulco, Mexico, pp. 73–78 (2003)

53. Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, I., McGuiness, D.L., Patel-Schneider, P.
F., Stein, L.A.: OWL Web Ontology Language Reference

54. Dickinson, I.: Jena Ontology API (2009) http://jena.sourceforge.net/ontology/
55. Eclipse Foundation: Eclipse Modeling Framework (EMF) (2016) https://eclipse.org/

modeling/emf/
56. W3C: XSL Transformations (XSLT) Version 1.0, World Wide Web Consortium (1999)

https://www.w3.org/TR/xslt
57. W3C: RDF Schema 1.1, World Wide Web Consortium (2014) http://www.w3.org/TR/rdf-

schema/
58. W3C: SPIN SPARQL Inferencing Notation, World Wide Web Consortium (2011) http://

spinrdf.org/
59. Fanesi, D.: A Multilayer ontology to represent business process models and execution data,

Master’s thesis, University of Applied Sciences and Arts Northwestern Switzerland and
University of Camerino (2015)

60. Fanesi, D., Cacciagrano, D.R., Hinkelmann, K.: Semantic business process representation to
enhance the degree of BPM mechanization-an ontology. In: ES2015 Conference Proceed-
ings, International Conference on Enterprise Systems, pp. 21–32. IEEE (2015)

354 S. Emmenegger et al.

http://dx.doi.org/10.1007/978-3-540-75975-1_3
http://dx.doi.org/10.1007/978-3-540-75975-1_3
http://dx.doi.org/10.1007/978-3-642-16552-8_19
http://jena.sourceforge.net/ontology/
https://eclipse.org/modeling/emf/
https://eclipse.org/modeling/emf/
https://www.w3.org/TR/xslt
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://spinrdf.org/
http://spinrdf.org/

Author Index

Agostinho, Carlos 194
Ahmad, Muhammad Ovais 229

Banijamali, Ahmad 229
Bartolini, Cesare 132
Basciani, Francesco 293
Binh, Nguyen Thanh 93
Biscoglio, Isabella 154
Bošnački, Dragan 249

Calabrò, Antonello 312
Cherifi, Chantal Bonner 216
Cuesta, César Cuevas 171

Dawadi, Research 229
Drake, José M. 171

Efendioglu, Nesat 274
Emmenegger, Sandro 333

Falcioni, Damiano 274
Fantechi, Alessandro 46

Gamboa, Miguel Andrés 25
Groenda, Henning 3

Hinkelmann, Knut 333
Huizing, Cornelis 249

Ilieva, Sylvia 114

Jacobs, Bart 249
Jardim-Goncalves, Ricardo 194
Jorquera, Tom 312

Kuiper, Ruurd 249

Lami, Giuseppe 154
Laurenzi, Emanuele 333
Liukkunen, Kari 229

Lonetti, Francesca 312
Long, Le Thanh 93
Lorré, Jean-Pierre 312

Manova, Denitsa 114
Marchetti, Eda 312
Martin, Andreas 333
Martínez, Patricia López 171
Masood, Tehreem 216
Melo, Raquel 194
Moalla, Néjib 216
Mozzaquatro, Bruno A. 194

Oivo, Markku 229

Parissis, Ioannis 93
Pepi, Stefano 46
Petrova-Antonova, Dessislava 114

Rosa, Gianni 293

Sedrakyan, Gayane 70
Seifermann, Stephan 3
Similä, Jouni 229
Snoeck, Monique 70
Syriani, Eugene 25

Thönssen, Barbara 333
Trentanni, Gianluca 154

van den Brand, Mark 249

Wijs, Anton 249
Witschel, Hans Friedrich 333
Woitsch, Robert 274

Zhang, Congyu 333
Zhang, Dan 249
Zribi, Sarah 312

	Preface
	Organization
	Contents
	Modeling Languages, Tools and Architectures
	Survey on the Applicability of Textual Notations for the Unified Modeling Language
	1 Introduction
	2 Review Method
	2.1 Objectives
	2.2 Review Protocol
	2.3 Phase 1: SLR
	2.4 Phase 2: Quality Assurance
	2.5 Phase 3: Complement

	3 Classification
	3.1 Language
	3.2 Integration
	3.3 Editor

	4 Analysis Results
	5 Discussion of Findings
	5.1 UML Coverage
	5.2 User Editing Experience
	5.3 Applicability in Engineering Teams
	5.4 Threats to Validity

	6 Conclusions
	References

	Using Workflows to Automate Activities in MDE Tools
	1 Introduction
	2 Design of a Reusable Workflow Language
	2.1 Language for Semi-automated Workflows
	2.2 Parameters
	2.3 Activities as Workflows
	2.4 Workflow Enactment by Model Transformation
	2.5 Extensions and Exceptions

	3 Implementation in AToMPM
	3.1 Process
	3.2 Example Workflow for Creating a DSL

	4 Automating Refactoring Tasks
	5 Evaluation of the Improvement of MDE Activities
	5.1 Research Question
	5.2 Metrics
	5.3 Experimental Setup
	5.4 Data Collection
	5.5 Results
	5.6 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm of an Industrial Real Time System
	1 Introduction
	2 Scheduling in Safety-Related RT Applications
	3 Proposed Method
	3.1 TPN
	3.2 CPN

	4 Modelling the Pre-runtime Scheduling
	4.1 Taskset and Constraints Specification
	4.2 Presentation of Fixed Scheduler Models

	5 Modelling the Runtime Scheduling
	5.1 Round Robin with FIFO Queue
	5.2 Round Robin with Priority FIFO Queue
	5.3 Round Robin with Priority FIFO Queue and Preemption

	6 Comparison Between TPN and CPN
	7 Conclusions
	References

	Cognitive Feedback and Behavioral Feedforward Automation Perspectives for Modeling and Validation in a Learning Context
	Abstract
	1 Introduction
	2 Reviewing Cognitive Feedback Needs Through the Prism of Learning Challenges
	3 Simulation as a Cognitive Feedback
	3.1 MDE-Based Simulation for Conceptual Modeling: CodeGen
	3.2 Enhancing Simulation with Feedback to Facilitate Interpretation of Simulation Results
	3.3 What Is needed to Set up an Automated Simulation Feedback?
	3.4 How the Approach Can Be Realized: Inclusion and Generation of Simulation Feedback
	3.5 Locating Simulation Feedback in the Validation Process
	3.6 Assessing the Effectiveness of Feedback - Enabled Simulation as Means for Process-Oriented Cognitive Feedback

	4 Behavioral Feedforward Perspectives Based on Learning Process Analytics
	5 Conclusion
	References

	Automatically Testing of Multimodal Interactive Applications
	Abstract
	1 Introduction
	2 Background
	2.1 Task Trees
	2.2 Finite State Machines
	2.3 Multimodal Interaction: Care Properties
	2.4 Operational Profiles
	2.5 Generating Test Data for IMA

	3 The Interactive Multimodal Application Memo
	4 Taking into Account Conditional Probabilities
	4.1 The TTT Language
	4.2 Transformation Rules from CTT to Test Model by Using the TTT Language

	5 Taking into Account Multimodality
	5.1 Generating Tests for Multimodal Events
	5.2 Checking the Validity of CARE Properties

	6 Test Execution Environment
	6.1 Translation from TTT into C
	6.2 Automatic Translation Solution

	7 Testing the Memo Application
	8 Conclusion
	References

	Automated Web Service Composition Testing as a Service
	Abstract
	1 Introduction
	2 Related Work
	3 TASSA Methodology
	4 Architecture of TASSA Framework
	5 TaaS Functionality of TASSA Framework
	5.1 Dependency Isolation
	5.2 Fault Injection

	6 Case Study
	6.1 Business Process Under Test
	6.2 Test Template Design
	6.3 Test Case Definition
	6.4 Test Case Execution

	7 Conclusions
	Acknowledgments
	References

	Software Testing Techniques Revisited for OWL Ontologies
	1 Introduction
	2 Related Work
	3 Mutation Testing
	3.1 Mutation Testing Applied to OWL
	3.2 Mutation Operators

	4 Measuring the Coverage
	4.1 An Application of NCC

	5 Experiments
	5.1 Experimental Setup
	5.2 Reference Ontologies
	5.3 Experimental Results
	5.4 Validation

	6 Conclusions and Future Work
	References

	Certification of Cash Registers Software
	Abstract
	1 Introduction
	2 Fiscal Software Certification Scenario
	2.1 Certification Basic Concepts
	2.2 Actors, Requirements and Objects of the Certification
	2.3 Actors, Requirements and Objects of the Fiscal Software Certification

	3 Cash Registers
	4 Fiscal Requirements for Cash Registers Software
	5 Cash Registers Certification Process
	5.1 The Certification Process Model
	5.2 The Fiscal Software Testing Suite

	6 Discussion
	7 Conclusions
	References

	Methodologies, Processes and Platforms
	Meta-Tool for Model-Driven Verification of Constraints Satisfaction
	Abstract
	1 Introduction
	2 Lax Meta-Models and Constraints Definition
	3 M2M-Based Constraints Satisfaction Verification
	3.1 Verification Result in Model Form
	3.2 The CVD Meta-Model
	3.3 Overview of the Verification as M2M Transformation
	3.4 Extension of the Approach

	4 Generic Tool for Verification
	4.1 Foundation: Meta-Tool for Automating Tools Generation
	4.2 The CC Meta-Model
	4.3 HOT as the Core of the Meta-Tool
	4.4 ATL Implementation

	5 Use Case Example
	5.1 The MAST-2 Lax Meta-Model
	5.2 CC Model
	5.3 MAST-2 Sample Model
	5.4 Validation with Eclipse OCL
	5.5 CVD Model

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgements
	References

	A Model-Driven Adaptive Approach for IoT Security
	1 Introduction
	2 Background
	2.1 Security Ontologies
	2.2 Adaptive Security
	2.3 Related Works

	3 C2NET Platform
	3.1 C2NET Data Collection Client
	3.2 C2NET Data Collection Framework
	3.3 Security Requirements

	4 Ontology-Based Security Framework for Adaptive Security
	4.1 Adaptive and Evolving Security Modules
	4.2 MDE Layer

	5 Ontology-Based Adaptive IoT Security Scenario
	5.1 Non-conformity Scheduling Scenario
	5.2 Evaluation of a Model-Driven Adaptive Approach

	6 Final Considerations
	References

	Identifying Performance Objectives to Guide Service Oriented Architecture Layers
	Abstract
	1 Introduction
	2 Requirements
	2.1 Service Network or Business Activity Users
	2.2 Performance Emergency Response Team (PERT)

	3 Related Work
	3.1 Performance Based Monitoring Projects
	3.2 Decision in SOA
	3.3 Ontology Based QoS Analysis Techniques

	4 Performance Monitoring Framework
	4.1 Service Performance Ontology
	4.2 Performance Objectives for SOA Layers

	5 Conclusion
	References

	Applications and Software Development
	Empirical Investigation of Scrumban in Global Software Development
	1 Introduction
	2 Related Works
	2.1 Scrum
	2.2 Kanban
	2.3 Scrumban
	2.4 Distributed Software Development

	3 Research Process
	3.1 Software Factory
	3.2 T-Bix Project Case
	3.3 Project Coordination Model
	3.4 Research Approach

	4 Results
	4.1 Findings
	4.2 Limitations
	4.3 Future Research

	5 Conclusions
	References

	Verifying Atomicity Preservation and Deadlock Freedom of a Generic Shared Variable Mechanism Used in Model-To-Code Transformations
	1 Introduction
	2 Preliminaries
	2.1 SLCO
	2.2 Model Transformation
	2.3 Separation Logic
	2.4 VeriFast

	3 Implementing SLCO Atomicity
	4 Specifying and Verifying SLCO Atomicity
	4.1 Class SharedVariableList Specification
	4.2 Class Statement Specification
	4.3 Class Statement Verification

	5 Specifying and Verifying Lock-Deadlock Freedom
	5.1 Lock-Deadlock Freedom for Generated Code
	5.2 Formal Specification and Verification of Lock-Deadlock Freedom in VeriFast

	6 Related Work
	7 Conclusions
	References

	Process Oriented Training with ADOxx: A Model-Based Realisation in Learn PAd
	Abstract
	1 Introduction
	2 Application Scenarios
	2.1 Individual Training
	2.2 Organizational Evolution
	2.3 Business Process Support and Reflection
	2.4 Process Optimization and Improvement
	2.5 Citizens Transparency

	3 Realization Approach
	3.1 Modelling Method Requirements
	3.2 Conceptual Modelling as an Instrument
	3.3 Meta Models as Realization Approach
	3.4 Realization Technology with ADOxx®
	3.4.1 Relevant Technology for Modelling Languages
	3.4.2 Relevant Technology for Mechanisms and Algorithms

	4 The Learn PAd Modelling Method
	4.1 Modelling Language
	4.2 Mechanisms and Algorithms
	4.2.1 People Oriented View
	4.2.2 Semantic Lifting of Business Processes
	4.2.3 Business Processes in Collaboration Portals
	4.2.4 Business Process Verification

	5 Process Oriented Learning Deployment
	5.1 High Level Reference Architecture
	5.2 Modelling Tool Deployment
	5.3 Use Case Realisation

	6 Conclusions
	Acknowledgements
	References

	Model-Based Architecture for Learning in Complex Organization
	1 Introduction
	2 Motivating Example
	3 Learning Architecture
	4 Learning Using the Zachman Framework
	4.1 Horizontal Relations
	4.2 Vertical Relations

	5 Related Work
	6 Conclusion
	References

	An Assessment Environment for Model-Based Learning Management
	1 Introduction
	2 Background and Related Work
	3 Simulation and Monitoring Framework Architecture
	3.1 Simulation Engine
	3.2 Monitoring

	4 Functional Specification of the Learning Simulation and Monitoring Framework
	5 Learn PAd Simulation and Monitoring Framework: The Application to Learn PAd Case Study
	6 Conclusions
	References

	An Ontology-Based and Case-Based Reasoning Supported Workplace Learning Approach
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Recommenders
	2.2 Competency Frameworks
	2.3 Imparting of Knowledge
	2.4 Learning Styles
	2.5 Case-Based Reasoning

	3 Application Scenario
	3.1 Learning Support

	4 Recommender System Specification
	4.1 Basis for Recommendations
	4.2 Recommending Experts
	4.3 Recommending Learning Material
	4.4 Recommending Historical Cases

	5 Recommender System Implementation
	6 Evaluation
	6.1 Requirements Met
	6.2 Qualitative Evaluation

	7 Conclusion & Future Work
	Acknowledgements
	References

	Author Index

