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Abstract. Dependability is crucial in Safety Critical Cyber Physical
Systems (CPS). In spite of the research carried out in recent years,
implementation and certification of such systems remain costly and time
consuming. In this paper, a framework for Statecharts based SW com-
ponent development is presented. This framework called CRESC (C++
REflective StateCharts), in addition to assisting in transforming a Stat-
echart model to code, uses reflection to make the model available at
Run Time. Thus, the SW components can be monitored at Run Time
in terms of model elements. Our framework helps the developer sepa-
rate monitoring from functionality. Any monitoring strategy needed to
increase dependability can be added independently from the functional
part. The framework was implemented in C++ because this program-
ming language, together with the Statechart formalism constitute widely
used choices for the Safety Critical CPS domain.

Keywords: Fault Tolerance · Monitoring · Statecharts · Safety-critical
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1 Introduction

Cyber-Physical Systems (CPSs) integrate digital cyber computations with phys-
ical processes. These CPSs are composed of embedded computers and networks
that monitor and control physical processes with sensors and actuators [1].
A Safety Critical Cyber-Physical System (SCCPS) is a system whose failure
or malfunction may result in very severe consequences.

CPSs are applied in several domains including aerospace, energy, automotive,
railway or health-care, which are considered safety critical domains. In compari-
son with CPSs, SCCPSs are more complex in terms of functionality, integration
and networking interoperability, reliance on software, and the number of non-
functional constraints (e.g., dependability, robustness, scalability, safety).

Functional Safety is one of the key properties of SCCPS. Safety is aimed at
protecting the systems from accidental failures in order to avoid hazards. Many
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safety critical CPS, are required to pass a certification process and must provide
evidence that they have been developed according to the domain functional
safety standards [2–6].

The scope, complexity, and pervasiveness of SCCPSs continue to increase
dramatically. As the software of today assumes more of the responsibility of
providing functionality and control in systems, it has became more complex and
more significant to the overall system performance and dependability. Given the
current state of the art, fewer development faults are committed because of the
use of best practices and better tools, but not all are prevented.

Verification and validation techniques applied during development could help
to reduce the errors introduced in the systems but, if we want to increase the
dependability of the systems, there is still a need for Run Time Checking. There
are Fault Detection and Fault Tolerance techniques that assist in this task but
they are not easy to implement and require much effort as Laprie et al. stated
in [7].

In a process of developing SW components, designers add the requirements to
their software models in the design phase. Normally, in the next phases, most of
this information is lost. Fault Detection strategies need these requirements and
specification information. In the approach presented in this paper the specifica-
tions and requirements added in the design phase, when modelling the system,
are kept at Run Time. The SW components generated by the CRESC framework
can use the Fault Detection mechanisms to check the current internal state of
the controller by means of reflection.

The contribution of this research is to introduce the CRESC framework that
generates SW components based on Reflective Statecharts in C++ programming
language. This CRESC framework is easy to use and the generated SW control
components have the ability of introspection and adaptation.

The solution separates the functionality and safety aspects of the system. We
use a combination of classic mechanisms (such as Reflection and Statecharts).
However, from that combination we have created a new efficient tool to develop
SW control components for SCCPSs.

In Sect. 2 of the paper the Technical Background is presented. In Sect. 3 we
present the CRESC Framework. After that, in Sect. 4 a Toy Example and the
Use Case for Productive 4.0 project are shown. The Conclusion of the developed
Framework is presented in Sect. 5 and finally, the Future Lines section closes the
paper.

2 Technical Background

In the domain of CPSs, there are different techniques to design and develop
robust systems. The main aim of this research is to increase the dependability
of SCCPSs.

The term dependability has been studied by different researchers and one def-
inition by Laprie and Kanoun [8] is “trustworthiness of a computer system such
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that reliance can justifiably be placed on the service it delivers”. Laprie classifies
dependability in terms of threats, attributes and means. The means described
by Laprie are based on fault prevention, tolerance, removal or forecasting.

2.1 Fault Classification and Fault Detection

Faults can be classified in many ways and different type of faults have their
particular characteristics. Avizienis et al. after an extensive analysis presented
a classification in [9].

In our research, we considered the following faults:

– Controller faults. These faults may be due to:
• SW design and development faults: committed either during the system

initial design, from requirements specification to implementation, or dur-
ing subsequent modifications.

• HW malfunction faults: adverse physical phenomena either internal (such
as short circuits, open circuits and threshold changes) or external (such
as temperature and electromagnetic perturbations).

– Environmental faults: these faults occur during the operation phase, therefore
they are also called operational faults. They are caused by elements of the
environment that interact with the system (such as sensors, actuators and
communication systems).

Fault Detection is one of the initial and necessary steps to prevent the failure
of the system. Even if other elements of a system stop a failure by using other
techniques, it is important to detect and remove faults to prevent the exhaustion
of the fault tolerance resources of a system.

The faults we have classified could be detected by HW Redundancy (HW
and some SW faults) [10], SW Diversity (SW faults) [10] and/or Run-Time
Monitoring (all the faults but specially Environmental faults) of the SW control
components [11].

2.2 Run Time Verification

Although a model based checking approach in the design and development phases
can give enough confidence that the implementation is correct, for SCCPSs we
need to continue checking their behaviour respect to its specification also after
the deployment.

Run Time verification is the study of how to design artifacts for monitoring
and analyzing program executions. The information extracted from the running
systems is used to asses satisfaction or violation of specified properties. Those
properties are expressed formally using different notations such as finite state
machines, regular expressions and linear temporal logic formulas [12].

To monitor a program, we need to log the events and the controller status
while it is running. Program instrumentation consist of the addition of code for
such information gathering. Different types of program instrumentation could be
used to implement the error detection mechanism. These are some examples of
program instrumentation: Hooks, Design by Contract approach and Assertions.
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There are tools that automatically add program instrumentation by trans-
forming source code as CIL (C) [13] or byte/object code as Valgrind (C) [14] or
BCEL (Java) [15].

Some middleware or OS can also offer basic services to implement an error
detection mechanism. These services use the infrastructure that is behind the
application level (middleware and OS). However, it is not a platform independent
solution.

2.3 Reflective Principle

Reflection makes the model used in the design phase available at Run Time.
Computational reflection [16] is an approach that:

– Helps in separating the application and dependability mechanisms to reduce
complexity.

– Adds the introspection capacity to increase dependability.

As an example of research in Reflection carried out in recent years, in [17,18]
Lu et al. developed techniques and mechanisms to detect errors and adapt the
system to change to a non error mode at Run Time. Their approach is based on
multi-layered architectures using the AUTOSAR [19] standard middleware and
specific OS services.

2.4 Statecharts Formalism and Development Tools

UML statechart formalism allows constructing a state-based model of the con-
troller, describing both its internal behavior and its reaction to external events.

Ferreira and Rubira [20] created the Reflective State Pattern for finite state-
machine aiming at reflecting the state structure of a component and changing
its behaviour at Run Time for tolerating environmental faults. However, to the
basis of our knowledge, it is Barbier [21] who first created a framework for State-
chart based components that implicitly supported introspection of a component
at Run Time. Based on this work, Elkorobarrutia et al. [22] defined a framework
for Java that supports Run Time modification of the behaviour of a Statechart-
based software component. Elkorobarrutia’s solution does not consider real time
constraints nor the resource limitation of the execution environments in embed-
ded and real time systems.

There are a lot of patterns and proposals for transforming statecharts to code
but as far as we know none of them is well suited for our purposes. As an example
there is a framework, the Boost Statechart library [23], able to transform UML
Statecharts to executable C++ code and viceversa, but they are not aimed at
creating reflective code. Another drawback is that it makes an extensive use of
C++ templates and it becomes impractical for large sized Statecharts.

Finally, there are many commercial tools that transform Statecharts specifi-
cation to code, however this is their only aim. In addition, the transformation
rules are quite tool and version specific. Therefore, they are not suitable for
adding Run Time introspection.
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3 Design and Development of the CRESC Framework

3.1 Selected Technology

CRESC was developed as a Framework that generates components based on
Reflective Statecharts. One of the reasons for this decision was that Statecharts
are accepted by the functional safety standards due to its simplicity and to the
fact that they constitute a formalism widely used in SCCPSs [24–26].

Specifically we decided to use Reflective Statecharts because this way we are
able to introspect SW components in term of model elements and if necessary
adapt them at Run Time. Introspection and adaptability, provide the means of
adding a Fault Tolerance infrastructure to SW Control Components. Addition-
ally, the use of reflection reduces complexity as Fabre affirms in [16].

As in SCCPS domain usually they are real time and resource limited systems,
we decided to implement the framework in C++. This programming language
is more suitable for real time and resource limited systems than languages or
execution platforms as Java. Additionally, the majority of the Functional Safety
standards accept it (a subversion of C++, MISRA C++ [27]).

3.2 The Reflective Framework and Error Detection Mechanism

In the next paragraphs we are going to show the main elements of the CRESC
framework. We can not explain all the details due to the space limitations.

In order to create a reflective structure for software components, first we had
to define which elements of those components we want to reflect. We considered
previous work developed by Elkorobarrutia [28]. This work was developed in Java
and it was not thought to be used in CPSs and real time execution platforms.

First, we divided the design of the framework into two important parts: the
controller part and the executor part.

In the former, we define the behaviour of the controller implemented by
Statecharts. This part is the one that specifies and reflects the statechart model.

The second part is the one that executes the actions and conditions specified
by the controller. In Fig. 1 we can see the relationship between the two parts.

To implement the Controller, the statechart model of the application is trans-
formed to an object structure. These objects are representing concepts as states,
transitions and actions of the statecharts. This object structure is the element
that reflects the statechart model. Any change in this structure implies changes
in the model and vice versa. Thus, our code reflects the application model.

This reflection enables us to query the status of the component at Run Time.
Thus, the framework allows adding fault detection, fault tolerance and adapt-
ability mechanisms to the SW Control components.

The framework needs some extra elements to manage the Run Time informa-
tion. For that issue, the State Machine Global Repository object was developed.
This object keeps Run Time information such as active states and the event
currently being processed.
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CONTROLLER

UML Statechart Nota on: States, Transi ons, Events, Ac ons, Condi ons,…

Fig. 1. Controller part and its references to the Executor

The Dispatcher is the object that directs the execution of our SW compo-
nents. When an event is launched, it is stored in the Buffer object. The Dis-
patcher gets the event from the Buffer and it checks the current status of the
application. Then, the Controller orders what to do (i.e. transition to another
state performing specific actions) and the Executor part executes the meth-
ods (controller’s actions) that the controller orders. Figure 2 sets out the whole
picture.

Based on introspection ability of the CRESC Framework, internal error detec-
tion can be added to the controllers. To this end and based on the work carried
out by Lu [29], software hooks were used in the CRESC framework. The hooks
were added in the entry and exit actions of each of the states. These hooks will
log information of the current status provided by the Global Repository and this
logged information will be structured using the UML statecharts notation. Thus,
an Error Detection mechanism will use this information to check the correctness
of the monitored system.

So we can add introspection ability in any of the objects structure and it
is also possible to adapt the controller. Once an early error is detected, and
before the failure is generated, the Error Recovery mechanism will be started.
Depending on the safety properties of the use case and the degradation modes
defined for the current application, the Error Recovery Mechanism will initiate
the adaptation process to the defined degradation mode at Run Time.

As we are working in the Safety Critical CPS domain, these degradation
modes have to be designed previously and the adaptation in this case must be
a controlled one.
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Fig. 2. Framework infrastructure

One of the benefits of the CRESC Framework is its ability to detect controller
internal errors in early phases before they are transformed to erroneous output
control signals.

4 Toy Example and Productive 4.0 Use Case

In this section the development of a SW Control Component that controls a
distributed elevator is presented. As shown in Fig. 3 the elevator moves the load
up and down by two synchronized engines. The details of this toy example were
defined in [30]. Each of the synchronized subsystems is composed of an engine
and different sensors: top and bottom detectors and a shaft rotation sensor that
is used to infer position and speed. The elevator has two movements: up and
down.

Fig. 3. Elevator toy example
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Fig. 4. Toy example statechart

As shown in the Fig. 4, the system starts in the Idle state and once the
SwitchOn event is detected, it goes to the StartingUp state. Here, the controller
checks all the elevators and if they are ready a new transition is performed. Next,
the system goes to the Calibrating state. In this state, the controller performs the
calibration action of sensors and the system is ready to work. At this moment,
the initializing phase is finished and the system enters the Executing state.

The Executing state has two substates: Normal and Error Mode. The default
substate is the Normal Mode. Here, there are three substates: Idle (default state),
Going Up and Going Down.

The system is in the Idle state until the user sends a command (Up or Down).
Once an Up or Down event is detected, a transition is performed to Going Up
or Going Down state.

– If the activated state is Going Up, the system does not change until Stop,
TopPositionReached or an Error event is detected.

– If the activated state is Going Down, the system does not change until Stop,
BottomPositionReached or an Error event is detected.

In Normal Mode, in any of the substates, if an Error event is detected, the
system performs a transition to the Error Mode. In this state, once the system
is restored/reset, a Reset event is launched and the system goes to the default
state, the Normal Mode (Idle).

We developed and tested the case study in a Linux machine with Ubuntu
14.04 LTS and our development environment was eClipse CDT [31].
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4.1 Development Process of the Toy Example Using the CRESC
Framework

In this section we show how the design and development of the described toy
example was carried out from the developer role.

First, at the design phase, the SW designer has to model the behaviour of
the controller by UML statecharts (definition of the rootState, subStates, events,
actions, conditions and transition) using an eClipse tool called Papyrus Mod-
eling Environment [32]. This statechart model is translated to text generating
automatically the use case specific code of the CRESC framework.

Next, the CRESC framework creates the SW component automatically
adding reflectivity to the modelled controller.

In the Fig. 5 we can see the steps to follow in the main function of the CRESC
framework.

Create
Executor

Create
Controller

Start
Controller

• initStructure
• initBehaviour

Fig. 5. CRESC: main function steps

In the first step, the developer only had to define the name of the Executor
in order to identify it. The framework allows having more than one Executor
(for example to use as Error Recovery Mechanisms to adapt the behaviour of
the system when an error is detected). This information could be extracted from
the model automatically.

In the second step, when creating the controller, the developer had to define
the structure of the Controller (ToyExampleSM) using the initStructure function
and the behaviour of the system by the initBehaviour function. As mentioned
before, this step is carried out automatically extracting the model information.

The following extract of code was created automatically with the model to
text transformation. In this case, the initStructure and initBehaviour functions
were filled with the toy example specific information:

Listing 1.1. initStructure

states="idle";

idle=new

control::XorState(states,0);

root->addState(idle);

states="StartingUp";

startUp=new

control::XorState(states,0);

root->addState(startingUp);

Listing 1.2. initBehaviour

methName="SwitchOff";

fName[methName]=&Executor::SwitchOff;

action::Action

*actSwitchOff=new

action::MethodInvocation(methName);

rName="rExecuting2Idle";

control::SimpleReaction(...);

executing->addReaction(EvSOff,rExecuting2Idle);

At this point, the controller was created and the system was ready to start.



Increasing Dependability in SCCPSs Using Reflective Statecharts 123

Evaluation of Results. A Toy Example was implemented in order to show
how to use the CRESC framework. In the next list, some of the positive aspects
found in the experiment are presented:

– runtime introspection ability is added automatically to the controller,
– easy to use framework,
– SW development process: the implementation of the solution is generated

automatically from the design phase.

It is true that the listed benefits are not measurable and at this stage we
are not able to specify how much the dependability and/or efficiency have been
increased. In the next steps of the research we will add mechanisms that will
benefit from runtime introspection ability and these benefits will be measured.

4.2 Productive 4.0 Use Case

In the project Productive 4.0 (European ECSEL project), our research group
will work in the Machinery for railway wheels Use Case leaded by DANOBAT
S.Coop (industrial partner) shown in the Fig. 6. In this Use Case, the results
and future works of the presented research are going to be implemented and
evaluated. For that, MGEP will develop fault tolerant and safety critical SW
control components based on introspection. These components will be integrated
with the manufacturing HW and devices of the Use Case.

These new SW controllers will monitor the internal signals and sensors of the
machines. Different machining processes will be considered and each of them will

MACHINE-TOOL DESIGN
AND PRODUCTION

FACTORY LEVEL

CPS WP4

Productive4.0

WP1
MAINTENANCE

Services

Multi-objective 
production 
SCHEDULER

Station 1 Service

Station 2 Service

Fig. 6. Machinery for railway wheels.
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have different optimization objectives and constraints. Based on those objectives
and constraints, the controller will send optimized control signals such as spindle
speed and/or feed rate to the machine.

The controller will be modelled by UML statecharts and automatically a
CRESC SW controller component will be generated. The researchers are going
to develop an evolution of the CRESC framework that will include a Run Time
Monitoring and Checking infrastructure. Thus, the increased dependability of
the controller will be measured and the benefits of the framework quantified.

5 Conclusion

Safety, dependability, adaptability, reliability and maintainability of CPSs are
crucial issues due to the increasing complexity, development cost and the sup-
porting Run Time environment.

In this research a framework that generates SW Control Components with
introspection capacity was developed. This ability supports the addition of Fault
Tolerance mechanisms.

It is true that currently there are tools that generate code automatically
taking as starting point the system model. Some of them are reliable tools but
the developer does not know how this transformation is carried out. They are
not in control of their code and a lot of the tools are not designed for use in CPS
and they are not reflective.

The presented solution is based on Reflective Statecharts and while there are
other tools [22] that provide similar characteristics, they are not written in C or
C++. All related implementations we have found are written in Java or in lan-
guages that are not widely accepted in the CPSs domain, or the adopted solution
is very complicated which increases complexity in the solution and decreases the
dependability level.

The use of Reflective Statechart separates the functional and dependability
mechanisms properties which adds simplicity to the solution. When solutions
are simple, the integrity and the dependability level of the system increases.

In this solution, using Reflective Statecharts as modelling technique, and
C++ as the programming language, the SW Control developer has a very pow-
erful tool for the SCCPS domain.

6 Future Lines

As future research lines we can consider the following topics:

– Define a catalogue of mechanisms to add specific Fault Tolerance techniques
(such as SW and/or HW Redundancy and Recovery [33]) using this frame-
work and validate it with experimentation.

– As the Reflective Statecharts can also adapt their operation mode at Run
Time, implement the classes and modules that will permit the adaptation of
operation mode at Run Time.
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– Develop methodologies and tool support to help adding introspection ability
and dependability mechanisms to legacy systems.

– Application and Evaluation of the results in the Productive 4.0 use case.
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