
Access Control Policy Coverage Assessment
Through Monitoring

Antonello Calabrò, Francesca Lonetti(B), and Eda Marchetti

ISTI-CNR, 56124 Pisa, Italy
{antonello.calabro,francesca.lonetti,eda.marchetti}@isti.cnr.it

Abstract. Testing access control policies relies on their execution on
a security engine and the evaluation of the correct responses. Coverage
measures can be adopted to know which parts of the policy are most exer-
cised. This paper proposes an access control infrastructure for enabling
the coverage criterion selection, the monitoring of the policy execution
and the analysis of the policy coverage assessment. The framework is
independent from the policy specification language and does not require
the instrumentation of the evaluation engine. We show an instantiation
of the proposed infrastructure for assessing the XACML policy testing.

1 Introduction

Nowadays, the criticality and the importance of ruling the access and the usage
of the different distributed resources is becoming a stringent need. Episodes in
which the cloud private profiles have been violated and personal data distrib-
uted1, are unfortunately a more frequent part of our daily-news. Security prob-
lems motivate the research and industry to find solutions for data protection
that involve the improvement of the security mechanisms and the policy specifi-
cation. Security testing and assessment has also gained a lot of attention in order
to avoid security flaws and violations inside the systems or applications. Indeed,
as detailed more in the rest of this paper, policy-based testing is the process to
ensure the correctness of policy specifications and implementations. By observ-
ing the execution of a policy implementation with a test input (i.e., an access
request), the testers may identify faults in policy specifications or implementa-
tions, and validate whether the corresponding output (i.e., an access decision) is
as intended. However, most of the test cases generation approaches available in
literature for access control policies are based on combinatorial methodologies
[3,11,16], thus the generated number of test cases can rapidly grow to cope with
the policy complexity. Considering the strict constraints on testing budget, it is
extremely important to focus the testing activity in the generation or selection of
the test cases that cover the most important features and/or policy constructs.
The purpose is to reduce as much as possible the number of tests to be executed
1 http://edition.cnn.com/2014/10/02/showbiz/celebrity-news-gossip/nude-celeb-pho
tos-google-hack/.

c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017 Workshops, LNCS 10489, pp. 373–383, 2017.
DOI: 10.1007/978-3-319-66284-8 31

http://edition.cnn.com/2014/10/02/showbiz/celebrity-news-gossip/nude-celeb-photos-google-hack/
http://edition.cnn.com/2014/10/02/showbiz/celebrity-news-gossip/nude-celeb-photos-google-hack/

374 A. Calabrò et al.

trying, from one side, to maximize the fault detection effectiveness, and from
the other, to cover the most important elements/aspects defined into the policy
itself. In this paper, we focus on the testing of the access control policies and in
particular on the coverage assessment of the derived test suites. In literature, the
available coverage facilities are divided into two groups: those that are embedded
in the execution engine such as [8,14] and those that can be integrated into the
execution framework as an additional component such for instance [1,7]. Both
the solutions have specific advantages. For sure, an embedded solution reduces
the performance delay of the execution framework. The main disadvantage of
these last approaches is the lack of flexibility both in the data collection, cover-
age measures definition and language adopted. Moreover, any change requires to
redesign or improve the execution engine itself, preventing in such manner the
possibility of dynamic modification.

In this paper, we would like to overcome the above mentioned issues by
proposing a solution through which the implementation of the access policy can
be made more transparent for coverage purposes, while maintaining the flexi-
bility and access control language independency. The proposed access control
policy infrastructure is based on an external monitoring facility and enables lan-
guage independent coverage measurements. The basic behavior of the proposed
infrastructure consists into the derivation of the relevant coverage information
from the policy specification, the collection of events during the policy execution
by means of a monitoring facility, and the analysis of them so to assess the cover-
age level reached by a test strategy. Additionally, some corrective actions could
be triggered in case of violations or problems without modifying the structure
of the policy execution engine, enabling to dynamically update or modify the
policy when necessary. The type of data to be collected during the execution is
independently specified by the execution engine and is not linked to the specific
notation used for the policy specification.

The contribution of this paper can be summarized into: (i) the integration for
the first time of a monitoring framework into an access control system architec-
ture; (ii) the definition of the architecture of the Policy Assessment Infrastructure
enabling the coverage criterion selection, the policy analysis, the monitoring of
the policy execution, and the policy coverage assessment; (iii) an instantiation
of the proposed architecture on the XACML access control language.

The remainder of this paper is structured as follows: Sect. 2 introduces the
basic concepts of access control systems and coverage testing; Sect. 3 presents the
architecture of the Policy Assessment Infrastructure; Sect. 4 presents an instan-
tiation of the proposed infrastructure on the XACML context; finally, Sect. 5
concludes the paper also hinting at future work.

2 Basic Concepts

Access control is one of the most adopted security mechanisms for the protection
of resources and data against unauthorized, malicious or improper usage or mod-
ification. It is based on the implementation of access control policies expressed

Access Control Policy Coverage Assessment Through Monitoring 375

by a specific standard such for instance the wildly adopted eXtensible Access
Control Markup Language (XACML) [15]. The recent approaches for testing
access control systems can be classified into [9]: (i) Policy testing which includes
fault models and mutation based proposals [4], testing criteria based on struc-
tural coverage [2,6] and proposals exploiting the access control policies structure
[3,11]; (ii) testing the policy enforcement to discover its possible security vul-
nerability [9,14]; (iii) testing the evaluation engine by means of model-based
approach [5,7] or combination of access control policies values [3].

In this paper, we focus on the testing of the access control policies and in
particular on the coverage assessment of the derived test suite. Here below some
basic concepts about the XACML-based access control system and the coverage
testing used for the specific instantiation of the proposed Policy Assessment
Infrastructure presented in Sect. 4.

XACML [15] is a platform-independent XML-based language for the specifi-
cation of access control policies. Briefly, an XACML policy has a tree structure
whose main elements are: PolicySet, Policy, Rule, Target and Condition. The
PolicySet includes one or more policies. A Policy contains a Target and one or
more rules. The Target specifies a set of constraints on attributes of a given
request. The Rule specifies a Target and a Condition containing one or more
boolean functions. If the Condition evaluates to true, then the Rule’s Effect (a
value of Permit or Deny) is returned, otherwise a NotApplicable decision is for-
mulated (Indeterminate is returned in case of errors). The PolicyCombiningAl-
gorithm and the RuleCombiningAlgorithm define how to combine the results
from multiple policies and rules respectively in order to derive a single access
result.

The main components of an XACML based access control system are shown
in Fig. 1: the Policy Administration Point (PAP) is the system entity in charge
of managing the policies; the Policy Enforcement Point (PEP), usually embed-
ded into an application system, receives the access request in its native format,
constructs an XACML request and sends it to the Policy Decision Point (PDP);
the Policy Information Point (PIP) provides the PDP with the values of sub-
ject, resource, action and environment attributes; the PDP evaluates the policy
against the request and returns the response, including the authorization deci-
sion to the PEP.

Measurement of test quality is one of the key issues in software testing and
coverage measures represent an effective mean for evaluating the different testing
approaches. Adequacy criteria evaluate the testing strategy through the percent-
age of exercised set of elements in the program or in the specification. Usually,
test coverage can be used for different purposes: (i) improve the test suite so
to exercise elements that have not been tested; (ii) test suite augmentation and
test suite minimization in case of regression testing; (iii) test cases selection,
prioritization and test suite effectiveness evaluation. A systematic review of cov-
erage based testing is presented in [17]. Many proposals for test coverage mea-
surement and analysis, embedded directly in the evaluation engine, have been
proposed depending on the adopted policy specification language. Considering

376 A. Calabrò et al.

Fig. 1. Access control system architecture

in particular the XACML context, in [6,12] the authors propose PDP embedded
solutions for coverage analysis and selection, while [10] focuses on regression test
selection techniques.

3 Coverage Testing Framework

In this section, we propose a possible architecture of Policy Assessment
Infrastructure based on an on-line monitor. The proposal has been conceived
to be independent from the language adopted for the policy specification and
flexible enough to be adapted to the different testing purposes. In particular,
Fig. 2 (part A) shows the main components of the proposed Policy Assessment
Infrastructure (top left component), referring to a generic structure of an access
control system (top right component):

– Test case generator is in charge of test cases generation starting from the
policy specification. In literature, depending on the access policy language
there are several proposals such for instance XCREATE [3] and Targen [11]
focused on XACML-based combinatorial approaches;

– Test case executor takes in input the test suite derived by the Test case gen-
erator, and sends one by one the test cases to the Policy executor engine.
Moreover, it extracts the required information by each test case and trans-
forms them into events readable by the Monitor infrastructure.

– Trace generator is in charge of implementing the different policy coverage
criteria. It takes in input the policy from the Policy Administration Point and,
according to the selected coverage criterion, derives all the possible policy
traces. Usually, the traces extraction is realized by an optimized unfolding
algorithm that exploits the policy language structure. Intuitively, the main
goal is to derive an acyclic graph, defining a partial order on policy elements.
Several proposals are available such as [6,12] for XACML policy specification.
Once extracted, the traces are provided to the Monitor infrastructure.

Access Control Policy Coverage Assessment Through Monitoring 377

Fig. 2. Policy Assessment Infrastructure

– Policy evaluation engine is in charge of the execution of the policy and the
derivation of the associated response. It communicates with the Monitoring
infrastructure though a dedicated interface such as a REST one.

– Monitoring infrastructure is in charge of collecting data of interest during the
run-time policy execution. There can be different solutions for monitoring
activity. In this paper, we rely on Glimpse [1] infrastructure which has the
peculiarity of decoupling the events specification from their collection and
processing. As detailed in Fig. 2 (part B), the main components of Glimpse
are: (i) Complex Events Processor (CEP) which analyzes the events and cor-
relates them to infer more complex events; (ii) Response Dispatcher keeps
track of the monitoring requests and sends back the final coverage evalua-
tion; (iii)Rules Generator generates the rules using the templates stored into
the Rules Template Repository starting from the derived policy traces to be
monitored. A generic rule consists of two main parts: the events to be matched
and the constraints to be verified, and the events/actions to be notified after
the rule evaluation; (iv) Rules Template Repository stores predetermined rules
templates that will be instantiated by the Rules Generator when needed; (v)
Rules Manager instructes the CEP by loading and unloading the set of rules.
We refer to [1] for a more detailed description of the Glimpse architecture.

In a typical workflow of the proposed framework, the Policy Administration
Point sends the policy both to the Test case generator and the Policy evalua-
tion engine (step 1 of Fig. 2). The Test case generator derives from the policy

378 A. Calabrò et al.

specification a set of test cases and sends them to both the Test case execu-
tor and the Trace generator (step 2 of Fig. 2). The Trace generator derives
from the policy all the possible policy traces and sends them to the Monitoring
infrastructure (step 3 Monitoring infrastructure). The Test case executor sends
the test cases to the Policy evaluation engine, moreover it extracts from these
test cases the events that are forwarded to the Monitoring infrastructure (step
4 of Fig. 2). Finally, the responses associated to the execution of the test cases
are forwarded by the Policy evaluation engine to the Monitoring infrastructure
(step 5 of Fig. 2).

4 Application Example

In this section, we present an instantiation of the proposed Policy Assessment
Infrastructure to XACML based access control systems and its application to the
XACML policy showed in Listing 1.1. Specifically, the policy defines the accesses
to a library. It includes a policy set target (line 3) that is empty; a policy target
(lines 5–12) allowing the access only to the books resource; a first rule (ruleA)
(lines 13–30) with a target (lines 14–29) specifying that this rule applies only
to the access requests of a read action of books resource with any environment;
a second rule (ruleB)(lines 31–46), which effect is Deny when the subject is
“Julius”, the action is “write”, the resource and environment are any resource
and any environment respectively; a third rule (ruleC) (lines 47–69) that allows
subject “Julius” the action “write”, if he is also “professor” or “administrator”;
finally, the default rule (line 70) denies the access in the other cases.

The Test cases generator has been implemented by X-CREATE tool [3]
using the available Simple-Combinatorial test generation strategy. Specifically,
it derives an XACML request for each of the possible combinations of the sub-
ject, resource, action and environment values taken from the policy and some
additional requests containing random values. Listing 1.2 shows an example of
a request generated by Simple-Combinatorial strategy: the subject Julius wants
to write the books resource. Each generated XACML request is then transformed
into an event by the Test case executor and sent to the Monitor infrastructure.
The Trace generator has been implemented using the XACML smart coverage
approach presented in [6] which focuses on the policy rules coverage. Briefly,
the criterion computes the Rule Target Set, i.e., the union of the target of the
rule, and all enclosing policy and policy sets targets. The main idea is that in
order to match the rule target, the requests must first match the enclosing pol-
icy and policy sets targets. For instance, the Rule Target Sets of Listing 1.1
are presented in Table 1. We refer to [6] for the definition of the XACML smart
coverage criterion. Each Rule Target Set is sent to the Monitoring Infrastructure
as a event. The Policy evaluation engine is instantiated with the XACML Sun’
Policy Decision Point (PDP) [13] which executes the XACML requests against
the XACML policy and sends the corresponding XACML responses to the Mon-
itor infrastructure. The Monitor infrastructure observes the on-line execution of
the XACML policy on the PDP, and, according to the values of the requests,

Access Control Policy Coverage Assessment Through Monitoring 379

the responses and the set of traces generated from the XACML policy, assesses
the coverage of the XACML requests on the traces.

Table 1. Rule Target Sets of Listing 1.1

T1 = {(∅, ∅, ∅, ∅), (∅, {books}, ∅, ∅),(∅, {books}, {read}, ∅), Permit}
T2 = {(∅, ∅, ∅, ∅), (∅, {books}, ∅, ∅),({Julius}, {books}, {write}, ∅), Deny}

T3 = {(∅, ∅, ∅, ∅), (∅, {books}, ∅, ∅),({Julius, professor}, {books}, {write}, ∅), Permit}
T4 = {(∅, ∅, ∅, ∅), (∅, {books}, ∅, ∅),({Julius, administrator}, {books}, {write}, ∅), Permit}

T5 = {(∅, ∅, ∅, ∅), (∅, {books}, ∅, ∅),(∅, ∅, ∅, ∅), Deny}

As an example, in Listings 1.3 there is a rule definition for trace T3 of Table 1.
The monitor infrastructure extracts from the payload of the event Glimpse-
BaseEventRequest the field data that contains the values for the (Subjects,
Resources, Actions, Environments) and checks if they are included in the
sets of policySet, policy and rules target values of the trace T3 (lines [21–37]).
If this is verified the monitoring infrastructure extracts from the same trace
the Response value and checks whether it is equal to the corresponding PDP
response (line 43). If this is true the trace is considered covered (line 49).

In this application example, we executed the XACML policy of Listing 1.1
with all the requests generated by the Simple-Combinatorial strategy and we
reached a coverage of 60% (only T1, T2, T5 were covered). Specifically, the request
of Listing 1.2 is able to cover T2 trace. Similarly, other requests having read as
action, books as resource and any value for subject are able to cover T1 trace;
whereas requests having any subject, action, resource, and environment are able
to cover T5 trace. From the analysis of the coverage assessment results, it was
evident that, by construction, the test suite derived from Simple-Combinatorial
strategy can only cover traces including only one subject, resource, action and
environment value. The coverage of traces T3 and T4 requires XACML requests
having more than one subject, resource, action and environment values because
the effect of the corresponding XACML policy rule (Rule C) is simultaneously
dependent on more than one constraint.

This simple experiment evidences that the Simple-Combinatorial strategy is
not effective enough to reach 100% coverage of the traces and should be enriched.
By the identification of not covered traces, the Policy Assessment infrastructure
provides important hints to testers and can guide them in the generation of ad
hoc test cases or selection of more effective test strategies.
1 <PolicySet PolicySetId=‘‘policySetExample ’’

2 PolicyCombiningAlgId=‘‘first -applicable ’’>

3 <Target/>

4 <Policy PolicyId=‘‘policyExample ’’ RuleCombiningAlgId=‘‘first -applicable ’’>

5 <Target >

6 <Resource >

7 <ResourceMatch MatchId=‘‘anyURI -equal ’’>

8 <AttributeValue DataType=‘‘anyURI ’’>books</AttributeValue >

9 <ResourceAttributeDesignator AttributeId=‘‘resource -id’’ DataType=‘‘anyURI ’’/>

10 </ResourceMatch>

11 </Resource >

380 A. Calabrò et al.

12 </Target >

13 <Rule RuleId=‘‘ruleA ’’ Effect=‘‘Permit ’’>

14 <Target >

15 <Resources>

16 <Resource >

17 <ResourceMatch MatchId=‘‘anyURI -equal ’’>

18 <AttributeValue DataType=‘‘anyURI ’’>books</AttributeValue >

19 <ResourceAttributeDesignator AttributeId=‘‘resource -id’’ DataType=‘‘anyURI ’’/>

20 </ResourceMatch>

21 </Resource >

22 </Resources>

23 <Actions ><Action >

24 <ActionMatch MatchId=‘‘string -equal ’’>

25 <AttributeValue DataType=‘‘string ’’>read</AttributeValue >

26 <ActionAttributeDesignator AttributeId=‘‘action -id’’ DataType=‘‘string ’’/>

27 </ActionMatch >

28 </Action ></Actions >

29 </Target >

30 </Rule>

31 <Rule RuleId=‘‘ruleB ’’ Effect=‘‘Deny ’’>

32 <Target >

33 <Subjects ><Subject >

34 <SubjectMatch MatchId=‘‘string -equal ’’>

35 <AttributeValue DataType=‘‘string ’’>Julius </AttributeValue >

36 <SubjectAttributeDesignator AttributeId=‘‘subject -id’’ DataType=‘‘string ’’/>

37 </SubjectMatch >

38 </Subject ></Subjects >

39 <Actions ><Action >

40 <ActionMatch MatchId=‘‘string -equal ’’>

41 <AttributeValue DataType=‘‘string ’’>write</AttributeValue >

42 <ActionAttributeDesignator AttributeId=‘‘action -id’’ DataType=‘‘string ’’/>

43 </ActionMatch >

44 </Action ></Actions >

45 </Target >

46 </Rule>

47 <Rule RuleId=‘‘ruleC ’’ Effect=‘‘Permit ’’>

48 <Target >

49 <Subjects ><Subject >

50 <SubjectMatch MatchId=‘‘string -equal ’’>

51 <AttributeValue DataType=‘‘string ’’>Julius </AttributeValue >

52 <SubjectAttributeDesignator AttributeId=‘‘subject -id’’ DataType=‘‘string ’’/>

53 </SubjectMatch >

54 </Subject ></Subjects >

55 <Actions ><Action >

56 <ActionMatch MatchId=‘‘string -equal ’’>

57 <AttributeValue DataType=‘‘string ’’>write</AttributeValue >

58 <ActionAttributeDesignator AttributeId=‘‘action -id’’ DataType=‘‘string ’’/>

59 </ActionMatch >

60 </Action ></Actions >

61 </Target >

62 <Condition FunctionId=‘‘string -at -least -one -member -of’’>

63 <SubjectAttributeDesignator SubjectCategory=‘‘access -subject ’’ AttributeId=‘‘Role

’’ DataType=‘‘string ’’/>

64 <Apply FunctionId=‘‘string -bag’’>

65 <AttributeValue DataType=‘‘string ’’>professor</AttributeValue >

66 <AttributeValue DataType=‘‘string ’’>administrator</AttributeValue >

67 </Apply>

68 </Condition>

69 </Rule>

70 <Rule RuleId=‘‘ruleD ’’ Effect=‘‘Deny ’’/>

71 </Policy >

72 </PolicySet >

Listing 1.1. An XACML policy

Access Control Policy Coverage Assessment Through Monitoring 381

1 <Request xmlns=‘‘urn:oasis:names:tc:xacml:2 .0 :context:schema:os ’’>

2 <Subject >

3 <Attribute AttributeId=‘‘subject -id1 ’’ DataType=‘‘string ’’>

4 <AttributeValue >Julius </AttributeValue >

5 </Attribute>

6 </Subject >

7 <Resource >

8 <Attribute AttributeId=‘‘resource -id’’ DataType=‘‘string ’’>

9 <AttributeValue >books</AttributeValue >

10 </Attribute>

11 </Resource >

12 <Action >

13 <Attribute AttributeId=‘‘action -id’’ DataType=‘‘string ’’>

14 <AttributeValue >write</AttributeValue >

15 </Attribute>

16 </Action >

17 <Environment/>

18 </Request >

Listing 1.2. An XACML request

1 import it.cnr.isti.labsedc.glimpse.event. GlimpseBaseEventAbstract;

2 import it.cnr.isti.labsedc.glimpse.event. GlimpseBaseEventRequest;

3 import it.cnr.isti.labsedc.glimpse.event. GlimpseBaseEventPdpResponse;

4 import it.cnr.isti.labsedc.glimpse.engine.xacml.TraceEngine;

5 import it.cnr.isti.labsedc.glimpse.utils.Notifier;

6
7 declare GlimpseBaseEventAbstract

8 @role(event)

9 @timestamp(timeStamp)

10 end

11
12 rule ‘‘policySetExampleRule ’’

13 no -loop true

14 salience 20

15 dialect ‘‘java ’’

16 when

17 $aEvent : GlimpseBaseEventRequest(

18 this.isConsumed == false ,

19 this.isException == false ,

20
21 // policySetCheck

22 this.data.getSubjectsSection ().areValidForPolicySetOfTrace(‘‘T3 ’’),

23 this.data.getResourcesSection ().areValidForPolicySetOfTrace(‘‘T3 ’’),

24 this.data.getActionSection (). areValidForPolicySetOfTrace(‘‘T3’’),

25 this.data.getEnvironmentSection ().areValidForPolicySetOfTrace(‘‘T3 ’’),

26
27 // policyCheck

28 this.data.getSubjectsSection ().areValidForPolicyOfTrace(‘‘T3’’),

29 this.data.getResourcesSection ().areValidForPolicyOfTrace(‘‘T3 ’’),

30 this.data.getActionSection (). areValidForPolicyOfTrace(‘‘T3’’),

31 this.data.getEnvironmentSection ().areValidForPolicyOfTrace(‘‘T3 ’’),

32
33 // rulesCheck

34 this.data.getSubjectsSection ().areValidForRulesOfTrace(‘‘T3 ’’),

35 this.data.getResourcesSection ().areValidForRulesOfTrace(‘‘T3 ’’),

36 this.data.getActionSection (). areValidForRulesOfTrace(‘‘T3’’)),

37 this.data.getEnvironmentSection ().areValidForRulesOfTrace(‘‘T3’’));

38
39 $bEvent : GlimpseBaseEventPdpResponse(

40 this.isConsumed == false ,

41 this.isException == false ,

42 this.data.getId().compareTo ($ aEvent.getId().toString ())) == 0,

43 this.data.getResponse.compareTo(TraceEngine.getTraceResponse (‘‘T3’’)) == 0,

44 this after $aEvent);

45
46 then

382 A. Calabrò et al.

47 $aEvent.setConsumed(true);

48 $bEvent.setConsumed(true);

49 Notifier.setPolicyMatch ($ aEvent.data.getId(), ‘‘T3’’);

50 update ($ aEvent);

51 retract ($ aEvent);

52 update ($ bEvent);

53 retract ($ bEvent);

54 end

Listing 1.3. Monitoring rule

5 Discussion and Conclusions

In this paper, we presented an access control infrastructure for enabling the cov-
erage criterion selection, the monitoring of the policy execution and the analy-
sis of the policy coverage assessment. We provided an instantiation inside the
XACML-based access control systems. The preliminary obtained results showed
the effectiveness of the proposed infrastructure in evaluating the coverage of
an XACML policy. Moreover, traces analysis highlighted weaknesses in the test
suite and provided hints for the generation of ad-hoc test cases.

The application of the proposed access control infrastructure is not limited to
the coverage policy assessment as shown in this paper, but can be used to detect
on-line criticalities of the policy execution. Indeed, the monitoring infrastruc-
ture is able to detect some inconsistencies between the responses belonging to
the not covered traces and the corresponding PDP ’responses. These inconsis-
tencies could evidence potential flaws either in the policy specification or in
its implementation. Moreover, the proposed access control infrastructure could
be used in real word environments for profiling the resource usage and the user
behaviors. This could be a very important starting point for identifying the most
critical policy traces and improving their security enforcement.

Concerning threats to validity of the presented experiment, three aspects
can be considered: the test case generation, the traces generation and the policy
evaluation. Indeed, the tools adopted and the algorithms implemented may have
influenced the reported results. It could be that different choices might have
provided different effectiveness results.

We are currently working to include in the access control infrastructure more
coverage criteria. We plan also to enhance the monitor infrastructure with facil-
ities for proactively detecting, by the off-line trace analysis, possible security
inconsistencies of the tested access control policy. Other future work deals with
the instantiation of the proposed infrastructure by considering different access
and usage control policy specification languages.

Acknowledgements. This work has been partially supported by the GAUSS national
research project (MIUR, PRIN 2015, Contract 2015KWREMX).

Access Control Policy Coverage Assessment Through Monitoring 383

References

1. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a
model-driven infrastructure for runtime monitoring. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 130–144. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-24124-6 13

2. Bertolino, A., Daoudagh, S., El Kateb, D., Henard, C., Le Traon, Y., Lonetti, F.,
Marchetti, E., Mouelhi, T., Papadakis, M.: Similarity testing for access control.
Inf. Softw. Technol. 58, 355–372 (2015)

3. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: Automatic XACML
requests generation for policy testing. In: Proceedings of ICST, pp. 842–849. IEEE
(2012)

4. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: Xacmut: Xacml 2.0
mutants generator. In: Proceedings of ICST Workshops, pp. 28–33 (2013)

5. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Martinelli, F., Mori, P.:
Testing of polpa-based usage control systems. Software Qual. J. 22(2), 241–271
(2014)

6. Bertolino, A., Le Traon, Y., Lonetti, F., Marchetti, E., Mouelhi, T.: Coverage-
based test cases selection for xacml policies. In: Proceedings of ICST Workshops,
pp. 12–21 (2014)

7. Carvallo, P., Cavalli, A.R., Mallouli, W., Rios, E.: Multi-cloud applications security
monitoring. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C.
(eds.) GPC 2017. LNCS, vol. 10232, pp. 748–758. Springer, Cham (2017). doi:10.
1007/978-3-319-57186-7 54

8. Daoudagh, S., Lonetti, F., Marchetti, E.: Assessment of access control systems
using mutation testing. In: Proceedings of TELERISE, pp. 8–13 (2015)

9. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.:
Chapter one-security testing: a survey. Adv. Comput. 101, 1–51 (2016)

10. Hwang, J., Xie, T., El Kateb, D., Mouelhi, T., Le Traon, Y.: Selection of regression
system tests for security policy evolution. In: Proceedings of ASE, pp. 266–269
(2012)

11. Martin, E.: Automated test generation for access control policies. In: Proceedings
of OOPSLA, pp. 752–753 (2006)

12. Martin, E., Xie, T., Yu, T.: Defining and measuring policy coverage in testing
access control policies. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol.
4307, pp. 139–158. Springer, Heidelberg (2006). doi:10.1007/11935308 11

13. Microsystems, S.: Sun’s XACML implementation (2006)
14. Mouelhi, T., El Kateb, D., Le Traon, Y.: Chapter five-inroads in testing access

control. Adv. Comput. 99, 195–222 (2015)
15. OASIS: extensible access control markup language (XACML) version 2.0 (2005)
16. Pretschner, A., Mouelhi, T., Le Traon, Y.: Model-based tests for access control

policies. In: Proceedings of ICST, pp. 338–347 (2008)
17. Shahid, M., Ibrahim, S., Mahrin, M.N.: A study on test coverage in software testing.

Advanced Informatics School (2011)

http://dx.doi.org/10.1007/978-3-642-24124-6_13
http://dx.doi.org/10.1007/978-3-642-24124-6_13
http://dx.doi.org/10.1007/978-3-319-57186-7_54
http://dx.doi.org/10.1007/978-3-319-57186-7_54
http://dx.doi.org/10.1007/11935308_11

	Access Control Policy Coverage Assessment Through Monitoring
	1 Introduction
	2 Basic Concepts
	3 Coverage Testing Framework
	4 Application Example
	5 Discussion and Conclusions
	References

