
Uniform Model Interface for Assurance Case
Integration with System Models

Andrzej Wardziński1,2(&) and Paul Jones3

1 Gdańsk University of Technology, Gdańsk, Poland
Andrzej.Wardzinski@pg.edu.pl

2 Argevide, Gdańsk, Poland
3 US Food and Drug Administration, Silver Spring, MD, USA

Paul.Jones@fda.hhs.gov

Abstract. Assurance cases are developed and maintained in parallel with
corresponding system models and therefore need to reference each other.
Managing the correctness and consistency of interrelated safety argument and
system models is essential for system dependability and is a nontrivial task. The
model interface presented in this paper enables a uniform process of establishing
and managing assurance case references to various types of system models.
References to system metamodels are specified in an argument pattern and then
used for assurance case instantiation. The proposed approach permits incre-
mental development of assurance cases that maintain consistency with corre-
sponding system models throughout the system development life cycle.

Keywords: Assurance case � Safety case � System models � Argument pattern

1 Introduction

When developing systems, engineers necessarily rely on models to facilitate compre-
hension, analysis, and communication of complex development details. Such models
may represent design and development processes, system component architecture,
behavior, and other types of development abstractions. We refer to each of these types
of models in this paper collectively as system models.

Assurance cases may mirror these system models to varying levels of detail and
refer to their elements. It is important that these references are unambiguous, complete,
and correct so that someone creating, modifying or reviewing an assurance case can be
confident of being directed to the right element or property. When a few assurance
cases are developed for components of the system (e.g. system of systems) it is critical
to ensure that the assurance cases refer to the same concepts, system models, model
interfaces, and properties.

Our goal is to develop a generic model interface between an assurance case and
system models which will allow establishing and maintaining assurance case references
to elements of various system models. The interface should provide system model
referencing services desired by the assurance case user (developer, assessor etc.) while
hiding unnecessary details that may not add to comprehension. The idea is to not have

© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017 Workshops, LNCS 10489, pp. 39–51, 2017.
DOI: 10.1007/978-3-319-66284-8_4



the assurance case user track model element references manually but rather to assist the
user by providing required information describing the desired system model(s). The
proposed model interface provides:

– A uniform way of specifying assurance case references to system model elements,
– The ability to specify restrictions in a form of relations between referenced model

elements to strengthen assurance case consistency,
– A mechanism for maintenance of the argument references when the models are

modified,
– The possibility to develop an assurance case incrementally when system models are

evolving throughout the system life cycle (the argument instantiation does not have
to be carried out all at once, some parts of the pattern may stay un-instantiated until
the corresponding system models are available).

Use of a uniform model interface for establishing and maintaining assurance case
relations to system models will make it simpler to manage consistency between the
two. The initial cost of this approach is in the development of the model interface. It
must be implemented for each system model type to which the assurance case refer-
ences. The implementation will depend on the specific data format used by each type of
system model. System models can be represented in XML, a database, “flat” text file or
a structured document. The system model can be also managed by any application with
an API offering access to the model data (for example OSLC interface – Open Services
for Lifecycle Collaboration).

In the next section, we will analyze the general problem of managing relations
between assurance cases and system models. The concept of a model interface is
presented in the third section. Section 4 describes the process how the model interface
is used in assurance case integration with system models. We summarize the approach
in Sect. 5.

2 Assurance Case Integration with System Models

Assurance cases may refer to many aspects of systems like systems goals and
requirements, risks and mitigations, system structure, elements properties, life cycle
activities and their products. The most common approach is to use textual references
and manually manage their consistency with system models and real world artefacts.
For example, textual references were proposed in developing assurance cases for
software model-driven development [1].

One of the initial studies on managing explicit assurance case references to external
models or ontologies was described in a safety argument for hospital treatment [2].
Górski et al. used UML to represent a claim model and a related context model.

Evidence argument elements can also be used to represent elements of system
models. Sljivo et al. presented an extension of assurance case metamodels enabling
use of evidence element references to a system component and safety contract
metamodel [3].

40 A. Wardziński and P. Jones



Currently the most advanced solution for use of models to describe the context of
an assurance case is a weaving metamodel proposed by Hawkings et al. [4] and applied
in the D–MILS project [5]. The weaving metamodel captures dependencies between
role bindings specified in an assurance case pattern and system models. Abstract
dependency information captured in the weaving metamodel is used in the argument
instantiation process.

The weaving metamodel describes:

– system model classes specific for a given system perspective (e.g. AADL or FMEA
model),

– relations between model classes specified as UML associations,
– role bindings in the argument patterns, that is terms used in pattern element names

to denote specific system model elements (e.g. “System” in a claim “{System}
safety policy is enforced”),

– relations between role bindings resulting from the pattern argument structure (they
are directed relations which describe the scope of a binding role context),

– relations between role bindings and system model classes.

The approach presented in this paper is similar to the use of the weaving model,
however, we use two separate elements in place of the weaving model. The first one is
a model interface describing system models in a unified way and the second one is a
reference table describing argument relations to system models. This approach offers
new possibilities described in the next sections.

3 The Concept of the Model Interface

The concept of a model interface arose from the observation that assurance cases refer
to different types of system models but assurance case developers would prefer a
standard way to establish and maintain the references. The model interface has been
designed to satisfy these needs and facilitate a uniform reference management process
in assurance case development and maintenance. The concept has been developed as an
extension of a reference mechanism described in [6].

References to system models are first specified on an abstract level when an
argument pattern is developed. Argument patterns may refer to abstract concepts like
subsystems, components, events or hazards. To ensure abstract references are unam-
biguous, they should be specified in a context of a formally defined system metamodel.
UML class models can be used for such specification. References to metamodel ele-
ments will be sufficiently precise to ensure unambiguity.

The argument pattern serves as a basis for development of a “well formed” argu-
ment appropriate for a specific system model. In the assurance case instantiation
process each abstract reference should be replaced with a reference to an existing
system model element which satisfies the conditions imposed by the abstract reference.
Use of a formally defined system metamodel in abstract references helps ensure the
consistency of the instantiated argument with the referred system. The model interface
should operate on both levels: abstract system metamodels and concrete system models
that describe a real system.

Uniform Model Interface for Assurance Case Integration with System Models 41



The model interface serves as an intermediary between the assurance case and
system models. As presented in Fig. 1 it provides an interface for assurance cases (on
the left of the diagram) to access system models. The model interface does not keep any
information on the assurance case argument references to system models. All the
reference data is stored in the assurance cases in an abstract and a concrete reference
table.

You can notice two levels of the model interface presented on the diagram. The
upper part works on an abstract level, i.e. the system metamodel used for argument
pattern references. The lower part provides an interface to system models used when
the concrete argument is instantiated. On the abstract level the model interface services
return:

(a) a list of available model types,
(b) a list of element types for a given model type,
(c) a list of relations for a specific model element type.

Abstract functions of the model interface do not need existing system models to
function because they return data on a metamodel level. To work with the concrete
model interface one first needs to initiate it with a specific model (for example provide
a model file name) and then the interface functions can be called to return:

(d) a list of models of a given type,
(e) a list of model elements of a given type,
(f) a list of elements which satisfy a given relation,
(g) detailed data of a given element (when its identifier is provided).

The presented set of functions is sufficient to specify abstract references in argu-
ment patterns and then instantiate them to produce concrete assurance cases. This
process will be presented in the next section.

Fig. 1. Assurance case instantiation metamodel

42 A. Wardziński and P. Jones



4 Process of Assurance Case Integration with System Models

The integration process consists of steps performed in two phases. The first phase is
performed on the abstract level when the assurance case pattern is developed but no real
system exists yet. This is what might be called a pre-development phase. Here, an abstract
argument pattern with references to a systemmetamodel is established. The second phase
is what might be called a development phase when an assurance case is instantiated with
references to models of the developed system and then maintained throughout the system
life cycle. In the following subsections, we will describe the steps of this process.

• Pre-development phase steps

1. System metamodel specification
2. Model interface development
3. Argument pattern development

• Development phase steps

4. System modeling
5. Assurance case development
6. System models and assurance case maintenance (iteration of steps 4 and 5)

The process covers the whole assurance case life cycle from the moment an argument
pattern is created in the context of an abstract metamodel, to assurance case mainte-
nance after a product has been placed on the market.

Details of the integration process are presented below with the use of a sample
argument fragment that references a system risk model. The referenced system is a
Patient Control Analgesia (PCA) infusion pump [7].

4.1 Step 1: System Metamodel Specification

The first step of the process is to specify a system risk metamodel and its data format to
allow implementation of model interface functions.

In our example, we will use a risk metamodel presented in Fig. 2. as a UML class
diagram (for simplicity class’ attributes are not shown on the diagram). The risk model
describes system hazards, their causes and control measures. The structure of the

Fig. 2. The system risk metamodel

Uniform Model Interface for Assurance Case Integration with System Models 43



metamodel is based on the hazard table format specified in [8]. The model data format
is an XML file and the XML schema is based on the presented risk metamodel.

The result of this step is a set of system metamodels along with detailed technical
data on the model format necessary for implementing the model interface as described
in the next step.

4.2 Step 2: Model Interface Development

A model interface is, in general, a software module that provides a uniform interface
for access to any type of system models. It is assumed that the model interface is only
allowed to read system models and cannot modify them. Access to system models is
realized by instantiations of abstract classes ModelType, ElementType and Expression.
An implementation of these classes is required for each system metamodel intended to
be referenced from the assurance case.

The model interface implementation for the risk metamodel presented in Fig. 2
encompasses an instantiation of ElementType class for each risk model element like
Hazard, Cause, Severity. The model interface should also include implementation of
the Expression class for each relation specified in the metamodel. For example it may
contain an expression causesOfHazard(Hazard) to denote the relation caused_by
between classes HazardousSituation and Cause. This interface function takes one

Fig. 3. Model interface metamodel

44 A. Wardziński and P. Jones



parameter of Hazard type and returns a set of elements of Cause type. Given that the
risk models are represented in XML files, we chose to use XQuery scripts to implement
access to the model data.

The script returns the result in XML format, for example:

The result consists of model elements identifiers and names. This is transformed
into a collection of Element objects and returned by the model interface. The element
name will be presented for the assurance case user and the identifier will be used for
traceability of the referenced model element.

The complete model interface implements all the functions specified in Sect. 3 and
its scope covers all the system model classes and relations between them. The pre-
sented example refers to a risk model, but model interface implementations for other
types of models (e.g. AADL, EAST-ADL) are also possible.

4.3 Step 3: Argument Pattern Development

In this step an argument pattern with references to the system metamodel is developed.
The model interface should provide operations which return available system model
types, their element types and relation, permitting the user to specify correct references

Fig. 4. Argument template

Uniform Model Interface for Assurance Case Integration with System Models 45



to a system metamodel. A definition of an abstract reference consists of three attributes:
a reference name, a model type and an element selector. The reference name is used
internally in the assurance case pattern while the model type and the element selector
are used to identify the referred element of the metamodel. For example, reference “H”
in Claim1 in Fig. 4 refers to elements of the Hazard class in HModel. The presented
argument fragment uses textual hierarchical notation. Labels of the argument elements
indicate the type for each element.

Once a reference is specified, it can also be used for other argument elements. It can
be used directly as a reference, for example Context2 refers to the same hazard H as
Claim1. A reference can also be used as a parameter for a selector. Hazard H is used as
a parameter for references in Context1 and Claim1.1 (Fig. 4). This method of reference
specification ensures that instantiated Claim1.1 will refer only to causes of a hazard
specified by the instantiation of its parent Claim1.

Model interface operation getModelTypes() (compare Fig. 3) helps to ensure that
the argument pattern references relate to existing model types. Operations
getModelElementTypeList(), getExpressionList() and getParameterList() assist in
managing correct references to the system metamodel.

All the abstract references defined in the argument pattern are recorded in the
abstract reference table (Table 1) which is an integral part of the assurance case
pattern.

The result of the pattern development step is a complete argument pattern with
references to the system metamodel represented in the abstract reference table. The
pattern is not specific to any system and it can be used for developing assurance cases
for a class of systems.

4.4 Step 4: System Modeling

The development phase begins with the system modeling step. The goal is to develop
models of a real system that comply with the corresponding system metamodels to
which the assurance case will refer. Each system model, when ready, can be used for
building safety arguments (described in the next step).

One of system models often used in safety critical systems is the risk model. In
Table 2 we present a fragment of the risk model in the form of a hazard table.

Table 1. Abstract reference table

Pattern element id Reference name Model type Element selector

Claim1
Context2

H HModel (the risk model) Hazard

Context1 Sev HModel (the risk model) SeverityOfHazard(H)
Claim1.1 C HModel (the risk model) CausesOfHazard(H)

46 A. Wardziński and P. Jones



The risk model is recorded in an XML file and its file format is based on the
metamodel presented in Sect. 4.1. The model interface will read these XML files to get
information on referenced model elements. An XML file excerpt is presented below:

The result of this step of the process is a set of system models in a format
readable by the model interface. One does not need to have all the system models
developed before starting the argument instantiation. An assurance case can be
developed incrementally and can refer to models or parts of a model that are ready at a
given time.

4.5 Step 5: Assurance Case Development

The objective of this main step is to develop an assurance case based on the argument
pattern (see step 3) and establish references to models of a particular system. To do this
the model interface must be initialized with concrete models of a real system. The user
selects an argument pattern and then specifies the file locations or links to system
models to which the assurance case will refer.

The instantiation process is performed top down starting with the top pattern ele-
ment. For each abstract reference and multiplication operator the user has to decide
how a given pattern element should be instantiated. For each abstract reference the
model interface can search existing system models for elements which satisfy the
reference conditions and the user may choose a model element for instantiated

Table 2. Excerpt of the PCA infusion pump hazard table

Hazardous
situation

Severity Cause Control measure

Air in line Critical Sensor failure to detect
air bubble

Sensor failure rate 10E-6 for air
bubbles with the size greater than 1 ml

Safety subsystem failure
to stop the pump

Safety subsystem failure rate 10E-6/h

Pump does not stop on
request

Pump design ensures stopping the
flow in the absence of control signal

Uniform Model Interface for Assurance Case Integration with System Models 47



(concrete) reference. When a multiplication operator is used, a separate argument
section can be created for each reference value (e.g. for all causes of a hazard).

The risk model fragment presented in Table 2 consists of one hazard and three
causes. The instantiation process starts with the top claim (Fig. 4). It refers to a model
element H of class Hazard. The model interface function getElementList() returns a list
of hazards defined in the hazard table and the user can select any hazard from the list.
The reference can be instantiated to the hazard ‘air in line’ specified in the hazard table.
The next argument element to be instantiated is Context1. It refers to a model element
of Severity class in relation to hazard H. The model interface will return an element
with value ‘Critical’. For the next pattern element Claim1.1 the multiplication operator
[1..*] enables the user to choose a set of referenced elements. The model interface will
return a list of causes for hazard H and all of them can be used in the claim instanti-
ation. The result is presented in Fig. 5 (the identifiers of the instantiated argument have
been reset).

The final result of this step is the instantiated argument along with the reference
table describing all the relations to system models. The reference table specifies model
element values and identifiers which can be used to track model changes (Table 3).

Fig. 5. Instantiated argument

Table 3. Concrete reference table

Argument
element id

Reference
name

Model name Model
element id

Element name

C1
Ctxt2

H PCAHazardTable.xml H1 Air in line

Ctxt1 Sev PCAHazardTable.xml S1 Critical
C2 C PCAHazardTable.xml C1 Sensor failure to detect air

bubble
C3 C PCAHazardTable.xml C2 Safety subsystem failure to

stop the pump
C4 C PCAHazardTable.xml C4 Pump does not stop on

request

48 A. Wardziński and P. Jones



4.6 Step 6: System Models and Assurance Case Maintenance

The objective of this step to accommodate the evolution of assurance cases throughout
the system life cycle. An assurance case is usually not developed all at once; rather it is
developed gradually during system development and is subject to many changes.
System models are also developed gradually. In fact, a change in one often affects a
change in the other.

Steps 4 and 5 can be repeated to gradually develop system models and the cor-
responding assurance case. The model interface provides features to facilitate this
process in the following way:

– References to new models can be added at any time in the assurance case main-
tenance process. The user can change an existing reference to make it refer to a new
model or add a new argument branch in the pattern where a multiplication operator
is used. The new argument section can refer to new or already existing system
model elements.

– Assurance case reference consistency with system models can be verified at any
moment of time. For each reference the model interface functions getElementList()
and getElement() (compare Fig. 3) can be used to check if the current reference
value refers to a correct model element. The model interface can also return the
current list of model elements which satisfy the condition specified by the abstract
reference. When the system model is modified then new model elements can be
reported. The user may want to add new argument elements with such new refer-
ences. In some cases the model interface may report that an existing reference value
is not a valid model element. Broken or inconsistent references can be reported to
allow the user to correct them.

– In case the system model element name is changed, the assurance case can be
automatically updated. The model element identifier stored in the reference table
can be used as a parameter for the function getElement() to get its current data.
When the system model element name is modified, it can be updated in the
assurance case. In this way changes in system models can be propagated to the
assurance case.

Use of a model interface allows keeping the assurance case up to date with systems
models and to evolve in accordance with progress in system development throughout
the system life cycle.

5 Summary

The presented concept of the model interface and the integration process facilitates
assurance case consistency with system models. In particular it enables:

– A uniform process of definition and instantiation of assurance case relations to
various system models independent of technical model representations (XML for-
mat, databases, files or external systems) provided that a model interface is
implemented. This simplifies managing references to diverse system model types by
the assurance case developer.

Uniform Model Interface for Assurance Case Integration with System Models 49



– Improved internal assurance case consistency by use of explicitly defined relations
between system model elements. Those relations help in managing consistency
between different references in the argument.

– Improved assurance case maintainability thanks to the possibility of incremental
assurance case instantiation and establishing references to new system models.

– Better traceability because specified model element references can be verified for
changes at any moment.

– Improved verifiability of the assurance case thanks to the possibility of analysis of
consistency between the assurance case and system models.

The presented approach has been verified with a prototype tool that implements the
model interface for the risk model and a subset of AADL models developed with
Osate2. The prototype performs assurance case instantiation and exports the argument
in XML format compliant with OMG SACM metamodel.

The model interface metamodel can be compared to the terminology classes in
OMG SACM 2.0 metamodel [9]. The terminology classes in SACM consist of Cat-
egory class which can correspond to a model type, Term class which can relate to
model elements and Expression class which can be equivalent to Expression class in
the model interface. Further research is required to determine if OMG SACM 2.0
should be extended to cover the model interface and references to models.

The presented process assumes that the argument pattern is static when the
assurance case is developed for a given system. Usually system evolutionary life cycles
span years requiring changes in the argument structure. Such changes would be
introduced to the argument pattern as well and then propagated to the assurance case.
Maintaining assurance case consistency with an evolving argument pattern may be
challenging and requires further work.

The presented concept of a model interface is new to assurance case development.
It offers the possibility of more robust assurance cases that map directly to system
models, facilitating the development of unambiguous arguments.

References

1. Jee, E., Lee, I., Sokolsky, O.: Assurance cases in model-driven development of the pacemaker
software. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 343–356.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16561-0_33

2. Górski, J., Jarzębowicz, A., Leszczyna, R., Miler, J., Olszewski, M.: Trust case justifying trust
in an IT solution. Reliab. Eng. Syst. Saf. 89, 33–47 (2005)

3. Sljivo, I., Gallina, B., Carlson, B., Hansson, H., Puri, S.: A method to generate reusable safety
case argument-fragments from compositional safety analysis. J. Syst. Softw. 131, 570–590
(2017). doi:10.1016/j.jss.2016.07.034. Elsevier

4. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case from
design: a model-based approach. In: IEEE 16th International Symposium on High Assurance
Systems Engineering (2015)

5. Compositional assurance cases and arguments for distributed MILS, D-MILS Project
deliverable D4.2, University of York (2015)

50 A. Wardziński and P. Jones

http://dx.doi.org/10.1007/978-3-642-16561-0_33
http://dx.doi.org/10.1016/j.jss.2016.07.034


6. Wardziński, A., Jarzębowicz, A.: Towards safety case integration with hazard analysis for
medical devices. In: Skavhaug, A., Guiochet, J., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP
2016. LNCS, vol. 9923, pp. 87–98. Springer, Cham (2016). doi:10.1007/978-3-319-45480-1_8

7. Larson B.R., Hatcliff, J.: Open Patient-Controlled Analgesia Infusion Pump System
Requirements, Kansas State University, SAnToS TR 2014-6-1 (2014)

8. Jones, P.L., Taylor, A.: Medical device risk management and safety cases. Bio-Med. Instrum.
Technol. 49, 45–53 (2015)

9. Structured Assurance Case Metamodel (SACM), version 2.0 – Beta, Object Management
Group (2016)

Uniform Model Interface for Assurance Case Integration with System Models 51

http://dx.doi.org/10.1007/978-3-319-45480-1_8

	Uniform Model Interface for Assurance Case Integration with System Models
	Abstract
	1 Introduction
	2 Assurance Case Integration with System Models
	3 The Concept of the Model Interface
	4 Process of Assurance Case Integration with System Models
	4.1 Step 1: System Metamodel Specification
	4.2 Step 2: Model Interface Development
	4.3 Step 3: Argument Pattern Development
	4.4 Step 4: System Modeling
	4.5 Step 5: Assurance Case Development
	4.6 Step 6: System Models and Assurance Case Maintenance

	5 Summary
	References




