
Tim Menzies
Justyna Petke (Eds.)

 123

LN
CS

 1
04

52

9th International Symposium, SSBSE 2017
Paderborn, Germany, September 9–11, 2017
Proceedings

Search Based
Software Engineering

Lecture Notes in Computer Science 10452

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Tim Menzies • Justyna Petke (Eds.)

Search Based
Software Engineering
9th International Symposium, SSBSE 2017
Paderborn, Germany, September 9–11, 2017
Proceedings

123

Editors
Tim Menzies
North Carolina State University
Morgantown, WV
USA

Justyna Petke
Department of Computer Science
University College London
London
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66298-5 ISBN 978-3-319-66299-2 (eBook)
DOI 10.1007/978-3-319-66299-2

Library of Congress Control Number: 2017949514

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-5040-3196
http://orcid.org/0000-0002-7833-6044

Preface

On behalf of the SSBSE 2017 Program Committee, we are pleased to present the
proceedings of the 9th International Symposium on Search Based Software
Engineering.

This year SSBSE was hosted in Paderborn, Germany, continuing to bring together
international researchers to exchange and discuss ideas and to celebrate the latest
progress in this rapidly advancing field.

It was a privilege for us to serve as program chairs and we believe that the quality
of the program reflects the excellent efforts of the authors, reviewers, keynote speakers,
tutorial presenters, and organizers.

First and foremost we are grateful for the widespread participation and support from
the SBSE community. This year, SSBSE attracted a large number of submissions–the
technical track alone attracted 26 submissions from 14 countries, which is an increase
compared with last year.

We would like to thank all the authors for their high-quality contributions. We had a
triple-blind review process in place for the main track. Each submission was reviewed
by at least three Program Committee members and followed by an online discussion.
At the end of the review process:

– 12 papers were accepted to the research track (7 long and 5 short)
– 4 papers were accepted to the challenge track,
– 2 papers were accepted to the student track.

We would like to thank the Program Committee members for providing timely,
detailed, and constructive feedback, and for actively participating in the online
discussions.

We also wish to thank the general chair, Lars Grunske, who brought SSBSE to
Paderborn and put on, together with his team, such an enjoyable event. Special thanks
are also due to:

– The track chairs of our specialist tracks:

• David R. White and Tanja E.J. Vos for organizing an exciting challenge track;
• Claire Le Goues for chairing the student and short paper tracks.

Dr. Le Goues deserves additional credit for proposing to change the name from
graduate to student track, allowing more participation from students; they are a
vital part of any research field.

– Also, we especially thank Matheus Paixao (web chair) and Gregory Gay (publicity
chair) for their precious help in reaching out to the community.

In addition to our technical sessions, covering a wide range of topics, SSBSE 2017
attendees had the opportunity to hear

– State-of-the-art reports from two esteemed keynote speakers: Myra B. Cohen and
Joachim Wegener.

– Technical tutorials from: Gordon Fraser, Antonio J. Nebro, Dimo Brockhoff, and
Hermann Kaindl.

– Journal first invited talk sessions.

We hope that, with these proceedings, anyone who did not have the chance to be
with us in Paderborn, will have the opportunity to follow the latest advances of the
SBSE community.

June 2017 Tim Menzies
Justyna Petke

VI Preface

Organization

Organizing Committee

General Chair

Lars Grunske Humboldt University of Berlin, Germany

Program Chairs

Tim Menzies North Carolina State University, USA
Justyna Petke University College London, UK

Student and Short Papers Track Chair

Claire Le Goues Carnegie Mellon University, USA

SSBSE Challenge Track Chairs

David R. White University College London, UK
Tanja E.J. Vos Open University, Netherlands

Publicity Chair

Gregory Gay University of South Carolina, USA

Web Chair

Matheus Paixao University College London, UK

Proceedings Chair

Sinem Getir Humboldt University of Berlin, Germany

Local Arrangements Chair

Uwe Pohlmann University of Paderborn, Germany

Steering Committee

Andrea Arcuri Westerdals, Norway
Claire Le Goues Carnegie Mellon University, USA
Federica Sarro University College London, UK
Gregory Gay University of South Carolina, USA
Gordon Fraser University of Sheffield, UK
Jerffeson Teixeira de Souza Ceará State University, Brazil
Márcio de Oliveira Barros Federal University of the State of Rio de Janeiro, Brazil
Marouane Kessentini University of Michigan, USA

Mohamed Wiem University of Michigan, USA
Shin Yoo Korea Advanced Institute of Science and Technology,

South Korea

Program Committee

Aldeida Aleti Monash University, Australia
Alessandro Marchetto Fondazione Bruno Kessler, Italy
Andrea Arcuri Westerdals, Norway
Anne Koziolek Karlsruhe Institute of Technology, Germany
Federica Sarro University College London, UK
Francisco Chicano University of Malaga, Spain
Giuliano Antoniol École Polytechnique de Montréal, Canada
Gregory Gay University of South Carolina, USA
Guenther Ruhe University of Calgary, Canada
Hadi Hemmati University of Manitoba, Canada
Jerffeson Teixeira de Souza Ceará State University, Brazil
Juan Pablo Galeotti University of Buenos Aires, Argentina
Leandro Minku University of Leicester, UK
Leonardo Bottaci University of Hull, UK
Márcio de Oliveira Barros Federal University of the State of Rio de Janeiro, Brazil
Mark Harman University College London, UK
Marouane Kessentini University of Michigan, USA
Massimiliano Di Penta University of Sannio, Italy
Muhammad Zohaib Iqbal National University of Computer & Emerging

Sciences, Pakistan
Pasqualina Potena SICS Swedish ICT, Sweden
Phil McMinn University of Sheffield, UK
Shin Yoo Korea Advanced Institute of Science and Technology,

South Korea
Thelma E. Colanzi State University of Maring, Brazil

Challenge Track Program Committee

Alexandru Marginean University College London, UK
Jonathan M. Aitken University of Sheffield, UK
Christopher Simons University of West England, UK
Sarah Thomson University of Stirling, UK
Héctor Menéndez University College London, UK
Sevil Sen University of York, UK
Tanja E.J. Vos Technical University of Valencia, Spain
Gordon Fraser University of Sheffield, UK
José Raúl Romero University of Cordoba, Spain
Shaukat Ali Simula Research Laboratory, Norway
Inmaculada Medina-Bulo University of Cadiz, Spain

VIII Organization

Student and Short Papers Program Committee

Gordon Fraser University of Sheffield, UK
Pasqualina Potena SICS Swedish ICT, Sweden
Thelma E. Colanzi State University of Maring, Brazil
Celso Camilo-Junior Universidade Federal de Gois, Brazil
Aldeida Aleti Monash University, Australia
David R. White University College London, UK
Simon Poulding Blekinge Institute of Technology, Sweden
Christopher Timperley Carnegie Mellon University, USA
Gregory Kapfhammer Allegheny College, USA
Gregory Gay University of South Carolina, USA
Anne Koziolek Karlsruhe Institute of Technology, Germany
Phil McMinn University of Sheffield, UK
Jonathan Dorn University of Virginia, USA
Eric Schulte GrammaTech, USA

Additional Reviewers

Assunção, Wesley K.G.
Guimaraes, Carlos

Jilani, Atif
Karim, Rezaul

Petrozziello, Alessio

Organization IX

Sponsoring Institutions

X Organization

Keynotes

The Grass isn’t Always Greener: A Changing
Neighborhood and Varying Landscape

Myra B. Cohen

University of Nebraska-Lincoln, NE, USA
myra@cse.unl.edu

Abstract. Search based software engineering has been used to solve many
problems in software engineering and as such many different search based
algorithms have been utilized for optimizing problems across the full software
lifecycle. Solutions range from simple greedy to local heuristic search to evo-
lutionary, population based techniques. Choosing the algorithm to use for a
particular problem is a key design decision. However, an equally important
decision, and one that is often less explored, is the design of the search
neighborhood and the choice of its transformation operators. In this talk I will
discuss some of our experience with varying the neighborhoods and transfor-
mation operators for problems such as software test generation and reverse
engineering system models. I will show how this important design decision can
have a large impact on the quality of a search algorithm for different variants
of the same problem, because it fundamentally alters the search landscape. I will
also show that while one neighborhood may be superior solving one variation of
a problem, it may not work well at all for another variant of the same problem.

Biography: Myra Cohen is a Susan J. Rosowski Professor at the University of
Nebraska-Lincoln where she has been a member of the Laboratory for Empirically
Based Software Quality Research and Development, ESQuaReD since 2004. Her
research expertise is in combinatorial testing and software testing of highly config-
urable software, software product lines, graphical user interfaces, and self-adaptive
software. She regularly utilizes search based software engineering techniques in her
research and teaches a graduate course on this topic. She has been a program committee
member of many highly regarded software engineering conferences such as ICSE, FSE,
ASE, ISSTA and ICST. She was the program co-chair of SSBSE in 2011, the
GECCO SBSE track in 2010 and ISSRE in 2013. She was the general chair of ASE in
2015.

Industrial Applications of Evolutionary
Testing

Joachim Wegener

Berner & Mattner Systemtechnik GmbH, Berlin, Germany

Abstract. Test case design could be easily interpreted as the search of the tester
for an error-sensitive set of test cases. The application of search techniques to
find an adequate set of test cases automatically is straight forward if an
appropriate transformation of the testing goals into a fitness function could be
defined. Therefore, numerous publications on evolutionary testing were pub-
lished during the last two decades from researchers all over the world. Never-
theless, evolutionary testing has not found its way into industrial practice.
Industrial applications are mostly limited to experimental case studies. The
keynote will present successful applications of evolutionary testing in industrial
practice and will discuss the success factors. Most successful applications are
from the test of embedded systems, since here often very complex implemen-
tations are required in order to realize single, well tangible system tasks. But also
the aspects hindering a broader application of evolutionary testing in practice
shall be discussed. The time is right for a wider introduction.

Biography: Dr. Joachim Wegener studied computer science at the Technical Univer-
sity Berlin and received his PhD from Humboldt University Berlin. His thesis work,
Evolutionary Testing of real-time systems temporal behavior gained him the Best
Dissertation in Software Engineering award of the Ernst-Denert-Foundation and the
German Computer Society, 2002. Joachim Wegener began his professional career as a
scientist at Daimler AG Research and Technology. For DaimlerChrysler research and
advanced development he led the software analysis and testing group as well as a group
on advanced techniques in software engineering. Since 2007 he works for Berner
Mattner Systemtechnik GmbH a subsidiary of the Assystem group specialized on
embedded systems development services and products. At Berner Mattner, Joachim
Wegener is responsible for the departments in Berlin, Brunswick, Cologne and
Wolfsburg as well as the product development. He is one of the international leading
industrial researchers in evolutionary and systematic testing and has more than ninety
publications. He is the inventor of the successful classification tree editors CTE,
CTE XL and TESTONA with several thousand users worldwide.

Tutorials

Algorithms for Multiobjective Optimization
and How to Benchmark Them

Dimo Brockhoff

Inria Saclay - Île-de-France, Palaiseau, France
dimo.brockhoff@inria.fr

Abstract. Multiobjective optimization problems, in which two or more objec-
tive functions are to be optimized simultaneously, appear in many application
domains. The field of search based software engineering is no exception. Var-
ious algorithms for multiobjective optimization have been proposed in recent
years, with the effect that the ultimate practical question when solving a concrete
problem became increasingly difficult: which of the many available algorithm
shall I actually use? To contribute to the answer of this question, we revisit
several common multiobjective optimization algorithms in this talk and discuss
their strengths and weaknesses from a more theoretical perspective. In addition,
we look at the latest developments on how to benchmark (multiobjective)
algorithms and showcase the performance of some common (and not so com-
mon) algorithms on the 55 unconstrained numerical blackbox functions of the
biobjective BBOB test suite.

Biography: Dimo Brockhoff received his diploma in computer science from University
of Dortmund, Germany in 2005 and his PhD (Dr. sc. ETH) from ETH Zurich,
Switzerland in 2009. Later, he held two postdoctoral research positions in France at
Inria Saclay Ile-de-France (2009-2010) and at Ecole Polytechnique (2010-2011) before
joining Inria in November 2011 as a permanent researcher. After working at Inrias
Lille - Nord Europe research center for about five years, he has been back to the Saclay -
Ile-de-France center since October 2016 to become member of the new Randomized
Optimization team. His research interests are focused on evolutionary multiobjective
optimization (EMO), in particular on theoretical aspects of indicator-based search, and on
the benchmarking of blackbox algorithms in general. Dimo has been involved in the
co-organization of several special issues and workshops around these topics such as the
SIMCO and SAMCO workshops at the Lorentz center in the Netherlands in 2013 and
2016 and the Blackbox Optimization Benchmarking workshops at CEC 2015 and at
GECCO 2013, 2015, and 2016.

Search-based Unit Test Generation
with EvoSuite

Gordon Fraser

Computer Science, University of Sheffield, UK
Gordon.Fraser@sheffield.ac.uk

Abstract. EvoSuite automatically generates test cases with assertions for classes
written in Java code, using a search-based approach that evolves whole test
suites towards satisfying a coverage criterion. For the produced test suites,
EvoSuite suggests possible oracles by adding small and effective sets of
assertions that concisely summarize the current behavior; these assertions allow
the developer to detect deviations from expected behavior, and to capture the
current behavior in order to protect against future defects breaking this beha-
viour. In this tutorial, we will discuss how to use of the EvoSuite search-based
test generation infrastructure to apply search-based test generation, and how to
build on EvoSuite to develop new techniques using, or extending, search-based
testing.

Biography: Gordon Fraser is a Senior Lecturer in Computer Science at the University
of Sheffield, UK. He received his Ph.D. from Graz University of Technology, Austria,
in 2007, and worked as a post-doc researcher at Saarland University, Germany. He has
published on improving software quality and programmer productivity at all major
software engineering venues (e.g., TSE, TOSEM, ICSE, ISSTA, FSE, ASE, ICST).
He is chair of the steering committees of the International Conference on Software
Testing, Verification, and Validation (ICST) and the Symposium on Search-Based
Software Engineering (SSBSE). He has been programme chair of several
testing-related conferences (ICST, TAP, TAIC PART, SSBSE) and workshops, is a
regular member of many programme and organising committees in the field (e.g.,
ICSE, FSE, ASE, ISSTA), and is editorial board member of the IEEE Transactions on
Software Engineering (TSE) and Software Testing, Verification, and Reliability
(STVR) journals. He is a founder and one of the core developers of the EvoSuite
search-based unit test generator.

Optimization Search for GUIs
and Cyberphysical Systems

Hermann Kaindl

Institute of Computer Technology Wien - TU Wien, Austria
hermann.kaindl@tuwien.ac.at

Abstract. This tutorial presents and contrasts two different optimization search
approaches studied by this proposer for automated GUI generation and for
feature interactions in cyberphysical automotive systems. Providing several
GUIs tailored for multiple devices (desktop PCs, tablet PCs and smartphones) is
desirable but expensive, and it takes time. Our new approach just requires a
device specification with a few parameters for automated GUI tailoring in the
course of designtime generation from the same highlevel interaction design
model. This tailoring is implemented as heuristic optimization search.

With increasing numbers of features in automotive systems, feature inter-
action (FI) becomes more and more relevant regarding safety and emissions.
Our new approach for optimization of feature interactions integrates an opti-
mization objective (minimize CO2 emission) with both soft and hard constraints
(e.g., related to certain temperatures). In the course of iterations of hillclimbing
optimization at runtime, the integrating objective function is dynamically
adapted for heuristic coordination of FIs.

These approaches will be contrasted primarily in terms of the very different
application domains and, more fundamentally, regarding designtime vs. runtime
optimization with their very different requirements.

Biography: Hermann Kaindl joined the Institute of Computer Technology at TU Wien
in Vienna, Austria, in early 2003 as a full professor. Prior to moving to academia, he
was a senior consultant with the division of program and systems engineering at
Siemens Austria. There he has gained more than 24 years of industrial experience in
software development and humancomputer interaction. He has published five books
and more than 220 papers in refereed journals, books and conference proceedings, and
he has previously run more than 50 tutorials. He is a Senior Member of the IEEE and a
Distinguished Scientist Member of the ACM, and he is on the executive board of the
Austrian Society for Artificial Intelligence. In the past, Hermann Kaindl published his
basic research on Heuristic Search in Artificial Intelligence in the AIJ, several IEEE
Transactions, and in many Conference Proceedings of IJCAIs, AAAIs and ECAIs.

Multi-objective Optimization with the jMetal
Framework. Applications to SBSE

Antonio J. Nebro

University of Malaga, Malaga, Spain
antonio@lcc.uma.es

Abstract. jMetal is a Java-based framework for multi-objective optimization
with metaheuristics which has become popular in some disciplines, including
Search Based Software Engineering (SBSE). In this tutorial, we give a practical
overview of the main jMetal components (algorithms, encodings, problems,
operators, experiments, quality indicators), focusing on how to configure and
run some of the included algorithms and also on how to incorporate new
solution representations and problems. We give examples of classical algorithms
but also more modern techniques, including preference-based metaheuristics.
Some SBSE problems will be used as case studies.

Biography: Antonio J. Nebro received his M.S. and Ph.D. degrees in Computer Sci-
ence from the University of Malaga, Spain, in 1992 and 1999, respectively. He is
currently an Associate Professor of Computer Science at the University of Malaga,
Spain. His current research activity is related to multi-objective optimization tech-
niques, parallelism and Big Data, and the application of these techniques to real-world
problems of the domains of bioinformatics and civil engineering. He has coauthored 30
articles published in international journals, 28 of which are indexed in JCR, 15 book
chapters and more than 30 articles in international conferences. His H index is 30, and
his papers have more than 3250 citations. He is one of the designers and main
developer of the jMetal framework for multi-objective optimization with
metaheuristics.

Journal-First Presentations

A Systematic Mapping Study of Search-based
Software Engineering for Software

Product Lines

Roberto E. Lopez-Herrejon, Lukas Linsbauer, and Alexander Egyed

Abstract. Context: Search-Based Software Engineering (SBSE) is an emerging
discipline that focuses on the application of search-based optimization tech-
niques to software engineering problems. Software Product Lines (SPLs) are
families of related software systems whose members are distinguished by the set
of features each one provides. SPL development practices have proven benefits
such as improved software reuse, better customization, and faster time to mar-
ket. A typical SPL usually involves a large number of systems and features, a
fact that makes them attractive for the application of SBSE techniques which are
able to tackle problems that involve large search spaces.

Objective: The main objective of our work is to identify the quantity and the type of
research on the application of SBSE techniques to SPL problems. More concretely, the
SBSE techniques that have been used and at what stage of the SPL life cycle, the type
of case studies employed and their empirical analysis, and the fora where the research
has been published. Method: A systematic mapping study was conducted with five
research questions and assessed 77 publications from 2001, when the term SBSE was
coined, until 2014.

Results: The most common application of SBSE techniques found was testing fol-
lowed by product configuration, with genetic algorithms and multi-objective evolu-
tionary algorithms being the two most commonly used techniques. Our study identified
the need to improve the robustness of the empirical evaluation of existing research, a
lack of extensive and robust tool support, and multiple avenues worthy of further
investigation. Conclusions: Our study attested the great synergy existing between both
fields, corroborated the increasing and ongoing interest in research on the subject, and
revealed challenging open research questions.

Inf. Softw. Technol. 61, C (May 2015), 33–51

Technical Debt Reduction Using Search
Based Automated Refactoring

Michael Mohan, Des Greer, and Paul McMullan

Abstract. Software refactoring has been recognized as a valuable process during
software development and is often aimed at repaying technical debt. Technical
debt arises when a software product has been built or amended without full care
for structure and extensibility. Refactoring is useful to keep technical debt low
and if it can be automated there are obvious efficiency benefits. Using a com-
bination of automated refactoring techniques, software metrics and meta-
heuristic searches, an automated refactoring tool can improve the structure of a
software system without affecting its functionality. In this paper, four different
refactoring approaches are compared using an automated software refactoring
tool. Weighted sums of metrics are used to form different fitness functions that
drive the search process towards certain aspects of software quality. Metrics are
combined to measure coupling, abstraction and inheritance and a fourth fitness
function is proposed to measure reduction in technical debt. The 4 functions are
compared against each other using 3 different searches on 6 different open
source programs. Four out of the 6 programs show a larger improvement in the
technical debt function after the search based refactoring process. The results
show that the technical debt function is useful for assessing improvement in
quality.

Journal of Systems and Software 120 (2016): 183–194

Contents

Long Research Papers

Many Independent Objective (MIO) Algorithm for Test Suite Generation. . . . 3
Andrea Arcuri

Search Based Path and Input Data Generation for Web
Application Testing . 18

Matteo Biagiola, Filippo Ricca, and Paolo Tonella

An Empirical Evaluation of Evolutionary Algorithms for Test
Suite Generation . 33

José Campos, Yan Ge, Gordon Fraser, Marcelo Eler, and Andrea Arcuri

Automatic Detection of Incomplete Requirements Using Symbolic
Analysis and Evolutionary Computation. 49

Byron DeVries and Betty H.C. Cheng

Generating Effective Test Suites by Combining Coverage Criteria. 65
Gregory Gay

LIPS vs MOSA: A Replicated Empirical Study on Automated
Test Case Generation. 83

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella

An Investigation into the Use of Mutation Analysis for Automated
Program Repair. 99

Christopher Steven Timperley, Susan Stepney, and Claire Le Goues

Short Research Papers

MUSYNTH: Program Synthesis via Code Reuse and Code Manipulation 117
Vineeth Kashyap, Rebecca Swords, Eric Schulte, and David Melski

Human Resource Optimization for Bug Fixing: Balancing Short-Term
and Long-Term Objectives . 124

Elias Khalil, Mustafa Assaf, and Abdel Salam Sayyad

Grammar Based Genetic Programming for Software
Configuration Problem. 130

Fitsum Meshesha Kifetew, Denisse Muñante, Jesús Gorroñogoitia,
Alberto Siena, Angelo Susi, and Anna Perini

http://dx.doi.org/10.1007/978-3-319-66299-2_1
http://dx.doi.org/10.1007/978-3-319-66299-2_2
http://dx.doi.org/10.1007/978-3-319-66299-2_2
http://dx.doi.org/10.1007/978-3-319-66299-2_3
http://dx.doi.org/10.1007/978-3-319-66299-2_3
http://dx.doi.org/10.1007/978-3-319-66299-2_4
http://dx.doi.org/10.1007/978-3-319-66299-2_4
http://dx.doi.org/10.1007/978-3-319-66299-2_5
http://dx.doi.org/10.1007/978-3-319-66299-2_6
http://dx.doi.org/10.1007/978-3-319-66299-2_6
http://dx.doi.org/10.1007/978-3-319-66299-2_7
http://dx.doi.org/10.1007/978-3-319-66299-2_7
http://dx.doi.org/10.1007/978-3-319-66299-2_8
http://dx.doi.org/10.1007/978-3-319-66299-2_9
http://dx.doi.org/10.1007/978-3-319-66299-2_9
http://dx.doi.org/10.1007/978-3-319-66299-2_10
http://dx.doi.org/10.1007/978-3-319-66299-2_10

GPGPGPU: Evaluation of Parallelisation of Genetic Programming
Using GPGPU . 137

Jinhan Kim, Junhwi Kim, and Shin Yoo

Evaluating CAVM: A New Search-Based Test
Data Generation Tool for C . 143

Junhwi Kim, Byeonghyeon You, Minhyuk Kwon, Phil McMinn,
and Shin Yoo

Challenge Papers

Using Search-Based Test Generation to Discover Real Faults in Guava 153
Hussein Almulla, Alireza Salahirad, and Gregory Gay

Optimising Darwinian Data Structures on Google Guava 161
Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr

A Hyper-heuristic for Multi-objective Integration and Test Ordering
in Google Guava. 168

Giovani Guizzo, Mosab Bazargani, Matheus Paixao, and John H. Drake

Hyperheuristic Observation Based Slicing of Guava 175
Seongmin Lee and Shin Yoo

Student Papers

Diversity in Search-Based Unit Test Suite Generation 183
Nasser M. Albunian

Automated Controlled Experimentation on Software by Evolutionary
Bandit Optimization . 190

Rasmus Ros, Elizabeth Bjarnason, and Per Runeson

Author Index . 197

XXVI Contents

http://dx.doi.org/10.1007/978-3-319-66299-2_11
http://dx.doi.org/10.1007/978-3-319-66299-2_11
http://dx.doi.org/10.1007/978-3-319-66299-2_12
http://dx.doi.org/10.1007/978-3-319-66299-2_12
http://dx.doi.org/10.1007/978-3-319-66299-2_13
http://dx.doi.org/10.1007/978-3-319-66299-2_14
http://dx.doi.org/10.1007/978-3-319-66299-2_15
http://dx.doi.org/10.1007/978-3-319-66299-2_15
http://dx.doi.org/10.1007/978-3-319-66299-2_16
http://dx.doi.org/10.1007/978-3-319-66299-2_17
http://dx.doi.org/10.1007/978-3-319-66299-2_18
http://dx.doi.org/10.1007/978-3-319-66299-2_18

Long Research Papers

Many Independent Objective (MIO) Algorithm
for Test Suite Generation

Andrea Arcuri1,2(B)

1 Faculty of Technology, Westerdals Oslo ACT, Oslo, Norway
arcand@westerdals.no

2 University of Luxembourg, Luxembourg City, Luxembourg

Abstract. Automatically generating test suites is intrinsically a multi-
objective problem, as any of the testing targets (e.g., statements to exe-
cute or mutants to kill) is an objective on its own. Test suite generation
has peculiarities that are quite different from other more regular opti-
misation problems. For example, given an existing test suite, one can
add more tests to cover the remaining objectives. One would like the
smallest number of small tests to cover as many objectives as possi-
ble, but that is a secondary goal compared to covering those targets in
the first place. Furthermore, the amount of objectives in software test-
ing can quickly become unmanageable, in the order of (tens/hundreds
of) thousands, especially for system testing of industrial size systems.
Traditional multi-objective optimisation algorithms can already start
to struggle with just four or five objectives to optimize. To overcome
these issues, different techniques have been proposed, like for example
the Whole Test Suite (WTS) approach and the Many-Objective Sorting
Algorithm (MOSA). However, those techniques might not scale well to
very large numbers of objectives and limited search budgets (a typical
case in system testing). In this paper, we propose a novel algorithm,
called Many Independent Objective (MIO) algorithm. This algorithm is
designed and tailored based on the specific properties of test suite gen-
eration. An empirical study, on a set of artificial and actual software,
shows that the MIO algorithm can achieve higher coverage compared to
WTS and MOSA, as it can better exploit the peculiarities of test suite
generation.

Keywords: Test generation · SBSE · SBST · MOO

1 Introduction

Test case generation can be modelled as an optimisation problem, and so dif-
ferent kinds of search algorithms can be used to address it [9]. There can be
different objectives to optimise, like for example branch coverage or the detec-
tion of mutants in the system under test (SUT). When aiming at maximising
these metrics, often the sought solutions are not single test cases, as a single test
cannot cover all the objectives in the SUT. Often, the final solutions are sets of
test cases, usually referred as test suites.
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-66299-2 1

4 A. Arcuri

There are many different kinds of search algorithms that can be used for gen-
erating test suites. The most famous is perhaps the Genetic Algorithms (GA),
which is often the first choice when addressing a new software engineering prob-
lem for the first time. But it can well happen that on specific problems other
search algorithms could be better. Therefore, when investigating a new problem,
it is not uncommon to evaluate and compare different algorithms. On average,
no search algorithm can be best on all possible problems [13]. It is not uncom-
mon that, even on non-trivial tasks, simpler algorithms like (1 + 1) Evolutionary
Algorithm (EA) or Hill Climbing (HC) can give better results than GA (e.g., as
in [1]).

A major factor affecting the performance of a search algorithm is the so called
search budget, i.e., for how long the search can be run, usually the longer the
better. But the search budget is also strongly related to the tradeoff between
the exploitation and exploration of the search landscape. If the budget is low,
then a population-based algorithm like GA (which puts more emphasis on the
exploration) is likely to perform worse than a single, more focused individual-
based algorithm like HC or (1 + 1) EA. On the other hand, if the search budget
is large enough, the exploration made by the GA can help it to escape from the
so called local optima in which HC and (1 + 1) EA can easily get stucked in.

To obtain even better results, then one has to design specialised search
algorithms that try to exploit the specific properties of the addressed prob-
lem domain. In the case of test suite generation, there are at least the following
peculiarities:

– testing targets can be sought independently. Given an existing test suite, to
cover the remaining testing targets (e.g., lines and branches), you can create
and add new tests without the need to modify the existing ones in the suite.
At the end of the search, one wants a minimised test suite, but that is a
secondary objective compared to code coverage.

– testing targets can be strongly related (e.g., two nested branches), as well as
being completely independent (e.g., code in two different top-level functions
with no shared state).

– some testing targets can be infeasible, i.e., impossible to cover. There can be
different reasons for it, e.g., dead code, defensive programming or the testing
tool not handling all kinds of SUT inputs (e.g., files or network connections).
Detecting whether a target is feasible or not is an undecidable problem.

– for non-trivial software, there can be a very large number of objectives. This is
specially true not only for system-level testing, but also for unit testing when
mutation score is one of the coverage criteria [7]. Traditional multi-objective
algorithms are ill suited to tackle large numbers of objectives [10].

In this paper, we propose a novel search algorithm that exploits such charac-
teristics and, as such, it is specialised for test suite generation (and any problem
sharing those properties). We call it the Many Independent Objective (MIO)
algorithm. We carried out an empirical study to compare the MIO algorithm
with the current state-of-the-art, namely the Whole Test Suite [6] approach and
the Many-Objective Sorting Algorithm [11]. On a set of artificial software with

Many Independent Objective (MIO) Algorithm for Test Suite Generation 5

different characteristics (clear gradients, plateaus, deceptive local optima and
infeasible targets), in most cases MIO achieves higher coverage. This was also
confirmed with unit test experiments on three numerical functions.

2 Background

2.1 Whole Test Suite (WTS)

The Whole Test Suite [6] approach was introduced as an algorithm to generate
whole test suites. Before that, typical test case generators were targeting only
single objectives, like specific lines or branches, using heuristics like the branch
distance and the approach level (as for example done in [8]).

In the WTS approach, a GA is used, where an individual in the GA popula-
tion is a set of test cases. Mutation and crossover operators can modify both the
set composition (i.e., remove or add new tests) and its content (e.g., modify the
tests). As fitness function, the sum of all branch distances in the SUT is used.
At the end of the search, the best solution in the population is given as output
test suite. To avoid losing good tests during the search, the WTS can also be
extended to use an archive of best tests seen so far [12].

2.2 Many-Objective Sorting Algorithm (MOSA)

The Many-Objective Sorting Algorithm (MOSA) [11] was introduced to over-
come some of the limitations of WTS. In MOSA, each testing target (e.g., lines)
is an objective to optimize. MOSA is an extension of NSGA-II [5], a very pop-
ular multi-objective algorithm. In MOSA, the population is composed of tests,
not test suites. When a new target is covered, the test covering it gets stored in
an archive, and such target is not used any more in the fitness function. A final
output test suite is composed by the best tests found during the search and that
are stored in the archive.

In NSGA-II, selection is based on ranks (from 1 on, where 1 is the best):
an individual that subsumes many other individuals gets a better rank, and so
it is more likely to be selected for reproduction. One of the main differences of
MOSA compared to NSGA-II is the use of the preference sorting criterion: to
avoid losing the best individuals for a given testing target, for each uncovered
testing target the best individual gets the best rank (0 in MOSA), regardless of
its subsuming relations with the other tests.

3 The MIO Algorithm

3.1 Core Algorithm

Both WTS and MOSA have been shown to provide good results, at least for unit
test generation [6,11,12]. However, both algorithms have intrinsic limitations,
like for example:

6 A. Arcuri

– population-based algorithms like WTS and MOSA do put more emphasis on
the exploration of the search landscape, which is not ideal in constrained
situations of limited search budgets, like for example in system-level testing
where each test case execution can be computationally expensive. Letting the
user to tune the population size parameter is not a viable option, unless it is
done automatically (but even then, it has side effects, as we will see in the
empirical study).

– although once a target is covered it is not used any more for the fitness
function, the individuals optimised for it would still be in the population.
They will die out eventually after a few generations, but, until then, their
presence in the population can hamper the search if those covered targets are
unrelated to the remaining non-covered targets.

– in the presence of infeasible targets, some tests can get good fitness score (e.g.,
a close to 0 branch distance) although they will never cover those infeasible
targets. Those not useful tests might end up taking over a large part of the
population.

– there can be a very large number of objectives to cover, even in the order of
hundreds of thousands (e.g., in the system-level testing of industrial systems).
A fixed size population would simple not work well: if too small, then there
would not be enough diverse genetic material in the first generation; if too
large, not only convergence would be drastically slowed down, but also the
computational cost could sky-rock (e.g., NSGA-II has a quadratic complexity
based on the population size).

To avoid these limitations, we have designed a novel evolutionary algorithm
that we call the Many Independent Objective (MIO) algorithm. In a nutshell,
MIO combines the simplicity and effectiveness of (1 + 1) EA with a dynamic pop-
ulation, dynamic exploration/exploitation tradeoff and feedback-directed target
selection.

The MIO algorithm maintains an archive of tests. In the archive, for each
testing target we keep a different population of tests of size up to n (e.g., n = 10).
Therefore, given z objectives/targets, there can be up to n×z tests in the archive
at the same time.

At the beginning of the search, the archive will be empty, and so a new test
will be randomly generated. From the second step on, MIO will decide to either
sample a new test at random (probability Pr), or will choose (details later) one
existing test in the archive (probability 1 − Pr), copy it, and mutate it. Every
time a new test is sampled/mutated, its fitness is calculated, and it will be saved
in the archive if needed (details later). At this point, we need to define how tests
are saved in the archive, and how MIO samples from the archive.

When a test is evaluated, a copy of it might be saved in 0 or more of the
z populations in the archive, based on its fitness value. For each target, there
will be a heuristics score h in [0, 1], where 1 means that the target is covered,
whereas 0 is the worst possible heuristics value. For example, if the heuristics
is the branch distance d, this can be mapped into [0, 1] by using h = 1/(1 + d)

Many Independent Objective (MIO) Algorithm for Test Suite Generation 7

(where h = 0 if a branch was never reached and so the branch distance d was
not calculated).

For each target k, a test is saved in population Tk, with |Tk| ≤ n, if either:

– if hk = 0, the test is not added regardless of the following conditions.
– if the target is covered, i.e. hk = 1, the test is added and that population is

shrunk to one single individual, and it will never expand again (i.e., it will
be always |Tk| = 1). A new test can replace the one in Tk only if it is shorter
(which will depend on the problem domain, e.g. size measured in sequence
of function calls in unit testing) or, if it is of the same size, then replace the
current test only if the new test has better coverage on the other targets (i.e.,
sum of all the heuristics values on all targets).

– if the population is not full (i.e., |Tk| < n), then the test is added. Otherwise,
if full (i.e., |Tk| = n), the test might replace the worst in the population, but
only if not worse than it (but not necessarily better). This means no worse
heuristic value or, if the same, no larger size.

The idea is that, for each target, we keep a population of candidate tests
for it, for which we have at least some heuristics value. But once a target k
is covered, we just need to store the best test, and discard the rest. Note: if a
discarded test in Tk was good for another target j, then it would be still stored
in Tj anyway, so it is not lost.

When MIO needs to sample one test from the archive instead of generating
one at random, it will do the following:

– choose one target k at random where |Tk| > 0 and k is not covered (i.e., no
test has hk = 1). If all non-empty populations are for covered targets, then
just choose k randomly among them.

– choose one test randomly from Tk.

By using this approach, we aim at sampling tests that have non-zero heuris-
tics (and so guidance) for targets that are not covered yet.

3.2 Exploration/Exploitation Control

In the MIO algorithm, the two main parameters for handling the tradeoff
between exploration and exploitation of the search landscape are the probability
Pr of sampling at random and the population size n per target. Exploration is
good at the beginning of the search, but, at the end, a more focused exploitation
can bring better results. Like in Simulated Annealing, we use an approach in
which we gradually reduce the amount of exploration during the search.

We define with F the percentage of time after which a focused search should
start. This means that, for some parameters like Pr and n, we define two values:
one for the start of the search (e.g., Pr = 0.5 and n = 10), and one for when
the focused phase begins (i.e., Pr = 0 and n = 1). These values will linearly
increase/decrease based on the passing of time. For example, if F = 0.5 (i.e., the
focused search starts after 50% of the search budget is used), then after 30% of
the search, the value Pr would decrease from 0.5 to 0.2.

8 A. Arcuri

Note, when during the search decreasing n leads to some cases with |T | > n,
then those populations are shrunk by removing the worst individuals in it. Once
the focused search begins (i.e., Pr = 0 and n = 1), then MIO starts to resemble
a parallel (1 + 1) EA.

When dealing with many objectives, even if there is a clear gradient to cover
them in the fitness landscape, there might be simply not enough time left to cover
all of them. In software testing, the final user is only interested in tests that do
cover targets, and not in tests that are heuristically close to cover them (e.g.,
close to solve complex constraints in some branch predicates, but not there yet).
Therefore, between a test suite A that is close to but does not cover 100 targets,
and another one B which does cover 1 target and is very far from covering the
remaining 99, the final user would likely prefer B over A.

To take this insight into account, MIO tries to focus on just few targets at a
time, instead of spreading its resources thin among all the left uncovered targets.
For example, in MIO there is an extra parameter m which controls how many
mutations and fitness evaluations should be done on the same individual before
sampling a new one. Like Pr and n, m varies over time, like starting from 1 and
then increasing up to 10 when the focused search begins.

3.3 Feedback-Directed Sampling

When dealing with many objectives and limited resources, it might not be possi-
ble to cover all of them. As discussed in Sect. 3.2, the final user is only interested
in the actually covered targets, and not on how close we are to cover them.
Therefore, it makes sense to try to focus on targets that we have higher chances
to cover. This is helpful also when dealing with infeasible targets for which any
heuristics will just plateau at a certain point.

To handle these cases, we use a simple but yet very effective technique that
we call Feedback-Directed Sampling (FDS). The sampling algorithm from the
archive discussed in Sect. 3.1 is modified as follow. Instead of choosing the target
k randomly among the non-covered/non-empty ones, each of these targets will
have a counter ck. Every time a test is sampled from a population Tk, then ck
is increased by 1. Every time a new better individual is added to Tk (or replace
one of its existing tests), then the counter ck is reset to 0. When we sample from
k from non-covered/non-empty ones, then, instead of choosing k at random, we
choose the k with the lowest ck.

As long as we get improvements for a target k, the higher chances will be that
we sample from Tk, as ck gets reset more often. On the other hand, for infeasible
targets, their c will never be reset once they reach their plateau, and so they
will be sampled less often. Similarly, more complex targets will be sampled less
often, and so the search concentrates on the easier targets that are not covered
yet. However, this is not an issue because, once an easy target k is covered, we do
not sample from Tk any more (recall Sect. 3.1), unless also all the other targets
are either covered or with empty T .

Many Independent Objective (MIO) Algorithm for Test Suite Generation 9

4 Empirical Study

To evaluate the performance of the MIO algorithm, we compared it with random
search, MOSA and WTS. We used two different case studies: (1) a set of artificial
problems with varying, specific characteristics; (2) three numerical functions.

In this paper, we aim at answering the following research questions:

RQ1: On which kinds of problem does MIO perform better than Random,
MOSA and WTS?

RQ2: What is the impact of tuning parameters for exploration vs. exploitation
of the search landscape in MIO and MOSA?

RQ3: How do the analysed algorithms fare on actual software?

4.1 Artificial Software

In this paper, we designed four different kinds of artificial problems. In all of
them, there are z targets, and the search algorithm can be run for up to b
fitness evaluations. A test is defined by two components: an id (e.g., think about
it like the name of a method to call in unit testing) and a numeric integer
value x ∈ [0, r] (e.g., think about it like the input to a method call). Each
target k is independent, and can be covered only by a test with id = k. The
artificial problems will differ based on their fitness landscape. Given g ∈ [0, r]
the single global optimum chosen at random, and given the normalising function
ρ(d) = 1/(1 + d) for distances, then we have four different cases for each target:

Gradient: hk = ρ(|x − g|). This represents the simplest case where the search
algorithm has a direct gradient from x toward the global optimum g.

Plateau: hk = ρ(g − x) if g ≥ x, else hk = ρ(0.1 × r). In this case, we have one
side of the search landscape (before the value of the global optimum g) with
a clear gradient. However, the other side is a plateau with a relatively good
fitness value (note that 0 ≤ |g − x| ≤ r).

Deceptive: hk = ρ(g − x) if g ≥ x, else hk = ρ(1 + r − x). This is similar to
the Plateau case, where one side of the search landscape has a clear gradient
toward g. However, the other side has a deceptive gradient toward leaving g
and reach the maximum value r.

Infeasible: like Gradient, but with a certain number of the z targets having a
constant hk = ρ(1) and no global optimum.

We implemented the four search algorithms in which, when a test is sampled,
its id and x values are chosen at random within the given valid ranges. Mutations
on x is done by adding/subtracting 2i, where i is chosen randomly in [0, 10]. We
consider mutating id as a disruptive operation, and, as such, we only mutate it
with low probability 0.01. Mutating id means changing both id and x at random
(think about mutating a function call with string inputs into another one that
requires integers, where the strings x would have no meaning as integers). All the
analysed search algorithms use the same random sampling, mutation operation
and archive to store the best tests found so far.

10 A. Arcuri

Fig. 1. Coverage results on the Gradient problem type, with varying number of
targets z.

For the MIO algorithm, we used F = 0.5, Pr = 0.5, n = 10 and max
mutations 10. For MOSA, we used the same settings as in [11], i.e. population
size 50 and tournament selection size 10. WTS uses the same population size as
MOSA, with up to 50 test cases in the same test suite (i.e., one individual). A
randomly sampled test suite in WTS will have size randomly chosen between 1
and 50. WTS also has mutation operators to add a new test (probability 1/3)
in a test suite, remove one test at random (probability 1/3), or modify one
(probability 1/3) like in MIO and MOSA. WTS also uses a crossover operator
with probability 70% to combine test suites.

For each problem type but Infeasible, we created problems having a vari-
able number of z targets, in particular z ∈ {1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60,
70, 80, 90, 100}, i.e., 15 different values in total, ranging from 1 to 100. We used
r = 1000. We ran each of the four search algorithms 100 times with budget
b = 1000. As the optima g are randomised, we make sure that the search algo-
rithms run on the same problem instances. In the case of the Infeasible type, we
used 10 Gradient targets, on which we added a different number of infeasible tar-
gets in {0, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, i.e., 16 values in total,
with z ranging from (10 + 0) = 10 to (10 + 100) = 110. Figure 1 shows the results
for the Gradient type, Fig. 2 for Plateau, Fig. 3 for Deceptive, and Fig. 4 for Infea-
sible.

The Gradient case (Fig. 1) is the simplest, where the four search algorithms
obtain their highest coverage. MIO and MOSA have very similar performance,
which is higher than the one of Random and WTS. However, on the more difficult
case of Plateau (Fig. 2), MIO starts to have a clear advantage over MOSA. For
example, from z = 30 on, MOSA becomes equivalent to Random and WTS,

Many Independent Objective (MIO) Algorithm for Test Suite Generation 11

Fig. 2. Coverage results on the Plateau problem type, with varying number of targets z.

Fig. 3. Coverage results on the Deceptive problem type, with varying number of
targets z.

covering nearly no target. However, in that particular case, MIO can still achieve
around 20% coverage (i.e., 6 targets). Even for large numbers of targets (i.e., 100
when taking into account that the search budget b is only 1000), still MIO can
cover some targets, whereas the other algorithms do not.

The Deceptive case (Fig. 3) is of particular interest: for low numbers of z
targets (i.e., up to 10), both MIO and MOSA perform worse than Random.
From 10 targets on, MOSA is equivalent to Random and WTS, whereas MIO

12 A. Arcuri

Fig. 4. Coverage results on the Infeasible problem type, with varying number of
infeasible targets on top of 10 Gradient ones.

has better results. This can be explained by taking into account two contrasting
factors: (1) the more emphasis of MIO and MOSA on exploitation compared to
the exploration of the search landscape is not beneficial in deceptive landscape
areas, whereas a random search would not be affected by it; (2) MIO does better
handle large numbers of targets (Fig. 1), even when there is no gradient (Fig. 2).
The value z = 10 seems to be the turning point where (2) starts to have more
weight than (1).

The Infeasible case (Fig. 4) is where MIO obtains the best results compared
to the other algorithms. For this case, we also ran a further version of MIO in
which we deactivated FDS (recall Sect. 3.3), as we wanted to study its impact in
the presence of infeasible targets. From 20 infeasible targets on, MOSA, Random
and WTS become equivalent, covering nearly no target. However, MIO can still
cover nearly 80% of the 10 feasible testing targets. For very large numbers of
infeasible targets like 100, still MIO can cover nearly 40% of the feasible ones.
This much better performance is mainly due to the use of FDS (see the gap in
Fig. 4 between MIO and MIO-noFDS). However, even without FDS, MIO still
does achieve better results compared to the other algorithms.

RQ1: on all the considered problems, MIO is the algorithm that scaled best.
Coverage improvements were even up to 80% in some cases.

When using a search algorithm, some parameters need to be set, like the
population size or crossover probability in a GA. Usually, common settings in the
literature can already achieve good results on average [4]. Finding tuned settings
that work better on average on a large number of different artefacts is not trivial.

Many Independent Objective (MIO) Algorithm for Test Suite Generation 13

Ideally, a user should just choose for how long a search algorithm should run, and
not do long tuning phases by himself on his problem artefacts. Parameter tuning
can also play a role in algorithm comparisons: what if a compared algorithm
performed worse just because one of its chosen settings was sub-optimal?

Arguably, among the most important parameters for a search algorithm are
the ones that most impact the tradeoff between the exploration and the exploita-
tion of the search landscape. In the case of MIO, this is clearly controlled by the
F parameter (low values put more emphasis on exploitation, whereas for high
values a large number of tests are simply sampled at random). In the case of
population-based algorithms, the population size can be considered as a para-
meter to control such tradeoff. Small populations would reward exploitation,
whereas large populations would reward exploration.

To study these effects, we carried out a further series of experiments on the
Gradient, Plateau and Deceptive problem types. For MIO, we studied six dif-
ferent values for F , in particular {0, 0.2, 0.4, 0.6, 0.8, 1}. For MOSA, we studied
six different values for the population size, i.e. {4, 8, 16, 32, 64, 128}. Each exper-
iment was repeated 100 times. Figure 5 shows the results of these experiments.

For MIO, the results in Fig. 5 do match expectation: for problems with clear
gradient or with just some plateaus, a more focused search that rewards exploita-
tion is better. The best setting is a low F = 0.2, although the lowest F = 0 is
not particularly good. You still need some genetic diversity at the beginning of
the search, and not rely on just one single individual. For deceptive landscapes,
exploration can be better, especially for a low number of targets. For example,
with z = 1 then F = 1 provides the best performance. However, for larger num-
ber of targets, too much exploration would not be so beneficial, as it would not
have enough time to converge to cover the targets.

In the case of MOSA, Fig. 5 provides some interesting insight. For simple
problems with clear gradient, one would expect that a focused search should
provide better results. However, the small population size of 4 is actually the
configuration that gave the worst results. The reason is that there is only little
genetic material at the beginning of the search, and new one is only generated
with the mutation operator. However, a too large population size would still be
detrimental, as not focused enough. In that particular problem type, the best
population size seems ranging from 16 to 32, i.e., not too large, but not too
small either. In case of plateaus, still a too small population size (e.g., 4) gives
the worst result. However, in case of plateaus, there is a need to have some more
exploration in the search landscape, and this confirmed by the fact that the best
results are obtained with large population sizes (e.g., 64 and 128). This effect is
much more marked in the case of deceptive landscapes, where large population
sizes lead to much better results.

The experiments reported in Fig. 5 clearly points out to a challenge in
population-based algorithms when dealing with many-objective problems. A too
small population size would reduce diversity in the initial genetic material. But a
too large population size would hamper convergence speed. Finding a fixed, right
population size that works on most problem sizes (e.g., z = 10 vs z = 1m) might

14 A. Arcuri

Fig. 5. Tuning of F for MIO (left side) and population size for MOSA (right side).

Many Independent Objective (MIO) Algorithm for Test Suite Generation 15

not be feasible. To overcome this issue, MIO uses a dynamically sized popula-
tion, whereas the tradeoff between exploration and exploitation is controlled by
a dynamically decreasing probability Pr of creating new tests at random (instead
of mutating the current ones stored in the archive).

RQ2: On the analysed problems, the population size and the F parameter
have clear effects on performance, which strongly depend on whether on the

given problem one needs more or less exploitation/exploration.

4.2 Numerical Functions

When designing algorithms to work on a large class of problems, it is common
to evaluate them on artificial problems to try to abstract away and analyse in
details the characteristics for which such algorithms perform best. For exam-
ple, the very popular NSGA-II algorithm (on which MOSA is based on) was
originally evaluated only on nine numerical functions [5]. However, using only
artificial problems is risky, as those might abstract away some very important fac-
tors. A good example of this issue is Adaptive Random Testing, where artificial
problems with artificially high fault rates were masking away its very prohibitive
computational cost [2].

Table 1. Comparions of algorithms on three different numerical functions. Coverage
is not a percentage, but rather the average raw sum of statements and branches that
are covered. For each algorithm, we also specify if better than any of the others, i.e.
Â12 > 0.5 (in parenthesis) and p-value less than 0.05.

SUT Algorithm Tests Coverage Better than

Expint MIO 9.4 63.7 RAND(1.00) WTS(0.82)
MOSA 14.0 63.2 RAND(1.00) WTS(0.80)
RAND 5.4 38.7
WTS 9.3 62.5 RAND(1.00)

Gammq MIO 9.2 69.1 MOSA(0.83) RAND(1.00) WTS(0.90)
MOSA 8.0 65.9 RAND(1.00)
RAND 1.0 32.0
WTS 6.8 67.2 MOSA(0.60) RAND(1.00)

Triangle MIO 12.6 38.9 MOSA(0.71) RAND(1.00) WTS(0.98)
MOSA 14.2 37.8 RAND(0.99) WTS(0.86)
RAND 11.1 31.7
WTS 11.3 35.7 RAND(0.97)

16 A. Arcuri

To somehow mitigate this issue, as a safety-net we also carried out some
experiments on actual software, where we aim at unit testing for line and branch
coverage. We use the branch distance as heuristic for the fitness function. We
considered three numerical functions previously used in the literature (e.g., [2]):
Expint (88 LOC, including everything, also empty lines), Gammq (91 LOC),
and Triangle (29 LOC). Each algorithm was run for up to 5000 fitness evalu-
ations. Each experiment was repeated 100 times. Average values are reported
in Table 1, where we also report the Vargha-Delaney effect sizes Â12 and the
results of Mann-Whitney-Wilcoxon U-tests at α = 0.05 level [3]. In all these
three numerical functions, the MIO algorithm is the one achieving the highest
coverage of the targets. However, the three chosen numerical functions are not
particularly difficult, and, as such, the performance difference between MIO,
MOSA and WTS is not so large.

There is one thing to notice in these results: WTS is much better than Ran-
dom, whereas in the previous experiments they were very similar. After an inves-
tigation, the reason for this behaviour is rather obvious. With a population size
of 50, and up to 50 tests in the same test suite, on average the first population
would have a size of 50 × 50/2 = 1250 tests, which is higher than the search
budget b = 1000. In other words, in those experiments WTS was practically
doing just a random search. However, this is not the case here, as we have
b = 5000. In retrospective, on one hand those experiments could be considered
unfair to WTS. On the other hand, this issue further stresses out the need for a
dynamically sized population when dealing with many-objective problems.

RQ3: the experiments on actual software are consistent with the ones on
artificial problems: the MIO algorithm still achieves the best results.

5 Conclusion

In this paper, we have presented a novel search algorithm that is tailored for the
problem of generating test suites. We call it the Many Independent Objective
(MIO) algorithm. We have carried out an empirical study to compare MIO with
the other main algorithms for test suite generation: the Whole Test Suite (WTS)
approach and the Many-Objective Sorting Algorithm (MOSA). We also used
random search as a baseline. On artificial problems with increasing complexity
and on some numerical functions, MIO achieved better results than the other
algorithms. In some cases, coverage improvements were even in the order of
+80%.

Future work will focus on implementing the MIO algorithm in different test
generation frameworks, especially in system-level testing, and empirically eval-
uate how it fares in those contexts. To help researchers integrate MIO in their
frameworks, all the code used for the experiments in this paper is available online
on a public repository, as part of the EvoMaster tool at www.evomaster.org.

Acknowledgments. This work is supported by the National Research Fund,
Luxembourg (FNR/P10/03).

https://www.evomaster.org

Many Independent Objective (MIO) Algorithm for Test Suite Generation 17

References

1. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: Generating test data from OCL
constraints with search techniques. IEEE Trans. Softw. Eng. (TSE) 39(10), 1376–
1402 (2013)

2. Arcuri, A., Briand, L.: Adaptive random testing: an illusion of effectiveness? In:
ACM International Symposium on Software Testing and Analysis (ISSTA), pp.
265–275 (2011)

3. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verification Reliab. (STVR)
24(3), 219–250 (2014)

4. Arcuri, A., Fraser, G.: Parameter tuning or default values? an empirical investiga-
tion in search-based software engineering. Empirical Softw. Eng. (EMSE) 18(3),
594–623 (2013)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. (TEVC) 6(2), 182–197
(2002)

6. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

7. Fraser, G., Arcuri, A.: Achieving scalable mutation-based generation of whole test
suites. Empirical Softw. Eng. (EMSE) 20(3), 783–812 (2015)

8. Harman, M., McMinn., P.: A theoretical and empirical study of search based test-
ing: local, global and hybrid search. IEEE Trans. Softw. Eng. (TSE) 36(2), 226–247
(2010)

9. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. ACM Comput. Surv. (CSUR) 45(1), 11 (2012)

10. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey.
ACM Comput. Surv. (CSUR) 48(1), 13 (2015)

11. Panichella, A., Kifetew, F., Tonella, P.: Automated test case generation as a
many-objective optimisation problem with dynamic selection of the targets. IEEE
Trans. Softw. Eng. (TSE) PP(99), 1 (2017). http://ieeexplore.ieee.org/abstract/
document/7840029/

12. Rojas, J.M., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the
effectiveness of whole test suite generation. Empirical Softw. Eng. (EMSE) 22(2),
852–893 (2017). https://link.springer.com/article/10.1007/s10664-015-9424-2

13. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

http://ieeexplore.ieee.org/abstract/document/7840029/
http://ieeexplore.ieee.org/abstract/document/7840029/
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10664-015-9424-2

Search Based Path and Input Data Generation
for Web Application Testing

Matteo Biagiola1,2(B), Filippo Ricca2, and Paolo Tonella1

1 Fondazione Bruno Kessler, Trento, Italy
{biagiola,tonella}@fbk.eu

2 University of Genova, Genoa, Italy
filippo.ricca@unige.it

Abstract. Test case generation for web applications aims at ensuring
full coverage of the navigation structure. Existing approaches resort to
crawling and manual/random input generation, with or without a pre-
liminary construction of the navigation model. However, crawlers might
be unable to reach some parts of the web application and random input
generation might not receive enough guidance to produce the inputs
needed to cover a given path. In this paper, we take advantage of the
navigation structure implicitly specified by developers when they write
the page objects used for web testing and we define a novel set of genetic
operators that support the joint generation of test inputs and feasible
navigation paths. On a case study, our tool Subweb was able to achieve
higher coverage of the navigation model than crawling based approaches,
thanks to its intrinsic ability of generating inputs for feasible paths and
of discarding likely infeasible paths.

Keywords: Web testing · Test case generation

1 Introduction

The main goal of end-to-end test case generation when the program under test
is a web application is to ensure that the functionalities of the web application
are fully exercised by the generated test cases. Usually no explicit navigation
graph is available to guide the creation of test cases and to measure the degree
of navigation coverage achieved. Existing approaches resort to web crawling in
order to build the missing navigation model [1]. However, crawling is severely
limited in its ability to fully explore the navigation graph, which depends on
the input generation strategy. Such strategy is usually manual input definition,
random input generation, or a mixture of the two. Another limitation of crawling
based approaches is that not all paths in the crawled model are feasible (i.e.,
admit a test input that traverses them upon execution). As a consequence not
all test paths derived from the crawled model can be turned into test cases that
traverse the desired paths upon execution. When they don’t cover the test paths
for which they are generated, we say the test case is divergent (e.g., a step in a

c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 18–32, 2017.
DOI: 10.1007/978-3-319-66299-2 2

Search Based Path and Input Data Generation for Web Application Testing 19

test case triggers an error, hence preventing the execution of the next steps; the
app state does not allow the next action in the test path to be taken).

We address the problem of navigation graph construction by taking advan-
tage of a design pattern commonly used in web testing: the Page Object (PO)
design pattern. The purpose of POs is to encapsulate the details necessary to
access the web elements in a web page (e.g., CSS or XPath locators, text extrac-
tion from HTML page, etc.) and to expose an abstract interface to developers,
who can use it to perform high level operations against the web application under
test. Such operations are exposed as methods of the PO class (e.g., a method
to login; another to select an item and add it to a cart; etc.). The key benefit
of this design pattern is the confinement of fragile web page access operations
(e.g., implementation details concerning locators) within a single class, the PO,
instead of spreading them across all test cases. This ensures higher maintain-
ability of the test code when the web application evolves [2]. There is however
another indirect benefit: when defining the POs for a web application, develop-
ers implicitly define also its navigation structure, since navigation methods in
POs return the next PO encountered after triggering the navigation action. We
resort to such property of POs to build the navigation graph to be covered by
the automatically generated test cases.

We address the problem of path feasibility by means of a novel search based
test generation algorithm (in particular, we use a genetic algorithm), which per-
forms path selection and input generation at the same time. In our algorithm, a
chromosome is a variable length sequence of navigation method invocations, each
with the actual parameter values required for the invocations. Chromosomes are
evolved by means of custom genetic operators that ensure compliance of the nav-
igation sequences with the navigation graph and reachability of the remaining
coverage targets. The fitness function that guides the generation of test cases
is based on the distance between the executed sequence and the current set of
coverage targets.

We have implemented our approach in the tool Subweb (Search based web
test generator) and we have evaluated its effectiveness on the AddressBook case
study, by comparing it with crawling based approaches. Subweb achieves higher
coverage with smaller test suites than crawling based approaches. Moreover, the
test cases generated by Subweb are feasible by construction, while on Address-
Book the test cases derived from the crawled model are divergent test cases 17%
of the times.

2 Related Work

Several (semi-)automated web testing techniques have been proposed in the lit-
erature in the last few years, to reduce the human effort and the amount of
work required for test case creation [1,3,4]. Most approaches rely on web appli-
cation crawling for the construction of a navigation model and on graph visit
algorithms for the selection of navigation paths that ensure high coverage of
the model (e.g., transition coverage). Input data generation to turn the selected

20 M. Biagiola et al.

paths into executable test cases is either manual or random [5]. The proposal
by Mesbah et al. [1] belongs to this category. They use a crawler, Crawljax, to
derive a state flow graph consisting of states and transitions that model the
Ajax web application under test. Then, the tool Atusa uses the inferred model
to generate test cases with predefined invariants as test oracles. Another app-
roach for testing Ajax web applications has been proposed by Marchetto et al.
[4]. A Finite State Machine (FSM) that models the Ajax web application is built
using a combination of dynamic and static analysis. Differently from Atusa, the
adopted coverage criterion, used also in GUI-testing, is based on the notion of
semantically interacting events. An alternative to Atusa is Artemis, a frame-
work for automated testing of JavaScript web applications proposed by Artzi
et al. [3]. The distinctive feature of Artemis is the usage of feedback-directed
random testing [6].

There are several remarkable differences between our tool, Subweb, and
existing approaches. First, coverage of the navigation model and input data gen-
eration are handled jointly by Subweb. Existing approaches [1,4] first generate
a navigation model and then extract paths from it, without considering the
problem that the generation of inputs for such paths might be difficult, requir-
ing manual intervention, or even impossible, if the selected paths are infeasible.
Another key difference is that input generation is search-based in Subweb, while
it is either manual or random in existing approaches [1,3,4]. Finally, the abstrac-
tion from HTML pages to equivalence classes of pages that deserve separate test
generation resorts to heuristic in existing approaches [1,4], while Subweb takes
advantage of the abstraction defined by the developers when writing the POs
for the web application under test.

To the best of our knowledge, the only attempt to use POs for test case gen-
eration is the proposal contained in a workshop paper by Yu et al. [7]. Similarly
to Artemis, the proposed tool, called InwertGen, performs iterative feedback
directed random test generation using the tool Randoop [6]. The key difference
from our tool is that Subweb makes explicit use of the navigation model defined
by developers through POs and uses a search-based approach, instead of a ran-
dom one, to generate inputs that ensure high coverage of the navigation model.

3 Navigation Model Specification via Page Objects

POs are widely used in web testing to decouple the implementation details that
depend on the web page structure from the test logics. The PO design pattern
was first proposed by Martin Fowler1 as an abstraction of the page under test
that can be reused across test cases [2]. In fact, different test cases can refer to
the same page object for locating and activating the HTML elements of the page
under test, without having to duplicate the HTML access instructions multiple
times, in different test cases.

While the main purpose of POs is to improve the modularization of the test
code, POs implicitly specify a navigation model for the web application under
1 https://martinfowler.com/bliki/PageObject.html.

https://martinfowler.com/bliki/PageObject.html

Search Based Path and Input Data Generation for Web Application Testing 21

test. In fact, one of the best practices recommended for PO creation requires that
PO navigation methods return the PO of the next page upon invocation [8].
This means that POs specify the navigation structure of the web application
under test in terms of method invocations (i.e., operations executed within each
abstract web page) and page objects returned by the invoked methods (i.e., next
PO reached during navigation in the web application). We use such implicit
navigation model for automated test case generation.

3.1 Page Objects

The API of a PO is application-specific and provides an abstraction of the con-
crete HTML page functionalities to the test case. Despite the term “page” object,
these objects are not necessarily built for an entire page. In fact, a PO may wrap
an entire HTML page or a cohesive fragment that performs a specific function-
ality. The rule of thumb is to group and model the functionalities offered by a
page as they are perceived by the user of the application.

1 public class ProductsPage implements PageObject {

2 public WebDriver driver;

3 public ProductsPage(WebDriver driver) {...}

4 public int getActiveCategory() {...}

5

6 public ProductDetailPage selectProduct(int id, int category) {

7 if((id >= 1 && id <= 6) &&

8 (category >= 1 && category <= 3) &&

9 (this.getActiveCategory() == category)) {

10 this.driver.findElement(By.id("product-" + id + "-" +

category)).click();

11 return new ProductDetailPage(this.driver);

12 } else {

13 throw new IllegalArgumentException("Invalid parameter values");

14 }

15 }

16 }

Fig. 1. PO example

Let us consider an example of e-commerce single page web application, named
Shopping Cart. Figure 1 shows the code of the PO ProductsPage.

Among others, this PO contains method selectProduct that models the user
action consisting of the selection of a specific product from the product list dis-
played in the home page. The actual selection is performed at line 10 (if the pre-
condition at lines 7–9 is satisfied), where Selenium WebDriver’s APIs are used to
locate and operate some web elements inside the concrete HTML page of the web
application. Specifically, the web element of interest is located by its unique iden-
tifier, by means of the Selenium method findElement(By.id(...)). The action
performed on the web element located by id is a click (Selenium method click,
still at line 10). Since after the click navigation continues on the next page, which

22 M. Biagiola et al.

is modelled by the PO ProductDetailPage, method selectProduct returns a
new instance of the PO reached after the click, of type ProductDetailPage.

In general, PO methods may return values of any type (void, int, String,
etc.). However, a recommended best practice is that navigational PO methods
return the next PO encountered in the navigation (this if navigation does not
leave the current PO). We strictly require that the tester specifies the naviga-
tion among the pages of the application through the POs returned by navigation
methods, since we rely on them for the construction of the PO navigation graph.
In the following, we call a navigational method any PO method that returns a
PO. The second assumption that our technique makes on the way POs are writ-
ten is that navigational methods include preconditions, i.e., each navigational
method should specify the condition under which it can be safely executed. Such
condition may depend on the invocation parameter values, as well as the state
of the application, which is determined by the actions performed on the appli-
cation in the previous navigation steps. In Fig. 1, the precondition of method
selectProduct deals with the proper selection of a product from the list of
products shown in the home page. Each product is uniquely identified by the
pair of parameters id and category. In the running example, the number of
products shown in ProductsPage is known statically (it is always 6, for each
category of products), while the category is the currently active category. So,
the valid value for the category parameter must match the value returned by
method getActiveCategory, while id can vary from 1 to 6. If the precondition
is not respected, an exception is thrown.

We think the assumptions we make on how POs should be written to be
processable by our technique are reasonable and do not impact to a significant
extent the normal way in which developers write POs. In fact, the requirement
that every navigational method returns the next PO is a best practice which is
commonly followed, although it is not enforced by the PO pattern. The inclu-
sion of preconditions is a bit more impactful, since in practice developers write
test code that respect preconditions by construction, making them not strictly
necessary. We think however that preconditions are a good programming prac-
tice, independently of the use of our technique. Moreover, in our experience
(see Sect. 5), when they have to be written from scratch, such activity does not
require much effort from the developers. In some cases it would be even pos-
sible to extract them automatically from the web application code (e.g., when
parameter ranges can be obtained by static code analysis).

3.2 Navigation Graph

Intuitively, the navigation graph is obtained from the POs by associating nodes
to page objects and edges to navigational methods. More specifically, given a
navigational method that, starting from a PO node, leads either to the same
PO or to another PO, such method induces either a self loop edge or an edge
to another node (corresponding to the returned PO) in the graph. Formally, we
can define the navigation graph and its relation with POs as follows:

Search Based Path and Input Data Generation for Web Application Testing 23

Definition 1 (PO Navigation Graph). Given a set of page objects P , the
associated navigation graph G = 〈N,E〉 consists of a set of nodes N bijectively
mapped to P by function po : N → P and of a set of edges E that connect pairs
of nodes 〈n,m〉 such that the page object po(n) contains a return statement
whose returned type is po(m).

Algorithm 1. Navigation graph extraction
1 Procedure extractNavGraph(G, po)

Input:
G: navigation graph computed so far
po: page object to be analyzed
Output:
G: updated navigation graph

2 begin
3 n := getNodeByPO(G, po)
4 l := getNextPOsByStaticAnalysis(po)
5 v = ∅
6 for po′ ∈ l do
7 m := getNodeByPO(G, po′)
8 if m = NULL then
9 m := newNode(po′)

10 G.N := G.N ∪ {m}
11 v := v ∪ {m}
12 G.E := G.E ∪ {〈n,m〉}
13 for m ∈ v do
14 extractNavGraph(G, mapNodeToPO(m))

Algorithm 1 shows the recursive navigation graph extraction procedure. The
loop at lines 6–12 iterates over all POs that are possibly returned by the PO
under analysis. The set of such POs is obtained by static code analysis (line
4). When the returned PO is not already mapped to a graph node, a new node
is created (line 9) and added to the graph (line 10). An edge 〈n,m〉 from the
node n associated with the PO under analysis to the returned PO node m is
then added to the graph (line 12). Graph extraction continues recursively on all
newly created PO nodes (stored in variable v), i.e., all PO nodes not already
present in the initial graph G (lines 13–14).

4 Search Based Path and Input Data Generation

Given the navigation graph G = 〈N,E〉, we can extract or generate test paths
that exercise significant parts of the application. For instance, according to the
transition coverage adequacy criterion, all edges E must be traversed at least
once by the test paths. Formally, we can define a test path in the navigation
graph as p = 〈ns, es, pr〉, where ns ∈ N+ is a sequence of one or more graph

24 M. Biagiola et al.

nodes; es ∈ E∗ is a sequence of zero or more edges, such that | es |=| ns | −1
and if ei = 〈n,m〉 ∈ es, then ni = n ∈ ns, ni+1 = m ∈ ns; pr ∈ V ∗ is a sequence
of zero or more parameter names, equal to the parameter values required by the
method invocations associated with es.

Letus takea simplepathp = 〈ns, es, pr〉 fromtheShoppingCart running exam-
ple, with ns = 〈ProductsPage, ProductDetailPage〉, es = 〈selectProduct〉,
pr = 〈id, category〉. The precondition of method selectProduct (see Fig. 1)
constrains the valid ranges of parameters id and category. As a consequence, not
any arbitrary pair of integer values assigned to id and category will execute the
path of interest. More generally, given a path p and a parameter sequence pr, we say
p is feasible if there exists a parameter-value assignment that executes path p; we
say path p is infeasible if there does not exist any parameter-value assignment that
executes it. In order for a path p = 〈ns, es, pr〉 to be feasible, the conjunction of
the constraints in the method preconditions associated with the edge sequence es
must be satisfiable. Since some of the values evaluated in the method preconditions
may depend on the server/client side state (e.g., this.getActiveCategory() in
Fig. 1), in general the problem of determining whether a path p is feasible or not
is an undecidable problem. Moreover, since feasibility depends on the server/client
state, which is computed by arbitrarily complex programs, SAT solvers are gener-
ally not a viable tool to address the path feasibility problem. For these reasons, we
resort to a meta-heuristic algorithm. The test generation problem that we address
(for the transition coverage adequacy criterion) is then to generate a set of feasi-
ble paths, as well as the related parameter-value assignment, which, upon execution,
ensure that all navigation graph edges are traversed at least once.

4.1 Problem Reformulation

The problem of generating test cases that cover all navigation graph edges can be
reformulated as a standard branch coverage problem on an artificial class gen-
erated from the navigation graph and the POs. In fact, a path p = 〈ns, es, pr〉
consists of a method sequence (namely, the sequence of method invocations asso-
ciated with es), for which suitable parameter values must be found. Hence, we
can solve the feasible path generation problem and the parameter input value
generation problem by applying the search based approaches that have been
proposed for object oriented testing [9], where method sequence and parameter
values are generated at the same time. This requires the creation of an artificial
class under test CUT whose methods are the methods associated with the navi-
gation graph edges and whose state is the currently visited web page and more
specifically, the currently instantiated PO for such web page.

Figure 2 shows the program transformation that creates class CUT. Its input
is a set of POs and its output is class CUT, containing a private field to store the
current page object, cp. Each PO method becomes a method of the new class,
whose return type becomes void. The method can be called only if current PO
cp is an instance of the PO where the method originally belonged to. When
this condition is satisfied, current page object is cast to its concrete type and
assigned to local variable p. This variable must replace any occurrence of this

Search Based Path and Input Data Generation for Web Application Testing 25

class cid1 implements PageObject {
public cid2 mid1 (pms1) {

if (pre1)
stbl1
return new cid2

else thst1
}

}
class cid2 implements PageObject { . . . }

⇒

class CUT {
private PageObject cp;

public void mid1 (
<mapParamTypes>(pms1)) {
if (cp instanceof cid1)

cid1 p = (cid1) cp

if (<replParam>(<replThis>(pre1)))
<replParam>(<replThis>(stbl1))
cp = new cid2

else thst1
else thst1

}
public void mid2 (

<mapParamTypes>(pms2) { . . . }
}

Fig. 2. Automated program transformation that generates class CUT from the POs

in the body of the original method, including its precondition pre1. This is
performed by function <replThis>. The instruction that returns a new PO in
the original code is transformed into a statement that assigns such new PO to
the class field cp (current page) of CUT.

To facilitate the job of the test generator, the original parameter types (e.g.,
Id:int) are mapped to a type with smaller range (e.g., Id ∈ [1 : 6]) by func-
tion <mapParamTypes>. Such a smaller range can be determined by static
analysis, in simple cases as those in Fig. 1, or can be specified by the tester.
As a consequence, any occurrence of the original parameter identifiers must be
replaced with an accessor to the parameter value (e.g., x becomes x.value).
This is performed by function <replParam>. Figure 3 shows the result of the
transformation when it is applied to the PO in Fig. 1.

1 public class CUT {

2 private PageObject currentPage;

3 public void selectProduct(Id id, Category category) {

4 if (this.currentPage instanceof ProductsPage) {

5 ProductsPage page = (ProductsPage) this.currentPage;

6 if(page.getActiveCategory() == category.value){

7 page.driver.findElement(By.id("product-" + id.value + "-" + category.value)).click();

8 this.currentPage = new ProductDetailPage(page.driver);

9 } else { throw new IllegalArgumentException("Invalid parameter values"); }

10 } else { throw new IllegalArgumentException("You are not in the right page"); }

11 }

12 }

Fig. 3. Excerpt of CUT generated from the POs of the Shopping Cart example

We apply search based test case generation as instantiated for object oriented
systems [9] in order to find the method sequences and parameter values that cover
the last statements of the transformed method bodies, which correspond to the
statements returning a new PO in the original methods (i.e., this.currentPage
= new ProductDetailPage(page.driver) for selectProduct). In fact, cover-
age of all the statements that return the next PO in the navigation is equivalent

26 M. Biagiola et al.

to covering all the edges in the navigation graph, i.e., to transition coverage.
In particular, we use a Genetic Algorithm (GA) and the evolved chromosomes
are test cases, i.e., sequences of method calls. The fitness function is the sum of
the branch distances of the yet uncovered branches [9]. On the other hand, the
standard genetic operators for object oriented test generation do not work prop-
erly in our case, because they do not take the structure of the navigation graph
into account. Hence, we have defined new crossover and mutation operators,
described in the next section. The initial population is obtained by performing
multiple random walks on the navigation graph.

4.2 Genetic Operators

We defined new genetic operators with the aim of modifying the chromosomes
during evolution, taking into account the constraints imposed by the navigation
graph.

Crossover: We have defined a crossover operator that works at test case level,
in addition to the usual test suite crossover operator [9]. Our new crossover
operator is shown in Fig. 4a, where the notation Pi → Pj above the method
name mk() indicates that method mk() has PO Pi as starting node and PO Pj

as target node. Crossover is straightforward to apply if the cut point selected
on the two chromosomes is between method calls that refer to the same PO (in
Fig. 4a, the cut point between m1() and m2() in both chromosomes refer to the
same PO, P1, which is the target of m1() and the source of m2()). When this
does not happen, the two different POs are connected by performing a random
walk in the hammock subgraph between them. To ensure reachability during the
random walk, head and tail of the new chromosome are possibly shortened, until
reachability holds between the two POs.

Mutation: We have maintained the test suite mutation operator [9], but we
have modified the delete and insert method call operators, which work at the
test case level. An example of how they manipulate the chromosome is provided
in Fig. 4b. The change method call operator is applicable only if the alternative
method has the same source and target POs as the original method call.

The delete operator randomly selects a starting method from the test case
and, given the target PO of the selected method (in Fig. 4b, method m2() and
target node P2), it removes all the following method calls until it finds one with
a source node that is equal to the target node of the starting method. If it does
not find it, it deletes all the methods from the selected point until the end of
the chromosome (as in Fig. 4b). This operation cannot remove all the statements
(at least one, the first method call, is always left), to avoid the generation of an
empty test case.

The insert operator always starts at the end of the test case (in Fig. 4b,
method m2(), which has become the last method call after application of the
delete operator) and it selects a method corresponding to a yet uncovered branch
(e.g., m6()). Then it performs a random walk on the hammock subgraph between

Search Based Path and Input Data Generation for Web Application Testing 27

the target node and the source node of the two selected methods (i.e., the ham-
mock subgraph between P2 and P5). The path obtained in such random walk is
appended to the chromosome (in Fig. 4b, methods m8(), m4(), m7(), plus the
target method m6()). If the source node of the uncovered method is unreachable
from the end of the chromosome, the insert operator fails and does not change
the chromosome.

Insert and delete operations balance each other, by extending and shrinking
the chromosomes, hence providing a mechanism for bloat control (bloat occurs
when negligible improvements in the fitness value are obtained by extremely
large solutions).

(a) Crossover

(b) Mutation

Fig. 4. Crossover and mutation (with delete followed by insert)

5 Empirical Validation

The goal of the case study is to assess pros and cons of the proposed approach.
The baseline for comparison is the navigation graph produced by a state of the
art crawler, Crawljax [10], and the test cases derived from such graph. We have
formulated the following research questions:

RQ1 (Cost): What is the size of the page objects to be written manually and
what is the size and complexity of the Page Object method pre-conditions, required
by our approach?

To analyze the manual cost that a tester incurs when using our approach,
we measure the lines of code (LOC2) of all POs needed to model the subject
application. In particular, we are interested in the manual cost for writing the
preconditions, since they represent a requirement specific of our approach. We

2 Non-commenting lines of code, calculated by cloc (https://github.com/AlDanial/
cloc).

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

28 M. Biagiola et al.

measure the total number of preconditions, the total number of logical opera-
tors in such preconditions and the lines of code of methods used exclusively by
preconditions.

RQ2 (Navigation graph): How does the navigation graph specified through
POs differ from the navigation graph obtained through crawling?

Since the navigation graph extracted from the POs is specified directly by
the testers, we assume it as the reference and we measure the difference between
the crawled graph and such a reference, in terms of graph size, states/transitions
missing in the crawled graph and split/merged states/transitions in the crawled
graph as compared to the PO navigation graph. The purpose of this research
question is to understand whether crawling alone, with no human involvement
for PO definition, is able to produce a navigation graph close to the ideal one,
specified through the POs.

RQ3 (Test suite features): What is the size of the test suite generated by
Subweb as compared to that derived from the crawled navigation graph and
what is the proportion of divergent test cases?

Test case derivation from the navigation graph produced by Crawljax is sup-
ported by the tool Atusa [1], which is unfortunately unavailable. Hence, we have
reimplemented the test derivation algorithm of Atusa by following its description
in the reference paper [1]. We call our reimplementation Ext-Crawljax. We are
interested in comparing the size of the test suites produced by Subweb vs Ext-
Crawljax. A smaller size is preferable because it makes manual oracle creation or
validation easier for testers. Moreover, we measure the proportion of divergent
test cases (i.e., those that upon execution do not cover the test path for which
they were generated). In fact, the occurrence of divergences is detrimental to the
actually achieved coverage, with respect to the theoretical coverage guaranteed
by the test case derivation algorithm.

RQ4 (Coverage): What is the level of coverage reached by the test cases gen-
erated by Subweb in comparison with the coverage reached by the test cases
derived from the crawled navigation graph?

Regarding coverage, which represents the core objective of test generation, we
consider the transition coverage adequacy criterion, measured in the navigation
graph specified by testers through POs. This required to manually map states
and transitions in the crawled navigation graph to states and transitions in the
PO navigation graph.

5.1 Tool

We have implemented Subweb on top of EvoSuite [9]. In particular, we have
enabled the Whole Test Suite strategy, because we have multiple targets to
satisfy. We have modified EvoSuite in order to take the navigation graph into
account, both when generating the initial random population of individuals and
in the genetic operators, which must generate method sequences compliant with
the navigation graph.

Search Based Path and Input Data Generation for Web Application Testing 29

We use Selenium WebDriver to instantiate the driver needed to launch and
send commands to the browser, when test cases have to be executed in order to
measure their fitness. The constructor of the class under test contains a method
that instantiates the Selenium driver and resets the state of the application (e.g.,
ensuring the database is initially empty).

5.2 Case Study

AddressBook3 is a web-based address and phone book, contact manager and
organizer. It is written in PHP and it uses JavaScript for handling and modi-
fying HTML elements at runtime; moreover it is backed by a MySQL database.
The size of the application, shown in Table 1a, is non trivial. Moreover, this
application has been used as a case study in previous works [11].

We have removed a few features from the application, regarding uploads
and downloads of files (photos and text files for instance), as well as address
locations in a map, since they increase the navigation/testing time while being
straightforward to test.

5.3 Experimental Procedure

For the sake of fairness, we granted both tools, Subweb and Crawljax, an overall
execution budget of 2 hours and we ran both tools on the same subject 10
times, because both tools have non deterministic behaviour. In Subweb we
have disabled the minimization step of EvoSuite, because it requires multiple,
costly test case executions on the browser, which makes it too inefficient for
our purposes. In Crawljax, we use the default configuration with the default
parameter values. We only provide Crawljax with custom values for those form
inputs in the application that require very specific values.

To measure test case divergences, we transform each path obtained from the
crawled navigation graph into a JUnit test case. The JUnit test case fires a
sequence of events that should bring the application from the initial to the end
state of the path. If an event is a form submission, we insert all the needed input
values (either random or custom values, when necessary). The execution of such
test case is deemed divergent when a Selenium exception is thrown during the
execution. In fact, divergences happen if an element existing at crawling time
is no longer found at test time, when the application state is different, so that
the desired path cannot be followed. The missing element triggers a Selenium
exception.

5.4 Results

The data in Table 1a show that the 13 POs written manually account for 764
LOC in total. This is a small fraction of the overall application size (around 2%).
Preconditions, that are required exclusively by our approach, represent an even
3 https://sourceforge.net/projects/php-addressbook/.

https://sourceforge.net/projects/php-addressbook/

30 M. Biagiola et al.

smaller portion of the application size: precondition method LOC account for
0.2% of the application size, while the 16 preconditions use on average 3 logical
operator each. Moreover, the first author wrote the 13 POs in, approximately,
one day; however this metric clearly depends on many factors, the main one is
the level of confidence the developer has with the Page Object pattern.

Table 1. Size of application, POs and PO preconditions (a); size of PO vs crawled
graph, with missing/split states/transitions (b); number of test cases and divergent
test cases (c)

App
PHP LOC 30223
JavaScript LOC 1288

POs
LOC 764
Total number 13
Navig. methods 73

Preconds
Method LOC 75
Total number 16
Logic operators 54

(a) RQ1

PO States 12
graph Transitions 73

States 329
Transitions 927

Crawled Missing states 0
graph Missing trans 5

Split state ratio 27
Split trans ratio 13

(b) RQ2

Subweb Test cases 54

Ext-Crawljax
Test cases 598
Divergent test cases 104 (17%)

(c) RQ3

RQ1: Based on the size data collected on our case study, the manual cost
for writing POs and PO preconditions seems relatively low.

As shown in Table 1b, the crawled navigation graph is huge if compared to
the PO navigation graph (approximately ×27 states; ×13 transitions). While
it does not miss any state, despite its size it misses on average 5 transitions,
which are specified by testers, but are not covered during some executions of
crawling (5 is the average computed over 10 runs of Crawljax). No single case of
state/transition merge was observed, while, as expected from the larger graph
size, several states and transitions are split in the crawled graph.

RQ2: The crawled graph deviates from the ideal, manually specified, PO
graph to a major extent, because of its larger size, missing transitions and
split states/transitions.

Table 1c shows that Subweb generates much smaller test suites than Ext-
Crawljax. This is a consequence of the different navigation graph size. Moreover,
while Subweb generates non divergent test cases by construction, the crawling
based approach generates as many as 17% divergent test cases.

RQ3: The test suites produced by Subweb are approximately 11 times
smaller than the test suites produced by Ext-Crawljax. The latter include
a relatively large proportion of divergent test cases.

Search Based Path and Input Data Generation for Web Application Testing 31

Figure 5 shows the box plots of the transition coverage reached by Subweb
and Ext-Crawljax. The mean coverage of Subweb is on average 13pp (percent-
age points) above the mean coverage of Ext-Crawljax and such a difference is
statistically significant according to the Mann-Whitney U test (at 5% signifi-
cance level), that we applied since we didn’t have a priori knowledge about the
distribution of the data.

Subweb
Mean 96%
Var 12%

Ext-Crawljax
Mean 83%
Var 39%

Mann-Whitney U test

p-value 4.70 · 10−4

Fig. 5. Transition coverage (percentage) reached by Subweb and Ext-Crawljax in 10
runs; the two distributions differ in a statistically significant way according to the
Mann-Whitney U test.

RQ4: The test cases generated by Subweb achieve higher transition cover-
age than those generated by Ext-Crawljax.

5.5 Threats to Validity

Threats to the internal validity might come from how the empirical study was
carried out. Each test case was run starting from an empty database, under the
assumption that the tester is interested in the behaviour of the application when
no record has been persisted yet. If, on the contrary, a non empty database is
created at each test case start up, the traversal of paths for which populating
the database is a prerequisite becomes easier for both approaches.

Moreover, we didn’t use a case study with existing POs and measured the
effort needed to modify them in order to enable our technique; indeed it is
difficult to find open source projects with existing selenium tests using the PO
design pattern.

Threats to the external validity mainly regard the use of only one case study,
which prevents us from generalizing our findings to substantially different cases.
On the other hand, AddressBook is a non trivial application that has been used
in several previous works on web testing.

32 M. Biagiola et al.

6 Conclusions and Future Work

We have presented Subweb, a web testing tool for the joint generation of test
inputs and feasible navigation paths. Although Subweb requires a manual step
for POs writing, whereas a crawling-based approach is completely automatic, the
effort of such manual step is quite limited while, on the other hand, the achieved
advantages are major ones: the navigation graph is much smaller; correspond-
ingly, the test suites derived from the navigation graph have substantially smaller
size; by construction, test cases are never divergent, while this is not the case of
crawling-based test cases; finally, the transition coverage reached by Subweb is
on average higher (96% vs 83%).

In our future work, we will investigate techniques to support the automatic
generation of assertions starting from the generated test suite. Moreover, we plan
to evaluate Subweb on other web applications, in addition to AddressBook.

References

1. Mesbah, A., van Deursen, A.: Invariant-based automatic testing of AJAX user
interfaces. In: Proceedings of the 31st International Conference on Software Engi-
neering, ICSE 2009, pp. 210–220. IEEE Computer Society, Washington, DC (2009)

2. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated
end-to-end web testing. Adv. Comput. 101, 193–237 (2016)

3. Artzi, S., Dolby, J., Jensen, S.H., Møller, A., Tip, F.: A framework for automated
testing of Javascript web applications. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, pp. 571–580. ACM, New York
(2011)

4. Marchetto, A., Tonella, P., Ricca, F.: State-based testing of ajax web applica-
tions. In: Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation, ICST 2008, pp. 121–130. IEEE Computer Society,
Washington, DC (2008)

5. Tonella, P., Ricca, F., Marchetto, A.: Recent advances in web testing. Adv. Com-
put. 93, 1–51 (2014)

6. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: Proceedings of the 29th International Conference on Software Engi-
neering, ICSE 2007, pp. 75–84. IEEE Computer Society, Washington, DC (2007)

7. Yu, B., Ma, L., Zhang, C.: Incremental web application testing using page object.
In: Proceedings of the 2015 Third IEEE Workshop on Hot Topics in Web Systems
and Technologies (HotWeb), HOTWEB 2015, pp. 1–6. IEEE Computer Society,
Washington, DC (2015)

8. van Deursen, A.: Testing web applications with state objects. Commun. ACM
58(8), 36–43 (2015)

9. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

10. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web applications
through dynamic analysis of user interface state changes. ACM Trans. Web (TWEB)
6(1), 3:1–3:30 (2012)

11. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: Robula+: an algorithm for generating
robust xpath locators for web testing. J. Softw. Evol. Process 28(3), 177–204 (2016)

An Empirical Evaluation of Evolutionary
Algorithms for Test Suite Generation

José Campos1, Yan Ge1, Gordon Fraser1(B), Marcelo Eler2,
and Andrea Arcuri3,4

1 Department of Computer Science, The University of Sheffield, Sheffield, UK
{jose.campos,yge5,gordon.fraser}@sheffield.ac.uk

2 University of São Paulo, São Paulo, Brazil
marceloeler@usp.br

3 Westerdals Oslo ACT, Oslo, Norway
4 University of Luxembourg, Luxembourg, Luxembourg

arcand@westerdals.no

Abstract. Evolutionary algorithms have been shown to be effective at
generating unit test suites optimised for code coverage. While many
aspects of these algorithms have been evaluated in detail (e.g., test length
and different kinds of techniques aimed at improving performance, like
seeding), the influence of the specific algorithms has to date seen less
attention in the literature. As it is theoretically impossible to design an
algorithm that is best on all possible problems, a common approach in
software engineering problems is to first try a Genetic Algorithm, and
only afterwards try to refine it or compare it with other algorithms to
see if any of them is more suited for the addressed problem. This is par-
ticularly important in test generation, since recent work suggests that
random search may in practice be equally effective, whereas the refor-
mulation as a many-objective problem seems to be more effective. To
shed light on the influence of the search algorithms, we empirically eval-
uate six different algorithms on a selection of non-trivial open source
classes. Our study shows that the use of a test archive makes evolution-
ary algorithms clearly better than random testing, and it confirms that
the many-objective search is the most effective.

1 Introduction

Search-based testing has been successfully applied to generating unit test suites
optimised for code coverage on object-oriented classes. A popular approach is to
use evolutionary algorithms where the individuals of the search population are
whole test suites, and the optimisation goal is to find a test suite that achieves
maximum code coverage [8]. Tools like EvoSuite [6] have been shown to be
effective in achieving code coverage on different types of software [9].

Since the original introduction of whole test suite generation, many different
techniques have been introduced to improve performance even further and to get
a better understanding of the current limitations. For example, the insufficient

c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 33–48, 2017.
DOI: 10.1007/978-3-319-66299-2 3

34 J. Campos et al.

guidance provided by basic coverage-based fitness functions has been shown to
cause random search to often be equally effective as evolutionary algorithms [23].
Optimisation now no longer focuses on individual coverage criteria, but combi-
nations of criteria [10,20]. To cope with the resulting larger number of coverage
goals, evolutionary search can be supported with archives [21] that keep track
of useful solutions encountered throughout the search. To improve effectiveness,
whole test suite optimisation has been re-formulated as a many-objective opti-
misation problem [18]. In the context of these developments, one aspect of whole
test suite generation remains largely unexplored: What is the influence of the
specific flavour of evolutionary algorithms applied to evolve test suites?

In this paper, we aim to shed light on the influence of the different evolu-
tionary algorithms in whole test suite generation, to find out whether the choice
of algorithm is important, and which one should be used. By using a large set
of complex Java classes as case study, and the EvoSuite [6] search-based test
generation tool, we specifically investigate:

RQ1: Which evolutionary algorithm works best when using a test archive for
partial solutions?

RQ2: How does evolutionary search compare to random search and random
testing?

RQ3: How does evolution of whole test suites compare to many-objective opti-
misation of test cases?

We investigate each of these questions in the light of individual and multiple
coverage criteria as optimisation objectives, and we study the influence of the
search budget. Our results show that in most cases a simple μ + λ Evolutionary
Algorithm (EA) is better than other, more complex algorithms. In most cases,
the variants of EAs and GAs are also clearly better than random search and
random testing, when a test archive is used. Finally, we confirm that many-
objective search achieves higher branch coverage, even in the case of optimisation
for multiple criteria.

2 Evolutionary Algorithms for Test Suite Generation

Evolutionary Algorithms (EAs) are inspired by natural evolution, and have been
successfully used to address many kinds of optimisation problems. In the con-
text of EAs, a solution is encoded “genetically” as an individual (“chromosome”),
and a set of individuals is called a population. The population is gradually opti-
mised using genetic-inspired operations such as crossover, which merges genetic
material from at least two individuals to yield new offspring, and mutation,
which independently changes the elements of an individual with a low proba-
bility. While it is impossible to comprehensively cover all existing algorithms,
in the following we discuss common variants of EAs for test suite optimisation.
Expansion of the evaluation to less common algorithms will be future work.

An Empirical Evaluation of Evolutionary Algorithms 35

2.1 Representation

For test suite generation, the individuals of a population are sets of test cases
(test suites); each test case is a sequence of calls. Crossover on test suites is
based on exchanging test cases [8]; mutation adds/modifies tests to suites, and
adds/removes/changes statements within tests. While standard selection tech-
niques are largely used, the variable size representation (number of statements
in a test and number of test cases in a suite can vary) requires modification to
avoid bloat [7]; this is typically achieved by ranking individuals with identical
fitness based on their length, and then using rank selection.

2.2 Optimisation Goals and Archives

The selection of individuals is guided by fitness functions, such that individuals
with good fitness values are more likely to survive and be involved in reproduc-
tion. In the context of test suite generation, the fitness functions are based on
code coverage criteria such as statement or branch coverage. More recently, there
is a trend to optimise for multiple coverage criteria at the same time. Since cov-
erage criteria usually do not represent conflicting goals, it is possible to combine
fitness functions with a weighted linear combination [20]. However, the increased
number of coverage goals may affect the performance of the EA. To counter these
effects, it is possible to store tests for covered goals in an archive [21], and then
to dynamically adapt the fitness function to optimise only for the remaining
uncovered goals. This, however, may again have effects on the underlying EA.
Furthermore, search operators can be adapted to make use of the test archive;
for example, new tests may be created by mutating tests in the archive rather
than randomly generating completely new tests.

2.3 Random Search

Random search is a baseline search strategy which does not use crossover, muta-
tion, or selection, but a simple replacement strategy [14]. Random search consists
of repeatedly sampling candidates from the search space; the previous candidate
is replaced if the fitness of the new sampled individual is better. Random search
can make use of a test archive by changing the sampling procedure as indicated
above. Random testing is a variant of random search in test generation which
builds test suites incrementally. Test cases (rather than test suites) are sampled
individually, and if a test improves coverage, it is retained in the test suite, oth-
erwise it is discarded. It has been shown that in unit test generation, due to the
flat fitness landscapes and often simple search problems, random search is often
as effective as EAs, and sometimes even better [23].

2.4 Genetic Algorithms

The Genetic Algorithm (GA) is one of the most widely-used EAs in many
domains because it can be easily implemented and obtains good results on aver-
age. Algorithm 1 illustrates a Standard GA. It starts by creating an initial ran-
dom population of size pn (Line 1). Then, a pair of individuals is selected from

36 J. Campos et al.

Algorithm 1. Standard genetic algorithm
Input: Stopping condition C, Fitness function δ, Population size ps, Selection func-

tion sf , Crossover function cf , Crossover probability cp, Mutation function mf ,
Mutation probability mp

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(ps)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: NP ← {}
5: while |NP | < ps do
6: p1, p2 ← Selection(sf , P)
7: o1, o2 ← Crossover(cf , cp, p1, p2)
8: Mutation(mf , mp, o1)
9: Mutation(mf , mp, o2)

10: NP ← NP ∪ {o1, o2}
11: end while
12: P ← NP

13: PerformFitnessEvaluation(δ, P)
14: end while
15: return P

the population using a strategy sf , such as rank-based, elitism or tournament
selection (Line 6). Next, both selected individuals are recombined using crossover
cf (e.g., single point, multiple-point) with a probability of cp to produce two new
offspring o1, o2 (Line 7). Afterwards, mutation is applied on both offspring (Lines
8–9), independently changing the genes with a probability of mp, which usually
is equal to 1

n , where n is the number of genes in a chromosome. The two mutated
offspring are then included in the next population (Line 10). At the end of each
iteration the fitness value of all individuals is computed (Line 13).

Many variants of the Standard GA have been proposed to improve effective-
ness. Specifically, we consider a monotonic version of the Standard GA which,
after mutating and evaluating each offspring, only includes either the best off-
spring or the best parent in the next population (whereas the Standard GA
includes both offspring in the next population regardless of their fitness value).
Another variation of the Standard GA is a Steady State GA, which uses the same
replacement strategy as the Monotonic GA, but instead of creating a new popu-
lation of offspring, the offspring replace the parents from the current population
immediately after the mutation phase.

The 1 + (λ, λ) GA, introduced by Doerr et al. [5], starts by generating a
random population of size 1. Then, mutation is used to create λ different mutated
versions of the current individual. Mutation is applied with a high mutation
probability, defined as mp = k

n , where k is typically greater than one, which
allows, on average, more than one gene to be mutated per chromosome. Then,
uniform crossover is applied to the parent and best generated mutant to create
λ offspring. While a high mutation probability is intended to support faster
exploration of the search space, a uniform crossover between the best individual

An Empirical Evaluation of Evolutionary Algorithms 37

among the λ mutants and the parent was suggested to repair the defects caused
by the aggressive mutation. Then all offspring are evaluated and the best one is
selected. If the best offspring is better than the parent, the population of size one
is replaced by the best offspring. 1+ (λ, λ) GA could be very expensive for large
values of λ, as fitness has to be evaluated after mutation and after crossover.

2.5 μ + λ Evolutionary Algorithm

The μ + λ Evolutionary Algorithm (EA) is a mutation-based algorithm [24]. As
its name suggests, the number of parents and offspring are restricted to μ and
λ, respectively. Each gene is mutated independently with probability 1

n . After
mutation, the generated offspring are compared with each parent, aiming to
preserve so-far best individual including parents; that is, parents are replaced
once a better offspring is found. Among the different (μ + λ) EA versions, two
common settings are (1 + λ) EA and (1 + 1) EA, where the population size is
1, and the number of offspring is also limited to 1 for the (1 + 1) EA.

2.6 Many-Objective Sorting Algorithm

Unlike the single-objective optimisation on the test suite level described above,
the Many-Objective Sorting Algorithm (MOSA) [18] regards each coverage goal
as an independent optimisation objective. MOSA is a variant of NSGA-II [4],
and uses a preference sorting criterion to reward the best tests for each non-
covered target, regardless of their dominance relation with other tests in the
population. MOSA also uses an archive to store the tests that cover new targets,
which aiming to keep record on current best cases after each iteration.

Algorithm 2 illustrates how MOSA works. It starts with a random population
of test cases. Then, and similar to typical EAs, the offspring are created by
applying crossover and mutation (Line 6). Selection is based on the combined
set of parents and offspring. This set is sorted (Line 9) based on a non-dominance
relation and preference criterion. MOSA selects non-dominated individuals based
on the resulting rank, starting from the lowest rank (F0), until the population size
is reached (Lines 11–14). In fewer than ps individuals are selected, the individuals
of the current rank (Fr) are sorted by crowding distance (Line 16–17), and
the individuals with the largest distance are added. Finally, the archive that
stores previously uncovered branches is updated in order to yield the final test
suite (Line 18). In order to cope with the large numbers of goals resulting from
the combination of multiple coverage criteria, the DynaMOSA [17] extension
dynamically selects targets based on the dependencies between the uncovered
targets and the newly covered targets. Both, MOSA and DynaMOSA, have been
shown to result in higher coverage of some selected criteria than traditional GAs
for whole test suite optimisation.

38 J. Campos et al.

Algorithm 2. Many-Objective Sorting Algorithm (MOSA)
Input: Stopping condition C, Fitness function δ, Population size ps, Crossover func-

tion cf , Crossover probability cp, Mutation probability mp

Output: Archive of optimised individuals A
1: p ← 0
2: Np ← GenerateRandomPopulation(ps)
3: PerformFitnessEvaluation(δ, Np)
4: A ← {}
5: while ¬C do
6: No ← GenerateOffspring(cf , cp, mp, Np)
7: Rt ← P ∪ No

8: r ← 0
9: Fr ← PreferenceSorting(Rt)

10: Np+1 ← {}
11: while |Np+1| + |Fr| ≤ ps do
12: CalculateCrowdingDistance(Fr)
13: Np+1 ← Np+1 ∪ Fr

14: r ← r + 1
15: end while
16: DistanceCrowdingSort(Fr)
17: Np+1 ← Np+1 ∪ Fr with size ps − |Np+1|
18: UpdateArchive(A, Np+1)
19: p ← p + 1
20: end while
21: return A

3 Empirical Study

In order to evaluate the influence of the evolutionary algorithm on test suite
generation, we conducted an empirical study. In this section, we describe the
experimental setup as well as results.

3.1 Experimental Setup
Selection of Classes Under Test: A key factor of studying evolutionary
algorithms on automatic test generation is the selection of classes under test.
As many open source classes, for example contained in the SF110 [9] corpus,
are trivially simple [23] and would not reveal differences between algorithms, we
used the selection of non-trivial classes from the DynaMOSA study [17]. This
is a corpus of 117 open-source Java projects and 346 classes, selected from four
different benchmarks. The complexity of classes ranges from 14 statements and
2 branches to 16,624 statements and 7,938 branches. The average number of
statements is 1,109, and the average number of branches is 259.

Unit Test Generation Tool: We used EvoSuite [6], which provides search
algorithms to evolve coverage-optimised test suites. By default, EvoSuite uses
a Monotonic GA described in Sect. 2.4. It also provides a Standard and Steady

An Empirical Evaluation of Evolutionary Algorithms 39

State GA, Random search, Random testing and, more recently, MOSA and
DynaMOSA. For this study, we added the 1 + (λ, λ) GA and the μ + λ EA.
All evolutionary algorithms use a test archive.

Experiment Procedure: We performed two experiments to assess the perfor-
mance of six evolutionary algorithms (described in Sect. 2). First, we conducted
a tuning study to select the best population size (μ) of four algorithms, number
of mutations (λ) of 1 + (λ, λ) GA, and population size (μ) and number of muta-
tions (λ) of μ + λ EA, since the performance of each EA can be influenced by
the parameters used [1]. Random-based approaches do not require any tuning.
Then, we conducted a larger study to perform the comparison.

For both experiments we have four configurations: two search budgets, Evo-
Suite’s default search budget (i.e., a small search budget) of 1 min, and a larger
search budget of 10 min to study the effect of the search budget on the cover-
age of resulting test suites; single-criterion optimisation (branch coverage) and
multiple-criteria optimisation1 (i.e., line, branch, exception, weak-mutation, out-
put, method, method-no-exception, and cbranch) [20]. Due to the randomness
of EAs, we repeated the one minute experiments 30 times, and the 10 min exper-
iments 10 times.

For the tuning study, we randomly selected 10% (i.e., 34) of DynaMOSA’s
study classes [17]2 (with 15 to 1,707 branches, 227 on average) from 30 Java
projects. This resulted in a total of 79,200 (59, 400 one minute configurations, and
19, 800 ten minutes configurations) calls to EvoSuite and more than 175 days of
CPU-time overall. For the second experiment, we used the remaining 312 classes3

(346 total - 34 used to tune each EA) from the DynaMOSA study [17]. Besides
the tuned μ and λ parameters, we used EvoSuite’s default parameters [1].

Experiment Analysis: For any test suite generated by EvoSuite on any
experimental configuration we measure the coverage achieved on eight criteria,
alongside other metrics, such as the number of generated test cases, the length
of generated test suites, number of iterations of each EA, number of fitness
evaluations. As described by Arcuri et al. [1] “easy” branches are always cov-
ered independently of the parameter settings used, and several others are just
infeasible. Therefore, rather than using raw coverage values, we use relative cov-
erage [1]: Given the coverage of a class c in a run r, c(r), the best and worst
coverage of c in any run, max(c) and min(c) respectively, a relative coverage
(rc) can be defined as c(r) − min(c)

max(c) − min(c) . If the best and worst coverage of c is
equal, i.e., max(c) == min(c), then rc is 1 (if range of c(r) is between 0 and
1) or 100 (if range of c(r) is between 0 and 100). In order to statistically com-
pare the performance of each EA we use the Vargha-Delaney Â12 effect size,

1 At the time of writing this paper, DynaMOSA did not support all the criteria used
by EvoSuite.

2 Class com.yahoo.platform.yui.compressor.YUICompressor was excluded from
tuning experiments due to a bug in EvoSuite.

3 Nine classes were discarded from the second experiment due to crashes of EvoSuite.

40 J. Campos et al.

and the Wilcoxon-Mann-Whitney U-test with a 95% confidence level. Besides
the Vargha-Delaney effect size we also consider a relative average improvement.
Given two sets of coverage values, configuration A and configuration B, a relative
average improvement is defined as mean(A)−mean(B)

mean(B) .

Threats to Validity: The results reported in this paper are limited to the
number and type of EAs used in the experiments. However, we believe these are
representative of state-of-art algorithms. Although we used a large number of
different subjects (346 complex classes from 117 open-source Java projects), also
used by a previous study [17] on test generation, our results may not generalise
to other subjects. The range of parameters used in the tuning experiments was
limited to only 4 values per EA. Although common or reported as best values,
different values might influence the performance of each EA. The two search
budgets used in the tuning experiments and in the empirical study are based
on EvoSuite’s defaults (1 min), and used by previous studies to assess the
performance of EAs with a larger search budget (10 min) [20].

3.2 Parameter Tuning

The execution of an EA requires a number of parameters to be set. As there
is not a single best configuration setting to solve all problems [27] in which an
EA could be applied, a possible alternative is to tune EA’s parameters for a
specific problem at hand to find the “best” ones. We largely rely on a previous
tuning study [1] in which default values were determined for most parameters
of EvoSuite. However, the main distinguishing factor between the algorithms
we are considering in this study are μ (i.e., the population size) and λ (i.e., the
number of mutations). In particular, we selected common values used in previous
studies and reported to be the best for each EA:

– Population size of 10, 25, 50, and 100 for Standard GA, Monotonic GA,
SteadyState GA, MOSA, and DynaMOSA.

– λ size of 1, 8 [5], 25, and 50 for 1 + (λ, λ) GA.
– μ size of 1, 7 [13], 25, and 50, and λ size of 1, 7, 25, and 50 for μ + λ EA.

Thus, for Standard GA, Monotonic GA, SteadyState GA, MOSA, DynaMOSA,
and 1 + (λ, λ) GA there are 4 different configurations; for μ + λ, and as λ must
be divisible by μ, there are 8 different configurations (i.e., 1 + 1, 1 + 7, 1 + 25,
1+50, 7+7, 25+25, 25+50, 50+50); i.e., a total of 32 different configurations.

To identify the best population size of each EA, we performed a pairwise
comparison of the coverage achieved by using any population size. The popula-
tion size that achieved a significantly higher coverage more often was selected
as the best. Table 1 shows that, for a search budget of 60 s and single-criteria,
the best population size is different for almost all EAs (e.g., Standard GA works
best with a population size of 10, and MOSA with a population size of 100).
For a search budget of 600 s and multiple-criteria several EAs share the same
population size, for example, the best value for Standard GA, Monotonic GA

An Empirical Evaluation of Evolutionary Algorithms 41

Table 1. Best population/λ size of each EA per search budget, and single and multiple
criteria optimisation. “Br. Cov.” column reports the branch coverage per EA, and
column “Over. Cov.”, the overall coverage of a multiple-criteria optimisation.

Single-criteria Multiple-criteria
Br. Avg. Better Worse Br. Over. Avg. Better Worse

Algorithm |P | Cov. Â12 Â12 Â12 |P | Cov. Cov. Â12 Â12 Â12

Search budget of 60 seconds
Standard GA 10 0.83 0.52 0.75 0.24 100 0.78 0.88 0.52 0.75 0.23
Monotonic GA 25 0.83 0.52 0.76 0.32 100 0.78 0.88 0.52 0.77 0.21

Steady-State GA 100 0.81 0.50 0.72 0.32 100 0.74 0.86 0.53 0.75 0.27
1 + (λ, λ) GA 50 0.57 0.58 0.70 N/A 50 0.65 0.81 0.53 0.69 0.33

μ + λ EA 1+7 0.84 0.55 0.74 0.21 1+7 0.79 0.89 0.56 0.76 0.28
MOSA 100 0.84 0.51 0.79 0.32 25 0.81 0.62 0.54 0.70 0.21

DynaMOSA 25 0.84 0.51 0.68 0.28 — — — — — —

Search budget of 600 seconds
Standard GA 100 0.86 0.50 0.84 0.21 25 0.84 0.93 0.51 0.76 0.23
Monotonic GA 100 0.87 0.53 0.83 0.22 25 0.84 0.92 0.52 0.80 0.24

Steady-State GA 10 0.85 0.51 0.80 0.23 25 0.79 0.90 0.51 0.79 0.26
1 + (λ,) GA 50 0.57 0.57 0.83 N/A 8 0.75 0.81 0.53 0.85 0.19

μ + λ EA 50+50 0.85 0.49 0.84 0.12 1+1 0.85 0.92 0.53 0.86 0.22
MOSA 50 0.86 0.53 0.88 0.18 10 0.87 0.68 0.54 0.86 0.12

DynaMOSA 25 0.85 0.50 0.83 0.19 — — — — — —

and Steady-State GA on multiple-criteria is 25. Table 1 also reports the average
effect size of the best parameter value when compared to all possible parameter
values; and the effect size of pairwise comparisons in which the best parameter
was significantly better/worse.

3.3 RQ1 – Which Evolutionary Algorithm Works Best When Using
a Test Archive for Partial Solutions?

Table 2 summarises the results of a pairwise tournament of all EAs. An EA
X is considered to be better than an EA Y if it performs significantly better
on a higher number of comparisons. For example, for a search budget of 60 s
and single-criteria, 1 + (λ, λ) was statistically significantly better than on 53
comparisons, while it was statistically significantly worse on 432 comparisons
out of 1,212 – which make it the worst EA. On the other hand, μ + λ was the
one with more positive comparisons (387) and the least negative comparisons
(just 35) – thus, being the best EA for a search budget of 60 s and single-
criteria, and for a search budget of 600 s on single and multiple-criteria. While
it is ranked only third for 60 s search budget and multiple-criteria, the coverage
is only slightly lower compared to the higher ranked algorithms (0.79 vs. 0.80),
with an Â12 effect size of 0.59 averaged over all comparisons.

42 J. Campos et al.

Table 2. Pairwise comparison of all evolutionary algorithms. “Better than” and “Worse
than” give the number of comparisons for which the best EA is statistically significantly
(i.e., p-value < 0.05) better and worse, respectively. Columns Â12 give the average effect
size.

Tourn. Branch Overall Better Worse

Algorithm Position Cov. Cov. Â12 than Â12 than Â12

Search budget of 60 seconds – Single-criteria
Standard GA 3 0.80 — 0.52 223 / 1212 0.79 149/ 1212 0.25
Monotonic GA 2 0.82 — 0.56 299 / 1212 0.78 57 / 1212 0.27

Steady-State GA 4 0.77 — 0.42 112 / 1212 0.76 401 / 1212 0.19
1 + (λ, λ) GA 5 0.74 — 0.40 53 / 1212 0.73 432 / 1212 0.22

μ + λ EA 1 0.83 — 0.60 387 / 1212 0.79 35 / 1212 0.26

Search budget of 600 seconds – Single-criteria
Standard GA 3 0.87 — 0.52 129 / 1212 0.87 96/ 1212 0.16
Monotonic GA 2 0.89 — 0.57 192 / 1212 0.89 20 / 1212 0.16

Steady-State GA 4 0.86 — 0.44 50 / 1212 0.80 217 / 1212 0.10
1 + (λ, λ) GA 5 0.77 — 0.39 14 / 1212 0.82 258 / 1212 0.13

μ + λ EA 1 0.90 — 0.59 224 / 1212 0.88 18 / 1212 0.19

Search budget of 60 seconds – Multiple-criteria
Standard GA 2 0.77 0.79 0.62 473/ 1212 0.85 98 / 1212 0.20
Monotonic GA 1 0.78 0.80 0.62 470/ 1212 0.85 95 / 1212 0.21

Steady-State GA 4 0.72 0.76 0.43 233 / 1212 0.88 503 / 1212 0.19
1 + (λ, λ) GA 5 0.53 0.70 0.25 140 / 1212 0.86 896 / 1212 0.10

μ + λ EA 3 0.77 0.79 0.59 493 / 1212 0.84 217/ 1212 0.19

Search budget of 600 seconds – Multiple-criteria
Standard GA 2 0.84 0.85 0.59 357/ 1212 0.93 112 / 1212 0.11
Monotonic GA 3 0.85 0.85 0.58 345/ 1212 0.93 125 / 1212 0.13

Steady-State GA 5 0.72 0.79 0.33 118 / 1212 0.94 566 / 1212 0.08
1 + (λ, λ) GA 4 0.62 0.75 0.35 254 / 1212 0.91 623 / 1212 0.05

μ + λ EA 1 0.87 0.86 0.64 437 / 1212 0.93 85/ 1212 0.09

RQ1: In 3 out of 4 configurations, μ+λ EA is better than the other considered
evolutionary algorithms.

3.4 RQ2 – How Does Evolutionary Search Compare to Random
Search and Random Testing?

Table 3 compares the results of each EA with the two random-based techniques,
Random search and Random testing. On one hand, Random search performs
better than Random testing on single-criteria. However, the overall coverage in
the multiple-criteria case is higher for Random testing than Random search. Our
conjecture is that, in the multiple-criteria scenario, there are many more trivial
coverage goals where the fitness function provides no guidance (thus benefiting
Random testing); in contrast, branch coverage goals seem to benefit from the
test archive when generating new individuals (thus benefiting Random search).

An Empirical Evaluation of Evolutionary Algorithms 43

Table 3. Comparison of evolutionary algorithms and two random-based approaches:
Random search and Random testing.

Branch Overall EA vs. Random search EA vs. Random testing

Algorithm Cov. Cov. Â12 p Rel. Impr. Â12 p Rel. Impr.

Search budget of 60 seconds – Single-criteria
Random search 0.78 — — — — — — —
Random testing 0.72 — — — — — — —
Standard GA 0.80 — 0.62 0.26 +15.9% 0.68 0.22 +62.4%
Monotonic GA 0.82 — 0.66 0.23 +21.9% 0.71 0.20 +68.9%

Steady-State GA 0.77 — 0.51 0.27 +2.9% 0.60 0.28 +37.8%
1 + (λ, λ) GA 0.74 — 0.50 0.32 +1.5% 0.58 0.34 +36.1%

μ + λ EA 0.83 — 0.69 0.22 +23.5% 0.73 0.19 +71.8%

Search budget of 600 seconds – Single-criteria
Random search 0.80 — — — — — — —
Random testing 0.73 — — — — — — —
Standard GA 0.87 — 0.69 0.19 +29.0% 0.73 0.16 +116.0%
Monotonic GA 0.89 — 0.73 0.16 +35.2% 0.76 0.14 +122.0%

Steady-State GA 0.86 — 0.63 0.22 +20.9% 0.71 0.19 +97.3%
1 + (λ, λ) GA 0.77 — 0.57 0.39 +8.4% 0.63 0.38 +63.6%

μ + λ EA 0.90 — 0.74 0.16 +36.5% 0.76 0.12 +128.7%

Search budget of 60 seconds – Multiple-criteria
Random search 0.76 0.65 — — — — — —
Random testing 0.71 0.67 — — — — — —
Standard GA 0.77 0.79 0.79 0.20 +36.2% 0.84 0.19 +26.7%
Monotonic GA 0.78 0.80 0.80 0.21 +37.6% 0.84 0.18 +28.5%

Steady-State GA 0.72 0.76 0.72 0.23 +29.6% 0.78 0.24 +18.8%
1 + (λ, λ) GA 0.53 0.70 0.62 0.26 +20.1% 0.62 0.39 +9.7%

μ + λ EA 0.77 0.79 0.76 0.21 +35.9% 0.83 0.20 +25.8%

Search budget of 600 seconds – Multiple-criteria
Random search 0.70 0.65 — — — — — —
Random testing 0.72 0.74 — — — — — —
Standard GA 0.84 0.85 0.88 0.17 +64.0% 0.83 0.20 +28.0%
Monotonic GA 0.85 0.85 0.88 0.18 +64.8% 0.83 0.20 +28.7%

Steady-State GA 0.72 0.79 0.79 0.23 +51.4% 0.71 0.29 +17.6%
1 + (λ, λ) GA 0.62 0.75 0.79 0.30 +49.1% 0.72 0.40 +14.0%

μ + λ EA 0.87 0.86 0.88 0.15 +66.1% 0.84 0.18 +30.6%

On average, EAs achieve higher coverage (either branch-coverage on single-
criteria or overall coverage on multiple-criteria) than Random search and Ran-
dom testing. For instance, for a search budget of 600 s and single-criteria, Ran-
dom search covers 80% of all branches on average and μ + λ EA covers 90%
(a relative improvement of +36.5%). This result is different to the earlier study
by Shamshiri et al. [23], where random testing achieved similar, and sometimes
higher coverage. Our conjecture is that the better performance of the EAs in
our evaluation is due to (1) the use of the test archive, and (2) the use of more
complex classes in the experiment.

44 J. Campos et al.

RQ2: Evolutionary algorithms (in particular μ + λ EA) perform better than
random search and random testing.

3.5 RQ3 – How Does Evolution of Whole Test Suites Compare to
Many-Objective Optimisation of Test Cases?

Table 4 compares each EA with the many-objective optimisation techniques
MOSA and DynaMOSA. Our results confirm and enhance previous stud-
ies [17,18] by evaluating four different EAs (i.e., Standard GA, Steady-State
GA, 1 + (λ, λ) GA, and μ + λ EA) in addition to Monotonic GA, and show that

Table 4. Comparison of evolutionary algorithms on whole test suites optimisation and
many-objective optimisation algorithms of test cases.

Branch Overall EA vs. MOSA EA vs. DynaMOSA

Algorithm Cov. Cov. Â12 p Rel. Impr. Â12 p Rel. Impr.

Search budget of 60 seconds – Single-criteria
MOSA 0.84 — — — — — — —

DynaMOSA 0.85 — — — — — — —
Standard GA 0.80 — 0.39 0.27 -3.6% 0.37 0.28 -6.0%
Monotonic GA 0.82 — 0.43 0.26 -0.4% 0.41 0.28 -2.3%

Steady-State GA 0.77 — 0.30 0.19 -9.7% 0.28 0.19 -10.7%
1 + (λ, λ) GA 0.74 — 0.31 0.26 -12.5% 0.29 0.25 -14.3%

μ + λ EA 0.83 — 0.46 0.28 +0.8% 0.44 0.29 -1.5%

Search budget of 600 seconds – Single-criteria
MOSA 0.90 — — — — — — —

DynaMOSA 0.91 — — — — — — —
Standard GA 0.87 — 0.42 0.24 -3.2% 0.40 0.23 -4.6%
Monotonic GA 0.89 — 0.47 0.24 +0.2% 0.44 0.23 -1.4%

Steady-State GA 0.86 — 0.38 0.22 -3.5% 0.36 0.21 -5.1%
1 + (λ, λ) GA 0.77 — 0.34 0.37 -14.3% 0.33 0.35 -15.6%

μ + λ EA 0.90 — 0.49 0.22 +1.6% 0.47 0.23 -0.7%

Search budget of 60 seconds – Multiple-criteria
MOSA 0.80 0.58 — — — — — —

DynaMOSA — — — — — — — —
Standard GA 0.77 0.79 0.71 0.18 +8737.7% — — —
Monotonic GA 0.78 0.80 0.71 0.17 +9069.9% — — —

Steady-State GA 0.72 0.76 0.63 0.17 +9058.6% — — —
1 + (λ, λ) GA 0.53 0.70 0.59 0.21 +7941.9% — — —

μ + λ EA 0.77 0.79 0.70 0.17 +9071.2% — — —

Search budget of 600 seconds – Multiple-criteria
MOSA 0.87 0.71 — — — — — —

DynaMOSA — — — — — — — —
Standard GA 0.84 0.85 0.64 0.19 +772.4% — — —
Monotonic GA 0.85 0.85 0.64 0.20 +773.4% — — —

Steady-State GA 0.72 0.79 0.52 0.19 +694.6% — — —
1 + (λ, λ) GA 0.62 0.75 0.56 0.27 +632.7% — — —

μ + λ EA 0.87 0.86 0.67 0.18 +769.5% — — —

An Empirical Evaluation of Evolutionary Algorithms 45

MOSA and DynaMOSA perform better at optimising test cases than any EA at
optimising test suites for single criteria. Although μ + λ achieves a marginally
higher average coverage on single criteria (600 s) with a relative improvement of
+1.6%, it is still slightly worse than MOSA with an average effect size of 0.49.

In the multiple-criteria scenario (in which we can only compare to MOSA),
MOSA performs better than any other EA at optimising branch coverage, but
the overall coverage is substantially lower compared to all other EAs. On the
one hand, the lower overall coverage is expected since MOSA is not efficient for
very large sets of coverage goals (this is what DynaMOSA addresses). However,
the fact that branch coverage is nevertheless higher is interesting. A possible
conjecture is that this is due to MOSA’s slightly different fitness function for
branch coverage [18], which includes the approach level (whereas whole test
suite optimisation considers only branch distances).

RQ3: MOSA improves over EAs for individual criteria; for multiple-criteria it
achieves higher branch coverage even though overall coverage is lower.

4 Related Work

Although a common approach in search-based testing is to use genetic algo-
rithms, numerous other algorithms have been proposed in the domain of nature-
inspired algorithms, as no algorithm can be best on all domains [27]. Many
researchers compared evolutionary algorithms to solve problems in domains out-
side software engineering [2,26,28]. Within search-based software engineering,
comparative studies have been conducted in several domains such as discovery
of software architectures [19], pairwise testing of software product lines [15], or
finding subtle higher order mutants [16].

In the context of test data generation, Harman and McMinn [12] empirically
compared GA, Random testing and Hill Climbing for structural test data gen-
eration. While their results indicate that sophisticated evolutionary algorithms
can often be outperformed by simpler search techniques, there are more complex
scenarios, for which evolutionary algorithms are better suited. Ghani et al. [11]
compared Simulated Annealing (SA) and GA for the test data generation for
Matlab Simulink models, and their results show that GA performed slightly bet-
ter than SA. Sahin and Akay [22] evaluated Particle Swarm Optimisation (PSO),
Differential Evolution (DE), Artificial Bee Colony, Firefly Algorithm and Ran-
dom search algorithms on software test data generation benchmark problems,
and concluded that some algorithms performs better than others depending on
the characteristics of the problem. Varshney and Mehrotra [25] proposed a DE-
based approach to generate test data that cover data-flow coverage criteria, and
compared the proposed approach to Random search, GA and PSO with respect
to number of generations and average percentage coverage. Their results show
that the proposed DE-based approach is comparable to PSO and has better per-
formance than Random search and GA. In contrast to these studies, we consider

46 J. Campos et al.

unit test generation, which arguably is a more complex scenario than test data
generation, and in particular local search algorithms are rarely applied.

Although often newly proposed algorithms are compared to random search
as a baseline (usually showing clear improvements), there are some studies that
show that random search can actually be very efficient for test generation. In
particular, Shamshiri et al. [23] compared GA against Random search for gener-
ating test suites, and found almost no difference between the coverage achieved
by evolutionary search compared to random search. They observed that GAs cov-
ers more branches when standard fitness functions provide guidance, but most
branches of the analyzed projects provided no such guidance. Similarly, Sahin
and Akay [22] showed that Random search is effective on simple problems.

To the best of our knowledge, no study has been conducted to evaluate several
different evolutionary algorithms in a whole test suite generation context and
considering a large number of complex classes. As can be seen from this overview
of comparative studies, it is far from obvious what the best algorithm is, since
there are large variations between different search problems.

5 Conclusions

Although evolutionary algorithms are commonly applied for whole test suite
generation, there is a lack of evidence on the influence of different algorithms.
Our study yielded the following key results:

– The choice of algorithm can have a substantial influence on the performance
of whole test suite optimisation, hence tuning is important. While EvoSuite
provides tuned default values, these values may not be optimal for different
flavours of evolutionary algorithms.

– EvoSuite’s default algorithm, a Monotonic GA, is an appropriate choice
for EvoSuite’s default configuration (60 s search budget, multiple criteria).
However, for other search budgets and optimisation goals, other algorithms
such as a μ + λ EA may be a better choice.

– Although previous studies showed little benefit of using a GA over random
testing, our study shows that on complex classes and with a test archive,
evolutionary algorithms are superior to random testing and random search.

– The Many Objective Sorting Algorithm (MOSA) is superior to whole test
suite optimisation; it would be desirable to extend EvoSuite so that
DynaMOSA supports all coverage criteria.

It would be of interest to extend our experiments to further search algorithms.
In particular, the use of other non-functional attributes such as readability [3]
suggests the exploration of multi-objective algorithms. Considering the variation
of results with respect to different configurations and classes under test, it would
also be of interest to use these insights to develop hyper-heuristics that select
and adapt the optimal algorithm to the specific problem at hand.

An Empirical Evaluation of Evolutionary Algorithms 47

Acknowledgments. This work is supported by EPSRC project EP/N023978/1,
São Paulo Research Foundation (FAPESP) grant 2015/26044-0, and the National
Research Fund, Luxembourg (FNR/P10/03).

References

1. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investi-
gation in search-based software engineering. Empir. Softw. Eng. 18(3), 594–623
(2013)

2. Basak, A., Lohn, J.: A comparison of evolutionary algorithms on a set of antenna
design benchmarks. In: de la Fraga, L.G. (ed.) 2013 IEEE Conference on Evolu-
tionary Computation, Cancun, vol. 1, pp. 598–604, 20–23 June 2013

3. Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling readability to
improve unit tests. In: Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015), pp. 107–118. ACM, New York (2015)

4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.)
PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi:10.
1007/3-540-45356-3 83

5. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

6. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of ESEC/FSE, pp. 416–419. ACM (2011)

7. Fraser, G., Arcuri, A.: Handling test length bloat. Softw. Test. Verif. Reliab. 23(7),
553–582 (2013)

8. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

9. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test genera-
tion using evosuite. ACM Trans. Softw. Eng. Methodol. (TOSEM) 24(2), 8:1–8:42
(2014)

10. Gay, G.: The fitness function for the job: search-based generation of test suites
that detect real faults. In: 2017 IEEE 10th International Conference on Software
Testing, Verification and Validation (ICST). IEEE (2017)

11. Ghani, K., Clark, J.A., Zhan, Y.: Comparing algorithms for search-based test data
generation of matlab simulink models. In: 2009 IEEE Congress on Evolutionary
Computation, pp. 2940–2947, May 2009

12. Harman, M., McMinn, P.: A theoretical & empirical analysis of evolutionary testing
and hill climbing for structural test data generation. In: Proceedings of the Inter-
national Symposium on Software Testing and Analysis, pp. 73–83. ACM (2007)

13. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population
size in evolutionary algorithms. Evol. Comput. 13(4), 413–440 (2005)

14. Karnopp, D.C.: Random search techniques for optimization problems. Automatica
1(2–3), 111–121 (1963)

15. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Egyed, A., Alba, E.: Comparative
analysis of classical multi-objective evolutionary algorithms and seeding strategies
for pairwise testing of software product lines. In: Proceedings of the IEEE Congress
on Evolutionary Computation (CEC), pp. 387–396 (2014)

http://dx.doi.org/10.1007/3-540-45356-3_83
http://dx.doi.org/10.1007/3-540-45356-3_83

48 J. Campos et al.

16. Omar, E., Ghosh, S., Whitley, D.: Comparing search techniques for finding subtle
higher order mutants. In: Proceedings of the Conference on Genetic and Evolu-
tionary Computation (GECCO 2014), pp. 1271–1278. ACM (2014)

17. Panichella, A., Kifetew, F., Tonella, P.: Automated test case generation as a many-
objective optimisation problem with dynamic selection of the targets. IEEE Trans.
Softw. Eng. PP(99), 1 (2017)

18. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)

19. Ramı́rez, A., Romero, J.R., Ventura, S.: A comparative study of many-objective
evolutionary algorithms for the discovery of software architectures. Empir. Softw.
Engg. 21(6), 2546–2600 (2016)

20. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple
coverage criteria in search-based unit test generation. In: Barros, M., Labiche, Y.
(eds.) SSBSE 2015. LNCS, vol. 9275, pp. 93–108. Springer, Cham (2015). doi:10.
1007/978-3-319-22183-0 7

21. Rojas, J.M., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the
effectiveness of whole test suite generation. Empir. Softw. Eng. 22, 852–893 (2016)

22. Sahin, O., Akay, B.: Comparisons of metaheuristic algorithms and fitness functions
on software test data generation. Appl. Soft Comput. 49, 1202–1214 (2016)

23. Shamshiri, S., Rojas, J.M., Fraser, G., McMinn, P.: Random or genetic algorithm
search for object-oriented test suite generation? In: Proceedings of the Conference
on Genetic and Evolutionary Computation, pp. 1367–1374. ACM (2015)

24. Ter-Sarkisov, A., Marsland, S.R.: Convergence properties of (μ + λ) evolutionary
algorithms. In: AAAI (2011)

25. Varshney, S., Mehrotra, M.: A differential evolution based approach to generate
test data for data-flow coverage. In: 2016 International Conference on Computing,
Communication and Automation (ICCCA), pp. 796–801, April 2016

26. Wolfram, M., Marten, A.K., Westermann, D.: A comparative study of evolution-
ary algorithms for phase shifting transformer setting optimization. In: 2016 IEEE
International Energy Conference (ENERGYCON), pp. 1–6, April 2016

27. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

28. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0_7

Automatic Detection of Incomplete
Requirements Using Symbolic Analysis

and Evolutionary Computation

Byron DeVries(B) and Betty H.C. Cheng

Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48823, USA

devri117@cse.msu.edu

Abstract. The usefulness of a system specification depends on the com-
pleteness of the requirements specified. Unfortunately it is difficult to
ensure a requirements specification includes all necessary requirements,
especially when the system interacts with an unpredictable and often
idealized environment. Worse yet, a single completeness counterexample
may not clearly indicate the extent that incomplete requirements impacts
the system or what range of environmental scenarios are affected. This
paper introduces Ares-EC, a design-time approach for detecting incom-
plete requirements decomposition using a combination of evolutionary
computation and symbolic analysis of hierarchical requirements models to
detect a set of representative incompleteness counterexamples. We illus-
trate our approach by applying Ares-EC to a requirements model of an
industry-based automotive adaptive cruise control system. Ares-EC is
able to apply symbolic analysis and evolutionary computation to auto-
matically detect diverse and representative sets of requirements incom-
pleteness counterexamples at design time.

1 Introduction

Developing complete requirements is often a challenge. Exhaustively enumer-
ating all cases sufficient to satisfy expected functionality can be prohibitively
difficult, especially when unexpected environmental scenarios arise. Even when
requirements incompleteness is automatically identified, a single counterexam-
ple is not sufficient. Just as it is not sufficient for a system designer to correct
a single environmental scenario impacted by incompleteness, neither is it suf-
ficient to simply indicate that requirements are incomplete. Instead, the range
of environmental scenarios impacted by incomplete requirements decomposition
should be identified in order to facilitate the task of revising the requirements.
This paper presents Ares-EC,1 an approach that combines symbolic analysis and
evolutionary computation to automatically identify diverse and representative
sets of counterexamples that represent requirements incompleteness in hierar-
chical requirements models.
1 Ares is the Greek god of war, especially the untamed aspects of war.

c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 49–64, 2017.
DOI: 10.1007/978-3-319-66299-2 4

50 B. DeVries and B.H.C. Cheng

While methods exist to create requirements that are complete with respect
to specific decomposition rules [5], creating complete requirements and detecting
incomplete requirements is still an area of active research [1,2,10,13,19,27]. For
example, a requirement for a vehicle may be to stop. In an idealized system,
applying brake force (e.g., from hydraulic brakes) would be sufficient. Applying
the brakes may be insufficient if the throttle can overwhelm the braking force,
thus indicating that the decomposition is incomplete. However, that single coun-
terexample is not representative of the range of operational scenarios that are
impacted by incompleteness. For example, in inclement weather, brake force may
not be sufficient without anti-lock brakes. Not only is enumerating all necessary
decomposed requirements difficult, it is also challenging to identify the range
of impacted scenarios to assess necessary additional requirements. Currently,
formal methods exist that define formal decomposition rules with guaranteed
completeness [5], though system designers are limited to those specific formal
decomposition rules. Multiple counterexamples can be identified [1], but require
manual review for relevance and applicability. Currently, a single method, that
we previously developed, exists that automatically detects incomplete require-
ments decomposition without imposing restrictions on how requirements are
decomposed or described, but it only returns a single counterexample for each
incomplete decomposition [10].

This paper describes Ares-EC, an approach that combines symbolic analysis
and evolutionary computation to automatically identify sets of representative
environmental configurations where completeness properties are violated in a
hierarchical requirements model. Hierarchical requirements satisfaction can be
assessed in two ways: its individual satisfaction or the satisfaction of a require-
ment’s aggregate decomposed requirements (i.e., children or sub-requirements).
Given complete decomposition, a requirement should be satisfied whenever its
aggregate decomposed requirements are satisfied [10]. Ares-EC uses symbolic
analysis to identify individual counterexamples and uses evolutionary computa-
tion to search for sets of diverse representations of counterexamples based on the
previously identified counterexamples. By employing symbolic analysis, Ares-EC
can guarantee that a single counterexample will be found, if one exists. Evolu-
tionary computation, on the other hand, can identify multiple diverse counterex-
amples in parallel. Ares-EC identifies incomplete decompositions in the form
of sets of representative environmental scenarios, or counterexamples, within a
valid range of values for the variables in the system in which the incompleteness
is expressed. Counterexamples are then summarized for the system designer to
revise the requirements accordingly.

Ares-EC applies utility functions [20] to assess individual requirements for
completeness within a hierarchical requirements model. Expressions representing
completeness counterexamples used in both symbolic and evolutionary computa-
tion are defined in terms of these utility functions. While utility functions have
been used to measure run-time satisfaction of requirements [15,20], Ares-EC ana-
lyzes the utility functions (via expressions representing incompleteness) at design-
time. For each requirement’s decomposition, Ares-EC identifies a representative

Automatic Detection of Incomplete Requirements 51

set of counterexamples from the range of possible requirement variables’ values.
Counterexamples are identified as environmental conditions that cause a require-
ment to be unsatisfied while its aggregate decomposed requirements are satisfied.
Sets of counterexamples are identified for an industry-based requirements model
for an automotive application, and the incomplete requirements decompositions
along with their representative set of counterexamples are summarized for the sys-
tem designer.

The contributions of this paper are as follows:

– We introduce a design-time, symbolic analysis and evolutionary computation
approach to automatically detect diverse and representative sets of complete-
ness counterexamples in hierarchical requirements models.

– We present a prototype implementation of the Ares-EC approach.
– We demonstrate the applicability of Ares-EC on an industry-based automo-

tive example, an adaptive cruise control system.

The remainder of this paper is organized into the following sections. Section 2
overviews background information. Section 3 details the Ares-EC approach.
Section 4 describes the results of a case study, and Sect. 5 details related work.
Finally, Sect. 6 discusses the conclusions and avenues of future work.

2 Background

This section covers background information on hierarchical requirements mod-
eling, utility functions, and the Adaptive Cruise Control (ACC) system used in
this paper.

2.1 Hierarchical Requirements Modeling

Hierarchical requirements modeling frameworks, including i* [26], KAOS goal
modeling [22], or simply hierarchical requirements modeling [21], all decompose
requirements into hierarchical requirements that are sufficient to satisfy their
parent requirement. Each decomposed requirement is also subsequently decom-
posed until some termination criteria is met. Ares-EC is generally applicable to
any hierarchical goal and requirements model, therefore we refer to goals and
requirements interchangeably.

KAOS goal modeling implements Goal-Oriented Requirements Engineering
(GORE) via a graph-based AND and OR decomposition that terminates in
requirements and expectations at the leaf level. Requirements are satisfied by the
system-to-be, while expectations are satisfied by agents of the environment [22].
AND decomposition requires all decomposed requirements to be satisfied to sat-
isfy the parent, while OR decomposition only requires one requirement to be
satisfied [22].

A requirement decomposition is complete when the satisfaction of the set
of decomposed requirements imply the satisfaction of the parent requirement.
That is, if the decomposed requirements are satisfied then the parent must be

52 B. DeVries and B.H.C. Cheng

satisfied if the decomposition is complete. Often requirements incompleteness is
due to unexpected scenarios that were unanticipated by the system designer [1].
In the remainder of this paper, requirement labels are in bold courier font.
Variable names, requirement text, and emphasis are indicated by italics

2.2 Utility Functions

Utility functions [23] are typically used as run-time monitors [12,14] to assess
the satisfaction or satisficement of requirements. While satisfaction is generally
represented as either satisfied or unsatisfied, satisficement represents a degree of
satisfaction [24]. We use Athena [20], an existing method of generating utility
functions from environmental properties (ENV, MON, REL).

– ENV represents properties that are not directly observable and must be
viewed indirectly through other environmental properties (e.g., future speed
of a vehicle may be estimated using acceleration, time, and current speed),

– MON represents properties that are directly observable via agents and sen-
sors (e.g., current vehicle speed as measured by the GPS), and

– REL represents relationships between the MON properties and requirement
satisfaction (e.g., a relationship that measures the satisficement of a require-
ment to increase speed).

The environmental properties (ENV, MON, REL) are specified manually
by the system designer [3] and are used by Athena to automatically generate the
utility functions [20].

2.3 Adaptive Cruise Control Systems

An Adaptive Cruise Control (ACC) system uses radar to adjust vehicle speed
ensuring a safe following distance from the car ahead while maintaining as close
to the desired speed as possible. An ACC can be viewed in four parts: cruise
control modes, increasing speed, lowering speed, and maintaining speed. Speed
is increased or lowered to match the desired speed, however speed may also be
lowered if there is not a safe distance to the target car (i.e., car immediately in
front). Similarly, the speed will not continue to increase if the safe distance is
violated. The speed is maintained if both the desired speed is met and the target
car is a safe distance.

Figure 1 represents a partial goal model of an ACC where portions not explic-
itly included due to relevance are replaced with ellipses. This goal model includes
two requirements that have been previously shown to have incomplete decom-
positions, goals D.1 and B.3 [10]. Goal D.1 is a portion of the specification
to maintain speed and ensures the throttle is maintained at its current position
(via Goal D.3) by reading the current throttle position (via Goal D.5 when the
speed is as desired and the distance from any leading car is adequate (via Goal
D.2). Goal D.1 can be shown to be incomplete when the speed is not main-
tained even though the throttle is maintained due to a change in the amount of
braking.

Automatic Detection of Incomplete Requirements 53

D.1

D.2

D.3

D.4

D.5

D.6 D.7

D.8

D.9 D.10

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.15

B.16

B.17 B.18

B.19

C.1

A.1

A.2 A.3 A.4 A.5

A.13 A.14
B.1

A(Faster Speed)

M(Automatic Control)

M(Adaptive Cruise System)

M(Off, Off)A(Off, Off) M(On, Off) M(On, On)

= On = On

1 2

Speed > Desired Speed OR
Distance < Safe Distance

A(Slower Speed)

A(Slow Car)

A(Reduce Throttle)
A(Increase Brake)

A(Throttle Actuator =
Throttle Pedal Sensor - 1) Throttle Angle > 0

5 4
A(Brake Pedal

Sensor Reading)
 Throttle Pedal

Sensor = 0

6 4

Brake Pedal
Sensor < 45

6
A(Throttle Pedal
Sensor Reading)

4

A(Brake Actuator =
Brake Pedal Sensor + 1)

7

M(Speed)

Speed = Desired Speed AND
Distance > Safe Distance

 Wheel Speed Sensor
= Desired Speed

 GPS Speed Sensor
= Desired Speed

8 9

Speed = Desired Speed Distance > Safe Distance

Distance Sensor 1 >
Safe Distance

Distance Sensor 2 >
Safe Distance

10 11

 A(Throttle Actuator =
Throttle Pedal Sensor)

5

A(Throttle Pedal Sensor Reading)

4

...

...

... ...

Fig. 1. Partial Adaptive Cruise Control Model

Goal B.3 is a portion of the specification to perform the task of slowing
the car, and decomposes to reducing the throttle (Goal B.4) or increasing the
amount of braking (Goal B.15). Goal B.3 can also be shown to be incomplete
by increasing the speed of the vehicle by increasing the brake slightly while
also increasing the throttle significantly, since Goal B.3 is OR decomposed and
requires only one decomposed goal to satisfy the top level goal.

Keywords Maintain and Achieve are abbreviated to M and A, respectively.
The numbered agents (i.e., leaf nodes) referenced in the model are given in
Table 1. Ellipses are used to indicate the continuation of the goal model outside
of the partially displayed goal model.

Utility functions are defined based on the ENV, MON, and REL properties
for the goal model in Fig. 1, as shown in Table 3. The values in Table 3 are
defined and provided by the system designer. Due to space constraints, only
values related to requirements D.1 and B.3 are shown in detail, as they were
previously shown to be incomplete [10]. The variables defined in Table 3 each
have ranges of values and units as defined in Table 2. For example, the utility

54 B. DeVries and B.H.C. Cheng

Table 1. Agents used in
Goal Model

Agent (Sensor/Actuator)

1 Cruise Switch Sensor

2 Cruise Active Sensor

3 Cruise Active Switch

4 Throttle Pedal Sensor

5 Throttle Actuator

6 Brake Pedal Sensor

7 Brake Actuator

8 Wheel Speed Sensor

9 GPS Speed Sensor

10 Distance Sensor 1

11 Distance Sensor 2

Table 2. Units and scaling for variables in Table 3

ID Variable Min Max Unit

1 Brake Actuator 0.0 100.0 %

2 Brake Pedal Sensor 0.0 100.0 %

3 Desired Speed 0.0 100.0 MPH

4 Distance 0.0 50.0 Feet

5 Distance Sensor 1 0.0 50.0 Feet

6 Distance Sensor 2 0.0 50.0 Feet

7 GPS Speed Sensor 0.0 100.0 MPH

8 Safe Distance 0.0 50.0 Feet

9 Speedt 0.0 100.0 MPH

10 Speedt+1 0.0 100.0 MPH

11 Throttle Actuator 0.0 100.0 %

12 Throttle Pedal Sensor 0.0 100.0 %

13 Wheel Speed Sensor 0.0 100.0 MPH

Table 3. ENV, MON, and REL Properties

ENV MON REL

B.3 Speedt, Speedt+1 Speedt >

Speedt+1 ∨ (Speedt ==

MIN ∧ Speedt+1 == MIN)

B.4 Throttle Actuator , Throttle Pedal Sensor Throttle Actuator <

Throttle Pedal Sensor

B.15 Brake Actuator , Brake Pedal Sensor Brake Actuator >

Brake Pedal Sensor

D.1 Speedt, Speedt+1 Speedt == Speedt+1

D.2 Speedt,Distance Desired Speed, Safe Distance Speedt == Desired Speed ∧
Distance > Safe Distance

D.3 Throttle Actuator , Throttle Pedal Sensor Throttle Actuator ==

Throttle Pedal Sensor

D.5 true

Speedt Wheel Speed Sensor,GPS Speed Sensor Wheel Speed Sensor ∨
GPS Speed Sensor

Speedt Throttle Pedal Sensor,Brake Pedal Sensor max(MIN,Throttle Pedal Sensor−
Brake Pedal Sensor)

Speedt+1 Throttle Actuator,Brake Actuator max(MIN,Throttle Actuator−
Brake Actuator)

Distance Distance Sensor 1,Distance Sensor 2 Distance Sensor 1 ∨
Distance Sensor 2

function for requirement D.1 is given in Expression 1 indicating that goal D.1
(‘Maintain Speed’) is satisfied if the value of the current speed (Speedt) is equal
to the speed in the future (Speedt+1).

Satisficement(D.1) = Speedt == Speedt+1 (1)

Automatic Detection of Incomplete Requirements 55

3 Approach

Ares-EC is an automated method for identifying sets of completeness counterex-
amples in a hierarchical requirements model. A requirement is considered to be
incompletely decomposed if there exists a case such that a parent requirement
is unsatisfied while the set of its decomposed requirements are satisfied [10].
The Ares-EC process generates detection logic using utility functions and the
decompositions in a hierarchical goal model. These logical expressions are then
processed by one of four methods to identify dispersed solutions that represent
completeness counterexamples. Next, we detail the Ares-EC approach and then
provide a comparison of the search methods applied to our running example.

3.1 Step 1: Generate Detection Logic

Ares-EC makes use of utility functions generated by Athena [20] to measure the
satisfaction of individual goals within a requirements model. We have two types
of utility functions. If assessing a Boolean property then the possible values are
0.0 or 1.0, indicating false or true, respectively. If assessing a property that can
have degrees of satisfaction, termed satisficement [24], then the value ranges
from 0.0 to 1.0. The utility functions representing the satisfaction of parent and
decomposed requirements are combined to form expressions that, when equal
to 1.0, represents a completeness counterexample comprised of concrete instan-
tiations of the variables referenced. Specifically a completeness counterexample
is an unsatisfied parent requirement with a set of satisfied decomposed require-
ments [10] indicating there are additional child requirements necessary to satisfy
the parent requirement. For example, D.1 is incompletely decomposed if it is
not satisfied according to its utility function value, but the set of its decomposed
requirements (i.e., D.2, D.5, and D.3) is satisfied (i.e., the minimum of an
AND-decomposition) as shown in Eq. 2. The ‘Satisficement’ function represents
the utility function for the requirement passed as a parameter, where the return
value is in the range of 0.0 to 1.0 (for unsatisfied and satisfied, respectively).
If both the parent requirement and the decomposed children requirements are
satisfied, then the counterexample equation is 0.0 indicating no completeness
counterexample.

CounterexampleD.1 = min(Satisficement(D.2), (2)
Satisficement(D.5),
Satisficement(D.3)) − Satisficement(D.1).

Each of the requirements referenced in Eq. 2 may either be satisfied (i.e.,
1.0) or unsatisfied (i.e., 0.0) based on their utility function. By instantiating
the satisficement expressions in Eq. 2 with their respective utility values (from
Table 3), we obtain the expression in Eq. 3.

56 B. DeVries and B.H.C. Cheng

CounterexampleD.1 = min(Speedt == Desired Speed∧ (3)
Distance > Safe Distance,
true,

Throttle Actuator == Throttle Pedal Sensor)−
Speedt == Speedt+1

Similarly, OR-decomposed requirements such as B.3 use the maximum of
the decomposed requirements, as shown in Eq. 4.

CounterexampleB.3 = max(Satisficement(B.4), (4)
Satisficement(B.15)) − Satisficement(B.3).

A similar expression is generated for every requirement that is decomposed.
Identifying an optimum (i.e., a return value of 1.0) for a completeness counterex-
ample expression indicates a counterexample exists.

3.2 Step 2: Search for Counterexamples and Summarize

Ares-EC applies one of the following methods, as chosen by the system designer,
to identify counterexamples from the completeness counterexample expressions
from Step 1 (e.g., Eqs. 2 and 4). In this work, we compare the four methods to
provide a basis for the selection. Previously, symbolic analysis has been used to
identify single counterexamples of incomplete requirements decomposition [10].
In contrast, here we apply evolutionary computation to search for a range of
distributed counterexamples. Since we know that evolutionary computation is
not guaranteed to find a solution, especially in ‘needle in a haystack’ cases,
we supplement our evolutionary approach with initial optimal results from our
symbolic approach. Finally, we periodically use our symbolic approach to re-
seed the evolutionary population as a means to overcome additional ‘needle in
a haystack’ cases.

For simplicity, we configure the parameters for evolutionary computation
based on empirical feedback with an emphasis on optimal results and execution
time. All instances of evolutionary computation used in this work make use of 200
individuals in the population, a tournament size of 8 is used for mating selection,
a tournament of size 4 is used for survival selection, and a mutation rate of 5%.
Executions have been limited to 2000 generations and execution is on the order of
seconds. Mating selection is performed by an eight-way tournament based on the
novelty of individuals within a set of randomly-selected individuals. Crossover
for mating is performed by the SBX crossover operator [8] for each real-value
(i.e., variable in the completeness counterexample expressions) in the individuals
selected. Mutation is performed on five percent of the individuals by randomly
modifying a single real-value representing a variable in the genome. Survival via
a four-way tournament is used to maintain population size and is based on fitness
as measured by the satisfaction of the completeness counterexample expression
and is elite preserving as no member of the population will be replaced with

Automatic Detection of Incomplete Requirements 57

a less optimal member. Tournaments of this size were selected in an effort to
increase the likelihood that an optimal value takes part in the tournament.

The genetic algorithm emphasizes search diversity via the mating selection
and mutation operators (5% chance of mutation), while survival selection opti-
mizes the results of the diverse search. The optimal is a population where each
individual is at an optimum and each individual is as far as possible from the
other individuals based on the Manhattan distance [4] of the genotype. The
genetic evolution described here differs from other genetic algorithms that search
for a single optimal individual, since we are looking for a collection of diverse
solutions.

Symbolic Analysis Only: For each requirement, a utility function is used to
represent the satisfaction of the requirement based on a set of environmental
and system variables that make up the utility function. The parent require-
ment is symbolically compared to the combined derived requirements, via the
completeness counterexample expressions. Detecting a single completeness coun-
terexample is identified via symbolic analysis of the completeness counterexam-
ple expressions (e.g., Eq. 2 or 4) using existing techniques [10]. We include this
technique here as a means to establish existence of at least one counterexample
and for comparison to the other search-based techniques. Specifically, symbolic
analysis, via Microsoft’s SMT solver Z3 [6], is used to evaluate the entire range of
applicable environmental configurations and system variables used in the com-
pleteness counterexample expressions for each decomposed requirement.

In cases where the completeness counterexample expression cannot be sat-
isfied, then no counterexample exists and the requirement is thus complete,
thereby alleviating the need to perform additional analysis.

Evolutionary Computation Only: Ares-EC employs evolutionary compu-
tation in the form of a genetic algorithm to search for both novel and optimal
results. Instead of searching for a single optimal solution to a counterexam-
ple expression, Ares-EC searches for multiple solutions with optimal phenotype
responses (e.g., requirements with utility function values that indicate an incom-
plete decomposition) and maximized genotype novelty (e.g., a large difference
in the environmental scenario the requirements are applied on). The expected
results are a population of optimal individuals dispersed across the range of the
genotype. The genome is an array of real-valued variables, one for each variable
that exists in the completeness counterexample expression.

Symbolic Analysis, then Evolutionary Computation: While evolution-
ary computation alone can provide a method of searching with an emphasis on
diversity, two issues can occur:

– First, the so called ‘needle in a haystack’ problem may make finding the
optimum solution significantly unlikely to be found.

– Second, expressions without a gradient between satisfied and unsatisfied are
likely to take more time to find the optimum, and perhaps degenerate to

58 B. DeVries and B.H.C. Cheng

random search, since the requirements satisfaction is used to calculate the
fitness function.

Ares-EC alleviates these two problems by utilizing symbolic analysis to iden-
tify a single optimum, which is used to seed a portion (10%, or 20 of the 200 indi-
viduals) of the initial population. Given an initial optimum, the diverse search
is intended to identify a dispersed set of optimum values.

Evolutionary Computation with Symbolic Analysis: Symbolic analysis
may provide a starting point for evolutionary computation, yet despite the guar-
antee of optimal individuals in the initial population, two issues can still occur:

– First, while the ‘needle in a haystack’ problem is alleviated for a single opti-
mum, additional optima may also be similarly unlikely to be found.

– Second, a change in one variable may require a change in another variable in
a single individual to identify another optimum, resulting in additional search
time.

Ares-EC overcomes these problems by periodically re-analyzing the com-
pleteness counterexample expression symbolically, with an added constraint to
maximize the distance from a selection of existing individuals in the population.
If another optimum is found then that individual is added to the population.
In this paper, we allow Ares-EC to select up to 10 random individuals in the
population to create a distance constraint from each of them during the first
half of the generations. If a new and diverse counterexample is found, then 20
random individuals are replaced with the new counterexample.

3.3 Scalability and Limitations

Ares-EC is not guaranteed to identify all completeness counterexamples, even
when using evolutionary computation with periodic symbolic analysis. For exam-
ple, given a set of ‘needles in a haystack,’ two ‘needles’ that are close in genotype
distance (e.g., when the throttle is at 72% and 74%, but not at 73%) may cause
one to be ignored in favor of counterexamples that are further afield. While
no guarantees can be made about identifying all completeness counterexamples,
the larger the set of counterexamples and greater the diversity found, the more
representative the solution set is of the incompleteness. Ultimately, detecting
completeness counterexamples is limited to the quality and fidelity of the hier-
archical requirements model and utility functions.

4 Results

This section describes and compares the results of applying the four different
methods of identifying counterexamples that satisfy the generated requirement
completeness counterexample expressions. These methods are symbolic analysis
only (SA), evolutionary computation only (EC), SA-Initialized EC (SAIEC), and

Automatic Detection of Incomplete Requirements 59

Periodic-SA with EC (PSAEC). Each of these methods were executed 50 times.
For the SA results, there is no difference between executions, but for the results
that include EC, the results vary across executions. Results are compared for two
incomplete requirements (Goals D.1 and B.3, to ‘Maintain Speed’ and ‘Slow
Car’, respectively) that were previously shown to be incomplete using SA [10].
However in contrast to previous solutions [10], Ares-EC identifies multiple rep-
resentative counterexamples. Methods are compared based on their ability to
return disperse counterexamples. Next, we describe in detail the results from
applying each of these four techniques and analyze the results.

4.1 Symbolic Analysis

SA identified a single counterexample for both goals D.1 and B.3. Intrinsically,
there is no range or diversity in a solution set of one result. SA has been pre-
viously used to identify completeness counterexamples [10] and is included here
for comparison with the other search-based methods.

4.2 Evolutionary Computation

EC attempts to address the fundamental shortcoming with the results from only
SA by identifying a population of results, rather than a single result. However,
even after 50 executions, no counterexamples could be identified. Unlike the
single SA result, EC attempts to identify a range of solutions that are more
representative of the scope in which the requirement incompleteness exists. In
this case, the lack of variation in fitness (i.e., fitness values are either 0.0 or 1.0)
reduces the EC to random search. Significantly larger populations (5000) and
generations (20000) were also used with no success.

4.3 SA Initialization Then EC

While the EC-based method alone was unable to provide counterexamples to a
single requirement incompleteness, it is possible to start with a known optimum
and search for similar counterexamples. The SAIEC method results in 200 coun-
terexamples within a population of 200. This result does not mean that there
are 200 missing or incomplete requirements, only that this method identified
200 representative counterexamples for each single incomplete requirement. For
example, if incomplete requirements decompositions were only found when the
brake is depressed more than 50%, then the 200 counterexamples should be in
a distribution ranging from being pressed 50% to being pressed 100%. Unlike
the EC-only method, providing the EC algorithm with a sample optimum has
made it possible to find additional optima resulting in the identification of usable
counterexamples from the population.

The SAIEC method is able to find a counterexample for every member of
the population for each of the known incomplete requirements (Goals D.1 and
B.3). SAIEC is clearly superior to EC alone, as EC alone is unable to identify

60 B. DeVries and B.H.C. Cheng

any counterexamples. SAIEC is also clearly superior to SA, as SA is unable to
provide any range or diversity within its counterexamples as SA only identifies
a single counterexample.

4.4 Periodic SA with EC Results

The additional number of optimal results provided by initializing the EC-based
method with a counterexample found from SA still may leave an intrinsic bias to
the original optimal set in the results. When multiple variables must change in
order to maintain an optimum, it is more difficult to identify additional optima
due to the likelihood of a crossover or mutation maintaining the relationship
between those variables. In an effort to identify the largest range of counterex-
amples, it may be that periodically adding an optimal solution outside of the
known solutions would improve the overall range of solutions by overcoming
the dependencies between variables. Similar to the SAIEC method, the PSAEC
identifies 200 diverse counterexamples within a population of 200.

Similar to SAIEC, the PSAEC method is clearly superior to EC alone for
the same reason that PSAEC is able to identify counterexamples while using EC
only is not. PSAEC is also superior to SA only, as SA only identifies a single
counterexample.

4.5 Comparison

While SA can only be used to identify the existence of a requirement complete-
ness counterexample, additional counterexamples provide more information on
the range and scope of the incompleteness. EC-based methods can identify addi-
tional counterexamples in parallel, but encounter difficulties satisfying expres-
sions with fitness cliffs or ‘needle in a haystack’ solutions (i.e., in an EC-only
method) or difficulties with identifying additional novel solutions due to corre-
lated variables (i.e., in a SAIEC search method). In fact, in this specific case, the
EC-only method was unable to identify results due to the lack of a fitness gradi-
ent. In the general case, the greatest range of optimal genotype values is provided
by the PSAEC that escapes limitations of the SAIEC search methods. Evidence
of this finding can be seen in Figs. 2 and 3 for requirements incompleteness for
goals D.1 and B.3, respectively, where the mean range of genotype values in
each individual can be seen in box plots.

It is necessary to statistically compare the two methods that identified a
range of solutions (i.e., SAIEC and PSAEC), since they are both able to identify
the same number of counterexamples. We define the null hypothesis H0 to state
that there is no difference between the range of optimal solutions for the SAIEC
and PSAEC methods. We also define an alternative hypothesis, H1, that states
that there is a difference between the range of optimal solutions for SAIEC
and PSAEC methods. In both cases, in goals B.3 and D.1, PSAEC achieves
statistically significant larger mean range values over 50 executions as measured
using the Mann-Whitney U-test (p < 0.05 where p = 2.2 ∗ 10−16). Therefore we

Automatic Detection of Incomplete Requirements 61

Fig. 2. Requirement D.1 Fig. 3. Requirement B.3

can reject the null hypothesis, H0, in favor of the alternate hypothesis H1 due
to the statistically significant difference.

5 Related Work

This section covers related work for both requirements completeness and search
methods that maintain diversity. While there is a broad collection of research into
leveraging search-based techniques for requirements-related tasks, many of which
are described in surveys [16,28], to the best of the authors’ knowledge, none have
explicitly tackled the problem of requirements decomposition incompleteness.

5.1 Requirements Completeness

Outside of process rigor [27], formal guarantees of requirements completeness
exist in the form of decomposition strategies that are proven to define complete
decomposed requirements [5]. Completeness criteria may be added to formal
specification languages, though incomplete requirements may still exist due to
criteria that cannot be enforced by language semantics [18]. A method exists to
detect incomplete decompositions using symbolic analysis, however only a single
counterexample for each incomplete requirement is produced [10].

Ares-EC is unique as it applies symbolic analysis and evolutionary computa-
tion to automatically-generated utility functions to detect sets of representative
completeness counterexamples without restricting decompositions to a finite set
of formal patterns.

62 B. DeVries and B.H.C. Cheng

5.2 Search for Diversity

Multi-objective optimization (e.g., NSGA-II [9]) identifies multiple solutions,
but the solutions represent the Pareto front of a tradeoff between two or more
objectives [7]. However, if the objectives are not competing, then the problem
collapses to single-objective optimization. Our method of searching for require-
ment completeness counterexamples does not contain competing objectives, but
rather a single objective with multiple solutions.

Novelty search uses evolutionary computation to identify novel behaviors [17]
across the genotype. Rather than identifying a population of optimum solutions,
novelty search identifies the range of possible solutions from an optimum to the
worst solution. Niching is typically used for multi-modal problems [11], rather
than problems with an area of optimal results.

The search method used by Ares-EC identifies multiple optimum solutions
in parallel while maximizing diversity of the solutions.

6 Conclusions

In this paper, we have presented Ares-EC, a design-time approach for detecting
incomplete requirements decomposition using symbolic analysis and evolution-
ary computation to analyze hierarchical requirements models. Unlike previous
incomplete requirements detection methods, Ares-EC detects representative sets
of incomplete requirements decompositions while not limiting the allowable
decomposition strategies.

We demonstrate Ares-EC on an adaptive cruise control system developed
in collaboration with our automotive industrial collaborators. We show that
Ares-EC is able to automatically detect incomplete requirements decompositions
and provide sets of completeness counterexamples in seconds. Further, by com-
bining symbolic analysis with evolutionary computation we achieve the benefits
of both techniques.

Future research directions will further expand the scope of Ares-EC analy-
sis, including additional case studies. For example, we will explore the use of
RELAXed goals [25] whose utility functions are evaluated according to fuzzy
logic expressions or applying other transformations to introduce a gradient to
requirements satisfaction in support of search. In addition, we will investigate
applying Ares-EC to other hierarchical requirement frameworks (e.g., i*) to fur-
ther demonstrate Ares-EC’s applicability to generalized hierarchical requirement
model analysis.

References

1. Alrajeh, D., Kramer, J., van Lamsweerde, A., Russo, A., Uchitel, S.: Generating
obstacle conditions for requirements completeness. In: Proceedings of the 34th
International Conference on Software Engineering, pp. 705–715 (2012)

2. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In:
ICSE 2007 Future of Software Engineering, pp. 285–303 (2007)

Automatic Detection of Incomplete Requirements 63

3. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling app-
roach to develop requirements of an adaptive system with environmental uncer-
tainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04425-0 36

4. Cormen, T.H.: Introduction to Algorithms. MIT press, Cambridge (2009)
5. Darimont, R., Van Lamsweerde, A.: Formal refinement patterns for goal-driven

requirements elaboration. ACM SIGSOFT Softw. Eng. Notes 21, 179–190 (1996)
6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

7. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New
York (2005)

8. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Syst. 9(3), 1–15 (1994)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

10. DeVries, B., Cheng, B.H.C.: Automatic detection of incomplete requirements via
symbolic analysis. In: 19th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS 2016), Proceedings, Saint-Malo, France,
October 2–7, pp. 385–395 (2016)

11. Eiben, A.E., Smith, J.E., et al.: Introduction to Evolutionary Computing, vol. 53.
Springer, Heidelberg (2003). doi:10.1007/978-3-662-05094-1

12. Feather, M.S., Fickas, S., Van Lamsweerde, A., Ponsard, C.: Reconciling system
requirements and runtime behavior. In: Proceedings of the 9th International Work-
shop on Software Specification and Design, p. 50 (1998)

13. Ferrari, A., dell’Orletta, F., Spagnolo, G.O., Gnesi, S.: Measuring and improving
the completeness of natural language requirements. In: Salinesi, C., Weerd, I. (eds.)
REFSQ 2014. LNCS, vol. 8396, pp. 23–38. Springer, Cham (2014). doi:10.1007/
978-3-319-05843-6 3

14. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In:
Proceedings of the Second IEEE International Symposium on Requirements Engi-
neering, pp. 140–147 (1995)

15. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

16. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. ACM Comput. Surv. (CSUR) 45(1), 11 (2012)

17. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

18. Leveson, N.: Completeness in formal specification language design for process-
control systems. In: Proceedings of the Third Workshop on Formal Methods in
Software Practice, pp. 75–87 (2000)

19. Menzel, I., Mueller, M., Gross, A., Doerr, J.: An experimental comparison regard-
ing the completeness of functional requirements specifications. In: 2010 18th IEEE
International Requirements Engineering Conference (RE), pp. 15–24 (2010)

20. Ramirez, A.J., Cheng, B.H.C.: Automatic derivation of utility functions for mon-
itoring software requirements. In: Whittle, J., Clark, T., Kühne, T. (eds.) MOD-
ELS 2011. LNCS, vol. 6981, pp. 501–516. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24485-8 37

http://dx.doi.org/10.1007/978-3-642-04425-0_36
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-662-05094-1
http://dx.doi.org/10.1007/978-3-319-05843-6_3
http://dx.doi.org/10.1007/978-3-319-05843-6_3
http://dx.doi.org/10.1007/978-3-642-24485-8_37
http://dx.doi.org/10.1007/978-3-642-24485-8_37

64 B. DeVries and B.H.C. Cheng

21. Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal verification of avionics
software products. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol.
5850, pp. 532–546. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 34

22. Van Lamsweerde, A., et al.: Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, Chichester (2009)

23. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic
systems. In: International Conference on Autonomic Computing, Proceedings, pp.
70–77 (2004)

24. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C.: A language for self-adaptive
system requirements. In: International Workshop on Service-Oriented Computing:
Consequences for Engineering Requirements (SOCCER 2008), pp. 24–29 (2008)

25. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C, Bruel, J.M.: Relax: incorpo-
rating uncertainty into the specification of self-adaptive systems. In: 17th IEEE
International Requirements Engineering Conference (RE 2009), pp. 79–88 (2009)

26. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the Third IEEE International Symposium on
Requirements Engineering, pp. 226–235 (1997)

27. Zenun, M.M., Loureiro, G.: A framework for dependability and completeness in
requirements engineering. In: Latin American Symposium on Dependable Com-
puting, pp. 1–4 (2013)

28. Zhang, Y., Finkelstein, A., Harman, M.: Search based requirements optimisation:
existing work and challenges. In: International Working Conference on Require-
ments Engineering: Foundation for Software Quality, pp. 88–94 (2008)

http://dx.doi.org/10.1007/978-3-642-05089-3_34

Generating Effective Test Suites
by Combining Coverage Criteria

Gregory Gay(B)

University of South Carolina, Columbia, SC, USA
greg@greggay.com

Abstract. A number of criteria have been proposed to judge test suite
adequacy. While search-based test generation has improved greatly at
criteria coverage, the produced suites are still often ineffective at detect-
ing faults. Efficacy may be limited by the single-minded application of
one criterion at a time when generating suites—a sharp contrast to
human testers, who simultaneously explore multiple testing strategies.
We hypothesize that automated generation can be improved by select-
ing and simultaneously exploring multiple criteria.

To address this hypothesis, we have generated multi-criteria test
suites, measuring efficacy against the Defects4J fault database. We have
found that multi-criteria suites can be up to 31.15% more effective at
detecting complex, real-world faults than suites generated to satisfy a
single criterion and 70.17% more effective than the default combina-
tion of all eight criteria. Given a fixed search budget, we recommend
pairing a criterion focused on structural exploration—such as Branch
Coverage—with targeted supplemental strategies aimed at the type of
faults expected from the system under test. Our findings offer lessons to
consider when selecting such combinations.

Keywords: Search-based test generation · Automated test generation ·
Adequacy criteria · Search-based software engineering

1 Introduction

With the exponential growth in the complexity of software, the cost of testing has
risen accordingly. One way to lower costs without sacrificing quality may lie in
automating the generation of test input [1]. Consider search-based generation—
given a testing goal, and a scoring function denoting closeness to attainment
of that goal, optimization algorithms can search for input that achieves that
goal [12].

As we cannot know what faults exist a priori, dozens of criteria—ranging from
the measurement of structural coverage to the detection of synthetic faults [14]—
have been proposed to judge testing adequacy. In theory, if such criteria are ful-
filled, tests should be adequate at detecting faults. Adequacy criteria are impor-
tant for search-based generation, as they can guide the search [12].

c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 65–82, 2017.
DOI: 10.1007/978-3-319-66299-2 5

66 G. Gay

Search techniques have improved greatly in terms of achieved coverage [2].
However, the primary goal of testing is not coverage, but fault detection. In
this regard, automated generation often does not produce human competitive
results [2,3,5,15]. If automation is to impact testing practice, it must match—or,
ideally, outperform—manual testing in terms of fault-detection efficacy.

The current use of adequacy criteria in automated generation sharply con-
trasts how such criteria are used by humans. For a human, coverage typically
serves an advisory role—as a way to point out gaps in existing efforts. Human
testers build suites in which adequacy criteria contribute to a multifaceted com-
bination of testing strategies. Previous research has found that effectiveness of a
criterion can depend on factors such as how expressions are written [4] and the
types of faults that appear in the system [6]. Humans understand such concepts.
They build and vary their testing strategy based on the needs of their current
target. Yet, in automated generation, coverage is typically the goal, and a single
criterion is applied at a time.

However, search-based techniques need not be restricted to one criterion at
a time. The test obligations of multiple criteria can be combined into a sin-
gle score or simultaneously satisfied by multi-objective optimization algorithms.
We hypothesize that the efficacy of automated generation can be improved by
applying a targeted, multifaceted approach—where multiple testing strategies
are selected and simultaneously explored.

In order to examine the efficacy of suites generated by combining criteria,
we have used EvoSuite and eight coverage criteria to generate multi-criteria test
suites—as suggested by three selection strategies—with efficacy judged against
the Defects4J fault database [10]. Based on experimental observations, we added
additional configurations centered around the use of two criteria, Exception and
Method Coverage, that performed poorly on their own, but were effective in
combination with other criteria.

By examining the proportion of suites that detect each fault for each config-
uration, we can examine the effect of combining coverage criteria on the efficacy
of search-based test generation, identify the configurations that are more effec-
tive than single-criterion generation, and explore situations where particular
adequacy criteria can effectively cooperate to detect faults. To summarize our
findings:

– For all systems, at least one combination is more effective than a single cri-
terion, offering efficacy improvements of 14.84–31.15% over the best single
criterion.

– The most effective combinations pair a structure-focused criterion—such as
Branch Coverage—with supplemental strategies targeted at the class under
test.
• Across the board, effective combinations include Exception Coverage. As

it can be added to a configuration with minimal effect on generation
complexity, we recommend it as part of any generation strategy.

• Method Coverage can offer an additional low-cost efficacy boost.

Generating Effective Test Suites by Combining Coverage Criteria 67

• Additional targeted criteria—such as Output Coverage for code that
manipulates numeric values or Weak Mutation Coverage for code with
complex logical expressions—offer further efficacy improvements.

Our findings offer lessons to consider when selecting such combinations, and
a starting point in discovering the best combination for a given system.

2 Background

As we cannot know what faults exist without verification, and as testing cannot—
except in simple cases—conclusively prove the absence of faults, a suitable
approximation must be used to measure the adequacy of testing efforts. Com-
mon methods of measuring adequacy involve coverage of structural elements of
the software, such as individual statements, points where control can branch,
and complex boolean expressions [7].

The idea of measuring adequacy through coverage is simple, but compelling:
unless code is executed, many faults are unlikely to be found. If tests execute
elements in the manner prescribed by the criterion, than testing is deemed “ade-
quate” with respect to faults that manifest through such structures. Adequacy
criteria have seen widespread use in software development, as they offer clear
checklists of testing goals that can be objectively evaluated and automatically
measured [7]. Importantly, they offer stopping criteria, advising on when testing
can conclude. These very same qualities make adequacy criteria ideal for use as
automated test generation targets.

Of the thousands of test cases that could be generated for any SUT, we
want to select—systematically and at a reasonable cost—those that meet our
goals [12]. Given scoring functions denoting closeness to the attainment of those
goals—called fitness functions—optimization algorithms can sample from a large
and complex set of options as guided by a chosen strategy (the metaheuristic).
Metaheuristics are often inspired by natural phenomena. For example, genetic
algorithms evolve a group of candidate solutions by filtering out bad “genes”
and promoting fit solutions [2].

Due to the non-linear nature of software, resulting from branching control
structures, the search space of a real-world program is large and complex. Meta-
heuristic search—by strategically sampling from that space—can scale effectively
to large problems. Such approaches have been applied to a wide variety of testing
scenarios [1].

While adequacy has been used in almost all generation methods, it is partic-
ularly relevant to metaheuristic search-based generation. In search-based gener-
ation, the fitness function must capture the testing objective and provide feed-
back to guide the search. Through this guidance, the fitness function has a major
impact on the quality of the solutions generated. Adequacy criteria are common
optimization targets for automated test case generation, as they can be straight-
forwardly transformed into distance functions that lead to the search to better
solutions [12].

68 G. Gay

3 Study

We hypothesize that the efficacy of automated generation can be improved by
selecting and simultaneously exploring a combination of testing strategies. In
particular—in this project—we are focused on combinations of common ade-
quacy criteria.

Rojas et al. previously found that multiple fitness functions could be com-
bined with minimal loss in coverage of any single criterion and with a reasonable
increase in test suite size [14]. Indeed, recent versions of the EvoSuite framework1

now, by default, combine eight coverage criteria when generating tests. However,
their work did not assess the effect of combining criteria on the fault-detection
efficacy of the generated suites. We intend to focus on the performance of suites
generated using a combination of criteria. In particular, we wish to address the
following research questions:
1. Do test suites generated using a combination of two or more coverage criteria

have a higher likelihood of fault detection than suites generated using a single
criterion?

2. For each system, and across all systems, which combinations are most effec-
tive?

3. What effect does an increased search budget have on the studied combina-
tions?

4. Which criteria best pair together to increase the likelihood of fault detection?

The first two questions establish a basic understanding of the effectiveness of cri-
teria combinations—given fixed search budgets, are any of the combinations more
effective at fault detection than suites generated to satisfy a single criterion? Fur-
ther, we hypothesize that the most effective combination will vary across systems.
We wish to understand the degree to which results differ across the studied sys-
tems, and whether the search budget plays a strong role in determining the result-
ing efficacy of a combination. In each of these cases, we would also like to better
understand why and when particular combinations are effective.

In order to examine the efficacy of suites generated using such combinations,
we have first applied EvoSuite and eight coverage criteria to generate test suites
for the systems in the Defects4J fault database [10]. We have performed the
following:

1. Collected Case Examples: We have used 353 real faults, from five Java
projects, as test generation targets (Sect. 3.1).

2. Generated Test Cases: For each fault, we generated 10 suites per criterion
using the fixed version of each class-under-test (CUT). We use both a two-
minute and a ten-minute search budget per CUT (Sect. 3.2).

3. Removed Non-Compiling and Flaky Tests: Any tests that do not com-
pile, or that return inconsistent results, are automatically removed (Sect. 3.2).

4. Assessed Fault-finding Effectiveness: For each fault, we measure the
proportion of test suites that detect the fault to the number generated.

1 Available from http://evosuite.org.

http://evosuite.org

Generating Effective Test Suites by Combining Coverage Criteria 69

Following single-criterion generation, we applied three different selection
strategies to build sets of multi-criteria configurations for each system (described
in Sect. 3.3). We generated suites, following the steps above, using each of the
configurations suggested by these strategies, as well as EvoSuite’s default eight-
criteria configuration. Based on our initial observations, we added additional
configurations centered around two criteria—Exception and Method Coverage—
that performed poorly on their own, but were effective in combination with other
criteria (See Sect. 4).

3.1 Case Examples

Defects4J is an extensible database of real faults extracted from Java
projects [10]2. Currently, it consists of 357 faults from five projects: JFreeChart
(26 faults), Closure compiler (133 faults), Apache Commons Lang (65 faults),
Apache Commons Math (106 faults), and JodaTime (27 faults). Four faults from
the Math project were omitted due to complications encountered during suite
generation, leaving 353.

3.2 Test Suite Generation

EvoSuite uses a genetic algorithm to evolve test suites over a series of gen-
erations, forming a new population by retaining, mutating, and combining the
strongest solutions. It is actively maintained and has been successfully applied to
a variety of projects [15]. We used the following fitness functions, corresponding
to common coverage criteria3:

Branch Coverage (BC): A test suite satisfies BC if all control-flow branches
are taken by at least one test case—the test suite contains at least one test
whose execution evaluates the branch predicate to true, and at least one whose
execution evaluates to false. To guide the search, the fitness function calculates
the branch distance from the point where the execution path diverged from the
targeted branch. If an undesired branch is taken, the function describes how
“close” the targeted predicate is to being true, using a cost function based on
the predicate formula [14].

Direct Branch Coverage (DBC): Branch Coverage may be attained by call-
ing a method directly, or indirectly—calling a method within another method.
DBC requires each branch to be covered through a direct call.

Line Coverage (LC): A test suite satisfies LC if it executes each non-comment
line of code at least once. To cover each line, EvoSuite tries to ensure that
each basic code block is reached. The branch distance is computed for each
branch that is a control dependency of any of the statements in the CUT. For

2 Available from http://defects4j.org.
3 Rojas et al. provide a primer on each fitness function [14].

http://defects4j.org

70 G. Gay

each conditional statement that is a control dependency for some other line,
EvoSuite requires that the branch of the statement leading to the dependent
code is executed.
Exception Coverage (EC): EC rewards test suites that force the CUT to
throw more exceptions—either declared or undeclared. As the number of possible
exceptions that a class can throw cannot be known ahead of time, the fitness
function rewards suites that throw the largest observed number of exceptions.

Method Coverage (MC): MC simply requires that all methods in the CUT
be executed at least once, either directly or indirectly.

Method Coverage (Top-Level, No Exception) (MNEC): Test suites
sometimes achieve MC while calling methods in an invalid state or with invalid
parameters. MNEC requires that all methods be called directly and terminate
without throwing an exception.

Output Coverage (OC): OC rewards diversity in method output by mapping
return types to abstract values. A test suite satisfies OC if, for each public
method, at least one test yields a concrete value characterized by each abstract
value. For numeric data types, distance functions guide the search by comparing
concrete and abstract values.

Weak Mutation Coverage (WMC): Suites that detect more mutants may
be effective at detecting real faults as well. A test suite satisfies WMC if, for each
mutated statement, at least one test detects the mutation. The search is guided
by the infection distance, a variant of branch distance tuned towards detecting
mutated statements.

To generate for multiple criteria, EvoSuite calculates the fitness score as
a linear combination of the objectives for all of the criteria [14]. No ordering
is imposed on the criteria when generating—combinations such as BC-LC and
LC-BC are equivalent.

Test suites are generated for each class reported as faulty, using the fixed
version of the CUT. They are applied to the faulty version in order to eliminate
the oracle problem. This translates to a regression testing scenario, where tests
guard against future issues.

Two search budgets were used—two minutes and ten minutes per class–
allowing us to examine the effect of increasing the search budget. To control
experiment cost, we deactivated assertion filtering—all possible regression asser-
tions are included. All other settings were kept at their default values. As results
may vary, we performed 10 trials for each fault and search budget, generating
an initial pool of 56,480 test suites.

Generation tools may generate flaky (unstable) tests [15]. For example, a
test case that makes assertions about the system time will only pass during
generation. We automatically remove flaky tests. First, non-compiling test cases
are removed. Then, each test is executed on the fixed CUT five times. If results
are inconsistent, the test case is removed. On average, less than one percent of
the tests are removed from each suite.

Generating Effective Test Suites by Combining Coverage Criteria 71

3.3 Selecting Criteria Combinations

Overall, suites generated to satisfy a single criterion detect 180 (50.99%) of the
353 studied faults. The average likelihood of fault detection is listed for each
single criterion, by system and budget, in Table 1.

Table 1. Average likelihood of fault detection for
single-criterion generation, divided by budget and
system.

Budget Chart Closure Lang Math Time Overall

BC 120 45.00% 4.66% 34.00% 27.94% 34.82% 22.07%

600 48.46% 5.79% 40.15% 32.75% 39.26% 25.61%

DBC 120 34.23% 5.11% 30.00% 24.51% 31.11% 19.43%

600 40.77% 6.09% 38.77% 28.63% 40.37% 23.80%

EC 120 22.31% 1.35% 7.54% 6.37% 9.26% 6.09%

600 21.54% 0.98% 9.23% 7.06% 9.63% 6.43%

LC 120 38.85% 4.14% 31.23% 25.78% 30.00% 19.92%

600 46.15% 4.81% 34.31% 29.22% 36.67% 22.78%

MC 120 30.77% 1.58% 7.54% 10.98% 8.15% 8.05%

600 30.77% 2.26% 7.69% 10.88% 8.15% 8.30%

MNEC 120 23.46% 2.18% 6.62% 12.16% 6.67% 7.79%

600 30.77% 1.88% 7.54% 12.06% 5.19% 8.24%

OC 120 21.15% 2.03% 7.85% 16.57% 9.63% 9.29%

600 23.85% 2.56% 10.92% 16.76% 12.22% 10.51%

WMC 120 38.08% 4.44% 24.15% 23.04% 25.19% 17.51%

600 46.15% 5.56% 32.15% 27.45% 27.04% 21.42%

BC is the most effective sin-
gle criterion, detecting 158 of
the 353 faults. BC suites have
an average likelihood of fault
detection of 22.07% given a
two-minute search budget and
25.61% given a ten-minute bud-
get. Line and Direct Branch
Coverage follow with a 19.92–
22.78% and 19.43–23.80% like-
lihood of detection. DBC and
WMC benefit the most from
an increased search budget,
with average improvements of
22.45% and 22.33%. Crite-
ria with distance-driven fit-
ness functions—BC, DBC, LC,

WMC, and, partially, OC—improve the most given more time.
We seek to identify whether combinations of criteria can outperform the top

single criterion for each system—either BC or DBC. Studying all possible com-
binations is infeasible—even restricting to combinations of four criteria would
result in 1,680 configurations. To control experiment cost, we have employed
three strategies to suggest combinations. We have also used Evosuite’s default
configuration of all eight criteria. We perform selection using each strategy for
each system and search budget, then build combinations using the entire pool of
faults in order to suggest general combinations. The suggested combinations are
then used to generate suites. All combinations are applied ten times per search
budget. To converse space, we do not list all combinations. However, the top
combinations are named and discussed in Sect. 4. The three selection strategies
include:

“Top-Ranked” Strategy: This simple strategy build combinations by select-
ing the top two to four coverage criteria, as seen in Table 1, and combining them.

“Boost” Strategy: This strategy aims to select secondary criteria that “back
up” a central criterion—the criterion that performed best on its own—in sit-
uations where that central criterion performs poorly. To select the additional
criteria, the pool of faults is filtered for examples where that central criterion
had <=30% likelihood of fault detection. Then, two to four top-ranked criteria
from that filtered pool are selected for the combination. Criteria are only selected
if they are more effective than the central criterion post-filtering.

72 G. Gay

“Unique Faults” Strategy: This greedy strategy favors the criteria that detect
the highest number of unique faults. Combinations of criteria are selected by
choosing the criterion that produced suites that detected the most faults, remov-
ing those faults from consideration, and choosing from the remaining faults and
criteria. Ties are broken at random. Selection stops once four criteria are chosen,
or if no faults remain.

Together, these three strategies (and EvoSuite’s default) yielded 12 combi-
nations for Chart, 12 for Closure, 17 for Lang, 14 for Math, and 11 for Time—
resulting in the generation of 94,760 test suites.

4 Results and Discussion

Tables 2 and 3 show—for each system, and across all systems—the combinations
that are more effective than the top single criterion for the two-minute and
ten-minute search budgets. We also list the performance of EvoSuite’s default
combination of eight criteria. Combinations outperformed by the top criterion,
except for the default, are omitted. For the overall results, only combinations
generated for all systems are considered. The abbreviations for each criterion are
listed in Sect. 3.2. For each combination, we note the strategies that suggested the
combination and the average efficacy. In Table 3, we also note the improvement
from the increased budget.

For all systems and both budgets, at least one combination outperforms the
top single criterion. This validates our core hypothesis—the likelihood of fault
detection can be increased by combining criteria. As can be seen in Tables 2
and 3, EvoSuite’s default combination of all eight criteria rarely manages to out-
perform the top single criterion. As the number of criteria expands, the difficulty
of the search process also grows. While criteria can work together to produce
more effective suites, there is a point where the generation task becomes too
difficult to achieve within the selected budget. Our observations, instead, point
towards the wisdom of choosing a targeted set of criteria for the CUT.

We proposed three strategies to suggest combinations—the Top-Ranked,
Boosting, and Unique Faults strategies. Examining the results of this exper-
iment, the Unique Faults strategy seems to produce the best overall results,
suggesting nine of the top strategies for the two-minute budget and 24 for the
ten-minute budget. The Boosting strategy suggests only three for the two-minute
budget and 17 for the ten-minute budget, and the Top Ranked strategy suggests
seven for the two-minute budget and 14 for the ten-minute budget.

However, while these strategies have yielded effective combinations, we can-
not recommend any of them as a general-purpose strategy for testing new sys-
tems. Each also suggested a large number of ineffective combinations. With a
two-minute budget, only 28% of the Top Ranked strategy combinations were
effective. For the Boosting strategy, the total was only 8%, and for the Unique
Faults strategy, the total was only 19%. With a ten-minute budget, 56% of
the combinations for the Top Ranked strategy were effective. For the Boosting
strategy, this was 45%, and for the Unique Faults strategy, the total was 50%.

Generating Effective Test Suites by Combining Coverage Criteria 73

Table 2. Efficacy (average likeli-
hood of fault detection) for the ini-
tial set of combinations, when gen-
erated with a two-minute search
budget. TR = Top-Ranked Strat-
egy, BS = Boosting Strategy, UF
= Unique Faults Strategy.

System Combination Strategy Efficacy

Chart Default – 47.30%

BC – 45.00%

Closure BC-LC TR, UF 6.00%

DBC – 5.10%

Default – 4.50%

Lang BC-EC-LC-MC UF 40.00%

BC-EC UF 39.40%

BC-LC TR, BS, UF 36.50%

BC-EC-LC UF 35.70%

BC-DBC TR, BS, UF 35.50%

BC-LC-DBC TR, BS 34.00%

BC – 34.00%

Default – 23.80%

Math BC-LC-OC-EC UF 32.40%

BC-LC TR, UF 31.90%

BC – 27.90%

Default – 25.80%

Time DBC-BC-LC TR, BS 35.20%

BC – 34.80%

Default – 25.90%

Overall BC-LC TR, UF 24.00%

BC – 22.10%

Default – 19.00%

Table 3. Efficacy for the initial set of com-
binations (ten-minute search budget).

System Combination Strategy Efficacy Improvement
From Budget

Chart BC-LC-WMC-EC UF 57.30% 35.46%

BC-EC-DBC BS 55.80% 28.28%

BC-EC BS 54.60% 23.53%

BC-DBC-WMC-OC UF 49.20% 54.23%

BC-LC-WMC TR, UF 48.90% 49.71%

BC-WMC-MC BS 48.90% 27.01%

BC-WMC BS, UF 48.80% 39.43%

BC – 48.50% 7.78%

Default – 48.10% 1.69%

Closure BC-LC TR, UF 7.6% 26.67%

BC-LC-DBC TR 7.30% 48.98%

BC-LC-WMC-EC UF 7.20% 94.59%

BC-DBC TR, BS, UF 7.10% 51.05%

Default – 7.10% 57.78%

BC-WMC-DBC-LC TR, BS 7.00% 42.86%

DBC-WMC BS, UF 6.80% 61.90%

BC-WMC BS 6.50% 54.76%

DBC-WMC-BC TR, BS, UF 6.40% 60.00%

DBC – 6.10% 19.61%

Lang BC-EC UF 47.50% 20.56%

BC-EC-LC-MC UF 45.70% 14.25%

BC-EC-LC UF 45.70% 28.00%

BC-LC-DBC TR, BS 42.30% 24.41%

BC-LC-WMC-EC UF 41.70% 44.79%

BC-DBC TR, BS, UF 41.10% 12.60%

BC-LC TR, BS, UF 40.90% 12.05%

BC – 40.20% 18.24%

Default – 32.60% 36.97%

Math BC-LC-OC-EC UF 38.00% 17.28%

BC-OC-LC BS, UF 35.80% 31.62%

BC-OC BS 34.70% 24.82%

BC-OC-LC-WMC BS, UF 33.70% 22.99%

BC-LC TR, UF 31.90% 3.76%

BC-LC-WMC-EC UF 33.00% 21.32%

BC – 32.80% 17.56%

Default – 32.80% 27.13%

Time DBC-BC TR, BS, UF 43.30% 39.22%

DBC-BC-LC TR, BS 41.50% 17.90%

DBC – 40.40% 29.90%

Default – 33.33% 28.68%

Overall BC-LC-WMC-EC UF 26.90% 33.83%

BC-LC TR, UF 26.40% 10.00%

BC-DBC TR, BS, UF 25.80% 20.00%

BC-LC-DBC TR 25.60% 28.00%

BC – 25.60% 15.84%

Default – 24.20% 27.39%

Therefore, while the basic hypothesis—that combinations can outperform a sin-
gle criterion—seems to be valid, more research is needed in how to determine
the best combination.

74 G. Gay

Table 4. Efficacy of Excep-
tion Coverage-based combinations
(two-minute budget). The top
combination from Table 2, top
single criterion, and EvoSuite’s
default combination are shown for
context. A * means that the com-
bination was also suggested by a
previous strategy.

System Combination Efficacy

Chart Default 47.30%

BC 45.00%

Closure BC-LC 6.00%

BC-LC-EC 5.70%

DBC-EC 5.10%

DBC 5.10%

Default 4.50%

Lang BC-EC-LC-MC 40.00%

BC-EC* 39.40%

BC-LC-EC* 35.70%

BC 34.00%

Default 23.80%

Math BC-LC-OC-EC 32.40%

BC-EC 31.70%

BC 27.90%

Default 25.80%

Time BC-EC 39.60%

DBC-BC-LC-EC 39.30%

DBC-EC 37.80%

DBC-BC-LC 35.20%

BC 34.80%

Default 25.90%

Overall BC-EC 24.50%

BC-LC 24.00%

BC-LC-EC 22.40%

BC 22.10%

Default 19.00%

Table 5. Efficacy of EC-based combina-
tions (ten-minute budget). The top com-
bination from Table 3, top single criterion,
and EvoSuite’s default combination are
shown for context.

System Combination Efficacy Improvement From Budget

Chart BC-LC-WMC-EC 57.30% 35.46%

BC-EC* 54.60% 23.53%

BC-LC-EC 50.40% 14.81%

BC 48.50% 7.78%

Default 48.10% 1.69%

Closure BC-LC 7.6% 26.67%

BC-LC-EC 7.40% 29.82%

BC-EC 7.10% 47.92%

Default 7.10% 57.78%

DBC 6.10% 19.61%

Lang BC-EC* 47.50% 20.56%

BC-LC-EC* 45.70% 28.00%

BC 40.20% 18.24%

Default 32.60% 36.97%

Math BC-LC-OC-EC 38.00% 17.28%

BC-EC 34.00% 7.25%

BC 32.80% 17.56%

Default 32.80% 27.13%

Time BC-EC 44.80% 13.13%

DBC-BC-EC 44.10% 38.25%

DBC-BC 43.30% 39.22%

DBC-BC-LC-EC 42.60% 8.40%

BC-LC-EC 41.10% 18.10%

DBC-EC 41.10% 8.73%

DBC 40.40% 29.90%

Default 33.33% 28.68%

Overall BC-EC 28.70% 17.14%

BC-LC-EC 27.50% 22.77%

BC-LC-WMC-EC 26.90% 33.83%

BC 25.60% 15.84%

Default 24.20% 27.39%

4.1 Additional Configurations

Following test generation, we noticed that (a) Exception Coverage was frequently
selected as part of combinations, despite performing poorly on its own, and (2),
that these combinations are often highly effective. For example, the top com-
binations for Chart, Lang, and Math in Tables 2 and 3 all contain EC. Of the
studied criteria, EC is unique in that it does not prescribe static test obliga-
tions. Rather, it simply rewards suites that cause more exceptions to be thrown.
This means that it can be added to a combination with little increase in search
complexity.

To further study the potential of EC as a “low-cost” addition to combinations,
we added a set of additional combinations to our study. Specifically, we gener-
ated tests for all systems using the BC-EC and BC-LC-EC combinations—the
combination of EC with the overall best single criterion, and the combination of

Generating Effective Test Suites by Combining Coverage Criteria 75

EC with the best overall combination seen to this point. As DBC outperformed
BC for the Closure and Time systems, we also generated tests for the DBC-EC
combination in those two cases. Finally, as the top-ranked combination Time
lacked EC, we added the DBC-BC-LC-EC and DBC-BC-EC combinations for
that system. In total, this adds one new configuration for Chart, three for Clo-
sure, zero for Lang, two for Math, and five for Time—resulting in the generation
of an additional 15,280 test suites.

Results can be seen in Tables 4 and 5 for the two budgets. From these results,
we can see that—almost universally—the best observed combination of criteria
includes Exception Coverage. In fact, the best overall configuration—up to this
point—is a simple combination of BC and EC. The simplicity of EC explains
its poor performance as the primary criterion. It lacks a feedback mechanism to
drive generation towards exceptions. However, EC appears to be effective when
paired with criteria that effectively explore the structure of the CUT, such as
Branch or Line Coverage. Exception Coverage adds little cost in terms of gener-
ation difficulty, and almost universally outperforms the use of Branch Coverage
alone.

An example of effective combination can be seen in fault 60 for Lang4—a case
where two methods can look beyond the end of a string. No single criterion is effec-
tive, with a maximum of 10% chance of detection given a two-minute budget and
20% with a ten-minute budget. However, combining BC and EC boosts the likeli-
hood of detection to 40% and 90% for the two budgets. In this case, if the fault is
triggered, the incorrect string access will cause an exception to be thrown. How-
ever, this only occurs under particular circumstances. Therefore, EC alone never
detects the fault. BC provides the necessary means to drive program execution to
the correct location. However, two suites with an equal coverage score are con-
sidered equal. BC alone may prioritize suites with slightly higher (or different)
coverage, missing the fault. By combining the two, exception-throwing tests are
prioritized and retained, succeeding where either criterion would fail alone.

Given that EC can boost the likelihood of fault detection without a substan-
tial cost increase, it seems reasonable to look for other “low-cost” criteria that
could provide a similar effect. The two forms of Method Coverage used in this
project are ideal candidates. In general, a class will not have a large number of
methods, and methods are either covered or not covered. Additionally, MC also
appears in some of the top combinations—such as those for Lang—despite poor
performance on its own.

Therefore, we have also generated tests for the BC-EC-MC, BC-LC-MC,
and BC-EC-LC-MC combinations for all systems. We have also added MC to
the top combination for any system that did not already have one of the above
as the resulting combination, adding BC-LC-WMC-EC-MC for Chart and BC-
LC-OC-EC-MC for Math. In total, this adds four new combinations for Chart,
three for Closure, two for Lang, four for Math, and three for Time—yielding
22,400 additional test suites.

4 https://github.com/apache/commons-lang/commit/
a8203b65261110c4a30ff69fe0da7a2390d82757.

https://github.com/apache/commons-lang/commit/a8203b65261110c4a30ff69fe0da7a2390d82757
https://github.com/apache/commons-lang/commit/a8203b65261110c4a30ff69fe0da7a2390d82757

76 G. Gay

Table 6. Efficacy of Method
Coverage-based combinations
(two-minute budget). The top
combinations from Tables 2 and 4,
top single criterion, and EvoSuite’s
default combination are are shown
for context. A * means that the
combination was also suggested
by a previous strategy.

System Combination Efficacy

Chart Default 47.30%

BC 45.00%

Closure BC-LC 6.00%

BC-LC-EC 5.70%

BC-EC-MC 5.60%

BC-LC-MC 5.30%

DBC 5.10%

Default 4.50%

Lang BC-EC-MC 40.50%

BC-EC-LC-MC* 40.00%

BC-EC 39.40%

BC-LC-MC 38.00%

BC 34.00%

Default 23.80%

Math BC-LC-OC-EC-MC 32.90%

BC-LC-OC-EC 32.40%

BC-EC 31.70%

BC-EC-MC 30.40%

BC-EC-LC-MC 30.20%

BC 27.90%

Default 25.80%

Time BC-EC 39.60%

BC-EC-MC 35.90%

DBC-BC-LC 35.20%

BC 34.80%

Default 25.90%

Overall BC-EC 24.50%

BC-EC-MC 24.30%

BC-LC 24.00%

BC-EC-LC-MC 23.60%

BC-LC-MC 22.20%

BC 22.10%

Default 19.00%

Table 7. Efficacy of MC-based combina-
tions (ten-minute budget). Top combinations
from Tables 3 and 5, top single criterion,
and EvoSuite’s default combination are shown
for context.

System Combination Efficacy Improvement From Budget

Chart BC-LC-WMC-EC 57.30% 35.46%

BC-EC 54.60% 23.53%

BC-EC-MC 53.90% 25.06%

BC-LC-EMC-EC-MC 53.50% 19.96%

BC 48.50% 7.78%

Default 48.10% 1.69%

Closure BC-EC-MC 8.00% 42.86%

BC-EC-LC-MC 7.70% 54.00%

BC-LC 7.6% 26.67%

BC-LC-EC 7.40% 29.82%

Default 7.10% 57.78%

DBC 6.10% 19.61%

Lang BC-EC-MC 48.20% 19.01%

BC-EC 47.50% 20.56%

BC-EC-LC-MC* 45.70% 14.25%

BC-LC-MC 43.70% 15.00%

BC 40.20% 18.24%

Default 32.60% 36.97%

Math BC-LC-OC-EC-MC 39.00% 18.54%

BC-LC-OC-EC 38.00% 17.28%

BC-EC-MC 34.30% 12.83%

BC-EC-LC-MC 34.10% 12.91%

BC-EC 34.00% 7.25%

BC 32.80% 17.56%

Default 32.80% 27.13%

Time BC-EC-MC 47.00% 30.92%

BC-EC 44.80% 13.13%

DBC-BC 43.30% 39.22%

BC-EC-LC-MC 41.10% 18.10%

DBC 40.40% 29.90%

Default 33.33% 28.68%

Overall BC-EC-MC 29.40% 20.99%

BC-EC 28.70% 17.14%

BC-EC-LC-MC 27.80% 17.80%

BC-LC-WMC-EC 26.90% 33.83%

BC-LC-MC 25.60% 15.31%

BC 25.60% 15.84%

Default 24.20% 27.39%

The results of these combinations can be seen in Tables 6 and 7. With a
two-minute budget, the addition of Method Coverage can improve results—as
seen in Lang, where BC-EC-MC outperforms BC-EC, and Math, where BC-LC-
OC-EC-MC outperforms BC-LC-OC-EC. However, in other cases—such as with
Closure and Time—the addition of MC decreases efficacy. Results improve across
the board with a ten-minute budget, where the top combinations for Closure,
Lang, Math, and Time all contain MC. Overall, with a ten-minute budget, the
combination of BC-EC-MC outperforms any other blanket policy. It seems that
MC can improve a combination, but does not have the same impact as EC.

Generating Effective Test Suites by Combining Coverage Criteria 77

Given a high enough search budget, we do recommend its inclusion. An example
where the addition of MC could boost efficacy can be seen in Lang fault 345.
This fault resides in two small (1–2 line) methods. Calling either method will
reveal the fault, but BC can easily overlook them.

4.2 Observations and Recommendations

We can address each research question in turn. First:

For all systems and search budgets, at least one combination of criteria is
more effective than a single criterion, with the top combination offering a
5.11–31.15% improvement in the likelihood of fault detection over the best

single criterion and up to 70.17% improvement over the default
combination of all eight criteria.

For each budget B, combination C, and individual criterion I, we formulate
hypothesis H and null hypothesis H0:
– H: With budget B, test suites generated using X will have a higher likelihood

of fault detection than suites generated using I.
– H0: Observations of efficacy for C and I are drawn from the same distribution.

Due to the limited number of faults for Chart and Time, we have focused
on overall results. Our observations are drawn from an unknown distribution;
therefore, we cannot fit our data to a theoretical probability distribution. To eval-
uate H0 without any assumptions on distribution, we use a one-sided (strictly
greater) Mann-Whitney-Wilcoxon rank-sum test, a non-parametric hypothesis
test for determining if one set of observations is drawn from a different distri-
bution than another set of observations. We apply the test for each pairing of
fitness function and search budget with α = 0.05.

To save space, we focus on the top combinations—BC-EC for the two-minute
budget and BC-EC-MC for the ten-minute budget. At the two-minute search
budget, we can reject the null hypothesis for MC, MNEC, EC, OC (all < 0.001),
and WMC (0.030). We cannot reject the null hypothesis for DBC (0.055), LC
(0.057), or BC (0.304). At the ten-minute level, we can reject the null hypothesis
for MC, MNEC, EC, OC, WMC, LC (all < 0.001), DBC (0.017), and BC (0.040).
Therefore, the BC-EC-MC combination significantly outperforms all individual
criteria, given sufficient search budget.

From Tables 3, 5, and 7, we can see that the search budget affects the efficacy
of combinations. At a higher budget, more combinations outperform individual
criteria, and the performance gap between combinations and individual criteria
widens. While combinations can outperform individual criteria at the two-minute
budget, a larger budget clearly benefits combinations.
5 https://github.com/apache/commons-lang/commit/

496525b0d626dd5049528cdef61d71681154b660.

https://github.com/apache/commons-lang/commit/496525b0d626dd5049528cdef61d71681154b660
https://github.com/apache/commons-lang/commit/496525b0d626dd5049528cdef61d71681154b660

78 G. Gay

As more criteria are added, the generation task becomes more complex. There
is a trade-off to be made in terms of the required search budget and the efficacy
of the results. The default eight-way combination of criteria, even with a ten-
minute budget, is ineffective in the majority of cases. While an even higher
budget may help, we have seen that simple, targeted combinations can perform
very well, even with a tight budget.

This leads, naturally, to the next question—which combinations are effective,
in practice? At the two minute budget, a combination of all eight criteria is the
most effective for Chart. BC-LC is best for Closure. For Lang, it is CB-EC-MC. For
Math, it is BC-LC-OC-EC-MC. Finally, for Time, it is BC-EC. The best general
policy, at that budget, is the BC-EC combination. More consensus is seen at the
ten-minute budget level, where the BC-EC-MC combination is the best observed
for Closure, Lang, and Time (and is the best general policy). For Chart, the top
combination is BC-LC-WMC-EC. For Math, is BC-LC-OC-EC-MC.

We do not wish to advocate these as the best possible combinations. Even
for the studied systems, we did not exhaustively try all possibilities. Further,
while performance gains are reasonably significant, better performance is likely
possible. Rather, we wish to use this study to derive a starting point for those
who wish to generate effective tests.

Either Branch or DBC was found to be the most effective single criterion.
Tests that fail to execute faulty lines of code are highly unlikely to reveal a
fault, so a criterion intended to achieve code coverage should form the core
of a combination. However, code coverage is not sufficient on its own. Merely
executing code does not ensure a failure—how that code is executed is important.
From our results, we can observe that the most effective combinations pair a
structure-focused criterion with a small number of supplemental strategies that
can guide the structure-based criterion towards the correct input for the CUT.

Across the board, effective combinations include Exception Coverage. As EC
can be added to a combination with minimal effect on generation complexity,
we recommend it as part of any generation strategy. Although Method Coverage
does not have the clear symbiotic relationship with BC that EC has, it offers a
slight boost to efficacy at a low cost. We recommend its inclusion in combinations
with a longer search budget.

We recommend a combination of Branch or Direct Branch Coverage with
Exception and Method Coverage as a base approach to test generation.

Additional criteria, targeted towards the CUT, may further improve
efficacy.

We observed several situations where the central structure-based criterion is
boosted by secondary criteria. First, Output Coverage often assists in revealing
faults for Math. OC divides the data type of the method output into a series of
abstract values, then rewards suites that cover each of those classes. In particular,
OC offers the search feedback for numeric data types [14], explaining its utility

Generating Effective Test Suites by Combining Coverage Criteria 79

for Math. For example, consider Fault 536. The patch removes a misbehaving
check for NaN . As the fixed version removes code, BC does not reveal the
fault. However, Output Coverage ensures that method calls return a variety of
values—raising the likelihood of fault detection.

Weak Mutation Coverage can also boost BC. Consider Lang fault 287. BC
alone fails to detect the fault, while WMC alone has a 40% chance of detection. A
BC-WMC combination has a 90% chance of detection. The patched code includes
an if-condition that can be mutated in several ways. BC assists in mutation
detection by driving execution to, and into, the if-block. This combination is
effective for other similar faults.

Combining structure-focused criteria seems potentially redundant. However,
BC-LC and BC-DBC combinations can be effective (see Table 7). Consider Clo-
sure fault 948. No single criterion detects the fault. However, at the ten-minute
budget, the BC-LC combination has a 30% detection likelihood. The BC-LC
combination is not only more effective, but also achieves higher levels of cov-
erage. BC suites attain an average of 54.91% LC and 37.46% BC. LC-based
suites attain 58.94% LC and 33.99% BC. Suites generated using the combi-
nation achieve 59.09% LC and 42.45% BC. By attaining higher coverage, the
combination is more likely to execute the faulty code.

While more research is needed to identify situations where criteria work well
together, developers should be able to produce more effective test cases using
automated generation by considering the CUT and choosing criteria accordingly.

5 Related Work

Advocates of adequacy criteria hypothesize that there should exist a correla-
tion between higher attainment of a criterion and fault detection efficacy [7].
Researchers have attempted to address whether such a correlation exists for
almost as long as such criteria have existed [5,8,13]. Inozemtseva et al. provide
a good overview [8].

Shamshiri et al. applied EvoSuite (Branch Coverage only), Randoop, and
Agitar to each fault in Defects4J to assess the fault-detection capabilities of
automated generation [15]. They found that the combination of tools could detect
55.70% of the faults. Their work identifies several reasons why faults were not
detected, including low levels of coverage, heavy use of private methods and
variables, and issues with simulation of the execution environment. Our recent
experiments expand on this work, comparing fitness functions from EvoSuite in
terms of fault detection efficacy [3].

6 https://github.com/rjust/defects4j/blob/master/framework/projects/Math/
patches/53.src.patch.

7 https://github.com/apache/commons-lang/commit/
3e1afecc200d7e3be9537c95b7cf52a7c5031300.

8 https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/
patches/94.src.patch.

https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/53.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/53.src.patch
https://github.com/apache/commons-lang/commit/3e1afecc200d7e3be9537c95b7cf52a7c5031300
https://github.com/apache/commons-lang/commit/3e1afecc200d7e3be9537c95b7cf52a7c5031300
https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/94.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/94.src.patch

80 G. Gay

Rojas et al. previously found that, given a fixed generation budget, multiple
fitness functions could be combined with minimal loss in coverage of any sin-
gle criterion and with a reasonable increase in test suite size [14]. Others have
explored combinations of coverage criteria with non-functional criteria, such as
memory consumption [11] or execution time [16]. Few have studied the effect of
such combinations on fault detection. Jeffrey et al. found that combinations are
effective following suite reduction [9].

6 Threats to Validity

External Validity: We have focused on five systems. We believe such systems
are representative of small to medium-sized open-source Java systems, and that
we have examined a sufficient number of faults to offer generalizable results.

We have used only one test generation framework. While other techniques
may yield different results, no other framework offers the same variety of coverage
criteria. Therefore, a more thorough comparison of tool performance cannot be
made. While exact results may differ, we believe that general trends will remain
the same, as the underlying criteria follow the same philosophy.

To control costs, we have only performed ten trials per combination of fault,
budget, and configuration. Additional trials may yield different results. However,
we believe that 134,300 suites is a sufficient number to draw conclusions.
Conclusion Validity: When using statistical analysis, we ensure base assump-
tions are met. We use non-parametric methods, as distribution characteristics
are not known.

7 Conclusions

In this work, we have examined the effect of combining coverage criteria on
the efficacy of search-based test generation, identified effective combinations,
and explored situations where criteria can cooperate to detect faults. For all
systems, we have found that at least one combination is more effective than
individual criteria, with the top combinations offering up to a 31.15% improve-
ments in efficacy over top individual criteria. The most effective combinations
pair a criterion focused on structure exploration—such as Branch Coverage—
with a small number of targeted supplemental strategies suited to the CUT. Our
findings offer lessons to consider when selecting such combinations.

Although we recommend the combination of Branch, Exception, and Method
Coverage as a starting point, further research is needed to determine how to
select the best combination for a system. In future work, we plan to focus on
automated means of selecting combinations, perhaps using hyperheuristic search.

Acknowledgements. This work is supported by National Science Foundation grant
CCF-1657299.

Generating Effective Test Suites by Combining Coverage Criteria 81

References

1. Anand, S., Burke, E., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., Harman,
M., Harrold, M.J., McMinn, P.: An orchestrated survey on automated software test
case generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

2. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-
box test generation really help software testers? In: Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis (ISSTA 2013), pp. 291–301,
New York, NY, USA. ACM (2013)

3. Gay, G.: The fitness function for the job: search-based generation of test suites
that detect real faults. In: Proceedings of the 2017 International Conference on
Software Testing (ICST 2017). IEEE (2017)

4. Gay, G., Rajan, A., Staats, M., Whalen, M., Heimdahl, M.P.E.: The effect of pro-
gram and model structure on the effectiveness of MC/DC test adequacy coverage.
ACM Trans. Softw. Eng. Methodol. 25(3), 25:1–25:34 (2016)

5. Gay, G., Staats, M., Whalen, M., Heimdahl, M.: The risks of coverage-directed test
case generation. IEEE Trans. Softw. Eng. 41(8), 803–819 (2015)

6. Gopinath, R., Jensen, C., Groce, A.: Mutations: how close are they to real faults?
In: 25th International Symposium on Software Reliability Engineering, pp. 189–
200, November 2014

7. Groce, A., Alipour, M.A., Gopinath, R.: Coverage and its discontents. In: Proceed-
ings of the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software (Onward! 2014), New York, NY, USA,
pp. 255–268. ACM (2014)

8. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite
effectiveness. In: Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014), New York, NY, USA, pp. 435–445. ACM (2014)

9. Jeffrey, D., Gupta, N.: Improving fault detection capability by selectively retaining
test cases during test suite reduction. IEEE Trans. Softw. Eng. 33(2), 108–123
(2007)

10. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2014), New York, NY,
USA, pp. 437–440. ACM (2014)

11. Lakhotia, K., Harman, M., McMinn, P.: A multi-objective approach to search-
based test data generation. In: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation (GECCO 2007), New York, NY, USA,
pp. 1098–1105. ACM (2007)

12. McMinn, P.: Search-based software test data generation: a survey. Softw. Testing
Verification Reliabil. 14, 105–156 (2004)

13. Mockus, A., Nagappan, N., Dinh-Trong, T.: Test coverage and post-verification
defects: a multiple case study. In: 3rd International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM 2009), pp. 291–301, October 2009

14. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple
coverage criteria in search-based unit test generation. In: Barros, M., Labiche, Y.
(eds.) SSBSE 2015. LNCS, vol. 9275, pp. 93–108. Springer, Cham (2015). doi:10.
1007/978-3-319-22183-0 7

http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0_7

82 G. Gay

15. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do auto-
matically generated unit tests find real faults? An empirical study of effective-
ness and challenges. In: Proceedings of the 30th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2015), New York, NY, USA. ACM
(2015)

16. Yoo, S., Harman, M.: Using hybrid algorithm for pareto efficient multi-objective
test suite minimisation. J. Syst. Softw. 83(4), 689–701 (2010)

LIPS vs MOSA: A Replicated Empirical Study
on Automated Test Case Generation

Annibale Panichella1(B), Fitsum Meshesha Kifetew2, and Paolo Tonella2

1 University of Luxembourg, Luxembourg, Luxembourg
annibale.panichella@uni.lu

2 Fondazione Bruno Kessler, Trento, Italy
{kifetew,tonella}@fbk.eu

Abstract. Replication is a fundamental pillar in the construction of sci-
entific knowledge. Test data generation for procedural programs can be
tackled using a single-target or a many-objective approach. The propo-
nents of LIPS, a novel single-target test generator, conducted a prelim-
inary empirical study to compare their approach with MOSA, an alter-
native many-objective test generator. However, their empirical investiga-
tion suffers from several external and internal validity threats, does not
consider complex programs with many branches and does not include any
qualitative analysis to interpret the results. In this paper, we report the
results of a replication of the original study designed to address its major
limitations and threats to validity. The new findings draw a completely
different picture on the pros and cons of single-target vs many-objective
approaches to test case generation.

1 Introduction

Replications are one of the key scientific practices that allow researchers to con-
firm, refute or adjust the validity of previous findings. In recent years, the soft-
ware engineering community has seen an increasing awareness about the impor-
tance of replications and several authors view replications as a fundamental step
toward the construction of solid empirical evidence in the field [7,12,13].

Search based test case generation aims at automatically generating a set of
input vectors that reach the desired level of adequacy (e.g., branch coverage)
once they are turned into test cases and executed. While the first proposals of
test generators addressed one coverage target at a time [8,14], recent approaches
consider all coverage targets at the same time and either compute an aggregate
fitness function for all yet uncovered targets [5] or apply a truly many-objective
search to the test generation problem [10]. A novel single-target approach has
been proposed in a recent paper by Scalabrino et al. [11]. The paper includes
a comparison between their test generator LIPS (Linearly Independent Path
based Search) and MOSA (Many-Objective Sorting Algorithm) [10]. We find
the empirical investigation very interesting, since it tries to shed some light on
the pros and cons of adopting a single-target vs many-objective test genera-
tion approach. However, the core contribution of the paper is not empirical. In
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 83–98, 2017.
DOI: 10.1007/978-3-319-66299-2 6

84 A. Panichella et al.

fact, the paper is mostly focused on the novel ideas implemented in LIPS and
the empirical study is a very preliminary study, conducted on a few, small C
functions. Since the research question (single-target vs many-objective test gen-
eration) behind the empirical part of the LIPS paper is a key research question
in search based testing, we decided to replicate and extend the empirical study
reported in the LIPS paper [11].

The replicated empirical study described in this paper addresses the main
threats to validity and limitations of the original study – namely, the threats to
the external validity of the results, due to the size and complexity of the sample of
C functions considered in the study, the threats to the internal validity, due to the
way efficiency was measured and the way the parameters of the algorithms were
set, and the lack of a detailed qualitative analysis of the reasons for the reported
quantitative differences. The new empirical study was designed to evaluate effec-
tiveness, efficiency and convergence of LIPS vs MOSA. Quite surprisingly, the find-
ings of the new study differ remarkably from the original results. The new results
show an undisputed superiority of the many-objective approach in all considered
dimensions. The qualitative analysis of the results shows that MOSA makes a bet-
ter usage of the available search budget by avoiding its allocation to a single tar-
get. Although the dynamic allocation of the search budget to a target presumably
improves over its static allocation to the targets, according to our new study the
many-objective approaches, which do not perform any kind of budget allocation,
converge more quickly and on average achieve higher coverage.

2 Background

This section describes the two approaches being compared, LIPS and MOSA.

Linearly Independent Path based Search (LIPS). LIPS is a single-target
approach proposed by Scalabrino et al. [11] for procedural languages. It uses
single-objective genetic algorithms to optimise (cover) one branch (target) at a
time. The fitness function for a branch is determined by the traditional approach
level and branch distance [8]. In order to cover linearly independent paths to the
targets, the branch selected as target is the last uncovered branch appearing in
the path of the last test case that is added to the final test suite. Such a target
is updated over the generations depending on whether (i) it is covered or (ii)
the search budget allocated for the single target is consumed. In turn, the search
budget allocated to each target is determined dynamically, as the total remaining
search budget divided by the targets that are yet uncovered and that were never
selected as single coverage targets in a previous generation. In this way, infeasible
or difficult targets do not consume the overall search budget, because they are
allocated only a fraction of the entire search budget. Moreover, even if they are
not covered in the generation cycle allocated to them, they remain still coverable
in successive generations thanks to collateral coverage (i.e., coverage achieved
by a test case generated for a different target) or in case some residual budget
remains at the end, due to easy to cover targets considered late in the process. For
completeness, Algorithm 1 reports the pseudo-code for LIPS. It should be noted

LIPS vs MOSA: A Replicated Empirical Study 85

that no pseudo-code is available in the paper by Scalabrino et al. [11]. Moreover,
the source code of the tool is also not available. Hence, we have elaborated the
pseudo-code by trying to follow the specifications of LIPS available in the paper
as strictly as possible. However, sometimes the description in the paper is not
detailed enough for unambiguous interpretation and we had to make decisions
on what to implement. While this might have produced differences between our
and the original implementation of LIPS, we think that the key ideas behind
LIPS, i.e., the ordering of the targets by execution path and the dynamic re-
allocation of the search budget, are captured faithfully in our implementation.
Moreover, by providing the pseudo-code for LIPS in our paper we contribute
to the disambiguation of the minor, yet important, details behind the ideas
described in the paper.

LIPS starts with an initial, randomly generated test case tc0 (line 2 in Algo-
rithm 1), which represents the input vector for the program under test [11]. Such
a test is executed and the uncovered branches for all decision nodes in the exe-
cution path of tc0 are added to a worklist (line 4 in Algorithm 1) in the order in
which they are encountered. The worklist represents the queue of branches that
can be potentially considered as search targets. Starting from tc0, the genetic
algorithm is initialised as follows [11]: (i) the initial search target is the last
branch added to the worklist (line 5), and (ii) an initial population that includes
tc0 is randomly generated (line 9). In the evolutionary iterations, new tests are
generated using crossover and mutation (GENERATE-OFFSPRING at line 12).
Parents are selected using the tournament selection and according to the single
fitness function of the current target [11]. Whenever a newly generated test tc
covers the current target, (i) it is added to the test suite (at line 15), (ii) all the
uncovered branches of decision nodes on the path covered by tc are added to the
worklist in the order in which they are encountered (UPDATE-WORKLIST at

86 A. Panichella et al.

line 16). If some of the uncovered targets in the path of tc were selected before
as coverage targets, they are added at the front of the worklist, so that they
are selected as current coverage targets only when all the other targets, which
were never tried before, are covered, using the residual (if any) search budget.
The last branch added to the worklist is selected as new target (line 17). The
branches in the worklist that are covered (by chance) by the newly generated
tests are removed from the worklist and marked as “covered” (COLLATERAL-
COVERAGE at line 13). Since LIPS targets one branch at a time, it has to
allocate a portion of the overall search budget for each uncovered and not previ-
ously selected branch. To account for collateral coverage, which could free some
search budget, at each generation the budget is re-computed as SB/n, where
SB is the budget that remained available after last target selection and n is
the number of remaining uncovered branches that were never selected before
(LOCAL-BUDGET at line 22). If the current target is not covered within the
allocated budget, a new target is selected from the worklist (lines 19–20). The
main loop at lines 10–23 is repeated until all the branches are covered or the
total search budget is consumed [11].

LIPS has been defined for procedural programs written in C. Therefore, it
does not address the problem of generating method sequences [14], which means
it is not directly applicable to object-oriented programs. Moreover, the length of
the chromosome used by LIPS is fixed, which means that data structures with
variable size (e.g., arrays) are assigned a predefined, fixed size. This may prevent
coverage of targets requiring a specific, special value of size (e.g., a condition that
checks if an array has size zero). Finally, although not stated explicitly in the
paper [11], we assume that LIPS uses elitism in GENERATE-OFFSPRING (line
11), given the fact the elitism has been shown to positively affect the convergence
speed of GAs in various optimisation problems and it is also used (although in
a different way) in MOSA.

Many-Objective Sorting Algorithm (MOSA). MOSA is a many-objective
genetic algorithm proposed by Panichella et al. [10] for Java classes and imple-
mented in EvoSuite1. A test case in MOSA is a method sequence (including
input data) of variable length, which is evaluated against all uncovered branches.
MOSA targets all uncovered branches at once by considering them as different
(many) objectives to be optimised in parallel. It shares the same main loop with
NSGA-II [4], which is one of the most popular multi-objective genetic algorithms.
However, it differs on three key aspects: (i) it selects test cases according to a
preference criterion suitably defined for the test case generation problem; (ii) it
considers as objectives only the yet uncovered coverage branches (i.e., the set
of optimisation objectives changes across generations); (iii) it uses an archive to
store all test cases satisfying one or more previously uncovered branches. The
pseudo-code of MOSA is shown in Algorithm 2 [10].

1 https://github.com/EvoSuite/evosuite/tree/master/client/src/main/java/org/
evosuite/ga/metaheuristics/mosa.

https://github.com/EvoSuite/evosuite/tree/master/client/src/main/java/org/evosuite/ga/metaheuristics/mosa
https://github.com/EvoSuite/evosuite/tree/master/client/src/main/java/org/evosuite/ga/metaheuristics/mosa

LIPS vs MOSA: A Replicated Empirical Study 87

MOSA starts with an initial set of randomly generated test cases (line 3
of Algorithm 2); then, new test cases (offspring) are created using crossover
and mutation (GENERATE-OFFSPRING, at line 6 of Algorithm 2). Then,
parents and offspring are selected to form the next generation according to their
ranks, as determined by the PREFERENCE-SORTING routine [10] (line 9).
Tests that satisfy the preference criterion are assigned to the first front F0 while
all the remaining tests are ranked using the non-dominated sorting algorithm of
NSGA-II [4]. The preference criterion prioritises test cases that are closer to one
or more uncovered branches (according to the corresponding branch distance
and approach level scores). When there are multiple test cases with the same
objective scores, the preference criterion uses the test case length as secondary
selection criterion [10], i.e., shorter tests are preferred. The population for the
next generation is formed using the loop at lines 12–15: test cases are selected
starting from those in front F0, then those in front F1, and so on. At the end
of the loop (lines 16–17), the remaining test cases are selected from the current
front Fd according to the descending order of crowding distance. Finally, MOSA
uses an archive, to keep track of the shorter test cases that cover the branches
of the program under test. Whenever new test cases are generated (either at the
beginning of the search or when creating offspring), MOSA stores those tests
that cover previously uncovered targets in the archive as candidates to form the
final test suite (function UPDATE-ARCHIVE at lines 4 and 7).

MOSA has been defined for Java classes. Therefore, it addresses both test
data and method sequence generation. Since it is implemented in EvoSuite, it can
handle complex data structures as input, such as objects and arrays of objects.
The encoding schema (the standard one in EvoSuite [6]) allows to create test
cases (i.e., method sequences) as well as test inputs (e.g., arrays) with variable
length. Finally, MOSA uses elitism: test cases closer to satisfying uncovered
branches (or with minimum length at the same level of “closeness”) are guaran-
teed to survive in the next generation [10].

88 A. Panichella et al.

3 Summary of the Replicated Empirical Study

This section summarises the empirical study published by Scalabrino et al. [11]
comparing LIPS and their reimplementation of MOSA when generating test
inputs for C functions. The empirical evaluation was performed on 35 C functions
with number of branches ranging between 2 and 64 (15 branches per function on
average). These C functions are taken from different open-source C libraries [11]:
(i) 21 functions from gimp, an open source GNU image manipulation software;
(ii) five functions from GSL, the GNU Scientific Library; (iii) three functions from
SGLIB, a generic library for C; (iv) three functions from spice, an analogue
circuit simulator; (v) one function from bibclean; and (vi) two functions from
previous work on test data generation for the C language.

The comparison is performed on three different dimensions: (i) branch cov-
erage (effectiveness), (ii) execution time (efficiency), (iii) number of tests in the
final test suite (oracle cost). According to the results of the study, there is no
difference in terms of branch coverage between LIPS and MOSA for the majority
of the C functions. In ten out of 35 functions LIPS has a better branch coverage
than MOSA and for these cases the average difference is 5.72%. In two out of 35
cases MOSA outperforms LIPS and the average difference in branch coverage for
these cases is 5.61%. Notice that these average values are obtained from Table 2
of the LIPS paper [11]. LIPS is reported to be more efficient than MOSA for
all C functions, with an average improvement around 66% in terms or running
time. Scalabrino et al. [11] measure efficiency as the execution time required to
perform 200,000 fitness function evaluations for the 27 functions with less than
100% coverage. Finally, they report that MOSA produces significantly shorter
test suites compared to LIPS in 32 out of 35 functions. However, the differences
are easily ironed out by greedy algorithms for test suite minimisation [11]. As
reported in [11], the execution time for the minimisation is negligible given the
small size of the functions under test and of the generated test suites.

3.1 Threats to Validity

We have identified the following threats to the validity of the original study and
we believe that a replication of the study is very important to address them.

Threats to external validity affect the generalisation of the results. Among
them, the number and size/complexity of the considered C functions affect the
external validity of the reported findings to a major extent. Size/complexity of
the functions: the selected functions are small and contain few branches. Only
two functions have more than 50 branches (i.e., 56 and 64 branches) and 16 out
of 35 functions (46%) have less than ten branches each. For comparison, MOSA
was originally evaluated on Java classes with at least 50 branches each [10].
Therefore, it is not clear to what extent results are generalisable to functions
with more than 50 branches. Number of functions: the empirical study considers
only 35 small C functions. A larger sample is needed to extend the validity of
the findings of the study.

LIPS vs MOSA: A Replicated Empirical Study 89

Threats to internal validity regard internal factors that could have influ-
enced the experimental results. Among them, the measurement of efficiency and
the setting of some critical parameters of the algorithms might have affected the
internal validity of the study. Measurement of efficiency : efficiency is measured
as the execution time required by each algorithm to run until 200,000 fitness
function evaluations are made and not as the execution time needed to reach
maximum coverage. The chosen setting favours LIPS by design, since each gen-
eration of MOSA is more expensive to compute, due to the cost of the ranking
procedure. Therefore, it is not clear whether the execution time needed by the
two algorithms to reach maximum coverage differs or not.

Moreover, looking at the results reported in the original study in Table 2, we
observed some inconsistencies in the execution time between LIPS and MOSA for
simple C functions, where 100% of coverage is reached. For example, for function
gimp hsl value int LIPS required less than 10 ms to reach 100% coverage.
Since this function is very simple, it can be presumably covered fully in the first
generation (i.e., with no need for evolution). However, for MOSA the reported
running time to reach full coverage on the same function is 10.23s. If the initial
populations for MOSA and LIPS are the same (i.e., randomly generated), both
algorithms should achieve full coverage within approximately the same time. We
observed the same inconsistency in seven other very simple C functions used in
the study [11].

3.2 Reasons to Replicate

In addition to the possibility of addressing some of the threats to the validity of
the original study, there are further reasons for replicating the empirical study
by Scalabrino et al. [11]. First, the study provides only a quantitative analysis
of the collected results, without attempting to interpret them qualitatively. An
in-depth qualitative analysis would allow us to better understand under which
conditions one algorithm outperforms the other. Moreover, a further study is
needed to better understand how LIPS and MOSA perform on programs with
a large number of branches (>50). In fact, a recent study [9] involving classes
with both low and high number of branches confirmed the higher effectiveness
and efficiency of MOSA (and its improved variant DynaMOSA) for classes with
high number of branches (high cyclomatic complexity) [9]. On the other hand,
Scalabrino et al. [11] compared LIPS and MOSA on C functions with less than
20 branches on average (only one function has slightly more than 50 branches).
Hence, there is a strong need for a larger study, with both small (<50 branches)
and large (≥50 branches) programs.

3.3 How to Replicate

In principle, the simplest option to replicate the study would be to re-run LIPS
and MOSA on a larger sample of C functions using OCELOT, i.e., the tool that
implements LIPS [11]. However, this option is not viable since OCELOT and
the code for LIPS are not publicly available at the time of this submission.

90 A. Panichella et al.

The viable alternative is to re-implement LIPS in EvoSuite. Differently from
OCELOT, EvoSuite is publicly available on GitHub2 and it already contains the
original code of MOSA [10]. An important drawback of this choice is that Evo-
Suite generates test suites for Java classes and not for C functions. Therefore, this
option requires the conversion of the C functions used in the original study [11]
into Java static methods. Fortunately, this conversion is straightforward since
the selected C functions do not have complex input parameters with advanced C
syntax (e.g., pointers to complex structures). Since EvoSuite supports the gener-
ation of test cases and input data (e.g., arrays) of variable length, as a side effect
of using EvoSuite we also overcome one of the limitations of LIPS/OCELOT:
the fixed chromosome size, discussed in Sect. 2.

4 Design of the New Study

We first describe our re-implementation of LIPS within EvoSuite. Then we
describe the selected subjects, the research questions and the metrics we adopt
to answer them.

Implementation of LIPS in EvoSuite: We have re-implemented LIPS based
on the pseudo-code in Algorithm 1, within EvoSuite version 1.0.5, available
from GitHub on March 12th, 2017. The main differences between the original
version of LIPS [11] and our re-implementation regard the encoding schema and
the genetic operators, for which we use the default settings in EvoSuite [5].
In EvoSuite [5], a test case is a sequence of statements, which is composed of
method calls (i.e., call to static methods) and data inputs (e.g., arrays, strings).
New test cases are generated by applying single-point crossover and uniform
mutation. The latter can remove, change, or add statements from/in/to the
test cases. While we allow the length of the test cases to vary during the GA
search, so that the length of input arrays, strings, etc., can change, we only allow
one method execution for the class under test, i.e., the execution of the static
method under test, because we are interested in evaluating LIPS vs. MOSA for
procedural, stateless methods only. Selection is tournament selection, the same
operator originally proposed for LIPS [11]. The encoding schema and genetic
operators are the same for MOSA [9,10], i.e., they work at test case level.

In the original LIPS implementation [11], the length of the chromosomes is
fixed a priori, which might prevent coverage of specific branches. In addition, the
original genetic operators [11] are blend-crossover (BLX) and polynomial muta-
tion, which can be applied only to chromosomes with fixed length and containing
only numerical values [3]. Since our re-implementation of LIPS in EvoSuite does
not have such constraints, we deem it as superior to the original implementa-
tion and eventually able to cover more branches. We found this conjecture to
be empirically true by comparing the results of our re-implementation with the
results reported in the original study, considering the common subset of programs
under test (see Sect. 5). It should be noticed that the core novelties of LIPS,

2 https://github.com/EvoSuite/evosuite.

https://github.com/EvoSuite/evosuite

LIPS vs MOSA: A Replicated Empirical Study 91

namely the order by which branches are selected as targets and the dynamic
allocation of the search budget, are kept identical to the original formulation
in our re-implementation. Our re-implementation of LIPS is publicly available
for download on GitHub: https://github.com/apanichella/evosuite/tree/LIPS
replication.

Benchmark: Since LIPS was originally defined for procedural functions and
not for object oriented programs, in our replication study we target only static
methods with purely procedural behaviour. Our benchmark contains 70 static
methods characterised as follows: (i) 33 static methods are the Java equivalent of
the C functions used in the original study [11]; (ii) 37 additional static methods
have been randomly selected from Java open-source libraries. Notice that we
excluded two of the 35 functions used in [11], namely Csqrt and triangle,
for which we could not find the source code. Our benchmark contains twice as
many subjects as the original study [11]. Moreover, 14 subjects have more than 50
branches each, thus allowing to compare LIPS and MOSA on very large/complex
functions. In general, the number of branches3 in each static method ranges
between 3 and 425. The characteristics of the Java static methods (i.e., name
and number of branches) are detailed in Table 1.

Porting the Old Benchmark to Java. All C functions used in the original study
take as input primitive data types, pointers to primitive data types and arrays.
Therefore, porting such functions to Java was straightforward: for each function
f, we create a corresponding Java class containing only one single static method
with the same content and the same parameters of f.

New Subjects. To increase the size of the benchmark, we randomly selected 37
Java static methods from seven open-source libraries. In particular, we selected:
(i) 17 methods from the apache commons math (math in Table 1); (ii) seven from
apache commons lang (lang); (iii) two from apache commons io (io); (iv) three
from joptimizer4 (IOpt.); (v) two from nd4j5 (nd4j); (vi) one from google
gson (Gson); (vii) three from apache commons imaging (imaging) (viii) two
from apache commons bcel (Bcel).

4.1 Research Questions and Performance Metrics

We investigate the following research questions:

– RQ1: How do LIPS and MOSA perform in terms of effectiveness?
– RQ2: How do LIPS and MOSA perform in terms of efficiency?
– RQ3: Does the program size (number of branches) affect the performance of

LIPS and MOSA?

3 The number of branches reported here is sometimes slightly different from that of
the original study because EvoSuite performs the instrumentation and counts the
branches at the byte code, not source code, level.

4 http://www.joptimizer.com.
5 http://nd4j.org.

https://github.com/apanichella/evosuite/tree/LIPS_replication
https://github.com/apanichella/evosuite/tree/LIPS_replication
http://www.joptimizer.com
http://nd4j.org

92 A. Panichella et al.

To answer RQ1, we use the same measure of effectiveness used in the original
study, i.e., the percentage of covered branches. For the efficiency (RQ2), we do
not use the measure used by Scalabrino et al. [11]. This is because, as explained in
Sect. 3, the execution time required by each approach to perform 200,000 fitness
function evaluations penalises by design MOSA and does not consider the time
actually needed to reach maximum coverage, independently of the number of
fitness evaluations consumed to reach it. Instead, we use an overall maximum
allowed execution time as stop condition, i.e., the two approaches are executed
for the same amount of time (if full coverage is not reached; otherwise execution
stops earlier). Then, we measure the efficiency as the execution time required
by each approach to reach maximum branch coverage. Moreover, we consider
efficiency as a secondary performance metric: we compare LIPS and MOSA
in terms of efficiency only for those subjects with no statistically significant
difference in effectiveness. Notice that we do not compare the length of the test
cases since EvoSuite applies test minimisation by default.

For each subject, each search approach (LIPS or MOSA) is run 50 times to
address the random nature of the genetic algorithms. In each run, we collect the
percentage of covered branches (RQ1) as well as the elapsed time between the
start of the search and the latest increment in branch coverage (RQ2). We report
the average coverage and execution time achieved by LIPS and MOSA over these
independent runs. To provide statistical support to the analysis of the results,
we apply the non-parametric Wilcoxon Rank Sum test [2] with a significance
level of α = 0.05. We also measure the effect size (i.e., the magnitude) of the
differences (if any) in effectiveness or efficiency using the Vargha-Delaney (Â12)
statistic [15]. Finally, to answer RQ3, we use the one-way permutation test [1] to
verify whether there is any significant interaction between effectiveness/efficiency
of the two approaches on one side and complexity of the static method under test,
measured as the number of branches to cover, on the other side. In particular,
we use the number of branches in the methods as independent variable and the
Â12 statistics (obtained from the comparison) as dependent variable. We set the
test with a significance level of α = 0.05 and a number of iterations equal to 108

(a number of iterations >1, 000 is recommended for this test [1]). The one-way
permutation test is a non-parametric test, thus, it does not make any assumption
on data distributions.

Parameter Setting. We adopted the default parameter values used by Evo-
Suite [5] for both LIPS and MOSA, with the only exception of those parameters
explicitly mentioned in the original study [11]. Therefore, we set the population
size to 100 individuals and the crossover probability to 0.90. For the search bud-
get, we fix the same maximum execution time of one minute for both LIPS and
MOSA. This value (60 s) corresponds to the largest running time observed in
the original study. Therefore, LIPS and MOSA terminate either when 100% of
branch coverage is reached or when the maximum search budget of one minute
is consumed.

LIPS vs MOSA: A Replicated Empirical Study 93

5 Experimental Results

Table 1 reports the mean branch coverage (RQ1) and mean execution time
(RQ2) achieved by LIPS and MOSA for each Java static method over 50 inde-
pendent runs. The table also reports the p-values of the Wilcoxon test as well
as the corresponding Â12 statistics (effect size). Notice that values of Â12 > 0.5
indicate that LIPS is more effective (higher branch coverage) or more efficient
(lower execution time) than MOSA; values of Â12 < 0.5 indicate that MOSA is
more effective or more efficient than LIPS.

Results for RQ1. From columns 4–7 of Table 1, we can observe that in 45 out
of 70 subjects (64%) there is no statistically significant difference in terms of
branch coverage between LIPS and MOSA. Among these 45 subjects, 26 (60%)
are trivial subjects that are fully covered in few seconds and 20 come from the
original study [11]. In none of the remaining subjects LIPS could outperform
MOSA in terms of branch coverage. Instead, MOSA achieves statistically signif-
icantly higher branch coverage than LIPS in 25 out of 70 subjects (36%). In these
cases, the average (mean) difference in branch coverage is 7.67%, with a mini-
mum of 0.92% and a maximum of 22.94%. The subject with the largest difference
is NumberUtils.createNumber from apache commons math, which contains 115
branches. For this method, LIPS achieved 65.43% branch coverage compared to
88.36% achieved by MOSA (+26 covered branches) within one minute.

To better understand whether the observed differences vary when increas-
ing the search budget, Fig. 1-(a) shows the average branch coverage achieved
by LIPS and MOSA over a larger search budget of five minutes for method
BasicCParser.preprocess from apache common imaging. In the first gener-
ation (i.e., at time zero), the two approaches have the same average coverage
since they both start with a randomly generated population. However, after the
first 20s the scenario dramatically changes: MOSA yields a higher coverage for
the rest of the search, leading to a difference of +25% at the end of the search.
Figure 1-(b) depicts the fitness function values for the false branch b30 of the

0 100 200 300
0

20

40

60

80

Search budget in seconds

%
B

ra
n
ch

C
o
v
e
ra

g
e MOSA LIPS

(a) Percentage of covered branches over
search time

0 100 200 300
0

0.5

1

1.5

2

Search budget in seconds

F
it

n
e
ss

F
u
n
c
ti

o
n MOSA LIPS

(b) Fitness values for one of the branches
covered by MOSA but not by LIPS

Fig. 1. Comparison between LIPS and MOSA with a larger search budget of five
minutes for method BasicCParser.preprocess

94 A. Panichella et al.

statement if (c==‘\r’ || c==‘\n’) at line 196 of class BasicCParser and
placed inside multiple if statements within a for loop. MOSA takes around
205s to cover b30, although this is one of the targets since the beginning of the
search. Instead, LIPS selects this branch as its current target after 236s and
only for 3s in total, which is not enough to cover it. Moreover, the fitness func-
tion curve is not monotonic in LIPS: it decreases between 194s and 200s but
it increases in the next generations since b30 is not yet considered as the cur-
rent target. A similar trend can be observed between 218s and 229s. Instead, in
MOSA the fitness function curve is monotonic because the best test case for b30

is preserved (elitism) until a better test is found in the subsequent generations.
Instead, in LIPS (as well as in any other single objective genetic algorithm),
elitism holds only for the single fitness function being optimised (i.e., only for
the current target).

Results for RQ2. For the 45 methods with no statistically significant difference
in effectiveness, we compare the execution time required by LIPS and MOSA
to achieve the highest coverage. The results of this comparison are reported in
columns 8–11 of Table 1. Out of 45 methods, LIPS is significantly more effi-
cient than MOSA in only one method, i.e., MathArrays.sortInPlace. For this
method, LIPS required 1.36s on average to reach a coverage of 92% while MOSA
spent 2.96s on average to reach the same branch coverage. On the other hand,
MOSA is significantly more efficient than LIPS in 33 methods (73%). The mini-
mum (yet significant) difference of 0.28s is observed for gimp cmyk to rgb while
the maximum of 13.55s is observed for gimp hsv to rgb. For the remaining 11
methods, there is no significant difference between LIPS and MOSA.

Results for RQ3. For what concerns coverage, the one-way permutation test
reveals that the Â12 statistics is significantly influenced by the number of
branches of the function/method under test (p-value < 0.01). In other words,
MOSA achieves significantly higher branch coverage over LIPS especially for
methods with high number of branches. For the execution time, the one-way
permutation test reveals a marginally significant interaction between Â12 statis-
tics and the number of branches (p-value = 0.06). Thus, we can conclude that
the size/complexity of the program under test affects the performance (coverage
and execution times) of LIPS and MOSA: the former approach is less scalable
than the latter when the number of branches to cover increases.

5.1 Comparison Between Old and New Results

We draw completely different conclusions from our results with respect to the
original study. The main differences and observations are summarised below.

Superiority of Our Re-implementation of LIPS. For the 33 subjects shared
with the original study, we observe that our re-implementation of LIPS could
achieve 100% of coverage for 15 methods within 0.80s on average. Instead, in the
original study LIPS reached 100% of coverage in only 8 cases [11]. This highlights
the superiority of our re-implementation in EvoSuite compared to the original

LIPS vs MOSA: A Replicated Empirical Study 95

Table 1. Average (mean) results for RQ1 (effectiveness) and RQ2 (efficiency)

Project Method/Function Name Tot. % Branch Coverage Execution Time (ms)

Branches LIPS MOSA p-value Â12 LIPS MOSA p-value Â12
bibclean check ISBN 47 89.36 89.66 0.16 0.48 511 313 <0.01 0.10
gimp gimp cmyk to rgb int 3 100.00 100.00 1.00 0.50 248 217 <0.01 0.15
gimp gimp cmyk to rgb 7 98.86 100.00 0.16 0.48 348 320 <0.01 0.29
gimp gimp gradient calc bilinear factor 9 94.00 100.00 <0.01 0.00
gimp gimp gradient calc conical asym factor 9 100.00 100.00 1.00 0.50 500 295 <0.01 0.00
gimp gimp gradient calc conical sym factor 11 99.42 100.00 0.15 0.48 525 311 <0.01 0.00
gimp gimp gradient calc linear factor 13 100.00 100.00 1.00 0.50 884 547 <0.01 0.24
gimp gimp gradient calc radial factor 9 88.89 88.89 1.00 0.50 477 289 <0.01 0.09
gimp gimp gradient calc spiral factor 11 100.00 100.00 1.00 0.50 552 289 <0.01 0.02
gimp gimp gradient calc square factor 9 88.89 88.89 1.00 0.50 551 287 <0.01 0.04
gimp gimp hsl to rgb int 5 100.00 100.00 1.00 0.50 478 236 <0.01 0.00
gimp gimp hsl to rgb 9 98.89 100.00 0.02 0.45
gimp gimp hsl value int 11 100.00 100.00 1.00 0.50 501 260 <0.01 0.00
gimp gimp hsl value 11 100.00 100.00 1.00 0.50 415 269 <0.01 0.05
gimp gimp hsv to rgb 23 99.83 100.00 0.16 0.48 19773 6223 <0.01 0.03
gimp gimp rgb to cmyk 13 99.08 100.00 0.04 0.46
gimp gimp rgb to hsl int 15 100.00 100.00 1.00 0.50 2167 1231 <0.01 0.23
gimp gimp rgb to hsl 17 93.77 94.12 0.16 0.48 791 339 <0.01 0.01
gimp gimp rgb to hsv int 17 94.12 94.12 1.00 0.50 958 455 <0.01 0.10
gimp gimp rgb to hsv4 17 86.00 88.24 <0.01 0.31
gimp gimp rgb to hwb 11 100.00 100.00 1.00 0.50 623 312 <0.01 0.00
gimp gimp rgb to l int 3 100.00 100.00 1.00 0.50 341 166 <0.01 0.00
gsl gsl poly complex solve cubic 23 86.96 86.96 1.00 0.50 623 350 <0.01 0.03
gsl gsl poly complex solve quadratic 15 100.00 100.00 1.00 0.50 528 393 <0.01 0.06
gsl gsl poly eval derivs 13 100.00 100.00 1.00 0.50 1995 1472 0.07 0.40
gsl gsl poly solve cubic 21 85.71 85.71 1.00 0.50 723 353 <0.01 0.01
gsl gsl poly solve quadratic 15 100.00 100.00 1.00 0.50 406 357 0.01 0.34
sglib sglib int array binary search 11 100.00 100.00 1.00 0.50 424 367 <0.01 0.31
sglib sglib int array heap sort 18 100.00 100.00 1.00 0.50 1963 1222 <0.01 0.27
sglib sglib int array quick sort 37 97.30 97.30 1.00 0.50 3778 2467 <0.01 0.25
spice clip line 47 78.47 80.21 <0.01 0.32
spice clip to circle 57 93.54 96.18 <0.01 0.12
spice cliparc 95 97.41 98.95 <0.01 0.10
math ArithmeticUtils.gcd 29 96.55 96.55 1.00 0.50 1410 439 <0.01 0.05
math ArithmeticUtils.mulAndCheck 17 100.00 100.00 1.00 0.50 538 383 <0.01 0.01
math CombinatoricsUtils.binomialCoefficient 21 100.00 100.00 1.00 0.50 3202 1845 <0.01 0.21
math CombinatoricsUtils.binomialCoefficientLong 19 100.00 100.00 1.00 0.50 2588 1818 <0.01 0.31
math CombinatoricsUtils.strirlingS2 29 86.14 96.55 <0.01 0.36
math MathArrays.checkOrder 25 96.00 96.00 1.00 0.50 380 337 <0.01 0.30
math MathArrays.isMonotonic 21 95.14 95.24 0.33 0.49 400 384 0.22 0.43
math MathArrays.safeNorm 21 100.00 100.00 1.00 0.50 9346 3931 <0.01 0.29
math MathArrays.shuffle 15 93.33 93.33 1.00 0.50 567 517 0.60 0.47
math MathArrays.sortInPlace 26 92.31 92.31 1.00 0.50 1357 2964 <0.01 0.79
math MedianOf3PivotingStrategy 11 81.64 96.18 <0.01 0.34
math OpenIntToDoubleHashMap.findInsertionIndex 23 94.17 99.30 <0.01 0.28
math OpenIntToFieldHashMap.findInsertionIndex 23 94.00 99.30 <0.01 0.22
math FastMath.scalb 41 93.85 97.51 <0.01 0.26
math FastMath.exp 25 97.28 98.64 <0.01 0.34
math FastMath.atan 19 100.00 100.00 1.00 0.50 638 800 0.07 0.61
math FastMath.atan2 69 74.58 81.16 <0.01 0.03
lang NumberUtils.isCreatable 121 71.97 89.69 <0.01 0.00
lang NumberUtils.createNumber 115 65.43 88.37 <0.01 0.00
lang Fraction.greatestCommonDivisor 33 96.97 96.97 1.00 0.50 697 370 <0.01 0.25
lang RandomStringUtils.random 53 81.40 88.30 <0.01 0.12
lang DurationFormatUtils.formatPeriod 47 87.15 90.43 <0.01 0.08
lang DateUtils.modify 71 1.41 1.41 1.00 0.50 460 481 0.62 0.53
lang WordUtils.wrap 27 100.00 100.00 1.00 0.50 1965 2547 0.93 0.51
IO FilenameUtils.getPrefixLength 51 88.71 99.84 <0.01 0.02
IO FilenameUtils.wildcardMatch 37 93.19 96.86 <0.01 0.22
JOpt. ColtUtils.squareMatrixInverse 3 100.00 100.00 1.00 0.50 999 1042 0.70 0.48
JOpt. ColtUtils.getMatrixScalingFactors 51 81.57 84.31 0.16 0.48 1056 1013 0.30 0.44
JOpt. ColtUtils.calculateDeterminant 19 93.16 96.95 0.80 0.49 8576 9742 0.95 0.50
nd4j BigDecimalMath.Gamma 15 94.13 92.78 0.10 0.59 32969 29776 0.21 0.43
nd4j BigDecimalMath.zeta 21 100.00 100.00 1.00 0.50 23734 16530 <0.01 0.30
Gson ISO8601Utils.parse 83 21.01 33.86 <0.01 0.03
Imaging BasicCParser.preprocess 109 31.63 45.91 <0.01 0.14
Imaging BasicCParser.unescapeString 71 22.11 36.48 0.02 0.36
Imaging T4AndT6Compression.compressT4 2D 39 100.00 100.00 1.00 0.50 4111 3251 0.17 0.37
Bcel Utility.signatureToString 83 74.41 80.75 <0.01 0.05
Bcel Utility.codeToString 425 73.13 88.34 <0.01 0.00

Average (mean) results 89.18 92.06 7217 5380

implementation, confirming our theoretical observations in Sect. 4. For example,
for function gimp rgb to hwb the original LIPS implementation reached only
50% coverage in 7.97s [11]. Instead, LIPS re-implemented in EvoSuite achieved
100% coverage in 0.62s.

96 A. Panichella et al.

MOSA is More Effective Than LIPS. Despite these improvements, LIPS
could never achieve significantly higher coverage than MOSA. Instead, MOSA
achieved significantly higher coverage on 36% of the subjects. To understand
these results, let us consider Utility.codeToString, which has 425 branches.
Given the high number of branches, LIPS can allocate a limited search bud-
get to each branch, even in the presence of dynamic budget reallocation. As a
consequence, LIPS can cover only the trivial branches that do not need many
generations of test evolution. Instead, MOSA evolves test cases targeting all the
branches at the same time, for the whole duration of the search budget.

MOSA is More Efficient Than LIPS. Our results contradict the results of
the original study in terms of efficiency [11]. The main reason for such different
conclusions is the different stop condition considered in the two studies: time
required to perform 200,000 fitness evaluations (original study) vs. time needed
to reach the same final coverage (new study). We believe the new stop condi-
tion provides a fair measurement of the respective time performance of the two
algorithms, since 200,000 fitness evaluations are not necessarily required by both
algorithms to reach the final coverage – indeed, they typically need a different
number of fitness evaluations.

Most Subjects in the Original Study are Trivial. As reported in Sect. 5,
the majority of the subjects (20 out of 35) used in the original study [11] can be
fully covered in few seconds. We have run random search (RS) on the 33 subjects
of the original study. In particular, we set RS with the same stop conditions used
in LIPS and MOSA: either 100% of branch coverage is reached or the maximum
budget of one minute is consumed. Results show that RS achieves 100% coverage
in 18 out of 33 subjects (54%). It is also statistically equivalent to LIPS in other
9 subjects in terms of branch coverage. Thus, the large majority of subjects
(27/35 ≈ 77%) used by Scalabrino et al. [11] are too easy to cover to draw
any conclusion about the different performance of the two approaches. For this
reason, we have extended the benchmark by adding more complex subjects.

5.2 Threats to Validity

Threats to construct validity. Since the tool OCELOT is not publicly available,
we had to re-implement LIPS in EvoSuite. While our re-implementation may
slightly differ from the original one, we strictly followed the descriptions provided
by Scalabrino et al. [11] with particular attention to the key contributions of LIPS
(target selection order and dynamic budget allocation). As discussed in Sect. 5.1,
our re-implementation is superior to the original one on the benchmark programs
of the original study. Another construct validity threat regards the conversion
of C functions to Java static methods. As indicated in Sect. 4, this conversion
was straightforward since the considered functions do not have complex input
parameters and do not involve advanced C constructs.

Threats to Internal Validity. Compared to the original study, we have increased
the number of repetitions for MOSA and LIPS from 30 to 50 runs, to increase

LIPS vs MOSA: A Replicated Empirical Study 97

the statistical power of the analysis. We used the same termination criterion
for LIPS and MOSA in terms of execution time. We used a different metric to
measure efficiency, defined so as to remove the arbitrary constraint that both
algorithms should consume 200,000 fitness evaluations.

Threats to External Validity. To address the external validity threat of the orig-
inal study, we have increased the size of the benchmark from 35 to 70 subjects
by including methods with a larger number of branches (up to 425).

6 Conclusions and Future Work

We have replicated an empirical study comparing the test generators LIPS and
MOSA. The former is a single-target approach with dynamic allocation of the
search budget to each uncovered branch. The latter is a many-objective approach
that targets all the branches at once. Our replication addresses several threats
to external and internal validity of the preliminary study [11]. The new results
differ remarkably from the original study: (i) MOSA is more effective than LIPS,
especially for subjects with a large number of branches; (ii) MOSA is more effi-
cient than LIPS, in terms of time needed to achieve the same, final coverage.
Our implementation of LIPS together with the implementation of MOSA and a
complete replication package are publicly available on GitHub as a fork of Evo-
Suite at the following link https://github.com/apanichella/evosuite/tree/LIPS
replication.

Our future agenda includes extending this study to non-procedural Java code
and considering DynaMOSA [9], a recent, more advanced version of MOSA.

References

1. Baker, R.D.: Modern permutation test software. In: Edgington, E. (ed.) Random-
ization Tests. Marcel Decker, New York (1995)

2. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York
(1998)

3. Deb, K., Deb, D.: Analysing mutation schemes for real-parameter genetic algo-
rithms. Int. J. Artif. Intell. Soft Comput. 4(1), 1–28 (2014)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2000)

5. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

6. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test genera-
tion using EvoSuite. ACM Trans. Softw. Eng. Methodol. 24(2), 8:1–8:42 (2014).
http://doi.acm.org/10.1145/2685612

7. Juzgado, N.J., Vegas, S.: The role of non-exact replications in software engineering
experiments. Empir. Softw. Eng. 16(3), 295–324 (2011)

8. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

9. Panichella, A., Kifetew, F., Tonella, P.: Automated test case generation as a many-
objective optimisation problem with dynamic selection of the targets. IEEE Trans.
Softw. Eng. PP(99), 1 (2017). Pre-print available online

https://github.com/apanichella/evosuite/tree/LIPS_replication
https://github.com/apanichella/evosuite/tree/LIPS_replication
http://doi.acm.org/10.1145/2685612

98 A. Panichella et al.

10. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: 8th IEEE International Conference on
Software Testing, Verification and Validation, ICST, pp. 1–10 (2015)

11. Scalabrino, S., Grano, G., Nucci, D., Oliveto, R., Lucia, A.: Search-based testing of
procedural programs: iterative single-target or multi-target approach? In: Sarro, F.,
Deb, K. (eds.) SSBSE 2016. LNCS, vol. 9962, pp. 64–79. Springer, Cham (2016).
doi:10.1007/978-3-319-47106-8 5

12. Shull, F., Basili, V.R., Carver, J., Maldonado, J.C., Travassos, G.H.,
Mendonça, M.G., Fabbri, S.: Replicating software engineering experiments:
addressing the tacit knowledge problem. In: 2002 International Symposium on
Empirical Software Engineering (ISESE 2002), 3–4 October 2002, Nara, pp. 7–16
(2002)

13. Shull, F., Carver, J.C., Vegas, S., Juzgado, N.J.: The role of replications in empirical
software engineering. Empir. Softw. Eng. 13(2), 211–218 (2008)

14. Tonella, P.: Evolutionary testing of classes. In: ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA 2004), pp. 119–128. ACM (2004)

15. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of Mcgraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

http://dx.doi.org/10.1007/978-3-319-47106-8_5

An Investigation into the Use of Mutation
Analysis for Automated Program Repair

Christopher Steven Timperley1(B), Susan Stepney2, and Claire Le Goues1

1 Carnegie Mellon University, Pittsburgh, USA
christimperley@gmail.com

2 University of York, York, UK

Abstract. Research in Search-Based Automated Program Repair has
demonstrated promising results, but has nevertheless been largely con-
fined to small, single-edit patches using a limited set of mutation opera-
tors. Tackling a broader spectrum of bugs will require multiple edits and a
larger set of operators, leading to a combinatorial explosion of the search
space. This motivates the need for more efficient search techniques. We
propose to use the test case results of candidate patches to localise suit-
able fix locations. We analysed the test suite results of single-edit patches,
generated from a random walk across 28 bugs in 6 programs. Based on
the findings of this analysis, we propose a number of mutation-based
fault localisation techniques, which we subsequently evaluate by measur-
ing how accurately they locate the statements at which the search was
able to generate a solution. After demonstrating that these techniques
fail to result in a significant improvement, we discuss why this may be
the case, despite the successes of mutation-based fault localisation in
previous studies.

Keywords: Automated program repair · Mutation analysis · Fault
localisation

1 Introduction

The worldwide cost of debugging and repairing software bugs is estimated to
be $312 billion per year; on average, programmers spend roughly 50% of their
time finding and fixing bugs [1]. Research in automated program repair (APR)
seeks to tackle this problem. Generate-and-validate (G&V) is one approach to
APR, also known as search-based program repair, which uses meta-heuristics—
such as random search [18] or genetic programming [2,8]—to discover patches
that lead a program to pass a given set of test cases. At a high level, G&V
begins with fault localisation, followed by continual processes of generation and
validation. Fault localisation is typically performed using spectra-based fault
localisation techniques (SBFL) [25]. SBFL assigns suspiciousness values to state-
ments in the program, based on their dynamic association with the failing tests.
Patches are generated by selecting statements according to their suspiciousness,
and sampling edits at those statements from the repair space. This repair space
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 99–114, 2017.
DOI: 10.1007/978-3-319-66299-2 7

100 C.S. Timperley et al.

is defined by a set of transformation schemas, describing transformation shapes
(e.g., insert statement, tighten if condition, replace call argument), and trans-
formation ingredients, supplying the parameters necessary to complete shapes
(e.g. a particular statement). Candidate patches are evaluated for correctness by
running the patched program on the original test suite; repair is indicated by
passing all of the tests.

Different G&V approaches vary in their mutation operators and traversal
techniques. For example, GenProg [8] constructs patches that may append,
replace or delete statements within the program, reusing existing statements
within the program as fix ingredients. Other transformation schemas have been
proposed based on human-produced patches [6] or a value search to reduce the
cost of patch evaluation [10]. Search space traversal schemes employed include
genetic programming [8], random search [18], and a deterministic walk [23].

Despite promising early results, most G&V techniques are currently limited
to generating patches for a relatively small sub-set of single-line bugs [11,18,23].
To repair a wider variety of bugs, techniques will need to use richer, more gran-
ular transformation schemas, and to construct multiple-line patches. However,
this produces a combinatorial explosion in the size of the search space. This
motivates a need for methods to prune the exploded search space.

Inspired by recent work in mutation testing [14,16], we propose to use can-
didate test suite evaluations to identify suitable fix locations online. Mutation-
based fault localisation show promising results when ranking statements as can-
didates for human modification; We explicitly evaluate their utility in assigning
suspiciousness scores to candidate repair locations, the key concern in localisa-
tion for repair. To determine whether the results of candidate patch evaluations
may be used to localise the fault, we first perform a mutation analysis on a sam-
ple of a particular G&V repair search space across 28 bugs in six real-world C
programs. We use the same ground truth as previous studies on fault localisation,
assuming the location(s) of the human-written repair or the injected fault to be
a suitable fix location [14,16,25]. For the sake of convenience, we refer to these
locations as “faulty”; non-modified statements are considered to be “correct”.

We find that faulty locations exhibit a different average rate of passing-to-
failing tests across their mutants than statements assumed to be correct. We
also observe that an average of 30.07% of (compiling) mutants have no impact
on the outcomes of the test suite, mirroring earlier findings by Schulte et al. [20].
Similarly, we find that, on average, 26.44% of mutants covered by at least one
previously passing test fail all of their covering tests. These results suggest a
largely all-or-nothing search space, in which most mutants either pass all of
their (covering) tests, or none at all.

Based on the findings of our analysis, we evaluate a number of alternative
fault localisation techniques in terms of their ability to localise statements at
which a fix was found during the search (as opposed to assessing how well they
localise the location of the human repair). We show that little benefit is gained
by incorporating the results of candidate patch evaluations into the fault locali-
sation, and that any gains are not particularly consistent. The best localisation

An Investigation into the Use of Mutation Analysis 101

approach using this information outperformed GenProg’s default approach on
just over half of the cases. To benefit from the knowledge of candidate eval-
uations, a more granular repair model is needed—to allow subtle faults to be
detected—as well as a more effective means of aggregating different sources of
fault localisation information. Overall, our primary contributions are:

– A detailed mutation analysis sampled from GenProg’s search space, covering
28 bugs across six real-world C programs. Our results show that statement-
level mutation operators used in many search-based program repair tech-
niques can identify the code that humans modify to fix bugs.

– An evaluation of several alternative fault localisation techniques which use the
test case outcomes of mutants produced during the search. Our results show
that, although informative in terms of human-modified bug-fixing code, online
mutation-based fault localisation does not definitively outperform existing
offline SBFL approaches.

– An informed discussion of the limitations of GenProg’s statement-level muta-
tion operators in identifying faulty locations, and how these limitations might
be addressed by alternative mutation operators.

2 Fault Localisation in Search-Based Program Repair

In this study, we examine the search space of GenProg, an established generate-
and-validate APR technique, with a publicly-available implementation, based on
genetic programming. We focus this discussion primarily on GenProg’s approach
to fault localisation, for illustration, but the principles generalise to most existing
techniques in APR.

GenProg assigns suspiciousness values to each program statement based on
their coverage by the failing and passing test cases. In the initial formulation,
statements executed exclusively by the failing test cases are assigned a weight of
1.0; those executed by both failing and passing tests, 0.1; those not executed by
a failing test, 0.0. Alternative weighting schemes have been explored since [9],
including those that draw directly on advances in spectrum-based fault localisa-
tion [19]. Statements are sampled in proportion to their weight.

We now address Mutation-Based Fault Localisation (MBFL), a relatively new
approach based on mutation analysis [14,16]. This analysis generates and evalu-
ates a large number of mutants on the test cases. Each mutant is a variant of the
original program, obtained by applying a traditional mutation testing operator
(e.g., flip comparison operator) at a single location [16]. Two seminal approaches
to MBFL are MUSE [14] and Metallaxis [16]. Both of these approaches share
a common intuition: mutants generated at the fault location should exhibit dif-
ferent test suite outcomes to those generated at non-faulty locations. Despite
sharing this intuition, each technique generates its suspiciousness values accord-
ing to contradictory set of assumptions.

Prior to computing suspiciousness values for each statement s ∈ S, Metal-
laxis first computes explicit suspiciousness values for each mutant m ∈ M . The
suspiciousness of a mutant is given by the similarity of its behaviour to that of

102 C.S. Timperley et al.

the original, faulty program, measured using a variant of the Ochiai suspicious-
ness metric [25], given below, where #K is the number of tests that “kill” the
mutant (i.e., the tests which the mutant fails), #Kn is the number of previously
failing tests that kill the mutant, and #Kp is the number of previously passing
tests that kill the mutant:

μMetallaxis(m) =
#Kn√

#K · (#Kp + #Kn)
=

#Kn

#K
(1)

To determine the suspicious of a statement, the set of mutants at that state-
ment Ms is aggregated as follows:

μMetallaxis(s;M) =

{
maxm∈Ms

μMetallaxis(m) Ms �= ∅
1.0 otherwise

(2)

MUSE, on the other hand, computes statement suspiciousness directly, based
on the average passing-to-failing rate p2f and failing-to-passing f2p rate of
mutants at that statement. p2f describes the fraction of previously passing tests
that are failed by the mutant; f2p describes the fraction of previously failing
tests that are passed by the mutant. MUSE discards all of neutral mutants (i.e.,
mutants whose test outcomes are the same as the original program), and com-
putes suspiciousness as:

μMUSE(s) =
1

#Ms
·

∑

m∈Ms

(f2p(m) − α · p2f(m)) (3)

where α compensates for the greater likelihood that a previously passing test
will fail than a previously failing test will pass:

α =
f2pall

#M · |TPass| · #M · |TFail|
p2fall

(4)

where f2pall and p2fall give the number of tests, across all mutants, whose
outcomes change, and TFail and TPass denote the set of initially failing and
passing test cases, respectively.

One can treat the inner term of μMUSE as the suspiciousness of a particular
mutant. From this perspective, we notice differing behaviours, and underlying
assumptions, in the way that MUSE and Metallaxis aggregate mutant results,
and how they treat failing-to-passing test outcomes:

– According to Metallaxis, a statement is suspicious as its most suspicious
mutant. This behaviour assumes that the search landscape is mostly com-
posed of non-neutral mutants. If the search space contains a large number of
neutral mutants [20], Metallaxis assigns the maximum suspiciousness value
to most statements. In contrast, MUSE actively discards its neutral mutants,
and computes the suspiciousness of a statement as the average suspiciousness
of its mutants, indicating a robustness to sampling noise.

An Investigation into the Use of Mutation Analysis 103

– Whereas MUSE significantly increases the suspiciousness of statements con-
taining mutants which pass previously failing test cases, Metallaxis implicitly
decreases the suspiciousness of such statements. These behaviours highlight
a contradiction between the techniques’ underlying assumptions: MUSE sees
partial solutions as signs of a repair, whilst Metallaxis views them as either
irrelevant, or the result of overfitting.

Both techniques have demonstrated significant improvement over previ-
ous fault localisation approaches. However, evaluations have been limited to
manually-seeded faults in small-to-medium sized programs, and use metrics that
have been shown to be inappropriate for automated program repair [19], where
the degree of difference in suspiciousness is more important than rank.

3 Analysis

The mutation-based fault localisation approaches described in the previous
section suggest a natural overlap with search-based program repair, which effec-
tively produces a large number of candidate mutants throughout the generate-
and-validate process. This suggests a mechanism for online fault localisation
that leverages the existing mutation approach presented by the underlying repair
process. However, the raw suspiciousness scores produced by a fault localisation
technique are more important than the ranks. Thus, the utility of this approach
depends more on the discriminatory power of the p2f and f2p scores than on
their raw accuracy (evaluated in the traditional way).

Thus, to determine whether such mutation analysis may be used to improve
fault localisation in this context, we first analyse whether mutants at (assumed)
faulty and correct statements exhibit different test suite outcomes to one another.
Given the experimental parameters enumerated in Sect. 3.1, we begin by answer-
ing the following research questions (Sect. 3.2):

– RQ1: Can statements that were modified by the human fix be discriminated
from those that were not, on the basis of the p2f rates of their mutants?

– RQ2: Can human-modified statements be distinguished from non-modified
statements, based on the fail-to-passing rates f2p of their mutants?
As a potential means of improving offline fault localisation, we also ask:

– RQ3: Are statements covered by the fewest number of previously passing
tests the most likely to contain the fault?

Based on the results of this analysis, we propose and evaluate two new fault
localisation strategies for search-based program repair (Sect. 3.3). However, we
find that these new strategies do not offer significant improvement over previous
SBFL strategies. We provide insight as to why not, as well as implications,
supported by additional findings; these are detailed in Sect. 3.4.

104 C.S. Timperley et al.

3.1 Experimental Setup

We analyse test case results for a sample of single-edit mutants taken from 28
bugs across 6 real-world C programs. Some of these defects have been previously
studied in the context of automated program repair; all are provided by the
the RepairBox platform.1 15 of these bugs are artificial, injected into 3 small-
to-medium sized programs sourced from the Software Infrastructure Repository
[3]—the same source used to evaluate MUSE and Metallaxis. We include these
bugs to determine whether GenProg’s repair operators may be used to per-
form MBFL, rather than traditional mutation testing operators, used by exist-
ing approaches [14,16]. To determine whether MBFL remains effective when
applied in the wild, we supplement this dataset with 13 real-world bugs across
3 large-scale, real-world programs. Table 1 summarises the studied programs.

Table 1. Subjects under study. “Source” indicates the benchmark source (SIR the
Software Infrastructure Repository; RBX, RepairBox); “Scenarios” refers to the num-
ber of independent defective versions considered per program; “kLOC” measures the
number of thousands of lines of C code in the program; “Tests” indicates the average
number of tests over all scenarios for a program.

Source Program Scenarios kLOC Tests Artificial?

SIR gzip 6 6 104 ✓

grep 2 10 146 ✓

sed 7 14 255 ✓

RBX OpenSSL 5 248 77 ✗

Python 4 446 344 ✗

PHP 4 789 8597 ✗

We use GenProg, a search-based program repair technique with well-
established and commonly-used mutation operators, to focus this evaluation.
However, we anticipate the results can generalise to any G&V technique follow-
ing a similar paradigm. To collect the necessary data for the analysis, we first
generated a list of all the single-edit patches within GenProg’s search space,
before randomly shuffling that list and evaluating as many patches as possible
within a 12-hour window. This 12-hour random walk was repeated for each of the
bugs within the dataset.2 We restrict the generation of mutants to the sub-set of
statements covered by at least one of the failing test cases. For historical reasons,
and given its similarity to traditional mutation testing operators, we also ensured
that a deletion was attempted at each statement. For the purposes of balancing
replication with performance, we performed each run using a minimal, purpose-
built Docker container, provided by RepairBox. We used a C4.Large instance on
1 https://github.com/squaresLab/RepairBox.
2 Source code and a Docker image for the version of GenProg used by this study is

publicly available at: https://bitbucket.org/ChrisTimperley/gp3.

https://github.com/squaresLab/RepairBox
https://bitbucket.org/ChrisTimperley/gp3

An Investigation into the Use of Mutation Analysis 105

Table 2. Mutation analysis results for each bug scenario. “Mutants” shows number
of mutants generated within the 12-hour random walk. “Sample Rate” is the average
number of mutants per suspicious statement. “Compiling” shows the percentage of
mutants that successfully compiled. “Neutral” shows the percentage of mutants with
no effect on test outcomes, whereas “Lethal” shows the percentage of mutants that fail
all covering tests.

Sample

Program ID Mutants Rate Compiling Neutral Lethal

OpenSSL 0a2dcb6 377 2.48 100.00 14.06 50.66

4880672 1971 4.82 90.72 22.27 35.51

6979583 1097 13.06 99.18 26.62 51.23

8e3854a 3028 4.69 93.66 38.14 25.59

eddef30 2898 80.50 100.00 55.97 16.84

PHP 01c028a 28 0.06 96.43 7.14 0.00

11bdb85 32 0.07 96.88 25.00 0.00

1d6b3f1 741 8.72 88.66 14.57 25.78

9fb92ee 217 0.51 100.00 28.11 37.33

Python 6c3d527 378 0.46 84.66 64.29 13.76

a93342b 146 0.37 81.51 53.42 0.68

b2f3c23 600 3.03 81.83 45.67 14.33

f584aba 733 0.71 32.74 10.50 5.05

grep v2-DG 1 628 1.00 98.73 39.17 35.99

v3-DG 3 2353 10.14 67.06 31.92 31.19

gzip v1-KL 2 1898 10.20 91.41 23.60 48.79

v1-KP 1 2301 11.22 92.09 41.11 36.77

v1-TW 3 2068 13.34 91.34 27.85 40.57

v4-KL 1 2886 13.49 91.27 43.17 28.83

v5-KL 1 6437 16.98 90.26 66.75 16.96

v5-KL 8 1062 1.05 98.68 24.01 31.26

sed v2-AG 17 1630 1.52 85.77 23.68 30.67

v2-AG 19 3011 22.47 53.50 8.73 19.93

v3-AG 11 2579 7.39 78.79 24.74 33.81

v3-AG 15 1545 2.95 80.71 24.92 26.02

v3-AG 17 1332 3.95 67.57 16.14 27.40

v3-AG 18 1235 3.48 67.85 16.92 24.13

v3-AG 6 2615 5.56 77.06 23.40 31.17

1637 8.72 84.94 30.07 26.44

106 C.S. Timperley et al.

Amazon EC2 for the artificial bugs, and a DS1 V2 instance on Microsoft Azure
for the real-world bugs.

3.2 Analysis

A brief summary of the results of the mutation analysis is given in Table 2.
We observe that most mutants exhibit an all-or-nothing behaviour: either their
test outcomes remain wholly unchanged, or all of their covering tests are failed.
We also observe low sample rates (<1 mutant per suspicious statement) for most
Python and PHP scenarios, because of substantial compilation overhead and, for
statements covered by many tests, the cost of evaluating hundreds or thousands
of test cases per mutant.

RQ1: Can statements that were modified by the human fix be
discriminated from those that were not, on the basis of the p2f
rates of their mutants?

Fig. 1. We observe different mean p2f distributions for faulty and correct statements
(KS2 = 0.301; p = 0.003, Â = 0.679 [medium effect]).

To avoid misleading results, we omit mutants that do not compile, and those
that are not covered by any of the passing tests. In line with our expectations
and previous findings, we observe different mean p2f rates between (assumed)
faulty and correct statements, Fig. 1.

Using a two-way Kolmogorov-Smirnov test, we reject the null hypothesis
(p < 0.05) that the samples for the faulty and correct statements are drawn
from the same distribution. Between the p2f distributions for correct and faulty
statements, we find an effect size of 0.679 (measured by the Vargha-Delaney Â
measure [22]), indicating that correct statements tend to have a higher mean p2f
than faulty statements. This finding supports the intuition that modifications to
correct statements are likely to result in a greater degree of functionality loss.

An Investigation into the Use of Mutation Analysis 107

RQ2: Can human-modified statements be distinguished from non-
modified statements, based on the fail-to-passing rates f2p of their
mutants?

To answer this question, we first removed all non-compiling mutants from con-
sideration. We then removed all mutants corresponding to acceptable solutions,
giving us the most complete information possible without knowledge of a solu-
tion. Figure 2 compares the mean f2p for faulty and correct statements.

Fig. 2. We observe similar distributions of mean f2p values for faulty and correct
statements (KS2 = 0.185; p = 0.177). In both cases, more than half of the mutants at
each statement did not pass any of the previously failing tests.

We find that the mean f2p is zero for the majority of statements, regardless
of whether or not they are assumed to be correct. On closer inspection we find
that only 2.09% of mutants have any impact on the outcomes of the previously
failing tests. This suggests that f2p information may not be particularly effective
at distinguishing faulty and correct statements.

RQ3: Are statements covered by the fewest number of previously
passing tests the most likely to contain the fault?

When the search is restricted to the sub-set of statements covered by all of the
failing tests, most SBFL techniques become partly redundant, as the number of
(non-)executed failing tests is no longer relevant. Instead, it may be preferable
to measure statement suspiciousness as a function of the number of executed
and non-executed passing test cases.

Using the results of the analysis, we measure the passing test coverage at
each statement where a repair was found, and investigate whether (assumed)
faulty statements are covered by fewer passing tests. Accounting for the varying
sizes of the test suites, we measure the fraction of passing tests that cover each
each statement, rather than the number. To determine coverage relative to other
statements in the program, we compute the adjusted coverage as:

AdjustedCoverage(s) =
#TPass(s) − MinCoverage

#TPass
(5)

108 C.S. Timperley et al.

where TPass(s) is the set of passing tests covered by statement s, and
MinCoverage is the number of passing tests that cover that least covered state-
ment.

Measuring the adjusted coverage of each scenario, we find that 90% are cov-
ered by fewer than 2% of the previously passing tests, supporting our intuition
and the intuition of the original suspiciousness metric used in GenProg.

3.3 Fault Localisation

Using the knowledge gained from our mutation analysis, we propose and evaluate
two fault localisation strategies for G&V program repair, which may be aggre-
gated. We aggregate localisations by computing their product. To use these layers
in a noisy, online context, we ensure that each is numerically stable and that
none assigns a suspiciousness of zero to any statement covered by a previously
failing test. We consider:

– Coverage, μCov: produces a 90% probability that a statement with less than
2% adjusted coverage will be selected, and a 10% probability that a statement
with a greater level of coverage will be chosen.

– Pass-to-Fail: This layer assigns values between zero and one to each state-
ment, based on the pass-to-fail rates p2f of its mutants:

μp2f (s) =
1

#Ms + 1
·
[

1 +
∑

m∈Ms

(1 − p2fm)

]

(6)

To assess the effectiveness of the fault localisation approaches that combine
these layers, we use the mutants of the analysis—excluding any solutions, to
avoid potential biases—to generate a set of suspiciousness values μ for each of
the bug scenarios. We then measure the accuracy of a fault localisation technique
as the probability of selecting a statement that contains a fix found during the
random walk.3

Table 3 compares the effectiveness of our proposed fault localisation strategies
against a selection of existing strategies, across the 11 bugs for which solutions
were found during the random walk. We find that no strategy, whether mutation-
or spectrum-based, is dominant: Jaccard, the previously reported [19] best SBFL
strategy for APR, is outperformed by GenProg’s default strategy in 6/11 cases;
our Adjusted Coverage strategy beats GenProg in 6/11 cases, but is also beaten
by Jaccard in 6/11 cases. Neither Metallaxis nor MUSE dominate GenProg’s
default strategy: GP beats MUSE in 7 cases (and draws in 2) and Metallaxis in
8 cases.

3 Note, we do not measure how well these techniques localise the statement modified
in the human repair, since the patterns observed in this data were used to design
these techniques.

An Investigation into the Use of Mutation Analysis 109

Table 3. Comparison of fault localisation accuracies achieved by different approaches,
where accuracy is measured by the probability of sampling a statement containing a
fix from the resulting distribution. “Cov”, “Jac.”, “GP” and “MXS” refer to Adjusted
Coverage, Jaccard, GenProg and Metallaxis, respectively.

Program ID Cov p2f Cov × p2f GP Jac. MUSE MXS

OpenSSL 0a2dcb6 0.14 0.91 0.05 1.23 1.82 1.38 0.53

6979583 75.26 15.96 79.75 37.68 25.00 8.33 8.46

8e3854a 0.11 1.01 0.10 0.71 0.61 0.95 0.73

eddef30 76.04 45.92 77.58 66.67 54.55 41.67 41.67

gzip v1-KP 1 4.46 4.67 6.49 6.63 4.63 2.44 2.60

v1-TW 3 14.21 4.69 15.32 9.20 6.60 1.94 2.10

v4-KL 1 2.73 1.72 3.08 2.69 3.03 0.94 0.99

v5-KL 1 0.33 0.36 0.39 0.40 0.34 0.26 0.27

v5-KL 8 6.59 0.34 4.67 2.17 4.08 0.30 0.89

sed v2-AG 17 0.02 0.21 0.02 0.19 0.15 0.19 0.53

v3-AG 11 6.95 0.61 3.09 0.57 1.92 0.57 0.81

Our p2f strategy is beaten by GenProg in 8/11 cases, indicating that passing-
to-information, when used alone, is not particularly effective at identifying suit-
able fix locations. When the Adjusted Coverage and p2f strategies are aggre-
gated by computing their product, the resulting hybrid beats GenProg and Jac-
card in 6 and 8 cases, respectively. If the online modifications to μp2f are removed
and 1 − p2f(s) is used to compute suspiciousness instead, the resulting localisa-
tion outperforms GenProg’s fault localisation in all cases.

We experimented with ways of using f2p information, but found the approach
either attained near-perfect accuracy (since the only mutants to pass any of
the previously failing tests were at statements where a solution was found), or
substantially worse accuracy (since all mutants, other than the solutions at the
faulty statements, failed all of the previously failing tests).

3.4 Discussion

From the results of our evaluation, we observe relatively little benefit in incor-
porating information learned from the evaluation of candidate patches into the
fault localisation, in contrast to previous attempts to use mutation analysis to
locate faults. We believe there may be a number of reasons for this result:

– Lack of mutants: for a number of bug scenarios, we find that excessively
long test suite evaluation and compilation times prevent the search from
producing an adequate sample of mutants at each statement. In previous
research, Moon et al. [15] show that the performance of MUSE is sensitive
to the number of samples—at low sample rates (i.e., the average number of
samples per statement), MUSE is outperformed by offline SBFL techniques.

110 C.S. Timperley et al.

– Lack of passing test coverage: in cases where most statements are not cov-
ered by any passing tests, these statements will be assigned a suspiciousness
score of 1.0 by μP2F (s); Metallaxis will also assign maximal suspiciousness
to such statements. As a result, if the faulty statements are covered by any
passing tests, they will be suppressed; if not, the fault localisation will fail
to identify the faulty statements amongst the many statements that are not
covered by the passing tests.

– All-or-nothing f2p response: within GenProg’s search space, we observe
erratic negative test suite behaviour. In some cases, the only statements with
mutants that passed a previously failing test were those where a repair was
found. In other cases, previously failing tests were frequently passed, except
at the statements where a repair was found. If one knew which type of f2p
response one was dealing with, a more accurate fault localisation might be
possible. In the future, we plan to explore whether the rarity of passing pre-
viously failing tests might be used to determine whether a given failing-to-
passing event is a coincidence or indicative of a potential repair at that state-
ment.

– Machine-generated repairs: Across the random walk for each of the 28
bugs, we found fixes at a total of 48 different statements. Only 5 of these 48
statements were also modified by the original patch. This finding suggests that
GenProg is crafting repairs unlike those that a human would make, supporting
arguments made by Monperrus [13] that automated repair should consider
alien-looking repairs, rather than restricting itself to producing human-like
repairs. The disparity between the findings of RQ1, that faulty statements
exhibit a different mean p2f to correct statements, and the lack of improve-
ment when mutant information is added to the fault localisation may suggest
that locations patched by GenProg are less distinguishable by their mutants’
behaviours.

– Coarse-grained mutation operators: one explanation for the relative lack
of success from incorporating the results of the mutation analysis into the
fault localisation may be due to the coarse-grained nature of the repair oper-
ators within GenProg’s search space. With such actions, it may be difficult to
expose subtle bugs within the statement, that might otherwise be identified
using finer-grained mutation testing operators. In our analysis, we find that
most repairs tend to either have no effect on the outcomes of the test suite, or
to cause all of their covering tests to fail; this all-or-nothing behaviour may
be a consequence of the granularity of the search operators.

– Combining information: to combine each of the proposed layers of fault
localisation from our evaluation, we computed the product of each of the
layers—a necessarily arbitrary decision. A meaningful and effective way of
combining information from multiple sources, which may corroborate or con-
flict, is not immediately clear.

These results suggest a number of possibly fruitful directions to translate
the potential of mutation analysis approaches such as MUSE into efficiency
gains in automated program repair. Richer repair models, with lower-level repair

An Investigation into the Use of Mutation Analysis 111

operators (such as those traditionally used in mutation testing), may mitigate
the all-or-nothing behaviour exhibited by mutants generated using GenProg’s
coarse-grained operators. Test outcomes for particular types of mutants may
be informative in refining suspiciousness beyond the statement-level, and may
even serve to predict the type of repair that might be needed. Finally, simple
weighted averages or products, as we explored in Sect. 3.3, may be inadequate;
it is possible that ensemble learning techniques could more effectively combine
sources of information.

4 Related Work

In this section, we discuss previous research related to fault localisation within
automated program repair, and other approaches to addressing the difficulties
of scaling to larger repairs and search spaces.

Instead of tackling the problem of a growing search space by exploiting knowl-
edge learnt online, several techniques have been proposed to learn the likelihood
of candidate repairs based on their features by mining large collections of source
code repositories [7,11,21]. A complementary approach to tackle the problem
of the expanding search space is to reduce the cost of evaluating candidate
patches, whether through test case prioritisation [17,18], test case sampling [4]
or removal of redundant tests and (known) semantically equivalent mutants [23].
These approaches complement improved fault localisation for repair. In contrast
to syntactic- or heuristic-based G&V repair, semantic repair techniques [5,12]
infer partial specifications of desired behavior using test suites and then use
synthesis to construct replacement code that satisfies them. These techniques
also use test suites to localise faults and to validate patches, and thus could also
benefit from improved fault localisation.

A large number of methods for automated debugging and fault localisation
exist, including program slicing [24], delta-debugging [26] and various forms of
spectra-based fault localisation [25]. To date, most automated repair techniques
exclusively use SBFL; it is general and low-cost. SBFL approaches, to which
GenProg’s default fault localisation method belongs, use the test case cover-
age information for the program to assign suspiciousness values to each of its
locations. Qi et al. [19] conduct a study of the effectiveness of various SBFL tech-
niques when used with GenProg, finding that the Jaccard suspiciousness metric
produced the best fault localisation information, as measured by the number of
candidate repairs required to find a solution. In contrast to our study, we find
no one approach to fault localisation is dominant.

Schulte et al. [20] conduct an empirical study of the robustness of 22 pro-
grams to mutation using GenProg’s operators, finding that over 30% of generated
mutants exhibit no change to the outcomes of their test suites. This behaviour
may hinder the effectiveness of MBFL techniques. For instance, Metallaxis will
assign maximal suspiciousness to statements with neutral mutants, causing the
faulty statements to be suppressed.

112 C.S. Timperley et al.

5 Conclusions

Although mutation analysis can distinguish between human-modified and
human-unmodified statements in a bug-fixing context, these results do not trans-
late directly into clear gains as a fault localisation technique for the purposes
of program repair. However, our results provide insight into why this may be
the case, and suggest several possibly fruitful future directions for fault local-
isation for search-based repair. Given the previous successes of Metallaxis and
MUSE with mutation testing operators, we believe GenProg’s all-or-nothing
search space, in which most edits are either neutral or fail all of their covering
tests, may be partly responsible for the lack of clear gains. Low levels of pass-
ing test coverage may also preclude the use of mutation-based fault localisation
techniques.

To benefit from the knowledge of test suite outcomes for candidate patches,
we believe a set of more finely grained mutation operators are required—a
requirement that will most likely allow a larger number of bugs to be solved
at the same time.

To encourage further investigation, all results from this study, together with
the files used to conduct it, are available at:

https://bitbucket.org/ChrisTimperley/ssbse-2017-data.

Acknowledgements. This research was partially funded by AFRL (#FA8750-15-
2-0075) and DARPA (#FA8750-16-2-0042), and an EPSRC DTG; the authors are
grateful for their support. Any opinions, findings, or recommendations expressed are
those of the authors and do not necessarily reflect those of the US Government. The
authors additionally wish to thank the anonymous reviewers, whose comments were
especially insightful and constructive.

References

1. Cambridge University Study States Software Bugs Cost Economy $312 Billion Per
Year. http://www.prweb.com/releases/2013/1/prweb10298185.htm. Accessed Apr
2017

2. Arcuri, A.: Evolutionary repair of faulty software. Appl. Soft Comput. 11(4), 3494–
3514 (2011)

3. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empirical Software
Eng. 10(4), 405–435 (2005)

4. Fast, E., Le Goues, C., Forrest, S., Weimer, W.: Designing better fitness func-
tions for automated program repair. In: Genetic and Evolutionary Computation
Conference, GECCO 2010, pp. 965–972 (2010)

5. Ke, Y., Stolee, K.T., Le Goues, C., Brun, Y.: Repairing programs with semantic
code search. In: Automated Software Engineering, ASE 2015, pp. 295–306 (2015)

6. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: International Conference on Software Engineering,
ICSE 2013, pp. 802–811 (2013)

https://bitbucket.org/ChrisTimperley/ssbse-2017-data
http://www.prweb.com/releases/2013/1/prweb10298185.htm

An Investigation into the Use of Mutation Analysis 113

7. Le, X.B.D., Lo, D., Goues, C.L.: History driven program repair. In: International
Conference on Software Analysis, Evolution, and Reengineering, SANER 2016,
vol. 1, pp. 213–224 (2016)

8. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: fixing 55 out of 105 bugs for $8 each. In: International
Conference on Software Engineering, ICSE 2012, pp. 3–13 (2012)

9. Le Goues, C., Weimer, W., Forrest, S.: Representations and operators for improving
evolutionary software repair. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2012, pp. 959–966 (2012)

10. Long, F., Rinard, M.: Staged program repair with condition synthesis. In: Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pp. 166–178
(2015)

11. Long, F., Rinard, M.: Automatic patch generation by learning correct code. In:
Principles of Programming Languages, POPL 2016, pp. 298–312 (2016)

12. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch
synthesis via symbolic analysis. In: International Conference on Software Engineer-
ing, ICSE 2016, pp. 691–701 (2016)

13. Monperrus, M.: A critical review of automatic patch generation learned from
human-written patches: essay on the problem statement and the evaluation of
automatic software repair. In: International Conference on Software Engineering,
ICSE 2014, pp. 234–242 (2014)

14. Moon, S., Kim, Y., Kim, M., Yoo, S.: Ask the mutants: mutating faulty programs
for fault localization. In: International Conference on Software Testing, Verification
and Validation, ICST 2014, pp. 153–162 (2014)

15. Moon, S., Kim, Y., Kim, M., Yoo, S.: Hybrid-MUSE: mutating faulty programs
for precise fault localization. Technical report, KAIST (2014)

16. Papadakis, M., Le Traon, Y.: Metallaxis-FL: mutation-based fault localization.
Softw. Test. Verification Reliab. 25(5–7), 605–628 (2015)

17. Qi, Y., Mao, X., Lei, Y.: Efficient automated program repair through fault-recorded
testing prioritization. In: International Conference on Software Maintenance, pp.
180–189 (2013)

18. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: The strength of random search on
automated program repair. In: International Conference on Software Engineering,
ICSE 2014, pp. 254–265 (2014)

19. Qi, Y., Mao, X., Lei, Y., Wang, C.: Using automated program repair for evaluating
the effectiveness of fault localization techniques. In: International Symposium on
Software Testing and Analysis, ISSTA 2013, pp. 191–201 (2013)

20. Schulte, E., Fry, Z.P., Fast, E., Weimer, W., Forrest, S.: Software mutational
robustness. Genet. Program Evolvable Mach. 15(3), 281–312 (2013)

21. Soto, M., Thung, F., Wong, C.P., Le Goues, C., Lo, D.: A deeper look into bug
fixes: patterns, replacements, deletions, and additions. In: International Conference
on Mining Software Repositories, MSR 2016, pp. 512–515 (2016)

22. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

23. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive
program repair: Models and first results. In: International Conference on Auto-
mated Software Engineering, ASE 2013, pp. 356–366 (2013)

114 C.S. Timperley et al.

24. Weiser, M.: Program slicing. In: International Conference on Software Engineering,
ICSE 1981, pp. 439–449 (1981)

25. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp.
244–258. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33119-0 18

26. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng. 28(2), 183–200 (2002)

http://dx.doi.org/10.1007/978-3-642-33119-0_18

Short Research Papers

MUSYNTH: Program Synthesis via Code Reuse
and Code Manipulation

Vineeth Kashyap(B), Rebecca Swords, Eric Schulte, and David Melski

GrammaTech, Inc., Ithaca, NY 14850, USA
{vkashyap,rswords,eschulte,melski}@grammatech.com

Abstract. MuSynth takes a draft C program with “holes”, a test
suite, and optional simple hints—that together specify a desired
functionality—and performs program synthesis to auto-complete the
holes. First, MuSynth leverages a similar-code-search engine to find
potential “donor” code (similar to the required functionality) from a
corpus. Second, MuSynth applies various synthesis mutations in an evo-
lutionary loop to find and modify the donor code snippets to fit the input
context and produce the expected functionality. This paper focuses on
the latter, and our preliminary evaluation shows that MuSynth’s com-
bination of type-based heuristics, simple hints, and evolutionary search
are each useful for efficient program synthesis.

Keywords: Program synthesis · Evolutionary computation · Code
reuse · Big code

1 Introduction

Software developers have collectively written an enormous amount of code. Avail-
ability of such “big code” in searchable archives has spurred recent research [12,
13], with the overarching theme of leveraging existing code to improve developer
productivity. In this work, we use “big code” for program synthesis, to automat-
ically generate programs that meet developer’s requirements [7].

Code reuse [5] is widespread as it aids rapid prototyping with limited
resources. It includes both as-is reuse and reuse involving code modification
to fit a new context. As an example of the latter, to reduce time-to-market,
developers adapt existing code to run on embedded devices with constrained
resources—it may be infeasible to load whole image processing libraries, but
code snippets implementing specific functionality from these libraries could be
practically re-used and customized for the embedded device.

In many software development scenarios, the functionality that a developer
is attempting to create already exists somewhere else, perhaps with minor dif-
ferences. MuSynth is an automated program synthesis engine that (1) uses

This research was supported by DARPA MUSE award #FA8750-14-2-0270. The
views, opinions, and/or findings contained in this article are those of the authors
and should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 117–123, 2017.
DOI: 10.1007/978-3-319-66299-2 8

118 V. Kashyap et al.

partial specifications of the functionality being developed, (2) searches a large
corpus for “donor” code that implements a similar functionality, and (3) reuses
and modifies the donor code in the developer’s context to produce desired func-
tionality. In this paper, we focus on a research question regarding (3): given
a partial specification via developer-provided tests and some donor code that
potentially implements the functionality, how can we automatically manipulate
the donor code to incorporate it into the developer’s context? MuSynth com-
bines type-based heuristics, developer hints, and evolutionary search to address
this research question. Based on our preliminary results, we believe MuSynth
is a novel and promising approach to program synthesis that can be effectively
combined with traditional logic-based approaches [3] in the future.

2 Related Work

Program synthesis from partial programs. Syntax-guided synthesis [3] uses par-
tial programs (sketches) and user specifications as input to generate programs.
Specifications are logical predicates (pre- and post-conditions) describing the
desired behavior of the program. Instead of using purely logical techniques to
synthesize holes, our work exploits code reuse and evolutionary search.

Evolutionary search in program repair. Evolutionary search has been successful
in the related field of program repair [10]. Although program repair can be
viewed as synthesis of bug fixes, unlike program synthesis, program repairs are
not expected to generate new functionality.

Program synthesis based on existing code. Recent techniques [4,12] have trained
deep neural networks on existing code and used the generated models in program
synthesis. MuSynth can augment these techniques. Program splicing [11] uses
relevant donor code for synthesis but, unlike MuSynth, performs an exhaustive
enumerative search over unmodified (except for variable renaming) donor code.

Evolutionary search and program synthesis. Evolutionary program sketching [6]
modifies sketches until traditional techniques [3] can fill holes. Unlike MuSynth,
the holes they consider are very simple, and can be filled only with constants or
variables. Katz et al. [9] use genetic programming guided by model checking for
program synthesis. Whereas their approach requires a formal specification of the
functionality being synthesized, MuSynth works with partial specifications.

3 MuSynth Overview

Figure 1 provides an overview of MuSynth. It uses a similar-code-search engine
to identify relevant donor code from a large corpus that may implement the
required functionality. These donors are then mutated to fit the developer’s
problem context. The mutations are guided by evolutionary search. This paper

MuSynth: Program Synthesis via Code Reuse and Code Manipulation 119

Fig. 1. MuSynth architecture. Gray boxes are the input, green box is the output.
(Color figure online)

focuses on the donor code mutations and the evolutionary search in MuSynth,
which are built on top of Clang [2] and Software Evolution Library [14].

The developer provides a draft program containing “holes” along with test
cases and optional hints that specify the expected functionality of the com-
pleted program. MuSynth synthesizes code to appear in the holes and does
not modify code outside of the holes. The program context surrounding the
holes drives the search for similar functionality (i. e., the donor code) by using
Source Forager (SF) [8], a similar-code-search engine. SF takes a C procedure
as input—optionally with holes—and returns a list of C procedures from a large
corpus that are the most input-similar and potentially relevant for subsequent
synthesis. SF employs multiple code features from the surrounding context for
code search, such as natural language (comments, variable and function names),
abstractions of ASTs (Abstract Syntax Trees), types used and operations per-
formed. Currently, SF can search over a million procedures in under two seconds.

MuSynth maintains a candidate population of program variants: each vari-
ant is derived by “filling” the holes in the draft program. At each step of the evo-
lution, (1) a variant is selected, (2) a synthesis mutation is applied to the variant,
(3) the variant is evaluated for fitness by compiling and running developer tests
and various code sanity tests (i. e., tests finish within reasonable resource usage
and time limits, and do not exit/abort early), and (4) based on the results of the
evaluation, the mutated variant either re-enters population, or if good enough, is
presented as the solution. MuSynth uses lexicase selection [15] over test cases
and limits the size of the population to a pre-specified maximum. Evolution-
ary steps occur in parallel across threads. For successful synthesis, MuSynth
requires the code search results to contain at least one relevant donor procedure,
high-quality developer tests, and a correct (i. e., feasible to solve) draft program.

Figure 2 shows a simplified example sequence of synthesis mutations. The
draft program declares an uninitialized array, a loop to iterate over the array,

120 V. Kashyap et al.

leaving a hole to zero-initialize the array. MuSynth always applies the fill muta-
tion to any empty hole. The fill mutation first finds a snippet of donor code:
various AST subtrees are extracted from the donor code procedures, and one
of them is randomly selected, biased by subtree size (smaller is preferred) and
the hole position (e. g., if the hole is inside a loop, donor code AST subtrees
within loops are preferred). Variables in donor code are then mapped to the
ones in the draft code. The number of such possible mappings is typically large,
and to reduce this number, MuSynth uses type-based heuristics, i. e., type-
compatibility checks between donor and draft variables. E.g, the types “array of
short” and “pointer to char” are considered compatible, because the same oper-
ations (e. g., array indexing and bit shifting) can be applied on variables with
either type. These type-based heuristics reduce the number of non-compiling
variants. The developer can provide simple optional hints to MuSynth, such as
(1) the superset of variables expected to be used in synthesized code, and (2)
the subset of the variables that must be modified by the synthesized code. These
hints help further reduce the number of possible mappings. Here, fill mutation
maps the donor variables x, index to draft variables array, j respectively.

Fig. 2. Example sequence of mutations.

A rebind mutation attempts to find
an alternate variable mapping for the
hole, further exploring potential vari-
able bindings. Here, j is renamed to i
(of compatible type), and array is left
unchanged. A fix off-by-one replaces
a constant in the hole with an off-by-
one constant: here, 1 is replaced by 0.
Finally, this change creates the correct
zero-initialization. Other mutations fre-
quently used by MuSynth are: replace
variable with a constant, delete
statement, refill (which throws away

the current contents of the hole and refills with new donor snippet), and insert
new statement (insert a new donor statement at random within the hole).

4 Evaluation

Our evaluation goal is to understand the effectiveness of MuSynth on a bench-
mark suite [1] of program synthesis challenges, openly available for review. The
benchmarks consist of 3 algorithms: (1) image contrast enhancement using his-
togram equalization, (2) binary search, and (3) insertion sort. For each algorithm,
we found an existing implementation online, removed code at different program
points to create holes, and wrote test cases to specify the expected functionality.
As it is not the focus of the paper, we cached the results (4–5 similar proce-
dures [1] per algorithm) of running SF on these benchmarks—they constitute
the donor code used in synthesis. The time taken by SF is not included in the
reported times below. Table 1 summarizes our evaluation. Column 1 lists the

MuSynth: Program Synthesis via Code Reuse and Code Manipulation 121

various benchmarks—each is a draft program with a hole of different size and
program location. Column 2 indicates a proxy for the expected complexity of
the hole as a pair of numbers: (1) the number of n-ary operations expected to be
in the hole (such as assignment, array indexing, bit shifting), (2) the number of
variables expected to be used in the hole. These numbers were computed based
on the original code that was replaced with corresponding holes.

We run MuSynth under 4 configurations to evaluate the research question
outlined in Sect. 1. Evolutionary search is used by evonone, evosome, and evoall.
evonone runs without any hints from the developer. evosome is provided the
superset of the variables expected in the holes. In addition to these hints, evoall

is provided the subset of the variables that must be modified by the hole. randall

is the same as evoall, except that it uses random search instead (i. e., unguided
search that always starts with a fill mutation, and then randomly applies a
synthesis mutation, but restarts when uncompilable variants are produced). All 4
configurations use type-based heuristics—without which most benchmarks time
out—and the same probabilities for all the synthesis mutations. An exhaustive
enumerative search of the infinite solution space requires specifying an order
for applying the synthesis mutations and variable bindings. Instead of hand-
picking one such ordering, we avoid bias by using randall for comparison. The
rightmost 4 columns in Table 1 provide the time taken (in seconds) for running
MuSynth on different benchmarks until a correct solution is found. We run
each experiment 10 times and the median time is reported. Experiments were
run on an AMD ×64 machine (2.6 GHz, 4 cores, 16 GB main memory), with a
population of maximum size 1000, 4 threads, and a 30 min timeout (∞ is used to
indicate timeouts). The hole synthesized by running evoall on the benchmark
contrast-enhance-4 is shown in Fig. 3 as an example of MuSynth’s synthesis
capabilities.

Table 1. Summary of evaluation results (fastest time highlighted in boxes).

122 V. Kashyap et al.

Fig. 3. Synthesized code (indicated in red) for contrast-enhance-4, which required,
among other things, finding the correct name bindings for seven variables and macros,
and fixing an off-by-one error. The surrounding context has been elided for space.
The donor code that gets adapted here uses a different image representation format
and different amount of bit shifting than the synthesized code. This result shows that
donor code can be adapted even when it uses different data structures or contains
errors. (Color figure online)

Table 1 shows that in almost all cases, evoall is either the fastest, or is close
to the fastest. evoall is also the only one to successfully complete (i. e., passes all
test cases, with solutions manually verified afterwards) on all benchmarks within
the time limit. This result indicates that developer hints can significantly reduce
synthesis time. randall is the fastest in a few cases because of the low overhead
(i. e., no population to maintain). However, it times out in cases that require
sequencing of multiple synthesis mutations. This result indicates that evolution-
ary search is useful in navigating a large search space of synthesis mutations.
With these results, we believe that type-based heuristics, developer hints, and
evolutionary search contributes to efficient program synthesis.

References

1. Program Synthesis Challenge Benchmark. https://github.com/ssbse-2017-
submission/synthesis-challenges

2. The Clang Project. https://clang.llvm.org/
3. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,

Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
FMCAD. IEEE (2013)

4. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder:
Learning to Write Programs. ArXiv e-prints., November 2016

5. Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F.: The plastic surgery
hypothesis. In: FSE. ACM (2014)

6. B�l ↪adek, I.,Krawiec,K.:Evolutionaryprogramsketching. In:McDermott, J.,Castelli,
M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol.
10196, pp. 3–18. Springer, Cham (2017). doi:10.1007/978-3-319-55696-3 1

7. Gulwani, S.: Dimensions in program synthesis. In: PPDP. ACM (2010)
8. Kashyap, V., Brown, D.B., Liblit, B., Melski, D., Reps, T.: Source Forager: A

Search Engine for Similar Source Code. ArXiv e-prints (2017)
9. Katz, G., Peled, D.A.: Synthesis of parametric programs using genetic program-

ming and model checking. In: INFINITY (2013)
10. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method

for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

https://github.com/ssbse-2017-submission/synthesis-challenges
https://github.com/ssbse-2017-submission/synthesis-challenges
https://clang.llvm.org/
http://dx.doi.org/10.1007/978-3-319-55696-3_1

MuSynth: Program Synthesis via Code Reuse and Code Manipulation 123

11. Lu, Y., Chaudhuri, S., Jermaine, C., Melski, D.: Data-Driven Program Completion.
ArXiv e-prints, May 2017

12. Murali, V., Chaudhuri, S., Jermaine, C.: Bayesian Sketch Learning for Program
Synthesis. ArXiv e-prints (2017)

13. Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “Big
Code”. In: POPL. ACM (2015)

14. Schulte, E.: Neutral networks of real-world programs and their application to auto-
mated software evolution. Ph.D. thesis, University of New Mexico, Albuquerque,
USA, July 2014. https://cs.unm.edu/∼eschulte/dissertation

15. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In: GECCO. ACM (2012)

https://cs.unm.edu/~eschulte/dissertation

Human Resource Optimization for Bug Fixing:
Balancing Short-Term and Long-Term

Objectives

Elias Khalil, Mustafa Assaf, and Abdel Salam Sayyad(B)

Master Program in Software Engineering, Birzeit University, Ramallah, Palestine
eliasdkh@gmail.com, mustsaf@gmail.com, asayyad@birzeit.edu

Abstract. In software development projects, bugs are usually accumu-
lated and technical debt gets bigger over time. Managers decide to reduce
the technical debt by planning one or more iterations for bug fixing.
The time required to fix a bug depends on the required skill and the
resource skill level. Managers seek to achieve fixing the highest number
of bugs during the iteration while at the same time fixing the highest
possible number of high severity and high priority bugs. In this study,
we optimize the human resource assignment to achieve the objectives
above, using multi-objective evolutionary algorithms, and then we add a
fourth objective, i.e. that the bugs left out of the iteration should require
the least time to finish. We show that the additional objective can be
optimized without the detriment of other objectives. The lesson is that
complicating the multi-objective problem formulation can help with the
overall quality of the solutions.

Keywords: Human resource allocation · Software project planning ·
Agile development · Search-based software engineering

1 Introduction

Software products should be delivered with high quality within time and budget.
This requires spending high effort on testing and maintenance [2,11]. Statistics
showed that 80% of development cost is spent on bug fixing [10]. Unfortunately,
project budget is usually limited, where just 32% of software projects are com-
pleted on time and within budget [4]. These facts raise the need to balance the
effort spent on testing and maintenance and the limited schedule and budget.

Prior studies showed that selecting bugs to fix within a target planning
period, and the criteria of assigning bugs to developers are significant factors
affecting time to fix bugs [1,7,11]. Additionally, assigning a bug to the right
human resource has a significant impact on the maintenance period or on the
amount or nature of the fixed bugs during this period.

Resource allocation is considered an NP-Hard complex problem [3]. The com-
plexity of this problem arises from the high number of combinations of possible

c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 124–129, 2017.
DOI: 10.1007/978-3-319-66299-2 9

Human Resource Optimization for Bug Fixing 125

allocation and the impact of the allocation on product development time, cost
and quality, and overall project success.

This study focuses on human resource allocation for bugs within an agile
process. Developing a product in an agile process passes through a sequence of
iterations, each having a fixed period. By the end of the iteration, some bugs are
moved to a backlog to be fixed in upcoming iterations. Hence, bugs accumulate
in the backlog and the technical debt gets larger. At a certain point, manage-
ment decides to plan one or more iterations dedicated to reducing the technical
debit. The fact that resource allocation impacts the plan output raises the need
to identify a close-to-optimal HR allocation using SBSE techniques.

The contribution of this paper is that it introduces and evaluates two for-
mulations of the problem; one with three objectives (total bugs fixed, severe
bugs fixed and high priority bugs fixed); and another where the time left to
fix remaining bugs is added as a fourth objective. We show how adding the
long-term quality objective does not hurt the quality of the three-objective case.

The rest of the paper is organized as follows: In Sect. 2 we describe experiment
design and dataset. In Sect. 3 we show our results. And we provide a conclusion
in Sect. 4.

2 Experimental Setup

In this section, we discuss the setup of our experiment, including the optimization
method, chromosome structure, fitness evaluation, experiment configuration, and
the dataset.

2.1 Multi-Objective Optimization

Multi objective algorithms provide a Pareto front of nondominated solutions. A
solution x(1) is said to be dominating x(2) if x(1) is not worse than x(2) in all
objectives and x(1) is better than x(2) in one or more objectives [9].

Many search-based algorithms have been studied in the past 20 years. Evo-
lutionary algorithms has provided significant solutions for both single and multi
objectives search based problem. For this study, we use Non-dominated Sorting
Genetic Algorithm II (NSGAII)[5], which is the most widely used algorithm in
Pareto-Optimal SBSE [8].

2.2 Chromosome Structure

A bug distribution plan is considered as an optimization solution where each bug
is assigned to one developer. A list of bugs are assigned to a single developer.
A binary solution is used to represent a bug distribution plan. It consists of a
number of binary genes representing bugs to be fixed in the iteration as shown
in Fig. 1. Each Chromosome contains n bugs (genes) and each gene consists of
m bits representing the developer id, in addition to 5 bits as a sequence number.

126 E. Khalil et al.

This sequence number is used to handle the sequence that the developer will
follow to fix bugs assigned to her.

Solutions usually have more than one bug assigned to a single developer.
Thus two or more bugs may have the same sequence number. To solve this issue,
a pseudo random number generator (PRNG) with this number as a seed is used
to generate a list of unique numbers gSeqi where i is between 1 and number of
bugs (n). Bug i with less gSeqi is planned to be fixed first.

Fig. 1. Chromosome structure.

2.3 Multi-objective Fitness Evaluation

Every bug has an estimated ETA set by a developer or manager. Usually this
ETA is estimated based on an average skill level. A low skill level developer
working on a medium or high skill level bug will spend more time to fix it. The
opposite is also valid where a developer working on a bug requiring a skill level
lower than the developer level, is expected to fix it in a time less than the bug
ETA. Adjusted time for the developer to fix a bug (AdjustedETA) depends on
both the bug ETA, developer skill level (Skilli) for the specific bug category
and bug required skill level (BugiSkill)

Skilli = f(devid, category(bugid), BugiSkill) (1)

Adjusted estimated time to fix a bug i can be estimated by the skill level of
the developer skilli relative to the bug category

AdjustedETA = ETA f(
skilli

requiredskill
) (2)

Each solution is a sequence of bugs to be fixed:

deviList = {Bs1 , Bs2Bsn} (3)

A developer can fix number of bugs on the planned bugs list of the solution
during iteration time Tit. This can be calculated by summing up the bugs fix
time sequentially (Bsi) until adding one more bug exceeds the iteration period.

BLit(Devi) = {Bs1 , Bs2Bst}

where
t∑

j=1

adjustedETA(Bsj) ≤ IterationT ime
(4)

Human Resource Optimization for Bug Fixing 127

Based on iteration time and bugs assigned to each developer, Total bugs fixed
in an iteration B −Fixedit is defined as union of bugs assign to each developer.

Fixedit = ∪d
i=1 BLit(Devi) (5)

An additional objective outside of the iteration scope is added to the opti-
mization. This objective represents the time required to finish all bugs in the
backlog which should be minimized. This time can be calculated by summing
the time required to fix each developer bugs.

TotalT ime =
n∑

i=1

adjustedETA (Bi) (6)

In summary, the objective fitness are represented using the following values:

1. Total number of bugs fixed in the iteration
2. High severity bugs fixed in the iteration
3. High priority bugs fixed in the iteration
4. Total period to fix all bugs including the iteration planned bugs

2.4 jMetal Study

jMetal framework [6] is used to build and run the study for both three and four
objectives. Default jMetal configuration is used as tunning the algorithms for
better results is not the purpose of this study (Table 1).

Table 1. jMetal experiment configuration

Population size 100 Crossover type Single point

Crossover probability 0.9 Mutation type Bit flip

Mutation probability 0.01 Max evaluations 100,000

2.5 Dataset

The data provided for this study was extracted from a real bugs repository.
Bugs were selected randomly for each set used in the study. For privacy rea-
sons, the title, description, and other properties indicating any relation to the
organization, industry or product were omitted. The remaining properties are
the significant properties related to this study including ETA, severity, priority
and required skill level. Additionally, a product category or module is added as
a value between 1 to 5 representing 5 categories of the product where category
name is removed for the same confidentiality reasons.

The trimmed dataset used by this study is hosted on the cloud1. It shows two
employee files that include four or eight employees data. Skill level is ordered
1 http://bzu.cloud:8080/BugsSBSE/resources/.

http://bzu.cloud:8080/BugsSBSE/resources/

128 E. Khalil et al.

from lowest to highest as 1, 2, 3. Additionally, each employee is rated with a
skill 1 to 3 on 5 product categories. In addition, two sets of 50 or 100 bugs and
their properties are included.

3 Results

A jMetal experiment setup is used for both three and four objectives. jMetal is
configured for 40 runs on 4 problem setups as follows: (1) 50 bugs, 4 developers.
(2) 100 bugs, 4 developers. (3) 50 bugs, 8 developers. (4) 100 bugs, 8 developers.

The above setup was executed twice. Once on the three objectives (excluding
total time objective from the fitness) and another time for the four-objective case.

Fig. 2. Pareto front of three and four objectives displayed in 2D

Figure 2 is used to present the three and four objectives as a relation between
total number of fixed bugs and each of number of fixed severe bugs and number
of fixed priority bugs separately. This chart presents the 100-bug 8-developer
setup. Three-objective Pareto points are represented as crosses while the four-
objective points are presented as circles. In order to add a time dimension to this
2D chart, the size of circle or cross points is used to represent the time required
to fix all bugs.

Figure 2 shows that the circles size is mostly big which reflects the bad
achievement of this objective. Additionally, it is clear that there are more points
in the four-objective Pareto front, providing more distribution of solutions while
being able to achieve the same range achieved by the three objectives.

Human Resource Optimization for Bug Fixing 129

4 Conclusion

This study has adopted a search-based metaheuristic approach for human
resource allocation for bug fixing iteration planning. Taking bugs severity, pri-
ority, ETA and required skill level in addition to developer skill level makes the
choices more complicated for a manager planning such an iteration. We have
showed that complicating the objectives by adding a long-term quality objective
does not hurt the three objectives when compared with three-objective opti-
mization results. In other words, complicating the problem formulation added
quality to the recommended solutions.

References

1. Anvik, J.: Automating bug report assignment. In: Proceeding of ICSE, pp. 937–940
(2006)

2. Basili, V., Briand, L., Condon, S., Kim, Y.M., Melo, W.L., Valett, J.D.: Under-
standing and predicting the process of software maintenance release. In: Proceeding
ICSE, pp. 464–474 (1996)

3. Bibi, N., Ahsan, A., Anwar, Z.: Project resource allocation optimization using
search based software engineering a framework. In: Proceeding of ICDIM, pp. 226–
229 (2014)

4. Chen, W.N., Zhang, J.: Ant colony optimization for software project scheduling
and staffing with an event-based scheduler. IEEE TSE 39(1), 1–17 (2013)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE TEC 6(2), 182–197 (2002)

6. Durillo, J.J., Nebro, A.J.: jmetal: A java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42(10), 760–771 (2011)

7. Kang, D., Jung, J., Bae, D.H.: Constraint-based human resource allocation in
software projects. S: Pract. Experience 41(5), 551–577 (2011)

8. Sayyad, A.S., Ammar, H.: Pareto-optimal search-based software engineering (POS-
BSE): a literature survey. In: Proceeding of RAISE, pp. 21–27 (2013)

9. Sayyad, A.S., Menzies, T., Ammar, H.: On the value of user preferences in search-
based software engineering: a case study in software product lines. In: Proceding
of ICSE, pp. 492–501 (2013)

10. Tassey, G.: The economic impacts of inadequate infrastructure for software testing.
NIST, RTI Project 7007(011) (2002)

11. Zhang, F., Khomh, F., Zou, Y., Hassan, A.E.: An empirical study on factors
impacting bug fixing time. In: Proceeding of WCRE, pp. 225–234 (2012)

Grammar Based Genetic Programming
for Software Configuration Problem

Fitsum Meshesha Kifetew1, Denisse Muñante1(B), Jesús Gorroñogoitia2,
Alberto Siena3, Angelo Susi1, and Anna Perini1

1 Fondazione Bruno Kessler, Trento, Italy
{kifetew,munante,susi,perini}@fbk.eu

2 ATOS, Madrid, Spain
jesus.gorronogoitia@atos.net
3 Delta Informatica, Trento, Italy

alberto.siena@deltainformatica.eu

Abstract. Software Product Lines (SPLs) capture commonalities and
variability of product families, typically represented by means of fea-
ture models. The selection of a set of suitable features when a software
product is configured is typically made by exploring the space of tread-
offs along different attributes of interest, for instance cost and value. In
this paper, we present an approach for optimal product configuration by
exploiting feature models and grammar guided genetic programming. In
particular, we propose a novel encoding of candidate solutions, based on
grammar representation of feature models, which ensures that relations
imposed in the feature model are respected by the candidate solutions.

Keywords: Genetic programming · Grammar · Feature model ·
Software product line

1 Introduction

Software Product Line Engineering (SPL) follows the principles of product lines,
originally introduced in mass markets, to enable product mass customisation.
SPL rests on two key ideas: (1) to define a platform for the development of
products in terms of components that maybe reusable, so as to reduce production
costs and time to market; (2) to characterise the products in terms of the features
they offer, and categorise them into common features that are part of each
product and variable features that are only part of some products.

Feature modelling is recognised as an intuitive technique to represent and
manage product variability in SPL. A feature model (FM) allows to hierarchi-
cally structure the set of features of a product in a tree-like graph representation,
thus providing a compact representation of all possible products or configura-
tions of an SPL. Features describe the functional as well as quality characteristics
of the software product under consideration. The selection of the best and at the
same time allowable combination of features that satisfy some objectives, which
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 130–136, 2017.
DOI: 10.1007/978-3-319-66299-2 10

Grammar Based Genetic Programming for Software Configuration Problem 131

can correspond to market segment needs or to specific users requirements or to
desired quality attributes, is referred as the software configuration problem.

Several works in the literature have tackled the product configuration prob-
lem by applying search based techniques [7]. However, most of them employ
an encoding of candidate solutions as a flat sequence of boolean variables, each
representing a feature – indicating whether or not a feature is included in a par-
ticular product [3]. However, such encoding necessitates a subsequent check to
make sure that the constraints imposed by the FM are respected by the can-
didate, resulting in further computational overhead merely as a result of the
encoding. For instance, Oleachea et al. [9] compared an incremental exact algo-
rithm called GIA with an approximate approach using Indicator-based Evolu-
tionary Algorithm (IBEA). GIA produced optimal solutions in less than 2 hours
for small models (≤44 features) and IBEA produced approximate solutions with
an average of at least 42% accuracy in less than 20 min for more larger models
(≤290 features). Hierons et al. [5] introduced a new promising method called
ShrInk Prioritise (SIP). SIP combines a new encoding and reduces the number
of invalid products removing core features of the representation and considering
only leaf (concrete) features instead of exploring all features in the tree model.
Henard et al. [4] enhanced IBEA by using the core encoding and also a SAT
solver to implement new mutation and replacement operators used in an EMO
algorithm. This approach, so-called SATIBEA, showed that it is not necessary
to seed the search.

Our approach exploits the potential of Genetic Programming (GP) to evolve
structurally valid individuals derived from a grammar, hence we first trans-
form the FM to an equivalent grammar [1], then we apply grammar guided GP
(GGGP) [8] to evolve candidate solutions towards ultimately finding the optimal
set of product configurations. Each candidate solution (product configuration)
is derived from the grammar, and hence by definition respects the constraints
imposed by the FM. GGGP has proven effective in evolving structurally valid
solutions fit for a specific purpose, for instance test case generation [6].

The main contributions of the paper are: (1) novel grammar based encoding
of candidate solutions, and (2) a prototype tool that implements GGGP for
optimal product configuration.

2 Feature Models and Grammars

In feature models (example shown in Fig. 1(a)), features are hierarchically organ-
ised by means of relations, which are so-called tree constraints or parent-child
relations. The types of tree constraint relations are (see Fig. 1(b)): Mandatory,
Optional, Alternative, and Or. If a feature has a Mandatory relation with its
parent feature, it must be included in all products in which its parent fea-
ture appears. For example, ‘Catalogue’, ‘Payment’ and ‘Security’ in the example
Fig. 1(a). If a feature has an Optional relation with its parent feature, it can be
optionally included in products in which its parent feature appears. For example,
‘Search’ and ‘Public report’.

132 F.M. Kifetew et al.

Fig. 1. Example feature model for E-Shop family products

Fig. 2. Grammar and constraints corresponding to the feature model in Fig. 1(a)

A set of features are grouped as Alternatives if exactly only one of these
feature should be included when their parent feature appears in the product. For
example, ‘High’ and ‘Standard’ are grouped as alternatives. A set of features are
grouped using an Or relation if one or more of these features can be included
when their parent feature appears in the product. For example, ‘Bank transfer’
and ‘Credit card’ are grouped in a or relation.

In addition to the relations between features, a feature model may also
include cross-tree constraints between features. The most common relations are:
Implies and Excludes. If featureA Implies featureB, and featureA appears in a
product, then featureB must be selected for the product. For instance in Fig. 1(a),
‘High’ implies ‘Credit card’. If featureA Excludes featureB, and featureA appears
in a product, then featureB must not be selected for the product. For instance,
‘High’ excludes ‘Public report’.

Feature models can be mapped to grammars such that formal reasoning can
be applied on them. In this work, we adopt a mapping similar to the one pro-
posed by Batory [1]. However, while the grammar proposed by Batory is an
iterative grammar, we use a recursive grammar which enables us to apply gram-
mar based genetic programming for feature model optimisation. Consequently,
the notations +, indicating one or more repetitions, and [], indicating optional
elements present in Batory’s grammar are not present in our grammar notation.
Alternatively, we opt for a recursive grammatical notation with λ-productions,
grammar rules that result in empty strings.

Grammar Based Genetic Programming for Software Configuration Problem 133

Tree constraints. Our mapping from tree constraints in feature models to
grammars is summarised as follows:

1. Optional : OPIONAL(F) → <F opt> ::= <F> | λ
2. Alternative: ALTERNATIVE(F1,F2) → <F> ::= <F1> | <F2>
3. Or : OR(F1, F2) → <F or> ::= <F> <F or> | <F> ; <F> ::= <F1> | <F2>
4. And(*): AND(F1,F2) → <F> ::= <F1> <F2>

(*) And relation was included to capture grouped features with the same
parent but without alternative/or relations.

For the example (see Fig. 1(a)), the corresponding BNF notation grammar is pre-
sented in Fig. 2. Non-terminals are represented by names in angle brackets (e.g.,
<Payment>) while terminals are represented by quoted strings (e.g., "Credit
Card"). For the sake of simplicity, λ rules are represented by a |.

Cross-tree constraints. Cross-tree constraints in FMs could be suffixed to the
grammar so that they can be read and applied by a program. In our case, we
adopt the propositional logic notation propose by Batory [1], as shown in the
lower part of Fig. 2.

Attributes: are associated to each feature so that optimal product configura-
tions could be derived using the values of the attributes, as shown in Fig. 1(a).

3 Search-Based Approach for Software Configuration

Given a feature model representing a family of features as well as a set of
attributes of these features, the software product configuration problem involves
the exploration and selection of the set of products representing optimal tread-
offs among the various attributes. We propose to use GGGP for exploring the
space of product configurations because it gives us a suitable representation
of candidate solutions as trees that capture the relationships among features
imposed by the FM. Such a representation facilitates the generation, manipu-
lation, and evolution of candidates towards optimal solutions. Figure 3(a) gives
an overview of the proposed approach. As shown in Fig. 3(a), the FM is first
serialised into a grammar (as described in Sect. 2), which is then fed to the
GGGP-based search module, which follows the evolution cycle of a typical evo-
lutionary algorithm, resulting in a Pareto-optimal set of product configurations.

Given the nature of the problem at hand, we propose multi-objective optimi-
sation, in particular we adopt the dominance-based approach as implemented in
the NSGA algorithm [2].

Candidate encoding and initialisation. Each candidate solution is a set of
features, represented as a derivation tree based on the given grammar. An exam-
ple is shown in Fig. 3(b) based on the grammar presented in Sect. 2. Collecting
the leaves of the tree, we get the set of features represented by the candidate
solution. The population is initialised by randomly generating candidates from
the grammar following the process of derivation [6]. Candidate solutions are by

134 F.M. Kifetew et al.

Fig. 3. Proposed solution and candidate encoding

definition valid with respect to the FM (grammar), i.e., constraints imposed by
the FM are respected.

Fitness function. Fitness function is computed based on the values of quality
attributes defined a priori. Given a candidate solution C = {f1, f2, ..., fn}, the
fitness value of C is composed of the aggregate values of each quality attribute
in C. Each attribute is an objective to be optimised. For e.g., from Fig. 3(b), the
sum of the cost of all features in C represents one objective, while the sum of
the value constitutes the second objective.

Search operators. Since candidate solutions are encoded as trees, the operators
we employ are subtree crossover and subtree mutation [6]. In subtree crossover,
given two parents C1 and C2, subtrees of the same type (rooted at the same
grammar non-terminal) are identified in each parent and swapped, producing
offspring. In subtree mutation, an individual C is mutated replacing a subtree
by a newly generated subtree from the grammar.

4 Preliminary Results and Discussion

We implemented our approach in a prototype tool1 based on NSGAII [2]. We
applied the tool to explore optimal configurations for Drupal, which has real
attributes values [10]. The attributes we consider are [5]: (1) Lines of code (LOC)
to be minimised, (2) Cyclomatic complexity (CC) to be minimised, (3) Test
Assertions to be maximised, (4) Number of installations to be maximised, (5)
Number of developers to be minimised, (6) Number of changes to be minimised,
and (7) Number of reported faults to be minimised. The resulting multi-objective
optimisation problem has 8 objectives, including the number of features to be
maximised. Furthermore, to simulate a more realistic situation, we apply a con-
straint on one of the attributes – number of reported faults. That is, the owners
of Drupal have imposed a constraint that products should not contain more than

1 http://selab.fbk.eu/kifetew/downloads/ssbse17-replication-package.tar.

http://selab.fbk.eu/kifetew/downloads/ssbse17-replication-package.tar

Grammar Based Genetic Programming for Software Configuration Problem 135

x number of faults reported in the features included. For the experiment, we set
x = 500. As shown in Table 1, all the individuals in the final population represent
unique optimal configurations. However, not all of them respect the constraint
imposed, i.e., overall number of reported faults less than 500, hence the number
of valid (respecting the constraint on total number of faults) reported in column
#ValidSolutions is fewer than the total number of solutions (#Solutions).

Table 1. Results for Drupal FM

Search budget (sec) #FitnessEvals #Solutions #ValidSolutions

60 33949 100 94

120 78280 100 97

240 96319 100 94

These preliminary results show that the approach is able to generate several
Pareto-optimal configurations within a limited search budget. As future work,
we intend to evaluate the approach on more realistic datasets and attributes,
and compare it with other approaches from the literature.

Acknowledgements. This work is a result of the SUPERSEDE project, funded by
the H2020 EU Framework Programme under agreement number 644018.

References

1. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005). doi:10.1007/11554844 3

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2000)

3. Guo, J., White, J., Wang, G., Li, J., Wang, Y.: A genetic algorithm for optimized
feature selection with resource constraints in software product lines. J. Syst. Softw.
84(12), 2208–2221 (2011)

4. Henard, C., Papadakis, M., Harman, M., Le Traon, Y.: Combining multi-objective
search and constraint solving for configuring large software product lines. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE),
vol. 1, pp. 517–528. IEEE (2015)

5. Hierons, R.M., Li, M., Liu, X., Segura, S., Zheng, W.: Sip: Optimal product selec-
tion from feature models using many-objective evolutionary optimization. ACM
Trans. Softw. Eng. Method. (TOSEM) 25(2), 17 (2016)

6. Kifetew, F.M., Tiella, R., Tonella, P.: Generating valid grammar-based test inputs
by means of genetic programming and annotated grammars. Empirical Softw. Eng.
22(2), 928–961 (2017)

7. Lopez-Herrejon, R.E., Linsbauer, L., Egyed, A.: A systematic mapping study of
search-based software engineering for software product lines. Inf. Softw. Technol.
61, 33–51 (2015)

http://dx.doi.org/10.1007/11554844_3

136 F.M. Kifetew et al.

8. McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genet. Program Evolvable Mach. 11(3–4), 365–396
(2010)

9. Olaechea, R., Rayside, D., Guo, J., Czarnecki, K.: Comparison of exact and approx-
imate multi-objective optimization for software product lines. In: Proceeding of
the 18th International Software Product Line Conference vol. 1, pp. 92–101. ACM
(2014)

10. Sánchez, A.B., Segura, S., Parejo, J.A., Ruiz-Cortés, A.: Variability testing in the
wild: the drupal case study. Softw. Syst. Model. 16(1), 173–194 (2017)

GPGPGPU: Evaluation of Parallelisation
of Genetic Programming Using GPGPU

Jinhan Kim, Junhwi Kim, and Shin Yoo(B)

Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea

{jinhankim,junhwi.kim23,shin.yoo}@kaist.ac.kr

Abstract. We evaluate different approaches towards parallelisation
of Genetic Programming (GP) using General Purpose Computing on
Graphics Processor Units (GPGPU). Unlike Genetic Algorithms, which
uses a single or a fixed number of fitness functions, GP has to eval-
uate a diverse population of programs. Since GPGPU is based on the
Single Instruction Multiple Data (SIMD) architecture, parallelisation of
GP using GPGPU allows multiple approaches. We study three different
parallelisation approaches: kernel per individual, kernel per generation,
and kernel interpreter. The results of the empirical study using a widely
studied symbolic regression benchmark show that no single approach is
the best: the decision about parallelisation approach has to consider the
trade-off between the compilation and the execution overhead of GPU
kernels.

1 Introduction

Genetic Programming has been widely adopted by the Search Based Software
Engineering community: its application ranges from fault localisation [7,12,14],
Genetic Improvement [5,9], and program repair [3,8]. Improving its efficiency
and scalability would have a far reaching impact across the application domains.

Parallelisation is one of the most promising technique for scalability. Pop-
ulation based evolutionary computation has been described as ‘embarrassingly
parallel’, because the fitness evaluation of each individual solution in the pop-
ulation is often completely independent from each other and, consequently, can
be performed in parallel. This is particularly the case with Genetic Algorithms
(GAs): GAs need to apply the same fitness function(s) to the entire population,
which essentially consists of input data to the fitness function(s).

General Purpose Computing on Graphics Processor Units (GPGPU) exploits
the Single Instruction Multiple Data (SIMD) architecture of graphics shaders
to parallelise computation [4]. The SIMD architecture fits the parallel fitness
evaluation of GAs naturally, and has provided significant speed-ups for search-
based test suite minimisation [13].

Genetic Programming (GP), on the other hand, keeps a population of pro-
grams. Parallelisation at the GP population level is not possible, as it would not fit
the SIMD architecture. Instead, GP can be parallelised at the training data level.
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 137–142, 2017.
DOI: 10.1007/978-3-319-66299-2 11

138 J. Kim et al.

Usually, a single candidate GP solution has to be evaluated against many data
points in the training set, which can be done in parallel.

However, this GPGPU based fitness evaluation for GP requires the conversion
of GP trees into GPGPU executable kernels. The conversion involves the kernel
compilation, which is a time consuming process that is external to the GP. The
cost of kernel compilation raises the issue of cost-benefit trade-off for GPGPU.

This paper evaluates different methods of amortising the cost of kernel com-
pilation using CUDA1 toolkit. Kernel per individual method converts each indi-
vidual GP tree into a separate CUDA kernel. Kernel per generation aggregates
all individuals in the population and performs a single compilation of all indi-
viduals. Finally, kernel interpreter method uses an expression interpreter: after
a single compilation of the interpreter, GP can evaluate whatever GP tree with-
out any further compilation. We use the CPU based GP as the baseline, and the
Dow chemical data symbolic regression as the benchmark problem [10].

2 Evaluating GP Trees Using GPGPU

To achieve data level parallelisation using GPGPU, the kernel should be gener-
ated dynamically. Here, we introduce three different approaches.

– Kernel per Individual: The most intuitive approach to convert GP trees
into CUDA kernel is to generate a single CUDA kernel for each candidate
solution. Since the only difference between candidates is the expression they
represent, kernel source code can be generated using templates: we only need
to convert GP trees into infix expressions that conform to CUDA kernel
syntax. While intuitive, a drawback of this approach is that we have to invoke
CUDA compilers for each individual. If the population size is large, this may
cause a significant overhead.

– Kernel per Generation: To reduce the kernel compilation overhead, we
can generate one kernel source code file per generation: the single file will
contain multiple kernels, each corresponding to the individual solutions in
the GP population. While this results in much longer kernel source code files
(and hence increased compilation time), we expect to save the overhead of
invoking CUDA compilers multiple times.

– Kernel Interpreter: One technique that has been studied in the GP liter-
ature [1,11] is to use a single kernel that can interpret GP candidate solu-
tions. Using an interpreter, the GP population is transferred to the GPU as
data, which are then interpreted and evaluated against the data points in
the training data. The kernel interpreter method requires only one compila-
tion throughout the entire GP run. While this significantly reduces the kernel
compilation time, it increases the complexity of the CUDA kernel, which in
turn affects the performance of GPGPU. We implemented an RPN(Reverse
Polish Notation) based CUDA interpreter kernel for this study.

1 Compute Unified Device Architecture from NVIDIA.

GPGPGPU 139

3 Experimental Setup

3.1 Research Questions

Two major drivers of the computational load of GP fitness evaluation are the
population size and the training dataset size. Both directly affects the number
of fitness evaluations that have to be performed. We formulate our Research
Questions around these two factors as follows:

– RQ1. Which approach performs best against different training dataset sizes?
– RQ2. Which approach performs best against different population sizes?

Our study uses the Dow Chemical symbolic regression benchmark [10] to
investigate the performance of different parallelisation approaches: it contains a
training dataset with 747 data points consisting of 57 independent variables and
1 dependent variable. We answer RQ1 by artificially controlling the size of the
training dataset and comparing the efficiency of different GPGPU approaches as
well as the CPU baseline. Since the aim of our study is not to improve the accu-
racy of the evolved expression, we simply repeat each data point in the training
dataset 100, 101, 102, 103, and 104 times to generate datasets with different sizes.
We answer RQ2 by running GP with population size of 50, 100, and 200, and
comparing the results. Every experiment is conducted 30 times.

3.2 Configurations and Environments

We use DEAP2 to implement different approaches: we use the 57 independent
variables in the Dow Chemical problem set as GP terminal nodes, and include
addition, subtraction, multiplication, division, and negation. The GP uses a
three-way tournament selection, a single point crossover with the rate of 0.6,
and uniform mutation with the rate of 0.01. The tree depth is set to 4. We set
the termination criterion as reaching 10 generations.

The experiments were conducted with an Intel i7-6700 CPU machine with 32
GB of RAM, running Ubuntu 14.04.5 LTS. The GPGPU has been performed on
an NVIDIA TITAN X with 12 GB of GDDR5X using CUDA version 8.0. DEAP
has been executed using Python 3.4.

4 Results

Figure 1 shows the execution time of GP using three parallelisation approaches
as well as CPU, against five different training dataset sizes and the population
size of 50. The lines connecting boxplots are merely visual aids for identifying
the same approach: they connect the mean value of each boxplot. As the training
data size increases, the efficiency of CPU based GP and kernel interpreter dete-
riorate sharply, whereas both kernel per individual and kernel per generation

2 https://github.com/DEAP/deap.

https://github.com/DEAP/deap

140 J. Kim et al.

Fig. 1. Plot of three parallelisation approaches and CPU based GP on the fixed pop-
ulation size 50. The y-axis is shown on logarithmic scale.

approach show relatively stable performance. However, up to the dataset size of
74,700, the interpreter approach shows the best performance.

The performance deterioration of the interpreter approach is due to the over-
head of RPN-based expression evaluation. When the size of the training dataset
is relatively small, the savings in kernel compilation time compensate for this
overhead. With larger dataset (i.e. more kernel execution), the interpreter over-
head cancels out the savings in compilation time.

The interpreter overhead is mainly due to two factors. First, the interpreter
uses CUDA registers to maintain a stack, increasing the I/O overhead compared
to kernels that hardcode the expression (kernels per individual and kernel per
generation). If the stack becomes too large to be contained within registers,
we may have to rely on even slower memory, increasing the I/O overhead even
further. Second, the interpreter makes more function calls internally, compared to
the hardcoded kernels: the increased branching also deteriorates the performance
of the kernel interpreter.

To answer RQ1: the best parallelisation approach is determined by the trade-
off between compilation time and the computational overhead of the kernel inter-
preter. Above a certain number of kernel executions, the interpreter loses the
savings from the fewer compilations.

To answer RQ2, we fixed the size of dataset and varied the population size.
The results in Fig. 2a show that, for the data size of 74,700, the interpreter
method outperforms all other approaches, regardless of the population size (i.e.
its performance overhead is still being cancelled out by the savings in the compi-
lation time). Note that the kernel per individual approach performs worse than
the CPU. However, in Fig. 2b, kernel per generation performs the best. In fact,
the relative order between approaches is the same as in Fig. 1 with dataset size
of 747,000, regardless of the population size.

We note that the kernel per individual approach shows wider variances as the
population size grows. Since the approach relies heavily on an external process

GPGPGPU 141

(a) Fixed data size 74,700 (b) Fixed data size 747,000

Fig. 2. Plot of three parallelisation approaches and CPU based GP on the fixed data
size 74,700 and 747,000. Both y-axes are shown on logarithmic scale.

(i.e. CUDA compiler), we posit that it is more vulnerable to the external and
environmental factors that can affect the execution time stochastically.

5 Related Works

The use of an interpreter has been suggested as a way to scale up GP on GPUs:
Langdon and Banzhaf implemented an RPN-based interpreter for GP regres-
sion [1]. Wilson and Banzhaf implemented an entire Linear GP system on GPUs,
parallelising not only the fitness evaluation but also the GP mutation [11]. Both
approaches have been developed with earlier incarnations of GPGPU frameworks
and do not benefit from the high level programming support of contemporary
frameworks. Our work exploits the modern GPU development framework to
compare approaches such as kernel per individual.

Other applications of GP in SBSE involves evolving not just expressions
but arbitrary code [2,3,9]. To parallelise GP for these applications, we need to
be able to execute arbitrary code on GPU. The existence of I/O operations or
system calls prevents such use of GPGPU. However, there are ongoing works
that attempt to overcome the limitations of GPU environment. For example,
Silberstein et al. have tried to interface the host file system with GPU kernels [6].

6 Conclusion

This paper evaluates three different parallelisation approaches for GP fitness
evaluation on GPU: kernel per individual, kernel per generation, and kernel
interpreter. The empirical study using a symbolic regression benchmark problem
shows that, while the kernel per generation performs best overall, the actual
performance depends on multiple factors such as the size of the population and
the volume of the training data. Consequently, we advise GP practitioners to
choose their parallelisation approach carefully. Future work will investigate a
wider range of benchmark problems.

142 J. Kim et al.

References

1. Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming on
GPU graphics cards. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia
Alcázar, A.I., Falco, I., Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol.
4971, pp. 73–85. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78671-9 7

2. Langdon, W.B., Harman, M.: Genetically improving 50,000 lines of C++. Technical
report, RN/12/09, Department of Computer Science, University College London
(2012)

3. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: fixing 55 out of 105 bugs for $8 each. In: Proceedings
of the 34th International Conference on Software Engineering, pp. 3–13 (2012)

4. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.J.: A survey of general-purpose computation on graphics hardware.
Comput. Graphics Forum 26(1), 80–113 (2007)

5. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In: Nicolau,
M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez, P., Merelo, J.J.,
Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 137–149.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44303-3 12

6. Silberstein, M., Ford, B., Keidar, I., Witchel, E.: GPUfs: integrating a file system
with GPUs. SIGARCH Comput. Archit. News 41(1), 485–498 (2013)

7. Sohn, J., Yoo, S.: FLUCCS: using code and change metrics to improve fault local-
isation. In: Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA 2017 (2017, to appear)

8. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st IEEE International Con-
ference on Software Engineering (ICSE 2009), pp. 364–374. IEEE, 16–24 May 2009

9. White, D., Arcuri, A., Clark, J.: Evolutionary improvement of programs. IEEE
Trans. Evol. Comput. 15(4), 515–538 (2011)

10. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kron-
berger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: com-
munity survey results and proposals. Genet. Program Evolvable Mach. 14(1), 3–29
(2013)

11. Wilson, G., Banzhaf, W.: Deployment of CPU and GPU-based genetic pro-
gramming on heterogeneous devices. In: Proceedings of the 11th Annual Confer-
ence Companion on Genetic and Evolutionary Computation Conference (GECCO
2009), pp. 2531–2538. ACM Press, New York, July 2009

12. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp.
244–258. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33119-0 18

13. Yoo, S., Harman, M., Ur, S.: GPGPU test suite minimisation: search based software
engineering performance improvement using graphics cards. Empirical Softw. Eng.
18(3), 550–593 (2013)

14. Yoo, S., Xie, X., Kuo, F.-C., Chen, T.Y., Harman, M.: Human competitiveness of
genetic programming in spectrum-based fault localisation: theoretical and empir-
ical analysis. ACM Trans. Softw. Eng. Methodol. 26(1), 4:1–4:30 (2017). doi:10.
1145/3078840

http://dx.doi.org/10.1007/978-3-540-78671-9_7
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1007/978-3-642-33119-0_18
http://dx.doi.org/10.1145/3078840
http://dx.doi.org/10.1145/3078840

Evaluating CAVM: A New Search-Based Test
Data Generation Tool for C

Junhwi Kim1, Byeonghyeon You1, Minhyuk Kwon2, Phil McMinn3,
and Shin Yoo1(B)

1 Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea
shin.yoo@kaist.ac.kr

2 Suresoft Technologies Inc., Seoul, Republic of Korea
3 University of Sheffield, Sheffield, UK

p.mcminn@sheffield.ac.uk

Abstract. We present CAVM (pronounced “ka-boom”), a new search-
based test data generation tool for C. CAVM is developed to augment an
existing commercial tool, CodeScroll, which uses static analysis and
input partitioning to generate test data. Unlike the current state-of-the-
art search-based test data generation tool for C, Austin, CAVM handles
dynamic data structures using purely search-based techniques. We com-
pare CAVM against CodeScroll and Austin using 49 C functions, ranging
from small anti-pattern case studies to real world open source code and
commercial code. The results show that CAVM can cover branches that
neither CodeScroll nor Austin can, while also exclusively achieving the
highest branch coverage for 20 of the studied functions.

1 Introduction

We introduce and evaluate CAVM (pronounced “ka-boom”), a new search-based
test data generation tool for C. CAVM is based on the Alternating Variable Method
(AVM) [7]: however, unlike the existing AVM-based test data generation tool
Austin [6], CAVM generates inputs consisting of dynamic data structures using
purely a search-based technique: growing the appropriate shape of the dynamic
data structure, as well as filling it with data, is part of the metaheuristic search
performed. It also supports generation of string inputs (i.e., char arrays) for
test data generation problems involving comparisons using the strcmp library
function, using code rewriting.

We compare CAVM against a commercial test data generation tool,
CodeScroll (developed by Suresoft Technologies), and Austin, with respect
to their relative effectiveness for C code involving dynamic data structures. The
empirical evaluation studies small anti-pattern case studies, known to be chal-
lenging for CodeScroll, as well as real world open source and commercial code.
The results show that our new algorithms, which we implemented into CAVM, can
cover branches that neither CodeScroll nor Austin can.

c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 143–149, 2017.
DOI: 10.1007/978-3-319-66299-2 12

144 J. Kim et al.

2 CAVM: A New C Test Data Generation Tool

CAVM is an open source byproduct of an industry collaboration, the aim of which
is to augment CodeScroll with a search-based software testing technique so that
it can deal with challenging branches more effectively.

Extending the basic AVM for primitive types, CAVM adopts different local
search strategies for each input type. For primitive data types, CAVM uses Iterated
Pattern Search (IPS) [4,7]. In case of a struct type argument, CAVM applies AVM
on each of its members: if the struct is nested, CAVM applies its AVM-based search
algorithm recursively.

CAVM considers pointers to primitive types as arrays; CAVM initialises all point-
ers to NULL and applies IPS to each element of the current array, growing the size
of the array by one if the search does not succeed. Note that the first “move”
after failing to cover the given branch with NULL is to instantiate the pointer (i.e.,
growing it to a single element array) using a random value. CAVM grows dynamic
data structures, such as linked lists or trees, by recursively growing nested point-
ers. For pointers to struct, if the current value is NULL, CAVM checks whether it
can cover the current target branch simply by instantiating the pointer. CAVM
randomly initialises primitive members of the instantiated struct. If the search
does not succeed, CAVM subsequently tries to search for the values of the new
instance (i.e., the members of the pointed struct) recursively. For more detailed
description of CAVM and its algorithm, please refer to our technical report [5].

3 Experimental Setup

3.1 Subjects

Table 1 contains the list of subject functions that we study in this paper. The
anti-pattern subject is a set of branches that CodeScroll is known to be unable
to cover: these are the minimum working examples that contain only the prob-
lematic structural patterns. Line, Calendar, Triangle, and AllZeros exam-
ples are ported to C from McMinn and Kapfhammer [7] and constitute the
baseline examples. LinkedList is a collection of utility function implementa-
tions for the singly linked list in C, taken from an on-line tutorial, whereas
BinaryTree contains seven functions from the textbook by Horowitz et al. [3].
Finally, busybox-ls contains five functions from the open source implementation
of ls utility for the busybox package, whereas decode.c contains 24 functions
chosen from a name demangler module for C++ frontend, developed by the Edison
Design Group. In total, we study 482 branches in 49 functions.

3.2 Configurations

We compare CAVM to Austin and CodeScroll based on the branch coverage they
achieve. Since Austin and CAVM adopt stochastic approaches, we will report the
average coverage over 20 runs. We only evaluate the deterministic heuristic of
CodeScroll, and therefore do not repeat its runs.

Evaluating CAVM: A New Search-Based Test Data Generation Tool for C 145

Table 1. Subject C functions studied

Subject Description Branches * Rec. * struct strcmp

AllZeros Examples from AVMf [7] 6 ✓ - - -

Calendar 46 - - - -

Line 14 - - ✓ -

Triangle 16 - - - -

CodeScroll

Antipatterns

Set of branches that

CodeScroll cannot cover

16 ✓ ✓ ✓ ✓

LinkedList 5 utility functions for singly

linked lista
26 ✓ ✓ ✓ -

BinaryTree 7 tree-related functions from a

textbook by Horowitz et al. [3]

30 ✓ ✓ ✓ -

busybox-ls 5 functions from ls in Busybox

1.2.0b
32 ✓ - - -

decode.c 22 functions from decode.cc 296 ✓ - ✓ -

Total 49 C functions 482
a Taken from an on-line tutorial: http://milvus.tistory.com/17
b BusyBox is a collection of common UNIX utilities in a single small executable: https://

busybox.net.
c https://www.edg.com/c

While CAVM allows the user to set the search range for each input parameter of
the target function, Austin lacks such control. Consequently, we do not narrow
down the input range and use the default range for each primitive type, so that
both tools search in the same space. For both Austin and CAVM, we set the
maximum number of fitness evaluations for each target branch to 1,000, and
the timeout duration for each target function to five minutes. Note that both
tools collect “collateral” coverage [1] (i.e., coverage of branches that are not the
target but nonetheless covered by a test case generated by a tool1). Any collateral
coverage achieved within five minutes counts in the final results. However, if a
tool does not terminate within the five minute timeout, we record 0% coverage.

3.3 Environments

CAVM is written in C/C++ as well as Python. The target code instrumentation is
written in C/C++ and depends on clang version 3.9.0 and GNU gcc version 4.9 or
higher. The AVM search is written in Python 3 and depends on CFFI2 as well
as Python runtime version 3.5 or higher.

For the experiment, CAVM is executed on a machine with Intel Core
i7-6700K 4.0 GHz and 32 GB RAM running Ubuntu 14.04 LTS. Due to spe-
cific dependencies, Austin is executed on the same machine running Ubuntu
12.04.5 LTS. CodeScroll only supports Microsoft Windows and consequently is
executed on a machine with Intel Core i5-6600 3.9 GHz and 16 GB RAM running

1 Here, we define collateral coverage as branches that are covered in addition to the
original target by the final, generated test cases.

2 C Foreign Function Interface: http://cffi.readthedocs.io.

http://milvus.tistory.com/17
https://busybox.net
https://busybox.net
https://www.edg.com/c
http://cffi.readthedocs.io

146 J. Kim et al.

Windows 7. We allow the different hardware environments because we are only
interested in achieved coverage and success rates.

4 Results

Table 2 contains the coverage results from 20 repetitive runs of Austin and
CAVM, as well as single runs of CodeScroll. Note that the functions in decode.c
have been renamed in the table to save space: their full names, as well as their
source code and the box plots of the coverage results will be available from the
accompanying web page. For Austin and CAVM, we report mean (μ) and standard
deviation (σ): the highest coverage is typeset in bold. Out of 49 functions, there
are 5 functions for which CodeScroll alone achieves the highest branch coverage,
and two functions for which Austin does the same. CAVM alone achieves the
highest branch coverage for 20 functions. Notably, Austin fails to cover any
branch of functions in decode.c within five minutes.

Table 2. Average branch coverage (μ) and standard deviation (σ) from single runs of
CodeScroll, and 20 runs of Austin and CAVM: the highest coverage for each function
is typeset in bold. Br. indicates the number of branches for each subject; CS stands for
CodeScroll.

Evaluating CAVM: A New Search-Based Test Data Generation Tool for C 147

We manually analysed the hard-to-cover branches in the smaller benchmarks
and identified the following common issues (each issue can be cross-referenced
to Table 2 through the symbols):
(1) Indirect control dependency (�): one of the branches in the allzeros
function requires the number of zeros in the input array to be equal to the size of
input: CAVM fails to cover this branch. CAVM does not receive any guidance through
the fitness function because the counter for the number of zeros is changed in
another branch that does not depend on the target branch, similar to the flag
problem [2]. This results in CAVM repeating random restarts.
(2) Large search spaces (∗): a for loop in calendar consumes a large amount
of time when inputs are initialised from a large range. Since the loop iterates
over the range between two integer inputs, the number of iterations can be up to
the range of integers in C. This leads to frequent timeouts and, consequently, 0%
coverage. When the input variable range is set to [−100, 100], CAVM consistently
achieves 100% coverage.
(3) Low success rate (†): some branches in the line function are simply hard
to cover under the given timeout and evaluation budget. While CAVM sometimes
succeeds to cover all branches in line, the average coverage suffers from runs
that failed to cover the hard branches.
(4) Infeasible branches (‡): the function triangle contains an infeasible
branch. Consider the following code snippet from triangle:

if(a == b) { ... } else { if(a == b) { ... }}

The true branch of second predicate is logically infeasible because of the first one.
Apart from this branch, CAVM and CodeScroll cover all branches in triangle.
(5) Use of strcmp (§): case4 in Antipatterns contains a call to strcmp, which
neither CodeScroll nor Austin supports.
(6) Imprecise control dependency analysis (♦): currently CAVM suffers
from imprecise control dependency analysis; it cannot detect implicit control
dependencies between branches caused by, for example, a return in the middle
of a function. Consider the following code snippet:

if(x > 42) return; if(y == 7)...

Both the true and the false branch of the second if statement depend on the false
branch of the first one. However, this dependency is implicit, as it is not expressed
as part of a nested structure. CAVM’s current control dependency analysis fails
to capture this. Consequently, CAVM cannot compute the fitness values correctly
for these branches and cannot cover them. When we manually made the control
dependency explicit (by inserting the appropriate else structure), CAVM achieves
an average of approximately 60% branch coverage for functions delete, insert,
and modify in the LinkedList subject, with some individual runs achieving
100% coverage. Precise control dependency analysis for the full set of C structural
constructs is a part of future work.

148 J. Kim et al.

Finally, let us discuss the performance of Austin. Austin requires an explicit
pointer constraint in the source code of the target function in order to instantiate
any pointer. If the code does not compare a given pointer to NULL, the pointer will
not be instantiated. After confirming this behaviour to be intended with the main
developer of Austin, we inserted explicit NULL checks to smaller benchmarks
(Antipatterns, AVMf, LinkedList, and BinaryTree), but opted not to modify
the real world subjects (ls and decode.c). This results in the consistent 0%
coverage for functions in decode.c, as they all require pointer parameters.

Based on the results in Table 2, we answer RQ1: CAVM can cover branches
that neither CodeScroll nor Austin can. In particular, Austin has a significant
limitation regarding pointer instantiation. The accompanying webpage3 contains
results about efficiency of CAVM, including the number of required fitness evalu-
ations and the average wall clock execution time.

5 Conclusion

We present CAVM, an AVM-based test data generation tool that handles dynamic
data structures using a purely search-based approach. Unlike the current state-
of-the-art tool, Austin, which determines the shape of the required data struc-
ture using symbolic analysis, CAVM simply grows the data structure by successive
pointer instantiations. The empirical comparison of CAVM against Austin and a
commercial test data generation tool, CodeScroll, shows that CAVM can cover
many branches that neither of the other tools can. Future work include improve-
ment of CAVM as well as its integration to CodeScroll.

Acknowledgement. This work was supported by the ICT R&D program of MSIP/I-
ITP [Grant No. R7117-16-0005: A connected private cloud platform for mission critical
software test and verification].

References

1. Harman, M., Kim, S.G., Lakhotia, K., McMinn, P., Yoo, S.: Optimizing for the
number of tests generated in search based test data generation with an application
to the oracle cost problem. In: Proceedings of the 3rd International Workshop on
Search-Based Software Testing (SBST 2010), pp. 182–191, April 2010

2. Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., Roper, M.:
Testability transformation. IEEE Trans. Softw. Eng. 30(1), 3–16 (2004)

3. Horowitz, E., Sahni, S., Anderson-Freed, S.: Fundamentals of Data Structures in C.
W. H. Freeman & Co., New York (1992)

4. Kempka, J., McMinn, P., Sudholt, D.: Design and analysis of different alternating
variable searches for search-based software testing. Theoret. Comput. Sci. 605, 1–20
(2015)

5. Kim, J., You, B., Kwon, M., McMinn, P., Yoo, S.: Evaluation of CAVM, Austin,
and CodeScroll for test data generation for C. Technical report. CS-TR-2017-413,
School of Computing, Korean Advanced Institute of Science and Technology (2017)

3 http://coinse.kaist.ac.kr/projects/cavm/.

http://coinse.kaist.ac.kr/projects/cavm/

Evaluating CAVM: A New Search-Based Test Data Generation Tool for C 149

6. Lakhotia, K., Harman, M., Gross, H.: AUSTIN: a tool for search based software
testing for the C language and its evaluation on deployed automotive systems. In:
2nd International Symposium on Search Based Software Engineering, pp. 101–110,
September 2010

7. McMinn, P., Kapfhammer, G.M.: AVMf : an open-source framework and imple-
mentation of the alternating variable method. In: Sarro, F., Deb, K. (eds.)
SSBSE 2016. LNCS, vol. 9962, pp. 259–266. Springer, Cham (2016). doi:10.1007/
978-3-319-47106-8 21

http://dx.doi.org/10.1007/978-3-319-47106-8_21
http://dx.doi.org/10.1007/978-3-319-47106-8_21

Challenge Papers

Using Search-Based Test Generation
to Discover Real Faults in Guava

Hussein Almulla, Alireza Salahirad, and Gregory Gay(B)

University of South Carolina, Columbia, SC, USA
{halmulla,alireza}@email.sc.edu, greg@greggay.com

Abstract. Testing costs can be reduced through automated unit test
generation. An important benchmark for such tools is their ability to
detect real faults. Fault databases, such as Defects4J, assist in this
task. The Guava project—a collection of Java libraries from Google—
offers an opportunity to expand such databases with additional complex
faults. We have identified 11 faults in the Guava project, added them to
Defects4J, and assessed the ability of the EvoSuite framework to detect
these faults. Ultimately, EvoSuite was able to detect three faults. Analy-
sis of the remaining faults offers lessons in how to improve generation
tools. We offer these faults to the community to assist future benchmark-
ing efforts.

Keywords: Search-based test generation · Automated test generation ·
Software faults

1 Introduction

With the growing complexity of software, the cost of testing has grown as well.
Automation of tasks such as unit test creation can assist in controlling that cost.
One promising form of automated test generation is search-based generation.
Given a measurable testing goal, and a fitness function capable of guiding the
search towards that goal, powerful optimization algorithms can select test inputs
able to meet that goal [3].

When testing, developers ultimately wish to detect faults. Therefore, to
impact testing practice, automated generation techniques must be effective at
detecting the complex faults that manifest in real-world software projects [7]. By
offering examples of such faults, fault databases—such as Defects4J [6]—allow
us to benchmark generation tools against realistic case examples. Importantly,
Defects4J can be expanded to include additional systems and example faults.

The Guava project1 offers an excellent expansion opportunity. Guava is an
open-source set of core libraries for Java, developed by Google, that include col-
lection types, graph libraries, functional types, in-memory caching, and numer-
ous other utilities. Guava is an essential tool of modern development, and is one
of the most used libraries [8].

This work is supported by National Science Foundation grant CCF-1657299.
1 https://github.com/google/guava.

c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 153–160, 2017.
DOI: 10.1007/978-3-319-66299-2 13

https://github.com/google/guava

154 H. Almulla et al.

Guava serves as an interesting benchmark subject for two reasons. First,
much of its functionality is, naturally, related to the creation and manipulation
of complex objects. Guava defines a variety of new data structures, and function-
ality related to those structures. Generation and initialization of complex input
is an outstanding challenge area for automated generation [1]. Second, Guava is
a mature project. Faults in Guava—particularly recent faults—are unlikely to
resemble the simple syntactic mistakes modeled by mutations. Rather, we expect
to see faults that require specific, difficult to trigger, combinations of input and
method calls. Generation tools that can detect such faults are likely to be effec-
tive on other real-world projects. If not, then by studying these faults, we may
be able to learn lessons that will improve these tools.

We have identified 11 real faults in the Guava project, and added them
to Defects4J. We generated test suites using the EvoSuite framework [3], and
assessed the ability of these suites to detect nine of the faults2. Ultimately,
EvoSuite is able to detect three of the nine studied faults. Some of the issues
preventing fault detection include the need for specific input values, data types,
or sequences of method calls—generally factors that cannot be addressed through
code coverage alone. We have made these faults available to provide data and
examples that could benefit future test generation research.

2 Study

In this study, we have extracted faults from the Guava project. We have gener-
ated tests for the fixed version of each class using the EvoSuite framework [3],
and applied those tests to the faulty version in order to assess the efficacy of gen-
erated suites. In doing so, we wish to answer the following research questions:
(1) can EvoSuite detect the extracted faults?, and (2), what factors prevented
fault detection?

In order to answer these questions, we have performed the following experi-
ment:

1. Extracted Faults: We have identified 11 real faults in the Guava project,
and added them to the Defects4J fault database (See Sect. 2.1).

2. Generated Test Cases: For nine of the faults, we generated 10 suites per
fault using the fixed version of each class-under-test (CUT). We repeat this
process with a two-minute and a ten-minute search budget per CUT (See
Sect. 2.2).

3. Removed Non-Compiling Tests: Any tests that do not compile, or that
return inconsistent results, are automatically removed (See Sect. 2.2).

4. Assessed Fault-finding Efficacy: For each budget and fault, we measure
the likelihood of fault detection. For each undetected fault, we examined the
report and source code to identify possible detection-preventing factors.

2 Two faults were omitted from the case study as they require the use of JDK 7 (see
Sect. 2).

Using Search-Based Test Generation to Discover Real Faults in Guava 155

2.1 Fault Extraction

Defects4J is an extensible database of real faults extracted from Java
projects [6]3. Currently, it consists of 395 faults from six projects. For each
fault, Defects4J provides access to the faulty and fixed versions of the code,
developer-written test cases that expose each fault, and a list of classes and lines
of code modified to fix the fault.

We have added Guava to Defects4J. This consisted of developing build files
that work across project versions, extracting candidate faults using Guava’s ver-
sion control and issue tracking systems, ensuring that each candidate could be
reliable reproduced, and minimizing the “patch” used to distinguish fixed and
faulty classes.

For inclusion in the final dataset, each fault is required to meet three proper-
ties. First, the fault must be related to the source code. For each reported issue,
we attempted to identify a pair of code versions that differ only by the minimum
changes required to address the fault. The “fixed” version must be explicitly
labeled as a fix to an issue, and changes imposed by the fix must be to source
code, not to other project artifacts such as the build system. Second, the fault
must be reproducible—at least one test must pass on the fixed version and fail
on the faulty version. Third, the fix to the fault must be isolated from unrelated
code changes such as refactorings.

One property of all Defects4J faults is that the commit message for the
“fixed” version reference a reported issue in the project’s tracking system (i.e.,
“fixes #2345”). Fulfilling this property has not been a problem for the six exist-
ing projects, as the developers of those projects have used a standard commit
message format. However, Guava commits do not follow a standard format—
many “fixes” do not reference a reported issue. To maintain continuity with
the other Defects4J projects, we restricted our search to fixes that do make an
explicit reference. Following this process, we extracted 11 faults from a pool of
63 candidate faults that reference an explicit issue. In the future, we may allow
commits without explicit references in order to mine additional faults.

One additional limiting factor is that particular Java Development Kit ver-
sions must be installed and used to build certain versions of Guava. Due to
language changes, JDK 7 must be used to build faults 10 and 11. Faults 1-9 can
be built using JDK 8. Recently, the decision was made to require that all new
additions to Defects4J be compatible with JDK 8. Faults 10 and 11 will still be
made available, but will not be included in the core Defects4J database or used
in our case study.

The faults used in this study can be accessed by cloning the bug-mining
branch of https://github.com/Greg4cr/defects4j. Additional data about each
fault can be found at http://greggay.com/data/guava/guavafaults.csv, including
commit IDs, fault descriptions, and a list of triggering tests. Later, these faults
will be migrated into the master branch at http://defects4j.org. We plan to add
additional faults and improvements in the future.

3 Available from http://defects4j.org.

https://github.com/Greg4cr/defects4j
http://greggay.com/data/guava/guavafaults.csv
http://defects4j.org
http://defects4j.org

156 H. Almulla et al.

2.2 Test Generation and Removal

EvoSuite applies a genetic algorithm in order to evolve test suites over several
generations, forming a new population by retaining, mutating, and combining the
strongest solutions [7]. In this study, we used EvoSuite version 1.0.5 with a com-
bination of three fitness functions—Branch, Exception, and Method Coverage—a
combination recently found to be generally effective at detecting faults [5].

Tests are generated from the fixed version of the system and applied to the
faulty version in order to eliminate the oracle problem. In practice, this translates
to a regression testing scenario. Given the potential difficulty in achieving cover-
age over Guava classes, two search budgets were used—two and ten minutes, a
typical and an extended budget [4]. To control experiment cost, we deactivated
assertion filtering—all possible regression assertions are included. All other set-
tings were kept at their default values. As results may vary, we performed 10
trials for each fault and search budget.

Generation tools may generate flaky (unstable) tests [7]. For example, a test
case that makes assertions about the system time will only pass during genera-
tion. We automatically remove flaky tests4. First, non-compiling test cases are
removed. Then, each test is executed on the fixed CUT five times. If results are
inconsistent, the test case is removed. On average, 0.92 tests are removed from
each suite.

3 Results and Discussion

In Table 1, we list—for each search budget—whether EvoSuite was able to detect
each fault and, if so, the likelihood of detection (the proportion of suites that
detected the fault). We also list the average Branch Coverage attained over the
ten trials, the average number of tests in the generated suites, the average suite
length (number of test steps), and the average number of tests removed.

From Table 1, we can see the three of the nine faults were detected (Faults 3,
4, and 8). Of these, Fault 3 was detected the most reliably (90% likelihood for
both budgets). This fault, dealing with incorrect rounding5, is a classic example
of the types of faults that automated generation excels at. Branch Coverage
drives the search towards the affected code and towards differing output between
versions.

Fault 46 was also detected reliably. The faulty version uses a non-standard
ASCII character in the toString() function for class Range. This is a relatively
easy fault to catch—any call to toString() with a valid Range object will result
in differing output between faulty and fixed versions. With the shorter search
budget, EvoSuite is somewhat less likely to call the function and somewhat more

4 This process is documented in more detail in [7] and [4].
5 https://github.com/google/guava/commit/

1b1163b7e2c121d4a5b25b8966714201551976c4.
6 https://github.com/google/guava/commit/

c6e21a35f3113a7a952a9615a0e92dcf1dd4bfb3.

https://github.com/google/guava/commit/1b1163b7e2c121d4a5b25b8966714201551976c4
https://github.com/google/guava/commit/1b1163b7e2c121d4a5b25b8966714201551976c4
https://github.com/google/guava/commit/c6e21a35f3113a7a952a9615a0e92dcf1dd4bfb3
https://github.com/google/guava/commit/c6e21a35f3113a7a952a9615a0e92dcf1dd4bfb3

Using Search-Based Test Generation to Discover Real Faults in Guava 157

Table 1. Test generation results for each fault and search budget—likelihood of fault
detection, average achieved branch coverage (covered/total branches), average number
of tests, average suite length, and average number of tests removed.

Fault Budget Fault

detected

Likelihood of

detection

Branch coverage

(Covered/Total

Goals)

Suite size Suite length Number of

tests

removed

1 2 min X 0.00% 11.83% (22.60/191.00) 6.90 26.10 0.90

10 min X 0.00% 73.25%

(139.90/191.00)

38.70 180.80 11.10

2 2 min X 0.00% 92.47% (82.30/89.00) 26.10 65.60 0.00

10 min X 0.00% 93.60% (83.30/89.00) 26.90 70.00 0.00

3 2 min � 90.00% 96.64%

(132.40/137.00)

65.90 114.90 0.00

10 min � 90.00% 97.52%

(133.60/137.00)

67.70 117.00 0.00

4 2 min � 60.00% 67.56% (83.10/123.00) 91.40 270.40 1.20

10 min � 100.00% 92.03%

(113.20/123.00)

130.40 424.20 1.60

5 2 min X 0.00% 32.38% (13.60/42.00) 4.70 49.40 0.00

10 min X 0.00% 76.31% (30.70/40.20) 14.50 96.90 0.00

6 2 min X 0.00% 3.10% (30.90/1008.00) 3.00 11.60 0.00

10 min X 0.00% 3.10% (31.10/1008.00) 3.40 13.00 0.10

7 2 min X 0.00% 2.32% (23.30/1005.00) 3.40 20.50 0.00

10 min X 0.00% 1.91% (19.20/1005.00) 2.20 15.50 0.30

8 2 min � 10.00% 21.51% (11.40/53.00) 7.30 35.10 0.00

10 min � 60.00% 91.89% (48.70/53.00) 42.40 214.90 1.20

9 2 min X 0.00% 3.54% (5.60/158.00) 3.40 8.40 0.00

10 min X 0.00% 57.47% (90.80/158.00) 74.30 175.30 0.20

likely to set up an invalid range. However, the longer budget ensures that the
fault is caught by all suites.

Fault 8 involves the computation of the intersection of RegularContiguousSet
objects when one is a singleton7. One of the changes made to fix the fault is a shift
from < in the return statement of the isEmpty() method to <=. Any test case
where the two compared variables are the same will now detect the fault. A longer
search budget increases the number of suites that detect the fault (10% to 30%),
but this is still a clear case of a fault that requires not just coverage, but picking
specific input.

EvoSuite failed to detect the other six faults. Therefore, our next step was
to examine these faults to identify factors preventing detection. These factors
include:

Specific Input Values are Required: As seen in Fault 8, it is not enough to
simply cover a line. At times, specific input values are required to trigger and
detect a fault. In the case of Fault 8, the generator is able to stumble on these

7 https://github.com/google/guava/commit/
44a2592b04490ad26d2bc874f9dbd4c1146cc5de.

https://github.com/google/guava/commit/44a2592b04490ad26d2bc874f9dbd4c1146cc5de
https://github.com/google/guava/commit/44a2592b04490ad26d2bc874f9dbd4c1146cc5de

158 H. Almulla et al.

inputs given enough time. In other cases, such as with Fault 28, not enough
context is offered to the generator. Because of this fault, splitting a string with
a zero-width regular expression pattern would result in single-character strings
on either end of the split being dropped. The fix to the code changes a >= to
a >, but unless input matching this particular corner case is used, the fault will
not be discovered.

Specific Data Types are Required for Input: Guava includes functionality
for iterating over lists that is intended to function regardless of the type of list
used. Fault 99 illustrates the difficulty of verifying such functionality. Unlike sets,
lists typically allow duplicate elements. This is not universally true, however.
Therefore, if a list type is used that does not allow duplicates, then the affected
code in Guava will throw an exception. This is another case that coverage cannot
handle, as coverage can be obtained using any type of list. Detecting the fault
requires choosing a specialized data type.

Inputs are Instances of Complex Data Types: Generating input for com-
plex data types is still an open challenge for automated generation [1]. If the
generator cannot produce and manipulate input of such types, it may not be
able to cover code, reducing the possibility of triggering faults. Fault 610 is one
such example. This fault revolves around the wrong cause of removal being listed
for items in a cache. To discover this fault, EvoSuite must generate and initialize
an instance of the class LocalCache. In addition, this class is a generic type,
further complicating automated generation [2].

A Specific Series of Method Calls Must be Generated: Each unit
test consists of a series of one or more calls to methods in the CUT. Rather
than specific input, at times, triggering a fault requires a specific sequence of
calls. Fault 511 is one such example. In this case, a long sequence of nested
Futures.transform(...) calls on the same object will indefinitely hang because
a StackOverflowException is thrown and swallowed. Detecting this fault
requires not only input that triggers an exception, but a sequence of trans-
formation calls on that input.

Fault 112 offers a second example of this factor. MinMaxPriorityQueue fails
to remove the correct object after a sequence of multiple add and remove calls—
specifically, certain elements may be iterated more than once if elements are

8 https://github.com/google/guava/commit/
55524c66de8db4c2e44727b69421c7d0e4f30be0.

9 https://github.com/google/guava/commit/
1a1b97ee1f065d0bc52c91eeeb6407bfaa6cbea1.

10 https://github.com/google/guava/commit/
0a686a644ca5cefb9e7bf4a38b34bf4ede9e75aa.

11 https://github.com/google/guava/commit/
52b5ee640da780e0fd2502ec995436fcdc93e03e.

12 https://github.com/google/guava/commit/
2ef955163b3d43e7849c1929ef4e5d714b93da96.

https://github.com/google/guava/commit/55524c66de8db4c2e44727b69421c7d0e4f30be0
https://github.com/google/guava/commit/55524c66de8db4c2e44727b69421c7d0e4f30be0
https://github.com/google/guava/commit/1a1b97ee1f065d0bc52c91eeeb6407bfaa6cbea1
https://github.com/google/guava/commit/1a1b97ee1f065d0bc52c91eeeb6407bfaa6cbea1
https://github.com/google/guava/commit/0a686a644ca5cefb9e7bf4a38b34bf4ede9e75aa
https://github.com/google/guava/commit/0a686a644ca5cefb9e7bf4a38b34bf4ede9e75aa
https://github.com/google/guava/commit/52b5ee640da780e0fd2502ec995436fcdc93e03e
https://github.com/google/guava/commit/52b5ee640da780e0fd2502ec995436fcdc93e03e
https://github.com/google/guava/commit/2ef955163b3d43e7849c1929ef4e5d714b93da96
https://github.com/google/guava/commit/2ef955163b3d43e7849c1929ef4e5d714b93da96

Using Search-Based Test Generation to Discover Real Faults in Guava 159

removed during iteration. It would not be unusual to see a sequence of calls in a
generated test case. However, the example tests created by humans to reproduce
this fault include relatively long sequences of calls. The suite minimization and
bloat control mechanisms used to control suite size in automated generation are
designed to avoid a long series of calls that do not contribute to code coverage—
actively discouraging the generation of the very type of test cases that would
detect this fault.

Many of these factors cannot be solved through increasing code coverage.
Rather, they require context from the project. Methods of gleaning that con-
text, either through seeding from existing test cases or data mining of project
elements, may assist in improving the efficacy of test generation.

4 Conclusion

We have identified 11 real faults in the Guava project, and added them to the
Defects4J fault database. To study the capabilities of modern test generation
tools, we generated test suites using the EvoSuite framework. Ultimately, Evo-
Suite is able to detect three of the nine studied faults. Some of the issues pre-
venting fault detection include the need for specific input values, data types, or
sequences of method calls—generally factors that cannot be addressed through
code coverage alone. We have made these faults available to provide data and
examples that could benefit future test generation research.

References

1. Feldt, R., Poulding, S.: Finding test data with specific properties via metaheuris-
tic search. In: 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), pp. 350–359, November 2013

2. Fraser, G., Arcuri, A.: Automated test generation for java generics. In: Winkler, D.,
Biffl, S., Bergsmann, J. (eds.) SWQD 2014. LNBIP, vol. 166, pp. 185–198. Springer,
Cham (2014). doi:10.1007/978-3-319-03602-1 12

3. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-
box test generation really help software testers? In: Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, ISSTA, pp. 291–301. ACM,
New York (2013). http://doi.acm.org/10.1145/2483760.2483774

4. Gay, G.: The fitness function for the job: search-based generation of test suites
that detect real faults. In: Proceedings of the International Conference on Software
Testing, ICST 2017. IEEE (2017)

5. Gay, G.: Generating effective test suites by combining coverage criteria. In: Menzies,
T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 65–82. Springer, Cham
(2017)

6. Just, R., Jalali, D., Ernst, M.D.: defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2014, pp. 437–440.
ACM, New York (2014). http://doi.acm.org/10.1145/2610384.2628055

http://dx.doi.org/10.1007/978-3-319-03602-1_12
http://doi.acm.org/10.1145/2483760.2483774
http://doi.acm.org/10.1145/2610384.2628055

160 H. Almulla et al.

7. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do auto-
matically generated unit tests find real faults? an empirical study of effectiveness
and challenges. In: Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), ASE 2015. ACM, New York (2015)

8. Weiss, T.: We analyzed 30,000 GitHub projects - here are the top. 100
libraries in Java, JS and Ruby (2013). http://blog.takipi.com/we-analyzed-30000-
github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/

http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/
http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/

Optimising Darwinian Data Structures
on Google Guava

Michail Basios(B), Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr

Department of Computer Science, University College London,
Malet Place, London WC1E 6BT, UK

{m.basios,lingbo.li,fan.wu,l.kanthan,e.barr}@cs.ucl.ac.uk

Abstract. Data structure selection and tuning is laborious but can
vastly improve application performance and memory footprint. In this
paper, we demonstrate how artemis, a multiobjective, cloud-based opti-
misation framework can automatically find optimal, tuned data struc-
tures and how it is used for optimising the Guava library. From the
proposed solutions that artemis found, 27.45% of them improve all
measures (execution time, CPU usage, and memory consumption). More
specifically, artemis managed to improve the memory consumption of
Guava by up 13%, execution time by up to 9%, and 4% CPU usage.

Keywords: Search-based software engineering · Genetic improvement ·
Software analysis and optimisation · Multi-objective optimisation

1 Introduction

Under the immense time pressures of industrial software development, developers
tend to avoid early-stage optimisations, yet forget to do so later. When select-
ing data structures from libraries, in particular, they tend to rely on defaults
and neglect potential optimisations that alternative implementations or tuning
parameters can offer. This, despite the impact that data structure selection and
tuning can have on application performance and defects [11]. For performance,
examples include the selection of an implementation that created unnecessary
temporary objects for the program’s workload [13] or selecting a combination
of Scala data structures that scaled better, reducing execution time from 45 to
1.5min [10]; memory leak bugs exemplify data structure triggered defects, such
as those in the Oracle Java bug database caused by poor implementations that
retained references to unused data entries [14].

Optimisation is time-consuming, especially on large code bases. It is also
brittle. An optimisation for one version of a program can break or become a
de-optimisation in the next release. Another reason developers may avoid opti-
misation are development fads that focus on fast solutions, like “Premature Opti-
misation is the horror of all Evil” [6] and “Hack until it works” [4]. In short, opti-
misations are expensive and their benefits unclear for many projects. Developers
need automated help.
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 161–167, 2017.
DOI: 10.1007/978-3-319-66299-2_14

162 M. Basios et al.

Data structures are a particularly attractive optimisation target because they
have a well-defined interface, many are tunable, and different implementations
of a data structure usually represent a particular trade-off between time and
storage, making some operations faster but more space-consuming or slower but
more space-efficient. For instance, an ordered list makes retrieving a dataset in
sorted order fast, but inserting new elements slow, whilst a hash table allows for
quick insertions and retrievals of specific items, but listing the entire set in order
is slow. A Darwinian data structure [9] is on that admits tuning and has multiple
implementations, i.e. it is replaceable. The data structure optimisation problem
is the problem of finding optimal tuning and implementation for a Darwinian
data structure used in an input program.

In this paper, we aim to help developers perform optimisations cheaply,
focusing solving the data structure optimisation problem. We present artemis,
a cloud-based language-agnostic optimisation framework that identifies uses of
Darwinian data structures and automatically searches for optimal combinations
of implementations and tuning parameters for them, given a test suite. artemis’
search is multi-objective, seeking to simultaneously improve a program’s execu-
tion time, memory usage and CPU usage while passing the test suite. artemis is
the first technique to apply multi-objective optimisation to the Darwinian data
structure selection and tuning problem.

2 Proposed Solution

Darwinian Data Structure Selection (DS2) problem: given a program
with a list of replaceable data structures, find the optimal combination of
data structures and their arguments, such that the runtime performance of the
program is optimised.

In order to solve the DS2 problem, we proposed a language-agnostic optimi-
sation framework, artemis. Figure 1 illustrates the architecture of artemis. It
consists of three main components: the darwinian data structures store
generator (ddssg), the extractor, and the optimiser. artemis takes the
language’s Collection api library, the user’s application source code and a test
suite as input to generate an optimised version of the code with a new combina-
tion of data structures. A regression test suite is used to maintain the correctness

Fig. 1. System architecture of artemis.

Optimising Darwinian Data Structures on Google Guava 163

of the transformations and to evaluate the non-functional properties of interest.
artemis uses a built-in profiler that measures execution time, memory consump-
tion and CPU usage.

darwinian data structure store generator (DDSSG): auto-
matically builds a store of Darwinian Data Structures that can be exposed as
tunable parameters to the optimiser. ddssg uses a hierarchy graph to rep-
resent the inheritance relations between classes, then it groups the replaceable
classes together, as its output. artemis can automatically generate the hierar-
chy graph from the source code of the library (if provided) or from the library
documentation.

To get the hierarchy graph from the source code, ddssg traverses the ast
of each file of the library and looks for class declaration expressions. It extracts
the classes and stores them as points of a graph. Whenever it finds a special
keyword, such as extends or implements in Java, it creates an edge in the graph
that represents this relationship. After the graph construction is finished, a graph
traversal is used to automatically generate a store of equivalent implementations
for each interface; e.g., {List, ArrayList, LinkedList}. Those implementations
will be considered as replaceable during code execution and will be exposed as
parameters to the optimiser.

extractor takes as input the program source code, identifies potential
locations of the code that contain darwinian data structures, and provides as
output a list of parameters (Extracted Data Structures and Parameters in Fig. 1)
and a templated version of the code which replaces the data structure with data
structure type identifiers (Templated Source Code in Fig. 1).

In order to determine which parts of the code contain darwinian data struc-
tures, the extractor firstly generates an Abstract Syntax Tree (ast) from the
input source code. It then traverses the ast to discover potential data structure
transformations based on a store of data structures generated from ddssg. For
example, when an expression node of the ast contains a LinkedList expression,
the extractor marks this expression as a potential darwinian data structure
that can take values from the available List implementations: LinkedList or
ArrayList. The extractor generates a templated copy of the ast, with all
discovered darwinian data structures replaced by template identifiers (holes).

optimiser is to find a combination of data structures that improves the
performance of the initial program. Because we aim to optimise various conflict-
ing performance objectives, we consider this as a multi-objective optimisation
problem, thus the optimiser uses a multi-objective Genetic Algorithm [2] to
search for optimal solutions [1,7,8,12].

We use an array of integers to represent the tuning parameters. Each para-
meter may refer either to an equivalent data structure or a parameter of the
data structure such as the initial size. Together with the templated ast gen-
erated from the optimiser, artemis can rebuild the program with a different
set of data structures. For each iteration of the algorithm, NSGA-II progresses
by firstly applying tournament selection, followed by a uniform crossover and a
uniform mutation operation. In our experiments, we designed fitness functions
to capture execution time, memory consumption and CPU usage. After fitness

164 M. Basios et al.

evaluation, a standard NSGA-II non-dominated selection is applied to form the
next generation. This process is repeated until the solutions converge. Finally,
all non-dominating solutions in the final population are provided as solutions.

A program may contain a large number of data structures from which only
some are darwinian. Moreover, some of those darwinian data structures can
affect the performance of the program more than others. There are data struc-
tures that store only a few items and be called only a few times during program
execution and, as a consequence, changing them will most probably not provide
any significant improvement.

In our implementation, we have introduced a preprocessing step that auto-
matically instruments the program to provide profiling details when it is executed
the first time. The instrumented code is run before the optimisation begins and
it generates a database with the most costly parts of codes worth optimising.
This information is used by the extractor to determine if a data structure is
worth being considered as a darwinian data structure. This preprocessing step
is mostly useful for very large programs where there is a large number of data
structures involved.

3 Experiments and Results

To assess how effectively artemis can improve a program’s performance, we
used Guava1 as an instance of its application. Guava is an open-source set of
common libraries for Java. It consists of 252, 688 Lines of Code, which are tested
by 1, 674, 425 test cases with 61.7% branch coverage. We conducted experiments
with Oracle JDK 1.8 and Ubuntu 16.04 on top of machines featuring 8 cores and
14GB of DRAM. We used JVM profiling tools for performance measurements.
To mitigate instability and incorrect results [3], we differentiate VM start-up and
steady-state. We do repeated measurements for 30 times and record the mea-
surements before and after doing the optimisations. Also we use Mann Whitney
U test to examine if the improvement is statistically significant. For the settings
of the optimisation algorithm, we used an initial population size of 30 and a
maximum number of 900 function evaluations. These numbers were chosen after
a few calibration experiments to ensure the best performance of the algorithm.

For the rest of this section, we asked four Research Questions and provided
answers with supportive results in each of the following paragraphs.

RQ1. What is the improvement that artemis provides for each objective?

We ask this question to understand how much improvement artemis can
achieve on each of the objectives and how the other objectives are affected.
Firstly, we compute the mean response time and report the 95% confidence
interval. We use effect size [5] for measuring the performance impact. To quantify
the effects we use Cohen’s d [5] strength values: small (0.2 < d ≤ 0.5), medium
(0.5 < d ≤ 0.8) and large (0.8 < d). In Fig. 2 we plot the mean values for the
optimal solutions that contain at least one large improvement for one of the three
1 https://github.com/google/guava.

https://github.com/google/guava

Optimising Darwinian Data Structures on Google Guava 165

Fig. 2. Optimal solutions with large improvement in at least one measure.

measurements. The maximum improvement for each measure is 9% execution
time, 13% memory usage and 4% CPU usage.

RQ2. How many provided solutions strictly dominate the original program?

A solution is said to strictly dominate another if it outperforms the other
in all measures. If artemis can provide solutions that strictly dominate the
original program, those solutions can be very valuable because they represent
options to improve the program without sacrificing anything. The number of
strictly dominating solution for Guava was 14 out of 51 final solutions. Those 14
solutions provide a wide range of options for users to choose depending on their
favour of different objectives.

RQ3. What is the cost of using artemis?

This question asks about the computational cost of artemis. An extremely
high computational cost may make the system impractical to use in real-world
situations. Therefore we measured its cost on Guava subject in terms of machine
hours. In this study, a Microsoft Azure D4-v2 machine, which costs £0.41 per
hour2, was used to conduct all experiments. This cost of using is negligible
compared to a human software engineer. Moreover, artemis transforms the
selection of data structure and sets the parameter on source code level, which
means such optimisation does not need to be carried frequently.

RQ4. How many Darwinian data structures does artemis optimise?

We ask this question to understand what changes have been made to the
program. To minimise the search space we applied artemis only to the most
used code in Guava as identified by the preprocessor. As a result, artemis
extracted only 6 Darwinian data structures in total from the Guava library.
Across all the optimal solutions artemis produced, 1 to 6 data structures were
changed in each, with a median of 3 data structures uses. For instance, artemis
replaced HashMap with LinkedHashMap in 42 of the 135 changes across all optimal
solutions.
2 https://azure.microsoft.com/en-gb/pricing/.

https://azure.microsoft.com/en-gb/pricing/

166 M. Basios et al.

4 Conclusions

In this paper, we introduced artemis, a novel multi-objective search-based
framework that automatically selects and optimises the data structures and their
arguments in a given program. artemis is language agnostic, meaning it can be
easily adapted to any programming language. On a large real-world system,
Guava, artemis found 9% improvement on execution time, 13% improvement
on memory consumption and 4% improvement on CPU usage separately, and
27.45% of the final solutions provides improvement without sacrificing other
objectives. Lastly, we estimated the cost of optimising Guava in machine hours.
With a price of £0.41 per machine hour, the cost of optimising a real-world sys-
tem such as Guava in this study is less than £7.85. Therefore, we conclude that
artemis is a practical tool for optimising the data structures in large real-world
programs.

References

1. Dan, H., Harman, M., Krinke, J., Li, L., Marginean, A., Wu, F.: Pidgin Crasher :
searching for minimised crashing GUI event sequences. In: Goues, C., Yoo, S. (eds.)
SSBSE 2014. LNCS, vol. 8636, pp. 253–258. Springer, Cham (2014). doi:10.1007/
978-3-319-09940-8_21

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197
(2002)

3. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance
evaluation. ACM SIGPLAN Notices 42(10), 57–76 (2007)

4. Hardin, B.: Companies with “hacking” cultures fail (2016). https://blog.bretthard.
in/companies-with-hacking-cultures-fail-b8907a69e3d. Accessed 25 Feb 2017

5. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El
Emam, K., Rosenberg, J.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)

6. Knuth, D.E.: Structured programming with go to statements. ACM Comput. Surv.
6(4), 261–301 (1974)

7. Langdon, W.B., Modat, M., Petke, J., Harman, M.: Improving 3d medical image
registration cuda software with genetic programming. In: Proceedings of the 2014
GECCO, pp. 951–958. ACM (2014)

8. Li, L., Harman, M., Wu, F., Zhang, Y.: SBSelector: search based component selec-
tion for budget hardware. In: Barros, M., Labiche, Y. (eds.) SSBSE 2015. LNCS,
vol. 9275, pp. 289–294. Springer, Cham (2015). doi:10.1007/978-3-319-22183-0_25

9. Michail, B., Li, L., Wu, F., Kanthan, L., Lawrence, D., Barr, E.: Darwinian data
structure selection. arXiv preprint arXiv:1706.03232 (2017)

10. Nowling, R.J.: Gotchas with Scala Mutable Collections and Large Data Sets
(2015). http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala
-collections.html. Accessed 18 Feb 2017

11. Shacham, O., Vechev, M., Yahav, E.: Chameleon: adaptive selection of collections.
In: ACM Sigplan Notices, vol. 44, pp. 408–418. ACM (2009)

12. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisa-
tion. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, pp. 1375–1382. ACM (2015)

http://dx.doi.org/10.1007/978-3-319-09940-8_21
http://dx.doi.org/10.1007/978-3-319-09940-8_21
https://blog.bretthard.in/companies-with-hacking-cultures-fail-b8907a69e3d
https://blog.bretthard.in/companies-with-hacking-cultures-fail-b8907a69e3d
http://dx.doi.org/10.1007/978-3-319-22183-0_25
http://arxiv.org/abs/1706.03232
http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala-collections.html
http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala-collections.html

Optimising Darwinian Data Structures on Google Guava 167

13. Guoqing, X., Arnold, M., Mitchell, N., Rountev, A., Sevitsky, G.: Go with the flow:
profiling copies to find runtime bloat. ACM Sigplan Not. 44(6), 419–430 (2009)

14. Xu, G., Rountev, A.: Precise memory leak detection for Java software using
container profiling. In: ACM/IEEE 30th International Conference on Software
Engineering, ICSE 2008, pp. 151–160. IEEE (2008)

A Hyper-heuristic for Multi-objective
Integration and Test Ordering in Google Guava

Giovani Guizzo1(B), Mosab Bazargani2, Matheus Paixao3, and John H. Drake2

1 Federal University of Paraná (UFPR), Curitiba, Brazil
gguizzo@inf.ufpr.br

2 Operational Research Group, Queen Mary University of London, Mile End Road,
London, E1 4NS, UK

{m.bazargani,j.drake}@qmul.ac.uk
3 CREST, Department of Computer Science, University College London,

Gower Street, London WC1E 6BT, UK
matheus.paixao.14@ucl.ac.uk

Abstract. Integration testing seeks to find communication problems
between different units of a software system. As the order in which units
are considered can impact the overall effort required to perform inte-
gration testing, deciding an appropriate sequence to integrate and test
units is vital. Here we apply a multi-objective hyper-heuristic set within
an NSGA-II framework to the Integration and Test Order Problem (ITO)
for Google Guava, a set of open-source common libraries for Java. Our
results show that an NSGA-II based hyper-heuristic employing a simpli-
fied version of Choice Function heuristic selection, outperforms standard
NSGA-II for this problem.

1 Introduction

The integration testing phase of a testing strategy combines and tests multiple
units of a software system. As some units are dependent on others, stubs are used
to mimic the behaviour of classes that are not available, are too expensive to
use directly, or are not yet integrated and tested in the software. One drawback
is that the stubbing process can also be expensive, and is potentially susceptible
to errors. The Integration and Test Order Problem (ITO) is a search problem
where the goal is to generate an order for units to be integrated and tested which
minimises the cost of stub generation.

As there are a number of different ways of measuring stubbing cost, many
previous approaches have considered ITO as a multi-objective problem. In multi-
objective optimisation [3], where more than one objective is optimised at the
same time, the aim is to find a set of solutions, known as the Pareto front, repre-
senting the best trade-off that exists between objectives. Assunção et al. [2] com-
pared the performance of three well-known multi-objective evolutionary algo-
rithms (MOEAs) for solving the ITO problem for eight software systems. Each
of the MOEAs tested searched over a permutation of integers representing the
order that units are integrated and tested, using two-point crossover and swap
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 168–174, 2017.
DOI: 10.1007/978-3-319-66299-2 15

A Hyper-heuristic for Multi-objective Integration and Test Ordering 169

mutation to modify solutions. Separate performance comparison was provided
for the ITO problem using two objectives and four objectives.

Hyper-heuristics are high-level search methods which operate over a search
space of low-level heuristics or heuristic components, rather than over a search
space of solutions directly. Guizzo et al. [5] built on the work of Assunção
et al. [2], introducing HITO, a Hyper-heuristic for the Integration and Test Order
Problem. Operating within the well-known multi-objective Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) [3], HITO uses a heuristic selection method
to select which operators to apply at each step of an MOEA from a set of
crossover and mutation operator combinations, optimising two objectives. Using
three different heuristic selection methods, their experiments showed that hyper-
heuristic selection of crossover and mutation operators within NSGA-II outper-
formed the traditional NSGA-II implementation (in terms of hypervolume) using
only 2-point crossover and swap mutation presented by Assunção et al. [2]. A
further performance comparison of using HITO within an SPEA2 framework was
given in a later paper [6]. Guizzo et al. [7] provided another extension, formulat-
ing the problem as a many-objective problem with four objectives, comparing
to a number of state-of-the-art MOEAs.

Google Guava [1] is a large open-source project, containing Google versions
of a number of standard general purpose libraries for Java. In this paper, we use
all three versions of HITO presented by Guizzo et al. [7], to search for an optimal
ordering of units for integration testing of Guava. A performance comparison to
the original NSGA-II method presented by Assunção et al. [2] is given.

2 Problem Description and Solution Methodology

The two first levels of tests in software testing are unit testing and integration
testing. The unit testing level validates that each unit of the software performs
as designed. Thereafter, integration testing is employed to expose faults in the
interaction between integrated units. In this phase units are integrated into the
software and then tested. When a unit is not yet integrated and tested, but its
functionality is needed to integrate and test a dependent unit (an event which
is known as dependency break), then a stub (emulation) must be created for
such a unit. Generally speaking, units with a high number of calls (number
of other units that are depending on them) should be integrated and tested
prior to those units with a lower number of calls. If units are not tested in
an optimised sequence, an extra cost for generating a greater number of stubs
during integration testing will be imposed to the software testing process. Given
n units to be integrated and tested, a solution to the problem is represented by a
permutation of integers [1, ..., n], denoting the order in which units are processed
during integration testing.

This problem is a multi-objective optimisation problem, since several fac-
tors have an impact on the cost of stub construction, which makes it harder to
find a good cost reduction. In this paper, we use the two objectives that are
used by Guizzo et al. [5], i.e., number of attributes (A) and number of meth-
ods/operations (O); both need to be emulated in the stub if the dependencies

170 G. Guizzo et al.

between two modules are broken. Furthermore, this problem can be found in
several development contexts. For example, in an object-oriented system units
are classes, in component-based programming units are components, in aspect-
oriented programming units are aspects, and in product line oriented systems
units may be considered product features [2]. These characteristics make this
problem suitable for the application of meta- and hyper-heuristics, since these
kinds of algorithms are capable of optimizing several objectives at once [3], and
are capable of being easily applied to different contexts without needing to have
their implementation adapted for this end [7].

In order to extract the method/attribute dependencies of Google Guava we
used the Understand tool, developed by scitoolsTM [8]. As Understand can
only work with Java 1.7 or older versions, we extracted the dependencies for
Google Guava v20.0. We extracted two levels of dependencies, i.e., dependencies
between units, and unit-method or unit-attribute dependencies. For each unit,
define, import, call, and override features of that file are used for extracting its
dependencies, and define, use, set, and modify features of each unit-method/unit-
attribute are used for addressing dependencies of that method/attribute. Google
Guava has 74530 lines of Java code, excluding comments and blank lines, written
in 529 files. It has 2273 unit dependencies in total. This is bigger than all seven
of the systems that HITO was applied to in previous work in the literature [5,7],
where the maximum number of unit dependencies was 1592.

3 HITO

Hyper-heuristic for the Integration and Test Order Problem (HITO) is an
NSGA-II based hyper-heuristic for the ITO problem. Three different versions
of HITO have been introduced in the literature [5], namely HITO-R, HITO-
MAB, and HITO-CF. These versions operate within the same hyper-heuristic
framework, using different heuristic selection methods. While HITO-R selects
low-level heuristics randomly, HITO-MAB and HITO-CF try to provide bal-
ance between exploration and exploitation during the search. HITO-MAB uses
a Multi-Armed Bandit (MAB) strategy, selecting low-level heuristics based on
their performance and number of executions in a given number of iterations.
HITO-CF employs a simplified variant of the Choice Function (CF) [4], using
only the performance of a low-level heuristic (f1) and the elapsed time since
a low-level heuristic has been executed (f3). The performance of pairs of low-
level heuristics (f2) is eliminated from the Choice Function used in HITO-CF
for simplicity [5], as pairwise performance between different types of operators
is difficult to assess within the NSGA-II framework.

HITO uses nine low-level heuristics, consisting of pairwise combinations of 2-
point crossover, uniform crossover, and partially-mapped crossover (PMX), with
swap mutation, simple insertion mutation or no mutation. All of the crossover
and mutation operators used in HITO are permutation-based, since this is the
representation used when considering ITO as a combinatorial optimisation prob-
lem. For more information on the heuristic selection methods and low-level
heuristics used, we refer the interested reader to the original HITO paper [5].

A Hyper-heuristic for Multi-objective Integration and Test Ordering 171

4 Experiments

This section presents the set of experiments to evaluate the performance of the
three different versions of HITO in the Google Guava program. We also compare
those results with standard NSGA-II using 2-point crossover and swap mutation.
The next two subsections present the experimental set-up and the results.

4.1 Experimental Set-up

The experimentation encompasses four algorithms for solving the ITO problem:
HITO-MAB, HITO-CF, HITO-R and NSGA-II. All parameters were set as in
Guizzo et al. [7]. All algorithms were executed for 30 independent runs on the
unit dependencies extracted from Google Guava. For all of these algorithms,
population size is set to 300 and stopping criterion to 60, 000 function eval-
uations. A crossover probability of 95% and mutation probability of 2% were
used in NSGA-II experiments. HITO-MAB/CF/R dynamically select low-level
heuristics as explained in the Sect. 3. A selected low-level heuristic is applied in
HITO-MAB/CF/R with probability of 100%. The MAB parameters of HITO-
MAB are size of the sliding window (W) and scaling factor (C) that are respec-
tively set to 150 and 5. CF weight parameters of HITO-CF for f1 and f2 are set
to α = 1.0 and β = 0.00005, respectively.

The results were collected and evaluated using the hypervolume quality indi-
cator [3]. Hypervolume is a measure of the volume of space dominated by the
non-dominated set of solutions representing the approximation of the Pareto
front, bounded by a given reference point.

4.2 Results

Table 1 shows hypervolume averages over 30 independent runs found from apply-
ing three different versions of HITO and NSGA-II to the Google Guava unit
dependencies. Standard deviations of 30 independent runs are given in paren-
thesis. Hypervolumes are compared using the Kruskal-Wallis statistical test at
95% of significance, with the p-value reported alongside the hypervolume values
in Table 1.

As shown in Table 1, for Google Guava, HITO-CF performs statistically sig-
nificantly better than other algorithms with a p-value of 2.029E-15. All HITO

Table 1. Hypervolume averages obtained from 30 independent runs.

System NSGA-II HITO-CF HITO-MAB HITO-R p-value

Google Guava 0.309 (0.126) 0.685 (0.108) 0.586 (0.085) 0.537 (0.083) 2.029E–15

172 G. Guizzo et al.

Fig. 1. Pareto fronts found after the 30 independent runs.

versions, even HITO-R, performed better than NSGA-II on average, which indi-
cates the need and effectiveness of using combinations of several low-level heuris-
tics in this problem. This performance is broadly in line with the observations
of Guizzo et al. in [7] for seven other systems, with HITO-CF outperforming
HITO-R and NSGA-II, however in that work HITO-CF did not show statisti-
cally significantly different performance to HITO-MAB. As those seven systems
have fewer lines of code and unit dependencies than Google Guava, it might be
that HITO-CF scales better to larger systems.

To give a better understanding of the behaviour of the HITO variants, we
examined the number of times that each low-level heuristic was executed by each
hyper-heuristic. We observed that HITO-CF applied the low-level heuristics with
2-point crossover roughly 2.85 times more than those using uniform crossover,
and 3.35 times more than PMX crossover. This means that, for the Choice Func-
tion, low-level heuristics with 2-point crossover performed better overall during
the search. On the other hand, HITO-MAB gave too much emphasis to the explo-
ration of the search space. This resulted in it selecting all low-level heuristics
almost the same number of times, with a slight preference to low-level heuristics
with 2-point crossover (approximately 1.2 times more than uniform crossover
and 1.18 times more than PMX crossover). This made HITO-MAB perform
close to HITO-R. Of the other systems used in previous work [7], HITO-MAB
behaved more similarly to HITO-CF in terms of low-level heuristic selection and
obtained similar results overall.

A Hyper-heuristic for Multi-objective Integration and Test Ordering 173

Figure 1 depicts Pareto fronts of two objectives of the four algorithms
for Guava. Each Pareto front has been generated by composing all the non-
dominated solutions found in 30 independent executions. As we are minimising
for both objectives, the lower the values, the better that front is. HITO-CF yields
a Pareto front that dominates the approximation sets of all of the other algo-
rithms. Even though NSGA-II obtained worse hypervolume results than HITO-
R, its Pareto front only lacks diversity when compared to HITO-R. NSGA-II’s
Pareto front dominates almost half of HITO-R’s front, whereas HITO-R could
not find solutions that dominate any solution found by NSGA-II. This can be
explained by the fact that hypervolume not only considers convergence, but also
takes into account diversity in its computation.

As a ‘sanity check’, we also executed a Random Search algorithm, however it
performed so poorly that the Pareto fronts of the other algorithms were unread-
able when plotted on a graph. As a result we have omitted this algorithm from
this section.

5 Conclusion

In this paper we applied a set of selection hyper-heuristics to the ITO problem for
Google Guava. The Google Guava system and the number of unit dependencies
it contains are larger than the systems previously used in the literature for
this problem. The results obtained using hyper-heuristics for the Google Guava
instance are coherent with previous results presented in the literature. The best
variant, HITO-CF, was able to outperform other versions of HITO and also a
well-known NSGA-II. This can be used as evidence that HITO-CF is capable of
solving bigger and unseen instances of the ITO problem. Furthermore, we believe
that this highlights the suitability of hyper-heuristics for further research in the
field of Search Based Software Engineering (SBSE).

References

1. google/guava: Google Core Libraries for Java. https://github.com/google/guava.
Accessed: 25 Apr 2017

2. Assunção, W.K.G., Colanzi, T.E., Vergilio, S.R., Pozo, A.: A multi-objective opti-
mization approach for the integration and test order problem. Inf. Sci. 267, 119–139
(2014)

3. Coello, C.C., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-objective Problems. Genetic and Evolutionary Computation, 2nd edn.
Springer, Heidelberg (2007)

4. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
176–190. Springer, Heidelberg (2001). doi:10.1007/3-540-44629-X 11

5. Guizzo, G., Fritsche, G.M., Vergilio, S.R., Pozo, A.T.R.: A hyper-heuristic for the
multi-objective integration and test order problem. In: Proceedings of GECCO 2015,
pp. 1343–1350. ACM (2015)

https://github.com/google/guava
http://dx.doi.org/10.1007/3-540-44629-X_11

174 G. Guizzo et al.

6. Guizzo, G., Vergilio, S.R., Pozo, A.T.: Evaluating a multi-objective hyper-heuristic
for the integration and test order problem. In: 2015 Brazilian Conference on Intel-
ligent Systems (BRACIS), pp. 1–6. IEEE (2015)

7. Guizzo, G., Vergilio, S.R., Pozo, A.T., Fritsche, G.M.: A multi-objective and evo-
lutionary hyper-heuristic applied to the integration and test order problem. Appl.
Soft Comput. 56, 331–344 (2017)

8. Scitools: Understand. https://scitools.com/features/. Accessed 25 Apr 2017

https://scitools.com/features/

Hyperheuristic Observation
Based Slicing of Guava

Seongmin Lee and Shin Yoo(B)

Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
{bohrok,shin.yoo}@kaist.ac.kr

Abstract. Observation Based Slicing is a program slicing technique that
depends purely on the observation of dynamic program behaviours. It
iteratively applies a deletion operator to the source code, and accepts
the deletion (i.e. slices the program) if the program is observed to behave
in the same was as the original with respect to the slicing criterion.
While the original observation based slicing only used a single deletion
operator based on deletion window, the catalogue of applicable deletion
operators grew recently with the addition of deletion operators based on
lexical similarity. We apply a hyperheuristic approach to the problem
of selecting the best deletion operator to each program line. Empirical
evaluation using four slicing criteria from Guava shows that the Hyper-
heuristic Observation Based Slicing (HOBBES) can significantly improve
the effeciency of observation based slicing.

1 Introduction

Program slicing aims to delete parts of the source code that does not affect the
value of a specific variable at a point of interest [8]. While many applications,
including testing [4], debugging [1], maintenance [5], and program comprehen-
sion [6], have been proposed, program slicing suffered from limitations in scal-
ability and lack of support for multi-lingual systems: both due to the fact that
traditional slicing techniques rely heavily on static dependency analysis.

Observation Based Slicing (ORBS) [2,3] is a new slicing technique that is
purely dynamic and language independent. The intuition behind ORBS is that
program slicing can be simply conceived as a series of deletions that preserves the
behaviour of the program. The original ORBS iteratively considered deletions of
consecutive lines. Recently, new deletion operators, based on lexical similairity,
have also been introduced, increasing the pool of deletion operators for ORBS.

This paper evaluates a Hyperheuristic Observation Based Slicing (HOBBES).
HOBBES applies deletion operators iteratively at each program line, but it uses
a hyperheuristic approach to choose the next deletion operator. We formulate
an online selective hyperheuristic approach using all available deletion operators
as the lower level heuristic. The results of the empirical study using four slicing
criteria from Guava project suggest that HOBBES can bring the best of both
worlds: HOBBES can finish the given number of iterations sigficantly faster than
Window-ORBS, while being able to delete comparable numbers of lines.
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 175–180, 2017.
DOI: 10.1007/978-3-319-66299-2 16

176 S. Lee and S. Yoo

2 HOBBES: Hyperheuristic Observation Based Slicing

2.1 Observation Based Slicing

ORBS is not only language independent [2] but also can slice programs [3] or
even graphics generated by Picture Description Languages [9] that traditional
slicers cannot handle. This is because it decides whether to delete certain lines
or not based on dynamic observation of executions using the given set of test
data, rather than static dependency analysis.

The deletion operator used by the original ORBS is called a Window-deletion
(we hereby call the original ORBS with Window-deletion as W-ORBS): if delet-
ing a single line results in failure (in either compilation or preservation of execu-
tion trajectories), it incrementally attempts to delete up to n consecutive lines,
n being a parameter to the operator. This way, W-ORBS can delete lines that
can only be deleted together (such as openning and closing curly brackets in C.).
While the W-ORBS can successfully slice various programs, one of its major
limitations is the time efficiency. For each line, W-ORBS may attempt up to n
compilations and executions before accepting its deletion.

2.2 Deletion Operators Based on Lexical Similarity

Recently, a new group of deletion operators, based on lexical similarity in the
source code, have been introduced [7]. Vector Space Model (VSM) deletion oper-
ator (hereby called VSM-deletion) represents all source code lines in VSM, and
attempts to delete the current line under consideration as well as all other lines
that are within the distance δ from the current line. Latent Dirichlet Analysis
(LDA) deletion operator (hereby called LDA-deletion) works similarly, but uses
LDA-based topic modeling to measure distances between source code lines. With
both operators, the intuition is that the lines, that are lexically similar with each
other, are likely to have a dependency, so they should be deleted together. Both
operators have been shown to provide an attractive cost-benefit trade-off: while
they produce larger slices, they are also significantly faster than W-ORBS.

While ORBS using VSM- or LDA-deletion provide better time efficiency
compared to W-ORBS, the new operators only delete about 25% of the lines
deleted by W-ORBS. This is because neither VSM- nor LDA-deletion can delete
lines that are not related by lexical similarity together.

2.3 Algorithm of HOBBES

Algorithm 1 presents HOBBES. It takes the source program P, a slicing crite-
rion (v: variable, l: line index, I: a set of inputs), a set of deletion operators
D = {D1, ...,Dn}. After instrumenting the slicing criterion and establishing
the original trajectory V , it initializes the selection probability of each deletion
operator.

HOBBES iteratively attempts to delete the source code, choosing a deletion
operator to apply at each line based on the corresponding selection probability.

Hyperheuristic Observation Based Slicing of Guava 177

Algorithm 1. HOBBES
input : Source program, P = {p1, ..., pn}, slicing criterion, (v, l, I), Set of deletion

operators, D = {D1, ...,Dn}
output: A slice, S, of P for (v, l, I)

1 O ← Setup(P, v, l) /* Add trajectory extractor on P */
2 V ← Execute(Build(O), I) /* V is the original trajectory */
3 D ← InitOperator (D) /* D is the set of (Dk, P (Dk)) */
4 repeat
5 deleted ← False
6 i ← 1
7 while i ≤ Length (O) do
8 Dcurr ← SelectOperator(D)

9 O′ ← Dcurr(O)

10 compile, execute, line cnt ← DeleteAttempt(O′, V)
11 D ← UpdateScore(D,Dcurr, compile, execute, line cnt)
12 if execute then
13 O ← O′

14 deleted ← True

15 end
16 i ← i + 1

17 end

18 until ¬deleted
19 return O

A chosen deletion operator creates a candidate slice: depending on the success
of compilation and preservation of trajectories, HOBBES decides whether to
accept the candidate slice (i.e. the chosen deletion) and updates the selection
probability of the chosen deletion operator.

2.4 Studied Deletion Operators

The library of deletions operator consists of 12 different deletion operators. We
break down the original Window-deletion operator to four individual deletion
operators with fixed size deletion windows: this results in four fixed Window-
deletion operators that delete one, two, three, and four consecutive lines respec-
tively. The remaining operators are VSM- and LDA-deletion operators with
δ = {0.9, 0.8, 0.7, 0.6}. We fixed the topic size of the LDA-deletion operators
to 500 based on previous results; the LDA approach also generates the topic
model only once at the beginning (see the previous work [7] for more details).

2.5 Selective Hyperheuristic

The selection probability of a deletion operator Dk, P (Dk) is initialized as 1
|D|

by InitOperator. The function SelectOperator is a roulette wheel selection
based on the probabilities.

The function UpdateScore updates P (Dk) as follows:

newP (Dk) =

⎧
⎪⎨

⎪⎩

ωcomp · P (Dk) when compile fails

ωexec · P (Dk) when compile suceeds and execution fails

(1 + log10 l) · P (Dk) otherwise

178 S. Lee and S. Yoo

The penalty values, ω, for the compilation or execution failures, are set as
ωcomp, ωexec ∈ [0, 1), ωcomp ≤ ωexec. Here, l denotes the number of lines deleted
by the chosen operator (note that log10 l > 0). In this study, we set ωcomp as 0.8
and ωexec as 0.9. UpdateScore linearly normalizes the selection probabilities
so that ΣkP (Dk) is always 1.0.

3 Experimental Setup

3.1 Research Questions

We ask the following research questions:

RQ1: How efficient is HOBBES compare to W-ORBS? Previous work [7] showed
that Window-deletion and the lexical similarity based deletion exhibit different
cost-benefit trade-offs. RQ1 investigates whether using the selective hyperheuris-
tic can improve the time efficiency of ORBS. We answer RQ1 by comparing the
number of deleted lines, as well as the time the slicing took, between HOBBS
and W-ORBS.

RQ2: Does HOBBES actually use all deletion operators adaptively? That is,
does any single deletion operator exhibit dominant usage? We check whether
HOBBES makes use of all operators adaptively by tracing the selection proba-
bilities of each operator throughout the slicing operation.

3.2 Subjects, Configuration, and Environment

The slicing subjects have been chosen from the Guava library. We select two
packages, com.google.common.escape and com.google.common.net, each with
590 and 1,569 LOCs. We choose 2 slicing criteria for each subjects. Since W-
ORBS always produces the same slice for a deterministic program, we execute
W-ORBS only once for each criterion. We repeat HOBBES 10 times to cater for
the stochasticity in selection as well as in the LDA process.

The experiments have been performed on machines with Intel Core i7-6700K
running Ubuntu 14.04.5 LTS. ORBS has been implemented in Python, whereas
the subject programs have been built using Java version 1.8.

4 Results

RQ1. Efficiency of HOBBES: Fig. 1 shows the results of W-ORBS and
HOBBES for the four slicing criteria. The x-axis represent the slicing itera-
tions, going up to the number of iterations W-ORBS requires to terminate. The
barplots and lines represent the cumulative numbers of deleted lines and execu-
tion time, respectively. The result shows that, on average, HOBBES can delete
about 71% of the number of lines that W-ORBS deletes. However, HOBBES
only takes about 30% of the time spent by W-ORBS.

Hyperheuristic Observation Based Slicing of Guava 179

Fig. 1. Comparison between W-ORBS, HOBBES

Table 1. Result of Compile, Execute, Deletion per Time

Subject Strategy Iter1 Iter2 Iter3 Iter4 Iter5

C E D/T C E D/T C E D/T C E D/T C E D/T

escape1 HOBBES 502 66 0.20 926 104 0.13 1321 135 0.11 1699 165 0.09 2060 192 0.09

W-ORBS 1711 183 0.10 3137 267 0.06 4523 342 0.04 5840 415 0.03 NA NA NA

escape2 HOBBES 1332 214 0.21 2424 309 0.15 3430 388 0.12 4384 455 0.11 5289 516 0.09

W-ORBS 4179 655 0.13 7383 922 0.08 10436 1159 0.06 13460 1390 0.05 14116 1558 0.05

net1 HOBBES 513 70 0.17 955 114 0.11 1374 154 0.09 1771 189 0.08 2154 224 0.07

W-ORBS 1759 189 0.09 3251 280 0.06 4707 364 0.04 6141 448 0.03 7174 517 0.03

net2 HOBBES 1341 222 0.20 2444 324 0.14 3460 402 0.11 4425 473 0.10 5346 536 0.09

W-ORBS 4332 667 0.11 7781 963 0.07 11077 1237 0.05 14337 1504 0.04 14993 1672 0.04

Table 1 shows the detailed results of W-ORBS and HOBBES until their fifth
iteration. HOBBES performs fewer compilations and executions than W-ORBS,
while showing higher time efficiency (i.e. more deletions per time). Answering
RQ1, we report that HOBBES can improve the time efficiency of W-ORBS.

RQ2. Participation of Deletion Operators: Fig. 2 shows how the selection
probabilities of deletion operators change throughout the slicing of net 1. No
deletion operator dominates the selection; also, there exist several peaks of dif-
ferent colours. We interpret this as each deletion operator being used at different
stages by HOBBES. Note that the probabilities for both VSM- and LDA-deletion
operators increased early in the slicing because these operators are not limited
in the number of lines they can delete. However, we also observe that Window-
deletion operators are also selected at different times.

180 S. Lee and S. Yoo

0 5000 10000 15000

0.
0

0.
1

0.
2

0.
3

0.
4

Deletion Attempt

Pr
ob

ab
ilit

y

LDA:0.6
LDA:0.7
LDA:0.8
LDA:0.9

VSM:0.6
VSM:0.7
VSM:0.8
VSM:0.9

Window:1
Window:2
Window:3
Window:4

Fig. 2. Change of probability of deletion operators

5 Conclusion

We introduce a hyperheuristic version of ORBS, called HOBBES. HOBBES
applies a selective hyperheuristic to choose a deletion operator iteratively at
each source code line. A case study of HOBBES on two packages in the Guava
library, using 12 deletion operators, shows that HOBBES can delete 71% of the
number of lines deleted by W-ORBS, using only 30% of the time. Future work
will investigate more diverse deletion operators as well as more sophisticated
selective hyperheuristic algorithm.

References

1. Agrawal, H., DeMillo, R.A., Spafford, E.H.: Debugging with dynamic slicing and
backtracking. Softw. Pract. Experience 23(6), 589–616 (1993)

2. Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S.: ORBS: language-
independent program slicing. In: Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposiumon theFoundations of SoftwareEngineering, FSE2014, pp. 109–120
(2014)

3. Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S.: ORBS and the
limits of static slicing. In: Proceedings of the 15th IEEE International Working
Conference on Source Code Analysis and Manipulation (2015)

4. Binkley, D.W.: The application of program slicing to regression testing. Inf. Softw.
Technol. Spec. Issu. Progr. Slicing 40(11, 12), 583–594 (1998)

5. Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE
Trans. Softw. Eng. 17(8), 751–761 (1991)

6. Korel, B., Rilling, J.: Program slicing in understanding of large programs. In: 6th
IEEE International Workshop on Program Comprenhesion (IWPC 1998), pp. 145–
152. IEEE Computer Society Press, Los Alamitos (1998)

7. Lee, S., Yoo, S.: Using source code lexical similarity to improve efficiency of observa-
tion based slicing. Technical report CS-TR-2017-412, School of Computing, Korean
Advanced Institute of Science and Technology, January 2017

8. Weiser, M.: Program slicing. In: 5th International Conference on Software Engineer-
ing, San Diego, pp. 439–449, March 1981

9. Yoo, S., Binkley, D., Eastman, R.: Observational slicing based on visual semantics.
J. Syst. Softw. 129, 60–78 (2016)

Student Papers

Diversity in Search-Based Unit Test
Suite Generation

Nasser M. Albunian(B)

The University of Sheffield, Sheffield, UK
nmalbunian1@sheffield.ac.uk

Abstract. Search-based unit test generation is often based on evolution-
ary algorithms. Lack of diversity in the population of an evolutionary algo-
rithm may lead to premature convergence at local optima, which would
negatively affect the code coverage in test suite generation. While meth-
ods to improve population diversity are well-studied in the literature on
genetic algorithms (GAs), little attention has been paid to diversity in
search-based unit test generation so far. The aim of our research is to study
the effects of population diversity on search-based unit test generation by
applying different diversity maintenance and control techniques. As a first
step towards understanding the influence of population diversity on the
test generation, we adapt diversity measurements based on phenotypic and
genotypic representation to the search space of unit test suites.

Keywords: Search-based test generation · Population diversity ·
Genetic algorithm

1 Introduction

As software testing is a time-consuming, laborious, and error-prone task, devel-
opers can choose to generate tests automatically. In the context of unit testing
object oriented software, where tests are sequences of calls on a class under test
(CUT), Genetic Algorithms (GAs) have been successfully applied for generating
tests achieving high code coverage [7].

The success of GAs is dependent on the diversity maintained in the search
population [10]. If the individuals of the population all become too similar and
lack diversity, then the search may converge on a local optimum of the objective
function. This reduces the effectiveness of the GA, and in the case of search-based
test generation, premature convergence would imply a reduced code coverage.

To avoid premature convergence and maintain diversity in the search pop-
ulation, different diversity techniques have been proposed at the genotype and
the phenotype levels [19]. While the problem of maintaining the diversity has
been extensively investigated within different domains of evolutionary algorithms
(e.g., [3]), much less is known about diversity in whole test suite generation.

The aim of our research is to investigate the effects of population diversity on
the generation of unit tests for Java programs. The attempt is to see whether the
diversity of the search population helps in generating test suites that are capable
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 183–189, 2017.
DOI: 10.1007/978-3-319-66299-2 17

184 N.M. Albunian

of achieving the search goal (e.g. higher code coverage) and, on the other hand,
reducing the occurrence of premature convergence. To do so, different diversity
maintenance and control techniques will be examined to determine their effects
on the population diversity with the hope of proposing techniques that improve
the diversity to generate better test suites. However, as a first step towards
understanding the influence of population diversity on the test generation, we
adapt diversity measurements based on phenotypic and genotypic representation
to the search space of unit test suites.

2 Background

2.1 Search-Based Software Testing (SBST)

Search-Based Software Testing (SBST) describes the application of meta-
heuristic optimisation techniques to the automation of various software testing
tasks. In particular, SBST is frequently applied to generate test data [9]. When
test data is numeric then local search algorithms such as hill climbing have been
used successfully; in other domains, such as unit testing, GAs are more common.

In a GA, a population of candidate solutions is gradually evolved toward an
optimal solution. The algorithm typically starts with a population of random indi-
viduals that will be iteratively evolved over many generations. In each generation,
the processes of natural evolution are mimicked: Every individual in the popula-
tion is evaluated by a fitness function, which determines how close this individual
is to the desired solution. The fitter an individual, the more likely it is selected from
the current population and used for recombination using crossover and mutation
operators while building the next generation of the GA population. Higher selec-
tive pressure leads to a more biased selection of parent individuals and thus less
diversity. Similarly, higher mutation rate can lead to more diverse individuals.

Although studies have shown the effectiveness of GAs for test generation [7],
the application domain of unit testing seems to be special. In particular, Shamshiri
et al. [18] recently showed that there are cases, in particular when the code coverage
based fitness function hardly provides guidance, where random search is at least
as effective as a GA. Shamshiri et al. hypothesise that in these cases the GA suffers
from reduced diversity compared to the random search.

In the context of generating tests for object oriented programs, a common
approach lies in evolving entire sets of unit tests [6]. The representation of a
solution is a test suite, which is a set of test cases [6]. Each test case is a sequence
of calls on the CUT. As the ideal test suite size is not known a priori, the number
of tests in a test suite and the number of statements in a test case are variable
and can be changed by the search operators.

The fitness function used to guide the search is based on code coverage. One
of the most common coverage criteria in practice is branch coverage [6]. The
overall fitness value of a test suite is the sum of normalised branch distance
values (i.e., values estimating the distance to conditions evaluating to true and
false), so that a test suite with 100% branch coverage has a fitness value of 0 [6].

Diversity in Search-Based Unit Test Suite Generation 185

2.2 Measuring Population Diversity

Maintaining population diversity during the evolution of EAs is widely believed
to be crucial for avoiding premature convergence. Diversity measures are
intended to quantify the variety of population’s individuals in the base of struc-
tural or behavioural levels. These levels differ among different domains [19], e.g.,
the structure of an individual in the case of genetic programming (GP) is not
similar to the one with other evolutionary algorithms (EAs).

In general, there are three different levels of diversity measurement [19]:
Genotype level, Phenotype level, and Composite measures. The genotypic diver-
sity measures the structural (i.e., syntactic) differences among the individuals of
a population. In contrast, the phenotypic diversity is based on the behavioural
(i.e., semantic) differences in the population’s individuals. Finally, composite
measures are a combination of genotypic and phenotypic measures. The geno-
typic and phenotypic diversity measures have been intensively applied for GPs,
but have seen less attention in other EAs [19].

2.3 Maintaining Population Diversity

There are several techniques that have been used to maintain the diversity of
a population during the evolution process. Črepinšek et al. [19] classified these
techniques into non-niching and niching techniques.

The purpose of niching techniques is to alleviate the effects of genetic drift by
segmenting the population into subpopulations to locate multiple optimal solu-
tions [15]. Fitness sharing is the most popular and well-known approach among
the niching techniques [15]. It aims to find multiple peaks in the solution space,
where each subpopulation around a peak represents a niche where individuals
share the same resource (i.e., fitness value). The idea behind fitness sharing is
to decrease the value of the resource that is shared by the individuals of a niche
when the number of individuals is high. In contrast, the resource value will be
increased when there are few individuals in a niche, which gives these individuals
higher probability to be selected for next generations.

On the other hand, the non-niching techniques include different approaches
such as increasing population size, changing selection pressure, or applying
replacement restrictions [19].

However, there are other diversity techniques (e.g., dynamic adaptation of
crossover and mutation rates [14]) that rely on the feedback that is provided by
the population diversity measures to steer the evolution towards better explo-
ration and exploitation of the search space. These techniques are known by the
diversity control techniques [19].

2.4 Diversity in Test Generation

In the context of test generation, there have been several studies on generating
diverse test cases [16]. These studies adapt different evolutionary aspects to be
based on diversity of tests. The aim of these studies is for the tests within the

186 N.M. Albunian

final test suite to be diverse, rather than the individuals in the search population
(i.e., diverse test suites).

One aspect that can be modified to be based on diversity is fitness function.
For example, Feldt et al. [4] modified the fitness function of their evolutionary
algorithm to measure the fitness of a test case based on its similarity to other
test cases. The measure is based on information distance (i.e., information about
the actual execution of a test) between each two test cases.

Another approach that modifies the fitness function in a GA to be based
on the diversity of black-box string test cases is presented by Shahbazi et al.
[17]. The fitness function, in this case, measures the diversity of test cases as
the distance between every test case and its nearest test case (i.e., higher fit-
ness value indicates more diverse test cases). The authors examined different
string distance functions including Levenshtein, Hamming, Cosine, Manhattan,
Cartesian, and LSH distance functions and found that the LSH distance function
performs better in measuring the distance.

Alshraideh et al. [2] defined a diversity measure that is used to rank individ-
uals in the population (i.e., an individual with the highest distance from other
individuals receives better rank). Their measure is enriched to their approach
that directs the search when the fitness function at any test goal can not find
scarce test inputs.

The selection of parents during the evolution is another aspect that can be
adapted to be based on tests diversity. An approach that is applied by Palomba
et al. [11] incorporated two metrics into the Many-Objective Genetic Algorithm
(MOSA) within the selection mechanism as a secondary objective. One metric
is to reduce the test coupling (i.e., higher diversity) and the other is to increase
the test cohesion (i.e., lower test length).

Panichella et al. [13] proposed a novel many-objective GA that targets all
branches in the software under test as different objectives to be optimised simul-
taneously. To maintain better diversity among test cases, the authors applied the
crowding distance in the selection scheme; a test case has a higher probability
to be selected if it has a higher distance from the other test cases.

3 Preliminary Work

Our goal is to analyse how test suite generation for Java programs is influenced
by test case diversity, and whether maintaining diversity during the search can
lead to better coverage results. We therefore started by applying three diversity
measure techniques based on the phenotypic and genotypic levels. We measure
the phenotypic diversity based on the fitness entropy and test execution traces,
and we define a genotypic measurement based on the syntactic representation of
test suites.

To maintain population diversity, we investigated the influence of five selec-
tion mechanisms (i.e., Roulette wheel, Tournament selection size 2 and size 7,
and Rank selection bias 1.2 and bias 1.7) and five configurations of fitness shar-
ing (i.e., using fitness values, predicate distance, normalised predicate distance,

Diversity in Search-Based Unit Test Suite Generation 187

Fig. 1. Diversity throughout the evolution using sharing algorithms.

statement distance, and normalised statement distance to define niches) on the
diversity of the generated test suites.

To run our experiments, we used EvoSuite (version 1.0.3) with a “vanilla”
configuration [5] with only branch coverage as target criterion, no test archive,
and search budget of 30 min. We ran EvoSuite 10 times on 347 complex classes
from the DynaMOSA study [12].

The results show that for selection mechanisms, the main constant across all
types of diversity is that the roulette wheel selection leads to higher increase in
the population diversity. If we compare tournament selection with tournament
sizes 2 and 7, then the larger tournament size is expected to lead to less diversity,
and indeed this is confirmed by the entropy measure. For rank selection, the
higher rank bias of 1.7 results in less diversity than a bias of 1.2, as expected.

On the other hand, when comparing the five configurations of fitness sharing
with the baseline without fitness sharing, the fitness sharing shows clear increase
in diversity; fitness sharing based on fitness values shows the largest increase
across all metrics. The normalised versions of the metrics are usually close to
the non-normalised, except when normalised predicate-distance is used to drive
fitness sharing, in which case it results in larger increase, as shown in Fig. 1a.

Figure 1b shows the average code coverage over time. Interestingly, all appli-
cations of fitness sharing lead to lower code coverage. Indeed the configuration
that results in the highest diversity (fitness-based sharing) results in the low-
est code coverage. Our conjecture for this observation is that diversity increases
length. The likely reason for this lies in the variable size representation used in
test suite generation, where higher diversity leads to larger individuals, and thus
more expensive fitness evaluations.

4 Future Work

As our preliminary results indicate that increasing population diversity leads
to an increase in the length of individuals rather than improving the coverage,

188 N.M. Albunian

we will therefore consider devising diversity metrics for test suites that are not
influenced by length. We will further investigate alternative ways to increase
population diversity, for example by modifying the mutation operators. In par-
ticular, we anticipate potential by making mutations informed about the state
of the search (e.g., which methods are not covered yet) rather than random.

The adapted diversity measures can be extended and used with other con-
figurations such as calculating the overall predicate diversity based on the max-
imum/minimum value of the resulted distance values. We will also extend our
current phenotypic measure that is based on the execution profile of predicates
in the CUT to be based on branches of each predicate and, as an alternative,
based on the state of the object under test.

In addition, we aim to apply a generic modification of the search algorithms
that improves the diversity such as adapting the Novelty search algorithm [8] to
fit our diversity metrics and applying the Cellular form of GAs [1] to generate
test suites.

References

1. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Operations Research/Com-
puter Science Interfaces Series. Springer, US (2009)

2. Alshraideh, M., Bottaci, L., Mahafzah, B.A.: Using program data-state scarcity to
guide automatic test data generation. Software Qual. J. 18(1), 109–144 (2010)

3. Burke, E., Gustafson, S., Kendall, G., Krasnogor, N.: Advanced population diver-
sity measures in genetic programming. In: Guervós, J.J.M., Adamidis, P., Beyer,
H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol.
2439, pp. 341–350. Springer, Heidelberg (2002). doi:10.1007/3-540-45712-7 33

4. Feldt, R., Torkar, R., Gorschek, T., Afzal, W.: Searching for cognitively diverse
tests: towards universal test diversity metrics. In: Software Testing Verification
and Validation Workshop, ICSTW 2008, pp. 178–186. IEEE (2008)

5. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: Proceeding of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, pp. 416–419. ACM
(2011)

6. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Software Eng.
39(2), 276–291 (2013)

7. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation
using EvoSuite. ACM Trans. Softw. Eng. Methodol. 24(2), 8:1–8:42 (2014)

8. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through
the search for novelty. In: ALIFE, pp. 329–336 (2008)

9. McMinn, P.: Search-based software testing: past, present and future. In: 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 153–163. IEEE (2011)

10. Morrison, J., Oppacher, F.: Maintaining genetic diversity in genetic algorithms
through co-evolution. In: Mercer, R.E., Neufeld, E. (eds.) AI 1998. LNCS, vol.
1418, pp. 128–138. Springer, Heidelberg (1998). doi:10.1007/3-540-64575-6 45

11. Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., De Lucia, A.: Automatic
test case generation: what if test code quality matters? In: Proceedings of the
International Symposium on Software Testing and Analysis, pp. 130–141. ACM
(2016)

http://dx.doi.org/10.1007/3-540-45712-7_33
http://dx.doi.org/10.1007/3-540-64575-6_45

Diversity in Search-Based Unit Test Suite Generation 189

12. Panichella, A., Kifetew, F., Tonella, P.: automated test case generation as a many-
objective optimisation problem with dynamic selection of the targets. IEEE Trans.
Software Eng. PP, 1 (2017)

13. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)

14. Pellerin, E., Pigeon, L., Delisle, S.: Self-adaptive parameters in genetic algorithms.
In: International Society for Optics and Photonics, pp. 53–64 (2004)

15. Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. Trans.
Evol. Comp 2(3), 97–106 (1998)

16. Shahbazi, A.: Diversity-based automated test case generation. Ph.D. thesis, Uni-
versity of Alberta (2015)

17. Shahbazi, A., Miller, J.: Black-Box string test case generation through a multi-
objective optimization. IEEE Trans. Software Eng. 42(4), 361–378 (2016)

18. Shamshiri, S., Rojas, J.M., Fraser, G., McMinn, P.: Random or genetic algorithm
search for object-oriented test suite generation? In: Proceeding of the Conference
on Genetic and Evolutionary Computation, pp. 1367–1374. ACM (2015)

19. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

Automated Controlled Experimentation
on Software by Evolutionary Bandit

Optimization

Rasmus Ros(B), Elizabeth Bjarnason, and Per Runeson

Department of Computer Science, Lund University, Lund, Sweden
{rasmus.ros,elizabeth.bjarnason,per.runeson}@cs.lth.se

Abstract. Controlled experiments, also called A/B tests or split tests,
are used in software engineering to improve products by evaluating vari-
ants with user data. By parameterizing software systems, multivariate
experiments can be performed automatically and in large scale, in this
way, controlled experimentation is formulated as an optimization prob-
lem. Using genetic algorithms for automated experimentation requires
repetitions to evaluate a variant, since the fitness function is noisy. We
propose to combine genetic algorithms with bandit optimization to opti-
mize where repetitions are evaluated, instead of uniform sampling. We
setup a simulation environment that allows us to evaluate the solu-
tion, and see that it leads to increased fitness, population diversity, and
rewards, compared to only genetic algorithms.

1 Introduction

For companies developing internet-connected products, swift delivery of new
value-adding features is a key competitive factor. User perception is an important
factor in deciding which new features and software variants to include. This
factor can be gauged through continuous experimentation [1], where users are
exposed to different software variants, and decisions are made regarding which
variant to release based on user responses. The de facto method [2] for this is
iterative A/B testing, where the users are exposed to one of two or more variants
of the software. Once enough data is collected a hypothesis test determines the
winner of the controlled experiment, using a metric that aligns the software with
business goals (e.g. fraction of satisfied users).

A/B testing has been formulated as an optimization problem of finding the
optimal variants by parameterizing relevant variants in a software system [3],
using genetic algorithms [4]. This automated A/B testing of software can test
variants in quick succession, in this work we also evaluate multiple variants
simultaneously, as in multivariate testing. The optimization context presents two
challenges to evolutionary algorithms. Firstly, the fitness function is noisy, which
is addressed by repeated sampling. Secondly, improvements should be made with
as low cost as possible. Our proposed solution is to unify evolutionary algorithms
and bandit optimization [5].
c© Springer International Publishing AG 2017
T. Menzies and J. Petke (Eds.): SSBSE 2017, LNCS 10452, pp. 190–196, 2017.
DOI: 10.1007/978-3-319-66299-2 18

Automated Controlled Experimentation on Software 191

Bandit optimization is a technique for online experimental design, where
the sizes of the groups in the experiment are changed dynamically, based on
their performance. Bandit optimization has received attention from machine
learning and statistical communities [5] and has been used in commercial tools
for conducting controlled experimentation (e.g. in Google Analytics Content
Experiments).

Controlled experimentation as a software engineering phenomenon, has been
studied in search based software engineering (SBSE). There, controlled experi-
mentation was first formulated as an optimization problem, by Tamburrelli and
Margara [3], and our contribution builds on their work. They used genetic algo-
rithms with repetitions on the fitness function to reduce variance, which spreads
the experimentation evenly over the population. In knowledge discovery and data
mining (KDD), Kohavi et al.’s seminal paper on the technical and practical con-
siderations for large-scale web A/B testing [2] describes the context where our
work can be applied. The research on controlled experimentation in evidence
based software engineering (EBSE) uses the term continuous experimentation
and takes a management and process perspective [1].

2 Solution Algorithm

We propose a novel algorithm for automated experimentation that combines
the online experimental design of bandit optimization with the genetic oper-
ators crossover and mutation to expand the search. Our algorithm is tasked
with continuously maximizing the performance of the software, as measured by
some business value, a reward in bandit literature. The proposed algorithm is
outlined in Algorithm 1 below. The design choices in the algorithm for bandit
optimization, steps 1–3, and the evolutionary algorithm, steps 4–6, are explained
in Sects. 2.1 and 2.2 respectively.

In bandit optimization a gambler is faced by multiple slot-machines (collo-
quially a one-armed bandit) with unknown reward distributions. The goal is to
maximize rewards by using the bandits one at a time. Herein lies a trade-off
between exploration of the bandits’ reward distributions and exploiting the cur-
rently most rewarding bandit. For A/B testing, this non-uniform sampling can
lower the total opportunity cost of experimenting, but is less robust to changes
in bandit performance. Standard bandit algorithms use a fixed number of ban-
dits, while in this work we propose to continuously change the set of available
bandits by genetic algorithm operators.

The proposed algorithm has a population of variants xi ∈ X, i = 1 . . . n.
Every time slot t = 1 . . . T a user of the system arrives and requests a soft-
ware variant. The variant is selected from X, according to the bandit policy,
to maximize the expected reward. Rewards rt,i ∈ R from experimentation are
continuously used to update beliefs about reward distributions θi. Any variant
can be eliminated if they are performing significantly worse than the best variant
in X. The standard genetic operators – crossover and mutation – are then used
to generate new variants in the population.

192 R. Ros et al.

Algorithm 1. Proposed evolutionary bandit algorithm.
X = initial population of software variants, rewards R = ∅.
for t = 1, . . . , T do

// A user arrives in the system.

1. Select variant xi from X according to bandit policy.
2. Observe reward rt,i from experiment with xi, R = R ∪ rt,i.
3. Update belief about θi with rt,i.
4. Evaluate fitness on all variants in X based on R.
5. Select most-fit variants from X, eliminating the rest.
6. Add new variants to X through crossover and mutation.

end

Example problem. We use the visual layout of web pages as an example problem
to validate our algorithm. This is a commonly used example for A/B testing [2].
Representing the layout as a grid allows easy definitions of the genetic operators.
The scalar value of each grid cell defines which layout component to use on that
cell. The grid can be transformed into a minimal set of rectangles in polynomial
time, using results from computational geometry [6].

The number of variations in the problem is Cn×m, where C is the number
of different layout components, and n × m is the size of the grid. The reward is
either success or failure of the layout in performing its task (e.g. sell a product
in an e-commerce web-site).

2.1 Bandit Optimization Policies

From the many heuristic methods of solving the bandit problem we have tested
upper confidence bound (UCB) and Thompson sampling [5]. Both UCB and
Thompson sampling are asymptotically optimal heuristics; they achieve an
expected regret of O(log T) for binary rewards. Regret is defined as Tμ−∑T

t=1 rt,
where μ is the expected reward of the best possible bandit and rt is the reward
at time t. We found that probability matching performed the best and therefore
restrict our discussion to this method.

Thompson sampling. A conceptually simple Bayesian method of solving the ban-
dit problem is to match the probability of selecting a bandit with the probability
of it being the optimal bandit. This is achieved by sampling from a posterior dis-
tribution once for each bandit and selecting the bandit with the highest sampled
value. The posterior distribution P (θi|ri) of variant xi is updated as experiments
are completed.

Example bandit policy for the layout problem. The bandit policy for the layout
problem is Thompson sampling, and since the rewards are binary, they are mod-
elled by a Bernoulli distribution. The Beta distribution is a conjugate prior to the
Bernoulli distribution, and so to sample a value from the posterior it is sufficient
to take a single sample from the Beta(αi +a, βi + b) distribution, where α and β

Automated Controlled Experimentation on Software 193

are the number of successes and failures in experiments involving variant xi.
Selecting a = b = 1 as the prior successes and failures yields a non-informative
prior.

2.2 Evolutionary Algorithm Design

The design of our evolutionary algorithm is influenced by the iterative process
imposed by bandit optimization, since selection is performed in steps instead of
in batches. As a consequence we use an additional selection as mating strategy.
The population size n is kept fixed, and as variants are eliminated, the population
is expanded through crossover and mutation. The number of variants eliminated
per time slot are dynamic, and depends on the fitness of the variants. Fitness is
evaluated based on the feedback observed from experiments with users.

Selection. When there is sufficient evidence that a variant is under performing it
is removed from the population. Any variant whose fitness confidence interval is
non-overlapping with the best fitness confidence interval is eliminated from the
population, this is effectively a dynamic version of truncation selection.

Mating strategy. Since breeding is performed in small steps there is a risk of mat-
ing the most-fit variants frequently, leading to pre-mature convergence. Hence
selecting mates through either uniform sampling, tournament selection or pro-
portional selection [4] is appropriate. Fitness proportional selection with rejec-
tion sampling [7] worked best in the simulation, where a variant xi is selected
uniformly at random and then accepted with probability fi/fM , where fi is the
fitness of the variant xi and fM is the fitness of the most-fit variant, evaluated
through maximum a posteriori estimation of reward distributions P (θi|ri).
Example genetic operators for the layout problem. The genetic operators for the
layout problem are defined as follows. Crossover between two parents is done
by selecting a horizontal or vertical line in the grid, and using the values from
either parent from each side of the line respectively. Mutation is performed by
changing the value of a randomly selected rectangle in the grid.

3 Simulation

The proposed algorithm is evaluated in a simulation of the visual layout problem,
see the results in Fig. 1 and Table 1. A simulation provides a highly controlled
environment for evaluating the solution, but is not as realistic as a real world
implementation. The code and all simulation results are available in Github1.
As a baseline for comparison we use a genetic algorithm with repetitions, imple-
mented using the different options in the Matlab Optimization Toolbox.

To get as realistic simulation as possible we need a fitness function with mul-
tiple local optima, this function would be unknown in a real scenario. Solutions
with high number of rectangles are ranked lower, since those are hypothesized to

1 https://github.com/rasros/evolutionarybandit.

https://github.com/rasros/evolutionarybandit

194 R. Ros et al.

be less visually appealing. This is motivated by popular design guidelines that
promote minimalistic design (e.g. material design2). Following this reasoning,
the distance between two grids is defined as the fraction of cells in the grid that
are non-equal. To punish complex solutions we add max(Rp − Rt, 0)/(n · m) to
the distance, where Rt and Rp is the number of rectangles in the target and
proposed grid respectively. Finally, since there can be multiple solutions of var-
ious quality we take the weighted harmonic mean between the distances from
the proposed grid to multiple target grids. The mean is then the probability for
a proposed grid to receive a reward. We believe this presents a challenging and
somewhat realistic target fitness function.

The conditions for the simulation are as follows. The grid size is 8 × 10 with
4 possible values, thus there are approximately 1048 unique combinations and
80 variables, this is sufficiently large to encode complex layouts with multiple
software components. The initial population is generated to have fitness between
0.1–0.2. The simulation proceeds over T = 4000 experiments, which is based
on the number of samples needed for an A/B test with 70% power and 0.05
confidence, with an effect of 0.02. The simulation is repeated 1000 times.

Both algorithms have multiple hyper-parameters, which we tune using ran-
dom search with linear regression, with some interaction factors. The response
variable is the mean population fitness at end time T . Important parameters
are population size, number of repetitions for the baseline algorithm, and cut-off
threshold for the evolutionary bandit algorithm. Lowering the number of rep-
etitions increases selection pressure, leading to short term gains in fitness, but
decreases diversity which can lead to getting stuck in local optima. A similar
effect with cut-off threshold is observed for the evolutionary bandit algorithm.

From the results in Table 1 and Fig. 1, we see that the evolutionary bandit
algorithm is better in the relevant measures, fitness and diversity. Both algo-
rithms improve significantly upon the starting conditions, although neither are
close to converging. There is no asymptotic optimality of O(log T) regret seen in
Fig. 1b. This is not surprising as it would be contingent on observing the optimal
variant, and evolutionary algorithms provides no such guarantees.

Table 1. Simulation results at end time, T = 4000, with 1000 repetitions. Group fitness
is the mean fitness over the population, top fitness is maximum fitness obtained in the
group, duplication is the number of non-unique genomes. Â is the Vargha-Delaney
effect-size, calculated between the two algorithms.

Algorithm Rewards Group fitness Top fitness Duplication

Median IQR Median IQR Median IQR

Baseline 624 143 0.185 0.061 0.247 0.061 25%

Bandit 721 192 0.219 0.071 0.295 0.075 0%

Effect-size Â 0.722 0.700 0.765

2 https://material.io/guidelines.

https://material.io/guidelines

Automated Controlled Experimentation on Software 195

(a) Group mean fitness.

0 1,000 2,000 3,000 4,000
0

0.1

0.2

0.3

0.4

Time [t]

F
it

n
es

s
[P

(r
ew

a
rd

)] Bandit

Baseline

(b) Cumulative regret.

102 103
0

0.1

0.2

0.3

0.4

Time [t]

C
u
m

.
re

g
re

t
[1

0
k
] Bandit

Baseline

Fig. 1. Simulation results comparing the proposed bandit evolutionary algorithm
against baseline genetic algorithm with repetitions. Results are averaged over 1000
simulation runs.

4 Conclusions

By formulating controlled experimentation of software systems as an optimiza-
tion problem many more variants can be tested and evaluated than with manual
experimentation under given resource constraints. Based on simulations, we show
that adding bandit optimization to genetic algorithms increases both long-term
fitness, rewards, and population diversity for this problem. An additional finding
is that there are trade-offs in hyper-parameter tuning between short-term gains
and long-term fitness, practitioners should make an active choice there. Future
work includes additional overall realistic evaluation, and further investigation of
the effect of time delays in rewards or dynamic changes of reward probabilities.

Acknowledgment. This work was conducted within the Wallenberg Autonomous
Systems and Software Program (WASP) (http://wasp-sweden.se).

References

1. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The RIGHT model for con-
tinuous experimentation. J. Syst. Softw. 123, 292–305 (2017)

2. Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled experiments
on the web: listen to your customers not to the HiPPO. In: Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 959–967 (2007)

3. Tamburrelli, G., Margara, A.: Towards automated A/B testing. In: Goues, C., Yoo,
S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 184–198. Springer, Cham (2014). doi:10.
1007/978-3-319-09940-8 13

4. Melanie, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1999)
5. Burtini, G., Loeppky, J., Lawrence, R.: A Survey of Online Experiment Design

with the Stochastic Multi-Armed Bandit. ArXiv e-prints (2015). arXiv:1510.00757v4
[stat.ML]

http://wasp-sweden.se
http://dx.doi.org/10.1007/978-3-319-09940-8_13
http://dx.doi.org/10.1007/978-3-319-09940-8_13
http://arxiv.org/abs/1510.00757v4

196 R. Ros et al.

6. Eppstein, D.: Graph-theoretic solutions to computational geometry problems. In:
Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 1–16. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-11409-0 1

7. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance.
Phys. A: Stat. Mech. Appl. 391(6), 2193–2196 (2012)

http://dx.doi.org/10.1007/978-3-642-11409-0_1

Author Index

Albunian, Nasser M. 183
Almulla, Hussein 153
Arcuri, Andrea 3, 33
Assaf, Mustafa 124

Barr, Earl T. 161
Basios, Michail 161
Bazargani, Mosab 168
Biagiola, Matteo 18
Bjarnason, Elizabeth 190

Campos, José 33
Cheng, Betty H.C. 49

DeVries, Byron 49
Drake, John H. 168

Eler, Marcelo 33

Fraser, Gordon 33

Gay, Gregory 65, 153
Ge, Yan 33
Gorroñogoitia, Jesús 130
Guizzo, Giovani 168

Kanthan, Leslie 161
Kashyap, Vineeth 117
Khalil, Elias 124
Kifetew, Fitsum Meshesha 83, 130
Kim, Jinhan 137
Kim, Junhwi 137, 143
Kwon, Minhyuk 143

Le Goues, Claire 99
Lee, Seongmin 175
Li, Lingbo 161

McMinn, Phil 143
Melski, David 117
Muñante, Denisse 130

Paixao, Matheus 168
Panichella, Annibale 83
Perini, Anna 130

Ricca, Filippo 18
Ros, Rasmus 190
Runeson, Per 190

Salahirad, Alireza 153
Sayyad, Abdel Salam 124
Schulte, Eric 117
Siena, Alberto 130
Stepney, Susan 99
Susi, Angelo 130
Swords, Rebecca 117

Timperley, Christopher Steven 99
Tonella, Paolo 18, 83

Wu, Fan 161

Yoo, Shin 137, 143, 175
You, Byeonghyeon 143

	Preface
	Organization
	Keynotes
	The Grass isn’t Always Greener: A Changing Neighborhood and Varying Landscape
	Industrial Applications of Evolutionary Testing
	Tutorials
	Algorithms for Multiobjective Optimization and How to Benchmark Them
	Search-based Unit Test Generation with EvoSuite
	Optimization Search for GUIs and Cyberphysical Systems
	Multi-objective Optimization with the jMetal Framework. Applications to SBSE
	Journal-First Presentations
	A Systematic Mapping Study of Search-based Software Engineering for Software Product Lines
	Technical Debt Reduction Using Search Based Automated Refactoring
	Contents
	Long Research Papers
	Many Independent Objective (MIO) Algorithm for Test Suite Generation
	1 Introduction
	2 Background
	2.1 Whole Test Suite (WTS)
	2.2 Many-Objective Sorting Algorithm (MOSA)

	3 The MIO Algorithm
	3.1 Core Algorithm
	3.2 Exploration/Exploitation Control
	3.3 Feedback-Directed Sampling

	4 Empirical Study
	4.1 Artificial Software
	4.2 Numerical Functions

	5 Conclusion
	References

	Search Based Path and Input Data Generation for Web Application Testing
	1 Introduction
	2 Related Work
	3 Navigation Model Specification via Page Objects
	3.1 Page Objects
	3.2 Navigation Graph

	4 Search Based Path and Input Data Generation
	4.1 Problem Reformulation
	4.2 Genetic Operators

	5 Empirical Validation
	5.1 Tool
	5.2 Case Study
	5.3 Experimental Procedure
	5.4 Results
	5.5 Threats to Validity

	6 Conclusions and Future Work
	References

	An Empirical Evaluation of Evolutionary Algorithms for Test Suite Generation
	1 Introduction
	2 Evolutionary Algorithms for Test Suite Generation
	2.1 Representation
	2.2 Optimisation Goals and Archives
	2.3 Random Search
	2.4 Genetic Algorithms
	2.5 + Evolutionary Algorithm
	2.6 Many-Objective Sorting Algorithm

	3 Empirical Study
	3.1 Experimental Setup
	3.2 Parameter Tuning
	3.3 RQ1 -- Which Evolutionary Algorithm Works Best When Using a Test Archive for Partial Solutions?
	3.4 RQ2 -- How Does Evolutionary Search Compare to Random Search and Random Testing?
	3.5 RQ3 -- How Does Evolution of Whole Test Suites Compare to Many-Objective Optimisation of Test Cases?

	4 Related Work
	5 Conclusions
	References

	Automatic Detection of Incomplete Requirements Using Symbolic Analysis and Evolutionary Computation
	1 Introduction
	2 Background
	2.1 Hierarchical Requirements Modeling
	2.2 Utility Functions
	2.3 Adaptive Cruise Control Systems

	3 Approach
	3.1 Step 1: Generate Detection Logic
	3.2 Step 2: Search for Counterexamples and Summarize
	3.3 Scalability and Limitations

	4 Results
	4.1 Symbolic Analysis
	4.2 Evolutionary Computation
	4.3 SA Initialization Then EC
	4.4 Periodic SA with EC Results
	4.5 Comparison

	5 Related Work
	5.1 Requirements Completeness
	5.2 Search for Diversity

	6 Conclusions
	References

	Generating Effective Test Suites by Combining Coverage Criteria
	1 Introduction
	2 Background
	3 Study
	3.1 Case Examples
	3.2 Test Suite Generation
	3.3 Selecting Criteria Combinations

	4 Results and Discussion
	4.1 Additional Configurations
	4.2 Observations and Recommendations

	5 Related Work
	6 Threats to Validity
	7 Conclusions
	References

	LIPS vs MOSA: A Replicated Empirical Study on Automated Test Case Generation
	1 Introduction
	2 Background
	3 Summary of the Replicated Empirical Study
	3.1 Threats to Validity
	3.2 Reasons to Replicate
	3.3 How to Replicate

	4 Design of the New Study
	4.1 Research Questions and Performance Metrics

	5 Experimental Results
	5.1 Comparison Between Old and New Results
	5.2 Threats to Validity

	6 Conclusions and Future Work
	References

	An Investigation into the Use of Mutation Analysis for Automated Program Repair
	1 Introduction
	2 Fault Localisation in Search-Based Program Repair
	3 Analysis
	3.1 Experimental Setup
	3.2 Analysis
	3.3 Fault Localisation
	3.4 Discussion

	4 Related Work
	5 Conclusions
	References

	Short Research Papers
	MUSYNTH: Program Synthesis via Code Reuse and Code Manipulation
	1 Introduction
	2 Related Work
	3 MuSynth Overview
	4 Evaluation
	References

	Human Resource Optimization for Bug Fixing: Balancing Short-Term and Long-Term Objectives
	1 Introduction
	2 Experimental Setup
	2.1 Multi-Objective Optimization
	2.2 Chromosome Structure
	2.3 Multi-objective Fitness Evaluation
	2.4 jMetal Study
	2.5 Dataset

	3 Results
	4 Conclusion
	References

	Grammar Based Genetic Programming for Software Configuration Problem
	1 Introduction
	2 Feature Models and Grammars
	3 Search-Based Approach for Software Configuration
	4 Preliminary Results and Discussion
	References

	GPGPGPU: Evaluation of Parallelisation of Genetic Programming Using GPGPU
	1 Introduction
	2 Evaluating GP Trees Using GPGPU
	3 Experimental Setup
	3.1 Research Questions
	3.2 Configurations and Environments

	4 Results
	5 Related Works
	6 Conclusion
	References

	Evaluating CAVM: A New Search-Based Test Data Generation Tool for C
	1 Introduction
	2 CAVM: A New C Test Data Generation Tool
	3 Experimental Setup
	3.1 Subjects
	3.2 Configurations
	3.3 Environments

	4 Results
	5 Conclusion
	References

	Challenge Papers
	Using Search-Based Test Generation to Discover Real Faults in Guava
	1 Introduction
	2 Study
	2.1 Fault Extraction
	2.2 Test Generation and Removal

	3 Results and Discussion
	4 Conclusion
	References

	Optimising Darwinian Data Structures on Google Guava
	1 Introduction
	2 Proposed Solution
	3 Experiments and Results
	4 Conclusions
	References

	A Hyper-heuristic for Multi-objective Integration and Test Ordering in Google Guava
	1 Introduction
	2 Problem Description and Solution Methodology
	3 HITO
	4 Experiments
	4.1 Experimental Set-up
	4.2 Results

	5 Conclusion
	References

	Hyperheuristic Observation Based Slicing of Guava
	1 Introduction
	2 HOBBES: Hyperheuristic Observation Based Slicing
	2.1 Observation Based Slicing
	2.2 Deletion Operators Based on Lexical Similarity
	2.3 Algorithm of HOBBES
	2.4 Studied Deletion Operators
	2.5 Selective Hyperheuristic

	3 Experimental Setup
	3.1 Research Questions
	3.2 Subjects, Configuration, and Environment

	4 Results
	5 Conclusion
	References

	Student Papers
	Diversity in Search-Based Unit Test Suite Generation
	1 Introduction
	2 Background
	2.1 Search-Based Software Testing (SBST)
	2.2 Measuring Population Diversity
	2.3 Maintaining Population Diversity
	2.4 Diversity in Test Generation

	3 Preliminary Work
	4 Future Work
	References

	Automated Controlled Experimentation on Software by Evolutionary Bandit Optimization
	1 Introduction
	2 Solution Algorithm
	2.1 Bandit Optimization Policies
	2.2 Evolutionary Algorithm Design

	3 Simulation
	4 Conclusions
	References

	Author Index

