
MUSYNTH: Program Synthesis via Code Reuse
and Code Manipulation

Vineeth Kashyap(B), Rebecca Swords, Eric Schulte, and David Melski

GrammaTech, Inc., Ithaca, NY 14850, USA
{vkashyap,rswords,eschulte,melski}@grammatech.com

Abstract. MuSynth takes a draft C program with “holes”, a test
suite, and optional simple hints—that together specify a desired
functionality—and performs program synthesis to auto-complete the
holes. First, MuSynth leverages a similar-code-search engine to find
potential “donor” code (similar to the required functionality) from a
corpus. Second, MuSynth applies various synthesis mutations in an evo-
lutionary loop to find and modify the donor code snippets to fit the input
context and produce the expected functionality. This paper focuses on
the latter, and our preliminary evaluation shows that MuSynth’s com-
bination of type-based heuristics, simple hints, and evolutionary search
are each useful for efficient program synthesis.

Keywords: Program synthesis · Evolutionary computation · Code
reuse · Big code

1 Introduction

Software developers have collectively written an enormous amount of code. Avail-
ability of such “big code” in searchable archives has spurred recent research [12,
13], with the overarching theme of leveraging existing code to improve developer
productivity. In this work, we use “big code” for program synthesis, to automat-
ically generate programs that meet developer’s requirements [7].

Code reuse [5] is widespread as it aids rapid prototyping with limited
resources. It includes both as-is reuse and reuse involving code modification
to fit a new context. As an example of the latter, to reduce time-to-market,
developers adapt existing code to run on embedded devices with constrained
resources—it may be infeasible to load whole image processing libraries, but
code snippets implementing specific functionality from these libraries could be
practically re-used and customized for the embedded device.

In many software development scenarios, the functionality that a developer
is attempting to create already exists somewhere else, perhaps with minor dif-
ferences. MuSynth is an automated program synthesis engine that (1) uses

This research was supported by DARPA MUSE award #FA8750-14-2-0270. The
views, opinions, and/or findings contained in this article are those of the authors
and should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 117–123, 2017.
DOI: 10.1007/978-3-319-66299-2 8



118 V. Kashyap et al.

partial specifications of the functionality being developed, (2) searches a large
corpus for “donor” code that implements a similar functionality, and (3) reuses
and modifies the donor code in the developer’s context to produce desired func-
tionality. In this paper, we focus on a research question regarding (3): given
a partial specification via developer-provided tests and some donor code that
potentially implements the functionality, how can we automatically manipulate
the donor code to incorporate it into the developer’s context? MuSynth com-
bines type-based heuristics, developer hints, and evolutionary search to address
this research question. Based on our preliminary results, we believe MuSynth
is a novel and promising approach to program synthesis that can be effectively
combined with traditional logic-based approaches [3] in the future.

2 Related Work

Program synthesis from partial programs. Syntax-guided synthesis [3] uses par-
tial programs (sketches) and user specifications as input to generate programs.
Specifications are logical predicates (pre- and post-conditions) describing the
desired behavior of the program. Instead of using purely logical techniques to
synthesize holes, our work exploits code reuse and evolutionary search.

Evolutionary search in program repair. Evolutionary search has been successful
in the related field of program repair [10]. Although program repair can be
viewed as synthesis of bug fixes, unlike program synthesis, program repairs are
not expected to generate new functionality.

Program synthesis based on existing code. Recent techniques [4,12] have trained
deep neural networks on existing code and used the generated models in program
synthesis. MuSynth can augment these techniques. Program splicing [11] uses
relevant donor code for synthesis but, unlike MuSynth, performs an exhaustive
enumerative search over unmodified (except for variable renaming) donor code.

Evolutionary search and program synthesis. Evolutionary program sketching [6]
modifies sketches until traditional techniques [3] can fill holes. Unlike MuSynth,
the holes they consider are very simple, and can be filled only with constants or
variables. Katz et al. [9] use genetic programming guided by model checking for
program synthesis. Whereas their approach requires a formal specification of the
functionality being synthesized, MuSynth works with partial specifications.

3 MuSynth Overview

Figure 1 provides an overview of MuSynth. It uses a similar-code-search engine
to identify relevant donor code from a large corpus that may implement the
required functionality. These donors are then mutated to fit the developer’s
problem context. The mutations are guided by evolutionary search. This paper



MuSynth: Program Synthesis via Code Reuse and Code Manipulation 119

Fig. 1. MuSynth architecture. Gray boxes are the input, green box is the output.
(Color figure online)

focuses on the donor code mutations and the evolutionary search in MuSynth,
which are built on top of Clang [2] and Software Evolution Library [14].

The developer provides a draft program containing “holes” along with test
cases and optional hints that specify the expected functionality of the com-
pleted program. MuSynth synthesizes code to appear in the holes and does
not modify code outside of the holes. The program context surrounding the
holes drives the search for similar functionality (i. e., the donor code) by using
Source Forager (SF) [8], a similar-code-search engine. SF takes a C procedure
as input—optionally with holes—and returns a list of C procedures from a large
corpus that are the most input-similar and potentially relevant for subsequent
synthesis. SF employs multiple code features from the surrounding context for
code search, such as natural language (comments, variable and function names),
abstractions of ASTs (Abstract Syntax Trees), types used and operations per-
formed. Currently, SF can search over a million procedures in under two seconds.

MuSynth maintains a candidate population of program variants: each vari-
ant is derived by “filling” the holes in the draft program. At each step of the evo-
lution, (1) a variant is selected, (2) a synthesis mutation is applied to the variant,
(3) the variant is evaluated for fitness by compiling and running developer tests
and various code sanity tests (i. e., tests finish within reasonable resource usage
and time limits, and do not exit/abort early), and (4) based on the results of the
evaluation, the mutated variant either re-enters population, or if good enough, is
presented as the solution. MuSynth uses lexicase selection [15] over test cases
and limits the size of the population to a pre-specified maximum. Evolution-
ary steps occur in parallel across threads. For successful synthesis, MuSynth
requires the code search results to contain at least one relevant donor procedure,
high-quality developer tests, and a correct (i. e., feasible to solve) draft program.

Figure 2 shows a simplified example sequence of synthesis mutations. The
draft program declares an uninitialized array, a loop to iterate over the array,



120 V. Kashyap et al.

leaving a hole to zero-initialize the array. MuSynth always applies the fill muta-
tion to any empty hole. The fill mutation first finds a snippet of donor code:
various AST subtrees are extracted from the donor code procedures, and one
of them is randomly selected, biased by subtree size (smaller is preferred) and
the hole position (e. g., if the hole is inside a loop, donor code AST subtrees
within loops are preferred). Variables in donor code are then mapped to the
ones in the draft code. The number of such possible mappings is typically large,
and to reduce this number, MuSynth uses type-based heuristics, i. e., type-
compatibility checks between donor and draft variables. E.g, the types “array of
short” and “pointer to char” are considered compatible, because the same oper-
ations (e. g., array indexing and bit shifting) can be applied on variables with
either type. These type-based heuristics reduce the number of non-compiling
variants. The developer can provide simple optional hints to MuSynth, such as
(1) the superset of variables expected to be used in synthesized code, and (2)
the subset of the variables that must be modified by the synthesized code. These
hints help further reduce the number of possible mappings. Here, fill mutation
maps the donor variables x, index to draft variables array, j respectively.

Fig. 2. Example sequence of mutations.

A rebind mutation attempts to find
an alternate variable mapping for the
hole, further exploring potential vari-
able bindings. Here, j is renamed to i
(of compatible type), and array is left
unchanged. A fix off-by-one replaces
a constant in the hole with an off-by-
one constant: here, 1 is replaced by 0.
Finally, this change creates the correct
zero-initialization. Other mutations fre-
quently used by MuSynth are: replace
variable with a constant, delete
statement, refill (which throws away

the current contents of the hole and refills with new donor snippet), and insert
new statement (insert a new donor statement at random within the hole).

4 Evaluation

Our evaluation goal is to understand the effectiveness of MuSynth on a bench-
mark suite [1] of program synthesis challenges, openly available for review. The
benchmarks consist of 3 algorithms: (1) image contrast enhancement using his-
togram equalization, (2) binary search, and (3) insertion sort. For each algorithm,
we found an existing implementation online, removed code at different program
points to create holes, and wrote test cases to specify the expected functionality.
As it is not the focus of the paper, we cached the results (4–5 similar proce-
dures [1] per algorithm) of running SF on these benchmarks—they constitute
the donor code used in synthesis. The time taken by SF is not included in the
reported times below. Table 1 summarizes our evaluation. Column 1 lists the



MuSynth: Program Synthesis via Code Reuse and Code Manipulation 121

various benchmarks—each is a draft program with a hole of different size and
program location. Column 2 indicates a proxy for the expected complexity of
the hole as a pair of numbers: (1) the number of n-ary operations expected to be
in the hole (such as assignment, array indexing, bit shifting), (2) the number of
variables expected to be used in the hole. These numbers were computed based
on the original code that was replaced with corresponding holes.

We run MuSynth under 4 configurations to evaluate the research question
outlined in Sect. 1. Evolutionary search is used by evonone, evosome, and evoall.
evonone runs without any hints from the developer. evosome is provided the
superset of the variables expected in the holes. In addition to these hints, evoall

is provided the subset of the variables that must be modified by the hole. randall

is the same as evoall, except that it uses random search instead (i. e., unguided
search that always starts with a fill mutation, and then randomly applies a
synthesis mutation, but restarts when uncompilable variants are produced). All 4
configurations use type-based heuristics—without which most benchmarks time
out—and the same probabilities for all the synthesis mutations. An exhaustive
enumerative search of the infinite solution space requires specifying an order
for applying the synthesis mutations and variable bindings. Instead of hand-
picking one such ordering, we avoid bias by using randall for comparison. The
rightmost 4 columns in Table 1 provide the time taken (in seconds) for running
MuSynth on different benchmarks until a correct solution is found. We run
each experiment 10 times and the median time is reported. Experiments were
run on an AMD ×64 machine (2.6 GHz, 4 cores, 16 GB main memory), with a
population of maximum size 1000, 4 threads, and a 30 min timeout (∞ is used to
indicate timeouts). The hole synthesized by running evoall on the benchmark
contrast-enhance-4 is shown in Fig. 3 as an example of MuSynth’s synthesis
capabilities.

Table 1. Summary of evaluation results (fastest time highlighted in boxes).



122 V. Kashyap et al.

Fig. 3. Synthesized code (indicated in red) for contrast-enhance-4, which required,
among other things, finding the correct name bindings for seven variables and macros,
and fixing an off-by-one error. The surrounding context has been elided for space.
The donor code that gets adapted here uses a different image representation format
and different amount of bit shifting than the synthesized code. This result shows that
donor code can be adapted even when it uses different data structures or contains
errors. (Color figure online)

Table 1 shows that in almost all cases, evoall is either the fastest, or is close
to the fastest. evoall is also the only one to successfully complete (i. e., passes all
test cases, with solutions manually verified afterwards) on all benchmarks within
the time limit. This result indicates that developer hints can significantly reduce
synthesis time. randall is the fastest in a few cases because of the low overhead
(i. e., no population to maintain). However, it times out in cases that require
sequencing of multiple synthesis mutations. This result indicates that evolution-
ary search is useful in navigating a large search space of synthesis mutations.
With these results, we believe that type-based heuristics, developer hints, and
evolutionary search contributes to efficient program synthesis.

References

1. Program Synthesis Challenge Benchmark. https://github.com/ssbse-2017-
submission/synthesis-challenges

2. The Clang Project. https://clang.llvm.org/
3. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,

Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
FMCAD. IEEE (2013)

4. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder:
Learning to Write Programs. ArXiv e-prints., November 2016

5. Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F.: The plastic surgery
hypothesis. In: FSE. ACM (2014)

6. B�l ↪adek, I.,Krawiec,K.:Evolutionaryprogramsketching. In:McDermott, J.,Castelli,
M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol.
10196, pp. 3–18. Springer, Cham (2017). doi:10.1007/978-3-319-55696-3 1

7. Gulwani, S.: Dimensions in program synthesis. In: PPDP. ACM (2010)
8. Kashyap, V., Brown, D.B., Liblit, B., Melski, D., Reps, T.: Source Forager: A

Search Engine for Similar Source Code. ArXiv e-prints (2017)
9. Katz, G., Peled, D.A.: Synthesis of parametric programs using genetic program-

ming and model checking. In: INFINITY (2013)
10. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method

for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

https://github.com/ssbse-2017-submission/synthesis-challenges
https://github.com/ssbse-2017-submission/synthesis-challenges
https://clang.llvm.org/
http://dx.doi.org/10.1007/978-3-319-55696-3_1


MuSynth: Program Synthesis via Code Reuse and Code Manipulation 123

11. Lu, Y., Chaudhuri, S., Jermaine, C., Melski, D.: Data-Driven Program Completion.
ArXiv e-prints, May 2017

12. Murali, V., Chaudhuri, S., Jermaine, C.: Bayesian Sketch Learning for Program
Synthesis. ArXiv e-prints (2017)

13. Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “Big
Code”. In: POPL. ACM (2015)

14. Schulte, E.: Neutral networks of real-world programs and their application to auto-
mated software evolution. Ph.D. thesis, University of New Mexico, Albuquerque,
USA, July 2014. https://cs.unm.edu/∼eschulte/dissertation

15. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In: GECCO. ACM (2012)

https://cs.unm.edu/~eschulte/dissertation

	MUSYNTH: Program Synthesis via Code Reuse and Code Manipulation
	1 Introduction
	2 Related Work
	3 MuSynth Overview
	4 Evaluation
	References




