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Preface

Lorentzian Geometry was born as the geometric theory on which General Relativity
could be mathematically stated. Nowadays, it constitutes a very active area of
research with its proper specific weight in Differential Geometry and Mathematical
Relativity. Many mathematical techniques are involved in this field (geometric
analysis, functional analysis, partial differential equations, Lie groups and Lie
algebras…), making any text focused on it of great interest to a broad audience.

Fifteen years ago, several Spanish researchers interested in Lorentzian Geometry
and related mathematical topics, launched the biennial meetings on Lorentzian
Geometry in Benalmádena 2001 (Málaga). This first meeting was developed in a
very friendly atmosphere and had a vocation to be the first of a following suit on the
same topic. As a consequence, a fruitful series of international meetings on
Lorentzian Geometry started since that moment: Murcia 2003 (Spain), Castelldefels
2005 (Spain), Santiago de Compostela 2007 (Spain), Martina Franca 2009 (Italy),
Granada 2011 (Spain), and Sao Paulo 2013 (Brazil). A special edition on
“Lorentzian and conformal Geometry” was held in Greifswald (Germany) in 2014
in honour of Prof. Helga Baum. Along the years, the international character of these
meetings has increased spectacularly. The excellent ambiance in which this series
of meetings had been originated, recalling the first edition, led us to speak about the
“Benalmádena’s spirit”.

The most recent edition was held at the University of Málaga, Spain, in September,
2016. This volume contains a picture of the trends in Lorentzian Geometry exposed in
this VIII International Meeting on Lorentzian Geometry. Among others, it contains
topics such as notable (maximal, trapped, null, spacelike, constant mean curvature,
umbilical, isoparametric) submanifolds, causal completion of spacetimes, stationary
regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation
between Lorentzian and Finslerian Geometries and the oscillator spacetime.

Let us provide a more specific summary about the contributions included here.
The Euclidean space and the Lorentz-Minkowski spacetime share the same

underlying manifold. Therefore a natural question on spacelike hypersurfaces in the
Lorentz-Minkowski spacetime arises. When a spacelike hypersurface has the same
mean curvature as hypersurface of the Lorentz-Minkowski spacetime and as
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hypersurface in the Euclidean space? Eva M. Alarcón, Alma L. Albujer and
Magdalena Caballero summarize results for the case when the two mean curvature
functions are equal and constant. For the case when the mean curvature functions
are equal but not necessarily constant, the authors generalize, to arbitrary dimension,
some previous results on spacelike surfaces.

In their contribution, Stephanie B. Alexander and William A. Karr show that
sectional curvature bounds of the form R�K are closely tied to space-time convex
functions. Several consequences are obtained: a natural construction of such
functions as well as an analogue of a theorem by Alías, Bessa and de Lira ruling out
trapped submanifolds in new domains. In addition, they point several connections
between totally independent researches by different authors.

Motivated by the very special role played by the Lorentzian oscillator group,
Giovanni Calvaruso describes an explicit system of global coordinates for this Lie
group, and uses it to compute its symmetries and solutions to the Ricci soliton
equation.

Nastassja Cipriani and José M.M. Senovilla provide necessary and sufficient
conditions for a spacelike submanifold of arbitrary co-dimension to be umbilical
along normal directions. To this aim, they use the so-called total shear tensor, i.e.
the trace-free part of the second fundamental form. They also show that the sum
of the dimensions of the spaces generated by the total shear tensor and by the
umbilical vector fields equals the co-dimension.

Ivan P. Costa e Silva presents a personal review of a number of results on the
global geometric properties of stationary regions of spacetimes, both new and
well-known (many of the latter with new proofs). He also discusses the general
structure and regularity of the horizons associated with these regions. The analysis
is largely carried out without assuming any field equations, asymptotic flatness/
hyperbolicity or dimensional restrictions, thereby emphasizing their independence of
such extra, often physically motivated hypotheses.

J. Carlos Díaz-Ramos, Miguel Domínguez-Vázquez and Víctor Sanmartín-
López are interested in isoparametric hypersurfaces in complex hyperbolic spaces,
whose classification has recently been obtained by the authors. Concretely, they
prove that given an isoparametric hypersurface in CHn, the principal curvatures of
this hypersurface are pointwise the same, as the principal curvatures of a homo-
geneous hypersurface of CHn. Although this result can be obtained following the
classification mentioned above, they prove it by a more direct approach, by lifting
hypersurfaces in complex hyperbolic spaces to anti-de Sitter spacetimes.

The causal completion of spacetimes has succeeded as a tool to study different
global properties of spacetimes. However, it is not always easy to extend the
structure of the spacetime to the causal boundary. Stacey (Steven) Harris examines
the extent to which various causal constructions and properties for spacetimes can
be applied to the future completion of a strongly causal spacetime, considered as a
topological space using the future chronological topology.
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A very useful link between Lorentzian and Finslerian Geometries has been
developed in the last years. In this volume, Miguel Ángel Javaloyes and
Miguel Sánchez develop these relationships and several applications to spacetimes.
In their contribution the purpose is twofold. On one hand, the authors provide a
reference summary on the subject for Lorentzian geometers. On the other hand,
they consider a big class of spacetimes admitting a time function t and characterize
when the slices t = constant are Cauchy hypersurfaces.

Erdem Kocakuşaklı and Miguel Ortega study some general properties of
translating solitons in the semi-Riemannian setting. In particular, they focus on the
study of translating solitons which are invariant under the action of a Lie group of
isometries of the ambient space, and they examine the behaviour near the singular
orbit, whenever there exits, and at infinity. They also include several examples.

Wai Yeung Lam and Masashi Yasumoto investigate discretizations of surfaces
with vanishing mean curvature (i.e., maximal surfaces) in the three-dimensional
Lorentz-Minkowski space. In particular, the case of trivalent maximal surfaces is
analysed. The authors derive a Weierstrass-type representation using discrete
holomorphic quadratic differentials for these surfaces. Their contribution also
includes a deep analysis of singularities of trivalent maximal surfaces.

The hypersurfaces with constant mean curvature in spacetimes are convenient initial
data for the Cauchy problem of the Einstein equations. Rafael López provides a survey
on this kind of hypersurfaces on the steady-state space. Three different models for this
spacetime appear in his contribution. Each one is conveniently employed depending on
the problems. The author focuses on Bernstein-type theorems by using as key tools the
tangency principle and the Omori-Yau maximum principle.

Continuing with the celebrated Calabi–Bernstein theorem, Rafael Rubio presents a
useful review about some of the classical and recent proofs of this theorem in the
Lorentz-Minkowski spacetime for the two-dimensional case, as well as several
extensions for Lorentzian-warped products and other relevant spacetimes. He also
analyzes the problem of uniqueness of complete maximal hypersurfaces under the
perspective of some new results.

Benjamín Olea focuses on the geometry of null hypersurfaces in Lorentzian
manifolds. To this aim he uses the rigging techniques, one of the approaches to
overcome the difficulties derived from the degeneracy of these objects. Concretely,
he studies under which conditions the rigged connection, i.e. the Levi-Civita
connection associated to the Riemannian metric induced by the rigging, coincides
with the connection directly induced from the rigging, and gives some examples.

Finally, by means of the application of the Cauchy–Kovalevski theorem for partial
differential equations, Masaaki Umehara and Kotaro Yamada construct all real
analytic germs of zero mean curvature surfaces by using several concrete examples of
such surfaces in R

3
1 containing a certain light-like line. Besides they use a new

approach to the subject, they obtain, as a consequence, new examples of zero mean
curvature surfaces such that the causal type of one-side of the line is space-like and
the other-side is time-like. Moreover, they provide several applications of these
results.

Preface vii



Summing up, this volume constitutes a representative picture of the last progresses
in the field of Lorentzian Geometry and related topics. Moreover, we think that the
topics here included provide a nice approach to several very active research problems.

We would like to thank the careful work of the contributors, as well as the
exhaustive revisions by the anonymous referees. We would also like to acknowledge
Springer for its interest on this branch of knowledge and its staff for their friendly
assistance.

Last but not least, we warmly thank all participants of the Lorentzian meeting
for the excellent scientific level and pleasant atmosphere of this congress
http://gigda.ugr.es/geloma/, as well as the support of the sponsors: the University of
Malaga, the Vice-Rectorate for Research and Knowledge Transfer (UMA), the
Department of Algebra, Geometry and Topology (UMA) and the Department of
Applied Mathematics (UMA); the Spanish projects MTM2013-47828-C2-1-P,
MTM2013-47828-C2-2-P and MTM2013-41768-P; the Academia Malagueña de
Ciencias, the Sociedad Malagueña de Astronomía and the Real Sociedad Española
de Física; and the Metro de Málaga.

Málaga, Spain María A. Cañadas-Pinedo
July 2017 José Luis Flores

Francisco J. Palomo
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Spacelike Hypersurfaces
in the Lorentz-Minkowski Space
with the Same Riemannian
and Lorentzian Mean Curvature

Eva M. Alarcón, Alma L. Albujer and Magdalena Caballero

Abstract Spacelike hypersurfaces in the Lorentz-Minkowski space L
n+1 can be

endowed with two different Riemannian metrics, the metric inherited from L
n+1

and the one induced by the Euclidean metric of Rn+1. Consequently, we can con-
sider two mean curvature functions naturally attached to any spacelike hypersurface,
HR and HL . In this manuscript, we revise some known results for the case where
HR = HL is constant, and generalize to arbitrary dimension some recent results for
spacelike surfaces with HR = HL not necessarily constant obtained by Albujer and
Caballero. Specifically, we prove that spacelike hypersurfaces with HR = HL do
not have any elliptic points. As an application of this result, jointly with a classical
argument on the existence of elliptic points due to Osserman, we present several
geometric consequences for the hypersurfaces we are considering. Finally, as any
spacelike hypersurface in Ln+1 is locally a graph over the hyperplane xn+1 = 0, our
hypersurfaces are locally determined by the solutions to a certain partial differential
equation called the HR = HL hypersurface equation. The character of this equation
is studied, and some uniqueness results for its related Dirichlet problem are given.

Keywords Mean curvature · Spacelike hypersurfaces · Elliptic points · Dirichlet
problem

2010 Mathematics Subject Classification Primary 53C42 · Secondary 35J93 ·
53C50

E.M. Alarcón
Departamento de Matemáticas, Campus de Espinardo, Universidad de Murcia,
30100 Murcia, Spain
e-mail: evamaria.alarcon@um.es

A.L. Albujer (B) · M. Caballero
Departamento de Matemáticas, Campus Universitario de Rabanales,
Universidad de Córdoba, 14071 Córdoba, Spain
e-mail: alma.albujer@uco.es

M. Caballero
e-mail: magdalena.caballero@uco.es

© Springer International Publishing AG 2017
M.A. Cañadas-Pinedo et al. (eds.), Lorentzian Geometry and Related Topics,
Springer Proceedings in Mathematics & Statistics 211,
DOI 10.1007/978-3-319-66290-9_1

1



2 E.M. Alarcón et al.

1 Introduction and Background

A hypersurface in the Lorentz-Minkowski space Ln+1 is said to be spacelike if its
induced metric is a Riemannian one. We can endow a spacelike hypersurface inLn+1

with another Riemannian metric, the one inherited from the Euclidean space Rn+1.
Therefore, we can consider two different mean curvature functions on a spacelike
hypersurface, the mean curvature function related to the metric induced by R

n+1,
that we will denote by HR , and the one related to the metric inherited from L

n+1,
HL .

A hypersurface in R
n+1 is said to be minimal if its mean curvature function

vanishes identically, that is HR ≡ 0. Analogously, a spacelike hypersurface in Ln+1

is said to be maximal if HL ≡ 0. The study of minimal and maximal hypersurfaces
is a topic of wide interest. One of the main results about the global geometry of
minimal surfaces is the well-known Bernstein theorem, proved by Bernstein [5] in
1915, which states that the only entire minimal graphs in R

3 are the planes. Some
decades later, in 1970, Calabi [7] proved its analogous version for spacelike surfaces
in the Lorentz-Minkowski space, the Calabi-Bernstein theorem, which states that the
only entire maximal graphs in L

3 are the spacelike planes. An important difference
between both results is that the Bernstein theorem can be extended tominimal graphs
in R

n+1 up to dimension n = 7, as it was proved by Bombieri et al. [6], but it is no
longer true for higher dimensions. However, the Calabi-Bernstein theorem holds true
for any dimension as it was proved by Calabi [7] for dimension n ≤ 4, and by Cheng
and Yau [8] for arbitrary dimension.

It is interesting to note that any complete spacelike hypersurface in Ln+1 is neces-
sarily an entire graph over any spacelike hyperplane, see [4, Proposition 3.3]. Con-
sequently, the Calabi-Bernstein theorem can also be expressed in a parametric way
by asserting that the only complete maximal hypersurfaces in Ln+1 are the spacelike
hyperplanes. Its Riemannian analogue is not true since there exists a wide family of
nonplanar complete minimal hypersurfaces in Rn+1, even in the 2-dimensional case
(n = 2).

As an immediate consequence of the above results, we conclude that the only
complete hypersurfaces that are simultaneously minimal in R

n+1 and maximal in
L
n+1 are the spacelike hyperplanes.
Going a step further, we can consider spacelike hypersurfaces with the same con-

stant mean curvature functions HR and HL . In 1955, as a direct consequence of the
classical divergence theorem, Heinz [12] proved that given a graph in R

3 defined
over a disk of radius R in R

2 centered at the origin, B0(R), if |HR| ≥ c > 0 for a
certain constant c, then R ≤ 1

c necessarily. Some years later, Chern [9] and Flan-
ders [10] simultaneously and independently extended this result to general dimen-
sion. Therefore, the only entire graphs with constant mean curvature HR in R

n+1

are the minimal ones. The Lorentzian version of this result is not true, there are
examples of entire spacelike graphs with constant mean curvature HL in Ln+1 which
are not maximal, for instance the hyperbolic spaces. However, taking into account
the Calabi-Bernstein theorem, we conclude again that the only complete spacelike
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hypersurfaces in Ln+1 with the same constant mean curvature functions HR and HL

are the spacelike hyperplanes.
Without assuming any completeness hypothesis, Kobayashi [14] studied the prob-

lem for HR = HL = 0 in the 2-dimensional case. After presenting a classification
of maximal ruled surfaces in L

3, he showed that the only surfaces that are simul-
taneously minimal and maximal are necessarily ruled. And consequently, they are
open pieces of a spacelike plane or of a helicoid in the region where the helicoid is
spacelike. Recently, Albujer et al. [1, 2] have continued with the study of spacelike
surfaces with the same mean curvature in R

3 and in L
3, not necessarily constant.

Specifically, they have shown that those surfaces have non-positive Gaussian curva-
ture with respect to the metric induced from R

3 in all their points, and have obtained
several interesting consequences about the geometry of such surfaces.

In general dimension, Lee and Lee [15] have recently presented nonplanar exam-
ples of simultaneously minimal and maximal spacelike graphs in the Lorentz-
Minkowski space. Their examples can be seen as generalized ruled hypersurfaces,
in fact they are a natural generalization of helicoids. However, there is no known
classification of such hypersurfaces similar to Kobayashi’s result.

Our main purpose in this manuscript is to generalize some of the results in [1,
2], providing some geometric properties of spacelike hypersurfaces in L

n+1 with
HR = HL . In Sect. 2 we present some basic preliminaries on spacelike hypersurfaces
inLn+1 and their mean curvature functions with respect to the metrics inherited from
R

n+1 and Ln+1. It is well known that any spacelike hypersurface can be locally seen
as a graph over an open subset of a spacelike hyperplane, which without loss of
generality can be supposed to be the hyperplane xn+1 = 0, see [16] for the proof in
the two-dimensional case. Therefore, we also describe the normal vector fields and
the mean curvature functions with respect to both metrics in terms of the differential
operators of the function which locally describes the hypersurface. Finally, we recall
a characterization result by Osserman [17] for hypersurfaces inRn+1 without elliptic
points and we present its Lorentzian version for spacelike hypersurfaces in Ln+1, see
Theorem 2, which extends [1, Theorem 3].

In Sects. 3 and 4we consider spacelike hypersurfaces inLn+1 such that HR = HL .
Specifically, in Sect. 3 we prove that at any point of those hypersurfaces the principal
curvatures cannot have all of them the same sign. From this theorem, as well as from
Osserman’s result, we get some geometric consequences to which the rest of the
section is devoted.

In Sect. 4 we present the HR = HL hypersurface equation. Any spacelike hyper-
surface is locally determined by a solution of this equation satisfying |Du| < 1,
where D and | · | stand for the Euclidean gradient and Euclidean norm inRn , respec-
tively. We prove the uniqueness of the Dirichlet problem associated to this partial
differential equation under some appropriate boundary conditions. This is not triv-
ial, since the equation is not always elliptic. We also consider rotationally invariant
spacelike graphs with HR = HL , obtaining a uniqueness result for them.

Some of the proofs are analogous to the two-dimensional case, still wewill include
them for the sake of completeness.
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2 Preliminaries

Let L
n+1 be the (n + 1)-dimensional Lorentz-Minkowski space, that is, R

n+1

endowed with the metric

〈, 〉L = dx21 + · · · + dx2n − dx2n+1,

where (x1, . . . , xn+1) are the canonical coordinates in R
n+1, and let | · |L denote its

norm. It is easy to see that the Levi-Civita connections of the Euclidean space Rn+1

and the Lorentz-Minkowski space Ln+1 coincide, so we will just denote them by ∇.
A (connected) hypersurface �n in L

n+1 is said to be a spacelike hypersurface if
L
n+1 induces a Riemannian metric on �, which is also denoted by 〈, 〉L . Given a

spacelike hypersurface�, we can choose a unique future-directed unit normal vector
field NL on �. Let ∇L denote the Levi-Civita connection in � with respect to 〈, 〉L .
Then the Gauss and Weingarten formulae for the spacelike hypersurface � become

∇XY = ∇L
XY − 〈AL X,Y 〉L NL

and
AL X = −∇X NL ,

respectively, for any tangent vector fields X,Y ∈ X(�), where AL : X(�) → X(�)

stands for the shape operator of � with respect to NL . The mean curvature function
of � with respect to NL is defined by

HL = −1

n
tr AL = −1

n
(kL1 + · · · + kLn ),

where kLi , i = 1, . . . , n, stand for the principal curvatures of (�, 〈, 〉L).
It is well known that there exists no closed (compact andwithout boundary) space-

like hypersurface in L
n+1 [3, 4]. Therefore, every compact spacelike hypersurface

� in the Lorentz-Minkowski space necessarily has nonempty boundary.
The same topological hypersurface can be also considered as a hypersurface of

the Euclidean space, that is Rn+1 with its usual Euclidean metric. For simplicity, we
will just denote the Euclidean space by R

n+1, the Euclidean metric and the induced
metric on� by 〈, 〉R , and its norm by | · |R . In such a case,� admits a unique upward
directed unit normal vector field, NR . In an analogous way as in the Lorentzian case,
let ∇R denote the Levi-Civita connection in � with respect to 〈, 〉R . The Gauss and
Weingarten formulae read now

∇XY = ∇R
X Y + 〈ARX,Y 〉RNR

and
ARX = −∇X NR,
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respectively, AR : X(�) → X(�) being the shape operator of � with respect to NR .
The mean curvature function of � with respect to NR is defined by

HR = 1

n
tr AR = 1

n
(kR1 + · · · + kRn ),

where kRi , i = 1, . . . , n, stand for the principal curvatures of (�, 〈, 〉R). Let us recall
that a point p ∈ � is said to be elliptic if all the principal curvatures of � at p have
the same sign.

It is interesting to observe that the mean curvature functions have an expression
in terms of the normal curvatures of any set of orthogonal directions. Specifically,

HR = 1

n
(κR

v1
+ · · · + κR

vn
) and HL = −1

n
(κL

w1
+ · · · + κL

wn
), (2.1)

where {v1, . . . , vn} and {w1, . . . , wn} are orthonormal basis of Tp� with respect to
〈, 〉R and 〈, 〉L , respectively.

A spacelike hypersurface is locally a graph over an open subset of the hyperplane
xn+1 = 0, which can be identified with R

n . Therefore, for each p ∈ � there exists
an open neighborhood of p, � ⊆ R

n , and a smooth function u ∈ C∞(�) such that
� = �u on this neighborhood, where

�u = {(x1, . . . , xn, u(x1, . . . , xn)) : (x1, . . . , xn) ∈ �}.

It is easy to check that �u is a spacelike hypersurface if and only if |Du| < 1, where
D and | · | stand for the gradient operator and the norm in the Euclidean space Rn ,
respectively. In this case, it is possible to get expressions for the normal vector fields
NL and NR , as well as for the mean curvature functions HL and HR , in terms of u.
Specifically, with a straightforward computation we get

NL = (Du, 1)
√
1 − |Du|2 and NR = (−Du, 1)

√
1 + |Du|2 . (2.2)

And for the mean curvature functions we have

HL = 1

n
div

(
Du

√
1 − |Du|2

)

and HR = 1

n
div

(
Du

√
1 + |Du|2

)

, (2.3)

where div denotes the divergence operator in Rn . Let us observe that

cos θ = 1
√
1 + |Du|2 and coshψ = 1

√
1 − |Du|2 ,
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where θ and ψ denote the angle between NR and en+1 = (0, . . . , 0, 1) and the hyper-
bolic angle between NL and en+1, respectively. Moreover, from (2.2) it is immediate
to get

〈X, NL〉L
coshψ

= −〈X, NR〉R
cos θ

, (2.4)

for any X ∈ X(�), which is a global equality since it does not depend on u. Let
us observe that, in the previous expressions, we are writing Du instead of Du ◦ π,
where π is the canonical projection of �u onto �. On behalf of simplicity, we will
continue using this identification along the manuscript.

According to Osserman [17], a hypersurface � in the Euclidean space R
n+1

satisfies the convex hull property if every compact subset D ⊆ � lies in the convex
hull of its boundary. In [17, Theorem], he gave the following simple geometric
condition characterizing those hypersurfaces.

Theorem 1 ([17, Theorem]) A hypersurface� inLn+1 has the convex hull property
if and only if there is no elliptic point in �.

Theorem 1 also holds for spacelike hypersurfaces in L
n+1. This yields from the

following lemma contained in [1]. We expose the proof of the lemma for the sake of
completeness.

Lemma 1 ([1, Lemma 2]) Let � be a spacelike hypersurface in Ln+1. Given p ∈ �

and v ∈ Tp�, let κL
v (p) and κR

v (p) denote the normal curvatures at p in the direction
of v with respect to 〈, 〉L and 〈, 〉R, respectively. Then,

|v|2R
cos θ(p)

κR
v (p) = − |v|2L

coshψ(p)
κL

v (p).

Proof Given p ∈ � and v ∈ Tp�, let α be a smooth curve on � such that α(0) = p
and α′(0) = v. We will work at p, but for simplicity we will omit it. Then, by
definition,

κR
v = 〈∇ tR tR, NR〉R and κL

v = 〈∇ tL tL , NL〉L , (2.5)

where tR = α′
|α′|R and tL = α′

|α′|L . We combine (2.4) and (2.5) to finish the proof. �

Consequently, κL
v and κR

v always have opposite signs. And so, all the principal
curvatures of � with respect to 〈, 〉R are positive if and only if all its principal
curvatures with respect to 〈, 〉L are negative, and vice versa. Equivalently, a point in
� is elliptic with respect to the metric 〈, 〉L if and only if it is elliptic with respect to
〈, 〉R . Hence, we have proved the Lorentzian version of Theorem 1.

Theorem 2 A spacelike hypersurface � inRn+1 has the convex hull property if and
only if there is no elliptic point in �.

The above result is a generalization of [1, Theorem 3], which states that if � is
a compact spacelike hypersurface in L

n+1 not contained in the convex hull of its
boundary, then it necessarily has an elliptic point.



Spacelike Hypersurfaces in the Lorentz-Minkowski Space … 7

3 Spacelike Hypersurfaces with HR = HL

We can now state and prove our first main result.

Theorem 3 Let � be a spacelike hypersurface in L
n+1 such that HR = HL. Then

not all the principal curvatures have the same sign. That is, there is no elliptic point
in �.

Proof We are going to work locally, so we can assume that there exists an open
subset � ⊆ R

n and a smooth function u ∈ C∞(�) such that � = �u . We define �∗
as the graph of u over the following open set

�∗ = {(x1, . . . , xn) ∈ � : Du(x1, . . . , xn) �= 0}.

Given p ∈ �∗, we consider its corresponding level hypersurface contained in R
n

and we call its lifting to �, Sc. We are working in a neighborhood of p, hence we
can assume that Sc lies on �∗. Since Du �= 0 in �∗, its distribution is integrable, so
we can consider the integral curve through π(p). We denote by α its lifting to �∗.
We observe that a vector field tangent to α is α′ = (Du, |Du|2) ◦ π. Therefore, we
have two submanifolds defined on a neighborhood of p which are orthogonal at p
for both 〈, 〉R and 〈, 〉L . Now, let {e1, . . . , en−1} be an orthonormal basis of TpSc in
R

n+1. These vectors are also orthonormal in Ln+1, and orthogonal to α′ with respect
to both metrics. Then, Lemma 1 gives us the following relationships, where we have
omitted the point p on behalf of simplicity

κR
ei = −|ei |2L

|ei |2R
cos θ

coshψ
κL
ei = −

√
1 − |Du|2
1 + |Du|2 κL

ei , i = 1, . . . , n − 1 and

κR
α′ = − |α′|2L

|α′|2R
cos θ

coshψ
κL

α′ = −
(
1 − |Du|2
1 + |Du|2

) 3
2

κL
α′ .

By denoting A =
√

1−|Du|2
1+|Du|2 , we rewrite the previous expressions as

κR
ei = −A κL

ei , i = 1, . . . , n − 1 and κR
α′ = −A3 κL

α′ . (3.1)

As we are dealing with orthogonal directions at p for both 〈, 〉R and 〈, 〉L , and we
are assuming HR = HL , from (2.1) we get

−κL
e1 − · · · − κL

en−1
− κL

α′ = κR
e1 + · · · + κR

en−1
+ κR

α′,

which jointly with (3.1) implies

κL
e1 + · · · + κL

en−1
= −(A2 + A + 1)κL

α′ ,



8 E.M. Alarcón et al.

and so (
κL
e1 + · · · + κL

en−1

)
κL

α′ ≤ 0.

On the other hand, we can express the normal curvature given by a unitary vector
v = ∑n

i=1 aie
∗
i ∈ Tp�, where e∗

i , i = 1, . . . , n, stand for the principal directions of
� at p, in the next way

κL
v = a21k

L
1 + · · · + a2nk

L
n .

Then, if we suppose that all the principal curvatures have the same sign, we get a
contradiction.

Consider now p ∈ � \ �∗. If p ∈ int (� \ �∗), then � is locally a horizontal
hyperplane around p, and so κL

i = κR
i = 0 for all i = 1, . . . , n. Otherwise p ∈ ∂�∗,

and the result follows from a continuity argument. �

We have just proved that a hypersurface � such that HR = HL does not have any
elliptic point, which jointly which Theorem 1 leads to some interesting geometric
consequences, to which the rest of the manuscript is devoted. The first of them is
immediate from both results.

Theorem 4 Let� be a compact spacelike hypersurfacewith (necessarily) nonempty
boundary such that HR = HL. Then� is contained in the convex hull of its boundary.

Let us recall that any spacelike hypersurface is locally a graph �u over an open
subset � ⊆ R

n . From now on, we will focus on spacelike graphs.
First, we present a uniqueness result for graphswhich are asymptotic to a spacelike

hyperplane, where the term asymptotic is defined as follows. We say that two entire
graphs �u and �v over Rn are asymptotic if for every ε > 0 there exists a compact
set K ⊂ R

n such that |u(x1, . . . , xn) − v(x1, . . . , xn)| < ε for every (x1, . . . , xn) ∈
R

n \ K . Observe that, without loss of generality, we can consider that those compact
sets are Euclidean balls of a certain radius. If we define the width of a set in R

n

as the supremum of the diameter of the closed balls contained in it, the concept of
asymptotic graphs is not only well defined in the case of entire graphs, but also in
the case of graphs over a domain of infinite width, that is, a domain which contains
closed balls of any radius. Notice that this definition is a generalization of the classical
concept of width for a convex body, see [18].

Theorem 5 The only spacelike graphs �u in L
n+1 defined over an open subset

� ⊆ R
n of infinite width, with HR = HL, and asymptotic to a spacelike hyperplane,

are (pieces of) spacelike hyperplanes.

Proof Let us notice that�u is a graphover any spacelike hyperplane, and inparticular,
over the hyperplane to which it is asymptotic. To prove it, it is enough to observe
that if some timelike line intersects �u twice, the plane with director vector en+1 =
(0, . . . , 0, 1) and containing that line cuts�u in a curve that is timelike at some point,
which is a contradiction.



Spacelike Hypersurfaces in the Lorentz-Minkowski Space … 9

Let us denote by � the hyperplane to which �u is asymptotic and let v ∈ C∞(�′)
be the function such that �u = �v , �′ ⊆ � being the domain of definition of v.
Notice that the width of �′ is also infinite.

For any ε > 0 there exists (y1, . . . , yn) ∈ �′ and R > 0 such that |v(x1, . . . ,
xn)| < ε for every (x1, . . . , xn) ∈ �′ \ B̄(y1,...,yn)(R). By Theorem 4, we know that
the graph of the restriction of v to B̄(y1,...,yn)(R) is contained in the convex hull of its
boundary. Therefore, |v(x1, . . . , xn)| ≤ ε for all (x1, . . . , xn) ∈ B̄(y1,...,yn)(R), so this
inequality holds globally on �′. Taking limits when ε approaches 0, we conclude
that �u = �′. �

4 A Quasi-linear PDE Related to Spacelike
Hypersurfaces with HR = HL

As we have already mentioned, any spacelike hypersurface is locally a graph �u

over an open subset� ⊆ R
n . Thanks to (2.3), if we consider the differential operator

given by

Q(u) = div

((
1

√
1 − |Du|2 − 1

√
1 + |Du|2

)

Du

)

,

those graphs are the solutions to the equation

Q(u) = 0, (4.1)

satisfying |Du| < 1. We will refer to the above equation as the HR = HL hypersur-
face equation.

Let us observe firstly that (4.1) is an elliptic quasi-linear partial differential equa-
tion, everywhere except at those pointswhere Du = 0, atwhich it is parabolic. In fact,
it is a tedious but straightforward computation to show that (4.1) can be expressed
as

〈B(Du), D2u〉 = 0,

D2u being the Hessian matrix of u with respect to the Euclidean metric of Rn and
B(Du) a symmetric and positive definite matrix on Du, everywhere except at those
points where Du = 0, where it vanishes.

It is well known that the solutions to a second order elliptic quasi-linear partial
differential equation for an analytic operator Q are always analytic, see [13] for
a proof of this fact. Therefore, if u is a solution of (4.1) with 0 < |Du| < 1, it is
necessarily analytic. However, in general the analyticity of the solutions of (4.1)
cannot be guaranteed.
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Along this section, let� be a domain ofRn , that is an open and bounded subset of
R

n . Given a domain � ⊂ R
n and ψ ∈ C0(∂�), the Dirichlet problem related to the

HR = HL hypersurface equation consists in finding a solution u ∈ C2(�) ∩ C0(�)

to the boundary value problem

Q(u) = 0 in �

|Du| < 1 in �

u = ψ on ∂�

⎫
⎬

⎭
. (4.2)

As a consequence of a uniqueness theorem for the Dirichlet problem associated
to quasilinear elliptic operators [11, Theorem 9.3], we get our next result.

Theorem 6 Let � ⊂ R
n be a domain with smooth boundary and ψ ∈ C0(∂�) such

that the Dirichlet problem (4.2) admits a solution u without critical points. Then, the
solution is unique.

Remark 1 It is interesting to observe that [11,Theorem9.3] holds under four assump-
tions on the operator defining the equation, one of which does not hold in our case.
Since we are assuming the spatially condition |Du| < 1, the coefficients of Q are not
well defined on thewhole� × R × R

n , as it is required in the last hypothesis, but just
on � × R × B0(1). However, studying in detail the proof of the cited theorem, we
can realize that it is sufficient to consider the coefficients defined on� × R × B0(1).

It is still more interesting to put emphasis on the fact that the proof does not work
if the ellipticity fails somewhere. Therefore, we can not omit the hypothesis on the
gradient of u. However, as a consequence of Theorem 4, we get the following result
on the uniqueness of the Dirichlet problem under appropriate boundary values.

Theorem 7 The only solutions to the Dirichlet problem (4.2) with affine boundary
value are the affine functions.

Proof Let u be a solution of (4.2) and �u its associated graph. From Theorem 4, �u

is contained in the convex hull of its boundary, which is contained in a hyperplane.
Therefore, the spacelike graph �u must be also contained in the same hyperplane,
and consequently u is affine.

In the previous reasoning it is crucial to observe that Theorem 4 also works for
C2-hypersurfaces. �

4.1 On Rotationally Invariant Spacelike Graphs

From now on, let us consider rotationally invariant spacelike graphs with respect to
a vertical axis. Therefore, we can assume without loss of generality that the graph
�u is determined by a function

u(x1, . . . , xn) = f (r), r = x21 + · · · + x2n , (4.3)
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where f ∈ C∞(I ) for certain I ⊆ [0,+∞). As an immediate consequence of
Theorem 7 we get the following uniqueness result for entire rotationally invariant
spacelike graphs with HR = HL .

Theorem 8 The only entire spacelike graphs �u determined by a function u given
by (4.3) such that HR = HL are the horizontal hyperplanes.

Proof Given a positive constant R, any entire solution to the HR = HL hypersurface
equation of the form (4.3) is a solution of the Dirichlet problem (4.2) over B0(R)

with constant boundary value. By Theorem 7, the function u must also be constant
in B0(R). The result is proven taking limits when R approaches infinity. �

Let us observe that Theorem 8 works not only for entire graphs, but for graphs
defined over a ball centered at the origin of Rn .
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Space-Time Convex Functions and Sectional
Curvature

Stephanie B. Alexander and William A. Karr

Abstract We show that in Lorentzian manifolds, sectional curvature bounds of the
form R ≤ K , as defined by Andersson and Howard, are closely tied to space-time
convex andλ-convex (λ > 0) functions, as defined byGibbons and Ishibashi. Among
the consequences are a natural construction of such functions, and an analog, that
applies to domains of a new type, of a theorem of Alías, Bessa and deLira ruling out
trapped submanifolds.

Keywords Space-time · Convex function · Distance · Hessian · Trapped
submanifold

1 Introduction

A study of the possible uses of convex functions in General Relativity was initiated
byGibbons and Ishibashi, according towhom: “Convexity and convex functions play
an important role in theoretical physics . . . [and] also have important applications
to geometry, including Riemannian geometry . . . It is surprising therefore that, to
our knowledge, that techniques making use of convexity and convex functions have
played no great role in General Relativity” [8].

Gibbons and Ishibashi introduce and mainly consider “space-time convex” func-
tions on Lorentzian manifolds (M, g), or more generally, functions f satisfying

∇2
f ≥ λg, λ > 0.

They find examples and nonexamples of such functions on regions in cosmological
space-times and black-hole space-times. They show, for example, that such functions
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rule out closed marginally inner and outer trapped surfaces. Curvature bounds do not
arise in their considerations.

The purpose of this note is to show that sectional curvature bounds of the form
R ≤ K are closely tied to space-time convex functions. Among the consequences:

• A natural construction of such functions.
• New domains that cannot support trapped submanifolds, namely a full neighbor-
hood of a point q, rather than a neighborhood of q in the chronological future of
q as has been considered previously, in particular by Alías et al. [2].

The bound R ≤ K , introduced by Andersson and Howard [4], extends Sec ≤ K
from theRiemannian to the semi-Riemannian setting by requiring spacelike sectional
curvatures to be≤ K and timelike ones to be≥ K . Equivalently, the curvature tensor
is required to satisfy

g(R(v,w)v,w) ≤ K
(
g(v, v) g(w,w) − g(v,w)2

)
.

For R ≥ K , reverse the inequalities.
In addition, we indicate connections between investigations that have been pur-

sued independently by various authors, including:

• Comparison theorems for Lorentzian distance on domains in the chronological
future of a source point or hypersurface on which the source has no Lorentzian
cut points, given timelike sectional curvature controls (see, for example, [2, 3, 6,
12]).

• Hessian comparisons on level hypersurfaces in exponentially embedded neighbor-
hoods of a point or hypersurface, given a sectional curvature bound of the form
R ≤ K or R ≥ K [1, 4].

• Space-time convex functions [8].

1.1 Outline of the Paper

Section2 is an introduction to space-time convex and λ-convex functions, as defined
in [8].

Section3 summarizes certain theorems about Hessian and Laplacian comparisons
on the Lorentzian distance function from a point or achronal spacelike hypersurface,
under comparisons on timelike sectional curvature [2, 3, 6, 12].

Section4 describes results from [1, 4] concerning the conditions R ≥ K and
R ≤ K in semi-Riemannian manifolds. In particular, in [4] Andersson and Howard
prove a comparison theorem for matrix Ricatti equations which applies to the sec-
ond fundamental forms of parallel families of hypersurfaces under curvature com-
parisons. In [1], this theorem is adapted to tubes around points; as an application,
the geometric meaning of the bounds R ≥ K and R ≤ K is found by introducing
signed lengths of geodesics.
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In Sect. 5, we use this framework to rule out trapped submanifolds in an exponen-
tially embedded neighborhood of a point in a space-time satisfying R ≤ K .

2 Space-Time Convex Functions

Definition 2.1 Given smooth functions f : M → R and λ : M → R on a semi-
Riemannian manifold (M, g), f will be called λ-convex if the Hessian ∇2

f satisfies

∇2
f ≥ λ g, (2.1)

or equivalently,
( f ◦ γ)′′ ≥ (λ ◦ γ) g(γ′, γ′) (2.2)

for every geodesic γ.
Suppose M is Lorentzian. We say f is space-time λ-convex if f is λ-convex for

some positive function λ, and ∇2
f has Lorentzian signature.

Note that this definition differs from the classical definition of convexity in that the
right-hand sides of (2.1) and (2.2) need not be positivewhenλ > 0.Rather, controlled
concavity is allowed along timelike geodesics, and is imposed in the definition of
space-time convexity.

One of the simplest examples of a space-time λ-convex function is

f (x, t) = 1

2
(x · x − λt2), (x, t) ∈ En+1

1 , (2.3)

on Minkowski space for some constant 0 < λ ≤ 1.
As pointed out in [8], the geometric meaning of space-time convexity is that at

each point, the forward light cone defined by the Hessian ∇2
f lies inside the light

cone defined by the space-time metric.
Definition 2.1 is consistent with current Riemannian/Alexandrov usage of “λ-

convex” (see [14]); and also with the definition of “space-time convex” in [8] except
that our λ is a positive function and Gibbons and Ishibashi take λ to be a positive
constant. (However, Definition 2.1 differs from the usage in [1].)

In [8], Gibbons and Ishibashi begin an investigation of the geometric implications
of space-time convex functions. For example, they show that a space-time with
a closed marginally inner and outer trapped surface cannot support a space-time
convex function.

Here a marginally inner and outer trapped surface � is a spacelike submanifold
of codimension 2 whose mean curvature vanishes.

Seeking examples of space-time convex functions,Gibbons and Ishibashi consider
Robertson-Walker spaces

M = −I × f F,



16 S.B. Alexander and W.A. Karr

that is, M is the product manifold I × F carrying the warped product metric

−dτ 2 + f 2ds2F

where I = (a, b), a ∈ [−∞,∞), b ∈ (−∞,∞], f : I → R+, and F has constant
sectional curvature. They ask when the function

− f 2/2 (2.4)

is space-time convex (here we use f to denote both the warping function and its lift
to M). For instance, various cosmological charts are considered on de-Sitter space
dSn+1 and anti-de-Sitter space adSn+1. One of these yields an affirmative answer:
namely, the function (2.4) is space-time convex on the region

(0,π/2) ×sin Hn

in adSn+1.
Gibbons and Ishibashi do not consider curvature bounds when seeking examples.

The perspective of space-times with curvature bounds of the form R ≤ K suggests
an alternative, namely analogs of the “square norm” ((2.3) with λ = 1). For instance,
these analogs yield space-time convex functions adapted to some of the domains in
de-Sitter and anti-de-Sitter space considered in [8].

Our theorems show that space-time convex functions arise naturally in all
Lorentzian manifolds satisfyingR ≤ K .

3 Comparisons for Lorentzian Distance

Let us mention some related works concerning the Lorentian distance functions from
a point or spacelike hypersurface. All these investigations are restricted to domains
containing no Lorentzian cut points of the source point or hypersurface.

(1) In [6], Erkekoglu, Garcia-Rio and Kupeli prove Hessian and Laplacian com-
parison theorems for level sets of the Lorentzian distance function from points
or from achronal spacelike hypersurfaces, in two space-times M and M̃ . They
consider corresponding timelike, distance-realizing unit geodesics in M and M̃ ,
where sectional curvatures of two-planes tangent to the geodesics at correspond-
ing values of the time parameter are no greater in M than in M̃ . Some space-time
singularity theorems are given.

(2) In [3], Alías, Hurtado and Palmer study the restriction of Lorentzian distance
from a point or achronal spacelike hypersurface to a spacelike hypersurface
satisfying the Omori-Yau maximum principle. Under constant bounds either
above or below on timelike sectional (or Ricci) curvatures, they obtain sharp
estimates on the mean curvature of such hypersurfaces.
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(3) In [12], Impera studies Hessian and Laplacian comparisons for Lorentzian dis-
tance from a point, assuming timelike sectional curvatures are bounded above
or below by a function of the Lorentzian distance. Estimates are obtained on the
higher order mean curvatures of spacelike hypersurfaces satisfying the Omori-
Yau maximum principle.

(4) In [2], Alías, Bessa and deLira prove nonexistence results and sharp mean cur-
vature estimates for trapped submanifolds (of arbitrary codimension), based on
comparison inequalities for the Laplacian of the restriction to a spacelike sub-
manifold of the Lorentzian distance function from a point or achronal spacelike
hypersurface. They use a weak Omori-Yau maximum principle equivalent to
stochastic completeness.

4 Curvature BoundsR ≤ K , R ≥ K

Recall that R ≤ K means that spacelike sectional curvatures are ≤ K and timelike
ones are ≥ K . For R ≥ K , reverse the inequalities. (Note that R ≤ K ≤ K ′ does
not imply R ≤ K ′!)

4.1 Geometric Meaning

Briefly,R ≤ K means, as in the Riemannian case, that unit geodesics radiating from
a point “repel” each other at least as much as in a space of constant curvature K ,
assuming the same initial conditions. However, repulsion here is meant in the signed
sense. In particular, in the Lorentzian case, if the initial direction of variation of the
geodesics is timelike, we see negative repulsion, that is, at least as much attraction as
in a Lorentzian space of constant curvature K . This is explained below in Sects. 4.3
and 4.4.

4.2 GRW Spaces

Space-times satisfying R ≤ K and R ≥ K are abundant. We mention as exam-
ples, generalized Robertson-Walker (GRW) spaces, namely warped products M =
(−I ) × f F for arbitrary Riemannian manifolds F .

Lemma 4.1 [[1], Corollary 7.2] A GRW space M = −I × f F satisfies R ≤ K if
and only if f : I → R+ satisfies

f ′′ ≥ K f,

and F either is one-dimensional or has sectional curvature ≤ C where
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C = inf (K f 2 − ( f ′)2).

(ForR ≥ K, reverse the inequalities and substitute sup for inf .)

4.3 Comparisons Based at a Point

Let M be a semi-Riemannian manifold, and U be the diffeomorphic image under
expq of a star-shaped region in TqM about O . Let γp,q be the geodesic path in U
from p to q that is distinguished by this diffeomorphism.

Define the signed energy function Eq : U → R by

Eq(p) = (sgn γp,q) (length γp,q)
2, (4.1)

where sgn γ take values 1, 0,−1 according to whether γp,q is spacelike, null or
timelike, respectively.

Signingwas shown in [1] to be the key to geometric understanding of the curvature
bounds R ≤ K and R ≥ K . In particular, Andersson and Howard do not consider
signed distance or energy.

For a fixed choice of K ∈ R and q ∈ U , define fK ,q : U → R by

fK ,q =
∞∑

n=1

(−K )n−1(Eq)
n

(2n)! =
{
Eq/2, K = 0,

(1 − cos
√
K Eq)/K , K 
= 0.

(4.2)

Here the argument of cos may be imaginary, yielding cos i t = cosh t .

Remark 4.2 Note that on the lift of U to TqM by (expq)
−1, the lift of fK ,q is the

square norm if K = 0, and an analog if K 
= 0. The possible values of (1 − K fK ,q)

are 1, cos
√|K Eq | and cosh

√|K Eq |.
Set f = fK ,q as in (4.2), for a fixed choice of K and q. Define themodified shape

operator S = SK ,q to be the self-adjoint operator associated with the Hessian of f ,
namely,

Sv = ∇v∇ f (4.3)

where ∇ is the covariant derivative of M .
Note that the levels of f are the levels of Eq . The form of f was chosen for

analytic convenience (following [13]), so that if M has constant curvature K then S
is a scalar multiple of the identity, namely

S = (1 − K f ) I.

The modified shape operator S has the following further properties: along a non-
null geodesic from q, its restriction to normal vectors is a scalar multiple of the
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second fundamental form of the level hypersurfaces of Eq ; it is smoothly defined on
the regular set of Eq , hence along null geodesics from q (as the second fundamental
forms are not); and finally, it satisfies a matrix Riccati equation along every geodesic
from q, after reparametrization as an integral curve of ∇ fK ,q .

The proof of the following theorem is by adapting to the set up just described,
a comparison theorem of Andersson and Howard [4, Theorem 3.2] that applies to
exponentially embedded tubes about hypersurfaces rather than points (see Sect. 4.5).

We say two geodesic segments σ and σ̃ in semi-Riemannian manifolds (M, g)

and (M̃, g̃) correspond if they are defined on the same affine parameter interval and
satisfy g(σ′,σ′) = g̃ (σ̃′, σ̃′). Let Rσ′ be the self-adjoint operator Rσ′v = R(σ′, v)σ′,
and similarly for R̃σ̃′ .

In the special case that the geodesics σ and σ̃ are timelike, the following theorem
includes comparison inequalities of Erkekoglu, Garcia-Rio and Kupeli [6, Theorem
3.1] for level hypersurfaces of the Lorentzian distance from a point. However, here
we are analyzing an exponentially embedded neighborhood of a point rather than
restricting to the chronological future.

Theorem 4.3 [1] Let M and M̃ be semi-Riemannian manifolds of the same dimen-
sion and index. For q ∈ M and q̃ ∈ M̃, let U and Ũ be diffeomorphic images under
expq and expq̃ respectively of star-shaped regions about the origin in TqM and Tq̃ M̃.

Let σ and σ̃ be corresponding nonnull geodesics in U and Ũ respectively, radiating
from q and q̃.

Identify linear operators on Tσ(t)M with those on Tσ̃(t)M̃ by parallel translation
to the basepoints, together with an isometry of TqM and Tq̃ M̃ that identifies σ′(0)
and σ̃′(0).

Suppose Rσ′ ≤ R̃σ̃′ at corresponding points of σ and σ̃. Then the modified shape
operators S = SK ,q and S̃ = S̃K ,q , as in (4.3), satisfy S ≥ S̃ (that is, S − S̃ is positive
semidefinite) at corresponding points of σ and σ̃.

Remark 4.4 A more precise statement of Theorem 4.3 localizes at a choice of unit
geodesics σ : [0, a] → M and σ̃ : [0, a] → M̃ , where σ and σ̃ have no conjugate
points. Specifically, we letU ⊂ M and Ũ ⊂ M̃ be diffeomorphic images under expq
and expq̃ of truncated cones of the form (0, a] ×id D and (0, a] ×id D̃ with vertices

at the origin, where D and D̃ are open disks in the unit tangent “spheres” at q and q̃
centered at σ′(0) and σ̃′(0) respectively.

The following basic lemma is verified in [1]:

Lemma 4.5 Let M be a semi-Riemannian space of constant curvature K , and U be
the diffeomorphic image under expq of a star-shaped region in TqM about O. Then
f K ,q : U → R satisfies

∇2
f K ,q = (1 − K fK ,q) g.

Combining Theorem 4.3 and Lemma 4.5, we obtain:



20 S.B. Alexander and W.A. Karr

Theorem 4.6 [1] Let M be a semi-Riemannian manifold satisfying R ≤ K. Let
U be the diffeomorphic image under expq of a star-shaped region in TqM about
O. Assume Eq : U → R satisfies Eq < π2/K if K > 0, and Eq > π2/K if K < 0.
Then fK ,q : U → R satisfies

∇2
fK ,q ≥ (1 − K fK ,q) g.

That is, fK ,q is (1 − K fK ,q)-convex.

4.4 Geometric Characterization ofR ≤ K, R ≥ K

The geometric characterization of Riemannian sectional curvature bounds Sec ≤ K
or Sec ≥ K is given by local triangle comparisons with Riemannian space forms of
constant curvature K . This is the basis of Alexandrov geometry, which extends the
theory of Riemannian manifolds with sectional curvature bounds to highly singular
spaces.

It turns out that this characterization by local triangle comparisons extends to
semi-Riemannian manifolds if we take lengths of geodesics to be signed.

Recall that in a semi-Riemannian manifold, any point q has arbitrarily small
normal neighborhoods U , that is, U is the diffeomorphic exponential image of a
star-shaped domain in the tangent space of each of its points. There is a unique
geodesic γp,q in U between any two points p, q ∈ U .

Theorem 4.7 ([1]) Let M be a semi-Riemannian manifold.

(1) If M satisfies R ≤ K (R ≥ K ), and U is a normal neighborhood for K , then
the signed length of the geodesic between two points on any geodesic triangle
of U is at most (at least) that for the corresponding points on a model triangle
with the same signed sidelengths in a semi-Riemannian model surface MK with
constant sectional curvature K . (For a nondegenerate triangle, MK is uniquely
determined, as is the comparison model triangle up to motion.)

(2) Conversely, if these triangle comparisons hold in some normal neighborhood of
each point of M, then R ≤ K (R ≥ K ).

Remark 4.8 In [10] (see also [11]), Harris proves global purely timelike triangle
comparisons in space-times of timelike sectional curvature bounded above. Thus the
theorem of Harris is a timelike version for Lorentzian manifolds of Toponogov’s
Globalization Theorem for Riemannian manifolds of sectional curvature bounded
below [17].
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4.5 Comparisons for Parallel Families of Hypersurfaces

In [4, Theorem 3.2], Andersson and Howard prove a comparison theorem for matrix
Riccati equations that applies to the second fundamental forms of parallel families
of hypersurfaces of any signature in semi-Riemannian manifolds, rather than only
to parallel families of spacelike hypersurfaces in Lorentzian manifolds as in Sect. 3.
We give an analog in Theorem 4.3.

For R ≤ 0 and R ≥ 0, Andersson and Howard prove “gap” rigidity theorems of
the type first proved for Riemannian manifolds with Sec ≤ 0 by Gromov [5], and
with Sec ≥ 0 by Greene andWu [9], respectively. As applications, they obtain rigid-
ity results for semi-Riemannian manifolds with simply connected ends of constant
curvature.

We remark that while in the Riemannian case, the Ricatti comparisons of [4]
reduce to one-dimensional equations (see [13]), the semi-Riemannian case seems to
require matrix-valued equations. Such increased complexity is perhaps not surpris-
ing, since semi-Riemannian curvature bounds above (say) share some behavior with
Riemannian curvature bounds below as well as above.

5 Results

By Theorem 4.6 we have:

Corollary 5.1 Let M be a semi-Riemannian manifold satisfying R ≤ K. Let U
be the diffeomorphic image under expq of a star-shaped region in TqM about O.
Assume Eq : U → R satisfies Eq < π2/4K if K > 0, and Eq > π2/4K if K < 0.
Then fK ,q : U → R is λ-convex with λ = 1 − K fK ,q > 0 (where fK ,q is defined in
(4.1) and (4.2)).

Moreover, fK ,q is space-time convex on a neighborhood of q.

Proof By Theorem 4.6, fK ,q : U → R is (1 − K fK ,q)-convex. By (4.2), setting λ =
1 − K fK ,q , we have

λ =
{
1, K = 0,

cos
√
K Eq , K 
= 0.

(5.1)

Suppose K > 0. If Eq ≤ 0, then λ = cosh
√|K Eq | > 0. If 0 ≤ Eq < π2/4K ,

then λ = cos
√|K Eq | > 0. Similarly, for K < 0.

It remains to show ∇2
fK ,q has Lorentzian signature in a neighborhood of q. This

follows by continuity, since for a unit timelike geodesic γ satisfying γ(0) = q we
have ( fK ,q ◦ γ)′′(0) = −1. �

In defining the second fundamental form II and mean curvature vector field H of
a k-dimensional submanifold � of a Lorentzian manifold M , we use the convention
in relativity (the opposite of that in differential geometry):
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∇XY = ∇XY − II(X,Y ), (5.2)

H = 1

k

∑

i

II(Ei , Ei ), (5.3)

where ∇ and ∇ denote the covariant derivatives on M and � respectively, and
{E1, . . . , Ek} is a local orthonormal frame on �.

We are going to follow [2] in considering submanifolds � satisfying the weak
maximum principle of Pigola et al. [15], according to which for any smooth function
u on� with u∗ = sup� u < +∞, there exists a sequence of points pn ∈ � such that

u(pn) > u∗ − 1

n
and �u(pn) <

1

n
.

Pigola, Rigoli, and Setti proved that � satisfies the weak maximum principle if and
only if � has the probabilistic property of stochastic completeness [15, 16].

By [8, Proposition 8], domains carrying space-time convex functions f cannot
contain closed marginally inner and outer trapped surfaces. The proof extends to

the following proposition, which does not depend on the behavior of ∇2
f on causal

vectors or on the codimension, and uses the weak maximum principal to extend from
closed to stochastically complete submanifolds.

Theorem 5.2 Let M be a Lorentzian manifold and f : M → R be λ-convex on
spacelike vectors for some function λ : M → R. Then:

(i) M contains no stochastically complete spacelike submanifold with vanishing
mean curvature and on which f is bounded above and λ has positive infimum.

(ii) If λ > 0, then M contains no closed spacelike submanifold with vanishing mean
curvature.

Proof Suppose � is a spacelike k-dimensional submanifold with vanishing mean
curvature. Let ∇ and ∇ denote the covariant derivatives on M and � respectively.
Let II and H denote the second fundamental form and mean curvature vector field
of � respectively. Let u = f |� : � → R denote the restriction of f to �.

Then for any x ∈ Tp�,

(∇2u)p(x, x) = (∇2
f )p(x, x) − g(IIp(x, x),∇ f p).

If {ei } is an orthonormal basis for Tp�, then

�u(p) =
k∑

i=1

(∇2
f )p(ei , ei ) − k g(Hp,∇ f p). (5.4)

Since f is λ-convex and H vanishes, u satisfies
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�u ≥ k λ|�.

Thus if the Laplacian �u is bounded below by k inf� λ > 0, and u is bounded
above, then � cannot be stochastically complete. This proves (i), and (ii)
follows. �

Definition 5.3 In a causally orientable Lorentzian manifold, a spacelike submani-
fold M whose mean curvature vector field is causal and future-pointing is called a
weakly future-trapped submanifold.

Remark 5.4 Galloway and Senovilla prove that standard singularity theorems hold
in Lorentzian manifolds of arbitrary dimension with closed trapped submanifolds of
arbitrary co-dimension [7]. They point out that such submanifolds appear to have
many common properties independent of the codimension.

The significance of the following theorem lies in using sectional curvature bounds
to examine geometric properties of a full neighborhood of a point q, rather than
restricting to the chronological future of q.

If in the following theorem we restrict U and Ũ to the chronological future of q
and assume only timelike sectional curvature ≥ K , then taking into account Remark
4.4, we obtain a result of Alías, Bessa and deLira ([2, Corollary 4.2]).

Theorem 5.5 Let M be a Lorentzianmanifold satisfyingR ≤ K. LetU be a domain
in M that is the diffeomorphic image under expq of a star-shaped region in TqM
about O. Suppose that Eq : U → R is bounded above and satisfies Eq < π2/4K if
K > 0 and Eq > π2/4K if K < 0.

(i) Then U contains no stochastically complete spacelike submanifolds � with
vanishing mean curvature, and such that sup Eq |� < π2/4K if K > 0 and
inf Eq |� > π2/4K if K < 0.

(ii) More generally, U contains no stochastically complete, weakly future-trapped
submanifold whose mean curvature vector field H satisfies

H Eq ≤ 0, (5.5)

and such that sup Eq |� < π2/4K if K > 0 and inf Eq |� > π2/4K if K < 0.
(iii) Suppose K 
= 0 andU ⊂ Ũ , where Ũ is the diffeomorphic image under expq of

a star-shaped region in TqM about O, and Eq : Ũ → R satisfies Eq < π2/K
if K > 0 and Eq > π2/Kif K < 0. Then no stochastically complete, weakly
future-trapped submanifold in Ũ that satisfies H Eq ≤ 0 enters U.

Proof By Corollary 5.1, the function fK ,q : U → R as defined in (4.1) and (4.2) is
λ-convex with λ = 1 − K fK ,q > 0. Suppose � is a stochastically complete, weakly
future-trapped k-dimensional submanifold of U whose mean curvature vector field
H satisfies HEq ≤ 0. Let u : � → R be the restriction of fK ,q to�. As in Eq. (5.4),
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�u (p) =
k∑

i=1

(∇2
fK ,q)p(ei , ei ) − k g(Hp, (∇ fK ,q)p)

≥ k(1 − K fK ,q(p)) − k g(Hp, (∇ fK ,q)p).

Simple computation yields

∇ fK ,q =
⎧
⎨

⎩

∇Eq/2, K = 0,
sin

√
K Eq

2
√

K Eq
∇Eq , K 
= 0,

where the argument of sin can be imaginary here. The function sin
√
K Eq/(2

√
K Eq)

is nonnegative as long as K Eq ≤ π2. Thus, g(Hp, (∇ fK ,q)p) ≤ 0 on U since

g(H,∇Eq) = HEq ≤ 0.
Since (1 − K fK ,q)|� > 0, we conclude that u is subharmonic and satisfies the

differential inequality
�u ≥ k(1 − Ku) > 0. (5.6)

By (4.2), u∗ = sup� u < +∞. Since � is stochastically complete, we can apply the
weak maximum principle to obtain a sequence of points pn ∈ � such that

u(pn) > u∗ − 1

n
and �u(pn) <

1

n
.

Evaluating (5.6) on pn and taking n → ∞, we obtain 1 − Ku∗ = cos
√
K E∗ = 0,

where E∗ = limn→∞ Eq(pn).
If K = 0, this is impossible. If K > 0 and sup� Eq < π2/4K , then K E∗ < π2/4

and cos
√
K E∗ > 0, a contradiction. Similarly, if K < 0 and inf� Eq > π2/4K , then

K E∗ < π2/4 and cos
√
K E∗ > 0, a contradiction. Hence (ii) and (i).

Finally, suppose K 
= 0 and U ⊂ Ũ , where Ũ is the diffeomorphic image under
expq of a star-shaped region in TqM about O , and Eq : Ũ → R satisfies Eq < π2/K
if K > 0 and Eq > π2/K if K < 0.

Suppose � is a stochastically complete spacelike submanifold in Ũ . Choose a
sequence pn ∈ � as above and let E∗ = limn→∞ Eq(pn). By the above calculation,
weknow that K E∗ ≥ π2/4. If K > 0, then E∗ ≥ π2/4K and if K < 0, E∗ ≤ π2/4K .
If K > 0, then E∗ = inf� Eq and if K < 0, then E∗ = sup� Eq . Thus, in either
situation � does not enter U . Hence (iii). �

Note that for K > 0, the bounds on Eq in Theorem 5.5 affect only spacelike
geodesics, and for K < 0, only timelike geodesics.

Remark 5.6 Where a weakly future-trapped submanifold � intersects the causal
future of q, the condition (5.5), namely HEq ≤ 0, is immediate. Where � enters the
causal past of q, (5.5) implies H = 0. At a point p not causally related to q, (5.5)
restricts H to a subcone of the cone of future directed vectors at p: either H 
= 0



Space-Time Convex Functions and Sectional Curvature 25

lies in a closed half-cone of the cone of future directed vectors at p, or H is null and
future-pointing, or H = 0.

For example, in Minkowski space, consider points v ∈ � where v is spacelike. If
v approaches v0 
= 0 in the future null cone of the origin 0, these half-cones approach
the causal future cone of 0; if v approaches v0 
= 0 in the past null cone of 0, these
half-cones approach the light ray through v0.

6 Conclusion

We have demonstrated a close connection between sectional curvature bounds of the
formR ≤ K and space-time convex and λ-convex functions (λ > 0). We have con-
structed new λ-convex functions. We have used these functions to find new domains
that do not support trapped submanifolds.

Our goal has been to explain some viewpoints and tools, rather than to give an
exhaustive treatment. We plan a more systematic treatment of results in future.

Note that the λ-convex functions considered here are based on signed energy
functions. It would be interesting to identify other classes of λ-convex functions to
which Theorem 5.2 can be applied.
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Recent Results on Oscillator Spacetimes

Giovanni Calvaruso

Abstract The Lorentzian oscillator group (Gμ, ga), that is, the four-dimensional
oscillator group Gμ, together with the family ga of left-invariant metrics obtained
generalizing its bi-invariant metric, ‘is probably the most relevant naturally reductive
Lorentzian example in the literature’ Batat et al. (Differ Geometry Appl 41: 48–
64, [1]) . We describe an explicit system of global coordinates for the Lorentzian
oscillator group, and use it to compute its symmetries and solutions to the Ricci
soliton equation.

Keywords Oscillator group · Symmetries · Collineations · Ricci solitons
2010 Mathematics Subject Classification 53C50, 53B30, 35A01

1 Introduction

Consider the 4D Lie algebra g =span{H, P, Q, E}, described by the non-vanishing
Lie brackets

[H, P] = −Q, [H, Q] = P, [P, Q] = E .

An explicit realization of this Lie algebra is the following: taking

H = 1
2

(
x2 − ∂2

∂x2

)
(“Hamiltonian”), P = ∂

∂x (“linear momentum”),

Q = x (“posi tion”), E = 1,

one has, for any f = f (x),

[H, P]( f ) = −Q( f ), [H, Q]( f ) = P( f ), [P, Q]( f ) = E( f ),
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As the above describes the harmonic oscillator problem, g has been called the oscil-
lator algebra [18]

Theoscillator group is four-dimensionally connected, simply connectedLie group
corresponding to the oscillator algebra. This group is given by R × C × R, with the
product

(x1, z1, y1) · (x2, z2, y2) = (x1 + x2 + 1

2
Im(z̄1e

iy1 z2), z1 + eiy1 z2, y1 + y2).

After its introduction [18], the oscillator group has been extended to a one-parameter
family Gμ (μ > 0), corresponding to the Lie algebra

[H, P] = −μQ, [H, Q] = μP, [P, Q] = E, (1.1)

then generalized in any even dimension 2n ≥ 4, and proved several times and in very
different frameworks to be an interesting object to study, both in differential geometry
and in mathematical physics. Just to cite a few examples, the following properties of
the oscillator group(s) have been investigated: Yang-Baxter [2] and Einstein-Yang-
Mills Eq. [11], parallel hypersurfaces [7], Ricci collineations and other curvature
symmetries [9], homogeneous structures [12], electromagnetic waves [15] and the
Laplace–Beltrami operator [16].

Oscillator Lie groups (of any evendimension) play a very special role. In fact, apart
from the trivial examples given by extensions of commutative Lie groups, they are
the only solvable Lie groups carrying a bi-invariant Lorentzian metric. In dimension
four, the bi-invariant metric g0 has been generalized to a one-parameter family ga ,
−1 < a < 1, of left-invariant Lorentzian metrics, of which g0 is the only bi-invariant
and symmetric example [12]. Equipped with these left-invariant Lorentzian metrics,
the oscillator group (Gμ, ga) is a well-known homogeneous spacetime [10], and ‘one
of the most celebrated examples of Lorentzian naturally reductive spaces’ [1].

The success of the oscillator group as a source of interesting behaviours is due
to the fact that this object has very nice and explicit descriptions, both algebraically
and analytically, so that one can borrow techniques both from Analysis and Algebra
to work on it. An essential tool to investigate the properties of (Gμ, ga) is its explicit
matrix description, first obtained in [18] and then adapted in [7] for any μ > 0.

In Sect. 2, we shall describe this explicit matrix realization of (Gμ, ga), and illus-
trate how it was applied to obtain the following results:

Symmetries. If (M, g) denotes a Lorentzian manifold and T a tensor on (M, g),
codifying some either mathematical or physical quantity, a symmetry of T is a one-
parameter group of diffeomorphisms of (M, g), leaving T invariant.

Hence, a symmetry corresponds to a vector field X satisfying LXT = 0, where L
denotes the Lie derivative. Well-known examples of symmetries are: Killing vector
fields (T = g), homotheties and conformal motions, curvature collineations (T=R is
the curvature tensor),Weyl collineations (T=W isWeyl conformal curvature tensor),
Ricci collineations (T=� is the Ricci tensor) andmatter collineation (T = � − 1

2τg is
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the energy-momentum tensor). In Sect. 3, we shall report the complete classification
of symmetries of homogeneous spacetimes (Gμ, ga) obtained in [9].

Ricci solitons. ARicci soliton is a pseudo-Riemannianmanifold (M, g) admitting
a smooth vector field X , such that

LXg + � = λg, (1.2)

where LX and �, respectively, denote the Lie derivative in the direction of X and the
Ricci tensor and λ is a real number. A Ricci soliton is said to be either shrinking,
steady or expanding, according to whether λ > 0, λ = 0 or λ < 0 respectively.

In a suitable set of global coordinates on (Gμ, ga), the aboveRicci soliton Eq. (1.2)
translates into a system of PDE. In Sect. 4, we shall describe this system for (Gμ, ga)
and its solutions, obtained in [4], proving that all metrics ga are Ricci solitons.

2 The Oscillator Group

For any real number μ > 0, consider the four-dimensional Lie algebra described in
(1.1). Generalizing the argument used in [18] for the case μ = 1, one can see that
Eq. (1.1) hold for matrices H, P, Q, E given by

H =

⎛
⎜⎜⎝
0 0 0 0
0 0 −μ 0
0 μ 0 0
0 0 0 0

⎞
⎟⎟⎠ , P =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

Q =

⎛
⎜⎜⎝
0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , E =

⎛
⎜⎜⎝
0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Then, the oscillator group corresponds to the four-dimensional subgroup ofGL(4,R)

Gμ = {Mμ(x1, x2, x3, x4) ∈ GL(4,R) | x1, x2, x3, x4 ∈ R},

having as typical group element

Mμ(x1, x2, x3, x4) = exp(x1E) exp(x2P) exp(x3Q) exp(x4H),

that is,

Mμ(x1, x2, x3, x4) =

⎛
⎜⎜⎝
1 x2 sin(μx4) − x3 cos(μx4) x2 cos(μx4) + x3 sin(μx4) 2x1 + x2x3
0 cos(μx4) − sin(μx4) x2
0 sin(μx4) cos(μx4) x3
0 0 0 1

⎞
⎟⎟⎠ .
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More precisely, the above Mμ is in fact a covering, providing a diffeomorphism
between Gμ and R

3 × R/ 2π
μ
Z.

Now denote by ∂x j the coordinate vector field corresponding to the x j -coordinate.

As a matrix in gl(4,R), this corresponds to ∂Mμ

∂x j
(x1, x2, x3, x4). We can write down

explicitly a basis {e1, e2, e3, e4} of left-invariant vector fields onGλ such that (e j )I =
(∂x j )I , where I = Mμ(0, 0, 0, 2kπ/μ) for any integer k is the identity matrix:

e1 = ∂x1 ,

e2 = −x3 cos(μx4)∂x1 + cos(μx4)∂x2 + sin(μx4)∂x3 ,

e3 = x3 sin(μx4)∂x1 − sin(μx4)∂x2 + cos(μx4)∂x3 ,

e4 = ∂x4 .

(2.1)

Remark that the coordinates x2 and x3 do not play symmetric roles, although P and Q
play similar roles in gμ, as the formula for Mμ is not symmetric in P and Q. Starting
from (2.1), a direct calculation yields that the only non-vanishing Lie brackets of
two of these left-invariant vector fields are given by

[e2, e3] = e1, [e2, e4] = −μe3, [e3, e4] = μe2. (2.2)

Comparing (2.2) with (1.1), we see that the Lie algebra of Gμ coincides with the
oscillator Lie algebra, via the identifications E = e1, P = e2, Q = e3 and H = e4.

We now consider on Gμ the one-parameter family of left-invariant Lorentzian
metrics, described by

〈e1, e1〉 = 〈e4, e4〉 = a, 〈e2, e2〉 = 〈e3, e3〉 = 1, 〈e1, e4〉 = 〈e4, e1〉 = 1,
(2.3)

for any real constant a with −1 < a < 1. For a = 0, one has the bi-invariant metric
on the oscillator group. In all other cases, ga is only left-invariant. Using (2.1), it
is easy to check that in the coordinates (x1, x2, x3, x4), these metrics are explicitly
given by

ga = adx21 + 2ax3dx1dx2 + (1 + ax23 )dx
2
2 + dx23 + 2dx1dx4 + 2x3dx2dx4 + adx24 .

(2.4)
The above explicit description of these metrics makes possible to compute their
Levi-Civita connection and curvature. With respect to the basis {∂i } of coordinate
vector fields, the Levi-Civita connection∇ is completely determined by the following
possibly non-vanishing components:

∇∂1∂2 = − a
2∂3, ∇∂1∂3 = − ax3

2 ∂1 + a
2∂2, ∇∂2∂2 = −ax3∂3,

∇∂2∂3 = 1−ax23
2 ∂1 + ax3

2 ∂2, ∇∂2∂4 = − 1
2∂3, ∇∂3∂4 = − x3

2 ∂1 + 1
2∂2.

(2.5)
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Remark 2.1 It may be observed that the explicit description (2.4) is the same for any
value ofμ, since this parameterwas used in (2.1).Moreover, we remark that if a �= a′,
then (G, ga) is not homothetic to (G, ga′) (in particular, they are not isometric).

In fact, for the Levi-Civita connections ∇ and ∇′ of ga and ga′ , respectively, we
have ∇∂1∂2 = − a

2∂3 �= − a′
2 ∂3 = ∇′

∂1
∂2.

We can then describe the Riemann-Christoffel curvature tensor R of (Gλ, ga)
with respect to {∂i }, computing R(∂i , ∂ j )∂k = ∇∂i

∇∂ j
∂k − ∇∂ j

∇∂i
∂k for all indices

i, j, k. Denoting by Ri j , the matrix describing R(∂i , ∂ j ) with respect to the basis of
coordinate vector fields, we have

R12 =

⎛
⎜⎜⎝

a2x3
4

a2x23+a
4 0 ax3

4

− a2

4 − a2x3
4 0 − a

4
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , R13 =

⎛
⎜⎜⎝

0 0 a
4 0

0 0 0 0
− a2

4 − a2x3
4 0 − a

4
0 0 0 0

⎞
⎟⎟⎠ ,

R14 = 0, R23 =

⎛
⎜⎜⎝

0 0 ax3 0
0 0 − 3a

4 0

− a2x3
4

3a−a2x23
4 0 − ax3

4
0 0 0 0

⎞
⎟⎟⎠ ,

R24 =

⎛
⎜⎜⎝

− ax3
4 − ax23+1

4 0 − x3
4

a
4

ax3
4 0 1

4
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , R34 =

⎛
⎜⎜⎝

0 0 − 1
4 0

0 0 0 0
a
4

ax3
4 0 1

4
0 0 0 0

⎞
⎟⎟⎠ .

Next, the Ricci tensor of (Gμ, ga) is obtained as a contraction of the curvature tensor,
by the equation �(X,Y ) = tr(Z 	→ R(Z , X)Y ).With respect to {∂i }, the Ricci tensor
� and the Ricci operator Q, defined by g(QX,Y ) := �(X,Y ), are determined by the
following matrices:

� =

⎛
⎜⎜⎝

1
2a

2 1
2a

2x3 0 1
2a

1
2a

2x3
1
2a(ax

2
3 − 1) 0 1

2ax3
0 0 − 1

2a 0
1
2a

1
2ax3 0 1

2

⎞
⎟⎟⎠ , Q =

⎛
⎜⎜⎝

1
2a ax3 0 1

2
0 − 1

2a 0 0
0 0 − 1

2a 0
0 0 0 0

⎞
⎟⎟⎠ . (2.6)

Comparison between Eqs. (2.6) and (2.4) easily yields that these metrics are never
Einstein (see also [17]). Moreover, the Ricci eigenvalues are 0, 1

2a and − 1
2a (twice),

and so, the Ricci tensor is degenerate, for any value of a. Finally, theWeyl conformal
tensorW is completely determined by the following possibly non-vanishingmatrices
Wi j , describing W (∂i , ∂ j ) with respect to the coordinate vector fields {∂i }:
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W12 =

⎛
⎜⎜⎜⎝

a2x3
6

a(1+ax23 )
6 0 ax3

6

− a2
6 − a2x3

6 0 − a
6

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , W13 =

⎛
⎜⎜⎝

0 0 a
6 0

0 0 0 0

− a2
6 − a2x3

6 0 − a
6

0 0 0 0

⎞
⎟⎟⎠ ,

W14 =

⎛
⎜⎜⎝

− a
3 − ax3

3 0 − a2
3

0 0 0 0
0 0 0 0
a2
3

a2x3
3 0 a

3

⎞
⎟⎟⎠ , W23 =

⎛
⎜⎜⎝

0 0 ax3
2 0

0 0 − a
3 0

− a2x3
6

a(2−ax23 )
6 0 − ax3

6
0 0 0 0

⎞
⎟⎟⎠ ,

W24 =

⎛
⎜⎜⎜⎝

− ax3
2 − ax23

2 0 − a2x3
2

a
6

ax3
6 0 a2

6
0 0 0 0

a2x3
3

a(2ax23−1)
6 0 ax3

3

⎞
⎟⎟⎟⎠ , W34 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
a
6

ax3
6 0 a2

6
0 0 − a

6 0

⎞
⎟⎟⎠ .

(2.7)

In particular, by (2.7), ga is locally conformally flat if and only if a = 0. Starting
from the above equations, it is also easy to check the well-known fact that ∇R = 0
(that is, (Gμ, ga) is locally symmetric) if and only if a = 0.

Remark 2.2 Using Eq. (2.1), one can determine the components u j of a vector field
X with respect to the basis of left-invariant vector fields {e1, e2, e3, e4}, in terms of its
components Xi with respect to the basis of coordinate vector fields {∂1, ∂2, ∂3, ∂4}
(and conversely). Explicitly, if X = Xi∂i = u j e j , then

(u1, u2, u3, u4)
= (X1 + x3X2, cos(μx4)X2 + sin(μx4)X3, cos(μx4)X3 − sin(μx4)X2, X4).

(2.8)
In particular, X is a left-invariant vector field if and only if the above Eq. (2.8) holds
for some constants u j , j = 1, . . . , 4.

3 Symmetries of the Oscillator Group

In all the results concerning (Gμ, ga), one constantly finds a difference in the behav-
iours of the bi-invariant metric g0 and of the remaining left-invariant metrics ga ,
a �= 0. This already starts with the classification of Killing, homothetic and confor-
mal vector fields, reported in the following.

Theorem 3.1 Let X = X1∂1 + X2∂2 + X3∂3 + X4∂4 be an arbitrary vector field
on the oscillator group (Gμ, ga).

(i) X is a Killing vector field if and only if one of the following cases occurs:

(a) a = 0 and
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⎧⎪⎪⎨
⎪⎪⎩

X1 = c1
2 (x

2
3 − x22 ) − c2x2 − x3(c3 cos(x4) − c4 sin(x4)) + c5,

X2 = −c1x3 + c3 cos(x4) − c4 sin(x4) + c6,
X3 = c1x2 + c2 + c3 sin(x4) + c4 cos(x4),
X4 = c7.

(b) a �= 0 and

X1 = c1
2
(x23 − x22 ) − c2x2 + c3, X2 = −c1x3 + c4, X3 = c1x2 + c2, X4 = c5.

(ii) Proper homothetic vector fields only occur for a = 0. X is a homothetic but
not Killing vector field (LXg = ηg for some real constant η �= 0) if and only if
a = 0 and

⎧⎪⎪⎨
⎪⎪⎩

X1 = ηx1 + c1
2 (x

2
3 − x22 ) − c2x2 − x3(c3 cos(x4) − c4 sin(x4)) + c5,

X2 = η
2 x2 − c1x3 + c3 cos(x4) − c4 sin(x4) + c6,

X3 = η
2 x3 + c1x2 + c2 + c3 sin(x4) + c4 cos(x4),

X4 = c7.

(iii) X is an affine Killing vector field if and only if one of the following cases occurs:

(a) a = 0 and

⎧
⎪⎪⎨
⎪⎪⎩

X1 = c1
2 (x

2
3 − x22 ) + 2c2x1 − c3x2 + c4x4 − x3(c5 cos(x4) − c6 sin(x4)) + c7,

X2 = c2x2 − c1x3 + c5 cos(x4) − c6 sin(x4) + c8,
X3 = c2x3 + c1x2 + c3 + c5 sin(x4) + c6 cos(x4),
X4 = c9, c22 + c24 �= 0.

(b) a �= 0 and ⎧⎪⎪⎨
⎪⎪⎩

X1 = c1
2 (x

2
3 − x22 ) − c2x2 + c3x4 + c4,

X2 = −c1x3 + c5,
X3 = c1x2 + c2,
X4 = −ac3x4 + c6, c3 �= 0.

In all the formulas above and in the remaining part of the paper, ci will denote some
real constants, for all indices i .

For the proof of the above classification result, we refer to [9]. We only report
below as an example the system of PDE which determines the Killing vector fields.
Let X = X1∂1 + X2∂2 + X3∂3 + X4∂4 be an arbitrary vector field on the oscillator
group (G, ga), for some arbitrary smooth functions X1, . . . , X4 on G. Starting from
(2.4), one finds the following description of the Lie derivative of the metric tensor
ga:
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LX ga =2(∂1X4 + ax3∂1X
2 + a∂1X

1)dx1dx1
+2(∂2X4 + x3∂1X

4 + ax3∂2X
2 + ∂1X

2 + ax23∂1X
2 + a∂2X

1 + ax3∂1X
1 + aX3)dx1dx2

+2(∂3X4 + ∂1X
3 + ax3∂3X

2 + a∂3X
1)dx1dx3

+2(∂4X4 + a∂1X
4 + ax3∂4X

2 + x3∂1X
2 + a∂4X

1 + ∂1X
1)dx1dx4

+2(x3∂2X4 + ∂2X
2 + ax23∂2X

2 + ax3∂2X
1 + ax3X

3)dx2dx2
+2(x3∂3X4 + ∂2X

3 + ax23∂3X
2 + ax3∂3X

1 + ∂3X
2)dx2dx3

+2(ax3∂4X4 + a∂2X
4 + ∂4X

2 + ax23∂4X
2 + x3∂2X

2 + ax3∂4X
1 + ∂2X

1 + X3)dx2dx4
+2∂3X3dx3dx3 + 2(a∂3X

4 + ∂4X
3 + x3∂3X

2 + ∂3X
1)dx3dx4

+2(a∂4X
4 + x3∂4X

2 + ∂4X
1)dx4dx4.

Thus, X is a Killing vector field if and only if the system of PDE obtained requiring
the vanishing of all the coefficients in the above Lie derivative.

We then consider the symmetries of (Gμ, ga) related to curvature and have the
following result.

Theorem 3.2 Let X = Xi∂i denote an arbitrary vector field on the oscillator group
(Gμ, ga). Then:

(i) X is a Ricci collineation if and only if one of the following cases occurs:

(a) a = 0 and X4 = c1.
(b) a �= 0 and

X2 = −c1x3 + c2, X3 = c1x2 + c3,

X4 = −aX1 + a

2
(c1x

2
3 − c1x

2
2 − 2c3x2) + c4.

(ii) X is a curvature collineation if and only if one of the following cases occurs:

(a) a = 0 and X satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1 = c1
2 (x

2
3 − x22 ) − f ′

1(x4)
2 (x23 + x22 )+2 f1(x4)x1 − ( f ′
3(x4) + f2(x4))x2 − f ′

2(x4)x3 + f4(x4),
X2 = f1(x4)x2 − c1x3 + f3(x4),
X3 = c1x2 + f1(x4)x3 + f2(x4),
X4 = c2,

for some real functions f1, f2, f3, f4 of one variable.
(b) a �= 0 and

X1 = c1
2
(x23 − x22 ) − c2x2 − f (x4)

a
+ c3,

X2 = −c1x3 + c4, X3 = c1x2 + c2, X4 = f (x4),

for some real function f of one variable.
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(iii) X is a Weyl collineation if and only if

(a) either a = 0 and X is arbitrary, or
(b) a �= 0 and X is Killing.

For the proof, we refer again to [9]. For example, the Lie derivative of the Ricci
tensor in the direction of X = Xi∂i is given by

LX� = a(a∂1X1 + ax3∂1X2 + ∂1X4)dx1dx1
+a((a∂2 + ax3∂1)X1 + (ax3∂2 + ax23∂1 − ∂1)X2 + aX3

+(∂2 + x3∂1)X4)dx1dx2
+a(a∂3X1 + ax3∂3X2 − ∂1X3 + ∂3X4)dx1dx3
+((a2∂4 + a∂1)X1 + (a2x3∂4 + ax3∂1)X2 + (a∂4 + ∂1)X4)dx1dx4
+a(ax3∂2X1 + (ax23∂2 − ∂2)X2 + ax3X3 + x3∂2X4)dx2dx2
+a(ax3∂3X1 + (ax23∂3 − ∂3)X2 − ∂2X3 + x3∂3X4)dx2dx3
+((a2x3∂4 + a∂2)X1 + (a2x23∂4 − a∂4 + ax3∂2)X2 + aX3

+(ax3∂4 + ∂2)X4)dx2dx4
−a∂3X3dx3dx3 + (a∂3X1 + ax3∂3X2 − a∂4X3 + ∂3X4)dx3dx4
+(a∂4X1 + ax3∂4X2 + ∂4X4)dx4dx4.

Ricci collineations are then calculated by solving the system of PDE obtained by
requiring that all the above coefficients of LX� vanish.

On a homogeneous space (and, more in general, whenever the scalar curvature is
constant), a Killing vector field is necessarily a matter collineation. For this reason,
for (Gμ, ga), we shall consider a Killing vector field as a trivial matter collineation.
The following result holds.

Theorem 3.3 On the Lorentzian oscillator group (Gμ, ga), nontrivial matter
collineations only occur when a = 0 (in which case they coincide with Ricci
collineations). In fact, when a = 0, X = Xi∂i is a matter collineation if and only if
X4 = c1 is a real constant.

Remark 3.4 As we proved in Theorems 3.2 and 3.3, for a = 0, a vector field X =
Xi∂i is a Ricci (equivalently, matter) collineation if and only if X4 is a real constant.
Therefore, the homogeneous spacetime (Gμ, g0) provides a new example where
Ricci (matter) collineations form a large infinite-dimensional vector space, and the
smooth ones form a large infinite-dimensional Lie algebra, since X1, X2, X3 are then
arbitrary smooth functions.

Again fromTheorem3.2, we see that also curvature collineations form an infinite-
dimensional vector space, for any −1 < a < 1, since they depend on at least one
arbitrary function of one variable, and the smooth ones form an infinite-dimensional
Lie algebra. Finally, we observe that for a = 0 any curvature collineation (indeed,
any smooth vector field) is a Weyl collineation, whilst in the case a �= 0 the converse
holds: everyWeyl collineation, being aKilling vector field, is a curvature collineation.
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4 Ricci Solitons of the Oscillator Group

Ricci solitons are the self-similar solutions of the Ricci flow. As such, they are
essential in understanding its singularities. After their introduction in Riemannian
settings, Ricci solitons have been intensively studied for pseudo-Riemannian metrics
(see for example [3, 5, 6, 8] and references therein). Using a set of local coordinates,
the Ricci soliton Eq. (1.2) translates into a system of partial differential equations,
which in general is not possible to deal with. For this reason, when one considers a
pseudo-Riemannian homogeneous space (in particular, a Lie group equipped with
a left-invariant pseudo-Riemannian metric), the first approach in studying the Ricci
soliton Eq. (1.2) is ‘algebraic’ in some sense. A homogeneous Ricci soliton is a
homogeneous space M = G/H , together with a G-invariant metric g, for which
Eq. (1.2) holds. An invariant Ricci soliton is a homogeneous one, such that Eq. (1.2)
holds for an invariant vector field.

An algebraic Ricci soliton is a simply connected Lie group G, equipped with a
left-invariant pseudo-Riemannian metric g, such that

Ric = c Id + D,

where Ric denotes the Ricci operator, c is a real number and D ∈ Der(g). An alge-
braic Ricci soliton on a solvable Lie group is called a solvsoliton.

Any algebraic Ricci soliton metric g is also a Ricci soliton [14, 17]. Moreover, all
known examples of homogeneous Riemannian Ricci soliton metrics on noncompact
homogeneous manifolds are isometric to some solvsolitons ([13, Remark 1.5]). But
when we are considering the Ricci soliton pseudo-Riemannian metrics on a homo-
geneous space G, in general, neither invariant nor algebraic Ricci solitons exhaust
the whole class of solutions.

Algebraic Ricci solitons on oscillator groups of every even dimension were inves-
tigated in [17], finding only g0 as a steady algebraic Ricci soliton (nontrivial, since
the metric is not Einstein). In [4], we completely solved the system of PDE which
translates (1.2) in the system of coordinates for (Gμ, ga) described in Sect. 2, proving
the following result.

Theorem 4.1 Every left-invariant metric ga, −1 < a < 1 on the four-dimensional
oscillator group Gμ is a Ricci soliton. More precisely,

(a) The bi-invariant metric g0 is a Ricci soliton (expanding, steady and shrinking,
as it satisfies Eq. (1.2) for any real value of λ);

(b) The left-invariant metric ga, for any a �= 0, is a Ricci soliton, which is expanding
when a > 0 and shrinking when a < 0.

With respect to the coordinate system (x1, x2, x3, x4), let X = Xi∂i denote an
arbitrary vector field on (Gμ, ga). Using the Lie derivative LXga already described
in the previous Section, together with (2.4) and (2.6), we can write down the Ricci
soliton Eq. (1.2) in this set of coordinates, obtaining that we have a Ricci soliton if
and only if the following system of 10 PDE is satisfied:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 a∂1X1 + 2 ax3∂1X2 + 2 ∂1X4 + 1
2a

2 − aλ = 0,
ax3∂1X1 + a∂2X1 + ∂1X2 + ax23∂1X

2 + ax3∂2X2 + aX3 + x3∂1X4 + ∂2X4

+ 1
2a

2x3 − aλx3 = 0,
a∂3X1 + ax3∂3X2 + ∂1X3 + ∂3X4 = 0,
∂1X1 + a∂4X1 + x3∂1X2 + ax3∂4X2 + a∂1X4 + ∂4X4 + 1

2a − λ = 0,
2 ax3∂2X1 + 2 ∂2X2 + 2 ax23∂2X

2 + 2 ax3X3 + 2 x3∂2X4 + 1
2a

2x23 − 1
2a − λ − aλx23 = 0,

ax3∂3X1 + ∂3X2 + ax23∂3X
2 + ∂2X3 + x3∂3X4 = 0,

∂2X1 + ax3∂4X1 + x3∂2X2 + ∂4X2 + ax23∂4X
2 + X3 + a∂2X4 + x3∂4X4 + 1

2ax3−λx3 = 0,
2 ∂3X3 − 1

2a − λ = 0,
∂3X1 + x3∂3X2 + ∂4X3 + a∂3X4 = 0,
2 ∂4X1 + 2 x3∂4X2 + 2 a∂4X4 + 1

2 − aλ = 0.
(4.1)

The complete discussion of the above system (4.1) has been done in [4], determining
the Ricci solitons of the four-dimensional oscillator group, and whether those solu-
tions were left-invariant or gradient. Here, we only remark that integrating the eight
equation of (4.1), and the first equation of (4.1) with respect to X4, we find

{
X3 = ( 14a + 1

2λ)x3 + F3(x1, x2, x4),
X4 = −aX1 − ax3X2 + (

1
2aλ − 1

4a
2
)
x1 + F4 (x2, x3, x4) ,

for some smooth functions F3, F4. Replacing into the third equation of (4.1), it
becomes

∂1F3 (x1, x2, x4) − aX2 + ∂3F4 (x2, x3, x4) = 0. (4.2)

It is then evident that the above Eq. (4.2) (and so, the whole system (4.1)) will have
different sets of solutions, depending on whether a = 0 or a �= 0. The following
Theorems give the complete description of the solutions, in the cases a = 0 and
a �= 0 respectively.

Theorem 4.2 The bi-invariant metric g0 is a Ricci soliton, which satisfies Eq. (1.2)
for any real value of λ, where X = Xi∂i is a smooth vector field, whose components
Xi with respect to {∂i } are described by

⎧⎪⎪⎨
⎪⎪⎩

X1 = λx1 + 1
2 a3x3

2 − a3x3 cos (x4) + b3x3 sin (x4) − 1
4 x4 − 1

2 a3x2
2 + K x2 + b2,

X2 = −a3x3 + 1
2 λ x2 + a3 cos (x4) − b3 sin (x4) + b2,

X3 = a3 x2 + a3 sin (x4) + b3 cos (x4) − 1
2Kλ x3,

X4 = b4.
(4.3)

This vector field X is never left-invariant, and the Ricci soliton is gradient only in
the steady case (when it is also algebraic).

Theorem 4.3 The (non-isometric) left-invariant metrics ga, for any value of a ∈
]−1, 1[, a �= 0, are Ricci solitons, which satisfy Eq. (1.2), where X = Xi∂i is a
smooth vector field, whose components Xi with respect to {∂i } are described by
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⎧⎪⎪⎨
⎪⎪⎩

X1 = 1
4a

(−4a2 x1 + 2 H1 x22 + 4 a4 x2 − 2 H1 x32 − ax4 + 4 as4
)
,

X2 = 1
2a

(
2 H1 x3 − a2x2 + 2 c4

)
,

X3 = − 1
2a

(
2 H1 x2 + a2x3 + 2 a4

)
,

X4 = − 3
4ax4 − as4 + b4 + r4,

(4.4)

and λ = − 3
2a. In particular, this Ricci soliton is either expanding or shrinking,

depending on whether a > 0 or a < 0. This vector field X is never left-invariant,
and the Ricci soliton is not gradient.

The above result for the case a = 0 also proves the existence of a nontrivial
Yamabe soliton for (Gμ, g0). A pseudo-Riemannian manifold (M, g) is said to be a
Yamabe soliton if it admits a vector field Y , such that

LY g = (τ − ρ)g, (4.5)

where τ denotes the scalar curvature and ρ is a real constant. Clearly, a Yamabe
soliton is nontrivial when Eq. (4.5) holds with τ �= ρ, otherwise is just reduces to the
equation for Killing vector fields.

We proved that g0 satisfies Eq. (1.2) for any value of λ. As a consequence, for any
distinct real constants λ1,λ2, let us consider two smooth vector fields Xλ1 , Xλ2 , with
components of the form (4.3) for λ = λ1 and λ = λ2 respectively. Since Xλ1 , Xλ2

satisfy the Ricci soliton Eq. (1.2), vector field Y = Xλ1 − Xλ2 then satisfies

LY g0 = LXλ1
g0 − LXλ2

g0 = (λ1 − λ2)g0.

Since the scalar curvature of g0 vanishes and λ1 − λ2 �= 0, Y is a nontrivial solution
of the Yamabe soliton Eq. (4.5). Observe that the above condition satisfied by Y is
also coherent with the existence of proper homothetic vector fields for the metric ga ,
stated in Theorem 3.1. This proves the following.

Corollary 4.4 The bi-invariant metric g0 on the four-dimensional oscillator group
Gμ is a Yamabe soliton.

Acknowledgements Author partially supported by funds of the University of Salento and MIUR
(PRIN).
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Umbilical Spacelike Submanifolds
of Arbitrary Co-dimension

Nastassja Cipriani and José M.M. Senovilla

Abstract Given a semi-Riemannianmanifold, we give necessary and sufficient con-
ditions for a Riemannian submanifold of arbitrary co-dimension to be umbilical
along normal directions. We do that by using the so-called total shear tensor, i.e., the
trace-free part of the second fundamental form. We define the shear space and the
umbilical space as the spaces generated by the total shear tensor and by the umbilical
vector fields, respectively. We show that the sum of their dimensions must equal the
co-dimension.
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1 Introduction

The notions of umbilical point and umbilical submanifold are classical in differential
geometry. They have mainly been studied in the Riemannian setting and, apart from
very few exceptions, they have been applied to submanifolds of co-dimension one
(hypersurfaces). In [1] the authors studied these concepts in a slightly more general
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framework, namely, allowing the ambient manifold to have arbitrary signature while
requiring the submanifold to be spacelike (i.e., endowed with a Riemannian induced
metric). Motivated by the applications to gravitation and general relativity, in [1]
the authors focused on spacelike submanifolds of co-dimension two. Notice that the
results presented in [1] generalized those presented in [6]. In the latter, the study of
umbilical surfaces (two-dimensional) in f our -dimensional Lorentzian manifolds
was carried out.

In the present paper we generalize what has been done in [1, 6]. We consider
spacelike submanifolds of arbitrary co-dimension and give a characterization of
those which are umbilical with respect to some normal directions. Observe that
when the co-dimension is one, the normal bundle is one-dimensional and thus the
submanifold can only be umbilical along the unique normal direction. On the other
hand, when the co-dimension is higher than one, there are several possibilities and the
submanifold can be umbilical with respect to some normal vectors but non-umbilical
with respect to others.

In order to characterize umbilical spacelike submanifolds we make use of the
so-called total shear tensor. This is defined as the trace-free part of the second
fundamental form and it appears often in the mathematical literature, especially in
conformal geometry. Nevertheless, it had never been given a name prior to [1] and,
surprisingly, its relationship with the umbilical properties of submanifolds seemed
to be almost unknown or is not explicitly mentioned at least.

We introduce the notions of shear space and umbilical space. They are defined
as the space generated by the image of the total shear tensor and the one generated
by the umbilical vector fields, respectively. They both belong to the normal bundle
and they happen to be mutually orthogonal. We show that the existence of umbilical
directions “shrinks” the shear space reducing its dimension. More precisely, the
dimensions of the shear space and the umbilical space are linked in such a way that
the sum of the two must equal the co-dimension of the submanifold. Moreover, in
specific situations—for instance, when the ambient manifold is Riemannian—the
direct sum of the two spaces generate the whole normal space.

The plan of the paper is as follows. In Sect. 2 we recall some basic concepts
of submanifold theory, we introduce the shear objects and give the definitions of
umbilical point, umbilical submanifold and umbilical space. In Sect. 3 we show
how the shear space and the umbilical space are related, we present necessary and
sufficient conditions for the submanifold to be umbilical and give some final remarks.

2 Preliminaries

2.1 Basic Concepts of Submanifold Theory

We consider an orientable n-dimensional spacelike submanifold (S, g) of a semi-
Riemannian manifold (M, ḡ) with inmersion � : S −→ M and co-dimension k.
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Hence, g := ��ḡ is positive definite everywhere on S, so that (S, g) is, in particular,
an oriented Riemannian manifold. Let X(S) and X(S)⊥ denote the set of tangent
and normal vector fields, respectively, on S. The classical formulas of Gauss and
Weingarten provide the decomposition of the vector field derivatives into their tangent
and normal components [3–5] as

∇XY = ∇XY + h(X,Y ), ∀X,Y ∈ X(S)

∇Xξ = −Aξ X + ∇⊥
X ξ, ∀ξ ∈ X(S)⊥, ∀X ∈ X(S)

where∇ and∇ are the Levi-Civita connections of (M, ḡ) and (S, g) respectively, h is
the second fundamental form or shape tensor of the immersion and Aξ theWeingarten
operator relative to ξ . The derivation ∇⊥ so defined determines a connection on the
normal bundle, h(X,Y ) = h(Y, X) ∈ X(S)⊥ for all X,Y ∈ X(S) and acts linearly
(as a two-covariant tensor) on its arguments while Aξ is self-adjoint for every ξ ∈
X(S)⊥. The following relation holds

g(Aξ X,Y ) = ḡ(h(X,Y ), ξ), ∀X,Y ∈ X(S), ∀ξ ∈ X(S)⊥.

The mean curvature vector field H ∈ X(S)⊥ is 1/n times the trace (with respect to
g) of h, so that for instance one can write [3–5]

H = 1

n

n∑

i=1

h(ei , ei )

where {e1, . . . , en} denotes an orthonormal frame on X(S).

2.2 The Total Shear Tensor and the Shear Operators

Using the previous notations and conventions, the following definition is taken from
[1]

Definition 1 The total shear tensor h̃ is defined as the trace-free part of the second
fundamental form:

h̃(X,Y ) = h(X,Y ) − g(X,Y )H.

The shear operator associated to ξ ∈ X(S)⊥ is the trace-free part of the correspond-
ing shape operator:

Ãξ = Aξ − 1

n
trAξ 1

where 1 denotes the identity operator.
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The total shear tensor and shear operators are obviously related by

g( Ãξ X,Y ) = ḡ(̃h(X,Y ), ξ), ∀X,Y ∈ X(S) ∀ξ ∈ X(S)⊥. (1)

To the authors’ knowledge, the trace-free part of the second fundamental form
had never been given a name prior to [1]. Nevertheless, it is easy to find it in the liter-
ature, in Riemannian settings, especially in connection with the conformal properties
of submanifolds. A pioneer analysis appears in [2], where an extensive exposition
concerning conformal invariants was given. The total shear tensor is also on the basis
of the definition of the so-called generalized Willmore functional [7].

Denote by {ξ1, . . . , ξk} a local frame in X(S)⊥. With respect to this frame, there
exist k shear operators Ã1, . . . , Ãk such that the total shear tensor h̃ decomposes as

h̃(X,Y ) =
k∑

i=1

g( Ãi X,Y )ξi , ∀X,Y ∈ X(S). (2)

If {ξ1, . . . , ξk} is orthonormal, i.e., ḡ(ξi , ξ j ) = εiδi j with ε2i = 1, then Ãi = εi Ãξi for
all i . However, in general, Ãi does not need be proportional to Ãξi , rather being a
linear combination of Ãξ1 , . . . , Ãξk .

Given any normal vector field η ∈ X(S)⊥, by (2) its corresponding shear operator
Ãη can be expressed in terms of Ã1, . . . , Ãk . Indeed, formulas (1) and (2) imply

Ãη =
k∑

i=1

ḡ(ξi , η) Ãi . (3)

In the definitions that follow we introduce two useful concepts.

Definition 2 At any point p ∈ S, the set

Im h̃ p := span
{
h̃(v,w) : v,w ∈ TpS

} ⊆ TpS⊥

is called the shear space of S at p.

If N 1
p = span

{
h(v,w) : v,w ∈ TpS

} ⊆ TpS⊥ denotes the first normal space
of S at the point p ∈ S, then for every p in S we have Im h̃ p ⊆ N 1

p , hence
dim Im h̃ p ≤ dimN 1

p ≤ k. Furthermore, given any orthonormal basis {e1, . . . , en}
in TpS, the image of h̃ p is spanned by the n(n + 1)/2 vectors h̃(ei , e j ), for i ≤ j .
Because

∑n
i=1 h̃(ei , ei ) = 0, these vectors are not linearly independent. In particular,

the dimension of Im h̃ p can be at most n(n + 1)/2 − 1. Therefore,

dim Im h̃ p ≤ min

{
k,

n(n + 1)

2
− 1

}
. (4)
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Formula (3) for the decomposition of any shear operator implies that if dim Im
h̃ p = d then any d + 1 shear operators must be linearly dependent in p. The converse
of this is also true, so that

dim Im h̃ p = max
{
d | ∃ η1, . . . , ηd ∈ TpS⊥ : Ãη1 , . . . , Ãηd are lin. ind. at p

}
(5)

Notice that similar formulas to (4) and (5) also hold for the dimension of the
first normal space. Indeed, for the dimension of N 1

p we will have dimN 1
p ≤

min {k, n(n + 1)/2}; as for (5), the Weingarten operators will just take the place
of the shear operators. These two formulas for N 1

p imply that if k − n(n + 1)/2 is
positive, then there exist k − n(n + 1)/2 linearly independent Weingarten operators
that vanish at p.

Definition 3 Assume that the dimension of the shear spaces Im h̃ p is constant on S,
i.e., there exists d ∈ N with 0 ≤ d ≤ k such that dim Im h̃ p = d for all p ∈ S. The
set

Im h̃ = span
{
h̃(X,Y ) | X,Y ∈ X(S)

} ⊆ X(S)⊥

is called the shear space of S. Then, the shear space is a module over the ring of
functions defined on S with dimension d.

The properties already presented relating dim Im h̃ p to the shear operators can be
extended to dim Im h̃ accordingly.

2.3 Umbilical Points and Umbilical Submanifolds

For works concerning umbilical submanifolds and some previous results in both
Riemannian and semi-Riemannian settings the reader can consult, e.g., [1] and ref-
erences therein.

For hypersurfaces (co-dimension 1), a point can only be umbilical along the unique
normal direction. This situation changes completely for higher co-dimensions, in
which case there are multiple directions along which a point can be umbilical.

Definition 4 Using the notations and conventions introduced above for the immer-
sion � : (S, g) → (M, ḡ), a point p ∈ S is said to be

• umbilical with respect to ξp ∈ TpS⊥ if Aξp is proportional to the identity;
• totally umbilical if it is umbilical with respect to all ξp ∈ TpS⊥.

A point p ∈ S is umbilical with respect to ξp ∈ TpS⊥ if and only if Aξp =
(tr Ãξp/n)1 or, equivalently, Ãaξp = 0 for any a ∈ R \ {0}. ξp-umbilicity is thus a
property that gives information about span{ξp} regardless of the length and the ori-
entation of ξp. Hence, we will usually state that p is umbilical with respect to the
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normal direction spanned by ξp. On the other hand, p is totally umbilical if and only
if h(v,w) = g(v,w)Hp for all v,w ∈ TpS or, equivalently, if and only if h̃ = 0 at
p. This fact was already known for hypersurfaces in Riemannian settings and can
be found, e.g., in [2]. However, the relationship between the total shear tensor and
the umbilical properties of submanifolds, treated in [1] and in the present article, is
substantially new.

Definition 5 Given any point p ∈ S, the set

Up = {
ξp ∈ TpS⊥ : p is umbilical with respect to ξp

} ⊆ TpS⊥

is called the umbilical space of S at p.

Lemma 1 The umbilical space Up is a vector space for every p ∈ S.
Proof Let ξp, ηp ∈ Up, so that by definition Ãξp = Ãηp = 0. Let a, b ∈ R and con-
sider the normal vector aξp + bηp. By linearity we have Ãaξp+bηp = a Ãξp + bÃηp =
0. It follows that p is umbilical with respect to aξp + bηp, hence aξp + bηp belongs
to Up. �

It follows from Lemma 1 that dimUp is well defined. Notice that dimUp = m
if and only if p is umbilical with respect to exactly m linearly independent normal
directions. Moreover, by formulas (4) and (5) it follows that if k − n(n + 1)/2 + 1
is positive, then dimUp ≥ k − n(n + 1)/2 + 1.

Definition 6 Using the notations and conventions introduced above for the immer-
sion � : (S, g) → (M, ḡ), the submanifold (S, g) is said to be

• umbilical with respect to ξ ∈ X(S)⊥ if Aξ is proportional to the identity;
• totally umbilical if it is umbilical with respect to all ξ ∈ X(S)⊥.

The properties presented above for umbilical points can be extended to umbilical
submanifolds accordingly. S is umbilical with respect to ξ ∈ X(S)⊥ if and only if
ξp ∈ Up for all p ∈ S. More in general, S is umbilical with respect to exactly m
linearly independent nonzero normal vector fields ξ1, . . . , ξm ∈ X(S)⊥ if and only
if (ξ1)p, . . . , (ξm)p ∈ Up for all p ∈ S. Equivalently, if and only if dimUp = m for
all p ∈ S. This leads to the following definition.

Definition 7 Assume that the dimension of the umbilical spaces Up is constant on
S, i.e.there existsm ∈ Nwith 0 ≤ m ≤ k such that dimUp = m for all p ∈ S. Then
the set

U = {
ξ ∈ X(S)⊥ : S is umbilical with respect to ξ

} ⊆ X(S)⊥

is called the umbilical space of S.
The umbilical space of S is such that U = ∪p∈SUp. In Lemma 1 we proved

that Up is a vector space for every p. Similarly, we can prove that U is a finitely
generated module over the ring of functions defined on S with dimU = m.
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3 Results

3.1 The Relationship Between U and Im ˜h

Proposition 1 Let � : (S, g) → (M, ḡ) be an isometric immersion of an
n-dimensional Riemannian manifold into a semi-Riemannian manifold with co-
dimension k. Let Up and Im h̃ p be the umbilical space and the shear space, respec-
tively, of S at any point p ∈ S. Then

Up = (Im h̃ p)
⊥.

Moreover,

k − dimUp = dim Im h̃ p.

Here (Im h̃ p)
⊥ is defined as the subspace of TpS⊥ orthogonal to Im h̃ p, namely

(Im h̃ p)
⊥ = {

ηp ∈ TpS⊥ | ∀ξp ∈ Im h̃ p : ḡ(ηp, ξp) = 0
}
.

Proof By definition, a normal vector ξp belongs to Up if Ãξp = 0. Equivalently,
if g( Ãξp (v), w) = 0 in p, for all v,w ∈ TpS. By formula (1), this holds if and
only if ξp ∈ (Im h̃ p)

⊥. HenceUp = (Im h̃ p)
⊥. Suppose Im h̃ p = {0}, then it is clear

that Up = (Im h̃ p)
⊥ = TpS⊥ and the relation between the dimensions holds. Now

assume Im h̃ p �= {0}. We can choose a basis {(ξ1)p, . . . , (ξk)p} of TpS⊥ such that
{(ξ1)p, . . . , (ξd)p} is a basis of Im h̃ p. A normal vector ηp belongs toUp = (Im h̃ p)

⊥
if and only if ḡ(ηp, (ξ j )p) = 0 for j = 1, . . . , d. Since (ξ1)p, . . . , (ξd)p are linearly
independent and ḡ is nondegenerate, these are d linearly independent conditions on
the components of ηp and hence dimUp = k − d. �

By Proposition 1 we have that the umbilical space Up and the shear space Im h̃ p

are such that

Up = (Im h̃ p)
⊥ and dimUp + dim Im h̃ p = k.

However, the intersection Up ∩ Im h̃ p might be nonempty, and consequently the
direct sumof the two spaces does not generate, in general, thewhole normal space. For
example, if p is umbilicalwith respect to somevector ξp that is null, i.e. ḡ(ξp, ξp) = 0,
then ξp might belong to Im h̃ p. Actually, in case M is a Riemannian manifold, one
easily checks that Im h̃ p ∩ Up = ∅ and one has

TpS⊥ = Im h̃ p ⊕ Up (M Riemannian).
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Remark 1 Proposition 1 implicitly shows that if the dimension of the shear spaces
Im h̃ p is constant on S then the dimension of the umbilical spaces Up also is, and
vice versa.

By Proposition 1 and Remark 1 follows the next corollary.

Corollary 1 Assume that the dimension of the shear spaces Im h̃ p is constant on S
(equivalently, that the dimension of the umbilical spacesUp is constant on S). Then
Im h̃ and U are well defined and we have

U = (Im h̃)⊥.

Moreover,

k − dimU = dim Im h̃.

From now on, and for the sake of conciseness, we will assume that the dimension
of the shear spaces Im h̃ p is constant on S. We will consider that S is umbilical
with respect to exactly m linearly independent umbilical directions, that is to say,
dimU = m. Notice, however, that all results make sense also if stated pointwise.

3.2 Characterization of Umbilical Spacelike Submanifolds

We will denote by ∧ the wedge product of one-forms and by � the musical isomor-
phism: if V is a vector field on (M, ḡ), then its associated one-form V � is given by
V �(Z) = ḡ(V, Z) for every vector field Z on M.

Proposition 2 Let � : (S, g) → (M, ḡ) be an isometric immersion of an
n-dimensional Riemannian manifold into a semi-Riemannian manifold with
co-dimension k. Let U be the umbilical space of S, then dimU = m if and only if
the total shear tensor satisfies

∧k−m+1
h̃� = 0

with

∧k−m
h̃� �= 0.

Here by
∧q

ωr wemean q times the wedge product ω1 ∧ · · · ∧ ωq of q one-forms
{ωr }qr=1. Notice that when we write, for instance, h̃� ∧ h̃�, we mean h̃(X1,Y1)� ∧
h̃(X2,Y2)� for all X1,Y1, X2,Y2 ∈ X(S).

Proof Suppose that the dimension of the umbilical space is m. By Corollary 1 it
follows that dim Im h̃ = k − m and we can then decompose the total shear tensor
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by means of exactly k − m normal vector fields. Explicitly, there exist k − m shear
operators { Ãi }k−m

i=1 and k − m vector fields ζ1, . . . , ζk−m ∈ X(S)⊥ such that

h̃(X,Y ) =
k−m∑

i=1

g( Ãi X,Y )ζi .

Because these vector fields are linearly independent, their corresponding one-forms
ζ

�
r also are. From this fact it easily follows that, on one hand, the wedge product
k − m times of h̃� is different from zero and, on the other hand, that the wedge
product k − m + 1 times of h̃� must be zero.

Now suppose that the total shear tensor satisfies the conditions in the state-
ment. By algebra’s basic results, we know that l one-forms ω1, . . . , ωl are linearly
independent if and only if their wedge product ω1 ∧ · · · ∧ ωl is not zero. Equiva-
lently, they are linearly dependent if and only if their wedge product is zero. Hence,
by hypothesis, among the sets of k one-forms {̃h(X1,Y1)�, . . . , h̃(Xk,Yk)�} con-
structed for arbitrary X1,Y1, . . . , Xk,Yk ∈ X(S), there exist exactly k − m which
are linearly independent. The same holds for the corresponding normal vector fields
{̃h(X1,Y1), . . . , h̃(Xk,Yk)}. By Definition 2 of shear space, this implies that the
dimension of Im h̃ is k − m. Finally, by Corollary 1, we obtain dimU = m. �

The following theorem summarizes the results presented in Corollary 1 and
Proposition 2.

Theorem 1 Let � : (S, g) → (M, ḡ) be an isometric immersion of an
n-dimensional Riemannian manifold into a semi-Riemannian manifold with co-
dimension k. LetU and Im h̃ be the umbilical space and the shear space, respectively,
of S. Then the following conditions are all equivalent:

(i) the umbilical space U has dimension m;
(ii) the shear space Im h̃ has dimension k − m;
(iii) the total shear tensor satisfies

∧k−m+1
h̃� = 0

with

∧k−m
h̃� �= 0;

(iv) any k − m + 1 shear operators Ãξ1 , . . . , Ãξk−m+1 are linearly dependent (and
there exist precisely k − m shear operators that are linearly independent).
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3.3 Special Cases

Using Theorem 1 some particular situations are worth mentioning, for example:

• If dimU = k we have h̃(X,Y )� = 0 for every X,Y ∈ X(S), equivalently h̃ = 0,
and the submanifold S is totally umbilical. In particular, Im h̃ = ∅ and
X(S)⊥ = U .

• If dimU = k − 1 then dim Im h̃ = 1 and we have h̃(X1,Y1)� ∧ h̃(X2,Y2)� = 0
for every X1,Y1, X2,Y2 ∈ X(S). It follows that there exist a normal vector field
G ∈ X(S)⊥ and a properly normalized self-adjoint operator Ã such that h̃(X,Y ) =
g( ÃX,Y )G for every X,Y ∈ X(S). This was the case studied in [1] for k = 2.

• If dimU = 0 then there are no umbilical directions and Im h̃ = X(S)⊥.

Our results can be applied to all other cases too and open the door for a novel analysis
of the structure of the umbilical space.
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A Study in Stationary: Geometric Properties
of Stationary Regions and Regularity
of Their Horizons
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Abstract Spacetimes with stationary regions have always been among the most
intensively studied ones, but by far the larger body of literature thereon has been
inextricably connected with the investigation of stationary black holes arising as
solutions of the Einstein field equations. Although the most important results, such
as those pertaining to the issue of black hole uniqueness (Stationary black holes:
uniqueness and beyond, Living Rev, Relativity, [8]), (Black hole uniqueness theo-
rems, Cambridge University Press, Cambridge[19]) or rigidity theorems (Rigidity
results in general relativity: a review [20]) do depend very sensitively on the dimen-
sion of the spacetime, assumptions of asymptotic flatness and/or the detailed analyt-
ical features of the field equations, many interesting results pertaining to stationary
spacetimes and horizons therein can still be obtained by purely geometric methods.
It is the purpose of this paper to give a review, without any attempt at comprehensive-
ness, of some global geometric consequences of the existence of a complete Killing
vector field which becomes timelike at some open set, the connected components of
which are referred to as stationary regions. If the Killing field changes causal char-
acter, horizons appear. I discuss their general structure and regularity under suitable
assumptions on their causality and geodesic (in)completeness, but without assuming
any field equations, asymptotic flatness/hyperbolicity or any dimensional restric-
tions. More specifically, the main focus is on presenting some old and new theorems
giving descriptions of the global geometric structure of stationary regions, as well as
regularity of the underlying horizons. These are meant to illustrate that a number of
the extant results in the literature are not artifacts of solutions in General Relativity
and/or asymptotic assumptions. Although many of the results presented are known
in some form (maybe with slightly different assumptions), most are reworked in a
(hopefully) didactic, unified fashion, and a number of them with new proofs.
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1 Introduction

Let (Mn+1, g) (n ≥ 1) be a spacetime, i.e., a smooth (C∞) Lorentzian manifold with
a fixed time orientation. (M, g) is said to have a stationary region if there exists
a complete Killing vector field X : M → T M on (M, g) which becomes timelike
somewhere in M . The prime examples of spacetimes with stationary regions are
those in the Kerr-Newman family of electrovac exact solutions of the Einstein field
equations of General Relativity (including of course Minkowski and Schwarzschild
spacetimes in the vacuum case) and their generalizations with nonzero cosmological
constant (including de Sitter and anti-de Sitter spacetimes) [18, 29, 34].

Of course, these spacetimes derive much of their immense importance from phys-
ical applications. Not only they are exact, analytically treatable solutions of the field
equations, they are believed to more or less realistically model the final state of black
holes resulting from the actual gravitational collapse of massive objects in our uni-
verse. But even on the purely mathematical side, stationary spacetimes also have
a beautiful and rich geometrical structure, even when (M, g) is compact (see, e.g.,
[19, 29, 31, 32] for a constellation of examples).

Again, in many of the above-mentioned solutions, the underlying Killing vector
field X changes causal character and is not timelike everywhere in M . Such changes
are signaled by horizons, which are interpreted in physical applications as describ-
ing either cosmological or event horizons. In these rather special spacetimes, such
horizons are smooth null hypersurfaces in (M, g) with a rather ubiquitous bifurcate
structure, and are in fact examples of (bifurcate) Killing horizons [18–20].

Now, one might be tempted to think that all these nice properties of stationary
regions and their horizons in the exact solutions are an artifact of their high symmetry.
The main purpose of this article is to give a number of theorems which show that, on
the contrary, many of these properties are fairly general, and stem from geometric
and causal considerations alone, not on added symmetries nor on any field equa-
tions. Incidentally, this situation parallels what happened historically with spacetime
singularities: these were present in many exact solutions and were for a long while
believed to be due to the artificially imposed symmetries, but the celebrated singu-
larity theorems [1, 18, 28] finally established that causal geodesic incompleteness is
actually a fairly generic phenomenon in Lorentzian geometry.

Many of the results presented here are not new (some are fairly standard), and
have appeared in one or another form in the literature. I shall, of course, refer to
the original references whenever that is the case. However, in nearly all cases I give
alternative, new proofs, and a streamlined, unified description of the main theorems
whichmay be useful to researchers. The philosophy (and some of the results) pursued
in this article is similar to that in Ref. [2], but I owe much of my choice of topics to
[4, 6, 15, 17, 21].

I should warn the reader that this is not a review of the most recent results, and
I make no attempt toward completeness or comprehensiveness. The literature on
stationary spacetimes and horizons is prohibitively vast, and I have neither the time
nor the competence to do justice to all of it. Instead, I have focused in a unified,
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somewhat whimsical description of the global geometry of stationary regions and
horizons, with emphasis on issues of regularity in the latter case.

The rest of the paper is divided into two largely (but not entirely) independent
parts. After some preliminary results in Sect. 2, including an important Lemma due to
S. Harris and R. Low [17], the first part deals with the basic global principalR-bundle
structure of chronological stationary spacetimes, and comprises Sects. 3 through 5.
Our discussion is embedded in the key structural theorems of S. Harris [15] (based on
previous work by R. Geroch), M.A. Javaloyes and M. Sánchez [21]. In Sects. 3 and
4, we give new proofs to these now classic results, and review Geroch’s reduction
formalism [13, 14] for stationary spacetimes in the spirit of [2, 19], but in fully
coordinate-free form (see [9] for a similar approach). As instructive illustrations of
the resulting structure we use this formalism in Sect. 5 to establish two results which,
albeit rather simple, to the best of my knowledge have not appeared explicitly in the
literature. The first is a splitting theorem for globally hyperbolic Ricci-flat spacetimes
with a compact Cauchy hypersurface and a nonempty stationary region, which is in
turn related to a long-standing conjecture by R. Bartnik (see, e.g., Chap. 14 of [1]).
The second is an alternative expression for the Komar energy applicable in the case
of stationary Einstein manifolds. The second part of the paper spans Sects. 6, 7, and
8, and devoted to a detailed study of horizons with emphasis on regularity issues.
Again, many of the stated results therein are known in more restricted settings, but
are reworked here in a broader context.

2 Preliminaries

Throughout this paper, we adopt the following terminology. (Mn+1, g), with n ≥ 1,
denotes a spacetimewith a fixed complete Killing vector field X ∈ �(T M). The flow
of X is denoted by φ : t ∈ R �→ φt ∈ Diff(M). In particular, φ is a smooth isometric
action of the abelian group (R,+) onM . The notation 〈 . , . 〉 := g will often be used,
and we denote by X̃ := 〈X, , 〉 the 1-form metrically associated with X .

Let S be a fixed connected component of the set

{p ∈ M | gp(X (p), X (p)) < 0}.

We refer to S as a stationary region of (M, g). A stationary region S is said to be static
if the orthogonal distribution X⊥|S is integrable1 in S, which by standard results [28]
happens iff X̃ ∧ d X̃ = 0 iff the restriction of d X̃ ≡ curl X to X⊥ is identically zero,
where the curl of X is given by

(curl X)(V,W ) = 〈∇V X,W 〉 − 〈∇W X, V 〉

1In particular, every two-dimensional stationary spacetime region is static.
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∀V,W ∈ �(T M). To avoid trivialities, I shall assume throughout that S �= ∅. It is
easy to see that S is open and (since 〈X, X〉 is constant along the orbits of φ) invariant
by the flow φ. Given any p ∈ M , Rp := ∪t∈Rφt (p) denotes the orbit of p by φ.

We follow throughout the standard notation (presented, for example, in [1, 28])
for objects pertaining to the causal structure of (M, g). Therefore, given p, q ∈ M ,
we write p � q [resp. p < q] to indicate that there exists a piecewise smooth future-
directed timelike [resp. causal] curve segment from p to q, and p ≤ q if either p < q
or p = q. Similarly, given any set A ⊂ M , we denote by

I+(A) [resp.J+(A)] := {q ∈ M : ∃p ∈ A such that p � q [resp.p ≤ q]}

the chronological [resp. causal] future of A. The chronological [resp. causal] past
I−(A) [resp. J−(A)] of A is defined time-dually. Finally, we denote I±(p) :=
I±({p}) for any p ∈ M .

Proposition 2.1 The vector field XS := X |S is a complete timelike Killing vector
field which is either future-directed everywhere or past-directed everywhere in the
spacetime (S, g|S).
Proof That XS is complete and Killing timelike is immediate from the invariance
of S by φ, and the second statement is an easy consequence of the fact that S is
connected. �

In what follows, XS is always taken to be future-directed for definiteness, although
all the results will hold in the past-directed case.

We say that (M, g) is stationary (with respect to X ) if S ≡ M , i.e., if M is itself
a stationary region. (Of course, even if this does not happen, (S, g|S), viewed as
a spacetime on its own right, is stationary. In particular, any result obtained when
(M, g) remains valid for (S, g|S).) Similarly, (M, g) is static (with respect to X ) if
M is itself a static region.

The following lemma is essentially due to S. Harris and R. Low (cf. Theorem
2.3 of [17]), and will be of key importance in a number of later results. The proof
we give here, however, allows us to dispense with the assumption that spacetime is
chronological (i.e., has no closed timelike curves) which the authors of [17] adopt
(although their assumption on X is weaker).

Lemma 2.2 If (M, g) is stationary, then ∀p, q ∈ M

Rp ∩ I±(q) �= ∅,

so in particular, I±(Rp) = M.

Proof Suppose, by way of contradiction, that X is everywhere timelike, but the
conclusion fails. Pick then p, q ∈ M such that, say, Rp ∩ I+(q) = ∅ (the proof if
we assume Rp ∩ I−(q) = ∅ is entirely analogous). Let

Ip := {r ∈ M |Rp ∩ I+(r) = ∅}.
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This set is nonempty, since q ∈ Ip. Also, let

Rp :=
⋃

r∈Ip
I+(r).

The set Rp is thenmanifestly open and nonempty. It is also a future set, i.e., I+(Rp) ⊂
Rp. In particular, by standard results in causality theory (see, e.g., Sect. 3.2 of [1]),
its boundary ∂Rp is a closed achronal Lipschitz hypersurface in (M, g). Also, it is
clearly nonempty.

Claim: Rp = Ip.
Indeed, take r ∈ Rp. If r /∈ Ip, then r ∈ I−(φt (p)) for some t ∈ R. Since the lat-
ter set is open, we can pick r ′ ∈ I−(φt (p)) ∩ Rp, and hence r ′ ∈ I+(r ′′) for some
r ′′ ∈ Ip, whence we conclude that r ′′ ∈ I−(φt (p)), a contradiction. Thus, Rp ⊂ Ip.
Now, let r ∈ Ip, and consider a neighborhood U � r . For any r ′ ∈ I+(r) ∩U ,
r ′ ∈ Rp by definition, so U ∩ Rp �= ∅. Thus, r ∈ Rp, proving the claim.
To complete the proof, pick r ∈ ∂Rp ⊂ Rp = Ip, and any t ∈ R, t > 0. Now, since
each orbit is timelike, φt (r) ∈ Rp. Then, r ′ � φt (r) for some r ′ ∈ Ip. Hence, since
the isometric action φ preserves causal relations, φ−t (r ′)� r . Now, if φ−t (r ′) /∈ Ip,
then φ−t (r ′)� φs(p) for some s ∈ R, which implies that r ′ � φt+s(p), which is
absurd. Thus, we conclude that φ−t (r ′) ∈ Ip, whence r ∈ Rp. But this is impos-
sible, since Rp is open and Rp ∩ ∂Rp = ∅. This final contradiction completes the
proof. �

3 Global Structure of Stationary Spacetimes I:
Topological Aspects

In this section, I review some consequences for the topology of a stationary region of
imposing certain causality restrictions on (M, g). These will be also be used later in
this work. We shall see that relatively mild causality assumption have a dramatically
simplifying effect on the global geometry of stationary spacetimes, and hence of
stationary regions.

The first one is due to S. Harris (cf. [15]), and gives a key structural result for the
topology of stationary chronological spacetimes.

Proposition 3.1 If (M, g) is stationary and chronological, then φ is a free, proper
R-action. In particular, the space of orbits Q := M/R has a unique structure of a
smooth n-manifold for which the standard projection π : M → Q is smooth; indeed,
(M,π,φ) is a (necessarily trivial) smooth principalR-bundle over Q, and hence M
is (noncanonically) diffeomorphic to R× Q.

Proof That the action is free is immediate from the fact that we have no closed
(timelike) orbits. To show the action φ is proper, it is sufficient (cf., e.g., Proposition
9.13 in [26]) to check that given sequences (tk) ⊂ R, (pk), (qk) ⊂ M and points
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p, q ∈ M such that pk → p and φtk (pk)→ q, then (tk) converges up to passing to a
subsequence. But suppose this is false. Then we can assume that |tk | → +∞. Then,
up to passing to a subsequence, either tk →+∞ or tk →−∞, and we may as well
assume the first of these options holds, since the proof for the other case is entirely
analogous. Fix any t ∈ R, and q ′ ∈ I+(q). Eventually, tk > t , and φtk (pk) ∈ I−(q ′),
since the latter set is open and contains q. But thenφt (pk)� φtk (pk)� q ′, and since
φt (pk)→ φt (p) we conclude that φt (p) ∈ I−(q ′). Since t was arbitrarily fixed, we
conclude that Rp ⊂ I−(q ′). But according to Lemma 2.2, Rp ∩ I+(q ′) �= ∅, and
hence I−(q ′) ∩ I+(q ′) �= ∅, violating chronology. The remaining statements follow
from standard facts about principal bundles (see, e.g., p. 218, Theorem. 9.16 of [26],
and Theorem 5.7, p. 58 of [24]). �

Let us see some consequences of this result for the global geometry of (M, g).
For the remainder of this section (M, g) will be assumed to be a stationary (with
respect to X) chronological spacetime.

Under our assumptions, there exists a global section σ : Q → M . Such global
sections are in one-to-one correspondence with (global) trivializations of π : M →
Q, by which I mean diffeomorphisms ϕ : M → R× Q for which the following
diagrams commute:

for all t ∈ R. Here, π2 denotes the projection onto the second cartesian factor, and
Tt (s, x) := (s + t, x), ∀t, s ∈ R, ∀x ∈ Q. The relationship between the section σ
and its associated trivialization ϕ is given by

σ(x) = ϕ−1(0, x),∀x ∈ Q. (3.1)

By using (3.1) and the first of the commutative diagrams above we conclude that

φt (σ(Q)) = ϕ−1({t} × Q),∀t ∈ R. (3.2)

Theorem 3.2 Let σ : Q → M be a global section with associated trivialization
ϕ : M → R× Q. The following statements hold.

(1) σ(Q) is a smooth properly embedded hypersurface diffeomorphic to Q inter-
sected exactly once by each integral curve of X (such a hypersurface is said to
be a slice of φ).

(2) Every slice of φ is the image of a (unique) global section.
(3) dϕp(X (p)) = ∂t |ϕ(p), ∀p ∈ M, where ∂t denotes the lift to R× Q of the stan-

dard vector field d/dt on R.
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(4) If σ(Q) is spacelike, then the function τ := π1 ◦ ϕ : M → R has a past-directed
timelike gradient, where π1 : R× Q → R is the projection onto the first carte-
sian factor. Moreover,

〈∇τ , X〉 = 1. (3.3)

We shall refer to τ is the time function associated with σ.

Proof (1) follows immediately from (3.2) and from the fact that π ◦ σ ≡ I dQ . If
A ⊂ M is a slice of φ, then it is easy to check that π|A : A→ Q is a diffeo, and
henceσ := (π|A)−1 is a global sectionwhose image is A. Uniqueness is then obvious.
This proves (2). To prove (3), pick p ∈ M and write ϕ(p) = (s0, x0). For each
f ∈ C∞(R× Q), we have

∂t |(s0,x0)( f ) = lim
s→0

f (s + s0, x0)− f (s0, x0)

s
(3.4)

= lim
s→0

f (Ts ◦ ϕ(p))− f ◦ ϕ(p)

s

= lim
s→0

( f ◦ ϕ) ◦ φt (p))− ( f ◦ ϕ)(p)

s
≡ X (p)( f ◦ ϕ) ≡ dϕp(X (p))( f ),

thus establishing (3).
In order to prove (4), we first claim that

φ∗t dτ = dτ ,∀t ∈ R. (3.5)

Indeed, for each t ∈ R, we have

φ∗t dτ = d(τ ◦ φt ) = d(π1 ◦ ϕ ◦ φt ) ≡ d(π1 ◦ Tt ◦ ϕ).

On the other hand, for (s0, x0) ∈ R× Q,

π1 ◦ Tt (s0, x0) = t + t0 ≡ (π1 + ct )(s0, x0),

where ct : (s, x) ∈ R× Q �→ t ∈ R is the constant function (for fixed t). Therefore,

π1 ◦ Tt ◦ ϕ = τ + ct ⇒ dτ = d(π1 ◦ Tt ◦ ϕ), (3.6)

whence (3.5) follows. In turn, from (3.5) we have

LXdτ = 0, (3.7)

where LX denote the Lie derivative along X . Since X is Killing, equation (3.7) is
equivalent to

[X,∇τ ] = 0, (3.8)
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and therefore
X〈∇τ ,∇τ 〉 = 2〈[X,∇τ ],∇τ 〉 ≡ 0,

using again that X is Killing and (3.8). Thus 〈∇τ ,∇τ 〉 is constant along the orbits
of φ. But from (3.2), the level hypersurfaces of τ are

τ−1(t) = φt (σ(Q)),∀t ∈ R.

It follows that ∇τ |σ(Q) is timelike, since it is orthogonal to σ(Q), which has been
assumed to be spacelike. Thus, ∇τ is timelike everywhere on M .

Finally, in order to establish Eq. (3.3), pick p ∈ M . Let γp : t ∈ R �→ φt (p) be
the maximal integral curve of X through p. Now,

(τ ◦ γp)(t) = (π1 ◦ ϕ ◦ φt )(p) = (π1 ◦ Tt ◦ ϕ)(p) = τ (p)+ t,

where we have used (3.6) in the last equality. Differentiating, we get

1 = (τ ◦ γp)
′(0) = 〈∇τ (p), X (p)〉

as desired. �
Remark 3.3 In p. 05 of Ref. [16],2 the function τ as constructed in Theorem 3.2 (4)
is referred to as a “Killing time-function” even if σ(Q) is not spacelike. However,
note that according to the standard definition [1, 18, 28], a time function needs
to be (continuous and) strictly increasing along causal curves, and hence its level
hypersurfaces need to be acausal. Indeed, the function τ being a bona fide time
function is equivalent to the assumption that σ(Q) is acausal, since the latter is a
level set of τ and the isometric flow φ preserves acausality. But it is well known that
the existence of such a function is equivalent to the condition that (M, g) is stably
causal [18]. Moreover, Bernal and Sánchez [3] have proved that stable causality
is actually equivalent to the existence a temporal function, i.e., a smooth function
τ ∈ C∞(M) with past-directed timelike gradient. Such a function is obtained right
away in our context through the “stronger” assumption that σ(Q) is spacelike. As
a matter of fact, any level hypersurface of a temporal function (which is, of course,
spacelike) wouldwork as a section, by a result due toM.A. Javaloyes andM. Sánchez
[21] discussed below (cf. Theorem 3.4). The upshot now is that the existence of an
acausal section implies the existence of a spacelike one. In this sense, there is no real
loss of generality in our assumption that σ(Q) is spacelike insofar as one wishes to
have a time function.

Theorem 3.4 Suppose (M, g) is stationary, chronological and possesses an
achronal edgeless set A ⊂ M.3 Then each orbit of φ intersects A exactly once.

2I thank the referee for bringing [16] to my attention.
3A is then a closed C0 (indeed Lipschitz) hypersurface in M , see, e.g., Corollary 26, Chap. 14 in
[28].
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Moreover,
ϕ := φ|R×A : (t, p) ∈ R× A �→ φt (p) ∈ M

is a homeomorphism. In particular, if A is a smooth, closed achronal space-
like hypersurface (and hence acausal), then ϕ is actually a diffeomorphism, and
dϕ(t0,x0)(∂t |(t0,x0)) = X (ϕ(t0, x0)), for all (t0, x0) ∈ R× A.

Proof The map ϕ is continuous (smooth if A is smooth), since A is a C0 hyper-
surface, and one-to-one since A is achronal. By Invariance of Domain, ϕ is then a
homeomorphism onto an open subsetO ⊂ M . The first and second claims boil down
therefore to showing that O ≡ M . Since the latter set is open and M is connected,
all we need to show is that O is closed. To this end, consider a sequence (tk, xk) in
R× A and p ∈ M such that φtk (xk)→ p.

Assume first that (tk) is unbounded. We may assume, up to passing to a subse-
quence that tk →+∞, the argument if tk →−∞ being analogous. From Lemma
2.2, we have that φs(p) ∈ I−(x1) for some s ∈ R (x1 being the first term in the
sequence (xk)!). But then

φtk+s(xk) = φs(φtk (xk))→ φs(p),

so for large enough k we have tk + s > 0 and φtk+s(xk) ∈ I−(x1); hence,

xk � φtk+s(xk)� x1,

which contradicts the achronality of A. Therefore, (tk) must be bounded. But in that
case, up to passing to a subsequence we may assume that it converges, say, tk → t0.
Let x0 := φ−t0(p). Then

xk = φ(−tk,φtk (xk))→ x0,

and since A is closed we conclude that x0 ∈ A, and ϕ(t0, x0) = p, which shows that
O is closed, as desired. The proof of the remaining statements is straightforward,
and we omit it. �

Recall that (M, g) is said to be distinguishing if ∀p, q ∈ M

I+(p) = I+(q) or I−(p) = I−(q)⇒ p = q.

Examining the causal ladder (cf., e.g., [1] p. 73), we see that if (M, g) is distin-
guishing, then it is causal, i.e., has no closed causal curves, and this condition is
implied by strong causality, but does not usually imply it. However, M.A. Javal-
oyes and M. Sánchez have shown (Proposition 3.1 of [21]) the remarkable result
that a distinguishing stationary spacetime is actually stably causal.4 In particular,

4More precisely, Javaloyes and Sánchez actually show that (M, g) is causally continuous, a condi-
tion even stronger than stable causality.
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(M, g) is strongly causal and there exists a temporal function, i.e., a smooth function
τ : M → R with past-directed timelike gradient. Each level set of such a function τ
is a closed, acausal spacelike hypersurface in (M, g). In view of Theorems 3.2 and
3.4 and these remarks, we then have the following immediate consequence [21].

Corollary 3.5 If (M, g) is chronological and stationary, then the following state-
ments are equivalent:

(i) (M, g) is distinguishing;
(ii) there exists a smooth closed, acausal spacelike hypersurface in (M, g) which is

intersected exactly once by each integral curve of X.

In the affirmative case, any one of these slices is diffeomorphic to Q (and hence to
one another), and (M, g) is causally continuous.5 �

4 Global Structure of Stationary Spacetimes I: Metrical
Aspects

In the previous section, a topological splitting for chronological stationary spacetimes
was obtained. We now proceed to review how the metric responds to this splitting.
Most facts stated here are fairly well known [2, 9, 13, 14, 19], so the goal of repeating
them here is twofold: to establish terminology and set the stage for the results of the
next section.

We assume again, throughout this section, that (M, g) is stationary and chrono-
logical, with the single exception of Theorem 4.5 below.

Since X is Killing, the orthogonal distribution X⊥ ⊂ T M is covariant, in the sense
that (dφt )p(X⊥p ) = X⊥φt (p)

for all t ∈ R and all p ∈ M , and of course TpM = X⊥p ⊕
RX p. In other words, X⊥ is a principal (Ehresmann) R-connection on the principal
bundle π : M → Q, for which the orthogonal complements of X at each point are the
horizontal spaces, and having an associated φ-invariant 1-form θ ∈ �1(M). Indeed,
θ is uniquely defined by the conditions θ(X) ≡ 1 and θ(X⊥) ≡ 0, and hence

θ ≡ −X̃/β2, (4.1)

where
β := √|〈X, X〉|.

Thus, its curvature �̃ := dθ|X⊥∧X⊥ measures the integrability of the orthogonal dis-
tribution, i.e., �̃ = 0 iff X⊥ is integrable, that is, if (M, g) is static. Moreover, β is
constant along the orbits of φ, and �̃ is a horizontal φ-invariant 2-form, and hence
there exists a unique function u ∈ C∞(Q) and a unique 2-form � ∈ �2(Q) such
that

5See also [16]. I am grateful to the referee for pointing out this reference.
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β = π∗u = u ◦ π and �̃ = π∗�. (4.2)

Now, for each p ∈ M , ker dπp is the span of X p, and since π is a submersion
dπp has maximal rank, i.e., dim X⊥p = dim Tπ(p)S, so dπp|X⊥p : X⊥p → Tπ(p)Q is an
isomorphism. Since X is Killing, the induced inner product on Tπ(p)Q is the same
for all points along the orbit of p, so there exists a unique Riemannian metric h on Q
defined by requiring that this pointwise isomorphisms are linear isometries. (Hence,
when Q is endowed with this metric, π becomes a semi-Riemannian submersion.)
The splitting of vectors into vertical and horizontal parts implies that the metric g
can then be written as

g = −β2θ ⊗ θ + π∗h. (4.3)

Equation (4.3) implies that the geometrical information of (M, g) is entirely encoded
in the 1-form θ, the function u (or equivalently β) and the Riemannian metric h.

When n ≥ 2, another geometric quantity of interest is the twist of X which is the
(n − 2)-form ω given6 by

ω := 1

2
�g (X̃ ∧ d X̃). (4.4)

Of course ω = 0 iff (M, g) is static with respect to X . Thus, one imagines this is not
independent of the other geometric quantities, especially of θ. Indeed, we have:

Proposition 4.1 The twist ω is a horizontal, invariant form. In fact,

ω = π∗(
1

2
u3 �h �).

Proof Fix p ∈ M , and let x = π(p). LetU ⊂ Q be some neighborhood of x where
is defined an h-orthonormal frame {(E1)∗, . . . , (En)∗} ⊂ �(TU ) with dual frame
{(E1)∗, . . . , (En)∗} ⊂ �1(U ). Then, there exists a unique g-orthonormal frame
{E0, E1, . . . , En} ⊂ �(Tπ−1(U )) of vector fields defined around p for which

π∗(Ei ) ≡ (Ei )∗ (i = 1, . . . , n)

and E0 := X/β. Let {E0, E1, . . . , En} ⊂ �1(π−1(U )) denote the corresponding
dual frame. Using the Killing equation, we have, for each i ∈ {1, . . . , n},

d X̃(E0, Ei ) = −2〈∇Ei X,
X

β
〉 ≡ 2Ei (β). (4.5)

However, ∀q ∈ π−1(U ) we have

Ei (β)(q) = dβq(Ei (q)) = (π∗du)q(Ei (q)) ≡ duπ(q)((Ei )∗(π(q))),

6The symbols �g and �h will be used for the Hodge star operators of g and h, respectively.
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and so we conclude that

d X̃(E0, Ei ) = 2[du((Ei )∗)] ◦ π. (4.6)

On the other hand, from (4.1) we have

d X̃ = −2βdβ ∧ θ − β2dθ, (4.7)

and hence, since the Ei ’s annihilate θ, we have, for i < j ,

d X̃(Ei , E j ) = −β2dθ(Ei , E j ) ≡ −β2�̃i j . (4.8)

But since �̃ = π∗�, �̃i j = �i j ◦ π. Gathering Eqs. (4.6) and (4.8), we get

d X̃ = 2
n∑

i=1
{[du((Ei )∗)] ◦ π}(E0 ∧ Ei )−

∑

i< j

{[u2�i j ] ◦ π}(Ei ∧ E j ). (4.9)

Taking the exterior product with X̃ , and noting that E0 = −X̃/β,

X̃ ∧ d X̃ =
∑

i< j

{[u3�i j ] ◦ π}(E0 ∧ Ei ∧ E j ). (4.10)

Now, by just noting that

�g(E
0 ∧ Ei ∧ E j ) = π∗(�h((Ei )∗, (E j )∗)),

whence the result follows. �

Example 4.2 (Standard stationary spacetimes)
Let (M0, g0) be any smooth Riemannian n-manifold. On M0, pick a smooth, real-
valued, strictly positive function β0, a smooth 1-form δ0 ∈ �1(M0). The standard
stationary spacetime associated with the data (M0, g0,β0, δ0) is (M, g), whereM :=
R× M0,

g = −β2dπ1 ⊗ dπ1 + δ ⊗ dπ1 + dπ1 ⊗ δ + π∗2g0, (4.11)

β := β0 ◦ π2, δ := π∗2δ0, and π1 [resp. π2] is the projection of M onto the R [resp.
M0] factor. The time orientation is chosen such that ∂t , the lift to M of the standard
vector field d/dt on R, is future-directed. If δ0 ≡ 0, then (M, g) thus defined is said
to be standard static. The following facts are very easily verified.

(a) X = ∂t is a complete Killing timelike vector field on (M, g), with flow given by
φt (s, x) = (t + s, x),∀t, s ∈ R,∀x ∈ M0. The quotient Q of M by this action
can be canonically identified with M0 with projection π = π2.

(b) Each hypersurface t × M0 is a spacelike slice for φ; thus (cf. Corollary 3.5)
(M, g) is distinguishing, and hence stably causal.
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(c) π1 is a temporal function on (M, g), and indeed this is precisely the time function
associated with the section σ : x ∈ M0 �→ (0, x) ∈ M (cf. Theorem 3.2 (4)).

(d) g can be cast in the form (4.3), with

θ ≡ dπ1 − δ

β2
and h ≡ δ0 ⊗ δ0

β2
0

+ g0, (4.12)

from which we deduce that

� = −d(δ0/β
2
0). (4.13)

This example is of course quite illustrative, because stationary regions in the Kerr-
Newman family, for example, assume the general form (4.11) with Boyer-Lindquist
coordinates. Indeed, the authors of [21] have proven the following (cf. their Lemma
3.3).

Theorem 4.3 Suppose (M, g) is distinguishing, and let σ : Q → M be a section
such thatσ(Q) is spacelike. Letϕ : M → R× Q andbe the associated trivialization.
Then (R× Q, (ϕ−1)∗g) is standard stationary. �

It is important to realize that although every distinguishing stationary spacetime
is isometric to a standard stationary spacetime, this isometry is highly noncanonical,
and depends on the choice of a spacelike slice. Therefore, each such isometry behaves
much like a “coordinate system”, and so one must exercise care when extracting
geometric information from it. The following simple example illustrates this.

Example 4.4 Pick any smooth function f : R→ Rwith f (0) = 0, and let ε > 0 for
which

−ε < x < ε⇒ | f (x)| < 1.

Consider the open strip M = {(t, x) ∈ R
2 | − ε < x < ε} with flat metric

g = −dt2 + dx2.

This is static with respect to the complete Killing vector field X = ∂t , which again
we assume future-directed. If we introduce a new coordinate in M given by

ξ = t +
∫ x

0
f (λ)dλ,
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the metric becomes

g = −dξ2 + 2 f (x)dξdx + (1+ f (x)2)dx2. (4.14)

The metric g in the form (4.14) is in standard stationary form, and corresponds to the
choice of section as σ : x ∈ (−ε, ε) �→ (x, f (x)), i.e., the graph of f is the spacelike
slice and ξ is the associated time function. But as f is quite arbitrary, it gives no
interesting geometric information for this spacetime: the standard stationary form is
unduly mystifying.

Of course, with the appropriate choices it can be highly illuminating to deal with the
standard stationary form, as the coordinate treatment of Kerr itself shows. Moreover,
the standard stationary form can be used to perform a detailed analysis of general
stationary spacetimes using an associated Randers type Finsler structure (see, e.g.,
[5]), which has intrinsic interest.

The situation changes when (M, g) is static with respect to X . In this case, we
have the following result, due to M. Sánchez [32]:

Theorem 4.5 The universal covering of any spacetime (chronological or not)
(M, g), static with respect to the Killing vector field X is (canonically isometric
to) a standard static spacetime with respect to the lift of X, and is, in particular,
causally continuous.

Comment on the proof. Adopting our previous notation, the 1-form

θ = −X̃/β2

is well-defined independently of its status as a connection 1-form (which applies only
in the chronological case discussed above) and θ(X) = 1. It is closed when (M, g)

is static. Since we are interested in the universal covering, one can assume without
loss of generality that M is simply connected and θ = dτ for a smooth function
τ ∈ C∞(M) unique up to an additive constant. The level sets of τ are of course
embedded hypersurfaces, and they coincide precisely with the leaves of the integral
foliation of X⊥. Moreover, the condition dτ (X) = 1 implies that each such leaf is a
section for the actionφ. TakingN = τ−1(0), themap (t, x) ∈ R×N �→ φt (x) ∈ M
is a diffeomorphism, and can be used to pullback the metric, thus yielding the desired
isometry. �

Example 4.6 For an example of a static spacetime which is not standard static, take
(M, g) as the 2-dimensional cylinder with the flat metric

g = −dt2 + dx2.

obtained by the isometric identification (t, x) ∼ (t, x + 1) in the Minkowski plane.
Pick any number 0 < a < 1 and

X = ∂t + a∂x .



A Study in Stationary: Geometric Properties of Stationary … 65

The leaves of X⊥ are embedded spacelike hypersurfaces, but they are not sections,
because each orbit will intersect each leaf infinitely many times. This spacetime is
globally hyperbolic, and hence does possess the general bundle structure described
above, with Q � S1. But although the bundle is flat, its holonomy group is Z, i.e.,
it coincides with the fundamental group of M , and this translates into the infinitely
many intersections mentioned above.

5 Static Splitting and Komar Energy of Stationary
Spacetimes

We apply the ideas in the previous sections in the so-called reduction formalism [2,
13, 14, 19]. The first result we quote is crucial for that. Its proof is a long calculation
using O’Neill’s equations of a semi-Riemannian submersion [30], and is carried out
in [9], so we omit it here.

Theorem 5.1 Pick, as in the proof of Proposition 4.1, an h-orthonormal frame
{(E1)∗, . . . , (En)∗} on Q and the unique g-orthonormal frame {E0, E1, . . . , En} on
M such that

π∗(Ei ) ≡ (Ei )∗ (i = 1, . . . , n)

and E0 := X/β. The g-Ricci tensor components of in this frame are given in terms
of the data (θ, u, h) described above by

Ric(E0, E0) =
[ hu

u
+ u2

4
‖�‖2h

]
◦ π, (5.1)

Ric(E0, Ei ) =
{u
2
[(div �h)((Ei )∗)+ 3�h(∇h(log u), (Ei )∗)]

}
◦ π (5.2)

Ric(Ei , E j ) =
[
Rich((Ei )∗, (E j )∗)− 1

u
Hesshu ((Ei )∗(E j )∗)+ u2

2
〈i(Ei )∗�, i(Ei )∗�〉h

]
◦ π,

(5.3)

where  h is the Laplacian operator, Hesshu is the Hessian of u and 〈 . , . 〉h is the
inner product on forms, all relative to h. �

Using these equations we can prove the following Bochner-like splitting theorem
(see Sect. 5 of [31] and references therein for related results).

Theorem 5.2 Suppose that:

(i) (M, g) is globally hyperbolic with compact Cauchy hypersurfaces,
(ii) the complete Killing vector field X is timelike everywhere, and
(iii) Ric(v, v) ≤ 0 for any v ∈ T M timelike.

Then X is parallel.
As a consequence, the universal cover of (M, g) splits isometrically as (R×
N ,−dt2 ⊕ g0), where (N , g0) is a Riemannian manifold.
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Proof Clearly Q is homeomorphic to any given Cauchy hypersurface, and hence
compact. Equation (5.1) together with condition (iii) implies that u is superharmonic
on the compact set Q and hence u is constant by the maximum principle. Rescaling
if necessary we can assume u ≡ 1. Substituting this information back in Eq. (5.1)
allows us to conclude that � = 0. But then d X̃ = 0, and since X is Killing, it is
parallel. This also shows that (M, g) is actually static with respect to X . By Theorem
4.5, the universal covering (M̂, ĝ) of (M, g) is standard static with respect to the
lift X̂ of X , Since the corresponding covering is a local isometry, X̂ is also unit
and parallel. We conclude that (M̂, ĝ) = (R× N̂ ,−dt2 ⊕ ĝ0) and is also globally
hyperbolic. �
Remark 5.3 A couple of comments about Theorem 5.2 are in order:

(a) Condition (iii) in Theorem 5.2 holds, in particular, if (M, g) is Einstein, i.e., if
Ric = c · g, with c ≥ 0, as it will happen with a solution of the vacuum Einstein
field equations with a positive or zero cosmological constant.

(b) Eq. (5.3) implies that if (M, g) is Ricci-flat, then so is (N , g0). Thus, if n ≤ 4
this implies (M, g) is flat, and hence (N , g0) is an n-torus.

Let us now turn to the problem of obtaining a simplified expression for the so-
called Komar energy [25, 34]. The generalized Komar integral expression used here
has been deduced (apart from an overall normalization factor which need not concern
us here) by A. Magnon [27]7 For the rest of this section, I shall make the following
two assumptions:

(1) (M, g) isdistinguishing and stationary, so, in particular, it has thebundle structure
π : M → Q described in the previous section, and we fix a spacelike slice σ :
Q → M for the action φ.

(2) (M, g) is Einstein: Ric = c · g with a fixed c ∈ R. We make no assumptions
about c.

Definition 5.4 A open set R ⊂ Q is said to be an admissible region if

(i) the closure R of R is a submanifold of dimension n with smooth compact
boundary ∂R, and

(ii) |c| ∫R u volh < +∞, i.e., c u is integrable in R. (This is, of course, automatic if
c = 0.)

For such an admissible region R, the Komar energy associated with the data (σ, R)

is

Eσ,R := 1

2

∫

σ(∂R)(≡∂σ(R))

�gd X̃ − c
∫

σ(R)

�g X̃ . (5.4)

Interesting choices of admissible regions involve noncompactness, as the next
result shows. The notation and conventions on the operators d and d† on forms are
as in [19].

7Although the definition (5.4) has been obtained in [27] when analyzing asymptotically anti-de
Sitter metrics of a very specific nature, the way the author obtains the expression is fairly general
and uses only the Einstein character of the metric and the Ricci identity.
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Proposition 5.5 If R ⊂ Q is precompact, then Eσ,R = 0.

Proof If R is compact, we may use Stokes’ theorem to get

∫

∂σ(R)

�gd X̃ =
∫

σ(R)

d �g d X̃ .

But

d �g d X̃ = (−1)n+1 �2g d �g d X̃ = −(−1)n+1+3(n+1)+1 �g d
†d X̃ ≡ − �g ( H X̃),

(5.5)
where H := −(dd† + d†d) is the Hodge Laplacian. (Since X is Killing, d† X̃ ≡ 0,
cf. Equation (2.2) of [19].) Now the Ricci identity (see discussion around Eq. (2.7)
in [19]) for a Killing vector field is

 H X̃ = −2 Ric(X) ≡ −2c X̃ ,

due to our assumption (2). From (5.5) we deduce that

∫

∂σ(R)

�gd X̃ = 2c
∫

σ(R)

�g X̃ ,

which proves the claim. �

Remark 5.6 Note that Proposition 5.5 implies, in particular, that if R, R′ ⊂ Q are
two admissible regions with R ⊂ R′, then

Eσ,R = Eσ,R′ .

This fact is of importance in certain applications, inwhich, given suitable assumptions
on the topology of Q (and hence of M) one may define a notion of energy which
depends only on σ. But I shall not pursue this matter any further here.

Theorem 5.7 If R ⊂ Q is an admissible region, then

Eσ,R =
∫

∂R
�hdu + c ·

∫

R
u volh −

∫

∂σ(R)

θ ∧ ω, (5.6)

where ω is the twist of X, given by (4.4).

Proof Using the same conventions and notation as in the proof of Proposition 4.1,
we may use Eq. (4.9): just note that ∀i, j ∈ {1, . . . , n}, i < j ,

�g (E0 ∧ Ei ) = π∗(�h Ei
∗), (5.7)

�g(E
i ∧ E j ) = E0 ∧ π∗(�h(Ei

∗ ∧ E j
∗ )). (5.8)
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Therefore, Eq. (4.9) gives

�g d X̃ = 2 π∗(�hdu)− E0 ∧ π∗(u2 �h �). (5.9)

Then, using Proposition 4.1 and Eq. (4.1),

1

2
�g d X̃ = π∗(�hdu)− θ ∧ ω. (5.10)

But
∫

σ(∂R)

π∗(�hdu) =
∫

∂R
σ∗π∗(�hdu) (5.11)

=
∫

∂R
(π ◦ σ)∗(�hdu) ≡

∫

∂R
�hdu,

and hence
1

2

∫

∂σ(R)

�gd X̃ =
∫

∂R
�hdu −

∫

∂σ(R)

θ ∧ ω. (5.12)

We also have

�g X̃ = −β �g E0 = −βπ∗(E1
∗ ∧ . . . ∧ En

∗ ) (5.13)

= −π∗(u volh), (5.14)

whence we deduce that ∫

σ(R)

�g X̃ = −
∫

R
u volh . (5.15)

Now, collecting Eqs. (5.12) and (5.15) we obtain the desired result. �

Remark 5.8 Note that we can add a total derivative term to the last integrand in (5.6)
and write it as

Eσ,R =
∫

∂R
�hdu + c ·

∫

R
u volh −

∫

∂σ(R)

dθω, (5.16)

where
dθω = dω + θ ∧ ω

is the covariant derivative with respect to the connection 1-form θ.
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6 General Properties of Stationary Regions

From now on, our focus will shift to the situation where we have a stationary region
S �= M , and start the study of features of its horizons. I shall also drop, for the time
being, the assumption that (M, g) is chronological, adopted in the previous sections.
Instead, I will invoke any causal assumptions insofar as they are needed for a given
proof.

The following definitions will play an important role for the remainder of this
paper.

Definition 6.1 In (M, g):

(a) the future [resp. past] S-horizon is

H+ := ∂ I−(S) ∩ I+(S) [resp.H− := ∂ I+(S) ∩ I−(S)]],

(b) the S-domain of outer communication is

D := I+(S) ∩ I−(S), and

(c) the S-bifurcation set is
� := H+ ∩H−.

(In particular D is open, connected, causally convex and contains S; moreover,H+ ∩
H− = ∅.)

The following proposition summarizes some general structural facts about the
S-horizons and the S-domain of outer communication.

Proposition 6.2 In (M, g):

(i) ∀t ∈ R, φt (D) = D, φt (�) = � and φt (H±) = H±;
(ii) H± ⊂ I±(D) and J±(H±) ∩ D = ∅;
(iii) if (M, g) is globally hyperbolic, then so is (D, g|D). (In this case, (S, g|S) is

stably causal.)

Proof (i)
Given t ∈ R, we have

φt (H±) = φt (∂ I
∓(S)) ∩ φt (I

±(S)) (6.1)

= ∂[φt (I
∓(S))] ∩ φt (I

±(S))

= ∂[I∓(φt (S))] ∩ I±(φt (S))

= ∂ I∓(S) ∩ I±(S) ≡ H±,

where the first and second equalities follow from the fact that φt is a diffeomorphism,
the third equality follows because φt is an isometry and the fourth equality holds
because S is φ-invariant. Moreover, again because φt is a diffeomorphism,
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φt (�) = φt (H+) ∩ φt (H−) ≡ �

from the previous part. The proof that φt (D) = D is entirely analogous.
(ii)
We show that H+ ⊂ I+(D) and J+(H+) ∩ D = ∅, since the time-dual cases are
analogous. The first of these claims is immediate from the definition of H+ and
the easy-to-check fact that I±(D) = I±(S). To establish the second statement, sup-
pose, by way of contradiction, there exists p ∈ J+(H+) ∩ D, and pick r ∈ H+ =
∂ I−(S) ∩ I+(S) with r ∈ J−(p). Now, p ∈ D ⇒ p ∈ I−(q) for some q ∈ S, and
hence r ∈ I−(q) ⊂ I−(S), which is impossible since r ∈ ∂ I−(S) and I−(S) is open.
(iii)
Suppose (M, g) is globally hyperbolic. Then, since D is an open subset of a strongly
causal spacetime it is also strongly causal. It is straightforward to check that for all
p, q ∈ D

J+(p, D) ∩ J−(q, D) = J+(p) ∩ J−(q),

and since the latter set is compact in M, so is the former compact in D. Hence
(D, g|D) is globally hyperbolic, and, in particular, it is stably causal. Pick a temporal
function on D, i.e., a smooth function f : D→ R with timelike gradient. Clearly,
f |S is a time function in S, so (S, g|S) is also stably causal. �

The first key consequence of Lemma 2.2 is a structural theorem for stationary
regions.

Theorem 6.3 Suppose (S, g|S) is chronological. Then the following statements hold.
(i) ∀p ∈ S,

D = I+(Rp) ∩ I−(Rp). (6.2)

(ii) IfH− is non empty, then H+ ⊂ I+(H−).
(iii) The future [resp. past] S-horizonH+ [resp. H−], if non empty, is an achronal

Lipschitz null hypersurface with future [resp. past] inextendible null generators
in (M, g).

(iv) The R-action induced by the flow of XS on S is free and proper, in particular
S is diffeomorphic to R× Q, where Q is the smooth n-dimensional quotient
manifold by this action. If (S, g|S) is distinguishing, then it is stably causal, and
given any smooth function f ∈ C∞(M) with timelike gradient, each maximal
integral curve of XS intersects the (acausal) level hypersurfaces of f exactly
once.

Proof (i)
Let p ∈ S. Since Rp ⊂ S, I+(Rp) ∩ I−(Rp) ⊂ D by the definition of D. Con-
versely, given q ∈ D, then q ∈ I+(r) ∩ I−(s) for r, s ∈ S. From Lemma 2.2 there
exist t, t ′ ∈ R such thatφt (p) ∈ I+(s)⇒ q ∈ I−(φt (p)) andφt ′(p) ∈ I−(r)⇒ q ∈
I+(φt ′(p)). Hence q ∈ I+(Rp) ∩ I−(Rp) and the other inclusion follows.
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(ii)
Let p ∈ H+. From Proposition 6.2(ii), there exists q ∈ D with q � p. From the
definition of D we can assume, without loss of generality, that q ∈ S. Pick r ∈
H−. Again from Proposition 6.2(ii), there exists q ′ ∈ S with r � q ′. Thus, ∀t ∈
R, φt (r)� φt (q ′). But from Lemma 2.2, Rq ′ ∩ I−(q) �= ∅, so for some t0 ∈ R,
φt0(r)� φt0(q

′)� q � p. Now,H− is φ-invariant by Proposition 6.2(i), and hence
φt0(r) ∈ H−, and we conclude that p ∈ I+(H−), which establishes our claim.
(iii)
Again,we focus on the future S-horizonH+, as an analogous proof applies for the past
one. Pick any p ∈ S. Arguing just as in (i), we may conclude that I−(S) = I−(Rp),
and, in particular, ∂ I−(S) = ∂ I−(Rp). By standard properties of boundaries of past
sets of inextendible timelike curves, which is, in particular, an achronal boundary,
∂ I−(Rp) is a Lipschitz null hypersurface with future-inextendible null generators
in (M, g), and so these properties also hold for ∂ I−(S) and hence forH+.
(iv)
This result is just a restatement of the main theorems in Refs. [15, 21], and the
discussion in Sects. 3 and 4. �

Another important consequence of Lemma 2.2 concerns the zeros of the Killing
vector field X .

Theorem 6.4 Suppose (D, g|D) is chronological. Then ∀t ∈ R \ {0}, and ∀p ∈ D,
φt (p) �= p. In particular, X (p) �= 0 ∀p ∈ D, i.e., X has no zeros in D. In addition,
if strong causality holds on H+ ∪ D [resp. H− ∪ D], then ∀t ∈ R \ {0}, and ∀p ∈
H+ ∪ D [resp.H− ∪ D], φt (p) �= p. In particular, X (p) �= 0 ∀p ∈ H+ ∪ D [resp.
H− ∪ D], i.e., X has no zeros inH+ ∪ D [resp.H− ∪ D].

Proof Weshall adapt an idea set forth in the proof ofLemma2.1 ofRef. [11]. Suppose
φt0(p) = p for some t0 ∈ R \ {0}, and some p ∈ D. Then ∀n ∈ Z, φnt0(p) = p.
Pick any q ∈ D. For some r ∈ S, q � r , and for some r ′ ∈ S, r ′ � p. Now, from
Lemma 2.2, r � φs(r ′) for some s ∈ R, and since the orbit of r ′ is timelike there
exists n0 ∈ Z such thatφs(r ′)� φn0t0(r

′)� φn0t0(p) = p.We conclude that q � p.
Analogously, we can show that p � q, and hence p � p, violating chronology at
p. This contradictions establishes the first claim.

If strong causality holds on H+ ∪ D, since (D, g|D) is, in particular, chronolog-
ical, X has no zeros in D from the previous part. Pick p ∈ H+, and again assume
by contradiction that φt0(p) = p for some t0 ∈ R \ {0}. Arguing just as before we
conclude that D ⊂ I−(p). Let α : [0, a)→ M be the future-inextendible (by (iv))
null geodesic generator of H+ starting at p, and pick any number 0 < s0 < a.
From causality, we have that α(s0) �= p. Using the Hausdorff property of M , pick
U � α(s0) and open set such that p /∈ U . Now, the strong causality at α(s0) allows
us to pick a neighborhood V ⊂ U of α(s0) such that any causal curve segment with
endpoints in V is entirely contained in U . Clearly the set I−(p) ∩ V ∩ I+(S) is
nonempty, so V ∩ D �= ∅. Let r ∈ V ∩ D. We have seen that r � p, so choose a
future-directed timelike curve β : [0, 1] → M from r to p. The curve γ : [0, s0 +
1] → M given by
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γ(s) =
{

β(s) if s ∈ [0, 1]
α(t − 1) if s ∈ [1, s0 + 1]

is future-directed causal from γ(0) = r to γ(s0 + 1) = α(s0), and so has endpoints
in V , but γ(1) = p /∈ U , a contradiction. The proof for H− goes by time duality. �

The following consequence onH+ shows how the orbits behave on the horizon.

Corollary 6.5 If strong causality holds onH+ ∪ D, then ∀p ∈ H+, Rp ⊂ H+ and
the curve αp : t ∈ R �→ φt (p) ∈ H+ is either spacelike or a null pregeodesic whose
image coincides with the geodesic null generators ofH+.

Proof The fact that the range ofαp is contained inH+ is immediate fromProposition
6.2(i). From Theorem 6.3 (v), X (q) �= 0, ∀q ∈ H+, and hence αp has everywhere
nonzero tangent vector. Since X is Killing, αp has a definite causal character. If it
were timelike, this would violate the achronality of H+ (cf. Theorem 6.3(iv)), and
thus αp must be either spacelike or null. In the latter case, the achronality of H+
again implies that αp is a null pregeodesic whose image coincides with the geodesic
null generators of H+. �

(Of course, a time-dual version of this result holds forH−.)

Remark 6.6 The situation when the orbits are null is realized, e.g., on the event
horizon in Schwarzschild spacetime or on any cosmological horizon in de Sitter
spacetime, while the spacelike situation occurs on “rotating” horizons in spacetimes
such as slow (a < m) Kerr’s.

The next result also establishes that S-bifurcation sets have similar properties to
the ones in the usual black hole solutions.

Theorem 6.7 Regarding the S-bifurcation set �, the following statements hold.

(i) � ∩ D = ∅.
(ii) � = edge(H+) = edge(H−).
(iii) ∂D = � %̇H+ %̇H+.
(iv) If (S, g|S) is chronological, then� is an acausal set, and for each p ∈ �, there

exists a future-directed, future-inextendible null geodesic ray η : [0, a)→ M
with η(0) = p such that η|(0,a) is a null geodesic generator ofH+. If in addition
� is a (necessarily spacelike) codimension two submanifold of M, then η is a
�-ray. (A time-dual statement holds for H−.)

Proof (i)
p ∈ D ⇒ p /∈ ∂ I+(S) ∪ ∂ I−(S) ⊃ H+ ∩H− ≡ �. Hence, � ⊂ M \ D.
(ii)
We give the proof only for H+, the past case being analogous. Let p ∈ � ⊂ H+.
First, note that if p ∈ H+, then p ∈ I+(S)⇒ p /∈ ∂ I+(S) ⊃ H−, a contradiction.
Therefore, p /∈ H+. We wish to establish that p ∈ edge(H+). To do that, pick any
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open setU � p and p± ∈ U such that p ∈ I+(p−,U ) ∩ I−(p+,U ). Choose a future-
directed timelike curveα : [0, 1] → U such thatα(0) = p−,α(1) = p+ andα(t0) =
p for some t0 ∈ [0, 1]. Now, α already crosses H+ (at p) and it cannot do that
more than once because of the achronality of the latter set. We conclude that α
does not intersect H+, and hence p ∈ edge(H+) as claimed. This establishes that
� ⊆ edge(H+).

Conversely, let q ∈ edge(H+). In particular, q ∈ H+. Pick an open set V � q
and a future-directed timelike curve β : [0, 1] → V not intersecting H+, such that
q− := β(0) ∈ I−(q, V ) and q+ := β(1) ∈ I+(q, V ). Since q ∈ H+ ⊂ ∂ I−(S) and
the latter set is edgeless, wemay assume that β does intersect ∂ I−(S) at a point r , say.
In other words, r ∈ ∂ I−(S) \ I+(S). However, I−(q+, V ) ∩ I+(q−, V ) ∩H+ �= ∅,
and, in particular, I−(q+, V ) ∩ I+(q−, V ) ∩ I+(S) �= ∅, which in turn implies that
q+ ∈ I+(S). Therefore, V ∩ I+(S) �= ∅, and V ∩ (M \ I+(S)) �= ∅. We conclude
that q ∈ ∂ I+(S). In particular, q /∈ I+(S), and hence q− /∈ I+(S). Now, pick any
s ∈ I−(q+, V ) ∩ I+(q−, V ) ∩H+, and choose a future-directed timelike curve γ :
[0, 1] → V such that q− = γ(0), q+ = γ(1), and γ(t0) = s for some t0 ∈ [0, 1]. We
have chosen q± /∈ H+, and hence 0 < t0 < 1. For some 0 < t ′0 < t0, γ(t ′0) ∈ ∂ I+(S),
since γ(t0) = s ∈ H+ ⊂ I+(S) but q− /∈ I+(S). Since γ(t ′0)� s ∈ ∂ I−(S), we con-
clude that γ(t ′0) ∈ ∂ I+(S) ∩ I−(S) ≡ H−. In other words, V ∩H− �= ∅. This last
fact now implies that q ∈ H−, and hence that q ∈ �, thus concluding the proof that
� = edge(H+).
(iii)
Clearly H± ⊂ ∂D, whence � ⊂ ∂D and hence the inclusion � %̇H+ %̇H+ ⊂ ∂D
easily follows. Let p ∈ ∂D ⊂ D ⊂ I+(S) ∩ I−(S). Assume that p /∈ H+ ∪H−.We
wish to show that p ∈ �.

Since D is open, p /∈ D, and hence either p /∈ I+(S) or p /∈ I−(S). However,
if p ∈ I+(S), then p ∈ ∂ I−(S) ∩ I+(S) ≡ H+, a contradiction. It follows that p ∈
∂ I+(S). By an analogous argument, p /∈ I−(S)⇒ p ∈ ∂ I+(S) ∩ ∂ I−(S).

As in the proof of (i i), we pick an open set U � p, p± ∈ U such that p ∈
I+(p−,U ) ∩ I−(p+,U ) and a timelike curve α : [0, 1] → U such that α(0) = p−,
α(1) = p+. From the fact that I+(p−,U ) ∩ I−(p+,U ) ∩ D �= ∅ and by standard
facts about achronal boundaries, we may assume that there exist t±, t0 ∈ [0, 1] for
which α(t0) ∈ D and α(t±) ∈ ∂ I±(S). Clearly p± ∈ I±(S) \ I∓(S), so 0 < t0 < 1,
and t± �= t0. If t0 < t+, then α(t0)� α(t+)⇒ α(t+) ∈ I+(S), an impossibility. We
conclude that t+ < t0. But thenα(t+) ∈ ∂ I+(S) ∩ I−(S) ≡ H−, fromwhichwe con-
clude that U ∩H− �= ∅, and thus that p ∈ H−. Similarly, we show that t0 < t− and
hence p ∈ H+, i.e., p ∈ � as desired.
(iv)
If� is empty, it is vacuously acausal, sowe assume� �= ∅. In particular, bothH± are
then nonempty. Assume that (S, g|S) is chronological, and let α : [0, 1] → M be a
future-directed causal curve such thatα(0),α(1) ∈ �. Now,� ⊂ ∂ I+(S) ∩ ∂ I−(S),
and hence by standard properties of achronal boundariesα is, up to reparametrization,
a segment of a common null generator η of both ∂ I+(S) and ∂ I−(S). The (proof of)
Theorem6.3(iii) shows that η can be taken to be both past and future inextendible, and
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indeed a globally achronal null geodesic line. A simple extension argument shows
that the connected components of ∂ I+(S) and ∂ I−(S) containing η coincide. Let us
denote this common connected component as �. Obviously, � can intersect neither
I+(S) nor I−(S), and, in particular, cannot intersect either S-horizon. Since ∂ I+(S)

and ∂ I−(S) are closed C0 hypersurfaces (cf. Theorem 6.3(iii)) and M is a normal
topological space, there exists an open set U containing � which does not intersect
either H+ or H−, which is impossible since α(0),α(1) ∈ � are in the closure of
H±. This contradiction establishes the first claim.

Finally, let p ∈ �. Pick a background complete Riemannian metric h and a
sequence (γk : [0,+∞)→ M)k∈N of future-directed, future-inextendible null pre-
geodesics such that:

(a) γk[0,+∞) ⊆ H+,
(b) γk(0)→ p as k →+∞,
(c) for each k ∈ N, γk is the h-arc length reparametrized future portion of the (future-

inextendible) null geodesic generator ofH+ passing through γk(0) (cf. Theorem
6.3(iii)).

Then the final claim follows from a standard argument using the Limit Curve Lemma
applied to this sequence, using the achronality ofH+. �

Corollary 6.8 Assume that strong causality holds on H+ ∪ D, and that D ≡ S,
i.e., that X is timelike everywhere on D. Then ∀p ∈ H+, the p-orbit αp : t ∈ R �→
φt (p) ∈ H+ is a null pregeodesic whose image coincides with the geodesic null
generators ofH+. (An analogous statement holds forH−.). Moreover, for all q ∈ �,
X (q) = 0.

Proof The strong causality on H+ ∪ D implies, via Theorem 6.4, that X has no
zeros on H+. Moreover, given p ∈ H+, according to Corollary 6.5 X (p) is either
null or spacelike. If X (p) were spacelike, then for some open set U � p, X (q)

would be spacelike for each q ∈ U . However, U ∩ D �= ∅ by Theorem 6.7(iii), in
contradiction with our hypothesis that X is timelike in D. Then X (p) is null, and the
first claim follows. Now, since 〈X, X〉 = 0 on H+, we will have 〈X, X〉|� ≡ 0 by
continuity. Let q ∈ �. If X (q) �= 0, the q-orbit would be null. However, by Proposi-
tion 6.2(i) this orbit would be contained in �, contradicting Theorem 6.7(iv). Hence
X (q) = 0. �

Theorem 6.9 Assume that (D, g|D) is globally hyperbolic, and let P ⊂ D be a
Cauchy hypersurface thereof. ThenH± = H±(P).8 In particular, any null geodesic
generators ofH+ [resp.H−] is either future and past inextendible or else has a past
[resp. future] endpoint on �. Moreover, � = edge(P), so that if � = ∅, then P is a
partial Cauchy hypersurface in (M, g). Finally, each point p ∈ � is the past [resp.
future] endpoint of a null geodesic generator of H+ [resp.H−].

8Here and hereafter we will use the following standard notation: if A ⊆ M is an achronal set,
then D+(A) [resp. D−(A)] denotes its future [resp. past] Cauchy development, and H+(A) [resp.
H−(A)] its future [resp. past] Cauchy horizon.
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Proof As usual, we shall establish this result for H+, since the other case is analo-
gous. Let p ∈ H+.
Claim: p ∈ D+(P).
To see this, pick an open set U � p and q ∈ U ∩H+. If p ∈ P we are done, hence
assume p /∈ P and U ∩ P = ∅. Now let q± ∈ U be such that q ∈ I−(q+,U ) ∩
I+(q−,U ). From Theorem 6.7(iii), H+ ⊂ ∂D, so we can choose r ∈ I−(q+,U ) ∩
I+(q−,U ) ∩ D. In particular, r ∈ D+(P) ∪ D−(P). But if r ∈ D−(P), then q+ ∈
D−(P), and hence q ∈ H+ ∩ J−(D), contradicting Proposition 6.2(ii). Thus r ∈
D+(P), whence U ∩ D+(P) �= ∅, which establishes the claim. Using Proposition
6.2(ii) again, we conclude that I+(p) ∩ D+(P) = ∅, and therefore p ∈ H+(P). In
other words, H+ ⊂ H+(P).

Conversely, let p ∈ H+(P), and again pick an open set U � p.
First, suppose p ∈ H+(P) ∩ P . In this case, we may again choose p± ∈ U be

such that p ∈ I−(p+,U ) ∩ I+(p−,U ) and q ∈ I−(p+,U ) ∩ I+(p−,U ) ∩ P . Let
α : [0, 1] → U be a future-directed timelike curve such that α(0) = p−, α(1) =
p+ and α(t0) = q for some t0 ∈ [0, 1]. By construction, p+ ∈ I+(P) ⊂ I+(S). If
p+ ∈ I+(S), then p+ ∈ D, and since I+(p) ∩ D+(P) from the definition of a future
Cauchy horizon, p+ cannot be in D+(P) and must be in D−(P) \ P ⊂ I−(P), i.e.,
p ∈ I+(P) ∩ I−(P), in violation of the achronality of P . We conclude that p+ /∈
I−(S). In particular, q �= p+, and hence t0 < 1. Therefore, there exists t0 < s0 < 1
such that α(s0) ∈ ∂ I−(S) ∩ I+(S) ≡ H+. Therefore, U ∩H+ �= ∅.

Finally, assume that p ∈ H+(P) \ P , and shrinking U if necessary we can take
U ∩ P = ∅ andU connected. Ifwe again pick p± ∈ U be such that p ∈ I−(p+,U ) ∩
I+(p−,U ), it is easy to check that p ∈ I+(S), and hence p+ ∈ I+(S). Since I+(S)

is open, there is no loss of generality if we assume that U ⊂ I+(S). If p+ ∈ I−(S)

an argument just like the one in the previous paragraph would give a contradiction
with the achronality ofP , hence p+ /∈ I−(S). Clearly, p ∈ D ⊂ I−(S), and since we
assumedU connected we conclude thatU ∩ ∂ I−(S) �= ∅, and thereforeU ∩H+ �=
∅.

Thus, in any caseU ∩H+ �= ∅, so p ∈ H+, and henceH+ = H+(P). The other
statements follow from standard properties of Cauchy horizons and from the fact (cf.
Theorem 6.7(ii)) that � = edge(H+) = edge(H−). This completes the proof. �

7 Regularity of S-Horizons

After studying the general geometric structure of horizons, we turn to their regularity.
A first regularity result for S-horizons arises when the S-bifurcation set � is empty.

We shall often need to impose a convergence condition on null geodesics. Recall
that a spacetime is said to satisfy the null convergence condition if

Ric(v, v) ≥ 0, for any null vector v ∈ T M.
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(This condition is standard in a number of singularity theorems, and has a natural
physical motivation as manifesting the “attractive” character of gravity.)

Theorem 7.1 Suppose (D, g|D) is globally hyperbolic,� = ∅,H+ �= ∅ and assume
that the null convergence condition holds in (M, g). Then either one inextendible null
geodesic generator of H+ is incomplete, or else H+ is a closed smooth null totally
geodesic hypersurface in (M, g). (An analogous statement holds for H−.)

Proof If � = ∅, then, in particular, (cf. Theorem 6.7(ii)) edge(H+) = ∅, and hence
H+ = H+ is a closed achronal C0 hypersurface with future-inextendible null gen-
erators (by Theorem 6.3(iii)). Using the result and notation from Theorem 6.9, we
have H+ = H+(P), where P is a Cauchy hypersurface for (D, g|D). The standard
properties of the latter set reveal (again because edge(H+) = ∅) that its null geodesic
generators are also past inextendible, and hence inextendible. If each one of these
is complete, they will therefore be null geodesic lines. The conclusion now follows
from Theorem 4.1 of [12]. �

We shall now seek more regularity results for S-horizons when � �= ∅. We will
see that this problem is related, at least for globally hyperbolic spacetimes, with the
regularity of �.

A useful result toward our end is the following, which is a simple consequence
of Theorem 3.2.31 of [33].

Lemma 7.2 Suppose (M, g) is globally hyperbolic and let S ⊂ M be an acausal,
future causally complete9 submanifold with codimension ≥ 2. Then H = ∂ I+(S) \
(S ∪ Cut(S)) is a smooth null hypersurface, where Cut(S) is the set of null cut points
to S along future-directed null geodesics starting at and normal to S. �
(Again, a time-dual of this result for past causally complete submanifolds is
understood.)

To consider connected components, the following simple technical lemma is
useful.

Lemma 7.3 Assume that (D, g|D) is chronological, and let �0 �= ∅ be a connected
component of �. Then there exist (unique) connected components H+

0 of H+ and

H−
0 of H−, respectively, such that �0 = H+

0 ∩H−
0 .

Proof Let p ∈ �0. By Theorem 6.7(iv) and its time-dual, there exists a future-
directed [resp. past-directed], future-inextendible [resp. past-inextendible] null geodesic
ray η+ : [0, a+)→ M [resp. η− : [0, a−)→ M] with η±(0) = p such that η±|(0,a±)

is a null geodesic generator ofH±. LetH+
0 [resp.H−

0 ] be the connected component

of H+ [resp. H−] containing η+(0, a+) [resp. η−(0, a−)]. Clearly p ∈ H+
0 ∩H−

0 ,

which together with connectivity of the sets involved imply that �0 = H+
0 ∩H−

0 as
desired. Uniqueness is obvious. �

9Recall that a subset C ⊆ M is future causally complete (FCC) if for all p ∈ J+(C), the set
J−(p) ∩ C has compact closure inC . A time-dual notion ofpast causally complete (PCC) is evident.
Obviously, every compact set is both FCC and PCC. It is easy to check that every FCC(PCC) subset
of M is closed.
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Our second regularity result is now as follows.

Theorem 7.4 Suppose (M, g) is globally hyperbolic. Let �0 �= ∅ be a connected
component of the S-bifurcation set �. If �0 is a smooth and future [resp. past]
causally complete submanifold of M, then the connected componentH+

0 [resp.H−
0 ]

of H+ [resp. H−] such that �0 = H+
0 ∩H−

0 according to Lemma 7.3 is a smooth
null hypersurface. In particular, if �0 is smooth and compact, then both H±

0 are
smooth.

Proof As usual, we develop the future case, and the other case follows from time-
dual arguments. Clearly, codim(�0)≥ 2. We have to show that H+

0 ⊆ ∂ I+(�0) \
(�0 ∪ Cut(�0)) in order to apply Lemma 7.3. From Proposition 6.2(iii), (D, g|D) is
globally hyperbolic, so in particular Theorem 6.7(iv) �0 is acausal. Let P ⊂ D
be a Cauchy hypersurface for (D, g|D). If we had p ∈ H+ ∩ Cut(�0), then by
standard properties of Cut(�0) we would have in particular (cf. e.g., Proposi-
tion 3.2.28 of [33]) have either more than one maximal null geodesic from �0

to p or else p would be the first �0-focal point along a maximal null geodesic
from �0 to p. However, the achronality of ∂ I−(S) together with the fact that all
null geodesic generators of H+ are future-inextendible in (M, g) (cf. Theorem
6.3(iii)) preclude this. We conclude that H+ ∩ Cut(�0) = ∅. From Theorem 6.9,
H+

0 ⊂ H+ = H+(P) ⊂ ∂ I+(edge(P)) ≡ ∂ I+(�). But then the proof of Lemma
7.3 actually implies that H+

0 ⊂ ∂+(�0), which in turn establishes the desired con-
clusion. �

AlthoughTheorem7.4 gives a regularity criterion for smoothness, unlikeTheorem
7.1 its says nothing about the (mean) convexity properties of the S-horizons. We will
now refine this result in terms of the convexity properties of the S-bifurcation set �.
Recall that a submanifold S ⊂ M of codimension < dim(M) is extremal if its mean
curvature vector is identically zero. Of course, this will happen, in particular, if S is
totally geodesic.

Theorem 7.5 Suppose (M, g) is globally hyperbolic, and satisfies the null conver-
gence condition. Assume also that the null geodesic generators of H+ [resp. H−]
are future-[resp. past-]complete. Let �0 �= ∅ be a connected component of the S-
bifurcation set �. If �0 is smooth, extremal, and compact, and 2 ≤ codim(�0) <

dim(M), then the connected componentH+
0 andH−

0 ofH± such that�0 = H+
0 ∩H−

0
according to Lemma 7.3 are smooth and totally geodesic null hypersurfaces.

Proof We again argue only for H+
0 . Theorem 7.4 implies that H+

0 is a smooth null
hypersurface. Pick any null geodesic generator γ of H+

0 , which by assumption is
future complete. Since�0 is compact, there exists a Cauchy hypersurface C of (M, g)

such that �0 ⊂ I+(C). Since from Theorem 6.9 every null generator of H+
0 when

maximally extended has to intersect C, then every null generator of H+
0 must have

a past endpoint on �0. Thus, apart from an affine reparametrization, there exists a
null future-complete geodesic�0-ray γ : [0,+∞)→ M such that γ|(0,+∞) = γ. We
conclude that for some smooth future-directed null section � of the normal bundle
of �0,
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H+
0 ∪�0 = {exp⊥(t�(p)) : p ∈ �0, t ∈ [0,+∞)},

where exp⊥ denotes the normal exponential map. One can now argue just as in
Proposition 2.2(ii) in [10], using the Raychaudhuri equation, the null convergence
condition and the extremality of�0 to conclude that the null mean curvature θ ofH+

0
is non-positive. But again the fact that its generators are future-complete and the null
convergence condition, Lemma IV.2 in [12] applied to a smooth null hypersurface
implies that θ ≥ 0, so θ ≡ 0. Basic comparison theory for null hypersurfaces, using
again the the null convergence condition, now yields that H+

0 is totally geodesic. �

Another approach to the study of the regularity of the S-horizons is to explore a
little closer the symmetries of (M, g). We proceed to do this in the next section.

8 Killing Horizons

Systematic studies of various properties of Killing horizons, especially bifurcate one,
has been carried out by many authors. We adapt the approach in [4, 22].

Definition 8.1 A connected smooth null hypersurface N ⊂ M is a Killing horizon
if there exists a complete Killing vector field K ∈ �(T M) with flow ψ : t ∈ R �→
ψt ∈ Diff(M) such that

KH1) ψt (N ) ⊂ N ∀t ∈ R,
KH2) 〈K , K 〉|N ≡ 0, and
KH3) K (p) �= 0 ∀p ∈ N .

If the complete Killing vector field K satisfies conditions (KH1)-(KH3), we say K
is adapted to the Killing horizon N .

Remark 8.2 Given a Killing horizon N ⊂ M , there may very well exist more than
one Killing field adapted to N . Consider the following example, adapted from Ref.
[7], pp. 580-581. Take the 3-dimensional Minkowski spacetime, i.e., let M = R

3,
with the flat metric given in standard cartesian coordinates (t, x, y) as

g = −dt2 + dx2 + dy2.

As a null hypersurface take

N := {t + x = 0 : y > 0, t > 0}.

Then the Killing vector fields

K1 = x∂t + t∂x and K2 = y(∂t − ∂x )+ (t + x)∂y

are both adapted to N .
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Proposition 8.3 Every Killing horizon is totally geodesic.

Proof LetN ⊂ M be a Killing horizon, and let K ∈ �(T M) be a complete Killing
adapted toN . Fix a smooth future-directed null tangent vector field Z ∈ �(TN ) on
N . Since TpN = Z(p)⊥ for each p ∈ N , we have that

〈∇V Z ,W 〉 = 〈∇W Z , V 〉 (8.1)

for all V,W ∈ �(TN ). Let KN := K |N . The conditions on K imply that there
exists λ ∈ C∞(N ) such that KN = λZ , and from (8.1) we conclude that

〈∇V KN ,W 〉 = 〈∇W KN , V 〉 (8.2)

for all V,W ∈ �(TN ). But since K is Killing we also have

〈∇V KN ,W 〉 + 〈∇W KN , V 〉 = 0. (8.3)

Equations (8.2) and (8.3) together now give

〈∇V KN ,W 〉 = 0,

and therefore
〈∇V Z ,W 〉 = 0

for all V,W ∈ �(TN ), from which the claim follows. �

Proposition 8.4 LetN ⊂ M be a Killing horizon, and let K ∈ �(T M) be a Killing
field adapted toN . Then there exists a unique smooth function κ : N → R such that

∇K K (p) = κ(p)K (p) (8.4)

∇ fK (p) = −2κ(p)K (p), (8.5)

∀p ∈ N , where fK := 〈K , K 〉. κ is called the surface gravity associated with K and
N . In particular, the orbits of K contained inN are null pregeodesics whose images
coincide with the null geodesic generators ofN . Moreover, κ is constant along each
one of these orbits. Finally, if κ �= 0 along a given orbit of K contained inN , then the
corresponding null generator η is incomplete inN , and if η is in addition extendible
as a geodesic in (M, g), then it has an endpoint on a zero of K .

Proof Note that KN := K |N must be an everywhere nonzero, null vector field tan-
gent to N . For every V ∈ �(T M), we have

〈∇ fK , V 〉 = V 〈K , K 〉 = 2〈∇V K , K 〉 = −2〈∇K K , V 〉,

where we have used the fact that K is Killing in the last equality. We then conclude
that
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− 2∇K K = ∇ fK . (8.6)

Now, given p ∈ N , and v ∈ TpN , we must have

gp(v,∇ fK (p)) = v( fK ) ≡ 0

since fK |N = 0. But TpN ≡ K (p)⊥, from which we deduce that there exists a
unique number κ(p) for which ∇ fK (p) = −2κ(p)K (p). From this and from Eqs.
(8.6), (8.4), and (8.5) follow. To establish the smoothness of κ, pick any Riemannian
metric h on M . We have, recalling that K is everywhere nonzero in N that

κ = h(∇K K , K )

h(K , K )

from which smoothness immediately follows. Equation (8.4) clearly means that the
orbits of K contained in N are null pregeodesics whose images coincide with the
null geodesic generators of N .

The remaining statements are an immediate consequence of the proof of Lemmas
1 and 2 in Ref. [4]. However, those proofs are given in index notation and for the
convenience of the reader we essentially repeat the arguments here in coordinate-free
form. Let V ∈ �(T M). We have

〈∇K∇ fK , V 〉 = K 〈∇ fK , V 〉 − 〈∇ fK ,∇K V 〉 (8.7)

= KV ( fK )− 〈∇ fK ,∇V K 〉 − 〈∇ fK , [K , V ]〉
= KV ( fK )− 〈∇ fK ,∇V K 〉 − [K , V ]( fK )

= V (K ( fK ))− 〈∇ fK ,∇V K 〉.

But since K is Killing, K ( fK ) ≡ 0. Thus

〈∇K∇ fK , V 〉 ≡ −〈∇ fK ,∇V K 〉. (8.8)

Now, let p ∈ N . Using (8.8) and (8.5) we get

〈∇K∇ fK (p), V (p)〉 = 2κ(p)〈K (p),∇V K (p)〉 (8.9)

= κ(p)V ( fK )(p) ≡ κ(p)〈∇ fK (p), V (p)〉
= −2κ(p)2〈K (p), V (p)〉,

and since V is arbitrary we conclude that

∇K∇ fK (q) = −2κ(q)2K (q) (8.10)

for all q ∈ N . Let α : R→ M be an integral curve of K contained inN . Denote by
D/dt the covariant derivative of vector fields along α. Then on the one hand, (8.10)
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yields
D(∇ fK ◦ α)

dt
= (∇K∇ fK ) ◦ α = −2(κ ◦ α)2α′, (8.11)

and on the other hand, using Eqs. (8.4) and (8.5) we get

D(∇ fK ◦ α)

dt
= −2d(κ ◦ α)

dt
α′ − 2(κ ◦ α)α′′ Eq.(8.5)= −2

(
d(κ ◦ α)

dt
+ (κ ◦ α)2

)
α′.
(8.12)

Putting (8.11) and (8.12) together we conclude that

d(κ ◦ α)

dt
≡ 0,

and hence that κ is constant along α. Thus c := (κ ◦ α)(t), ∀t ∈ R is a constant.
Suppose c �= 0. The curve η : (0,+∞)→ M given by

η(s) := α(
1

c
log s)

∀s ∈ (0,+∞) is an incomplete null geodesic whose image coincides with that of
α. Hence, it is the corresponding null geodesic generator of N , and is in partic-
ular inextendible in N . Suppose η is extendible as a geodesic in (M, g), and let
η : (A,+∞)→ M denote the maximal extension, with −∞ ≤ A < 0. Let h be a
Riemannian metric on M . For every s > 0 a direct calculation reveals that

h(η′(s), η′(s)) = 1

c2s2
h(K (η(s)), K (η(s))),

and the continuity of the left-hand side at s = 0 therefore requires that

h(K (η(0)), K (η(0))) = 0,

i.e., K (η(0)) = 0. �
We shall call a Killing horizon N ⊂ M degenerate with respect to an adapted

Killing vector field K if the surface gravity κ associated withN and K is identically
zero throughout N . We then have the immediate consequence of Proposition 8.4.

Corollary 8.5 A Killing horizon N ⊂ M is degenerate with respect to an adapted
Killing field K ∈ �(T M) if and only if all null geodesic generators are complete
geodesics entirely contained in N coinciding with the orbits of K in N . �
Corollary 8.6 Suppose (M, g) is a globally hyperbolic spacetime. Assume that each
connected componentNλ ofH+ is aKilling horizonwith an adapted completeKilling
vector field Kλ ∈ �(T M). Then the following statements hold.

(i) If for each λ, the associated connected componentNλ is degenerate with respect
to Kλ, then � ≡ ∅.
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(ii) If � = ∅, then either some null geodesic generator of H+ is incomplete in
(M, g) or else Nλ is degenerate with respect to Kλ, ∀λ.

Proof (i)
Assume, by way of contradiction, that for each λ, the associated component Nλ is
degenerate with respect to Kλ, and yet there exists p ∈ �. By Proposition 6.2(iii),
(D, g|D) is globally hyperbolic, and using Theorem 6.7(iv), we conclude that there
exists a future-inextendible null geodesic ray η : [0, a)→ M starting at p such that
η|(0,a) is a past-incomplete null geodesic generator of H+, contradicting Corollary
8.5.
(ii)
Suppose� = ∅. Then, by Theorem 6.9(i), each null geodesic generator ofH+ is both
past and future inextendible in (M, g). Suppose any such generator is complete. Then,
given any index λ, and any null generator α inNλ, the final claims in Proposition 8.4
imply that the surface gravity κλ associated withNλ and Kλ must vanish identically
along α, and the proof is complete. �

The following result is an important consequence of Theorem 7.1 of Ref. [6], and
ensures regularity of the S-horizons provided one has adapted isometries.

Theorem 8.7 Suppose (M, g) is a stably causal spacetime satisfying the null con-
vergence condition. Let N ⊂ M be a connected C0 achronal hypersurface with the
following properties:

(i) ∀p ∈ N , there exists a future-complete null geodesic γ : [0,+∞)→ M such
that p = γ(0) and γ[0,+∞) ⊆ N ;

(ii) there exists a complete Killing vector field K ∈ �(T M) with flow ψ : t ∈ R �→
ψt ∈ Diff(M) such that ψt (N ) ⊂ N ∀t ∈ R, 〈K , K 〉|N ≡ 0 and K (p) �= 0,
∀p ∈ N .

Then N is a Killing horizon. In particular, N is a smooth totally geodesic null
hypersurface in (M, g), and K is adapted to N .

Proof All we need to show is that N is smooth. Let Ñ := ∂ I−(N ). Since N is
achronal,N ⊆ Ñ . Condition (i) is clearly satisfied for Ñ as well, so in particular Ñ
is a future horizon in the sense of Ref. [6].

We claim first that ψt (Ñ ) ⊂ Ñ ∀t ∈ R. Note that ∀p ∈ N , p = ψt (ψ−t (p)) ∈
ψt (N ), so in fact

ψt (N ) ≡ N

∀t ∈ R. Thus, for each t ∈ R

ψt (Ñ ) = ∂ I−(ψt (N )) = ∂ I−(N ) ≡ Ñ ,

which proves the claim.
Condition (ii) implies in particular that K |N is a null, everywhere nonzero vector

field. Since we can clearly work with either K or −K , from the connectedness
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of N there is no loss of generality in assuming that K |N is future-directed. Let
p ∈ N . Condition (ii) now implies that the orbit Rp ⊂ N is a future-directed null
pregeodesic. Condition (i) together with the achronality of N then imply that there
exists a number ε > 0 and a future-directed null (affinely parameterized) future-
complete geodesic γ : [−ε,+∞) → M contained in N such that γ(0) = p. Let
tε > 0 be the unique number such thatψtε(p) = γ(ε). SinceN is an open submanifold
of Ñ , there exists a connected open set U � p such that U ∩ Ñ = U ∩N . We can
assume that γ[−ε, ε] ⊂ U ∩N .

Using stable causality, we choose a smooth time function T : M → R such that
∇T is past-directed timelike. The set

S := U ∩ T −1(T (p))

is a smooth spacelike acausal hypersurface in (M, g), and S ∩ Ñ = S ∩N . Then

ψtε(S ∩ Ñ ) ⊂ J+(S ∩ Ñ ).

The latter inclusion means that the conditions of Theorem 7.1 of [6] are all satisfied
and therefore

V := (J−(ψtε(S ∩ Ñ )) \ ψtε(S ∩ Ñ )) ∩ (J+(S ∩ Ñ ) \ S ∩ Ñ ) ⊂ N

is a smooth totally geodesic null hypersurface in (M, g). But clearly p ∈ V , which
proves that N is smooth, as desired. �

Joining Theorems 6.3(iii) and 8.7, together with Corollary 6.8 yields the following
regularity result which is independent of the S-bifurcation set.

Corollary 8.8 Assume that (M, g) is a stably causal spacetime satisfying the null
convergence condition, and that X is timelike everywhere on D. Then either some
null generator of H+ is future-incomplete or else any connected component Nλ of
H+ is a Killing horizon, and hence a smooth totally geodesic null hypersurface in
(M, g), with X adapted to Nλ.

Remark 8.9 Both Theorem 8.7 and Corollary 6.8 have time-dual versions, from
which we deduce that in the conditions of Corollary 8.8, each connected component
ofH− is also aKilling horizon, and hence a smooth totally geodesic null hypersurface
in (M, g) having X as an adapted Killing vector field.

We shall henceforth adopt the following terminology. Given a Killing vector field
K ∈ �(T M), we denote by

Z(K ) := {p ∈ M : K (p) = 0}

the set of its zeros.
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The following lemma is a well-know result by S. Kobayashi [23]. (Although it
is proved therein for Riemannian manifolds, the proof remains valid in the semi-
Riemannian setting, see also [29], Theorem 1.7.12.)

Lemma 8.10 Let K ∈ �(T M) be a complete Killing vector field. Then each con-
nected component of Z(K ) is a smooth, closed totally geodesic submanifold
of M. �

Lemma 8.10, together with Theorems 7.4 and 7.5 now yield the following result.

Corollary 8.11 Let K ∈ �(T M) be a complete, not identically zero Killing vector
field, and let �0 be a nonempty connected component of �. Assume the following.

(1) (M, g) is globally hyperbolic and satisfies the null convergence condition.
(2) H+ [resp.H−] has future-complete [resp. past-complete] null generators.
(3) �0 coincides with a compact connected component Z0 of Z(K ).

Then H± such that �0 = H+
0 ∩H−

0 according to Lemma 7.3 are Killing horizons
and K is adapted to both.

Comment on the proof. The fact that K is adapted to the smooth surfacesH± follows
from a discussion entirely analogous to that in pp. 57–58 in Ref. [22]. �
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Abstract By lifting hypersurfaces in complex hyperbolic spaces to anti-De Sitter
spacetimes, we prove that an isoparametric hypersurface in the complex hyperbolic
space has the same principal curvatures as a homogeneous one.
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angle · Anti-De Sitter spacetime
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1 Introduction

One of the final aims of the research of the authors of this paper is guided by the
following question: to what extent do the symmetries of an object determine its
shape? It is intuitively clear that the existence of symmetries reduces the number of
degrees of freedom in the description of a geometric object and imposes constraints
on how the different parameters defining it are related. The more symmetries an
object has, the more likely it is that this object is uniquely determined. Somewhat
more complicated is to address the following converse problem: if the shape of an
object A is the same as that of an object B with symmetries, can we assert that object
A is the same as B?

In order tomake this broad questionmore concrete,we introduce themathematical
context into which we will tackle the problem. Our area of research is submanifold
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geometry of Riemannian manifolds. Our “symmetric objects” will be the so-called
homogeneous submanifolds. Let M̄ be aRiemannianmanifold, and M a submanifold
of M̄ .We say that M is extrinsically homogeneous, henceforth simply homogeneous,
if for any two points p, q ∈ M there exists an isometry g of M̄ such that g(M) = M
and g(p) = q. Equivalently, M is homogeneous if it is an orbit of a subgroup G
of the isometry group of M̄ , that is, M = G · p, for some p ∈ M̄ . In this paper
we will actually be interested in homogeneous hypersurfaces, that is, homogeneous
submanifolds of codimension one.

A homogeneous hypersurface has a great deal of symmetries, namely, the isome-
tries of G. It is thus conceivable that homogeneous hypersurfaces can be classified
in a broad class of Riemannian manifolds with large isometry groups. (If isometry
groups are small, homogeneous hypersurfaces might not exist at all.) This is true for
example in Euclidean spaces [17], spheres [11], real hyperbolic spaces [4], complex
projective spaces [18], irreducible symmetric spaces of compact type [12], com-
plex hyperbolic spaces, and the Cayley hyperbolic plane [3]. Remarkably, no such
classification is known for quaternionic hyperbolic spaces.

Homogeneous hypersurfaces have two interesting properties related to their shape:
they are isoparametric and have constant principal curvatures. A hypersurface is
called isoparametric if its nearby parallel hypersurfaces have constant mean curva-
ture. A hypersurface has constant principal curvatures if the eigenvalues of its shape
operator are constant. These two concepts are equivalent for spaces of constant cur-
vature. Indeed, this property of their shape is characteristic of homogeneous hyper-
surfaces in Euclidean and real hyperbolic spaces: Segre, for Euclidean spaces [17],
and Cartan, for real hyperbolic spaces [4], proved that isoparametric hypersurfaces
are homogeneous and derived their classification. Surprisingly, this is not true of
spheres, as the examples in [9] show. The classification of isoparametric hypersur-
faces in spheres has been the aim of several recent and important works (see for
example [5] and [14]).

In complex space forms, isoparametric hypersurfaces do not necessarily have con-
stant principal curvatures. A classification of isoparametric hypersurfaces in complex
projective spaces CPn , n �= 15, has been obtained by the second author in [8] as a
consequence of the available classifications in spheres. As a consequence, there exist
inhomogeneous isoparametric hypersurfaces in complex projective spaces.

In this paper we are interested in isoparametric hypersurfaces in complex hyper-
bolic spaces. Their classification has recently been obtained by the authors in [7]:

Theorem 1.1 Let M be a connected real hypersurface in the complex hyperbolic
space CH n, n ≥ 2. Then, M is isoparametric if and only if M is congruent to an
open part of:

(i) a tube around a totally geodesic complex hyperbolic space CH k, k ∈ {0, . . . ,
n − 1}, or

(ii) a tube around a totally geodesic real hyperbolic space RH n, or
(iii) a horosphere, or
(iv) a ruled homogeneous minimal Lohnherr hypersurface W 2n−1, or some of its

equidistant hypersurfaces, or
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(v) a tube around a ruled homogeneous minimal Berndt-Brück submanifold W 2n−k
ϕ ,

for k ∈ {2, . . . , n − 1}, ϕ ∈ (0,π/2], where k is even if ϕ �= π/2, or
(vi) a tube around a ruled homogeneous minimal submanifold Ww, for some proper

real subspace w of gα
∼= C

n−1 such that w⊥, the orthogonal complement of w
in gα, has nonconstant Kähler angle.

Wegive a brief description of the examples (iv) through (vi); see [6] or [7] formore
details. Let g denote the Lie algebra of SU (1, n), the isometry group ofCH n , and let
g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α be a restricted root space decomposition of gwith
respect to some point o ∈ CH n and some point at infinity x ∈ CH n(∞). The point x
determines a maximal flat a ⊂ g0. It turns out that a and g2α are 1-dimensional, and
gα is a complex vector space of complex dimension n − 1, whose complex structure
we denote by J . If w is a real subspace of gα, we define sw = a ⊕ w ⊕ g2α. Then,
sw is a Lie subalgebra of g, and the connected subgroup Sw of SU (1, n) whose
Lie algebra is sw acts isometrically on CH n . We define Ww = Sw · o. Then, the
tubes around Ww are isoparametric hypersurfaces ofCH n . Ifw is a hyperplane, then
Ww is denoted by W 2n−1 and we obtain the examples in (iv) (see also [13]). If w⊥,
the orthogonal complement of w in gα, has constant Kähler angle ϕ ∈ (0,π/2] and
codimension k, then Ww is denoted by W 2n−k

ϕ and we get (v) (see [1]). Recall that
w⊥ has constant Kähler angle ϕ if for any nonzero ξ ∈ w⊥ the angle between Jξ
and w⊥ is always ϕ. If w⊥ does not have constant Kähler angle, then we obtain the
examples in (vi).

Theorem 1.1 implies the classification of homogeneous hypersurfaces in complex
hyperbolic spaces. In fact,

Corollary 1.2 [3, 7] A real hypersurface in CH n is homogeneous if and only if it
belongs to one of the families (i)–(v) in Theorem 1.1.

Thus, if n ≥ 3, there are uncountably many families of inhomogeneous isopara-
metric hypersurfaces in complex hyperbolic spaces.

The aim of this paper is to prove the following result.

Theorem 1.3 Let M be an isoparametric hypersurface in CH n. Then, the principal
curvatures of M are pointwise the same as the principal curvatures of a homogeneous
hypersurface of CH n.

It is clear that, by working out the principal curvatures of the examples appearing
in Theorem 1.1, the conclusion of Theorem 1.3 follows from the classification of
isoparametric hypersurfaces in CH n . The purpose of this paper is to prove Theo-
rem 1.3 by a more direct approach, which avoids several intricate arguments needed
for the proof of Theorem 1.1.

The complex hyperbolic spaceCH n is the quotient of the anti-De Sitter spacetime
H 2n+1

1 ⊂ C
1,n by S1. Let us call π : H 2n+1

1 → CH n the projection map, the so-
called Hopf map. See Sect. 2. Recall that CH n is a Kähler manifold of constant
holomorphic sectional curvature. We denote its Kähler structure by J . The anti-
De Sitter space is, in turn, a Lorentzian manifold of constant negative curvature. It
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can be shown that, if a hypersurface M of CH n is isoparametric, then π−1(M) has
constant principal curvatures. A generalization of a result by Cartan [4] implies that
the number of real principal curvatures of π−1(M) is bounded by two. This allows us
to deduce many interesting properties of M just by using the fundamental equations
of a submersion and some algebraic calculations. It is remarkable, for example,
that the principal curvatures of M at a point coincide with the principal curvatures of
somehomogeneous hypersurface inCH n . In particular, if g(p) denotes the number of
principal curvatures of M at p, and h(p) denotes the number of nontrivial projections
of Jξp onto the principal curvature spaces, where ξp is a normal vector of M at p,
we have

Proposition 1.4 If M is an isoparametric hypersurface of CH n, then h ≤ 3 and
g ≤ 5.

The results obtained by the authors in this paper precede those of [7]. Although
the principal curvatures of isoparametric hypersurfaces in CH n are the same as in
the homogeneous examples, we found inhomogeneous examples of isoparametric
hypersurfaces in CH n . These examples, corresponding to case (vi) of Theorem 1.1,
were first constructed in [6]. It was surprising at themoment to notice that, pointwise,
the principal curvatures of these examples are the same as those of a homogeneous
hypersurface. Nonetheless, the principal curvatures of these examples are noncon-
stant, so they are not homogeneous.

Amajor disadvantage ofworkingwithπ−1(M) instead of M is that the shape oper-
ator of the former is not necessarily diagonalizable. There are exactly four different
types of Jordan canonical forms for this shape operator, described in Sect. 3.Using the
algebraic approach that we describe in this paper we can get Theorem 1.3. However,
we will only deal with Type III points. There are two reasons for this. Firstly, Type III
is considerably more involved than the other types. Once Type III is sorted out, the
other types can be handled with similar arguments. Secondly, Types I, II and IV are
tackled in [7] by this very same method. The arguments in [7] diverge considerably
from our approach here for Type III points. In this paper we get a weaker result, but
the argument is much shorter. The core of this paper is the proof of Theorem 3.4
from where Theorem 1.3 and Proposition 1.4 follow.

2 Anti-De Sitter Spacetime and Complex Hyperbolic Space

In Cn+1 we define the flat semi-Riemannian metric

〈z, w〉 = Re
(
−z0w̄0 +

n∑
k=1

zkw̄k

)
.

It is customary to denote by C
1,n the vector space Cn+1 endowed with the previous

scalar product. The anti-De Sitter spacetime of radius r > 0 is defined as
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H 2n+1
1 (r) = {

z ∈ C
1,n : 〈z, z〉 = −r2

}
.

This hypersurface of C1,n is a Lorentzian manifold of constant negative curvature
c = −4/r2 and dimension 2n + 1. The map S1 × H 2n+1

1 (r) → H 2n+1
1 (r), (λ, z) �→

λz defines an S1-action on H 2n+1
1 (r). The quotient space CH n(c) = H 2n+1

1 (r)/S1

turns out to be a Kähler manifold of real dimension 2n with constant holomorphic
sectional curvature c. The natural projection map π : H 2n+1

1 (r) → CH n(c) is called
the Hopfmap. The complex hyperbolic spaceCH n(c) inherits its metric by requiring
the Hopf map to be a semi-Riemannian submersion with timelike totally geodesic
fibers. We denote by ∇̃ and ∇̄ the Levi-Civita connections of H 2n+1

1 (r) andCH n(c),
respectively. From now on, we will drop r and c in the notations of the anti-De Sitter
spacetime and the complex hyperbolic space.

Let V denote the vector field on H 2n+1
1 defined by Vz = i

√−c z/2 for each
z ∈ H 2n+1

1 . This is a unit timelike vector field that is tangent to the S1-flow. Now, we
have the isomorphism

Tz H 2n+1
1

∼= Tπ(z)CH n ⊕ RVz,

and ker π∗z = RVz . Vectors in ker π∗ are called vertical, and vectors orthogonal
to ker π∗ are called horizontal. The subspace of horizontal vectors of Tz H 2n+1

1 is
a spacelike complex vector subspace of C1,n; this induces a Kähler structure on
CH n which we denote by J . Note that, for a vector field X ∈ �(TCH n) there is a
unique horizontal vector field X L ∈ �(T H 2n+1

1 ), the horizontal lift of X , such that
π∗ X L = X .

Since π is a semi-Riemannian submersion, the fundamental equations of a semi-
Riemannian submersion [15] relate the Levi-Civita connections of H 2n+1

1 and CH n

as

∇̃X L Y L = (∇̄X Y )L +
√−c

2
〈J X L , Y L〉V,

∇̃V X L = ∇̃X L V =
√−c

2
(J X)L =

√−c

2
J X L ,

(1)

for all X , Y ∈ �(TCH n).

Now let M be a real hypersurface in CH n and denote by ξ a (local) unit normal
vector field to M . Then, M̃ = π−1(M) is a hypersurface in H 2n+1

1 that is invariant
under the S1-action, and ξL is a (local) spacelike normal unit vector field to M̃ . We
denote by ∇ the Levi-Civita connection on M or M̃ , as there will not be a chance for
confusion. We also denote by S and S̃ the shape operators of M and M̃ , respectively.
Since M is Riemannian, Sp is diagonalizable for each p. The eigenvalues of Sp are
called the principal curvatures of M at p. The sum of the eigenvalues of Sp, which is
also the trace of Sp, is called the mean curvature at p. We denote by g(p) the number
of principal curvatures of M at p.
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Recall that M is said to be Hopf at p ∈ M if Jξp is an eigenvector of Sp; M is
said to be Hopf if it is Hopf at all points p ∈ M . We also denote by h(p) the number
of nontrivial projections of Jξp onto the principal curvature spaces. Thus, M is Hopf
at p if and only if h(p) = 1.

The Gauss and Weingarten formulas for M̃ are

∇̃X Y = ∇X Y + 〈S̃X, Y 〉ξL , ∇̃XξL = −S̃X.

Thus, (1) implies

S̃X L = (SX)L +
√−c

2
〈JξL , X L〉V, S̃V = −

√−c

2
JξL . (2)

Hence, if λ1, . . . ,λ2n−1 are the principal curvatures of M , then (2) implies that, with
respect to a suitable basis of T H 2n+1

1 , the endomorphism S̃ can be represented by
the matrix ⎛

⎜⎜⎜⎜⎝

λ1 0 − b1
√−c
2

. . .
...

0 λ2n−1 − b2n−1
√−c
2

b1
√−c
2 · · · b2n−1

√−c
2 0

⎞
⎟⎟⎟⎟⎠

, (3)

where bi = 〈Jξ, Xi 〉 ◦ π, i ∈ {1, . . . , 2n − 1}, are S1-invariant functions on (an open
set of) M̃ . In particular, it follows that M and M̃ have the same mean curvature.

3 Isoparametric Hypersurfaces

We say that a hypersurface M of CH n is isoparametric if all sufficiently close
parallel hypersurfaces have constant mean curvature. We take M̃ = π−1(M), which
is a Lorentzian hypersurface of anti-De Sitter spacetime, and note that, since it is
a semi-Riemannian submersion, π maps parallel hypersurfaces of M̃ to parallel
hypersurfaces of M . As we have seen above, a hypersurface and its lift have the
same mean curvature, and thus, if M is isoparametric, parallel hypersurfaces to M̃
have constant mean curvature. It follows from the work of Hahn [10] that M̃ has
constant principal curvatures with constant algebraic multiplicities. However, it is
important to point out that M does not necessarily have constant principal curvatures.
Even more, the functions g and h do not have to be constant.

The rest of this paper is devoted to proving Theorem 1.3.
The shape operator S̃q at a point q ∈ M̃ is a self-adjoint endomorphism of Tq M̃ .

Since M̃ is Lorentzian, S̃ is not necessarily diagonalizable, but it is known to have
one of the following Jordan canonical forms (see for example [16, Chapter 9]):
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I.

⎛
⎜⎝

λ1 0
. . .

0 λ2n

⎞
⎟⎠ II.

⎛
⎜⎜⎜⎜⎜⎝

λ1 0
ε λ1

λ2

. . .

λ2n−1

⎞
⎟⎟⎟⎟⎟⎠

, ε = ±1

III.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 1
0 λ1 0
0 1 λ1

λ2

. . .

λ2n−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

IV.

⎛
⎜⎜⎜⎜⎜⎝

a −b
b a

λ3

. . .

λ2n

⎞
⎟⎟⎟⎟⎟⎠

The eigenvalues λi ∈ R can be repeated and, in case IV we have λ1 = a +
ib,λ2 = a − ib (b �= 0). In cases I and IV, the basis with respect to which S̃q is
represented is orthonormal, and the first vector of this basis is timelike. In cases II
and III the basis is semi-null. A basis {u, v, e1, . . . , em−2} is semi-null if all inner
products are zero except 〈u, v〉 = 〈ei , ei 〉 = 1, for each i ∈ {1, . . . , m − 2}. A point
q ∈ M̃ is said to be of type I, II, III or IV according to the type of the Jordan canonical
form of S̃q .

In his work on isoparametric hypersurfaces in spaces of constant curvature [4],
Cartan proved a fundamental formula relating the curvature of the ambient manifold
and the principal curvatures. A similar argument works for the anti-De Sitter space-
time. In particular, the following consequence can be derived from this fundamental
formula [7, Lemma 3.4]:

Lemma 3.1 Let q ∈ M̃ be a point of type I, II or III. Then the number g̃(q) of
constant principal curvatures at q satisfies g̃(q) ∈ {1, 2}. Moreover, if g̃(q) = 2 and
the principal curvatures are λ and μ, then c + 4λμ = 0.

The objective of this paper is to analyze the eigenvalue structure of the shape
operator of an isoparametric hypersurface inCH n andobtain, as a consequence of this
study, Theorem 1.3. As a corollary, we derive a bound for h and g (Proposition 1.4).
The proof of these facts will be mostly algebraic, and is carried out by analyzing the
possible Jordan canonical forms for the shape operator of M̃ at a point q as described
above.

As stated in the introduction, we only deal with Type III points. For points of
Types I, II and IV the proof is very similar and can be found in [7, Section3].

Proposition 3.2 Let M̃ be the lift of an isoparametric hypersurface in CH n to the
anti-De Sitter spacetime, and let q ∈ M̃ and p = π(q). Then:

(i) If q is of type I, then M is Hopf at p, and g(p) ∈ {2, 3}. The principal curvatures
of M at p are:

λ ∈
(
−

√−c

2
,

√−c

2

)
,λ �= 0, μ = − c

4λ
∈

(
−∞,−

√−c

2

)
∪

(√−c

2
,∞

)
, λ + μ.
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The last principal curvature has multiplicity one and corresponds to the Hopf
vector.

(ii) If q is of type II, then M is Hopf at p, and g(p) = 2. Moreover, M̃ has one
principal curvature λ = ±√−c/2, and the principal curvatures of M at p are
λ and 2λ. The second one has multiplicity one and corresponds to the Hopf
vector.

(iii) If q is of type IV, then M is Hopf at p. Let λ and μ = −c/(4λ) be the real
principal curvatures of M̃ at q (μ might not exist). Then the principal curvatures
of M at p are

λ, μ, and 2a = 4cλ

c − 4λ2
∈ (−√−c,

√−c
)
,

where 2a is the principal curvature associated with the Hopf vector.

Remark 3.3 Proposition 3.2 implies Theorem 1.3 for types I, II and IV.
Indeed, the values given in part (i) correspond to the principal curvatures of a tube

of radius r around a totally geodesic CH k in CH n , where

λ =
√−c

2
tanh

(r
√−c

2

)
, (4)

and 2(n − k) is the multiplicity of μ.
The values obtained in (ii) correspond to the principal curvatures of a horosphere

in CH n .
Finally, the values obtained in (iii) correspond to the principal curvatures of a tube

of radius r around a totally geodesic RH n in CH n , where r is given by the same
formula as in (4).

In the rest of the paper we deal with Type III points. The arguments that follow are
not contained in [7]. Thus, let M be an isoparametric hypersurface of CH n , whose
lift to the anti-De Sitter spacetime is denoted by M̃ . We fix a point q ∈ M̃ and assume
that q is of Type III. We analyze the possible principal curvatures of M at the point
p = π(q).

Theorem 3.4 Let λ be the principal curvature of M̃ at q whose algebraic and
geometric multiplicities do not coincide. Then h(p) ∈ {2, 3} and λ ∈ (−√−c/2,√−c/2

)
.

There exists a number ϕ ∈ (0,π/2] such that the zeroes of the polynomial

fλ,ϕ(x) = −x3 +
(
− c

4λ
+ 3λ

)
x2 + 1

2

(
c − 6λ2

)
x + −c2 − 16cλ2 + 16λ4 + (c + 4λ2)2 cos(2ϕ)

32λ
,

are principal curvatures of M at p. If ϕ = π/2, then h(p) = 2 and g(p) ∈ {2, 3, 4}.
Moreover, we have the following possibilities:

(i) If ϕ = π/2 and g = 4, then 0 �= λ �= ±√−c/(2
√
3), and the principal curva-

tures of M at p are:
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1

2

(
3λ ±

√
−c − 3λ2

)
, λ, μ = − c

4λ
.

The principal curvature spaces corresponding to the first two principal curva-
tures are one dimensional and the Hopf vector has nontrivial projection onto
both of them.

(ii) If ϕ = π/2 and g ∈ {2, 3} then we have two cases:

(a) If λ = ±√−c/(2
√
3) then the principal curvatures of M at p are

0, μ = − c

4λ
= ±

√−3c

2
, λ = ±

√−c

2
√
3

.

The principal curvature space associated with 0 is one dimensional, and the
Hopf vector has nontrivial projection onto the principal curvature spaces
corresponding to the first two principal curvatures. The value λ might not
appear as a principal curvature.

(b) If 0 �= λ �= ±√−c/(2
√
3), then the principal curvatures of M at p are

1

2

(
3λ ±

√
−c − 3λ2

)
, λ or μ = − c

4λ
.

The principal curvature spaces corresponding to the first two principal cur-
vatures are one dimensional and the Hopf vector has nontrivial projection
onto both of them.

(iii) If ϕ ∈ (
0,π/2

)
, then λ �= 0 and the three zeros of the polynomial fλ,ϕ are

different, and also different from λ and −c/(4λ). Therefore, M has g(p) ∈
{3, 4, 5} principal curvatures at p:

the zeroes of fλ,ϕ, λ, μ = − c

4λ
.

The principal curvature spaces corresponding to the first three principal cur-
vatures are one dimensional and the Hopf vector has nontrivial projection onto
all of them. The values λ and/or μ might not appear as principal curvatures.

Proof For the sake of readability we will shorten the notation and write v = Vq . We
also write Jξ instead of Jξp, S̃ instead of S̃q and so on.

Assume that the shape operator S̃ has a type III matrix expression at q with respect
to a semi-null basis {e1, e2, e3 . . . , e2n}, where

〈e1, e1〉 = 〈e2, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0, 〈e1, e2〉 = 〈e3, e3〉 = 1,

S̃e1 = λe1, S̃e2 = λe2 + e3, S̃e3 = e1 + λe3.
(5)

We denote by Tλ(q) and Tμ(q) the eigenspaces ofλ andμ at q. Then Tλ(q) � Re2 and
Tμ(q) are spacelike. As amatter of caution, e2 /∈ Tλ(q), and Tλ(q) � Re2 denotes the



96 J.C. Díaz-Ramos et al.

vectors of Tλ(q) that are orthogonal to e2. For example, e1 /∈ Tλ(q) � Re2 because
e1 and e2 are not orthogonal.

Assume first that there are two distinct principal curvatures λ,μ. By Lemma 3.1
we have c + 4λμ = 0 and thus, λ,μ �= 0. We can write v = r1e1 + r2e2 + r3e3 +
u + w, where u ∈ Tλ � Re2, andw ∈ Tμ(q). Changing the orientation of {e1, e2, e3}
if necessary, we can also assume r2 ≥ 0. We have

−1 = 〈v, v〉 = 2r1r2 + r23 + 〈u, u〉 + 〈w,w〉.

Thus, r2 > 0 and r1 < 0. If u �= 0 we define

e′
1 = e1, e′

2 = −〈u, u〉
2r22

e1 + e2 + 1

r2
u, e′

3 = e3.

Then, the vectors in {e′
1, e′

2, e′
3} satisfy the same equations as in (5), and v = (r1 +

〈u, u〉/(2r2))e′
1 + r2e′

2 + r3e′
3 + w. This shows that we can assume, swapping to

{e′
1, e′

2, e′
3} if necessary, that u = 0.

Thus, we have

−1 = 〈v, v〉 = 2r1r2 + r23 + 〈w,w〉,
S̃v = (r1λ + r3)e1 + r2λe2 + (r2 + r3λ)e3 + μw.

Using (2) we get

JξL = − 2√−c
S̃v = − 2√−c

(
(r1λ + r3)e1 + r2λe2 + (r2 + r3λ)e3 + μw

)
,

and since 2r1r2 = −1 − r23 − 〈w,w〉 we obtain

1 = 〈JξL , JξL〉 = −4

c

(
2r1r2λ

2 + 4r2r3λ + r22 + r23λ
2 + 〈w,w〉μ2

)

= −4

c

(
4r2r3λ + r22 − λ2 + (μ2 − λ2)〈w,w〉) ,

0 = 〈S̃v, v〉 = 2r1r2λ + 2r2r3 + r23λ + μ〈w,w〉 = 2r2r3 − λ + (μ − λ)〈w,w〉.

Hence, we get

r22 + (μ − λ)2〈w,w〉 = − c

4
− λ2,

or equivalently, (
2r2√−c − 4λ2

)2

+
(
2(μ − λ)‖w‖√−c − 4λ2

)2

= 1.
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Since r2 > 0we obtain λ ∈ (−√−c/2,
√−c/2

) \ {0}. Note that, since c + 4λμ = 0
we have −c − 4λ2 = 4λ(μ − λ). Solving the previous equations yields

r2 = sin(ϕ)

√
−c − 4λ2

2
, ‖w‖ = cos(ϕ)

2λ√
−c − 4λ2

, r3 = λ√
−c − 4λ2

sin(ϕ), (6)

for a suitable ϕ ∈ (
0,π/2

]
. The proof now diverges from the one that can be found

in [7].
Assume ϕ �= π/2, that is, w �= 0. We have that the vectors in Tλ(q) � Re2 and in

Tμ(q) � Rw are orthogonal to v and JξL . These vectors project bijectively, via the
Hopf map π∗q , to eigenvectors of the principal curvatures λ and μ respectively, and
they are all orthogonal to Jξ. Let L = Tq M̃ � (

(Tλ(q) � Re2) ⊕ (Tμ(q) � Rw) ⊕
Rv

)
. Then, L is a 3-dimensional space, and thus, h(p) ≤ 3. Furthermore, by (3) we

see that h(p) �= 1; otherwise S̃ would contain at most a 2 × 2 nondiagonal block, and
so q would not be of type III. In fact, L is spanned by the following basis: l1 = r1e1 −
r2e2, l2 = r3e1 − r2e3 and l3 = −〈w,w〉e1 + r2w. We have span{e1, e2, e3, w} =
L ⊕ Rv. After some long calculations, and using (2) and π∗qv = 0, we get that the
matrix expression of the shape operator of M at p restricted to π∗q L , with respect to
the basis {π∗l1,π∗l2,π∗l3} is

⎛
⎝

λ + r2r3 r22 r2(λ − μ)〈w,w〉
1 + r23 λ + r2r3 r3(λ − μ)〈w,w〉
−r3 −r2 μ − (λ − μ)〈w,w〉

⎞
⎠ .

Using the expressions we got for r2, r3, and 〈w,w〉, together with 4λμ + c = 0, we
can calculate the characteristic polynomial of the previous matrix. This polynomial
turns out to be precisely fλ,ϕ, as defined in the statement of Theorem 3.4. This is the
same characteristic polynomial as that of the nontrivial part of the shape operator of
a tube around the submanifolds Ww in Theorem 1.1 (vi) (see also [6]). We have

fλ,ϕ(λ) = − (c + 4λ2)2 sin2(ϕ)

16λ
> 0, fλ,ϕ(μ) = (c + 4λ2)2 cos2(ϕ)

16λ
> 0.

Therefore, neither λ nor μ are eigenvalues of the matrix above. Moreover, the same
argument as in [2, p. 146] proves that the three zeroes of fλ,ϕ are different. Hence,
if ϕ ∈ (0,π/2), M has g(p) ∈ {3, 4, 5} principal curvatures at p: the zeroes of fλ,ϕ,
possibly λ, and possibly μ. Indeed, g(p) = 3 if Tλ(q) � Re2 = Tμ(q) � Rw = 0,
g(p) = 4 if either Tλ(q) = Re1 or Tμ(q) = Rw, and g(p) = 5 otherwise.

We now prove that, in this case (ϕ �= π/2), we have h(p) = 3. The characteristic
polynomial of the shape operator S̃ restricted to L ⊕ Rv is (x − λ)3(x − μ). Define
x1, x2, x3 to be unit eigenvectors of Sp whose corresponding eigenvalues are the three
different zeroes λ1, λ2, λ3 of the polynomial fλ,ϕ, respectively. Set bi = 〈Jξ, xi 〉,
for i = 1, 2, 3. Then, according to (3), the shape operator S̃ of M̃ at q restricted to
L ⊕ Rv with respect to the basis {x L

1 , x L
2 , x L

3 , v} is given by
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⎛
⎜⎜⎜⎝

λ1 0 0 −b1
√−c
2

0 λ2 0 −b2
√−c
2

0 0 λ3 −b3
√−c
2

b1
√−c
2 b2

√−c
2 b3

√−c
2 0

⎞
⎟⎟⎟⎠ .

Using b2
1 + b2

2 + b2
3 = 1, we get the characteristic polynomial of this matrix:

x4 + (−λ1 − λ2 − λ3) x3

+ 1

4
(−c + 4λ1λ2 + 4λ1λ3 + 4λ2λ3) x2

+ 1

4

(
b2
1cλ2 + b2

1cλ3 + b2
2cλ1 + b2

3cλ1 + b2
3cλ2 + b2

2cλ3 − 4λ1λ2λ3
)

x

− c

4

(
b2
1λ2λ3 + b2

3λ1λ2 + b2
2λ1λ3

)
.

Both the previous polynomial and (x − λ)3(x − μ)must coincide, as they come from
the same endomorphism of L ⊕ Rv. Thus, by comparing the linear and independent
terms of these polynomials, we obtain the following linear system in the variables
b2
1, b2

2, b2
3:

c

4

(
(λ2 + λ3)b

2
1 + (λ1 + λ3)b

2
2 + (λ1 + λ2)b

2
3

) − λ1λ2λ3 = −λ2(λ + 3μ),

− c

4

(
b2
1λ2λ3 + b2

3λ1λ2 + b2
2λ1λ3

) = λ3μ,

b2
1 + b2

2 + b2
3 = 1.

The determinant of the matrix of this linear system is c2(λ1 − λ2)(λ3 − λ1)(λ2 −
λ3)/16 �= 0, so the system has a unique solution. Using the relations among λ, μ,
λ1, λ2 and λ3 that the equality of the characteristic polynomials imposes for the
quadratic and cubic terms, namely,

λ1 + λ2 + λ3 = 3λ + μ,

− c

4
+ λ1λ2 + λ1λ3 + λ2λ3 = 3λ(λ + μ),

one can check, after some elementary but long calculations, that the solution to the
linear system above is given by:

b2
i = − 4(λ − λi )

3(λi − μ)

c(λi+1 − λi )(λi − λi+2)
, i = 1, 2, 3, (indices modulo 3).

Since μ and λ are different from any λi , i ∈ {1, 2, 3}, we conclude that bi �= 0 for
all i ∈ {1, 2, 3}, whence h(p) = 3. This finishes the proof of Theorem 3.4 (iii).
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Now assume ϕ = π/2, that is, w = 0 (recall that we are still assuming that S̃ has
two distinct eigenvalues λ,μ �= 0 at q). In this case, (6) yields

r2 =
√−c − 4λ2

2
, w = 0, r3 = λ√−c − 4λ2

.

Then, the vectors of Tλ(q) � Re2 and Tμ(q) are orthogonal to v and JξL , project via
π∗q onto the principal curvature spaces of λ and μ respectively, and these projections
are orthogonal to Jξ. So, in this case, we have h(p) = 2. Defining l1 and l2 as above,
the shape operator of M at p restricted to span{π∗l1,π∗l2}, with respect to the basis
{π∗l1,π∗l2}, turns out to be

(
λ + r2r3 r22
1 + r23 λ + r2r3

)
=

( 3λ
2 − c

4 − λ2

c+3λ2

c+4λ2
3λ
2

)
.

Thus, the eigenvalues of the shape operator of M at p restricted to span{π∗l1,π∗l2}
are

1

2

(
3λ ±

√
−c − 3λ2

)
.

These eigenvalues are different and also different from λ.
For λ = √−c/(2

√
3) we have μ = (

3λ + √−c − 3λ2
)
/2 = √−3c/2, hence

g(p) ∈ {2, 3}, and the principal curvatures are 0 (with multiplicity one),
√−3c/2,

and possibly
√−c/(2

√
3). The possibility g(p) = 2 arises if Tλ(q) = Re1, and in this

case λ is not a principal curvature of M at p. We have g(p) = 3 otherwise. The Hopf
vector has nontrivial projections onto the principal curvature spaces corresponding
to 0 and μ. This corresponds to Theorem 3.4 (iia).

For λ �= √−c/(2
√
3) we get g(p) ∈ {3, 4}. We have g(p) = 3 if Tλ(q) = Re1,

that is, if λ is not a principal curvature of M at p, and g(p) = 4 otherwise. The
principal curvatures (3λ ± √−c − 3λ2)/2 have both multiplicity one, and the Hopf
vector has nontrivial projection onto their corresponding principal curvature spaces.
This corresponds to case (i) if g(p) = 4 and to case (iib) if g(p) = 3. This finishes
the proof if S̃ has two distinct principal curvatures λ and μ.

Finally, assume that M̃ has just one principal curvature λ ≥ 0 at q. In this case,
calculations are very similar to what we have just obtained if w = 0. Thus, we get

λ ∈
(

−
√−c

2
,

√−c

2

)
, r2 =

√−c − 4λ2

2
, r3 = λ√−c − 4λ2

.

Arguing as in the caseϕ = π/2 above, we obtain h(p) = 2 and g(p) = 3 (for dimen-
sion reasons Tλ(q) = Re1 cannot happennow). The principal curvatures of M at p are(
3λ ± √−c − 3λ2

)
/2 and λ. The first two have multiplicity one and the Hopf vector

has nontrivial projection onto their corresponding principal curvature spaces. Now
we can have λ = 0, and then, the other principal curvatures would be ±√−c/2. If
λ �= √−c/(2

√
3), this corresponds to case (iia) again. If λ = √−c/(2

√
3), then we
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also get case (iib), although now
√−3c/2 has multiplicity one and λ = √−c/(2

√
3)

is definitely a principal curvature of M at p. ��
Remark 3.5 Theorem 3.4 implies that, for points of Type III, the principal curvatures
of isoparametric hypersurfaces inCH n and their multiplicities must coincide (at that
precise point) with those of the homogeneous examples in cases (iv) and (v) in
Theorem 1.1, except for some particular cases which we would like to point out here
(we assume the notation given in the proof of Theorem 3.4):

A. Theorem 3.4(iia) for g(p) = h(p) = 2: this happens if Tλ(p) = Re1.
B. Theorem 3.4(iib) if λ is not a principal curvature of M at p, that is, if Tλ(q) =

Re1.
C. Theorem 3.4(iii) for g(p) = h(p) = 3 (this happens whenever Tλ(q) � Re2 =

Tμ(q) � Rw = 0) or if g(p) = 4 and λ is not a principal curvature of M at p
(equivalently, if Tλ(q) = Re1).

The three cases in Remark 3.5 are ruled out by a different method in [7]. Here we
content ourselves with Theorem 3.4 which, together with Proposition 3.2, implies
Theorem 1.3. The multiplicities of these principal curvatures are the same as in the
homogeneous examples except for the three possibilities above. This stronger result
is a consequence of Theorem 1.1 but cannot be proved with the method used in this
paper. Proposition 1.4 is also obtained from Theorem 3.4.
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Future Completion of a Spacetime
and Standard Causal Constructions

Stacey (Steven) G. Harris

Abstract The future completion of a spacetime, equipped with the future chrono-
logical topology, is ripe for consideration of constructions and properties typically
expressed for a spacetime. Joining elements with a causal curve is problematic, but
some progress is reported. We look at trying to do global hyperbolicity in the future
completion M̂ of M ; this works well if M has a compact Cauchy surface, but other-
wise, not so well.

Keywords Causal boundary · Topology of causal boundary · Cauchy surface
Standard static spacetime

1 Introduction

The intent of this note is to examine the extent to which various causal constructions
and properties for spacetimes can be applied to the future completion of a strongly
causal spacetime M , that is to say, to M̂ = M ∪ ∂̂(M), M together with its future-
causal boundary, considered as a topological space using the future chronological
topology.

Although there is good reason to want to consider M together with its full causal
boundary—future- and past-causal boundaries combined in some way, such as with
the Szabados relation or with the technique (also employing the Szabados relation)
found in [3]—looking at M together with just the future-causal boundary has several
advantages: It is simpler, it has known categorical naturalness and universality, and
the future chronological topology provides the remarkable property of future-quasi-
compactness (to be detailed below). Sufficient success in this examination may lead
to expansion of this examination to M with the fuller causal boundary.
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The causal boundary construction was introduced in 1972 with [4]. The categor-
ically natural and universal nature of this construction—in terms of chronological
sets (i.e., sets with something that passes for a chronology relation)—was estab-
lished in 1998 in [5], though this was confined to the future-causal boundary alone
(or, equivalently, the past-causal boundary alone); the amalgamation of the future-
and past-causal boundaries has thus far eluded a categorical treatment. The topology
of the 1972 paper has severe problems, and a far simpler topology—applicable just
to the addition of the future-causal boundary—was suggested in 2000 in [6]; this is
called the future chronological topology. It is the future chronological topology that
will be considered here.

A related but different topology—applicable to the use of the entire causal bound-
ary, future and past amalgamated—has been more recently advocated in [2, 3]; that
is not the focus of this note, but it is alluded to in the last topic examined.

2 Definitions and Properties

The approach followed here is presented in detail in [5, 6]. The basic notion is that
of a chronological set: a set X with a partial order�, called the chronology relation,
satisfying a few axioms: for all x , x �� x ; for some countable subset D ⊂ X , for all
x � y, there is some d ∈ D with x � d � y (we say D is chronologically dense in
X ); and for all x , there is some ywith y � x (alternatively, we could use there is some
y with y � x or x � y, if wewished to consider future and past boundaries together;
but that is notwhatwill be done in this note). Thenwe define past and future operators
as usual, respectively I−(x) = {y | y � x} and I+(x) = {y | x � y}. A past set is
a set P which obeys I−[P] = P , where I−[S] = ⋃

s∈S I−(s); then anything of the
form I−[S] is a past set. A past set P is indecomposable iff it cannot be expressed as
the union of twopast sets, P = P1 ∪ P2, unless P1 ⊂ P2 or P2 ⊂ P1; this is equivalent
to saying that for all x1, x2 ∈ P , there is some y ∈ P with both x1, x2 ∈ I−(y). An
indecomposable past set is also called an IP. A future chain is a sequence {xn}
satisfying, for all n, xn � xn+1; and a point x is a future limit of a future chain
σ = {xn} if I−(x) = I−[σ]. Then every IP P can be expressed as the past of a future
chain σ, P = I−[σ]; and either all such future chains have a future limit, in which
case P is called a PIP, or no such future chains have a future limit, in which case
P is called a TIP or a boundary IP. Nice properties a chronological set might have:
X is past-regular if for all x , I−(x) is an IP (hence, a PIP); X is future-complete if
every future chain has a future limit (i.e., there are no TIPs).

It is evident that every (strongly causal) spacetime is a past-regular chronological
set. What is important is that the construction of the future-causal boundary and the
addition of that to a spacetime can be precisely mirrored for any chronological set,
producing another chronological set. Specifically:
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For any chronological set X , we define the future-causal boundary of X , denoted
∂̂(X), to be the collection of boundary IPs (or TIPs) of X ; and we define the future
completion of X , denoted X̂ , to be the set X̂ = X ∪ ∂̂(X), equipped with the follow-
ing partial order, �X̂ : for x, y ∈ X and P, Q ∈ ∂̂(X),

x �X̂ y ⇐⇒ x � y

x �X̂ Q ⇐⇒ x ∈ Q

P �X̂ y ⇐⇒ for some z � y, P ⊂ I−(z)
P �X̂ Q ⇐⇒ for some z ∈ Q, P ⊂ I−(z)

Then (X̂ ,�X̂ ) is a future-complete chronological set (Theorem 5 in [5]); and if X
is past-regular, so is X̂ . With appropriate precautions, the construction of X̂ from
X is functorial (in a category of chronological sets whose morphisms preserve the
chronology relation and future limits of future chains) into a subcategory of future-
complete chronological sets, and it is left-adjoint to the forgetful functor (Theorem
14 in [5]); in other words, future completion is the unique natural way to imbed a
chronological set into a future-complete one.

The future chronological topology for any chronological set was introduced in
[6]; this is defined not conventionally, in terms of open sets, but in terms of a limit
operator L̂ on sequences (it is the existence of a countable chronologically dense set
in X that makes it possible to use just sequences, not nets). This is most easily stated
for past-regular chronological sets: For any sequence σ = {xn}, x ∈ L̂(σ) iff

(1) for all y � x , y � xn for all n sufficiently large, and
(2) for any IP P � I−(x), for some z ∈ P , z �� xn for all n sufficiently large.

As is shown in [1] (Proposition 5.1), this is equivalent to the following: For any
sequence of sets {An} define the liminf and limsup of the sequence as, respec-
tively, LI({An}) = ⋃∞

n=1

⋂∞
k=n Ak (the set of points in all but finitely many An) and

LS({An}) = ⋂∞
n=1

⋃∞
k=n Ak (the set of points in infinitely many An); then x ∈ L̂(σ)

iff

(1) I−(x) ⊂ LI({I−(xn)}) and
(2) I−(x) is maximal (in the subset relation) among all IPs in LS({I−(xn)}).
Then a set A ⊂ X is closed in the future chronological topology for X iff for all
sequences σ lying in A, L̂(σ) ⊂ A.

The future chronological topology has a number of desirable properties:

(1) Points are closed, and future limits of future chains are precisely the topological
limits (Propositions 2.1 and 2.2 of [6]). The topology need not be Hausdorff,
even for the future completion of a strongly causal spacetime, but this reveals
interesting geometric (or physical) properties of the spacetime (Sect. 2.1 of [1]).

(2) For a strongly causal spacetime, the future chronological topology is precisely
the manifold topology (Theorem 2.3 of [6]).
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(3) The obvious injection X → X̂ is a homeomorphism onto its image, which is
dense in X̂ (Corollary 2.5 of [6]).

(4) For M a strongly causal spacetime, ∂̂(M) is closed in M̂ (Proposition 2.6 of [6]).
(5) The future completion L̂n of Minkowski space Ln is homeomorphic to the stan-

dard conformal embedding into the Einstein static space, En = L1 × Sn−1—
something notably untrue about the original topology proposed in [4] (Proposi-
tion 5.1 of [6]).

(6) Restricted to past-distinguishing chronological setswith purely spacelike bound-
aries (i.e., ∂̂(X) closed in X̂ and no TIPs P ≺X̂ Q—meaning P � Q, as expli-
catedbelow), future completion is categorical, natural, anduniversal in a category
of topological chronological sets (Theorem 2.9 of [6]).

(7) For a largish number of spacetimes M , including multiply warped products with
L1, standard static spacetimes, and stationary spacetimes, the future chrono-
logical topology for M̂ is practicably calculable ([1–3, 6–8]; though [2, 3] are
actually concernedwith a different topology on the full causal boundary, it builds
off the L̂ operator).

But perhaps the most remarkable property of the future chronological topology is
the following: A chronological set X with a topology is future-quasi-compact if all
sequences {xn} with a common element in their past (some x � xn for all n) have a
convergent subsequence. Then we have the following result.

Theorem 2.1 Let X be a past-regular, future-complete chronological set. Then X
is future-quasi-compact in the future chronological topology.

Indeed, for any sequence σ in X there is a subsequence σ∞ such that for any point
α in the common past of σ, L̂(σ∞) contains an element β with I−(α) ⊂ I−(β).

Proof Theorem 5.11 of [1]. �
The following material on a causality relation in X̂ is new.
We can also impute a causality relation ≺X̂ to X̂ : Assuming X to be past-regular,

let us represent any x ∈ X by the PIP I−(x). Then for any IPs P and Q we define

P ≺X̂ Q ⇐⇒ P � Q

where, for instance, for x ∈ X , x ≺X̂ Q is interpreted as meaning I−(x) ≺X̂ Q.
(Note that in case X has a causality relation ≺ on its own—notably, X being a
spacetime—we might well have x ≺X̂ y even though x ⊀ y; however, in case X is
a globally hyperbolic spacetime, this won’t happen.) This comports well with �X̂ ,
in case X has the property (called being past-determined in [5]) that I−(x) ⊂ I−(y)
and y � z implies x � z:

Proposition 2.2 Let X be a past-regular, past-determined chronological set. Then
for A, B,C ∈ X̂ ,

A ≺X̂ B ≺X̂ C =⇒ A ≺X̂ C

A �X̂ B ≺X̂ C =⇒ A �X̂ C

A ≺X̂ B �X̂ C =⇒ A �X̂ C
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Proof The first implication is obvious. For the other two, we have eight cases each
to consider. Let x, y, z be in X and P, Q, R be boundary IPs of X .

If x � y and I−(y) � I−(z), or if I−(x) � I−(y) and y � z, then x � z.
If x � y and I−(y) � R, or if I−(x) � I−(y) and y ∈ R, then x ∈ R (for the

latter hypothesis, pick w ∈ R with y � w and use past-determination).
If x ∈ Q and Q � I−(z), or if I−(x) � Q and Q ⊂ I−(w) for somew � z, then

x � z.
If x ∈ Q and Q � R or if I−(x) � Q and Q ⊂ I−(w) for some w ∈ R, then

x ∈ R.
If P ⊂ I−(w) for some w � y and I−(y) � I−(z), or if P � I−(y) and y � z,

then P ⊂ I−(v) for somev � z (for the former hypothesis, pickvwithw � v � y).
If P ⊂ I−(w) for somew � y and I−(y) � R, or if P � I−(y) and y ∈ R, then

P ⊂ I−(v) for some v ∈ R.
If P ⊂ I−(w) for somew ∈ Q and Q � I−(z), or if P � Q and Q ⊂ I−(w) for

some w � z, then P ⊂ I−(w) for some w � z.
If P ⊂ I−(w) for some w ∈ Q and Q � R, or if P � Q and Q ⊂ I−(w) for

some w ∈ R, then P ⊂ I−(w) for some w ∈ R. �

(Of course, all definitions and properties are time-symmetric, with Ľ acting on
X̌ = X ∪ ∂̌(X) for the past chronological topology.)

3 Results

We will now consider how some causal constructions in spacetimes might be
extended to the future completions of spacetimes.

First, consider any past-regular, past-determined chronological set X . Suppose
c : [a, b] → X̂ is a curve, continuous in the future chronological topology. Let us call
c future-timelike or future-causal, respectively, if for all s < t in [a, b], c(s) �X̂ c(t)
or c(s) ≺X̂ c(t). (And these definitions make sense even for functions defined on
arbitrary subsets of an interval.) Then we have a pair of obvious questions: For
α,β ∈ X̂ ,

(1) does α �X̂ β imply the existence of a future-directed timelike curve in X̂ from
α to β?

(2) does α ≺X̂ β imply the existence of a future-directed causal curve in X̂ from α
to β?

Clearly, these questions hardly even make sense unless X admits curves in the first
place. Our focus, then, should be for X being a strongly causal spacetime. Even in
that case, question (1) can have a negative answer: Consider X being L2 with the
following set removed: {(x, t) | 0 ≤ t ≤ 1 and x ≤ t}; letα = I−((0, 0)) (a TIP) and
β = (1, 2). Then α �X̂ β, but there is no future-directed timelike curve in X̂ from α
to β; there is a future-directed causal curve—the null line segment from I−((0, 0)) to
I−((1, 1)), followed by the vertical line to (1, 2)—but the concatenation of a causal
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curve with a timelike curve in X̂ does not necessarily have a timelike curve between
its endpoints, as this example shows.

But question (2) has a more interesting, if as yet incomplete, answer:

Theorem 3.1 Let M be a strongly causal spacetime satisfying I−(x) � I−(y) =⇒
x ≺ y (so we need not distinguish between ≺M and ≺M̂ ). For any α ≺ β in M̂, there
is a set of points in M̂, with order-type that of the rationals ranging from 0 to 1,
future-causal, going from α to β.

Proof Let I−(α) and I−(β) be generated by timelike curves, respectively cα and cβ ,
inM (an IP P is generated by a causal curve c if I−[c] = P; in case P ∈ ∂̂(M), I−(P)
effectively coincideswith P; more precisely, I−

M̂
(P) ∩ M = P , but the same timelike

curves inM generate both P and I−
M̂
(P)); we can parametrize both of these on [0,∞).

As I−[cα] ⊂ I−[cβ], there is a future-timelike curve c̄ from cα(0) to some cβ(t̄). Let
C be the concatenation C = cβ |[t̄,∞) · c̄, parametrized on [0, 1), so C : [0, 1) → M
is a future-timelike curve from cα(0) to β, with an obvious continuous extension of
C(1) = β. As I−[cα] �= I−[cβ], there is some t21 with cβ(t21 ) /∈ I−[cα].

Let Q = {qn} be any countable dense subset of [0, 1]with q1 = 0, q2 = 1.Wewill
define a map σQ : Q → M̂ which is future-causal. We do this through an inductive
process: we will inductively define points {γQ

n }n≥1 in M̂ with γQ
i ≺ γQ

j for qi < q j ;
then we let σQ(qn) = γQ

n for each n.
We let γQ

1 = α and γQ
2 = β. Suppose {γQ

1 , . . . , γ
Q
n } have been defined, satisfying

γQ
i ≺ γQ

j for qi < q j and alsoC(qk) � γQ
k for all k ≤ n; in particular, each γQ

i is the

future endpoint of a timelike curve ci fromC(qi ) to γQ
i , parametrized on [0,∞), and

for qi < q j there is some t ji with c j (t
j
i ) /∈ I−(γQ

i ). To define γQ
n+1, we locate i and

j among {1, . . . , n} such that qi < qn+1 < q j and no qk comes between qi and qn+1

or between qn+1 and q j , for k ≤ n. As I−[ci ] ⊂ I−[c j ], we have, for each m, there
is a future-timelike curve τm from ci (m) to some c j (pm), and we can take pm ≥ m;
let us parametrize τm on [qi , q j ]. Let us choose the parametrization inductively:

We let τ0 = C |[qi ,q j ]. Suppose τm has been parametrized. We know all of c j |[pm ,∞)

lies in I+(τm(qn+1)), so τm+1 enters I+(τm(qn+1)); then choose the parametrization
of τm+1 so that τm+1(qn+1) ∈ I+(τm(qn+1)). We also know c j (t

j
i ) /∈ I−[ci ]; for m

sufficiently large—say, m ≥ m0—τm+1 enters I+(c j (t
j
i )), so we can also arrange

that τm+1(qn+1) /∈ I−[ci ] (helping us to arrange for cn+1(t
n+1
i )). But we also want

to choose τm+1(qn+1) so that, for some t jn+1, τm+1(qn+1) �� c j (t
j
n+1). Combining the

requirements: We need to locate a point on τm+1 in I+(τm(qn+1)) and in I+(c j (t
j
i ))

(when m ≥ m0) but not in I+(c j (t
j
n+1)) for some t jn+1. So we just need

(a) that where τm+1 enters I+(τm(qn+1)), it isn’t already in I+(c j (t)) for all t , and
(b) likewise for where τm+1 enters I+(c j (t

j
i )).

If criterion (a) were violated, that would mean all of c j would be in the past of
some point on τm+1—including c j (pm+1), the future endpoint of τm+1, clearly an
impossibility. In particular, any t ′ > pm+1 is a candidate for t

j
n+1 by this criterion.
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In consideration of criterion (b): We know that τm+1 starts on ci and thus not in
I+(c j (t

j
i )) (as c j (t

j
i ) /∈ I−(γQ

i )); so τm+1 actually enters I+(c j (t
j
i )) at some point

xm+1. And xm+1 cannot be in I+(c j (t ′)) for any t ′ > t ji , because I+(c j (t ′)) would
then be a neighborhood of xm+1, meaning τm+1 is actually in I+(c j (t ′)), hence, in
I+(c j (t

j
i )), for points of τm+1 preceding xm+1. Thus, any t ′ > t ji will suffice for t jn+1

by criterion (b).
So we take t jn+1 to be any t

′ > max{pm+1, t
j
i }, and we choose the parametrization

on τm+1 so that τm+1(qn+1) is a point in I+(τm(qn+1)) ∩ I+(c j (t
j
i )) that is not in

I+(c j (t
j
n+1)).

Then {τm(qn+1)}m≥0 is a future chain, so it has a future limit; we take that to be
γQ
n+1, with cn+1 generating γQ

n+1 by connecting the points of the future chain; and
we select tn+1

i so that cn+1(t
n+1
i ) is not in I−[ci ] (e.g., take cn+1(t

n+1
i ) = τm0(qn+1)).

Then C(qn+1) � γQ
n+1. We clearly have ci ⊂ I−(γQ

n+1), and with cn+1(t
n+1
i ) not

in I−[ci ] = I−(γQ
i ) we have I−(γQ

i ) � I−(γQ
n+1), so γQ

i ≺ γQ
n+1. We also have

each τm+1(qn+1) ⊂ I−[c j ], and, with c j (t
j
n+1) /∈ I−[cn+1], I−(γQ

n+1) � I−(γQ
j ), so

γQ
n+1 ≺ γQ

j . This completes the inductive step, thus defining all {γQ
n }.

We now have a map σQ : Q → M̂ , obeying q < q ′ =⇒ σQ(q) ≺ σQ(q ′), with
σQ(0) = α and σQ(1) = β. �

What is unclear is whether the various rational-ordered future-causal arcs from α
to β can be fitted together to make a curve. What makes this problematic is that the
construction offered above does not clearly guarantee that the image of the function
σQ has the topological quality of the rationals; it could conceivably have gaps in it.

Is it feasible to consider whether M̂ is, in some sense, globally hyperbolic? Strong
causality is somewhat difficult to consider, as the essence of strong causality is the
existence of a fundamental neighborhood system {Un} about each point, having the
correct property (which we could express, for instance, as no x, y ∈ Un and z /∈ Un

with x � z � y); the problem here is getting hold of a fundamental neighborhood
system for an arbitrary point α in ∂̂(M). If there is no β � α, then we just take
Un = Î+(xn),where {xn} is a future chainwithα as future limit. (Note that in anypast-
regular chronological set X , for all x ∈ X , I+(x) is open in the future chronological
topology on X : If we have {xn} any sequence in X − I+(x) and x∞ ∈ L̂({xn}), then
we must also have x∞ ∈ X − I+(x), since otherwise, x ∈ I−(x∞), so x � xn , i.e.,
xn ∈ I+(x), for n sufficiently large.)

If there is some β � α, then a likely-appearing plan is to find a past-chain {yn} of
points in M approaching α and with {xn} as before, and takeUn = Î+(xn) ∩ Î−(yn)
(with Î± denoting the respective operators in M̂). That, however, won’t quite work
if Î−(yn) fails to be open, which can happen: Consider M = L2 − {(0, t) | t ≥ 0},
and let P = I−(0, 0), a TIP in M , and let xn = (1/n, 0) and y = (−1, 2); then
P ∈ L̂({xn}), but P ∈ Î−(y), while for all n, xn /∈ Î−(y), so M̂ − Î−(y) is not closed
in M̂ . Still, some modification of Un as above may work.
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But if we have a null boundary around α—β � α, Î+(α) = ∅—then it is far less
easy to pick out a fundamental neighborhood system; this is what brought the original
[4] topology to grief (see end discussion in Sect. 5.1 of [6]).

Setting aside the issue of how to cast strong causality in M̂ , we have a strong case
for saying that M̂ is always, in at least a partial sense, globally hyperbolic: we can
emulate the compactness of I+(x) ∩ I−(y) for x � y. Indeed, we have something
even stronger: relative sequential compactness of Î+(x) for any x :

Proposition 3.2 Let X beanypast-regular chronological set (for instance, a strongly
causal spacetime). Then for any x ∈ X, any sequence in I+(x) has a subsequence
which, in X̂ , is convergent.

Proof Any sequence in I+(x) has x in its common past, so Theorem 2.1 yields a
subsequence which converges in X̂ . �

It is well worth noting, however, that this does not imply M̂ has a Cauchy sur-
face: Consider M = L2 − [0,∞) × {0}, and consider the curves c1 : (0,∞] → M̂ ,
c1(s) = (1, s) (with (1,∞) interpreted as the TIP i+) and c2 : (−∞, 0] → M̂ ,
c2(s) = (1, s) (with (1, 0) interpreted as the TIP I−((1, 0))). Then c1 and c2 are
both inextendible timelike curves in M̂ ; but there is no acausal curve that intersects
them both. It is clear that this is not due to any failure of strong causality in M̂ .

And the situation is even worse if we look, as we arguably should, for a Cauchy
surface to intersect any inextendible causal curve in M̂ , even one purely in ∂̂(M):
ConsiderM = L2 and c+, c− the two null linesmaking upI+. Any spacelike curve in
M̂ has a choice between intersecting both c+ and c− and thereby failing to intersect
some endless timelike curves in M , or intersecting all timelike curves in M by
extending to spacelike infinity, i.e., missing both c+ and c−; no acausal curve in M̂
will catch both types of intextendible causal curves (other than the rather exceptional
curve which is all of ∂̂(M), which seems unlikely as a reasonable candidate for
Cauchy surface).

But all is not lost for finding Cauchy surfaces in M̂ .

Theorem 3.3 Let M be a globally hyperbolic spacetime with a compact Cauchy
surface K . Then K is also a Cauchy surface for M̂, i.e., every inextendible causal
curve in M̂ intersects K exactly once.

Proof We first need a lemma:

Lemma 3.4 Let M be a globally hyperbolic spacetime with a compact Cauchy
surface K and c a past-inextendible causal curve in M̂; then, traveling to the past,
c enters M.

Proof of Lemma 3.4 We can find a sequence of points {αk} on c with the properties
that for each k, αk+1 ≺ αk , and that for all α on c, for some k, αk ≺ α; let’s call any
such sequence a past-causal coextensive chain for c. Suppose c remains in ∂̂(M);
then for all k, αk is a TIP in M , so there is a timelike curve σk such that αk = I−[σk];
we can consider each σk extended to the past so that it is past-intextendible in M .
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Then as each σk is also future-inextendible in M (having its future endpoint in
∂̂(M)), it intersects the Cauchy surface K at some point yk . Since K is compact,
there is a subsequence {ki } with {yki } having a limit y ∈ K . Pick a point z � y in
M . Then as I+(z) is a neighborhood of y in M , for i sufficiently large, yki ∈ I+(z),
so z ∈ I−[σki ], i.e., z � αki . It follows that for all k, z � αk (indeed, for all α ∈ c,
z � α). Then by future-quasi-compactness of M̂ , we obtain a subsequence {αmn }
and a point α∞ ∈ L̂ M̂({αmn }). We know that α∞ ∈ ∂̂(M) (since otherwise, it has a
neighborhood in M that c does not enter).

We now show that α∞ is a past extension of c, in violation of the hypothesis that
c is past-inextendible:

We know

(1) for all θ ∈ I−
M̂
(α∞), θ � αmn for n sufficiently large

(2) for any IP P ⊃ I−
M̂
(α∞), if for all θ ∈ P , θ � αmn for infinitely many n, then

P = I−
M̂
(α∞)

We want to know if the same holds true for any other past-causal coextensive chain
{βi } for c. Consider (1) for {βi }: For any θ ∈ I−

M̂
(α∞), for all i , there is some n with

αmn ≺ βi ; we know (from (1) for {αmn }) that θ � αmn , from which it follows that
θ � βi . Now consider (2) for {βi }: For any IP P ⊃ I−

M̂
(α∞), suppose for all θ ∈ P ,

θ � βi for infinitely many i ; then for all n, there is some i with βi ≺ αmn , from
which it follows θ � αmn . We conclude, via (2) for {αmn }, that P = I−

M̂
(α∞).

Since we have α∞ ∈ L̂ M̂(σ) for any past-causal coextensive sequence σ for c,
α∞ is a past extension of c, contrary to hypothesis. Ergo, c must enter M . �

And a second lemma:

Lemma 3.5 Let M be a globally hyperbolic spacetime and c a causal curve in M.
Then c cannot have a past endpoint on ∂̂(M).

Proof of Lemma 3.5 Let c : (t−, t+) → M be future-directed, and suppose we have
P = limt→t− c(t) with P ∈ ∂̂(M). Then we can represent P as P = I−[σ] for a
future-directed timelike curve σ : (s−, s+) → M . Note for any sequence {tn} →
t−, we have P ∈ L̂({c(tn)}), so in particular, for all x ∈ P , x ∈ I−(c(tn)) for n
sufficiently large; it follows that for all x ∈ P , x ∈ I−(c(t)) for all t . Thus, for
all t > t− and s < s+, Js,t = J−(c(t)) ∩ J+(σ(s)) �= ∅, as it includes σ|(s,s+). By
global hyperbolicity, each Js,t is compact, so there is a point p ∈ M that lies in⋂

t>t−
⋂

s>s+ Js,t .
We use the future chronological topology to show p is a past endpoint of c: For

any sequence {tn} → t−, for any x � p, x � c(tn) for n sufficiently large (since p ∈
Js,tn , any s); in other words, I

−(p) ⊂ LI({c(tn)}). Note that P ⊂ I−(p), since for all
s < s+, σ(s) ≺ p, as p ∈ Js,t (for any t). And finally note that I−(p) ⊂ LS({c(tn)}),
as p ∈ Js,tn (any s). Then it follows, since P ∈ L̂({c(tn)}), that I−(p) = P . Thus,
I−(p) ∈ L̂({c(tn}) But the only way for I−(p) to be in L̂({c(tn}) for all sequences
{tn} → t− is for p to be a past endpoint of c in the manifold topology. But, as ∂̂(M)
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is closed in M̂ , that is incompatible with c also approaching a point in ∂̂(M) for its
past endpoint. �

Now let c : (t−, t+) → M̂ be an inextendible causal curve. By Lemma 3.4, for
some t0 ∈ (t−, t+), c, going to the past, exits ∂̂(M) at c(t0). By Lemma 3.5, once
that happens, c cannot re-enter ∂̂(M), i.e., c|(t−,t0) lies in M . Also by Lemma 3.5,
c(t) cannot be in M for t > t0; therefore, c|[t0,t+) lies in ∂̂(M) and c|(t−,t0) lies in M .
Thus, c being inextendible in M̂ implies c|(t−,t0) is inextendible in M . Then with K
a Cauchy surface in M , there is some t1 ∈ (t−, t0) with c(t1) ∈ K . �

Due to the inherent interest in putting a topology on the full causal boundary—
future- and past-causal boundaries combined in an appropriate manner—and the
notable research contained in this direction by what might be called the Andalusian
school of researchers, seen in such publications as [2, 3], it is worth noting an
important context in which the “Andalusian” topology and the future chronological
topology coincide: standard static spacetimes. Somore definitions are called for now.

The most cogent way to combine IPs and IFs appears to be by using the Szaba-
dos relation (referencing [11, 12]), introduced in 1988: For P an IP and F an
IF, define P ∼Sz F iff P is contained in the common past of F and is max-
imal (using subset relation) among such IPs, and F is contained in the com-
mon future of P and is maximal among such IFs; we will say that P and F
are Szabados mates of one another, if this relation obtains between them, and
that (P, F) is a Szabados pair. It is easy to check that for any point x in a
strongly causal spacetime, I−(x) and I+(x) are Szabados mates, and neither has
any other Szabados mates. Although one might consider ∂̂(M) ∪ ∂̌(M)/ ∼Sz as the
causal boundary, Marolf and Ross in 2003 ([10]) adopted a perhaps more sophis-
ticated notion: ∂̄(M) = {(P, F) ∈ ∂̂(M) × ∂̌(M) | P ∼Sz F} ∪ {(P,∅) ∈ ∂̂(M) ×
{∅} | P has no Szabados mate} ∪ {(∅, F) ∈ {∅} × ∂̌(M) | F has no Szabados mate};
and we can consider the causal completion of M , M̄ = M ∪ ∂̄(M), in a unified man-
ner by treating each point of x as the Szabados pair (I−(x), I+(x)), i.e., expanding
that collection of Szabados pairs in the definition of ∂̄(M) to {(P, F) | P ∼Sz F}.
Then the Andalusian topology (by which I mean that found in [2, 3]) defines a limit
operator L̄ on sequences in M̄ by L̄({(Pn, Fn)}) contains
(1) (P, F) iff P ∈ L̂({Pn}) and F ∈ Ľ({Fn})
(2) (P,∅) iff P ∈ L̂({Pn}) and Ľ({Fn}) = ∅
(3) (∅, F) iff L̂({Pn}) = ∅ and F ∈ Ľ({Fn})

We need notation for working in a standard static spacetime: Let c : [α,ω) → N
be a unit-speed curve in a Riemannianmanifold (N , h). Then the Busemann function
associated to c is bc : N → R defined by bc(x) = lims→∞(s − d(x, c(s))), where
d is the distance function on N (this function is allowed to have the constant value
∞). Let M = N × L1 be the product spactime. For any f : N → R (possibly ∞-
valued), let P( f ) be the past of the graph of f , i.e., P( f ) = {(x, t) ∈ M | t < f (x)}
(so P( f ) = M in case f = ∞); similarly, F( f ) is the future of the graph of f .
For c : [α,ω) → N a unit-speed curve, let ĉ : [α,ω) → M be the future-null curve
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ĉ(s) = (c(s), s); then P(bc) is the IP I−[ĉ]. Dually, for č(s) = (c(s),−s), F(−bc) is
the IF I+[č].

Note that the future chronological topology on M̂ for M = N × L1 has P ∈
L̂({Pn}), with IPs P and Pn expressed via Busemann functions as P = P(b) and
Pn = P(bn), iff b ≤ lim infn bn and b is maximal among Busemann functions b′
satisfying b′ ≤ lim supn bn (and dually for IFs); see Sect. 2 of [1].

Lemma 3.6 Let (N , h) be a Riemannian manifold and M = N × L1 the product
spacetime. Let c : [α,ω) → N be a unit-speed curve, and let P = P(bc); then the
following are equivalent:

(1) P has a Szabados mate
(2) ω < ∞
(3) bc is bounded above.

Proof From Proposition 4 in [7], we know ω < ∞ iff bc is bounded above.
Consider ω < ∞. Let F = F(2ω − bc); then P ∼Sz F . On the other hand,

consider ω = ∞; then (x, t) is in the common future of P iff for all y, (x, t) �
(y, bc(y)), i.e., for all y, t − bc(y) > d(x, y), i.e., for all y, t > d(x, y) + bc(y).
But since bc is unbounded above, this cannot be true for any finite t ; thus, P has no
Szabados mate. �

Theorem 3.7 Consider a sequence of IPs {Pn}n in M = N × L1 with Pn ∼Sz Fn

(where we allow Fn = ∅). Suppose P ∈ L̂({Pn}n); then either P has no Szabados
mate and Ľ({Fn}n) = ∅, or P has a Szabados mate F and F ∈ Ľ({Fn}n).

In other words, the future chronological topology on M̂ coincides with the Andalu-
sian topology on M̄, restricted to M̂.

Proof We can express the IPs concerned as P = P(b) and Pn = P(bn) using Buse-
mann functions. Then Fn = F( fn) for fn = 2ωn − bn with ωn = supN (bn) (which
works even if Pn is unbounded, for then ωn = ∞, and F(∞) = ∅). Similarly, let
f = 2ω − b with ω = supN (b), and F = F( f ) is the Sabados mate of P (if it has
one). We have b ≤ lim infn→∞ bn and b is maximal among Busemann functions b′
satisfying b′ ≤ lim supn bn . This gives us

f = 2ω − b

≥ 2ω − lim inf
n

bn

= lim sup
n

(2ω − bn)

= lim sup
n

(2(ω − ωn) + fn)

We cannot have ω < lim infn ωn , as, for consider: We can without harm assume each
Pn is the past of a point (xn,ωn), and that {ωn} has a limit ω∞. Assume ω∞ < ∞.
As {Pn} have some point (x0, t0) in their common past, all xn are within ω∞ − t0
of x0; hence, we can assume {xn} is a Cauchy sequence. Let c : [α,ω∞) → N be
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a unit-speed curve joining {xn} by (almost) minimizing arcs; then bc violates the
maximality of b. With ω∞ = ∞, create a violation similarly with {xn} divergent.
It follows that f ≥ lim supn fn . (This manifestly works for ω infinite or finite.) We
next need to show f has the requisite minimality among negatives of Busemann
functions.

For ω finite, for any f ′, the negative of a Busemann function, obeying f ≥ f ′ ≥
lim infn fn , we obtain

b = 2ω − f

≤ 2ω − f ′

≤ lim sup
n

(2ω − fn)

= lim sup
n

(2ω − 2ωn + bn)

≥ 2(ω − lim inf
n

ωn) + lim sup
n

bn

Wecannot haveω > lim infn ωn , for thatwould admit (x, t) ∈ P that violates (x, t) ∈
Pn for infinitely many n; in other words, ω = lim infn ωn . Therefore, we have b ≤
2ω − f ′ ≤ lim supn bn , and the maximality of b gives us b = 2ω − f ′, or f ′ = f .
This is the required minimality for f so that F ∈ Ľ({Fn}n).

For ω = ∞, we need to show lim infn fn = ∞. Since b is unbounded above,
for all K > 0, there is some xK with b(xK ) > K . This forces bn(xK ) > K for all
n sufficiently large (from P lying in LI({Pn}n)); say, bn(xK ) > K for n > nK . It
follows that fn > K for all n > nK , since infN ( fn) = supN (bn). And from that we
learn lim infn fn = ∞, as desired. �

And the proof of Theorem 3.7 yields this technical result:

Proposition 3.8 In a product spacetime M = N × L1, suppose we have IPs P =
P(b) and {Pn = P(bn)}n with P ∈ L̂({Pn}n). Let ω = supN (b) and ωn = supN (bn).
Then ω = lim infn→∞ ωn. �
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Some Criteria for Wind Riemannian
Completeness and Existence of Cauchy
Hypersurfaces

Miguel Ángel Javaloyes and Miguel Sánchez

Abstract Recently, a link between Lorentzian and Finslerian Geometries has been
carried out, leading to the notion of wind Riemannian structure (WRS), a general-
ization of Finslerian Randers metrics. Here, we further develop this notion and its
applications to spacetimes, by introducing some characterizations and criteria for
the completeness of WRS’s. As an application, we consider a general class of space-
times admitting a time function t generated by the flow of a complete Killing vector
field (generalized standard stationary spacetimes or, more precisely, SSTK ones) and
derive simple criteria ensuring that its slices t = constant are Cauchy. Moreover, a
brief summary on the Finsler/Lorentz link for readers with some acquaintance in
Lorentzian Geometry, plus some simple examples in Mathematical Relativity, are
provided.

Keywords Globally hyperbolic spacetime · Killing vector field · Stationary and
SSTK spacetimes · Finsler metrics · Randers and kropina metrics · Zermelo
navigation · Wind finslerian structure
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1 Introduction

In the last years, a fruitful link between Lorentzian and Finslerian geometries has
been refined more and more; indeed, ramifications to different areas such as control
theory, have also appeared. In this framework, our purpose here is twofold. First, a
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brief summary on the subject for an audience of Lorentzian geometers is provided.
Then, a new application for Lorentzian Geometry will be obtained. Namely, we will
consider a big class of spacetimes admitting a time function t (generated by the flow
of a complete Killing vector field K = ∂t ), and we will characterize when its slices
t = constant are Cauchy hypersurfaces, providing also simple criteria that ensure
this property.

The refinements of the Lorentz/Finsler link can be understood in three steps:

(1) First, consider a product R × M endowed with a standard Lorentzian product
metric g = −dt2 + g0 (see below for more precise notation and definitions).
Clearly, all the properties of the spacetime will be encoded in the Riemannian
metric g0. Even more, if one considers a standard static metric g = −�dt2 + g0
(� > 0), then all the conformal properties of the spacetime can be studied in
the conformal representative g/� and, thus, they are encoded in the Riemannian
metric gR = g0/� (see for example [4, Theorem 3.67] or [15] and references
therein).

(2) Second, the previous case can be generalized by allowing t-independent cross-
terms, i.e., the stationary metric g = −�dt2 + 2ωdt + g0 (� > 0, ω 1-form on
M). In this case, the conformal properties are provided by a Randers metric
(formula (8) below), which is a special class of Finsler metric characterized
by a Riemannian metric gR and a vector field W with |W |R < 1 (according to
the interpretation of Zermelo problem, [2, Prop. 1.1]). This correspondence is
carried out in full detail in [9] and many related properties can be seen in [7, 8,
11, 12, 16].

(3) Finally, suppress the restriction � > 0 in the previous case (SSTK splitting).
Now, the conformal structure is still characterized by a pair (gR, W ), but the
restriction |W |R < 1 does not apply. From the Finslerian viewpoint, this yields
a wind Riemannian structure (WRS), which is a generalization of Randers met-
rics; even more, this also suggests the subsequent generalization of all Finsler
metrics: wind Finslerian structures. Such new structures were introduced and
extensively studied in [10] and further developments and applications for Fins-
lerian geometry have been carried out in [17, 20].

The study of SSTK splittings in [10] includes quite a few topics. Among them, rel-
ativists may be interested in a link between the well-known (and nonrelativistic)
problem of Zermelo navigation and the relativistic Fermat principle; indeed, this
link allows one to solve both problems beyond their classical scopes; moreover, it
shows connections with the so-called analogue gravity [3]. On the other hand, global
properties of causality of SSTK spacetimes are neatly characterized by their Finsle-
rian counterparts. So, the exact step in the ladder of causality of SSTK spacetimes
is described sharply in terms of the associated WRS. In particular, the fact that the
slices t = constant are Cauchy hypersurfaces becomes equivalent to the (geodesic)
completeness of the WRS.

Even though such results are very accurate, a difficulty appears from a practical
viewpoint. WRS’s are not standard known elements, as they have been introduced
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only recently. Therefore, to determine whether they satisfy or not some geometrical
propertiesmay be laborious. Due to this reason, our purpose here is to introduce some
simple notions and results which allow one to check easily properties of WRS’s.
As a first approach, we will focus on results about completeness because, on the
one hand, completeness has a direct translation to spacetimes in terms of Cauchy
hypersurfaces and, on the other, it is a basic natural property with applications to
Finslerian Geometry (see [17]). However, the introduced tools are expected to be
applicable for other properties too, and some hints are made in the examples at the
end.

Our task is organized as follows. In Sect. 2, we give an overview on the Lorentz/
Finsler correspondence for readers with some knowledge on Lorentzian Geometry
(compare with the overview in [17], written for a more Finslerian audience). More
precisely, in Sect. 2.1, we describe the class of spacetimes to be studied (general-
ized standard stationary or, more precisely, SSTK spacetimes). The generality of this
class, which includes many typical relativistic spacetimes, is stressed, and the way
to obtain a (nonunique) SSTK splitting is detailed. Then, in Sect. 2.2, the relation
between the conformal classes of spacetimes and the properties of associated Fins-
lerian structures is introduced gradually, with increasing generality in the Finslerian
tools: Riemannian/Randers/Randers-Kropina/WRS. In Sect. 2.3, as a toy application
of the correspondence, we consider a causally surprising example of static space-
time constructed recently by Harris [15], and we show its Finslerian counterpart,
explaining the corresponding curious properties which appear in the distance of the
associated Finsler manifold.

Section3 makes both, to introduce a geometric element for the practical study of
WRS’s and to prove our main result on completeness. Sect. 3.1 explains the precise
technical notions on WRS balls, geodesics and completeness, extracted from [10].
Then, in Sect. 3.2 we introduce a new key ingredient, the extended conic Finsler
metric F̄ associated with any WRS. We emphasize that, as analyzed in [10], any
WRS � determines both, a conic Finsler metric F and a Lorentz–Finsler one Fl .
The former differs from a standard Finsler metric only in the fact that its domain is
just an open conic region of the tangent bundle (this is a possibility with independent
interest, see [18]). However, our aim here is to show that, for any such �, the conic
metric F admits a natural extension F̄ to the boundary of the conic region; moreover,
F̄ has an associated exponential, distance-type function (called here F̄-separation),
Cauchy sequences, etc. Then, in Sect. 3.3, we give our main result, Theorem 3.23,
which contains a double goal: to prove that the completeness of the WRS � is fully
equivalent to the completeness of F̄ , and to show that F̄ satisfies a set of properties
in the spirit of Hopf–Rinow Theorem. These properties will allow us to determine if
F̄ and, then, �, are complete.

In Sect. 4, we derive some applications using the previous Theorem 3.23. In
Sect. 4.1, some simple criteria for checking whether a WRS is complete or not are
provided. These criteria are stated in both, natural WRS elements and the original
SSTK metric. So, one obtains also criteria which ensure whether the slices of an
SSTK spacetime are Cauchy, in an easily manageable way. Finally, Sect. 4.2 ends
with some further concrete examples and prospects in Mathematical Relativity.
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2 A Lorentzian Overview on Wind Riemannian Structures

2.1 Revisiting SSTK Spacetimes

We will follow standard conventions and background results as in [4, 23]. In
particular, a spacetime (L , g) is a time-oriented connected Lorentzian manifold
(−,+, . . . ,+) of dimension n + 1, n ≥ 1. Lightlike vectors v ∈ T L will satisfy
both, g(v, v) = 0 and v �= 0 (while null vectors would be allowed to be equal to 0)
so, causal vectors, being either timelike or lightlike, also exclude 0. Except when
otherwise specified, (L , g) will also be stably causal, so that it admits a temporal
function t : L → R according to [5, 27] (that is, t is smooth and onto, with timelike
past-directed gradient ∇t and, in particular, a time function). Let us start with a sim-
ple result when a vector field K ∈ X(L) complete and transversal to the slices of t
can be chosen.

Proposition 2.1 Let t be a temporal function for (L , g) and K ∈ X(L) complete
with flow ϕ : R × L → L such that dt (K ) ≡ 1. Putting M := t−1(0), the map

� : R × M → L , (t̄, x) �→ ϕt̄ (x)

is a diffemorphism such that: (a) t ◦ � : R × M → R agrees with the natural pro-
jection and (b) t ◦ � is also a temporal function for the pullback metric �∗(g) and
time orientation induced on R × M via � (which will be denoted simply as t). Then,
�∗(∂t ) = K and

�∗(g) = −�Ldt2 + ωL ⊗ dt + dt ⊗ ωL + gL
0 , (1)

where �L , ωL and gL
0 are, respectively, the smooth real function g(K , K ) ◦ �, a

one form whose kernel includes ∂t and a positive semi-definite metric tensor whose
radical is spanned by ∂t , all of them defined on R × M.

Proof � is onto because z = �(t (z),ϕ−t (z)(z)) for all z ∈ L , andone-to-one because
the equality dt (K ) ≡ 1 forbids the unique integral curve of K through z to close.
That equality also implies �({t0} × M) = t−1(t0) plus the transversality of K and
the slices t−1(t0), so that � becomes a (local) diffeomorphism, and all the other
assertions follow easily. �

As already done for the natural projectionR × M → R, the diffeomorphism � will
be omitted with no further mention in the remainder.

Remark 2.2 (1) As any timelike vector field T satisfies that dt (T ) cannot vanish, the
normalized vector K = T/dt (T ) satisfies dt (K ) ≡ 1; in particular, one can choose
K = ∇t/g(∇t,∇t). However, Proposition 2.1 shows that the completeness of K is
much more difficult to obtain, even taking into account that, in general, K is not
assumed to be timelike.



Some Criteria for Wind Riemannian Completeness … 121

Indeed, no complete K can exist in a stably causal spacetime (L , g) such that L
is not a smooth product manifold R × M as, for example, the spacetime obtained
by removing two points from Lorentz–Minkowski spacetimeL2. However, the com-
pleteness of K may not be achieved even when L is a product. Indeed, this is the
case ofL2 \ {0}: this spacetime is diffeomorphic toR × S1 and its natural coordinate
t = x0 is a temporal function; nevertheless, it contains the non-homeomorphic slices
t = 0 and t = 1.

(2) The choice K = ∂t + 2∂x in the globally hyperbolic strip

L = {(t, x) ∈ L2 : x = 2t + λ,∀λ ∈ (−1, 1),∀t ∈ R}

shows that a complete choice of K may be possible even when no complete timelike
choice exists. However, in a globally hyperbolic spacetime, one can always choose a
temporal function t whose levels areCauchyhypersurfaces [5]. In this case, the choice
K = ∇t/g(∇t,∇t) suggested above is necessarily complete (notice that temporal
functions are assumed to be onto, and the integral curves of K must cross all the slices
of t , due to its Cauchy character). As a last observation, notice that the onto character
of a temporal function can be deduced when a complete K satisfying dt (K ) ≡ 1
exists.

(3) A straightforward computation shows that a metric onR × M written as in (1)
is Lorentzian if and only if for each tangent vectoru toR × M such that gL

0 (u, u) �= 0,

� + ωL(u)2

gL
0 (u, u)

> 0, (2)

(see for example [10], around formula (28)).

In what follows, we will be interested in the case that K in Proposition 2.1 is a
Killing vector field. In this case, all themetric elements in the proof of Proposition 2.1
(plus the bound (2)) are independent of the flow of K and, thus, of the coordinate t ,
yielding directly:

Corollary 2.3 For any spacetime (L , g) endowed with a temporal function t and a
complete Killing vector field K such that dt (K ) ≡ 1, the splitting L = R × M in
Proposition 2.1 can be sharpened metrically into

g = −(� ◦ π)dt2 + π∗ω ⊗ dt + dt ⊗ π∗ω + π∗g0, (3)

where �, ω, and g0 are, respectively, a smooth real function (the “lapse”), a one
form (the “shift”), and a Riemannian metric on M, π : R × M → M is the natural
projection, and π∗ the pullback operator. Moreover, the relation

� + |ω|20 > 0 (4)

holds, being |ω|0 the pointwise g0-norm of ω.
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Following [10], let us introduce the notion of SSTK spacetime.

Definition 2.4 Aspacetime (L , g) is standard with a space-transverse Killing vector
field (SSTK) if it admits a (necessarily nonvanishing) complete Killing vector field
K and a spacelike hypersurface S (differentiably) transverse to K which is crossed
exactly once by every integral curve of K .

Corollary 2.5 A spacetime (L , g) is SSTK if and only if it admits a temporal function
t and a complete Killing vector field K such that dt (K ) ≡ 1. In this case, the global
splitting provided by Corollary 2.3 will be called an SSTK splitting.

Proof By [10, Proposition 3.3] (L , g) is an SSTK spacetime if and only if it admits
an SSTK splitting and, therefore, it admits t and K = ∂t as in the statement. The
converse follows from Corollary 2.3. �

Recall that a vector field X (and, then, the full spacetime) is called stationary
(resp., static; stationary-complete; static-complete) when it is Killing and timelike
(resp., additionally: the orthogonal distribution X⊥ is involutive; X is complete; both
conditions occur).1 When � > 0 in (3) the spacetime is called standard stationary
and if, additionally, ω = 0, standard static. Any stationary or static spacetime can
be written locally as a standard one. A stationary-complete spacetime is (globally)
standard stationary if and only if it satisfies the mild causality condition of being
distinguishing [19] (or, as pointed out in [15, Proposition 2.13], and taking into
account [15, Proposition 1.2], future distinguishing). In this case, the spacetime is
not only stably causal but also causally continuous; however, the conditions to ensure
that a static-complete spacetime is standard static are more involved, see [14, 28].

2.2 Conformal Geometry and the Appearance of Finslerian
Structures

Now, let us consider the conformal structure for an SSTK splitting (3). This is
equivalent to compute the (future-directed) lightlike directions and, because of t-
independence, we can consider just the points on the slice M = t−1(0). Thus,
the relevant vectors at each p ∈ M can be written with natural identifications as
u p = ∂t |p + vp where vp ∈ Tp M and one must assume:

0 = g(u p, u p) = −�(p) + 2ω(vp) + g0(vp, vp) = 0 (5)

The next result yields a geometric picture of the setting (see Fig. 1).

1Sometimes, our stationary spacetimes are called strictly stationary in the literature about Math-
ematical Relativity, and the name stationary is used for a Killing vector field K that is timelike
at some point (see for example [21, Definition 12.2]). Indeed, the name SSTK spacetime is intro-
duced just to avoid confusions with the previous ones: no restriction on the causal character of K
is assumed (whenever its flow is temporal) but the global structure must split.
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Fig. 1 We show the lightlike
vectors u p = ∂t |p + vp of
(Tp L , gp) with vp tangent to
M = t−1(0). There are three
different possibilities
according to the causal
character of ∂t . All the other
lightlike vectors are
proportional to one of these.
The subset of vectors vp
forms an ellipsoid in Tp M

∂t
up

vp

∂t up

vp

∂t up

vp

t

t = 1

Lemma 2.6 The set �p which contains all vp ∈ Tp M satisfying (5) is a g0-sphere

of center Wp, where g0(Wp, ·) = −ωp, and (positive) radius rp :=
√

�(p) + |ωp|20
=

√
�(p) + |Wp|20 (recall (4)).

Proof Putting wp = vp − Wp, one has:

g0(wp, wp) = g0(Wp, Wp) − 2g0(Wp, vp) + g0(vp, vp) = |ωp|20
+ 2ω(vp) + g0(vp, vp),

so, (5) holds if and only if g0(wp, wp) = �(p) + |ωp|20. �

Remark 2.7 As we will be interested only in the conformal structure of the space-
time, we can choose the conformal metric g̃ = �g was � = 1/

(
� + |ω|20

)
, and its

corresponding lapse �̃, shift ω̃ and Riemannian metric g̃0 will satisfy

r̃ p :=
√

�̃(p) + |ω̃p|2g̃0 ≡ 1. (6)

From the definition of Wp , its independence of conformal changes becomes apparent.
Consistently, we can attach the conformally invariant Riemannian metric

gR = g0/
(
� + |ω|20

)
(7)

to the SSTK splitting. Indeed, then �̃ = �� and |ω̃|2g̃0 = �|ω|20, thus,�p will always
be given by a gR-sphere of radius 1.

Let us call the pair (gR, W ) composed by a Riemannian metric gR and a vector field
W ∈ X(M) on M , Zermelo data. We can summarize and systematize the previous
results as follows:
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Proposition 2.8 (1) For each SSTK splitting (3), there exists a smooth hypersur-
face � ⊂ T M and Zermelo data (gR, W ), both univocally determined and invariant
under pointwise conformal transformations g �→ �g,� > 0, such that:

(i) � is transverse to each tangent space Tp M, p ∈ M, and all the lightlike direc-
tions on M are spanned by the vectors ∂t + v such that v ∈ �.

(ii) At each point p ∈ M, �p := � ∩ Tp M is the gR-sphere of center Wp and radius
1.

(2) Conversely, for each Zermelo data (gR, W )on M, there exists an SSTK splitting
(unique up to pointwise conformal transformations) whose associated Zermelo data
by the previous point (1) are (gR, W ).

(3) Moreover, a smooth hypersurface � ⊂ T M can be written as the set of all the
unit gR-spheres with center Wp at each point p ∈ M for some Zermelo data (gR, W )

if and only if � is transverse to all Tp M, p ∈ M and each �p := � ∩ Tp M is an
ellipsoid in the coordinates induced by any basis of Tp M.

Proof First of all, the transversality of a hypersurface � constructed from Zermelo
data (gR, W ) as in (3) can be proved as follows. Let FR be the gR-norm, namely
FR(v) = √

gR(v, v) for v ∈ T M . Its indicatrix �R = F−1
R (1) (i.e., the set of all its

unit vectors) must be tranverse to all the tangent spaces. Otherwise, as 1 is a regular
value of FR , there would be some v ∈ T M ∩ �R such that (dFR)v(wv) = 0 for some
wv ∈ Tv(Tp M) ⊂ T (T M), where v ∈ Tp M and wv are not tangent to the unit gR-
sphere on Tp M . Thus, all the vectors tangent to Tp M , when looked as elements of
(the vertical space in) Tv(T M) lie in the kernel of d(FR)v . In particular, this happens
to vv := d(v + λv)/dt |0, so,

0 = (dFR)v(vv) = dFR(v + λv)

dλ

∣∣∣∣
λ=0

= d(1 + λ)

dλ

∣∣∣∣
λ=0

FR(v) = 1,

a contradiction. Then, notice that the pointwise translation T M → T M , u p �→ u p +
Wp provided by the vector field W does preserve the smooth fiber bundle struture of
T M (namely, its structure as an affine bundle, even though not as a linear bundle).
Therefore, � = �R + W must remain transverse, as required.

Now, part (1) follows just by applying pointwise the previous lemma and remark,
and (2) by constructing theSSTKsplittingwith g0 = gR,ω = −g(W, ·) and� = 1 −
gR(W, W ). For (3), the necessary condition is now straightforward, and the sufficient
one follows by takingW as the centroid of each ellipsoid and the hypersurface� − W
as the unit sphere bundle for2 gR . �
Definition 2.9 A wind Riemannian structure (WRS) on a manifold is any hyper-
surface � embedded in T M which satisfies the equivalent conditions in Proposi-
tion 2.8 (3), namely for some (univocally determined) Zermelo data (gR, W ), one
has � = SR + W , where SR is the indicatrix (unit sphere bundle) of gR .

2The smoothness of the Zermelo data (gR, W ) follows from the transversality of�, [10, Proposition
2.15]; see also Sect. 2.2 of this reference (especially around Example 2.16) for further discussions
on transversality.
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Such a definition admits natural extensions:� ⊂ M is awind Finslerian structure
when � = S + W , where S is the indicatrix for a Finsler metric F (now, (F, W ) is
determined univocally if one imposes additionally that W provides the centroid of S
at each point); then �p is a wind Minkowski structure at each p ∈ M . The properties
of wind Finslerian structures and norms as well as the relation with classical Zermelo
navigation problem are studied extensively in [10] (see also [17]).

Let us recall the following particular cases for an SSTK splitting.

2.2.1 Static Case

ω ≡ 0. Now, W ≡ 0, gR = g0/� (necessarily� > 0) and the spacetime is conformal
to the product (R × M,−dt2 + gR). It is well known that the global hyperbolicity
of the spacetime is equivalent to the completeness of gR as well as to the fact that
M is a Cauchy hypersurface, [4, Theorems 3.67, 3.69]. Moreover, the spacetime is
always causally continuous, and it will be causally simple if and only if gR is convex
(see the next case).

2.2.2 Stationary Case

� > 0 (K timelike). Now, �p is a g0-sphere of center Wp and radius rp > ‖Wp‖0
(recall Lemma 2.6), that is, the gR-norm of Wp is smaller than one. Therefore, the
zero tangent vector is always included in the interior of each sphere �p and the
hypersurface � can be regarded as the indicatrix of a Finsler metric F of Randers
type; concretely,

F(v) = ω(v)

�
+

√
g0(v, v)

�
+

(
ω(v)

�

)2

. (8)

Then, the (future-directed) SSTK lightlike directions on M are neatly described by
the vectors ∂t + v such that F(v) = 1.

Recall that, in general, a Finsler metric is not reversible, that is, F behaves as a
pointwise norm which is only positive homogeneous (F(λv) = |λ|F(v) is ensured
only forλ ≥ 0). As a consequence, F induces a (possibly nonsymmetric) generalized
distance dF and one must distinguish between forward open balls B+

F (p, r) = {q ∈
M : dF (p, q) < r} and backward ones B−

F (p, r) = {q ∈ M : dF (q, p) < r}. More-
over, even though geodesicsmake the usual natural sense, the reverse parametrization
of a geodesic may not be a geodesic.

Standard stationary spacetimes were systematically studied in [9] using (8)
(choosing a conformal representative so that � ≡ 1), including its causal hierar-
chy. Indeed, the existence of the temporal function t implies that standard stationary
spacetimes are stably causal. The other higher steps in the standard ladder of causality
are neatly characterized by the Randers metric F as follows (see [9]):
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(1) M = t−1(0) is a Cauchy hypersurface if and only if F is complete.
(2) R × M is globally hyperbolic if and only if the intersections of the closed balls

B̄+
F (p, r) ∩ B̄−

F (p′, r ′) are compact for all p, p′ ∈ M, r, r ′ > 0.
(3) R × M is causally simple if and only if F is convex, in the sense that for

each (p, q) ∈ M × M , there exists a (non-necessarily unique) minimizing F-
geodesic from p to q.

(4) R × M is always causally continuous, [19].

It is also worth pointing out that the causal boundary of such a stationary space-
time can be described in terms of the natural (Cauchy, Gromov) boundaries of the
Finslerian manifold (M, F) (see [12] for a thorough study). On the other hand, a
description of the conformal maps of the stationary spacetime in Finslerian terms
can be found in [16] and some links between the flag curvature of the Randers metric
and the conformal invariants of the spacetime are developed in [11].

2.2.3 Nonnegative Lapse

� ≥ 0 (K causal). When �(p) = 0 then the gR-norm of Wp is equal to 1 and �p

contains the zero vector. Then, F becomes a Kropina metric; this is a singular type
of Finslerian metric F(v) = −g(v, v)/(2ω(v)) which applies only to v ∈ Tp M such
that ω(v) < 0. Indeed, one can rewrite (8) as:

F(v) = g0(v, v)

−ω(v) + √
�g0(v, v) + ω(v)2

, (9)

which makes sense even when � vanishes and will be called a Randers-Kropina
metric. Now, the SSTK lightlike directions on M are again described by the vectors
of the form∂t + vwith F(v) = 1with the caution that,whenever� = 0, the direction
∂t must be included (as 0 ∈ �p) and F is applied only on vectors v with ω(v) < 0.

The Randers-Kropina metric defines an F-separation dF formally analogous to
the generalized distance of the stationary case. Its properties are carefully studied
in [10, Sect. 4]. Some important differences between the F- separation dF and the
generalized distance in the standard stationary case are: (i) dF (p, q) is infinite if
there is no admissible curve α from p to q (where admissible means here satisfying
ω(α′(s)) < 0 whenever �(α(s)) = 0), and (ii) the continuity of dF is ensured only
outside the diagonal; indeed, dF is discontinuous on (p, p) whenever dF (p, p) > 0
(and in this case�(p) = 0necessarily), [10,Theorem4.5, Proposition4.6].However,
Randers-Kropina metrics admit geodesics analogous to the Finslerian ones.

The ladder of causal properties of the spacetime can be characterized in terms of
the properties of F-separation, and it becomes formally analogous to the conclusions
(a)–(d) of the stationary case, [10, Theorem 4.9].
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Σp
p

Sn−1
p

Sn−1
p

t

Fig. 2 The diagram shows the gR-sphere �p determined by the projections of lightlike vectors
with the time coordinate equal to 1. When�(p) < 0, the half lines starting at 0 and intersecting�p
form a conic region. The intersection of the boundary of this conic region with �p is an (n − 1)-
dimensional gR-sphere Sn−1

p (in the figure, only two points) which divides �p in two connected
components

2.2.4 General SSTK Case

(K may be spacelike). Now, when �(p) < 0 one has gR(Wp, Wp) > 1, that is, the
zero vector is not included in the solid ellipsoid enclosed by �p. The half lines
starting at 0 and tangent to the gR-sphere �p, provide a cone. Such a cone is tangent
to �p in an (n − 1)−sphere Sn−1

p , and �p \ Sn−1
p has two connected pieces. One of

them is convex (when looked inside the cone from infinity), and can be described
as the open set containing the vectors v inside the cone such that F(v) (computed
by using the expression (9)) is equal to 1, see Fig. 2. The other connected part is
computed analogously by putting Fl(v) = 1 where, now,

Fl(v) = − g0(v, v)

ω(v) + √
�g0(v, v) + ω(v)2

(= −F(−v)). (10)

The part F(v) ≡ 1 in the regions� < 0 and� ≥ 0matches naturally. So, F behaves
as a conic Finsler metric on all M ; indeed, the conic region where F is defined is
properly the interior of a cone when �(p) < 0, an open half plane when �(p) = 0
and all Tp M otherwise (see [18] for a systematic study of conic Finsler metrics).
However, the concaveness of Fl(v) ≡ 1 makes Fl to behave as a Lorentz–Finsler
metric, in the sense that it yields a reverse triangle inequality similar to the Lorentzian
one, that is, Fl(v + w) ≥ Fl(v) + Fl(w) for all v,w ∈ Tp M in the conic domain of
definition.

So, the SSTK lightlike directions on the hypersurface M are described by the
vectors of the form ∂t + v taking into account that, when �(p) < 0, one has to
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choose vectors with either F(v) = 1 or Fl(v) = 1, including those in Sn−1
p (which

corresponds with the limit case F(v) = Fl(v) = 1). Again, the causal properties of
the SSTK spacetime can be described using the Finslerian elements F, Fl or, directly,
by means of the hypersurface �. However, this general case is much subtler than the
previous ones, and it will be sketched in Sect. 3.

2.3 An Application: Finslerian Consequences of Harris’
Stationary Quotients

Even though we will focus on the properties of general SSTK spacetimes linked to
wind Riemannian structures, we emphasize now the links between the conformal
geometry of standard stationary spacetimes and the geometry of Randers spaces,
with applications also to arbitrary Finsler manifolds. Apart from the applications
explained in the point (2) of Sect. 2.2, several links introduced in [9] include the
behavior of completeness under projective changes (see below) and properties on the
differentiability of the distance function to a closed subset (see also [25]) as well as
on the Hausdorff measure of the set of cut points. Now, we can add a new application
by translating a recent result by Harris on group actions [15] on static/stationary
spacetimes to the Finslerian setting, namely:

There exists a Randers manifold (M, R) such that not all its closed symmetrized balls are
compact but its universal covering (M̃, R̃) satisfies that all its closed symmetrized balls are
compact.

In order to understand the subtleties of this result, recall the following.

Remark 2.10 (1) Of course, such a property cannot hold in the Riemannian case
(M, gR), because the closed gR-balls are compact if and only gR is complete, and
this property holds if and only if the universal covering (M̃, g̃R) is complete.

(2) The key in the Randers case is that the compactness of the closed symmetrized
R-balls (which is equivalent to the compactness of the intersections between closed
forward and backward R-balls) does not imply R-geodesic completeness (nor the
completeness of R in any of the equivalent senses of the Finslerian Hopf–Rinow
result). Indeed, as shown in [9] for Randers metrics (and then extended to the gen-
eral Finslerian case in [22]), the compactness of the closed symmetrized R-balls is
equivalent to the existence of a complete Randers metric R f which is related to R by
means of a trivial projective transformation (i.e., R f = R + d f for some function
f on M such that R + d f > 0 on T M \ 0). As will be apparent below, the existence
of such a function f̃ in the universal covering M̃ does not imply the existence of an
analogous function f in the manifold M , as f̃ is not necessarily projectable.

Next, let us derive the Randers result from Harris’ ones.

Example 2.11 Let start with [15, Example 3.4(b)], which exhibits a globally hyper-
bolic standard static spacetime L ′ admitting a group of isometries G such that the
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quotient L = L ′/G is static-complete (i.e., it admits a complete static vector field)
and causally continuous, but not globally hyperbolic. A static-complete causally
continuous spacetime is not necessarily a standard static spacetime; nevertheless,
as any distinguishing stationary-complete space is standard stationary [19], so is L
too. Then, we can write the standard stationary splitting L = R × M with associated
Randers metric F , as explained in Sect. 2.2. As L is not globally hyperbolic, (M, F)

cannot satisfy the property of compactness of closed symmetrized balls. However, its
universal Lorentzian covering L̃ = R × M̃ inherits a Randers metric F̃ which must
satisfy such a property of compactness (indeed, L̃ must also be the universal cover-
ing of L ′ and, so, globally hyperbolic). We emphasize that, being L̃ static-complete
and simply connected, it can be written as a standard static spacetime, [26, Theorem
2.1(1)]; however, the splitting L̃ = R × M̃ we are using is only standard stationary
but not standard static (otherwise, F̃ would be Riemannian).

3 A New Characterization of WRS Completeness

3.1 WRS Geodesics and Completeness Versus SSTK Cauchy
Hypersurfaces

In what follows, let � be a WRS on M with associated Zermelo data (gR, W ) and
SSTK splitting (R × M, g), being K = ∂t Killing, ω = −g(K , ·) and the conformal
normalization � + |ω|20 ≡ 1 chosen, so that g0 = gR , according to (6) and (7).

3.1.1 First Definitions

The region where K is, resp., timelike (� > 0), lightlike (� = 0), or spacelike (� <

0) will be called of mild wind (as ‖W‖R < 1), critical wind, and strong wind; the
latter will be denoted Ml as it contains the Lorentz–Finsler metric Fl (besides the
conic Finsler one F , defined on all M). Moreover, we define the (possibly signature-
changing) metric

h = �g0 + ω ⊗ ω, (11)

which isRiemannian (resp. degenerate, of signature (+,−, . . . ,−)) in themild (resp.
critical, strong) wind region. Remarkably, the conformal metric h/� in the region
� �= 0 is the induced metric on the orbit space of R × M obtained by taking the
quotient by the flow of K (see [9, Proposition 3.18]); clearly, h/� is not conformally
invariant (however, h/�2 is). In any case,−h (as well as h/� and−h/�2) becomes a
Lorentzian metric on Ml , and it is naturally time-oriented because the future timelike
vectors of R × M project onto a single timecone of −h.
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Let us define the following subsets of T M . First, put

A ∪ AE := {v ∈ T M : v is the projection of a lightlike vector of the SSTK splitting}.

Inside this set, we will consider two non-disjoint subsets A and AE . The set A will
contain the interior of all the conic domains where the conic Finsler metric F in (9)
is naturally defined; then, Al := T Ml ∩ A will also be the natural open domain for
the Lorentz–Finsler metric Fl in (10). The set AE will contain all the continuously
extended domain of Fl in Al , plus the zeroes of the critical region; then, A ∪ AE can
also be regarded as the extended domain for F plus the zeroes of the critical region.
Explicitly, Ap = A ∩ Tp M and (AE )p = AE ∩ Tp M are, at each p ∈ M :

vp ∈ Ap ⇐⇒
⎧
⎨
⎩

vp �= 0 when �(p) > 0
−ωp(vp)(= gR(Wp, vp)) > 0 when �(p) = 0
−ωp(vp) > 0 and h(vp, vp) > 0 when �(p) < 0

vp ∈ (AE )p ⇐⇒
{
0p when �(p) = 0
−ωp(vp) > 0 and h(vp, vp) ≥ 0 when �(p) < 0

Remark 3.1 F and Fl can be extended continuously from their open domains A,
Al to A ∪ (AE ∩ T Ml) and AE ∩ T Ml , respectively. Indeed, the metric h (see (11))
vanishes in (AE ∩ T Ml) \ Al , making equal the expressions (9) and (10) for F and
Fl there. However, the introduced notation will take also into account the following
subtlety which occurs for the zeroes of the critical region.

We will work typically with lightlike curves α̃(t) = (t,α(t)) in the spacetime
parameterized with the t-coordinate and then, necessarily, either F(α′(t)) ≡ 1 or
Fl(α

′(t)) ≡ 1wheneverα′ does not vanish. However, when α̃ is parallel to K at some
point α̃(t0) = (t0, p), p ∈ M , then p belongs to the critical region and α̃′ projects
onto the zero vector α′(t0) = 0p, which belongs to the indicatrix �p. Clearly, Fp

and (Fl)p cannot be extended continuously to 0p; however, whenever the F-length
(resp. Fl-length) of lightlike curves as α̃ above is considered, we will put F(0p) = 1
(resp. Fl(0p) = 1) as this is the continuous extension of the function t → F(α′(t))
(resp. t → Fl(α

′(t))).
Summing up, we adopt the following convention: the extended domain of F and

Fl is all A ∪ AE , with F(0p) = Fl(0p) = 1 whenever �(p) = 0 (even if F and Fl

are not continuous there) and with Fl(vp) = ∞ on the mild and critical regions when
vp �= 0.

Remark 3.2 Both pseudo-Finsler metrics F and Fl are Riemannianly lower bounded
(according to [18, Definition 3.10]), that is, there exists a Riemannian metric h R in
M such that

√
h R(v, v) ≤ F(v), Fl(v) for every v ∈ AE ∪ A. This is observed in

[10, below Definition 2.24] and it is easy to check directly, because it is sufficient to
prove that the property holds locally (see [18, Remark 3.11 (1)]).
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3.1.2 Wind Curves and Balls

A (piecewise smooth) curve α̃(t) = (t,α(t)) is causal (necessarily future-directed)
in the SSTK splitting if and only if the velocityα′(t) isZermelo-bounded, in the sense
thatα′(t) always belongs to the closed gR-ball of Tα(t)M with center Wα(t) and radius
1. Even though the curve α̃ is always regular, the velocity ofαmay vanish either in the
region of mild wind or in the region of critical wind. Nevertheless, in Riemannian
Geometry, it is natural to work with regular curves in order to reparametrize all
the curves with the arc-parameter. In our approach, one can avoid the use of non-
regular curves α in the region of mild wind but, for critical wind, the appearance
of curves with vanishing velocity becomes unavoidable; indeed, as emphasized in
the definition of A ∪ AE , the zero vector 0p is the projection of a lightlike vector if
(and only if) p lies in the critical region. Accordingly, we will say that a (piecewise
smooth) curve α is �-admissible if its velocity lies in A ∪ AE and a wind curve
if, additionally, it is Zermelo-bounded. Even though we will work with piecewise
smooth curves as usual, the order of differentiability can be lowered in a natural way.
This happens when considering causal continuous curves [4, p. 54]; in this case, the
natural assumption would be to consider locally H 1-curves (for causal curves and,
then, for wind ones), because, under this regularity, being future-directed continuous
causal becomes equivalent to the existence of an almost everywhere future-directed
causal velocity [6, Theorem 5.7]).

The previous definitions yield directly the following characterization of wind
curves.

Proposition 3.3 A (piecewise smooth) curve α : I ⊂ R → M, with I an interval,
is a wind curve if and only if its graph α̃ in the associated SSTK splitting defined as

α̃(t) = (t,α(t)), ∀t ∈ I

is a causal curve. In this case,

�F (α|[a,b]) ≤ b − a ≤ �Fl (α|[a,b]). (12)

for each a, b ∈ I , with a < b.

Now, for each p, q ∈ M , let

C�
p,q = {wind curves starting at p and ending at q}.

The forward and backward wind balls of center p0 ∈ M and radius r > 0 associated
with the WRS � are, resp:

B+
�(p0, r) = {x ∈ M : ∃ γ ∈ C�

p0,x , s.t. r = bγ − aγ and �F (γ) < r < �Fl (γ)},
B−

�(p0, r) = {x ∈ M : ∃ γ ∈ C�
x,p0 , s.t. r = bγ − aγ and �F (γ) < r < �Fl (γ)},
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where aγ and bγ are the endpoints of the interval of definition of each γ. These
balls are open [10, Remark 5.2] and their closures are called (forward, backward)
closed wind balls, denoted B̄+

�(p0, r), B̄−
�(p0, r). Between these two types of balls,

the forward and backward c-balls are defined, resp., by:

B̂+
�(p0, r) = {x ∈ M : ∃ γ ∈ C�

p0,x , s.t. r = bγ − aγ (so, �F (γ) ≤ r ≤ �Fl (γ))},
B̂−

�(p0, r) = {x ∈ M : ∃ γ ∈ C�
x,p0 , s.t. r = bγ − aγ (so, �F (γ) ≤ r ≤ �Fl (γ))}

for r > 0; for r = 0, by convention B̂±
�(p0, 0) = p0 (so that, consistently with our

conventions, if 0p0 ∈ �p0 , then p0 ∈ B̂±
�(p0, r) for all r ≥ 0). When � is the indi-

catrix of a Randers metric, then B±
�(p0, r) coincides with the usual (forward or

backward) open balls. Such balls have a neat interpretation [10, Proposition 5.1]:

Proposition 3.4 For the associated SSTK splitting:

I +(0, x0) = ∪s>0{0 + s} × B+
�(x0, s),

I −(0, x0) = ∪s>0{0 − s} × B−
�(x0, s),

J+(0, x0) = ∪s≥0{0 + s} × B̂+
�(x0, s),

J−(0, x0) = ∪s≥0{0 − s} × B̂−
�(x0, s).

It is worth emphasizing that the c-balls make a proper natural sense even for a
Riemannian metric (see [10, Example 2.28]). Indeed, the property of closedness for
all the forward and backward c-balls, called w-convexity, extend naturally the notion
of convexity for Riemannian and Finslerian manifolds, and becomes equivalent to
the closedness of all J±(t0, x0) above and, thus, to the causal simplicity of the SSTK
spacetime, [10, Theorems 4.9, 5.9].

3.1.3 Geodesics

Starting at the notions of balls on the WRS, geodesics can be defined as follows. A
wind curve γ : I = [a, b] → M , a < b, is called a unit extremizing geodesic if

γ(b) ∈ B̂+
�(γ(a), b − a) \ B+

�(γ(a), b − a). (13)

Then, a curve is an extremizing geodesic if it is an affine reparametrization of a unit
extremizing geodesic, and it is a geodesic if it is locally an extremizing geodesic.

However, geodesics for a WRS can be looked simply as the projections on
M of the future-directed lightlike pregeodesics of the associated SSTK space-
time (R × M, g) parametrized proportionally to the t coordinate [10, Theorem
5.5]. As K is Killing, any spacetime lightlike geodesic ρ has the relevant invari-
ant Cρ = g(ρ′(t), K ). Reparametrizing with the t coordinate, we have a lightlike
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pregeodesic γ̃(t) = (t, γ(t)) and its projection is a unit �-geodesic which belongs
to one of the following cases:

(1) Cρ < 0: γ is a geodesic of the conic Finsler metric F on M , and γ′(t) lies always
in A.

(2) Cρ > 0: γ is a geodesic of the Lorentz–Finsler metric Fl on Ml , and γ′(t) lies
always in Al := T Ml ∩ A.

(3) Cρ = 0. We have two subcases:

(3a) γ is an exceptional geodesic, constantly equal to somepoint p0 with�(p0) =
0 and d�p0 vanishing on the kernel of ωp, and

(3b) γ is a boundary geodesic, included in the closure of Ml and it satisfies: (i)
whenever γ remains in Ml , it is a lightlike pregeodesic of the Lorentzian
metric h in (11), reparametrized so that F(γ′) ≡ Fl(γ

′) is a constant c = 1,
and (ii) γ can reach the boundary ∂Ml (which is included in the critical
region � = 0) only at isolated points s j ∈ I, j = 1, 2, ..., where γ′(s j ) = 0
(in this case, d� does not vanish on all the Kernel of ωγ(s j )).

Even if normal neighborhoods do not make sense in general for WRS’s, all the
geodesics departing from a given point x0 (or more generally from points close to
x0) have length uniformly bounded from below by a positive constant.

Proposition 3.5 Let (M, �) be a wind Riemannian structure and x0 ∈ M, then there
exists ε > 0 and a neighborhood U0 of x0, such that the unit �-geodesics departing
from x ∈ U0 are defined on [0, ε) and they are extremizing.

Proof The same proof of [10, Proposition 6.5] works in this case just by replacing
x0 with x ∈ U0 where, as in that proposition,U0 is the neighborhood obtained in [10,
Lemma 6.4]. �

The WRS is (geodesically) complete when its inextendible geodesics are defined
on all R. The next result proves, in particular, that its extendibility as a geodesic
becomes equivalent to continuous extendibility.

Proposition 3.6 Let γ : [a, b) → M, b < ∞, be a �-geodesic. If there exists a
sequence {tn} ↗ b such that {γ(tn)}n converges to some p ∈ M, then γ is extendible
beyond b as a �-geodesic.

Proof Apply Proposition 3.5 to p = x0 to obtain the corresponding ε > 0. Then, for
some n0 the length of γ between tn0 and b is smaller than ε, and Proposition 3.5 can
be claimed again to extend γ beyond b. �

Notice that, from the spacetime viewpoint, the completeness of the WRS geodesics
means that the they cross all the slices t = constant of the SSTK spacetime. This
observation and Proposition 3.4 underlie the following result [10, Theorem 5.9(iv)]:
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Theorem 3.7 The following assertions are equivalent:

(i) A slice St (and, then every slice) is a spacelike Cauchy hypersurface.
(ii) All the c-balls B̂+

�(x, r) and B̂−
�(x, r), r > 0, x ∈ M, are compact.

(iii) All the (open) balls B+
�(x, r) and B−

�(x, r), r > 0, x ∈ M, are precompact.
(iv) � is geodesically complete.

It is also worth pointing out that the other causal properties of the spacetime (as being
globally hyperbolic even if the slices St are not Cauchy) can also be characterized
in terms of tidy properties of the corresponding WRS, extending the results (1)–(4)
for the stationary case (Sect. 2.2.2).

3.2 The Extended Conic Finsler Metric F̄

In [18], the properties of distances associated with pseudo-Finsler metrics were
studied in full generality. Indeed, the metrics in that reference were defined in an
open conic subset without assuming that they can be extended to the boundary. The
case of critical wind considered in Sect. 2.2.3 is included in this general case. Indeed,
only the conic Finsler metric F appears there and its extension to the boundary of A
in the set T M \ 0 would be naturally equal to infinity (this is the underlying reason
why this boundary did not contain allowed directions and, so, it was not included in
AE ). Bearing this infinite limit in mind, such an F has been extensively studied in
[10, Sect. 4].

However, as discussed in Remark 3.1, the metrics F and Fl are continuously
extendible to the boundary of A in T Ml \ 0. Next, we will study some elements
associated with this extension of F , which will allow us to extend Theorem 3.7,
adding a further characterization to those appearing there.

3.2.1 F̄-Separation

Next, we will consider the extension of F explained in detail in Remark 3.1, in order
to introduce a related separation, whose role has some similarities with a distance.
Even though the extension of F has already been taking into account in order to
compute the length of wind curves, we will introduce explicitly the notation F̄ in
order to distinguish our study from previous ones, where the F-separation only takes
into account the open domains (for example, in the Randers-Kropina case studied in
[10, Section4] or in [18]).

Definition 3.8 The extended conic Finsler metricof aWRS (M, �) (or its associated
SSTK splitting) is the map F̄ : A ∪ AE → [0,+∞) given by (9) and the associated
F̄-separation is the map dF̄ : M × M → [0,+∞] given by3:

3For simplicity, we assume here that the connecting curves constitute the set of wind curves
C�

p,q . As F̄ is invariant under (positive) reparametrizations, one could also consider curves with



Some Criteria for Wind Riemannian Completeness … 135

Fig. 3 Wind Riemannian
structure on a torus
T 2(= R2/ ∼, with
(x, y) ∼ (x ′, y′) if and only
if (x − x ′)/4, (y − y′)/
4 ∈ Z) with non-continuous
dF̄ on points at finite
separation

x axis

y axis
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0
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P

dF̄ (p, q) = inf
γ∈C�

p,q

�F̄ (γ)

for every p, q ∈ M . In particular, dF̄ (p, q) = +∞ if and only if C�
p,q is empty.

Notice that, in this definition, �F̄ (γ) is equal to the length �F (γ) in the definition of the
wind balls, as we already used there the extension of F ; however, the F̄-separation is
different to the F-separation dF in [10, Sect. 4] and [18] as, now, curves with velocity
in AE are allowed, that is, dF̄ ≤ dF . Consequently, let us denote

B+
F̄p

(r) = {v ∈ (AE )p ⊂ Tp M : F̄(v) < r}, B+
F̄

(p, r) = {q ∈ M : dF̄ (p, q) < r},
(14)

where the latter is the (forward) dF̄ -ball of radius r > 0 and center p ∈ M ; consis-
tently, B̄+

F̄
(p, r) is its closure and dual backward notions appear replacing dF̄ (p, q)

with dF̄ (q, p) in (14).
For a windMinkowski structure of strong wind onRn , dF̄ becomes discontinuous

because it jumps from a finite and locally bounded value of dF̄ (0, q)when q belongs
to A ∪ AE to an infinite value when q is outside. However, dF̄ may be discontin-
uous even when it remains finite, resembling the behavior of the time-separation
(Lorentzian distance) on a spacetime.

Example 3.9 Let us consider the WRS induced on the torus T 2 = R2/4Z from the
wind Minkowskian structure on R2 whose indicatrix is the sphere of radius 1/2
centered at (2, 1), as depicted in Fig. 3. Then dF̄ ((0, 0), P) = 1 (P as in the Fig. 3),
but the points in the red line close to P are at a distance much greater than 1. This
concludes that the distance associated with F̄ is not necessarily continuous even
when it is finite and the WRS is geodesically complete.

(Footnote 3 continued)
velocities in A ∪ AE even vanishing in the region of mild wind (the relevant restriction for such a
curve γ would be the existence of a parametrization γ̂ satisfying that t → (t, γ̂(t)) is causal), but
no more generality would be obtained.



136 M.Á. Javaloyes and M. Sánchez

x axis

y axis

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

−4 −2 2 4

−0.4

−0.2

0.2

0.4

Fig. 4 Even for a Randers-Kropina metric, the F̄-separation may present subtle properties, for-
bidden for a generalized distance (as {pn} → p but dF (pn, p) = ∞, see Example 3.11), including
“black hole”-type behaviors (Example 3.24)

Let us discuss some properties related to generalized distances (compare with [12,
Section3.1]). The first one is very simple.

Proposition 3.10 If {pn} is a sequence in M such that dF̄ (p, pn) → 0 or dF̄
(pn, p) → 0 for some p ∈ M, then pn → p.

Proof By Remark 3.2, there exists a Riemannian metric h R such that
√

h R(v, v) ≤
F̄(v) for every v ∈ A ∪ AE . As a consequence, the h R-distance from pn to p is
smaller than the F̄-separation and it must go to 0, yielding the result. �

However, as an important difference with the case of generalized distances, the
converse may not hold. The following example (a small variation of the one intro-
duced in the Fig. 4 of [17]) will be useful for this and other purposes.

Example 3.11 Consider the WRS (gR, W ) in Fig. 4, where gR is just the usual
Euclidean metric multiplied by a factor 1/5, W(x,y) = f (x)∂x and the function f
behaves as depicted in the graph, so that the lines x = ±1, x = ±3 have critical
wind. Clearly {pn = (1 + 1/n, 0)} → p = (1, 0), but dF̄ (pn, p) = ∞ for all n ∈ N

(recall, however, {dF̄ (p, pn)} → 0).

With this caution, however, notions related toCauchy sequences and completeness
can be maintained.

Definition 3.12 Let F̄ be the extended conic Finsler metric associated with a WRS
(M, �) and dF̄ its associated separation:

(1) A subsetA ⊂ M is forward (resp. backward) bounded if there exists p ∈ M and
r > 0 such that A ⊂ B+

F̄
(p, r) (resp. A ⊂ B−

F̄
(p, r)).

(2) A sequence {xi } is forward (resp. backward) Cauchy if for any ε > 0 there exists
N > 0 such that dF̄ (xi , x j ) < ε for all i, j with N < i < j (resp. N < j < i).
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(3) The space (M, dF̄ ) is forward (resp. backward) Cauchy complete if every for-
ward (resp. backward) Cauchy sequence converges to a point q. Moreover,
(M, dF̄ ) is Cauchy complete if it is both, forward and backward Cauchy com-
plete.

It is worth noting that, even in the more restrictive framework of generalized
distances, the convergence of all the forward Cauchy sequences does not imply the
convergence of all the backward ones, so, to be only forward or backward Cauchy
complete makes sense (see [12, Section3] for a comprehensive study).

In spite of Example 3.11, the following property holds for converging Cauchy
sequences.

Proposition 3.13 If an F̄-forward Cauchy sequence {pn}n converges to a point
p ∈ M, then {dF̄ (pn, p)} → 0.

Moreover, if a forward Cauchy sequence {pn}n admits a partial subsequence
{pnk }k → p ∈ M, then all the sequence converges to p.

Proof For the first assertion, the Cauchy sequence {pn}n will admit a subsequence
{pnm }m such that dF̄ (pnm , pnm+1) < 2−m . Then, by Proposition 3.4, there exists a
sequence tm such that (tm+1, pnm+1) ∈ J+(tm, pnm ) in the associated splitting (R ×
M, g) and tm+1 − tm < 2−m for every m ∈ N. Now define t̄ = limm→∞ tm , which is
finite (since t̄ − t1 = limk→∞

∑k
m=1(tm+1 − tm) <

∑∞
m=1 2

−m = 2), consider a con-
vex neighborhood V of (t̄, p) and let N be big enough such that pnm ∈ V for m ≥ N .
As (tm, pnm ) ∈ J+(tN , pnN ) for m ≥ N and the causal relation is closed in any con-
vex neighborhood (see [24, Lemma 14.2]), it follows that (t̄, p) ∈ J+(tN , pnN ).
Moreover, for m ≥ N , dF̄ (pnm , p) ≤ t̄ − tm <

∑∞
k=m 2−m → 0. Using the triangle

inequality and the definitions of F̄-forward Cauchy sequences, we conclude that
{dF̄ (pn, p)} → 0.

For the last assertion, recall that, then {dF̄ (pnk , p)}k → 0 and, using again
the triangle identity, {dF̄ (pn, p)} → 0. So, convergence follows from
Proposition 3.10. �

3.2.2 F̄-Exponential and Geodesic Balls

Next, our aim will be to define an exponential map expF̄
p for F̄ at each point p ∈ M .

This will extend the usual exponential for F in A (namely, constructed using the
formal Christoffel symbols and the associated geodesics) and will be well defined
and continuous even in the boundary of (AE )p in the strong wind region (in this
region, expF̄

p will yield lightlike pregeodesics of −h). In order to ensure that both,
F-geodesics and lightlike h-geodesics match continuously we will work with pre-
geodesics of the SSTK spacetime and will project them on M . However, recall that
F cannot be extended continuously to the zero section in the critical region, so,
this section will be excluded first and the possibilities of extension will be studied
specifically.
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Definition 3.14 Let � be a WRS on M . The F̄−exponential is the map

expF̄ : U ⊂ A ∪ (AE \ 0) −→ M vp �→ α(1)

where, for each vp, α is the geodesic constructed by taking the unique lightlike
pregeodesic α̃ in the associated SSTK splitting (R × M, g) written as

α̃(s) = (F̄(vp)s,α(s)), s ∈ [0, 1],

(i.e., α̃ is reparametrized proportionally to the projection t : R × M → R) and initial
velocity

α̃′(0) = (F̄(vp), vp) ∈ T(0,p)(R × M),

while U is the open subset of A ∪ (AE \ 0) containing all the tangent vectors vp such
that their associated pregeodesics α̃ are defined on all [0, 1].
Recall that the exact behavior of all the �-geodesics as either F , Fl , or boundary
geodesics explained in Sect. 3.1.3 is determined in [10, Proposition 6.3] (see also
Theorems 5.5 and 2.53 in that reference). Indeed, the curves α constructed in the
previous definition correspond with the F-geodesics and the boundary geodesics for
�. Bearing this in mind, the following properties are in order.

Proposition 3.15 For each p ∈ M, consider the star-shaped domain Up := Tp M ∩
U and the restriction expF̄

p := expF̄ |Up .

(1) If the wind on p is mild (resp. critical; strong), then Up ⊂ Ap being Ap =
Tp M \ {0p} (resp.,Up ⊂ Ap, being Ap an open half-space of Tp M;Up ⊂ (AE )p,
being (AE )p a solid cone without vertex).

(2) Assume that the curve α constructed for vp ∈ Up in Definition 3.14 remains in:

(a) the region of mild wind (and, so, � is the indicatrix of a Randers metric
around the image of α): then, α is an F-geodesic (so that expF̄

p will agree
with the natural F-exponential).

(b) an open region of non-strong wind (and, so, � is the indicatrix of a Randers-
Kropina metric whose Christoffel symbols and geodesics can be computed
as in the Finslerian case on all A) then, α is a Randers-Kropina geodesic
(according to [10, Sect.4]).

(c) the region Ml of strong wind, (and, so, � yields, the indicatrix of both, a
conic Finsler metric F and a Lorentz–Finsler one Fl , plus the Lorentz metric
−h): then α satisfies one of the following two exclusive possibilites:

(ci) α′ lies in the open cones Al and α is an F-geodesic, or
(cii) α′ lies in the boundary AE \ Al of the cones (thus, being a boundary

geodesic) and it becomes a pregeodesic of the Lorentzian metric −h on Ml.

(3) The F̄-exponential expF̄ is smooth on the open region U ∩ A and continuous on
all U .
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(4) The F̄-exponential expF̄ can be extended continuously to the zero section away
from the critical region. Moreover, the restriction of expF̄ to � (or, in general,
to the hypersurface r� for any r ≥ 0) can be continuously extended to the zero
section in the critical region.

Proof (1) Straightforward from the definitions of the domains.
(2) See Theorem 5.5 and 6.3 in [10] (for part (cii), recall also Lemma 3.21); this

matches with the summary in Sect. 3.1.3 above.
(3) Taking into account Definition 3.14, for each v ∈ U (v ∈ Tp M), put τ = F̄(v),

consider the lightlike g-pregeodesic α̃(s) = (τs,α(s)) and reparametrize it
as a geodesic α̂(h) = (t (h), x(h)) with the same initial velocity (τ , v). Then
(τs,α(s)) = (t (h(s)), x(h(s)) for some function h(s)with h(0) = 0, h′(0) = 1.
Therefore,

t ′(h(s)) h′(s) = τ ,

that is, the function h satisfies the ODE

h′(s) = 1/ f (h(s), τ , v), h(0) = 0, where f (s̄, τ , v) := 1

τ

d

ds

∣∣∣∣
s=s̄

t (expg
(0,p)(s(τ , v)))

(15)
whenever expg

(0,p) is defined in s(τ , v). Notice that f can be regarded as a
smooth function on some maximal open subset of R × R+ × T M and, as t
is a temporal function, f is strictly positive when applied on (s, τ , v) whenever
(τ , v), regarded as a vector in T(0,p)(R × M), is future-directed and causal.
Summing up, for any v = α′(0) ∈ U ,

expF̄
p (v) = α(1) = x(ϕ(1, F̄(v), v)) = π(expg

(0,p)(ϕ(1, F̄(v), v) · (F̄(v), v)),

(16)
where s → ϕ(s, τ , v) is the solution of (15)which, obviously, depends smoothly
on (τ , v). So, the expression (16) shows that expF̄ is smooth everywhere except
at most in the boundary of AE , because F̄ is only continuous there.

(4) For the first assertion, recall from (15) that the map (s, v) → f (s, F(v), v) is
positive homogeneousof degree0 inv, that is, f (s, F(λv),λv) = f (s, F(v), v))

for all λ > 0. Then, ϕ(1, F̄(v), v) in (16) remains locally bounded outside the
Kropina region (as we can take a compact neighborhood W of p which does not
intersect the critical region, and consider that v varies in F̄−1(1) ∩ T W , which
is compact). So, when v goes to 0, the variable of the g-exponential in (16) goes
to 0 and expF̄

p (v) goes to p, as required.
For the second one, notice that F̄ cannot be continuously extended to 0p whenever

p lies in the critical region. However, as F̄ is equal to 1 on � \ 0, it can be extended
continuously to 1 on�, and the continuity of the exponential in the SSTK spacetime
ensures the result. Obviously, this can be extended to the case r�, now extending F̄
continuously as F̄(0) = r . �

Remark 3.16 (1) It is easy to check that expF̄
p may be non-differentiable at the

boundary AE \ A, as the initial data for γ in Definition 3.14 depends on F̄(vp)
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and F̄ may be non-smooth on the boundary. Indeed, the root in the expression (9)
becomes 0 there; in the region of strong wind, these zeroes are the lightlike vectors
for the Lorentzian metric −h, which implies non-smoothability there.

However, direct computations in a concrete example may be illustrative. Consider
as Zermelo data in R2 the usual scalar product and the wind vector W = ∂x + ∂y .
The function φ(s) = F̄(s∂x |(0,0) + ∂y|(0,0)) for s ≥ 0 is smooth for s > 0 but only
continuous for s = 0. Indeed, for each s ≥ 0, there exists a unique point (xs, ys) in
the convexpart the indicatrix�(0,0) = {(x, y) ∈ T(0,0)R

2 : (x − 1)2 + (y − 1)2 = 1}
such that φ(s) · (xs, ys) = (s, 1). Then, φ(s) = 1/ys , xs = sys , substituting in the

indicatrix xs , necessarily ys =
(

s + 1 ± √
2s

)
/(s2 + 1), the choice of its convex

part selects the positive sign for ys and, then, φ(s) = (s2 + 1)/
(

s + 1 + √
2s

)
.

(2) About the question of continuity in part (4), notice that, when the integral
curve of K through a point p of the critical region is a geodesic, then the continuous
extension of expF |� to 0p yields simply the point p. However, this does not occur
when such an integral curve is not a geodesic. So, in general, it is impossible to
extend continuously the full exponential expF̄

p to all the zero section.

Summing up, Proposition 3.15 (4) allows one to extend continuously the domain
U of expF̄ in order to include the zero section away from the critical region. What is
more, the critical region will not be an obstacle to define geodesic balls of radius r ,
since one can extend the restriction of expF̄ to any r�.

Definition 3.17 Let � be a WRS on M , p ∈ M . For any r ≥ 0 such that B̄+
F̄p

(r)

(recall the notation (14)) is included in the starshaped domain Up ∪ {0p}, the (for-
ward) geodesic F̄-sphere of center p and radius r is the set

S+
F̄
(p, r) = expF̄

p (r�p),

where expF̄
p is assumed to be extended to 0p, if necessary. Then, for any r0 > 0 such

that S+
F̄
(p, r) is defined for all 0 ≤ r < r0, the (forward) geodesic F̄-ball and closed

(forward) geodesic F̄-ball of center p and radius r are, resp., the sets

B+
F̄
(p, r) = ∪0≤r<r0S+

F̄
(p, r), B̄+

F̄
(p, r) = closure(B+

F̄
(p, r0)).

Remark 3.18 Necessarily, S+
F̄
(p, r) is compact and, whenever B̄+

F̄p
(r0) ⊂ Up then

B̄+
F̄
(p, r0) = B+

F̄
(p, r0) ∪ S+

F̄
(p, r0)

and it is compact too (indeed, the right-hand side is the projection of the compact
subset in the SSTK splitting obtained by exponentianing the null vectors w tangent
to (0, p) such that 0 ≤ dt (w) ≤ r0 with a t-reparametrized pregeodesic analogously
as in the proof of part (3) in Proposition 3.15). However, B+

F̄
(p, r) is not necessarily
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open; in fact, this happens even for wind Minkowskian structures, as Ap ∪ (AE )p is
not open away from the mild wind region.

Definition 3.19 A curve γ : [a, b] → M , p = γ(a), vp = γ′(a) is an F̄-geodesic
of a WRS � if either vp ∈ Ap ∪ ((AE )p \ 0p) and γ(s) = expF̄

p ((s − a)vp) for
all s ∈ [a, b] or γ′(a) = 0p, �(p) = 0 and there exists some c > 0 such that the
curve [a, b] � s �→ (c(s − a), γ(s)) ∈ R × M is a lightlike pregeodesic of the SSTK
spacetime with initial condition c∂t |(0,p) at the instant a.

The previous definition extends naturally to non-compact intervals. Namely, for
the case [a, b) no modification is necessary, while for the case (a, b] one assumes
that, for all t ∈ (a, b), the restriction γ|[t,b] is a geodesic. Indeed, the F̄-geodesics
are the F-geodesics, boundary geodesics, and exceptional geodesics explained in
Sect. 3.1.3 (i.e., all the �-geodesics except the Fl ones). The lack of symmetry of
� makes meaningful the following distinction, as in the case of classical Finsler
metrics.

Definition 3.20 F̄ is forward (resp. backward) complete if the domain of all its
inextendible F̄-geodesics is upper (resp. lower) unbounded.

Clearly, given a WRS �, F̄ is forward complete if and only if the extended conic
Finsler metric for the reverse WRS �̃ = −� is backward complete.

3.3 Main Result on the Completeness of �

In order to obtain our main result, let us start strengthening the relations between
F̄-balls and geodesics.

Lemma 3.21 Let (M, �) be a WRS and x0 ∈ M. For each neighborhood W0 of x0,
there exists another neighborhood U0 ⊂ W0 and some ε > 0 such that, for every
x ∈ U0 and 0 < r < ε:

(i) Both, the c-balls B̂+
�(x, r) and the closed F̄-balls B̄+

F̄
(x, r) are compact and

included in W0.
(ii) B̄+

F̄x
(r) ⊂ Tx M is included in Ux ∪ {0x } and, then, the geodesic and metric F̄-

balls coincide, that is,: B+
F̄
(x, r) = B+

F̄
(x, r) and B̄+

F̄
(x, r) = B̄+

F̄
(x, r).

Proof Roughly, the result follows from [10, Lemma 6.4] and Proposition 3.5. Indeed,
[10, Lemma 6.4] provides directly both, the neighborhood U0 and ε > 0 such that
the c-balls B̂+

�(x, r) are compact for every x ∈ U0 and 0 < r < ε. Even more, this
also proves that ∪r ′∈[0,r ] B̂+

�(x, r ′) (which is equal to the projection on M of the
compact set J+(0, x) ∩ t−1([0, r ]), recall Proposition 3.4 and the choice of U0) is
compact too. As this set includes B+

F̄
(x, r), this proves the compactness of its closure,

concluding (i).
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For (i i) we claim first that if U0 is obtained as above then [0, ε] × U0 can be
assumed to lie in a globally hyperbolic (and thus, causally simple) neighborhood U
of the SSTK splitting satisfying π(U ) ⊂ W0. Indeed, (0, x0) admits an arbitrarily
small globally hyperbolic neighborhood U (see [23, Theorem 2.14]), and we have
just to assume that π(U ) ⊂ W0. Then, there exists a small neighborhood W ′

0 ⊂ π(U )

of x0 and some ε′ > 0 such that [0, ε′] × W ′
0 ⊂ U . So, the claimed property follows

just by repeating the step (i) imposing U0 ⊂ W ′
0(⊂ W0) and choosing ε < ε′.

Proposition 3.5 implies that B̄+
F̄x

(r) \ {0x } ⊂ Ux for every x ∈ U0. Even more,
for the required equalities, the inclusion ⊆ follows trivially, as all the points in the
geodesic ball are reached by a geodesic of F̄- length smaller than the radius (or equal
to it in the closed case, see Remark 3.18), which can be regarded as a wind curve
(indeed, so is the F̄-geodesic whenever r ≤ 1; otherwise, it can be reparametrized
affinely as a wind curve). For the inclusion ⊇ in the first equality, recall that for
each y ∈ B+

F̄
(x, r) the connecting wind curve γ : [0, r ′] → M , r ′ < r yields a causal

curve [0, r ′] � t �→ (t, γ(t)). Then z′ = (r ′, γ(r ′)) ∈ J+(0, x) and being [0, ε] × U0

included in the causally simple subset U , there exists a first point z ∈ [0, ε] × W0

on the integral curve of ∂t |z′ which belongs to J+(0, x). Then, the unique lightlike
geodesic from (0, x) to z projects into the required F̄-geodesic. Moreover, then the
inclusion ⊇ in the second equality also follows just applying the compactness (and
then closedness) of B̄+

F̄
(p, r0), see Remark 3.18. �

Proposition 3.22 Let (M, �) be a WRS and F̄ the associated extended conic Finsler
metric. Given p ∈ M assume that expF̄

p (resp. exponential at p for the reverse WRS

�̃ = −�) is defined in the whole domain (AE )p ⊂ Tp M (resp. −(AE )p ⊂ Tp M) of
Fp. Then, for any q ∈ M, q �= p, such that dF̄ (p, q) (resp. dF̄ (q, p)) is finite, there
exists a minimizing F̄-geodesic from p to q (resp. from q to p).

Proof Consider a sequence of wind curves αn from p to q such that limn �F̄ (αn) =
dF̄ (p, q). Let α̃n(t) = (t,αn(t)) be the graph ofαn in the associated SSTK spacetime
(R × M, g). As the curves α̃n are future-directed causal, then there exists a limit
curve α̃(s) = (s,α(s)) starting at (0, p) defined in a subinterval I of [0, dF̄ (p, q)],
0 ∈ I , such that limn αn(s) = α(s) for all s ∈ I (see [4, Sect. 3.3] or [10, Lemma
5.7]). This implies that α̃ is a lightlike pregeodesic and

dF̄ (p,α(s0)) = �F̄ (α|[0,s0]), (17)

for all s0 ∈ I \ {0}. Indeed, if either α̃ is not a lightlike pregeodesic or (17) does not
hold (only the inequality < should be taken into account then), we claim that there
exists δ > 0 such that (s0 − δ,α(s0)) ∈ J+(0, p). This follows from Proposition 3.4
if (17) does not hold.When α̃ is not a pregeodesic, observe that (s0,α(s0)) ∈ I +(0, p)

(see [24, Proposition 10.46]) and, as the chronological relation is open, there exists
δ > 0 such that (s0 − δ,α(s0)) ∈ I +(0, p) ⊆ J+(0, p). So, for the claimed δ, there
exists a future-directed causal curve ρ̃ from (0, p) to (s0 − δ,α(s0)). Concatenat-
ing this curve with [s0 − δ, �F̄ (αn) − δ] � s → (s − δ,αn(s)) ∈ R × M , we obtain
future-directed causal curves γ̃n from (0, p) to (�F̄ (αn) − δ, q). Taking n big enough,
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one gets that the projection of γ̃n is a curve from p to q which has length equal to
�F̄ (αn) − δ < dF̄ (p, q) in contradiction with the definition of dF̄ (p, q). Therefore,
α̃ is a lightlike pregeodesic and (17) holds, as required.

Now, the discussion in Sect. 3.1.3 implies that, being α̃ a lightlike pregeodesic,
necessarilyα is either a unit geodesic for F or Fl , or a boundary geodesic (exceptional
geodesics are excluded as p �= q). Moreover, if αwere an Fl-geodesic which is not a
boundary one, then it would be included in Ml , α′ could not vanish and 0 < F(α′) <

Fl(α
′) ≡ 1 (recall that F ≤ Fl holds always and, if the equality occurred in our

case, then h(α′,α′) = 0 at some point, that is, α would be the boundary geodesic
corresponding to the initial velocity at that point). Then,

�F̄ (α|[0,s0]) =
∫ s0

0
F(α′(s))ds < dF̄ (p,α(s0)).

As this is a contradiction with (17), α becomes either a boundary or F-geodesic and,
thus, an F̄-geodesic. So, by the hypothesis on expF̄

p , α is defined in [0, dF̄ (p, q)],
which concludes the proof. �

Finally, recalling Definitions 3.12 and 3.20, we can state our main result.

Theorem 3.23 Let (M, F̄) be the conic Finsler manifold associated with a WRS
(M, �). Then (M, �) is geodesically complete if and only if (M, F̄) is geodesically
complete. In addition, the following conditions are equivalent:

(a) The space (M, dF̄ ) is forward (resp. backward) Cauchy complete.
(b) (M, F̄) is forward (resp. backward) geodesically complete.
(c) Every closed and forward (resp. backward) bounded subset of (M, dF̄ ) is com-

pact.

Moreover, any of the above conditions implies that F̄l is forward (resp. backward)
geodesically complete.

Finally, if p0 ∈ M has the following property: dF̄ (p0, q) (resp. dF̄ (q, p0)) is finite
for every q ∈ M, then the above conditions are equivalent to

(d) At p0 ∈ M, expF̄
p0 (resp. backward expF̄

p0 ) is defined on all (A ∪ AE )p0 (resp.
−(A ∪ AE )p0 ).

Proof Let us start with the equivalences among the displayed items. The introduced
framework will allow us to use standard arguments as in [1, Theorem 6.61]. for
(a) ⇒ (b) ⇒ (c) and (d) ⇒ (c). We will reason always for the forward case.

(a) ⇒ (b). Otherwise take an incomplete geodesic γ : [0, b) → M, b < ∞. As
the sequence {γ(b − 1/m)}m>1/b is forward Cauchy, then it will have a limit p,
obtaining so a contradiction (recall Proposition 3.6).

(b) ⇒ (c). Let {pm}m be any forward bounded sequence and let p ∈ M, r > 0
such that {pm}m ⊂ B+

F̄
(p, r). By hypothesis, Proposition 3.22 is applicable and, thus,

{pm}m lies in the geodesic ball B+
F̄
(p, r). Then, the existence of a converging partial

subsequence of {pm}m follows because the closure of this ball is compact (recall
Remark 3.18).
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(d) ⇒ (c). As in the previous case, choosing now p = p0 (recall that B+
F̄
(p, r) ⊂

B+
F̄
(p0, r + dF̄ (p0, p)) and dF̄ (p0, p) is finite).
(c) ⇒ (a). Let {pm}m be a forward Cauchy sequence. The triangle inequality for

dF̄ implies that {pm}m is forward bounded. So, its closure is compact and {pm}m

admits a converging subsequence. Therefore, the result follows by Proposition 3.13.

For the statement about the geodesic completeness of Fl , observe that �F̄ (α) ≤
�F̄l

(α). This easily implies that if γ : [0, b) → M , b < ∞, is an Fl-geodesic, then
the sequence {γ(tm)}m with {tm = b − 1/m} is forward Cauchy for dF̄ . Thus, γ is
extendible to b as an Fl-geodesic (Proposition 3.6), as required.

Finally, the first statement follows because the �-geodesics are the geodesics of
both F̄ and Fl and we have just proved that the completeness of F̄-geodesics implies
the completeness of Fl-geodesics. �

Example 3.24 In the last theorem, the finiteness of d(p0, q) (or d(q, p0)) for every
q ∈ M is necessary to obtain the equivalence between (d) and the other properties.
In fact, if we consider M = Rn \ {(0, 0, . . . , 0,−1)}, gR the Euclidean metric and
W = (0, . . . , 0, 1), the correspondingKropinametric satisfies that the forward expo-
nential map at 0 = (0, 0, . . . , 0) is defined in the maximal domain, but the associated
distance is not forward complete. Notice, however, that dF (0, q) = +∞ whenever
q = (x1, . . . , xn) satisfies xn ≤ 0.

As a more sophisticated example, recall Example 3.11 (Fig. 4). The regions x ≥ 4
and x ≤ −4 are Euclidean but cannot be connected by any wind curve. So, the
exponential at any point in the region x ≥ 4 will be defined on all its tangent space,
even if one removes a point of the region x ≤ −4 (making incomplete the WRS).

Recall also that the regions −3 < x < −1 and 1 < x < 3 behave as a sort of
“black holes,” namely, once you enter there, it is not possible to go out.

4 Some Applications for SSTK Spacetimes

4.1 Cauchy Hypersurfaces in SSTK

As a direct consequence of Theorems 3.7 and 3.23, a characterization of Cauchy
hypersurfaces is obtained.

Corollary 4.1 Let (R × M, g) be an SSTK splitting. The following assertions are
equivalent:

(1) The slices t = constant are Cauchy hypersurfaces.
(2) The associated WRS, �, is geodesically complete.
(3) The extended conic Finsler metric F̄ of � is complete (in any of the equivalent

senses of Theorem 3.23).

This precise characterization of WRS completeness/Cauchy slices may be use-
ful for concrete examples. Indeed, incompleteness would follow just by finding an
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incomplete Cauchy sequence or geodesic for F̄ . Next, some criteria to ensure com-
pleteness are obtained.

Proposition 4.2 Let � be a WRS on M with associated conic Finsler metric4 F,
and let H be an auxiliary Finsler metric such that

H(v) ≤ F(v), ∀v ∈ A. (18)

If H is forward (resp. backward) complete, then � is forward (resp. backward)
geodesically complete.

Proof The usual generalized distance dH associated with H satisfies that dH ≤ dF̄ .
Therefore, any (forward or backward) Cauchy sequence for F̄ will also be Cauchy
for H and, as H is complete, then it will converge to some point of M . �
Recall that the inequality (18) means that the indicatrix �H encloses the indicatrix
� at each p ∈ M . In order to apply the previous criterion sharply, the indicatrix
�H should fit as much as possible in �. However, Riemannian metrics are easier to
handle in practice and this may be enough in some particular cases. First criteria are
the following.

Proposition 4.3 Let � be a WRS with Zermelo data (gR, W ), and let W � =
gR(W, ·). Then, � is complete if one of the following conditions holds:

(i) the conformal metric h∗ = gR/(1 + |W |R)2 is complete, or
(ii) the metric gR is complete and |W |R grows at most linearly with the dR-distance,

that is, there exist λ0,λ1 > 0, x0 ∈ M:

|Wx |R ≤ λ0 + λ1 dR(x0, x) ∀x ∈ M.

Proof For (i), just notice that, at each p ∈ M , the indicatrix of h∗ is a gR-sphere of
radius |W |R + 1. So, it contains �p and Proposition 4.2 can be applied.

The conditions in (i i) imply (i). Indeed themetric h∗ is conformal now to the com-
plete one gR with a conformal factor � = 1/(1 + |W |R)2 which decreases at most
quadratically with the distance. So, it is well known that h∗ is then complete (namely,
if γ : [0,∞) → M is any diverging curve parametrized with unit gR-velocity, then
its h∗-length satisfies

∫ ∞
0 h∗(γ′(s), γ′(s))1/2ds ≥ ∫ ∞

0
ds

1+λ0+λ1s = ∞. �
A more accurate consequence of Proposition 4.2 is the following.

Proposition 4.4 A WRS � with Zermelo data (gR, W ) is complete if so is the Rie-
mannian metric

h = gR − 1

1 + |W |2R
W � ⊗ W �,

4Notice that either using the conic Finsler metric F or the extended one F̄ in the statement of
this result are equivalent. Indeed, the inequality (18) holds when F is replaced by F̄ , since F̄ is
continuous everywhere except at most in the zeroes of the critical region, where the inequality holds
trivially.
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where W � is computed with gR, namely, W �(v) = gR(v, W ) for all v ∈ T M.

Proof Taking into account that the completeness of h and h/2 are equivalent, we
have just to check that h(W + U, W + U ) ≤ 2, where U is any gR-unit vector field:

h(W + U, W + U ) = |W |2R + 1 + 2gR(W, U ) − (|W |2R+gR(W,U ))
2

1+|W |2R
= 1

1+|W |2R

((
1 + |W |2R

)2 + 2(1 + |W |2R) gR(W, U ) − (|W |2R + gR(W, U )
)2)

= 1
1+|W |2R

(
1 + 2|W |2R + 2gR(W, U ) − gR(W, U )2

)
,

where the last parenthesis can be regarded as a quadratic polynomial in gR(W, U ).
This takes its maximum when gR(W, U ) = 1, yielding so the required inequality. �

Remark 4.5 One can also take other choices of Riemannian metric, which are not
conformal to gR but may be better adapted to the shape of �. For example, given �

as in the proposition above, it is not hard to check that� is enclosed by the indicatrix
of the following metric

hλ = 1

λ2

(
gR − 1

λ2 − 1 + |W |2R
W � ⊗ W �

)
, (19)

where λ : M → R is any function satisfying λ > 1 (indeed, the metric h in Proposi-
tion 4.4 is just h = λ2hλ for λ = √

2). Therefore, the completeness of hλ for such a
function implies that � is complete too. Notice that, when λ is close to 1, the metric
hλ is very close to gR in the directions orthogonal to W (this may be an advan-
tage) but not in the direction of W , as hλ(W, W ) becomes very small (this may be a
disadvantage); the situation is the other way around for big λ.

Recall that the easier the application of the previous criteria, the weaker the result.
Indeed, in Proposition 4.3, the criterion (i i) implies (i) (as seen explicitly in the
proof), the latter implies the completeness of h (as h∗ ≤ h), and the completeness of
h also implies the completeness of gR (as gR ≥ h); however, Proposition 4.2 can be
applied evenwhen gR is not complete. The next examples illustrate these possibilities.

Example 4.6 Sharpness of the rough bounds. Let (M, gR) = R2, W(x,y) = f (x, y)

∂x , for some smooth function f on R2.
Bound (ii). Choose r ∈ R and put f (x, y) = |x |r whenever |x | ≥ 1.When r ≤ 1,

the growth of W is at most linear and thus, the corresponding WRS is complete.
However, if r > 1, the WRS is incomplete. Indeed, the inextendible curve [0, L) �
s �→ (x(s), 0) with x(0) = 1 and x ′(s) = 1 + xr (s) diverges (it escapes from any
compact subset), it is F̄-unit and has finite length, L = ∫ ∞

1 dx/(1 + xr ) < ∞.
Bound (i). Choose f ≡ 0 except in the squares (n − 1/n4, n + 1/n4) × (−1, 1)

where | f | reaches the maximum n2. Now, (i) is fulfilled but not (i i).



Some Criteria for Wind Riemannian Completeness … 147

Bound with h. Put f (x, y) = xey . The metric h∗ is not complete (say, the curve
[0,∞) � s �→ (1, s) has finite length), but h (as well as hλ for any constant λ > 1)
is complete. Indeed,

h = 1

1 + x2e2y
dx2 + dy2,

thus, if γ(s) = (x(s), y(s)) is a diverging curve and y is unbounded (resp. |y| is
bounded by some C > 0), then its length is infinite because it is lower bounded by,
say,

∫ |y′(s)| ds (resp. (
∫
(|x ′(s)| /√1 + x(s)2e2C )ds > e−C

∫
dx/

√
1 + x2).

Bound with Finslerian H . Proposition 4.2 should be applied when the bound
with a Riemannian metric h in Propositions 4.3 and 4.4 imply a loss of sharp-
ness. Indeed, modify the example above putting (M, gR) = R+ := {x ∈ R : x > 0},
Wx = f (x)∂x , for some smooth function f such that 1 − x2 ≤ f (x) ≤ 2 on (0, 1]
and f is 0 on [2,∞). The incompleteness of gR close to the originmakes it impossible
to apply Propositions 4.3 or 4.4. However, one can obtain the forward completeness
of the WRS by applying Proposition 4.2 to the nonreversible Finsler metric:

Hx (v) =
{

v/3 ∀v ≥ 0
−v/x2 ∀v ≤ 0

x ∈ R+, v ∈ TxR
+.

The forward completeness of H follows because its unique unit geodesic [0, L) �
s �→ x(s) with x(0) = 1, x ′(0) < 0, satisfies x ′(s) = −x2(s), thus L = ∫ L

0 ds =∫ 1
0 dx/x2 = ∞.

Remark 4.7 In terms of the SSTK splitting (3) and using the usual index notation
ωi = −(g0)i j W j , (gR)i j = (g0)i j/(� + ωk ωk), the metrics h and h∗ read

hi j = (g0)i j

�+ωk ωk − 1

1+ ωk ωk

�+ωk ωk

ωi ω j

(�+ωk ωk )2
≡ (g0)i j − ωi ω j

1+ωk ωk

h∗
i j = (g0)i j(√

�+ωk ωk+
√

ωk ωk
)2 ≡ (g0)i j(

1+
√

ωk ωk
)2

where the indices are raised and lowered with g0 and the last expression in each
equality holds under the choice � + ωk ωk ≡ 1 in the conformal class of g.

4.2 Further Examples: Ergospheres and Killing Horizons

Consider the Lorentzian metric g on R × R3 in spherical coordinates (t, r, θ,ϕ),

g = −�(r)dt2 + dr2 + r2dθ2 + gtθ(r)(dtdθ + dθdt) + r2 sin2 θdϕ2

where, for r ∈ (1/2, 3/2), we will choose gtθ(r) = 1 and�(r) = (r − 1)m for some
m = 1, 2, . . . . As we will focus on the hypersurface r = 1, we will assume that the
metric matches with Lorentz–Minkowski L4 for |r − 1| > 2/3.
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First, notice that this is an SSTK spacetime where g0 is the usual metric of R2

and ω = gtθ(r)dθ. Thus, |ω|0 = |gtθ(r)|/r , and

W = − 1

r2
∂θ, gR = r2

1 + r2(r − 1)m
g0 when r ∈ (1/2, 3/2).

Due to the fact that gR is complete (it agrees with g0 outside the compact subset
|r − 1| ≤ 2/3) and |W |R is bounded, any of the criteria in the previous section
implies that the slices of t are Cauchy hypersurfaces.

The (hyper)surface S given as r = 1 can be seen as an ergosphere, because the
sign of � changes there. This hypersurface is always timelike and so, neither the
exterior region r > 1 nor the interior one r < 1 are globally hyperbolic. One can
also check that the slices of t are not Cauchy hypersurfaces for these regions using
the F̄-separation. Indeed, consider the region r ∈ (1 − ε, 1 + ε) for small ε > 0. The
vector field Z = (∂r − ∂θ)/2 lies inside � because � is just obtained by taking the
usual g0-unit bundle and displacing it with−∂θ/r2; thus, the F̄-length of Z is smaller
thanone.As the integral curves of Z must cross S, theyyield non-compact F̄-bounded
subsets for both, the inner and the outer regions. Extending our computations (see
the next example), it is not difficult to check also the lack of global hyperbolicity by
using the F̄ distance.

Even though we have focused on completeness and Cauchy hypersurfaces, other
properties of causality can be studied, suggesting that F̄ can also be useful beyond
our scope in this chapter. A computation shows

∇∂t ∂t = �r
tt∂r = −1

2
grr ∂gt t

∂r
∂r = 1

2

∂�

∂r
∂r = m

2
(r − 1)m−1∂r , r ∈ (1/2, 3/2).

(20)
Thus, when m > 1, the integral curves of ∂t are geodesics, but when m = 1 they are
not. This property is related to the light convexity of S (see [7] for background) and,
then, to the causal simplicity of the regions r > 1 and r < 1. Indeed, for m = 1, the
inner region r < 1 cannot be causally simple, as there are lightlike geodesics starting
at this region that touch S and come back to the inner region (those geodesics of the
spacetime with initial velocity parallel to ∂t on S).5 Such a property also implies
the lack of w-convexity of the inner region (and, in a natural sense, the lack of
F̄-convexity of S), which characterizes causal convexity in terms of �.

Finally, consider the following variation of the previous example:

g = −�(r)dt2 + dr2 + gtr (r)(dtdr + drdt) + r2dθ2 + r2 sin2 θdϕ2

where, again, we choose �(r) = (r − 1)m for m = 1, 2, . . . , gtr (r) = 1 when r ∈
(1/2, 3/2) and L4 when |r − 1| > 2/3. Now, one has:

5To understand this easily, (20) implies that the integral curves of ∂t are accelerated upward,
so, geodesics with initial velocity in ∂t should come from and go inward. Analytically, if ρ(s) =
(t (s), r(s), θ(s),ϕ(s)) is such a geodesic, at s = 0 onehas r ′(0) = θ′(0) = ϕ′(0) = 0, thus, r ′′(0) +
�r

tt (t
′(0))2 = 0 and, so, r ′′(0) < 0.
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W = −∂r , gR = 1

1 + (r − 1)m
g0 when r ∈ (1/2, 3/2).

As in the previous case, the slices of t areCauchy hypersurfaces for the full spacetime.
Now, the surface S given as r = 1 is a null hypersurface, as g becomes degenerate

there; even more, it can be regarded as a Killing horizon. If one considers only the
inner r < 1 or outer r > 1 regions, again, the slices t = constant are not Cauchy.
However, these regions are globally hyperbolic (this property goes a bit beyond our
previous study, but it shows further applications of F̄). In fact, for, say, the region
r > 1, a closer look at the incompleteness of F̄ shows that F̄ is forward incomplete
but backward complete. In order to check this, the relevant curves can be taken as
(s−, s+) � s �→ (r(s), θ0,ϕ0)with θ0,ϕ0 constants and r(0) > 1. From (9), the unit
curves (necessarily F̄-geodesics)6 satisfy 1 = r ′(s)/(−1 + ε

√
1 + (r − 1)m) where

ε = sign(r ′(s)) ∈ {±1}when r ∈ (1/2, 3/2) and they are theEuclideanunit geodesics
if |r − 1| > 2/3. Clearly, the F̄-geodesics with ε = 1 (resp. ε = −1) are forward
(resp. backward) complete. Moreover, the geodesic with ε = −1 is also clearly for-
ward incomplete. However, the geodesics with ε = 1 are backward complete. Indeed,
assuming r(0) = 2 (as r ′ cannot vanish one can focus only in one geodesic),

s− =
∫ 1

2
dr/(−1 + √

(r − 1)m + 1))

= −
∫ 2

1
(1 + √

(r − 1)m + 1) dr/(r − 1)m

≤ −
∫ 2

1
dr/(r − 1)m = −∞,

as required. These properties of completeness are sufficient for the compactness of
the intersections between the forward and backward F̄-balls and, then, for the com-
pactness of the corresponding intersections of the �-balls, the latter property being
a characterization of global hyperbolicity, as proven in7 [10, Theorem 5.9].

Being the inner and outer regions globally hyperbolic, they are causally simple too.
However, it is interesting to consider again the lightlike geodesics of the spacetime
tangent to8 S. First, a straightforward computation shows:

6Recall that all the direct computations in this example (either for F̄ or for other more classical
procedures to study global hyperbolicity) become especially simple, because the M part of the
SSTK spacetime is essentially one-dimensional, as the coordinates θ,ϕ do not play any relevant
role.
7In any case, the readers used to the stuff in Mathematical Relativity can reason alternatively that
these regions are globally hyperbolic because they admit S as a conformal boundarywith no timelike
points, which is a known characterization of global hyperbolicity (see [13, Corollary 4.34] for a
precise formulation of this result).
8The fact that they remain in S implies its light convexity with respect to the inner and outer regions
and, then, the causal simplicity of these regions, see [7].
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∇∂t ∂t = �t
t t∂t + �r

tt∂r = gtr

2(� + g2tr )

∂�

∂r
∂t + �

2(� + g2tr )

∂�

∂r
∂r . (21)

So, one has ∇∂t ∂t = 1
2

∂�
∂r ∂t on S. This means that the integral curves of ∂t (which

are the null generators of S) become geodesics when m > 1 and pregeodesics when
m = 1. These geodesics plus the ones in the previous example fulfill all the possible
types of lightlike geodesics orthogonal to K = ∂t , described in part (3) of Sect. 3.1.3
(see Lemma 3.21, Theorem 6.3(c) in [10] for details).

Summing up, even though the previous examples are very simple and can be
handled directly by means of the explicit computations of lightlike geodesics, causal
futures etc., they show the applicability of both, the general methods introduced in
[10] and the additional tools and criteria introduced here, which are valid for general
SSTK spacetimes with no restrictions on energy conditions, asymptotic behaviors,
etc.
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Extending Translating Solitons
in Semi-Riemannian Manifolds

Erdem Kocakuşaklı and Miguel Ortega

Abstract In this paper, we recall some general properties and theorems about
Translating Solitons in Semi RiemannianManifolds. Moreover, we investigate those
which are invariant by the action of a Lie group of isometries of the ambient space,
by paying attention to the behavior close to the singular orbit (if any) and at infinity.
Then, we provide some related examples.

Keywords Translating solitons · Semi-riemannian manifolds · ODE · Boundary
problem

1 Introduction

Given a smooth manifold M , assume a family of smooth immersions in a semi-
Riemannian manifold (M, g), Ft : M → M, t ∈ [0, δ), δ > 0, with mean curvature
vector �Ht . The initial immersion F0 is called a solution to the mean curvature flow
(up to local diffeomorphism) if

(
d

dt
Ft

)⊥
= �Ht , (1)

where⊥means the orthogonal projection on the normal bundle. In the Euclidean and
Minkowski space, there is a famous family of such immersions, namely, translating
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solitons. A submanifold is called translating soliton in the Euclidean Space when its
mean curvature �H satisfies the following equation:

�H = v⊥, (2)

for some constant unit vector v ∈ R
n+1. Indeed, if a submanifold F : M → R

n+1 sat-
isfies this condition, then it is possible to define the forever flow� : M × [0,+∞) →
R

n+1, �(p, t) = Ft (p) = F(p) + tv. Clearly,

(
d

dt
Ft

)⊥
= v⊥ = �H .

This justifies our definition. The same situation holds inMinkowski Space. Until now
such solutions have been almost exclusively studied in the case where the ambient
space is the Euclidean (or the Minkowski) space. For a good list of known examples,
see [6]. Probably, the most famous examples are the Grim Reaper curve in R

2 and
the translating paraboloid and translating catenoid, [2]. Also, in [7] there are some
examples with complicated topology. Recently, in [5], the authors studied those
translating solitons in Minkowski three-space with rotational symmetry.

If one wants to generalize (2), the simplest way is to choose a parallel vector field.
But manifolds admitting such a vector field are locally a product M × R. Thus, in
[4], the authors introduce the notion of (graphical) translating solitons on a semi-
Riemannian product M × R. Needles to say, their study include the Riemannian
case. When the translating soliton is the graph of map u defined on (an open subset
of) M , the corresponding partial differential equation that u must satisfy is obtained
in [4]. Although this paper includes more results, one of the main concern is the
study of translating solitons which are invariant under the action of a Lie group by
isometries on M . This action is very easily extended to M × R. The authors focused
on the case when the quotient map is an open interval, M/� ≡ I ⊂ R. This is so
because among the classical examples, the translating paraboloid and the translating
catenoid are constructed this way in [2].

In this paper, we would like to continue the study of [4] by further developing
some ideas.

Firstly, in the Preliminaries Section we recall some known results that we will
use later. Among them, we include a summary of [4], where we find the first steps of
translating solitons in product spaces M × R with a product metric gM + εdt2, with
ε = ±1 and gM the metric on M . Since the manifold M might not be complete, we
can almost say that we are dealing with a semi-Riemannian cohomogeneity of degree
one �-manifold, since there is a Lie group acting by isometries and the quotient is
a 1-dimensional manifold (see [1].) In this setting, we can construct our translating
solitons from the solutions to anODE. This is clarified in the newAlgorithm 1, which
was not included in [4].

Section3 is devoted to studying the already mentioned ODE, from two points of
view. One of them is solving a boundary problem. Indeed, given h ∈ C1(a, b) such
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that lim
s→a

h(s) = +∞, and ε, ε̃ ∈ {1,−1}, consider

w′(s) = (ε̃ + εw2(s))(1 − w(s)h(s)), w(a) = 0.

We show in Theorem 1 that there exists a solution under a not very restrictive con-
dition on function h. The reason to consider this problem is the following. In the
Euclidean Space Rn+1, graphical translating solitons which are invariant by SO(n)

and touching the axis or rotation (in other words, rotationally invariant) arise from
the solution of the following boundary problem:

w′(s) = (1 + w2(s)
)(
1 − n − 1

s
w(s)

)
, w(0) = 0.

In fact, the solution gives rise to the famous example known as Translating
Paraboloid. Clearly, function h : (0,+∞) → R, h(s) = (n − 1)/s, so that we are
studying a much more general problem by choosing any C1 function h satisfying
simple conditions on the boundary.

The existence of solutions in Theorem1 is just local, i. e., in a small interval
[a, a + δ). Thus, the second point of view consists of the extension of our solutions.
In this way, in Propositions 1 and 3 of Sect. 4, we show that for εε̃ = 1 and h > 0 or
h < 0, it is possible to extend the solution to the interval [s0, b), where s0 ∈ (a, b) is
the chosen initial point. In Proposition 2, we show some reasonable conditions under
which, the solutions defined on [s0, b) admit lim

s→b
w(s) ∈ R.

In Sect. 5 we pay attention to manifolds admitting a Lie group� acting by isome-
tries, such that the orbits are (CMC) hypersurfaces, the quotient manifold is an
interval [a, b), and the mean curvature of the orbits tend to infinity when approach-
ing the singular orbit. For example, this is the case of the Euclidean Space Rn under
the action of SO(n). Then, we apply our previous computations to obtain solutions
(denoted by w) to the corresponding boundary problem. Next, we use Algorithm 1
to primitives of them, namely f = ∫ w, to obtain �-invariant translating solitons.

Last, but not least, we show some examples in Sect. 6. On one hand, we exhibit
translating solitons in H

n × R whose invariant subsets are horospheres. Except for
one case, all of them are not entire, in the sense that they admit finite time blow ups.
Also, we make a study on the round sphere, where we obtain translating solitons
defined on the whole sphere but removing one or two points.

2 Preliminaries

The following results can be found in [4]. Assume that (M, g) is a connected semi-
Riemannian manifold of dimension n ≥ 2 and index 0 ≤ α ≤ n − 1. Given ε = ±1,
we construct the semi-Riemannian product M̃ = M × Rwithmetric 〈, 〉 = g + εdt2.
The vector field ∂t ∈ χ(M̃) is obviouslyKilling and unit, spacelikewhen ε = +1 and
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timelike when ε = −1. Now let F : � → M̃ be a submanifold with mean curvature
vector �H . Denote by ∂⊥

t the normal component of ∂t along F .

Definition A With the previous notation,wewill call F a (vertical) translating soliton
of mean curvature flow, or simply, a translating soliton, if �H = ∂⊥

t .

In this paper, we will focus on graphical translating solitons. Namely, given u ∈
C2(M), we construct its graphmap F : M → M × R = : M̃ , F(x) = (x, u(x)). Let
ν be the upward normal vector along F with ε′ = sign(〈ν, ν〉) = ±1.

Let� be aLie group acting by isometries onM andπ : M → I be a submersion, I
and open interval, such that the fibers of π are orbits of the action. In addition, assume
that π is a semi-Riemannian submersion with constant mean curvature fibers. For
each s ∈ I , π−1{s} ∼= � is a hypersurface with constant mean curvature. The value of
themean curvature ofπ−1{s} is denoted by h(s). Then,wehave a function h : I → R.
We will say that function h represents the mean curvature of the orbits. Given a map
F : M → P , where P is another set, is �-invariant when F(σ · x) = F(x) for any
σ ∈ � and any x ∈ M .

Theorem A Let (M, g) be a connected semi-Riemannian manifold. Let � be a
Lie group acting by isometries on M and π : (M, gM) → (I, ε̃ds2) be a semi-
Riemannian submersion, I an open interval, such that the fibers of π are orbits
of the action, with function h representing the mean curvature of the orbits. Take
u ∈ C2(M,R) and consider its graph map

F : M → M × R, F(x) = (x, u(x))

for any x ∈ M. Then, F is a �-invariant translating soliton if, and only if, there
exists a solution f ∈ C2(I,R) to

f
′′
(s) = (ε̃ + ε( f ′)2(s))(1 − h(s) f ′(s)) (3)

such that u = f ◦ π.

The following results study some conditions to obtain translating solitons which
cannot be globally defined, in the sense that they are not entire graphs. Instead, they
are defined on some smaller subsets, and converging to infinity.

Corollary A Under the same conditions, assume that εε̃ = −1. Then, given s0 ∈
I, f1 ∈ (−1, 1) and fo ∈ R, there exists a solution f : I → R to (3) such that
f (so) = f0 and f ′(so) = f1.

Corollary B Let ε = 1 and ε̃ = −1. Take c ∈ I . Consider any λ > 1.

1. Let f be a solution (3) such that f ′(c) = λ. If h(s) ≤ 0 for any s ≥ c, s ∈ I , and
sup(I ) > c + coth−1(λ) = a, then f admits a finite time blow up before a.

2. Let f be a solution (3) such that f ′(c) = −λ. If h(s) ≤ −1 for any s ≥ c, s ∈ I ,

and sup(I ) > c + coth−1(λ)

λ − 1
= a, then f admits a finite time blow up before a.
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Corollary C Let ε = ε̃ = −1 and c ∈ I . Consider any λ > 0 such that sup(I ) >

c + 1

λ
= a.

1. Let f be a solution (3) such that f ′(c) = −λ. If h(s) > 0 for any s ≥ c, s ∈ I ,
then f admits a finite time blow up before a.

2. Let f be a solution (3) such that f ′(c) = λ. If h(s) >
1

f ′(c)
for any s ≥ c, s ∈ I

then f admits a finite time blow up before a.

Corollary D 1. If ε = ε̃ = 1, consider any λ > 0 such that sup(I ) > c + 1

λ
. Take

any solution f to (3). If either f ′(c) = λ and h(s) < 0 for any s ≥ c, s ∈ I , or

f ′(c) = −λ and h(s) <
1

f ′(c)
for any s ≥ c, s ∈ I , then f admits a finite time

blow up before a.
2. If ε = −1 and ε̃ = 1, consider any λ > 1. Let f be a solution to (3) such that

f ′(c) = −λ. If h(s) > 0 for any s ≥ c, s ∈ I , and sup(I ) > c + coth−1(λ) = a,
then f admits a finite time blow up before a.

3. If ε = −1 and ε̃ = 1, consider any λ > 1. Let f be a solution to (3) such that

f ′(c) = λ. If h(s) > 1 for any s ≥ c, s ∈ I , and sup(I ) > c + coth−1(λ)

λ − 1
= a,

then f admits a finite time blow up before a.

Until now, we are recalling known results. But for the sake of clarity, we now
introduce a method to construct a translating soliton in a manifold foliated by the
orbits of the action of a Lie group acting by isometries.

Algorithm 1 Let (M, g) be semi-Riemannian manifold, � a Lie subgroup of
Iso(M, g), and I open interval. Choose ε ∈ {±1}. The metric in M × R is 〈, 〉 =
g + dt2.

1. Assume φ : M → (�/K ) × I is a diffeomorphism, for some subgroup K , such
that its restriction π : M → I satisfies |∇π|2 �= 0.

2. By a change of variable, recompute π (and φ) to obtain |∇π|2 = ε̃ = ±1.
3. For each s ∈ I compute the mean curvature h(s) of the fiber π−1 {s} ⊂ M . Note

π−1 {s} ∼= �/K .
4. Solve the following problem for some initial values in an interval J ⊂ I ,

f
′′
(s) = (ε̃ + ε( f ′(s))2)(1 − f ′(s)h(s)).

5. The translating soliton can be constructed by one of the following equivalent
ways:

F : (�/K ) × J → M × R, F(σ, s) = (φ−1(σ, s), f (s)).

F : φ−1((�/K ) × J → M × R, F(x) = (x, f (π(x)).



158 E. Kocakuşaklı and M. Ortega

We will use the following tools in order to solve our ODE with singularities. See
[9] for details. We consider the following linear ODE,

ẏ = Ay, y ∈ R
n (4)

From elementary linear algebra, we can find a linear transformation T which trans-
forms the linear equation (4) into block diagonal form

⎡
⎣ u̇

v̇
ẇ

⎤
⎦ =

⎡
⎣As 0 0

0 Au 0
0 0 Ac

⎤
⎦
⎡
⎣u

v
w

⎤
⎦ (5)

whereT−1y = (u, v, w) ∈ Rs× Ru × Rc, s + u + c = n, As is a s × smatrix having
eigenvalues with negative real part, Au is a u × u matrix having eigenvalues with
positive real part, and Ac is a c × c matrix having eigenvalues with zero real part.
Moreover, we know that

u̇ = Asu + Rs(u, v, w)

v̇ = Auv + Ru(u, v, w) (6)

ẇ = Acw + Rc(u, v, w)

where Rs(u, v, w), Ru(u, v, w) and Rc(u, v, w)are the first s, u and c components,
respectively, of the vector T−1R(T y).

Theorem B Suppose (6) is Cr , r ≥ 2. Then the fixed point (u, v, w) = 0 of (6)
possesses a Cr s–dimensional local, invariant stable manifold, W s

loc (0), a Cr

u−dimensional local, invariant unstablemanifold, Wu
loc (0) and aCr c−dimensional

local, invariant centermanifoldWc
loc(0), all intersectingat (u, v, w) = 0. Theseman-

ifolds are all tangent to the respective invariant subspaces of the linear vector field
(5) at the origin and, hence, are locally representable as graphs. In particular, we
have

Ws
loc(0) =

{
(u, v, w) ∈ R

s × R
u × R

c | v = hsv(u), w = hsw(u);
Dhsv(0) = 0, Dhsw(0) = 0; |u| sufficiently small

}

Wu
loc(0) =

{
(u, v, w) ∈ R

s × R
u × R

c | u = huu(v), w = huw(v);
Dhuu(0) = 0, Dhuw(0) = 0; |v| sufficiently small

}

Wc
loc(0) =

{
(u, v, w) ∈ R

s × R
u × R

c | u = hcu(w), v = hcv(w);
Dhcu(0) = 0, Dhcv(0) = 0; |w| sufficiently small

}

where hsv(u), hsw(u), huu(v), huw(v);, hcu(w) and hcv(w) are Cr functions. Moreover,
trajectories in Ws

loc (0) and Wu
loc (0) have the same asymptotic properties as trajec-

tories in Es and Eu, respectively.
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3 Solution to a Boundary Problem with Singularity

Theorem 1 Given a ∈ R, b ≤ +∞, ε, ε̃ ∈ {1,−1}, choose q ∈ C1[a, b) such that
q(a) = 0, q(s) �= 0 for any s > a, ε̃q ′(a) ≥ 0, and define h : (a, b) → R given by
h = 1/q. Then, the boundary problem

w′(s) = (ε̃ + εw2(s))(1 − w(s)h(s)), w(a) = 0 (7)

has a solution w : [a, a + δ) → R for a suitable small δ > 0.

Proof It is well known that it is possible to extend q a little in the following way.
For some ρ > 0, there exists a (nonunique) q̃ ∈ C1(a − ρ, b) such that q̃(s) = q(s)
for any s ≥ a. Then, we simply work on the interval I = (a − ρ, b). The extension
is not going to be crutial, because we really just care for s ∈ I , s ≥ a. We consider
the following autonomous vector field:

X : I × R → R
2, X (s, x) = (q(s), (ε̃ + εx2)(q(s) − x)

)
.

Note that X (a, 0) = (0, 0). Moreover, at (a, 0) the linearlization is

DX (a, 0) =
[
q ′(a) 0
ε̃q ′(a) −ε̃

]
.

Since ε̃q ′(a) ≥ 0, there are two eigenvalues λ1 = q ′(a) and λ2 = −ε̃, with different
sign or q ′(a) = 0, with corresponding eigenvectors v1 = (ε̃ + q ′(a), ε̃q ′(a))t , v2 =
(0, 1)t . By Theorem B, there exists a one-dimensional manifold (of fixed point),
around (a, 0), whose tangent space at (a, 0) is spanned by v1, which is a graph in a
small interval around s0, namely

W = {(s, x) ∈ I × R : x = w(s), |s − a| < δ}

for some functionw defined on a small interval (−δ, δ). This means that our dynam-
ical system has a solution

α : (−δ, δ) → W,α(t) = (s(t), x(t)), with α′(t) = X (α(t))

such thatα(0) = (a, 0),α′(0) = λv1 for someλ ∈ R,λ �= 0, and x(t) = w(s(t)).We
compose with the inverse of s, so that w(s) = x(t (s)). Moreover, since X (α(t)) =
α′(t), we have α′(t) = (s ′(t), x ′(t)) = (q(s(t)), (ε̃ + εx(t)2)(q(s(t)) − x(t)

)
, and

so for s > a,

w′(s) = x ′(t (s))t ′(s) = x ′(t (s))
s ′(t)

= (ε̃ + εx(t (s))2)(q(s) − x(t (s)))

q(s)

= (ε̃ + εw(s)2)(1 − h(s)w(s)).
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According to [9, p. 35], when q ′(a) �= 0, there is also uniqueness of solution. When
q ′(a) = 0, solutions only differ by exponentially small functions of the distance from
the fixed point. ��

4 Extension of Solutions

Along this section, we will always assume the following:

(H) Given a < b ≤ +∞, take s0 ∈ (a, b). Consider h ∈ C1(a, b) such that h > 0.

Proposition 1 Assume (H).

1. For each w0 ∈ R, the initial value problem

w′(s) = (1 + w2(s))(1 − h(s)w(s)), w(s0) = w0, (8)

has a unique C2-solution w on (s0 − ρ, b), for some ρ > 0.
2. If b = +∞, then lim

s→b
h(s)w(s) = 1.

Proof First of all, there exist ρ > 0 and w : (s0 − ρ, s0 + ρ) → R a solution, and
we wish to extend it to b. In this proof, we will use the classical result of extension
of solutions, which can be found for example on [3, p 15], without saying explicitly.
Note that function F : (a, b) × R, F(s, x) = (1 + x2)(1 − h(s)x), is continuous, so
it will be bounded on compact domains. Thus, we call

J = {s ∈ [s0, b) : there exists w : [s0, s) → R} .

Note that [s0, s0 + δ) ⊂ J . We want to show that supJ = b, so we take s1 ∈ J such
that s0 < s1 < b.

If w(s1) ≤ 1
h(s1)

, then w′(s1) ≥ 0. There exists δ1 > 0 such that a < s1 − δ1 <

s1 + δ1 < b and (s1, w(s1)) is an interior point of [s1 − δ1, s1 + δ1] × [w(s1) −
1, 1 + 1/h(s1)], where F is bounded. Thus, we can extend w a little.

If w(s1) > 1
h(s1)

> 0, then w′(s1) < 0. There exists δ1 > 0 such that a < s1 −
δ1 < s1 + δ1 < b and (s1, w(s1)) is an interior point of [s1 − δ1, s1 + δ1] × [0, 1 +
w(s1)], where F is bounded. Thus, we can extend w a little.

Note also that if for some s1 ∈ J ,w(s1) ≥ 0, thenw(s) ≥ 0 for any s > s1, s ∈ J .
Indeed, if for some s2 > s1, w(s2) < 0, by the continuity of w and w′, there exists
s3 ∈ (s1, s2) such that w′(s3) < 0 and w(s3) < 0. But by (8), w′(s3) > 0, which is a
contradiction.

Now, we call s̃ = sup(J ) ≤ b. Assume that s̃ < b. Firstly, if w is bounded on a
small interval [s̃ − δ1, s̃], by our previous computations, we can extend w a little to
[s0, s̃ + δ), which is a contradition. Then, w cannot be bounded when s approaches
s̃. Thus, there are two possibilities:
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(a) There is a sequence sn → s̃ such that w(sn) ↗ +∞. For some m natural
number w(sn) ≥ M for any n ≥ m. By (8), w′(sm) < 0 and w′(sm+1) < 0. Since
w(sm) < w(sm+1), thenw attains itsmaximumon [sm, sm+1] at a point t ∈ (sm, sm+1).
But then, w′(t) = 0, and again by (8), w(t) = 1/h(t) < M ≤ w(sm) < w(t). This
is a contradiction.
(b) There is a sequence sn → s̃ such that w(sn) ↘ −∞. For some m natural
number w(sn) ≤ −1 for any n ≥ m. By (8), w′(sm) > 0 and w′(sm+1) > 0. Since
w(sm) > w(sm+1), thenw attains itsminimumon [sm, sm+1] at a point t ∈ (sm, sm+1).
But then, w′(t) = 0, and again by (8), w(t) = 1/h(t) > w(sm+1) > w(t). This is a
contradiction.

Therefore, the only possibility is sup(J ) = b.

Next, we want to study the behavior of w when b = +∞.
Case A: Assume that there exist s1 ≥ s0 and M > 0 such that for each s ≥ s1,
1 − h(s)w(s) ≥ M . Then, for each s ≥ s1,

w′(s)
1+w2(s) ≥ M . If we integrate this inequal-

ity, we have arctan(w(s)) − arctan(w(s1)) ≥ M(s − s1). Hence, for each s ≥ s1, we
know w(s) ≥ tan(Ms − Ms1 + arctan(w(s1))). Clearly, there exists s big enough
andm a natural number such that (2m + 1)π/2 = Ms − Ms1 + arctan(w(s1)). This
is a contradiction.

Case B: Assume that there exist s1 > s0 and M < 0 such that for each s ≥ s1, 1 −
h(s)w(s) ≤ M < 0. If we change v = −w, then v′(s) = −w′(s) and v′(s) = (1 +
v2)(−1 − h(s)v(s)). On the other hand, 1 − h(s)w(s) = 1 + h(s)v(s) ≤ M ≤ 0,
and therefore v′(s)

1+v2(s) = −1 − h(s)v(s)) ≥ −M > 0, for any s ≥ s1. Next, we repeat
the steps of case A. ��

By Theorem 1 and Proposition 1, we obtain the following result.

Corollary 1 Assume (H), and in addition lim
s→a

h(s) = +∞ and lim
s→a

h′(s)
h2(s) = h1 > 0.

Then, the boundary problem (7) has a unique globally defined solutionw ∈ C1[a, b).

Proposition 2 Assuming (H), suppose in addition b < +∞ and there exists
lim
s→b

h(s) = +∞.

1. If there exists lim
s→b

h′(s)
h2(s) = h1 ∈ [0,+∞), there is a solution to (8) for certain w0

such that lim
s→b

w(s) = 0 and lim
s→b

w′(s) = 1
1+h1

.

2. If for some M > 0 and s1 ∈ [s0, b), it holds w(s) ≥ M for every s ≥ s1, then
there exists lim

s→b
w(s) = w1 ≥ M and lim

s→b
w′(s) = −∞.

3. If there exist M < 0, s1 ∈ [s0, b) such that for every s ≥ s1, w(s) ≤ M, then
there exist lim

s→b
w(s) = w1 ≤ M and lim

s→b
w′(s) = +∞.

Proof We check item 1. We consider the map φ : [0, b − s0] → [s0, b] given by
φ(u) = b − u, and the function h̃ : (0, b − s0] → R, h̃(u) = h(φ(u)). Note that φ
also can be seen φ : [s0, b] → [0, b − s0]. Clearly, h̃ > 0, lim

u→0
h̃(u) = lim

s→b
h(s) =
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+∞, so we can define the function q : [0, b − s0] → R, q(u) = 1/h̃(u)when u > 0
and q(0) = 0. Moreover,

lim
u→0

q ′(u) = lim
u→0

h′(φ(u))

h2(φ(u))
= h1 ≥ 0.

Thus, q ∈ C1[0, b − s0). By Theorem 1, but using h̃ instead of h, there is a solution
z : [0, b − s0) → R to problem (8), such that z(0) = 0. We define now the function
w : [s0, b] → R given byw(s) = −z(φ(u)). In particular, lim

s→b
w(s) = 0 andw′(s) =

z′(φ(u)) = (1 + w2(s))(1 − h(s)w(s)). Moreover, lim
s→b

w′(s) = lim
u→0

z′(u). Note that

lim
u→0

z′(u)

⎛
⎝1 − 1

h̃′(u)

h̃2(u)

⎞
⎠ = lim

u→0
z′(u) − lim

u→0

z′(u)

h̃′(u)

h̃2(u)

= lim
u→0

z′(u) + lim
u→0

z(u)

1/h̃(u)

= lim
u→0

(
(1 + z2(u))(1 − h̃(u)z(u)) + h̃(u)z(u)

)
= 1.

Therefore

lim
s→b

w′(s) = lim
s→0

z′(u) = 1

1 + h1
.

Now, we check 2. We assume there exists M > 0, s1 ∈ (s0, b) such that for every

s ∈ [s0, b) we know w(s) ≥ M. There exists s2 ∈ [s1, b) such that h(s) ≥ 2

M
for

every s ∈ [s2, b). Therefore, 1 − h(s)w(s) ≤ −1. By (8) we obtain w′(s) < 0 for
every s ∈ [s2, b). By using w(s) ≥ M and w′(s) < 0 for every s ∈ [s2, b), there
exists lim

s→b
w(s) = w1 ≥ M. Now, by (8), we calculate the limit

lim
s→b

w′(s) = lim
s→b

[
(1 + w2(s))(1 − h(s)w(s))

] = −∞.

Finally, item 3. We assume there exist M < 0, s1 ∈ (s0, b) such that for every
s ∈ [s0, b) we know w(s) ≤ M. We know that h(s) > 0 and w(s) < 0. Therefore,
by (8), we obtainw′(s) > 0 for every s ∈ [s1, b), namelyw(s) is increasing. By using
w(s) ≤ M andw′(s) > 0 for every s ∈ [s1, b) there exists lim

s→b
w(s) = w1 ≤ M < 0.

Now, by (8), we calculate the limit

lim
s→b

w′(s) = lim
s→b

[
(1 + w2(s))(1 − h(s)w(s))

] = +∞.

And this completes the proof. ��
The case ε = ε̃ = −1 can be studied in a similar way. All ideas are already

explained, so its proof is left to the reader.
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Proposition 3 Given h : [s0, b) → R , h ∈ C1[s0, b) and b ≤ +∞ such that
h(s) < 0.

1. For each w0 ∈ R, the boundary value problem

w′(s) = −(1 + w2(s))(1 − h(s)w(s)), w(s0) = w0, (9)

has a unique C2-solution w on [s0, b).
2. If b = +∞, then lim

s→+∞ h(s)w(s) = 1.

3. Assume b < +∞ and there exist the limits lim
s→b

h(s) = −∞ and lim
s→b

h′(s)
h2(s) = h1 ∈

(−∞, 0]. Then, for certain w0 ∈ R, there exist the limits lim
s→b

w(s) = 0 and lim
s→b

w′(s) = 1
1+h1

.
4. Assume b < +∞ and there exists lim

s→b
h(s) = −∞. If for some M > 0 and s1 ∈

[s0, b), it holds w(s) ≥ M for every s ≥ s1, then there exist lim
s→b

w(s) = w1 ≥
M and lim

s→b
w′(s) = −∞.

5. Assume b < +∞ and there exist M < 0, s1 ∈ [s0, b) such that for every s ≥ s1,
w(s) ≤ M, then there exist lim

s→b
w(s) = w1 ≤ M and lim

s→b
w′(s) = +∞.

5 Constructing Translating Solitons

Our next target is to show the existence of graphical translating solitons which are
invariant by the action of a Lie group by isometries, under additional conditions. One
simple case is the foliation of the Euclidean planeR2 by circles centered at the origin,
where the Lie group is SO(2), but the origin has to be removed in order to obtain
smooth maps. In this case, function h(s) = 1/s, because the geodesic curvature of
the circles approaches infinity as the radius tends to zero.

Consider (M, g) a semi-Riemannian manifold, and � a Lie group acting on M
by isometries. We obtain a foliation of M by the orbits of the action of �. Assume
(1) there is exactly one (singular) orbit O which is a submanifold, but 0 ≤ dim O <

dim M , and (2) there exists a smooth map � : (�/K ) × [0, r)rightarrowM , for
some subgroup K , carrying each (�/K ) × {s}, s ∈ [0, r), into one or the orbits. In
other words, we are assuming O = �((�/K ) × {0}), and � : (�/K ) × (0, r) →
M\O is a diffeomorphism. It is possible to reparametrize it to immediately obtain
the projection π : M \ O → (0, b). When ∇π is never light-like, we can recompute
π to obtain a semi-Riemannian submersion, [4]. That is to say, for each s ∈ (0, b),
π−1{s} is one orbit, which is a hypersurface of constant mean curvature h(s) because
� acts by isometries, and ε̃ = ‖∇π‖2 = ±1. Note that, ∇π is a unit normal vector
field along each non-singular orbit.

Theorem 2 Under the conditions of this section, assume that the map q : (0, r) →
R, q(s) = 1/h(s), can be extended to q ∈ C1[0, r) and satisfies q(0) = 0, ε̃q ′(0) ≥
0. Then, there exists a smooth map f : [0, δ) → R such that it induces a graphical
translating soliton
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� : � × [0, δ) → (M × R, ḡ = g + εdt2), �(σ, s) = (�(σ, s), f (s)
)
,

whose unit upward normal ν satisfying ḡ(ν, ν) = ε̃.
In addition, if ε = ε̃ and εh(s) > 0 for any s ∈ (0, r), the translating soliton can

be smoothly extended to � : M → M × R.

Proof By Theorem 1, we just need to define f (s) = f1 + ∫ s
0 w(u)du, f1 ∈ R being

an integration constant.Then, we just need to use Algorithm 1. The boundary condi-
tion f ′(0) = 0 is important to ensure the smoothness of the process.

To extend the translating soliton, we just make use of Sect. 4. ��

6 Examples

Example 1 In R
n , with the standard flat metric g0, we consider the Poincare’s Half

hyperplane model of Hn , namely

H
n = {(x1, x2, ..., xn) ∈ R

n | xn > 0
}
, g = 1

x2n
g0.

Let � be the Lie group � = (Rn−1,+) acting by isometries onHn as usual, namely

� × H
n → H

n, (w, p) → (p1 + w1, ..., pn−1 + wn−1, pn)

where w = (w1, w2, ..., wn−1) and p = (p1, p2, ..., pn), respectively. Note that the
orbits are the well-known horospheres.

We define the projection map, with its usual properties:

τ̄ : Hn → R, τ (x1, x2, ..., xn) = ln(xn).

Consider two local frames (∂x1 , ∂x2 , ..., ∂xn ) and (E1 = xn∂x1 , E2 = xn∂x2 , ..., En =
xn∂xn ) of TH

n . A straightforward computation shows

∇ τ̄ = En, div(∇ τ̄ ) = −n + 1. (10)

We arrive to the following initial value problem,

f
′′
(s) = (1 + ( f ′(s))2)(1 + (n − 1) f ′(s)), f ′(s0) = f0, f (s0) = f1, (11)

where s0, f0, f1 ∈ R. By the easy change f ′(s) = w(s), we transform this problem
in

w′(s) = (1 + w2(s))(1 + (n − 1)w(s)), w(s0) = f0. (12)
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The classical change of variable t = w(s) allows to compute a first integral, by the

expression F ′(t) = 1

(1 + (n − 1)t)(1 + t2)
, so that

F : R\ {−1/(n − 1)} → R,

F(t) = 1

1 + (n − 1)2

[
(n − 1) ln

( |1 + (n − 1)t |√
1 + t2

)
+ arctan t

]
+ C0,

for some integration constant C0 ∈ R. From here we obtain 3 cases.
Case 1: f0 = −1/(n − 1). Then, the function w(s) = −1

n−1 is a constant solution to
(12). Thus, f (s) = f1 − s/(n − 1) is a solution to (11).

Case 2: f0 > −1/(n − 1). We restrict F , namely F1 : ( −1
n−1 ,+∞)→ R. In this case,

F ′ > 0, so that F is injective. To compute its image, we see

lim
t→+∞ F1(t) = lim

t→+∞

[
1

1 + (n − 1)2

[
(n − 1) ln

( |1 + (n − 1)t |√
1 + t2

)
+ arctan t

]
+ C0

]

=
(

1

1 + (n − 1)2

)(
(n − 1)ln(n − 1) + π

2

)
+ C0 =: K0,

lim
t→ −1

n−1
+ F1(t) = lim

t→ −1
n−1

+

[
1

1 + (n − 1)2
(n − 1) ln

( |1 + (n − 1)t |√
1 + t2

+ arctan t

)
+ C0

]
= −∞.

Weobtain that F1 : ( −1
n−1 ,+∞)→ (−∞, K0) is bijective, and there exists its inverse

function

F−1
1 : (−∞, K0) →

( −1

n − 1
,+∞

)
.

Now, we recover w(s) = F−1
1 (s), w(s0) = F−1

1 (s0) = w0 > −1
n−1 , and lim

s→−∞w(s) =
−1/(n − 1), lim

s→K0

w(s) = +∞. Finally,

f : (−∞, K0) → R, f (s) = f1 +
∫ s

s0

w(u)du.

Then, we obtain lim lim
s→−∞ lim f (s) = −∞ and lim

s→K0

lim f (s) = +∞. Thus, func-

tion f has a finite time blow up.

Case 3: f0 < −1/(n − 1). As in the previous case, we restrict F to F2 : (−∞,−1/
(n − 1)) → R and compute its image. Indeed,
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lim
t→−∞ F2(t) = lim

t→−∞

[
1

1 + (n − 1)2

[
(n − 1) ln

(
|1 + (n − 1)t |√

1 + t2

)
+ arctan t

]
+ C0

]

=
(

1

1 + (n − 1)2

)(
(n − 1)ln(n − 1) − π

2

)
+ C0 =: K1,

lim
t→ −1

n−1
− F2(t) = lim

t→ −1
n−1

−

[
1

1 + (n − 1)2

[
(n − 1) ln

(
|1 + (n − 1)t |√

1 + t2

)
+ arctan t

]
+ C0

]

= −∞.

For t < −1
n−1 , then F ′

2(t) < 0, so that we obtain the bijection F2 : (−∞, −1
n−1

)→
(−∞, K1), that is to say,

F−1
2 : (−∞, K1) → (−∞,−1/(n − 1)) .

Now, we recover w(s) = F−1
2 (s), w(s0) = F−1

2 (s0) = f0 < −1
n−1 , and lim

s→−∞
w(s) = −1/(n − 1), lim

s→K1

w(s) = +∞. Finally,

f : (−∞, K1) → R, f (s) = f1 +
∫ s

s0

w(u)du.

Then, we obtain lim lim
s→−∞ lim f (s) = −∞ and lim

s→K1

lim f (s) = +∞. Therefore,

function f has a finite time blow up.

Next, for each case, we resort to Algorithm 1 to obtain our translating solitons.
Finally, this example shows that the condition h > 0 cannot be removed in Proposi-
tion 1.

Example 2 InRn+1, n ≥ 1,with its standardflatmetric g, consider a round n−sphere
of radius 1 centered at 0, namelySn .Asusual, we identify the tangent space at x ∈ S

n ,

TxS
n = {X = (X1, ..., Xn+1) ∈ R

n+1 : g(X, x) = 0
}
.

Now, the Lie group O(n − 1) acts by isometries on S
n as usual:

O(n − 1) × S
n → S

n, (A, x) → A.x =
(
A 0
0 1

)
x =

(
A(x1, ..., xn)t

xn+1

)

We restrict our study to M = S
n\{N , S}, i.e., we remove the North and South Poles.

In this way, the space of orbits can be identified by the following projection map

τ : M → (−π/2,π/2), τ (x) = − arcsin(xn+1).

Then, given ξ = (0, . . . , 0, 1), simple computations show xn+1 = g(x, ξ) and



Extending Translating Solitons in Semi-Riemannian Manifolds 167

∇τ (x) = − ξ − g(x, ξ)x√
1 − x2n+1

= − ξ − g(x, ξ)x

cos(τ (x))
, x ∈ S

n, ‖∇τ‖ = 1, div(∇τ ) = (n − 1) tan(τ ).

We obtained that h(s) = (1 − n) tan(s). Thus, we consider the following differential
equation:

f ′′(s) = (1 + f ′(s)2
)(
1 − (n − 1) tan(s) f ′(s)

)
, (13)

which we reduce in a first step to (w = f ′),

w′(s) = (1 + w2(s)
)(
1 − (n − 1) tan(s)w(s)

)
. (14)

Needless to say, for each wo ∈ R, there exists a solution w : (−δ, δ) → R such
that w(0) = wo. Since h > 0 on (0,π/2), by Proposition 1, we can extend to w :
(−δ,π/2) → R. Now, by taking z : (−π/2, δ) → R, z(u) = −w(−u), it is clear that
z is another solution to (14). By Proposition 1, we can extend z : (−π/2,π/2) → R.
This means that each solution to (14) can be globally definedw : (−π/2,π/2) → R.
Clearly, for each f0 ∈ R,we construct a solution f (s) = ∫ w(x)dx + f0, f : (−π/2,
π/2) → R. Now, by using Algorithm 1, given a solution f , we obtain a translating
soliton defined on the sphere except two points, namely S

n\{N , S}.
Moreover, a simple computation shows

lim
s→π/2

h′(s)
h2(s)

= lim
s→π/2

1

(n − 1) sin2(s)
= lim

s→−π/2

h′(s)
h2(s)

= 1

n − 1
> 0.

By Proposition 1, there exist two solutions w̄ and w̃ that satisfy the conditions
lim

s→π/2
w̄(s) = 0 and lim

s→−π/2
w̃(s) = 0. We take f̄ = ∫ w̄ and f̃ = ∫ w̃, and use

Algorithm 1. Then, these translating solitons will admit a tangent plane at points
N or S, i. e., they will be smooth. Problem is, we have not been able to show if these
two translating solitons coincide.

Example 3 In the standard Euclidean Space R
3, consider a C∞ plane curve α :

(0,+∞) → R
3, α(s) = (x(s), 0, z(s)), x(s) > 0 for any s > 0, which is arclength,

and satisfies lim
s→0

α(s) = 0, lim
s→0

x ′(s) = x0 > 0. We construct the revolution surface

S parametrized by

X : S1 × (0,+∞) → R
3, X (θ, s) = (cos(θ)x(s), sin(θ)y(s), z(s)).

This is a smooth surface foliated by circles of radius 1/x(s), or rather, invariant by
the Lie group S

1 acting by isometries. In this case, consider the map

h : (0,∞) → R, h(s) = 1/x(s).
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Since q(s) := 1/h(s) = x(s) can be smoothly C1-extended to q : [0,+∞) → R,
with q ′(0) = x0 > 0, by our previous results, we can construct a S1-invariant trans-
lating soliton S → S × R ⊂ R

4. Note that function h is here totally arbitrary.
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Trivalent Maximal Surfaces
in Minkowski Space

Wai Yeung Lam and Masashi Yasumoto

Abstract We investigate discretizations of maximal surfaces in Minkowski space,
which are surfaces with vanishing mean curvature. The corresponding discrete
surfaces admit a Weierstrass-type representation in terms of discrete holomorphic
quadratic differentials. There are two particular types of discrete maximal surfaces
that are obtained by taking the real part and the imaginary part of the representation
formula, and they are deformable to each other by a one-parameter family. We fur-
ther introduce a compatible notion of vertex normals for general trivalent surfaces to
characterize their singularities in Minkowski space as in the smooth theory.

Keywords Discrete differential geometry · Weierstrass-type representation
Singularity · Discrete complex analysis · Discrete integrable system

1 Introduction

The study of surfaces in 3-dimensional Lorentzian spaceforms is an ongoing and
developing area of research. In particular, the study of constant mean curvature
(CMC, for short) surfaces in 3-dimensional Lorentzian spaceforms is a central topic
in this subject. Here we focus on spacelike surfaces with vanishing mean curvature,
which are called spacelike maximal surfaces (maximal surfaces, for short).

Maximal surfaces in 3-dimensional Minkowski space R2,1 maximize their area,
in contrast to minimal surfaces in Euclidean spaceR3 that minimize the area. Like in

W.Y. Lam
Department of Mathematics, Brown University, Box 1917, Providence,
RI 02912, USA
e-mail: lam@math.brown.edu

M. Yasumoto (B)
Osaka City University Advanced Mathematical Institute,
3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
e-mail: yasumoto@sci.osaka-cu.ac.jp

© Springer International Publishing AG 2017
M.A. Cañadas-Pinedo et al. (eds.), Lorentzian Geometry and Related Topics,
Springer Proceedings in Mathematics & Statistics 211,
DOI 10.1007/978-3-319-66290-9_10

169



170 W.Y. Lam and M. Yasumoto

the case of minimal surfaces inR3, Kobayashi [11] derived aWeierstrass-type repre-
sentation for conformal maximal surfaces in R2,1 and constructed several examples.
On the other hand, Calabi [6] showed that the only complete maximal surface in
R

2,1 is the spacelike plane. This fact naturally leads us to the necessity of consid-
ering maximal surfaces in R

2,1 with singularities. In this direction, singularities of
maximal surfaces have been well-studied (see [7, 12, 21] for example).

The idea of structure preserving discretizations of differential geometry is rapidly
developing. Its goal is establish a discrete theory as rich as the corresponding smooth
theory. Various viewpoints of discretizations have been conducted independently.

From the viewpoint of integrable systems, Bobenko, Pinkall [1] described discrete
constant negative Gaussian curvature surfaces in R

3, which are compatible with a
discrete version of the sine-Gordon equation in [10]. In [2], they further investigated
discrete parametrized surfaces in R

3 which are called discrete isothermic surfaces.
Discrete isothermic surfaces contain interesting classes of discrete surfaces such as
discrete minimal surfaces and CMC surfaces. They can be formulated and character-
ized by employing discrete versions of integrable transformation theory (see [8, 9]
for example). Another discretization of surfaces can be found in [4] (see also [16]).

Discretizations of minimal and CMC surfaces in R3 via the variational approach
have also been considered [18, 19]. However, in this approach these surfaces are
discretized as triangle meshes, in contrast to quadrilateral meshes in the integrable
system approach. It was believed to be difficult to obtain examples that lie in the
intersection of the various discretization approaches.

Recently in [14, 15], Pinkall and the first author have launched a new discrete
surface theory in R

3 which not only generalizes many previous works to general
meshes, but also gives a unified theory that is compatible with both integrable geo-
metric aspects and variational properties. In particular, they introduced discrete min-
imal surfaces using a Weierstrass representation in terms of discrete holomorphic
quadratic differentials, which further generalize the curvature approach [13]. Partic-
ular examples are trivalent minimal surfaces that are discrete minimal surfaces where
each vertex has three outgoing edges.

On the other hand, a discretization of maximal surfaces has been initiated by
the second author [22]. Discrete isothermic surfaces in R

2,1 with vanishing mean
curvature were introduced, which are called discrete isothermic maximal surfaces. A
Weierstrass-type representation for discrete isothermicmaximal surfaceswas derived
and several examples were constructed. As in the smooth case, discrete isothermic
maximal surfaces generally have configurations of singularities. However, in the
realm of discrete differential geometry, it is not possible to detect singularities by
means of differentiation with respect to the discrete variables. An important question
is how to characterize such singularities of discrete maximal surfaces. Although
this phenomenon never occurs in the case of discrete isothermic CMC surfaces in
3-dimensional Riemannian spaceforms, it can be found in the case of Lorentzian
spaceforms (see [17, 20, 22] for example).
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In this paper, combining the ideas above,we investigate trivalentmaximal surfaces
in R

2,1. Our trivalent maximal surfaces can be locally described by a Weierstrsss-
type representation using holomorphic quadratic differentials. We consider two spe-
cial types of trivalent maximal surfaces in R

2,1, which are called A-maximal and
C-maximal surfaces. As will be seen later, an A-maximal surface is obtained by tak-
ing the real part of the Weierstrass-type representation and a C-maximal surface is
obtained by taking the imaginary part. Moreover, our description enables us to treat
associated families of trivalent maximal surfaces.

Further, we characterize singularities of trivalent surfaces in Minkowski space.
Like in [22], trivalent maximal surfaces generally have configurations of singularities
and so do the surfaces in the associated families. We introduce a notion of vertex nor-
mal for trivalent surfaces in Minkowski space. Starting from analyzing singularities
of A-maximal and C-maximal surfaces, we characterize singularities of all trivalent
maximal surfaces in R

2,1. Our results provide not only the unified theory given in
[13, 14], but also a better understanding of singular behaviors of trivalent surfaces.

This paper is organized as follows: In Sect. 2, terminologies and related facts are
introduced. In Sect. 3, we introduce two types of discrete maximal surfaces in R

2,1.
In Sect. 4, we investigate trivalent maximal surfaces inR2,1 and derive aWeierstrass-
type representation for them. Finally in Sect. 5, we analyze singularities of trivalent
maximal surfaces, including their associated families.

2 Preliminaries

Let R2,1 := (R3, 〈·, ·〉) be 3-dimensional Minkowski space with the Lorentz metric

〈(x1, x2, x0)t , (y1, y2, y0)t 〉 = x1y1 + x2y2 − x0y0

for (x1, x2, x0)t , (y1, y2, y0)t ∈ R
2,1 and squared norm

‖(x1, x2, x0)t‖2 := 〈(x1, x2, x0)t , (x1, x2, x0)t 〉,

which can be negative. Note that, for fixed d ∈ R and vector n ∈ R
2,1 \ {0}, a plane

P = {x ∈ R
2,1 | 〈x, n〉 = d} is spacelike or timelike or lightlike when n is timelike

or spacelike or lightlike, respectively. Here we define

H
2
+ := {X = (x1, x2, x0)

t ∈ R
2,1| ‖X‖2 = −1, x0 > 0},

H
2
− := {X = (x1, x2, x0)

t ∈ R
2,1| ‖X‖2 = −1, x0 < 0}.

The Minkowski version of the cross product is defined as follows:
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(x1, x2, x0)
t × (y1, y2, y0)

t :=
∣
∣
∣
∣
∣
∣

e1 e2 −e0
x1 x2 x0
y1 y2 y0

∣
∣
∣
∣
∣
∣

∈ R
2,1 ,

where e1 := (1, 0, 0)t , e2 := (0, 1, 0)t , e0 := (0, 0, 1)t . Note that, for given two vec-
tors x, y ∈ R

2,1, x × y is perpendicular to both x and y.

2.1 Smooth Maximal Surfaces in R
2,1

Here we briefly review smooth maximal surfaces in R
2,1. Let F : D (⊂ C) → R

2,1

be a spacelike immersion parametrized by complex coordinate Z ∈ D. Then F is
called maximal if the mean curvature of F identically vanishes, or equivalently, F
locally maximizes its area. In particular, we only consider conformal immersions.
For conformal maximal surfaces in R

2,1, Kobayshi [11] derived a Weiersrtass-type
representation:

Proposition 2.1 Any conformal maximal surface F can be locally described by

dF = Re
(

(1 + g2,
√−1(1 − g2),−2g)tω

)

,

where g is a meromorphic function and ω = ω̂dZ is a holomorphic one-form such
that g2ω̂ is holomorphic. This representation formula is called aWeierstrass-type rep-
resentation for conformalmaximal surfaces and the inducedmetric is (1 − |g|2)2|ω|2.
Moreover, the Gauss map ν of F is given by

ν =
(
2Re(g)

1 − |g|2 ,
2Im(g)

1 − |g|2 ,
1 + |g|2
1 − |g|2

)t

∈ H
2
+ ∪ H

2
−.

So the Gauss map of F can be obtained by the inverse image of the stereographic
projection. In this sense we also call g the Gauss map of F.

Remark 2.2 When g takes value in the unit circle S1 ⊂ C, the metric of F degener-
ates, so F has singularities (see [7, 21] for details).

The Weierstrass-type representation in Proposition 2.1 can be also written as
follows:

dF = Re
(

(1 + g2,
√−1(1 − g2),−2g)tω

)

= Re

(

(1 + g2,
√−1(1 − g2),−2g)t

Q̂d Z

g′

)

,

where g′ := ∂g

∂Z
, Q̂ := 〈FZZ , ν〉 is the coefficient of the Hopf differential Q =

Q̂d Z2 of F and encodes its second fundamental form. Note that Q is also called
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the holomorphic quadratic differential. If Q̂ is a nonzero real-valued (resp. pure
imaginary-valued) function, F is a maximal surface parametrized by conformal cur-
vature line (resp. asymptotic line) coordinates.

3 Discrete Maximal Surfaces in R
2,1

In this sectionwe introduce discretemaximal surfaces inR2,1. Throughout this paper,
a discrete surface is a cell decomposition of a surface M = (V, E, F), where V is a
set of points, E is a set of edges, and F is a set of faces. We denote by Vint the set of
interior vertices and by Eint the set of interior edges. For a given discrete surface M ,
a dual cell decomposition M∗ = (V ∗, E∗, F∗) of M is a dual surface of M . Then,
there are a one-to-one correspondence between i ∈ V and i∗ ∈ F∗, and a one-to-one
correspondence between i j ∈ E and i∗ j∗ ∈ E∗. For a symbolic notation in the case
of trianguated surfaces, see Fig. 1.

In order to derive aWeierstrass-type representation for trivalentmaximal surfaces,
we set up the notion of discrete holomorphic quadratic differentials.

Fig. 1 Two neighboring oriented triangles and the correspondence between i∗ ∈ F∗ and i ∈ V . In

this picture, we denote the left face φl with respect to the oriented edge
−→
i j , and the right face φr

with respect to
−→
i j
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Definition 3.1 A discrete holomorphic quadratic differential on a nondegenerate
planar mesh z : V → C is a function q : Eint → R defined on interior edges such
that for every interior vertex i

∑

j

qi j = 0,
∑

j

qi j
z j − zi

= 0. (3.1)

It was shown in [14] that such a notion is Möbius invariant in the sense that if q is
a holomorphic quadratic differential on a planar mesh z andw is a Möbius transform
of z, then q is again a holomorphic quadratic on w. Furthermore if the mesh is
triangulated, the space of discrete holomorphic quadratic differentials is isomorphic
to the space of discrete harmonic functions modulo linear functions. Hence, we
can easily obtain a discrete holomorphic quadratic differential on arbitrary planar
triangular meshes.

3.1 A-Maximal Surfaces in R
2,1

We define two types of discrete maximal surfaces in R
2,1. The first type is defined

as follows, which reflects the property that any isothermic maximal surface in R
2,1

can be obtained by taking its Christoffel dual of an isothermic surface in H
2+ ∪ H

2−
(see [22], and see also [13] in the case of minimal surfaces):

Definition 3.2 Let M be a discrete surface, let M∗ be its dual, and let f : V ∗ → R
2,1

be a realization of M∗. Then f is called an A-maximal surface with Gauss map
n : V → H

2+ ∪ H
2− if the following two conditions

dn(ei j ) × d f (e∗
i j ) = 0, 〈ni + n j , d f (e

∗
i j )〉 = 0

hold, where
dn(ei j ) := n j − ni , d f (e∗

i j ) = fφr − fφl .

Here we introduce one example of A-maximal surfaces. The following example
was described by the second author [22].

Example 3.3 (Discrete isothermic maximal surfaces inR2,1).We introduce a special
class of discrete parametrized surfaces called discrete isothermic surfaces.

We first consider the following identification:

R
2,1 � (x1, x2, x0)

t ∼=
(

i x0 x1 − i x2
x1 + i x2 −i x0

)

∈ su1,1,

where su1,1 is theLie algebra of theLie groupSU1,1 :=
{(

a b
b̄ ā

)

∈ SL2C

}

. Through-

out this example, we write the image of a map M from Z
2 to the target space as
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M(m, n) = M(m,n) for all (m, n) ∈ Z
2, and we call such a map a discrete surface.

Like in R
3 ([1]), discrete isothermic surfaces in R

2,1 are defined as follows: Let
F̂ : Z2 → R

2,1 be a discrete surface. Then F̂ is called a discrete isothermic surface
if

(F̂q − F̂p) · (F̂r − F̂q)
−1 · (F̂r − F̂s) · (F̂s − F̂p)

−1 = αpq

αps
I, where

p = (m, n), q = (m + 1, n), r = (m + 1, n + 1), s = (m, n + 1)

for all (m, n) ∈ Z
2, I is a 2 × 2 identity matrix, and αpq (resp. αps) is a real-valued

function depending only on the horizontal (resp. vertical) direction satisfying
αpq

αps
<

0. We call the quantity
αpq

αps
a cross ratio of F̂ , and αpq ,αps called the cross ratio

factorizing functions. In particular, a discrete isothermic surface g : Z2 → R
2(⊂

R
2,1) ∼= C is called a discrete holomorphic function.
A discrete isothermic maximal surface F has the following property:

N̂q − N̂s = (αpq − αps)
F̂r − F̂p

‖F̂r − F̂p‖2
, N̂r − N̂p = (αpq − αps)

F̂q − F̂s

‖F̂q − F̂s‖2
,

where N̂ := 1

1 − |ĝ|2

⎛

⎝

2Re(ĝ)

2Im(ĝ)

1 + |ĝ|2

⎞

⎠. Here we denote

Z
2
even := {(m, n) ∈ Z

2 | m + n even}, Z
2
odd := {(m, n) ∈ Z

2 | m + n odd}.

Setting V := Z
2
even, V ∗ := Z

2
odd , a realization F̂ : V ∗ → R

2,1 is an A-maximal sur-
face with Gauss map N̂ : V → H

2+ ∪ H
2−.

3.2 C-Maximal Surfaces in R
2,1

Inspired by conical meshes with vanishing mean curvature in R
3 (see [3, 5] for

example) next we define another type of discrete maximal surfaces as follows:

Definition 3.4 Let M be a discrete surface and M∗ be its dual. Suppose f : V ∗ →
R

2,1 is a realization of M∗ with planar spacelike faces and Gauss map n : V →
H

2+ ∪ H
2−. Then f is called a C-maximal surface if its integrated mean curvature

vanishes on every face i ∈ V ∗:

Hi :=
∑

j

σi j�i j

(

tanh
di j
2

)σi j
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Here � denotes the edge length of f while d and σ encodes the geometry of the Guass
map:

di j = cosh−1 |〈Ni , N j 〉| (dihedral angle)

σi j = sgn(−〈Ni , N j 〉).

4 Trivalent Maximal Surfaces in R
2,1

Here we consider trivalent maximal surfaces in R2,1. A (linear or nonlinear) discrete
complex analysis on triangulated surfaces has been developed in [13–15]. Let M be
a triangulated surface and M∗ be its dual. For a given discrete holomorphic quadratic

differential q, we consider a dual one-form η : −−→
E∗
int → C

3

η(e∗
i j ) := q

z j − zi

⎛

⎝

1 + zi z j√−1(1 − zi z j )
−(zi + z j )

⎞

⎠ . (4.1)

One can show the following lemma.

Lemma 4.1 The dual one-form defined by Eq. (4.1) is closed, that is, for every
interior vertex i , ∑

j

η(e∗
i j ) = 0

holds, where j is a neighboring vertex of i .

Proof We can rewrite Eq. (4.1) into

η(e∗
i j ) = qi j

z j − zi

⎛

⎝

1√−1
−2zi

⎞

⎠ + qi j zi z j
z j − zi

⎛

⎝

1
−√−1

0

⎞

⎠ − qi j

⎛

⎝

0
0

−1

⎞

⎠ .

The Möbius invariance of qi j implies
∑

j

qi j zi z j
z j − zi

= 0. Combining this and the

definition of discrete holomorphic quadratic differentials, we have the closedness
of η. �

Assuming the planar mesh is simply connected, there exists F : F → C
3 such

that
dF(e∗

i j ) = η(e∗
i j ).

As in the case of discrete minimal surfaces, Re(e
√−1θF) defines an S1-family of

discrete maximal surfaces in R
2,1. In particular, f := Re(F) and f̃ = Re(

√−1F)
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yield a conjugate pair of trivalent maximal surfaces. In the following, we further
discuss properties of f and f̃ , which suggest two types of discrete maximal surfaces
in R2,1.

We define n : V → H
2+ ∪ H

2−

n := 1

|z|2 − 1

⎛

⎝

−z − z̄√−1(z − z̄)
(|z|2 + 1)

⎞

⎠

and k : Eint → R by ki j = qi j/|z j − zi |2. Hence q/(z j − zi ) = ki j (z̄ j − z̄i ) and

η(e∗
i j ) = ki j (z̄ j − z̄i )

⎛

⎝

1 + zi z j√−1(1 − zi z j )
−(zi + z j )

⎞

⎠ .

From this, we can compute

Re(η(e∗
i j )) = ki j

2

⎛

⎝

(zi + z̄i )(|z j |2 − 1) − (z j + z̄ j )(|zi |2 − 1)√−1
(

(z j − z̄ j )(|zi |2 − 1) − (zi − z̄i )(|z j |2 − 1)
)

(|z j |2 + 1)(|zi |2 − 1) − (|zi |2 + 1)(|z j |2 − 1)

⎞

⎠

= ki j (|zi |2 − 1)(|z j |2 − 1)

2
(n j − ni ).

Since ‖n j − ni‖2 = 4|z j − zi |2
(|z j |2 − 1)(|zi |2 − 1)

and ki j = qi j
|z j − zi |2 , we have

d f (e∗
i j ) = Re(η(e∗

i j )) = 2ki j (n j − ni ) = 2qi j
n j − ni

‖n j − ni‖2 , satisfying

d f (e∗
i j ) × (n j − ni ) = 0, 〈d f (e∗

i j ), ni + n j 〉 = 0.

Furthermore, we have the following lemma.

Lemma 4.2 The condition
∑

j

ki j (n j − ni ) = 0 implies
∑

j

ki j‖n j − ni‖2 = 0.

Proof One can check that

∑

j

ki j‖n j − ni‖2 =
∑

j

ki j (−2 − 2〈n j , ni 〉) = 2
∑

j

ki j {〈ni , ni 〉 − 2〈n j , ni 〉}

= −2
∑

j

ki j 〈n j − ni , ni 〉 = −2

〈
∑

j

ki j (n j − ni ), ni

〉

= 0,

proving the lemma. �
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Fig. 2 A planar vertex star condition of an A-maximal surface f

Fig. 3 A planar face of a C-maximal surface f̃ . For each dual face i∗ ∈ F∗, the resulting face of
a C-maximal surface is perpendicular to ni

Remark 4.3 Because the image of n forms a triangulated mesh, its dual graph f has
planar vertex stars, that is, every subgraph obtained by connecting the neighboring
three vertices of an image point of f is planar (see Fig. 2).

On the other hand,

Re(
√−1η(e∗

i j )) =
√−1ki j

2

⎛

⎝

(|z j |2 + 1)(zi − z̄i ) − (|zi |2 + 1)(z j − z̄ j )
(−z j − z̄ j )(|zi |2 + 1) − (−zi − z̄i )(|z j |2 + 1)
−(−zi − z̄i )(z j − z̄ j ) + (−z j − z̄ j )(zi − z̄i )

⎞

⎠

= ki j (|zi |2 − 1)(|z j |2 − 1)

2
(ni × n j ).

Hence d f̃ (e∗
i j ) = 2qi j

ni × n j

‖n j − ni‖2 and f̃ has spacelike planar faces (Fig. 3).

Lemma 4.4 Writing d f (e∗
i j ) = k ′

i j (n j − ni ).We consider the dihedral angle (hyper-
bolic distance) between the normals ni and n j as di j ∈ R such that

|〈ni , n j 〉| = cosh di j , sinh di j = sgn(k ′
i j )| sinh di j |.
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Then we have
d f̃ (e∗

i j ) := ni × d f (e∗
i j ) = k ′

i j (ni × n j )

and

〈d f̃ (e∗
i j ), ni 〉 =

⎧

⎨

⎩

−
√

‖d f̃ (e∗
i j )‖2 tanh di j

2 if (ni , n j ∈ H
2+) or (ni , n j ∈ H

2−)
√

‖d f̃ (e∗
i j )‖2 coth di j

2 if (ni ∈ H
2+, n j ∈ H

2−) or (n j ∈ H
2+, ni ∈ H

2−).

Proof If ni , n j ∈ H
2+, then 〈ni , n j 〉 = − cosh di j and we have

〈d f̃ (e∗
i j ), ni 〉 = k ′

i j (1 − cosh di j ) = −2k ′
i j sinh

2 di j
2

= −
√

‖d f̃ (e∗
i j )‖2 tanh

di j
2

.

If ni ∈ H
2+, n j ∈ H

2−, then 〈ni , n j 〉 = cosh di j and we have

〈d f̃ (e∗
i j ), ni 〉 = k ′

i j (1 + cosh di j ) = 2k ′
i j cosh

2 di j
2

=
√

‖d f̃ (e∗
i j )‖2 coth

di j
2

.

�

Lemmas4.2 and 4.4 imply the condition of vanishing mean curvature of f̃ .

Corollary 4.5 Writing σi j := sign(−〈ni , n j 〉). We have

〈d f (e∗
i j ), ni 〉 = −σi j

√

‖d f̃ (e∗
i j )‖2

(

tanh
di j
2

)σi j

.

Furthermore, for each dual face i∗ ∈ F∗ we have

−
∑

j

σi j

√

‖d f̃ (e∗
i j )‖2

(

tanh
di j
2

)σi j

= 0.

Theorem 4.6 (Weierstrass representation for discrete maximal surfaces) Let M be
a simply connected triangulated surface and M∗ be its dual. Suppose z : V → C is
a nondegenerate realization and q : Eint → R is a discrete holomorphic quadratic
differential, then there exists a function F : F → C

3 such that

dF(e∗
i j ) = q

z j − zi

⎛

⎝

1 + zi z j√−1(1 − zi z j )
−(zi + z j )

⎞

⎠ . (4.2)

Furthermore, we denote by n : V → H
2+ ∪ H

2− the stereographic projection of z
given by
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n := 1

|z|2 − 1

⎛

⎝

−z − z̄√−1(z − z̄)
(|z|2 + 1)

⎞

⎠ .

Then we have f := Re(F) A-maximal and f̃ = Re(
√−1F) C-maximal. These sur-

faces yield a conjugate pair of trivalent maximal surfaces with Gauss map n and an
associated family of trivalent maximal surfaces

f θ = Re(e
√−1θF). (4.3)

5 Singularities of Trivalent Maximal Surfaces

Finally, in this section, we analyze singularities of trivalent maximal surfaces. We
first consider A-maximal surfaces, which are surfaces obtained by taking the real part
of Eq. (4.2). Trivalent A-maximal surfaces have planar vertex stars (see in Sect. 3),
so each plane at the image of an A-maximal surface passing through its vertex star
can be regarded as the “approximation” of the tangent plane of a maximal surface.
This observation gives a natural description of singularities of A-maximal surfaces
as follows:

Definition 5.1 A vertex of a trivalent A-maximal surface is singular if the plane
containing the vertex and its three neighboring vertices is not spacelike.

We have the following theorem. The proof is almost the same as the one of
Theorem 1.2 in [22], so we omit it.

Theorem 5.2 Let f be a discrete surface in R
2,1 described by the real part of

Eq. (4.2). Then fi jk∗ is a singular vertex if and only if the circle Ci jk passing through
zi , z j , zk intersects the unit circle S1 ⊂ C.

Next, we consider singularities of C-maximal surfaces. We assume that none of
the zi , z j , zk is in S1. First we define a pole and a polar plane in R2,1 (see Fig. 4).

Definition 5.3 For a given timelike unit normal vector ñ, the plane

P̃ñ := {X ∈ R
2,1|〈X, ñ〉 = −1}

is called a polar plane and ñ is called the pole.

Unlike the case of A-maximal surfaces, C-maximal surfaces do not have a planar
vertex star. On the other hand, by definition, every oriented edge d f (e∗

12) (resp.
d f (e∗

23), d f (e
∗
13)) of a C-maximal surface is parallel to n1 × n2 (resp. n2 × n3, n3 ×

n1).
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Fig. 4 Poles and polar planes. Three polar planes at three points n1, n2, n3 ∈ H
2 on the same

circle gives rise to the intersection point n123, and the oriented edges n123 − ni (i = 1, 2, 3) is
perpendicular to the circle passing through n1, n2, n3

Here we define a notion of vertex normal for trivalent meshes in R
2,1. We show

that for trivalent maximal surfaces, its direction is invariant in the associated families.

Definition 5.4 Let f (v123) ∈ R
2,1 be a trivalent vertex and the three outgoing edges

d f (e∗
12), d f (e

∗
23) and d f (e

∗
31) be pairwise linearly independent. We define the vertex

normal N123 ∈ R
2,1 as follows:

(1) If d f (e∗
12), d f (e

∗
23) and d f (e∗

31) are linearly independent, then there is a
unique vector N123 ∈ H

2, L2 := {X ∈ R
2,1|‖X‖2 = 0}, or S

1,1 := {X ∈ R
2,1

|‖X‖2 = 1} such that

|〈N123,N1〉| = |〈N123,N2〉| = |〈N123,N3〉| = C.

where C is a nonnegative constant and Ni := d f (e∗
i i+1) × d f (e∗

i i−1)
√

|‖d f (e∗
i i+1) × d f (e∗

i i−1)‖2|
.

(2) If d f (e∗
12), d f (e

∗
23) and d f (e∗

31) span an affine plane, then

N123 := N1 = N2 = N3.

Remark 5.5 In Definition 5.4, we assume that the vector d f (e∗
i i+1) × d f (e∗

i i−1) is
not lightlike. On the other hand, even if it is lightlike, the face normalN is still well
defined without normalizing d f (e∗

i i+1) × d f (e∗
i i−1).

Then we have the following theorem, which is used to define and characterize
singularities of trivalent maximal surfaces.

Theorem 5.6 Suppose f θ : V ∗ → R
2,1 is an associated family of a maximal sur-

face with a triangular Gauss map n : V → H
2+ ∪ H

2− related via the Weierstrass
representation. Then the face normal Ni of n is in the same direction as the vertex
normal of f θ, as in Definition 5.4, for all θ.

Before proving Theorem 5.6, we introduce the following lemma. This is obtained
by a direct computation and the result itself is similar to the ordinary one inR3, up to
signs.
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Lemma 5.7 For a, b, c ∈ R
2,1, we have

(a × b) × c = 〈b, c〉a − 〈a, c〉b, ‖a × b‖2 = −‖a‖2‖b‖2 + 〈a, b〉2,
{a × (b − a)} × {a × (c − a)} = −(〈a × b, c〉)a = −(〈a, b × c〉)a.

Here we prove Theorem 5.6. We denote N̂123 as the face normal of the triangle
n1n2n3. In particular, we have

〈N̂123, n1〉 = 〈N̂123, n2〉 = 〈N̂123, n3〉 =: d ∈ R and (n j − ni ) × (nk − ni )

= c1N̂123 (c1 ∈ R),

where i, j, k are pairwise distinct.
Recall the edge vectors of the trivalent surfaces in the associated family are given

by

d f θ(e∗
i j ) = ki j (cos θ · (n j − ni ) + sin θ ni × n j ) = ki j (cos θ(n j − ni )

+ sin θ · ni × (n j − ni )).

Using Lemma 5.7, we have

d f θ(e∗
12) × d f θ(e∗

13)

k12k13
= c1{cos2 θ · N̂123

− sin2 θ〈n1, N̂123〉 · n1 + sin θ cos θ · n1 × N̂123}.

So N θ
1 is expressed as

N θ
1 = ± d f θ(e∗

12) × d f θ(e∗
13)

√|‖d f θ(e∗
12) × d f θ(e∗

13)‖2|

= ±cos2 θ · N̂123 − d sin2 θ · n1 + sin θ cos θ · n1 × N̂123
√

|‖N̂123‖2 cos2 θ − d2 sin2 θ|
.

Thus we have |〈N̂123,N θ
1 〉| =

√

|‖N̂123‖2 cos2 θ − d2 sin2 θ|.
Similarly, |〈N̂123,N θ

i 〉| =
√

|‖N̂123‖2 cos2 θ − d2 sin2 θ| for i = 1, 2, 3, proving
the theorem.

Using the notion of vertex normal, we define singularities of trivalent maximal
surfaces as follows:

Definition 5.8 Let f θ be a trivalent maximal surface described by Eq. (4.3). Then
a vertex (or its image under f θ) is singular if the corresponding vertex normal is not
timelike.
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Fig. 5 Examples of trivalent maximal surfaces. The left-hand pictures are A-maximal surfaces,
and the right-hand pictures are their conjugate C-maximal surfaces

In conclusion, we have the following theorem, implying a uniform understanding
of singularities of trivalent maximal surfaces (Fig. 5).

Theorem 5.9 Let f θ be a trivalent maximal surface described by Eq. (4.3). Then
a vertex (i jk)∗ is a singular vertex if and only if the circle Ci jk passing through
zi , z j , zk intersects S1, where z is the stereographic projection of the Gauss map of
f θ via the Weierstrass representation.

Acknowledgements The second author was supported by the JSPS Program for Advancing Strate-
gic International Networks to Accelerate the Circulation of Talented Researchers “Mathematical
Science of Symmetry, Topology and Moduli, Evolution of International Research Network based
on OCAMI”.



184 W.Y. Lam and M. Yasumoto

References

1. A.I. Bobenko, U. Pinkall, Discrete surfaces with constant negative Gaussian curvature and the
Hirota equation. J. Differential Geom. 43(3), 527–611 (1996)

2. A.I. Bobenko, U. Pinkall, Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208
(1996)

3. A.I. Bobenko, H. Pottmann, J. Wallner, A curvature theory for discrete surfaces based on mesh
parallelity. Math. Ann. 348, 1–24 (2010)

4. A.I. Bobenko, W.K. Schief, Affine spheres: discretization via duality relations. Experiment.
Math. 8(3), 261–280 (1999)

5. A.I. Bobenko, Y. Suris, Discrete differential geometry: Integrable structure, Graduate Studies
in Mathematics, 98 (American Mathematical Society, Providence, RI, 2008)

6. E. Calabi, Examples of Bernstein problems for some non-linear equations. Proc. Sympos. Pure
Math. 15, 223–230 (1970)

7. S. Fujimori, K. Saji, M. Umehara, K. Yamada, Singularities of maximal surfaces. Math. Z.
259, 827–848 (2008)

8. U. Hertrich-Jeromin, Transformations of discrete isothermic nets and discrete cmc-1 surfaces
in hyperbolic space. Manuscripta Math. 102(4), 465–486 (2000)

9. U. Hertrich-Jeromin, T. Hoffmann, U. Pinkall, A discrete version of the Darboux transform for
isothermic surfaces, Discrete integrable geometry and physics (Vienna, 1996), 59–81, Oxford
Lecture Ser. Math. Appl., 16, Oxford Univ. Press, New York (1999)

10. R. Hirota, Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys.
Soc. Japan 43(6), 2079–2086 (1977)

11. O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L3. Tokyo J. Math. 6,
297–309 (1983)

12. O. Kobayashi, Maximal surfaces with conelike singularities. J. Math. Soc. Japan 36(4),
609–617 (1984)

13. W.Y. Lam, Discrete minimal surfaces: critical points of the area functional from integrable
systems, to appear in IMRN, available from arXiv:1510.08788

14. W.Y. Lam, U. Pinkall, Isothermic triangulated surfaces, Math. Ann. 368, no. 1–2, 165–195
(2017)

15. W.Y. Lam, U. Pinkall, Holomorphic vector fields and quadratic differentials on planar trian-
gular meshes, Adv. discrete Differ. Geom. 241–265, Springer, [Berlin] (2016)

16. N. Matsuura, H. Urakawa, Discrete improper affine spheres. J. Geom. Phys. 45(1–2), 164–183
(2003)

17. Y. Ogata, M. Yasumoto, Construction of discrete constant mean curvature surfaces in Rieman-
nian spaceforms and applications, Differ. Geom. Appl. 54, part A, 264–281 (2017)

18. U. Pinkall, K. Polthier, Computing discrete minimal surfaces and their conjugates. Experiment.
Math. 2(1), 15–36 (1993)

19. K. Polthier, W. Rossman, Discrete constant mean curvature surfaces and their index. J. Reine
Angew. Math. 549, 47–77 (2002)

20. W. Rossman, M. Yasumoto, Discrete linear Weingarten surfaces and their singularities in
Riemannian and Lorentzian spaceforms, to appear in Advanced Studies in Pure Mathematics

21. M. Umehara, K. Yamada, Maximal surfaces with singularities in Mikowski space. Hokkaido
Math. J. 35, 13–40 (2006)

22. M. Yasumoto, Discrete maximal surfaces with singularities in Minkowski space. Differential
Geom. Appl. 43, 130–154 (2015)

http://arxiv.org/abs/1510.08788


Constant Mean Curvature Hypersurfaces
in the Steady State Space: A Survey

Rafael López

Abstract In this survey, we review recent progress in the theory of spacelike hyper-
surfaces with constant mean curvature in the steady state space. Using the different
models of this space, we outline the major concepts, techniques, and results with a
special focus on Bernstein-type theorems, hypersurfaces with boundary in a slice,
and the Dirichlet problem for the constant mean curvature equation.

Keywords Steady state space · Spacelike hypersurface · Mean curvature
Tangency principle · Omori-Yau maximum principle · Dirichlet problem
MSC 2010: 53A10, 53C42, 53A05

1 Introduction

The steady state spaceH n+1 is the space Rn+1
+ = {(x, xn+1) ∈ R

n × R : xn+1 > 0}
endowed with the Lorentzian metric

g(x,xn+1) = 1

x2n+1

(|dx |2 − (dxn+1)
2).

Thus, H n+1 = (Rn+1
+ , g) is the Lorentzian analogue to the hyperbolic space Hn+1.

From the physical viewpoint, and for n = 3,H 4 is a model of the universe proposed
by Bondi and Gold [15] and Hoyle [34] under the belief in the “perfect cosmological
principle”, that is, the space looks the same not only at all points and in all directions
(homogeneous and isotropic), but also at all times ([32, Sect. 5.2]). In particular,
this model postulates a continuous creation of matter in order to be consistent with
the idea of an unchanging universe, existing old and young galaxies in any large
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volume of space which are continuously forming by accretion of new matter. This
cosmological model attracted the interest of physicists during part of the twentieth
century but nowadays the steady state space has been discarded because it does
not predict many physical observations (in contrast to the Big Bang model), as the
abundance and the proportion of helium and hydrogen, or the evolution of stars and
galaxies. Finally, it was the discovery of the cosmic microwave background (CMB)
in late 1964, the most clear evidence against this model: in the initial stages, the
universe was denser and hotter than now because it dilutes and cools as it expands.
However, the steady state space forbids the existence of CMB because under this
model, the density and the temperature are always the same; see [16] and especially
[48, Chs. 14, 16].

If we come back to the steady state space viewed as a Lorentzianmanifold, it opens
up a wide variety of problems in the theory of submanifolds. Surprisingly, it has been
until very recently that this space has gained the interest after thework ofMontiel [42]
in 2003 where, following ideas of [40], it is proved the existence of constant mean
curvature spacelike hypersurfaces with boundary in the future infinity ofH n+1. This
pioneering article was the starting point which many geometers focused in the study
of submanifolds in H n+1. Furthermore, this is accompanied by the property that
H n+1 can be viewed equivalently in two different coordinates. First, as an open set
of the de Sitter space Sn+1

1 (such as it appeared in the original works of Bondi and
Hoyle). The space S

n+1
1 has a high relevance in general relativity that it deserves

to study or, as in our case, an open set of Sn+1
1 . A second model of H n+1 is as a

generalized Robertson–Walker (GRW) spacetime and thus forming part of a large
family of cosmological models whichmade that authors working in these spacetimes
put their focus in the steady state space.

In this survey, wewill study spacelike hypersurfaceswith constantmean curvature
inH n+1. Froma physical viewpoint, the hypersurfaceswith constantmean curvature
(cmc to abbreviate) are convenient initial data for the Cauchy problem corresponding
to the Einstein equations. In spacetimes, there is also an interest to have foliations by
means of cmc spacelike hypesurfaces because all points of each leaf of the foliation
are instantaneous observers and the timelike unit normal vector of the hypersurfaces
measures how the observers get away with respect to the next ones. Our aim in this
chapter is twofold. We first want to summarize the most important results in this
topic, and second, we are intended to give an overview of the main methods that
lie behind the results, especially, the tangency principle, the Omori-Yau maximum
principle, or the continuity method for the Dirichlet problem. In this chapter, we also
provide a new approach in some results trying to unify, if possible, the techniques of
the different models.

This chapter is organized as follows. In Sect. 2 we give a description of the space-
like umbilical hypersurfaces and we present two new models for H n+1, each one
will be conveniently employed depending on the problems that we address. Section3
is devoted to characterize the slices ofH n+1 in the class of complete cmc spacelike
hypersurfaces obtaining Bernstein-type results and extending some of these results
to GRW spacetimes. In the last part of this exposition, we study the shape of a com-
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pact cmc hypersurface in relation with its boundary (Sect. 4) and we derive existence
results of the Dirichlet problem for the cmc equation (Sect. 5). This chapter ends with
a list of open problems.

2 The Steady State Space: A Space and Three Models

We have defined the steady state space as H n+1 = (Rn+1
+ , g), and we will say

that this is the upper half-space model for H n+1. If Rn+1
1 = (Rn+1, 〈, 〉) stands

for the Lorentz–Minkowski space, where 〈x, y〉 = x1y1 + . . . + xn yn − xn+1yn+1,
then H n+1 is nothing but the open set Rn+1

+ = R
n × R

+ with the conformal met-
ric g = 〈, 〉/x2n+1. The time orientation is determined by en+1 = (0, . . . , 0, 1). As
a consequence, the isometries of H n+1 are the conformal transformations of Rn+1

1
that preserve the upper half-spaceRn+1+ , as for example, the rotations about a vertical
straight line, the horizontal translations, or the homotheties from a point ofRn × {0}.

We now introduce two equivalent models for H n+1, or to be more precise, we
present two types of change of coordinates inH n+1.

1. The de Sitter model. Consider the de Sitter space, that is, the hyperquadric Sn+1
1 =

{x ∈ R
n+2
1 : 〈x, x〉 = 1} of all unit spacelike vectors in Rn+2

1 , and take a ∈ R
n+2
1

a nonzero null vector in the past half of the null cone. The steady state space is the
open region S

n+1
1,+ = {x ∈ S

n+1
1 : 〈x, a〉 > 0} with the induced metric. The time

orientation is determined by en+2 = (0, . . . , 0, 1).
2. A GRW spacetime. The steady state space is the vector space Rn+1 = R × R

n =
{(t, x) : t ∈ R, x ∈ R

n} with the Lorentzian metric −dt2 + e2t |dx |2. In other
words, H n+1 is the generalized Robertson–Walker spacetime −R ×et R

n . His-
torically, the cosmological model H 4 proposed by Hoyle is −R ×eHt R

3 where
H is the Hubble constant. The timelike orientation is determined by the vector
field ∂t .

The expressions of the change of coordinates between the three models are the
following. The isometry Ψ : Sn+1

1,+ → R
n+1+ is

Ψ (x) = 1

〈x, a〉 (x − 〈x, a〉b − 〈x, b〉a, 1)

where b ∈ R
n+2
1 is a null vector such that 〈a, b〉 = 1. This isometry reverses the time

orientation. The isometry Φ : Sn+1
1,+ → −R ×et R

n is

Φ(x) =
(
log(〈x, a〉), x − 〈x, a〉b − 〈x, b〉a

〈x, a〉
)

where b ∈ R
n+2
1 is as above. This isometry preserves the time orientation. Finally,

the isometry between the GRW model and the upper half-space model is Ξ : −R ×
R

n → R
n+1
+ , Ξ(t, x) = (x, e−t ) which reverses the time orientation.



188 R. López

Each one of the models has its advantages. For example, it is easy to visualize
the isometries in the upper half-space model. In the de Sitter model, the analytic
calculations are easier, as for example, when in Sect. 3 we compute the Laplacian of
certain functions. Finally, the GRWmodel allows to seeH n+1 as a product manifold
with a distinguished role to the fibers of the space and again the analytic calculations
in this model are simple (not necessarily easy).

The steady state space has two boundaries at the infinity. The past infinity of
H n+1 is J − ≡ {xn+1 = ∞} (the nullhypersurface L0 = {x ∈ S

n+1
1 : 〈x, a〉 = 0}

or the vertical hyperplane {−∞} × R
n in the GRW model). On the other hand, the

future infinityJ + corresponds with the limit hyperplane {xn+1 = 0} (or L∞ = {x ∈
S
n+1
1 : 〈x, a〉 = ∞} or {∞} × R

n in the GRW model).
Since H n+1 is an open set of Sn+1

1 , then H n+1 is a non-complete Lorentzian
manifold with constant sectional curvature equal to 1. For example, if {ei } is the usual
basis of Rn+2, and a = e1 − en+2, the geodesic γ (s) = cosh(s)e2 + sinh(s)en+2 is
defined only if s > 0 with lims→0 γ (s) ∈ J − and lims→∞ γ (s) ∈ J +. Motivated
by this example, and following Hawking and Ellis in [32], in the steady state space
any fundamental observer has a future event horizon but no past particle horizon.
There also exist other geodesics in H n+1 defined for all s, for instance, γ (s) =
cosh(s)e1 − sinh(s)en+2.

We restrict our interest into spacelike hypersurfaces ofH n+1. More generally, an
immersion ψ : Σn → H n+1 of a n-dimensional (connected) manifold Σ is said to
be a spacelike hypersurface if the inducedmetric onΣ viaψ is Riemannian. Because
the orthogonal subspace (TpΣ)⊥ is timelike and there is a time orientation in the
ambient spaceH n+1,we candefine a timelike unit normal vector field N onΣ in such
a way that N lies in the future half of the null cone: this concludes that any spacelike
hypersurface is orientable. If ∇̄ and ∇ denote the Levi-Civita connections ofH n+1

and Σ , respectively, the Gauss equation is ∇̄XY = ∇XY + σ(X,Y ) for all X,Y ∈
X(Σ). Then the mean curvature vector is H = tr(σ )/n. When we write H = HN ,
then H is called themean curvature of the immersion. In terms of the shape operator
A, namely, AX = −∇̄X N for X ∈ X(M), the mean curvature is H = −tr(A)/n. If
H is constant, we say that Σ has constant mean curvature and we abbreviated by
H-hypersurface if we want to emphasize the value of the mean curvature.

Remark 2.1 Throughout the rest of this chapter, all the spacelike hypersurfaces will
be oriented with the choice of N pointing to the future. We also keep the convention
that the mean curvature H is computed with this choice of N . We know that the
isometry Ψ between the de Sitter model and the upper half-space model reverses the
time orientation, and the same occurs with the isometry Ψ ◦ Φ−1 between the GRW
model and the upper half-space model. Thus, a spacelike hypersurface with mean
curvature H in the upper half-space model has mean curvature −H in the de Sitter
and GRW models.

In the upper half-space model, the mean curvature of a hypersurface Σ can be
calculated if we know the mean curvature of Σ viewed as submanifold of Rn+1

1 .
Indeed, since both metrics are conformal, if H ′ is the mean curvature of Σ ⊂ R

n+1
1 ,

then
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H = xn+1H
′ − (xn+1 ◦ N ′) (1)

where N ′ = N/xn+1 is the Gauss map of Σ ⊂ R
n+1
1 .

An important family of submanifolds inH n+1 are the totally umbilical ones. By
the conformality between the metric g and the Lorentzian metric 〈, 〉, these hypersur-
faces are the intersection of the umbilical hypersurfaces of Rn+1

1 (hyperbolic planes
and spacelike planes) with the half-space Rn+1

+ . First, let us introduce the following
notation: for c ∈ R

n+1 and r > 0, let

H
n(r; c) = {x ∈ R

n+1
+ : 〈x − c, x − c〉 = −r2}.

Depending on the relation between c and r , this hypersurface has one or two con-
nected components, namely, the upper one H

n+(r; c) and the lower one H
n−(r; c).

We describe the spacelike umbilical hypersurfaces of H n+1, including the value
of H with respect to the future-directed orientation following our convention of
Remark 2.1.

1. A slice is a horizontal hyperplane

Lτ = {x ∈ R
n+1 : xn+1 = τ }, τ > 0.

A slice is complete with H = −1. After an isometry, a slice is Hn+(r; c) where
cn+1 = −r .

2. An equidistant hypersurface is a hypersurface of typeHn−(r; c). For the existence
ofHn−(r; c), it is necessary that cn+1 > r . This hypersurface is not complete and its
mean curvature is H = −cn+1/r . After an isometry, they are also non-horizontal
spacelike hyperplanes or the upper component Hn+(r; c) where cn+1 < −r .

3. A hyperbolic plane of center c ∈ R
n+1 and radius r > 0 is a hypersurface of type

H
n+(r; c) where cn+1 > −r . A hyperbolic plane is complete with H = cn+1/r .

Equation (1) allows to write in local coordinates the mean curvature which reveals
us the local nature of a cmc hypersurface. Indeed, since a spacelike hypersurface in
H n+1 is locally a graph xn+1 = u(x) of a function u ∈ C∞(Ω), Ω ⊂ R

n × {0}, by
the expression of the mean curvature in Rn+1

1 and (1), we obtain

QH [u] := div

(
Du√

1 − |Du|2
)

− n

u

(
H + 1√

1 − |Du|2
)

= 0. (2)

The spacelike condition of the graph is equivalent to |Du|2 < 1. Equation (2) is of
elliptic type with the remarkable property that the difference of two solutions of (2)
satisfies a linear elliptic PDE, and consequently, we can apply the strong maximum
principle of Hopf [31]. This extends the usual tangency principle of Euclidean space
for cmc hypersurfaces [37]:

Proposition 2.1 (Tangency principle) Let Σ1 and Σ2 be two spacelike
H-hypersurfaces which are tangent at a common interior point p and the unit
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normal vectors coincide at p. If one surface lies on one side of the other in a neigh-
borhood of p, then Σ1 and Σ2 coincide in an open set around p. The same holds if
p ∈ ∂Σ1 ∩ ∂Σ2 provided that the tangent spaces Tp∂Σi coincide.

Remark 2.2 The above notion of Euclidean graph coincides with the one of graph
inH n+1. Indeed, if Ω ⊂ Lτ is a (smooth) domain and f ∈ C∞(Ω), the graph of f
is the hypersurface Σ f = {γ ( f (x); x) : x ∈ Ω}, where γ = γ (s; x) is the geodesic
passing by x and orthogonal to Lτ . In the upper half-space model, this geodesic is
a vertical line so Σ f writes as {(x, u(x)) : x ∈ Ω} for a certain function u. A first
example of an entire graph is a slice Lτ which is the graph of the constant function
f (x) = 0 (or u(x) = τ in the upper half-space model). In the GRW model, a graph
is {(u(x), x) : x ∈ Ω} where the spacelike condition reads as |Du|2 < e2u .

3 Bernstein-Type Characterizations of Slices

From the above section, we know that there do not exist complete umbilical hyper-
surfaces of H n+1 with H < −1, and that slices (for H = −1) are the first such
examples. Notice that the steady state space is foliated by means of slices, indeed,
R

n+1
+ = ∪τ>0Lτ which it is of interest in the cosmological model. Slices also appear,

via the tangency principle, as natural barriers for the existence of cmc hypersurfaces:
see Sects. 4 and 5. Due to this distinguished role, in this section, we address with the
following

Problem 1:Under what geometric assumptionsmust a complete cmc spacelike hypersurface
of H n+1 be a slice?

In this context, the remarkable chapter of Albujer and Alías [3] (part of the Ph.
Doctoral Thesis of Albujer [2]) starts a series of works characterizing the slices under
certain boundedness assumptions. The purpose of this section is to provide a general
view of these results and the techniques employed in their proofs. Here, we use the de
Sitter model ofH n+1 where a slice corresponds with Lτ = {x ∈ S

n+1
1 : 〈x, a〉 = τ },

τ > 0, and its mean curvature is H = 1 following the convention of Remark 2.1.
First, we need the following definition.

Definition 3.1 A spacelike hypersurface ψ : Σ → H n+1 = S
n+1
1,+ is said to be

bounded away from the future infinity (resp. from the past infinity) if there exists τ > 0
such that ψ(Σ) ⊂ {x ∈ H n+1 : 〈x, a〉 ≤ τ } (resp. ψ(Σ) ⊂ {x ∈ H n+1 : 〈x, a〉 ≥
τ }). We say that Σ is bounded away from the infinity, or that Σ lies between two
slices, if Σ is bounded away from the past and from the future infinity.

This definition is coherentwith the future and the past infinity ofH n+1: sinceJ +
corresponds with 〈x, a〉 = ∞, if Σ lies “away” from J +, then ψ(Σ) is bounded
from above. For a complete spacelike hypersurface Σ ⊂ H n+1, the boundedness
of this definition imposes strong restrictions to its topology. First, notice that the
spacelike property of Σ implies that the orthogonal projection of Σ on any slice
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is a local diffeomorphism. If we now suppose that Σ is a complete hypersurface
bounded away from the future infinity, then this projection is a covering map on Rn ,
and because Rn is simply connected, then it is a diffeomorphism ontoRn , so Σ is an
entire graph (in particular,Σ is not compact). This is the reasonwhy results answering
to the problem 1 are called of Bernstein-type because in Lorentz–Minkowski space,
Cheng and Yau proved that hyperplanes are the only maximal entire graphs in Rn+1

1
[23].

Theorem 3.1 ([3]) If Σ ⊂ H n+1 = S
n+1
1,+ is a complete spacelike H-hypersurface

between two slices, then H = 1. Furthermore, if n = 2, then Σ is a slice.

The proof of this theorem involves two ingredients that are the keys in many other
results that will appear in this section. First, it is the use of a large family of results
known as “maximum principles” in the class of elliptic equations and where the
tangency principle (Proposition 2.1) is a first example. For Theorem 3.1, we use he
Omori-Yau maximum principle which is a type of maximum principle at infinity for
complete Riemannian manifolds whose Ricci curvature is bounded from below [43,
49]; see also Remark 3.3.

Lemma 3.1 (Omori-Yau). Let M be a complete Riemannian manifold with Ricci
curvature bounded from below. If u ∈ C∞(M) is a function bounded from above,
then there exists a sequence of points {pk} ⊂ M such that

lim
k→∞ u(pk) = sup

Σ

u, |∇u(pk)| <
1

k
, and Δu(pk) <

1

k
. (3)

The second ingredient is the use of appropriate functions to which we apply the
maximum principles. For a spacelike hypersurface Σ ⊂ H n+1, these functions are
the height function p �→ 〈ψ(p), a〉 (abbreviated simply 〈p, a〉) and the Gauss map
p �→ 〈N (p), a〉 (or simply 〈N , a〉). Following (3), we need to know their Laplacians.
Here, the de Sitter model reveals very useful for these calculations, obtaining

Δ〈p, a〉 = −n〈p, a〉 + nH〈N , a〉, Δ〈N , a〉 = |A|2〈N , a〉 − nH〈p, a〉. (4)

See [3, 42]. The expression ofΔ〈p, a〉 holds when H is not constant, but forΔ〈N , a〉
is necessary that H is constant. We point out the difference of (4) with formula (8)
in [42] by the reverse sign on H according to our convention in Remark 2.1.

Proof (of Theorem 3.1) The height function 〈p, a〉 defined in Σ is bounded because
Σ lies between two slices. Since N is future-directed, then 〈N , a〉 > 0. Because
a = 〈p, a〉p − 〈N , a〉N + aT , where aT is the tangent part of a on Σ , then

0 = 〈a, a〉 = 〈p, a〉2 − 〈N , a〉2 + |aT |2 ≥ 〈p, a〉2 − 〈N , a〉2
= (〈p, a〉 − 〈N , a〉)(〈p, a〉 + 〈N , a〉). (5)
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We point out that |∇〈p, a〉|2 = |aT |2 = 〈N , a〉2 − 〈p, a〉2, so 〈N (pk), a〉 → supΣ

〈p, a〉. A computation of the Ricci curvature of Σ gives

RicΣ(X, X) = n − 1 + nH〈AX, X〉 + 〈AX, AX〉 ≥ n − 1 − n2H 2

4
(6)

for any X ∈ X(Σ), in particular, RicΣ is bounded from below. Using (3) and (4), we
have

H <
〈pk, a〉

〈N (pk), a〉 + 1

nk〈N (pk), a〉 ,

and letting k → ∞, we conclude H ≤ 1. The same argument holds with the function
−〈p, a〉 because the infimum of 〈p, a〉 is positive since Σ is bounded away from the
past infinity. This yields H ≥ 1, so H = 1. When n = 2, one can invoke a result of
Akutagawa to conclude thatΣ is a slice [1]. However, and such as it is rightly pointed
in [3], it is better the following argument. From (4) and (5), we get Δ〈p, a〉 ≥ 0
showing that 〈p, a〉 is a subharmonic function. As n = 2 and H = 1, from (6) we
deduce KΣ ≥ 0. Since Σ is complete, a result of Huber asserts that Σ is parabolic
[35], so the subharmonic bounded function 〈p, a〉 is, indeed, constant, showing that
Σ is a slice. �

Remark 3.1 If we only assume that Σ is bounded away from the future infinity,
the proof yields H ≤ 1. Since Σ is diffeomorphic to R

n , Σ can not be compact.
Taking into account the inequality (6), Bonnet-Myers’s theorem implies that RicΣ is
not bounded from below by 0 and this forces to H 2 ≥ 4(n − 1)/n2. Thus we have
2
√
n − 1/n ≤ H ≤ 1. In the particular case n = 2, we conclude H = 1, that is, a

complete cmc spacelike hypersurface in H 3 bounded away from the future infinity
must be a slice.

Remark 3.2 We will prove in Remark 5.1 the existence of complete spacelike H -
hypersurfaces with H > 1 and bounded away from the past infinity.

Here, we present a new approach of Theorem 3.1 using a clever application of
the tangency principle in the upper half-space model. Recall our convention on H in
Remark 2.1.

Theorem 3.2 Let Σ ⊂ H n+1 be a spacelike H-hypersurface in the upper half-
space model.

(i) If Σ is an entire graph bounded away from the future infinity, then H ≥ −1.
(ii) If Σ is complete and bounded away from the past infinity, then H ≤ −1.

Proof For (i), we know that there exists τ1 > 0 such that Σ ⊂ {xn+1 ≥ τ1}. Let
m > 1, and consider the equidistant hypersurface Pr = H

n−(r; (0, . . . , 0,mr))whose
mean curvature is H = −m. Let us observe that the vertex of Pr is Vr = (0, . . . , 0,
(m − 1)r). Take r > 0 sufficiently small so (m − 1)r < τ1. Then Pr ∩ Σ = ∅. Let
q be the intersection point of Σ with the xn+1-axis (qn+1 > τ1): this point does
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Fig. 1 Proof of Theorem 3.2

exist because Σ is a graph on R
n × {0}. Letting r → ∞, we find a first value r1,

(m − 1)r1 ≤ qn+1, such that Pr1 meets the first time Σ at some point p; see Fig. 1,
left. Since ∂Σ = ∅, then p is an interior common point ofΣ ∩ Pr1 , and the tangency
principle says H > −m. Because this argument holds for any m > 1, we conclude
H ≥ −1.

For (ii), the completeness of Σ together the hypothesis on the boundedness says
that Σ is a graph on xn+1 = 0 and Σ ⊂ {xn+1 ≤ τ2} for some τ2 > 0. The reasoning
is similar replacing Pr by hyperbolic planes of type Hn+(r; (0, . . . , 0,mr)) coming
from xn+1 = ∞. The vertex of Qr is Vr = (0, . . . , 0, (m + 1)r) and (m + 1)r > 0.
If r is sufficiently big so (m + 1)r > τ2, then Qr ∩ Σ = ∅. Letting r → 0, we arrive
until the first time r0 > 0, (m + 1)r0 ≥ qn+1, such that Qr0 meets Σ ; see Fig. 1,
right. The tangency principle gives m > H . Since this holds for any m > −1, then
H ≤ −1. �

Remark 3.3 (A contact at “infinity”) If in the above proof we use slices instead
of equidistant hypersurfaces and hyperbolic planes we find with some troubles. For
example, and for (i), suppose Σ lies above the slice Lτ1 but Σ �⊂ Lt for all t < τ1.
We can arrive from below with slices Lτ with τ < τ1 without touching Σ , and it
could occur that Lτ1 touches Σ at some point. Then, the tangency principle would
say Σ = Lτ1 or H > −1 and this would prove the result. But it could happen that
Lτ1 has a contact “at infinity” with Σ , that is, Lτ1 ∩ Σ = ∅ but Lτ1+ε ∩ Σ �= ∅ for
all ε > 0. In such a case, we can not apply the tangency principle. This illustrates
the difference between the tangency principle, which is utilized in local arguments,
and the Omori-Yau maximum principle, which considers a touching point “at the
infinity” by taking a sequence of points {pk} with the properties of (3).

Theorem 3.2 shows part of Theorem 3.1. It would remain to prove that a spacelike
entire graph in H 3 with H = −1 between two slices must be a slice. Suppose that
Σ lies between the slices Lτ1 and Lτ2 , τ1 < τ2, and Σ does not lie in another smaller
slab. By the tangency principle, it is not possible that Σ has a contact point with Lτ1

and Lτ2 (see Remark 3.3). Now the statement that we want to prove has the same
flavor than the strong half-theorem in Euclidean space for minimal surfaces ([33];
see [44] in hyperbolic space). If in R

3, the proof compares a minimal surface with
a family of catenoids, in H 3 a similar idea would be comparing Σ with rotational
spacelike surfaces with H = −1. In the upper half-space model, and by Eq. (1),
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a rotational spacelike surface with respect to the x3-axis has mean curvature H if the
profile curve α(t) = (x(t), 0, z(t)) satisfies

H = z(t)

2

(
φ′(t) + sinh(φ(t))

x(t)

)
− cosh(φ(t))

where α′(t) = (cosh φ(t), 0, sinh φ(t)). The initial conditions are x(0) = 0, z(0) =
z0 > 0, and φ(0) = λ. Take H = −1, and let Sλ denote the rotational surface deter-
mined by the parameter λ. If λ = 0, the unique solution is the slice x3 = z0. If
λ < 0 (resp. λ > 0), α is a graph on the x1-axis with a singularity at t = 0, the
function z is strictly decreasing (resp. increasing), and there exists zλ ≥ 0 such
that limt→∞ z(t) = zλ. This proves that Sλ is asymptotic to a horizontal hyperplane
(a slice) and thus the use of Sλ is not adequate because we can not avoid a contact
“at infinity” (such as it appeared in Remark 3.3 comparing Σ with slices).

The paper [3] motivated a series of works by different researchers that followed
two directions: first, assuming other boundedness of the height function or with other
r -mean curvatures, and second, extending to GRW spacetimes.

3.1 Other Assumptions on the Height Function

Caminha and de Lima replaced in [21] the assumption that Σ lies between two
slices by some control on the growth of the height function. Let Σ denote a
spacelike hypersurface in the GRW model −R ×et R

n which is oriented accord-
ing to the future-directed orientation. The height function on Σ is h = πR ◦ ψ ,
and since 〈N , ∂t 〉 ≤ −1, the hyperbolic angle is the function θ : Σ → [0,∞) given
by cosh θ = −〈N , ∂t 〉. Let us observe that eh takes the same value that the func-
tion 〈p, a〉 in S

n+1
1,+ by the isometry Φ. If g = −〈N , ∂t 〉, then |∇h|2 = g2 − 1 and

Δh = 1 − n + nHg − g2. Hence, we obtain the Laplacian of the functions v = eh

and η = eh〈N , ∂t 〉:

Δv = −nv + nHη, Δη = nHv + |A|2η, (7)

where in the computation of Δη we use that H is constant. Both equations are the
analogous ones to (4) in the GRW model.

Theorem 3.3 ([21]) Let Σ ⊂ H n+1 = −R ×et R
n be a complete spacelike H-

graph with H ≥ 1. If h ≤ − log(−〈N , ∂t 〉 − 1), then H = 1.

Here, the growth of the height function h is bounded, in some sense, by the
hyperbolic angle g. The proof uses (7) to conclude that the function −v − η is
subharmonic and the relation between h and g says exactly that this function is
bounded, which allows to use the Omori-Yau maximum principle. In fact, we can
replace the hypothesis on h by h ≤ −c log(g − 1) for some c > 0. We give here the
proof in the de Sitter model.
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Proof Consider the function ϕ = 〈N , a〉 − 〈p, a〉. The hypothesis says that ϕ is
bounded from above so there exists supΣ ϕ. Note that ϕ ≥ 0 by (5). Then (4) yields

Δϕ = (|A|2 − nH)〈N , a〉 + n(H − 1)〈p, a〉
≥ (nH 2 − nH)〈N , a〉 + n(H − 1)〈p, a〉
= n(H − 1)(H〈N , a〉 − 〈p, a〉) ≥ n(H − 1)ϕ ≥ 0

where we have used |A|2 ≥ nH 2 and H ≥ 1. This proves that ϕ is a subharmonic
function, and taking the sequence {pk} of (3), the above inequality of Δϕ implies

0 ≤ n(H − 1)ϕ(pk) ≤ Δϕ(pk) <
1

k
.

By contradiction, suppose H > 1. Letting k → ∞, we conclude supΣ ϕ = 0, so
ϕ = 0 on Σ . Then 〈N , a〉 = 〈p, a〉 and |∇〈p, a〉|2 = 0, proving that Σ is a slice,
that is, H = 1, a contradiction. This proves the theorem. �

In the following result, Camargo, Caminha, and de Lima replace the constancy
of H by H ≥ 1 and the integrability of the gradient of the height function. Now we
do not conclude H = 1 (as in Theorems 3.1 and 3.3), but that Σ is a slice.

Theorem 3.4 ([18]) Let Σ ⊂ H n+1 = −R ×et R
n be a complete spacelike hyper-

surface between two slices with (not necessarily constant) mean curvature H ≥ 1.
If |∇〈p, a〉 = |aT | is Lebesgue integrable, then Σ is a slice.

Proof By contradiction, suppose that H > 1 on Σ . From (4), Δ〈p, a〉 = n〈HN −
p, a〉). As 〈HN − p, HN − p〉 = 1 − H 2 < 0, then HN − p is a timelike vector
on Σ , so 〈HN − p, a〉 is positive on Σ or its negative on Σ . Then Δ〈p, a〉 ≥ 0
or Δ〈p, a〉 ≤ 0. Up to a change of a sign, the function 〈p, a〉 is a subharmonic
function which is bounded from above because Σ lies between two slices. Since
Σ is complete and |∇〈p, a〉| ∈ L 1(Σ), then 〈p, a〉 is harmonic by a result of Yau
in [50]. Then Δ〈p, a〉 = 0 and we derive that the timelike vector HN − p satisfies
〈HN − p, a〉 = 0, a contradiction. This proves that H = 1 onΣ . From (5), we have
〈N , a〉 − 〈p, a〉 ≥ 0, and thus Δ〈p, a〉 ≥ 0 and 〈p, a〉 is bounded from above. The
same argument as before proves that Δ〈p, a〉 = 0 so 〈N , a〉 − 〈p, a〉 = 0, |aT | = 0,
and consequently, Σ is a slice. �

When n = 2, the same conclusion holds if we replace |aT | ∈ L 1(Σ) by KΣ ≥ 0.
This was proved by Aquino et al. in [14] and the argument is the same as in Theorem
3.1: now Σ is a parabolic surface, so the subharmonic function 〈p, a〉 must be
constant, proving that Σ is a slice.

Finally, subsequent results in the literature replace the conditions on H by oth-
ers about the higher order mean curvatures Hr . In order to use similar arguments,
one needs, among other things, to extend the Laplacian operator and the Omori-Yau
maximum principle. For the Laplacian, we take the so-called r -th Newton trans-
formations Pr which are self-adjoint linear transformations on Σ involving Hr and
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the shape operator A. Then we define the second-order linear differential operator
Lr = tr(Pr ◦ Hess): for instance, L0 =tr(Hess) is nothing that the Laplacian operator
Δ. For r = 1, we have the known Yau’s square operator � =tr(P1◦ Hess). It is also
necessary to generalize the Omori-Yau maximum principle (this was done for the
operator � by Caminha and de Lima in [20, 22]). Besides that, the ellipticity of Lr

is not assured and it depends on bounds on Hr . All these considerations make a bit
difficult to give a clear statement of the results: we refer the interested reader to [4, 7,
12, 13, 18, 25], where much more of the results hold in GRW spacetimes. We refer
also the reader to [9] for a recent account on Omori-Yau-type maximum principles
for more general operators and its geometric applications.

3.2 Extension to GRW Spacetimes

A second scenario to extend Theorem 3.1 is by consideringGRWspacetimes because
of the thirdmodel forH n+1.We first review some basics of these spaces (we refer the
article ofAlías, Romero and Sánchez [11]). A generalized Robertson–Walker (GRW)
spacetime is the product manifold M̄ = I × M endowed with the Lorentzian metric
−dt2 + f 2〈, 〉M : here (Mn, 〈, 〉M ) is a n-dimensional Riemannian manifold, I is a
1-dimensional manifold (either a circle or an open interval of R), and f : I → R

is a positive smooth function, called the warping function. We denote this space as
−I × f M . Among examples of GRW spacetimes, we have the Lorentz–Minkowski
spaceRn+1

1 = −R ×1 R
n , de Sitter spaceSn+1

1 ≡ −R ×cosh(t) S
n , and the steady state

spaceH n+1 ≡ −R ×et R
n . If f (t) = et , we say that M̄ is a steady state type space,

where besidesH n+1, we point out the remarkable de Sitter cusp space−R ×et ×T
n

in terminology of Galloway [29], where Tn is a flat n-torus.
A slice in −I × f M is a hyperplane Lτ = {τ } × M , for some τ ∈ I . Then Lτ is

an umbilical spacelike hypersurface with H = f ′(τ )/ f (τ ) computed with respect
to N = ∂t . Again, the question that we address is under what geometric assumption
must a complete spacelike cmc hypersurface be a slice. The functions 〈p, a〉, and
〈N , a〉 used for the steady state spaceH n+1 correspond nowwith the height function
h = π|I ◦ ψ and the hyperbolic angle 〈N , ∂t 〉. If onewants to use the same techniques
done in the previous results, it is necessary to consider the following remarks:

1. In S
n+1
1,+ , we computed the Laplacian of 〈p, a〉 in order to use the Omori-Yau

maximum principle. In the GRWmodel, 〈p, a〉 corresponds with the function eh
which is nothing that f (h) for the warping function f (t) = et . Thus, it is natural
to compute the Laplacian of f (h) in a GRW spacetime obtaining (see [26]):

Δ f (h) =
(

f ′′ f − f ′2

f
(h)

)
|∇h|2 − n

(
f ′2

f
(h) + f ′(h)H〈N , ∂t 〉

)
.

If we want f to be subharmonic, then it is enough that both summands are not
negative. For the first one is equivalent to say that log( f ) is a convex function.
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2. For theOmori-Yaumaximumprinciple,weneed thatRicΣ is bounded frombelow.
Here, we recall that a spacetime obeys the null convergence condition (NCC) if
the Ricci tensor Ric of M̄ satisfies Ric(Z , Z) ≥ 0 for any null vector Z . In a GRW
spacetime, this inequality is expressed in terms of the warping function as

RicM ≥ (n − 1) sup
I

( f f ′′ − f ′2)〈, 〉M = (n − 1) sup
I

f 2(log f )′′〈, 〉M . (8)

3. The condition H ≥ 1 in Theorems 3.3 and 3.4 can be viewed as a comparison
between H and the mean curvature of each slice. In a GRW spacetime, we would
need to relate H with the quotient f ′/ f .

An example of generalization of Theorem 3.1 that indicates the type of results
that we are referring is the following:

Theorem 3.5 Let Σ be a complete spacelike hypersurface between two slices in a
GRW spacetime. Suppose |∇h| ∈ L 1(Σ).

1. If f ′(h)H ≥ f ′2/ f (h) > 0 ([26]), or
2. If H is bounded and f (h)H2 ≥ f ′(h)H ≥ 0 ([6]),

then Σ is a slice.

In both statements we see again a comparison criterion between mean curvature
quantities without being constant. For example, in item 2, we have H 2

2 /H 2 ≤ f ′2/ f 2
where the right-hand side is the square of the mean curvature of the slice Lτ . The
reader can see otherBernstein-type results for complete hypersurfaces inGRWspace-
times in [5, 17, 19, 27, 28, 30, 45].

4 Compact Spacelike Hypersurfaces with Boundary

In this section, we study how the boundary of a compact cmc hypersurface affects
on the shape of the whole hypersurface. First, we precise our setting. Let ψ : Σ →
H n+1 be a spacelike immersion of a compact hypersurfaceΣ , in particular, ∂Σ �= ∅
and let Γ ⊂ H n+1 be a (n − 1)-submanifold. We say that Σ is a hypersurface
with boundary Γ if the restriction of the immersion ψ to the boundary ∂Σ is a
diffeomorphism onto Γ . We abbreviate by saying that Γ is the boundary of Σ , or
that ∂Σ = Γ , or that Σ spans Γ . We address the following

Problem 2: Given a compact (n − 1)-submanifold Γ included in a slice, does the geometry
of Γ impose restrictions to the shape of a compact spacelike cmc hypersurface spanning Γ ?

Related to the above problem, we study three specific questions:

(i) Whether the boundary Γ determines the position and the height of the hyper-
surface that spans with respect to the slice containing Γ .
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(ii) Whether the geometry of Γ imposes restrictions to the possible values H of
mean curvatures of H -hypersurfaces spanning Γ .

(iii) Whether the symmetries of Γ are inherited by the whole hypersurface. In other
words, suppose that Γ is invariant by a rigid motion M : H n+1 → H n+1, that
is, M(Γ ) = Γ . If Σ is a cmc spacelike hypersurface with ∂Σ = Γ , we ask if
Σ is also invariant by M . The simplest case is when Γ is a geodesic sphere and
whether Σ is a hypersurface of revolution.

In this section, we will use the notation H
n+(r; c) or Hn−(r; c), assuming that

c = (0, . . . , 0, c).

4.1 Height Estimates

Let Σ be a compact spacelike H -hypersurface in the upper half-space model with
∂Σ ⊂ Lτ . Notice that if ∂Σ is a simple closed curve, then Σ is a graph because the
spacelike condition says that the orthogonal projection from Σ in Lτ is a covering
map onto a simply connected domain. A first result gives us the position of Σ with
respect to Lτ depending whether H < −1 or H > −1, that is, comparing H with
the mean curvature of Lτ .

Proposition 4.1 LetΣ be a compact spacelike hypersurface with ∂Σ ⊂ Lτ . If H <

−1 (resp. H > −1, H = −1), then xn+1 ≥ τ in Σ (resp. xn+1 ≤ τ , Σ ⊂ Lτ ).

Proof It is enough to consider the case H < −1. By contradiction, suppose that there
are points strictly below Lτ . Let q ∈ Σ be the lowest point with respect to Lτ , and
let τ̄ = qn+1. We place the slice L τ̄ at q. The orientation of Σ and L τ̄ coincide at
q (both ones are pointing to the future, so pointing upward). Since Σ lies above L τ̄

around q, a comparison of the mean curvatures between Σ and L τ̄ yields H ≥ −1,
a contradiction. This proves that xn+1 ≥ τ in Σ . Following with the same argument,
and if τ̄ < τ and H = −1, the tangency principle would say that Σ lies contained
in L τ̄ , a contradiction again because ∂Σ ⊂ Lτ and τ �= τ̄ . �

Other approach to Proposition 4.1 is studying Δ〈p, a〉 in the de Sitter model. In
these coordinates, Proposition 4.1 says that if H > 1 (resp. H < 1, H = 1), then
〈p, a〉 ≤ τ (resp. 〈p, a〉 ≥ τ ,Σ ⊂ Lτ ). We know from (5) that 〈p, a〉 − 〈N , a〉 ≤ 0.
Let H > 1. Since 〈N , a〉 > 0, then (4) yields

Δ〈p, a〉 ≥ −n〈p, a〉 + n〈N , a〉 ≥ 0

and themaximumprinciple asserts that 〈p, a〉 ≤ max∂Σ 〈p, a〉 = τ , obtaining Propo-
sition 4.1. When H ≤ 0, then (4) gives directly Δ〈p, a〉 ≤ 0 and the maximum
principle concludes 〈p, a〉 ≥ τ . It would remain the case 0 < H < 1 which is not
deduced directly from Δ〈p, a〉, and the reasoning is the following. As 0 < H < 1,
〈HN − p, HN − p〉 = H 2 − 1 < 0, and consequently, the vector HN − p is time-
like so 〈HN − p, a〉 > 0 on Σ or 〈HN − p, a〉 < 0 on Σ . At the farest point q ∈
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int(Σ) from Lτ , |∇〈p, a〉|(q) = 0 and (5) gives 〈N (q), a〉 = 〈q, a〉. Then 〈HN −
p, a〉(q) = (H − 1)〈q, a〉 < 0. This proves definitively that 〈HN − p, a〉 < 0 on
Σ yielding Δ〈p, a〉 ≤ 0 and consequently, 〈p, a〉 ≥ τ by the maximum principle.

Once we know that Σ lies on one side of Lτ , we want to estimate, if possible,
how farΣ rises up from Lτ . In Euclidean space, this height is less than 1/|H | for H -
graphs whose boundary Γ lies in a hyperplane, and thus this estimate is independent
on the size of Γ (here and for a general reference in Euclidean space, we refer [37]).
Following ideas ofMeeks, the usualmanner is by considering a linear combination of
the height function and the Gauss map, then prove that this function is subharmonic,
and finally apply the maximum principle to get the desired estimates. From (4) and
because |A|2 − nH 2 ≥ 0, we have

Δ(−H〈p, a〉 + 〈N , a〉) = (|A|2 − nH 2)〈N , a〉 ≥ 0 (9)

proving that −H〈p, a〉 + 〈N , a〉 is subharmonic. The maximum principle asserts

− H〈p, a〉 + 〈N , a〉 ≤ max
∂Σ

(−H〈p, a〉 + 〈N , a〉) = −Hτ + max
∂Σ

〈N , a〉. (10)

However, and in contrast to the Euclidean case, we can not get a similar estimate.
For example, from (10) and for H > 0, we have

τ + minΣ 〈N , a〉 − max∂Σ 〈N , a〉
H

≤ 〈p, a〉 (11)

but this estimate is not given only in terms of the boundary and H : inequality (11)
is a bizarre estimate because involves the function 〈N , a〉 in Σ .

Proposition 4.1 generalizes toGRWspacetimes employing similar arguments.We
replace Δ〈p, a〉 by the Laplacian of any primitive F of the warping function f . If h
is the height function and g = 〈N , ∂t 〉 ≤ −1, the computation of ΔF in [30] yields
ΔF = −nh((log f )′(h) + Hg). Then it is immediate following the result proved by
García-Martínez and Impera.

Theorem 4.1 ([30]) LetΣ be a compact spacelike hypesurface in a GRW spacetime
−I × f M with ∂Σ ⊂ Lτ .

1. If H ≥ max{0, supI (log f )′}, then h ≤ τ .
2. If H ≤ min{0, inf I (log f )′}, then h ≥ τ .

Let us observe that inH n+1, where f (t) = et , the above theorem says that if H ≥ 1
(resp. H ≤ 0), then h ≤ τ (resp. h ≥ τ) but no information is obtained when 0 <

H < 1. If we proceed with the same arguments as in Eq. (9), and when H is constant,
we consider the function HF + f g. Then

Δ(HF + f g) = f g
(|A|2 − nH 2 + RicM(N ∗, N ∗) − (n − 1)(log f )′′|∇h|2)

(12)
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where N ∗ = (πM)∗(N ). Because 〈N ∗, N ∗〉M = |∇h|2/ f 2 and |A|2 ≥ nH 2, if we
want to bound from below the parenthesis in (12), we need to estimate the Ricci
curvature of M . Using (8) and the maximum principle, we have

Theorem 4.2 ([30]) Let Σ be a compact spacelike H-hypersurface in a GRW
spacetime satisfying NCC. Suppose ∂Σ ⊂ Lτ . If f is nondecreasing function and
H ≥ max{0, supI (log f )′}, then

τ − α ≤ h|Σ ≤ τ, α =
f (τ )

f (minΣ h)
max∂Σ(−g) − 1

H
≥ 0.

When we particularize toH n+1, then H ≥ 1 and this estimate corresponds, up to
a change of the models, with (11).

In the de Sitter model, and for H > 1, there exist compact H -hypersurfaces with
boundary in a given slice and with arbitrary height as it is shown in the next example
(we point out a gap in [24, Theorem 3.1] related with Remark 2.1).

Example 4.1 Consider the upper half-space model and H -hypersurfaces with H <

−1. Fix the slice L1. Consider the equidistant hypersurfaces H
n+1
− (r; cr ), cr =

(0, . . . , 0,−Hr), whose mean curvature is H . For r > −1/(1 + H), let Σr =
H

n−(r; cr ) ∩ {xn+1 ≥ 1}, which is a compact H -hypersurface with ∂Σr ⊂ L1. The
height of Σr about L1 is given by its vertex and this height is log |r(1 + H)| which
tends to ∞ as r → ∞.

Following the above example, we observe that the boundary of Σr is a sphere of
arbitrary large radius, namely,

√
(H 2 − 1)r2 + 2Hr + 1. We now give an estimate

of the height of a H -hypersurface with H < −1 depending only on H and the size
of Γ .

Theorem 4.3 ([42]) Let Γ ⊂ Lτ be a (n − 1)-submanifold and let Ω ⊂ Lτ denote
the domain bounded by Γ . If Σ ⊂ H n+1 is a compact spacelike H-hypersurface
with ∂Σ = Γ and H < −1 in the upper half-space model, then the height h of Σ

with respect to Lτ satisfies

h ≤ log(h0), h0 = −H + √
(H 2 − 1)R2 + 1

1 − H
, 2R = diam Ω. (13)

Proof After an isometry of H n+1, suppose that τ = 1 and let BR ⊂ L1 be the
ball of radius R > 0 containing Ω inside: here R coincides with the Euclidean
radius because the induced metric in L1 is the Euclidean one in R

n × {1}. After
a horizontal translation, if necessary, we assume the (0, . . . , 0, 1) is the center of
BR . Consider the equidistant hypersurfacesHn−(r; cr ) where cr = (0, . . . , 0,−r H).
For r sufficiently big, we can trap Σ in the convex domain of H n+1 determined
between H

n−(r; cr ) and xn+1 ≥ 1. In particular, the disk determined by the sphere
L1 ∩ H

n−(r; cr ) contains BR inside. Letting t ↘ 0, we arrive until the first value
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r = r0 such that L1 ∩ H
n−(r0; cr0) = ∂BR , just when H

n−(r0, cr0) touches ∂Σ . Dur-
ing this process decreasing r , the tangency principle forbids the existence of an
interior contact point between Σ and H

n−(r; cr ) because both hypersurfaces have
the same constant mean curvature. Thus, r = r0 is the first time that Hn−(r; cr ) meet
Σ . This proves that the height of Σ is less than the height of Hn−(r0; cr0), and this
concludes (13). �

4.2 A Flux Formula

For the question (ii), we work in the de Sitter model following de Lima [36]. Let
Γ ⊂ Lτ be a (n − 1)-submanifold and letΩ denote the bounded domain that bounds
Γ in Lτ . Let Σ be a compact spacelike H -hypersurface spanning Γ . The following
argument follows the same steps as in Euclidean space. Consider the n-cycleΣ ∪ Ω

and define the Killing vector field inH n+1

Yp = (〈p, b〉a − 〈p, a〉b)/〈a, b〉

where b ∈ Lτ with 〈a, b〉 �= 0. By the divergence theorem, we have

n|H ||Ω| =
∣∣∣∣
∫

∂Σ

〈Yp, ν〉
∣∣∣∣ (14)

where ν is the unit conormal vector field pointing to Σ and |Ω| is the volume of Ω .
Identity (14) is usually called a flux formula. Let us observe that the left-hand side
of (14) does not depend on Σ . Since 〈p, a〉 = τ in Lτ , we have

n|H ||Ω| ≤
∫

∂Σ

|〈Y, ν〉| =
∫

∂Σ

∣∣∣ 〈p, b〉〈ν, a〉
τ

− 〈ν, b〉
∣∣∣. (15)

Although p, b, and ν are unit spacelike vectors, we cannot bound 〈p, b〉 and 〈ν, b〉
by 1 (here we observe a gap in [36, p. 975]).

In Euclidean space R
n+1, if ∂Σ lies in a hyperplane, then (15) gives |H | ≤

|Γ |/((n − 1)|Ω|), obtaining anupper estimate for H dependingonly onΓ . For exam-
ple, ifΓ is a sphere of radius r > 0, then |H | ≤ 1/r .However, inLorentz–Minkowski
space Rn+1

1 , and when the boundary lies in a spacelike hyperplane < a >⊥, |a| = 1,
the flux formula (14) gives n|H ||Ω ≤ ∫

∂Σ
|〈ν, a〉| but we have the same problem

than in (15) (see [8] for n = 2 and [10] for the general n-dimensional case).
We analyze the case when Γ is a sphere Sn−1 ⊂ Lτ . Since Lτ is isometric to Rn ,

in the upper half-space model, Sn−1 ⊂ Lτ is an Euclidean sphere in the hyperplane
xn+1 = τ . We have explicit examples of compact cmc hypersurfaces spanning a
sphere obtained as follows. When we meet an umbilical hypersurface with a slice
Lτ , we obtain a sphere Sn−1 separating the umbilical hypersurface in two connected
components. Depending on each case, there is at most one compact component,
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and called a hyperbolic cap. In fact, hyperbolic caps do exist always for equidistant
hypersurfaces H

n−(r; c), and only do exist for hyperbolic planes H
n+(r; c) when

0 < cn+1 + r < τ . Furthermore, Sn−1 determines a round disk called a planar disk
in the very slice Lτ . Then we have:

Proposition 4.2 Let Γ = S
n−1 be a sphere of radius ρ > 0.

1. If H < −1, there exists a unique hyperbolic H-cap spanning Γ .
2. If H = −1, there exists a unique planar disk spanning Γ .
3. If H ≥ 0, then there exists a hyperbolic H-cap spanning Γ if and only if ρ < 1.

Moreover, this cap is unique.
4. Let −1 < H < 0. If ρ ≤ 1, there exists a unique hyperbolic H-cap spanning Γ .

If ρ > 1, then there exists a hyperbolic H-cap spanning Γ if and only if H ≤ H0,
where H0 = −√

ρ2 − 1/ρ. Moreover, the hyperbolic cap is unique if H = H0

and there exactly two hyperbolic H-caps if H < H0.

Proof After an isometry ofH n+1, suppose τ = 1. Then the radius ρ of Γ coincides
with the Euclidean radius.

1. For H < −1, we take the equidistant hypersurfaces Hn−(r;−Hr) for all r > 0.
When we meet with the slice L1, we obtain spheres of arbitrary radius ρ.

2. Immediate.
3. Take a hyperbolic plane H

n+(r; Hr). When we intersect with L1, the sphere, if
exists, has radiusρ such that Hr + √

ρ2 + r2 = 1. Thus,we study the solutions of
q(r) = 1,whereq(r) = Hr + √

ρ2 + r2. Since H ≥ 0,q(r) is strictly increasing
with limr→0 q(r) = ρ and limr→∞ q(r) = ∞; see Fig. 2, left. This proves the
result.

4. The above function q(r) is now decreasing around r = 0, q(r) has a unique
minimum at r0 = −Hρ/

√
1 − H 2 and limr→∞ q(r) = ∞; see Fig. 2, right. If

ρ ≤ 1, the result is immediate. If ρ ≥ 1, it suffices to prove that q(r0) ≤ 1, which
holds if and only if H ≤ H0. �

Example 4.2 Proposition 4.2 allows to give an example of two compact spacelike
H -hypersurfaces spanning the same boundary. Let Γ be a sphere of radius ρ > 1.
Let H be satisfying −1 < H < −√

ρ2 − 1/ρ, and denote by r1 and r2 the two roots
of Hr + √

ρ2 + r2 = 1. Then the hyperbolic H -caps of radius ρ determined by
H

n+(ri ; Hri ) and L1 span Γ : see Fig. 3.

Fig. 2 Solutions of q(r) = 1
in the proof of Proposition
4.2. Left: H = 1 and
ρ = 1/2; Right: H = −3/4
and ρ = 0.8 and ρ = 1.25

q(r)
q(r)
q(r)
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Fig. 3 Two hyperbolic
H -caps H1 and H2 with the
same boundary. Here,
H = −0.7 and the boundary
is a sphere of radius ρ = 1.2
in the slice L1

H1

H2

L1

xn+1 = 0

Example 4.3 The above non-uniqueness result can be also proved as follows. For
H ∈ (−1, 0), let r be sufficiently small, so H

n+(r; Hr) intersects L1 in a sphere Γ

of radius ρ > 1 and defining a hyperbolic cap C below L1. The Euclidean cone with
vertex the origin and containing Γ intersects Hn+(r; Hr) again in other sphere of
radius ρ ′ �= ρ and determining other hyperbolic cap C ′. Without loss of generality,
suppose ρ ′ > ρ, and thus, C ⊂ C ′. If h denotes the homothety from the origin of
R

n+1 of ratio ρ/ρ ′, then h(C ′) is a H -hypersurface spanning Γ and h(C ′) �= C .

From Proposition 4.2, we deduce that the radius ρ of a sphere S
n−1 imposes

restrictions to the values H for hyperbolic H -caps. Indeed, we have:

1. If ρ < 1, then any real number H is a value of a hyperbolic H -cap spanning Sn−1.
2. If ρ ≥ 1, then H ∈ (−∞,−√

ρ2 − 1/ρ).

In general, we prove that the shape and the size of Γ ⊂ Lτ imposes restrictions to
the value H for a compact H -hypersurface spanning Γ .

Theorem 4.4 ([38])LetΓ ⊂ Lτ be a closed submanifold and letΩ ⊂ Lτ denote the
domain bounded by Γ . Let Σ ⊂ H n+1 be a compact H-hypersurface spanning Γ .

1. If Ω contains a ball of radius 1, then H < 0.
2. If Ω contains a ball of radius

ρ0 =
√
1 − H

1 + H
, (16)

then H /∈ (−1, 0).

Proof We only prove the item 1. By contradiction, suppose H ≥ 0. After an isome-
try, assume τ = 1 and that Ω contains a sphere of radius 1 centered at (0, . . . , 0, 1).
We know from Theorem 4.1 that Σ lies below L1. Consider the hyperbolic H -
caps of type H

n+(r; Hr) with boundary in L1. The radius of the boundaries of
these caps is ρ, 0 < ρ < 1, with Hr + √

ρ2 + r2 = 1, and its vertex is the point
Vr = (0, . . . , 0, (H + 1)r). When ρ is very small (and r is close to 1/(H + 1)),
the cap lies below L1 but it does not meet Σ . Letting r → 0, the vertex goes to
(0, . . . , 0) but ρ < 1. Thus, there will be a first value r0 such that the hyperbolic
plane Hn+(r0; Hr0) intersects Σ at an interior contact point, a contradiction with the
tangency principle. �
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4.3 The Spherical Boundary Case

For the question (iii), we utilize the upper half-space model because we will work
with the isometries of H n+1. As it was announced in Sect. 2, the foliation by slices
ofH n+1 allows a certain control on the position of a compact cmc hypersurface such
as it appeared in Proposition 4.1 when H = −1. Assuming that the boundary of the
surface lies in other type of umbilical hypersurface, Proposition 4.1 extends straight-
forward provided that we have a foliation of the ambient space by H -hypersurfaces
for a given value of H (in Proposition 4.1 this value was H = −1).

Theorem 4.5 ([38]) Let H0 ∈ (−∞,−1] ∪ [0,∞). Let Σ be a compact spacelike
H-hypersurface whose boundary is contained in an umbilical H0-hypersurface P.
Then we have one of the following three possibilities: either H = H0 and Σ ⊂ P;
or H < H0 and Σ lies above P; or H > H0 and Σ lies below P.

Here, we revise a gap in [38] where it asserted that this result holds for any value H0.

Proof 1. Case H0 < −1. Then P is an equidistant hypersurface Hn−(r; c) and take
all Euclidean homotheties of P from a fix point of xn+1 = 0, obtaining the desired
foliation of H n+1; see Fig. 4, left.

2. Case H0 ≥ 0. Without loss of generality, suppose that P is the hyperbolic plane
H

n+(r; cr ), where cr = (0, . . . , 0, H0r). Let us observe that P is asymptotic to
the upper light cone C + = {x ∈ R

n+1
+ : 〈x − cr , x − cr 〉 = 0, xn+1 ≥ H0r}, and

denoteW the convex domain ofRn+1
+ determined by C +. LetΣ be a compact H -

hypersurface with ∂Σ ⊂ P . Take Q a lightlike hyperplane tangent to C +. Move
parallely Q sufficiently far from Σ , and then come back to its initial position. By
using that ∂Σ ⊂ P and that P is asymptotic toC +, it is not possible that Q meets
Σ because it should be at an interior point p ∈ Σ and Q would be the tangent
space ofΣ at p violating the spacelike condition ofΣ . If we do the same argument
with all these hyperplanes Q, we have that Σ is included in W . Consider now
Pt = ht (P) the homothety of P centered at the origin and ratio t ∈ (0,∞). Then
{Pt } is a foliation of the convex domain determined by the light cone 〈x, x〉 = 0:
note that this domain contains W which lies Σ . The argument follows the same
steps as for Theorem 4.5. Suppose that int(Σ) has points in both sides of P .
Coming from hyperbolic planes Pt with t = ∞ until the first contact point with
Σ , the tangency principle implies that H0 > H . A similar reasoning with planes
Pt coming from t = 0 gives H0 < H ; see Fig. 4, right. This contradiction proves

Fig. 4 Proof of Theorem
4.5: case H0 < −1 (left) and
case H0 ≥ 0 (right)
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that Σ lies only on one side of P , but precisely the above argument gives that if
H < H0 (resp. H > H0), then Σ lies above (resp. below ) P . �

When themean curvature H0 lies in the range of the interval (−1, 0), the family of
umbilical H -hypersurfaces does not provide a foliation of the ambient space because
any two members of this family meet each other: this appeared in Example 4.3.

Finally, we answer to the question (iii) when Γ is a sphere.

Theorem 4.6 ([38]) Planar disks and hyperbolic caps are the only compact space-
like H-hypersurfaces inH n+1 spanning a sphere.

Proof The proof uses the classical Alexandrov Reflection Method (see details [37]
in the Euclidean space). The idea is to use the same hypersurface to compare with
its reflection about a vertical hyperplane which preserves the constancy of the mean
curvature, and finally, use the tangency principle. Let Lτ denote the slice containing
Γ and Ω ⊂ Lτ the bounded domain by Γ . We know by Theorem 4.5 that Σ is Ω

when H = −1 or Σ lies on one side of Lτ if H �= −1. In this case, Σ ∪ Ω defines
a domain in Rn+1

+ and we can use the Alexandrov reflection method with reflections
about vertical hyperplanes. This proves that Σ is a hypersurface of revolution with
respect to a straight line orthogonal to Lτ . Finally, the hyperbolic caps are the only
compact rotational cmc hypersurfaces spanning a sphere. �

Remark 4.1 When H ∈ (−∞,−1] ∪ [0,∞), we can do a proof of this result based
on Theorem 4.5. For this argument, it is enough to prove that there exists an umbilical
H -hypersurface containing Γ . If H ≤ −1, the result follows from Proposition 4.2
(i, ii). If H ≥ 0, then Theorem 4.4 says that ρ < 1, and now we use Proposition 4.2
(iii). Let us observe that we cannot complete the proof when H ∈ (−1, 0).

We compare Theorem 4.6 to what happens in other ambient spaces. In Lorentz–
Minkowski space Rn+1

1 and in hyperbolic space when |H | ≤ 1, the umbilical hyper-
surfaces are the only compact cmc hypersurfaces spanning a sphere [8, 10, 37].
However, it is an open question nowadays if spherical caps and planar disks are the
only embedded compact H -hypersurfaces of Rn+1 spanning a sphere (or in H n+1

when |H | > 1).

5 The Dirichlet Problem for the Mean Curvature Equation

In this section, we will prove the existence of complete H -hypersurfaces of H n+1,
H < −1, whose boundary lies in the future infinityJ +. This was proved byMontiel
in [42] and was motivated by the Goddard conjecture: “the only complete spacelike
cmc hypersurfaces in S

n+1
1 must be umbilical.” The hypersurfaces obtained in [42]

(see Corollary 5.1 below) illustrate that this conjecture is not true in the steady state
space. Recall that in S

n+1
1 , there was a great work of answering to this conjecture
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which is false, although in some cases is true, for example, when |H | ≤ 1 and n =
2, when 0 ≤ H 2 < 4(n − 1)/n2 and n ≥ 3, or when the hypersurface is compact
[1, 41].

In order to prove the existence of Montiel’s examples, and since the boundary lies
inJ +, the strategy is solving the Dirichlet problem in domains of slices, then take a
sequence of such domains going toJ + and their corresponding solutions and having
a suitable control of the solutions that ensures its convergence in the limiting process.
Thus, in this section, we will study the existence of compact spacelike H -graphs on
a domain of a slice.

The Dirichlet problem for the mean curvature equation is the following:

Problem 3: Given Ω ⊂ Lτ a bounded domain, H ∈ R and τ > 0, find a solution of

QH [u] = 0 on Ω, u = τ > 0 along ∂Ω . (17)

The uniqueness of solutions of (17) is not assured by the standard theory because
the term on u in the expression of QH [u] in (2) is not necessarily nondecreasing.
Recall that we showed in Example 4.2 two spacelike H -graphs on a disk of L1 with
the same boundary curve and −1 < H < 0.

The solvability of the Dirichlet problem (17) strongly depends whether H < −1
or H > −1, just the value of the mean curvature of a slice and, depending on each
case, the hypersurface lies on one side of Lτ by Theorem 4.1.

Theorem 5.1 ([42]) Let Ω ⊂ Lτ be a compact bounded domain which has mean
convex boundary. If H < −1, then there exists a unique solution of (17).

We solve the Dirichlet problem using themethod of continuity. For this technique,
we refer the reader to [40] in the context of cmchypersurfaces in hyperbolic space (the
general reference for elliptic equations isGilbarg andTrudinger [31]).Without loss of
generality, suppose that τ = 1. Themethod of continuity considers the uniparametric
family of Dirichlet problems

{
QH(t)[u] = 0 inΩ,

u = 1 along∂Ω
(18)

where H(t) = t (1 + H) − 1, t ∈ [0, 1]. Let us observe that for t = 1, a solution of
(18) is the solution that we are looking for (17). We show that the subset of [0, 1]
defined by

A = {t ∈ [0, 1] : ∃ut ∈ C2,α(Ω), such that QH(t)(ut ) = 0 and ut |∂Ω = 1}

is nonempty, open, and closed in [0, 1]. In such a case, 1 ∈ A proving that there
exists a solution u ∈ C2,α(Ω) of (17). Finally, as H is constant and Ω is smooth,
the regularity theory for the cmc equation proves that any C2,α solution of (17) will
be smooth, proving Theorem 5.1. We observe that A �= ∅ because 0 ∈ A since
H(0) = −1 and u = 1 are a solution in the domain Ω . The proof that A is open



Constant Mean Curvature Hypersurfaces in the Steady State Space: A Survey 207

of [0, 1] is a consequence of the implicit function theorem in Banach spaces and it
follows standard arguments.

The difficulties lie in proving thatA is a closed set of [0, 1]. This follows once we
establish a priori C1 estimates of the prospective solutions of (18), that is, estimates
of |u| and |Du| depending only on H and Ω .

The estimate for |u| was proved in Theorem 4.3 where the estimate (13) depends
only on H and Ω . For the estimate of |Du|, we need to work in the de Sitter model.
The graph Σu of u corresponds with a graph Σ f ⊂ S

n+1
1 and the slice L1 ⊂ R

n+1
+

with the slice L1 in S
n+1
1 . By the isometry Ψ , we have u = e f and

〈p, a〉 = 1

u
= e− f , 〈N , a〉 = 1

u
√
1 − |Du|2 . (19)

Thus, we will obtain bounds for |Du| provided that we have a certain control of the
functions 〈p, a〉 and 〈N , a〉. We proved in (10) that −H〈p, a〉 + 〈N , a〉 ≤ −H +
〈N (q), a〉 for some q ∈ ∂Σu . At q, the maximum principle gives again

H〈νq , a〉 + 〈(dN )q(νq), a〉 = 〈νq , a〉(−H + 〈(dN )q(νq), νq〉 ≤ 0

where ν is the unit conormal pointing along ∂Σu toward Σ . Since 〈νq , a〉 > 0, then
−H + 〈(dN )q(νq), νq〉 ≤ 0. Using the mean convexity of Ω , we deduce −H +
〈N (q), a〉 ≤ 0, and thus

−H〈p, a〉 + 〈N , a〉 ≤ −H + 〈N (q), a〉 ≤ 0.

Hence, we deduce 〈N , a〉 ≤ H〈p, a〉 ≤ H because 〈p, a〉 ≤ 1(= τ) by Proposition
4.1. Finally, using (19) we conclude

|Du|2 ≤ H 2 − 1

H 2
(20)

obtaining the desired uniform estimate for |Du| and proving Theorem 5.1. The
uniqueness is a consequence of the standard theory [31] and the inequality (20).

The estimates (13) and (20) are independent on the slicewhere liesΩ . This extends
Theorem 5.1 allowing u = 0 along ∂Ω ⊂ R

n × {0}. Indeed, we go by considering
the solutions uτ of (17) and by letting τ → 0, the domains Ω × {τ } converge to
Ω × {0} ⊂ J +, and the funtions uτ have a priori C1-estimates independent on τ .

Theorem 5.2 ([39])LetΩ ⊂ R
n be a compact domainwhich ismean convex bound-

ary. If H < −1, then there exists a solution of (17) with u = 0 along ∂Ω .

If we introduce the concept of asymptotic future boundary of Σ as ∂∞Σ = Σ ∩
J +, the above result can be re-phrased as follows:

Corollary 5.1 ([39]) Let Ω ⊂ J + be a compact domain which is mean con-
vex boundary. If H < −1, then there exists a complete embedded spacelike H-
hypersurface with ∂∞Σ = ∂Ω .
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Proof It only remains to prove that the induced metric ds2 on Σu is complete. From
(20) we have

ds2 = 1

u2
(|dx |2 − 〈Du, dx〉2) ≥ 1

H 2 − 1

〈Dux , dx〉2
u2

≥ 1

H 2 − 1
|d log u|2.

This says that the length of any curve in Σu reaching ∂∞Σu must be infinity. �

Remark 5.1 Let us observe that (13) says that u ≤ ct and this implies that the com-
plete H -hypersurface obtained in Corollary 5.1 has H < −1 and it is bounded away
from the past infinity of H n+1.

Consider now the Dirichlet problem (17) for values H > −1, so the graph lies
below Lτ byTheorem4.5. FromTheorem4.4, it is expectable some kind of smallness
assumption on the domain Ω . If in Theorem 5.1 it was assumed to be mean convex,
now we need strong convexity assumptions. For κ > 0, a domain Ω ⊂ Lτ is said to
be κ-convex if all the principal curvatures κi of ∂Ω with respect to the inward normal
vector satisfy κi ≥ κ .

Theorem 5.3 Let −1 ≤ H < 0 and let Ω ⊂ Lτ be a κ-convex domain strictly con-
tained in a ball of radius 1 in Lτ . If

κ ≥
√
1 − H 2, (21)

then there exists a solution of the Dirichlet problem (17).

We utilize the method of continuity again. Suppose τ = 1 and (0, . . . , 0, 1) ∈ Ω .
Since the induced metric in L1 is the Euclidean one, Ω is included in a ball Ω1 of
Euclidean radius 1. As 0 < u < 1 in Ω and Ω ⊂ Ω1, then the spacelike condition,
the convexity of Ω , and a similar argument as for Theorem 4.5, proves the existence
of 0 < c < 1 depending only on Σu such that c < xn+1 ≤ 1 in Σu : this provides a
priori estimates for |u| in (17).

In Theorem 5.1, the gradient estimates were obtained using the subharmonicity of
the function −H〈p, a〉 + 〈N , a〉. Now this is not enough and we will prove first the
existence of an apriori estimate of |Du| along ∂Ω , and once obtained this estimate,
we will get an estimate of |Du| in the domain Ω .

Proposition 5.1 Under the assumptions of Theorem 5.3, we have

sup
Ω

|Du| <
√
1 − H 2 (22)

for every solution u of the Dirichlet problem (17).

Proof 1. Estimates along ∂Ω . Because Ω is κ-convex and inequality (21), we can
trap Σu in the domain determined by a hyperbolic H -hyperplaneHn+(r; Hr) and
the slice L1 such the intersection L1 ∩ H

n+(r; Hr) is the boundary of a round ball
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Bρ of radius ρ = 1/
√
1 − H 2. Denoted byH+

ρ ⊂ H
n+(r; Hr), the hyperbolic cap

is determined by L1. Then H
+
ρ lies below L1, and Σu lies between H

+
ρ and Bρ .

The assumption on the κ-convexity of Ω says κ ≥ 1/ρ, so the domain Ω has the
following Blaschke’s outer rolling sphere property: for every p ∈ ∂Ω , there exists
a ball in L1 of radius ρ touching p and leaving the domain Ω inside the ball. By
moving horizontally H

+
ρ , we go touching every point of ∂Ω in such a way that

during these translations (isometries of H n+1), the tangency principle forbids a
contact between H

+
ρ and Σu . Therefore, we can reach any point of ∂Ω leaving

Σu sandwiched byH+
ρ and L1, in particular, the slope ofΣu along ∂Ω is bounded

by the one of H+
ρ . This estimate is written precisely as sup∂Ω |Du| <

√
1 − H 2,

proving (22) for boundary points of Ω .
2. Estimates on Ω . In the de Sitter model, the function −H〈p, a〉 + 〈N , a〉 is sub-

harmonic and the maximum principle gives

−H〈p, a〉 + 〈N , a〉 ≤ sup
∂Ω

(
−H + 1√

1 − |Du|2
)

<
1 − H 2

H

where we have used that |Du| <
√
1 − H 2 along ∂Ω . Hence, we obtain 〈N , a〉,

and using (19), we conclude supΩ |Du| <
√
1 − H 2. �

Finally, Proposition 5.1 proves definitively Theorem 5.3.

6 Oulook and Open Problems

The interest of the steady state space comes because it is the Lorentzian analogous
of hyperbolic space. In this chapter, we have focused on spacelike hypersurfaces
with constant mean curvature but the theory of submanifolds is much more: for
example, one can study spacelike hypersurfaces with constant Gaussian curvature
as in [46, 47]. The spacelike condition on the hypersurface is a strong difference
between H n+1 and H

n+1. The three models of H n+1 allow different approaches
for a given problem, but we have observed in the literature similar results written
in different coordinates. This is the reason why we have strived to make a common
line of the progress inH n+1 after the paper of Montiel [42] and later of Albujer and
Alías [3].We have not fully studied the extension of results in other GRW spacetimes
because we believe that a generalization in these spaces would bring long statements
in the conditions on the warping function as well as the fiber manifold that could go
away from our initial aim. Finally, we have emphasized on the techniques employed,
where the maximum principles (tangency principle, Omori-Yau) play an important
role.

In the literature, there has been a great interest for characterizing the slices, in
connection with the Bernstein problem but we find missing more efforts in other
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directions. We have collected a list of open problems some of which could be tackled
in the near future.

1. Obtain other types of characterizations for slices. The condition to be included
between two slices in Theorem 3.1 is too strong. Extend the characterizations of
Bernstein-type for hyperbolic planes, for example assuming that the hypersurface
lies in the convex side of another hyperbolic plane.

2. Study spacelike H -hypersurfaces with−1 < H < 0 because this range of values
for H appears remarkably in some results: Example 4.2 and Theorem 4.4 and 5.3.

3. Investigate the family of spacelike cmc hypersurfaces invariant by a uniparametric
group of isometries. We are thinking not only in the rotational examples but also
hypersurfaces invariant by a parabolic or a hyperbolic group of rotations.

4. Characterize cmc hypersurfaces whose asymptotic future boundary is known. In
the upper half-space model, we can assume that ∂∞Σ is one point, an Euclidean
sphere or two concentric Euclidean spheres. In the literature, there are similar
results in the hyperbolic space.

5. Study complete spacelike hypersurfaces in H n+1 with constant mean curvature
|H | = 1. We know that if n = 2, then the hypersurface is a slice, but we do not
know the existence of other examples in arbitrary dimension.

6. Solve the Dirichlet problem for the case H > 0. Following the discussion in
Sect. 5, consider the case H < −1 but dropping the mean convex boundary
assumption in Theorem 5.1.

7. We have not discussed on timelike cmc hypersurfaces inH n+1. Recall that there
is a great activity in recent years in this topic in Lorentz–Minkowski space R3

1.
The mean curvature equation for timelike surfaces is not elliptic so we cannot
make use of the maximum principle. However, we have timelike slices which
could be characterized with results of Bernstein-type.

Acknowledgements The author has been partially supported by the MINECO/FEDER grant
MTM2014-52368-P.
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Calabi–Bernstein-Type Problems
in Lorentzian Geometry

Rafael M. Rubio

Abstract The study of maximal hypersurfaces in Lorentzian manifolds is an inter-
esting mathematical problem, which connects differential geometry, nonlinear par-
tial differential equations, and certain problems in mathematical relativity. One of
the more celebrated results in the context of global geometry of maximal hyper-
surfaces is the Calabi–Bernstein theorem in the Lorentz–Minkowski spacetime. The
nonparametric version of this theorem states that the only entire solutions to the max-
imal hypersurface equation in the Lorentz–Minkowski spacetime are spacelike affine
hyperplanes. The present work reviews some of the classical and recent proofs of the
theorem for the two-dimensional case, as well as several extensions for Lorentzian-
warped products and other relevant spacetimes. On the other hand, the problem of
uniqueness of complete maximal hypersurfaces is analyzed under the perspective of
some new results.

Keywords Maximal hypersurfaces in spacetimes · Calabi–Bernstein type
problems · Lorentzian geometry

1 Introduction

We begin with two examples of nonlinear partial differential equations, which arise
in the context of some differential geometric problems.

First, we recall the well-known minimal hypersurface equation in the Euclidean
space R

n+1. So, for a smooth function u : � −→ R on a domain � in R
n , the problem

is given by the following nonlinear differential equation in divergence form,
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div

(
Du√

1 + |Du|2
)

= 0, (1)

where D and div denote the gradient and divergence operators in the Euclidean n-
plane R

n respectively. This equation is elliptic and it is easy to see that the affine
functions are trivial solutions.

Second, the maximal spacelike hypersurface equation in the Lorentz–Minkowski
spacetime L

n+1. With coordinates (t, x1, ..., xn) (and Lorentzian form g = −dt2 +∑n
j=1 dx

2
j ), the problem is given for t = u(x1, ..., xn) by

div

(
Du√

1 − |Du|2
)

= 0, | Du |2< 1. (2)

where D and div denote the gradient and divergence operators in the Euclidean
n-plane R

n respectively.
The condition | Du |2< 1 assures that the graph of every solution is spacelike,

this is, the induced fundamental form on the graph is definite positive. Moreover, the
problem is elliptic thanks to this extra constraint.

Note that if we take a unitary normal vector field on the graph t = u(x1, ..., xn)
in the same time-orientation of the timelike coordinate vector field ∂

∂t := ∂t , then its
mean curvature is given by

nH = div

(
Du√

1 − |Du|2
)

.

On the other hand, the graph of u is extremal, among functions satisfying the
spacelike condition under interior variations (with compact support) for the volume
integral,

V =
∫ √

1− | Du |2 dx1 ∧ .. ∧ dxn .

Again, trivial solutions of Eq. (2) are affine functions (with spacelike graph).

1.1 Bernstein Theorem

The early seminal result of Bernstein [13], amended by Hopf [35], is the well-known
following uniqueness theorem,

The only entire solutions to the Eq. (1) on the Euclidean plane R
2 are the affine functions.

This result is known as the classical Bernstein theorem. In 1968, Simons [61]
proved a result which in combination with theorems of De Giorgi [32] and Flem-
ing [30] yields a proof of the Bernstein theorem for n ≤ 7. Moreover, there is a
counterexample u ∈ C∞(Rn) to the Bernstein conjecture for each n ≥ 8.



Calabi–Bernstein-Type Problems in Lorentzian Geometry 215

1.2 Calabi–Bernstein Theorem

One of the most relevant results in the context of global geometry of spacelike
surfaces is the classical Calabi–Bernstein theorem. This result was established in
1970 by Calabi [21] inspired in the classical Bernstein theorem, via a duality between
solutions to Eqs. (1) and (2).

In its non-parametric version, it asserts that the only entire solutions to the maximal
surface equation

div

(
Du√

1 − |Du|2
)

= 0, |Du| < 1

on the Euclidean plane R
2 are affine functions.

In fact, Calabi also shows that the result holds for the case of maximal hypersur-
faces in L

4. Later on, Cheng and Yau [22] extended the Calabi–Bernstein theorem to
the general n + 1-dimensional case. Another important achievement in [22] was the
introduction of a new procedure, the so-called Omori–Yau generalized maximum
principle [44, 63].

The Calabi–Bernstein Theorem can also be formulated in a parametric way. In
this case, it states that the only complete maximal hypersurfaces in L

n+1 are the
spacelike hyperplanes. In their proof of the parametric version, Cheng and Yau obtain
a Simons-type formula, that is, the authors compute the Laplacian of the trace of
the square of the associate shape operator to the unitary normal vector field on
the maximal hypersurface. Subsequently, assuming completeness and making use
of a consequence of their new maximum principle, the authors obtain the result in
parametric version. Nevertheless, both versions (parametric and nonparametric ones)
are not equivalent a priori, since there exist examples of spacelike entire graphs in
L
n+1 which are not complete (see for instance [6]). This fact, is a notable difference

and difficulty with respect to the Riemannian case, where thank to the Hopf–Rinow
theorem all entire graph in R

n+1 must be complete. So, Cheng and Yau prove that in
the case where the mean curvature is constant, a embedded spacelike hypersurface
in L

n+1 must be complete, which allows to obtain the non-parametric version.

2 Some Approaches to the Classical Calabi–Bernstein
Theorem

After the general proof by Cheng and Yau, several authors have approached to the
classical version of Calabi–Bernstein theorem from different perspectives, providing
diverse extensions and new proofs of the result in L

3.
In 1983, Kobayashi [38] derived the Calabi–Bernstein Theorem as a consequence

of the corresponding Weierstrass–Enneper parameterization for maximal surfaces in
L

3. Below, we briefly describe the proof of Kobayashi.
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2.1 Kobayashi Approach

Consider the Lorentz–Minkowski spacetime L
3, which is given by the Lorentzian

manifold (R3, 〈 , 〉), where

〈 , 〉 = −dt2 + dx2 + dy2.

Let S be a connected maximal surface in L
3. The surface S must be orientable and

let N be the unitary normal vector field on S such that 〈N , ∂
∂t 〉 < 0. Let N : S −→ H

2+
be the Gauss map of S and define a stereographic projection σ : D −→ H

2+, from
D = {z ∈ C/ | z |< 1} onto H

2+ as follow

σ(z) =
( 2 Re(z)

1− | z |2 ,
2 Im(z)

1− | z |2 ,
1+ | z |2
1− | z |2

)
. (3)

The map σ is conformal and bijective assigning to each point z ∈ D, the point in H
2+

obtained as the intersection of the straight line determined by (0, 0 − 1) and (z, 0)

with H
2+.

On the other hand, the Gauss map is also conformal. Taking this into account the
author shows the following result (Weierstrass–Enneper formula):

Theorem 2.1 Any maximal surface S in L
3 is represented as

φ(z) = Re
∫ (1

2
f (1 + g2),

i

2
f (1 − g2),− f g

)
dz, z ∈ D, (4)

where D is a domain in C, and f (resp. g) is a holomorphic (resp. meromorphic)
function on D such that f g2 is holomorphic in D and | g(z) |
= 1 for z ∈ D. More-
over,

(i) The Gauss map N is given by N (z) = σ(g(z)), where σ is the map defined in
(3).

(ii) The induced metric is given by ds = 1
2 | f | (|1− |g |2|) |dz | .

(iii) The Gauss curvature of the surface is given by K = ( 4|∂zg|
|f|(|1−|g|2|)2

)2
.

Thus, we consider the immersion φ : D −→ L
3 with the induced metric from L

3.
Assume that the maximal surface is complete. Since the surface is not compact,

the uniformization theorem allow us to affirm that D must be conformal to C or
the unit disc D. Suppose that D is conformal to D. Now, the author makes use of a
result of Osserman [46, p. 67] to show that there is a divergent curve γ in D such
that

∫
γ | f (z) ||dz |< ∞. Thus using (ii) of Theorem 2.1 we will conclude that the

surface cannot be complete. Hence, D must be conformal to C. Finally, taking into
account (i) in Theorem 2.1 we have |g |< 1 and g is holomorphic. Now, it is enough
to call Liouville’s theorem to obtain that g is a constant function and as a direct
consequence the immersion is a spacelike plane.
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2.2 About Other Approaches

In 1994, a new proof of the Classical Calabi–Bernstein theorem is given by Estudillo
and Romero [29] making use again of the Weierstrass–Enneper representation. The
authors find an adequate local upper bound for the Gaussian curvature of a maximal
surface. Estudillo and Romero inspired in a paper by Osserman [47] obtain the
following inequality of the Gauss curvature at any point p, K (p), of a maximal
surface S with boundary in L

3,

K (p) ≤ 4

d(p, ∂S)2
, for any p ∈ S,

where d is the Riemannian distance on S.
As a consequence, if we consider a complete maximal surface S and an arbitrary

point p ∈ S, we can take a geodesic disc with center at p and radius r . Now, it is
enough to choose r as large as we desire to conclude that S must be totally geodesic.

On the other hand, using a conformal metric, the authors get a new proof of the
nonparametric version.

In the real field, a simple proof of the nonparametric version, which only requires
the Liouville theorem for harmonic functions on the Euclidean plane R

2, was given
in 1994 by Romero [52]. As the author says, the proof is inspired in a proof of the
classical Bernstein theorem given by Chern [24]. So, the author obtains a conformal
metric on the entire graph, which is complete and flat. Thus, via Cartan’s theorem,
the graph endows with the conformal metric is isometric to Euclidean plane. On the
other hand, Romero shows that the function 1

〈N ,a〉 , where N is the unitary (future
directed) normal vector field on the graph and a is an suitable constant lightlike
vector, is a positive harmonic function globally defined on the graph. Finally, taking
into account, the invariance of harmonic functions by conformal changes of metric
we have that 〈N , a〉 is constant.

Via a local integral inequality for the Gaussian curvature of a maximal surface,
in 2000, Alías and Palmer [7] provided another new proof for the parametric case.
The authors obtain an upper bound for the total curvature of geodesic discs in a
maximal surface in terms of the local geometry of the surface and its hyperbolic
image. Specifically, the authors show

Theorem 2.2 Let x : S −→ L
3 be a maximal surface in the three-dimensional

Lorentz–Minkowski spacetime. Let p ∈ S and R > 0 be a positive real number such
that the geodesic disc of radius R about p satisfies D(p, R) ⊂⊂ S. Then for all
0 < r < R, the total curvature of a geodesic disc D(p, r) satisfies

0 ≤
∫
D(p,r)

KdA ≤ cr
L(r)

r log(R/r)
, (5)

where d A is the area element, L(r) denotes the lenght of ∂D(p, r) and cr = cr (p, r)
is a constant.
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Making use of this integral inequality, Alías and Palmer get a new proof of the
Calabi–Bernstein theorem. Indeed, if S is complete, R can approach to infinity for
any fixed point p and fixed radius r , now from (5) K ≡ 0.

These authors get also a new proof of the nonparametric version based on a duality
result with minimal surface equation in the Euclidean case [9]. Recently (2010), yet
another short proof of both versions has been given by Romero and Rubio [53]
making use of the interface between the parabolicity of a Riemannian surface and
the capacity of geodesic annuli. Finally, a more recent (2015) original new proof has
been given by Aledo, Romero and Rubio by using a development inspired by the
well-known Bochner’s technique.

We must emphasize that for several of the proof of the classical results, it is
essential in a way or another that any complete maximal surface in L

3 must be
parabolic.

2.3 Romero–Rubio’s Proof of the Classical Result

In this section, we will describe the new approach given by Romero and Rubio [53]
to the two-dimensional version of the Calabi–Bernstein theorem.

Consider the Lorentz–Minkowski spacetime L
3, which is given by the Lorentzian

manifold (R3, 〈 , 〉), where

〈 , 〉 = −dt2 + dx2 + dy2.

Let x : S −→ L
3 be a (connected) immersed spacelike surface in L

3. Observe
that S must be orientable and let N be the unitary normal vector field on S such
that 〈N , ∂t 〉 > 0, where ∂t denotes the coordinate vector field ∂

∂t . If θ(p) denotes the
hyperbolic angle between N and −∂t at p ∈ S, then cosh θ = 〈N , ∂t 〉.

We will denote by ∇ and ∇ the Levi–Civita connections of L
3 and S, respectively.

Then the Gauss and Weingarten formulas for S in L
3 are given, respectively, by

∇XY = ∇XY − 〈A(X),Y 〉N (6)

and
A(X) = −∇X N , (7)

for all tangent vector fields X,Y ∈ X(S), where A : X(S) −→ X(S) stands for the
shape operator associated to N .

On the other hand, the tangential component of ∂t at any point of S is given by
∂�
t = ∂t + cosh θN .

We suppose that S is maximal. It is immediate to see that

∇cosh θ = −A∂�
t
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being A the shape operator associated to N . It is not difficult to obtain by standard
computation the following formulas:

| ∇cosh θ |2= 1

2
trace (A2)sinh2θ and �cosh θ = trace (A2)cosh θ

where ∇ and � are respectively the gradient and Laplacian relative to the induced
Riemannian metric on S.

The following technical result, which is a reformulation by Romero and Rubio
[53] of a Lemma by Alías and Palmer [8], is a key piece of the this new approach.
Previously, we need to recall some general preliminaries.

Let S be an n(≥ 2)-dimensional Riemannian manifold and let Br denote the
geodesic ball of radius r around a fixed point p ∈ S. For 0 < r < R let Ar,R be the
geodesic annulus Ar,R := BR � B̄r . Denote by ωr,R the harmonic measure of ∂BR

with respect to Ar,R , that is the solution of the elliptic problem

�ω = 0 in Ar,R, ω ≡ 0 on ∂Br , and ω ≡ 1 on ∂BR .

The capacity of the annulus is defined to be

1

μr,R
:=

∫
Ar,R

|∇ωr,R|2 dV .

It is well known that S is parabolic if and only if

lim
R→∞

1

μr,R
= 0.

Now, we can enunciate the technical lemma.

Lemma 2.3 Let S be an n(≥ 2)-dimensional Riemannian manifold and let v ∈
C2(S) which satisfies v�v ≥ 0. Let BR be a geodesic ball of radius R in S. For
any r such that 0 < r < R we have

∫
Br

|∇v|2 dV ≤ 4 SupBR
v2

μr,R
,

where Br denote the geodesic ball of radius r around p in S and 1
μr,R

is the capacity

of the annulus BR � B̄r .

Proof For any ζ ∈ C∞(BR) with supp(ζ) ⊂ BR , from the divergence theorem we
have ∫

BR

(ζ2|∇v|2 + ζ2v�v + 2ζv〈∇ζ, ∇v〉)dV = 0,
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and as a consequence,

∫
BR

ζ2|∇v|2dV ≤ 2
∫
BR

|ζv〈∇ζ, ∇v〉|dV ≤ a2
∫
BR

ζ2|∇v|2dV + 1

a2

∫
BR

v2|∇ζ|2dV,

for all a > 0, and hence taking a = 1/
√

2 we obtain

∫
BR

ζ2|∇v|2dV ≤ 4
∫
BR

v2|∇ζ|2dV ≤ 4 SupBR
v2

∫
BR

|∇ζ|2dV .

Define ζ by

ζ(x) =
{

1 if x ∈ B̄r

1 − ωr,R if x ∈ Ar,R

Finally, although ζ is not smooth it can be approximated by smooth function, and
so we obtain ∫

Br

|∇v|2dV ≤ 4 SupBR
u2

μr,R
.

�

We are now in a position to describe the proof of the parametric version. So,
consider the auxiliary function v : S −→ ( π

2 , 3π
2 ), v(p) = arctan(cosh θ(p)), which

has an advantage on the original cosh θ, that is, v is bounded.
It is immediate to verify that v�v ≥ 0. From the previous Lemma, and taking

into account that

∇v = 1

1 + cosh2 θ
∇ cosh θ,

we have ∫
Br

|∇v|2 dV ≤ 9π2

μr,R
,

for 0 < r < R, which easily gives

∫
Br

|∇(cosh θ)|2 dV ≤ C

μr,R
,

where Br denote the geodesic disc of radius r around p in S, 1
μr,R

is the capacity of

annulus BR � B̄r and C = C(p, r) > 0 is constant.
Now, the surface S is necessarily non compact and from the Gauss formula it has

curvature K ≥ 0. If we assume that S is complete, a classical result by Ahlfors and
Blanc–Fiala–Huber (see for instance, [37]), affirms that a complete two-dimensional
Riemannian manifold with nonnegative Gauss curvature is parabolic.
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On other hand, it is well known that S will be parabolic if and only if limR→∞ 1
μr,R

=
0. We get that R can approach to infinity for a fixed arbitrary point p and a fixed r ,
obtaining that cosh θ is constant on S.

2.4 The Nonparametric Case

We finish the approach by Romero and Rubio with a sketch of the proof given by the
authors for the nonparametric version of the classical Calabi–Bernstein theorem.

For each u ∈ C∞(�), note that the induced metric on � ⊂ R
2, via the graph{

(u(x, y), x, y) : (x, y) ∈ �
} ⊂ L

3, is gu := −du2 + g0 , where g0 is the usual Rie-
mannian metric of R

2. The metric gu is positive definite, if and only if u satisfies
|Du| < 1, where Du denote the gradient of u in (R2, g0).

On the other hand, the graph of u is spacelike and has zero mean curvature if
and only if u is a solution to the maximal surface Eq. (2) in the Lorentz–Minkowski
space.

We consider on R2 the function cosh θ = 1√
1−|Du|2 and the conformal metric

g′ = (cosh θ + 1)2gu , which taking into account the relation between curvatures for
conformal changes (see for instance, [14]) is flat.

If the graph is entire, then g′ is complete, because L ′ ≥ L0 where L ′ and L0

denote the lengths of a curve on R2 with respect to g′ and the usual metric of R2.
Taking into account the invariance of subharmonic functions by conformal changes
of metric, we are in position to use the same argument as in the parametric case on
the Riemannian surface (F, g′) to get the result.

2.5 A New Proof Using the Bochner Technique

Recently, yet another proof of the classical Calabi–Bernstein theorem has been given
by Aledo Romero and Rubio [4]. In this paper, the authors make use of the Bochner
technique. By mean of the Bochner–Lichnerowicz’s Formula and a well-known
Liouville-type result, the authors show the parametric version of the aforementioned
theorem.

Next, we will explain the main steps of the Aledo–Romero–Rubio’s proof.
Consider x : S −→ L

3 a (connected) immersed maximal surface in the Lorentz–
Minkowski spacetime L

3. We choose a unit timelike normal vector field N globally
defined on S in the same time-orientation of ∂

∂t .
Making use of the Gauss equation for a surface in L

3, it is easy to verify that

trace(A2) = 2K , (8)
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where A denotes the shape operator associated to the normal vector field N and K
is the Gaussian curvature of the surface.

The idea of the proof is to choose a suitable function on the maximal surface and
to apply the Bochner–Lichnerowicz’s Formula.

Recall that the well-known Bochner–Lichnerowicz’s Formula (see, for instance
[23]) states that

1

2
� (|∇u|2) = |Hess u|2 + Ric(∇u,∇u) + 〈∇u,∇(�u)〉 (9)

for u ∈ C∞(S). Here Ric stands for the Ricci tensor of S and |Hess u|2 is the square
algebraic trace-norm of the Hessian of u, namely |Hess u|2 := trace(Hu ◦ Hu) where
Hu denotes the operator defined by 〈Hu(X),Y 〉 := Hess (u)(X,Y ) for all X,Y ∈
X(S).

Let us choose a ∈ L
3 a null vector, i.e., a nonzero vector such that 〈a, a〉 = 0,

and consider the function 〈N , a〉 on S.
Now, applying Schwarz’s inequality (for symmetric square matrix), we have,

|Hess 〈N , a〉|2 ≥ 1

2
(�〈N , a〉)2. (10)

On the other hand, from the Weingarten formula (7) it is easy to obtain the gradient
of the function 〈N , a〉 on S,

∇〈N , a〉 = −A(a�), (11)

where a� = a + 〈N , a〉N is tangent to S and standard computations allow us to
obtain

�〈N , a〉 = 〈N , a〉trace(A2). (12)

From (11) and taking into account that |a�|2 = 〈N , a〉2 and that S is maximal, we
get

|∇〈N , a〉|2 = K 〈N , a〉2 (13)

and so
Ric(∇〈N , a〉,∇〈N , a〉) = K |∇〈N , a〉|2 = K 2〈N , a〉2. (14)

With the previous computations, we can to apply the Bochner–Lichnerowicz’s
Formula to the chosen function 〈N , a〉 on S and so, to obtain the following inequality

�K ≥ 4K 2. (15)

Since the Gauss curvature of S is nonnegative and if we assume that S is complete,
then we can use the following known result (see, for instance [62]),
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Lemma 2.4 Let S be a complete Riemannian surface whose Gaussian curvature is
bounded from below and u ∈ C∞(S) a nonnegative function such that �u ≥ cu2 for
a positive constant c. Then u vanishes identically on S.

As a consequence, K ≡ 0 and so S is totally geodesic.
Observe that totally geodesic spacelike surfaces in Minkowski spacetime L

3 are
spacelike planes. Nevertheless, in Lorentzian warped products this is not necessarily
true, and this is why some additional hypotheses are sometimes needed in theses
spaces.

3 Some Extension of the Classical Result

In this section, we will describe some recent extensions of the Calabi–Bernstein theo-
rem in the two-dimensional case, as well as, others Calabi–Bernstein-type problems.
The three-dimensional Lorentzian ambient will be given by a Lorentzian product or
in a more general case for a Lorentzian-warped product.

Consider (F, g) a Riemannian manifold, let (I,−dt2) be a real interval with
negative metric, and f : I −→ R a smooth positive function. Recall that the warped
product I × f F is given by the Lorentzian manifold (M = I × F, 〈 , 〉), where

〈 , 〉 = −π∗
I (dt

2) + f (πI )
2π∗

F (g), (16)

and πI , πF denote the projections from M onto the base I and the fiber F , respectively.
In particular, when f ≡ 1 we have the Lorentzian product of (I,−dt2) and (F, g).
Recall that any warped product I × f F possesses an infinitesimal timelike con-

formal symmetry which is an important tool. Indeed, the vector field

ξ := f (πI ) ∂t , (17)

which is timelike and, from the relationship between the Levi–Civita connections of
M and those of the base and the fiber, satisfies

∇Xξ = f ′(πI ) X (18)

for any X ∈ X(M), where ∇ is the Levi–Civita connection of the warped metric.
Thus, ξ is conformal with Lξ〈 , 〉 = 2 f ′(πI ) 〈 , 〉 and its metrically equivalent 1-
form is closed.

Spacetimes given as a Lorentzian warped product I × f F are introduced in Gen-
eral Relativity literature in [10] and they are called generalized Robert–Walker space-
times (GRW).

In any GRW spacetime M = I × f F , the level hypersurfaces of the function
πI : M −→ I constitute a distinguished family of spacelike hypersurfaces: the so-
called spacelike slices. Along this work, we will represent by t = t0 the spacelike
slice {t0} × F . For a given spacelike hypersurface x : S −→ M , we have that x(S)
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is contained in t = t0 if and only if πI ◦ x = t0 on S. We will say that S is a spacelike
slice if x(S) equals to t = t0, for some t0 ∈ I , and that S is contained between two
slices if there exist t1, t2 ∈ I , t1 < t2, such that x(S) ⊂ [t1, t2] × F .

If we take the unitary normal vector field to every spacelike slice given by −∂t ,
then the shape operator and the mean curvature of the spacelike slice t = t0 are
respectively A = f ′(t0)/ f (t0) I , where I denotes the identity transformation, and
the constant H = − f ′(t0)/ f (t0). Thus, a spacelike slice t = t0 is maximal if and
only if f ′(t0) = 0 (and hence, totally geodesic).

The following nonlinear elliptic differential equation, in divergence form repre-
sents the maximal surface equation in a three-dimensional Lorentzian warped product
I × f F (dim F = 2, in this case),

div
( Du

f (u)
√

f (u)2− | Du |2
)

= − f ′(u)√
f (u)2− | Du |2

(
2 + | Du |2

f (u)2

)
(E.1)

| Du |< f (u) (E.2)

where f is the warping function defined on the open interval I of the real line R,
the unknown u is a function defined on a domain � of the Riemannian surface
(F, g), u(�) ⊆ I , D and div denote the gradient and the divergence of (F, g) and
| Du |2:= g(Du, Du).

The constraint (E.2) assures the spatiality of the graph {(u(p), p)/p ∈ �} and
it is the ellipticity condition. From now on, we will refer to the nonlinear problem
E.1+E.2 as equation (E):

On the other hand, the solutions of (E) are the extremals under interior variations
for the functional

u �−→
∫

f (u)
√

f (u)2− | Du |2 d A,

where d A is the area element for the Riemannian metric g, which acts on functions
u such that u(�) ⊆ I and | Du |< f (u).

Observe that when I = R, F = R
2 and f = 1, the equation (E) is the maximal

surface equation in L
3.

Note that a constant function u = c is a solution to the equation (E), if and only
if f ′(c) = 0.

We will begin with a new example of non-parametric Calabi–Bernstein-type prob-
lem given by Latorre and Romero [39]. We have to say that this paper is the first
one dealing with the maximal surface equation for warped Lorentzian products,
whose fiber is a complete (non-compact) 2-Riemannian manifold, in particular, the
Euclidean plane R

2. In this work, the authors assume that the sectional curvature
of the Lorentzian manifold is not zero on any proper open subset, i.e., the warping
function is not locally constant, although the curvature of the ambient satisfies a
natural geometric assumption arising from Relativity theory, the null convergence
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condition (NCC), which says that the Ricci quadratic form on null tangent vectors is
nonnegative. Obviously the Calabi–Bernstein theorem is not included in this case.

In their proof, Latorre and Romero introduce a new conformal metric on the
graph. With this metric, the authors prove that the entire maximal graph is complete
and parabolic, which allows to conclude that the warping function restricted to the
graph is superharmonic and consequently constant. Since, the warping function is
not locally constant, the only entire solutions are given by the constant functions
u = c with f ′(c) = 0.

Another approach to the previous problem have been obtained by Romero and
Rubio [54]. Following the ideas in Alías-Palmer’s papers [7, 8], the authors obtain
a local integral estimate of the squared length for the gradient of a distinguished
function on the maximal surface, which is constant if and only if the surface is
contained in a spacelike slice t = t0, with f ′(t0) = 0 in the warped product.

A new extension of nonparametric Calabi–Bernstein theorem in the case of a
Lorentzian product R × F , where F denotes a Riemannian 2-manifold, with non-
negative curvature, has been given by Albujer and Alías, [2, 3]. Moreover, the authors
find examples of complete and nontrivial entire maximal graphs in H

2 × R, where
H

2 denotes the hyperbolic plane [2, Example 5.2], (see also [1, 31]), which show
the need for certain curvature assumption on the fiber for possible extensions of the
Calabi–Bernstein theorem.

Recently, another Calabi–Bernstein-type results in the more general ambient of a
warped Lorentzian product are given by Caballero, Romero and Rubio [18, 19]. So,
the authors obtain several extensions of the classical Calabi–Bernstein theorem to
three-dimensional warped products satisfying suitable energy conditions and whose
fiber can be unnecessary of nonnegative Gaussian curvature in some cases. Moreover,
in the particular case where the warping function is constant, the authors recover the
non-parametric extension of the classical result in Lorentzian product spaces given
by Albujer and Alíias.

In a different direction, yet another extension of the classical result has been given
by Pelegrín, Romero and Rubio. This time, the ambient is a three-dimensional space-
time which admits a parallel lightlike vector field and obeying the energy condition
known as timelike energy condition (TCC) [48]. Note that, it is normally argued that
TCC is the mathematical translation that gravity, on average, attracts. More precisely,
the authors show that in a three-dimensional Lorentzian manifold, which admits a
parallel global lightlike vector field and obeys the timelike energy condition, then
every complete isometrically immersed maximal surface must be totally geodesic.

Finally, we will describe with more detail a new extension of the classical Calabi–
Bernstein theorem by Rubio–Salamanca [59]. In this last work, the authors study
entire solutions to the maximal surface equation in a Lorentzian three-dimensional
warped product, whose fiber is given by a Riemannian surface with finite total
curvature.

Recall that a complete Riemannian surface has finite total curvature if the integral
of the absolute value of its Gaussian curvature is finite. Of course, the Euclidean
plane has finite total curvature, but note that any complete surface, whose curva-
ture is nonnegative outside a compact subset has finite total curvature. Also, it is
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well-known that a complete Riemannian surface has finite total curvature if the neg-
ative part of its Gaussian curvature is integrable (see, for instance [40, Sect. 10]).

On the other hand, examples of complete minimal surfaces in R
3 with finite total

curvature are known [34]. Examples in a different ambient space can be found in [50].

3.1 On the Proof of Rubio–Salamanca’s Extension

The authors deal with the maximal surface equation for Lorentzian-warped product
(E), when the fiber (F, g) is a complete (non-compact) Riemannian surface with
finite total curvature.

In their work, the authors are mainly interested in uniqueness and nonexistence
results for entire solutions (i.e. defined on all F) of equation (E).

Let � be a domain of the Riemannian surface F , for each u ∈ C∞(�), u(�) ⊆
I , the induced metric on � from the Lorentzian metric (16), via its graph �u =
{(u(p), p) : p ∈ �} in M , is written as follows

gu = −du2 + f (u)2g,

and it is positive definite, i.e. Riemannian, if and only if u satisfies | Du |< f (u)

everywhere on �.
When gu is Riemannian, f (u)

√
f (u)2− | Du |2 d A is the area element of (�, gu).

Therefore (E.1) of (E) is the Euler–Lagrange equation for the area functional, its
solutions are spacelike graphs of zero mean curvature in M = I × f F , and this
equation is called the maximal surface equation in M .

If we denote by N the unit normal vector field N on a spacelike graph �u such
that 〈N , ∂t 〉 ≥ 1 on �u , where ∂t := ∂/∂t ∈ X(M), then

N = − f (u)√
f (u)2− | Du |2

(
1,

1

f (u)2
Du

)
,

and the hyperbolic angle θ between −∂t and N is given by

〈N , ∂t 〉 = cosh θ = f (u)√
f (u)2− | Du |2 .

On the other hand, the Lorentzian-warped product spaces considered by the
authors must satisfy certain natural energy condition, which turns out to have an
expression in terms of the curvature of its fiber (F, g) and the warping function f .
So, recall that a Lorentzian manifold obeys NCC if its Ricci tensor Ric satisfies

Ric(Z , Z) ≥ 0,

for any null vector Z , i.e., Z 
= 0 such that 〈Z , Z〉 = 0.
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Taking into account how the Ricci tensor of M is obtained from the Gaussian
curvature of the fiber K F and the warping function f (see for instance [45, Corol-
lary 7.43]) it is easy to check that a Lorentzian-warped product space I × f F with a
2-dimensional fiber obeys NCC if and only if

K F (πF )

f 2
− (log f )′′ ≥ 0. (19)

From now on, let’s consider spacelike entire graphs. So, let �u = {(u(p), p) :
p ∈ F} be, the graph of u ∈ C∞(F) such that u(F) ⊆ I in the Lorentzian warped
product M = I × f F . Suppose that the graph is spacelike.

Note that πI (u(p), p) = u(p) for any p ∈ F , and so πI on the graph and u can
be naturally identified by the isometry between (�u, 〈 , 〉) and (F, gu). Analogously,
the differential operators ∇ and � in (�u, 〈 , 〉) can be identified with those ones ∇u

and �u in (F, gu).
If we denote ∂�

t = ∂t + 〈N , ∂t 〉N the tangential component of ∂t on �u , then it
is not difficult to see

∇πI |�u
:= ∇u = −∂�

t .

Now, suppose the graph maximal and consider the distinguished function

〈N , ξ〉 = f (u) cosh θ,

defined on the graph. It is immediate to see that

∇〈N , ξ〉 = −Aξ�,

where A denotes the shape operator of the graph. Taking a orthonormal frame con-
sisting of the eigenvectors of the shape operator, we obtain

| ∇〈N , ξ〉 |2= 1

2
trace (A2){〈N , ξ〉2 − f (πI )

2}. (20)

Moreover, using the Gauss and Codazzi equations, as well as, the expression for
the Ricci tensor of M (see for instance [45, Chap. 7]), it is a standard computation to
obtain (via the isometry)

�u( f (u) cosh θ) =
{ K F

f (u)2
− (log f )′′(u)

}
|∇uu|2 f (u) cosh θ

+ 1

2
trace(A2) f (u) cosh θ (21)

On the other hand, taking into account the Gauss equation and using again the
expression for the Ricci tensor of M , then the Gauss curvature of a maximal graph
is



228 R.M. Rubio

K = f ′(u)2

f (u)2
+

{ K F

f (u)2
− (log f )′′(u)

}
| ∂�

t |2 + K F

f (u)2
+ 1

2
trace(A2). (22)

As a direct consequence, from (21) we have the following alternative expression,

�u( f (u) cosh θ) =
{
Ku − f ′(u)2

f (u)2
− K F

f (u)2
+ 1

2
trace(A2)

}
f (u) cosh θ. (23)

One of the fundamental tools in the work of Rubio and Salamanca is to intro-
duce a conformal metric on the graph, which allows certain control on its Gaussian
curvature. So, on the manifold F we consider the following Riemannian metric

g′
u := f (u)2 cosh2 θ gu, (24)

where

f (u) cosh θ = f (u)2√
f (u)2− | Du |2

and | Du |2:= g(Du, Du). Therefore, if ε := Inf( f ) > 0 we get the following
inequality

L ′ ≥ ε2 L ,

where L ′ and L denote the lengths of a curve in F with respect to g′
u and g, respec-

tively. Consequently, g′
u is complete whenever g is complete.

Now, suppose that Sup f (u) < ∞. Put λ = Sup f (u) and consider the new Rie-
mannian metric

g∗
u := ( f (u) cosh θ + λ)2gu (25)

on F . The completeness of the metric (24) assures that g∗
u is also complete. More-

over, it has the advantage over g′
u that we can control its Gaussian curvature under

reasonable assumptions. In order to concrete this assertion, denote by K ∗
u and Ku the

Gaussian curvatures of the Riemannian metrics g∗
u and gu , respectively. From (25)

and using the relation between Gaussian curvatures for conformal changes (see for
instance, [13]), we have

Ku − ( f (u) cosh θ + λ)2K ∗
u = �u log( f (u) cosh θ + λ). (26)

The following lemma is key to the achievement of the principal result, since it
allows to assure that the graph endowed with the appropriate conformal metric will
has finite total curvature.

Lemma 3.1 Suppose that (F, g) is complete, with finite total curvature. If Inf f > 0,
Sup f < ∞ and the inequality K F

f (u)2 − (log f )′′(u) ≥ 0 holds on F, then the complete
Riemannian surface (F, g∗

u) has finite total curvature.
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Proof From the previous expressions (22) and (21) we get,

�u log( f (u) cosh θ + λ) ≤ 1

f (u) cosh θ + λ

{(
Ku − K F

f (u)2

)
f (u) cosh θ +

(
Ku − K F

f (u)2

)
λ

}

≤ Ku − K F

f (u)2
.

Since the Riemannian area elements of the metrics g and g∗
u satisfy

d A∗
u = ( f (u) cosh θ + λ)2 f (u)2

cosh θ
d A,

making use of (26), we obtain

∫
F

max(−K ∗
u , 0) d A∗

u ≤
∫
F

max(−K F , 0)
1

cosh θ
d A <

∫
F

max(−K F , 0) d A < ∞.

Therefore, the Riemannian surface (F, g∗
u) is complete and it has finite total

curvature. �

Now, we can state one of main results of Rubio–Salamanca’s work.

Theorem 3.2 Let M = I × f F a Lorentzian warped product, with fiber (F, g) a
complete Riemannian surface, which has finite total curvature and whose warping
function satisfies Inf f > 0 and Sup f < ∞. If M obeys the NCC, then any entire
maximal graph (�u, 〈 , 〉) must be totally geodesic. Moreover, if there exists a point
p ∈ F such that K F (p)

f (u(p))2 − (log f )′′(u(p)) > 0, then u is constant.

Proof From previous Lemma, we have that (F, g∗
u) is complete with finite total

curvature. Consider the function 1
f (u) cosh θ

on (F, gu). Then, some computations
allow to show that the Laplacian

�u

(
1

f (u) cosh θ

)
= − 1

f (u)2 cosh2 θ
�u( f (u) cosh θ) + 2

|∇u( f (u) cosh θ)|2
( f (u)3 cosh3 θ)

is non-positive
Taking into account the invariance of superharmonic functions by conformal

changes of metric, we get a positive superharmonic function on the complete
parabolic Riemannian surface (F, g∗

u) and as a consequence the function f (u) cosh θ
must be constant. Thus, from the second term of (21), whose expression we will recall,
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�u( f (u) cosh θ) =
{ K F

f (u)2
− (log f )′′(u)

}
|∇uu|2 f (u) cosh θ

+ 1

2
trace(A2) f (u) cosh θ,

we obtain that the graph (�u, 〈 , 〉) is totally geodesic.
On the other hand, if in addition there exists a point p ∈ F such that K F (p)

f (u(p))2 −
(log f )′′(u(p)) > 0, taking into account the first addend of (21), then there exists an
open neighbourhood of (p, u(p)) in �u which is contained in the complete maximal
graph u = u0, with f ′(u0) = 0. As (�u, 〈 , 〉) is entire and totally geodesic, it must
coincide with the totally geodesic spacelike slice t = u0. �

Of course, this last result extends the classical Calabi–Bernstein theorem in its
nonparametric version. Moreover, the extension given by Alías and Albujer [2, 3]
for Lorentzian products is also included. On the other hand, the Theorem 3.2 is
independent of those given for Lorentzian warped product by Caballero, Romero
and Rubio [18, 19].

4 Uniqueness of Complete Maximal Hypersurfaces
in Spacetimes

In this new section we will make a brief review on some uniqueness results about
maximal hypersurfaces in spacetimes. These results can be considered paramet-
ric versions of Calabi–Bernstein-type problems. On the other hand, these types of
problems have both mathematical and physical interest due to their relevance in
Mathematical Relativity

The importance in General Relativity of maximal and constant mean curvature
spacelike hypersurfaces in spacetimes is well-known; a summary of several reasons
justifying it can be found in the paper of Marsden and Tipler [42].

Recall that each maximal hypersurface can describe, in some relevant cases, the
transition between the expanding and contracting phases of a relativistic universe.
Moreover, they can constitute an initial set for the Cauchy problem [51]. Specifically,
Lichnerowicz proved that a Cauchy problem with initial conditions on a maximal
hypersurface is reduced to a second-order nonlinear elliptic differential equation and
a first-order linear differential system [41]. Also, the deep understanding of this kind
of hypersurfaces is essential to prove the positivity of the gravitational mass.

On the other hand, they are also interesting for Numerical Relativity, where maxi-
mal hypersurfaces are used for integrating forward in time [36]. From a mathematical
point of view, it is necessary to study the maximal hypersurfaces of a spacetime in
order to understand its structure. Especially, for some asymptotically flat spacetimes,
the existence of a foliation by maximal hypersurfaces is established (see for instance,
[12] and references therein).
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Thus, the existence results and, consequently, uniqueness appear as kernel topics.
Let us remark that the completeness of a spacelike hypersurface is required when-

ever we study its global properties, and also, from a physical viewpoint, completeness
implies that the whole physical space is taken into consideration.

On the other hand, recall that a maximal hypersurface is (locally) a critical point
for a natural variational problem, namely of the volume functional (see, for instance
[16]). After the relevant result of the Bernstein–Calabi conjecture [21] for the n-
dimensional Lorentz–Minkowski spacetime given by Cheng and Yau [22], classical
papers dealing with uniqueness results are [17, 27, 42].

In their work [17], Brill and Flaherty replaced the Lorentz–Minkowski spacetime
by a spatially closed universe, and proved uniqueness results for CMC hypersurfaces
in the large by assuming Ric(z, z) > 0 for every timelike vector z. This assumption
may be interpreted as the fact that there is real present matter at every point of the
spacetime. It is known as the Ubiquitous Energy Condition.

This energy condition was relaxed by Marsden and Tipler [42] to include, for
instance, non-flat vacuum spacetimes.

More recently, Bartnik [12], proved very general existence theorems and con-
sequently, he claimed that it would be useful to find new satisfactory uniqueness
results.

Later, Alías, Romero and Sánchez [10], proved new uniqueness results in the class
of spacetimes that they called spatially closed Generalized Robertson–Walker (GRW)
spacetimes under TCC. Generalized Robertson–Walker spacetimes extend classical
Robertson–Walker ones to include the cases in which the fiber has not constant
sectional curvature, i.e., they are given as a Lorentzian warped product as we have
already described in Sect. 3. Although to be spatially homogeneous is reasonable as a
first approximation of the large scale structure of the universe, this assumption could
not be appropriate when we consider a more accurate scale. On the other hand, small
deformations of the metric on the fiber of classical Robertson–Walker spacetimes fit
into the class of generalized Robertson–Walker spacetimes.

Recall that a spacetime is said spatially closed if there exists a compact spacelike
hypersurface in the spacetime. In this work, the authors show that a GRW spacetime
is spatially closed if and only its fiber is compact.

Alías, Romero and Sánchez [10], introduce a new technique based on Minkowski-
type integral formulas, applying the divergence theorem to the tangent part of the
conformal vector field ξ (see, formula 17) on the spacelike hypersurface, as well as,
on its image for the shape operator. So, the authors can show that in a spatially closed
GRW spacetime obeying the TCC, every compact spacelike hypersurface of constant
mean curvature is totally umbilical. In the case of a GRW spacetime (I × f F, 〈 , 〉),
this energy condition is equivalent to following inequalities,

f ′′ ≤ 0 (27)

and
Ric ≥ (n − 1)( f f ′′ − f ′2)〈 , 〉, (28)
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where Ric denote the Ricci tensor of the n-dimensional fiber (F, g). Taking this
equivalence into account, the authors show that in a GRW spacetime satisfying TCC
with strict inequality in (28) the only compact spacelike hypersurfaces of constant
mean curvature are level spacelike hypersurfaces of the timelike function t := πI

(spacelike slices).
In [5], Alías and Montiel using a well-known generalized maximum principle

improve the last result aforementioned and prove that in a GRW spacetime whose
warping function satisfies the convexity condition (log f )′′ ≤ 0, the spacelike slices
are the only constant mean curvature compact spacelike hypersurfaces.

In 2011, this result was generalized by Caballero, Romero, and Rubio [20] for
a larger class of spatially closed spacetimes, those who have a gradient conformal
timelike vector field. In addition to this, the global structure of this class of spacetimes
is analyzed and the relation with its well-known subfamily of generalized Robertson–
Walker spacetimes is exposed in detail.

Up to this point, except the Cheng–Yau theorem, all the uniqueness results afore-
mentioned are shown in spatially closed spacetimes. In spite of the historical impor-
tance of spatially closed GRW spacetimes, a number of observational and theoretical
arguments about the total mass balance of the universe [25] suggest the convenience
of taking into consideration open cosmological models. Even more, a spatially closed
GRW spacetime violates the holographic principle [15] whereas a GRW spacetime
with non-compact fiber could be a suitable model that follows that principle [11].
More precisely, the entropy contained in any spacelike region cannot exceed the area
of the regions boundary. That is, if � is a compact region of a spacelike hypersurface,
and S(�) denotes the entropy of all matter systems in �, then

S(�) ≤ Area(∂�)

4
.

The previous inequality cannot be satisfied by some physical spatially closed space-
times. For instance, let us consider that a spacetime contains a compact spacelike
hypersurface such that it contains a matter system that does not occupy the whole
of it. Then, consider a sequence of compact sets contained in the region where no
matter system exists, having a point as limit. Using the previous inequality in the
outside part of this sequence, we have that the entropy of the whole matter system
becomes arbitrarily small, and then it has to be zero. We found a contradiction.

Recently, Romero, Rubio, and Salamanca [55] introduce a new class of spatially
open GRW spacetimes, which is called spatially parabolic GRW spacetimes. This
new notion of spatially parabolic GRW spacetime is a natural counterpart of the
spatially closed GRW spacetime. So, a GRW spacetime is spatially parabolic if its
fiber is a parabolic Riemannian manifold.

Recall that a complete (non-compact) Riemannian manifold is said to be parabolic
if the only positive superharmonic functions are the constants.

On the other hand, the parabolicity of the fiber of a GRW spacetime could also
be supported by some physical reasons. For instance, galaxies can be understood
as molecules (see, for instance, [45, Chap. 12]), if a sonde is sent to the space, its



Calabi–Bernstein-Type Problems in Lorentzian Geometry 233

motion may be approached by a Brownian motion, [33]. In fact, the distribution of
galaxies and their velocities are not completely known. Parabolicity may favor that
the sonde could be observed in any region, since the Brownian motion is recurrent
in any parabolic Riemannian manifold [33].

The authors show that under reasonable assumptions on the restriction of the
warping function to the spacelike hypersurface and on the boundedness of the hyper-
bolic angle between the unit normal vector field and the timelike coordinate vector
field ∂t , a complete spacelike hypersurface in a spatially parabolic GRW spacetime
is shown to be parabolic, and the existence of a simply connected parabolic spacelike
hypersurface in a GRW spacetime also leads to the parabolicity of its fiber. Note that
the assumption on the hyperbolic angle of the maximal hypersurface has a physical
consequence, this is, relative speed between normal and comoving observers do not
approach the speed of light at every point of the hypersurface (see, [60, pp. 45–67]).
Then, all the complete maximal hypersurfaces in spatially parabolic GRW space-
times are determined in several cases, extending, in particular, to this family of open
cosmological models several well-known uniqueness results for the case of spatially
closed GRW spacetimes (see also [56]).

For arbitrary dimension, parabolicity has no clear relationship with sectional cur-
vature. Indeed, the Euclidean space R

n is parabolic if and only if n ≤ 2. Moreover,
there exist parabolic Riemannian manifolds whose sectional curvature is not bounded
from below.

The family of spatially parabolic GRW spacetimes is very large, although some
other interesting GRW spacetimes do not belong to this family. For instance, those
Robertson–Walker spacetimes whose fiber is the hyperbolic space H

n are excluded.
Making use of two maximum principles: the strong Liouville property and the

Omori–Yau generalized maximum principle, Romero, Rubio, and Salamanca [57]
obtain new uniqueness results in other relevant spatially open GRW spacetimes
for complete maximal hypersurfaces which are between two spacelike slices (time
bounded) and/or have a bounded hyperbolic angle. In contrast to parabolicity, some
curvature assumptions should be imposed here.

On the other hand, in the case of the Einstein–de Sitter spacetime, which is a
spatially open model, which shows a reasonable fit to recent observations [64], a
new uniqueness result for complete maximal (and constant mean curvature space-
like) hypersurfaces is given [58]. The result is obtained applying to the sine of the
hyperbolic angle of the hypersurface, a Liouville-type theorem (see, [43, 62]), which
is a consequence of the Omori–Yau generalized maximum principle.

Finally, focusing on the problems of uniqueness and nonexistence of complete
maximal hypersurfaces immersed in a spatially open Robertson–Walker spacetime
with flat fiber, Pelegrín, Romero and Rubio [49] give new nonexistence and unique-
ness results on complete maximal hypersurfaces. Note that these models have aroused
a great deal of interest, since recent observations have shown that the current universe
is very close to a spatially flat geometry [28].
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It is important to say that the authors do not need the hyperbolic angle of the
hypersurface to be bounded, which was an assumption used in some previous works
studying the spatially open case. Thus, they are able to deal with spacelike hypersur-
faces approaching the null boundary at infinity, such as hyperboloids in Minkowski
spacetime.

Acknowledgements The author would like to thank the referee for his deep reading and valuable
suggestions.
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Null Hypersurfaces on Lorentzian Manifolds
and Rigging Techniques

Benjamín Olea

Abstract We introduce the concept of rigging for a null hypersurface in a Lorentzian
manifold, which allows us to induce all the necessary geometric objects in a null
hypersurface and also to define a Riemannian metric on it, called rigged metric.
This metric can be used as an auxiliary tool to study the null hypersurface. Its Levi-
Civita connection is called rigged connection and, in general, it will not coincide
with the induced connection on the null hypersurface. We show a necessary and
sufficient condition for this to happen and we give some examples. Since both rigged
connection as induced connection depend on the rigging, we investigate if they can
coincide for a suitable choice of the rigging.

Keywords Null hypersurfaces · Rigging · Rigged vector field · Rigged metric
Induced connection · Rigged connection

1 Introduction

An hypersurface L in a Lorentzian manifold (M, g) is null if the metric tensor g is
degenerate on it. In this case, there exists an unique tangent null direction and all other
directions are spacelike and orthogonal to the null direction. In other words, a null
hypersurface contains its orthogonal direction. This is why null hypersurfaces can
not be studied as spacelike or timelike hypersurfaces, sincewe can not decompose the
ambient tangent space as the direct sum of the tangent space to the null hypersurface
and its orthogonal direction.

To solve this problem, it is chosen a (locally defined) null section ξ ∈ X(L) and a
screen distribution S, which is just a complementary distribution to the null direction
on T L . Once we havemade these two arbitrary choices, it is induced a null transverse
vector field N (locally defined) on L , which is orthogonal to the screen distribution
S and it holds g(N , ξ) = 1. This vector field N allows us to decompose the ambient
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tangent space in an analogous way as for spacelike or timelike hypersurfaces and it
plays the role of normal vector field to L . Indeed, since TxM = Tx L ⊕ span(Nx )

for all x ∈ L , then we can decompose any vector as a tangent part to L and another
part in the direction of N . If we take U, V ∈ X(L), we decompose

∇UV = ∇L
UV + B(U, V )N ,

where ∇L
UV ∈ X(L) is the induced connection on L and B is a symmetric tensor

called null second fundamental form of L .
The induced connection∇L depends on the chosen screen distribution and the null

section. It is a symmetric connection and the choosen null section ξ is pre-geodesic
for it, but, in general, it is not compatible with the metric g and it does not seem an
adequate connection to study the null hypersurface.On the other hand, the null second
fundamental form only depends on the null section, since B(U, V ) = −g(∇Uξ, V ).
In the same manner, the null mean curvature, which is the trace of the null second
fundamental form, only depends on the null section.

Despite the arbitrary election of the screen distribution and the null section, there
are concepts that do not depend on them, such as being a totally geodesic or umbilic
null hypersurface, having zero mean curvature or being a parallel null hypersurface.
Recall that L is called totally umbilic if B = ρg for certain function ρ ∈ C∞(L)

and it is parallel if (∇U B) (V,W ) = −τ (U )B(V,W ) for all U, V,W ∈ X(L) and
certain one-form τ , [9].

Instead of choosing a null section and a screen distribution independently, we
can make only one arbitrary choice: a transverse vector field defined on L , which
we call a rigging for L . It will induce a null section (called rigged vector field),
a screen distribution and a null transverse vector field, which are all the necessary
geometric data to study a null hypersurface. Now, all these objects are coupled and
they are related to each other. Moreover, we can choose a suitable rigging to exploit
the symmetries of the ambient space. For example, if we choose a closed rigging,
then the corresponding induced screen distribution is integrable and if we choose a
conformal rigging, then the corresponding rigged vector field is geodesic.

A rigging also induces a Riemannian metric g̃ (the rigged metric) on the null
hypersurface L , which coincideswith g on the screen distribution anddeclares unitary
the rigged vector field. The Levi-Civita connection of the rigged metric provides us
another connection ˜∇ on L (called rigged connection), which does not coincide with
the induced connection∇L in general. Both the riggedmetric as the rigged connection
depend on the chosen rigging, but they can be used as an auxiliary tool to study a
null hypersurface. For example, using them we can prove two result concerning null
hypersurfaces. The first one gives us a curvature condition for a compact totally
umbilic null hypersurface to be totally geodesic.

Theorem 1 ([7]) Let M be an orientable Lorentzian manifold with dimension n > 2
which holds the reverse null convergence condition. If there exists a timelike confor-
mal vector field on M, then any compact totally umbilic null hypersurface is totally
geodesic.
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The second one relates the multiplicity of the first conjugate point along a null
geodesic with a geometric property of the nullcone containing it.

Theorem 2 ([7]) Let M be a Lorentzian manifold and γ : [0, a] → M a null
geodesic such that γ(a) is the first conjugate point to γ(0) along γ. If the null
cone with vertex at γ(0) containing γ is totally umbilic, then γ(a) has maximum
multiplicity.

Although the rigged connection is not a natural nor canonical object in a null hyper-
surface, in some situations it seems a more adequate connection than the induced
connection. For example, if L is a totally umbilic null hypersurface and the screen
distribution is integrable, then the leaves of the screen distribution are not totally
umbilical co-dimension two submanifolds of the ambient space in general, but they
are totally umbilical hypersurfaces of the Riemannian manifold (L , g̃).

2 Rigging Vector Fields

In this section,we introduce the notion of rigging vector field for a null hypersurface L
and its associated geometric objects, as the rigged vector field, the rigged connection
and the rigged metric on L .

Definition 3 A rigging for L is a vector field ζ defined on an open set containing L
such that ζp /∈ TpL for each p ∈ L .

Call i : L → M the canonical inclusion, α the metrically equivalent one-form
to ζ and ω = i∗(α). The tensor g + α ⊗ α may not be a Riemannian metric on the
domain of definition of ζ, but its pullback by i ,

g̃ = i∗(g) + ω ⊗ ω,

defines a Riemannian metric on L , which will be called rigged metric induced from
ζ. The Levi-Civita connection ˜∇ of g̃ will be called rigged connection on L .

Definition 4 The rigged vector field induced from the rigging ζ is the g̃-metrically
equivalent vector field to the one-form ω and it is denoted by ξ.

The rigged vector field is a null vector field defined on L which is g̃-unitary,
pre-geodesic for the ambient connection ∇ and it holds g(ζ, ξ) = 1. We consider the
screen distribution given by S = T L ∩ ζ⊥ and the null transverse vector field

N = ζ − 1

2
g(ζ, ζ)ξ.

Observe that g(N , ξ) = 1 andS is g-orthogonal to N .Moreover, givenU ∈ X(L),
we have

ω(U ) = g(ζ,U ) = g(N ,U ).
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Now, given U, V ∈ X(L) and X ∈ S we decompose

∇UV = ∇L
UV + B(U, V )N , (1)

∇U N = τ (U )N − A(U ), (2)

∇Uξ = −τ (U )ξ − A∗(U ), (3)

∇L
U X = ∇∗

UV + C(U, X)ξ, (4)

where∇L
UV ∈ X(L),∇∗

U X, A∗(U ), A(U ) ∈ S and τ is certain one-form.The induced
connection ∇L is symmetric and it holds

(∇L
Ug

)

(V,W ) = B(U, V )ω(W ) + B(U,W )ω(V )

for all U, V ∈ X(L). The tensors B and C hold

B(U, V ) = g(A∗(U ), V ) = −g(∇Uξ, V ),

C(U, X) = g(A(U ), X) = −g(∇U N , X),

B(ξ, V ) = 0,

ω([X,Y ]) = C(X,Y ) − C(Y, X)

for all U ∈ X(L) and X,Y ∈ S. The tensor B is the null second fundamental
form of L . It is a symmetric tensor and its trace is the null mean curvature,
Hp = ∑n−2

i=1 B(ei , ei ), being {e1, . . . , en−2} an orthonormal basis of Sp. The null
hypersurface is totally geodesic if B = 0 and totally umbilic if B = ρg for some
function ρ ∈ C∞(L). Both definitions are independent on any election.

It is easy to show that the tensor C is symmetric if and only if S is integrable.
In this case, the second fundamental form of the leaves of S as co-dimension two
submanifolds of (M, g) is given by

I(X,Y ) = C(X,Y )ξ + B(X,Y )N (5)

and ∇∗ is the induced Levi-Civita connection from the ambient space. If the leaves
of the screen distribution are totally umbilic (geodesic) submanifolds of (M, g), then
L is also totally umbilic (geodesic), but the converse does not hold, in general, as it
can be easily checked from formula 5. However, we can ensure the converse if we
choose an adequate rigging (see comments below Proposition 5).

The following proposition relates above geometric objects.

Proposition 5 Given U, V,W ∈ X(L) and X,Y ∈ S it holds

1. dα(U, X) + (

Lζg
)

(U, X) + g(ζ, ζ)B(U, X) + 2C(U, X) = 0.

2.
(

Lξ g̃
)

(X,Y ) = −2B(X,Y ). In particular, H = −̃div ξ, where d̃iv is the diver-
gence respect to g̃.

3. τ (U ) = −g(∇Uζ, ξ).
4. ˜∇XY = ∇∗

XY − g̃(˜∇Xξ,Y )ξ.
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If we choose a conformal rigging, then τ (ξ) = 0, i.e., the rigged vector field
ξ is geodesic for the ambient connection ∇ and the induced connection ∇L . On
the other hand, from point 1, if there exists a closed and conformal rigging for
L , then −2C = g(ζ, ζ)B + 2λg, where λ ∈ C∞(L) is a function coming from the
conformality condition. So, the screen distribution is integrable and its leaves are
totally umbilic (geodesic) co-dimension two submanifold of (M, g) if and only if L
is totally umbilic (geodesic) null hypersurface of (M, g).

Call D = ∇ − ˜∇ the difference of the Levi-Civita connections of the ambient
space (M, g) and the rigged connection. It is a symmetric tensor defined on TpL ×
TpL , which gives vectors in TpM and it holds the following.

Proposition 6 Given U, V,W ∈ X(L) and X,Y ∈ S it holds

1. g(D(U, V ),W ) = − 1
2

(

ω(W )
(

Lξg̃
)

(U, V ) + ω(U )dω(V,W ) + ω(V )

dω(U,W )).
2. τ (U ) = −g̃(D(U, ξ), ξ).
3. D(X,Y ) = (

C(X,Y ) + g(˜∇Xξ,Y )
)

ξ + B(X,Y )N.

If we choose a closed rigging, then dω = 0 and from point 1 of Proposition 5
it follows that C is a symmetric tensor and so the induced screen distribution is
integrable. Note that the converse does not hold in general, but if we suppose that the
screen distribution is integrable and the rigged vector field is geodesic for the rigged
connection, then it holds dω = 0.

Proposition 7 Let ζ be a closed rigging for a null hypersurface L and take
U, V,W ∈ X(L) and X,Y ∈ S. Then
1. The rigged vector field ξ is geodesic for the rigged connection.
2.

(

Lξ g̃
)

(U, V ) = −2B(U, V ).
3. A∗(U ) = −˜∇Uξ.
4. ˜∇XY = ∇∗

XY + B(X,Y )ξ.
5. g̃(˜∇UV,W ) = g(∇UV,W ) + ω(W )U (ω(V )).
6. The second fundamental form of the leaves of S in (L , g̃) is˜I(X,Y ) = B(X,Y )ξ.

Some remarks should be made to this proposition. First, observe that locally it
always exists a closed rigging for any null hypersurface. The rigged vector field
is always pre-geodesic for the ambient connection ∇ and the induced connection
∇L , but not for the rigged connection, unless the rigging is chosen closed. Finally,
point 2 of above proposition holds for all X,Y ∈ S even if the rigging is not closed
(Proposition 5), but if the rigging is closed it holds for all U, V ∈ X(L).

An immediate consequence of the above proposition is the following.

Proposition 8 Let L be a null hypersurface and ζ a closed rigging for it.

1. L is a totally geodesic null hypersurface if and only if the rigged vector field ξ is
parallel for the rigged connection.

2. L is a totally geodesic null hypersurface (resp. umbilic) if and only if each leaf of
S is a totally geodesic (resp. umbilic) hypersurface of the Riemannian manifold
(L , g̃).



242 B. Olea

Remark that, as it was said before Proposition 5, the leaves of the screen distri-
bution do not need to be totally geodesic or umbilic co-dimension two submanifold
of (M, g) even if L is a totally geodesic or umbilic null hypersurface.

In constant curvature, we can describe all the totally geodesic null hypersurfaces.
In the Minkowski space R

n
1 they are degenerate hyperplanes. In S

n
1 ⊂ R

n+1
1 and

H
n
1 ⊂ R

n+1
2 , totally geodesic null hypersurfaces are obtained intersecting it with

degenerate planes of the ambient space. Important examples of null hypersurfaces
in any Lorentzian manifold are local nullcones. In constant curvature, they are the
unique totally umbilic null hypersurfaces, [1, 8]. In Robertson-Walker spaces, local
nullcones are totally umbilic null hypersurfaces and, under suitable conditions, they
are also the unique ones. For example, above holds in I × f S

n with
∫

I
1
f > π and,

in particular, in the closed Friedmann Cosmological model, [8].
We can give the local structure of the rigged metric in a totally umbilic null

hypersurface if we choose a closed rigging.

Theorem 9 Let (M, g) be a Lorentzian manifold, L a totally umbilic null hypersur-
face and ζ a closed rigging for it. For each point p ∈ L, there exists a neighborhood
� ⊂ L of p such that (�, g̃) is isometric to a twisted product (I × S, dr2 + λ2(r, x)
g|S), where the rigged vector field ξ is identified with ∂r , S is the leaf through p of
the screen distribution and

λ(r, x) = exp

(

−
∫ r

0

H(φs(x))

n − 2
ds

)

being φ the flow of ξ and H the mean curvature of L. Moreover, if L is simply
connected and ξ is complete, then above decomposition is global.

In particular, if L is a totally geodesic null hypersurface, then (L , g̃) is locally
isometric to a direct product with one-dimensional base. The existence of a closed
rigging is not a strong hypothesis, since it always exists at least locally and the
decomposition given in the theorem is also local.

Example 10 Consider theMinkowski spaceL
n+1
1 = (

R
n+1,−dx20 + · · · + dx2n

)

, the
future nullcone with vertex at the origin C+

0 = {(x0, . . . , xn) : −x20 + · · · + x2n =
0, x0 > 0} and the rigging ζ = −∂x0. The rigged vector field is ξ = 1

x0
P , where P

is the position vector field, and the second fundamental form is B = − 1
x0

g. If we
take p = (1, 1, . . . , 0) ∈ C+

0 , then the leaf through p of the screen distribution is a
(n − 1)-dimensional euclidean sphere of radius 1 and the integral curve of ξ with
initial condition p is γ(t) = (t + 1)p. Applying above theorem, the Riemannian
manifold

(

C+
0 , g̃

)

is isometric to the warped product given by

(

(−1,∞) × S
n−1, dr2 + (1 + r)2 gSn+2

)

,

which coincides with the usual metric on the nullcone induced from the euclidean
space R

n+1.
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Example 11 Consider the pseudosphereS
n
1 = {x ∈ L

n+1 : −x20 + · · · + x2n = 1} and
decompose −∂x0 = ζx + x0Px for each point x ∈ S

n
1, where ζ ⊥ P . The vector field

ζ ∈ X(Sn
1) is a timelike, closed and conformal vector field on S

n
1. We suppose it is

past-directed.
The future nullcone of S

n
1 with vertex at p = (0, . . . , 1) ∈ S

n
1 is given by C+

p =
S
n
1 ∩ C+

p , whereC
+
p is the future nullcone ofL

n+1 with vertex at p. Therefore, C+
p is a

hypersurface of C+
p that can be obtained intersecting C+

p and the hyperplane xn = 0.
If we consider the rigging ζ, the rigged vector field is 1

x0
P and so, the rigged metric

on C+
p coincide with the induced metric from the euclidean cone (C+

p , g̃). Thus, C+
p

is also a (n − 1)-dimensional euclidean cone.

Example 12 Let m be a positive constant and consider Q = {(u, v) ∈ R
2 : uv >

−2m
e } the Kruskal plane with metric 2F(r(u, v))dudv, where F and r are certain

functions. In the Kruskal spacetime Q ×r S
2, the hypersurfaces Lu0 = {(u, v, x) ∈

Q × S
2 : u = u0} are totally umbilic null hypersurfaces (totally geodesic if u0 =

0). If we consider the closed rigging ζ = 1
F(r)∂u , then the rigged vector field is

∂v and B = − rv
r g. From Theorem 9,

(

Lu0 , g̃
)

is isometric to the warped product
(

−2m
u0e

,∞
)

× r(u0 ,v)

2m
S
2 if u0 �= 0 and to the direct product R × S

2 is u0 = 0.

The induced curvature tensor is defined as

RL
UVW = ∇L

U∇L
VW − ∇L

V∇L
UW − ∇L

[U,V ]W

and it satisfies
RL
UV ξ = RUV ξ,

where R is the ambient curvature tensor. It also holds the following Gauss-Codazzi
equations.

g(RUVW, X) = g(RL
UVW, X) + B(U,W )g(A(V ), X)

− B(V,W )g(A(U ), X),

g(RUVW, ξ) = (∇L
U B

)

(V,W ) − (∇L
V B

)

(U,W ) + τ (U )B(V,W ) (6)

− τ (V )B(U,W ),

g(RUVW, N ) = g(RL
UVW, N ),

where U, V,W ∈ X(L) and X ∈ S. From these equations it can be deduced the
following ones.

g(RUV X, N ) = (∇∗L
U C

)

(V, X) − (∇∗L
V C

)

(U, X) + τ (V )C(U, X)

− τ (U )C(V, X),

g(RUV ξ, N ) = C(V, A∗(U )) − C(U, A∗(V )) − dτ (U, V ),
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where ∇∗L
U C is defined as

(∇∗L
U C

)

(V, X) = U (C(V, X)) − C(∇L
UV, X) − C(V,∇∗

U X).

Using Eq.6, we can compute the null sectional curvature respect to ξ of a null
plane � = span(X, ξ), where X ∈ S is unitary,

Kξ(�) = (∇L
ξ B

)

(X, X) − (∇L
X B

)

(ξ, X) + τ (ξ)B(X, X).

In particular, if L is totally geodesic, then we haveKξ(�) = 0 for any null tangent
plane � to L and if L is totally umbilic, then

Kξ(�) = ξ(ρ) − ρ2 + τ (ξ)ρ,

where B = ρg.
UsingGauss-Codazzi equations, we can relate the sectional curvature of the ambi-

ent space and the Riemmanian manifold (L , g̃) for a tangent plane to the screen
distribution.

Theorem 13 Let M be a Lorentzian manifold, L a null hypersurface and ζ a rigging
for it. If � = span(X,Y ), being X,Y ∈ S unitary and orthogonal vectors, then

K (�) − ˜K (�) = −C(Y,Y )B(X, X) − C(X, X)B(Y,Y )

+ (C(X,Y ) + C(Y, X)) B(X,Y )

+ B(X, X)B(Y,Y ) − B(X,Y )2 + 3

4
dω(X,Y )2.

In the case of a totally umbilic null hypersurface, the null sectional curvature of
a null plane and the sectional curvature in (L , g̃) are related as follows.

Theorem 14 Let M be a Lorentzian manifold, L a totally umbilic null hypersurface
and ζ a rigging for L. If � = span(X, ξ), where X ∈ S is a unitary vector, then

Kξ(�) − ˜K (�) = τ (ξ)B(X, X) − g̃(˜∇X˜∇ξξ, X) + g̃(X, ˜∇ξξ)
2

+ 1

2

(

g̃(S2(X), X) − g̃(S(X), S(X)
)

,

where S(U ) = ˜∇Uξ.

If we take a closed rigging, then we can give an explicit relation of the induced
curvature tensor and the curvature tensor of the rigged metric g̃.

Theorem 15 Let M be a Lorentzian manifold, L a null hypersurface and ζ a closed
rigging for it. Take U, V ∈ X(L) and X ∈ S. Then
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RL
UV X − ˜RUV X = (g(RUV X, N ) − g(RUV X, ξ)) ξ

+ C(U, X)A∗(V ) − C(V, X)A∗(U )

+ B(U, X)∇V ξ − B(V, X)∇U ξ,

RL
UV ξ − ˜RUV ξ = g(RUV ξ, N )ξ − τ (U )A∗(V ) + τ (V )A∗(U ).

In particular,

1. Kξ(�) = ˜K (�) + τ (ξ) B(X,X)

g(X,X)
.

2. Ric(ξ) = R̃ic(ξ) + τ (ξ)H.

To end this section, observe that we can also induce a Riemannian metric on a
null hypersurface in another way. Given a unitary timelike vector field E ∈ X(M)we
define the standard canonical variation as h = g + 2g(E, ·)g(E, ·) (also called flip
metric by some authors). It is a Riemannian metric on the whole M that, in particular,
induces a Riemannian metric on any null hypersurface. We consider a null section ξ
on L such that g(E, ξ) = 1√

2
and the screen distribution S = T L ∩ E⊥. The vector

field N = √
2E + ξ is null and it holds g(N , ξ) = 1, so it is the transverse null vector

field to L . Moreover, it is h-unitary and h-orthogonal to L , so it is also the unitary
normal vector field to L as a hypersurface of the Riemannian manifold (M, h).

Call I
h the second fundamental form and Hh the mean curvature of L inside

(M, h). It holds the following.

Proposition 16 ([10]) Given X,Y ∈ S, it holds

I
h(X,Y ) =

(

B(X,Y ) − 1√
2

(LEg) (X,Y )

)

N ,

I
h(X, ξ) = −g(∇E+√

2ξE, X)N ,

I
h(ξ, ξ) = −(

2g(ξ,∇E E) + τ (ξ)
)

N .

In particular, Hh = H − √
2divE + τ (ξ).

As the rigged metric, the standard canonical variation can be also used as an
auxiliary tool to prove some results concerning null hypersurfaces. For example, we
can give curvature conditions for a compact null hypersurface to be totally geodesic.

Theorem 17 ([10]) Let (M, g) be a Lorentzian metric furnished with a timelike
unitary Killing vector field E. If L is a compact null hypersurface such that:

1. The null mean curvature has sign.
2. 0 ≤ Ric(ξ, N ) + K (span(ξ, N )), where ξ is a null section with g(E, ξ) = 1√

2
and N a null transverse vector field to L (concretely, the symmetric of−ξ respect
to E).

Then L is totally geodesic.
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However, the construction of the standard canonical variation h is too rigid to study
a null hypersurface since it is a Riemannian metric on the whole ambient space,
not only on the null hypersurface. Most important disadvantages of the standard
canonical variation are:

• The null pre-geodesics of the null hypersurface L are not pre-geodesics in the
Riemannian manifold (L , i∗(h)).

• Strong hypotheses are needed to obtain geometric information on L .
• If L is a totally umbilic null hypersurface of (M, g), then it is not a totally umbilic
hypersurface in (M, h), even if ζ is parallel.

3 Coincidence of the Induced and the Rigged Connection

Once we have chosen a rigging ζ for a null hypersurface L , we can construct two
connections on it: the induced connection ∇L and the rigged connection ˜∇. Both
depend on the chosen rigging and they do not have to coincide. We are interested
in knowing what conditions on the null hypersurface ensure that these connections
are the same. For this, call DL = ∇L − ˜∇ which is a symmetric tensor which holds
D − DL = B · N .

Following theorem gives necessary and sufficient conditions for the coincidence
of the induced and the rigged connection (compare with [3, Theorem 4.1]).

Theorem 18 Suppose that L is a null hypersurface and take ζ a riggging for it. The
rigged and the induced connections coincide if and only if

C(U, X) = B(U, X),

τ (U ) = 0.

for all U ∈ T L and X ∈ S. Moreover, in this case dω = 0 and thus the screen
distribution is integrable and the rigged vector field ξ is geodesic for the ambient
connection ∇, the induced connection ∇L and the rigged connection ˜∇.

Proof If DL = 0, then from point 2 of Proposition 6 we have τ = 0. In particular,
ξ is geodesic for ∇ and ˜∇. Now, given X,Y ∈ S we have 0 = g(∇L

Xξ − ˜∇Xξ,Y ) =
−B(X,Y ) − g(˜∇Xξ,Y ), but using point 3 of Proposition 6 we get B(X,Y ) =
C(X,Y ). In particular, S is symmetric and since ξ is g̃-geodesic, it holds dω = 0.
Finally,

C(ξ, X) = g̃(∇L
ξ X, ξ) = g̃(˜∇ξX, ξ) = −g̃(˜∇ξξ, X) = 0.

Suppose now thatC(U, X) = B(U, X) and τ (U ) = 0 for allU ∈ T L and X ∈ S.
From point 2 of Proposition 5 have

C(X, X) = B(X, X) = −g̃(˜∇Xξ, X).
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Since DL is a symmetric tensor, from point 3 of Proposition 6we have DL(X,Y ) = 0
for all X,Y ∈ S. Moreover, using point 1 of Proposition 5 we get dα(ξ, X) +
(

Lζg
)

(ξ, X) = 0, which is equivalent to dω(ξ, X) + g(∇ξζ, X) = 0. But g(∇ξ

ζ, X) = −g(ζ,∇ξX) = 0because∇ξX ∈ S sinceC(ξ, X) = 0.Thus,dω(ξ, X) = 0
and it follows that ξ is geodesic for ˜∇ and DL(ξ, ξ) = 0. Moreover, since dω = 0,
from point 3 of Proposition 7 and formula 4 it also holds DL(ξ, X) = 0 for all
X ∈ S. �

The screen distribution S is called distinguished if the corresponding one-form
τ vanishes. Under some conditions, we can ensure the existence of a distinguished
screen distribution. Concretely, if −τ (ξ) is not an eigenvalue of A∗ : S → S, then
there exists a distinguished screen, [5]. On the other hand, the screen is called con-
formal if A(U ) = ϕA∗(U ) for all U ∈ X(L) and certain function ϕ ∈ C∞(L), or
equivalently C(U, X) = ϕB(U, X) for all U ∈ T L and X ∈ S, [4]. Thus, fixed a
rigging, the induced and the rigged connection coincide if and only if the screen
distribution is distinguished and conformal with constant factor one.

It is possible that the induced and the rigged connection do not coincide for a
rigging ζ, but they can coincide for another election of the rigging. Recall that if we
choose another rigging, both the induced connection ∇L and the rigged connection
˜∇ change, since the screen distribution and the null section change.

Consider ζ ′ another rigging for the null hypersurface L and decompose it as

ζ ′ = �N +U0,

where U0 ∈ X(L) and � ∈ C∞(L) never vanishes. The corresponding rigged and
transverse vector field are given by

ξ′ = 1

�
ξ,

N ′ = �N + V0,

where V0 = U0 − 1
2�g(ζ ′, ζ ′)ξ ∈ X(L). The geometric objects derived from the rig-

ging ζ ′ are related to those derived from ζ as follows, [2].

B ′(U, V ) = 1

�
B(U, V ),

τ ′(U ) = τ (U ) + 1

�
d�(U ) + 1

�
B(V0,U ), (7)

C ′(U, X) = �C(U, X) − g(∇UV0, X) + τ ′(U )g(V0, X), (8)

∇′L
U V = ∇L

UV − 1

�
B(U, V )V0.

for all U, V ∈ X(L) and X ∈ S.
Using above transformation formulas, it can be proven the following corollaries.
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Corollary 19 Let ζ be a rigging for a null hypersurface such that

C(U, X) = �2B(U, X),

τ (U ) = d ln�,

for all U, V ∈ X(L) and certain positive function � ∈ C∞(L). Then the induced
and the rigged connection for the rigging ζ ′ = �ζ + (

1
2� − �

2 g(ζ, ζ)
)

ξ coincide.

Corollary 20 Let ζ be a rigging for a totally geodesic null hypersurface such that
C = 0 and dτ = 0. If L is simply connected, then the induced and the rigged con-
nection coincide for the rigging ζ ′ = �ζ + (

1
2� − �

2 g(ζ, ζ)
)

ξ, where � = e− f and
τ = d f for certain f ∈ C∞(L).

Corollary 21 Let ζ be a rigging for a totally geodesic null hypersurface such that
dτ �= 0. Then, the induced and the rigged connection do not coincide for any election
of the rigging.

Example 22 Consider a Lorentzian manifold (M, g) furnished with a timelike uni-
tary parallel vector field E . If L is any null hypersurface, then E is a rigging for it
and from Proposition 5 we have

C(U, X) = 1

2
B(U, X)

τ (U ) = 0,

for allU, V ∈ X(L) and X ∈ S. Thus, using Corollary 19, the induced and the rigged
connection on L coincide but for the rigging ζ = √

2E .
Moreover, if we consider the standard canonical variation h = g + 2g(E, ·)

g(E, ·), then the induced connection on L from the ambient Riemannian manifold
(M, h) also coincides with the rigged and the induced connection induced on L by
the rigging ζ. This is because the Levi-Civita connection of g and h concide, since
E is parallel, and the null transverse vector field

N = ζ − 1

2
g(ζ, ζ)ξ = √

2E + ξ

also coincides with the h-unitary normal vector field to L .

Example 23 Consider a plane fronted wave (M, g) = (Q × R
2, gQ + 2dudv +

H(x, u)du2), where
(

Q, gQ
)

is a Riemannian manifold and H �= 0 is a function
defined on Q. The vector field ∂v is null and parallel, so L = {(x, u, v) : u = u0},
where u0 is a constant, is a totally geodesic null hypersurface. We consider the rig-
ging ζ = 1

2∂u . Using Proposition 5 we have τ (U ) = C(U, X) = 0 for allU ∈ X(L)

and X ∈ S. Thus, the induced and the rigged connection on L coincide.
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Example 24 Consider K ⊂ R
2 an open set and two functions F, r : K → R such

that they never vanish and there exists a constant u0 ∈ R such that

rv(u0, v) = ru(u0, v)

F(u0, v)

for all (u0, v) ∈ K . Take the Lorentzian surface (K , gK ), where gK = 2F(u, v)dudv

and the warped product (M, g) = K ×r Q, being (Q, gQ) a Riemannian manifold.
Take the null hypersurface L = {(u, v, x) : u = u0} and consider the rigging ζ =
1
F ∂u . The null transverse vector field is N = 1

F ∂u , the rigged vector field ξ = ∂v and
the screen distribution S ≈ T Q. If X,Y ∈ X(Q) then

∇XY = −rv
r

g(X,Y )N − ru
F · r g(X,Y )ξ + ∇Q

X Y,

thus B(X,Y ) = − rv
r g(X,Y ) and C(X,Y ) = − ru

F ·r g(X,Y ). On the other hand,
∇ξX ⊥ ζ, thus C(ξ, X) = 0. Therefore, B = C . Moreover, it is easy to check that
τ (X) = 0 for all X ∈ S and τ (ξ) = − Fv

F . So dτ = 0 and using Corollary 20, the
induced and the rigged connection on L coincide.

Example 25 Take (R2, 2dudv) and (Q, gQ) anyRiemannianmanifold. Consider the
twisted product (M, g) = (

Q × R
2, gQ + 2 f 2(x, u, v)dudv

)

, being f ∈ C∞(Q ×
R

2) a positive function with w
(

fv
f

)

�= 0 for some w ∈ Tx0Q. We have that L =
{(x, u, v) : u = u0} is a null hypersurface and ζ = 1

f 2 ∂u is a rigging for it. The
corresponding rigged vector field is ξ = ∂v and the screen distribution is S ≈ T Q.
If X ∈ T Q, we have

∇ξξ = 2 fv
f

ξ,

∇Xξ = X ( f )

f
ξ,

thus, τ (ξ) = − 2 fv
f , τ (X) = − X ( f )

f and L is totally geodesic.Moreover, the one-form
τ is not closed. Indeed, we have

dτ (ξ, w) = ξ(τ (X)) − w(τ (ξ)) = w

(

fv
f

)

�= 0.

Therefore, using Corollary 21, the induced connection and the rigging connection
do not coincide for any election of the rigging.

We can give a family of generalized Robertson-Walker spaces where, as in above
example, the rigging and the induced connection do not coincide for any election
of the rigging. Totally umbilic null hypersurfaces in generalized Robertson-Walker
spaces are determined by twisted decompositions of the fiber.
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Theorem 26 ([8]) Let I × f F be a GRW space and consider the rigging ζ =
f ∂t . If L is a totally umbilic null hypersurface, then for each (t0, x0) ∈ L there
exists a decomposition of F in a neighborhood of x0 as a twisted product with one-
dimensional base

(

J × K , ds2 + μ(s, z)2gK
)

,

where x0 is identified with (0, z0) for some z0 ∈ K and L is given by

{(t, s, z) ∈ I × J × K : s =
∫ t

t0

1

f (r)
dr}.

Moreover, if H is the null mean curvature of L, then

μ(s, z) = f (t0)

f (t)
exp

(∫ s

0

H(t, r, z) f (t)2

n − 2
dr

)

for all (t, s, z) ∈ L.
Conversely, if F admits a twisted decomposition in a neighborhood of x0 as

above, then L = {(t, s, z) ∈ I × J × K : s = ∫ t
t0

1
f (r)dr} is a totally umbilic null

hypersurface with null mean curvature

H = n − 2

f (t)2

(

f ′(t) + μs(s, z)

μ(s, z)

)

.

Take 0 ∈ I, J ⊂ R two intervals, (Q, gQ) a Riemannian manifold and consider

(M, g) = (

I × J × Q,−dt2 + f (t)2
(

ds2 + μ(s)2gQ
))

,

where f is some function with f (0) = 1, μ(s) = 1
f (h(s)) and h(s) is the function

such that
∫ h(s)
0

1
f (r)dr = s. Using above theorem, the hypersurface

L = {(t, s, z) ∈ M : t = h(s)}

is a totally geodesic null hypersurface. Since the rigging ζ = f ∂t is closed and
conformal, it holds ∇Uζ = f ′U for all U ∈ X(M) and using point 1 of Proposition
5 we get τ = 0 and C = − f ′g. Observe that the screen distribution S induced from
ζ is integrable and the leaf S through a point (0, 0, z0) ∈ L is isometric to

(

Q, gQ
)

.
Suppose that there exists another rigging ζ ′ such that the corresponding induced

and rigging connection coincide and call N ′ = �N + V0 the associated null trans-
verse vector field induced from ζ ′, where � ∈ C∞(L) and V0 ∈ X(L). From Eqs. 7
and 8 we get d� = 0 and g(∇UV0, X) = � f ′g(U, X) for allU ∈ X(L) and X ∈ S.
Since L is totally geodesic, if we decompose V0 = aξ + X0, where X0 ∈ S, then
g(∇UV0, X) = g(∇U X0, X) for all U ∈ X(L) and X ∈ S. If we restrict the vec-
tor field X0 to the leaf S through (0, 0, z0), then we get a vector field E ∈
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X(K ) which holds gK (∇K
X E,Y ) = � f ′(0)gK (X,Y ) for all X,Y ∈ X (K ). There-

fore, the Riemannian manifold (Q, gQ) locally decomposes as a warped product
(

(−ε, ε) × P, du2 + (� f ′(0)u + 1)2gP
)

, where E is identified with (� f ′(0)u +
1)∂u , [6].

Summarizing, in the Lorentzian manifold I × f
(

J ×μ Q
)

, the existence of a rig-
ging for L such that the induced and the rigged connection coincide is codified by the
local decompositions as warped product with one-dimensional base of (Q, gQ). If it
does not admit such local decomposition, then the induced and rigged connection do
not coincide for any rigging. For example, the Riemannian direct product S

2 × S
2

does not admit any local warped product decomposition as before, since for any
vector we can find two planes containing it with different sectional curvature. So the
induced and the rigged connection do not coincide for any election of the rigging if
Q = S

2 × S
2.
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Surfaces With Light-Like Points
In Lorentz-Minkowski 3-Space With
Applications

Masaaki Umehara and Kotaro Yamada

Abstract With several concrete examples of zero mean curvature surfaces in the
Lorentz-Minkowski 3-space R3

1 containing a light-like line recently having been
found, here we construct all real analytic germs of zero mean curvature surfaces by
applying the Cauchy-Kovalevski theorem for partial differential equations. A point
where the first fundamental form of a surface degenerates is said to be light-like.
We also show a theorem on a property of light-like points of a surface in R3

1 whose
mean curvature vector is smoothly extendable. This explains why such surfaces will
contain a light-like line when they do not change causal types. Moreover, several
applications of these two results are given.

Keywords Maximal surface · Mean curvature · Type change · Zero mean
curvature · Lorentz-Minkowski space
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1 Introduction

In this paper, we denote by R3
1 the Lorentz-Minkowski 3-space of inner product 〈 , 〉

of signature (− + +), and write the canonical coordinate system of R3
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Klyachin [13] showed that a zero mean curvature C3-immersion F : U → R3
1 of

a domain U ⊂ R2 into the Lorentz-Minkowski 3-space R3
1 containing a light-like

point o satisfies one of the following two conditions:

(a) There exists a null curveσ (i.e., a regular curve in R3
1whose velocity vector field is

light-like) on the image of F passing through F(o) which is nondegenerate (i.e.,
its projection into the xy-plane is a locally convex plane curve, cf.Definition 4.1 ).
Moreover, the causal type of the surface changes from time-like to space-like
across the curve.

(b) There exists a light-like line segment passing through F(o) consisting of the
light-like points of F . Zero mean curvature surfaces which change type across
a light-like line belong to this class.

The case (a) is nowwell understood (cf. [9, 12, 13]). In fact, under the assumption
that F is real analytic, the surface in the class (a) can be reconstructed from the null
curve σ as follows:

F(u, v) :=

⎧
⎪⎪⎨

⎪⎪⎩

σ(u + i
√

v) + σ(u − i
√

v)

2
(v ≥ 0),

σ(u + √|v|) + σ(u − √|v|)
2

(v < 0),

(1.1)

where i = √−1, and we extend the real analytic curve σ as a complex analytic map
into C3.

We call the point o as in the case (a) a nondegenerate light-like point of F . A typical
example of such a surface is obtained by a null curve γ(u) = (u, cosu, sin u) and
the resulting surface is a helicoid, which is a zero mean curvature surface (i.e., ZMC-
surface) in R3

1 as well as in the Euclidean 3-space. TheRef. [6] is an expository article
of this subject. Moreover, an interesting connection between type change of ZMC-
surfaces and 2-dimensional fluid mechanics was also given in [6]. The existence
and properties of entire ZMC-graphs in R3

1 with nondegenerate light-like points are
discussed in [3]. Embedded ZMC-surfaces with nondegenerate light-like points with
many symmetries are given in [4, 8].

On the other hand, several important ZMC-surfaces satisfying (b) are given in [1,
5]. In contrast to the case (a), these examples of surfaces do not change causal types
across the light-like line.1 A family of surfaces constructed in [7] satisfying (b) and
also changes its causal type. In spite of this progress, there was still no machinery
available to find surfaces of type (b) and no simple explanation for why only two
cases occur at light-like points.

In this paper, we clarify such phenomena as follows: We denote by Yr (r ≥ 3)
the set of germs of Cr -differentiable immersions in R3

1 whose mean curvature vector
field can be smoothly extended at a light-like point. We prove a property of regular

1In this paper, we say that a surface changes its causal types across the light-like line if the causal
type of one-side of the line is space-like and the other-side is time-like. If the causal type of the
both sides of the line coincides, we say that the surface does not change its causal type across the
light-like line.
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surfaces in the class Y3, which contains the above Klyachin’s result as a special
case. Our approach is different from that of [13]: we use the uniqueness of ordinary
differential equations to prove the assertion. We also show a general existence of real
analytic ZMC-surfaces and surfaces in Yω using the Cauchy-Kovalevski theorem
for partial differential equations. As a consequence, new examples of ZMC-surfaces
which change type along a given light-like line are obtained.

2 Preliminaries

We denote by 0 := (0, 0, 0) (resp. o := (0, 0)) the origin of the Lorentz-Minkowski
3-space R3

1 of signature (− + +) (resp. the plane R2) and denote by (t, x, y) the
canonical coordinate systemof R3

1. An immersion F : U → R3
1 of a domainU ⊂ R2

into R3
1 is said to be space-like (resp. time-like, light-like) at p if the tangent plane

of the image F(U ) at F(p) is space-like (resp. time-like, light-like), that is, the
restriction of the metric 〈 , 〉 to the tangent plane is positive definite (resp. indefinite,
degenerate). We denote by Ĩr (r ≥ 2) the set of germs of Cr -immersions into R3

1
which map the origin o in the uv-plane to the origin 0 in R3

1. (F ∈ Ĩω means that F
is real analytic.) Let F : (U, o) → R3

1 be an immersion in the class Ĩr . We denote
by U+ (resp. U−) the set of space-like (resp. time-like) points, and set

U∗ := U+ ∪U−.

A point p ∈ U is light-like if p /∈ U∗. We denote by Ĩr
L(⊂ Ĩr ) the set of germs of

Cr -immersion such that o is a light-like point.
If F ∈ Ĩr

L , the tangent plane of the image of F at o contains a light-like vector
and does not contain time-like vectors. Thus, we can express the surface as a graph

F = ( f (x, y), x, y), (2.1)

where f (x, y) is a Cr -function defined on a certain neighborhood of the origin of
the xy-plane. Let

BF := 1 − f 2x − f 2y

(

fx = ∂ f

∂x
, fy = ∂ f

∂y

)

. (2.2)

Then the point of the graph (2.1) is space-like (resp. time-like) if and only if BF > 0
(resp. BF < 0) at the point. Since F ∈ Ĩr

L , the origin o = (0, 0) is light-like, that is,
BF (0, 0) = 0. Hence there exists θ ∈ [0, 2π) such that

fx (0, 0) = sin θ, fy(0, 0) = cos θ.

So by a rotation about the t-axis, we may assume
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fx (0, 0) = 0, fy(0, 0) = 1 (2.3)

without loss of generality.
We denote by Ir

L(⊂ Ĩr
L) the set of germs ofCr -immersion F with properties (2.1)

and (2.3). Then

ι : Ir
L � F �→ (ιF :=) f ∈ { f ∈ Cr

o(R
2) ; f (0, 0) = fx (0, 0) = 0, fy(0, 0) = 1},

(2.4)
which maps F to the function f as in (2.1), is a bijection, where Cr

o(R
2) is the set

of Cr -function germs on a neighborhood of o ∈ R2.
For F ∈ Ir

L ,

U+ = {p ∈ U ; BF (p) > 0}, U− = {p ∈ U ; BF (p) < 0} (2.5)

hold, where BF is the function as in (2.2). We let

AF := (1 − f 2x ) fyy + 2 fx fy fxy + (1 − f 2y ) fxx . (2.6)

Then the mean curvature function of F

HF := AF

2|BF |3/2 (2.7)

is defined on U∗ (cf. [10, Lemma 2.1]). We first remark the following:

Proposition 2.1 (cf. Klyachin [13, Example 4]) If BF vanishes identically, then so
does AF .

Proof Since BF = 0, we have 1 − f 2x = f 2y . By differentiating this, we get fx fxy =
− fy fyy , and

(1 − f 2x ) fyy = fy( fy fyy) = − fx fy fxy . (2.8)

Similarly, we have
(1 − f 2y ) fxx = f 2x fxx = − fx fy fxy . (2.9)

By (2.8) and (2.9), we get the identity AF = 0. �

We denote by �r the set of germs of immersions F ∈ Ir
L with identically van-

ishing BF , that is, �r is the set of germs of light-like immersions. We denote by
Cω
o (R, 02) the set of real analytic functions ϕ satisfying ϕ(0) = dϕ(0)/dx = 0.

Then the following assertion holds:

Proposition 2.2 The map

λ : �ω � F �→ (λF :=) f (x, 0) ∈ Cω
o (R, 02)

is bijective, where f = ιF (cf. (2.4)).
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Proof Since BF vanishes identically, taking in account of (2.3), we can write

fy =
√

1 − f 2x .

This can be considered as a normal form of a partial differential equation under the
initial condition

f (x, 0) := ψ(x) (ψ ∈ Cω
o (R, 02)), (2.10)

because of the condition fx (0, 0) = ψ′(0) = 0. So we can apply the Cauchy-
Kovalevski theorem (cf. [15]) and show the uniqueness and existence of the solution
f satisfying (2.10). �

Remark 2.3 The above proof of the existence of a light-like surface F(x, y) satis-
fying (2.10) is local, that is, it is defined only for small |y|. Later, we will show that
F is a ruled surface and has an explicit expression, see Corollary 4.7 and (4.8).

Example 2.4 The light-like plane F(x, y) = (y, x, y) belongs to the class �ω such
that λF = 0.

Example 2.5 The light-cone F(x, y) = (
√
x2 + (1 + y)2 − 1, x, y) is a light-like

surface satisfying λF = √
1 + x2 − 1.

3 Surfaces with Smooth Mean Curvature Vector Field

Let F : (U, o) → (R3
1, 0) be an immersion of class Ir

L (r ≥ 3) such that U∗ is open
and dense in U , and fix a Cr−2-function ϕ. We say that F is ϕ-admissible if

AF − ϕB2
F = 0 (3.1)

holds, where AF and BF are as in (2.6) and (2.2), respectively. We denote

Yr
ϕ := {F ∈ Ir

L ; F isϕ-admissible}. (3.2)

An immersion germ F ∈ Ir
L is called admissible if it is ϕ-admissible for a certain

ϕ ∈ Cr−2
o (R2). The set

Yr :=
⋃

ϕ∈Cr−2
o (R2)

Yr
ϕ

consists of all germs of ϕ-admissible immersions. The following assertion explains
why the class Yr is important.

Proposition 3.1 ([10])Let F : (U, o) → (R3
1, 0) be an immersion in the classIr

L for
r ≥ 3. Then the mean curvature vector field H F can be Cr−2-differentially extended
on a neighborhood of o if and only if F belongs to the class Yr .
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Proof This assertion follows from the fact that

H F = AF

2(BF )2
(Fx × Fy)

on U ∗, where × denotes the vector product in R3
1. �

Since ϕ = 0 implies H F = 0,

Zr := {F ∈ Ir
L ; AF = 0}(= Yr

0) (3.3)

is the set of germs of zero mean curvature immersions in R3
1 at the light-like point

o. By definition, we have (cf. Proposition 2.1)

�r ⊂ Zr ⊂ Yr (r ≥ 3). (3.4)

Surfaces in the classYr are investigated in [10], and an entire graph inYr which is
not a ZMC-surfacewas given. In this section, we shall show a general existence result
of surfaces in the class Yω . We fix a germ of a real analytic function ϕ ∈ Cω

o (R2),
and take an immersion F ∈ Yω

ϕ .

Definition 3.2 Let f := ιF be the function associated with F ∈ Yω
ϕ (cf. (2.4)). Then

γF (x) := ( f (x, 0), fy(x, 0)) (3.5)

is a real analytic plane curve, which we call the initial curve associated with F .

We denote by Cω
(0,1)(R, R2) the set of germs of Cω-maps γ : (R, 0) →

(R2, (0, 1)). By definition (cf. (2.3)), γF (x) ∈ Cω
(0,1)(R, R2) holds. We prove the

following assertion:

Theorem 3.3 For ϕ ∈ Cω
0 (R2), the set Yω

ϕ is non-empty. More precisely, the map

Yω
ϕ � F �→ γF ∈ Cω

(0,1)(R, R2)

is bijective. Moreover, the base point o is a light-like point of F satisfying ∇BF �= 0
(resp.∇BF = 0) if γ̇F (0) �= (0, 0) (resp. γ̇F (0) = (0, 0)), where “dot” denotes d/dx
and ∇BF := ((BF )x , (BF )y) is the gradient vector of the function BF .

Proof Suppose that F ∈ Yω
ϕ . Since AF − ϕB2

F vanishes identically (cf. (3.1)), f =
ιF satisfies

fy = g, gy = −2 fxggx + (1 − g2) fxx − (1 − f 2x − g2)2ϕ

1 − f 2x
, (3.6)

which is the normal form for partial differential equations. So we can apply the
Cauchy-Kovalevski theorem (cf. [15]) for a given initial data
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( f (x, 0), g(x, 0)) := γ(x) (γ ∈ Cω
(0,1)(R, R2)).

Then the solution ( f, g) of (3.6) is uniquely determined. Obviously, the resulting
immersion Fγ := ( f (x, y), x, y) gives a surface in Yω

ϕ whose initial curve is γ. The
second assertion follows from the fact that γ̇(0) = (0, 0) if and only if ∇BF (0, 0) =
0, where ∇BF := ((BF )x , (BF )y). �

When ϕ = 0, we get the following:

Corollary 3.4 The map Zω � F �→ γF ∈ Cω
(0,1)(R, R2) is bijective.

The following is a direct consequence of this corollary and Theorem 3.3.

Corollary 3.5 In the above correspondence, it holds that

�ω =
{

F ∈ Zω ; γF =
(

ψ,

√

1 − ψ̇2

)

, ψ ∈ Cω
o (R, 02)

}

.

4 A Property of Light-Like Points

Definition 4.1 Let I be an open interval, and σ : I → R3
1 a regular curve of class

Cr (r ≥ 3). The space curve σ is called null if σ′(t) = dσ/dt is light-like. Moreover,
σ is called nondegenerate if σ′′(t) is not proportional to σ′(t) for each t ∈ I .

The orthogonal projection of a nondegenerate null curve into the xy-plane is a
locally convex plane curve. The following assertion is a generalization of Klyachin’s
result in the introduction, since ZMC-surfaces are elements of Y3.

Theorem 4.2 Let F : (U, o) → R3
1 be an immersion of class Y3. Then, one of the

following two cases occurs:

(a) ∇BF does not vanish at o, and the image of the level set F({BF = 0}) consists
of a nondegenerate null regular curve in R3

1, where f = ιF .
(b) ∇BF vanishes at o, and the image of the level set F({BF = 0}) contains a light-

like line segment in R3
1 passing through F(o).

Proof The first assertion (a) was proved in [10, Proposition 3.5]. So it is sufficient
to prove (b). We may assume that F ∈ Y3

ϕ and ϕ ∈ C1
o(R

2). Let f := ιF . Since
f is of class C3, applying the division lemma (Lemma A.1 in Appendix A) for
g(x, y) := 2( f (x, y) − f (0, y) − x fx (0, y)), there exists a C1-function h such that

f (x, y) = a0(y) + a1(y)x + h(x, y)

2
x2

(
a0(y) := f (0, y), a1(y) := fx (0, y)

)
.

(4.1)
By (2.3), it holds that
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a0(0) = 0, a′
0(0) = 1, a1(0) = 0. (4.2)

Moreover, since ∇BF vanishes at o, we have

a′
1(0) = 0. (4.3)

We set (cf. (2.6) and (3.1))
Ã := AF − ϕB2

F .

Since F ∈ Y3
ϕ, Ã vanishes identically. We set

h0(y) := h(0, y), h1(y) := hx (0, y), h2(y) := hy(0, y),
ϕ0(y) := ϕ(0, y), ϕ1(y) := ϕx (0, y),

Then we have

0 = Ã|x=0 =ϕ0((a
′
0)

2 + a21 − 1)2 + h0
(
1 − (a′

0)
2
)

(4.4)

+ (
1 − a21

)
a′′
0 + 2a1a

′
0a

′
1,

0 = Ãx |x=0 = − 2a1h0a
′′
0 + 4ϕ0

(
1 − (a′

0)
2 − a21

) (
a1h0 + a′

0a
′
1

)
(4.5)

+ 2a1h2a
′
0 − ϕ1

(−(a′
0)

2 − a21 + 1
)2

− h1
(
(a′

0)
2 − 1

) − (
a21 − 1

)
a′′
1 + 2a1(a

′
1)

2.

These two identities (4.4) and (4.5) can be rewritten in the form

(
1 − a21

)
a′′
0 = �1(x, y, a0, a

′
0, a1, a

′
1),

− 2a1h0a
′′
0 + (

a21 − 1
)
a′′
1 = �2(x, y, a0, a

′
0, a1, a

′
1),

where �1 and �2 are continuous functions of five variables. Since 1 − a21(0) = 1,
this gives a normal form of a system of ordinary differential equations with unknown
functions a0 and a1. Moreover, this system of differential equations satisfies the local
Lipschitz condition, since �1 and �2 are polynomials in a0, a′

0, a1 and a
′
1. Here,

(a0, a1) = (y, 0) (4.6)

gives a solution of this system of equations. Then the uniqueness of the solution with
the initial conditions (4.2) and (4.3) implies that (4.6) holds for F . As a consequence,
we have F(0, y) = (y, 0, y), proving the assertion. �

Remark 4.3 If F is of nonzero constant mean curvature H , then AF − 2H |BF |3/2
vanishes identically. In this case, we also get the relations AF |x=0 = (AF )x |x=0 = 0,
which can be considered as a system of ordinary equations like as in the above proof.
However, this does not seem to satisfy the local Lipschitz condition, and the above
proof does not work directly in this case. Fortunately, an analogue of Theorem 4.2
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can be proved for real analytic surfaces with nonzero constant mean curvature by
modifying the above argument (see [16] for details).

As a corollary, we immediately get the following:

Corollary 4.4 Any light-like points on a surface in the class Y3 are not isolated.

If a light-like point o is nondegenerate, then BF changes sign, that is, F changes
causal type. So the following corollary is also obtained.

Corollary 4.5 If an immersion F ∈ Y3 does not change its causal type at o, then
there exists a light-like line L passing through f (o) such that the set of the light-like
points of F is a regular curve γ and the image of F ◦ γ lies on the line L.

We next give an application of Theorem 4.2 for light-like surfaces:

Definition 4.6 Let σ(t) (t ∈ I ) be a space-like C∞-regular curve defined on an
interval I . Since the orthogonal complement of σ′(t) is Lorentzian, there exists a
nonvanishing vector field ξ(t) along σ such that ξ(t) points the light-like direction
which is orthogonal to σ′(t) = dσ(t)/dt , that is, it holds that

〈ξ(t), ξ(t)〉 = 〈
ξ(t),σ′(t)

〉 = 0,

where 〈 , 〉 means the canonical Lorentzian inner product in R3
1. The possibility of

such vector fields ξ(t) are essentially two up to a multiplication of nonvanishing
smooth functions. Then the map

F(t, s) := σ(t) + s ξ(t) (t ∈ I, |s| < ε) (4.7)

gives a light-like immersion if ε > 0 is sufficiently small (This representation formula
was given in Izumiya-Sato [11]).We call such a F a light-like ruled surface associated
to the space-like curve σ.

For example, consider an ellipse σ(t) = (0, a cos t, sin t) on the xy-plane in R3
1,

where a > 0 is a constant. Then an associated light-like surface is given by (4.7) by
setting

ξ(t) :=
(√

a2 sin2 t + cos2 t, cos t, a sin t
)

.

Figure 1 presents the resulting light-like surface for a = 2.



262 M. Umehara and K. Yamada

Fig. 1 The light-like surface
associated to an ellipse

The following corollary asserts that light-like regular surfaces are locally regarded
as ruled surfaces.

Corollary 4.7 A light-like surface germ F ∈ �∞ can be parametrized by a light-like
ruled surface along a certain space-like regular curve.

Proof Let F be a light-like surface such that ιF (x, 0) = ψ(x) as in (2.10), where
ψ(0) = ψ̇(0) = 0 (˙ = d/dx). Then it holds that σ(x) := F(x, 0) = (ψ(x), x, 0) is
a space-like curve for sufficiently small x . There are±-ambiguity of light-like vector
fields

ξ±(x) :=
(

1, ψ̇(x),±
√

1 − ψ̇(x)2
)

along the curve σ(x) perpendicular to σ̇(x). By Corollary 4.5, F must be a ruled
surface foliated by light-like lines. Since the light-like line in the image of F passing
through the origin is y �→ (y, 0, y), the light-like ruled surface

(t, s) �→ σ(t) + s ξ+(t) (4.8)

gives a new parametrization of the surface F , that proves the assertion. �
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It should be remarked that the property of light-like points (cf. Theorem 4.2) can
be generalized for surfaces in arbitrarily given Lorentzian 3-manifolds, see [16].
It is well-known that space-like ZMC-surfaces have nonnegative Gaussian curva-
ture. Regarding this fact, we prove the following assertion on the sign of Gaussian
curvature at nondegenerate light-like points:

Proposition 4.8 Let F be an immersion in the class Yr (r ≥ 3). Suppose that o is
a nondegenerate light-like point. Then the Gaussian curvature function K diverges
to ∞ at o.

When F is of ZMC, the assertion was proved in Akamine [2].

Proof Let f = ιF is the function associated with F ∈ Yr (cf. (2.4)) with (4.1) and
set

CF := fxx fyy − ( fxy)
2.

Then the Gaussian curvature of F is given by

K := − CF

(BF )2
, (4.9)

where BF is the function as in (2.2). Since the function AF as in (2.6) satisfies
AF (o) = a′′

0 (0) = 0, we have

CF (o) = h(o)a′′
0 (0) − a′

1(0)
2 = −a′

1(0)
2.

Here a′
1(0) �= 0 since o is a nondegenerate light-like point. Thus CF (o) �= 0 holds,

and we get the conclusion because of the fact BF (o) = 0. �

5 Properties of Surfaces in Yω

We denote by Yr
a (resp. Yr

b ) the subset of Yr consisting of surfaces such that the
origin o is a nondegenerate (resp. degenerate) light-like point. Then

Yr := Yr
a ∪ Yr

b

holds. We next define two subsets of Zr (cf. (3.3)) as

Zr
a := {F ∈ Zr ; γF (0) �= (0, 0)} = {F ∈ Zr ; ∇BF (0, 0) �= 0} = Yr

a ∩ Zr ,

Zr
b := {F ∈ Zr ; γF (0) = (0, 0)} = {F ∈ Zr ; ∇BF (0, 0) = 0} = Yr

b ∩ Zr ,

where BF is the function as in (2.2).
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As explained in the introduction, surfaces in Zr
a can be constructed using the

formula as in (1.1). On the other hand, to get ZMC-surfaces in Zω
b , we can apply

Corollary 3.4. However, it is only a general existence result, and is not useful if one
would like to know the precise behavior of the surfaces along the degenerate light-
like lines. Here, we focus on the class Zω

b . We first show that Yω
b and will sow that

surfaces in the classYω
b have quite similar properties as zero mean curvature surfaces

in the class Zω
b : Each surface F ∈ Yω

b is expressed as the graph of a function

f (x, y) := y + αF (y)

2
x2 + βF (y)

3
x3 + h(x, y)x4, (5.1)

where αF , βF and h are certain real analytic functions. In fact, as seen in the proof of
Theorem4.2, a1(y) = 0 holdswhen o is a degenerate light-like point, where a1(y) :=
fx (0, y).We callαF (y) andβF (y) in (5.1) the second approximation function and the
third approximation function of F , respectively. These functions give the following
approximation of F :

f (x, y) ≈ y + αF (y)

2
x2 + βF (y)

3
x3. (5.2)

Proposition 5.1 For F ∈ Yω
b , there exists a real numberμF (called the characteristic

of F) such that αF and βF satisfy

α′
F + α2

F + μF = 0, (5.3)

β′′
F + 4αFβ′

F = 0. (5.4)

Moreover, if μF > 0 (resp. μF < 0) then F has no time-like points (resp. no space-
like points). In particular, if F changes causal type, the μF = 0.

When F ∈ Zω
b , this assertion forα := αF wasproved in [5]. So the above assertion

is its generalization.

Proof Since F in Yω , there exists a function ϕ ∈ Cω
o (R2) such that F ∈ Yω

ϕ . Let
f := ιF and set A := AF and B := BF as in (2.2) and (2.6), respectively. Then (5.1)
implies that

B(0, y) = Bx (0, y) = 0. (5.5)

Since ϕ = A/B2 is a smooth function, the L’Hospital rule yields that

ϕ(0, y) = lim
x→0

A(x, y)

B(x, y)2
= lim

x→0

Ax (x, y)

2Bx (x, y)B(x, y)

= lim
x→0

Axx (x, y)

2Bxx (x, y)B(x, y) + 2Bx (x, y)Bx (x, y)

= lim
x→0

Axxx (x, y)

2Bxxx (x, y)B(x, y) + 6Bxx (x, y)Bx (x, y)
.
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Thus, (5.5) yields that we have

0 = A(0, y) = Ax (0, y) = Axx (0, y) = Axxx (0, y).

Here A|x=0 = Ax |x=0 = 0 does not produce any restrictions for α := αF and β :=
βF . On the other hand, we have

0 = Axx |x=0 = 2αα′ + α′′, (5.6)

where the prime means the derivative with respect to y. Hence α′ + α2 is a constant
function, and get the first relation. We then get

0 = Axxx |x=0 = 4αβ′ + β′′, (5.7)

which yields the second assertion. The last assertion follows from the fact that
Bxx (0, y) = −2(α′ + α2) = 2μF . �

We can find the solution α = αF of the ordinary differential equation (5.3) under
the conditions

α(0) = ü(0), μF = −(
ü(0)2 + v̈(0)

)

for a given initial curve γ(x) = (u(x), v(x)). By a homothetic change

F̃(x, y) := ( f̃ (x, y), x, y)

(

f̃ (x, y) := 1

m
f (mx,my), m > 0

)

,

one can normalize the characteristic μF to be −1, 0 or 1. In fact, as shown in [5],

α+ := − tan(y + c) (|c| < π/2)

is a general solution of (5.3) for μF = 1,

α0
I := 0 and α0

II := 1

y + c
(c ∈ R \ {0})

are the solutions for μF = 0, and

α−
I := tanh(y + c) (c ∈ R),

α−
II := coth(y + c) (c ∈ R \ {0}),

α−
III := ±1

are the solutions forμF = −1.Thus, as pointedout in [5],Yω
b consists of the following

six subclasses:
Y+, Y0

I , Y0
II , Y−

I , Y−
II , Y−

III .
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Remark 5.2 To find surfaces in the class Y−
III , we may set α−

III := 1 without loss of
generality. In fact, if F ∈ Yω

b satisfies αF = −1, then we can write

F = (
f (x, y), x, y

)
, f (x, y) = y − x2

2
+ k(x, y)x3,

where k(x, y) is a Cω-function defined on a neighborhood of the origin. If we set
X := −x,Y := y and set F̃ := −F , then we have

F̃(X,Y ) =
(

Y + X2

2
+ k(−X,Y )X3, X,Y

)

.

Thus αF̃ = 1.

Like as in the case of α = αF , we can find the solution β := βF of the ordinary
differential equation (5.4) with the given initial condition 2(β(0),β′(0)) = ...

γ F (0).
In fact, β can be written explicitly for each α = α+, α0

I , α
0
II , α

−
I , α

−
II , α

−
III as follows:

β+ = c1
(
2 + sec2(y + c)

)
tan(y + c) + c2,

β0
I = c1y + c2,

β0
II = c1

(y + c)3
+ c2,

β−
I = c1

(
2 + sech2(y + c)

)
tanh(y + c) + c2,

β−
II = c1

(
2 − csch2(y + c)

)
coth(y + c) + c2,

β−
III = c1e

±4y + c2.

In particular, we get the following assertion:

Proposition 5.3 The second and the third approximation functions of each F ∈ Yω
b

can be written in terms of elementary functions.

The following assertion implies that our approximation for F ∈ Yω itself is an
element of Yω:

Proposition 5.4 Let α and β be analytic functions satisfying

α′′ + 2αα′ = 0, β′′ + 4αβ′ = 0. (5.8)

Then the immersion

Fα,β(x, y) :=
(

y + α(y)

2
x2 + β(y)

3
x3, x, y

)

belongs to the class Yω .
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This assertion follows from the proof of Proposition 5.1 immediately. Moreover,
the following assertion holds:

Proposition 5.5 We fix an analytic function ϕ ∈ Cω
o (R2). Let α, β be analytic func-

tions satisfying (5.8). Then there exists an immersion F ∈ Yω
ϕ such that α = αF and

β = αF . In the case of ϕ = 0, this implies the existence of Fα,β ∈ Zω
b .

Proof We set

γ(x) = (1, 0) + x2

2
(α(0),β(0)) + x3

3
(α′(0),β′(0)).

By Theorem 3.3, there exists a unique immersion F ∈ Yω
ϕ ∩ Yω

b such that γF = γ.
Then we have αF = α and βF = β, proving the assertion. �

Finally, we prove the following assertion for the sign of the Gaussian curvature near
a degenerate light-like point. (cf. Proposition 4.8 for the nondegenerate case.)

Proposition 5.6 Let F bean immersion in the classYω
b . Then theGaussian curvature

function K diverges to ∞ at a degenerate light-like point if μF > 0. On the other
hand, ifμF = 0 and δF �= 0, then K (x, y) diverges to+∞ (resp.−∞) on the domain
of BF (x, y) > 0 (resp. BF (x, y) < 0) as (x, y) → (0, 0), where

δF := β′(0) + 3α(0)β(0) (5.9)

and α = αF , β = βF .

Proof Recall that the Gaussian curvature K is expressed as (cf. (4.9))

K = − CF

(BF )2
(CF = fxx fyy − f 2xy),

where f = ιF and BF is the function defined as in (2.2). Since F ∈ Yω
b , can be

expanded as (5.1). Then we have

CF = fxx fyy − ( fxy)
2

=
(
1

2
αα′′ − (α′)2

)

x2 +
(

βα′′ − 2α′β′ + 1

3
αβ′′

)

x3 + (higher order terms).

Since F ∈ Yr
b , the relations (5.3) and (5.4) hold, and then we have

CF = α′μF x
2 − 2

3

(
3α′β′ + 3αβα′ + 2α2β′) x3 + (higher order terms).

IfμF > 0, thenα′(0) < 0 by (5.3), sowe get the conclusion.Wenext assumeμF = 0,
then α′ = −α2 and we have
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CF (x, 0) = 2α(0)2δF
3

x3 + (higher order terms).

In this situation, it holds that

BF (x, 0) = −2δF
3

x3 + (higher order terms).

Thus the sign of the Gaussian curvature K (x, 0) coincides with that of BF (x, 0),
proving the assertion. �

6 Examples

In this section, we give several examples of zero mean curvature surfaces: We now
give here a recipe to givemore refined approximate solutions as follows: For F ∈ Zω

b ,
we can expand the function f = ιF as

f (x, y) = y +
∞∑

k=2

ak(y)

k
xk . (6.1)

We call each function ak(y) as the k-th approximation function of F . Remark that
a2 and a3 coincide with αF and βF in (5.1), respectively:

αF = a2, βF = a3. (6.2)

We give here several examples:

Example 6.1 The light-like plane (cf. Example 2.4) F(x, y) = (y, x, y) belongs to
�ω ∩ Z0

I such that γF = (0, 1) and αF = βF = 0.

Example 6.2 The light-cone (cf. Example 2.5)

F(x, y) = (
√
x2 + (1 + y)2 − 1, x, y)

belongs to �ω ∩ Z0
II such that

γF = (
√
1 + x2 − 1, 1/

√
1 + x2)

and αF = 1/(1 + y), βF = 0.

Example 6.3 The surface F(x, y) = (y + x2/2, x, y) is a zero mean curvature sur-
face in Z−

III , which satisfies γF = (x2/2, 0) and

αF = 1, βF = 0.
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Example 6.4 Recall the space-like Scherk surface {(t, x, y) ∈ R3
1 ; cos t = cos x

cos y} (cf. [5, Example 3]). We replace (t, x, y) by (t + (π/2), x, (π/2) − y), we
have the expression

F(x, y) =
(
− arccos(cos x sin y) − π

2
, x, y

)

satisfying (2.3). This is a zero mean curvature surface in Z+, which satisfies γF =
(−π, cos x) and

αF = − tan y, βF = 0.

Example 6.5 The time-like Scherk surface of the first kind (cf. [5, Example 4]) can
be normalized as

F(x, y) =
(

arccosh(cosh x cosh(y + 1)) − 1, x, y

)

,

which is a zero mean curvature surface in Z−
I , This satisfies

γF =
(

−1 + arccosh(cosh x cosh 1),
sinh 1 cosh x

√
(cosh 1 cosh x)2 − 1

)

and
αF = coth y, βF = 0.

Example 6.6 The time-like Scherk surface of the second kind (cf. [5, Example 5])

F(x, y) =
(

arcsinh(cosh x sinh y), x, y

)

is a zero mean curvature surface in Z−
II , which satisfies γF = (0, cosh x) and

αF = tanh y, βF = 0

hold.

For F ∈ Zω
b , it holds for k ≥ 4 that

dk A

dxk

∣
∣
∣
∣
x=0

= 0 (A := AF ), (6.3)

which can be considered as an ordinary differential equation of the k-th approxima-
tion function ak as in (6.1). As shown in [7], (6.3) is equivalent to

a′′
k + 2(k − 1)a2a

′
k + k(3 − k)a′

2ak + k(Pk + Qk − Rk) = 0, (6.4)
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where Pk , Qk , Rk are terms written using {as}s<k as follows:

Pk :=
k−1∑

m=3

2(k − 2m + 3)

k − m + 2
ama

′
k−m+2,

Qk :=
k−2∑

m=2

k−m∑

n=2

3n − k + m − 1

mn
a′
ma

′
nak−m−n+2,

Rk :=
k−2∑

m=2

k−m∑

n=2

amana′′
k−m−n+2

k − m − n + 2
.

When k = 4, (6.4) reduces to

a′′
4 + 6a2a

′
4 − 4a′

2a4 + 3a2(a
′
2)

2 − 2(a2)
2a′′

2 + 8

3
a3a

′
3 = 0.

Using (6.4) and (6.1), one can get an appropriate approximation for F .
Finally, we remark on existence results of zero mean curvature surface using

Corollary 3.4: For F ∈ Zω , we set

γF = (0, 1) + (0, v1)x +
4∑

n=2

(un, vn)
xn

n
+ (higher order terms).

Then F ∈ Zω
b if and only if v1 = 0. Under the assumption v1 = 0, the characteristic

(cf. (5.3)) μF and the constant δF in (5.9) satisfy

μF = −(u2
2 + v2) and δF = 3u2u3 + v3.

We set
�F := 4u2

3 + 8u2u4 + v2
2 + 2v4.

Proposition 6.7 A surface F ∈ Zω belongs to Z0
I (resp. Z0

II ) if μF = 0 and u2 = 0
(resp. μF = 0 and u2 �= 0). Suppose that μF = 0. Then

(1) F changes causal type if δF �= 0, and
(2) F has no time-like (resp. space-like) part if δF = 0 and�F < 0 (resp.�F > 0).

Proof The causal type of F depends on the sign of B := BF . As shown in [5],
B|x=0 = Bx |x=0 = 0. Moreover, one can easily see that

B(x, 0) = μF x
2 − 2δF

3
x3 − �F

4
x4 + (higher order terms). (6.5)

So we get the conclusion. �



Surfaces With Light-Like Points In Lorentz-Minkowski 3-Space With Applications 271

Example 6.8 In [7], F ∈ Zω satisfying

γF (x) := (0, 1 + 3cx3)

is constructed, which belongs to the class Zω
b and changes its causal type. Although

the existence of this F is obtained by applying Corollary 3.4, the advantage of the
method in [7] is that we can get the explicit approximation for F at the same time.

Until now, the existence of zero mean curvature surfaces (i.e., ZMC-surfaces) in
the following three cases was unknown (cf. the footnote of [6, P. 194]);

(i) ZMC-surfaces in Z0
I without space-like part,

(ii) ZMC-surfaces in Z0
I without time-like part,

(iii) ZMC-surfaces in Z0
II which changes causal type.

We can show the existence of the above remaining cases:

Corollary 6.9 There exist ZMC-immersions satisfying (i), (ii), and (iii), respectively.

Proof We set μF = 0. If u2 �= 0 and δF �= 0, then F ∈ Z0
II which changes causal

type (i.e., it gives the case (iii)). On the other hand, if u2 = δF = 0 and �F < 0
(resp. �F > 0), then it gives the case (ii) (resp. (i)). �
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Appendix A. Division Lemma

Lemma A.1 Let g be a Cr -function (r ≥ 1) defined on a convex domain U of the
xy-plane including the origin o, satisfying

g(0, y) = ∂g

∂x
(0, y) = ∂2g

∂x2
(0, y) = · · · = ∂kg

∂xk
(0, y) = 0

(
(0, y) ∈ U

)
(A.1)

for a nonnegative integer k < r . Then there exists a Cr−k−1-function h defined on U
such that

g(x, y) = xk+1h(x, y)
(
(x, y) ∈ U

)
. (A.2)

Proof We shall prove by an induction in k. Since

g(x, y) =
∫ 1

0

dg(t x, y)

dt
dt =

∫ 1

0
xgx (t x, y)dt = x

∫ 1

0
gx (t x, y) dt,
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the conclusion follows for k = 0, by setting

h(x, y) :=
∫ 1

0
gx (t x, y) dt.

Assume that the statement holds for k − 1. If g satisfies (A.1), there exists a Cr−k-
function ϕ(x, y) defined on U such that

g(x, y) = xkϕ(x, y)
(
(x, y) ∈ U

)
. (A.3)

Differentiating this k-times in x , we have

0 = ∂kg

∂xk
(0, y) = k!ϕ(0, y)

because of (A.1). Hence, by the case k = 0 of this lemma, there exists Ck−r−1-
function h(x, y) defined on U such that ϕ(x, y) = xh(x, y). The function h is the
desired one. �
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