. .

e
-

~ Slimane Hammoudi
~Luis Ferreira Pires
Br e

;///Pﬁilippe Desfray (Eds.)

Communications in Computer and Information Science 692

4th International Conference, MODELSWARD 2016
Rome, Italy, February 19-21, 2016
Revised Selected Papers

@ Springer

Communications
in Computer and Information Science

Commenced Publication in 2007

Founding and Former Series Editors:

Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Sl@zak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil
Phoebe Chen
La Trobe University, Melbourne, Australia
Joaquim Filipe
Polytechnic Institute of Setubal, Setubal, Portugal
Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia
Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India
Takashi Washio
Osaka University, Osaka, Japan
Junsong Yuan
Nanyang Technological University, Singapore
Lizhu Zhou
Tsinghua University, Beijing, China

692

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Slimane Hammoudi - Luis Ferreira Pires
Bran Selic - Philippe Desfray (Eds.)

Model-Driven Engineering

and Software Development
4th International Conference, MODELSWARD 2016

Rome, Italy, February 19-21, 2016
Revised Selected Papers

@ Springer

Editors

Slimane Hammoudi Bran Selic

Université d’Angers/ESEO Malina Software Corp.
Angers Nepean, ON

France Canada

Luis Ferreira Pires Philippe Desfray
Faculty of EEMCS SOFTEAM

University of Twente Paris

Enschede France

The Netherlands

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-66301-2 ISBN 978-3-319-66302-9 (eBook)

DOI 10.1007/978-3-319-66302-9

Library of Congress Control Number: 2017952392

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The present book contains extended and revised versions of selected papers from the
fourth International Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD 2016), held in Rome, Italy during February 19-21, 2016.

MODELSWARD received 118 paper submissions from 38 countries, of which 14%
have been included in this book. The papers were selected by the event chairs, and this
selection was based on a number of criteria that included the evaluation and comments
provided by the Program Committee members, the session chairs’ assessment, and also
the program chairs’ global view of all papers included in the technical program. The
authors of selected papers were then invited to submit a revised and extended version
of their papers, which had to contain at least 30% additional material.

The purpose of the International Conference on Model-Driven Engineering and
Software Development is to provide a platform for researchers, engineers, academics,
as well as industrial professionals from all over the world to present their research
results and development activities in using models and model-driven engineering
techniques for software development. We are confident that the papers included in this
volume will strongly contribute to the understanding of some current research trends in
model-driven engineering and software development, including:

— models syntax and semantics;

— theories and tooling for model verification;

— combined use of ontologies and metamodeling;

— software development automation/code generation;

— application of MDE to different areas, like web services, learning, [oT security, and
industrial real-time systems.

We would like to thank all the authors for their contributions and also express our
gratitude to the reviewers, who have helped to ensure the quality of this publication.

February 2017 Slimane Hammoudi
Luis Ferreira Pires

Bran Selic

Philippe Desfray

Conference Co-chairs

Bran Selic
Philippe Desfray

Program Co-chairs

Slimane Hammoudi
Luis Ferreira Pires

Program Committee

Silvia Abrahdo

Achilleas P. Achilleos

Hamideh Afsarmanesh

Guglielmo De Angelis

Keijiro Araki

Marco Autili

Elarbi Badidi

Luca Berardinelli

Alexandre Bergel

Antonia Bertolino

Lorenzo Bettini

Paolo Bocciarelli

Jan Bosch

Jean-Pierre Bourey

Mark van den Brand

Antonio Brogi

Achim D. Brucker

Bernd Bruegge

Philipp Brune

Christian Bunse

Dumitru Burdescu

Juan Manuel Gonzalez
Calleros

W k. Chan

Hassan Charaf

Yuting Chen

Dickson Chiu

Antonio Cicchetti

Tony Clark

Organization

Malina Software Corp., Canada
SOFTEAM, France

ESEO, MODESTE, France
University of Twente, The Netherlands

Universitat Politecnica de Valencia, Spain
University of Cyprus, Cyprus

University of Amsterdam, The Netherlands

CNR - IASI, Italy

Kyushu University, Japan

University of L’Aquila, Italy

United Arab Emirates University, UAE

Vienna University of Technology, Austria
University of Chile, Santiago, Chile

Italian National Research Council - CNR, Italy
Universita di Firenze, Italy

University of Rome Tor Vergata, Italy

Chalmers University of Technology, Sweden

Ecole Centrale de Lille, France

Eindhoven University of Technology, The Netherlands
Universita di Pisa, Italy

SAP Research, Germany

Technische Universitit Miinchen, Germany
University of Applied Sciences Neu-Ulm, Germany
University of Applied Sciences Stralsund, Germany
University of Craiova, Romania

Universidad Autonoma de Puebla, Mexico

City University of Hong Kong, Hong Kong
BME, Hungary

Shanghai Jiaotong University, China

The University of Hong Kong, Hong Kong
Malardalen University, Sweden

Sheffield Hallam University, UK

VI Organization

Bernard Coulette
Kevin Daimi

Andrea D’ Ambrogio
Florian Daniel
Leonidas Deligiannidis
Birgit Demuth
Giovanni Denaro
Enrico Denti

Zinovy Diskin

Dimitris Dranidis

Schahram Dustdar
Sophie Ebersold
Holger Eichelberger
Maria Jose Escalona
Rik Eshuis
Angelina Espinoza

Vladimir Estivill-Castro
Anne Etien

Dirk Fahland

Joao Faria

Gianluigi Ferrari
Stephan Flake

Piero Fraternali
Jicheng Fu

Carlo A. Furia

Paola Giannini

Cesar Gonzalez-Perez

Carmine Gravino
Klaus Havelund

Brian Henderson-Sellers
Jose R. Hilera
Bernhard Hoisl

Pavel Hruby

Marianne Huchard
Javier Gonzalez Huerta
Emilio Insfran

Stefan Jablonski
George Kakarontzas

Teemu Kanstren
Georgia Kapitsaki

Université Toulouse Jean Jaurés, France

University of Detroit Mercy, USA

Universita di Roma “Tor Vergata”, Italy

University of Trento, Italy

Wentworth Institute of Technology, USA

TU Dresden, Germany

University of Milano-Bicocca, Italy

Universita di Bologna, Italy

McMaster University and University of Waterloo,
Canada

CITY College, Int. Faculty of the University
of Sheffield, Greece

Vienna University of Technology, Austria

IRIT, France

Universitdt Hildesheim, Germany

University of Seville, Spain

Eindhoven University of Technology, The Netherlands

Universidad Autonoma Metropolitana, Iztapalapa
(UAM-I), Spain

Griffith University, Australia

CRIStAL, University Lille 1 - Inria - CNRS, France

Eindhoven University of Technology, Netherlands

FEUP - Faculty of Engineering of the University
of Porto, Portugal

University of Parma, Italy

Redknee Germany OS GmbH, Germany

Politecnico di Milano, Italy

University of Central Oklahoma, USA

ETH Zurich, Switzerland

University of Piemonte Orientale, Italy

Institute of Heritage Sciences (Incipit), Spanish
National Research Council (CSIC), Spain

University of Salerno, Italy

NASA/Jet Propulsion Laboratory, USA

University of Technology, Sydney, Australia

University of Alcala, Spain

WU Vienna, Austria

DXC Technology, Denmark

CNRS and Université de Montpellier, France

Blekinge Institute of Technology, Sweden

Universitat Politécnica de Valéncia, Spain

University of Bayreuth, Germany

Technological Educational Institute of Thessaly,
Greece

VTT, Finland

University of Cyprus, Cyprus

Jacek Kesik
In-Young Ko

Jun Kong
Jochen Kuester
Uira Kulesza

Anna-Lena Lamprecht
Philip Langer
Lior Limonad

Claudia Linnhoff-Popien

Dongxi Liu
Francesca Lonetti

Roberto Lopez-Herrejon

Der-Chyuan Lou
Frederic Mallet
Eda Marchetti
Beatriz Marin
Steve McKeever
Stephen Mellor
Dragan Milicev
Dugki Min

Valérie Monfort
Andrzej Niesler
Halit Oguztiiziin
Olaf Owe

Gordon Pace
Alexander Petrenko
Rob Pettit

Elke Pulvermueller
Iris Reinhartz-Berger
Wolfgang Reisig
Colette Rolland
Jose Raul Romero
Gustavo Rossi
Davide Di Ruscio
Houari Sahraoui
Rick Salay

Comai Sara
Anthony Savidis
Jean-Guy Schneider
Martina Seidl

Peter Sestoft
Marten van Sinderen
John Slaby

Stefan Sobernig

Organization IX

Lublin University of Technology, Poland

Korea Advanced Institute of Science and Technology,
South Korea

North Dakota State University, USA

University of Applied Sciences in Bielefeld, Germany

Federal University of Rio Grande do Norte (UFRN),
Brazil

Lero - The Irish Software Research Centre, Ireland

EclipseSource Services GmbH, Austria

IBM, Israel

Ludwig-Maximilians-Universitit Munich, Germany

CSIRO, Australia

National Research Council (CNR) Pisa, Italy

Ecole de Technologie Supérieure, Canada

Chang Gung University, Taiwan

Université Nice Sophia Antipolis, France

ISTI-CNR, Italy

Universidad Diego Portales, Chile

Uppsala University, Sweden

Freeter, UK

University of Belgrade, Serbia

Konkuk University, South Korea

LAMIH Valenciennes UMR CNRS 8201, France

Wroclaw University of Economics, Poland

Middle East Technical University, Turkey

University of Oslo, Norway

University of Malta, Malta

ISPRAS, Russian Federation

The Aerospace Corp., USA

University of Osnabrueck, Germany

University of Haifa, Israel

Humboldt-Universitdt zu Berlin, Germany

Université Paris 1 Panthéon-Sorbonne, France

University of Cordoba, Spain

Lifia, Argentina

University of L’Aquila, Italy

Université de Montreal, Canada

University of Toronto, Canada

Politecnico di Milano, Italy

Institute of Computer Science, FORTH, Greece

Swinburne University of Technology, Australia

Johannes Kepler University Linz, Austria

IT University of Copenhagen, Denmark

University of Twente, The Netherlands

Raytheon, USA

WU Vienna, Austria

X Organization

Arnor Solberg
Richard Soley
Stéphane Somé
Jean-Sébastier Sottet

Ioannis Stamelos
James Steel
Alin Stefanescu
Arnon Sturm
Hiroki Suguri
Eugene Syriani
Massimo Tivoli
Andreas Tolk
Mario Trapp
Salvador Trujillo
Naoyasu Ubayashi
Sabrina Uhrig
Andreas Ulrich
Gianluigi Viscusi
Shuai Wang
Christiane Gresse von
Wangenheim

Viacheslav Wolfengagen

Amiram Yehudai
Tao Yue
Gefei Zhang

Chunying Zhao
Haiyan Zhao
Kamil Zyla

Additional Reviewers

Michele Amoretti
Onder Babur
Anne-Lise Courbis
Yanja Dajsuren
Adel Ferdjoukh
Yannis Lilis

Hong Lu

Jacopo Soldani
Yannis Valsamakis
Sylvain Vauttier

Sintef, Norway

Object Management Group, Inc., USA

University of Ottawa, Canada

Luxembourg Institute for Science and Technology,
Luxembourg

Aristotle University of Thessaloniki, Greece

University of Queensland, Australia

University of Pitesti, Romania

Ben-Gurion University of the Negev, Israel

Miyagi University, Japan

University of Montreal, Canada

University of L’Aquila, Italy

MITRE Corporation, USA

Fraunhofer IESE, Germany

Ikerlan, Spain

Kyushu University, Japan

Universitdt Bayreuth, Germany

Siemens AG, Germany

EPFL Lausanne, Switzerland

Simula Research Lab, Norway

UFSC - Federal University of Santa Catarina, Brazil

Institute JurInfoR, Russian Federation

Tel Aviv University, Israel

Simula Research Lab, Norway

Hochschule fiir Technik und Wirtschaft Berlin,
Germany

Western Illinois University, USA

Peking University, China

Lublin University of Technology, Poland

University of Parma, Italy

Eindhoven University of Technology, The Netherlands
Ecole des Mines d’Alés, France

TU/e, The Netherlands

University of Montpellier, France

Institute of Computer Science, FORTH, Greece
Software Engineer Institute, China

Universita di Pisa, Italy

Institute of Computer Science, FORTH, Greece
LGI2P, France

Organization XI

Invited Speakers

Manfred Broy Technische Universitit Miinchen, Germany
Paola Inverardi Universita dell’Aquila, Italy
Lionel Briand Université du Luxembourg, Luxembourg

Contents

Modeling Languages, Tools and Architectures

Survey on the Applicability of Textual Notations for the Unified
Modeling Language.
Stephan Seifermann and Henning Groenda

Using Workflows to Automate Activities in MDE Tools
Miguel Andrés Gamboa and Eugene Syriani

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm
of an Industrial Real Time System
Stefano Pepi and Alessandro Fantechi

Cognitive Feedback and Behavioral Feedforward Automation Perspectives
for Modeling and Validation in a Learning Context.
Gayane Sedrakyan and Monique Snoeck

Automatically Testing of Multimodal Interactive Applications
Le Thanh Long, Nguyen Thanh Binh, and loannis Parissis

Automated Web Service Composition Testing as a Service
Dessislava Petrova-Antonova, Sylvia Ilieva, and Denitsa Manova

Software Testing Techniques Revisited for OWL Ontologies
Cesare Bartolini

Certification of Cash Registers Software
Isabella Biscoglio, Giuseppe Lami, and Gianluca Trentanni

Methodologies, Processes and Platforms

Meta-Tool for Model-Driven Verification of Constraints Satisfaction.
César Cuevas Cuesta, Patricia Lopez Martinez, and José M. Drake

A Model-Driven Adaptive Approach for IoT Security
Bruno A. Mozzaquatro, Carlos Agostinho, Raquel Melo,
and Ricardo Jardim-Goncalves

Identifying Performance Objectives to Guide Service Oriented
Architecture Layers.
Tehreem Masood, Chantal Bonner Cherifi, and Néjib Moalla

http://dx.doi.org/10.1007/978-3-319-66302-9_1
http://dx.doi.org/10.1007/978-3-319-66302-9_1
http://dx.doi.org/10.1007/978-3-319-66302-9_2
http://dx.doi.org/10.1007/978-3-319-66302-9_3
http://dx.doi.org/10.1007/978-3-319-66302-9_3
http://dx.doi.org/10.1007/978-3-319-66302-9_4
http://dx.doi.org/10.1007/978-3-319-66302-9_4
http://dx.doi.org/10.1007/978-3-319-66302-9_5
http://dx.doi.org/10.1007/978-3-319-66302-9_6
http://dx.doi.org/10.1007/978-3-319-66302-9_7
http://dx.doi.org/10.1007/978-3-319-66302-9_8
http://dx.doi.org/10.1007/978-3-319-66302-9_9
http://dx.doi.org/10.1007/978-3-319-66302-9_10
http://dx.doi.org/10.1007/978-3-319-66302-9_11
http://dx.doi.org/10.1007/978-3-319-66302-9_11

X1V Contents

Applications and Software Development

Empirical Investigation of Scrumban in Global Software Development 229
Ahmad Banijamali, Research Dawadi, Muhammad Ovais Ahmad,
Jouni Simild, Markku Oivo, and Kari Liukkunen

Verifying Atomicity Preservation and Deadlock Freedom of a Generic

Shared Variable Mechanism Used in Model-To-Code Transformations 249
Dan Zhang, Dragan Bosnacki, Mark van den Brand, Cornelis Huizing,
Bart Jacobs, Ruurd Kuiper, and Anton Wijs

Process Oriented Training with ADOxx: A Model-Based Realisation
in Learn PAd e 274
Robert Woitsch, Nesat Efendioglu, and Damiano Falcioni

Model-Based Architecture for Learning in Complex Organization. 293
Francesco Basciani and Gianni Rosa

An Assessment Environment for Model-Based Learning Management 312
Antonello Calabro, Sarah Zribi, Francesca Lonetti, Eda Marchetti,
Tom Jorquera, and Jean-Pierre Lorré

An Ontology-Based and Case-Based Reasoning Supported Workplace

Learning Approach 333
Sandro Emmenegger, Knut Hinkelmann, Emanuele Laurenzi,
Andreas Martin, Barbara Thénssen, Hans Friedrich Witschel,
and Congyu Zhang

Author Index e 355

http://dx.doi.org/10.1007/978-3-319-66302-9_12
http://dx.doi.org/10.1007/978-3-319-66302-9_13
http://dx.doi.org/10.1007/978-3-319-66302-9_13
http://dx.doi.org/10.1007/978-3-319-66302-9_14
http://dx.doi.org/10.1007/978-3-319-66302-9_14
http://dx.doi.org/10.1007/978-3-319-66302-9_15
http://dx.doi.org/10.1007/978-3-319-66302-9_16
http://dx.doi.org/10.1007/978-3-319-66302-9_17
http://dx.doi.org/10.1007/978-3-319-66302-9_17

Modeling Languages, Tools and
Architectures

Survey on the Applicability of Textual Notations
for the Unified Modeling Language

Stephan Seifermann®™) and Henning Groenda

FZI Research Center for Information Technology, Software Engineering,
Haid-und-Neu-Str. 10-14, Karlsruhe, Germany
{seifermann,groenda}@fzi.de

Abstract. The Unified Modeling Language (UML) is the most com-
monly used software description language. Today, textual notations for
UML aim for a compact representation that is suitable for developers.
Many textual notations exist but their applicability in engineering teams
varies because a standardized textual notation is missing. Evaluating
notations in order to find a suitable one is cumbersome and guidelines
found in surveys do not report on applicability. This survey identifies
textual notations for UML that can be used instead of or in combina-
tion with graphical notations, e.g. by collaborating teams or in different
contexts. Additionally, it rates the notation’s applicability with respect
to UML coverage, user editing experience, and applicability focused on
engineering teams. Our results facilitate the otherwise unclear selection
of a notation tailored for specific scenarios and enables trade-off deci-
sions. We identified and characterized 21 known notations and 12 nota-
tions that were not covered in previous surveys. We used 20 categories
to characterize the notations. Our findings show that a single notation
does not cover more than 3 UML diagram types (mean 2.6), supports
all surveyed state of the art editing features (only one notation supports
all), and fits into existing tool chains.

Keywords: UML - Textual notation - Survey * Editing experience

1 Introduction

The Unified Modeling Language (UML) has become the de-facto standard for
describing software systems. The specification defines a graphical but no textual
notation for fully representing the model. Researchers such as Spinellis [1] argue
that textual notations provide compact and intuitive alternatives. For instance,
Erb represents UML activity diagram-like service behavior specifications textu-
ally in a developer-friendly way and more compact than graphics.

The absence of a standard leads to many textual notations that do not fully
cover UML modeling partially but focus on supporting documentation, being
compact, or serving as input for code generation. They largely differ in syntax,
UML coverage, user editing experience, and applicability in engineering teams.

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 3-24, 2017.
DOI: 10.1007/978-3-319-66302-9_1

4 S. Seifermann and H. Groenda

The latest surveys covering textual UML notations were performed by Luque,
et al. [2-4]. The former two [2,3] focus on the accessibility of UML for blind stu-
dents in e-learning and classrooms, respectively. The latter [4] surveyed tools
for use-case and class diagrams used in industry at 20 companies in the state
of Sao Paolo (Brazil). All surveys target notations used in practice. The liter-
ature studies rely on existing studies on the accessibility domain but do not
search for scientifically published notations. The survey of Mazanec and Macek
[5] focuses on textual notations in general but is a few years old and covers few
notations. It does not represent the current development state and available vari-
ety of notations and modeling environments. The surveys illustrate the variety
of specialized textual notations but do not analyze the editing experience in an
objective way. The editing experience is, however, crucial for engineering teams
and is hard to survey. The latter degrades the selection quality because it limits
the amount of notations to be tested because of time constraints.

The contribution of this survey is the identification and classification of tex-
tual UML notations including the user experience. Engineering teams can use
the classification for identifying appropriate notations for their usage scenarios.
The classification scheme is tailored to support this selection. This survey exam-
ines usability of notations with respect to their syntax, editors, and modeling
environment. Usability in realistic scenarios is determined by covered diagram
types, supported data formats for information exchanges such as XMI, and syn-
chronization approaches with other notations. It additionally evaluates whether
non-necessary parts of the notation can be omitted. This support for sketching
models eases low-overhead discussion and brainstorming. For instance, the UML
specification allows to omit the types of the class attributes.

This survey extends the trade-off selection discussion and includes two addi-
tional notations with respect to our previously published survey [6]. The two
new notations stem from the latest survey from Luque et al. [2] that we became
aware of in the meantime. This adds two new notations that we reviewed with
the same 20 categories covering applicability in engineering teams. Considering
that survey, we identified 12 notations not covered in surveys of other authors.
We rewrote and extended the discussion to identify drawbacks of the notations
that limit applicability. This allows practitioners to focus their notation evalua-
tions on critical aspects. Tool vendors can identify unique features. Researchers
can develop approaches on how to make notations more applicable.

The remainder of this survey is structured as follows: Sect.2 describes the
survey’s review method by defining objectives and the review protocol consisting
of three phases. Section 3 describes the classification scheme based on the defined
objectives. Section 4 presents the extended analysis results in terms of classified
textual notations. Section 5 covers our new extensive discussion of the findings
and discusses the validity of the results. Finally, Sect.6 concludes the paper.

2 Review Method

The review process follows the guidelines of Kitchenham and Charters [7]
for structured literature reviews (SLR) in software engineering based on the

Survey on the Applicability of Textual Notations 5

guidelines in the field of medical research. Their guidelines cover the planning,
conduction, and writing of reviews. Planning involves defining research objec-
tives and creating a review protocol describing the activities in each review step.
The following sections describe our implementation of the SLR and mapping
to the proposed method. The results of our search activities are documented and
available for reproducibility at http://cooperate-project.de/CCIS2016.

2.1 Objectives

Our objectives are to determine each notation’s (O1) coverage of the UML,
(O2) user editing experience and (O3) applicability in an engineering team.
The reasoning requires an analysis of the textual notations and of the modeling
environments. Section 3 presents the detailed classification scheme based on the
objectives and instructions on information extraction from literature.

2.2 Review Protocol

Figure 1 shows an overview of our review protocol. We distinguish three phases
during the conduction: classic SLR, Quality Assurance and Complement.

ad SLR ad Quality Assurance) ad Complement)

Identlflcatlon of Build Reference Identification of
Research Closure Unpublished
¢ Approaches
[Study Select|on) [Study Selection]
¢ Check Availability
Study Quallty Study Quality
Assessment Assessment
v :
[Data Extractlon) [Data Extraction] [Data Extraction]
[Data Synthesw] [Data Synthesis] Data Synthesis

.

Reasoning

Fig. 1. The three phases of the review conduction process used in this survey.

The classic SLR follows the guidelines of review conduction by Kitchenham,
et al. [7]. We extend the SLR with two additional phases in order to increase the

http://cooperate-project.de/CCIS2016

6 S. Seifermann and H. Groenda

quality of the results and to take notations into account that are mainly used
in (industrial) practice: The Quality Assurance phase focuses on incoming and
outgoing literature references as suggested by the Snowballing search approach
[8]. In contrast to the original proposal, we use Snowballing only to cross-check
our SLR search strategy. The Complement phase focuses on textual notations
that are available in practice but are not scientifically published.

2.3 Phase 1: SLR

Reviews according to [7] consist of the five activities marked as SLR in Fig. 1.
The Identification of Research describes the search strategy for collecting
literature. We chose a keyword-based search approach using the search engines
ACM Digital Library, IEEExplorer, CiteSeer, ScienceDirect, SpringerLink and
Google Scholar. These search engines cover relevant journals and are suggested
by Kitchenham and Charters for the software engineering domain. We did not
include EI Compendex and Inspec as we could not query these search engines
without subscriptions. Their focus is on high-qualitative entries and metadata
and they do not belong to a not-covered established publishing authority. We
are confident that the selected search engines and their metadata are sufficient.
We defined a set of keywords T for identifying textual notations and another
one U for identifying the usage of UML. Table 1 presents both sets as variations
of our original terms textual notation, and UML. They are based on commonly
used terminology in the modeling domain. A search query is given by Vi, A V,,
with t; € T AN u; € U. The query enforces the exact matching of keywords.
It considers abstracts and titles because this restricts the search to literature
that focuses on textual notations for UML. Google Scholar has API restrictions
that limit queries on abstracts to papers that have been released at most one
year ago. This restriction does not apply to our title-based search. We restrict
ScienceDirect queries to computer science papers. We implemented a search on
the SpringLink results enabling keyword identification in the abstract. After
collecting the results of all search engines, we merge them and filter duplicates.

Table 1. Keyword groups used in search queries.

Group Keywords

Textual T' | CTS, textual modeling, textual modelling, text-based modeling,
text-based modelling, textual notation, text-based notation, textual
UML, text-based UML, textual syntax

UML U UML, unified modeling language, unified modelling language

Study Selection covers a rough screening based on titles and abstracts to
allow spending more time on relevant literature. We focus on textual notations
for graphical parts of the UML specification [9, p. 683]. We exclude all textual
notations only extending UML or its elements rather than expressing UML itself.

Survey on the Applicability of Textual Notations 7

We exclude all notations that are not related to UML. We exclude notations not
intended for human usage such as data transfer containers, e.g. XMI serialization
[10]. We include (a) primary papers describing a single textual notation, and (b)
secondary survey-like papers including their references as primary sources.

The Study Quality Assessment considers title, abstract, and the content of
the full paper. We decide on in-/exclusion of the remaining papers in this step.

Data Extraction is the process of determining the information required to
judge about the fulfillment of the objectives. Section 3 shows the analyzed fea-
tures of the notations, their hierarchy, and individual decision basis in detail.
We reason on the modeling environment based on information found directly
in literature, implemented prototypes, prototype websites, and source code. We
identify prototypes, their website, and the source code by: (a) following links in
the papers, (b) mining the website of the institute or company of the authors,
(c) and searching for the name of the notation (full name and abbreviation if
used) via the Google search engine and on Githuband visit the first one hundred
search results. Data extraction takes place for the declared primary editor. If
there is more than one prototype, we use the declared primary editor and an
IDE-integrated editor. We assume the latter to profit from advanced accessibil-
ity features of the IDE. If there are editors for several IDEs, we decide in favor
of the Eclipse-based one because Eclipse is open source, highly extensible, and
offers many accessibility features’.

Data Synthesis summarizes the information. We show and summarize the
analysis results according to the classification given in Sect. 3.

2.4 Phase 2: Quality Assurance

The Quality Assurance phase is based on the Snowballing approach [8] of Wohlin
for literature identification. Wohlin suggests starting with an initial set of rele-
vant literature and including relevant forward and backward references. We do
not use Snowballing as primary source for relevant literature because its quality
heavily depends on the initial literature set as described by Wohlin. Instead,
we accept the overhead of a prior SLR phase with broad search terms and use
Snowballing to verify the quality of our SLR phase as described below.

Build Reference Closure determines the completeness of results from the SLR
phase. We collect all directly referenced and referencing literature for the ana-
lyzed papers. We derive the referenced literature from the references section of
the paper. We use Google Scholar to determine incoming references.

The Study Selection and Study Quality Assessment from phase SLR are
applied to identify additional notations.

We perform Data Extraction on selected papers as in the SLR phase and add
the notation to our database.

Data Synthesis summarizes the information as carried out in the SLR phase.

! https://wiki.eclipse.org/Accessibility.

https://wiki.eclipse.org/Accessibility

8 S. Seifermann and H. Groenda

Reasoning addresses why newly identified notations have been missed in the
SLR phase. Section 5 presents the results. This phase is different from Wohlin’s
Snowballing approach and allows verifying the quality of our SLR phase.

2.5 Phase 3: Complement

Identification of Unpublished Approaches focuses on textual notations that are
available in practice but are not scientifically published. We use the Google
search engine to identify the top 5 pages for ‘UML textual notation’, ‘UML
textual notations’, ‘UML textual notations list’. We mine the resulting websites
to identify new approaches. We follow the links from the identified websites
looking for notations or comparisons of notations.

Additionally, we search for unrecognized scientific surveys or notation com-
parisons. We perform a full-text search via Google Scholar with the names of
the three most popular non-scientific notations. We assume that recent surveys
including non-scientific notations cover them and thereby will be included in the
search results. We determine a notation’s popularity by querying Google with
the name of the notation and comparing the announced results with the amount
of other notations. We only included notations that claim to relate to the UML.

In Check Awvailability, we filter all potential notations with dead links.

We perform Data Eztraction for new notations, analyze the information, and
add the notation to our database.

Data Synthesis summarizes the information as carried out in the SLR phase.

3 Classification

This section presents the classification and information extraction goals derived
from the three objectives presented in Sect.2.1. The objectives cover aspects of
what can be edited based on the textual notation definition (O1, O2) as well as
how it can be edited based on modeling environments (02, O3). We use feature
modeling to represent the evaluation classes, their hierarchy, and possible values.
The resulting overview is depicted in Fig.2. The features themselves and how
their values are evaluated for the notations are presented in the following.

Each Textual Notation is defined by a Language (O1, O2) and an optional
Implementation (02, O3) in a modeling environment.

The Implementation is optional and covers all aspects with respect to a mod-
eling environment for a notation. It can have Recent Activity (O3), a License
(03), and can support Change Propagation (02, O3) between different nota-
tions, data Format Exchange (02), and Editor (O2) features.

We divide the classification of the implementation into two parts for a better
overview: integration aspects, and the editor itself. The former covers the features
relevant for integrating an implementation into a tool chain. The latter covers
the editing experience of the editors.

The following subsections will cover the language, integration, and the editor
in that order.

Survey on the Applicability of Textual Notations 9

Textual Notation

Q
Implementation

Release Activity

ﬁ UML Support
{ Sketch Support

Recent Activity Ticket Activity ‘

Open Source | Commit Acitivity ‘

... (12 more)

Closed Source

Textual to
Graphical

Graphical to
Textual
Via Import/Export

CI Format Exchange Export UML XMI ‘

Graphical

g Editable
Syntax | \—({ Layoutable |

Similar to UML
Graphics

Import Custom ‘

Syntax

Highlighting

Outline |

Navigation

P

Optional Mandatory Logical XOR Logical OR

Fig. 2. Feature model for analyzed characteristics and their hierarchy.

3.1 Language

The mandatory Language definition describes the language’s syntax. It consists
of UML Support (O1) for diagram types, can have Sketch Support (02), inte-
grated Layout Information (O2), and be Similar to UML Graphics (02).

UML Support is mandatory and describes the supported UML diagram types.
At least one type has to be supported. A type is supported if the documenta-
tion states it to be supported or the modeling environment allows the creation
of a corresponding type. The considered diagram types are based on the UML
specification [9, p. 682]. The abbreviations are based on the official abbrevia-
tions from [9, p. 682], or self-made if there is no official one: Activity Diagram
(ACT), Class Diagram (CLS), Communication Diagram (COM), Component
Diagram (CMP), Composite Structure Diagram (COS), Deployment Diagram
(DEP), Interaction Overview Diagram (INT), Object Diagram (OBJ), Pack-
age Diagram (PKG), Profile Diagram (PRO), Sequence Diagram (SEQ), State
Machine Diagram (STM), Timing Diagram (TIM), and Use Case Diagram (UC).

Sketch Support is optional and can ease the notation’s usage during discus-
sions. Discussions benefit from quick interaction. Formal full-fledged modeling

10 S. Seifermann and H. Groenda

can extend the interaction time. There is support if only mandatory elements of
UML’s abstract syntax are required.

Layout Information is optional and states if the textual model can contain
graphical layout information. This information allows to improve graphical pre-
sentations of textual statements. The information is irrelevant to describe the
model itself. The interpretation is difficult as only graphic notations illustrate
graphical positions. The information can be either Mized with model elements
or kept Separated. It is marked as Mized if at least one element has mandatory
layout information.

Sitmilar to UML Graphics is optional and denotes if ASCII art memes graph-
ical elements such as arrows in the textual notation. For instance, the characters
<>--> are similar to the UML graphical representation for an aggregation. This
can work well for people knowing the graphical representation but has adverse
effects when typing or for people using accessibility tools like Braille displays. A
notation is marked as similar if there is at least one ASCII art mapping.

3.2 Integration

The integration covers all features that are relevant for integrating an imple-
mentation into a tool chain. Such a decision is based on the costs, extensibility,
support, maintainability and compatibility to existing tools. The following fea-
tures cover these aspects in more detail.

The Recent Activity is optional and indicates the support status. In contrast
to a maintained project, a discontinued project will not receive bugfixes and
might be incompatible to recent software such as new versions of an IDE. We
determine three activity dates that allow judging project activity. One of them
has to be identifiable: Release Activity relates to the date of the last release.
A release can be a proper release, snapshot, or nightly build. Ticket Activity is
determined by the date of the most recently closed ticket. Commit Activity is
given if we can determine the most recent commit.

The License is optional and can be crucial for using and maintaining the
modeling environment. Open Source licenses allow own bug fixing and the devel-
opment of extensions and adaptations. The individual requirements for a license
depend heavily on the usage context of the modeling environment. An expert
review is required to check for a notation of interest if it applies to the own use
case. We therefore differentiate solely between Open Source and Closed Source
licenses. We rely on the list of the Open Source Initiative [11]. If the license is
listed on their website, we treat the project as open source. All other licenses
are considered Closed Source.

Change Propagation can be supported and addresses transferring changes
from one notation into another. The modification in the modeling environment
for a textual notation can therefore result in an according change in a graphical
notation of the same content. This targets a consistent view of the content and
allows different team members to work with different notations during discussion.
This can mean updates in real-time for close collaboration or based on export-
ing and importing models in different environments. We consider the three cases:

Survey on the Applicability of Textual Notations 11

Textual to Graphical, Graphical to Textual, and Via Import/Export propaga-
tion. Textual to Graphical and Graphical to Textual apply if the modeling envi-
ronment includes a textual and a graphical editor. We consider it supported if
changes in one editor are reflected in the other one. Via Import/Ezxport applies if
there is an import or export functionality and notations can be updated sequen-
tially. It is marked if it provides import and export function for UML models in
the standardized XMI data format.

Data Format Exchange is optional and allows integrating the modeling
results into other tools or existing tool chains. We only consider fully-automated
exchange procedures provided by the implementation itself. We do not consider
other procedures such as the error-prone manual translation between notations
or tools that is usually done by assistants. A modeling environment can sup-
port the Import or FExport of a different set of data formats. This feature can
have the value UML XMI as standardized UML data exchange and can list
Custom formats supported by the tools. The values are selected based on the
documentation or file extensions provided in the editing environment.

3.3 Editor

Editor categorizes properties related to user input, interaction, and presentation.
They can be Textual (O2), Graphical (O2) or both. An editor is considered
textual if it contains only text and no graphical elements. Text coloring may be
used. This ensures that textual editors are accessible by accessibility techniques
such as screen readers. Otherwise, it is treated as Graphical.

Textual editors address several features to increase user experience and acces-
sibility. A textual editor can support Visualization (O2), Refactoring (02) of
the model, and user Navigation (O2) within the model. Previous surveys did
not focus on the editing experience in detail. Therefore, we selected the features
according to our objectives.

A Visualization is optional and allows focused presentation of content by
means of information hiding. It can support Folding (O2), and Syntax High-
lighting (02).

Folding (un)hides selected partitions of the model, eases comprehension for
complex models and focused presentation. It is selected if there is at least one
partition in a model that can be hidden or shown based on the editor’s UI.

Syntaxr Highlighting highlights keywords or important structural parts of the
model. It eases comprehension and identifying the structure of models. It is
selected if colors or text formats highlight at least one keyword of the language.

Refactoring is optional and addresses batch changes to the model. For
instance, all occurrences of a model element can be replaced with another one
in one single step instead of using a manual search and replace approach. This
feature exists if there is at least one supported refactoring.

Navigation is optional and addresses navigation to model elements and pro-
viding an overview to users. There can be support for Code Completion (O2),
overviews on model elements by Outline (02), and model element navigation by
Goto (02). Navigation is selected if at least one of its child features is selected.

12 S. Seifermann and H. Groenda

Code Completion is optional and provides completion of a language’s syntax
or referenced model elements. It can provide hints on keywords of the Syntax
or model Elements allowed at the current position. It aids users in specifying
correct models and speeds up changes. We consider two types of values: Syntaz-
based and Element-based completion. They are selected if there is at least one
corresponding code completion feature in the editor.

Outline is optional and provides an overview of the elements in a model. This
can include their hierarchical structure. It is selected if there is at least a list of
all top-level elements in a model depicted in the editor.

Goto is optional and allows direct navigation or jumps to specific model
elements. This eases comprehension and look-up of elements. It is selected if
there is navigation or jump support for at least one element type. It is included
if it is directly in the textual notation and excluded if its only in the Outline.

Graphical editors are optional and allow displaying and editing graphical
version of the models. There are many advanced graphical UML editors available
based on the formal UML specification. [12] gives a good overview in his survey of
interoperability of UML tools. [13] illustrates the features of various UML tools.
There are many comparisons between few selected tools such as IBM Rational
Software Architect, MagicDraw, and Papyrus in [14] or between Rational Rose,
ArgoUML, MagicDraw, and Enterprise Architect in [15]. This survey focuses on
the synchronization aspect with textual languages and their editors (O3). Our
categories show if the editor is mainly a pure static presentation of the model
or allows interactions. We distinguish for Graphical editors if their content is
Editable (O2) and Persistable (O2). This feature is selected if there is a graphical
presentation of the model in the modeling environment.

Editable is optional and denotes if the graphical content can be modified, e.g.
a user can rename elements. This feature is selected if at least some elements in
the graphical editor can be modified.

Layoutable is optional and denotes if modifications to the graphical layout,
e.g. the position of model elements, can be done. Users can structure the graphi-
cal representation in this way. This feature is selected if elements can be moved.

4 Analysis Results

This chapter presents the analysis results for all notations. Tables 2 and 3 provide
an overview and show the determined characteristics for all notations. The fol-
lowing paragraphs provide short notation descriptions. They point out features
or provide comments, which are not already covered by the overview.

Alf [16] has been specified by the OMG and is the UML action language. It is
based on Foundational UML (fUML). There is no official editor implementation.

Alloy [17] is a model finder and solver based on the Z notation [18] instead
of UML. The author compares it to UML in Sects. 4.1 and 6.4 and states that
“Alloy is similar to OCL, the Object Constraint Language (OCL) of UML”2.

2 http://alloy.mit.edu/alloy/faq.html.

http://alloy.mit.edu/alloy/faq.html

Survey on the Applicability of Textual Notations

13

Table 2. Language and textual editor implementation characteristics of analyzed tex-
tual UML notations. Characteristics are: not extractable (-), given (v'), or not given
(x). Layout information is: mixed (m) or separated (s).

Language Textual Editor
Vis. |Navigation
E_1E | 2
3EE 2%
E 2E2Z |22
& SEER |7g |2
.5 5 2 : m E éﬂ : :) §
g 3 Z2EE5EES g2
z 5 %352 |CS 83
Alf CLS, ACT, PKG VX X - - - - -
Alloy X X X XV X X XXX X
AUML SEQ X X X v X X X X X X
AWMo CLS X X X - - - - - - -
blockdiag: seqdiag, actdiag SEQ, ACT vmv - - - - - - -
Clafer CLS, OBJ X X X v X X X X X X
cwknce SEQ X X XV X X X X X X
Dcharts STM V X X - - - - - - -
Earl Grey CLS, SEQ, STM XXXV VVVVVYS
EventStudio SEQ, STM, UC X SV VvV X X XX X X
Finite State Machine STM V X XV X X X XX X
Diagram Editor
HUTN all VX X - - - - - - -
IOM/T SEQ X X X - - - - - - -
js-sequence-diagrams SEQ vmv - - - - - - -
MetaUML CLS, STM, ACT,UC,CMP,PKG v m x - - - - - - -
modsl CLS, COM Vxx v Vv xv vy
Nomnoml CLS, OBJ, STM, UC, PKG vmv - - - - - - -
pef-umled CLS vVmx v X X x XX X
pgf-umlsd SEQ vVmx v X x XXX X
PlantUML CLS, OBJ, SEQ, STM, ACT,UC, v m v - - - - - - -
CMP, DEP
Quick Sequence Diagram Editor ~ SEQ VX X - - - - - - -
TCD CLS vV x v - - - - -
TextUML CLS, STM X X XV XV XV X X
tUML CLS, STM, COS X XXV VXxVVx
txtUML CLS, STM, ACT X X XV VxxvVvx
UML/P CLS, OBJ, SEQ, STM, ACT VsV Vv vV xvyx
UMLet CLS, OBJ, UC, PKG vVmx v X X X X X X
UMLGraph CLS, SEQ vmXx - - - - - - -
uml-sequence-diagram-dsl-tx1 SEQ vmv v vy xvyox
Umple CLS, STM, COS VsV VvV XX XXX X
USE CLS X s XV X X X X X X
WebSequenceDiagrams SEQ vmv - - - - - -
yUML CLS, ACT, UC VXV o- - - - - - -

14 S. Seifermann and H. Groenda

Table 3. Implementation characteristics (without textual editor) of analyzed textual
UML notations. Characteristics are: not extractable (-), given (v'), or not given (Xx).
The License is: open (O) or closed (C) source.

Graph. Format Exchange
Editor

2)

A

Q =~ —_
g é 2 ?n = § = =
Z ~ — O mo =
Alf - - - - - - -
Alloy 2015 O x x v dot, xml als
AUML 2014 - T2G - - png X
AWMo 2013 C T2G,G2T - - x x
blockdiag: seqdiag, 2015 O T2G - - png,svg, pdf X
actdiag
Clafer 2015 O x - - own, Python Z3, Choco JS, alf, x

dot
cwkne 2013 O T2G - - png X
Dcharts - - - - - - -
Earl Grey 2012 O x - - X X
EventStudio 2016 C T2G - - pdf, emf, xml, html X
Finite State Machine 2015 O T2G,G2T v* x own own
Diagram Editor
HUTN - - - - - - -
IOM/T - - - - - - -
js-sequence-diagrams 2015 O T2G - - svg X
MetaUML 2015 O T2G - - X X
modsl 2009 O T2G - - pngjpg X
Nomnoml 2015 C T2G - - png X
pgf-umlcd 2015 O T2G - - X X
pgf-umlsd 2015 O T2G - - X X
PlantUML 2015 O T2G - - uml, svg, eps, txt, html X
Quick Sequence 2015 O x - - pdf, (e)ps, svg, swf, emf, gif, x
Diagram Editor ipg
TCD - - IE - - uml uml
TextUML 2015 O x - - uml X
tUML - - T2GJIE x x uml uml
txtUML 2015 - T2G - - uml X
UML/P - C T2G v X X X
UMLet 2015 O x v’ v bmp, eps, gif, jpg, pdf, png uxf
UMLGraph 2014 O T2G - - png,svg, emf, ps, gif, jpg, fig %
uml-sequence-diagram- 2009 x T2G - - xml, Code X
dsl-txl
Umple 2015 O T2G,G2T v* v/ uml, tuml, uxf, als, use, emf, x
code, yUML

USE 2015 O T2G v x pdf x
WebSequenceDiagrams - x T2G - - X X

yUML - - T2G - - png, pdf, jpg, json, svg X

Survey on the Applicability of Textual Notations 15

It provides a graphical and textual notation but no support for any UML dia-
grams. It has a MIT license and does not provide access to source code.

AUML [19] is an extension to UML SEQ diagrams. Winikoff defined a textual
notation for AUML that has been included in the Prometheus Design Tool®. It
provides a PNG export but no mechanism to import or export a model.

Ckwnc [20] is a web editor that allows specifying UML SEQ diagrams with
a programming language-like syntax. Users can export graphics.

Clafer [21] is a modeling language for CLS diagrams and constraints. The
online tool* provides no graphical view but offers a GraphViz export.

DCharts [22] specifies a meta-model in AToM (see footnote 3)° and a graphi-
cal and textual notation. The textual notation is the leading one and the graphi-
cal implemented only partially [22, p. 35]. No tool or files could be found actually
implementing the theoretical concept. We could not find an advanced textual
editor with collaboration features for the self-defined language. The publication
claims that there is a transformation from the meta-model to UML state charts.

Earl Grey [5] is a proof of concept for an accessible textual notation. The
Eclipse implementation creates a model during editing but there is no export.

EventStudio [23] is a commercial tool suite for modeling object and message
flows. It supports SEQ, STM, and UC diagrams and can generate images. The
images, however, do not correspond to the official UML graphical syntax.

HUTN [24] is an OMG standard for text-based representation of MOF-based
meta-models, which covers the UML meta-model. Humans can use it easier than
XMI. There is no official reference implementation of an editor.

IOM/T [25] allows specifying protocols for agent communication. It covers
AUML [19] sequence diagrams partially, which we consider as SEQ support. The
notation seems to consist of two papers, the latest in 2007.

MetaUML [26] is a DSL leveraging TeX in the background. It creates graphics
in UML style but no UML models.

modsl® is a text to diagram sketch tool based on Java code specifications.
The proposed default editing environment is Eclipse. It creates graphics in UML
style but no UML models.

pgf-umled” and pgf-umlsd® are both based on PGF /TikZ. They leverage TpX
interpreters. This has a major influence on its syntax and structure. They create
graphics in UML style but no UML models.

PlantUML [27] is a textual notation to diagram tool. CLS diagrams can
be exported as UML files for the StarUML and ArgoUML tools. Imports and
synchronization mechanisms are not available. There are various standalone and
integrated editor implementations.

3 https://sites.google.com/site/rmitagents/software/prometheusPDT.
* http://t3-necsis.cs.uwaterloo.ca:8094.

5 http://atom3.cs.mcgill.ca,.

5 https://code.google.com/p/modsl/.

" https://github.com/xuyuan/pgf-umlcd.

8 https://code.google.com /p/pgf-umlsd.

https://sites.google.com/site/rmitagents/software/prometheusPDT
http://t3-necsis.cs.uwaterloo.ca:8094
http://atom3.cs.mcgill.ca/
https://code.google.com/p/modsl/
https://github.com/xuyuan/pgf-umlcd
https://code.google.com/p/pgf-umlsd

16 S. Seifermann and H. Groenda

Quick Sequence Diagram Editor? is a text to diagram sketch tool written in
Java. It creates graphics in UML style but no UML models.

TCD [28] is an ASCII-art converter for CLS diagrams. It provides conversions
from and to UML XMI representations. The implementation is not available.

TextUML [29] exports standard UML models but does not provide a graphi-
cal view. Services such as Cloudfier'? use it as alternative for graphical modeling.

tUML [30] focusses on modeling for validation and verification purposes. The
mentioned prototype is not available.

txtUML [31] uses regular Java syntax for modeling. Java Annotations provide
additional information. There is no dedicated textual or graphical editor but a
Papyrus model can be exported.

UML/P [32] is a textual notation claiming to merge programming and model-
ing by enriching UML models with Java expressions. The Eclipse plugin provides
textual and graphical editors but no import or export.

UMLet!! [33] is a graphical UML sketch tool. It provides graphical UML
shapes. A selected shape is shown in a textual view, which allows to modify the
element. The textual view covers only the selected element. It create graphics in
UML style but no UML models.

UMLGraph [1] uses Java source files and customized JavaDoc comments to
create diagrams. It creates graphics in UML style but no UML models.

uml-sequence-diagram-dsl-tx1'? is a command-line based text to diagram
sketch tool written in the transformation language TXL. The Eclipse IDE plug-
in was not available. The table lists the mentioned features of the guide'3. It
creates graphics in UML style but no UML models.

Umple [34] is a model-to-code generator with textual notations. UML ele-
ments not relevant for code generation such as aggregations are omitted. The
online tool synchronizes the textual and graphical notation.

USE [21] aims for specifying systems with including OCL constraints. The
official tool does not provide an editor but textual and graphical views.

AWMo [35]'* is a Web application targeting the collaboration of blind and
sighted users. The Web tool does not work, there is no included documentation.
The characteristics have been determined based on the source code, available pre-
sentations and the paper. They define their own simplistic meta-model inspired
by CLS diagrams for their proof of concept. Collaboration is realized via store
and load mechanism, which maps to Import and Export in the table.

blockdiag!'® has the subprojects seqdiag'® and actdiag'”. Both are written
in Python and convert textual diagram descriptions to graphics. The syntax is

9 http://sdedit.sourceforge.net/.
19 http://doc.cloudfier.com/creating /language/.
" www.umlet.com.
2 http:/ /www.macroexpand.org/doku.php.
13 http://www.txl.ca/eclipse/ TXLPluginGuide.pdf.
1 http://garapa.intermidia.icmc.usp.br:3000/awmo/.
5 http:/ /blockdiag.com/en/.
16 https://bitbucket.org/blockdiag/seqdiag.
17 http://blockdiag.com/en/actdiag/index.html.

http://sdedit.sourceforge.net/
http://doc.cloudfier.com/creating/language/
www.umlet.com
http://www.macroexpand.org/doku.php
http://www.txl.ca/eclipse/TXLPluginGuide.pdf
http://garapa.intermidia.icmc.usp.br:3000/awmo/
http://blockdiag.com/en/
https://bitbucket.org/blockdiag/seqdiag
http://blockdiag.com/en/actdiag/index.html

Survey on the Applicability of Textual Notations 17

Graphviz’s DOT format. The code and release activities are taken from seqdiag
only being representative. It creates graphics in UML style but no UML models.

Finite State Machine Diagram Editor and Source Code Generator'® has
an own XML Schema Definition, which defines their textual language called
FsmML. Conforming XML documents can be Imported and Exported. Links to
model elements are realized via String matching.

js-sequence-diagrams'? is a text to diagram sketch tool written in Java Script.
It is inspired by the commercial WebSequenceDiagram. It parses plain text and
can report basic parsing errors. Its shared with an own license title as simplified
BSD. It creates graphics in UML style but no UML models.

nomnoml?’ is a text to diagram sketch tool written in Java Script. The syntax
is oriented at the graphical UML shapes. It creates graphics in UML style but
no UML models.

WebSequenceDiagrams®® is a text to diagram sketch tool written in Java
Script. It creates graphics in UML style but no UML models. A free alternative
is js-sequence-diagrams.

yUML [36] is a text to diagram sketch tool. It creates graphics in UML style
but no UML models.

21

5 Discussion of Findings

This section discusses the results of the survey presented in the previous section.
We use the results to reason about the applicability in engineering teams and
especially identify open points and potential improvements. Additionally, we dis-
cuss threats to validity. Section 5.1 focuses on the UML coverage of the found
notations. The quality of the provided user editing experience is covered in
Sects. 5.2 and 5.3 illustrates the issues of using the notations in engineering
teams. Threats to internal and external validity are discussed in Sect. 5.4.

5.1 UML Coverage

The benefit of a high coverage of UML diagram types is a wide range of applicable
scenarios. This stems from an increased probability that a diagram type required
for a scenario is supported by a notation. The results of our survey with respect
to the UML coverage are shown in Fig.3. We discovered that most notations
(14 out of 31) only support a single diagram type. This prohibits modeling dif-
ferent aspects of a system such as structure and behavior in a single model.
Relations between elements describing different aspects are hard to express. The
conceptional HUTN notation supports all diagram types but provides no imple-
mentation. In summary, only six notations support four or more diagram types
and are, therefore, not restricted to specific application scenarios.

18 http://www.stateforge.com/.

19 https://bramp.github.io/js-sequence-diagrams,.
20 https://github.com/skanaar/nomnoml.

2! https://www.websequencediagrams.com/.

http://www.stateforge.com/
https://bramp.github.io/js-sequence-diagrams/
https://github.com/skanaar/nomnoml
https://www.websequencediagrams.com/

18 S. Seifermann and H. Groenda

i 90 LT T T T T T TTTTTT0
30 + —
172] 2]
5 g
g 25 — -g 15 |
Z 20 - +4 Z
1) &n
£ 15 |- 4 £ 7
g g,
10 ~ 7 g 5
wn w2
B 5 — — =
0 ol o+ 0 -
0 2 4 6 8 10 12 14 noSE ~08vn=2a 0
AECunesS8BHESS
CHLSYS0KXS00RZEE

Supported UML Diagram Types UML Notation

Fig. 3. UML coverage of the surveyed notations.

We found that the most supported diagram types are class (20) and sequence
diagrams (15) as well as state machines (13). Only few notations support other
diagram types as shown in Fig. 3. No implementation exists for TIM, PRO, and
INT diagrams. The focus of the notations is in line with research on graphical
UML usage: Dobing and Parsons [37] as well as Erickson and Siau [38] already
identified the class diagram as most commonly used diagram. Both consider
sequence diagrams and state machines to be in the top five used diagram types.
Reggio et al. [39] achieved similar results and stress that practitioners only use
small subsets of the UML elements. As a consequence, vendors of textual nota-
tions tailor their notations to support the commonly used UML diagram types
and elements in order to facilitate usage. Potential users of the notation have,
nevertheless, to carefully check if it supports the elements required for the envi-
sioned usage scenario.

5.2 User Editing Experience

Even if using state of the art editors increases efficiency when working with
textual representations, only about half of the notations (18 of 33) provide spe-
cialized editors. The support for specific features is visualized in Fig. 4.

Basic Features. All implementations support syntax highlighting. Around a third
of the implementations provide navigation support including outlines and goto
links. The same amount provides view customization such as folding. This most
probably stems from textual editing frameworks such as Xtext?? generating these
features automatically and without additional effort.

22 https://eclipse.org/Xtext.

https://eclipse.org/Xtext

Survey on the Applicability of Textual Notations 19

Syntax Highlighting —
Folding —

Refactoring —

Code Completion (Syntax) —
Code Completion (Element) —
Outline —

Goto ‘ | | —

0 5 10 15 20

Fig. 4. Amount of notations that support specific textual editor features.

Large Model Handling. Most editors, however, lack features required for working
with more complex models as given within industrial contexts. We consider code
completion and refactorings to be such features because they free the user from
knowing the whole model in order to finish their modeling tasks. The support
for code completion is twofold: About 25% of the implementations support code
completion for syntactical elements such as keywords but lack support for code
completion for elements. Therefore, a user has to remember all usable elements
or has to look them up. Only one surveyed editor supports code completion for
elements. Only two editors support refactorings such as renaming of elements.
The results indicate that the models created with most of the surveyed notations
have a limited maintainability: Refactorings ease restructuring or fixing typos
but the majority of editors do not support them. Finding applicable elements
becomes cumbersome without advanced code completion. Therefore, most nota-
tions should be used for small to medium sized models or for simple models
without complex relationships between elements.

Coupling with Graphical Notation. Seven implementations include a graphical
editor to visualize the modeled UML diagram and five implementations allow
editing it. In contrast, 22 implementations provide the export of graphics. This
indicates that graphical representations are still in the focus but mostly for
documentation purposes.

5.3 Applicability in Engineering Teams

Active development is crucial to get bug fixes and helps when it comes to upgrad-
ing the editing environment. About half of our surveyed notations had recent
activity in 2015 and later, which means they are actively developed. Unfortu-
nately, only two-thirds of the notations provide a clear license statement, which
is crucial for using a notation and its implementation in professional contexts.
The integration in existing tool chains mainly depends on supported import
and export formats. Two-thirds (22) of the surveyed implementations provide
exports in various formats and only five implementations support imports.
Roundtrip engineering, however, requires both features and usage of well-structur-
ed formats. Only 8 out of 22 notations provide well-structured formats for exports.

20 S. Seifermann and H. Groenda

Four out of five notations allow the import of well-structured formats. The remain-
der uses graphics for information exchange. The most prominent well-structured
exchange format are serialized UML models. Basically, this means that only four
notations are ready for integration in existing tool chains that enable collabora-
tive modeling in various notations, for instance. Information exchange is only par-
tial and requires human intervention to reconstruct missing information includ-
ing graphical positions, changes in one format or information not expressible in
graphics.

5.4 Threats to Validity

We address four common threats to internal validity: incomplete selection, incon-
sistent measurements, biased experimenter, and incomplete information.

We addressed incomplete selection with two additional phases that check the
completeness of search results. During the survey, we found a total of 33 textual
UML notations. Two notations originate from including the latest survey of
Luque et al. [2] in this extended version. These notations are not published
scientifically and therefore did not originate from the first two phases that focus
scientific notations. In addition, they are not popular enough to be listed in the
very first Google search results that we used to find industrial notations. We
would, however, have found the survey of Luque et al. in earlier phases if it had
been published at the time we conducted our literature study.

We found half of the remaining 31 notations in the SLR phase. In the Qual-
ity Assurance phase, we found four new papers and three new notations. The
first phase did not reveal three of these papers [17,25,40] because their main
contribution was not about a textual UML notation. Therefore, they did not
clearly indicate that they also cover a textual UML notation in their title or
abstract. The remaining paper [31] is not indexed by the search engines that we
used. The major new result of the completion phase was the textual UML tool
list [41] provided by Jordi Cabot, a professor with research interests in model-
driven software engineering at the ICREA research institute. We found eleven
new notations compared to the previous phase. We did not find ten of them in
earlier phases because of their scientific focus. The found notations of the third
phase have not been scientifically published. The remaining notation [35] did use
the term textual language, which we consider to broad for our research subject.
Nevertheless, we consider the keywords of the SLR phase and the whole notation
finding process to be successful and appropriate.

The Complement phase did not include an extensive search strategy because
we focus on scientifically published notations in this survey. We complement
previous intensive search strategies with the most common notations used in
industry. To achieve this, we imitate the common search strategy that covers
the very first popular results only. We included all notations of previous surveys
[3-5] in the analysis. In total, we found 12 new notations compared to previous
surveys: Alloy, AUML, Clafer, Dcharts, IOM/T, pgf-umled, pgf-umlsd, TCD,
tUML, txtUML, UML/P, and uml-sequence-diagram-dsl-txl.

Survey on the Applicability of Textual Notations 21

We addressed inconsistent measurements and biased experimenter with a
rigorous review protocol and instructions for the characteristics extraction. The
characteristics for the notations can be determined in an objective way. Mazanec
et al. [5], however, used subjective characteristics such as readability or simplicity
and did not mention how they have been determined.

We addressed incomplete information by using multiple information sources.
We characterized all 33 notations by extracting information from the papers,
and mining websites and source code (if possible). The former is the standard
approach during a SLR but the two latter allow filling the gaps left by the
scientific papers. Especially, the project’s activity and editor features are most
commonly not covered by publications. Only Alf, Dcharts, HUTN, IOM/T, and
TCD did not provide sufficient information to determine these characteristics.

The external validity requires generalizable results. The survey results are
applicable for scenarios that cover collaborative UML editing with textual nota-
tions in general because the characteristics do not focus on a specific scenario.
This is a benefit over the previous surveys [2—4] that focused on teaching UML to
visually impaired people or focused on specific UML diagram types in industry.
The fuzzy characteristics in [5] lead to a limited generalization and applicability.

6 Conclusions

The Unified Modeling Language (UML) is the most commonly used modeling
language. Its specification defines a graphical but no complete textual notation.
Many specialized textual notations evolved but they are incompatible and highly
fragmented with respect to UML coverage, editing experience, and applicabil-
ity in engineering teams. There is no notation that clearly dominates the other
notations in every aspect. Therefore, practitioners have to select a notation per
usage scenario and do many trade-off decisions. This survey facilitates the selec-
tion of notations by providing a comprehensive list of 33 UML notations and
their 20 characteristics related to applicability. The characteristics do not focus
on a specific application domain but provide objective selection criteria.

The review method used in the survey produces reproducible and reliable
results. We applied a classic systematic literature review in order to identify
scientifically published approaches. In the second phase, we used snowballing
to build a reference closure in order to find publications not covered by the
keyword-based search from the first phase and to validate the keywords. In a
third phase, we used Google searches to find not-scientifically published notations
and complement our existing results. This approach is beneficial because we
identified about half of the notations in the latter two phases.

The major insights we gained by analyzing our results are: (a) Users have
to know the UML diagram types they require in their scenearios because most
notations only support a single diagram type and there is no single implemented
notation that supports all types. (b) Using the surveyed notations for complex
UML models degrades the maintainability because almost all implementing tools
do not provide editing support for complex tasks such as refactoring models or

22 S. Seifermann and H. Groenda

referencing existing elements. (¢) Teams can integrate the textual notation in
existing tool chains mostly by using imports and exports of UML models but only
few notations provide this feature. We could, however, not find a single notation
that is applicable without restrictions and clearly dominates all other notations.
Instead, many notations simply focus on graphics generation for documentation
purposes and do not allow modeling and processing of the modeled information.
A scenario-specific selection process is still necessary.

Practitioners, tools vendors, and researchers can benefit from this survey:
Practitioners can focus on evaluating important characteristics of notations
instead of struggling with finding notations and extracting the information with
respect to UML coverage, editing experience, and applicability in engineering
teams. Even if the survey does not cover all relevant aspects, it provides a con-
siderable foundation for preselecting notations. This lowers the evaluation effort,
allows to evaluate more notations within given time constraints, and therefore
enables better selections.

Tool vendors for notations can identify seldom supported features and either
advertise their support for these features or can try to integrate them in order
to increase their market share.

Researchers can identify seldom supported features and can investigate the
reason for the bad coverage. For instance, if tool vendors worry about the com-
plexity of their notation when including further diagram types, researchers can
develop approaches for integrating views in textual modeling frameworks.

We identified two tasks as future work: First, we see a need for notations that
target proper UML modeling. This means a considerable UML diagram type
coverage as well as support for import and export of standard UML models.
Engineering teams cannot integrate other tools into their existing environments.
Second, we need a systematic comparison and rating approach for the supported
UML elements. This requires a definition of the UML elements usually contained
in a UML diagram type and a set of sample models for elements. If the notation
cannot represent the model, it does not support the corresponding element. We
plan to develop guidelines and example models for assessing the UML coverage
of UML notations.

Acknowledgements. This work is funded by the German Federal Ministry of Labour
and Social Affairs under grant 01KM141108.

References

1. Spinellis, D.: On the declarative specification of models. IEEE Softw. 20, 94-96
(2003)

2. Luque, L., Brandao, L., Tori, R., Brandao, A.: On the inclusion of blind people in
UML e-learning activities. In: RBIE 2015, vol. 23, p. 18 (2015)

3. Luque, L., Brandao, L.O., Tori, R., Brandao, A.A.F.: Are you seeing this? what is
available and how can we include blind students in virtual UML learning activities.
In: SBIE 2014 (2014)

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

Survey on the Applicability of Textual Notations 23

Luque, L., Veriscimo, E.S., Pereira, G.C., Filgueiras, L..V.L.: Can we work together?
on the inclusion of blind people in UML model-based tasks. In: Langdon, P.M.,
Lazar, J., Heylighen, A., Dong, H. (eds.) Inclusive Designing, pp. 223-233.
Springer, Cham (2014). doi:10.1007/978-3-319-05095-9_20

Mazanec, M., Macek, O.: On general-purpose textual modeling languages. In:
DATESO 2012, pp. 1-12 (2012)

Seifermann, S., Groenda, H.: Survey on textual notations for the unified modeling
language. In: MODELSWARD 2016, pp. 28-39. SciTePress (2016)

Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering (version 2.3). EBSE Technical report, EBSE-2007-
01, Keele University (2007)

Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: EASE 2014, pp. 38:1-38:10. ACM (2014)
OMG: Unified Modeling Language (UML) - Version 2.5. (2015). http://www.omg.
org/spec/UML/2.5/PDF

OMG: XML Metadata Interchange (XMI) - Version 2.5.1. (2015). http://www.
omg.org/spec/XMI/2.5.1/PDF

Open Source Initiative: Licenses by name (2015). http://opensource.org/licenses/
alphabetical. Accessed 04 Aug 2015

Kern, H.: Study of interoperability between meta-modeling tools. In: Fed CSIS 2014,
pp. 1629-1637 (2014)

Wikipedia: List of unified modeling language tools (2015). https://en.wikipedia.
org/wiki/List_of _Unified_Modeling_Language_tools. Accessed 04 Aug 2015
Safdar, S.A., Igbal, M.Z., Khan, M.U.: Empirical evaluation of UML mod-
eling tools—a controlled experiment. In: Taentzer, G., Bordeleau, F. (eds.)
ECMFA 2015. LNCS, vol. 9153, pp. 33-44. Springer, Cham (2015). doi:10.1007/
978-3-319-21151-0-3

Khaled, L.: A comparison between UML tools. In: ICECS 2009, pp. 111-114 (2009)
OMG: Action language for foundational UML (ALF). PDF (2013). http://www.
omg.org/spec/ALF/1.0.1/

Jackson, D.: Alloy: a lightweight object modelling notation. ACM TOSEM 11,
256-290 (2002)

Information technology - z formal specification notation - syntax, type system and
semantics. Standard, International Organization for Standardization (2002)
Winikoff, M.: Towards making agent UML practical: a textual notation and a tool.
In: NASA /DoD Conference on Evolvable Hardware, pp. 401-412 (2005)

Walton, D.: CKWNC - UML sequence diagram editor (2013). http://www.ckwnc.
com

Zayan, D.O.: Model evolution: comparative study between clafer and textual
UML (2012). http://gsd.uwaterloo.ca/sites/default/files/Model%20Evolution;
%20Clafer%20versus%20Textual%20UML.pdf. Project Report

Feng, H.: DCharts, a formalism for modeling and simulation based design of
reactive software systems. Master’s thesis, School of Computer Science, McGill
University, Montreal, Canada (2004)

EventHelix: Eventstudio system designer 6 (2016). https://www.eventhelix.com/
EventStudio

Vieritz, H., Schilberg, D., Jeschke, S.: Access to UML diagrams with the HUTN. In:
Jeschke, S., Isenhardt, I., Hees, F., Henning, K. (eds.) Automation, Communication
and Cybernetics in Science and Engineering 2013/2014, pp. 751-755. Springer,
Cham (2014). doi:10.1007/978-3-319-08816-7_58

http://dx.doi.org/10.1007/978-3-319-05095-9_20
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/XMI/2.5.1/PDF
http://www.omg.org/spec/XMI/2.5.1/PDF
http://opensource.org/licenses/alphabetical
http://opensource.org/licenses/alphabetical
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
http://dx.doi.org/10.1007/978-3-319-21151-0_3
http://dx.doi.org/10.1007/978-3-319-21151-0_3
http://www.omg.org/spec/ALF/1.0.1/
http://www.omg.org/spec/ALF/1.0.1/
http://www.ckwnc.com
http://www.ckwnc.com
http://gsd.uwaterloo.ca/sites/default/files/Model%20Evolution;%20Clafer%20versus%20Textual%20UML.pdf
http://gsd.uwaterloo.ca/sites/default/files/Model%20Evolution;%20Clafer%20versus%20Textual%20UML.pdf
https://www.eventhelix.com/EventStudio
https://www.eventhelix.com/EventStudio
http://dx.doi.org/10.1007/978-3-319-08816-7_58

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

S. Seifermann and H. Groenda

Doi, T., Yoshioka, N., Tahara, Y., Honiden, S.: Bridging the gap between AUML
and implementation using IOM/T. In: Bordini, R.H., Dastani, M., Dix, J., Fallah
Seghrouchni, A. (eds.) ProMAS 2004. LNCS (LNAI), vol. 3346, pp. 147-162.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-32260-3_8

Gheorghies, O.: MetaUml - GitHub (2015). https://github.com/ogheorghies/
MetaUML. Accessed 14 Aug 2015

Roques, A.: PlantUml: Open-source tool that uses simple textual descriptions to
draw UML diagrams (2015). http://plantuml.com/. Accessed 14 Aug 2015
Washizaki, H., Akimoto, M., Hasebe, A., Kubo, A., Fukazawa, Y.: TCD: a text-
based UML class diagram notation and its model converters. In: Kim, T., Kim,
H.-K., Khan, M.K., Kiumi, A., Fang, W., Slezak, D. (eds.) ASEA 2010. CCIS, vol.
117, pp. 296-302. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17578-7_29
Chaves, R.: TextUml toolkit (2015). http://abstratt.github.io/textuml/readme.
html. Accessed 14 Aug 2015

Jouault, F., Delatour, J.: Towards fixing sketchy UML models by leveraging textual
notations: application to real-time embedded systems. In: OCL 2014, pp. 73-82
(2014)

Dévai, G., Kovacs, G.F., An, A Textual, executable, translatable UML. In: OCL
2014, pp. 3-12 (2014)

Gronniger, H., Krahn, H., Rumpe, B., Schindler, M., Vélkel, S.: Text-based mod-
eling. CoRR abs/1409.6623 (2014)

Auer, M., Tschurtschenthaler, T., Biffl, S.: A flyweight UML modelling tool for
software development in heterogeneous environments. In: EUROMICRO 2003, pp.
267-272. IEEE (2003)

Lethbridge, T.: Umple: an open-source tool for easy-to-use modeling, analysis, and
code generation. In: MoDELS 2014 (2014)

Nero Grillo, F., Mattos Fortes, R.P.: Tests with blind programmers using
AWDMo: an accessible web modeling tool. In: Stephanidis, C., Antona, M. (eds.)
UAHCI 2014. LNCS, vol. 8513, pp. 104-113. Springer, Cham (2014). doi:10.1007/
978-3-319-07437-5_11

Harris, T.: Create UML diagrams online in seconds, no special tools needed (2015).
http://yuml.me. Accessed 14 Aug 2015

Dobing, B., Parsons, J.: How UML is used. Commun. ACM 49, 109-113 (2006)
Erickson, J., Siau, K.: Can UML be simplified? practitioner use of UML in separate
domains. In: EMMSAD 2007, pp. 89-98 (2007)

Reggio, G., Leotta, M., Ricca, F., Clerissi, D.: What are the used UML diagram
constructs? a document and tool analysis study covering activity and use case
diagrams. In: MODELSWARD 2014, pp. 66-83 (2014)

He, Y.: Comparison of the modeling languages alloy and UML. In: SERP 2006,
pp. 671-677 (2006)

Cabot, J.: Modeling languages - UML tools (2015). https://modeling-languages.
com/uml-tools. Accessed 04 Aug 2015

http://dx.doi.org/10.1007/978-3-540-32260-3_8
https://github.com/ogheorghies/MetaUML
https://github.com/ogheorghies/MetaUML
http://plantuml.com/
http://dx.doi.org/10.1007/978-3-642-17578-7_29
http://abstratt.github.io/textuml/readme.html
http://abstratt.github.io/textuml/readme.html
http://dx.doi.org/10.1007/978-3-319-07437-5_11
http://dx.doi.org/10.1007/978-3-319-07437-5_11
http://yuml.me
https://modeling-languages.com/uml-tools
https://modeling-languages.com/uml-tools

Using Workflows to Automate Activities
in MDE Tools

Miguel Andrés Gamboa and Eugene Syriani(®)

Université de Montréal, Montreal, Canada
{gamboagm,syriani}@iro.umontreal.ca

Abstract. Model-driven engineering (MDE) enables to generate soft-
ware tools by systematically modeling and transforming this models. How-
ever, the usability of these tools is far from efficient. Common MDE activi-
ties, such as creating a domain-specific language, are non-trivial and often
require repetitive tasks. This results in unnecessary increases of develop-
ment time. The goal of this paper is to increase the productivity of mod-
elers in their every day activities by automating the tasks they perform
in current MDE tools. We propose an MDE-based solution where the user
defines a reusable workflow that can be parametrized at run-time and exe-
cuted. Our solution works for frameworks that support two level meta-
modeling as well as deep metamodeling. We implemented our solution in
the MDE tool AToMPM. We also performed an empirical evaluation of
our approach and showed that we reduce both mechanical and thinking
efforts of the user. The ideas and concepts of this paper were introduced
at the MODELSWARD conference [1] and are extended in this paper.

1 Introduction

Model-Driven Engineering (MDE) has been advocating faster software devel-
opment times through the help of automation [2]. MDE technologies combine
domain-specific languages (DSL), transformation engines and code generators to
produce various software artifacts. Although some studies report success stories
of MDE [3], some of the less satisfactory results include the presence of a plethora
of MDE tools. Each tool defines its own development and usage process, which is
a burden on the user who needs to adapt himself to every tool. To be successful,
MDE needs tools that are not only well adapted to the tasks to perform, but also
tools that increase the productivity of modelers in their day-to-day activities.
Modeling tools and frameworks, such as AToMPM [4], EMF [5], GME [6], and
MetaEdit+ [7], provide many functionalities, such as DSL creation, model edit-
ing, or model transformations. Although based on common foundational princi-
ples, the process for performing these tasks differs greatly depending on the tool
used. For example, to create a DSL in AToMPM [8], the language designer has
to load the class diagram formalism and graphically build the metamodel. He
generates the abstract syntax of the DSL from that metamodel by loading the
compiler toolbar. Then he has to load the concrete syntax formalism and assign
a concrete syntax to each individual class and association from the metamodel

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 25-45, 2017.
DOI: 10.1007/978-3-319-66302-9_2

26 M.A. Gamboa and E. Syriani

by drawing shapes. He then generates the domain-specific modeling environment
by loading the compiler toolbar. In contrast, the steps are different to create a
DSL in EMFText [9]. The language designer first creates a new project by speci-
fying the project settings in the wizard dialog. He then creates an Ecore diagram
file and graphically builds the metamodel. He then needs to create a generator
model from the metamodel file. To define the concrete syntax, he creates a file
specifying the textual grammar. Once completed, he executes the generators to
create the domain-specific environment that needs to be launched as a separate
Eclipse instance initiated from the generated Java code.

Many of these activities involve repetitive tasks and a lot of user interac-
tions with the user interface of the MDE tool. These are non-trivial activities.
They involve long sequences of tasks, often repetitive tasks. Additionally, they
require context-dependent decisions leading to a lot of user interactions with
the user interface of the MDE tool. The processes to follow are complex for all
users, whether they are language engineers (i.e., MDE savvy) or domain-specific
modelers (i.e., end-users). They require heavy mental loads and tasks that are
error-prone. In the end, users are spending more time on development than nec-
essary. It is therefore mandatory to try to automate MDE tasks and processes
as much as possible, thus decreasing the accidental complexity of the tools used
and letting the user focus on the essential complexities of the domain problem.

To solve this issue, tools can implement automated workflows for each MDE
activity that involves a complex process or repetitive tasks. Many of the tools
already partially support this with the help of wizards [5] or scripts [10]. How-
ever, even these wizards become quite complex offering too many options that
the user has to manually input each time he wants to repeat an activity, as in
Eclipse based tools. There are also several languages to define processes, such as
SPEM [11], but do not support their execution (or enactment) natively. Other
executable process languages like BPEL [12] are too complex for the tasks we
want to achieve in modeling tools. Workflow languages, such as UML activity
diagrams, can be enacted [13], but the execution relies on programming individ-
ual actions which hampers porting a process from one tool to another.

We therefore propose to define a DSL, inspired from activity diagrams, that
fits exactly the purpose of designing workflows for common tasks in MDE tools.
The tasks encompass simple operations, such as opening, closing or saving mod-
els, and more complex tasks, such as generating the artifacts for a DSL. We
noted that several tasks occur in different workflows, especially common oper-
ations e.g., open and close. Therefore we opted for a reuse mechanism, where
the user defines workflows that can be parametrized at run-time to minimize the
number of workflows to create. Since our solution follows the MDE paradigm,
the execution of workflows is entirely modeled through model transformation.
Ultimately, users spend less time performing the activity by focusing on essen-
tial model management tasks rather than wasting time interacting with the tool.
The ideas and concepts of this paper were introduced at the MODELSWARD
conference [1] and are extended in this paper.

The paper is organized as follows. In Sect. 2, we describe the details of our
solution and discuss how we solved challenges we faced. In Sect. 3, we report

Using Workflows to Automate Activities in MDE Tools 27

on the improved implementation of our approach in AToMPM. Specifically in
Sect. 4, we discuss how model refactoring is automated. In Sect. 5, we perform a
preliminary empirical evaluation of the impact our approach has on improving
the user productivity in AToMPM. Finally, we discuss related work in Sect.6
and conclude in Sect. 7.

2 Design of a Reusable Workflow Language

We propose an MDE-based solution where the user defines workflows that can be
parametrized at run-time and executed. In this section, we describe a DSL that is
adaptable to a specific modeling tool. We also describe the general process of how
to design reusable workflows to semi-automate MDE activities. Furthermore, we
discuss how to enact workflows using model transformation.

2.1 Language for Semi-automated Workflows

We model the DSL for defining activities that can be performed in MDE tools.
A workflow is composed of tasks, to define concrete actions to be performed, and
control nodes, to define the flow of tasks. The metamodel in Fig. 1 resembles that
of a simplification of UML activity diagrams since, semantically, an instance of
this metamodel is to be interpreted similarly to the control flow in UML activity
diagrams. Additional well-formedness constraints are not depicted in the figure
e.g., a cycle between tasks must involve an iteration node, there must be exactly
one initial and one final node.

Parameters | ControlNode <
RTParamList: dict T l lr

DecisionNode ForkNode
condition: Constraint | Element | id: int
lﬁ 0.1A | * *] AO.1
IterationNode Alternative Flow JoinNode
iterations: int = 1 isTrue: bool = False chosen: bool = False id: int
_______ | 1| *TAo
2 2. 2.
1Y YI|1 Yy|2*

InitialNode [—=————-— Task —>[FinalNode
ﬁ; ﬁx 0..1 0..19 * * 9

ManualTask Automatic Task next !
message: string
duration: int = c0 Dependency

executing: bool = False| | GenericTask SaveModel || srcParam: string
o WFParams: string extension: string tarParam: string

- RTParams@2: string location@2: string
EditModel

Fig. 1. Generic metamodel of workflows for modeling tools.

28 M.A. Gamboa and E. Syriani

There are different kinds of tasks in an MDE tool. As for any modern soft-
ware, there are tasks specific to the user interface, such as opening, closing, and
saving models or windows. There are also tasks that are specific to models, such
as editing (CRUD operations) models, constraints, or transformations. There are
also tasks that are specific to the particular modeling tool used, such as loading
or executing a transformation, generating code from a model, or synthesizing
a domain-specific environment from a DSL. Furthermore, we want to automate
users’ activities as much as possible, therefore most of the tasks are automatic:
they do not require human interaction. For example, loading a formalism to
create a metamodel is (e.g., Ecore in EMF or Class Diagrams in AToMPM) is
a task that can be automated, since the location of that formalism is known.
Shaded classes in Fig. 1 (SaveModel and EditModel) are examples of tasks that
may vary from one MDE tool to another. Otherwise, this is a generic metamodel
implementable in any MDE tool.

Nevertheless, some tasks are hard, even impossible, to automate and thus
must remain manual. These are typically tasks specific to a particular model,
such as deciding what new element to add in the model. A message is specified to
guide the user during manual tasks. A maximum duration can also be specified
to limit the time spent on a manual task.

A workflow conforming to this metamodel starts from the initial node and
terminates at the final node. Tasks can be sequenced one after the other. A
decision node can be placed to provide alternative flows (one true and one false)
depending on a Boolean condition evaluated at run-time. Repetitions are possible
with an iteration node. This node repeats the flow along the true alternative as
long as the condition is satisfied. A common condition is to limit the number of
iterations: e.g., self.iterations <= 2. The cycle ends when either the specified
number of iterations is reached or a terminating condition is satisfied. Fork
and join nodes provide non-determinism when the order of execution of tasks
is not relevant. Fork node is a control node that splits a flow into multiple
concurrent flows and join node is a control node that synchronizes multiple flows.
These correspond to the common basic control flow patterns for workflows [14].
Although not supported in our current implementation, tasks may be executed
concurrently, except if the concurrent tasks are manual.

2.2 Parameters

One issue that may slow down the development time of users using workflows, is
that many tasks require parameters. For example, the task SaveModel requires
the location of where to save the model (path and name) and the extension to
be used. The extension is generally known from the context of the workflow. For
example, a generic model ends with .ecore in EMF and .model in AToMPM,
but a domain-specific model may have a specific extension in EMF. The designer
of the workflow can thus set the value of this attribute at design-time. However,
the location of the model is generally unknown to the workflow designer because
it is a decision often left at the discretion of the domain user. We therefore

Using Workflows to Automate Activities in MDE Tools 29

distinguish between workflow parameters that are fixed for all executions of the
workflows and run-time parameters that are specific to individual executions of
the workflow.

Within the same workflow, several tasks may share the same parameters.
Workflow parameters are specified once per workflow. However, run-time para-
meters must be manually specified each time the workflow is executed. Therefore,
a Dependency link can be specified between different tasks that share the same
run-time parameters. A dependency link specifies which attribute from the tar-
get task gets its value from an attribute in the source task. For example, the
location of the SaveModel task is the same as the location of the OpenModel
when saving a model we just opened and modified.

2.3 Activities as Workflows

To set the values of run-time parameters, we need an intermediate model of
workflows that is an instance of the metamodel presented, but where some para-
meters are left for further assignment. As explained in [15], the commonly used
technique of two-level metamodeling does not allow us to represent this need.

An attractive solution is to apply techniques from deep metamodeling [16],
and in particular, the approach defining metamodels with potency [17]. We assign
a potency of 2 to attributes representing run-time parameters and a potency of
1 to those representing workflow parameters, as depicted in Fig. 1. This way,
the workflow designer only needs to create one workflow for saving models with
the extension set to e.g., .model and the user can execute the workflow only
caring of the location where to save the model and not bother what the right
extension is. In this setup, an instance of the workflow metamodel in Fig.1 is a
workflow. A workflow is itself the metamodel of its instantiation at run-time. The
enactment of a workflow therefore consists in providing the run-time parameters
to a workflow and executing it. These definitions are consistent with what the
Workflow Management Coalition specifies [18].

2.4 Workflow Enactment by Model Transformation

In this section, we describe how workflows are instantiated with run-time para-
meters and executed.

Deep Instantiation. The issue with the above solution is that not many
modeling frameworks (e.g., AToOMPM! and EMF) support deep metamodeling
with potency like metadepth [20] or Melanee [21] do. Therefore, we propose a
workaround to enact workflows by emulating deep metamodeling with potency
for tools that do not natively support it. The solution is to add a Parameters
class to the metamodel that is instantiated once per workflow enactment. Its

! In [19], the authors proposed a deep metamodeling solution for the Modelverse of
AToMPM, but no usable implementation was available at the time of writing this
paper.

30 M.A. Gamboa and E. Syriani

attributes are populated dynamically for the enactment. They consist of all the
run-time parameters of every task in the workflow. The parameter object is used
to generate a wizard prompting for all run-time parameters needed in the tasks
of a workflow.

Once a workflow has been created by the workflow designer, a user can enact
the workflow. He creates a parameter object to specify run-time parameters
and executes the workflow. We have modeled the enactment of workflows by
model transformation. Figure 2 depicts the transformation in MoTif [22], a rule-
based graph transformation language in AToMPM. Rules are defined with a
pre-condition pattern on the left and a post-condition pattern on the right.
Constraints Const and actions Act on attributes are specified in Python. A
scheduling structure controls the order of execution of rules. Figure 2 shows the
two-step transformation that retrieves all run-time parameters of the workflow.
The transformation on the left of the figure populates all attribute fields of
the parameter object (the icon with two gears) by visiting each task in the
workflow model. The first rule makes sure a depended run-time parameter is not
added to the parameter list of the parameter object. For each parameter, we
store the task type, its task name (in case multiple instances of the same task
type are in the workflow), and the name of the parameter. We make use of the
setAttr and getAttr functions that allows us to get and set attribute values
using the attribute name as a string. This information is then used to render a
wizard prompting for their corresponding values to the user. Once the user enters
all parameters, the transformation on the right of the figure copies the values
entered in the source run-time parameters to the target run-time parameters.
This makes sure that all run-time parameters of all tasks are set. Note that the
transformations uses FRules to make sure that each task is visited exactly once,
which is why no negative application condition is needed.

SkipDependParam AddDependParam

?

F
:SkipDependParam Act: setAttr(getAttr(PostNode(3).srcParam,
PostNode(3))," ',PostNode(2))'

LoadRTParams Act: PostNode(4).RTParamList.add({(PostNode(2).getType(),
PostNode(2).name,PostNode(3).tarParam) :
PostNode(4)[(PostNode(1).getType(),

‘LoadRTParams PostNode(1).name,PostNode(3).srcParam)]})
é ; Act: for a in PostNode(1).getAttrs(): :AddDependParam F
if'@2' in a and getAttr(a,PostNode(1)) I=" ":
PostNode(2).RTParamList.add(
{ PostNode(1).getType() + PostNode(1).name : a[:-2] }) é ;

Fig. 2. Transformation for loading run-time parameters in MoTif.

Using Workflows to Automate Activities in MDE Tools 31

Execution. With all run-time parameters set, there are two ways to execute
the workflow. One is to transform the workflow into a model transformation
that gets executed, as done in [23]. In this case, a higher-order transformation
takes as input the workflow and parameter object, generates a rule for each
task, and schedules the rules according to the order of the tasks in the workflow.
This is possible in MoTif since rules and scheduling are specified in separate
models. Although this approach has the advantage to reuse built-in execution
mechanisms from the MDE tool, a new transformation must be generated for
each workflow and, in particular, if the designer makes changes to the workflow
model.

In this work, we have implemented an alternative solution: we define the oper-
ational semantics of a workflow and execute it as a simulation. Figure 3 illustrates
the overall structure of this transformation and Fig. 4 depicts some of the rules.
The process starts from the element (task or control node) marked with the ini-
tial node. The rule GetInitialElement is responsible for this and specifies only
a pre-condition. The general idea is that then, each task to process each element
in the order of the workflow by advancing the current pointer called pivot in
MoTif, with the rule GetNextElement. The simulation ends when the final node
is reached, satisfying the rule IsFinalElement. Executing an automatic task,
such as save model depicted in rule ExecuteSaveModel, is performed by call-
ing the corresponding API operation of the MDE tool with the corresponding
run-time parameters. We assume that the MDE tool offers an API for interact-

3 : EvalCtriNode
: TerminateManTask g
v/x v‘: : EvalDecisionNode
?
: GetlnitialElement : GetNextElement H
% 1 i : EvalFlowNode
?
: IsFinalElement é
: EvalDecisionNode

o @ ’

: EvalFlowNode
: EvalCtriNode : Iterate
== ! | =
B : FlowIincomplete ﬁ
: ExecAutoTask I : TrueAlternative

B || ChooseFlow : Join : FalseAlternative
: ExecManTask é ; (g ; g

Fig. 3. Control structure of the transformation in MoTif that executes a workflow.

32 M.A. Gamboa and E. Syriani

GetilnitialElement IsFinalElement Flowlncomplete ChooseFlow

O%Element] [Elein_ent% [E‘i:”r::‘nt]_)[] [Element]_)[] current w
1 1 !

—
_ current current

GetNextElement 3 m 3 w 1 Element

([<

\l/ 2 et Const: PostNode(1).chosen==False
curren < Act: PreNode(1).chosen=True

J/ Const: PreNode(1).id==PreNode(2).id
and PreNode(3).chosen==False
current Iterate Join

ExecuteSaveModel F F —
o Element] Element] current w
1 @ Cur1re 1 w

s
current

2% e 2 7 Element] 2 2 [Ele_nlent] —T m

Act: _saveModellnNewWindow(current current
PostNode(2)[(PostNode(1).getType(), Const: eval(PreNode(1).condition)==True
PostNode(1).name, 'location')]) and PreNode(2).isTrue==True

ExecuteEditModel Act: PostNode(1).iterations+=1

-— TrueAlternative FalseAlternative
F F
current current Element] EIement currem
current Elemen EIement
2 *i& 1 1
Act: PostNode(1).executing=True 2 EIement] 2 [Element
’ T T Element Element
TerminateManTask current
Const: eval(PreNode(1).condition)==True ~ Const: eval PreNode condmon =False
and PreNode(2).isTrue==True and PreNode(2)|sTrue =False

Const: PreNode(1).executing==True
Act: PostNode(1).executing=False

Fig. 4. Transformation rules in MoTif that execute a workflow.

ing with it programmatically (e.g., Python API for AToMPM and Java API for
When a control node is the current element to process, we need to decide
on which element is next to be processed. For a decision node, if the condition
is true, then the next element along the true branch is selected. Otherwise, it
is the next element along the false branch. This assignment is the same for
iteration nodes, except that the iterations count is incremented as long as
the condition is satisfied. In our implementation, the semantics of a fork is to
choose non-deterministically one of the flows, execute all tasks in that flow in
order, and then choose another flow. The rules in EvaluateFlowNode ensure this
logic: when a join node is reached, we make sure that all flows outgoing from
the corresponding fork are complete as expressed by rule FlowIncomplete.
This process runs autonomously as long as there are automatic tasks. How-
ever, manual tasks require interruption of the transformation in real-time so
that the user can complete the task at hand and then resume the transformation.
Automating such a process requires to be able to pause and resume the transfor-
mation from the rules being executed. Although some transformation languages

Using Workflows to Automate Activities in MDE Tools 33

support real-time interruption [24], most do not. Therefore, as depicted in Fig. 3,
we extend the logic to handle manual tasks separately. If the next task to exe-
cute is manual, the corresponding rule simply flags the task as executing, as rule
ExecuteEditModel shows, and the transformation terminates. The user notifies
the MDE tool that his manual task is complete by restarting the transforma-
tion. Consequently, the transformation executes the first rule TerminateManTask
which resumes the execution from the task that was last marked as executing.
The executing attribute for manual tasks allows the workflow model to keep
track of the last manual task executed after the transformation is stopped.

2.5 Extensions and Exceptions

The approach presented here is evolution safe. MDE tools evolve with new fea-
tures added. If a new feature is available via the API and is needed in an
workflow, then there are only two steps the designer is required to perform
to support that feature. He shall add a new sub-class of automatic or man-
ual task in the metamodel of Fig.1 and add a rule under ExecAutoTask or
ExecManTask in Fig.3 that calls the appropriate API function to perform the
operation. ExecAutoTask (respectively ExecManTask) is a BRule that contains
all the rules to execute automatic (respectively manual) tasks. BRules execute at
most one of their inner rules unless none of them are applicable. The modularity
of this design reduces significantly the effort of workflow designers who wish to
provide additional tasks available via new features of the MDE tool.

Although it is common to explicitly model exceptional cases in workflows
[25,26], we have decided not to do that at the workflow model level. Exceptions
can only occur if a task execution fails because the user is constrained to do
exactly what the workflow allows as next action. In this version of our imple-
mentation, if an exception occurs, the workflow execution stops at the failing
task in the workflow, as depicted by the circled crosses in Fig. 3. The user must
then manually recover from the error and restart the execution of the workflow.
Nevertheless, run-time parameters are retained.

3 Implementation in AToMPM

We implemented a prototype in the MDE tool AToMPM [4], since it offers a
graphical concrete syntax for DSLs, which is best suited for workflow languages,
and a backdoor API to programmatically interact with the tool in headless mode.
Nevertheless, our approach can be implemented in any MDE tool as long as it
offers an accessible API to perform operations that their user interface allows to.
We implemented the workflow DSL following the metamodel in Fig. 1. Figure5
shows the graphical representation used for each task, each control node, and
parameter object.

We analyzed several processes and noted the user interactions needed to per-
form each task, e.g., creation of DSL. We had to decide on what level of granular-
ity we want to present tasks. One option is to go to the level of mouse movements

34 M.A. Gamboa and E. Syriani

Automatic tasks

v = [E ® =

LoadToolbar OpenModel SaveModel GenerateAS GenerateCS GeneratePMM

© > X

VerifyAS ExecuteTransformation RefactorModel

A

OpenTransformation

Manual tasks

ManualTask EditModel

Control nodes

° ® " ‘

Workflow execution
%
£ \;
Parameters CompleteManual

> B

InitialNode FinalNode DecisionNode ForkNode JoinNode IterationNode [[ExecuteWorkflow LoadParameters

Fig. 5. Concrete syntax of the workflow DSL in AToMPM.

(graphically moving objects), clicks (selections), and keystrokes (textual editing).
Although this would enable us to model nearly any user interaction AToMPM
allows for, this would make the workflows very verbose and complex for design-
ers. We therefore opted for tasks to represent core functionalities instead. Subse-
quently, the most common tasks we noted are opening models, loading toolbars
and formalisms, saving models, generating concrete and abstract syntax of DSLs,
as listed in Fig.5. All these operations can be automated, since they require a
location as run-time parameter. SaveModel also has a workflow parameter for
the extension of the model file. Additionally, a task to edit models is needed,
but cannot be automated since it is up to the user to create or edit the model.

3.1 Process

Our prototype is to be used as follows. The designer defines workflows by creat-
ing instances of the workflow DSL. A user (a language engineer in this example)
then selects which workflow he desires to enact. To set the run-time parameters,
he pushes the LoadParameters button. This creates an instance of the parameter
object and pops up a dialog prompting for all required parameters, following the
transformation from Fig. 2. Upon pushing ExecuteWorkflow button, the simula-
tion (presented in Fig. 3) executes the workflow autonomously. When a manual
task is reached, a new AToMPM window is opened with all necessary toolbars
pre-loaded. A message describing the manual task to perform is displayed to the
user and the simulation stops. After the user completes the task, he pushes the
CompleteManual button. Then, the window closes and the simulation restarts.

3.2 Example Workflow for Creating a DSL

Figure 6 shows the workflow that specifies how to create a DSL and generate a
modeling environment for it in AToMPM. The first task is LoadToolbar. Its loca-
tion parameter is already predefined with the class diagram toolbar, since this is
the standard formalism with which one creates a metamodel in AToMPM. The
following task is EditModel. In this manual task, the user creates the metamodel
of the DSL using class diagrams. Once this is complete, the workflow restarts

Using Workflows to Automate Activities in MDE Tools 35

executing from that task and proceeds with SaveModel. This task requires a
run-time parameter to specify the location of where the metamodel is saved.
The user sets the value in the popup dialog wizard. Now that the metamodel is
created, a fork node proposes two flows: one for creating the concrete syntax of
the DSL and one to generate the abstract syntax from the metamodel. Recall
that the simulation chooses one flow and then the other in no specific order. Sup-
pose the former flow is chosen. Then, a LoadToolbar task is executed to load the
concrete syntax toolbar, the standard formalism in AToMPM. This is followed
by an EditModel so the user can manually create the shapes of each element
of the metamodel. Once this is complete, the workflow restarts and proceeds
with a SaveModel task. Recall that the location is a run-time parameter to save
the concerte syntax model with a predefined extension. In the popup dialog, we
distinguish between different task with their type, and in this case their name
(1 and 2). The following task in this flow is GenerateCS. It takes as run-time
parameter the location of where the generated artifact must be output. Specif-
ically, the name used will be also the name of the toolbar that will be used to
create a model with this DSL. Therefore, the location of the generated concrete
syntax is the same as the location of the concrete syntax model the user cre-
ated manually. The dependency link prevents the user from having to duplicate
parameter values in the wizard. When the join node is reached, the simulation
notices that the second flow was not executed yet. Therefore the next task to
be executed is GenerateAS. Its location parameter uses the same value of the
location attribute of SaveModel 1, as depicted by the dependency link between
these two tasks. When the join node is reached again, this time all flows were
executed and proceeds with the final task LoadToolbar 3. As stated before, its
location parameter use the same value of the location attribute of SaveModel 2.
The simulation ends on a new window open with the new DSL loaded, ready for
the user to create his domain-specific model.

eV

u

&

D
[

EEfEnARGEEZOC AP HNEE T O
| | AEE*x@@REN B

Parameters
a‘w B }(SaveModel)Location
E {E _ma) (®) 2(SaveModel)Location
1 E 3 C

-

L=

ok | cancel

i

Fig. 6. Workflow to create a DSL.

36 M.A. Gamboa and E. Syriani

4 Automating Refactoring Tasks

Refactoring is common operation on modeling artifacts that improves the struc-
ture of a model while preserving its external behavior [27]. In MDE, refactoring
is either done manually on a model or through the application of a model trans-
formation [28]. There exists several techniques to perform refactoring on generic
or domain-specific models [29], and even a catalog of refactoring patterns on
metamodels [30].

AutomaticTask

>I

MacroTask

i

RefactorModel
TransformationLocation: string
ModelLocation@2: string
ModelExtension: string

Fig. 7. Generic metamodel of Refactoring Model.

Refactoring is an activity that can be automated in our workflow system.
By default, this can be done through a manual task. However, we also support
automating this task for the user. To do so, we extend the metamodel of Fig. 1
with the concept of a MacroTask as depicted in Fig. 7. A macro task is an implicit
workflow of other tasks. For example, as illustrated in Fig. 8, RefactorModel is
decomposed into opening the model to refactor, loading the transformation that
implements the refactoring, and executing that transformation on the model.
For the RefactorModel task, the location of the transformation is a workflow
parameter specified by the workflow designer. Additionally, this task requires
the location of the model to refactor, but this is a run-time parameter that the
user specifies. The extension of the model is generally known from the context
of the workflow.

A macro task serves as syntactic sugar to simplify the workflow of the user.
The semantics of a macro task is modeled by a transformation executed dur-
ing the simulation in Fig.3. The implicit transformation that is executed for

Automatic Refactoring Tasks

X —m >»&

RefactorModel = OpenModel OpenTransformation ExecuteTransformation

Fig. 8. Generic metamodel of Refactoring Model.

Using Workflows to Automate Activities in MDE Tools 37

RefactorModel can be defined on the meta-metamodel level (e.g., class diagram
in AToMPM or Ecore in EMF) so that it is syntactically applicable on any given
model. The burden is on the user who needs to define a meaningful transfor-
mation that can be applied on the desired model. For example, if the model is
a metamodel, then a refactoring can add a unicity constraint. If the model is
a concrete syntax assignment, then a refactoring can create a default concrete
syntax to every class of the metamodel.

5 Evaluation of the Improvement of MDE Activities

5.1 Research Question

The goal of the experiment is to determine whether the productivity of the user
is increased when performing complex or repetitive tasks. Thus, our research
question is “is the time for mechanical and cognitive efforts of the user reduced
when automating activities with workflows?” Therefore, we conduct the exper-
iment to verify that these efforts are reduced when using our approach versus
when not.

5.2 Metrics

The total time 7" spent by a user to perform one activity is one way to quantify
the effort the user produces. T is mainly made up of the mechanical time T,
(hand movements) and cognitive effort time T} (thinking time) of the user, thus
T =T,, + T}, assuming there are no interruptions or distractions.

Since AToMPM only presents a web-based graphical user interface and most
interactions are performed with a mouse, we can apply Fitts Law [31] to measure
the time of mouse movements trpr, = a + b x log2(1 + D/S). D is the distance
from a given cursor position to the position of a widget to reach (e.g., button,
text field) and S is the smallest value of the width or height of the widget. We
denote Ty, as the sum of all the ¢y, for each useful mouse movement to perform
one activity.

Another useful metric we noted for the mechanical effort is the number of
clicks ¢ needed to complete the activity. Relying on empirical data from an online
benchmark [32], the average time to click reactively is 258 ms. Thus we denote
T. = 258 x ¢ the time spent clicking during an activity.

Therefore a rough estimate of the time spent on mouse actions in an activity
is Ty, = Trr, + T, for every straight line distance D between two clicks and the
size S of the widget at every even click.

Delays between mechanical actions is a rough estimate of the time the user
spent thinking during the activity. Hence, we deduce the thinking time T; =
T—T,.

Finally, we measure the complexity N of a task by the number of automatic
tasks it requires the user to perform.

38 M.A. Gamboa and E. Syriani

These metrics are far from accurate, but serve at least as a preliminary eval-
uation of our approach to discard the null hypothesis: T;,, T, and T; are smaller
for performing an MDE activity in AToMPM using workflows than without
workflows.

5.3 Experimental Setup

We performed all experiments on a 15.6” laptop monitor with a resolution of
1920 x 1080. The machine was an ArchLinux virtual machine using 2 cores and
4GB of RAM, running on Windows 10 quad-core computer at 2.4 GHz with
16 GB of RAM. Given this performance, we neglected the computation time of
AToMPM triggered by each click. To keep a fair comparison, the experiments
using the workflow did not take into account the mouse activity and time spent
during manual tasks. This is the time after the simulation terminates and before
the notification from the CompleteManual button is received.

5.4 Data Collection

To calculate t using Fitts law, the coefficients a and b must be determined empir-
ically. For that, we recorded the straight line distances between meaningful clicks
(e.g., center of canvas to toolbar button) as well as different sizes of clickable
elements (e.g., model elements on the canvas) in AToMPM. We recorded 12
distances ranging from 79 to 1027 pixels and 5 sizes ranging from 20 to 305
pixels. We then placed on an empty screen a point and a rectangle of sizes and
at distances that correspond to these measurements. We measured the time it
took to click on the initial point and move the cursor as fast as possible to click
inside the opposite rectangle. This data collection was performed by the first
author who is an expert in AToMPM. We repeated each of the 57 cases 20 times
(excluding those where D < S). The maximum variation in the same case was
less than 9%. We determined by regression analysis the values a = 166.75 and
b = 155.93 with correlation R? = .9106 with a median and average margin of
error of 8%.

In our prototype, we implemented the five most common tasks in AToMPM
shown in Fig.5. There is an infinite number of possible combinations of these
tasks because tasks can be repeated and the order matters. Therefore, we reduced
the number of cases to only meaningful combinations of tasks in AToMPM. We
identified 4 meaningful for activities with one task (compiling the concrete syntax
requires a model to be opened), 9 for activities with two tasks (e.g., open then
save model), 13 for activities with three tasks, 4 for activities with four tasks, 5
for activities with five tasks, 3 for activities with six tasks, and 3 for activities
with seven tasks. Hence we ran our experiments on 38 distinct activities varying
up to seven automatic tasks.

The most complex activity we evaluated is for the creation of a DSL in
AToMPM modeled with the workflow in Fig.6, consisting of seven automatic
tasks. The workflow starts by loading the Class Diagram formalism. It lets
the user manually create the appropriate class diagram model to define the

Using Workflows to Automate Activities in MDE Tools 39

metamodel. When the user completes that task, the metamodel is saved (loca-
tion provided at run-time) and the abstract syntax is generated. Then the
ConcreteSyntax formalism is loaded and the user creates the shapes for links
and icons. When the user completes that task, the concrete syntax model is
saved (name provided at run-time) and the GenerateCS task generates the code
for the new DSL environment. Finally, the new formalism is loaded in a new
window showing the new generated DSL environment to the user. Note that in
this situation, the first LoadToolbar object does not require a run-time parame-
ter, but a workflow parameter for the location of the Class Diagram formalism.
We therefore suggest to create two classes in the metamodel for the same task
when we want to give the option to set either run-time or workflow parameters
depending on the context.

5.5 Results

The two plots in Fig. 9 report the time performances for each case. We aggregated
the times by the number of tasks because there was very few variability between
activities with the same number of tasks: the highest coefficient of variability
20% was obtained for activities with three tasks since this was the most populous
set, while all the others remained under 5%. Both plots confirm that the use of
workflows does reduce the time to perform the activity, as the complexity of the
activity increases.

T, (5) T (s)
100

Z -

-4 Without workflow -#With workflow -+ No workflow - Workflow N

(a) (b)

Fig. 9. Mechanical (a) and cognitive (b) efforts with respect to the number of tasks in
a workflow.

The results obtained correspond to what one would expect when adding
automation in a development process. The mechanical effort is greater when
using workflows for simple activities that have up to three tasks. However, after
that point, the mechanical effort remains almost identical as the number of tasks
increases. This behavior, depicted in Fig.9(a), is due to the overhead to open
the appropriate workflow and set all run-time parameters. The reason why T,
plateaus after N = 5 is that the only mechanical effort needed is to specify

40 M.A. Gamboa and E. Syriani

additional run-time parameters. However, this is done by typing the values with
the keyboard which we haven’t taken into account in this experiment. When
performing the experiments, we noted that the slowest task performed manually
was for loading toolbars.

Figure 9(b) reports on the non-mechanical effort needed by the user to per-
form each activity. We note a trend similar to the mechanical effort. However,
the flip point where less effort is needed when using workflows occurs as early
as activities with more than one task. The cognitive effort increases linearly for
activities with more than three tasks. An interesting result is that, when not
using workflows, the cognitive effort is always greater than the mechanical effort
for N > 1 and that gap keeps on increasing as there are more tasks. On the
contrary, when using workflows, the mechanical effort is greater for activities
with up to two tasks, but when the cognitive effort is greater for N > 2, the
gap remains almost identical. When performing the experiments, we noted that
most of the time was spent searching on the screen to select toolbars to load,
even for an expert user who knows exactly their locations.

To complement this information, Table1 details each metric for the most
complex activities we evaluated. It shows that, although using workflows
improves all the metrics, the cognitive time is the most improved component.

Table 1. Time measurements in seconds and improvements when using workflows for
N =7 tasks.

T Ter |Te | Tm |1y
No workflow | 138 [29 |11 |41 |98
Workflow 66 |18 |6 24 |42
Improvement | 52% | 38% | 45% | 41% | 57%

We conclude that our hypothesis is verified and answer our research question:
for the extent of the experiments we conducted, the time for mechanical and
cognitive efforts of the user is reduced when automating activities with our
approach by half.

5.6 Threats to Validity

There are several threats to the construct validity of this preliminary evaluation.
First, the metrics we used are not sufficient to assess the complete mechanical
effort. Keystrokes can also be taken into account since there is an effort needed
to set the values of run-time parameters. However, the length of the string of
each depends on the file paths of the host machines and the operating system
used. We discarded this metric for its lack of generalization. Further mechanical
metrics could be used such as eye movements, but we lacked the proper hard-
ware to perform eye-tracking experiments. We further mitigated these threats
by using Fitts Law to achieve an objective measure of time mouse movements.

Using Workflows to Automate Activities in MDE Tools 41

We measured cognitive effort by considering it as all non-mechanical effort, which
is not a completely true statement. Otherwise, this would have required more
fine grained measurements of brain activity. We also did not include the time
and effort for manual tasks, which may have a negative influence on the results
if they take longer than the automatic tasks. The data collection was performed
by only one person, but this was only necessary to calculate ¢ since all other
metrics are obtained using Fitts Law, without needing to perform the activities.
This threat only affects the absolute time, but does not affect the improvement
ratio.

With respect to threats internal validity, the selection and configuration of the
tools for time measurements has a weak influence on the results. We calibrated
the parameters based on a pilot experiment and our experience. However, this
should not strongly affect the time because we took care of configuring the tools
in a way that corresponds to the empirical data from an online benchmark.
We also pre-processed inconsistent times (e.g., clicks outside target) in order to
eliminate false positives. Nevertheless, this only reduces the chances that we can
answer our research question positively.

As far as threats to external validity are concerned, the activities were obvi-
ously not sampled randomly from all possible MDE tools activities, but we relied
on our knowledge in MDE tools. Hence, the set of activities is not completely
representative. The results of this study can only be generalized to the extent
of AToMPM. Nevertheless, all five tasks we considered are part of the most
common activities in the majority of MDE tools, such as EMF. We further miti-
gated this threat by including tasks with different complexity (i.e., Open Model
vs Compile Abstract Syntax) and focusing on their meaningful combinations.

6 Related Work

A lot of work can be found in the literature on workflow definition and enact-
ment [33-35]. In [36], the authors proposed a textual DSL for workflow definition
that supports sequencing and iteration. It is not meant to be enacted, but serves
as specification for subsequent code generators. Workflow enactment has been
particularly applied in process modeling.

Various techniques exist to service the execution of workflows, such as dis-
tributing the execution on the cloud [37,38]. However, none of these approaches
models workflow enactment explicitly as we did using model transformation.

We proposed a model transformation as a novel workaround for tools that do
not support deep instantiation of metamodels. An alternative is to define meta-
models following the Type-Object pattern [39] where both types and instances
are explicitly modeled in the metamodel. This is similar to the notion of clab-
ject [40] which generalizes this approach.

From an implementation point of view, the closest work to ours automates
transformation chains in AToMPM [23]. They developed a formalism transfor-
mation graph (FTG) that specifies a megamodel indicating the transformations
between languages and a process model (PM) that specifies the control and data

42 M.A. Gamboa and E. Syriani

flow to schedule the order of execution of model transformations. The execu-
tion of an FTG+PM instance is modeled as a higher-order transformation that
converts the FTG+PM model into a model transformation instance, whereas
our approach executes workflows by simulation. The authors also distinguish
automatic actions from manual ones, but the latter are not modeled in the
transformation.

Similarly to FTG+PM, Wires [41] supports the specification and execution
of model transformation workflows. Wires is graphical executable language for
ATL transformations that provides mechanisms to create model transformations
chains. Kepler [42] is a tool to create and execute scientific workflows. Since it
is based on the Ptolemy II multi-paradigm simulation system, a coordinator
must be hand-written in Java to define the semantics of the workflow, unlike our
approach that makes use of model transformation.

In our approach, activities essentially encapsulate model management tasks.
The Epsilon language suite [43] can be used to perform model management
tasks such as CRUD operations, transformations, comparisons, merging, val-
idation, refactoring, evolution, and code generation. To combine and integrate
these different tasks into workflows, the user defines Ant scripts. In our approach,
users define workflows in a DSL specific to the features the MDE tool provides.
As such, it reduces accidental complexity imposed by Ant and is accessible to
a broader set of users that do not know Ant. One particular language is the
Epsilon Wizard Language (EWL) [44] whose purpose is to refactor, refine, and
update models. EWL allows users to define wizards that serve as encapsulation
of EOL scripts, the action language in Epsilon. Wizards are similar to activities
in our case. EWL provide feedback that can drive the execution of a model man-
agement operation using a context-independent user input. It is a command line
user input interface. In our approach, the user-input method is a popup dialog
with several parameters. Their approach has a more fine-grained wizard selec-
tion process, since a wizard can have a guard that must be satisfied in order to
execute it. Nevertheless, EWL does not support the explicit modeling of manual
tasks. EWL is especially designed for refactoring models automatically. These
model refactorings are applied on model elements that are explicitly selected by
the user. Typical supported refactoring patterns include adding the stereotypes,
attributes and operations. EWL has constructs specifically to refactor model ele-
ments. In our approach, workflows rely on a model transformation to express the
modification to the model. Therefore the user only needs to specify the model,
and not individual model elements.

7 Conclusion

In this paper, we presented a model-based environment for automating daily
activities of language engineers and domain-specific modelers. Designers define
workflow templates conforming to a DSL to increase the productivity of users.
Users enact workflows to perform tasks automatically. Our framework also sup-
ports the integration of manual tasks. The execution of workflows is entirely

Using Workflows to Automate Activities in MDE Tools 43

modeled as a model transformation, making it reusable and portable on various
MDE tools. Preliminary results of our prototype indicate that, using workflows,
users reduce cognitive and mechanical effort to perform common activities in
the MDE tool AToMPM.

We are integrating more features of AToMPM in our prototype to allow

designers define workflows for nearly any interaction process the tool can do. As
future work, we plan to implement this approach in other MDE frameworks, such
as EMF, in order to further generalize the reusability aspect of the metamodel
of activities and their enactment by model transformation.

References

10.
11.

12.
13.

14.

15.

16.

17.

. Gamboa, M.A., Syriani, E.: Automating activities in MDE tools. In: Model-Driven

Engineering and Software Development, SciTePress, pp. 123-133 (2016)

Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39, 25-31 (2006)
Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Softw. 31, 79-85 (2014)

Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., Ergin, H.:
AToMPM: a web-based modeling environment. In: Invited Talks, Demonstration
Session, Poster Session, and ACM Student Research Competition, MODELS 2013,
vol. 1115, pp. 21-25. CEUR-WS.org (2013)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison Wesley Professional, Boston (2008)

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C.,
Nordstrom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. In:
Workshop on Intelligent Signal Processing, WISP 2001, vol. 17 (2001)

Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ a fully configurable multi-user and
multi-tool CASE and CAME environment. In: Constantopoulos, P., Mylopoulos,
J., Vassiliou, Y. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1-21. Springer, Heidelberg
(1996). doi:10.1007/3-540-61292-0-1

AToMPM tutorial (2013). http://www.slideshare.net/eugenesyriani/atompm-
introductory-tutorial. Accessed 07 Aug 2015

EMFText screencast (2014). http://www.emftext.org/index.php/EMF Text_Gett-
ing_Started_Screencast. Accessed 07 Aug 2015

JetBrains MPS (2015). https://www.jetbrains.com/mps/ Accessed 07 Aug 2015
OMG: Software & Systems Process Engineering Metamodel specification 2.0 edn.
(2008)

OASIS: Web Services Business Process Execution Language, 2nd edn. (2007)
Syriani, E., Ergin, H.: Operational semantics of UML activity diagram: an appli-
cation in project management. In: RE 2012 Workshops, pp. 1-8. IEEE (2012)
Russell, N., van der Aalst, W., ter Hofstede, A., Mulyar, N.: Workflow Control-
Flow Patterns: A Revised View. Technical report BPM-06-22, BPM Center (2006)
Gonzalez Perez, C., Henderson Sellers, B.: Metamodelling for Software Engineer-
ing. Wiley Publishing, Hoboken (2008)

Lara, J.D., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling.
ACM Trans. Softw. Eng. Methodol. 24, 1-46 (2014)

Atkinson, C., Kiihne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19-33. Springer, Heidelberg
(2001). doi:10.1007/3-540-45441-1_3

http://dx.doi.org/10.1007/3-540-61292-0_1
http://www.slideshare.net/eugenesyriani/atompm-introductory-tutorial
http://www.slideshare.net/eugenesyriani/atompm-introductory-tutorial
http://www.emftext.org/index.php/EMFText_Getting_Started_Screencast
http://www.emftext.org/index.php/EMFText_Getting_Started_Screencast
https://www.jetbrains.com/mps/
http://dx.doi.org/10.1007/3-540-45441-1_3

44

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

M.A. Gamboa and E. Syriani

WMC: Terminology and glossary. Technical report, WFMC-TC-1011, Workflow
Management Coalition (1999)

Van Mierlo, S., Barroca, B., Vangheluwe, H., Syriani, E., Kithne, T.: Multi-level
modelling in the modelverse. In: Workshop on Multi-Level Modelling, MULTT 2014,
vol. 1286, pp. 83-92. CEUR-WS.org (2014)

Lara, J., Guerra, E.: Deep meta-modelling with METADEPTH. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1-20. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13953-6_1

Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and ontology engineering
environment. In: International Master Class on Model-Driven Engineering: Mod-
eling Wizards, MW 2012, pp. 7:1-7:2. ACM (2012)

Syriani, E., Vangheluwe, H.: A modular timed model transformation language. J.
Softw. Syst. Model. 12, 387—414 (2011)

Lucio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.: FTG+PM: an inte-
grated framework for investigating model transformation chains. In: Khendek, F.,
Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 182-202.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38911-5_11

Syriani, E., Vangheluwe, H.: Programmed graph rewriting with time for
simulation-based design. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT
2008. LNCS, vol. 5063, pp. 91-106. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69927-9_7

Russell, N., Aalst, W., Hofstede, A.: Workflow exception patterns. In: Dubois, E.,
Pohl, K. (eds.) CAIiSE 2006. LNCS, vol. 4001, pp. 288-302. Springer, Heidelberg
(2006). doi:10.1007/11767138_20

Syriani, E., Kienzle, J., Vangheluwe, H.: Exceptional transformations. In: Tratt, L.,
Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 199-214. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13688-7_14

von Pilgrim, J., Ulke, B., Thies, A., Steimann, F.: Model/code co-refactoring: an
MDE approach. In: Automated Software Engineering, pp. 682-687. IEEE (2013)
Mens, T.: On the use of graph transformations for model refactoring. In: Lammel,
R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 219-257.
Springer, Heidelberg (2006). doi:10.1007/11877028_7

Zhang, J., Lin, Y., Gray, J.: Generic and domain-specific model refactoring using a
model transformation engine. In: Beydeda, S., Book, M., Gruhn, V. (eds.) Model-
Driven Software Development, pp. 199-217. Springer, Heidelberg (2005)
Metamodel refactoring catalog (2016). http://www.metamodelrefactoring.org/?
page-id=584. Accessed 19 May 2016

MacKenzie, 1.S.: Fitts’ law as a research and design tool in human-computer inter-
action. Hum.-Comput. Interact. 7, 91-139 (1992)

Benchmark, H.: (2015). http://www.humanbenchmark.com/tests/reactiontime/
statistics

WMC: Process Definition Interface - XML Process Definition Language 2.00. Tech-
nical report, WFMC-TC-1025, Workflow Management Coalition (2005)

Mahmud, M., Abdullah, S., Hosain, S.: GWDL: a graphical workflow definition lan-
guage for business workflows. In: Gaol, F. (ed.) Recent Progress in Data Engineer-
ing and Internet Technology. LNEE, vol. 156, pp. 205-210. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-28807-4_29

Russell, N., Aalst, W.M.P., Hofstede, A.H.M., Edmond, D.: Workflow resource
patterns: identification, representation and tool support. In: Pastor, O., Falcao e
Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216-232. Springer, Heidelberg
(2005). doi:10.1007/11431855_16

http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1007/978-3-540-69927-9_7
http://dx.doi.org/10.1007/978-3-540-69927-9_7
http://dx.doi.org/10.1007/11767138_20
http://dx.doi.org/10.1007/978-3-642-13688-7_14
http://dx.doi.org/10.1007/11877028_7
http://www.metamodelrefactoring.org/?page_id=584
http://www.metamodelrefactoring.org/?page_id=584
http://www.humanbenchmark.com/tests/reactiontime/statistics
http://www.humanbenchmark.com/tests/reactiontime/statistics
http://dx.doi.org/10.1007/978-3-642-28807-4_29
http://dx.doi.org/10.1007/11431855_16

36.

37.

38.

39.

40.

41.

42.

43.

44.

Using Workflows to Automate Activities in MDE Tools 45

Jacob, F., Gray, J., Wynne, A., Liu, Y., Baker, N.: Domain-specific languages
for composing signature discovery workflows. In: Workshop on Domain-Specific
Modeling, pp. 61-64. ACM (2012)

Alajrami, S., Romanovsky, A., Watson, P., Roth, A.: Towards cloud-based software
process modelling and enactment. In: Model-Driven Engineering on and for the
Cloud, CloudMDE 14, vol. 1242, pp. 6-15 (2014)

Martin, D., Wutke, D., Leymann, F.: A novel approach to decentralized work-
flow enactment. In: Enterprise Distributed Object Computing, pp. 127-136. IEEE
(2008)

Johnson, R., Woolf, B.: The type object pattern. In: EuroPLoP (1996)

Atkinson, C.: Meta-modelling for distributed object environments. In: Enterprise
Distributed Object Computing Workshop, pp. 90-101. IEEE (1997)

Rivera, J.E., Ruiz Gonzalez, D., Lopez Romero, F., Bautista, J., Vallecillo, A.:
Orchestrating ATL model transformations. In: Proceedings of MtATL, vol. 9, pp.
34-46 (2009)

Ludéscher, B., Altintas, 1., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system:
research articles. Concurrency Comput.: Pract. Exp. Workflow Grid Syst. 18,
1039-1065 (2006)

Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Novel features in languages of the
epsilon model management platform. In: Modeling in Software Engineering, pp.
69-73. ACM (2008)

Kolovos, D.S., Paige, R.F., Polac, F.A., Rose, L.M.: Update Transformations in
the Small with the Epsilon Wizard Language. J. Object Technol. 6, 53—69 (2007)

Schedulability Analysis of Pre-runtime
and Runtime Scheduling Algorithm
of an Industrial Real Time System

Stefano Pepi®™) and Alessandro Fantechi®™)

DINFO, University of Florence, Via S. Marta 3, Florence, Italy
{stefano.pepi,alessandro.fantechi}@unifi.it

Abstract. The configuration of a complex, generic, real-time applica-
tion into a specifically customized signalling embedded application has
an important impact on time to market, deployment costs and safety
guarantees for a railway signalling manufacturer. In this paper we focus
on the aspect of real-time schedulability analysis, that takes an important
portion of the time dedicated to configuration in this kind of systems. We
propose an approach based on rigorous modelling of the scheduling algo-
rithms, aimed at substituting possibly unreliable and costly empirical
tuning. In order to comply with the needs of our industrial partners, we
have resorted to the use of variants of Petri Nets with associated avail-
able tools: Timed Petri Nets (TPN) and Coloured Petri Nets (CPN),
supported by open source tools, respectively TINA and CPN Tools 4.0
have been exploited for the modelling of the pre-runtime and the run-
time scheduling algorithms implemented in the industrial platform. The
comparison of models produced with the two tools has concluded that
the Coloured Petri Nets are more suited to the adopted schedulability
analysis approach, for both scheduling algorithms.

Keywords: Petri Nets - Timed Petri Nets + Coloured Petri Nets - Real
Time Systems * Scheduling algorithm + Modelling - Formal verification -
Railway signalling

1 Introduction

Real-Time Systems (RTS) are those computer-based systems where correct oper-
ation does not only depend on the correctness of the results obtained, but also
on the time at which the results are produced [21].

The interest for real-time systems is motivated by many applications that
require that computations satisfy given time constraints, in domains such as
automotive, avionics, communications, railway signalling etc.

The most important property of a RTS is predictability. Predictability is the
ability to determine in advance if the computation will be completed within
the time constraints required. Predictability depends on several factors, ranging
from the architectural characteristics of the physical machine, to the mechanisms

© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 46-69, 2017.
DOI: 10.1007/978-3-319-66302-9_3

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 47

of the core, up to the programming language. Predictability can be measured as
the percentage of processes for which the constrains are guaranteed.

In this article we report the experience made in collaboration with our indus-
trial partner, a railway signalling manufacturing company, in the implementation
of a generic real-time platform based on a proprietary microkernel Real Time
Operating System; in particular we present a method for schedulability analysis.

With the recent expansion of markets to Asia and Africa, the company has
experienced a growing need for a versatile system that can be configurable for
each different application. The transition from a traditional “main loop”-based
system to a general purpose platform has allowed low-cost configuration, simply
by changing the application inside and the hardware to interact with. With the
same Hw/Sw platform both ground and on-board systems can be built, either for
urban (like metro) or main line applications, meeting the signalling regulations
of different countries.

Experience has however shown that guaranteeing predictability for the differ-
ent customizations of the platform takes a considerable portion of the customiza-
tion effort, if based only on testing every time the newly customized software on
the platform.

We have therefore considered the possibility of building a generic model of
the scheduling algorithms employed in the platform, that is going to be instan-
tiated on the temporal constraints and tasks numbers of the different specific
applications (that is, customizations), in order to support the validation of pre-
dictability by means of proper model simulation tools.

Basing on the wide literature about modelling real-time systems with Petri
Nets (see, for example, [3,5,10,11]) and on the availability of related tools, we
have chosen to experiment two Petri Nets dialects for the modelling of the
scheduling algorithms, in order to predict schedulability of the set of tasks gov-
erning a new specific application. Both Timed Petri Nets (TPN) and Coloured
Petri Nets (CPN) have been evaluated for this purpose, together with their sup-
port tools, favouring at the end the adoption of Coloured Petri Nets.

Due to the limited time available to conduct the experiments, in order to sat-
isfy stringent temporal requirements from our industrial partner, we have chosen
not to investigate other temporal modelling formalisms, such as timed automata
[2]. The results obtained by these experiments were however judged sufficiently
satisfactory to consider the adoption of the technique inside the development
process of our industrial partner.

This paper is structured as follows: the next section introduces the industrial
context that has motivated our work on modelling scheduling algorithms; in
Sect. 3 we present the background of the modelling method, namely the two
considered variants of Petri Nets, while in the next two sections we present the
models of the pre-runtime and runtime scheduling policies. Section 6 compares
the models obtained with the two Petri Nets variants, and Sect.7 draws some
conclusions.

48 S. Pepi and A. Fantechi

2 Scheduling in Safety-Related RT Applications

A real-time process is characterized by a fixed time limit, which is called deadline.
A result produced after its deadline is not only late, but can be harmful to the
environment in which the system operates. Depending on the consequences of a
missed deadline, real-time processes are divided into two types:

— Soft real-time: if producing the results after its deadline has still some utility
for the system, although causing a performance degradation, that is, the
violation of the deadline does not affect the proper functioning of the system;

— Hard real-time: if producing the results after its deadline may cause
catastrophic consequences on the system under control.

To meet real-time requirements, scheduling plays an important role. Depending
on the assumption done on the processes and on the type of hardware archi-
tecture that supports the application, the scheduling algorithms for real-time
systems can be classified according to the following orthogonal characteristics:

— Uniprocessor vs. Multiprocessor

— Preemptive vs. No preemptive

— Static vs. Dynamic

— Pre-runtime (offline) vs. Runtime (online)
— Best-Effort vs. Guaranteed

For what concerns the fourth characteristic, in pre-runtime scheduling all
decisions are taken before the process activation on the basis of information
known a priori. The schedule is stored in a table which will be integrated into
a run-time kernel. The kernel has one component called dispatcher which takes
tasks from the table and loads them onto the processing elements, according
to specified timing constraints. The Runtime category represents instead those
algorithms in which the scheduling decisions are made at runtime on all cur-
rently active processes. The ordering of tasks is then recalculated for each new
activation.

In our case the platform is able to manage both these two types of scheduling.
In fact according to the type of field application it is possible to enable one or
the other algorithm. The choice is made based on the level of safety that the
system must ensure.

CENELEC EN50128 is the standard that specifies the procedures and the
technical requirements for the development of programmable electronic devices
to be used in railway control and signalling protection [7]. This standard is
part of a family, and it refers only to the software components and to their
interaction with the whole system. The basic concept of the standard is the
SIL (Safety Integrity Level). Integrity levels characterize software modules and
functions according to their criticality, and range is defined from 0 to 4, where 0
is the lowest level, which refers to software functions for which a failure has no
safety effects and 4 is the maximum level, for which a software failure can have
severe effects on the safety of system, resulting in possible loss of human life.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 49

The pre-runtime scheduling algorithm is used for those application that are
classified at SIL 4, since it gives the possibility to fully demonstrate predictabil-
ity, which is a must in a safety-critical environment. Indeed, with pre-runtime
scheduling it is possible to exhibit to an assessor the analyses conducted on the
considered set of tasks in order to establish that tasks, with the a priori fixed
execution order, do not miss their deadlines. On the other hand, with run-time
scheduling algorithms, evidences provided simply by running tests can be not
convincing about their coverage of all possible cases, due to possible different
run-time scheduling choices. For this reason the run-time scheduling is used for
applications of lower SIL.

Indeed, the present paper aims to show a method to strengthen the analysis
on pre-runtime and runtime scheduling to a high level of confidence. In partic-
ular, we present a method that can be used to verify the pre-runtime schedu-
lability of a task set that contains only periodic tasks with time and priority
constrains. The method can be used also to simulate the behaviour of a runtime
scheduler with a given taskset, in order to improve confidence on their run-time
schedulability.

The motivations for this approach come also from the high variability of
installations of the same signalling system at different locations or controlling dif-
ferent stations or lines. Indeed, in railway signalling systems, a distinction is often
done between generic applications and specific applications (as in the already
cited CENELEC EN50128 [7] guidelines): generic software is software which
can be used for a variety of installations purely by the provision of application-
specific data and/or algorithms. A specific application is defined as a generic
application plus configuration data, or plus specific algorithms, that instantiate
the generic application for a specific purpose.

While the platform is part of a generic application, and hence it is validated
once for all, for each specific application the satisfaction of real-time constraints
must be verified from scratch.

Indeed, quite often in everyday work it is necessary to revise the schedule
of some systems, and all this is routinely done in an empirical way. It is clear
that each specific application has a different way to interact with the platform
and especially with its resources, such as, for example, input/output drivers for
different hardware. It is for this reason that the schedule of real-time tasks should
be revised at any new specific application.

The adopted empirical approach includes actions to be taken when config-
uring the platform for a new specific application, such as: get a new schedule
configuration offline and test it on the target. It rarely happens that the first
test is successful.

The estimated effort required for the identification and testing of a new
scheduling configuration can be summarized with the following parameters:

— Offline Identification Time: time needed in order to design the new sched-
ule, it is usually about 30 min (not necessary for runtime scheduling).

— Flashing Time: the time needed to load the scheduling on the target, 15 min.

— Startup Time: start-up time of the platform, 1.5 min.

50 S. Pepi and A. Fantechi

— Running Time: time during which the system must run without exhibiting
timing problems, 30 min/1 h.
— Attempts: average number of attempts to get the scheduling, 3.

Summing all the times shown above we get that for each test scheduling, the
whole process easily reaches 8 h, which means an entire working day. This process
can be automated by a tool that, given a task set and a number of constraints,
is able to produce a feasible scheduling. This would mean a huge saving in terms
of man hours used to refine the scheduling. Moreover, an empirical evaluation
of schedulability of a given dataset does not guarantee that the deadlines are
met in any case, putting in danger the overall safety of the system. Using a
rigorous approach to the analysis of the schedulability will improve hence the
conformance, of a specific application, to safety guidelines.

3 Proposed Method

The rigorous approach we propose is based on the use of Petri Nets to build a
model of the scheduling algorithm. A Petri Net [17-19] is a mathematical repre-
sentation of a distributed discrete system. As a modelling language, it describes
the structure of a distributed system as a bipartite graph with annotations. A
Petri Net consists of places, transitions and directed arcs. There may be arcs
between places and transitions but not between places and places or transitions
and transitions.

The places can hold a certain number of tokens and the distribution of tokens
on all the places of the network it’s named marking. Transitions act on input
tokens according to a rule, that is named firing rule.

A transition is enabled if you can fire it, that is, if there are tokens in every
input place. When a transition fires, it consumes tokens from its input places
and places a token in each of its output places.

Fig. 1. Representation of an ordinary Petri Net.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 51

Figure 1 shows an example of an ordinary Petri Net. The execution of Petri

Nets is nondeterministic, that is, if there are more transitions enabled at the
same time any of them can fire. Since taking a transition is not predictable in
advance, Petri Nets are well suited for modelling the concurrent behavior of
distributed systems.

Formally we can define a Petri Net as a tuple PN = (P, T, F, W, My) where:

P is a finite set of places;

T is a finite set of transition;

F C (PzT)U (TzP) is a set of arcs;

W : F — N represents the weight of the flow relation F.

My : P — N is the initial marking vector, which represents the initial state
of system.

PNT=0and PUT # (.

3.1 TPN

A Timed Petri Net is a Petri Net extended with time. In Timed Petri Nets, the
transitions fire in “real-time”, i.e., there is a (deterministic or random) firing
time associated with each transition, the tokens are removed from input places

at

the beginning of firing, and are deposited into output places when the firing

terminates. Formally we can define a Timed Petri Net [20] as a tuple TPN =
(PN, I) where:

Thread 1_1 Thread 2_1_tx Thread 3_1_tx Thread 4_1 Thread 5_1_Application Thread1_2 Thread2_ 2 tx Thread3 2 tx Thread5_2 Thread4_2 Thread6_2 Thread7_2

T3_1_TXTX

Epoch 2 - Gontrol time
00[100] p§5

T4 A

b
P69 '

075 flisa| p7e
. 0.0 . 0.0
[95]

[95]

A

Fig. 2. Timed Petri Net model for a fixed scheduler.

52 S. Pepi and A. Fantechi

— PN is a standard Petri Net;

— I :T — N x N is a function that maps each transition to a bounded static
interval

- PNT=0and PUT # 0.

3.2 CPN

An ordinary PN has no types and no modules, only one kind of tokens and the
net is flat. With Coloured Petri Nets (CPNs) it is possible, instead, to use data
types and complex data manipulation. In fact each token has attached a data
value called the token colour of a given data type: the type defines the range of
values that the attributes can assume and the operations applicable in the same
way of a variable type in any programming language. The types can be basic
types or structured types, the latter defined by the user. The token colour values
can be inspected and modified by the occurring transitions.

Formally we can define a Coloured Petri Net as a tuple CPN =
(P,T,F,X,C,N, E,G,I) where:

— P is a finite set of places;

— T is a finite set of transition;

— F C(P2T)U (TxP) is a set of arcs;

— X is a set of data types (colour domains).

— C is a colour function. It maps places in P into colours in X.

— N is a node function. It maps A into (PzT) U (TzP).

— E is an arc expression function. It maps each arc a € A into an expression
e with values in Y. The input and output types of the arc expressions must
correspond to the type of the nodes the arc is connected to.

The node function and the arc expression function allows multiple arcs to
connect the same pair of nodes with different arc expressions.

— G is a guard function. It maps each transition ¢ € T into a guard expression
g, evaluated to a boolean value.

— I is an initialization function. It maps each place p € P into an initializa-
tion expression i. The initialization expression must evaluate to a multiset of
tokens with a colour corresponding to the colour C(p) of the place p.

With CPNs it is possible to build a hierarchical description, so that a large model
can be easily obtained by combining a set of submodels.

4 Modelling the Pre-runtime Scheduling

We provide now the taskset and the constraints for the fixed scheduler, and then
the related models, expressed in the two variants of Petri Nets.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 53

4.1 Taskset and Constraints Specification

In our system the application is decomposed into a set of tasks 7; : i = 1,...n and
for this paper we only consider periodic tasks, and we assume that non-periodic
tasks are carried out by a periodic server, or processed in the background [6].
The temporal model mostly used in real-time scheduling theory is an extension
of the model of Liu and Layland [16] where each task 7; is characterized by the
following parameters:

R;: first release time of 7;;

— C;: run time of 7;, which is its worst case execution time (WCET);

— D;: relative deadline of 75, the maximum time elapsed between the release of
an instance of 7; and its completion;

— P;: release period of 7;.

In the following we use as a running example the case of a real signalling applica-
tion, an interlocking system. An interlocking system is the safety-critical system
that controls the movement of trains in a station and between adjacent stations.
The interlocking monitors the status of the objects in the railway yard (e.g.,
points, switches, track circuits) and allows or denies the routing of trains in
accordance with the railway safety and operational regulations that are generic
for the region or country where the interlocking is located. The instantiation of
these rules on a station topology is stored in the part of the system named con-
trol table that is specific for the station where the system resides. We refer to [9]
for a review on the vast literature on formal modelling of interlocking systems.
In this context, we are interested instead to focus on the characteristics of the
task set of this application, consisting of 7 threads which have the following goal:

— T is in charge of operating on the Ethernet channel;

— T is one of the most important thread and it is in charge of the safety of the
system;

— T3 implements a protocol stack for the receipt and transmission of messages;

— Ty is in charge of copying the value received in the input of the Business Logic
and preparing the output for the transmission.

— T5 is the application thread that contains the logic of the system.

— Tg is a diagnostic thread;

— Tr is a USB driver used for logging data in a key.

The scheduler operates by dividing processor time into epochs. Within each
epoch, every task can execute up to its time slice. In this case, the scheduler has
two epochs of 100 ms and the taskset have the following constraints:

— The total time of scheduling cycle is 200 ms.

— Each epoch needs to last exactly 100 ms.

— The first execution of T3 in the first and second epoch must terminate within
95 ms.

— The second execution of T3 in the first and second epoch must terminate
within 95 ms.

54 S. Pepi and A. Fantechi

— The second execution of T3 in the first and second epoch must execute at

least 65 ms after the first one.

— T} in the first epoch must terminate within 90 ms and in the second epoch in

140 ms.

— The total processor time assigned to T5 in the two epochs must be of at least

90 ms.

The taskset used in our example is defined in the Tables1 and 2 with the

relative scheduling order and parameters.

Table 1. TaskSet in first epoch.

Epochl | R; | C; | D;
T 0 |6 |6
15 6 |5 |11
Ts 1116 | 27
Ty 2715 |32
Ts 32 36
Ty 36 | 24 | 60
Ts 60 |40 | 100

Table 2. TaskSet in second epoch.

Epoch2 | R; | C; | D;
T 0 |6 |6
15 6 |5 |11
Ts 1116 | 27
Ty 2715 |32
Ts 32 36
Ts 36 |40 | 76
Ty 76 |8 |84
T6 84 110 |94
T 94 |6 | 100

The constraints and parameters given for the taskset are the basis on which
a model of the scheduling algorithm can be built. We resorted to the use of
Petri Nets, that result quite intuitive in the modelling of scheduling algorithms
[5,10,15,23]. In order to represent time, we have investigated the use of both-
Timed Petri Nets (TPN) [20] and Coloured Petri Nets (CPN) [13]. In the fol-
lowing we illustrate the two kinds of models by means of this running example,
giving a comparison between the two modelling approaches.

Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm 55

4.2 Presentation of Fixed Scheduler Models

In Fig.2 the model generated with the tool TINA [4,22] for a fixed scheduler
[1,3,11] is reported. As we can see the representation with TPN is a little bit
chaotic and representing larger sets of tasks could be very difficult. Looking at the
model we can underline some diagram parts which are used for the verification
of constraints [23]:

— Check for the Total Time
The network used to control the time of each epoch consists of two transitions
and respectively five and three places. Taking into consideration the network
(a) in Fig. 3, the transition t27 counts the total time available for the execu-
tion in the epoch. When th