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Abstract In this survey, we review recent progress in the theory of spacelike hyper-
surfaces with constant mean curvature in the steady state space. Using the different
models of this space, we outline the major concepts, techniques, and results with a
special focus on Bernstein-type theorems, hypersurfaces with boundary in a slice,
and the Dirichlet problem for the constant mean curvature equation.
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1 Introduction

The steady state spaceH n+1 is the space Rn+1
+ = {(x, xn+1) ∈ R

n × R : xn+1 > 0}
endowed with the Lorentzian metric

g(x,xn+1) = 1

x2n+1

(|dx |2 − (dxn+1)
2).

Thus, H n+1 = (Rn+1
+ , g) is the Lorentzian analogue to the hyperbolic space Hn+1.

From the physical viewpoint, and for n = 3,H 4 is a model of the universe proposed
by Bondi and Gold [15] and Hoyle [34] under the belief in the “perfect cosmological
principle”, that is, the space looks the same not only at all points and in all directions
(homogeneous and isotropic), but also at all times ([32, Sect. 5.2]). In particular,
this model postulates a continuous creation of matter in order to be consistent with
the idea of an unchanging universe, existing old and young galaxies in any large
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volume of space which are continuously forming by accretion of new matter. This
cosmological model attracted the interest of physicists during part of the twentieth
century but nowadays the steady state space has been discarded because it does
not predict many physical observations (in contrast to the Big Bang model), as the
abundance and the proportion of helium and hydrogen, or the evolution of stars and
galaxies. Finally, it was the discovery of the cosmic microwave background (CMB)
in late 1964, the most clear evidence against this model: in the initial stages, the
universe was denser and hotter than now because it dilutes and cools as it expands.
However, the steady state space forbids the existence of CMB because under this
model, the density and the temperature are always the same; see [16] and especially
[48, Chs. 14, 16].

If we come back to the steady state space viewed as a Lorentzianmanifold, it opens
up a wide variety of problems in the theory of submanifolds. Surprisingly, it has been
until very recently that this space has gained the interest after thework ofMontiel [42]
in 2003 where, following ideas of [40], it is proved the existence of constant mean
curvature spacelike hypersurfaces with boundary in the future infinity ofH n+1. This
pioneering article was the starting point which many geometers focused in the study
of submanifolds in H n+1. Furthermore, this is accompanied by the property that
H n+1 can be viewed equivalently in two different coordinates. First, as an open set
of the de Sitter space Sn+1

1 (such as it appeared in the original works of Bondi and
Hoyle). The space S

n+1
1 has a high relevance in general relativity that it deserves

to study or, as in our case, an open set of Sn+1
1 . A second model of H n+1 is as a

generalized Robertson–Walker (GRW) spacetime and thus forming part of a large
family of cosmological models whichmade that authors working in these spacetimes
put their focus in the steady state space.

In this survey, wewill study spacelike hypersurfaceswith constantmean curvature
inH n+1. Froma physical viewpoint, the hypersurfaceswith constantmean curvature
(cmc to abbreviate) are convenient initial data for the Cauchy problem corresponding
to the Einstein equations. In spacetimes, there is also an interest to have foliations by
means of cmc spacelike hypesurfaces because all points of each leaf of the foliation
are instantaneous observers and the timelike unit normal vector of the hypersurfaces
measures how the observers get away with respect to the next ones. Our aim in this
chapter is twofold. We first want to summarize the most important results in this
topic, and second, we are intended to give an overview of the main methods that
lie behind the results, especially, the tangency principle, the Omori-Yau maximum
principle, or the continuity method for the Dirichlet problem. In this chapter, we also
provide a new approach in some results trying to unify, if possible, the techniques of
the different models.

This chapter is organized as follows. In Sect. 2 we give a description of the space-
like umbilical hypersurfaces and we present two new models for H n+1, each one
will be conveniently employed depending on the problems that we address. Section3
is devoted to characterize the slices ofH n+1 in the class of complete cmc spacelike
hypersurfaces obtaining Bernstein-type results and extending some of these results
to GRW spacetimes. In the last part of this exposition, we study the shape of a com-
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pact cmc hypersurface in relation with its boundary (Sect. 4) and we derive existence
results of the Dirichlet problem for the cmc equation (Sect. 5). This chapter ends with
a list of open problems.

2 The Steady State Space: A Space and Three Models

We have defined the steady state space as H n+1 = (Rn+1
+ , g), and we will say

that this is the upper half-space model for H n+1. If Rn+1
1 = (Rn+1, 〈, 〉) stands

for the Lorentz–Minkowski space, where 〈x, y〉 = x1y1 + . . . + xn yn − xn+1yn+1,
then H n+1 is nothing but the open set Rn+1

+ = R
n × R

+ with the conformal met-
ric g = 〈, 〉/x2n+1. The time orientation is determined by en+1 = (0, . . . , 0, 1). As
a consequence, the isometries of H n+1 are the conformal transformations of Rn+1

1
that preserve the upper half-spaceRn+1+ , as for example, the rotations about a vertical
straight line, the horizontal translations, or the homotheties from a point ofRn × {0}.

We now introduce two equivalent models for H n+1, or to be more precise, we
present two types of change of coordinates inH n+1.

1. The de Sitter model. Consider the de Sitter space, that is, the hyperquadric Sn+1
1 =

{x ∈ R
n+2
1 : 〈x, x〉 = 1} of all unit spacelike vectors in Rn+2

1 , and take a ∈ R
n+2
1

a nonzero null vector in the past half of the null cone. The steady state space is the
open region S

n+1
1,+ = {x ∈ S

n+1
1 : 〈x, a〉 > 0} with the induced metric. The time

orientation is determined by en+2 = (0, . . . , 0, 1).
2. A GRW spacetime. The steady state space is the vector space Rn+1 = R × R

n =
{(t, x) : t ∈ R, x ∈ R

n} with the Lorentzian metric −dt2 + e2t |dx |2. In other
words, H n+1 is the generalized Robertson–Walker spacetime −R ×et R

n . His-
torically, the cosmological model H 4 proposed by Hoyle is −R ×eHt R

3 where
H is the Hubble constant. The timelike orientation is determined by the vector
field ∂t .

The expressions of the change of coordinates between the three models are the
following. The isometry Ψ : Sn+1

1,+ → R
n+1+ is

Ψ (x) = 1

〈x, a〉 (x − 〈x, a〉b − 〈x, b〉a, 1)

where b ∈ R
n+2
1 is a null vector such that 〈a, b〉 = 1. This isometry reverses the time

orientation. The isometry Φ : Sn+1
1,+ → −R ×et R

n is

Φ(x) =
(
log(〈x, a〉), x − 〈x, a〉b − 〈x, b〉a

〈x, a〉
)

where b ∈ R
n+2
1 is as above. This isometry preserves the time orientation. Finally,

the isometry between the GRW model and the upper half-space model is Ξ : −R ×
R

n → R
n+1
+ , Ξ(t, x) = (x, e−t ) which reverses the time orientation.
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Each one of the models has its advantages. For example, it is easy to visualize
the isometries in the upper half-space model. In the de Sitter model, the analytic
calculations are easier, as for example, when in Sect. 3 we compute the Laplacian of
certain functions. Finally, the GRWmodel allows to seeH n+1 as a product manifold
with a distinguished role to the fibers of the space and again the analytic calculations
in this model are simple (not necessarily easy).

The steady state space has two boundaries at the infinity. The past infinity of
H n+1 is J − ≡ {xn+1 = ∞} (the nullhypersurface L0 = {x ∈ S

n+1
1 : 〈x, a〉 = 0}

or the vertical hyperplane {−∞} × R
n in the GRW model). On the other hand, the

future infinityJ + corresponds with the limit hyperplane {xn+1 = 0} (or L∞ = {x ∈
S
n+1
1 : 〈x, a〉 = ∞} or {∞} × R

n in the GRW model).
Since H n+1 is an open set of Sn+1

1 , then H n+1 is a non-complete Lorentzian
manifold with constant sectional curvature equal to 1. For example, if {ei } is the usual
basis of Rn+2, and a = e1 − en+2, the geodesic γ (s) = cosh(s)e2 + sinh(s)en+2 is
defined only if s > 0 with lims→0 γ (s) ∈ J − and lims→∞ γ (s) ∈ J +. Motivated
by this example, and following Hawking and Ellis in [32], in the steady state space
any fundamental observer has a future event horizon but no past particle horizon.
There also exist other geodesics in H n+1 defined for all s, for instance, γ (s) =
cosh(s)e1 − sinh(s)en+2.

We restrict our interest into spacelike hypersurfaces ofH n+1. More generally, an
immersion ψ : Σn → H n+1 of a n-dimensional (connected) manifold Σ is said to
be a spacelike hypersurface if the inducedmetric onΣ viaψ is Riemannian. Because
the orthogonal subspace (TpΣ)⊥ is timelike and there is a time orientation in the
ambient spaceH n+1,we candefine a timelike unit normal vector field N onΣ in such
a way that N lies in the future half of the null cone: this concludes that any spacelike
hypersurface is orientable. If ∇̄ and ∇ denote the Levi-Civita connections ofH n+1

and Σ , respectively, the Gauss equation is ∇̄XY = ∇XY + σ(X,Y ) for all X,Y ∈
X(Σ). Then the mean curvature vector is H = tr(σ )/n. When we write H = HN ,
then H is called themean curvature of the immersion. In terms of the shape operator
A, namely, AX = −∇̄X N for X ∈ X(M), the mean curvature is H = −tr(A)/n. If
H is constant, we say that Σ has constant mean curvature and we abbreviated by
H-hypersurface if we want to emphasize the value of the mean curvature.

Remark 2.1 Throughout the rest of this chapter, all the spacelike hypersurfaces will
be oriented with the choice of N pointing to the future. We also keep the convention
that the mean curvature H is computed with this choice of N . We know that the
isometry Ψ between the de Sitter model and the upper half-space model reverses the
time orientation, and the same occurs with the isometry Ψ ◦ Φ−1 between the GRW
model and the upper half-space model. Thus, a spacelike hypersurface with mean
curvature H in the upper half-space model has mean curvature −H in the de Sitter
and GRW models.

In the upper half-space model, the mean curvature of a hypersurface Σ can be
calculated if we know the mean curvature of Σ viewed as submanifold of Rn+1

1 .
Indeed, since both metrics are conformal, if H ′ is the mean curvature of Σ ⊂ R

n+1
1 ,

then
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H = xn+1H
′ − (xn+1 ◦ N ′) (1)

where N ′ = N/xn+1 is the Gauss map of Σ ⊂ R
n+1
1 .

An important family of submanifolds inH n+1 are the totally umbilical ones. By
the conformality between the metric g and the Lorentzian metric 〈, 〉, these hypersur-
faces are the intersection of the umbilical hypersurfaces of Rn+1

1 (hyperbolic planes
and spacelike planes) with the half-space Rn+1

+ . First, let us introduce the following
notation: for c ∈ R

n+1 and r > 0, let

H
n(r; c) = {x ∈ R

n+1
+ : 〈x − c, x − c〉 = −r2}.

Depending on the relation between c and r , this hypersurface has one or two con-
nected components, namely, the upper one H

n+(r; c) and the lower one H
n−(r; c).

We describe the spacelike umbilical hypersurfaces of H n+1, including the value
of H with respect to the future-directed orientation following our convention of
Remark 2.1.

1. A slice is a horizontal hyperplane

Lτ = {x ∈ R
n+1 : xn+1 = τ }, τ > 0.

A slice is complete with H = −1. After an isometry, a slice is Hn+(r; c) where
cn+1 = −r .

2. An equidistant hypersurface is a hypersurface of typeHn−(r; c). For the existence
ofHn−(r; c), it is necessary that cn+1 > r . This hypersurface is not complete and its
mean curvature is H = −cn+1/r . After an isometry, they are also non-horizontal
spacelike hyperplanes or the upper component Hn+(r; c) where cn+1 < −r .

3. A hyperbolic plane of center c ∈ R
n+1 and radius r > 0 is a hypersurface of type

H
n+(r; c) where cn+1 > −r . A hyperbolic plane is complete with H = cn+1/r .

Equation (1) allows to write in local coordinates the mean curvature which reveals
us the local nature of a cmc hypersurface. Indeed, since a spacelike hypersurface in
H n+1 is locally a graph xn+1 = u(x) of a function u ∈ C∞(Ω), Ω ⊂ R

n × {0}, by
the expression of the mean curvature in Rn+1

1 and (1), we obtain

QH [u] := div

(
Du√

1 − |Du|2
)

− n

u

(
H + 1√

1 − |Du|2
)

= 0. (2)

The spacelike condition of the graph is equivalent to |Du|2 < 1. Equation (2) is of
elliptic type with the remarkable property that the difference of two solutions of (2)
satisfies a linear elliptic PDE, and consequently, we can apply the strong maximum
principle of Hopf [31]. This extends the usual tangency principle of Euclidean space
for cmc hypersurfaces [37]:

Proposition 2.1 (Tangency principle) Let Σ1 and Σ2 be two spacelike
H-hypersurfaces which are tangent at a common interior point p and the unit
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normal vectors coincide at p. If one surface lies on one side of the other in a neigh-
borhood of p, then Σ1 and Σ2 coincide in an open set around p. The same holds if
p ∈ ∂Σ1 ∩ ∂Σ2 provided that the tangent spaces Tp∂Σi coincide.

Remark 2.2 The above notion of Euclidean graph coincides with the one of graph
inH n+1. Indeed, if Ω ⊂ Lτ is a (smooth) domain and f ∈ C∞(Ω), the graph of f
is the hypersurface Σ f = {γ ( f (x); x) : x ∈ Ω}, where γ = γ (s; x) is the geodesic
passing by x and orthogonal to Lτ . In the upper half-space model, this geodesic is
a vertical line so Σ f writes as {(x, u(x)) : x ∈ Ω} for a certain function u. A first
example of an entire graph is a slice Lτ which is the graph of the constant function
f (x) = 0 (or u(x) = τ in the upper half-space model). In the GRW model, a graph
is {(u(x), x) : x ∈ Ω} where the spacelike condition reads as |Du|2 < e2u .

3 Bernstein-Type Characterizations of Slices

From the above section, we know that there do not exist complete umbilical hyper-
surfaces of H n+1 with H < −1, and that slices (for H = −1) are the first such
examples. Notice that the steady state space is foliated by means of slices, indeed,
R

n+1
+ = ∪τ>0Lτ which it is of interest in the cosmological model. Slices also appear,

via the tangency principle, as natural barriers for the existence of cmc hypersurfaces:
see Sects. 4 and 5. Due to this distinguished role, in this section, we address with the
following

Problem 1:Under what geometric assumptionsmust a complete cmc spacelike hypersurface
of H n+1 be a slice?

In this context, the remarkable chapter of Albujer and Alías [3] (part of the Ph.
Doctoral Thesis of Albujer [2]) starts a series of works characterizing the slices under
certain boundedness assumptions. The purpose of this section is to provide a general
view of these results and the techniques employed in their proofs. Here, we use the de
Sitter model ofH n+1 where a slice corresponds with Lτ = {x ∈ S

n+1
1 : 〈x, a〉 = τ },

τ > 0, and its mean curvature is H = 1 following the convention of Remark 2.1.
First, we need the following definition.

Definition 3.1 A spacelike hypersurface ψ : Σ → H n+1 = S
n+1
1,+ is said to be

bounded away from the future infinity (resp. from the past infinity) if there exists τ > 0
such that ψ(Σ) ⊂ {x ∈ H n+1 : 〈x, a〉 ≤ τ } (resp. ψ(Σ) ⊂ {x ∈ H n+1 : 〈x, a〉 ≥
τ }). We say that Σ is bounded away from the infinity, or that Σ lies between two
slices, if Σ is bounded away from the past and from the future infinity.

This definition is coherentwith the future and the past infinity ofH n+1: sinceJ +
corresponds with 〈x, a〉 = ∞, if Σ lies “away” from J +, then ψ(Σ) is bounded
from above. For a complete spacelike hypersurface Σ ⊂ H n+1, the boundedness
of this definition imposes strong restrictions to its topology. First, notice that the
spacelike property of Σ implies that the orthogonal projection of Σ on any slice
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is a local diffeomorphism. If we now suppose that Σ is a complete hypersurface
bounded away from the future infinity, then this projection is a covering map on Rn ,
and because Rn is simply connected, then it is a diffeomorphism ontoRn , so Σ is an
entire graph (in particular,Σ is not compact). This is the reasonwhy results answering
to the problem 1 are called of Bernstein-type because in Lorentz–Minkowski space,
Cheng and Yau proved that hyperplanes are the only maximal entire graphs in Rn+1

1
[23].

Theorem 3.1 ([3]) If Σ ⊂ H n+1 = S
n+1
1,+ is a complete spacelike H-hypersurface

between two slices, then H = 1. Furthermore, if n = 2, then Σ is a slice.

The proof of this theorem involves two ingredients that are the keys in many other
results that will appear in this section. First, it is the use of a large family of results
known as “maximum principles” in the class of elliptic equations and where the
tangency principle (Proposition 2.1) is a first example. For Theorem 3.1, we use he
Omori-Yau maximum principle which is a type of maximum principle at infinity for
complete Riemannian manifolds whose Ricci curvature is bounded from below [43,
49]; see also Remark 3.3.

Lemma 3.1 (Omori-Yau). Let M be a complete Riemannian manifold with Ricci
curvature bounded from below. If u ∈ C∞(M) is a function bounded from above,
then there exists a sequence of points {pk} ⊂ M such that

lim
k→∞ u(pk) = sup

Σ

u, |∇u(pk)| <
1

k
, and Δu(pk) <

1

k
. (3)

The second ingredient is the use of appropriate functions to which we apply the
maximum principles. For a spacelike hypersurface Σ ⊂ H n+1, these functions are
the height function p �→ 〈ψ(p), a〉 (abbreviated simply 〈p, a〉) and the Gauss map
p �→ 〈N (p), a〉 (or simply 〈N , a〉). Following (3), we need to know their Laplacians.
Here, the de Sitter model reveals very useful for these calculations, obtaining

Δ〈p, a〉 = −n〈p, a〉 + nH〈N , a〉, Δ〈N , a〉 = |A|2〈N , a〉 − nH〈p, a〉. (4)

See [3, 42]. The expression ofΔ〈p, a〉 holds when H is not constant, but forΔ〈N , a〉
is necessary that H is constant. We point out the difference of (4) with formula (8)
in [42] by the reverse sign on H according to our convention in Remark 2.1.

Proof (of Theorem 3.1) The height function 〈p, a〉 defined in Σ is bounded because
Σ lies between two slices. Since N is future-directed, then 〈N , a〉 > 0. Because
a = 〈p, a〉p − 〈N , a〉N + aT , where aT is the tangent part of a on Σ , then

0 = 〈a, a〉 = 〈p, a〉2 − 〈N , a〉2 + |aT |2 ≥ 〈p, a〉2 − 〈N , a〉2
= (〈p, a〉 − 〈N , a〉)(〈p, a〉 + 〈N , a〉). (5)
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We point out that |∇〈p, a〉|2 = |aT |2 = 〈N , a〉2 − 〈p, a〉2, so 〈N (pk), a〉 → supΣ

〈p, a〉. A computation of the Ricci curvature of Σ gives

RicΣ(X, X) = n − 1 + nH〈AX, X〉 + 〈AX, AX〉 ≥ n − 1 − n2H 2

4
(6)

for any X ∈ X(Σ), in particular, RicΣ is bounded from below. Using (3) and (4), we
have

H <
〈pk, a〉

〈N (pk), a〉 + 1

nk〈N (pk), a〉 ,

and letting k → ∞, we conclude H ≤ 1. The same argument holds with the function
−〈p, a〉 because the infimum of 〈p, a〉 is positive since Σ is bounded away from the
past infinity. This yields H ≥ 1, so H = 1. When n = 2, one can invoke a result of
Akutagawa to conclude thatΣ is a slice [1]. However, and such as it is rightly pointed
in [3], it is better the following argument. From (4) and (5), we get Δ〈p, a〉 ≥ 0
showing that 〈p, a〉 is a subharmonic function. As n = 2 and H = 1, from (6) we
deduce KΣ ≥ 0. Since Σ is complete, a result of Huber asserts that Σ is parabolic
[35], so the subharmonic bounded function 〈p, a〉 is, indeed, constant, showing that
Σ is a slice. �

Remark 3.1 If we only assume that Σ is bounded away from the future infinity,
the proof yields H ≤ 1. Since Σ is diffeomorphic to R

n , Σ can not be compact.
Taking into account the inequality (6), Bonnet-Myers’s theorem implies that RicΣ is
not bounded from below by 0 and this forces to H 2 ≥ 4(n − 1)/n2. Thus we have
2
√
n − 1/n ≤ H ≤ 1. In the particular case n = 2, we conclude H = 1, that is, a

complete cmc spacelike hypersurface in H 3 bounded away from the future infinity
must be a slice.

Remark 3.2 We will prove in Remark 5.1 the existence of complete spacelike H -
hypersurfaces with H > 1 and bounded away from the past infinity.

Here, we present a new approach of Theorem 3.1 using a clever application of
the tangency principle in the upper half-space model. Recall our convention on H in
Remark 2.1.

Theorem 3.2 Let Σ ⊂ H n+1 be a spacelike H-hypersurface in the upper half-
space model.

(i) If Σ is an entire graph bounded away from the future infinity, then H ≥ −1.
(ii) If Σ is complete and bounded away from the past infinity, then H ≤ −1.

Proof For (i), we know that there exists τ1 > 0 such that Σ ⊂ {xn+1 ≥ τ1}. Let
m > 1, and consider the equidistant hypersurface Pr = H

n−(r; (0, . . . , 0,mr))whose
mean curvature is H = −m. Let us observe that the vertex of Pr is Vr = (0, . . . , 0,
(m − 1)r). Take r > 0 sufficiently small so (m − 1)r < τ1. Then Pr ∩ Σ = ∅. Let
q be the intersection point of Σ with the xn+1-axis (qn+1 > τ1): this point does
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Fig. 1 Proof of Theorem 3.2

exist because Σ is a graph on R
n × {0}. Letting r → ∞, we find a first value r1,

(m − 1)r1 ≤ qn+1, such that Pr1 meets the first time Σ at some point p; see Fig. 1,
left. Since ∂Σ = ∅, then p is an interior common point ofΣ ∩ Pr1 , and the tangency
principle says H > −m. Because this argument holds for any m > 1, we conclude
H ≥ −1.

For (ii), the completeness of Σ together the hypothesis on the boundedness says
that Σ is a graph on xn+1 = 0 and Σ ⊂ {xn+1 ≤ τ2} for some τ2 > 0. The reasoning
is similar replacing Pr by hyperbolic planes of type Hn+(r; (0, . . . , 0,mr)) coming
from xn+1 = ∞. The vertex of Qr is Vr = (0, . . . , 0, (m + 1)r) and (m + 1)r > 0.
If r is sufficiently big so (m + 1)r > τ2, then Qr ∩ Σ = ∅. Letting r → 0, we arrive
until the first time r0 > 0, (m + 1)r0 ≥ qn+1, such that Qr0 meets Σ ; see Fig. 1,
right. The tangency principle gives m > H . Since this holds for any m > −1, then
H ≤ −1. �

Remark 3.3 (A contact at “infinity”) If in the above proof we use slices instead
of equidistant hypersurfaces and hyperbolic planes we find with some troubles. For
example, and for (i), suppose Σ lies above the slice Lτ1 but Σ �⊂ Lt for all t < τ1.
We can arrive from below with slices Lτ with τ < τ1 without touching Σ , and it
could occur that Lτ1 touches Σ at some point. Then, the tangency principle would
say Σ = Lτ1 or H > −1 and this would prove the result. But it could happen that
Lτ1 has a contact “at infinity” with Σ , that is, Lτ1 ∩ Σ = ∅ but Lτ1+ε ∩ Σ �= ∅ for
all ε > 0. In such a case, we can not apply the tangency principle. This illustrates
the difference between the tangency principle, which is utilized in local arguments,
and the Omori-Yau maximum principle, which considers a touching point “at the
infinity” by taking a sequence of points {pk} with the properties of (3).

Theorem 3.2 shows part of Theorem 3.1. It would remain to prove that a spacelike
entire graph in H 3 with H = −1 between two slices must be a slice. Suppose that
Σ lies between the slices Lτ1 and Lτ2 , τ1 < τ2, and Σ does not lie in another smaller
slab. By the tangency principle, it is not possible that Σ has a contact point with Lτ1

and Lτ2 (see Remark 3.3). Now the statement that we want to prove has the same
flavor than the strong half-theorem in Euclidean space for minimal surfaces ([33];
see [44] in hyperbolic space). If in R

3, the proof compares a minimal surface with
a family of catenoids, in H 3 a similar idea would be comparing Σ with rotational
spacelike surfaces with H = −1. In the upper half-space model, and by Eq. (1),
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a rotational spacelike surface with respect to the x3-axis has mean curvature H if the
profile curve α(t) = (x(t), 0, z(t)) satisfies

H = z(t)

2

(
φ′(t) + sinh(φ(t))

x(t)

)
− cosh(φ(t))

where α′(t) = (cosh φ(t), 0, sinh φ(t)). The initial conditions are x(0) = 0, z(0) =
z0 > 0, and φ(0) = λ. Take H = −1, and let Sλ denote the rotational surface deter-
mined by the parameter λ. If λ = 0, the unique solution is the slice x3 = z0. If
λ < 0 (resp. λ > 0), α is a graph on the x1-axis with a singularity at t = 0, the
function z is strictly decreasing (resp. increasing), and there exists zλ ≥ 0 such
that limt→∞ z(t) = zλ. This proves that Sλ is asymptotic to a horizontal hyperplane
(a slice) and thus the use of Sλ is not adequate because we can not avoid a contact
“at infinity” (such as it appeared in Remark 3.3 comparing Σ with slices).

The paper [3] motivated a series of works by different researchers that followed
two directions: first, assuming other boundedness of the height function or with other
r -mean curvatures, and second, extending to GRW spacetimes.

3.1 Other Assumptions on the Height Function

Caminha and de Lima replaced in [21] the assumption that Σ lies between two
slices by some control on the growth of the height function. Let Σ denote a
spacelike hypersurface in the GRW model −R ×et R

n which is oriented accord-
ing to the future-directed orientation. The height function on Σ is h = πR ◦ ψ ,
and since 〈N , ∂t 〉 ≤ −1, the hyperbolic angle is the function θ : Σ → [0,∞) given
by cosh θ = −〈N , ∂t 〉. Let us observe that eh takes the same value that the func-
tion 〈p, a〉 in S

n+1
1,+ by the isometry Φ. If g = −〈N , ∂t 〉, then |∇h|2 = g2 − 1 and

Δh = 1 − n + nHg − g2. Hence, we obtain the Laplacian of the functions v = eh

and η = eh〈N , ∂t 〉:

Δv = −nv + nHη, Δη = nHv + |A|2η, (7)

where in the computation of Δη we use that H is constant. Both equations are the
analogous ones to (4) in the GRW model.

Theorem 3.3 ([21]) Let Σ ⊂ H n+1 = −R ×et R
n be a complete spacelike H-

graph with H ≥ 1. If h ≤ − log(−〈N , ∂t 〉 − 1), then H = 1.

Here, the growth of the height function h is bounded, in some sense, by the
hyperbolic angle g. The proof uses (7) to conclude that the function −v − η is
subharmonic and the relation between h and g says exactly that this function is
bounded, which allows to use the Omori-Yau maximum principle. In fact, we can
replace the hypothesis on h by h ≤ −c log(g − 1) for some c > 0. We give here the
proof in the de Sitter model.
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Proof Consider the function ϕ = 〈N , a〉 − 〈p, a〉. The hypothesis says that ϕ is
bounded from above so there exists supΣ ϕ. Note that ϕ ≥ 0 by (5). Then (4) yields

Δϕ = (|A|2 − nH)〈N , a〉 + n(H − 1)〈p, a〉
≥ (nH 2 − nH)〈N , a〉 + n(H − 1)〈p, a〉
= n(H − 1)(H〈N , a〉 − 〈p, a〉) ≥ n(H − 1)ϕ ≥ 0

where we have used |A|2 ≥ nH 2 and H ≥ 1. This proves that ϕ is a subharmonic
function, and taking the sequence {pk} of (3), the above inequality of Δϕ implies

0 ≤ n(H − 1)ϕ(pk) ≤ Δϕ(pk) <
1

k
.

By contradiction, suppose H > 1. Letting k → ∞, we conclude supΣ ϕ = 0, so
ϕ = 0 on Σ . Then 〈N , a〉 = 〈p, a〉 and |∇〈p, a〉|2 = 0, proving that Σ is a slice,
that is, H = 1, a contradiction. This proves the theorem. �

In the following result, Camargo, Caminha, and de Lima replace the constancy
of H by H ≥ 1 and the integrability of the gradient of the height function. Now we
do not conclude H = 1 (as in Theorems 3.1 and 3.3), but that Σ is a slice.

Theorem 3.4 ([18]) Let Σ ⊂ H n+1 = −R ×et R
n be a complete spacelike hyper-

surface between two slices with (not necessarily constant) mean curvature H ≥ 1.
If |∇〈p, a〉 = |aT | is Lebesgue integrable, then Σ is a slice.

Proof By contradiction, suppose that H > 1 on Σ . From (4), Δ〈p, a〉 = n〈HN −
p, a〉). As 〈HN − p, HN − p〉 = 1 − H 2 < 0, then HN − p is a timelike vector
on Σ , so 〈HN − p, a〉 is positive on Σ or its negative on Σ . Then Δ〈p, a〉 ≥ 0
or Δ〈p, a〉 ≤ 0. Up to a change of a sign, the function 〈p, a〉 is a subharmonic
function which is bounded from above because Σ lies between two slices. Since
Σ is complete and |∇〈p, a〉| ∈ L 1(Σ), then 〈p, a〉 is harmonic by a result of Yau
in [50]. Then Δ〈p, a〉 = 0 and we derive that the timelike vector HN − p satisfies
〈HN − p, a〉 = 0, a contradiction. This proves that H = 1 onΣ . From (5), we have
〈N , a〉 − 〈p, a〉 ≥ 0, and thus Δ〈p, a〉 ≥ 0 and 〈p, a〉 is bounded from above. The
same argument as before proves that Δ〈p, a〉 = 0 so 〈N , a〉 − 〈p, a〉 = 0, |aT | = 0,
and consequently, Σ is a slice. �

When n = 2, the same conclusion holds if we replace |aT | ∈ L 1(Σ) by KΣ ≥ 0.
This was proved by Aquino et al. in [14] and the argument is the same as in Theorem
3.1: now Σ is a parabolic surface, so the subharmonic function 〈p, a〉 must be
constant, proving that Σ is a slice.

Finally, subsequent results in the literature replace the conditions on H by oth-
ers about the higher order mean curvatures Hr . In order to use similar arguments,
one needs, among other things, to extend the Laplacian operator and the Omori-Yau
maximum principle. For the Laplacian, we take the so-called r -th Newton trans-
formations Pr which are self-adjoint linear transformations on Σ involving Hr and
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the shape operator A. Then we define the second-order linear differential operator
Lr = tr(Pr ◦ Hess): for instance, L0 =tr(Hess) is nothing that the Laplacian operator
Δ. For r = 1, we have the known Yau’s square operator � =tr(P1◦ Hess). It is also
necessary to generalize the Omori-Yau maximum principle (this was done for the
operator � by Caminha and de Lima in [20, 22]). Besides that, the ellipticity of Lr

is not assured and it depends on bounds on Hr . All these considerations make a bit
difficult to give a clear statement of the results: we refer the interested reader to [4, 7,
12, 13, 18, 25], where much more of the results hold in GRW spacetimes. We refer
also the reader to [9] for a recent account on Omori-Yau-type maximum principles
for more general operators and its geometric applications.

3.2 Extension to GRW Spacetimes

A second scenario to extend Theorem 3.1 is by consideringGRWspacetimes because
of the thirdmodel forH n+1.We first review some basics of these spaces (we refer the
article ofAlías, Romero and Sánchez [11]). A generalized Robertson–Walker (GRW)
spacetime is the product manifold M̄ = I × M endowed with the Lorentzian metric
−dt2 + f 2〈, 〉M : here (Mn, 〈, 〉M ) is a n-dimensional Riemannian manifold, I is a
1-dimensional manifold (either a circle or an open interval of R), and f : I → R

is a positive smooth function, called the warping function. We denote this space as
−I × f M . Among examples of GRW spacetimes, we have the Lorentz–Minkowski
spaceRn+1

1 = −R ×1 R
n , de Sitter spaceSn+1

1 ≡ −R ×cosh(t) S
n , and the steady state

spaceH n+1 ≡ −R ×et R
n . If f (t) = et , we say that M̄ is a steady state type space,

where besidesH n+1, we point out the remarkable de Sitter cusp space−R ×et ×T
n

in terminology of Galloway [29], where Tn is a flat n-torus.
A slice in −I × f M is a hyperplane Lτ = {τ } × M , for some τ ∈ I . Then Lτ is

an umbilical spacelike hypersurface with H = f ′(τ )/ f (τ ) computed with respect
to N = ∂t . Again, the question that we address is under what geometric assumption
must a complete spacelike cmc hypersurface be a slice. The functions 〈p, a〉, and
〈N , a〉 used for the steady state spaceH n+1 correspond nowwith the height function
h = π|I ◦ ψ and the hyperbolic angle 〈N , ∂t 〉. If onewants to use the same techniques
done in the previous results, it is necessary to consider the following remarks:

1. In S
n+1
1,+ , we computed the Laplacian of 〈p, a〉 in order to use the Omori-Yau

maximum principle. In the GRWmodel, 〈p, a〉 corresponds with the function eh
which is nothing that f (h) for the warping function f (t) = et . Thus, it is natural
to compute the Laplacian of f (h) in a GRW spacetime obtaining (see [26]):

Δ f (h) =
(

f ′′ f − f ′2

f
(h)

)
|∇h|2 − n

(
f ′2

f
(h) + f ′(h)H〈N , ∂t 〉

)
.

If we want f to be subharmonic, then it is enough that both summands are not
negative. For the first one is equivalent to say that log( f ) is a convex function.
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2. For theOmori-Yaumaximumprinciple,weneed thatRicΣ is bounded frombelow.
Here, we recall that a spacetime obeys the null convergence condition (NCC) if
the Ricci tensor Ric of M̄ satisfies Ric(Z , Z) ≥ 0 for any null vector Z . In a GRW
spacetime, this inequality is expressed in terms of the warping function as

RicM ≥ (n − 1) sup
I

( f f ′′ − f ′2)〈, 〉M = (n − 1) sup
I

f 2(log f )′′〈, 〉M . (8)

3. The condition H ≥ 1 in Theorems 3.3 and 3.4 can be viewed as a comparison
between H and the mean curvature of each slice. In a GRW spacetime, we would
need to relate H with the quotient f ′/ f .

An example of generalization of Theorem 3.1 that indicates the type of results
that we are referring is the following:

Theorem 3.5 Let Σ be a complete spacelike hypersurface between two slices in a
GRW spacetime. Suppose |∇h| ∈ L 1(Σ).

1. If f ′(h)H ≥ f ′2/ f (h) > 0 ([26]), or
2. If H is bounded and f (h)H2 ≥ f ′(h)H ≥ 0 ([6]),

then Σ is a slice.

In both statements we see again a comparison criterion between mean curvature
quantities without being constant. For example, in item 2, we have H 2

2 /H 2 ≤ f ′2/ f 2
where the right-hand side is the square of the mean curvature of the slice Lτ . The
reader can see otherBernstein-type results for complete hypersurfaces inGRWspace-
times in [5, 17, 19, 27, 28, 30, 45].

4 Compact Spacelike Hypersurfaces with Boundary

In this section, we study how the boundary of a compact cmc hypersurface affects
on the shape of the whole hypersurface. First, we precise our setting. Let ψ : Σ →
H n+1 be a spacelike immersion of a compact hypersurfaceΣ , in particular, ∂Σ �= ∅
and let Γ ⊂ H n+1 be a (n − 1)-submanifold. We say that Σ is a hypersurface
with boundary Γ if the restriction of the immersion ψ to the boundary ∂Σ is a
diffeomorphism onto Γ . We abbreviate by saying that Γ is the boundary of Σ , or
that ∂Σ = Γ , or that Σ spans Γ . We address the following

Problem 2: Given a compact (n − 1)-submanifold Γ included in a slice, does the geometry
of Γ impose restrictions to the shape of a compact spacelike cmc hypersurface spanning Γ ?

Related to the above problem, we study three specific questions:

(i) Whether the boundary Γ determines the position and the height of the hyper-
surface that spans with respect to the slice containing Γ .
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(ii) Whether the geometry of Γ imposes restrictions to the possible values H of
mean curvatures of H -hypersurfaces spanning Γ .

(iii) Whether the symmetries of Γ are inherited by the whole hypersurface. In other
words, suppose that Γ is invariant by a rigid motion M : H n+1 → H n+1, that
is, M(Γ ) = Γ . If Σ is a cmc spacelike hypersurface with ∂Σ = Γ , we ask if
Σ is also invariant by M . The simplest case is when Γ is a geodesic sphere and
whether Σ is a hypersurface of revolution.

In this section, we will use the notation H
n+(r; c) or Hn−(r; c), assuming that

c = (0, . . . , 0, c).

4.1 Height Estimates

Let Σ be a compact spacelike H -hypersurface in the upper half-space model with
∂Σ ⊂ Lτ . Notice that if ∂Σ is a simple closed curve, then Σ is a graph because the
spacelike condition says that the orthogonal projection from Σ in Lτ is a covering
map onto a simply connected domain. A first result gives us the position of Σ with
respect to Lτ depending whether H < −1 or H > −1, that is, comparing H with
the mean curvature of Lτ .

Proposition 4.1 LetΣ be a compact spacelike hypersurface with ∂Σ ⊂ Lτ . If H <

−1 (resp. H > −1, H = −1), then xn+1 ≥ τ in Σ (resp. xn+1 ≤ τ , Σ ⊂ Lτ ).

Proof It is enough to consider the case H < −1. By contradiction, suppose that there
are points strictly below Lτ . Let q ∈ Σ be the lowest point with respect to Lτ , and
let τ̄ = qn+1. We place the slice L τ̄ at q. The orientation of Σ and L τ̄ coincide at
q (both ones are pointing to the future, so pointing upward). Since Σ lies above L τ̄

around q, a comparison of the mean curvatures between Σ and L τ̄ yields H ≥ −1,
a contradiction. This proves that xn+1 ≥ τ in Σ . Following with the same argument,
and if τ̄ < τ and H = −1, the tangency principle would say that Σ lies contained
in L τ̄ , a contradiction again because ∂Σ ⊂ Lτ and τ �= τ̄ . �

Other approach to Proposition 4.1 is studying Δ〈p, a〉 in the de Sitter model. In
these coordinates, Proposition 4.1 says that if H > 1 (resp. H < 1, H = 1), then
〈p, a〉 ≤ τ (resp. 〈p, a〉 ≥ τ ,Σ ⊂ Lτ ). We know from (5) that 〈p, a〉 − 〈N , a〉 ≤ 0.
Let H > 1. Since 〈N , a〉 > 0, then (4) yields

Δ〈p, a〉 ≥ −n〈p, a〉 + n〈N , a〉 ≥ 0

and themaximumprinciple asserts that 〈p, a〉 ≤ max∂Σ 〈p, a〉 = τ , obtaining Propo-
sition 4.1. When H ≤ 0, then (4) gives directly Δ〈p, a〉 ≤ 0 and the maximum
principle concludes 〈p, a〉 ≥ τ . It would remain the case 0 < H < 1 which is not
deduced directly from Δ〈p, a〉, and the reasoning is the following. As 0 < H < 1,
〈HN − p, HN − p〉 = H 2 − 1 < 0, and consequently, the vector HN − p is time-
like so 〈HN − p, a〉 > 0 on Σ or 〈HN − p, a〉 < 0 on Σ . At the farest point q ∈
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int(Σ) from Lτ , |∇〈p, a〉|(q) = 0 and (5) gives 〈N (q), a〉 = 〈q, a〉. Then 〈HN −
p, a〉(q) = (H − 1)〈q, a〉 < 0. This proves definitively that 〈HN − p, a〉 < 0 on
Σ yielding Δ〈p, a〉 ≤ 0 and consequently, 〈p, a〉 ≥ τ by the maximum principle.

Once we know that Σ lies on one side of Lτ , we want to estimate, if possible,
how farΣ rises up from Lτ . In Euclidean space, this height is less than 1/|H | for H -
graphs whose boundary Γ lies in a hyperplane, and thus this estimate is independent
on the size of Γ (here and for a general reference in Euclidean space, we refer [37]).
Following ideas ofMeeks, the usualmanner is by considering a linear combination of
the height function and the Gauss map, then prove that this function is subharmonic,
and finally apply the maximum principle to get the desired estimates. From (4) and
because |A|2 − nH 2 ≥ 0, we have

Δ(−H〈p, a〉 + 〈N , a〉) = (|A|2 − nH 2)〈N , a〉 ≥ 0 (9)

proving that −H〈p, a〉 + 〈N , a〉 is subharmonic. The maximum principle asserts

− H〈p, a〉 + 〈N , a〉 ≤ max
∂Σ

(−H〈p, a〉 + 〈N , a〉) = −Hτ + max
∂Σ

〈N , a〉. (10)

However, and in contrast to the Euclidean case, we can not get a similar estimate.
For example, from (10) and for H > 0, we have

τ + minΣ 〈N , a〉 − max∂Σ 〈N , a〉
H

≤ 〈p, a〉 (11)

but this estimate is not given only in terms of the boundary and H : inequality (11)
is a bizarre estimate because involves the function 〈N , a〉 in Σ .

Proposition 4.1 generalizes toGRWspacetimes employing similar arguments.We
replace Δ〈p, a〉 by the Laplacian of any primitive F of the warping function f . If h
is the height function and g = 〈N , ∂t 〉 ≤ −1, the computation of ΔF in [30] yields
ΔF = −nh((log f )′(h) + Hg). Then it is immediate following the result proved by
García-Martínez and Impera.

Theorem 4.1 ([30]) LetΣ be a compact spacelike hypesurface in a GRW spacetime
−I × f M with ∂Σ ⊂ Lτ .

1. If H ≥ max{0, supI (log f )′}, then h ≤ τ .
2. If H ≤ min{0, inf I (log f )′}, then h ≥ τ .

Let us observe that inH n+1, where f (t) = et , the above theorem says that if H ≥ 1
(resp. H ≤ 0), then h ≤ τ (resp. h ≥ τ) but no information is obtained when 0 <

H < 1. If we proceed with the same arguments as in Eq. (9), and when H is constant,
we consider the function HF + f g. Then

Δ(HF + f g) = f g
(|A|2 − nH 2 + RicM(N ∗, N ∗) − (n − 1)(log f )′′|∇h|2)

(12)
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where N ∗ = (πM)∗(N ). Because 〈N ∗, N ∗〉M = |∇h|2/ f 2 and |A|2 ≥ nH 2, if we
want to bound from below the parenthesis in (12), we need to estimate the Ricci
curvature of M . Using (8) and the maximum principle, we have

Theorem 4.2 ([30]) Let Σ be a compact spacelike H-hypersurface in a GRW
spacetime satisfying NCC. Suppose ∂Σ ⊂ Lτ . If f is nondecreasing function and
H ≥ max{0, supI (log f )′}, then

τ − α ≤ h|Σ ≤ τ, α =
f (τ )

f (minΣ h)
max∂Σ(−g) − 1

H
≥ 0.

When we particularize toH n+1, then H ≥ 1 and this estimate corresponds, up to
a change of the models, with (11).

In the de Sitter model, and for H > 1, there exist compact H -hypersurfaces with
boundary in a given slice and with arbitrary height as it is shown in the next example
(we point out a gap in [24, Theorem 3.1] related with Remark 2.1).

Example 4.1 Consider the upper half-space model and H -hypersurfaces with H <

−1. Fix the slice L1. Consider the equidistant hypersurfaces H
n+1
− (r; cr ), cr =

(0, . . . , 0,−Hr), whose mean curvature is H . For r > −1/(1 + H), let Σr =
H

n−(r; cr ) ∩ {xn+1 ≥ 1}, which is a compact H -hypersurface with ∂Σr ⊂ L1. The
height of Σr about L1 is given by its vertex and this height is log |r(1 + H)| which
tends to ∞ as r → ∞.

Following the above example, we observe that the boundary of Σr is a sphere of
arbitrary large radius, namely,

√
(H 2 − 1)r2 + 2Hr + 1. We now give an estimate

of the height of a H -hypersurface with H < −1 depending only on H and the size
of Γ .

Theorem 4.3 ([42]) Let Γ ⊂ Lτ be a (n − 1)-submanifold and let Ω ⊂ Lτ denote
the domain bounded by Γ . If Σ ⊂ H n+1 is a compact spacelike H-hypersurface
with ∂Σ = Γ and H < −1 in the upper half-space model, then the height h of Σ

with respect to Lτ satisfies

h ≤ log(h0), h0 = −H + √
(H 2 − 1)R2 + 1

1 − H
, 2R = diam Ω. (13)

Proof After an isometry of H n+1, suppose that τ = 1 and let BR ⊂ L1 be the
ball of radius R > 0 containing Ω inside: here R coincides with the Euclidean
radius because the induced metric in L1 is the Euclidean one in R

n × {1}. After
a horizontal translation, if necessary, we assume the (0, . . . , 0, 1) is the center of
BR . Consider the equidistant hypersurfacesHn−(r; cr ) where cr = (0, . . . , 0,−r H).
For r sufficiently big, we can trap Σ in the convex domain of H n+1 determined
between H

n−(r; cr ) and xn+1 ≥ 1. In particular, the disk determined by the sphere
L1 ∩ H

n−(r; cr ) contains BR inside. Letting t ↘ 0, we arrive until the first value
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r = r0 such that L1 ∩ H
n−(r0; cr0) = ∂BR , just when H

n−(r0, cr0) touches ∂Σ . Dur-
ing this process decreasing r , the tangency principle forbids the existence of an
interior contact point between Σ and H

n−(r; cr ) because both hypersurfaces have
the same constant mean curvature. Thus, r = r0 is the first time that Hn−(r; cr ) meet
Σ . This proves that the height of Σ is less than the height of Hn−(r0; cr0), and this
concludes (13). �

4.2 A Flux Formula

For the question (ii), we work in the de Sitter model following de Lima [36]. Let
Γ ⊂ Lτ be a (n − 1)-submanifold and letΩ denote the bounded domain that bounds
Γ in Lτ . Let Σ be a compact spacelike H -hypersurface spanning Γ . The following
argument follows the same steps as in Euclidean space. Consider the n-cycleΣ ∪ Ω

and define the Killing vector field inH n+1

Yp = (〈p, b〉a − 〈p, a〉b)/〈a, b〉

where b ∈ Lτ with 〈a, b〉 �= 0. By the divergence theorem, we have

n|H ||Ω| =
∣∣∣∣
∫

∂Σ

〈Yp, ν〉
∣∣∣∣ (14)

where ν is the unit conormal vector field pointing to Σ and |Ω| is the volume of Ω .
Identity (14) is usually called a flux formula. Let us observe that the left-hand side
of (14) does not depend on Σ . Since 〈p, a〉 = τ in Lτ , we have

n|H ||Ω| ≤
∫

∂Σ

|〈Y, ν〉| =
∫

∂Σ

∣∣∣ 〈p, b〉〈ν, a〉
τ

− 〈ν, b〉
∣∣∣. (15)

Although p, b, and ν are unit spacelike vectors, we cannot bound 〈p, b〉 and 〈ν, b〉
by 1 (here we observe a gap in [36, p. 975]).

In Euclidean space R
n+1, if ∂Σ lies in a hyperplane, then (15) gives |H | ≤

|Γ |/((n − 1)|Ω|), obtaining anupper estimate for H dependingonly onΓ . For exam-
ple, ifΓ is a sphere of radius r > 0, then |H | ≤ 1/r .However, inLorentz–Minkowski
space Rn+1

1 , and when the boundary lies in a spacelike hyperplane < a >⊥, |a| = 1,
the flux formula (14) gives n|H ||Ω ≤ ∫

∂Σ
|〈ν, a〉| but we have the same problem

than in (15) (see [8] for n = 2 and [10] for the general n-dimensional case).
We analyze the case when Γ is a sphere Sn−1 ⊂ Lτ . Since Lτ is isometric to Rn ,

in the upper half-space model, Sn−1 ⊂ Lτ is an Euclidean sphere in the hyperplane
xn+1 = τ . We have explicit examples of compact cmc hypersurfaces spanning a
sphere obtained as follows. When we meet an umbilical hypersurface with a slice
Lτ , we obtain a sphere Sn−1 separating the umbilical hypersurface in two connected
components. Depending on each case, there is at most one compact component,



202 R. López

and called a hyperbolic cap. In fact, hyperbolic caps do exist always for equidistant
hypersurfaces H

n−(r; c), and only do exist for hyperbolic planes H
n+(r; c) when

0 < cn+1 + r < τ . Furthermore, Sn−1 determines a round disk called a planar disk
in the very slice Lτ . Then we have:

Proposition 4.2 Let Γ = S
n−1 be a sphere of radius ρ > 0.

1. If H < −1, there exists a unique hyperbolic H-cap spanning Γ .
2. If H = −1, there exists a unique planar disk spanning Γ .
3. If H ≥ 0, then there exists a hyperbolic H-cap spanning Γ if and only if ρ < 1.

Moreover, this cap is unique.
4. Let −1 < H < 0. If ρ ≤ 1, there exists a unique hyperbolic H-cap spanning Γ .

If ρ > 1, then there exists a hyperbolic H-cap spanning Γ if and only if H ≤ H0,
where H0 = −√

ρ2 − 1/ρ. Moreover, the hyperbolic cap is unique if H = H0

and there exactly two hyperbolic H-caps if H < H0.

Proof After an isometry ofH n+1, suppose τ = 1. Then the radius ρ of Γ coincides
with the Euclidean radius.

1. For H < −1, we take the equidistant hypersurfaces Hn−(r;−Hr) for all r > 0.
When we meet with the slice L1, we obtain spheres of arbitrary radius ρ.

2. Immediate.
3. Take a hyperbolic plane H

n+(r; Hr). When we intersect with L1, the sphere, if
exists, has radiusρ such that Hr + √

ρ2 + r2 = 1. Thus,we study the solutions of
q(r) = 1,whereq(r) = Hr + √

ρ2 + r2. Since H ≥ 0,q(r) is strictly increasing
with limr→0 q(r) = ρ and limr→∞ q(r) = ∞; see Fig. 2, left. This proves the
result.

4. The above function q(r) is now decreasing around r = 0, q(r) has a unique
minimum at r0 = −Hρ/

√
1 − H 2 and limr→∞ q(r) = ∞; see Fig. 2, right. If

ρ ≤ 1, the result is immediate. If ρ ≥ 1, it suffices to prove that q(r0) ≤ 1, which
holds if and only if H ≤ H0. �

Example 4.2 Proposition 4.2 allows to give an example of two compact spacelike
H -hypersurfaces spanning the same boundary. Let Γ be a sphere of radius ρ > 1.
Let H be satisfying −1 < H < −√

ρ2 − 1/ρ, and denote by r1 and r2 the two roots
of Hr + √

ρ2 + r2 = 1. Then the hyperbolic H -caps of radius ρ determined by
H

n+(ri ; Hri ) and L1 span Γ : see Fig. 3.

Fig. 2 Solutions of q(r) = 1
in the proof of Proposition
4.2. Left: H = 1 and
ρ = 1/2; Right: H = −3/4
and ρ = 0.8 and ρ = 1.25

q(r)
q(r)
q(r)
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Fig. 3 Two hyperbolic
H -caps H1 and H2 with the
same boundary. Here,
H = −0.7 and the boundary
is a sphere of radius ρ = 1.2
in the slice L1

H1

H2

L1

xn+1 = 0

Example 4.3 The above non-uniqueness result can be also proved as follows. For
H ∈ (−1, 0), let r be sufficiently small, so H

n+(r; Hr) intersects L1 in a sphere Γ

of radius ρ > 1 and defining a hyperbolic cap C below L1. The Euclidean cone with
vertex the origin and containing Γ intersects Hn+(r; Hr) again in other sphere of
radius ρ ′ �= ρ and determining other hyperbolic cap C ′. Without loss of generality,
suppose ρ ′ > ρ, and thus, C ⊂ C ′. If h denotes the homothety from the origin of
R

n+1 of ratio ρ/ρ ′, then h(C ′) is a H -hypersurface spanning Γ and h(C ′) �= C .

From Proposition 4.2, we deduce that the radius ρ of a sphere S
n−1 imposes

restrictions to the values H for hyperbolic H -caps. Indeed, we have:

1. If ρ < 1, then any real number H is a value of a hyperbolic H -cap spanning Sn−1.
2. If ρ ≥ 1, then H ∈ (−∞,−√

ρ2 − 1/ρ).

In general, we prove that the shape and the size of Γ ⊂ Lτ imposes restrictions to
the value H for a compact H -hypersurface spanning Γ .

Theorem 4.4 ([38])LetΓ ⊂ Lτ be a closed submanifold and letΩ ⊂ Lτ denote the
domain bounded by Γ . Let Σ ⊂ H n+1 be a compact H-hypersurface spanning Γ .

1. If Ω contains a ball of radius 1, then H < 0.
2. If Ω contains a ball of radius

ρ0 =
√
1 − H

1 + H
, (16)

then H /∈ (−1, 0).

Proof We only prove the item 1. By contradiction, suppose H ≥ 0. After an isome-
try, assume τ = 1 and that Ω contains a sphere of radius 1 centered at (0, . . . , 0, 1).
We know from Theorem 4.1 that Σ lies below L1. Consider the hyperbolic H -
caps of type H

n+(r; Hr) with boundary in L1. The radius of the boundaries of
these caps is ρ, 0 < ρ < 1, with Hr + √

ρ2 + r2 = 1, and its vertex is the point
Vr = (0, . . . , 0, (H + 1)r). When ρ is very small (and r is close to 1/(H + 1)),
the cap lies below L1 but it does not meet Σ . Letting r → 0, the vertex goes to
(0, . . . , 0) but ρ < 1. Thus, there will be a first value r0 such that the hyperbolic
plane Hn+(r0; Hr0) intersects Σ at an interior contact point, a contradiction with the
tangency principle. �
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4.3 The Spherical Boundary Case

For the question (iii), we utilize the upper half-space model because we will work
with the isometries of H n+1. As it was announced in Sect. 2, the foliation by slices
ofH n+1 allows a certain control on the position of a compact cmc hypersurface such
as it appeared in Proposition 4.1 when H = −1. Assuming that the boundary of the
surface lies in other type of umbilical hypersurface, Proposition 4.1 extends straight-
forward provided that we have a foliation of the ambient space by H -hypersurfaces
for a given value of H (in Proposition 4.1 this value was H = −1).

Theorem 4.5 ([38]) Let H0 ∈ (−∞,−1] ∪ [0,∞). Let Σ be a compact spacelike
H-hypersurface whose boundary is contained in an umbilical H0-hypersurface P.
Then we have one of the following three possibilities: either H = H0 and Σ ⊂ P;
or H < H0 and Σ lies above P; or H > H0 and Σ lies below P.

Here, we revise a gap in [38] where it asserted that this result holds for any value H0.

Proof 1. Case H0 < −1. Then P is an equidistant hypersurface Hn−(r; c) and take
all Euclidean homotheties of P from a fix point of xn+1 = 0, obtaining the desired
foliation of H n+1; see Fig. 4, left.

2. Case H0 ≥ 0. Without loss of generality, suppose that P is the hyperbolic plane
H

n+(r; cr ), where cr = (0, . . . , 0, H0r). Let us observe that P is asymptotic to
the upper light cone C + = {x ∈ R

n+1
+ : 〈x − cr , x − cr 〉 = 0, xn+1 ≥ H0r}, and

denoteW the convex domain ofRn+1
+ determined by C +. LetΣ be a compact H -

hypersurface with ∂Σ ⊂ P . Take Q a lightlike hyperplane tangent to C +. Move
parallely Q sufficiently far from Σ , and then come back to its initial position. By
using that ∂Σ ⊂ P and that P is asymptotic toC +, it is not possible that Q meets
Σ because it should be at an interior point p ∈ Σ and Q would be the tangent
space ofΣ at p violating the spacelike condition ofΣ . If we do the same argument
with all these hyperplanes Q, we have that Σ is included in W . Consider now
Pt = ht (P) the homothety of P centered at the origin and ratio t ∈ (0,∞). Then
{Pt } is a foliation of the convex domain determined by the light cone 〈x, x〉 = 0:
note that this domain contains W which lies Σ . The argument follows the same
steps as for Theorem 4.5. Suppose that int(Σ) has points in both sides of P .
Coming from hyperbolic planes Pt with t = ∞ until the first contact point with
Σ , the tangency principle implies that H0 > H . A similar reasoning with planes
Pt coming from t = 0 gives H0 < H ; see Fig. 4, right. This contradiction proves

Fig. 4 Proof of Theorem
4.5: case H0 < −1 (left) and
case H0 ≥ 0 (right)
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that Σ lies only on one side of P , but precisely the above argument gives that if
H < H0 (resp. H > H0), then Σ lies above (resp. below ) P . �

When themean curvature H0 lies in the range of the interval (−1, 0), the family of
umbilical H -hypersurfaces does not provide a foliation of the ambient space because
any two members of this family meet each other: this appeared in Example 4.3.

Finally, we answer to the question (iii) when Γ is a sphere.

Theorem 4.6 ([38]) Planar disks and hyperbolic caps are the only compact space-
like H-hypersurfaces inH n+1 spanning a sphere.

Proof The proof uses the classical Alexandrov Reflection Method (see details [37]
in the Euclidean space). The idea is to use the same hypersurface to compare with
its reflection about a vertical hyperplane which preserves the constancy of the mean
curvature, and finally, use the tangency principle. Let Lτ denote the slice containing
Γ and Ω ⊂ Lτ the bounded domain by Γ . We know by Theorem 4.5 that Σ is Ω

when H = −1 or Σ lies on one side of Lτ if H �= −1. In this case, Σ ∪ Ω defines
a domain in Rn+1

+ and we can use the Alexandrov reflection method with reflections
about vertical hyperplanes. This proves that Σ is a hypersurface of revolution with
respect to a straight line orthogonal to Lτ . Finally, the hyperbolic caps are the only
compact rotational cmc hypersurfaces spanning a sphere. �

Remark 4.1 When H ∈ (−∞,−1] ∪ [0,∞), we can do a proof of this result based
on Theorem 4.5. For this argument, it is enough to prove that there exists an umbilical
H -hypersurface containing Γ . If H ≤ −1, the result follows from Proposition 4.2
(i, ii). If H ≥ 0, then Theorem 4.4 says that ρ < 1, and now we use Proposition 4.2
(iii). Let us observe that we cannot complete the proof when H ∈ (−1, 0).

We compare Theorem 4.6 to what happens in other ambient spaces. In Lorentz–
Minkowski space Rn+1

1 and in hyperbolic space when |H | ≤ 1, the umbilical hyper-
surfaces are the only compact cmc hypersurfaces spanning a sphere [8, 10, 37].
However, it is an open question nowadays if spherical caps and planar disks are the
only embedded compact H -hypersurfaces of Rn+1 spanning a sphere (or in H n+1

when |H | > 1).

5 The Dirichlet Problem for the Mean Curvature Equation

In this section, we will prove the existence of complete H -hypersurfaces of H n+1,
H < −1, whose boundary lies in the future infinityJ +. This was proved byMontiel
in [42] and was motivated by the Goddard conjecture: “the only complete spacelike
cmc hypersurfaces in S

n+1
1 must be umbilical.” The hypersurfaces obtained in [42]

(see Corollary 5.1 below) illustrate that this conjecture is not true in the steady state
space. Recall that in S

n+1
1 , there was a great work of answering to this conjecture
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which is false, although in some cases is true, for example, when |H | ≤ 1 and n =
2, when 0 ≤ H 2 < 4(n − 1)/n2 and n ≥ 3, or when the hypersurface is compact
[1, 41].

In order to prove the existence of Montiel’s examples, and since the boundary lies
inJ +, the strategy is solving the Dirichlet problem in domains of slices, then take a
sequence of such domains going toJ + and their corresponding solutions and having
a suitable control of the solutions that ensures its convergence in the limiting process.
Thus, in this section, we will study the existence of compact spacelike H -graphs on
a domain of a slice.

The Dirichlet problem for the mean curvature equation is the following:

Problem 3: Given Ω ⊂ Lτ a bounded domain, H ∈ R and τ > 0, find a solution of

QH [u] = 0 on Ω, u = τ > 0 along ∂Ω . (17)

The uniqueness of solutions of (17) is not assured by the standard theory because
the term on u in the expression of QH [u] in (2) is not necessarily nondecreasing.
Recall that we showed in Example 4.2 two spacelike H -graphs on a disk of L1 with
the same boundary curve and −1 < H < 0.

The solvability of the Dirichlet problem (17) strongly depends whether H < −1
or H > −1, just the value of the mean curvature of a slice and, depending on each
case, the hypersurface lies on one side of Lτ by Theorem 4.1.

Theorem 5.1 ([42]) Let Ω ⊂ Lτ be a compact bounded domain which has mean
convex boundary. If H < −1, then there exists a unique solution of (17).

We solve the Dirichlet problem using themethod of continuity. For this technique,
we refer the reader to [40] in the context of cmchypersurfaces in hyperbolic space (the
general reference for elliptic equations isGilbarg andTrudinger [31]).Without loss of
generality, suppose that τ = 1. Themethod of continuity considers the uniparametric
family of Dirichlet problems

{
QH(t)[u] = 0 inΩ,

u = 1 along∂Ω
(18)

where H(t) = t (1 + H) − 1, t ∈ [0, 1]. Let us observe that for t = 1, a solution of
(18) is the solution that we are looking for (17). We show that the subset of [0, 1]
defined by

A = {t ∈ [0, 1] : ∃ut ∈ C2,α(Ω), such that QH(t)(ut ) = 0 and ut |∂Ω = 1}

is nonempty, open, and closed in [0, 1]. In such a case, 1 ∈ A proving that there
exists a solution u ∈ C2,α(Ω) of (17). Finally, as H is constant and Ω is smooth,
the regularity theory for the cmc equation proves that any C2,α solution of (17) will
be smooth, proving Theorem 5.1. We observe that A �= ∅ because 0 ∈ A since
H(0) = −1 and u = 1 are a solution in the domain Ω . The proof that A is open
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of [0, 1] is a consequence of the implicit function theorem in Banach spaces and it
follows standard arguments.

The difficulties lie in proving thatA is a closed set of [0, 1]. This follows once we
establish a priori C1 estimates of the prospective solutions of (18), that is, estimates
of |u| and |Du| depending only on H and Ω .

The estimate for |u| was proved in Theorem 4.3 where the estimate (13) depends
only on H and Ω . For the estimate of |Du|, we need to work in the de Sitter model.
The graph Σu of u corresponds with a graph Σ f ⊂ S

n+1
1 and the slice L1 ⊂ R

n+1
+

with the slice L1 in S
n+1
1 . By the isometry Ψ , we have u = e f and

〈p, a〉 = 1

u
= e− f , 〈N , a〉 = 1

u
√
1 − |Du|2 . (19)

Thus, we will obtain bounds for |Du| provided that we have a certain control of the
functions 〈p, a〉 and 〈N , a〉. We proved in (10) that −H〈p, a〉 + 〈N , a〉 ≤ −H +
〈N (q), a〉 for some q ∈ ∂Σu . At q, the maximum principle gives again

H〈νq , a〉 + 〈(dN )q(νq), a〉 = 〈νq , a〉(−H + 〈(dN )q(νq), νq〉 ≤ 0

where ν is the unit conormal pointing along ∂Σu toward Σ . Since 〈νq , a〉 > 0, then
−H + 〈(dN )q(νq), νq〉 ≤ 0. Using the mean convexity of Ω , we deduce −H +
〈N (q), a〉 ≤ 0, and thus

−H〈p, a〉 + 〈N , a〉 ≤ −H + 〈N (q), a〉 ≤ 0.

Hence, we deduce 〈N , a〉 ≤ H〈p, a〉 ≤ H because 〈p, a〉 ≤ 1(= τ) by Proposition
4.1. Finally, using (19) we conclude

|Du|2 ≤ H 2 − 1

H 2
(20)

obtaining the desired uniform estimate for |Du| and proving Theorem 5.1. The
uniqueness is a consequence of the standard theory [31] and the inequality (20).

The estimates (13) and (20) are independent on the slicewhere liesΩ . This extends
Theorem 5.1 allowing u = 0 along ∂Ω ⊂ R

n × {0}. Indeed, we go by considering
the solutions uτ of (17) and by letting τ → 0, the domains Ω × {τ } converge to
Ω × {0} ⊂ J +, and the funtions uτ have a priori C1-estimates independent on τ .

Theorem 5.2 ([39])LetΩ ⊂ R
n be a compact domainwhich ismean convex bound-

ary. If H < −1, then there exists a solution of (17) with u = 0 along ∂Ω .

If we introduce the concept of asymptotic future boundary of Σ as ∂∞Σ = Σ ∩
J +, the above result can be re-phrased as follows:

Corollary 5.1 ([39]) Let Ω ⊂ J + be a compact domain which is mean con-
vex boundary. If H < −1, then there exists a complete embedded spacelike H-
hypersurface with ∂∞Σ = ∂Ω .
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Proof It only remains to prove that the induced metric ds2 on Σu is complete. From
(20) we have

ds2 = 1

u2
(|dx |2 − 〈Du, dx〉2) ≥ 1

H 2 − 1

〈Dux , dx〉2
u2

≥ 1

H 2 − 1
|d log u|2.

This says that the length of any curve in Σu reaching ∂∞Σu must be infinity. �

Remark 5.1 Let us observe that (13) says that u ≤ ct and this implies that the com-
plete H -hypersurface obtained in Corollary 5.1 has H < −1 and it is bounded away
from the past infinity of H n+1.

Consider now the Dirichlet problem (17) for values H > −1, so the graph lies
below Lτ byTheorem4.5. FromTheorem4.4, it is expectable some kind of smallness
assumption on the domain Ω . If in Theorem 5.1 it was assumed to be mean convex,
now we need strong convexity assumptions. For κ > 0, a domain Ω ⊂ Lτ is said to
be κ-convex if all the principal curvatures κi of ∂Ω with respect to the inward normal
vector satisfy κi ≥ κ .

Theorem 5.3 Let −1 ≤ H < 0 and let Ω ⊂ Lτ be a κ-convex domain strictly con-
tained in a ball of radius 1 in Lτ . If

κ ≥
√
1 − H 2, (21)

then there exists a solution of the Dirichlet problem (17).

We utilize the method of continuity again. Suppose τ = 1 and (0, . . . , 0, 1) ∈ Ω .
Since the induced metric in L1 is the Euclidean one, Ω is included in a ball Ω1 of
Euclidean radius 1. As 0 < u < 1 in Ω and Ω ⊂ Ω1, then the spacelike condition,
the convexity of Ω , and a similar argument as for Theorem 4.5, proves the existence
of 0 < c < 1 depending only on Σu such that c < xn+1 ≤ 1 in Σu : this provides a
priori estimates for |u| in (17).

In Theorem 5.1, the gradient estimates were obtained using the subharmonicity of
the function −H〈p, a〉 + 〈N , a〉. Now this is not enough and we will prove first the
existence of an apriori estimate of |Du| along ∂Ω , and once obtained this estimate,
we will get an estimate of |Du| in the domain Ω .

Proposition 5.1 Under the assumptions of Theorem 5.3, we have

sup
Ω

|Du| <
√
1 − H 2 (22)

for every solution u of the Dirichlet problem (17).

Proof 1. Estimates along ∂Ω . Because Ω is κ-convex and inequality (21), we can
trap Σu in the domain determined by a hyperbolic H -hyperplaneHn+(r; Hr) and
the slice L1 such the intersection L1 ∩ H

n+(r; Hr) is the boundary of a round ball
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Bρ of radius ρ = 1/
√
1 − H 2. Denoted byH+

ρ ⊂ H
n+(r; Hr), the hyperbolic cap

is determined by L1. Then H
+
ρ lies below L1, and Σu lies between H

+
ρ and Bρ .

The assumption on the κ-convexity of Ω says κ ≥ 1/ρ, so the domain Ω has the
following Blaschke’s outer rolling sphere property: for every p ∈ ∂Ω , there exists
a ball in L1 of radius ρ touching p and leaving the domain Ω inside the ball. By
moving horizontally H

+
ρ , we go touching every point of ∂Ω in such a way that

during these translations (isometries of H n+1), the tangency principle forbids a
contact between H

+
ρ and Σu . Therefore, we can reach any point of ∂Ω leaving

Σu sandwiched byH+
ρ and L1, in particular, the slope ofΣu along ∂Ω is bounded

by the one of H+
ρ . This estimate is written precisely as sup∂Ω |Du| <

√
1 − H 2,

proving (22) for boundary points of Ω .
2. Estimates on Ω . In the de Sitter model, the function −H〈p, a〉 + 〈N , a〉 is sub-

harmonic and the maximum principle gives

−H〈p, a〉 + 〈N , a〉 ≤ sup
∂Ω

(
−H + 1√

1 − |Du|2
)

<
1 − H 2

H

where we have used that |Du| <
√
1 − H 2 along ∂Ω . Hence, we obtain 〈N , a〉,

and using (19), we conclude supΩ |Du| <
√
1 − H 2. �

Finally, Proposition 5.1 proves definitively Theorem 5.3.

6 Oulook and Open Problems

The interest of the steady state space comes because it is the Lorentzian analogous
of hyperbolic space. In this chapter, we have focused on spacelike hypersurfaces
with constant mean curvature but the theory of submanifolds is much more: for
example, one can study spacelike hypersurfaces with constant Gaussian curvature
as in [46, 47]. The spacelike condition on the hypersurface is a strong difference
between H n+1 and H

n+1. The three models of H n+1 allow different approaches
for a given problem, but we have observed in the literature similar results written
in different coordinates. This is the reason why we have strived to make a common
line of the progress inH n+1 after the paper of Montiel [42] and later of Albujer and
Alías [3].We have not fully studied the extension of results in other GRW spacetimes
because we believe that a generalization in these spaces would bring long statements
in the conditions on the warping function as well as the fiber manifold that could go
away from our initial aim. Finally, we have emphasized on the techniques employed,
where the maximum principles (tangency principle, Omori-Yau) play an important
role.

In the literature, there has been a great interest for characterizing the slices, in
connection with the Bernstein problem but we find missing more efforts in other



210 R. López

directions. We have collected a list of open problems some of which could be tackled
in the near future.

1. Obtain other types of characterizations for slices. The condition to be included
between two slices in Theorem 3.1 is too strong. Extend the characterizations of
Bernstein-type for hyperbolic planes, for example assuming that the hypersurface
lies in the convex side of another hyperbolic plane.

2. Study spacelike H -hypersurfaces with−1 < H < 0 because this range of values
for H appears remarkably in some results: Example 4.2 and Theorem 4.4 and 5.3.

3. Investigate the family of spacelike cmc hypersurfaces invariant by a uniparametric
group of isometries. We are thinking not only in the rotational examples but also
hypersurfaces invariant by a parabolic or a hyperbolic group of rotations.

4. Characterize cmc hypersurfaces whose asymptotic future boundary is known. In
the upper half-space model, we can assume that ∂∞Σ is one point, an Euclidean
sphere or two concentric Euclidean spheres. In the literature, there are similar
results in the hyperbolic space.

5. Study complete spacelike hypersurfaces in H n+1 with constant mean curvature
|H | = 1. We know that if n = 2, then the hypersurface is a slice, but we do not
know the existence of other examples in arbitrary dimension.

6. Solve the Dirichlet problem for the case H > 0. Following the discussion in
Sect. 5, consider the case H < −1 but dropping the mean convex boundary
assumption in Theorem 5.1.

7. We have not discussed on timelike cmc hypersurfaces inH n+1. Recall that there
is a great activity in recent years in this topic in Lorentz–Minkowski space R3

1.
The mean curvature equation for timelike surfaces is not elliptic so we cannot
make use of the maximum principle. However, we have timelike slices which
could be characterized with results of Bernstein-type.
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