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Preface

This volume contains the papers presented at SAFECOMP 2017, the 36th International
Conference on Computer Safety, Reliability, and Security, held in Trento, Italy, in
September 2017.

The European Workshop on Industrial Computer Systems, Technical Committee 7
on Reliability, Safety, and Security (EWICS TC7), established the SAFECOMP con-
ference series in 1979. It has since then contributed considerably to the progress of the
state of the art of dependable computer systems and their application in safety-related
and safety-critical systems, for the benefit of industry, transport, space systems, health,
energy production and distribution, communications, smart environments, buildings,
and living. It covers all areas of dependable systems in the “Smart World of Things”,
influencing our everyday life. Embedded systems, cyber-physical systems, (industrial)
Internet of Things, autonomous systems, systems-of-systems, safety and cybersecurity,
digital society and transformation are some of the keywords. For all the upcoming
megatrends, safety, reliability, and security are indispensable – SAFECOMP addresses
them properly from a technical, engineering, and scientific point of view, showing its
increasing relevance for today’s technology advancements.

We received a good number of high-quality submissions (65), and the international
Program Committee, more than 50 members from 14 countries, worked hard to select
22 for presentation and for publication in the SAFECOMP 2017 proceedings (Springer
LNCS 10488). The review process was thorough with at least three reviewers with
ensured independency. Three renowned speakers from the international community
were invited to give a keynote: Marcel Verhoef, “From Documents to Models:
Towards Digital Continuity”; John McDermid, “Safety of Autonomy: Challenges and
Strategies”; and Radu Grosu, “CPS/IoT: Drivers of the Next IT Revolution”. As in
previous years, the conference was organized as a single-track event, allowing inten-
sive networking during breaks and social events, and participation in all presentations
and discussions.

This year we had again five high-quality workshops in parallel the day before the
main conference, ASSURE, DECSoS, SASSUR, TELERISE (for the first time
co-located with SAFECOMP), and TIPS. These workshops differed according to the
topic, goals, and organizing group(s), and are published in a separate SAFECOMP
workshop proceedings volume (LNCS 10489).

We would like to express our gratitude and thanks to all those who contributed to
making this conference possible: the authors of submitted papers and the invited
speakers; the Program Committee members and external reviewers; EWICS and the



supporting organizations; and last but not least, the Local Organization Committee,
who took care of the local arrangements, and the Publication Chair for finalizing this
volume.

We hope that the reader will find these proceedings interesting and stimulating.

September 2017 Erwin Schoitsch
Stefano Tonetta

VI Preface
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Safety of Autonomy: Challenges and Strategies

John McDermid

University of York, UK
john.mcdermid@cs.york.ac.uk

Abstract. Robots and autonomous systems have been in use for some time - for
example in factories and in urban railways. However there is now an
unprecedented level of activity in robotics and autonomy, with applications
ranging from domestic and healthcare robots to driverless cars. Whilst, in some
cases, safety is being assessed thoroughly, in many situations these applications
cannot effectively be addressed using standard methods. Challenges include
demonstrating the safety of artificial intelligence (AI), especially learning or
adaptive systems and the effectiveness of image analysis and scene under-
standing. At a broader level there are difficulties for standards and regulations
that, in some cases, have historically sought to exclude the use of AI. The talk
will discuss some of these challenges and consider solution strategies, including
approaches to dynamic assessment of safety.



CPS/IoT: Drivers of the Next IT Revolution

Radu Grosu

Institute of Computer Engineering, Vienna University of Technology, Austria
radu.grosu@tuwien.ac.at

Abstract. Looking back at the time Bill Gates was one of his brilliant students,
Christos Papadimitriou a Harvard professor and world-renowned computer
scientist, concluded that one of the greatest challenges of the academic com-
munity is to recognising when an IT revolution is on its way. He did not see the
PC revolution coming, but his student did. Since then several others happened,
such as the Internet and the Mobiles revolutions. Another imminent one is in the
making: The CPS/IoT revolution.

Cyber-physical systems (CPS) are spatially-distributed, time-sensitive, and
multi-scale, networked embedded systems, connecting the physical world to the
cyber world through sensors and actuators. The Internet of Things (IoT) is the
backbone of CPS. It connects the swarm of Sensors and Actuators to the nearby
Gateways through various protocols, and the Gateways to the Fog and the
Cloud. The Fog resembles the human spine, providing fast and adequate
response to imminent situations. The Cloud resembles the human brain, pro-
viding large storage and analytic capabilities.

Four pillars, Connectivity, Monitoring, Prediction, and Optimisation drive
the CPS/IoT. The first two have been already enabled by the technological
developments over the past years. The last two, are expected to radically change
every aspect of our society,. The huge number of sensors to be deployed in areas
such as manufacturing, transportation, energy and utilities, buildings and urban
planning, health care, environment, or jointly in smart cities, will allow the
collection of terabytes of information (Big-Data), which can be processed for
predictive purposes. The huge number of actuators will enable the optimal
control of these areas and drive market advantages.

Despite of all these optimistic predictions, a main question still lingers: Are
we ready for the CPS/IoT revolution? In this talk, I will address the grand
challenges that stand in our way, but also point out, the great opportunities of
CPS/IoT.
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Dynamic Fault Trees



Model-Based Safety Analysis for Vehicle
Guidance Systems

Majdi Ghadhab1, Sebastian Junges2, Joost-Pieter Katoen2, Matthias Kuntz1,
and Matthias Volk2(B)

1 BMW AG, Munich, Germany
2 RWTH Aachen University, Aachen, Germany

matthias.volk@cs.rwth-aachen.de

Abstract. This paper considers the design-phase safety analysis of vehi-
cle guidance systems. The proposed approach constructs dynamic fault
trees (DFTs) to model a variety of safety concepts and E/E architec-
tures for drive automation. The fault trees can be used to evaluate vari-
ous quantitative measures by means of model checking. The approach is
accompanied by a large-scale evaluation: The resulting DFTs with up to
300 elements constitute larger-than-before DFTs, yet the concepts and
architectures can be evaluated in a matter of minutes.

1 Introduction

Motivation. Cars are nowadays equipped with functions, often realised in soft-
ware, to e.g., improve driving comfort and driving assistance (with a tendency
towards autonomous driving). These functions impose high requirements on
functional safety. To meet these requirements, it is crucial to execute these func-
tions with a sufficiently low probability of undetected dangerous hardware fail-
ures. ISO 26262 [1] is the basic norm for developing safety-critical functions in
the automotive setting. It enables car manufacturers to develop safety-critical
devices—in the sense that malfunctioning can harm persons—according to an
agreed technical state-of-the-art. The safety-criticality is technically measured
in terms of the so-called Automotive Safety Integrity Level (ASIL). This level
takes into account driving situations, failure occurrence, the possible resulting
physical harm, and the controllability of the malfunctioning by the driver. The
result is classified from ASIL QM (no special safety measures required) up to
ASIL D (with ASIL A, B, C in between). This paper considers the design-phase
safety analysis of the vehicle guidance system, a key functional block of a vehicle
with a high safety integrity level (ASIL D, i.e., 10−8 residual hardware failures
per hour). The crux of our approach is to: (1) construct dynamic fault trees [2]
(DFTs) from system descriptions and combine them (in an automated manner)
with hardware failure models for several partitionings of functions on hardware,
and (2) analyse the resulting overall DFTs by means of probabilistic model
checking [3].

c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-66266-4 1
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Fig. 1. Overview of the model-based safety approach

A Model-Based Approach. Figure 1 summarises the approach of this paper. The
failure behaviour of the functional architecture, given as a functional block dia-
gram (FBD), is expressed as a two-layer DFT: the upper layer models a system
failure in terms of block failures Bi while the lower level models the causes of
block failures. The use of DFTs rather than static fault trees allows to model
warm and cold redundancies, spare components, and state-dependent faults;
cf. [4]. Each functional block is assigned to a hardware platform for which (by
assumption) a DFT is given that models its failure behaviour. Depending on
the partitioning, the communication goes via different fallible buses. From the
partitioning, and the DFTs of the hardware and the functional level, an overall
DFT is constructed (in an automated manner) consisting of three layers: (1) the
system level; (2) the block level; and (3) the hardware level. Details are discussed
in Sect. 4.

Analysis. We exploit probabilistic model checking (PMC) [3] to analyse the DFT
of the overall vehicle guidance system. It can be used as a black-box algorithm—
no expertise in PMC is needed to understand its outcomes—and supports vari-
ous metrics that go beyond reliability and MTTF [5]. In contrast to simulation,
where results are obtained with a given statistical confidence, PMC provides hard
guarantees that the safety objectives are met. This is important as ISO 26262
requires metrics to be objectively assessable: “metrics are verifiable and precise
enough to differentiate between different architectures” [1, 5:8-2]. Whereas most
ISO 26262-based analyses focus on single and dual-point of failures, PMC nat-
urally supports the analysis of multi-point of failures of the vehicle guidance
system’s DFT. This is highly relevant, as “[for systems where the] concept is
based on redundant safety mechanism, multiple-point failures of a higher order
than two are considered in the analysis” [1, 5:9-4].

Contributions. The main contribution of this paper is two-fold: We report on
the usage of dynamic fault trees for safety analysis in a potential automotive
setting. While standard fault tree analysis is part of the ISO 26262, the usage
of DFTs in this field is new. The paper shows how additional features help
to create faithful models of the considered scenarios. These models are then
used to analyse the given scenarios. To increase the applicability of DFTs as
a method for probabilistic safety assessment in an industrial setting, we give
concrete building blocks to work with, e.g. redundancy and faults covered by
fallible safety mechanisms.
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A clear benefit of the usage of DFTs is that all these methods are inte-
grated in existing off-the-shelf analysis tools, which provide sound error bounds.
This reduces the amount of domain specific knowledge in the analysis, and thus
supports a more model-oriented approach. In this paper, we utilise this to inves-
tigate the effect of different hardware partitioning on a range of metrics. The
generated fault trees are to the best of our knowledge the largest real-life ones
in the literature – larger trees have only been artificially created for scalability
purposes [6]. In particular, this paper is the first to consider the model-checking
based approaches for DFT analysis on real-life case studies.

Related Work. Earlier work [7] considers an automotive case study where func-
tional blocks are translated to static fault trees without treating the partitioning
on hardware architectures. The effect of different topologies of a FlexRay bus has
been assessed using FTA in [8]; and identified the need for modelling dynamic
aspects. The analysis of architecture decisions under safety aspects has been
considered in e.g. [9] using a dedicated description language and an analytical
evaluation. Safety analysis for component-based systems has been considered
in [10], using state-event fault trees. Qualitative FTA has been used in [11]
for ISO 26262 compliant evaluation of hardware. Different hardware partition-
ings are constructed and analysed using an Architecture Description Language
(ADL) in [12]. ADL-based dependability analysis has been investigated for sev-
eral languages, e.g., AADL [13], UML [14], Arcade [15], and HiP-HOPS [16].
These approaches typically have a steeper learning curve than the use of DFTs.
The powerful Möbius analysis tool [17] has recently been extended with dynamic
reliability blocks [18]. Model checking for safety analysis has been proposed by,
e.g., [19]; which focuses on AltaRica, and does not cover probabilistic aspects.

Remark. The proposed concepts and architectures are exemplary. No implication
on actual safety concepts or E/E architectures implemented by BMW AG can be
derived from these examples. The same remark applies on any quantity (failure
rates, obtained metrics, ...) presented in this paper.
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2 Vehicle Guidance

The most challenging safety topic in the automotive industry is currently the
driving automation, where the driving responsibility is moving partly or even
entirely from the driver to the embedded vehicle intelligence. Rising liability
questions make it crucial to develop functional safety concepts adequately to
the intended automation level and to provide evidence regarding the integrity
and the reliability of these concepts.

2.1 Scenario

As a real-life case study from the automotive domain, we propose to consider the
functional block diagram (FBD) in Fig. 2(a) representing the skeletal structure
of automated driving. Data collected from different sensors (cameras, radars,
ultrasonic, etc.) are synthesised and fused to generate a model of the current
driving situation in the Environment Perception (EP). The model is used by
the Trajectory Planning (TP) to build a driving path with respect to the cur-
rent driving situation and the intended trip. The Actuator Management (AM)
ensures the control of the different actuators (powertrain, brakes, etc.) following
the calculated driving path. Thus, the blocks in the FBD fulfil tasks: The tasks
are realised by (potentially redundant) functional blocks, connected by lines to
depict dataflow. These diagrams are not reliability block diagrams in which the
system is operational as long as a path through operational blocks exist. Accord-
ing to the automation level, the vehicle guidance function must be designed as
fail-operational, that is, the system should safely continue to operate for a certain
time after a failure of one of its components.

2.2 Modelling of Safety Concepts

Functional Safety Concepts. Based on the criticality of the vehicle guidance
function, especially when the driver is out-of-the-loop, ASIL D applies to it.
Different design patterns have been developed and implemented in safety-critical
systems with fail-operational behaviour and high safety levels, cf. e.g. [20]. The
variety of possibilities is illustrated by the following three concepts:

SC1- Triple Modular Redundancy (TMR), Fig. 2(b): The nominal function
for vehicle guidance is replicated into three paths each fulfilling ASIL B. A Voter,
fulfilling ASIL D, ensures that any incorrect path is eliminated.

SC2- Nominal path and safety path, Fig. 2(c): Consists of two different paths,
a nominal path (n-Path) and a safety path (s-Path) in hot-standby mode. The
n-Path provides a full extent trajectory with ASIL QM and the s-Path a reduced
extent trajectory but with highest safety and integrity level ASIL D. The safety
trajectory is generated from a reduced s-EP (safety Environment Perception)
and s-TP (safety Trajectory Planning). The Trajectory Checking and Selection
(TCS) verifies whether the trajectory calculated by the n-Path is within the safe
range calculated by the s-Path or not. In the case of failure, the s-Path takes
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over the control and the safe trajectory with reduced extent is followed by the
AM. In this case, we consider the system to be degraded.

SC3- Main path and fallback path, Fig. 2(d): Similar to SC2 although the
main path (m-Path) is now developed according to ASIL D in order to detect
its own hardware failures and signalise them to the Switch. The Switch then
commutates the control of the AM to a fallback path (fb-Path) with ASIL B. In
this case, we consider the system to be degraded.

Technical Safety Concepts and Partitioning on E/E Architecture. The
next design step consists of extending the nominal E/E architecture for vehicle
guidance and partitioning the blocks of every safety concept on its elements. The
nominal E/E architecture is represented in Fig. 3(a). The vehicle guidance func-
tion is implemented on an ADAS-platform (Advanced Driver Assistance System)
which is connected to all used sensors. A number of dedicated ECUs (Electronic
Control Unit) control the actuators. On an I-ECU (Integration ECU), additional,
non-dedicated actuation functions can be implemented. Naturally, implementing
all blocks from the safety concepts on the ADAS in Architecture A defeats the
purpose of the redundant paths.

Figure 3 gives further illustrative examples for E/E architectures for the dif-
ferent safety concepts: For SC1, Architecture B (Fig. 3(b)) allows an implemen-
tation of the three redundant paths on separate ADAS-cores. The Voter is imple-
mented on the I-ECU. For SC2, the following two implementations both yield
ASIL D for the safety path, each with TCS and AM on the I-ECU: (1) Exe-
cuting the nominal path on one ADAS and redundant execution of the s-Path
on two ADAS-cores in lock-step mode, using Architecture B. (2) Encoded exe-
cution [21] of the s-Path on a single ADAS+-core in Architecture C (Fig. 3(c)),
the + refers to the additional hardware resources to run an encoded s-Path.
An E/E architecture for SC3 could run on Architecture C, where the m-Path is
implemented on ADAS1 and the fb-Path on ADAS2. Alternatives are considered
in our experiments in Sect. 5.

Hardware Platforms and Faults. We assume that all hardware platforms can
completely recover from transient faults (e.g. by restarting the affected path),
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so that only transient fault directly leading to a failure of the system are of
importance. As transient faults disappear quickly, the probability for another
fault occurring in presence of a transient fault is negligible. It is thus reasonable
to assume that during a transient fault, no other faults occur [1].

2.3 Measures

The safety goal for the considered systems is to avoid wrong vehicle guidance.
As the system is designed to be fail-operational, the system should be able to
maintain its core functionality for a certain time. The safety goal is violated, if
e.g. two out of three TMR paths or both the n-Path and the s-Path fail. The
goal is also violated if e.g. a failure of the n-Path is not detected. The safety goal
is classified as ASIL D. We stress that safe faults do not need to be considered.
For ease of notation we define the complement of probability p as 1 − p.

Several measures allow insights in the safety-performance of the different
safety concepts: System integrity refers to the probability that the system
safely operates during the considered operational lifetime. To obtain the average
failure-probability per hour, the complement of the integrity is scaled with the
lifetime (to determine the failures in time, FIT). Besides the integrity, the mean
time to failure (MTTF) is a standard measure of interest. We expect that only
a reduced functionality is provided in the degraded states: The following mea-
sures reflect insights also relevant for customer satisfaction: (1) the probability at
time t that the system provides the full functionality, (2) the fraction of system
failures which occur without going to a degraded state first, (3) the expected
time to failure upon entering the degraded state, (4) the criticality of a degraded
state, in terms of the probability that the system fails within e.g. a typical drive
cycle, and (5) the effect on the overall system integrity when imposing limits on
the time a system remains operational in a degraded state. It is important to
consider the robustness or sensitivity of all measures w.r.t. changes in the failure
rates.

3 Technical Background

3.1 Fault Trees

Fault trees (FTs) are directed acyclic graphs (DAG) with typed nodes. Nodes
of type T are referred to as “a T”. Nodes without children (successors in the
DAG), are basic events (BEs, Fig. 4(a)). Other nodes are gates (Fig. 4(b)–(h)).
A BE fails if the event occurs; a gate fails if its failure condition over its children
holds. The top level event (TLE(F )) is a specifically marked node of a FT F .
TLE(F ) fails iff the FT F fails.

Static Fault Trees. The key gate for static fault trees (SFTs, gates (b)–(d))
is the voting gate (denoted VOTk) with threshold k and at least k children. A
VOTk-gate fails, if k of its children have failed. A VOT1 gate equals an OR-gate,
while a VOTk with k children equals an AND-gate.
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Fig. 4. Node types in ((a)–(d)) static and (all) dynamic fault trees

Dynamic Fault Trees. As SFTs are not expressive enough for a faithful model,
cf. e.g. [22], dynamic fault trees (DFTs) additionally allow the following gates:

Sequence-Enforcers. The sequence enforcer (SEQ, Fig. 4(e)) restricts the order
in which BEs can fail; its children may only fail from left-to-right. Contrary to a
widespread belief, SEQs cannot be modelled by SPAREs (introduced below) [22].
SEQs appear in [1, 10-B.3], where they are indicated by the boxed L.

Priority-and. The (binary) priority-and (PAND, Fig. 4(f)) fails iff all children
failed and the right child did not fail before the left child.

Spare-Gates. Spare-gates (SPARE, Fig. 4(g)) model spare-management and sup-
port warm and cold standby. Warm (cold) standby corresponds to a reduced
(zero) failure rate. Likewise to an AND, a SPARE fails if all children have failed.
Additionally, the SPARE activates its children from left to right: A child is acti-
vated as soon as all children to its left have failed. By activating and there-
fore using a child the failure rate is increased. The children of the SPAREs are
assumed to be roots of independent subtrees, these subtrees are called modules.
Upon activation of the root of a module, the full module is activated.

Functional Dependencies. Functional dependencies (FDEP, Fig. 4(h)) ease mod-
elling of feedback-loops. FDEPs have a trigger (a node) and a dependent event (a
BE). Instead of propagating failure upwards, upon the failure of the trigger, the
dependent event fails. FDEPs are syntactic sugar in SFTs, but not in DFTs [6].

Activation Dependencies. To overcome syntactic restrictions induced by SPAREs
and to allow greater flexibility with activation, we use activation dependencies
(ADEPs), as proposed in [22, Sect. 3E]. If the activation source is activated,
this is propagated to the activation destination. ADEPs are typically used in
conjunction with an FDEP, where the activation sources are the dependent events
and the activation target is the trigger.

3.2 Analysing DFTs by Model Checking

Both the measures of interest (Sect. 2.3) and the dynamic extensions to fault
trees refer to different states in the model. It is therefore natural to make these
states explicit with a state-based model. Markov models have been long used
in model checking and performance evaluation as such state based models [23].
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storm (see http://www.stormchecker.org) is the state-of-the-art tool for the
automatic analysis of DFTs via a conversion to Markov Automata (MA) [5].
The tool chain is depicted in Fig. 5. As a first step, we rewrite the given FT:
Whereas an FT has a lot of structural requirements that make it a good and
readable fault tree, cf. [24], these requirements are counterproductive in terms
of automated analysis: Consider e.g. superfluous levels of ORs in the FT. DFTs
can automatically be rewritten using the techniques from [6] to make them
more suitable for analysis purposes. storm translates the rewritten DFT into a
(deterministic) parameterised MA: This is the computationally most expensive
step. storm then reduces the parameterised MA to a parametric continuous
time Markov chain (CTMC). Next, the parametric CTMC is instantiated to
a CTMC by considering concrete values for all failure rates: Thus, the model
construction is invoked only once for multiple sets of failure rates. The last step
executes the model-checking routine with a property to produce the required
result.

Properties. storm takes a wide variety of measures, corresponding to contin-
uous stochastic logic properties with reward extensions [3]. Most relevant are:

Reach-Avoid Probability. Given sets of target states and bad states, this mea-
sure gives the probability to reach the target state without visiting a bad state
meanwhile. If the bad set is empty, this is reachability.

Time-Bounded Reach-Avoid Probability. Given an additional deadline, it gives
the probability to reach a target state (avoiding bad states) within the deadline.

Expected Time. Given a set of target states that are eventually reached, it gives
for each state the expected time to reach the target.

Evidence. Some measures require the evaluation of degraded system states on
the earliest moment that certain nodes in the FT already failed. Typically, the
original DFT is also analysed, and the complete state space has been constructed
before. Thus, it is beneficial to deduce measures for the degraded system on the
original state space. Using evidence allows defining degraded states as initial
states in the underlying model to ease analysis. Given evidence in the form of a
set of BEs considered as already failed, all possible orderings (traces) in which
they failed are considered. Following these traces from the initial state of the

http://www.stormchecker.org
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model yields a set of states S; based on the evidence, the system is in one of
these states. For all states in S, we obtain values for the measures via model
checking. Evidence in the form of gates is conceptually equivalent, but realised
via backward-search.

Transient Faults. After the occurrence of a transient fault, the system either
fails directly, or the fault disappears and the system returns to its previous state.
Transient events are thus considered in each state, but are only added to the
underlying MA if they lead to the failure of the TLE.

Approximate Reliability. To alleviate the state space explosion problem, we
lifted the idea for sound over- and under-approximation of the MTTF [5] to
reliability. The central observation is that typically only a fraction of the state
space is relevant to obtain tight bounds for the property at hand. Thus, only a
fraction of the state space needs to be constructed: A safe over-approximation of
the complement of the reliability consists in assuming that each terminal state in
the partial state space corresponds to the failure of the TLE, whereas an under-
approximation simply assumes that the TLE cannot fail if it has not failed in
one of the terminal states.

4 Methodology

This section describes details for the approach from Fig. 1.

4.1 From Functional Block Diagrams to Functional Fault Trees

Definition 1 (Block diagram). A block diagram D = (Blc,�) is a finite
directed graph. The vertices are called blocks, the edges are called channels.

Formally, the input for this step is any block diagram, the output is a FT F
with dummy events for each hardware piece: {fx | x ∈ Blc ∪ �} ⊆ FBE.

The functional FT, i.e. the system and the block level, is created manually:
This has several advantages, most importantly: (1) There is no need to formalise
the semantics of the FBD and its implicit assumptions, e.g. different failure
behaviour of voters or edges with different meaning in FBD, and adaptions
can be made by hand. (2) Constructing the FT is an important step in the
development-process of safety-critical systems [1].

For the considered scenarios, the TLE is assumed to represent the safety-
critical failure of the system. A task-based partitioning of the FT is helpful:
The TLE is assumed to fail if any of the tasks can no longer be executed.
The tasks fail if no block can realise the task anymore. Dataflow is encoded by
encoding an error in the input as a fault. The failure behaviour of a single block
is precisely expressed as a fault tree (referred to as block fault tree). A typical
example is depicted in Fig. 6(a): The hardware-failure is a dummy event, to be
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connected with the hardware FT, and internal failures can be used for sub-blocks
or for additional descriptions. The input fails if either of the two input channels
fail: The channels fail if either the hardware for the channel fails or the block
creating the input fails, dummies for bus hardware and data flow, respectively. It
is important to support feedback loops, which are realised by the use of FDEPs,
as in [24]. The structure (simplified) is depicted in Fig. 6(b): For three blocks
as shown on top, the three FTs are connected via FDEPs. If e.g. B1 fails, the
failure is propagated to the input of B2, etc. The use of FDEPs prevents that
cyclic dependencies yield cyclic FTs, and is very flexible. The scheme can be
used as-is for hierarchical descriptions of both tasks and functional blocks. For
the safety concepts, the following remarks apply.

Triple Modular Redundancy. For the Voter input failures, rather than an OR
over the inputs as in Fig. 6(a), a VOT2 is used. The block fails if two inputs fail.

Fallback and Cold-Redundancy. The fallback-path is in cold standby: Using a
SPARE instead of an AND to encode the failure of all blocks fulfilling a task
ensures the activation of the fallback-path.

Path Switching. The Switch (SC3) may fail. This only leads to failure when the
path has to be switched. This is reflected by the FT in Fig. 6(c): the Switch fails
if it either uses the wrong path or if all input is wrong. The path is wrong if the
switching mechanism fails before the primary input fails, i.e., it can no longer
switch to an operational path. The scheme can be extended to more paths.

4.2 Fault Trees for Hardware

We support arbitrary (D)FTs to model the hardware failures. We briefly illus-
trate how to integrate coverage and both transient and permanent faults, as in [1,
10:B]. The DFT is depicted in Fig. 6(d). Faults are either transient or permanent
faults. Each type has its own corresponding safety mechanism. A transient fault
occurs if either the fault is not covered by the safety mechanism or the fault is
covered but the safety mechanism has failed before. The latter is modelled with
use of a SEQ, it cannot be modelled faithfully by a static FT.
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4.3 Hardware Assignment and E/E Architecture

Definition 2 (Hardware assignment). Given a block diagram D = (Blc,�),
a set of hardware-platforms H and a set of buses Bus, a hardware-assignment
is a function h : D → H ∪ Bus s.t. h(Blc) ⊆ H and h(�) ⊆ Bus.

Typically, we only want to assign blocks to hardware-platforms; the channel-
assignment then follows from the E/E architecture. This can be captured by a
simple set of rules, exemplified below: Any channel between two blocks assigned
to the same hardware platform is realised by the internal infrastructure on the
platform; it requires no additional hardware. All other channels are realised via
the same bus, as typical in CAN or FlexRay. Formally, assume Bus = {CAN} ∪
{cp | p ∈ H}. For a fixed block-assignment, the channel-assignment between
blocks s and t is thus ch(s) if h(s) = h(t) and CAN otherwise.

4.4 Constructing a Complete Fault Tree

To merge the FTs, we take the disjoint union of the functional FT F with
{fx | x ∈ Blc ∪ �} ⊆ FBE, and the hardware FTs {Fy | y ∈ H ∪ Bus}. For each
x ∈ Blc∪�, an FDEP with trigger TLE(Fh(x)) and dependent event fx is added,
and an ADEP in the reverse direction. The ADEP ensures that the hardware FTs
are correctly activated. For example, consider the block FT in Fig. 6(a) and the
corresponding hardware FT in Fig. 6(d). The TLE “HW failure” of the hardware
FT is connected to the dummy BE “hw” of the block FT with an FDEP.

4.5 Translating Measures

We translate the measures introduced in Sect. 2.3. The formal definition of the
measures is given in Table 1. As we construct the FT such that the TLE cor-
responds to a violation of the safety goal, (system) integrity corresponds to
reliability in FT analysis. Thus, the integrity is obtained by first computing
the time-bounded probability to reach a state where the TLE has failed and
then complementing this value. FIT computation is realised by post-processing.
The MTTF corresponds to the expected time until a state is reached where the
TLE has failed. In the considered DFTs, the expected time is always defined.
For degraded states, for (1) we compute the complement of the time-bounded
reachability probability for reaching a failed or degraded state and call this Full
Function Availability (FFA), for (2) we compute the time-bounded reach-avoid
probability avoiding degraded states and reaching the TLE failure and call this
Failure Without Degradation (FWD), for (3) we compute the expected time from
the moment of degradation to a failure. We scale these with the probability to
reach such a state. The result is the Mean Time from Degradation to Failure
(MTDF). Furthermore, for (4) we compute the reliability from the moment of
degradation: we take the minimum over all states and call the complement the
Minimal Degraded Reliability (MDR) and for (5) we compute the time-bounded
reachability to a TLE failure with a drive cycle as deadline starting from the
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Table 1. Definition of measures

moment we reach a degraded state. We scale this with the probability to reach
a degraded state in time, and add the FWD. We call the complement System
Integrity under Limited Fail-Operation (SILFO). Sensitivity analysis is realised
by a series of experiments with different failure rates.

5 Experiments

The goal of the presented experiments is to show the applicability of the proposed
methodology on systems and concepts similar to those from Sect. 2.2.

5.1 Set-up

All experiments are executed on a 2.9 GHz Intel Core i5 with 8 GB RAM. We
consider the three safety concepts. For each SC, we construct a functional FT.
We include four sensors, of which two are required for safe operation, and four
actuators, which are all required for safe operation.

Different Partitioning Schemes. For each concept, we vary the baseline
partitions from Sect. 2.2. For each concept, we additionally use (1) the nominal
architecture and (2) remove the I-ECU from the architecture; reassigning the
components to ADAS2. For some combinations, we vary the hardware, by e.g.
considering a redundant bus or introducing more hardware platforms. We addi-
tionally scale the number of sensors and actuators and the required number of
sensors for safe operation.

Failure Rates. For presentation purposes we assume the following failure rates,
which do not necessarily reflect reality and especially do not reflect any system
from BMW AG. We assume that functional blocks, e.g. EP, are free of system-
atic faults. Sensors, actuators, and ECUs have failure rates of 10−7/h. In the
ADAS hardware platforms transient (permanent) faults occur with rate 10−4/h
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(10−5/h), respectively. All faults can be detected by a safety mechanism covering
99%/90%/60% (for ASIL D/B/QM) of the faults, which fails with rate 10−5/h.
For ADAS+, failure rates increase by a factor 10 and coverage becomes 99.9%.

Tool-Support. Both the generation of the FT corresponding to the safety
concepts as well as their analysis are supported by a Python toolchain. For a FBD
and block trees for each block, dependencies based on the data flow in the FBD
are automatically inserted. Give an E/E architecture, a partitioning, hardware
FTs and the functional FT, the complete FT is automatically generated. The
analysis of DFTs as in Fig. 5 is completely automated. We additionally add
templates for the hardware FTs, such that changes in coverage or failure rates
require only single parameters to be changed.

5.2 Evaluation

An overview of (a selection of) considered scenarios and the corresponding DFTs
and CTMCs can be found in Table 2. Each scenario is defined by the safety
concept, the used architecture with possible adaptions and the fraction of sen-
sors and actuators which have to be operational (columns 2–6). The next three
columns give the number of basic events, dynamic gates and the total number
of nodes in the DFT. The last three columns contain the number of states and
transitions in the CTMC after applying reduction techniques and the percent-
age of degraded states in the CTMC. The analysis results for the measures from
Sect. 4.5 are given in Table 3. Notice that SC1 does not have degraded states. The
times for generating the model and computing each measure are given in Table 4.
Figure 7 illustrates the obtained measures for a variety of concepts and architec-
tures. The complement of the integrity is given in Fig. 7(a) and FIT in Fig. 7(b).
Figure 7(c) considers SC2 and SC3 on Architecture C: The straight lines were
obtained by the baseline failure rates for the hardware components, whereas the
dashed (dotted) lines were obtained assuming an increased (decreased) coverage
according to an increased (decreased) ASIL level. The graph in Fig. 7(d) displays
the SILFO for the safety concepts with degraded states and a drive cycle of one
hour. Moreover, computing an approximate integrity allowing a 3% relative error
on the largest scenario could be computed within 22 s (requiring only 324,990
states).

5.3 Analysis of Results

Table 2 indicates that reduction techniques successfully alleviate the state space
problem: Depending on the scenario, the generated state space remains small
even for hundreds of elements. Naturally, latent faults increase the state space,
but then the effectiveness of the approximation increases. Most of the considered
measures can be computed within seconds even on the largest models. How-
ever, MTDF and SILFO are computationally more expensive, as model checking
queries have to be performed for each degraded state. For SILFO, the failure
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Table 2. Model characteristics

Scenario DFT CTMC

SC Arch. Adap. Sens. Act. #BE #Dyn. #Elem. #States #Trans. Degrad.

I SC1 B — 2/4 4/4 76 25 233 5,377 42,753 —

II SC2 B — 2/4 4/4 70 23 211 5,953 50,049 19.35%

III SC2 C ADAS+ 2/4 4/4 57 19 168 1,153 7,681 16.65%

IV SC3 C — 2/4 4/4 57 21 170 385 1,985 12.47%

V SC2 A — 2/4 4/4 58 19 185 193 897 0.00%

VI SC2 B removed I-ECU 2/4 4/4 65 21 199 1,201 8,241 19.98%

VII SC2 B 5 ADAS, 2 BUS 2/8 7/7 96 30 266 194,433 2,171,905 19.35%

VIII SC2 B 8 ADAS, 2 BUS 6/8 7/7 114 36 305 3,945,985 66,225,665 10.90%

Table 3. Obtained measures with operational lifetime = 10,000 h and drive cycle = 1 h

Scenario System Degradation

1-integ. FIT MTTF FFA FWD MTDF MDR SILFO

I SC 1/B 1.58E-2 2.49E-6 85,658 – – – – –

II SC 2/B 1.02E-2 1.13E-6 341,954 5.17E-2 9.98E-3 227,565 2.88E-1 9.98E-3

III SC 2/C (ADAS+) 1.21E-2 1.66E-6 111,380 5.23E-2 1.07E-2 20,808 7.35E-1 1.07E-2

IV SC 3/C 1.02E-2 1.13E-6 284,685 1.58E-2 1.02E-2 135,124 2.14E-1 1.02E-2

V SC 2/A 5.99E-2 9.29E-6 69,177 5.99E-2 5.99E-2 0 0 5.99E-2

VI SC 2/B (I-ECU) 1.12E-2 1.23E-6 344,309 5.27E-2 1.10E-2 230,976 2.05E-1 1.10E-2

VII SC 2/B (5 ADAS) 1.71E-2 1.83E-6 280,228 5.83E-2 1.67E-2 173,305 3.66E-1 1.67E-2

VIII SC 2/B (8 ADAS) 1.71E-2 1.83E-6 269,305 9.78E-2 1.64E-2 TO 4.34E-1 TO

Table 4. Timings

I II III IV V VI VII VIII

Model generation 1.02 s 1.02 s 0.38 s 0.33 s 0.34 s 0.40 s 25.13 s 632.89 s

System + FFA + FWD 0.02 s 0.02 s 0.00 s 0.00 s 0.00 s 0.00 s 1.46 s 46.67 s

MTDF — 2.67 s 0.18 s 0.03 s 0.02 s 0.20 s 2892.42 s >3600 s

MDR — 0.60 s 0.11 s 0.02 s 0.02 s 0.11 s 26.07 s 781.93 s

SILFO — 1.83 s 0.17 s 0.04 s 0.02 s 0.18 s 1694.91 s >3600 s

probability within a drive cycle is orders of magnitude smaller than the FWD
indicating that the duration of the drive cycle is insignificant for SILFO.

The variety of measures obtained allows some insights in the effect of different
safety concepts that go beyond merely meeting specific targets. The MTTF
indicates that system integrity of SC3/C and SC2/B are superior, with SC2/B
slightly better than SC3/C. A similar claim can be deduced from Fig. 7(a). The
differences between SC3/C and SC2/B are marginal. Figure 7(b) indicates that
it is not always sufficient to look at the FIT as a measure as the value changes
with the considered operation time. The sensitivity shows that the influence of
the safety coverage in SC2 is higher than in SC3. Thus, the importance of fault
coverage in platforms depends on the chosen architecture. SC2/B and SC3/C
differ in their failure behaviour of degraded states as seen in Fig. 7(d). When
limiting the driving time in the degraded state to one hour SC2/B offers a
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Fig. 7. Analysis results

better integrity than SC3/C, whereas in the overall integrity the difference is
marginal.

6 Conclusion

We presented a model-based approach towards the safety analysis of vehicle guid-
ance systems. The approach (see Fig. 1) takes the system functions and their
mapping onto the hardware architecture into account. Its main benefit is the
flexibility: new partitionings and architectural changes can easily and automat-
ically be accommodated. The obtained DFTs were analysed with probabilistic
model checking. Due to tailored state-space generation [5], the analysis of these
DFTs—with up to 100 basic events—is a matter of minutes. Future work con-
sists of involved error propagation schemes and a rigorous treatment of transient
faults.
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Abstract. Fault trees (FT) are a popular industrial method for reli-
ability engineering, for which Monte Carlo simulation is an important
technique to estimate common dependability metrics, such as the system
reliability and availability. A severe drawback of Monte Carlo simulation
is that the number of simulations required to obtain accurate estimations
grows extremely large in the presence of rare events, i.e., events whose
probability of occurrence is very low, which typically holds for failures
in highly reliable systems.

This paper presents a novel method for rare event simulation of
dynamic fault trees with complex repairs that requires only a modest
number of simulations, while retaining statistically justified confidence
intervals. Our method exploits the importance sampling technique for
rare event simulation, together with a compositional state space genera-
tion method for dynamic fault trees.

We demonstrate our approach using three parameterized sets of case
studies, showing that our method can handle fault trees that could not be
evaluated with either existing analytical techniques, nor with standard
simulation techniques.

1 Introduction

The rapid emergence of robots, drones, the Internet-of-Things, self-driving cars
and other inventions, increase our already heavy dependence on computer-based
systems even further. Reliability engineering is an important field that provides
methods, tools and techniques to identify, evaluate and mitigate the risks related
to complex systems. Moreover, asset management is currently shifting towards
reliability-centered, a.k.a. risk-based, maintenance. This shift also requires a
good understanding of the risk involved in the system, and of the effects of
maintenance on the reliability. Fault tree analysis (FTA) is one of the most
important techniques in that field, and is commonly deployed in industry rang-
ing from railway and aerospace system engineering to nuclear power plants.
c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 20–35, 2017.
DOI: 10.1007/978-3-319-66266-4 2
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A fault tree (FT) is a graphical model that describes how failures propagate
through the system, and how component failures lead to system failures. An FT
is a tree (or rather, a directed acyclic graph) whose leaves model component
failures, and whose gates model how failures propagate through the system, and
lead to system failures. Standard (or: static) FTs (SFTs) contain a few basic
gates, like AND and OR, making them easy to use and analyze, but also limited
in expressivity. To cater for more complex dependability patterns, like spare
management and causal dependencies, a number of extensions to FTs have been
proposed.

One of the most widely used extensions is the dynamic fault tree (DFT)
[7], providing support for common patterns in system design and analysis. More
recently, maintenance has been integrated into DFTs supporting complex poli-
cies of inspections and repairs [9]. Both of these developments have increased
the memory and time needed for analysis, to the point where many practical
system cannot be analyzed on current systems in a reasonable time.

One approach to combat the complexity of analysis is to switch from ana-
lytic techniques to simulation. By not constructing the entire state space of the
system, but only computing states as they are visited, memory requirements are
minimal and computation time can be greatly reduced. This approach can be
successfully applied to industrial systems [19], but presents a challenge when
dealing with highly reliable systems: If failures are very rare, many simulations
are required before observing any at all, let alone observing enough to compute
statistically justified error bounds.

This problem in simulating systems with rare events can be overcome through
rare-event simulation techniques, first developed in the 1950’s [11]. By adjusting
the probabilities to make failures less rare, and subsequently calculating a cor-
rection for this adjustment, statistically justified results can be obtained from
far fewer simulations than would otherwise be needed.

We present a novel approach to analyze DFTs with maintenance through
importance sampling. We adapt the recently-developed Path-ZVA algorithm [17]
to the settings of DFTs. We retain the existing compositional semantics by
Boudali et al. [4] already used in current tools [1]. Using three case studies, we
show that our approach can simulate DFTs too large for other tools with events
too rare for traditional simulation techniques. Thus, our approach has clear ben-
efits over existing numerical tools, and tools without rare event simulation: We
can analyze larger DFTs, producing results quicker and obtain narrow confidence
intervals.

Related Work. Apart from DFTs and repairs, many more extensions have
been developed. For an overview we refer the reader to [20]. Most current FTA
formalisms support repairs using per-component repair times [23]. More com-
plicated policies can be specified using repair boxes [2] or the Repairable Fault
Tree extension [6], however both of these require exponentially distributed failure
times of components where our approach allows Erlang distributions.
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A wide range of analysis techniques exist as well, again summarized in [20].
Standard simulation methods date back to 1970 [24], continuing to be developed
until the present day [19]. Rare event simulation has been used to estimate
system reliability since 1980 [12] and is still applied today [15], although, to
our surprise, we are not aware of any approach applying rare event simulation
specifically to fault trees. An overview of importance sampling techniques in
general can be found in [10].

Organization of the Paper. This paper first explains fault trees, DFTs, and
repairable DFTs in Sect. 2. Section 3 describes rare event simulation, and the
Path-ZVA algorithm used in our approach. Next, our adaptation of rare event
simulation to DFTs is explained in Sect. 4. Our case studies with their results
are shown in Sect. 5, before concluding in Sect. 6.

2 Fault Tree Analysis

Fault tree analysis is an industry-standard, widely used method for graphically
modeling systems and conducting reliability and safety analysis [23]. Fault trees
(FTs) model how component failures interact to cause system failures. They
assist in the evaluation of a wide number of dependability metrics, including
the system reliability (i.e., the probability that the system fails within its given
mission time) and the availability (i.e., the average percentage of time that a
system is up).

An FT is a directed acyclic graph where the leaves describe failures modes,
called basic events (BEs), at a component level. Gates specify how the failures
of their children combine to cause failures of (sub)systems. The root of the FT,
called the top level event (TLE), denotes the failure of interest.

Standard, also called static, fault trees have boolean connectors as gates.
These are the AND-, OR-, and VOT(k)-gates, which fail when all, any, or at least
k of their children fail, respectively. The leaves of the tree are typically described
with either simple probabilities describing the probability of failing within a time
window of interest or the probability of being failed at any particular time, or
with exponential failure rates describing the probability of failure before any
given time. If components are repairable, the repair time in a standard fault tree
is typically also given as an exponential rate.

An example of such a tree is shown in Fig. 1. This FT describes a case study
from [9], modeling part of the interlocking system of a railway corridor. It consists
of relay and high voltage cabinets, with redundancy to survive the failure of any
single cabinet of each type. In the figure, the TLE is the OR-gate at the top. Its
children are two VOT(2)-gates and an AND-gate. The leaves of the tree are the
BEs describing the failures of individual relay and high voltage cabinets.

Classic quantitative analysis techniques for static fault trees include the com-
putation of: The probability of the TLE before a given time (called the system
reliability), the expected percentage of time the system is functioning (the avail-
ability), the components that make the largest contributions to these metrics,
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2 cabinets fail with different causes 2 high voltage cabinets fail
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Fig. 1. Example fault tree of the relay cabinet case study. Due to redundancy, the
system can survive the failure of any single cabinet, however two failures cause system
unavailability. The number of cabinets varies, and is indicated by n.

and the sensitivity of these metrics to the parameters of the BEs. For a more
complete overview of analysis techniques, we refer the reader to [20].

2.1 Dynamic and Repairable Fault Trees

Over the years, many extensions to FTs have been developed [20]. One of the
most prominent extension is the dynamic fault trees (DFT) model [7]. DFTs
introduce several new gates to cater for common patterns in dependability mod-
els: (1) The priority-AND (PAND) models order-dependent effects of failures. It
fails if and only if its left child fails and then its right child. This is used e.g. to
model the difference between a fire detector failing before or after a fire starts.
(2) The SPARE gate, modeling a primary component with one or more spare
elements. The spare elements can have different failure rates when they are in
use, and can be shared between multiple gates. Shared spare elements can only
be used by one gate at any time. (3) The functional dependency (FDEP) gate
which causes all of its children to fail when its trigger fails. It is used e.g. to model
common cause failures, such as a power failure disabling many components.

Many practical systems are not just built and then left on their own, instead
repairs and maintenance are often performed to keep a system functioning cor-
rectly and correct failures when they occur. This maintenance is crucial to the
dependability of the system, as it can prevent or delay failures. It is there-
fore important to consider the maintenance policy when performing reliability
analysis.

Standard fault trees support only simple policies of independent repairs with
exponentially distributed repair times starting immediately upon component
failure [23]. Various extensions provide more complex policies, describing that
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Fig. 2. Basic event with multiple degradation phases.

some repairs occur in sequential order rather than in parallel [2], or complex
maintenance policies with preventive inspections and repairs [18,19].

Dynamic fault trees support both the simple model with independent, expo-
nentially distributed repair times, and more complex policies with periodic
inspections and/or repairs [9]. In the more complex policies, BEs can progress
through multiple phases of degradation, as depicted in Fig. 2. An inspection
periodically checks whether its BEs have degraded beyond some threshold phase,
and returns them to their undegraded phase if they have. A periodic replacement
simply returns its BEs to their undegraded phase periodically.

2.2 Compositional Semantics

The analysis used in this paper follows the compositional semantics in terms
of input/output interactive Markov chains given in [4]. This compositional app-
roach converts each element of the DFT (i.e., gate and basic event) to an I/O-
IMC, and composes these models to obtain one large I/O-IMC for the entire
DFT. Intermediate minimization helps keep the size of the state-space to a min-
imum allowing the analysis of larger models.

Input/Output Interactive Markov Chains. I/O-IMCs are a modeling for-
malism combining continuous-time Markov chains with discrete actions (also
called signals). They have the useful property of being composable, as the sig-
nals allow several I/O-IMCs to communicate [4].

An example of this composition is shown in Fig. 3. The input signals (denoted
by a ‘?’) can only be taken when the corresponding output signal (denoted by ‘!’)
is taken. Internal actions (denoted by ‘;’) and Markovian transitions (denoted
by Greek letters) are taken independent of the other modules. If multiple non-
Markovian transitions can be taken from a state, which transition is taken is
nondeterministic.

s0

s2

s1

s3

λ

a; b!

t0

t2

t1

μ

b?

||
s0, t0 s1, t0

...

s3, t1

s2, t0 s2, t2

λ

μ a;

b!

μ
=

Fig. 3. Example of the partial parallel composition of two I/O-IMCs.
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In the example, the component models all begin in their initial states. From t0
the transition ‘b?’ cannot be taken unless the output transition ‘b!’ is also taken,
so both initial states can only perform their Markovian transitions. Assuming
the leftmost model takes its transition with rate λ first, the composition enters
state s1, t0. From here, two options are possible: (1) the internal action ‘a;’ from
s1 to s2 can be taken, leaving the rightmost model in state t0, or (2) the output
transition ‘b!’ from s1 to s3 can be taken together with the input transition
‘b?’ from t0 to t1. In the latter case, the composed model takes a transition
‘b!’ allowing it to be composed with yet more models, and enters state s3, t1,
from which neither component model can take further transitions. If the internal
action was taken, the transition from t0 to t2 with rate μ remains possible, leading
to the terminal state s2, t2.

3 Rare Event Simulation

Performance measures in practical problems often depend on events which occur
only rarely. Estimating probabilities of such rare events using standard stochas-
tic simulation is not efficient: with a limited amount of available simulation runs,
the event of interest will either not be observed at all, or not sufficiently often
to draw statistically sound conclusions. To deal with this, rare-event simulation
techniques have been developed, which modify the model or the simulation pro-
cedure in such a way that the event of interest occurs more frequently, and then
compensate mathematically for this modification.

There are two main approaches to rare event simulation, namely splitting and
importance sampling, both of which go back to the early days of computing [11].
In this paper, we use importance sampling; see [10] for a survey. In importance
sampling, the probability distributions of the random variables in the model
are modified to make the target event occur more frequently. Every time the
simulator draws a sample from a random variable, a so-called likelihood ratio
is updated, to keep track of the error being made. In standard simulation, the
estimator for the target probability would be γ̂ =

∑N
i=1 Ii, where the sum is

over all N samples or sample paths drawn, and Ii is the indicator of the target
event having occurred on the ith sample(path). In importance sampling, the
estimator is changed to γ̂ =

∑N
i=1 IiLi. Here Li is the likelihood ratio of the ith

sample(path), defined as its probability under the original probability measure
divided by its probability under the modified measure.

Change of Measure. The challenge in importance sampling is to find a good
way to change the probability distribution, also called a change of measure
(CoM). Generally, transitions (e.g., component failures) that bring the system
closer to the target state (e.g., system failure), should be made more likely and
vice versa. However, a bad choice can lead to an estimator which is worse than
the standard simulation, e.g., by putting too much emphasis on parts of the state
space that are not relevant; this can even lead to estimators that are biased or
have infinite variance. On the other hand, the theoretically optimal choice leads
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to an estimator with zero variance. Calculating a zero variance estimator, how-
ever, requires that we already know the probability of interest, and is therefore
unfeasible.

The Path-ZVA Algorithm. Many different methods have been proposed to
find a good change of measure; in this paper, we exploit the Path-ZVA algo-
rithm [16,17]. This algorithm is well suited for DFT simulation since it works
fully automated for a large class of Markov chain models with provably good
performance, and it does not require the entire state space to be constructed.
Rather, the only input needed is a function which, given a state, returns the
outgoing transitions, together with the associated rates. The simulator can then
estimate probabilities of events of the form “reaching state (or set of states)
A, starting from state B, and before returning to state C”, where C must be a
state that is reached frequently. Also (but related) it can estimate the fraction of
time the system spends in states (or set of states) A. In either case, an estimate
and a confidence interval are returned. As such, these capabilities of Path-ZVA
fit very well to estimating the unavailability of a system composed of several
components, as typically described using dynamic fault trees, under the restric-
tions that there are repairs (so state C in the above can be the state where all
components are up), and that all failure and repair processes are Markovian.

Like many other recent algorithms, the Path-ZVA algorithm starts with a
numerical approximation of the probability of interest, and then computes a CoM
from that approximation, using the formula that could be used for computing
the zero-variance CoM if the true probability of interest were known. Some other
examples of this approach in the context of modeling highly reliable Markovian
systems include [3,14]. All of this builds on parameterizing the model’s rates in
terms of powers of some rarity parameter ε, an idea that goes back to [21] where
a heuristic CoM was proposed.

In the case of Path-ZVA, the approximation of the probability of interest
consists of summing the contribution of only the most important paths to the
event of interest; hence the name Path-ZVA: zero-variance approximation based
on exploring these dominant paths. Each possible path to the event of interest
consists of a number of transitions of the Markov chain, each of which has a
rate parameterized by ε. The dominant paths are those whose transitions have
the lowest total power of ε and are thus dominant in the limit of small ε. These
are found by running a graph analysis algorithm, which needs to explore only
a small subset of the state space (typically several orders of magnitude smaller
than the full state space). For more details see [17].

Under mild conditions, it can be proven that the method leads to estimators
having the nice property of Bounded Relative Error. This means that as the
event of interest gets rarer due to rates in the model being chosen smaller, the
estimator’s confidence interval width shrinks proportionally with the probability
of interest, making its relative error bounded (cf. [13]).
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Other Approaches. Compared to other importance sampling based
approaches, (e.g. [5,14,21]) the Path-ZVA has the advantage of dealing well
with models having so-called high-probability cycles and having provable effi-
ciency properties in the limit of very small ε, thus avoiding the issues of bias and
large or infinite variance mentioned above.

Splitting-based approaches have not been considered in this paper because
they tend to be less suitable for models where the rare target event is reached via
only a few transitions each having a low rate, since such models provide fewer
points where sample paths can be split.

4 Rare Event Simulation for Fault Trees

To develop a rare event simulation technique for repairable FTs and DFTs, we
need to convert the FT into a Markov chain. For this purpose, we follow the
semantics of [4], describing the behavior of a DFT as an I/O-IMC. A major
benefit of this approach is that the I/O-IMC is not constructed as one large
model, but as a parallel composition of many smaller I/O-IMCs, each modeling
one element (i.e., gate, basic event, or maintenance module) of the DFT.

Overall, given a DFT, our analysis technique consists of the following steps:

1. Use DFTCalc to compute I/O-IMCs for all elements of the DFT.
2. Perform a breadth-first search of the Markovianized composition (explained

in Sects. 2.2 and 4.1) of these elements to identify the smallest number of rare
transitions needed to reach a failed state, called d.

3. Continue the breadth-first search to find all paths that reach a failed state
within d rare transitions.

4. Apply the Path-ZVA algorithm (explained in Sect. 3) to adjust the transition
probabilities and compute the corresponding likelihood ratios. Since only the
above-mentioned paths receive altered probabilities, the rest of the model can
be computed on-the-fly.

5. Sample traces of the adjusted model, ending each trace when it returns to
the initial state, storing the likelihood ratio, total time, and time spent in
unavailable (i.e., failed) states.

6. Average the total time D and unavailable time Z of the traces, multiplied by
the likelihood ratios. Now Z/D is the output estimated unavailability.

4.1 Reducing I/O-IMCs to Markov Chains

In most settings, I/O-IMCs are analyzed by computing the parallel composition
of the full system, and analyzing this model using a standard model checker
[1]. Our setting often produces models too large to compute the full parallel
composition, so we use Monte Carlo simulation in which we can compute visited
states on-the-fly.

Our technique requires that the (composed) I/O-IMC be reduced to a Markov
Chain, which means removing any non-Markovian transitions. In our process,
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while computing the outgoing transition from a state after composition, we
immediately take any non-Markovian transition we encounter. Thus we are only
left with states with only Markovian transitions, which can be used as an input
for the Monte Carlo simulation.

This process leaves undefined which transition is taken in nondeterministic
states. In most reasonable DFT models, the only source of nondeterminism is
the order in which gates fail when an element has multiple parents. Such non-
determinism is spurious, in that it has no effect on the outcome of the analysis.
It is therefore acceptable to leave the exact resolution undefined.

In models where nondeterminism can actually affect the results of the analy-
sis, our determinisation is clearly not desirable. We therefore apply our analysis
only on DFTs in which a syntactic check rules out the possibility of non-spurious
nondeterminism. In particular, we require the children of PAND or SPARE gates
to be entirely independent subtrees. We have found that in practice, most DFTs
in the literature already satisfy this condition.

4.2 Tooling

For our analysis, we use the models of the DFT elements produced by DFTCalc,
as well as its description of how to compose them. This way, we ensure that our
semantics are identical to those used in the existing analysis.

DFTCalc produces IMCs for the DFT elements, and a specification describing
how the IMCs are composed. It then uses the CADP [8] tool to generate the
composed IMC which can be analyzed by a stochastic model checker.

FTRES instead uses the models and composition specification to generate
the composition on the fly and apply the importance sampling algorithm to
compute the unavailability of the model.

5 Case Studies

To investigate the effectiveness our method, we compare FTRES to both a
standard Monte Carlo simulator (MC) without importance sampling built into
FTRES, and to the DFTCalc tool, which evaluates DFTs numerically via sto-
chastic model checking. We analyze three case studies, for a number of different
parameters. The first case is an industrial case study from railway signaling [9].
The second and third cases model a fault-tolerant parallel processor (FTPP)
[7] and a hypothetical example computer system (HECS) [22], both well-known
benchmarks from the literature.

Experimental Setup. For each of the cases, we compute the unavailability
(exact for DFTCalc, 95% confidence interval for FTRES and MC). We measure
the time taken with a time-out of 48 h, and the memory consumption in number
of states (which is negligible for MC). For DFTCalc we measure both peak and
final memory consumption. Simulations by FTRES and MC were performed for
10 min.
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For the railway cabinets and FTPP cases, we model the failure times of the
basic events via an Erlang distribution where the number of phases P is a para-
meter ranging from 1 to 3 phases; clearly, P = 1 corresponds to the exponential
distribution. For the HECS case, basic events are exponentially distributed.

All experiments were conducted on a dual 2.26 GHz Intel R© Xeon R© E5520
processor and 24 GB of RAM.

5.1 Railway Cabinets

This case models a redundant system of relays and high-voltage cabinets used
in railway signaling and provided by the consultancy company Movares [9].

The FT, shown in Fig. 1, describes the relays and high voltage systems con-
trolling a railway section. The relays are used to interface the electrically-powered
systems such as switch motors with remote operating stations. They are also cru-
cial for the safety of the trains, as they prevent multiple signals allowing trains
onto already-occupied tracks, switches moving while trains are passing, and other
safety violations. The high voltage cabinets provide power for local systems such
as switches and signals.

We consider several variants of the FT for given parameter values. We aug-
ment the FT with a periodic inspection restoring any degraded basic events to
perfect conditions. The time between executions of this action is governed by an
Erlang distribution with two phases, and a mean time of half a year. We vary
the number of cabinets in the system from 2 to 4.

Table 1 shows the results of the FTRES and DFTCalc and the MC tool.
We note that, whenever DFTCalc is able to compute an analytic result, this
result lies within the confidence interval computed by FTRES. We further see
that the 2-phase models with 4 cabinets, and the 3-phase models with 3 or 4
cabinets could not be computed by DFTCalc within the time-out (times shown
in Fig. 4), while FTRES still produces usable results. Finally, while the standard
Monte Carlo simulation produces reasonable results for the smaller models, on
the larger models it computes much larger confidence intervals. For the largest
models, the MC simulator observed no failures at all, and thus computed an
unavailability of 0.

Figure 6 shows the generated state spaces for both tools. Since FTRES only
needs an explicit representation of the shortest paths to failure, it can operate in
substantially less memory than DFTCalc. Although the final model computed
by DFTCalc is smaller due to its bisimulation minimization, the intermediate
models are often much larger.

5.2 Fault-Tolerant Parallel Processor

The second case study is taken from the DFT literature [7], and concerns a
fault-tolerant parallel computer system. This system consists of four groups of
processors, labeled A, B, C, and S. The processors within a group are connected
by a network element, independent for each group. A failure of this network
element disables all connected processors.
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Table 1. Comparison of the unavailabilities computed by DFTCalc, FTRES, and MC
simulation for the case studies with N cabinets/processor groups.

N P Unavailability

DFTCalc FTRES MC

Railway cabinets 2 1 4.25685 · 10−4 [4.256; 4.258] · 10−4 [4.239; 4.280] · 10−4

3 1 7.71576 · 10−4 [7.713; 7.716] · 10−4 [7.694; 7.751] · 10−4

4 1 1.99929 · 10−3 [1.998; 2.000] · 10−3 [1.999; 2.004] · 10−4

2 2 4.55131 · 10−8 [4.548; 4.555] · 10−8 [1.632; 4.387] · 10−8

3 2 6.86125 · 10−8 [6.846; 6.873] · 10−8 [0.673; 1.304] · 10−7

4 2 — [2.358; 2.394] · 10−7 [2.282; 3.484] · 10−7

2 3 5.97575 · 10−12 [5.714; 6.252] · 10−12 —

3 3 — [5.724; 7.914] · 10−12 —

4 3 — [0.337; 1.871] · 10−11 —

FTPP 1 1 2.18303 · 10−10 [2.182; 2.184] · 10−10 —

2 1 2.19861 · 10−10 [2.198; 2.199] · 10−10 —

3 1 2.21420 · 10−10 [2.213; 2.215] · 10−10 —

4 1 2.22979 · 10−10 [2.229; 2.230] · 10−10 [0; 2.140] · 10−8

1 2 1.76174 · 10−20 [1.761; 1.763] · 10−20 —

2 2 1.76178 · 10−20 [1.756; 1.770] · 10−20 —

3 2 — [1.673; 1.856] · 10−20 —

4 2 — [1.257; 2.553] · 10−20 —

N k DFTCalc FTRES MC

HECS 1 1 4.12485 · 10−5 [4.118; 4.149] · 10−5 [2.615; 10.64] · 10−5

2 1 — [3.010; 3.061] · 10−9 —

2 2 — [8.230; 8.359] · 10−5 [0; 1.734] · 10−4

3 1 — [3.024; 3.213] · 10−13 —

3 2 — [8.853; 9.106] · 10−9 —

3 3 — [1.230; 1.261] · 10−4 [0; 1.267] · 10−4

4 1 — [1.328; 8.213] · 10−17 —

4 2 — [1.145; 1.270] · 10−12 —

4 3 — [1.744; 1.817] · 10−8 —

4 4 — [1.609; 1.667] · 10−4 —
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Fig. 4. Processing times for the different tools: Times for model generation and model
checking for DFTCalc, and for the graph search and simulation for FTRES. Bars
reaching the top of the graph reached the time-out. Most bars for the HECS case
study omitted as they all timed out.

The system also has several workstations, each of which contains one proces-
sor of each group. A workstation normally uses processors A, B, and C. Processor
S is used as a spare when one of the others fails. If more than one processor fails,
the workstation is down (Fig. 5).

Computer system failure

Workstation 1 failure Workstation n failure

NA NB
...

S1

B1 C1A1

Sn

Bn CnAn

...

Fig. 5. DFT of the fault-tolerant parallel processor. Connections between the FDEP
for B omitted for clarity, as well as the FDEPs for groups C and S.

Repairs are conducted by a periodic replacement which restores any degraded
components to perfect condition. This replacement occurs at times following an
Erlang distribution of four phases, with a mean time of 0.5 for each phase.

The numerical results and computation times for this case study can be found
in Table 1 and Fig. 4 respectively. We note that the unavailability varies little
when increasing the number of computer groups, as the dominant sources of
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failures are the network elements which do not increase with N . We again see
that FTRES continues to perform well after DFTCalc runs out of time. We do
see wider confidence intervals for the larger models, however the results remain
usable for practical purposes. The standard MC simulation observed no failures
for most of the models.

Figure 6 lists the generated state spaces for both tools. Again, FTRES
requires less peak memory than DFTCalc.

5.3 Hypothetical Example Computer System

Our third example considers the Hypothetical Example Computer System
(HECS) used in [22] as an example of how to model a system in a DFT. It
consists of a processing unit with three processors, of which one is a spare, of
which only one is required to be functional. It further contains five memory units
of which three must be functional, two buses of which one must be functional,
and hardware and software components of an operator interface.

We parameterize this example by replicating the HECS N times, and requir-
ing k of these replicas to be functional to avoid the top level event. The basic
events in this case remain exponentially distributed, and we add maintenance
as a periodic replacement of all failed components on average every 8 time units
(on a 2-phase Erlang distribution).

Fig. 6. Numbers of states stored in memory for the different cases with N cabi-
nets/processor groups. For DFTCalc, both the largest intermediate and the final (min-
imized) state spaces are given.

As for the other cases, Table 1 lists the numeric values computed by the
tools, while Figs. 4 and 6 show the processing time and state spaces computed,
respectively. We notice that except for the simplest case, DFTCalc is unable
to compute the availability within 48 h, and the MC simulator in many cases
failed to observe any failures, and produced very wide confidence intervals in the
cases where it did. FTRES, on the other hand, produced reasonable confidence
intervals for all cases (although the interval for the (4, 1) case is fairly wide, it
also has the largest state space and a very small unavailability).
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5.4 Conclusions on Case Studies

As the sections above show, FTRES outperforms DFTCalc for larger models, and
traditional MC simulation for models with rare failures. In particular, FTRES:

– requires less memory than DFTCalc in every case, and requires less time for
large models, while still achieving high accuracy.

– can analyze models larger than DFTCalc can handle.
– gives substantially more accurate results than MC in similar processing time.

6 Conclusion

We have presented FTRES, an efficient and novel approach for rare-event simu-
lation of dynamic fault trees through importance sampling. We follow the com-
positional semantics of Boudali et al. [4] providing flexibility and extensibility.
Our use of the Path-ZVA [17] algorithm allows us to store only a small fraction
of the state space, ameliorating the problem of the state space explosion.

We have demonstrated through three case studies that our approach has
clear benefits over existing numerical tools, and tools without rare event simu-
lation: We can analyze larger DFTs, produce results quicker and obtain narrow
confidence intervals.

As future work, we intend to extend the tool to support non-spurious non-
determinism, allowing the analysis of the full space of DFTs.
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Abstract. In this paper, we investigate the pondered selection of inno-
vative software verification technology in the safety-critical domain and
its implications. Verification tools perform analyses, testing or simulation
activities. The compliance of the techniques implemented by these tools
to fulfill standard-mandated objectives (i.e., to be means of compliance
in the context of DO-178C and related supplements) should be explained
to the certification body. It is thereby difficult for practitioners to use
novel techniques, without a systematic method for arguing their appro-
priateness. Thus, we offer a method for arguing the appropriate applica-
tion of a certain verification technique (potentially in combination with
other techniques) to produce the evidence needed to satisfy certification
objectives regarding fault detection and mitigation in a realistic avionics
application via safety cases. We use this method for the choice of an
appropriate compiler to support the development of a drone.

Keywords: Safety cases · Faults · Standard compliance · Verification
techniques

1 Introduction

For the certification of safety-critical systems, safety engineers are frequently
required to present a safety case of the system. A safety case is a documented
body of evidence that provides a convincing and valid argument that a system is
adequately safe for a given application in a given environment [3]. The certifica-
tion authority investigates the confidence in the claims of a safety case, namely
the probability of the claim being true [3]. This probability depends on how
uncertainties regarding the safety case (e.g., regarding the evidence expected
to support the claims) are handled. For example, one uncertainty regards the
correctness of the implementation. This uncertainty lays in the verification pro-
cedure and is caused by (1) uncertainty in the correct implementation of the
c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 39–54, 2017.
DOI: 10.1007/978-3-319-66266-4 3
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verification tool – Can the output of the tool be trusted?, (2) uncertainty in the
rationale of the verification technique – Is this the right way for verifying the ful-
fillment of system requirements? [7]. Thus, in order to employ a state-of-the-art
verification tool, the engineer needs to assess the appropriateness of the tech-
nique it implements. A technique is appropriate if it provides trustworthy and
relevant verification results. Considerable research effort has been put into the
investigation of arguing tool assurance (i.e., integrity and qualification accord-
ing to standard) [7]. Safety standards provide certain objectives techniques must
satisfy. These objectives are typically used in industry in form of checklists for
the selection of verification techniques. However, the standards do not clarify
(1) why the objectives contribute to demonstrate the confidence in results and
(2) how they relate to the characteristics of the verification technique that must
achieve them. For example, before DO-333 [22], it was unknown (1) what was
the relevance of this objective for the system’s safety, and (2) how the testing
structural coverage objective could be addressed with a formal verification tech-
nique. This problem has been dealt with by supplements providing guidance on
how to adapt these innovative technologies to a DO-178C project (e.g., DO-333
Formal Methods Supplement). However, the creation of such supplements can
take years. One of the main causes for this is that little is known about arguing
whether a technique is appropriate to support a given activity. The appropriate-
ness of a technique is its quality to satisfy the corresponding objectives. Thus, in
this paper, we take on the problem of appropriately employing verification tech-
niques for the construction of systems according to a specific level of stringency,
specified via an assurance level (AL).

This paper’s contribution at tackling this problem is three-fold. First, we offer
an alternative for the pondered selection of verification techniques. Pondered
selection means a selection of techniques, based on how they are contributing to
typical systematic failure avoidance. We achieve this by extending the Structured
Assurance Case Metamodel (SACM) [19]. Second, we describe relationship types
between heterogeneous verification results collaborating to the achievement of
one safety goal. Third, based on this meta-model, we provide safety case patterns
for arguing the appropriateness of a certain technique.

In Sect. 2, we provide the context of our problem statement. In Sect. 3, we
present our metamodel. Then, in Sect. 4, we present a set of safety case patterns
that help with the pondered selection of a certain verification technique for the
performance of a certain activity. We evaluate our approach by instantiating the
proposed metamodel to assess the appropriateness of the results from a compiler,
performed on a drone (see Sect. 5). The last two sections contain related work
and conclusions.

2 Background

The development of safety-critical systems is guided by standards. In avion-
ics, it is recommended that software developers reach the objectives defined
in the DO-178C de-facto standard [21]. DO-178C is technology-independent,



Arguing on Techniques Appropriateness 41

abstractly defining development and verification activities to be performed. For
each activity, it defines a set of objectives that need to be satisfied by concrete
verification techniques. How these objectives are to be fulfilled is up to concrete
means of compliance. A means of compliance is the technique that the devel-
oper uses to satisfy the objectives stated in the standard [21]. The certification
authority needs to agree on the means of compliance proposed by the devel-
oper. Techniques of the software verification process need to be proposed during
the certification liaison process. The verification process has two purposes: (1)
show that the system implements its safety requirements and (2) detect and
report faults that may have been introduced during the software development
processes. DO-178C focuses on analysis, reviews and software testing techniques
for performing verification activities. Whereas its supplement DO-333 [22] pro-
vides guidance for using formal methods (e.g., abstract interpretation, model
checking, theorem-proving and satisfiability solving) in the certification of air-
borne systems. The supplement modifies DO-178C objectives, activities, and
software life cycle data to address when formal methods are used as part of the
software development process.

The Object Management Group offers a standardized modeling language
for describing safety cases: the Structured Assurance Case Metamodel
(SACM) 2.0 [19]. SACM contains a structured way of describing evidence-
related efforts, namely the Artefact Metamodel. The Artefact Metamodel con-
tains classes depicting the following: artefacts, participants, resources, activities,
and techniques. The Activity class represents units of work related to the man-
agement of ArtefactAssets. The Technique class describes the techniques per-
forming the activities. For example, the Verification of Low-level Requirements
activity, from DO-178C/DO-333, may be performed either via a testing tech-
nique (e.g., unit testing) or a formal analysis technique (e.g., theorem proving).
There are three types of evidence in safety cases, namely direct, backing and rein-
forcement [24]. Whereas direct evidence refers to proofs that the system under
certification meets the safety goal, the backing evidence proves that the direct
evidence can be used in the argumentation with confidence [1,16]. In order to
justify the confidence, the relevance of the evidence serves as a proof of safety
claim’s satisfaction [24]. The relevance of an evidence type is assessed by docu-
menting the role and limitations of the underlying technique. Such limitations
may be that the verification technique is not able to cover the entire input space
or to identify deep faults due to insufficient unrolling. This information helps
to make an informed decision when choosing a type of evidence for satisfying a
certain claim [16].

3 Pondering the Selection of Verification Techniques

In this section, we propose guidelines for the selection of techniques in order
to fulfill verification objectives of DO-178C/DO-333. We propose a metamodel
that offers a description of standard-mandated compliance and considers the
relationships between standard objectives, software verification techniques and
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safety evidence. Our metamodel extends the SACM Artefact Metamodel. We
refine the Technique and Activity classes in the SACM metamodel, by Verifica-
tion Technique and, respectively, Verification Activity classes (see Fig. 1).

Next, we will explain the attributes pallet of our proposed SACM Verification
Technique class, depicted in Fig. 1. These attributes enable the characterization
of the appropriateness of a verification technique. Some of the attributes come
from the objectives a technique needs to fulfill in order to be employed for
a DO-178C/DO-333-compliant activity (e.g., structural coverage). Additional
attributes are taken from specialized literature depicting safety verification tech-
niques (e.g., works such as [2,23]). These attributes are taken into consideration
during safety assurance, but have not been documented in the standard and are
typically not included in checklists, since they are considered implicit attributes
(e.g., technique soundness). Explicitly addressing these attributes helps at tak-
ing an informed decision and to build a convincing argument for the technique
appropriateness. For some of the described attributes, we provide enumerations
of the values the attributes can take. The permitted values are extracted from
the standard.

Any verification technique has a certain name, which uniquely identifies it
(see techniqueName attribute). Verification techniques address different verifica-
tion objectives because of their different rationale. Thus, the Verification Tech-

Verification Technique

techniqueName: string
checkablePropertyTypes: list<SafetyProperty>

verificationRationale:RefToDocument
structuralCoverage: StructuralCoverageType

falseNegativeVulnerable:boolean 
falsePositiveVulnerable:boolean 

boundedTime:boolean 
terminationCriterion: string

exampleApplication: RefToDocument
detectableSystematicFaultTypes: 

list<SystematicFaultType>
detectableSystematicFaultTypesRates: list<int>

envConstraints:list<String>
limitations: list<String>

Verification Activity

systematicFaultTypes: list<SystematicFaultType>
propertyTypes: list<SafetyPropertyType>

canBe
ImplementedBy

Activity
assuranceLevel: AssuranceLevel

Technique

supports

complements

<<enumeration>>
SafetyPropertyType

HighLevelSafetyRequirement
LowLevelSafetyRequirement
IntegrationSafetyRequirement

SoftwareArchitectureSafetyRequirement
SourceCodeSafetyRequirement

<<enumeration>>
VerificationTechniqueType

Testing
Formal Methods
Static Analysis

Model Checking
Review
Other

<<enumeration>>
StructuralCoverageType

FunctionCoverage
StatementCoverage

BranchCoverage
ConditionCoverage

Exhaustive
Other

<<enumeration>>
SystematicFaultType

Memory overlaps
Incorrect interrupt handling

Stack overflow
Incorrect initialization

Data corruption
Incorrect loop operations
Incorrect logic decisions

Incorrect exceptions 
handling

Arithmetic faults 
Violations of array limits 

Static Memory
Dynamic Memory

Numerical
Resource Management

Pointer-Related
Concurrency

Inappropriate Code
Miscellaneous

<<enumeration>>
SystemDescription

SourceCode
ObjectCode

DesignArchitecture

<<enumeration>>
AssuranceLevel

AL1
AL2
AL3
AL4
AL5

Fig. 1. A meta-model for depicting verification techniques and activities
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nique class should contain an attribute referencing a description of the rationale
(see the verificationRationale attribute). Documenting the context is required
when assessing how appropriate the technique is and indicates the feasibility of
the technique’s application. For instance, the exampleApplication attribute, ref-
erencing projects which already made use of the technique, can only be used if
the verification’s context is similar. The context includes the constraints on the
environment of the system (see envConstraints) [4]. This attribute ensures that
the technique is appropriate for verifying the system, in the context in which
the system is supposed to work.

No unique technique can cover all objectives of the verification process. For
example, the rationale of testing techniques is to execute the code to reveal
faults. However, testing has its limitations. One limitation is that testing tech-
niques may detect concurrency faults, but overall, the level of confidence about
the quality of the code is not high. This is due to the fact that concurrent software
is inherently non-deterministic. Thus, it is necessary to describe the objectives of
the verification technique, namely the types of properties it can check (see check-
ablePropertyTypes attribute). The checkablePropertyTypes attribute enumerates
all the standard-mandated properties the respective technique can cover.

Static analysis takes all thread execution pathways and deployment scenarios
into account. Thus, static analysis verification techniques are more appropri-
ate for discovering and diagnosing concurrency faults. Hence, it is important to
know to what extent the scope may be verified by the technique (i.e., number
of explored states or loop unrolling). Thus, we add to the VerificationTechnique
class the structuralCoverage attribute. Static analysis techniques have the ben-
efit of verifying the system’s code exhaustively. However, they also have their
limitations, which need to be specified, understood and assessed for the fulfill-
ment of an objective (see limitations attribute). In the Verification Technique
class we suggest possible limitations of verification techniques. One possible lim-
itation is the detection of false negatives (see attribute falseNegativeVulnerable).
This does not affect the certification process per se, but it delays the process,
since the safety engineer might investigate an error which does not exist. Another
limitation may be that a verification technique verifies a property and may say
that the property is satisfied, when it is not. Such techniques are unsound. We
capture this limitation in the falsePositiveVulnerable boolean attribute. Exam-
ple of false-positives is when a test result wrongly indicates that a particular
condition or attribute is present. Unsound techniques cannot be used in the
verification process of safety-critical systems, since they may be harmful. For
example, the consequences of falsely confirming that a state is reachable may
be catastrophic. Thus, verification techniques that have the falsePositiveVulner-
able attribute set to “true” may not be used for employing safety verification
activities. Furthermore, a frequent type of limitation, which is specific to model
checking techniques, is the fact that the verification might not terminate in due
time. In such cases, model checking cannot be set to explore all the states due to
their large number: large number of states makes the verification last longer than
feasible (see the boolean boundedTime attribute). If the boundedTime attribute
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is true, the terminationCriterion attribute should also be set, in order to know
when the verification is supposed to stop and to know up to which length coun-
terexamples have been searched.

The verification process is described by DO-178C as a process for discover-
ing faults. Thus, in order to analyze a verification technique, it is important to
know what types of faults it may uncover - detectableSystematicFaultTypes (e.g.,
arithmetic faults, violations of array limits). In studies presenting tools checked
against benchmarks, there is a so called defect rate, which refers to the percent-
age of erroneous tests. The detectableSystematicFaultTypesRates attribute of the
Verification Technique class offers a quantitative assessment of how a selected
technique is better than others. Each element from the detectableSystematic-
FaultTypesRates list corresponds to the element with the same position from
the detectableSystematicFaultTypes list.

This metamodel describes a set of traces between two different aspects of
safety argumentation artefacts: the verification activity and the verification tech-
nique (see Fig. 1). These traces enable the assessment of the appropriateness of a
technique for performing some activity. The Verification Activity class, depicted
in Fig. 1, offers a general structure for depicting any verification activities in
DO-178C. The attributes of this class are derived from the structure of these
verification activities. As presented in [11], every development activity, includ-
ing verification activities, has an assurance level. In the context of DO-333 it
is called assurance level (AL). Thus, we add to the Activity class the assur-
anceLevel attribute. The Activity class also depicts the typical faults that are to
be identified and mitigated during the referred activity type (see the attribute
systematicFaults). The propertyTypes, which must be achieved by the verification
process, given the assurance level, are indicated by TablesA 3–6, in DO-178C.
A verification technique is appropriate to perform a certain verification activity
(see canBeImplementedBy relationship), if the technique is able to check at least
some of the propertyTypes required by the activity to be checked (i.e., the set
checkablePropertyTypes of the technique is at least a subset of the propertyTypes
set of the activity), applicable by the assuranceLevel. Also, the technique should
be able to detect at least some of the systematicFaultTypes specified by the
activity (i.e., the set detectableSystematicFaultTypes of the technique is at least
a subset of the systematicFaultTypes set of the activity). However, a technique
may only be able to check certain properties or to identify certain faults. Differ-
ent techniques may be combined in order to perform a verification activity. For
example, in Cârlan et al. [6], we present a testing technique and a model checker
collaborating for discharging verification goals.

Heterogeneous Verification Techniques. Evidence tends to be incomplete
(e.g., a single test case, or model checking of a single property). In this situa-
tion, multiple items of evidence are needed. In Fig. 1, we document and reason
about the relationships between the heterogeneous verification techniques gen-
erating evidence items. One type of relationships is supports. This relationship
covers the case where a verification technique is used to assess the fulfillment
of an objective by the results of another verification technique. Techniques in
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a supports relationship work orthogonally, addressing different concerns – one
discharges safety goals, the other is used to verify the results discharging the
safety goals, in order to assess the trustworthiness of the evidence provided by
the first technique. Thus, a verification technique supports another if it is used
to detect faults in the other’s verification results, by providing backing evidence.
For example, a model checking technique may support a static analysis technique
by verifying the faults detected [5]. The other relationship type is complements.
This relation represents two verification techniques that collaborate for provid-
ing relevant evidence for discharging together safety goals. On the one hand, a
verification technique may complement another if it is used to detect the faults
not identified by the other. On the other hand, a verification technique com-
plements another technique if it is able to verify types of requirements which
cannot be verified by the other technique. Both of the techniques provide direct
evidence. For example, verifying a set of properties via bounded model checking,
combined with testing [6].

4 A Pattern for Arguing Technique Appropriateness

In the system’s safety cases, the developer has to argue that the verification
results are trustworthy and relevant. As mentioned in Sect. 1, this enables the
assessor to have confidence in the results. The techniques associated with the
creation, inspection, review or analysis of assurance artefacts contribute to the
level of relevance of the safety case evidence [8,19]. In this section, we offer a
pattern for arguing the appropriateness of verification techniques, driven by the
need to deliver relevant safety evidence. We call this argumentation structure the
technique appropriateness argument pattern. Each element of the pattern relates
to an attribute of our proposed metamodel. The attributes from the metamodel
are italicized in the safety claims. The fact that the pattern is based on the
metamodel eases the (semi-)automatic pattern instantiation.

The top-level goal of the pattern depicted in Fig. 2 is that the technique
implemented by the tool employed in the execution/automation of a certain
activity is appropriate for generating activity outputs (G1 ). Goal G1 may only
be satisfied if the technique is sound (C4 ). In order to argue over the capabilities
of a technique for discharging safety goals, one should explicitly state the ver-
ification scope and the environmental constraints (C1, C2 ). The fact that the
verification technique has been previously used in other projects with similar
environmental constraints may be used as justification for its appropriateness.
Each verification technique needs to demonstrate the satisfaction of several goals
(i.e., required objectives to be fulfilled and outputs to be provided), as defined in
TablesA 3–7, from DO-178C (C3 ). The main goal of the performed verification
activity is the verification of a certain type of requirements (G3 ), as recom-
mended by the assuranceLevel (C7 ). One should argue this using the rationale
of the technique (G6.1 ). The argumentation further developing goal G6.1 mir-
rors the verification steps (presented in [5]). When arguing over goal G3, it is
relevant to cover the requirement types that are imposed by the activity type to
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be detected by the technique (C6 ). Each requirement type has different suitable
verification techniques. Thus, the selected verification technique may not be able
to cover all the requirement types (G3.1 ). When the technique cannot cover all
the verification space (i.e., to have 100% structural coverage), another technique
may be employed to cover the rest of the verification space, as stated in goal
G6.2. However, this is an optional goal, since structural code coverage is not an
applicable coverage criterion for all verification techniques (e.g., deductive ver-
ification). When arguing over goal G1, one should also consider the limitations
(weaknesses) implied when employing the respective technique (S4 ). Techniques
may work together to compensate for such limitations (G4.1, G4.2, G4.3 ). Table
A-7 from DO-178C and DO-333 recommends that any verification results should
be verified (G1.1 ).

A considerable set of standard-mandated compliance requirements for ver-
ification techniques targets the detection of certain typical faults (see G2, in
Fig. 2). Indeed, if a verification technique does not eliminate any fault, the per-
formed verification activity does not increase the confidence in the claim [13].
While arguing for the main goal G1, the capability of detecting (some) typi-
cal faults is also relevant (G2.1 ). If the selected verification technique cannot
detect some of expected fault types, it must be supported by another verifi-
cation technique (G2.2 ). Whereas all the other sub-goals of G1 offer a mere
compliance to standard-mandated objectives, this part of the safety argumen-
tation (G2.1 ) offers pondered compliance (i.e., aware selection of techniques).
The contribution to failure avoidance is two-fold (1) the coverage of the typ-
ical fault types that are imposed by the activity type - qualitative argument
(G5 ) and (2) the number of detectable faults - quantitative argument (J2 ). The
strength of the technique is given by the number of implementation problems
(faults) types it can detect. For arguing the coverage of a typical fault type, an
argument based on the fault-based argumentation pattern depicted in Fig. 3. The
scope of the fault-based argumentation pattern is to offer a structure for arguing
the selection of a certain technique, by stating its contribution to failure mode
avoidance/reduction.

5 Example

In this section, we present our experience with selecting an adequate open-source
compiler for a drone in compliance with DO-178C. In the context of safety criti-
cal projects, there are few compiler selection approaches [25]. DO-178C compli-
ant software may not contain software faults that lead to failure. Compilers are
designed to perform minimal static analysis on the program in order to detect
software faults [17]. In a project involving high costs, where time is money, engi-
neers should take advantage of the static analysis techniques provided “for free”
by compilers. Cârlan et al. [5] present a code review workflow, which employs a
set of static analysis for discharging safety goals. Instead of employing a large
number of expensive static analysis, we want to also rely on the used compiler(s)
for detecting some of the software faults and thus possibly reducing the size of
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48 C. Cârlan et al.

G15    Faults from fault type {ft} 
have been identified and mitigated 

       S5  Argument over 
each fault identified 
from fault type {ft}

G17   Fault {f} of type 
{ft} has been identified 

and mitigated

  C2 Behavior definition 
(implementation) {bd}

  
  C6 Incorrect part of 

behaviour description which 
may lead to {e}

  C3 Valid specification 
{spec}

Sn1
Verification results 

proving that 
implementation is 
correct w.r.t. the 

specification {spec}

  C4 Incorrect behaviour 
description {ibd} 

  C5 Incorrect 
behaviour 

description {ibd} 

G20  Fault {f} has been 
identified as causing a 

failure mode {fm}

  C7 Input 
elements that 

lead to incorrect 
output 

G18   Fault {f} has 
been identified

G19   Fault {f} has 
been mitigated

Fig. 3. The fault-based argumentation pattern

the static analysis set. According to Höller et al. [17], diverse compiling is able
to detect a larger number of software faults than single compiling. For example,
diverse compiling can help to detect up to about 70% of memory-related soft-
ware faults. These indicate that (1) different compilers implement different static
analysis techniques and (2) static analysis techniques underlying compilers may
play a significant role in the verification process. Different static analysis tech-
niques embedded in different compilers are appropriate to detect different types
of faults. Thus, rather then selecting an adequate compiler, we will select a com-
piler which integrates a static analysis technique appropriate for complementing
static analysis techniques.

As compilers may merely offer some simple static checks, a static analysis tech-
nique implemented by a compiler may only have a complements relationship to
a verification technique, which is able to performing the verification activity. In
order for the compiler to complement a verification technique to perform a partic-
ular activity, its underlying static analysis technique should be capable of detect-
ing some of systematicFaultTypes that need to be detected during the respective
activity. For brevity reasons, in this paper, we investigate the support a compiler
offers for the performance of one activity, namely the 6.3.4 Reviews and Analyses
of Source Code activity. For the pondered selection of the static analysis technique
underlying a compiler, we modeled this activity in accordance to the Verification
Activity class, presented in Sect. 3 (see Fig. 4). This activity checks the system
at source level. The types of properties that should be checked during this activ-
ity (checkablePropertyTypes attribute), together with the objectives to be ful-
filled by the performance of this activity (see detectableSystematicFaultTypes) are
taken from the DO-178C standard. The detectableSystematicFaultTypes attribute
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6.3.4 Reviews and Analyses of Source 
Code Verification Activity

assuranceLevel: AL1
systematicFaultTypes: stack usage, 
memory usage, fixed point arithmetic 
overflow and resolution, floating-point 
arithmetic, resource contention and 

limitations, worst-case execution timing,
exception handling, use of uninitialized 
variables, cache management, unused 
variables, data corruption due to task or 

interrupt conflicts
propertyTypes: 

LowLevelSafetyRequirement, 
SoftwareArchitectureSafetyRequirement

Clang Compiling Technique

techniqueName: Clang
checkablePropertyTypes:nul

verificationRationale:RefToDocument
structuralCoverage:Exhaustive
falseNegativeVulnerable:true 
falsePositiveVulnerable:false 

boundedTime:false 
exampleApplication: https://

runtimeverification.com/match/1.0-SNAPSHOT/
docs/benchmark/

detectableSystematicFaultTypes: 
<StaticMemory,  Numerical, 

ResourceManagement, PointerRelated, Misc>
detectableSystematicFaultTypesRates: <15, 

11, 3, 13, 11>
scope-suv:Source Code

env-constraints:nul
limitations: <may affect worst-case execution 

timing>

GCC Compiling Technique

techniqueName: GCC
checkablePropertyTypes:nul

verificationRationale:RefToDocument
structuralCoverage:Exhaustive
falseNegativeVulnerable:true 
falsePositiveVulnerable:true 

boundedTime:false 
exampleApplication: https://

runtimeverification.com/match/1.0-SNAPSHOT/
docs/benchmark/

detectableSystematicFaultTypes: 
<InappropriateCode,  Numerical, 

ResourceManagement, PointerRelated, Misc>
detectableSystematicFaultTypesRates: <2, 

11, 3, 13, 11>
scope-suv:Source Code

env-constraints:null
limitations: <may affect worst-case execution 

timing>

Verification 
Technique

Yet Unknown

supports

canBeImplementedBy

supports

Fig. 4. A model for clang and gcc and the DO-178C 6.3.4 verification activity

is filled with information given by the f. Accuracy and consistency paragraph of
the 6.3.4.

The Battle Between clang and gcc. We have two candidate techniques for
the role of compiler in our project, namely clang and gcc. We model the static
analysis techniques implemented by these two compilers based on our proposed
metamodel in Sect. 3. Compilers are able to check the entire code, with no excep-
tions, hence the structuralCoverage for both compilers is depicted as Exhaustive.
We based our decision also on the experience of RV Team, while compiling
the code from the Toyota Benchmark [23] with these two compilers (see the
exampleApplication attributes). The detectableSystematicFaultTypes attribute,
together with the detectableSystematicFaultTypesRates attribute for both of the
models have been filled in with information from the same experience report.
While selecting the appropriate static analysis, its impact on the worst-case exe-
cution timing should be considered and assessed (see potentialDeficits attribute).
In Fig. 4, we see that both of the techniques are able to detect systematicFault-
Types, which should be detected during the 6.3.4 activity. This makes them
equally appropriate candidates. However, while the technique implemented by
the clang compiler may detect defects of type static memory (e.g., static buffer
overrun/underrun), the technique in gcc compiler does not have this ability. In
turn, the gcc technique is capable of finding imperfect code defects, such as dead
code detection, floating-point arithmetic, use of uninitialized variables, unused
variables and improper error handling. The selection is now reduced to select-
ing the type of defects that would have a bigger impact on the safety of the
system under verification (in our example the drone). In our concrete case, sta-
tic buffer overflows are a bigger concern than floating-point arithmetic defects,
because they may lead the vehicle’s software to crash. As learned from the Ari-
ane 5 accident, buffer overflows may have devastating consequences on a flying
system’s safety [12]. As such, we selected the static analysis of clang compiler



50 C. Cârlan et al.

// mList is declared as float mList [4];
void Turtle :: velocityCallback(const geometry_msgs ::Twist :: ConstPtr& vel)
{ last_command_time_ = ros:: WallTime ::now();

lin_vel_ = vel ->linear.x;
ang_vel_ = vel ->angular.z;
// remeber the last 5 velocities to replay them
mList [0] = lin_vel_; mList [1] = mList [0];
mList [2] = mList [1]; mList [3] = mList [2];
// static buffer overflow
mList [4] = mList [3]; }

Fig. 5. Mutated code of method that sets the velocity values for the turtle

and, implicitly, the clang compiler. From this experience, we learned that, in the
selection of a verification technique, it is not only important what kind of faults
a verification technique is able to detect, but also the impact of the type of fault
on system safety.

Proving the Selection. In order to confirm that we chose the appropriate
compiler, we compile a small sample of code in the environment in which we will
compile the code for the drone, namely the robot operating system (ROS) [20].
To simplify the discussion, we show the problems on a much smaller ROS intro-
ductory example, turtlesim1. This example allows the user to control an ani-
mated turtle by sending it ROS messages. In principle the control software for
the UAV2 uses the same mechanisms and build environment. We mutated that
code with four buffer overflow defects (see Fig. 5). We observe that, as our scope
was to have a compiler supporting the detection of buffer overflow faults, clang
was more appropriate, since it discovered all the four faults (see Fig. 6 for an
example), whereas gcc was not able to discover any buffer overflow faults.

/home/user/catkin_ws/src/turtlesim/src/turtle.cpp :72:2: warning: array index
4 is past the end of the array
(which contains 4 elements) [-Warray -bounds]

mList [4] = mList [3];
^ ~

/home/user/catkin_ws/src/turtlesim/include/turtlesim/turtle.h:79:3: note:
array ’mList ’ declared here

float mList [4];
^

1 warning generated.

Fig. 6. The error message given by clang. gcc does not point out the error

In Fig. 7, we show how clang compiler contributes at discharging the main
goal of the Technique appropriateness argument pattern. Goal G2.2.1 is to be
further-developed by instantiating the Fault-based argumentation pattern. All
1 http://wiki.ros.org/turtlesim, the source code can be found on github: https://

github.com/ros/ros tutorials.
2 We used the Erlecopter: http://erlerobotics.com/blog/erle-copter/.

http://wiki.ros.org/turtlesim
https://github.com/ros/ros_tutorials
https://github.com/ros/ros_tutorials
http://erlerobotics.com/blog/erle-copter/
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G1: Mere compliance
Technique {vt} is an appropriate means of compliance 
for verification activity 6.3.4 Reviews and Analyses of 

Source Code, in order to achieve {assuranceLevel}  

S1  Argument over activity-
specific objectives

G2: Pondered compliance
The systematic faults that need to be revealed while 
performing activity 6.3.4 Reviews and Analyses of 

Source Code are detected

G2.2: Complementary heterogeneous evidence for fault 
coverage

Complementary heterogeneous evidence from verification 
technique Clang compiler is used for detecting the fault 
types not comprised in detectableSystematicFaultTypes

S2  Argument over activity-specific
systematic faults 

G2.2.1: Defect-based argumentation
Detectable systematic faults of type static memory have 
been detected via Clang compiler and mitigated during 
activity 6.3.4 Reviews and Analyses of Source Code

S2.2  Argument over detectableSystematicFaultTypes
detected by Clang compiler during activity 

6.3.4 Reviews and Analyses of Source Code

Fig. 7. Partial instantiation of Technique appropriateness argument pattern

the warnings from the compiler are to be documented and referenced in the
documentation. We suggest building a test case for every warning. After dealing
with these warning, in order to prove that they have been mitigated (see G19
from the Fault-based argumentation pattern), we would run the test cases and
reference their results.

6 Related Work

The problem of arguing compliance with standards by using patterns has been
investigated quite heavily during the last decade. Habli et al. [15] and Denney
et al. [7] present safety case patterns for the use of formal methods results for
certification. Bennion et al. [2] present a safety case for arguing the compliance
of the Simulink Design Verifier model checker to DO-178C. Gallina et al. [9]
argue about adequacy of a model-based testing process. Cârlan et al. [5] offer a
pattern which integrates static analysis results in an argument for the fulfillment
of certain safety objectives. While all these works focus on a certain verification
technique as strategy for discharging a safety goal, we offer a safety case pat-
tern to argue the pondered selection of a verification techniques of any type for
discharging a safety goal.

Similarly, the problems related to compliance of the certification artefacts
and their confidence have also been tackled. Gallina et al. [10] proposes a process
compliance pattern for arguing about reuse of tool qualification certification arti-
facts. One of the identified sub-goals for the claim of trustworthy performance
of a certain tasks is that the guidance (how the activity should be performed)
has been followed. We offer a reusable argumentation structure for the appro-
priateness of a technique for a certain activity. We argue that the technique
implemented by that tool follows the guidance given by the standard. The prob-
lem of confidence in the certification artefacts has been addressed by Graydon
et al. [14], who offer a framework for utilizing safety cases for the selection of
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certain technologies for building safety-critical systems. How to make a decision
is, however, not explained. We propose one criterion for making justified deci-
sions on used verification technologies, namely that they need to contribute to
the identification or the mitigation of systematic faults known to affect systems’
safety. Holloway [18] presents safety case patterns mirroring DO-178C software
correctness objectives. In contrast to the work of Holloway, we present safety case
patterns, which are built mirroring the important characteristics to be compliant
with the DO-178C verification objectives.

7 Conclusions

The output of a tool implementing a certain verification technique may be used
as evidence in a safety case. For this, one needs to assess if the respective veri-
fication technique is appropriate to generate results for supporting the truth of
safety case claims. In this paper, we proposed a metamodel to provide guidelines
for the pondered selection of appropriate verification technologies for perform-
ing standard-mandated verification activities. Based on this metamodel, we also
presented a set of safety case patterns arguing the appropriateness of the ver-
ification techniques providing assurance evidence. As future work, we plan to
validate our proposed pattern by applying it to argue about appropriateness of
verification techniques used in the projects we currently work on. Also, we want
to extend our approach in order to support (semi-)automatic creation of safety
arguments based on the proposed metamodel.
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Abstract. Confidence in safety critical systems is often justified by
safety arguments. The excessive complexity of systems nowadays intro-
duces more uncertainties for the arguments reviewing. This paper pro-
poses a framework to support the argumentation assessment based on
experts’ decision and confidence in the decision for the lowest level claims
of the arguments. Expert opinion is extracted and converted in a quanti-
tative model based on Dempster-Shafer theory. Several types of argument
and associated formulas are proposed. A preliminary validation of this
framework is realized through a survey for safety experts.

Keywords: Safety argument · Confidence assessment · Belief function
theory

1 Introduction

Safety case is an important representative of structured arguments adopted for
critical systems. It is used to formally present that a system is free from unac-
ceptable risks. This justification often demonstrates the compliance of the sys-
tem with safety regulation and includes a great amount of convincing evidence in
parallel. Both developers of critical systems and regulation bodies have to spend
time on evaluating such argumentation in order to produce trustful systems or
make a justified decision for certification. Many works have been done to help
this evaluation process. (1) Building a clear safety argument with a graphical
representation of safety arguments [6,15]; (2) Adding confidence arguments to
justify the confidence in safety arguments [2,12]; (3) Assessing the confidence in
arguments with quantitative methods [7,8,11].

This paper focuses on the third perspective. A confidence assessment frame-
work with specific steps based on Dempster-Shafer theory is proposed to facili-
tate the argumentation assessment process. It requires the safety experts’ opin-
ions only on the lowest level claims of safety arguments. Then, the proposed
framework aggregates these opinions in a quantitative way to deduce the deci-
sion and the confidence in this decision for the top goal of the safety argument.
We made a first experiment through a survey among safety experts and a pre-
liminary validation of this framework is obtained.

This paper is organized as follows. In Sect. 2, the background on GSN and
belief function theory is provided. In Sect. 3, the overview of the proposed safety
c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 55–68, 2017.
DOI: 10.1007/978-3-319-66266-4 4
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argument assessment framework is given. Two argument types with quantitative
confidence aggregation models are introduced. Afterwards, in Sect. 4, expert data
collection is realized through a survey. We present the survey implementation;
then its responses are analyzed. In Sect. 5 the related works are introduced.
Finally, the contributions of our approach are summarized and future works are
highlighted in Sect. 6.

2 Background

2.1 Safety Argumentation

Structuring an argument to convince regulation bodies is a main challenge for
critical systems. Many approaches, such as safety case [4,16], assurance case
[13], trust case [6], and dependability case [5], provide concepts and notations
for taking up this challenge.

Safety cases, a popular form of safety argumentation, could be defined as [4]
“a documented body of evidence that provides a convincing and valid argument
that a system is adequately safe for a given application in a given environ-
ment”. A graphical argumentation notation, named as Goal Structuring Nota-
tion (GSN), has been developed [15] to represent the different elements of an
assurance case and their relationships with individual notations. GSN allows
the representation of the supporting evidence, objectives to be achieved, safety
argument, context, etc. An example of GSN is given in Fig. 1, which is derived
from the Hazard Avoidance Pattern [16]. The five main elements of GSN pre-
sented in this figure are: goal (e.g., G1): the claim about the system; solution
(e.g., Sn1): the reference to evidence item(s); strategy (e.g., S1): the nature of
inference that exists between a goal and its supporting sub-goal(s); context (e.g.,
C1): a reference to contextual information, or a statement.

C1

hazards for {System X}

G1
 {System X} is 
acceptably safe 

G3
 {Hazard H2} has been 

addressed

Gn
 {Hazard Hn} has been 

addressed

{Hazard H1} has 
been removed.

Sn1

A given 
prevention risk 

control is 
implemented.

Sn2

A given 
protection risk 

control is 
implemented.

Sn3

 {Hazard H1} has been 
addressed

G2

S1

 Argumentation by claiming 

plausible hazards 

Fig. 1. GSN example adapted from Hazard Avoidance Pattern [16]



Confidence Assessment Framework for Safety Arguments 57

2.2 Dempster-Shafer Theory

Among uncertainty theories (such as probabilistic approaches, possibility theory,
fuzzy set, etc.), Dempster-Shafer (D-S) Theory or evidence theory, was developed
by Arthur Dempster and Glenn Shafer successively [18]. This theory offers a
powerful tool to model human belief in evidence from different sources, and
an explicit modeling of epistemic uncertainties, which is not the case in other
theories. As presented later, we propose to use the D-S Theory as it allows
uncertainty, imprecision or ignorance, i.e., “we know that we don’t know” to be
explicitly expressed.

Let X be a variable taking values in a finite set Ω representing a frame of
discernment. Ω is composed of all the possible situations of interest. In this paper,
we consider only binary frame of discernment, i.e. ΩX = {X̄,X}. For instance,
if X would be the state of a bulb, then Ω = {on, off}. The mass function on
Ω (mΩ) is the mapping of the power set of Ω on the closed interval [0,1] that
is, 2Ω → [0, 1]. The mass mΩ(P ) reflects the degree of belief committed to the
hypothesis that the truth lies in P . The sum of the masses of all elements in the
power set is equal to one. For instance, we can have the following assignment
of belief: m1({on}) = 0.5, m1({off}) = 0.3, m1({on, off}) = 0.2. Note that
m1({on, off}) does not represent the belief that the bulb might be in {on} or
{off} state, but the degree of belief in the statement “we don’t know”.

More generally, an opinion about a statement X is assessed with 3 masses:
belief (belX = m(X)), disbelief (disbX = m(X̄)), and the uncertainty (uncerX =
m(Ω)). This leads to m(X)+m(X̄)+m(Ω) = 1 (belief + disbelief + uncertainty
= 1 ). Thus we have:

⎧
⎨

⎩

belX = m(X) represents the belief
disbX = m(X̄) represents the disbelief
uncerX = m(Ω) = 1 − belX − disbX represents the uncertainty

(1)

where belX , disbX and uncerX ∈ [0, 1].

3 Safety Argument Assessment Framework

In this section, we introduce an assessment framework for safety arguments,
which allows (1) experts to provide their opinions on the lowest level claims
of a structured safety argument based on available evidence (e.g. test reports,
verification reports, etc.); and (2) to aggregate these opinions hierarchically until
we obtain the opinion of the top claim of the argument. The opinion aggregation
adopts a quantitative assessment method of argument confidence proposed in
our previous works [19]. A new formula to calculate the degree of disbelief and
uncertainty is provided in this paper.

3.1 Framework Overview

The proposed assessment framework of safety argument is summarized in Fig. 2
with an argument showing that Goal B and Goal C support Goal A. This schema
also illustrates the three main steps:
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Fig. 2. Schema of the assessment framework for safety argument

i Transforming safety experts’ opinions of a goal of a structured argument
into a 3-tuple (bel,uncer,disb) representing Belief, Uncertainty and Disbelief
in this goal. In Fig. 2, the process for B and C starts from using a scaled
evaluation matrix and then an uncertainty triangle named Jøsang triangle
[14]. We refer to the transformation expression between decision/confidence
and belief functions proposed in paper [7]. The experts’ opinion is presented
in two dimensions: decision and confidence in this decision. Instead of the
original proposal with belief function and plausibility function, we convert the
opinion directly into (bel,uncer,disb), to make explicit the formal concepts.

ii Aggregating all the 3-tuple estimation of lower-level claims into the upper-
level claim. This step is based on the confidence assessment method derived
from the D-S Theory [19]. As shown in Fig. 2, the Belief, Uncertainty and
Disbelief of B and C are aggregated to produce the three values of A. This
aggregation requires some basic information on the argument, such as: the
argument types, the weights of B and C, etc.

iii The last step presents the inverse process of Step 1, which aims to generate
the opinion on A, i.e. the decision on A and the confidence in this decision.

This approach is detailed in Sects. 3.2 and 3.3. In Sect. 3.4, an application
to an argument example helps for a better understanding of this assessment
framework for safety argument.
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3.2 Argument Types and Assessment

Like most of structured arguments, a GSN argument has a tree structure, which
is composed of a top goal and branches of sub-goals. As described in [12], the
assessment of the confidence in the top goal may be based on the estimation of
the trustworthiness of each sub-goal and the appropriateness of the sub-goals
in regard to the top goal. Thus, we propose two assessment parameters corre-
sponding to these two aspects. Figure 3 shows an example of a simple argument:
goal A is supported by two sub-goals B and C; the assessment parameters are
annotated on this GSN argument and interpreted in the following way:

wC

A

B C

(belB, uncerB, disbB) (belC, uncerC, disbC)

wB

(belA, uncerA, disbA)

Fig. 3. An example of simple argument annotated with assessment parameters

– A 3-tuple (bel,uncer,disb), such as (belA, uncerA, disbA) (see the definition in
Eq. (1)) represents the trustworthiness of a claim. They do not only assess the
confidence in the claims, but also allow our degree of distrust and uncertainty
in them to be explicitly expressed.

– wB and wC are the disjoint contributing weights of B and C, wB , wC ∈ [0, 1]
and wB + wC ≤ 1. A disjoint contributing weight means the degree that B or
C can independently contribute to the trustworthiness in A. It refers to the
appropriateness of sub-goals.

In order to propagate the trustworthiness estimation from B and C nodes to
A, we propose two argument types:

– Dependent argument (D-Arg): When the contribution (to the trustworthiness
in A) of a sub-goal B depends on the trustworthiness in another sub-goal C,
the argument B +C →A is called dependent argument. For example, an argu-
ment is “B: Test process is correct” and “C: Test results are correct” support
“A: System is acceptably safe”. The contribution of C to the trustworthiness
in A depends on the trustworthiness in B.

– Redundant argument (R-Arg): When sub-goals belonging to the same top
goal have a certain degree of overlapping to contribute to the trustworthiness
in the top goal, the argument is called redundant argument. For example, an
argument is “B: Formal verification is passed” and “C: Test is conclusive”
support “A: System is acceptably safe”. B and C are two different techniques
to assure the system safety. Either of them can support A in certain degree
without depending on the other one.
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Based on these two argument types, we proposed in [19] the aggregation
formulas to integrate the trustworthiness of sub-goals. The related formulas are
presented as Eqs. (II) and (IV) in Table 1 for the dependent and redundant argu-
ments, respectively. In this calculation, we introduce a factor to represent the
degree of dependency and redundancy among sub-goals. For an argument such
as B and C support A, this factor, representing the degree of correspondence of
sub-goals B and C, is expressed as: cA = 1 − wB − wC , where cA ∈ [0, 1]. While
cA varies between 0 and 1, the two formulas (II) and (IV) lead to several special
cases of argument types, which are also described in Table 1. In particular:

– Fully dependent argument (FD-Arg): For a dependent argument, when cA = 1,
i.e. wB = wC = 0, the argument is a fully dependent argument. B have a total
interdependence on C. One sub-goals cannot contribute to the trustworthiness
in A without the other one.

– Fully redundant argument (FR-Arg): For a redundant argument, when cA = 1,
i.e. wB = wC = 0, the argument is fully redundant argument. Either of B and
C can contribute to the full trustworthiness in the top goal.

– Disparate argument (I-Arg): When the correspondence between B and C cA

decreases (i.e. wB , wA increase) to cA = 0 (i.e. wB +wC = 1), the aggregation
formulas of the dependent and redundant arguments become the same for-
mulas ((III) in Table 1). B and C contribute independently to only one part
of the trustworthiness in the top goal.

Except the above three special argument types, other arguments are either
partial dependent argument (PD-Arg) or partial redundant argument (PR-Arg).

Table 1. Comparison of two different argument types

Arg. types cA wB ,wC Aggregation formula

D-Arg

FD-Arg 1 0
belA = belBbelC

(I)
disbA = disbB + disbC − disbBdisbC

PD-Arg ↓ ↓ belA = belBwB + belCwC + belBbelCcA (II)
disbA = disbBwB + disbCwC + (disbB + disbC − disbBdisbC)cA

I-Arg 0 = 1
belA = belBwB + belCwC

(III)

R-Arg

disbA = disbCwB + disbCwC

PR-Arg ↑ ↑ belA = belBwB + belCwC + [1 − (1 − belB)(1 − belC)]cA
(IV)

disbA = disbBwB + disbCwC + disbBdisbCcA

FR-Arg 1 0
belA = 1 − (1 − belB)(1 − belC)

(V)
disbA = disbBdisbC

⎧
⎨

⎩
⎧
⎨

⎩

Due to the limited space of this paper, the parameter formalization and the
development process of assessment aggregation formulas are not presented. For
more details and a general assessment model for N-sub-goal arguments, please
refer to paper [19]. In Table 1, we directly provide the formulas to calculate
(belA, uncerA, disbA) according to the argument types.
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3.3 Expert Judgment Extraction

While assessing an argument, a safety expert has to evaluate all the elements
of this argument, i.e. statement, evidence, context, etc. In Fig. 4(a), a goal G1:
“Low-level requirements coverage is achieved” is to be assessed. It is supported
by the evidence S1: “Low-level requirement coverage verification reports”, which
records the coverage verification of low-level requirements based on the contexts
C1: “Complete low-level requirements” and C2: “Structural coverage analysis
(statement coverage, branch coverage, etc.) reports”. We adopt an evaluation
matrix as proposed by [7] to assess G1 by two criteria: the decision on the goal
and the confidence in the decision (dec, conf). In Fig. 4(b), there are 4 levels for
decision scale from “rejectable” to “acceptable” and 6 levels for Confidence Scale
from “lack of confidence” to “for sure”. We assume that, in both scales, the levels
are evenly and linearly distributed. A solid dot represents the evaluation of this
goal by an expert. Here, the expert accepts this goal with very high confidence.
The decision “acceptable” indicates that the expert believes that all the low-level
requirements were actually covered. Moreover, the “very high confidence” comes
from relatively high coverage rate and thorough explanation of discrepancies in
evidence S1.

Low-level requirement 

reports  

S1

Complete low-level 
requirements

C1

Low-level requirements 
coverage is achieved

G1 Dec

Conf

a) 

Decision Scale

re
jec

ta
bl

e
op

po
sa

bl
e

to
ler

ab
le

ac
ce

pt
ab

le
6 - for sure

b) 

C2

Structural coverage analysis 
(statement coverage, branch 
coverage, etc) reports

Fig. 4. An evaluation matrix for safety argument

In order to further assess the upper-level goals, we need to aggregate the
expert’s evaluation of sub-goals. As mentioned in the Sect. 3.1, the evaluation
of the experts (dec, conf) will be transformed to belief, uncertainty and disbe-
lief. In fact, this step is used to formalize the evaluation as a mass function in
order to take advantage of the D-S Theory to combine uncertain information.
This uncertainty theory offers a powerful tool to explicitly model and process
information with uncertainty. We adopt the definition of decision and confidence
in the decision of any claim A based on belief functions proposed in [7] to fit
the input of the aggregation model (refer to Table 1). The modified definition is
presented in Eqs. (2) and (3).

confA = belA + disbA (2)
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{
decA = belA/(belA + disbA), belA + disbA �= 0
decA = 0, belA + disbA = 0

(3)

Due to the constrains of mass function of D-S Theory, we can deduce that confA,
decA ∈ [0, 1].

Once, the (decA, confA) is obtained based on (belA, uncerA, disbA), their
values may not be exactly one of the values of 4 decision levels and 6 confidence
levels. If so, these numbers should be rounded to find the nearest levels.

Furthermore, the inverse functions from (dec, conf)A to (belA, uncerA, disbA)
are given in the Eq. (4).

⎧
⎪⎨

⎪⎩

belA = confA ∗ decA

disbA = confA ∗ (1 − decA)
uncerA = 1 − bA − dA

(4)

3.4 Application Example

In this subsection, we use a fragment of GSN argument shown in Fig. 5 as an
example to present the use of the proposed safety case assessment framework.
In this GSN model, it is assumed that “G1: system is acceptably safe” (claim
A), if “G2: Low-level requirements coverage is achieved ” (sub-goal B) and “G3:
High-level requirements coverage is achieved ” (sub-goal C) are fulfilled. The
confidence in A is based on the assessment of sub-goals B and C. To illustrate the
calculus, we provide the arbitrary values to assess B as “opposable” (weak reject)
with “very low confidence” and C as “acceptable” with “very high confidence”.
The low-level requirements coverage is verified through the structural coverage
analysis based on functional testing; the high-level requirements coverage is also
based on function testing. B and C are linked to each other, but they also cover
two different aspects. Thus, they are considered as partial dependent arguments.
We arbitrarily choose the values cA = 0.5 and equal disjoint contributing weights
wB = wC = (1 − cA)/2 = 0.25. A possible approach is presented in Sect. 4 to
extract the information about argument types and weights with the help of a
survey.

Here follows the three-step process of the framework proposed in Sect. 3.1 to
realize the assessment of confidence in A.

– Transforming the evaluation (dec, conf) of B and C to (bel, uncer, disb) using
Eq. (4). (belB , uncerB , disbB) = (0.066, 0.8, 0.134), (belC , uncerC , disbC) =
(0.8, 0.2, 0.0)

– Aggregating the estimations of B and C with the aggregation formula of
dependent argument (refer to (II) in Table 1). (belA, uncerA, disbA) = (0.243,
0.657, 0.101)

– Calculating the decision on A and the confidence in the decision (decA, confA)
= (0.707, 0.343). The level of decision and confidence in this decision are
selected by the nearest value of the results. Thus, goal A is “tolerable”, “with
low confidence”.
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In brief, the framework can be regarded as a function f : (decA, confA) =
f [(decB , confB), (decC , confC)], where inputs are the evaluation of sub-goals B
and C, the output is the assessment of the top goal A. More generally, this
framework can be applied for a safety argument with multiple sub-goals and
more hierarchical levels, thanks to the general version of aggregation formulas.

wCwB
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safe.

G1
Dec

Conf

Low-level requirement 
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S1

Complete low-
level requirements
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Low-level requirements 
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(statement coverage, branch 
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C2
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High-level 
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S2

Complete high-
level requirements

C3
C

High-level requirements 
coverage is achieved

G3

Functional test 
result report

C4

Dec

Conf

Fig. 5. A safety argument example to be estimated

4 A Survey for Expert Data Collection

To study the argument properties, such as the argument types and the sub-goal
weights, we carried out a survey among experts in system safety domain.

4.1 Implementation of the Survey

In the questionnaire, four argument fragments are provided. These arguments
includes Arg1 represented in Fig. 5 and Arg2–Arg4 in Fig. 6. They have the same
form with an identical top goal A and two sub-goals B and C. For each argu-
ment, two pairs of estimation results of B and C (corresponding to Q1 and Q2 in
Table 2) are initial information given to the respondents. Then, they are asked
to make a decision on the top goals, that is, choosing an appropriate decision
level among rejectable (rej), opposable (opp), tolerable (tol), acceptable (acc);
and select their confidence level in this decision from 1-lack of confidence to
6-for sure. For better understanding of the assessment process, an introduction
of the evaluation matrix is given at the beginning of the questionnaire; and expla-
nations and assumptions of the 4 arguments are also provided. Furthermore, an
extra question follows each argument asking respondents for their understanding
degree of the argument. The degrees are “to great extent”, “somewhat”, “very
little” and “not at all”. An online version of this questionnaire is available [1].
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Fig. 6. Argument fragments questioned in the survey

35 experts answered this questionnaire, including: 18 system safety engineers,
safety managers and other engineers of critical system fields, and 17 researchers
and PhD candidates working in the system dependability domain. Due to no
significant difference in the analysis results between the respondent’s profiles,
their answers are processed together.

4.2 Result Analysis

The case study aims to analyze the properties of the argument examples from the
questionnaire responses, that is, to estimate the sub-goal weights and argument
types implicitly considered by the experts. The collected data (expert data) are
compared with the data calculated based on the assessment formulas introduced
in Sect. 3 (theoretical data).

In Fig. 7, the theoretical data of dependent argument is shown as a cloud
of dots derived from random trials of possible values of wB and wC . Note that
the triangles will be explained later. Different shapes of clouds are due to the
two pairs of inputs of B and C for questions Q1 (Fig. 7(a)) and Q2 (Fig. 7(b)).
According to the process of the assessment framework, we calculate the val-
ues of (decA, confA) from (decB , confB) and (decC , confC). Then we plot the
values in the evaluation matrix. The solid dots represent the values with the
constraint that wB > wC ; whereas the crosses represent the values of wB ≤ wC .
In the figures, the “F” letters represent the output of a special case of dependent
argument: fully dependent argument.

Then, in order to extract the consensus of experts, we filtered the data using
the confidence intervals. Also, if the respondents chose “not at all” for the under-
standing of one argument, the answers for the corresponding two questions were
removed. The expert data are presented with triangles in the evaluation matrix
(Fig. 7). The size of the triangle indicates the number of respondents giving the
same opinion.

Finally, the expert data are compared with the theoretical data clouds. Tak-
ing question Q1 of the argument Arg1 for example, we consider this argument
as dependent argument, since there is some dependency between the two sub-
goals. Hence, in Fig. 7, the expert data are compared with framework output
of dependent argument. Two large dots are matched with the distribution of
dependent graphs. We assume that the argument type can be validated by the
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Fig. 7. Experts estimations of Argument 1 and theoretical data of dependent argument

degree of overlapping of these two sets of data. Thus, the percentage of the
answers positioned in the cloud (matched answers) is calculated (see Table 2).
Large percentages of overlapping for both of figures (a) and (b) confirm that the
Arg1 is a dependent argument.

Furthermore, some weight information of B and C can be deduced. Looking
at the biggest triangle in Fig. 7(a), it shows that 8 experts have given the oppos-
able decision with very high confidence (denoted as opp-5 ). Compared with the
theoretical data cloud, these 8 answers indicate that the argument can be either
fully dependent argument with wB = wC = 0 or partial dependent argument
with wB > wC .

Table 2. Validation of safety argument assessment approach

Validation
Validated 
arg. types

Answer in 
cloud (%)

Weight info.

Q1 B: opp-5 C: acc-5 A: opp-5, tol-5 65.0% wB wC

Q2 B: opp-5 C: acc-2 A: rej-5, opp-3,4,5 63.6% -
Q1 B: opp-5 C: acc-5 A: opp-5, tol-5 72.2% wB wC

Q2 B: opp-5 C: acc-2 A: opp-4,5 62.5% wB>wC

Q1 B: opp-5 C: acc-5 A: opp-5, tol-5 62.5% wB wC

Q2 B: opp-5 C: acc-2 A: rej-5, opp-5 58.3% wB>wC

Q1 B: opp-5 C: acc-5 A: tol-4,5 57.7% wB=wC

Q2 B: opp-5 C: acc-2 A: opp-3, opp-5 77.8% -
PD-Arg.

Arg2

Arg3

Arg4

PR-Arg.

I-Arg.

PD-Arg.

Arg1

PD-Arg.

PR-Arg.

PD-Arg.PD-Arg.

Arg. Ques. Initial values Expert answer    
examples

Expected 
arg. types

In Table 2, the analysis of the expert answers for 4 arguments is summed
up. Some representative examples of the expert answers are given in this table.
Comparing the “expected argument types” with “validated argument types”,
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Arg4 is considered as “partial dependent argument” rather than the “disparate
argument”. The percentages of the answers in the cloud are calculated for all
the argument examples. These results show that experts have a certain degree
of consensus on the type of the arguments based on our approach. Moreover,
the experts’ preference of weights for B and C are listed in the last column. “-”
means that there is no clear opinion on the preference of weights.

A large percentage of the consensus answers matches the model output of
the assessment framework proposed in this paper, which is a first validation of
the framework. Furthermore, based on the above analysis of the survey data, we
deduce the properties of the 4 argument examples including argument types and
the disjoint contributing weights.

5 Related Work

Confidence assessment of safety case has been mainly addressed with two per-
spectives. The first one focuses on the identification of “defeaters” of an argu-
ment, and the construction of an additional argument dedicated to confidence
[3,12]. Such approaches are mainly qualitative. A second trend is the develop-
ment of quantitative approaches of confidence in argument. Indeed, excessive
growth of argument leads it to make analysis for estimating confidence too com-
plex; then quantitative tools might help analysts to estimate the confidence. To
refer to some of them, we can cite [8], based on Bayesian Network, and [7,11]
based on belief function theory. As presented in [10], many approaches are stud-
ied for quantitative assessment of safety argument confidence. In this last paper
the authors study the flaws and counterarguments for each approaches, and con-
clude that whereas quantitative approaches for confidence assessment are of high
interest, no method is currently fully applicable. Moreover, we argue that these
quantitative approaches lack of practicability between assurance case and confi-
dence assessment, or do not provide clear interpretation of confidence calculation
parameters. Our framework over comes this flaw.

Compared to our approach, the paper [17] provides an expert judgment
extraction of confidence and a propagation calculation based on belief theory
in order to build a confidence case as proposed in [12]. Nevertheless they do not
address inference type when aggregating information. They also do not study
how the confidence level could be used by the analysts to make a decision regard-
ing the safety case.

In [2], the authors mainly introduce four argument types and formulas to
combine confidence regarding these types. They also use belief theory for calcu-
lation, and the result is provided with belief, disbelief and uncertainty estimation
for each evidence of the safety case. Even if some types of argument are compa-
rable with our proposal (e.g., their “Alternative” is near our “Redundant”), they
do not provide any justification of the combining formulas, with a relative low
intuitive interpretation of the parameters (which is a main drawback for poten-
tial users). Moreover, once calculation is performed, the results do not provide
any justification for a decision regarding the acceptability of the safety case.
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As already mentioned, we reuse a part of the approach presented in [7]. In
this paper, the authors introduce a way to convert a decision on the acceptability
of a statement in a safety case and its confidence, into belief theory parameters.
We also use similar steps in our approach, from expert judgment extraction to
calculation of a decision and its confidence in the top statement. Compared to
our work, they did not use GSN for safety case modeling as we proposed; but
the main difference is in the argument types and associated formulas. Indeed,
they extended the work from [9] to propose 6 types of arguments. We found
them too complex for an intuitive identification in a real safety case. Moreover,
according to each of these types, several parameters are difficult to determine and
interpret. Our objective is really to provide an efficient and pragmatic approach
for analysts; thus we actually only propose 2 types of argument, and a direct
application to GSN safety cases.

6 Conclusion

In this paper, an assessment framework has been put forward to support the
safety argument assessment process. This 3-step framework only requires the
evaluation results of the lowest-level claims; then it aggregates them to estimate
the confidence in the top claim. The quantitative aggregation approach based
on Dempster-Shafer theory was proposed in our previous work [19]. An eval-
uation matrix for extracting experts opinion is adopted [7] with the scales of
decision and confidence in the decision. We define two main argument types:
dependent and redundant arguments. By changing the weights of sub-goals, we
also proposed to refine these types using the same formula. Meanwhile a possible
approach to estimate argument properties is introduced. A survey was carried
out to make a preliminary validation of our framework. We focus in this survey
on validating the types of arguments, their aggregation models and the expert
judgment extraction. 35 safety engineers and researchers in system dependable
domain participated to this survey. We compared the questionnaire results with
the theoretical output calculated by applying our assessment framework. This
first experiment shows that our aggregation models are consistent with expert
judgments. The framework makes practical the theoretical model in terms of
the extraction of experts’ opinion on the trustworthiness of sub-goals. However,
while assessing an argument, this framework still requires the expert to deter-
mine the argument types and weights of sub-goals. A method to identify the
argument types and weights for a given safety argument will be our future work.
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Abstract. Like most systems, automotive software systems evolve due
to many reasons including adding, removing or modifying features, fixing
bugs, or improving system quality. In this context, safety cases, used to
demonstrate that a system satisfies predefined safety requirements, often
dictated by a standard such as ISO 26262, need to co-evolve. A neces-
sary step is performing an impact assessment to identify how changes
in the system affect the safety case. In previous work, we introduced a
generic model-based impact assessment approach, that, while sound, was
not particularly precise. In this work, we show how exploiting knowledge
about system changes, the particular safety case language, and the stan-
dard can increase the precision of the impact assessment, reducing any
unnecessary revision work required by a safety engineer. We present six
precision improvement techniques illustrated on a GSN safety case used
with ISO 26262.

1 Introduction

Safety engineers in various domains, including automotive, experience difficul-
ties with safety case maintenance. As stated in [11], the main reason for this is
that they do not have a systematic approach by which to examine the impact
of change on a safety argument. The authors of [2] performed a study which
suggested that engineers spend 50–100 h on Change Impact Assessment (CIA)
per year on average. The second most commonly mentioned CIA challenge is
related to information overload. The three most senior engineers in the study
reported that obtaining a system understanding is hard due to the complexity
of the systems. The sheer number of software artifacts involved makes traceabil-
ity information highly complex. Based on the results of [2], determining how a
change impacts the product source code seems to be less of a challenge than
determining impact on non-code artifacts, e.g., requirements, specifications, and
test cases. In [14,17], the authors further discuss the problem of CIA being a
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challenge in safety-critical systems. Specifically, Leveson [14] mentions that inad-
equate CIA has been among the causes of accidents in the past. Thus, the current
state of practice can clearly benefit from improved CIA techniques, especially to
help perform safety assurance more cost-effectively.

In this paper, we build on our earlier work [13] which proposed using a
model-based approach to perform impact assessment on an assurance case due
to system changes. Our technique is applicable to assurance cases in general and
ensures soundness, i.e., it does not miss any elements that are impacted. Yet,
the approach is conservative. i.e., it can flag elements as impacted when they are
not, resulting in “false positives”. Using knowledge about the system models,
the safety case language and the standard under consideration, the precision of
our approach can be improved, thus reducing unnecessary effort by the safety
engineer. The contributions of this paper are as follows: (1) we provide a model-
based approach for impact assessment on GSN safety cases used with ISO 26262,
and (2) we identify and describe six techniques for improving the precision of
the impact assessment approach.

The rest of the paper is organized as follows: Sect. 2 introduces the power
sliding door system used as a running example in the paper. Section 3 presents
background material on ISO 26262. Section 4 describes how our model-based
approach can be used for GSN safety cases linked to ISO 26262. Section 5 presents
the techniques that can be used to improve the precision of our model-based
impact assessment approach. Section 6 discusses related work, and Sect. 7 sum-
marizes the paper and outlines problems for future work.

2 Running Example: Power Sliding Door (PSD) System

Consider an automotive subsystem that controls the behavior of a power sliding
door in a car. The system has an Actuator that is triggered on demand by a
Driver Switch. This example is presented in Part 10 of ISO 26262 [8]. Figure 1
shows the system models comprised of a Class Diagram (to model structure), a
Sequence Diagram (to model behavior) and a relationship between them. This
can be visualized at a high-level as the megamodel [16] in Fig. 4a, which includes
other parts of the system such as results of model checking and testing. In
practice, the system megamodel could include other system models, e.g., SysML
representations, FMEA and FTA results.

The Driver Switch input is read by a dedicated Electronic Control Unit
(ECU), referred to as AC ECU which powers the Actuator through a dedicated
power line. The vehicle equipped with the item is also fitted with a control unit
able to provide the vehicle speed, referred to as VS ECU. The system includes a
safety element, namely, a Redundant Switch. Including this element ensures a
higher level of integrity for the overall system.

The VS ECU provides the AC ECU with the vehicle speed. The AC ECU monitors
the driver’s requests, tests if the vehicle speed is less than or equal to 15 km/h,
and if so, commands the Actuator. Thus, the sliding door can only be opened or
closed if the vehicle speed is not higher than 15 km/h. The Redundant Switch is
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Fig. 1. Power sliding door class diagram-sequence diagram.

located on the power line between the AC ECU and the Actuator as a secondary
safety control. It switches on if the speed is less than or equal to 15 km/h, and off
whenever the speed is greater than 15 km/h. It does this regardless of the state
of the power line (its power supply is independent). The Actuator operates only
when it is powered.

Suppose that the PSD system changes such that the redundant switch is
removed. In the new system, only the AC ECU checks the vehicle speed before
commanding Actuator. Given a safety case for the original system (refer to
Fig. 7 ignoring the annotations1), it is desirable to reuse as much as possible of
its content in structuring a new safety case. An important prerequisite for this

1 Note that the ASIL assignments are given in the example in Part 10 of ISO 262626,
and we selected assignments for requirements B2 and B4 based on the possible ASIL
C decompositions for redundancy as shown in Fig. 2 – ASIL decomposition schemes,
in Part 9 of the standard.
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is performing an assessment to identify the impact of the changes made in the
system on the safety case components.

3 Background: ISO 26262

ISO 26262 is a standard that regulates functional safety of road vehicles. It
recommends conducting a Hazard Analysis to identify and categorize hazardous
events in the system and to specify safety goals and integrity levels related to
the mitigation of the associated hazards. The standard has 10 parts, and we
focus on one of them, “Product Development at the Software Level” (Part 6),
and refer to Part 9 which explains Automotive Safety Integrity Levels (ASILs).

ASIL Allocation and Propagation. An ASIL refers to an abstract classifica-
tion of inherent safety risk in an automotive system or elements of such a system.
ASIL classifications are used within ISO 26262 to express the level of risk reduc-
tion required to prevent a specific hazard, with ASIL D representing the highest
and ASIL A the lowest. If an element is assigned QM (Quality Management),
it does not require safety management. The ASIL assessed for a given hazard is
then assigned to the safety goal set to address that hazard and is then inherited
by the safety requirements derived from that goal following ASIL propagation
rules. The higher the ASIL, the more rigorous the application of ISO 26262 has
to be. i.e., the more requirements need to be fulfilled.

ASIL Decomposition. The method of ASIL tailoring during the design process
is called “ASIL decomposition”. When allocating ASILs, benefit can be obtained
from architectural decisions, including the existence of sufficiently independent
architectural elements (as in the redundancy in the original PSD system). This
offers the opportunity to implement safety requirements redundantly by these
independent architectural elements, and to assign a potentially lower ASIL to
these decomposed safety requirements2.

Furthermore, ISO 26262 requires the production of over 100 work products,
achieved via various requirements and methods used in the different phases of
software development. For example, Sect. 9 of Part 6 of ISO 26262 discusses Soft-
ware Unit Testing, and Sect. 9.5 outlines the required work products for it. One

Fig. 2. Methods for software unit testing - ISO 26262 Part 6 (cropped for space).

2 Refer to Fig. 2 in Part 9 of the standard for ASIL decomposition schemes.
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of these work products is 9.5.1: Software Verification Plan which results from
requirements 9.4.2–9.4.6 in the same section. Consider one of these requirements,
9.4.3, which describes which software testing methods can be used. These meth-
ods clearly link to ASILs. Specifically, Fig. 2, lists various methods for software
unit testing and how they relate to the four ASILs. The degree of recommenda-
tion to use the corresponding method depends on the ASIL and is categorized as
follows: “++” indicates that the method is highly recommended for the identified
ASIL (we interpret this as “required”), “+” – that the method is recommended
for the identified ASIL, and “o” – that the method has no recommendation for
or against its usage for the identified ASIL. For example, methods 1a, 1b, 1e
in Fig. 2 are required for unit testing for ASIL C. An increased ASIL D, now
requires methods 1c and 1d which were only recommended for ASIL C.

4 GSN Safety Case Impact Assessment

In this section, we present our generic safety case impact assessment app-
roach [13] specifically instantiated for GSN Safety Cases [10]. First, we define
the GSN metamodel and the result of the impact assessment algorithm. Then,
we describe the algorithm, which we name GSN-IA (GSN Impact Assessment),
and the supporting model transformations. We have shown our algorithm to be
sound [4] but do not replicate the argument due to space restrictions.

4.1 GSN and Annotation Models

Figure 3 gives a fragment of the GSN metamodel extended with state informa-
tion. A Goal has a truth state and in this paper we assume that the truth state
is two-valued truth (true, false) and that every goal represents a claim about
the system for which the truth can be determined (e.g., claim expressed as a
temporal logic statement). Thus, for the time being, we preclude more fine-
grained measures of truth (e.g., degrees of confidence) and goals that have fuzzy
truth conditions, and leave as future work. A Solution represents some kind
of evidence about the system and has a validity state that indicates whether
the evidence is applicable or it is “stale” and must be regenerated (e.g., old
test results). A Strategy is used to decompose goals (conclusions) into subgoals
(premises), and its validity state indicates whether the strategy is a valid one
for connecting its premise goals to its conclusion. Finally, a Context element
describes assumptions on the elements it connects to, and also has a validity
state.

We consider two ways that a change to the system can impact the elements of
the safety case: (1) revise – the content of the element may have to be revised
because it referred to a system element that has changed and the semantics of the
content may have changed, and (2) recheck – the state of the element must be
rechecked because it may have changed. For example, the goal “The power sliding
door opens when the function DriverSwitch.RequestDoorOpen() is invoked and
the vehicle speed is not greater than 15 km/h.” (see the class diagram in Fig. 1)
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Fig. 3. Fragment of GSN metamodel
extended with validity states.

Fig. 4. PSD system megamodel and
annotation metamodel.

must be revised if the function name is changed to CommandDoorOpen() since the
goal now refers to an element that does not exist. However, if some aspect of
the system that affects door opening functionality changes, then the goal must
be rechecked because it may no longer hold. We assume that after a revision,
a recheck must take place; thus, at most one of these impacts can apply to an
element. If an element is not impacted by a system change we say that it can be
reused and mark it as reuse.

The purpose of executing our impact assessment algorithm, GSN-IA, on a
safety case is to determine the impact type for each safety case element and to
“mark” the element accordingly. This marking is stored in a simple annotation
model with the metamodel shown in Fig. 4b. Thus, an annotation model consists
of an Annotation element for each GSN element that contains the marking as
its Status attribute.

4.2 GSN-IA: GSN Impact Assessment Algorithm

Figure 5 shows the GSN-IA algorithm both in pseudocode and diagrammatically.
The input to GSN-IA is the initial system model S and a safety case A connected
by a traceability mapping R, the changed system S′ and the delta D recording
the changes between S and S′. Specifically, D is the triple 〈C0a,C0d,C0m〉
where of C0a is the set of elements added in S′, C0d is the set of elements
deleted from S and C0m is the set of modified elements that appear in both S
and S′. These are shown in the top part of the diagram. GSN-IA is parameterized
by the model slicer SliceSys used to determine how change impact propagates
within the system model – that is, we consider this slicer to be given as an input
to GSN-IA. Note that our approach readily applies not only to singleton models
but also to more realistic cases where the system is described by a heterogeneous
collection of related models as a megamodel. We have defined a sound slicing
approach for this case [16]. The output of GSN-IA is the model K that annotates
A to indicate which elements are marked for revise, recheck or reuse.
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GSN-IA uses several model transformations described below. In line 1, the
Restrict transformation extracts the subset R′

A of traceability links from R
that are also valid for S′. Lines 2 and 3 use the model slicer SliceSys to expand
the combined (using Union) set of changed elements in S and S′, respectively, to
all elements potentially impacted by the change. Then, in line 4, these potentially
impacted elements are traced to A across the traceability relationships using the
Trace transformation and combined to identify the subset of elements in A that
must be rechecked. The subset of safety case elements for revision is identified
in line 5 by tracing the deleted and modified elements of S to A. Note that
the elements of A marked revise is a subset of those marked recheck. Only
those that are directly traceable to changed elements of S may require revision;
others only need to be rechecked. In lines 6 and 7, the appropriate GSN slicer
SliceGSNV

(SliceGSNR
) is invoked to propagate each of the revise (recheck)

subsets to dependent elements in A which are added to the recheck subset.
Finally, line 8 invokes CreateAnnotation to construct the annotation model K
from the identified subsets of A. The elements of the subset C2revise are marked
revise; the remaining elements in the subset C3recheck2 are marked recheck,
and all other elements are marked reuse.

Fig. 5. Algorithm for assessing impact of system changes on a GSN safety case.

Our SliceGSNV
slicer uses the dependency rules in Table 1 adapted from

the set of propagation rules described in [11] to identify elements to be marked
for rechecking. For example, GSN1.1 says that all goals and strategies linked to a
goal G on either end of the IsSupportedBy relation are dependent on G (and
are therefore marked “recheck”), if G is marked for revision. On the other hand,
SliceGSNR

only uses two dependency rules to identify elements to be marked
for rechecking: (1) Conclusion goals depend on premise goals they are indirectly
linked to by the same strategy, and (2) Goals depend on solutions they are linked
to by the IsSolvedBy relation.
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Fig. 6. Visualization of GSN-IA algorithm.

Table 1. SliceGSNV dependency rules.

Rule Element Dependent Element(s)

GSN1 Goal G 1. All goals/strategies linked to G on either end of the
IsSupportedBy relation.

2. All solutions linked to G via the IsSolvedBy relation

GSN2 Strategy S All goals linked to S on either end of the IsSupportedBy

relation

GSN3 Context C 1. All goals, strategies and solutions A that introduce C as
the context via the InContextOf relation

2. All goals, strategies and solutions that inherit C as the
context (i.e., all children of A)

GSN4 Solution S All goals related to S via the IsSolvedBy relation

While SliceGSNV
only performs a one-step slice to find the revised elements’

direct dependencies, SliceGSNR
works by continuously expanding a subset of

elements in a GSN model to include its dependent elements until no further
expansion is possible.

4.3 Illustration: Power Sliding Door Example

In our PSD example, the change in the system is the removal of the redundant
switch, so the delta D is 〈∅, (RedundantSwitch), ∅〉. The change directly affects
goals B3-6 shown in Fig. 7, which refer to the Redundant Switch, and are there-
fore marked as revise by GSN-IA. The change also affects solutions SN3-6 which
would include information about the Redundant Switch. Goal B2 refers to the
AC ECU which is traced to the Redundant Switch in the PSD Class Diagram.
SliceSys would have detected that; therefore, B2 is marked recheck. Goal B1
does not link to any system components, so it does not appear in the result
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Fig. 7. An annotated GSN safety case for PSD system after running GSN-IA.

of SliceSys, and is therefore marked reuse. The remaining parts of the safety
case elements are not traced directly to elements in the delta, but get marked
using SliceGSNV

and SliceGSNR
described earlier. The result of GSN-IA is the

annotation given on top of the original safety case and shown in Fig. 7.

5 A More Precise Impact Assessment

The algorithm GSN-IA, presented in in Sect. 4, is conservative, i.e., more ele-
ments are marked recheck and revise than potentially necessary to still be
sound. In this section, we present six different techniques, T1-T6, aimed to
improve the precision of GSN-IA. Together, they form a variant of GSN-IA,
called GSN-IA-i (improved). The improvements in assigning annotation can be
both at the level of safety case elements (goals, strategies, contexts and solu-
tions), or finer, at the level of element identifiers. In order to validate GSN-IA-i,
we use a metric CostIA to compute the cost associated with revision and recheck-
ing after impact assessment. The equation for CostIA is shown in Fig. 8. For
each technique, we describe the current state of GSN-IA, show how to improve
the precision in each case (GSN-IA + Ti), present the prerequisites to ensure its
soundness, and illustrate it on the PSD example. The techniques are summarized
in Table 2.
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CostIA = CostRevise + CostRecheck

= (CostGV + CostCV + CostSolV + CostStrV ) + (CostGR + CostCR + CostSolR + CostStrR)

= (
∑

g∈GV

KV (1 + n(g)) +
∑

c∈CV

KV (1 + n(c)) +
∑

s∈SolV

KV +
∑

s∈StrV

KV )+

(
∑

g∈GR

KR +
∑

c∈CR

KR +
∑

s∈SolR

KR +
∑

s∈StrR

KR)

= KV (
∑

g∈GV

(1 + n(g)) +
∑

c∈CV

(1 + n(c)) + |SolV | + |StrV |) + KR(|GR| + |CR| + |SolR| + |StrR|)

= KV (
∑

g∈GV

(1 + n(g)) +
∑

c∈CV

(1 + n(c)) + |SolV | + |StrV |) + KR(|ER|), where:

• CostRevise (CostRecheck): Cost of all revisions (rechecks).
• EV (ER): Number of total elements marked for revision (rechecking).
• GV (GR): Number of goals marked revise (recheck).
• CV (CR): Number of contexts marked revise (recheck).
• StrV (StrR): Number of strategies marked revise (recheck).
• SolV (SolR): Number of solutions marked for revise (recheck).
• n(x): Number of identifiers in x marked for revise.
• KV (KR): Cost of performing a revision (a recheck).

Fig. 8. Cost equation for effort incurred after an impact assessment.

Table 2. GSN-IA + Ti techniques and improvements.

Technique 1 2 3–6

Improvement n(g) ↓, n(c) ↓ |GV | ↓, |CV | ↓ |ER| ↓

5.1 T1: Increasing the Granularity of Traceability Between
the System and the Safety Case

GSN-IA: Trace links between the system and safety case provided to GSN-IA
are assumed to link entire safety case elements to system elements. That is, if a
change occurs in any of the linked system elements, the entire safety case element
is marked for revision.

GSN-IA+T1: Trace links between the system and safety case connect identi-
fiers in safety case elements to corresponding system elements. Annotations are
then assigned to safety case element identifiers rather than to entire elements.

Improvement: With more fine-grained trace links, GSN-IA+ T1 can identify
which specific identifiers in a safety case element should be marked for revision,
allowing the safety engineer to focus on revising only those parts instead of
the entire element. This in turn decreases the number of unnecessary identifier
revisions, i.e., n(g) and n(c), since only goals and context nodes are assumed to
have identifiers traceable to the system, thus decreasing the overall cost.

Prerequisites: A safety case language that clearly distinguishes identifiers from
other text, ensuring that the finer-grained trace links cover at least all the orig-
inally covered links in order to preserve soundness of the technique.



Safety Case Impact Assessment in Automotive Software Systems 79

Example: In the PSD system, the goal B3 “The VS ECU sends accurate vehicle
speed information to the Redundant Switch” can be traced to both VS ECU and
Redundant Switch components. Currently, when either VS ECU or Redundant
Switch changes, GSN-IA marks the entire goal revise. A more fine-grained
traceability would link the identifier “VS ECU” to VS ECU in the system and
the identifier “Redundant Switch” to the Redundant Switch in the system. Now,
if Redundant Switch changes in the system but VS ECU does not, then only the
identifier “Redundant Switch” in goal B3 needs to be marked for revision, while
the rest of the goal can be reused.

Discussion: Traceability between the system and its safety case can be estab-
lished at different levels of granularity. Formal safety case languages have clearly
defined identifiers, thus they can easily be traced to the appropriate system ele-
ments. For example, the author of [12] defines a six-step approach for creating
well-formed GSN goal structures that in turn aid in a finer-grained system trace-
ability. For languages that only use natural language to describe goals, this fine
grained traceability may not be feasible.

5.2 T2: Identifying Sensitivity of Safety Case to System Changes

GSN-IA: Any change to a system element will cause its associated element in
the safety case to be marked for revision.

GSN-IA+T2: We mark the safety case element for revision only if it is required
by the type of system change.

Improvement: Unnecessary revisions of safety case element are minimized by
identifying cases where a system change should actually impact the element, and
where it can be ignored. This in turn decreases the number of goal (|GV |) and
context (|CV |) elements marked for revision, decreasing the overall cost.

Prerequisites: For each model type in the system megamodel, a sensitivity
table that lists all element types of that model and the kinds of changes that
they can undergo, and, for each trace link between the system and the safety
case, the type of change the link is sensitive to. We assume that the types of
changes that occur as part of the system evolution are captured with each of
the corresponding changes in the Delta we are provided. Since the assignment
of sensitivity to change is performed by the domain expert, we require these
assignments to be correct to preservation of soundness.

Example: In the PSD System, the class Door in the Class Diagram model
has an attribute state, which is an enumeration with possible values open and
closed. Assume a goal such as “If the door state is open and the speed is greater
than 15 km/h, the driver is notified.”. Currently, if we add a new option to the
door state (e.g., “stuck”), that is considered a change in the door state, which
marks the goal for revision. However, such a change (an attribute enumeration
extension) should not impact the goal which is only concerned with the door
state being open. If we do not add that type of change in the sensitivity list of
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that particular trace link between system and goal, we are able to ignore it and
allow the goal to be reused.

Discussion: In the example above, if the goal had been “If the door state is not
closed and the speed is greater than 15 km/h, the driver is notified.”, then the
change should have impacted this goal, as “stuck” is considered “not closed”.
We assume that goals are structured in a way that specific states are identified;
if they are not, T2 cannot be used. Interestingly, in such a case, the goal would
have to be marked revise, which may allow detecting missing test cases or other
evidence for the “stuck” state.

5.3 T3: Understanding Semantics of Strategies

GST-IA: Any truth valuation change of the premise goals of a strategy lead to
rechecking the conclusion goal.

GSN-IA+T3: Here, we use semantic knowledge, i.e., which changes in truth
values of the premises do not affect the truth value of the conclusion.

Improvement: We limit the unnecessary propagation of recheck annotations
across the safety case, thus |ER| decreases, causing the overall cost to decrease.

Prerequisites: Semantics of the strategies connecting premise and conclusion
goals. This applies to a fixed set of known strategies and not to strategies
expressed in natural language. Soundness is preserved since we are using sound
semantics of logical connectives to make decisions.

Example: Assume in the PSD system that SG1 was connected to its subgoals
B1-B6 via an “OR” decomposition strategy (as opposed to an “AND”). Also
assume that currently all of B1-B6 have true states. This means that SG1 is also
evaluated to true. If the system changes so that B5-B6 are marked recheck, we
don’t need to mark SG1 recheck since, due to disjunction, it must still be true.

Discussion: Marking a premise of an “OR” strategy recheck (while other
premises are marked reuse) can impact the overall confidence in the argument,
as the premise can become false after the recheck is performed. We do not take
confidence into account at this point and consider it future work.

5.4 T4: Decoupling Revision from Rechecking

GSN-IA: Forces a recheck every time an element is marked revise.

GSN-IA+T4: By knowing circumstances under which revising a goal will not
impact its truth value, we require a recheck after a revision only when necessary.

Improvement: Eliminating unnecessary rechecks after revisions leads to possi-
bly decreasing |ER| and, therefore, the overall cost.

Prerequisites: An extra column in the sensitivity table described in T2 that
lists if a particular type of change affects the truth value of a goal. We require
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correctness of assignments of changes to their effect on goal truth values as well
as completeness of trace links to ensure soundness of the approach.

Example: In the PSD system, changing the name of a system element such
that it does not conflict with other names (e.g., Redundant Switch is renamed
to Extra Switch) will cause the goals referring to that element (e.g., goal B3)
to be marked for revision. However, since changing the name does not impact
the truth state of the goal, rechecking can be skipped. Other examples include
capitalization of names, spelling corrections or language translations, such that
the renaming is done consistently in both the system and the safety case.

5.5 T5: Strengthened Solutions Do Not Impact Associated Goals

GSN-IA: If a piece of evidence that a solution points to changes, the goal
supported by that solution is always marked recheck.

GSN-IA+T5: A change to a solution that strengthens it should not affect its
support for associated goals.

Improvement: Understanding which changes in solutions do not necessitate a
rechecking of associated goals can reduce the unnecessary goal rechecks. Thus,
|ER| decreases causing the overall cost to decrease.

Prerequisites: A sensitivity table (similar to T2) that identifies, for each type of
evidence, the types of changes it can undergo, and for each “isSupportedBy” link
between a solution node pointing to this kind of evidence and a goal, whether or
not it is sensitive to each kind of change. Assignments of changes to their effect
on goal truth values need to be correct to guarantee soundness.

Example: Assume that B1 was “The VS ECU sends accurate vehicle speed
information to the AC ECU 90% of the time” and that it was linked to a solution
with test cases which showed accuracy 90% of the time. If the system changes
so that the test cases can now demonstrate accuracy 100% of the time, this does
not affect goal B1, meaning that it should not be marked for rechecking.

5.6 T6: Exploiting Knowledge About ASIL Work-Product
Dependencies and ASIL Propagation and Decomposition Rules

GSN-IA: Does not take into account how changes in the system impact ASILs.

GSN-IA+T6: Determine how ASILs should change due to system changes by
using knowledge about ASIL work-product dependencies and ASIL propagation
and decomposition rules.

Improvement: Increase in precision due to distinguishing between changes
to the goals and changes to the ASILs, potentially decreasing the number of
required goal rechecks. This decreases |ER|, thereby decreasing the overall cost.

Prerequisites: Dependency tables from ISO 26262 Part 6 that describe the
types of methods for each work product required to achieve certain ASILs, and
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ASIL decomposition and propagation rules as presented in ISO 26262 (refer
to Sect. 3). We assume the soundness of the tables and ASIL propagation and
decomposition rules in order to guarantee soundness of our approach.

Example: We present two examples in the PSD system:
1. If method 1e (Back-to-back comparison test between models and code)

used for unit testing as part of the Software Verification Report work product
for goal B1 is deleted, the ASIL for B1 supported by Sn1 changes from ASIL
C to ASIL B based on Table 1. This would in turn impact the ASIL on SG1,
since the ASIL propagation rule no longer holds. In this case, claims B1 and
SG1 themselves are not impacted, only their ASIL levels are.

2. With redundancy present in the PSD system, ASIL decomposition was
used to allocate ASIL B to B2 and ASIL A to B4 (decomposed from ASIL C).
B6 was added to demonstrate sufficient independence of the Redundant Switch
element from the AC ECU as required by ASIL decomposition. When the system
changes and the redundant switch is deleted, requirements B4 and B6 are marked
for revision, causing the original decomposition rule to be impacted. B2 is only
marked recheck, but its ASIL level will be marked for revision (from ASIL B to
ASIL C) to respect ASIL propagation rules from SG1. The impact assessment
now flags both C1 2 and Sn2 for revision. Ideally, the safety engineer will revise
Sn2 to be strengthened (e.g., unit testing method 1e is added) to increase the
ASIL on B2 to level C.

5.7 PSD Example Cost Comparison

Assume that the revision cost KV is 2 units and the rechecking cost KR is 1
unit3. On the PSD example, GSN-IA produced an annotation with 8 elements
marked revise (4 goals, 4 solutions) and 4 marked recheck. Goals marked
revise have the following number of identifiers: B3 has 3 (VS ECU, vehicle
speed, Redundant Switch), and similary, B4, B5 and B6 each respectively have
3, 6 and 2 identifiers. The cost incurred after GSN-IA is 2 × ((1 + 3) + (1 + 3) +
(1 + 6) + (1 + 2) + 4) + 1 × (4) = 48 units.

Using T1, changes to the redundant switch link only to the Redundant Switch
identifier in goals B3-B6 (as opposed to the entire goals), dropping the number
of revised elements in each of these goals to only 1 (as opposed to marking all
the identifiers in the goal for revision). The cost after running GSN-IA+ T1 is
2×((1+1)+(1+1)+(1+1)+(1+1)+4)+1×(4) = 28 units, representing a clear
improvement. Due to space limitations, we do not demonstrate the application
of the other techniques.

6 Related Work

Model-Based Approaches to Safety Case Management. Many methods
for modeling safety cases have been proposed, including goal models and require-
ments models [3,6] and GSN [10]. The latter is arguably the most widely used
3 In practice, KV > KR, since revision requires more effort than rechecking.
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model-based approach to improving the structure safety arguments. Building on
GSN, Habli et al. [7] examine how model-driven development can provide a basis
for the systematic generation of functional safety requirements and demonstrates
how an automotive safety case can be developed. Gallina [5] proposes a model-
driven safety certification method to derive arguments as goal structures given
in GSN from process models. The process is illustrated by generating arguments
in the context of ISO 26262. We consider this category of work complimentary
to ours; we do not focus on safety case construction but instead assume presence
of a safety case and focus on assessing the impact of system changes on it.

Safety Case Maintenance. Kelly [11] presents a tool-supported process, based
on GSN, that facilitates a systematic safety case impact assessment. The work by
Li et al. [15] proposes an assessment process to specify typical steps in the safety
case assessment. The authors develop a graphical safety case editor for assessing
GSN-based safety case and use the Evidential Reasoning (ER) algorithm to
assess the overall confidence in a safety case. Jaradat and Bate [9] present two
techniques that use safety contracts to facilitate maintenance of safety cases. As
far as we are aware, none of the approaches provide a structured model-based
algorithm for impact assessment, or consider methods for improving its efficiency.
In the context of safety case maintenance, Bandur and McDermid [1] present a
formalization of a logical subset of GSN with the aim of revealing the conditions
which must be true in order to guarantee the internal consistency of a safety
argument. This provides a sound basis for understanding logical relationships
between components of a safety case and thus to enhance impact assessment.

7 Conclusion

In this paper, we showed how using various sources of knowledge about the
system changes, the particular safety case language and the safety standard
can increase the precision of the previously proposed impact assessment tech-
nique [13], thus reducing the work required by the safety engineer. We presented
six precision improvement techniques and illustrated our ideas using a GSN
safety case used with ISO 26262. In the future, we aim to address the following
problems:

Addressing Additions. Currently, our impact assessment approach addresses
the effect of adding components in the system on the existing parts of the safety
case. However, it currently cannot address how adding components can poten-
tially require additions to the safety case. We plan to study this further and
propose approaches for addressing this in the future.

Exploiting System Design Patterns. We would like to understand whether
our approach can detect certain changes in the system design which change not
the functionality of the system but its level of integrity. For example, consider the
“redundancy pattern”, where a component such as the redundant switch in our
PSD example is added. We would like to study if it is possible to syntactically
identify this case as a redundancy change by witnessing two paths to the actuator
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(one via the VS ECU and one via the redundant switch), and how this can be
exploited for impact assessment.

Design Space Exploration. We believe that our approach can be used for
impact assessment in general, and not just for safety case co-evolution due to
system changes. One application for this is in design space exploration, to enable
answering what-if questions about the impact of changes on safety cases. In this
context, we would like to study the effect of changes, other than just system
changes, on the safety case.

Constructing an Assurance Case for Change. Our impact assessment app-
roach can guide the creation of a Change Argument: an argument for the changes
made to the original safety case, providing evidence for such an argument. For
example, our approach can support a revise marking in a safety case by link-
ing the element to the appropriate counterparts in the system megamodel that
caused this marking to be computed.

Confidence. We would like to augment our approach to handle a confidence
model on top of safety cases. That is, we would like to assess the impact of
changes not just on the safety case elements themselves but on the confidence
level we assign them and on the safety case as a whole.

Tool Support and Validation. We are actively working on extending our
model management framework MMINT [4] to include safety cases and model
management operators for them (e.g., slice). We are also implementing our
impact assessment approach using the workflow language defined in MMINT.
We plan to incorporate the improvement techniques discussed in this paper and
validate their effectiveness on a large scale industrial example.
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Abstract. Human-Robot Collaboration is increasingly prominent in
people’s lives and in the industrial domain, for example in manufacturing
applications. The close proximity and frequent physical contacts between
humans and robots in such applications make guaranteeing suitable levels
of safety for human operators of the utmost importance. Formal verifi-
cation techniques can help in this regard through the exhaustive explo-
ration of system models, which can identify unwanted situations early in
the development process. This work extends our SAFER-HRC method-
ology with a rich non-deterministic formal model of operator behaviors,
which captures the hazardous situations resulting from human errors.
The model allows safety engineers to refine their designs until all plausi-
ble erroneous behaviors are considered and mitigated.

Keywords: Cognitive models · Formal verification · Task-analytic
models · Human errors · Safety analysis · Human-robot collaboration

1 Introduction

Collaborative robot applications necessitate close proximity and possible phys-
ical contacts between operators and robots, due to the intrinsic nature of the
activities they execute together. Thus, a central requirement in the design of
this kind of applications is an assessment that identifies hazards and eliminates
or mitigate risks. While informal assessment techniques such as HAZOP [28]
might overlook some hazards; formal verification techniques are more reliable
as they exhaustively check whether a system—modeled through a mathemati-
cal notation—satisfies required properties (e.g., safety properties), or has incom-
pletenesses and inconsistencies [5]. However, modeling collaborative applications
requires to consider the human behavior and its non-determinism caused by
autonomous judgments and improvising actions [43].

In this paper we extend the SAFER-HRC methodology introduced in [3,4] for
the assessment of the safety of Human-Robot Collaborative (HRC) applications,
by improving the formal model of operators on which the methodology relies.
c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 89–104, 2017.
DOI: 10.1007/978-3-319-66266-4 6
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Unlike classic hazard identification approaches such as FTA [27] and FMECA
[26] which cannot deal with unpredictable human behavior, the proposed model
takes into account both normative human behavior and a number of possible
deviations. Thus, previously unrecognized hazardous situations are detected.

Two common approaches to model human operators in system models are:
(i) task-analytic models, which represent the observable manifestation of oper-
ators’ behavior; and (ii) cognitive models, which instead describe the cognitive
process behind the operator’s observable behavior [11]. In the first approach
tasks are represented as hierarchies of actions whose execution sequence is mod-
eled by if-then logic rules, and the operator behavior is part of the overall model
of the system. The latter techniques, instead, capture the knowledge used by the
operator to execute the task. The human cognitive state is usually described by
a set of variables that change with respect to the other elements in the system,
following a set of logical production rules. Cognitive models, unlike task-analytic
approach, highlight the erroneous behaviors of the operator—i.e., human activ-
ities that do not achieve their goals [39]—and provide clues about why such
behavior arose, and flaws in the design that allow their occurrence [16]. These
clues can be used to refine the system design to reduce the likelihood of operator
errors. Pairing a hierarchical task model with a human cognitive architecture
has been used to determine the role of operators in the system performance or
failure [40]. Cognitive models can be integrated in a larger formal model and
evaluated as a part of the system [8].

In [3,4] we formalized collaborative systems to verify the physical safety of
human operators. We used a task-analytic approach that models collaborative
systems in terms of three main modules—Operator, Robot and Layout—and
breaks down tasks into atomic actions. In this work, we combine the previous
model with a cognitive model capturing erroneous human behavior driven from
the operator’s perception of the environment and mental decisions. Thus, we can
describe likely errors due to certain characteristics that are frequently found in
human operators. To this end, the cognitive-driven reasons and phenotypes of
errors are treated as black boxes, and their consequences leading to hazardous
situations are analyzed in terms of human safety. The proposed methodology
captures human errors and inspects harmful situations caused by those errors.

This paper is structured as follows: Sect. 2 discusses related works on the for-
malization of human behaviors, especially errors. Section 3 introduces SAFER-
HRC and its extension with a model of operators’ erroneous behaviors. Section 4
shows how the improved model helps detect new, previously unrecognized haz-
ardous situations. Section 5 discusses some open issues and concludes.

2 Related Work on Human Behavior and Errors

Cognitive architectures such as SOAR [34], ACT-R [2,42], OCM [14,35] and
PUM [45] have been widely-used to model the normative and erroneous human
behavior. SOAR and ACT-R cannot be used in formal verification approaches
since they lack a formal semantics, whereas OCM is known to be suitable only for
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designing air traffic control applications. PUM, instead, has been used in a wider
range of applications [12,13,18,44], where the model of the operator includes a
set of goals and a set of actions to achieve them. The operator’s knowledge of how
to execute actions is modeled as a set of rules. PUM models differentiate between
mental and physical actions: first the operator decides to execute an action; then,
the action eventually starts. PUM models can be used in different domains, such
as Collaborative Robotics. Nevertheless they should be able to replicate human
erroneous behavior, so that a verification process can detect the hazardous sit-
uations raised by them. Currently, model-based techniques that include human
errors focus on interface devices and not physical collaboration and contacts
[10]. For example, Physiograms [19] model interfaces of physical devices and
[9,36] study the impacts of miscommunication in human-human collaboration
while interacting with critical systems. [7,38] explore human deviation from cor-
rect instructions using ConcurTaskTrees [37]. [41] upgrades the SAL cognitive
model with systematic errors taken from empirical data. Nevertheless, using data
related to specific case studies can lead to the loss of generality. [17,19,33] are
other examples that combine cognitive and formal models to capture erroneous
human behaviors in interactions with devices.

No generally accepted classification of human errors is available. [43] divides
errors into two main groups: location- and orientation-related. The former hap-
pen when an action is related to multiple locations, or if there are two actions
which take place in different locations within the task. The latter happen, for
example, when the operator needs to hold a workpiece while it is being screw-
driven on a pallet: even if the location is correct, the action might not conclude
due to the wrong orientation of the workpiece. [25], instead, classifies the simple
phenotypes of human errors into: repetition of an action, reversing the order of
actions, omission of actions, late actions, early actions, replacement of an action
by another, insertion of an additional action from elsewhere in the task, and intru-
sion of an additional unrelated action. [22] manually introduces these phenotypes
into task specifications, which suffers from many false negatives. The author iden-
tifies complex phenotypes created by the combination of simple ones: (i) under-
shooting, which occurs when an action stops too early; (ii) side tracking, where a
segment of unrelated action is carried out, then the correct sequence is resumed;
(iii) capturing, where an unrelated action sequence is carried out instead of the
expected one; (iv) branching, where the wrong sequence of actions is chosen; (v)
overshooting, where the action carries on past its correct end point by not recog-
nizing its post-conditions. Complex phenotypes are combinations of simple ones,
as shown in Fig. 1 (where “wrong place” refers to the action’s temporal position in
the execution sequence, not to a location in the layout). [16] proposes to include
in the model strong enough design rules so that cognitively plausible erroneous
behavior is not allowed, or is at least is unlikely. Further, authors in [15] propose
a framework for reasoning about human-in-the-loop, to identify potential causes
for human failure in human-automation interface applications. They have also
explored the role of personal variables such as knowledge, experience, the ability
to complete recommended actions (self-efficiency), effectiveness of those actions
(response-efficiency) and operator trust in them.
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Error Mode

Simple
Phenotype

Complex
Phenotype

Actions in wrong place Actions at wrong time Actions of wrong type
Actions not
included in

current plans

Repetition Reversal Omission Delay Premature action Replacement Insertion Intrusion

Restart Jumping Undershoot Side-tracking Capture Branching Overshoot

Fig. 1. A taxonomy of erroneous actions phenotypes, taken from [22]

To conclude this section, we remark that some works use probabilistic models
to model human operators [20,23,32]. In this vein, [21] uses probability distrib-
utions to express human behavior, where distribution functions capture factors
such as fatigue and proficiency. However, no validated data from live experiments
with real users have been made available, and the article mentions that fictional
data were used in order to simulate a distribution over erroneous human behav-
ior. In this work, we do not use probabilistic models to capture human behaviors
mainly for two reasons. The first one is a lack of data concerning realistic values
for such probabilities. The second is that in our approach the operator model
is part of a bigger one that is used to perform the safety analysis of systems.
The main aim of the overall model is to identify hazardous situations (including
those caused by human errors) and to define suitable Risk Reduction Measures
(RRMs, see Sect. 3) to reduce their resulting risk. The goal is to eventually intro-
duce relevant RRMs for every erroneous situation that the safety engineers deem
relevant, regardless of their probability value. Nevertheless, once the causes of
human errors are identified and categorized (as in Sect. 3), one could evaluate
the corresponding probabilities of the different error causes. This can help refine
the design by defining more efficient and relevant RRMs.

3 Operator Model

The SAFER-HRC methodology [3,4] hinges on a formal model of HRC appli-
cations that relies on a discrete notion of time, and on finite discretizations of
the notion of space and of the scalar properties of systems—e.g., velocity. Let us
first provide some background on the techniques on which the model is based.

Preliminaries. The SAFER-HRC formal model is expressed through the TRIO
metric temporal logic, which features an underlying linear temporal structure
and a quantitative notion of time [24]. TRIO formulae are built out of the usual
first-order connectives, operators, and quantifiers, as well as a single basic modal
operator, called Dist, that implicitly relates the current time, to another time
instant: given a time-dependent formula φ and a (arithmetic) term t indicating
a time distance (either positive or negative), formula Dist(φ, t) specifies that
φ holds at exactly t time units from the current one. While TRIO can exploit
both discrete and dense time domains, in this work we assume the standard
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Table 1. List of derived TRIO operators

Operator Definition Meaning

Futr(φ, d) d > 0 ∧ Dist(φ, d) φ occurs exactly at d time units in the future

Past(φ, d) d > 0 ∧ Dist(φ, −d) φ occurred exactly at d time units in the past

AlwF(φ) ∀t(t > 0 ⇒ Dist(φ, t)) φ holds always in the future

Until(φ, ψ) ∃t(Futr(ψ, t) ∧ ∀t′(0 <
t′ < t ⇒ Dist(φ, t′)))

φ will hold until ψ occurs

SomF(φ) ∃t(t > 0 ∧ Dist(φ, t)) φ occurs sometimes in the future

SomP(φ) ∃t(t > 0 ∧ Dist(φ, −t)) φ occurred sometimes in the past

model of the nonnegative integers N as discrete time domain. TRIO defines a
number of derived temporal operators from the basic Dist, through propositional
composition and first-order logic quantification. Table 1 defines some of the most
significant ones, including those used in this work. The satisfiability of TRIO
formulae is in general undecidable. SAFER-HRC uses a decidable subset of the
language, which can be handled by automated verification tools, such as the Zot
bounded satisfiability checker [1]. Zot is used to check the model of the system
against desired safety properties. If the property is not satisfied, Zot provides a
counterexample witnessing a system execution that violates the property.

Basic Model. The proposed model for HRC applications includes three main
modules: operator (O), robot (R), and layout (L). ISO15066 [31] contains bio-
mechanical studies that divide the human body into 26 sections according to
their pain tolerance and being injury prone. In consistency to this standard,
O describes all of the identified body sections, the relative constraints concern-
ing their movements, and their position and velocity at each time instant. R
divides robots into their components (arms and end-effectors), and captures the
velocity, position and force of each part at each time instant. The values for
velocity and force range over the quantized set {none, low,mid,high}. These
values will later be used to calculate the risk value of the system. The layout
L of the workspace is partitioned into a finite number of regions, each with
a defined shape, material and an attribute stating the presence of obstacles
({occluded, clear, free,warning}). At each time instant, the position of each ele-
ment of R and O corresponds to the region in which it is located.

SAFER-HRC aims to identify hazardous situations—as described in [29]—by
providing their formalization, compute a quantized risk (∈ {0, 1, 2}), and define
corresponding Risk Reduction Measures (RRMs) in conformance with [30]. Each
HRC task is broken down into a set of elementary actions, which are the smallest
possible functional units and are executed either by operators (the performer of
the action is the operator: ai,actor =op) or by robots (the performer is the robot:
ai,actor = ro). Each action is associated with a pair 〈preC, postC〉 of pre- and
post-conditions, which are formalized through logical constraints capturing the
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action’s temporal relations with other actions (e.g., precedence). In each instant,
the state of an action is described by one of the following atomic formulae:

– ai,sts=ns (not started): state in which not all pre-conditions are true, yet.
– ai,sts=wt (waiting): a state of human actions only, in which all pre-conditions

are true, but the action has not yet started. It allows for the introduction of
delays or hesitations in human actions.

– ai,sts = exe (executing): running state, triggered by the validity of all pre-
conditions.

– ai,sts=sfex (safe executing): special running state, triggered by the activation
of at least one RRM. This means that there are currently detected hazards
in the system but their consequences are being mitigated by RRMs without
interrupting the execution of the action.

– ai,sts = hd (hold): exception state, entered upon an explicit suspension of
execution due to a request from the operator. When the state is active, the
execution is momentarily paused, although some RRMs may be enabled.

– ai,sts = dn (done): regular termination state, triggered by the validity of all
post-conditions.

– ai,sts =exit: whenever the desired safety properties are violated in any state
value, the action quits (together with all other actions). The transition may
be triggered by situations (e.g., hazards and risks) detected in other actions.

The proposed model also includes the formalization of two recognized types
of physical hazards, according to [31]: (i) Transient (Tr) ones, which are fast,
impact-like contacts, where body parts are hit and then recoil because of the
kinetic energy transferred to the body; and (ii) Quasi-static (Qs) ones, which are
sustained contacts of body parts against a constraining object with continuous
energy flow from the robot. SAFER-HRC introduces two types of RRMs to treat
the detected hazards: Speed and Separation Monitoring (SSM) and Power and
Force Limitation (PFL) to avoid physical contacts or limit their consequences,
respectively. The former type maintains the robot speed constantly low when the
robot works at a distance less than a predefined threshold from the operator;
the latter type, instead, limits the value of the robot force.

The original version of the O module focused more on modeling the norma-
tive and expected behavior of the operator. In this paper, our aim is to model
the operator behavior more realistically, and to capture also situations such as
unintended behavior—errors or misuses. The operator model has been extended
by including reasonably predictable human errors, to detect hazards that they
cause which have been overlooked in the basic model.

Extended Operator Model: Formal Cognitive Model. We now present
an extension of module O of the model proposed in [3]. The new model allows for
the generation of traces that include human errors and encompasses functional
and behavioral human modeling. Since the model is used to generate errors and
to analyse the effects of errors on human safety, it focuses on the consequences
of human errors rather than their causes. We explain below how phenotypes of
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Fig. 2. Parallel composition of execution and erroneous state of each action

erroneous human behavior are taken into account, but we leave the study of
genotypes for future work. The model relies on the following assumptions.

(i) Operator actions are fully non-deterministic and are rationally possible
to be taken by the operator as their pre-conditions turn true. Every action has
a timeout Δ within which the operator needs to decide whether to start the
execution of the action after its pre-conditions hold.

(ii) Each action has a corresponding preceding mental decision opActsi, which
works as its trigger. When opActsi becomes true, it means that in the next
instant the operator starts executing action ai. An action which is waiting starts
executing right after when the operator makes her mental decision to start acting.
Each action has also a corresponding mental decision about stopping (ending,
pausing) its execution, captured by predicate opStopsi. These two predicates
capture the perception of the operator from processing the state of her envi-
ronment, and the decisions (starting/stopping) she will make according to those
perceptions. The decision of the operator to start and end an action is due to
what she may see, touch or feel. Instead of modeling each of these causes sepa-
rately, we model the decision itself directly.

(iii) Additional states for operator actions are introduced describing if the
execution state is normative (nrm) or erroneous (err). Figure 2 shows the state-
chart capturing the evolution of a single action, which can be in one of the
possible execution states {exe, sfex, hd, exit} and at the same time in one of
{err,nrm}.

(iv) The number of possible human errors is bounded, to avoid making the
model too complex and also to avoid generating a lot of false positive situations.

Formalizing Human Errors. Given the classification of [43] and the pheno-
types introduced in [25], we categorize human errors in three main types:

1. Time-related errors (errTP ), which occur when the operator does not follow
the correct temporal ordering of actions. Eventually these errors lead to an
instance of one of the phenotypes introduced in Fig. 1.
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O
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Hazardous
Histories
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Histories

Fig. 3. Types of error that occur due to first-order causes related to the operator’s
state during execution

2. Space-related errors (errS), that happen when the operator is in the wrong
L region or places the instruments in the wrong regions.

3. Goal-related errors (errG), that arise when the operator is in the right spot
to execute an action and starts the execution with no time-related error, but
she does not follow instructions correctly and the action is performed poorly.
This happens more frequently when the operator is untrained and unskillful.

An error can appear due to two different layers of motives: first-order and second-
order causes. Errors originate directly from first-order causes, which are the lack
of at least one of the following factors: skill (knowledge + experience + trust in
design), attention or vigor. First-order causes themselves originate from the state
of the operator, who can be fatigued, inattentive, unaware of the instructions,
rash, etc. The goal of this work is to enrich the list of detected hazards, and to
this end considering only first-order causes is enough. Second-order causes, on
the other hand, are less relevant during the process of identifying new instances
of hazardous situations and assessing their corresponding risks. The relations
between errors and their first- and second-order causes are shown in Fig. 3. In
the rest of this section we illustrate how the formal model takes human errors
into account and represents the situations that can arise because of them. In fact,
human errors must be formalized and included in the model to systematically
generate and verify them during application of the SAFER-HRC methodology.

1. Time-related Errors happen when the operator manipulates the expected
temporal order of actions and creates an unwanted situation.

errTP i ⇔ Repetitioni ∨ Omissioni ∨ Latei ∨ Earlyi ∨ Intrusioni (1)

Our proposed model formalizes each phenotype introduced in [25] and listed in
Fig. 1 through the formulae below. Implicitly, since we are dealing with operator
errors, constraint ai,actor =op is assumed in all the following formulae.

The model captured in module O does not force the operator to start another
action or remain idle after executing an action. Consider for example the case
(see Sect. 4) where the operator should prepare the jigs and fixtures before the
robot starts moving towards the pallet. If the operator repeats the preparation
for other jigs or continues to play with jigs after they are already in place, there
could be a collision between the operator’s hand and the robot end-effector. The
formula below formalizes an erroneous repetition of an action i by stating that
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this occurs when the action is currently done and either it was just completed
without the operator acknowledging this (i.e., Past(¬ai,sts=dn ∧ ¬opStopsi, 1)
holds), or the operator decides to perform it again (i.e., opActsi holds).

Repetitioni ⇔ ai,sts=dn ∧ (Past(ai,sts �=dn ∧ ¬opStopsi, 1) ∨ opActsi) (2)

The cases of reversed and replaced actions in the temporal model are actu-
ally covered by the formalization of early/late actions presented below. To allow
for the wrong sequencing of operator actions, the corresponding pre-conditions
are looser than those for actions executed by robots. In fact, whereas the pre-
condition for a robot action typically includes a list of other actions that must
have been completed, this does not occur for operator actions, which can be
executed as soon as the operator is in the right area and has the required tools.

An action ai is omitted if the operator never executes it, thus predicate
opActsi is never true (AlwF(¬opActsi) holds). Consequently, the status of ai will
always remain ns or wt in the future (i.e., AlwF(ai,sts=wt ∨ ai,sts=ns) holds),
which prevents the execution of robot actions whose pre-conditions require
the termination of ai. Subformula SomP(Lasted(ai,sts = wt,Δ)) states that for
action i to be considered omitted it must have previously been in the waiting
state for at least Δ time units—otherwise it might simply be the case that not
enough time has been given the operator to start it.

Omissioni ⇔AlwF(¬opActsi ∧ (ai,sts=wt ∨ ai,sts=ns)) ∧
SomP(Lasted(ai,sts = wt,Δ))

(3)

An action i is delayed (i.e., predicate Latei holds) if the operator starts
executing it (i.e., opActsi holds), and the timeout Δ to start the action after it
was enabled has already expired sometimes in the past.

Latei⇔opActsi ∧ SomP(Lasted(ai,sts = wt,Δ)) (4)

Action i is prematurely executed (i.e., Earlyi holds) when its pre-
conditions are not yet satisfied (it is still “not started”), but the operator has
already decided to execute it (opActsi holds). In fact, the operator’s act does
not change the status of ai, which remains “not started”.

Earlyi⇔ai,sts=ns ∧ Past(opActsi, 1) (5)

Intrusion and insertion errors occur when the operator confuses the task
to be executed with another one. Both these situations are captured by predicate
Intrusioni, which is formalized by the formula below. More precisely, if T is the
task being executed, Intrusioni holds when there is an action of T that is in
the waiting state, but the operator starts executing an action j that is not in T :

Intrusioni⇔ai,sts=wt ∧ ∃j �∈ T : Past
(
opActsj , 1

)
(6)

2. Space-related errors are raised due to movements of the operator in the
layout which are not over-constrained in the model. An action is prone to space-
related errors when the operator violates its location-base requirements during
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its execution (i.e., safeLi is false while the action is executing), or if the action
goes into a “hold” state without the operator having asked to stop the action
(i.e., opStopsi is false, which means that the holding state has been entered for
reasons related to the behavior of the operator). Examples of operator behaviors
that lead to such situations are: leaving her required position or safe spot, getting
closer to robot than the distance indicated in the instructions, approaching the
robot when an alarm signals to stay away.

errSi ⇒(¬safeLi ∧ (ai,sts=exe ∨ ai,sts=sfex)
)∨

(
ai,sts=hd ∧ (Past(ai,sts �=hd ∧ ¬opStopsi), 1)

) (7)

3. Goal-related Errors deal with actions which are not executed consistently
with the instructions of the task. For example if the operator does not place
the fixtures properly or tightens the part on the pallet while screw-driving. The
presence of goal-related errors is represented by predicate errGi, which is non-
deterministically assigned values during the exploration of the system traces.
Notice that, in practice, goal-related errors can be detected, for example, through
the use of cameras installed in the work-cell; hence, predicate errGi can be seen
as capturing the information provided by such cameras.

The addition of the formalization of these phenotypes to the model allows
us to check whether there are hazardous situations that cannot be mitigated by
currently introduced RRMs, thus if the base model failed to capture hazards
that arise due to human errors. As mentioned in Sect. 3, the model introduces
constraints on the number of human errors during execution of a task. In fact,
it is reasonable that an operator does not make too many errors during a single
execution of an application; on the other hand, this number can be configured
in the model, although the higher the number, the greater the complexity of
the model and the required analysis time. The following formula—which has
been simplified for the sake of brevity, and where past(counti, 1) is the function
returning the value of counti at the previous instant—describes the increment
of the counter of errors made during action i:

counti = past(counti, 1) + 1 ⇔(errGi ∧ Past(¬errGi, 1)) ∨ (errSi ∧ Past(¬errSi, 1))

∨ (errTP i ∧ Past(¬errTP i, 1))

(8)

The total counter count is simply the sum of all counti, and we impose that
it never exceeds a (configurable) threshold N : AlwF(count ≤ N). Notice that,
in a similar vein, in the formal model we impose a constraint that errGi cannot
occur more often than every 5 time units.

The next section shows how experiments carried out with the enhanced model
can highlight hazardous cases that originate from human errors.

4 Case Study

The case study on which we applied the enhanced SAFER-HRC methodology
features a hybrid human-robot assembly task in the preparation of a machine



Modeling Operator Behavior in the Safety Analysis of Coll. Robotic App. 99

tool pallet—i.e., setting jigs and mounting/dismounting workpieces into fixtures
before/after machining. In Flexible Manufacturing Systems, load/unload sta-
tions are the only parts handled manually in a largely automatic procedure.
A collaborative robot, capable of relocating inside the production plant, can
be used for a number of tasks—e.g., carrying containers with workpieces or
finished items, supporting workpieces during assembly. The overall goal of the
HRC application is to provide all services that improve the ergonomics of man-
ual operations, release the operators from repetitive/heavy/dull tasks, provide
quantitative logs of operations, reduce errors. The operator can choose to achieve
the task in different ways: either she performs the actions related to the pick-
and-place subtask while the robot screw-drives (alternative V1), or vice-versa
(alternative V2). The work-cell layout L is divided according to a polar grid,
partitioning the angular range of the robot shoulder joint and the outreach of
the manipulator from its base (see Fig. 4).

Fig. 4. Top-view representation of the discretized layout

Formal verification was carried out through the Zot [1] tool, which exhaus-
tively explores the state-space of traces of the model up to a bounded length
[24]. All verification experiments were performed using the bvzot plugin [6] on a
2.6 GHz Intel R© coreTM i5 machine. The bounded search depth for Zot was set to
30, and the verification execution was a matter of few seconds. We verified that
the risk does not exceed a desired threshold (2, in this case), unless there is a
RRM which mitigates it right at the next time instant. The property is captured
by the following formula:

∀i, j, k
(
Alw

(
(riskijk < 2) ∨ (riskijk = 2 ∧ ∃y(RRMijk,y) ∧ Futr(riskijk < 2, 1))

))

(9)
Given the extensions introduced in the operator model, we aim to guarantee that
the property is verified also when human errors are systematically considered at
design time. In particular, we observed new hazardous situations that the old
model was not able to capture or mitigate. Here we report on a pair of them: the
first one describes a new quasi-static hazard instance that persists even though
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Table 2. Output of the verification tool: state of the model at each time instant

RRMs are active in the system. The second one demonstrates a situation for
which there is not actually a reasonable RRM that can fully mitigate it.

Persistent Hazard. Table 2 shows an example of the output of the Zot formal
verification. Table 2(a) is used by safety analyzers to examine the risk level at
each time instant. In this example, the chosen alternative is V1 and actions from
V2 are considered as Intrusion errors. The table shoes that there are two time
instants in a row with risk value equal to two, which violates the desired safety
property. Table 2(b) shows where human errors happen; in particular, it shows
that, although there are active RRMs at times 14 and 15, the risk level is still 2
and the error present is Repetition7. Thus, we associate a stronger RRM to the
hazard “Qs on Arm area by R1”, which not only limits the relative force—which
was enough in absence of human errors—but also the relative velocity value.

Unreasonably Uncommon Behavior. The formal model presented in this
paper has not been designed to directly address irrational human behaviors or
intentional misuses. Nevertheless, it is able to detect some situations that can
be classified as “unreasonably uncommon”, as they should be very unlikely to
occur. For example, consider the case of an operator that purposely throws
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Table 3. New hazardous situations detected by the tool (a) Situation where the oper-
ator is rapidly closing on the robot, which is still (b) Error cause: the operator is
mistakenly executing an action belonging to another task, which requires her to move
where the robot is (in refers to intrusion error)

herself under the robot sharp end-effector. Defining a RRM for this case can
be considered useless, because a determined operator would still not follow it.
The experiment of Table 3 shows a case where the operator is unexpectedly
moving towards the robot. The reason could be intentional harm—caused by an
instance of errG— or that the operator is doing something wrong that leads to an
unwanted situation—presence of instances of errTP , errS or errG. However, no
hazard has been identified by the tool because we kept very unlikely scenarios
out of the model when formalizing hazards and risks (essentially, the risk for
these kinds of situations is considered low), and in any other case a still robot
in the homing position (L0) is not considered a source of harm and danger. In
fact, the situation in this case has been detected by perusing a trace produced
by the Zot tool in “simulation mode”, that did not highlight a high risk.

5 Discussion and Conclusion

In this work, the SAFER-HRC methodology is extended to capture and consider
also the erroneous behavior of human operators. Using the improved model, we
re-checked desired safety properties of previously analyzed HRC applications;
the new checks highlighted some instances of hazards that had been overlooked
in previous runs of the methodology due to a lack of precise human modeling.

The improved accuracy of the model opens the possibility to refine previously-
introduced RRMs in order to provide a trade-off between safety and efficiency.
Previously, very general RRMs had to be introduced, such as “reduce speed down
to a certain value”, or “reduce applied force down to zero”. However, the newly
introduced details concerning the reasons behind and the exact configuration of
hazards allow us to define more specific and hazard-dependent RRMs and avoid
the use of over-conservative RRMs when a less strict RRM can provide safety.
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As a future step, we plan to associate probability distributions with relations
between hazards and human errors to see how errors can increase the occurrence
of hazards. In this way we might be able to provide more efficient treatments
for hazards without compromising the functionality of the system. We are also
concluding a prototype tool—a plug-in for Papyrus Eclipse Environment—which
resolves the difficulty of dealing with logic formulae to model the applications
for safety experts. The tool automatically transforms UML diagrams to Logical
formulae and invokes Zot to verify the safety property so that the design and
verification of HRC application is made easier, faster and more automated.
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References

1. The Zot bounded satisfiability checker. http://github.com/fm-polimi/zot
2. Anderson, J.R.: ACT: a simple theory of complex cognition. Am. Psychol. 51,

355–365 (1996)
3. Askarpour, M.: Risk assessment in collaborative robotics. In: Proceedings of FM-

DS (2016)
4. Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F.: SAFER-HRC: safety analy-

sis through formal verification in human-robot collaboration. In: Skavhaug, A.,
Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 283–295.
Springer, Cham (2016). doi:10.1007/978-3-319-45477-1 22

5. Baier, C., Katoen, J.P.: Principles of Model Checking (2008)
6. Baresi, L., Pourhashem Kallehbasti, M.M., Rossi, M.: Efficient scalable verification

of LTL specifications. In: Proceedings of ICSE (2015)
7. Basnyat, S., Palanque, P.: A task pattern approach to incorporate user deviation

in task models. In: Proceedings of ADVISES (2005)
8. Bolton, M.L.: Automatic validation and failure diagnosis of human-device inter-

faces using task analytic models and model checking. Comput. Math. Organ. The-
ory 19, 288–312 (2013)

9. Bolton, M.L.: Model checking human-human communication protocols using task
models and miscommunication generation. J. Aerospace Inf. Syst. 12, 476–489
(2015)

10. Bolton, M.L., Bass, E.J., Siminiceanu, R.I.: Generating phenotypical erroneous
human behavior to evaluate human-automation interaction using model checking.
Int. J. Hum.-Comput. Stud. 70(11), 888–906 (2012)

11. Bolton, M.L., Bass, E.J., Siminiceanu, R.I.: Using formal verification to evaluate
human-automation interaction: a review. IEEE Trans. SMC Syst. 43(3), 488–503
(2013)

12. Butterworth, R., Blandford, A., Duke, D.: The role of formal proof in modelling
interactive behaviour. In: Markopoulos, P., Johnson, P. (eds.) Proceedings of DSV-
IS, pp. 87–101. Springer, Vienna (1998). doi:10.1007/978-3-7091-3693-5 7

13. Butterworth, R., Blandford, A., Duke, D.: Demonstrating the cognitive plausibility
of interactive system specifications. Form. Asp. Comp. 12, 237–259 (2000)

14. Cerone, A., Lindsay, P.A., Connelly, S.: Formal analysis of human-computer inter-
action using model-checking. In: Proceedings of SEFM (2005)

http://github.com/fm-polimi/zot
http://dx.doi.org/10.1007/978-3-319-45477-1_22
http://dx.doi.org/10.1007/978-3-7091-3693-5_7


Modeling Operator Behavior in the Safety Analysis of Coll. Robotic App. 103

15. Cranor, L.F.: A framework for reasoning about the human in the loop. In: Pro-
ceedings of UPSEC (2008)

16. Curzon, P., Blandford, A.: From a formal user model to design rules. In: Forbrig,
P., Limbourg, Q., Vanderdonckt, J., Urban, B. (eds.) DSV-IS 2002. LNCS, vol.
2545, pp. 1–15. Springer, Heidelberg (2002). doi:10.1007/3-540-36235-5 1

17. Curzon, P., Blandford, A.: Formally justifying user-centred design rules: a case
study on post-completion errors. In: Boiten, E.A., Derrick, J., Smith, G. (eds.)
IFM 2004. LNCS, vol. 2999, pp. 461–480. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24756-2 25
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Abstract. SPARK 2014 is a modern programming language and a new
state-of-the-art tool set for development and verification of high-integrity
software. In this paper, we explore the capabilities and limitations of its
latest version in the context of building a flight stack for a high-altitude
unmanned glider. Towards that, we deliberately applied static analysis
early and continuously during implementation, to give verification the
possibility to steer the software design. In this process we have identi-
fied several limitations and pitfalls of software design and verification in
SPARK, for which we give workarounds and protective actions to avoid
them. Finally, we give design recommendations that have proven effective
for verification, and summarize our experiences with this new language.

Keywords: Ada/SPARK · Formal verification · Limitations · Rules

1 Introduction

The system under consideration is a novel kind of weather balloon which is
actively controlled, and thus requires verification to ensure it is working properly
in public airspace. As any normal weather balloon, the system climbs up to the
stratosphere (beyond an altitude of 10 km), while logging weather data such as
temperature, pressure, NO2-levels and so on. Eventually the balloon bursts, and
the sensors would be falling back to the ground with a parachute, drifting away
with prevailing wind conditions. However, our system is different from this point
onwards: the sensors are placed in a light-weight glider aircraft which is attached
to the balloon. At a defined target altitude, the glider separates itself from the
balloon, stabilizes its attitude and performs a controlled descent back to the
take-off location, thus, bringing the sensors back home. In this paper we focus
on the development and formal verification of the glider’s onboard software.

The requirements for such a system are challenging already because of
the extreme environmental conditions; temperatures range from 30 ◦C down to
−50 ◦C, winds may exceed 100 kph, and GPS devices may yield vastly different
output in those altitudes due to decreasing precision and the wind conditions.

The source code for this project is available at github.com/tum-ei-rcs/StratoX.
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The combination of those extreme values is likely to trigger corner cases in the
software, and thus should be covered by means of extensive testing or by analysis.

We use this opportunity of a safety-critical, yet hardly testable system to
explore the new state-of-the art verification tools of Ada/SPARK 2014 [7], espe-
cially to identify limitations, pitfalls and applicability in practice. To experience
this new SPARK release to its full extent, we applied a co-verification approach.
That is, we did not perform verification on a finished product, but instead in
parallel to the software development (the specific strategy is not of relevance
for this paper, but only the effect that this enabled us to identify code features
that pose challenges in verification, and find workarounds for them). The imple-
mentation could therefore be shaped by verification needs. Moreover, since the
high-altitude glider was a research project, we allowed ourselves to modify the
initial software design to ease verification when needed.

2 Verification in Ada/SPARK

SPARK 2014 is a major redesign of the original SPARK language, which was
intended for formal verification. SPARK 2014 now adopts Ada 2012 syntax,
and covers a large subset of Ada. As a result, the GNAT Ada compiler can
build an executable from SPARK 2014 source code, and even compile a program
which mixes both languages. Compared to Ada, the most important exclusions
are pointers (called access), aliasing and allocators, as well as a ban of exception
handling. As a consequence, SPARK programs first and foremost must be shown
to be free of run-time exceptions (called AoRTE - absence of run-time errors),
which constitutes the main verification task.

The SPARK language – for the rest of this paper we refer to SPARK 2014
simply as SPARK – is built on functional contracts and data flow contracts.
Subprograms (procedures and functions) can be annotated with pre- and post-
conditions, as well as with data dependencies. GNATprove, the (only) static
analyzer for SPARK 2014, aims to prove subprograms in a modular way, by
analyzing each of them individually. The effects of callees are summarized by
their post-condition when the calling subprogram is analyzed, and the precon-
dition of the callee is imposing a proof obligation on the caller, i.e., the need to
verify that the caller respects the callee’s precondition. Further proof obligations
arise from each language-defined check that is executed on the target, such as
overflow checks, index checks, and so on. If all proofs are successful, then the
program is working according to its contracts and no exceptions will be raised
during execution, i.e., AoRTE is established.

Internally, GNATprove [7] builds on the Why3 platform [6], which performs
deductive verification on the proof obligations to generate verification conditions
(VCs), and then passes them to a theorem solver of user’s choice, e.g., cvc4, alt-
ergo or z3. Note that there exists also a tool for abstract interpretation, which
is, however, not discussed here.



Development and Verification of a Flight Stack for a High-Altitude Glider 107

2.1 The GNAT Dimensionality Checking System

We also want to introduce a feature that is not part of the SPARK language
itself, but an implementation-defined extension of the GNAT compiler, and thus
available for SPARK programs. Since Ada 2012, the GNAT compiler offers a
dimension system for numeric types through implementation-defined aspects [9].
The dimension system can consist of up to seven base dimensions, and physi-
cal quantities are declared as subtypes, annotated with the exponents of each
dimension. Expressions using such variables are statically analyzed by the com-
piler for their dimensional consistency. Furthermore, the dimensioned variables
contribute to readability and documentation of the code. Inconsistencies such as
the following are found (dividend and divisor are switched in the calculation of
rate):

1 angle : Angle_Type := 20.0 * Degree;
2 dt : Time_Type := 100.0 * Milli * Second;
3 rate : Angular_Velocity_Type := dt / angle; -- compiler error

Note that scaling prefixes like Milli can be used, and that common conversions,
such as between Degree and Radian in line 1, can be governed in a similar way.

In our project, we specified a unit system with the dimensions length, mass,
time, temperature, current, and angle. Adding angle as dimension provides better
protection against assignments of dimensionless types, as proposed in [11].

3 Initial System Design and Verification Goals

Target Hardware. We have chosen the “Pixhawk” autopilot [8]. It com-
prises two ARM processors; one Cortex-M4F (STM32F427) acting as flight
control computer, and one Cortex-M3 co-processor handling the servo outputs.
We implemented our flight stack on the Cortex-M4 from the ground up, thus
completely replacing the original PX4/NuttX firmware that is installed when
shipped.

Board Support, Hardware Abstraction Layer & Run-Time System. We
are hiding the specific target from the application layer by means of a board sup-
port package (not to be confused with an Ada package). This package contains
an hardware abstraction layer (HAL) and a run-time system (RTS). The RTS
is implementing basic functionality such as tasking and memory management.
The HAL is our extension of AdaCore’s Drivers Library [1], and the RTS is our
port of the Ada RTS for the STM32F409 target. Specifically, we have ported
the Ravenscar Small Footprint variant [3], which restricts Ada’s and SPARK’s
tasking facilities to a deterministic and analyzable subset, but meanwhile forbids
exception handling, which anyway is not permitted in SPARK.

Separating Tasks by Criticality. Separating tasks has been one goal, since
multi-threading is supported in SPARK. In particular, 1. termination of low-
critical tasks shall not cause termination of high-critical tasks, 2. higher-
criticality tasks shall not be blocked by lower-critical tasks and, 3. adverse
effects such as deadlocks, priority inversion and race conditions must not occur.
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We partitioned our glider software into two tasks (further concurrency arises
from interrupt service routines):

1. The Flight-Critical Task includes all execution flows required to keep the
glider in a controlled and navigating flight, thus including sensor reads and
actuator writes. It is time-critical for control reasons. High-criticality.

2. The Mission-Critical Task includes all execution flows that are of relevance
for recording and logging of weather data to an SD card. Low-priority task,
only allowed to run when the flight-critical task is idle. Low-criticality.

The latter task requires localization data from the former one, to annotate the
recorded weather data before writing it to the SD card. Additionally, it takes
over the role of a flight logger, saving data from the flight-critical task that might
be of interest for a post-flight analysis. The interface between these two tasks
would therefore be a protected object with a message queue that must be able
to hold different types of messages.

Verification Goals. First and foremost, AoRTE shall be established for all
SPARK parts, since exceptions would result in task termination. Additionally,
the application shall make use of as many contracts and checks as possible, and
perform all of its computations using dimension-checked types. Last but not
least, a few functional high-level requirements related to the homing function-
ality have been encoded in contracts. Overall, the focus of verification was the
application, not the BSP. The BSP has been written in SPARK only as far as
necessary to support proofs in the application. The rationale was that the RTS
was assumed to be well tested, and the HAL was expected to be hardly verifiable
due to direct hardware access involving pointers and restricted types.

4 Problems and Workarounds

In this section, we describe the perils and difficulties that we identified during
verification of SPARK programs. We use the following nomenclature:

– False Positive. Denotes a failing check (failed VC) in static analysis which
would not fail in any execution on the target, i.e., a false alarm.

– False Negative. Denotes a successful check (discharged VC) in static analy-
sis which would fail in at least one execution on the target, i.e., a missed
failure.

4.1 How to Miss Errors

There are a few situations in which static analysis can miss run-time exceptions,
which in a SPARK program inevitably ends in abnormal program termination.
Before we show these unwanted situations, we have to point out one impor-
tant property of a deductive verification approach: Proofs build on each other.
Consider the following example (results of static analysis given in comments):
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1 a := X / Z; -- medium: division check might fail
2 b := Y / Z; -- info: division check proved

The analyzer reports that the check in line 2 cannot fail, although it suffers from
the same defect as line 1. However, when the run-time check at line 1 fails, then
line 2 cannot be reached with the offending value of Z, therefore line 2 is not a
False Negative, unless exceptions have been wrongfully disabled.

Mistake 1: Suppressing False Positives. When a developer comes to the
conclusion that the analyzer has generated a False Positive (e.g., due to insuf-
ficient knowledge on something that is relevant for a proof), then it might be
justified to suppress the failing property. However, we experienced cases where
this has generated False Negatives which where hiding (critical) failures. Con-
sider the following code related to the GPS:

1 function toInt32 (b : Byte_Array) return Int_32 with Pre => b’Length= 4;
2 procedure Read_From_Device (d : out Byte_Array) is begin
3 d := (others => 0); -- False Positive
4 pragma Annotate (GNATprove , False_Positive ,"length check might fail",

...);
5 end Read_From_Device;
6

7 procedure Poll_GPS is
8 buf : Byte_Array (0..91) := (others => 0);
9 alt_mm : Int_32;

10 begin
11 Read_From_Device (buf);
12 alt_mm := toInt32(buf (60..64)); -- False Negative , guaranteed exception
13 end Poll_GPS;

Static analysis found that the initialization of the array d in line 3 could fail, but
this is not possible in this context, and thus a False Positive1. The developer was
therefore suppressing this warning with an annotation pragma. However, because
proofs build on each other, a severe defect in line 12 was missed. The array slice
has an off-by-one error which guaranteed failing the precondition check of toInt32.
The reason for this False Negative is that everything after the initialization of
d became virtually unreachable and that all following VCs consequently have
been discharged. In general, a False Positive may exclude some or all execution
paths for its following statements, and thus hide (critical) failure. We therefore
recommend to avoid suppressing False Positives, and either leave them visible
for the developer as warning signs, or even better, rewrite the code in a prover-
friendly manner following the tips in Sect. 5.1.

Mistake 2: Inconsistent Contracts. Function contracts act as barriers for
propagating proof results (besides inlined functions), that is, the result of a VC
in one subprogram cannot affect the result of another in a different subprogram.
However, these barriers can be broken when function contracts are inconsistent,
producing False Negatives by our definition. One way to obtain inconsistent
contracts, is writing a postcondition which itself contains a failing VC (line 2):

1 This particular case has been fixed in recent versions of GNATprove.
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1 function f1 (X : Integer) return Integer
2 with Post => f1’Result = X + 1 is -- overflow check might fail
3 begin
4 return X;
5 end f1;
6

7 procedure Caller is
8 X : Integer := Integer ’Last;
9 begin

10 X := X + 1; -- overflow check proved.
11 X := f1(X);
12 end Caller;

Clearly, an overflow must happen at line 10, resulting in an exception. The ana-
lyzer, however, proves absence of overflows in Caller. The reason is that in the
Why3 backend, the postcondition of f1 is used as an axiom in the analysis of
Caller. The resulting theory for Caller is an inconsistent axiom set, from which
(principle of explosion) anything can be proven, including that false VCs are
true. In such circumstances, the solver may also produce a spurious counterex-
ample.

In the example above, the developer gets a warning for the inconsistent post-
condition and can correct for it, thus keep barriers intact and ensure that the
proofs in the caller are not influenced. However, if we change line 4 to return X+1,
then the failing VC is now indicated in the body of f1, and – since the proofs
build on each other – the postcondition is verified and a defect easily missed.
Therefore, failing VCs within callees may also refute proofs in the caller (in con-
trast to execution semantics) and have to be taken into account. Indeed, the
textual report of GNATprove (with flag --assumptions) indicates that AoRTE
in Caller depends on both the body and the postcondition of f1, and therefore
the reports have to be studied with great care to judge the verification output.
Finally, note that the same principle applies for assertions and loop invariants.

Mistake 3: Forgetting the RTS. Despite proven AoRTE, one procedure which
rotates the frame of reference of the gyroscope measurements was sporadically
triggering an exception after a floating-point multiplication. The situation was
eventually captured in the debugger as follows:

1 -- angle = 0.00429 , vector (Z) = -2.023e-38
2 result(Y) := Sin (angle) * vector(Z);
3 -- result(Y) = -8.68468736e-41 => Exception

Variable result was holding a subnormal floating-point number, roughly speak-
ing, an “underflow”. GNATprove models floating-point computations according
to IEEE-754, which requires support for subnormals on the target processor.
Our processor’s FPU indeed implements subnormals, but the RTS, part of which
describes floating-point capabilities of the target processor, was incorrectly indi-
cating the opposite2. As a result, the language-defined float validity check occa-
sionally failed (in our case when the glider was resting level and motionless at the
ground for a longer period of time). Therefore, the RTS must be carefully con-
figured and checked manually for discrepancies, otherwise proofs can be refuted
since static analysis works with an incorrect premise.

2 This also has been fixed in recent versions of the embedded ARM RTS.
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Mistake 4: Bad Patterns. Saturation may seem like an effective workaround
to ensure overflows, index checks and so on cannot fail, but it usually hides bigger
flaws. Consider the following example, also from the GPS protocol parser:

1 subtype Lat_Type is Angle_Type range -90.0 * Degree .. 90.0 * Degree;
2 Lat : Lat_Type := Dim_Type (toInt32 (data_rx (28..31))) * 1.0e-7 * Degree;

The four raw bytes in data rx come from the GPS device and represent
a scaled float, which could in principle carry a value exceeding the lat-
itude range of [−90, 90] Degree. To protect against this sort of error,
it is tempting to implement a function (even a generic) of the form
if X > Lat_Type’Last then X := Lat_Type’Last else... that limits the value to the avail-
able range, and apply it to all places where checks could be failing. However,
we found that almost every case where saturation was applied, was masking a
boundary case that needs to be addressed. In this example, we needed handling
for a GPS that yields faulty values. In general, such cases usually indicate a
missing software requirement.

4.2 Design Limitations

We now describe some cases where the current version of the SPARK 2014
language – not the static analysis tool – imposes limitations.

Access Types. The missing support for pointers in SPARK becomes a prob-
lem in low-level drivers, where they are used frequently. One workaround is to
hide those in a package body that is not in SPARK mode, and only provide a
SPARK specification. Naturally, the body cannot be verified, but at least its sub-
programs can be called from SPARK subprograms. Sometimes it is not possible
to hide access types, in particular when packages use them as interface between
each other. This is the case for our SD card driver, which is interfaced by an
implementation of the FAT filesystem through access types. Both are separate
packages, but the former one exports restricted types and access types which are
used by the FAT package, thus requiring that wide parts of the FAT package are
written in Ada instead of SPARK. As a consequence, access types are sometimes
demanding to form larger monolithic packages, here to combine SD card driver
and FAT filesystem into one (possibly nested) package.

Polymorphism. While being available in SPARK, applications of polymor-
phism are limited as a result of the access type restriction. Our message queue
between flight-critical and mission-critical task was planned to hold messages of
a polymorphic type. However, without access types the only option to handover
messages would be to take a deep copy and store it in the queue. However, the
queue itself is realized with an array and can hold only objects of the same type.
This means a copy would also be an upcast to the base type. This, in turn,
would loose the components specific to the derived type, and therefore render
polymorphism useless. As a workaround, we used mutable variant records.

Interfaces. Closely related to polymorphism, we intended to implement sen-
sors as polymorphic types. That is, specify an abstract sensor interface that
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must be overridden by each sensor implementation. Towards that, we declared
an abstract tagged type with abstract primitive methods denoting the interface
that a specific sensor must implement. However, when we override the method
for a sensor implementation, such as the IMU, SPARK requires specifying the
global dependencies of the overriding IMU implementation as class-wide global
dependencies of the abstract method (SPARK RM 6.1.6). This happens even
without an explicit Global aspect. As workaround, we decided to avoid poly-
morphism and used simple inheritance without overriding methods.

Dimensioned Types. Using the GNAT dimensionality checking system in
SPARK, had revealed two missing features. Firstly, in the current stable ver-
sion of the GNAT compiler, it is not possible to specify general operations on
dimensioned types that are resolved to specific dimensions during compilation.
For example, we could not write a generic time integrator function for the PID
controller that multiplies any dimensioned type with a time value and returns
the corresponding unit type. Therefore, we reverted to dimensionless and uncon-
strained floats within the generic PID controller implementation. Secondly, it is
not possible to declare vectors and matrices with mixed subtypes, which would
be necessary to retain the dimensionality information throughout vector calcula-
tions (e.g., in the Kalman Filter). As a consequence, we either have split vectors
into their components, or reverted to dimensionless and unconstrained floats. As
a result of these workarounds, numerous overflow checks related to PID control
and Kalman Filter could not be proven (which explains more than 70% of our
failed floating-point VCs).

4.3 Solver Weaknesses

We now summarize some frequent problems introduced by the current state of
the tooling.

The ’Position attribute of a record allows evaluating the position of a com-
ponent in that record. However, GNATprove has no precise information about
this position, and therefore proofs building on that might fail.

Another feature that is used in driver code, are unions, which provide differ-
ent views on the same data. GNATprove does not know about the overlay and
may generate False Positives for initialization, as well as for proofs which build
on the relation between views.

We had several False Positives related to possibly uninitialized variables.
SPARK follows a strict data initialization policy. Every (strict) output of a sub-
program must be initialized. In the current version, GNATprove only considers
initialization of arrays as complete when done in a single statement. This gener-
ates warnings when an array is initialized in multiple steps, e.g., through loops,
which we have suppressed.

5 Results

In general, verification of SPARK 2014 programs is accessible and mostly auto-
matic. Figure 1 shows the results of our launch release. As it can be seen, we
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Fig. 1. Statistics on Verification Conditions (VCs) by type.

could not prove all properties during the time of this project (three months).
The non-proven checks have largely been identified as “fixable”, following our
design recommendations given below.

The complexity of our flight stack and verification progress are summarized
in Table 1. It can be seen that our focus on the application part is reflected in the
SPARK coverage that we have achieved (82% of all bodies in SPARK, and even
99% of all specifications), but also that considerably more work has to be done
for the BSP (currently only verified by testing). In particular, the HAL (off-chip
device drivers, bus configuration, etc.) is the largest part and thus needs a higher
SPARK coverage. However, we should add that 43% of the HAL is consisting
of specifications generated from CMSIS-SVD files, which do not contain any
subprograms, but only definitions of peripheral addresses and record definitions
to access them, and therefore mostly cannot be covered in SPARK. Last but not
least, a completely verified RTS would be desirable, as well.

Table 1. Metrics and verification statistics of our Flight Stack.

Metric Application Board Support Package All

HAL RTS

Lines of code (GNATmetric) 6,750 32,903 15,769 55,422

Number of packages 49 100 121 270

Cyclomatic complexity 2.03 2.67 2.64 2.53

SPARK body/spec 81.9/99.4 % 15.5/23.5 % 8.6/11.8 % 30.0/38.5 %

Number of VCs 3,214 765 2 3,981

VCs proven 88.1 % 92.5 % 100 % 88.8 %

Analysis timea – – – 19 min
aIntel Xeon E5-2680 Octa-Core with 16 GB RAM, timeout = 120 s, steps = inf.
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Floats are expensive. Statistically, we have spent most of the analysis time
(65%) for proving absence of floating-point overflows, although these amount to
only 21% of all VCs. This is because discharging such VCs is in average one
magnitude slower than discharging most other VC types. In particular, one has
to allow a high step limit (roughly the number of decisions a solver may take, e.g.,
deciding on a literal) and a high timeout. Note that at some point an increase
of either of them does not improve the result anymore.

Multi-threading. By using the Ravenscar RTS, our goals related to deadlock,
priority inversion and blocking, hold true by design. Several race conditions
and non-thread-safe subprograms have been identified by GNATprove, which
otherwise would have refuted task separation. To ensure that termination of low-
criticality tasks cannot terminate the flight-critical task, we provided a custom
implementation for GNAT’s last chance handler (outside of the SPARK language
and therefore not being analyzed) which reads the priority of the failing task
and acts accordingly: If the priority is lower than that of the flight-critical task
(i.e., the mission-critical task had an exception), then we prevent a system reset
by sending the low-priority task into an infinite null loop (thus keeping it busy
executing nops, and keeping the flight-critical task alive). If the flight-critical task
is failing, then our handler allows a system reset. Multi-threading is therefore
easy to implement, poses no verification problems, and can effectively separate
tasks by their criticality.

High-Level Behavioral Contracts. Related to the homing functionality we
proved high-level properties with the help of ghost functions, although this is
beyond the main purpose of SPARK contracts. For example, we could prove the
overall behavior in case of loosing the GPS fix, or missing home coordinates.

5.1 Design Recommendations

The following constructs and strategies have been found amenable to verification:

1. Split long expressions into multiple statements → discharges more VCs.
2. Limit ranges of data types, especially floats → better analysis of overflows.
3. Avoid saturation → uncovers missing error handling and requirements.
4. Avoid interfaces → annotations for data flows break concept of abstraction.
5. Emulate polymorphic objects that must be copied with mutable variant

records.
6. Separation of tasks by criticality using a custom last chance handler → abnor-

mal termination of a low-criticality task does not cause termination of high-
criticality tasks.

6 Related Work

Only a small number of experience reports about SPARK 2014 have been pub-
lished before. A look back at (old) SPARK’s history and its success, as well
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as an initial picture of SPARK 2014 is given by Chapman and Schanda in [4].
We can report that the mentioned difficulties with floating-point numbers are
solved in SPARK 2014, and that the goal to make verification more accessible,
has been reached. A small case study with SPARK 2014 is presented in [10], but
at that point multi-threading (Ravenscar) was not yet supported, and floating
point numbers have been skipped in the proof. We can add to the conclusion
given there, that both are easily verified in “real-world” code, although float
proofs require more (computational and mental) effort. Larger case studies are
summarized by Dross et al. in [5], with whom we share the opinion of minor
usability issues, and that some small amount of developer training is required.
Finally, SPARK 2014 with Ravenscar has recently been announced to be used
in the Lunar IceCube [2] satellite, a successor of the successful CubeSat project
that was implemented in SPARK 2005. It will be a message-centric software, con-
ceptually similar to NASA’s cFE/CFS, but fully verified and striving to become
an open source platform for spacecraft software. In contrast to all the above
publications, this paper is not focused on the application or case studies, but
pointing out typical sources of errors in SPARK programs, which a developer
has to know in order to get correct verification results.

7 Conclusion

Although the verification of SPARK 2014 programs is very close to execution
semantics and therefore mostly intuitive, we believe that developers still need
some basic training to avoid common mistakes as described in this paper, which
otherwise could lead to a false confidence in the software being developed. Over-
all, the language forces developers to address boundary cases of a system explic-
itly, which eventually helps understanding the system better, and usually reveals
missing requirements for boundary cases. As a downside, SPARK 2014 programs
are often longer than (approximately) equivalent Ada programs, since in the lat-
ter case a general exception handler can be installed to handle all pathological
cases at once, without differentiating them. Furthermore, static analysis is ready
to replace unit tests, but integration tests have still been found necessary.

Regarding the shortcomings of the GNAT dimensionality system, we can
report that as a consequence of our experiments, a solution for generic operations
on dimensioned has been found and will be part of future GNAT releases.

Our remaining criticism to SPARK 2014 and its tools is as follows: next to
some minor tooling enhancements to avoid the mistakes mentioned earlier and
adding some more knowledge to the analyzer, it is necessary to support object-
oriented features in a better way. All in all, SPARK 2014 raises the bar for formal
verification and its tools, but developers still have to be aware of limitations.

Acknowledgements. Thanks to the SPARK 2014 development and support team of
AdaCore for their guidance and insights.
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space, security: three case studies for SPARK 2014. In: ERTS2 2014, pp. 1–10
(2014)
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Abstract. This paper shows how to use Barrier Certificates (BaCs) to
design Simplex Architectures for hybrid systems. The Simplex architec-
ture entails switching control of a plant over to a provably safe Baseline
Controller when a safety violation is imminent under the control of an
unverified Advanced Controller. A key step of determining the switching
condition is identifying a recoverable region, where the Baseline Con-
troller guarantees recovery and keeps the plant invariably safe. BaCs,
which are Lyapunov-like proofs of safety, are used to identify a recover-
able region. At each time step, the switching logic samples the state of
the plant and uses bounded-time reachability analysis to conservatively
check whether any states outside the zero-level set of the BaCs, which
therefore might be non-recoverable, are reachable in one decision period
under control of the Advanced Controller. If so, failover is initiated.

Our approach of using BaCs to identify recoverable states is computa-
tionally cheaper and potentially more accurate (less conservative) than
existing approaches based on state-space exploration. We apply our tech-
nique to two hybrid systems: a water tank pump and a stop-sign-obeying
controller for a car.

Keywords: Simplex architecture · Hybrid systems · Barrier certifi-
cates · Reachability · Switching logic

1 Introduction

The Simplex Architecture [20], illustrated in Fig. 1, traditionally consists of two
versions of a controller, called the advanced controller (AC) and baseline con-
troller (BC), and a physical plant (P ). The advanced controller is designed for
maximum performance and is in control of the plant under nominal operating
conditions. However, certification that the advanced controller keeps the plant
state within a prescribed safety region (i.e., region of safe operation) may be
infeasible, due to its complexity or adaptiveness, or because an accurate model
of it is unavailable for analysis. In contrast, the baseline controller is certified to
maintain safety of the plant. When the plant is under control of AC, a decision
c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 117–131, 2017.
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module (DM) periodically, with decision period Δt, monitors the state of the
plant and switches the control of the plant to the baseline controller if the plant
is in imminent danger (i.e., within the next decision period) of entering a state
that might lead to a safety violation.

The switching condition used in the decision module is determined as follows.
A state of the plant is recoverable if BC can take over from that state (due to
a switch) and keep the plant invariably safe; in other words, the composition
of P and BC, denoted P × BC, when started from a recoverable state, will
always remain within the safety region. An unbounded time horizon is used in
the definition of recoverable states because, in general, we have no bound on how
long BC needs to take corrective actions and overcome the plant’s momentum
(in a general sense, not limited to physical motion) toward unsafe states.

A state is switching if the plant, under control of AC, may enter an unrecov-
erable state during the next decision period, i.e., within time Δt. This definition
reflects the discrete-time nature of DM . The switching condition simply checks
whether the current state is switching.

Note that switching states are a subset of recoverable states which are a
subset of safe states.

Fig. 1. The two-controller simplex architecture.

The earliest methodology for computing switching conditions is based on
Lyapunov stability theory and reduces the problem to solving linear matrix
inequalities (LMIs) [4]. The method applies to plants with linear time-invariant
dynamics and a linear baseline controller [19]. This approach is computation-
ally efficient but limited in applicability. More general approaches were later
developed [2,3], based on state-space exploration, also called state-space reach-
ability. Several reachability algorithms for hybrid systems have been developed,
e.g., [1,6,7,21].

There are many reachability algorithms, varying in the shape of the regions
(e.g., boxes or regions bounded by polynomials), whether the partitioning of the
state space into regions is pre-determined or adaptive, etc.

Methods based on reachability are attractive for their broad applicability:
they can handle nonlinear hybrid systems. A hybrid system is a system with both
discrete and continuous variables and with multiple modes, each with a differ-
ent dynamics (for the continuous variables). However, they face several issues.
The main issue is the high computational cost associated with their reachability
analysis, especially for high-dimensional systems, since the number of explored
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regions tends to grow exponentially with the dimensionality. While reachability
algorithms are improving, the computational cost, in time or memory, remains
prohibitive in many cases.

Accuracy is also an issue. Reachability algorithms generally compute an over-
approximation of the reachable states. The amount of over-approximation is
generally larger for non-linear systems, and it tends to increase over time (i.e.,
proportional to the time horizon of the reachability calculation). Reachability
computations with an unbounded time horizon (as when identifying recoverable
states) can in theory converge (i.e., reach a fixed-point) when the set of reachable
states lies within a bounded region of the state space. In practice, however, the
ever-increasing “looseness” of the over-approximation often causes the reacha-
bility computation to diverge even in those cases. Even if it converges, a loose
over-approximation of reachability makes the computation of recoverable states
conservative, i.e., many recoverable states will not be recognized as such, causing
unnecessary switches to BC.

A third issue is the required expertise and manual effort. Reachability algo-
rithms typically have several numerical parameters that indirectly control the
cost and accuracy of the computation. While there are general guidelines and
heuristics for choosing initial parameter values, detailed understanding of the
reachability algorithm and the hybrid system, and considerable experimenta-
tion, are often needed to tune the parameters in order to obtain acceptably
accurate results in reasonable time, when this is possible.

This paper presents an alternative approach to computing recoverable states,
based on barrier certificates [16,17], a methodology developed for safety verifi-
cation of hybrid systems. Specifically, we observe that the 0-level set of a barrier
certificate for P × BC separates recoverable and unrecoverable states. We still
use reachability to compute switching states. This combination of techniques—
namely, using barrier certificates to compute recoverable states, and reachability
to compute switching states, instead of using reachability for both—is advan-
tageous, because the issues with reachability algorithms are much more severe
when computing recoverable states, due to the unbounded time horizon, than
when computing switching states, which involves a short time horizon.

Our approach is mostly automatic for a class of systems that includes some
nonlinear hybrid systems. For these systems, the problem of computing a barrier
certificate can be reduced to solving a sum-of-squares (SOS) optimization prob-
lem [16,17], which can be solved by semidefinite programming solvers. We use
SOSTOOLS [14], a MATLAB toolbox for solving SOS optimization problems;
we also experimented with Spotless (https://github.com/spot-toolbox). SOS-
TOOLS can handle hybrid systems in which the differential equations, guards,
and invariants are defined by polynomial expressions such that the minimum
and maximum degrees of each polynomial are even. SOSTOOLS does require
some expertise and manual effort to choose suitable parameter values.

To increase assurance in the correctness of barrier certificates computed by
SOSTOOLS, we use Z3 (https://github.com/Z3Prover/z3/wiki), a state-of-the-
art satisfiability modulo theories (SMT) solver, to verify their correctness. This

https://github.com/spot-toolbox
https://github.com/Z3Prover/z3/wiki
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ensures that bugs or limitations of numerical accuracy in SOSTOOLS cannot
compromise the soundness of our results.

We apply our approach to two hybrid systems as case studies. A water tank
system that controls the flow of water via a valve into a tank is modeled using
a three-mode hybrid automaton with one continuous variable. The next case
study describes a stop-sign-obeying controller for a car as a hybrid automaton
with three-modes and two continuous variables. The implementation aspects
of computing the barrier certificates are discussed and the switching logics are
illustrated for the two case studies.

The rest of the paper is organized as follows. Section 2 provides background
knowledge on Hybrid Systems and Barrier Certificates. Section 3 presents our
approach to computing the switching logic using BaCs and bounded-time reach-
ability. Section 4 considers our SOS characterization of BaCs. Sections 5 describes
our two case studies. Section 6 discusses related work. Section 7 offers our con-
cluding remarks and directions for future work.

2 Background

From the discussion above, we can see that the two central issues for designing the
Simplex Architecture are: (1) Identifying the Safety Region, which results
in a proof of safety of P ×BC, and (2) Deriving the recoverable region and
the switching boundaries, which defines the switching logic implemented by
the DM.

In this paper, we model P ×BC as a hybrid system, denoted by HB . This for-
malism allows us to model both the continuous-time evolution and the discrete-
time instantaneous changes in the behavior of the plant under the BC’s control.
We formally define a hybrid system as follows.

Definition 1. A Hybrid System H = (X , L,X0, I, F, T ) is a six-tuple [16]:

– X ⊆ R
n is the continuous state space.

– L is a finite set of modes, also known as locations. The overall state space of
the system is X = L×X and a state of the system is denoted by (l,x) ∈ L×X .

– X0 ⊆ X is a set of initial states.
– I : L → 2X is the invariant, which assigns to each location l an invariant set

I(l) ⊆ X that contains all possible continuous states while in mode l.
– F : X → 2R

n

is a set of vector fields. F assigns to each (l,x) a set F (l,x) ⊆
R

n that constrains the evolution of the continuous state as ẋ ∈ F (l,x).
– T ⊆ X × X is a relation that captures the discrete transitions between two

modes. A transition ((l′,x′), (l,x)) indicates that the system can undergo a
discrete (instantaneous) transition from the state (l′,x′) to the state (l,x).

Discrete mode-transitions occur instantaneously in time. We define Guards
and Reset maps for mode-transitions as follows. Guard(l′, l) = {x′ ∈ X :
((l′,x′), (l,x)) ∈ T for some x ∈ X} and Reset(l′, l) : x′ �→ {x ∈ X :
((l′,x′), (l,x)) ∈ T}, whose domain is Guard(l′, l).
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As per [16], for computational purposes, the uncertainty in the continuous
flows, defined by F , is the result of exogenous disturbance inputs such that:

F (l,x) = {ẋ ∈ R
n : ẋ = fl(x, d) for some d ∈ D(l)}

where fl is a vector field that governs the flow of the system in location l and d
is a vector of disturbance inputs that take the value in the set D(l) ⊂ R

m.
Trajectories or behaviors of H start from some initial state (l0,x0) ∈ X0 and

evolve in continuous time as per the dynamics defined by F until the invariant,
defined by I, is violated and/or a guard is enabled resulting in an instanta-
neous mode switch. Trajectories are obtained by concatenating the continuous
evolutions and the instantaneous discrete-time jumps between the modes.

Given a set of unsafe states Xu ⊆ X, H is said to be safe if all its trajecto-
ries avoid entering Xu. We define a mapping for mode-specific unsafe states as
Unsafe(l) = {x ∈ X : (l,x) ∈ Xu}. We also define model-specific initial states as
Init(l) = {x ∈ X : (l,x) ∈ X0}.

It is assumed that the description of the hybrid system given above is well-
posed. For example, (l,x) ∈ Xu and (l,x) ∈ X0 automatically implies that
x ∈ I(l), and ((l′,x′), (l,x)) ∈ T implies that x′ ∈ I(l′) and x ∈ I(l).

Given a set of unsafe states Xu, the safety of a hybrid system H can be
proved by computing Barrier Certificates (BaCs) [16]. BaCs are functions that
capture the following safety requirements of a hybrid system: (1) the continuous-
time evolutions within the modes must ensure that the states remain safe and
(2) a mode-transition ((l′,x′), (l,x)) from the mode l′ to l must reset a safe
state (l′,x′) /∈ Unsafe(l′) to a safe state (l,x) /∈ Unsafe(l). Next, we introduce
the formal definition of BaCs from [16].

Definition 2. Let the hybrid system H = (X , L,X0, I, F, T ), the unsafe set Xu

and some fixed non-negative constants σ(l,l′), for all (l, l′) ∈ L × L, be given. A
BaC is a collection of functions Bl(x), for all l ∈ L, that are differentiable with
respect to its argument and satisfy:

Bl(x) > 0 ∀x ∈ Unsafe(l) (1)
Bl(x) ≤ 0 ∀x ∈ Init(l) (2)

∂Bl

∂x
(x).fl(x, d) ≤ 0 ∀(x, d) ∈ I(l) × D(l) (3)

Bl(x) − σ(l′,l)Bl′(x′) ≤ 0 ∀(x,x′) ∈ X 2such that

x′ ∈ Guard(l′, l) and x ∈ Reset(l′, l)(x′) (4)

Theorem 3 and Proposition 2 of [16] ensure that the existence of BaC, as defined
above, proves the safety of H. Initial states are assumed to be safe (Eqs. 1 and 2).
Equation 3 dictates that the value of the BaC cannot increase along the contin-
uous evolution of any trajectory within a mode. Finally Eq. 4 ensures that the
discrete mode transitions reset safe states to safe states. Equations 1–4 ensure
that a trajectory that starts out in an initial state, and thus with a BaC value
≤0, can never obtain a BaC-value of >0. Thus the zero level sets of the functions,
Bl(x) = 0, create a “barrier” between Unsafe(l) and the safe states of the mode.
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3 Switching Logic

Let P be the physical plant, AC the advanced controller, BC the baseline con-
troller, and HB the hybrid system modeling the composition of P and BC. We
use the following notations: xAC(T ) denotes the the state of the plant under
control of the AC, uAC(T ) is the control input provided by the AC, and T is
the discrete time. Let M be the number of modes in HB .

Safety of P under the BC can be established by computing a BaC
{B1(x), B2(x), ..., BM (x)} for HB . The implementation aspects of computing
the BaC are deferred to Sect. 4. Given a mode l of HB , Recov(l) denotes the
intersection of the interior of the zero-level set of Bl(x) and I(l). Note that the
sets of states Recov(l) contain the initial states and are recoverable under AC.

We make the following assumptions.

1. DM samples xAC(T ) and uAC(T ) every Δt units of time.
2. The AC also works in discrete time: uAC(T ) is updated at time (T + Δt).

The assumptions made by the switching logic are not restrictive. Knowledge
of the control input allows the switching logic to become less conservative, as
discussed later in the section. The assumptions can also be relaxed by assuming
conservative bounds on the plant dynamics under the AC’s control. The system
models also assume reliable hardware, since Simplex is not intended to tolerate
hardware failures.

Reachability computation is a key element of the switching logic.
Reach≤Δt(xAC(T ),uAC(T )) denotes the set of plant states reachable
under the control input uAC(T ) in the time interval [T, T + Δt].
Reach=Δt(xAC(T ),uAC(T )) is the set of plant states that are reachable under
the control input uAC(T ) at time t = T + Δt.

Algorithm 1. DM’s Switching Logic
1 Obtain the sample (xAC(T ),uAC(T ));
2 Compute Reach≤Δt(xAC(T ),uAC(T )) and Reach=Δt(xAC(T ),uAC(T );
3 safety = (Reach≤Δt(xAC(T ),uAC(T )) ∩ Xu == ∅);

4 recoverability = Reach=Δt(xAC(T ),uAC(T )) ⊆ (
⋃M

l=1 Recov(l));
5 if safety ∧ recoverability then
6 Continue with AC;
7 else
8 Switch to BC;
9 end

Algorithm 1 outlines the switching logic. Step 2 involves two on-the-fly reach-
ability computations. For scalability, the reach-set computation time must be less
than or equal to Δt. The online reach-set computation algorithm of [5] can handle
fairly large hybrid systems. The dimension of the largest system considered for
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online reachability in [5] is 30. Alternatively, we can use the real-time reachabil-
ity algorithm from [9]. When online reachability computation is not scalable, we
can employ a combination of offline and online strategies. In the offline step, the
state and input spaces are partitioned into finite regions and reach-sets for the
partitions, computed apriori, are stored in a table. At run-time, given the state
and the control input, the reach set of the corresponding partition is applied.

To compute the set intersections in steps 3 and 4, we can employ standard
polyhedral libraries, like PolyLib [10]. Non-convex zero-level sets of BaCs may
need to be over-approximated as convex sets to enable set intersection. When
safety and recoverability evaluate to True, the plant is guaranteed to be (i) safe
in [T, T + Δt] and (ii) recoverable at T + Δt.

Next, we sketch a proof of the safety of P under the switching logic.

Lemma 1. P remains safe during time t ∈ [T, T + Δt], i.e. ∀t ∈ [T, T + Δt] :
xAC(t) /∈ Xu.

Proof. The proof is based on the observation that after obtaining the sample
(xAC(T ),uAC(T )), the switching logic ensures that AC does not drive P into
unsafe states: if Reach≤Δt(xAC(T ),uAC(T )) has a non-zero intersection with
the unsafe states, then in step 3, safety will become False, resulting in a failover
being performed in step 8. Note that uAC(T ) does not change in [T, T + Δt]
under Assumption 2. 	

Lemma 2. Every state sample xAC(T ) seen by the switching logic in step 1 of
the algorithm is recoverable.

Proof. The proof is based on induction. As the base case, we know that the
initial states are recoverable. Consider the sample xAC(T ) and assume that
it is recoverable. The set of all possible samples xAC(T + Δt) is contained in
Reach=Δt(xAC(T ),uAC(T )). If any of these reachable states lies outside the
union of the Recov(.) sets of all of the modes of HB , then it may be potentially
non-recoverable. If such a state is reachable, then a failover will be triggered as
recoverability will become False in step 4. Thus every state sample xAC(T ) seen
in step 1 will be recoverable. 	

Theorem 1. The switching logic of the Simplex architecture defined in
Algorithm 1 keeps P invariably safe.

Proof. At every time step T , the switching logic ensures that P remains safe over
the finite time horizon of length Δt as per Lemma 1. Additionally, it follows from
Lemma 2 that the switching logic ensures that the next state sample xAC(T+Δt)
remains recoverable, and therefore safe. If the next state sample is potentially
non-recoverable, indicated by recoverability becoming False in step 4, then the
failover that is executed in step 8 ensures the plant remains safe under BC.

Thus, the switching logic ensures that P remains invariably safe. 	

Algorithm 1 combines the offline computation of the BaCs with the online

reachability computation at step 2 to guarantee the safety of the plant. The set
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intersection and the union operations involved in computing safety and recover-
ability in steps 2 and 3 must also be performed online, and add to the compu-
tational cost of performing on-the-fly reachability analysis.

Online reachability computations may be avoided by conservatively pre-
computing the sets for different partitions of the state space. The state space
may be partitioned into different equivalence classes that reach the same sets of
states in time up to, and at T + Δt for conservative assumptions of the AC’s
inputs. Despite being computationally efficient, such a switching logic is prone
to being overly conservative by not allowing the AC to operate over the largest
possible region in the state space.

The switching logic in Algorithm 1 ensures that the operating region of the
AC is maximized if the computation of the reachable sets is exact and the recover-
able regions of the modes, obtained by intersecting the interior of the zero-level
sets with the mode invariants, is maximal. This is often desired as the AC is
intended to deliver better performance and/or serve mission-critical purposes.

4 Computing BaCs for Hybrid Systems

Let the hybrid system H and the descriptions of all the sets I(l), D(l), Init(l),
Unsafe(l), Guard(l′, l), and Reset(l′, l)(x′) be given along with some nonnegative
constants σl′,l, for each l ∈ L and (l, l′) ∈ L2, l �= l′. The search for a BaC for
H can be cast as an instance of SOS optimization as follows. Find values of the
coefficients which make the expressions

− Bl(x) − σT
Init(l)(x)gInit(l)(x) (5)

Bl(x) − ε − σT
Unsafe(l)(x)gUnsafe(l)(x) (6)

− ∂Bl

∂x
(x)fl(x, d) − σI(l)T (x, d)gI(l)(x) − σT

D(l)(x, d)gD(l)(d) (7)

− Bl(x) + σl,l′Bl′(x′) − σT
Guard(l,l′)(x, x′)gGuard(l,l′)(x−

σT
Reset(l,l′)(x, x′)gReset(l,l′)(x, x′) (8)

and the entries of σInit(l), σUnsafe(l), σI(l)σD(l), σGuard(l,l′), σReset(l,l′) sum of
squares, for each l ∈ L and (l, l′) ∈ L2, l �= l′. See [16] for further details on
computing BaCs for hybrid systems, e.g., the definitions of gInit(l) and gUnsafe(l),
etc. Such SOS optimization programs can be solved using SOSTOOLS [16,17].
SOS optimization and SOSTOOLS itself have been applied to large systems,
e.g., an industry-level hybrid system with 10-dimensional state in [8].

SOSTOOLS may run into numerical issues or provide incorrect solutions
for some inputs as reported in [12,13]. We can overcome these issues by vali-
dating the BaCs using satisfiability modulo theory solvers, like Z3. Validation
entails casting the negation of the assertion: for all relevant states, Eqs. 5–8 are
non-negative. That is, Z3 looks for a state that makes any of these equations
negative. The domain of SMT formulae depends upon the mode or mode-pair
under consideration. SOSTOOLS is re-parameterized if Z3 reports unsoundness
of the solutions.
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5 Case Studies

5.1 Case Study 1: Simple Water Tank System

We consider a simple water tank system adopted from [15], where a controller
seeks to keep the water level x in a tank between a certain range. Figure 2a
shows the hybrid automaton of the composition HB . In mode on, the water
tank is filled by a pump that increases the water level (x′ = 1). The pump can
be turned off when x ≥ 7, and must be turned off when x > 9. More water pours
in (x := x + 1) when the pump is shutting down.

In mode off, the pump is off and the valve is closed, but water leaks slowly
(x′ = −0.1). We assume that the valve must be opened completely (mode open)
before reactivating the pump. The valve can be turned on when x < 5, and must
be turned on when x < 3. In mode open, water drains quickly, and the system
closes the valve and turns on the pump when 1 ≤ x ≤ 2.

We assume that the disturbance in the continuous evolution is 0. The system
is not asymptotically stable as the value of x varies within a certain range without
reaching an equilibrium point. Its behavior is also nondeterministic.

Due to the fact that SOSTOOLS requires the minimum and maximum
degrees of an SOS to be even, we made several changes to the original model
of [15]. In particular, we modified the degrees of the invariants and guards to
meet this requirement without affecting the behavior of the system.

BaCs and Switching Logic. Note that the zero-level sets of BaCs separate
an unsafe region from all system trajectories. Thus, we need to have margins
between the unsafe region and the system trajectories. The unsafe region of the
system is Xu = {x|x ≤ 0} ∪ {x|x ≥ 11}. We compute the barrier certificates
for the initial states x0 ∈ [1, 9]. Since in each location l, x can only take a value
within the invariant I(l) of l, BaCs only need to satisfy Eqs. 5–8 in the invariant
set I(l) [16]. We take the intersection of Xu and I(l) as the unsafe region for
mode l. The runtimes needed to compute the BaCs using SOSTOOLS and to

(a) Water Tank System. (b) Stop Sign Obeying Controller.

Fig. 2. Hybrid automata of the composition HB for the two case studies.
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(a) BaCs of the modes. The red lines
represent the unsafe regions. The black
line shows the system trajectory.

(b) Safe, unsafe and unrecoverable
states with Δt = 0.5 under different
control inputs uAC .

Fig. 3. BaCs of the system and snapshot of the switching logic at run-time. (Color
figure online)

validate them on Z3 are 1.142 s and 0.206 s, respectively, on an Intel Core i7-4770
CPU @ 3.4 GHz with 16 GB RAM.

Figure 3a shows the resulting BaCs. The zero-level set of the BaCs for modes
on, off, and open is {x = 0.0384}, {x = 10.9709}, and {x = 6.2624}, respectively.
Note that we only consider the zero-level set within the invariant of the mode.
The recoverable regions are Recov(on) = [0.0384, 9], Recov(off ) = [3, 10.9709],
and Recov(open) = [1, 6.2624]. The figure shows that the intersection of the
interior of the zero-level set and the invariant of each mode separates the unsafe
region from all system trajectories. The validation of the BaCs using Z3 proves
that they satisfy all of the conditions. We obtain the recoverable region of the
system as

⋃M
l=1 Recov(l) = [0.0384, 10.9709].

As an instance of the Simplex architecture, the water tank system could be
controlled by an advanced controller with a more complex control objective. At
any given time, the decision module in the Simplex architecture decides whether
or not to switch to BC based on Algorithm 1. Figure 3b illustrates a snap-shot
of the switching logic at time T across the state space. For illustration purposes,
we discretize the state space and apply the switching logic for each discrete state
with the corresponding control input uAC . Note that the control input is applied
to the water level, i.e., ẋ = uAC . We have x(T + Δt) = x(T ) + uAC · Δt.

To check the safety condition in Algorithm 1, it is sufficient to check if the
intersection of the line segment from x(T ) to x(T + Δt) and the unsafe region
Xu is empty. A red dot is used in Fig. 3b to represent unsafe states that do
not satisfy the safety condition. To check the recoverability condition, we use
the recoverable region computed above and check if x(T + Δt) ∈ ⋃M

l=1 Recov(l).
A black dot is used to represent the unrecoverable states that do not satisfy
the recoverability condition. We switch to BC if the current state is unsafe or
unrecoverable. If the current state satisfies both safety and recoverability, shown
as a green dot, we continue with the AC. Note that if uAC < 0, then the smaller



A Simplex Architecture for Hybrid Systems Using Barrier Certificates 127

uAC is, the larger lower bound we have for the safe states. Also, when uAC > 0,
the larger uAC is, the smaller upper bound we have for the safe states.

5.2 Case Study 2: Stop-Sign-Obeying Controller

Our second case study is a stop-sign-obeying controller of a car that chooses
when to begin decelerating so that it stops at or before a stop sign [18]. Figure 2b
shows the corresponding hybrid automaton HB . The system of stop-sign obeying
controller has 2 variables with second order derivatives and quadratic functions
as guards and invariants.

The state variables p and v denote the position and velocity of the car,
respectively and S denotes the position of the stop sign. In mode ACC, the car
accelerates with a constant rate A. It can stay in the mode as long as the invariant
is satisfied, or switch nondeterministically to mode BRAKE. In mode BRAKE,
the car decelerates with a constant rate −B. It can switch nondeterministically
to mode ACC if the guard condition is satisfied. It also switches to mode STOP
if v = 0. In mode STOP, the velocity and the acceleration are both 0. We assume
that the disturbance in the continuous evolution is 0.

Note that, due to the practical limitation of SOSTOOLS, also mentioned
in Sect. 5.1, we slightly modify some guards and invariants of stop-sign-obeying
controller. The original model can be found in [18].

BaCs and Switching Logic. To compute BaCs, we consider ACC as the
initial mode and {(p, v)|(p − 6)2 + v2 ≥ 1} as the initial set. We choose A = 1,
B = 0.5 and S = 11.3. To compute feasible BaCs, we consider the stop sign is
at p = S − d during the computation, where d is some non-negative offset. This
allows us to maintain a safe margin (d > 0) between the unsafe region and all
possible system trajectories. Using a simple binary search, we find d = 1.3 as
the smallest possible value in the interval [0, 2], a reasonable safety margin in
this case. We set σl,l′ = 0 for all (l, l′) ∈ L2 in Eq. 8. We validate the resulting
BaCs on Z3 as discussed in Sect. 4. The runtimes to compute the BaCs using
SOSTOOLS and to validate them on Z3 are 1.497 s and 0.295s, respectively, on
an Intel Core i7-4770 CPU @ 3.4 GHz with 16 GB RAM.

In Fig. 4a, the solid curves represent zero-level sets of the computed BaCs,
whereas the regions with dashed boundary are the corresponding mode invari-
ants. The dashed red ellipse and pink rectangular region represent the initial and
unsafe states, respectively. The figure shows that the intersection of the interior
of zero-level set of the BaC for any mode and its mode invariant does not inter-
sect with the unsafe region. This ensures that the union of all the intersections of
interior of zero-level set of BaC with its corresponding mode invariant, denoted
as

⋃M
l=1 Recov(l), can be used as the recoverable sets in the switching logic.

Figure 4 illustrates a snap-shot of switching logic at run-time t across the
state-space in stop-sign-obeying controller in three different cases. For the illus-
tration purpose, we consider a discrete state-space. For each discrete state,
we apply the decision logic by computing both Reach≤Δt(xAC(t),uAC(t)) and
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(a) The zero-level sets of BaCs. (b) uAC(t) = 5, Δt = 0.1.

(c) uAC(t) = 10, Δt = 0.1. (d) uAC(t) = 5, Δt = 0.5.

Fig. 4. (a) Illustration of BaCs. (b)–(d) Online switching decision at time t in stop-
sign-obeying controller across the state-space for a given uAC(t) of AC and Δt.

Reach=Δt(xAC(t),uAC(t)), where xAC = [p, v]T and uAC(t) is some accel-
eration input provided by AC at t, i.e., v′ = uAC(t). For x(t + Δt) =
[p(t + Δt), v(t + Δt)]T , we have v(t + Δt) = v(t) + uAC(t)Δt and p(t + Δt) =
p(t) + v(t)Δt + 1

2uAC(t)Δt2. To check the safety condition in Algorithm 1, we
check if the intersection of the enclosure from x(t) to x(t + Δt) (which can be
over-approximated with a rectangle) and the unsafe region Xu is empty. To check
the recoverability condition, we use the recoverable region computed above and
check if x(t + Δt) ∈ ⋃M

l=1 Recov(l). If xAC(t) satisfies both safety and recover-
ability condition of Algorithm 1, we call it a safe state (green dot) and continue
with AC. But if it only satisfies the safety condition, we call the state as unrecov-
erable (black dot) and switch to BC. The states represented as red dots do not
satisfy any condition, i.e., it is either unsafe or will go to unsafe region within
Δt. Among the subfigures of Fig. 4, we either vary uAC(t) or Δt. Note that
we assume some arbitrary values for uAC(t) for all cases that AC may provide
during run-time.



A Simplex Architecture for Hybrid Systems Using Barrier Certificates 129

6 Related Work

Our BaC-based approach is similar to the combination of offline and online
strategies in [9], but there are some key differences. The authors use the follow-
ing switching logic. The AC controls the plant if it is well within the largest
ellipsoidal safe sublevel set of the Lyapunov function that establishes the safety
of the BC. If the plant is near the boundary of the ellipsoid, the AC retains
control if reachability analysis shows that (i) the plant will remain safe under
the control of the BC over a finite horizon and (ii) the BC can guarantee to bring
the plant back into the ellipsoid, thus guaranteeing recoverability, at the end of
the finite horizon. The logic is designed to maximize the AC’s operating region.
Moreover, the plant is allowed to leave the ellipsoid as long as it is guaranteed
to be recoverable at the end of the finite horizon. Our Algorithm 1 also achieves
this objective. The recoverability test in step 4 checks if all the states reachable
under the AC’s control at the end of Δt are recoverable. In other words, the plant
is allowed to cross the zero-level sets of the barrier certificates if it is guaranteed
to return into at least one of the zero-level sets at the end of Δt.

Additionally, [9] relies on LMI, which is primarily intended for stability analy-
sis of linear systems; nonlinear systems must be linearized for analysis. BaCs, on
the other hand, inherently encode the notion of safety for hybrid automata and
other nonlinear systems. Our approach enables us to go beyond simple single-
mode systems, like the inverted pendulum model of [9], and design Simplex
architectures for multi-mode hybrid systems. Specifically, we detail the relation-
ship between the reach-sets and the BaC-based recoverable regions.

We also make a simplifying assumption: the decision module can observe
the control input produced by the AC, and that the control input does not
change during the decision period, which is the same as the control period. This
assumption eliminates the need to abstract AC as a hybrid automaton.

The concept of Simplex is closely related to Run-Time Assurance (RTA).
BaCs were proposed for RTA of hybrid systems in [11], but the switching logic
was not described in detail. Moreover, the details of computing BaCs and case
studies were not presented. In [3], reachability analysis on hybrid systems is
applied to produce a decision module that guarantees safety, which is com-
pletely offline with assumptions about the maximum derivative of the states.
By contrast, our online computation assumes that the current control input is
known.

In [22], compositional barrier functions are used to guarantee the simulta-
neous satisfaction of composed objectives. They rely on a single controller and
an optimization-based approach to correct the controller in a minimally invasive
fashion when violations of safety are imminent. This approach is limited by the
single controller, and consequently less flexible compared to Simplex.

7 Conclusions and Future Work

We presented a Barrier-Certificates-based two-controller Simple Architecture for
hybrid systems. In addition to establishing safety of the plant under the baseline
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controller, the zero-level sets of the BaCs also yield recoverable regions, where
the safety is guaranteed for infinite time. The switching logic of the architecture,
which samples the state of the plant under the advanced controller periodically
in discrete time, uses on-the-fly reachability computations to ensure that (i) the
plant remains safe between successive samples and (ii) every sample is recover-
able. Two case studies, a water-tank system and a stop-sign-obeying controller,
were presented to illustrate the implementation aspects of our approach.

We plan to extend our work along several directions. We will pursue the com-
putation of barrier certificates that guarantee optimal switching, which ensures
that the operating region of the advanced controller is maximized. Our approach
will be applied to more complicated systems with nonlinearities and exogenous
inputs. Finally, we will extend our approach to compositions of barrier certifi-
cates that simultaneously satisfy multiple composed safety constraints.
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Abstract. The verification and validation (V&V) of autonomous sys-
tems is a complex and difficult task, especially when artificial intelligence
is used to achieve autonomy. However, without proper V&V, sufficient
evidence to argue safety is not attainable. We propose in this work the
use of a Safety Supervisor (SSV) to circumvent this issue. However, the
design of an adequate SSV is a challenge in itself. To assist in this task, we
present a conceptual framework and a corresponding metamodel, which
are motivated and justified by existing work in the field. The concep-
tual framework supports the alignment of future research in the field
of runtime safety monitoring. Our vision is for the different parts of the
framework to be filled with exchangeable solutions so that a concrete SSV
can be derived systematically and efficiently, and that new solutions can
be embedded in it and get evaluated against existing approaches. To
exemplify our vision, we present an SSV that is based on the ISO 22839
standard for forward collision mitigation.

1 Introduction

Ever since software has been used to control machines, its role in this task has
expanded continuously. In order to fulfill the ever-increasing number of functional
and non-functional requirements, software is becoming more and more complex.
Currently we are witnessing that the requirement to act autonomously is gaining
importance. We consider autonomy not as the capability to act without direct
operator commands but as the capability to act without a predefined behavior
specification. To fulfill this need in cases where complex environment perception
and complex decision making are necessary, techniques known from artificial
intelligence, such as neural networks, are being introduced as part of classical
control systems. This brings a new class of complexity into these potentially
safety-critical systems: hard to analyze can become not analyzable. Even bigger
than the complexity problem is the problem of autonomy. While most established
safety engineering techniques consider deviations from the intended functional-
ity, the creation of this intended functionality is now the systems responsibility
and can thus become an additional safety threat. For these reasons, most estab-
lished V&V techniques, methods, and tools are not applicable for AI-controlled
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systems. Still, we need to gain confidence in their safety if they are to be used
in a real environment.

An approach for addressing the complexity problem that is already estab-
lished fairly well is runtime verification [21]. Runtime verification is a means for
continuously verifying properties during runtime. This is in contrast to verifying
them once and for all at development time already, which might be infeasible or
even impossible in some cases. The system is steered into a safe state before or
after a violation of the properties happens. In its essence, runtime verification
is concerned with the correctness, i.e., the correct implementation of a given
specification, of the system. By shifting the verification of properties to runtime,
runtime verification addresses the problem that the increasing complexity of the
system makes high coverage testing and analysis infeasible. Yet these runtime
verification approaches still need a precise specification that is checked at run-
time. However, autonomy realized with the help of AI techniques is explicitly
used to eliminate the need for a precise specification of the system behavior in
every possible situation. Thus, classical runtime verification is not sufficient to
guarantee the safety of autonomous systems, and an additional runtime moni-
toring approach is needed that focuses on safety as the absence of unreasonable
risk. We are using the term Safety Supervisor (SSV) for this class of monitor-
ing approaches. The term Supervisor emphasizes that the SSV has the final say
about the control of the system.

Safety engineering for traditional systems, as with the ISO 26262 [9], is usu-
ally concerned with functional safety. Functional safety considers malfunctions as
deviations from a defined intention, usually the operator input. It is the system’s
responsibility to follow this input as closely as possible even in the presence of
random, unavoidable hardware failures. Because of that, a safety analysis, e.g. a
Fault Tree Analysis, may look a lot like a reliability analysis. We argue that for
the new class of autonomously acting systems, systematic achievement of a safe
system behavior is increasingly becoming the focus of core system development,
e.g. by including a Safety Supervisor in the system architecture. This is not
covered by existing safety standards. The current discussion on the topic safety
of the intended functionality is a symptom of this development. As the neces-
sary safety supervisory systems are highly complex and can influence the system
behavior significantly, we see great potential in the use of a Safety Supervisor
Definition and Evaluation Framework (SSV DEF).

A definition and evaluation framework on the level of functional abstraction
can be used to support early design decisions for the development of an SSV.
From an engineering perspective, the framework can be used to conduct what-if
analyses, comparing different meaningful combinations of available solutions to
arrive at an evidence-based decision about which algorithms to choose for the
further development of a safety monitor. From a research perspective, the frame-
work can be used to guide and support future research in the field. New solu-
tions can be embedded in it and can be evaluated against existing approaches.
The contribution of this paper is a well-founded conceptual framework aimed
at guiding our future development of the definition and evaluation framework.
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The SSV DEF will be instantiated for the automotive domain in our future work,
but the conceptual framework is domain-independent and can also be instanti-
ated for other domains, such as industry automation. As a further contribution,
we will give an overview of recent work regarding the elements of our conceptual
framework.

This paper is structured as follows: In Sect. 2, we present our conceptual
framework for the definition of an SSV. The explanations of the different ele-
ments of the framework contain pointers to relevant related work in this area
and thus to design alternatives that can be considered when implementing a
Safety Supervisor. To illustrate the individual elements, we give an example of
a platoon driving system. Simulation results underline the benefit of analyzing
design alternatives early in the design process. Section 3 provides evidence for
the validity of our framework by analyzing existing runtime safety monitoring
approaches. Section 4 concludes the paper.

2 Conceptual Framework

Figure 1 presents our conceptual definition framework by means of a metamodel
for the safety supervision of autonomous systems and thus the main contribu-
tion of this work. The metamodel can be seen as a template that assists in
creating a concrete SSV as an instantiation of this model. The parts that form
the Safety World Model are motivated and justified by the related work analysis
presented later on. In addition to this, we see the necessity for a Risk Reduction
Strategy to decide which behavior shall be triggered if the current situation is
too critical. The Safety Argumentation explains the role of the Safety Super-
visor in guaranteeing system safety. In previous versions of the metamodel, we
focused more on the observability problem, i.e., on mapping internal variables
in the individual models to monitored and controlled variables of the system.
We stepped back from such a model as we see the observability problem as a
problem closer related to the implementation phase, and we decided to shift our
focus to the functional design phase. The main challenge that we see for this
phase of the development is how to choose the right models and algorithms to
create a functionally effective supervisor. The SSV DEF in intended to assist
in this step. The outcome is a functional specification of the Safety Supervisor
containing evidence regarding effectiveness. How the variables in the algorithms
are mapped to observable variables and how the SSV is implemented is dealt
with in the subsequent development steps. One future goal of our approach is the
development of proper tool support for creating an SSV specification in order
to move from a conceptual framework to a library-like Safety Supervisor Defi-
nition and Evaluation Framework, which will additionally assist in the creation
of evidences that can be used in safety argumentation. In the following, we will
go through the individual elements of the metamodel and explain their role in
the context of the SSV. For each of the elements that form the SSV, we give
an initial set of design considerations and point to related work in this field.
To develop a concrete example for the instantiation of the metamodel, we use a
forward collision avoidance system for truck platooning.
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Fig. 1. SSV Metamodel: A conceptual framework for the definition of a Safety
Supervisor

2.1 Metamodel Elements

System. The Safety Supervisor is part of an autonomously acting system that
uses complex control algorithms in a safe case and is interrupted and overruled
by the SSV in a potentially unsafe case. This is in accordance with the SIM-
PLEX architecture introduced in [24]. We are considering a system specified
on the functional architecture level, for example using Simulink models. In the
SIMPLEX architecture, an SSV should be simple. Being too simple might end
up being too conservative and thus producing many false alerts. As a solution
to this issue, we consider a layered SSV design that contains very simple behav-
ior in a core layer and more complex behavior in an outer layer. This can be
supported by a definition framework by assigning costs to design alternatives.
Such a layered architecture additionally supports the fail-operational behavior
required for such a safety-critical component as the SSV. Detailed thoughts on
how to model an adaptive system with fail-operational behavior can be found in
[2]. We see potential in including this methodology in our SSV DEF.

In our example, we are supervising a control algorithm for platoon driving. In
platoon driving, two or more trucks are driving directly behind each other and
only the leading truck is operated by a human driver. The motivation behind pla-
tooning is to relief drivers from the burden of driving, to save fuel due to optimal
driving distance, and, last but not least, ideally to be safer than driving in man-
ual mode. The latter might be achieved based on the fact that response times are
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generally faster for machines and, maybe even more importantly, they are known
factors and not subject to fluctuations as is the case for human response times.
Even for such a rather simple system, let alone for fully autonomous driving,
formal verification to prove that the distance between two trucks is always more
than 0 m is not possible. Also, testing each and every possible truck combina-
tion and every scenario on every possible track does not appear to be feasible
or would require the possible situation space to be limited significantly. Conse-
quently, monitoring in the form of an SSV makes sense for such a platoon driving
system.

Safety Supervisor. The safety supervisor is the core component of the frame-
work and responsible for performing the actual monitoring. To this end, it utilizes
the other entities of the framework; hence it is the central element of the meta-
model. Based on the information from the Safety World Model (explained later),
the SSV assesses the safety of the current situation. If this results in the decision
to initiate a countermeasure, a suitable one is selected automatically from the
set of Risk Reduction Strategies.

In the platoon driving system, we install a Safety Supervisor that is responsi-
ble for avoiding forward collisions. The ISO 22839 standard for Intelligent trans-
port systems - Forward vehicle collision mitigation systems - Operation, perfor-
mance and verification requirements [10] defines forward collision as a collision
between a vehicle (subject vehicle) and the vehicle in front of this vehicle that
is driving in the same direction (target vehicle). As the platoon driving system
shall only be used on highways and changing lanes is not considered as part of
the functionality, it makes sense to focus on such forward collision accidents for
the Safety Supervisor.

Safety World Model. This element is a container for the information needed
to assess the safety and thus the risk of a situation. The output is a decision about
whether the normal control algorithm is allowed to control the system further or
whether some countermeasures are needed to steer the system into a safer state.
Setting this into context of the SIMPLEX architecture [24], the Safety World
Model is a special form of Decision Logic focusing on safety. The Safety World
Model is composed of an internal representation of the current environment –
the Situation Description – an understanding of how this situation may evolve
in the future – the Situation Prediction – and an assessment of the risk of this
situation – the Situation Risk Assessment. These elements have been identified
in the related work study. An approach that covers the full spectrum of elements
is presented in [23]. The three elements that build the Safety World Model are
dependent on each other. Only the state of those elements that are part of the
Situation Description can be predicted, and any quantification of the risk of
a situation highly depends on the available knowledge about the current and
possible future situations.

For the platoon driving example the elements of the Safety World Model will
be presented together after the Situation Risk Assessment element, as in the
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ISO standard the metrics used for the Situation Risk Assessment are the most
explicitly represented element.

Situation Description. The highly dynamic environment in which
autonomous systems act needs to be modeled explicitly by a Situation Descrip-
tion. The first decision for such a model regards which elements of the environ-
ment to consider. For the automotive use case, alternatives include considering
all elements in the same lane, all elements in the same lane and in the adjacent
lane, or all elements within a certain radius. For other domains, other alterna-
tives are possible. After that decision, it needs to be decided which attributes
of the elements to consider, starting with the size, speed, or acceleration of
the elements and proceeding to more complex attributes, such as the value of
an element or its probability of existence. The final decision regarding which
elements and which attributes to consider must take into account that the Situ-
ation Description needs to contain as much information about the environment
as needed by the other elements of the Safety Supervisor. Related work on the
topic can be found in [8,11,12] or [15].

Situation Prediction. The methods used for Situation Risk Assessment eval-
uate a situation according to potential future harm. Predictions need to be made
covering the entire period from the point in time where the evaluation is per-
formed to the point in time where the harm might happen. Thus, the Situation
Risk Assessment is inherently based on prediction models. Lefvre et al. provide a
more detailed insight on this dependence in [17]. We demand that these predic-
tion models need to be made explicit. The models can only address elements and
attributes that are represented in the Situation Description and describe how the
attributes will evolve in the future. For the supervised system, the future develop-
ment can be based on the intended behavior of the AI system, if known. For other
elements in the Situation Description, the observed attributes might influence
the predictions. For example, if an element is classified as a child, the prediction
will differ from elements that are classified as trained traffic participants. Poten-
tially, a multitude of prediction models is possible, from non-probabilistic and
simple constant velocity/acceleration models via non-probabilistic model-based
prediction models to probabilistic models that may be arbitrarily complex. A
good trade-off between overcomplicated and oversimplified prediction models
needs to be found. Overcomplicated models might show a set of possible future
situations that could be too large to handle, while oversimplified models might
not consider important future situations at all. Wiest et al. propose a framework
for probabilistic maneuver prediction in [30]. In this framework, the prediction
models are created with machine learning methods. They show the application
of this approach for the creation of a Situation Prediction for an intersection.
We find this approach very promising and see additional potential in using com-
parable approaches for Situation Risk Assessment with the use of data mining
techniques from recorded vehicle data.
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Situation Risk Assessment. The assessment of the risk of a situation can be
done qualitatively, as in [18], or quantitatively, as in [28]. If done quantitatively,
special safety metrics are needed. These metrics rate a situation regarding its
criticality, i.e., the risk that it may result in a harmful situation. A risk assess-
ment is needed to separate the situation space that the system might encounter
in a safe space, where the complex control algorithm is allowed to operate, and
a potentially unsafe space, where actions by the Safety Supervisor are needed to
keep accidents from happening. The space of possible metrics is limited by the
attributes considered in the Situation Description and the prediction models in
the Situation Prediction. The time to critical collision probability metric used in
[23] requires a probabilistic Situation Prediction while a simple time to collision
metric is not compatible with such a probabilistic model but works with a con-
stant relative velocity model. These strong dependencies among the elements of
the Safety World Model further motivate the use of an SSV DEF.

The ISO 22839 standard uses two time-to-collision metrics and gives two
equations for the calculation of the metrics based on different assumptions. Equa-
tion 1 is used to calculate the time to collision, which is defined in the standard
as time that it will take a subject vehicle to collide with the target vehicle assum-
ing the relative velocity remains constant. Thus, the constant relative velocity
prediction is made explicit. Implicit is the prediction that both vehicles stay on
the collision course. Equation 2 is used to calculate the enhanced time to colli-
sion, which is defined in the standard as time that it will take a subject vehicle to
collide with the target vehicle assuming the relative acceleration between the sub-
ject vehicle and the target vehicle remains constant. Again, the collision course
assumption is implicit.

− xc

vr
(1)

−(vTV − vSV ) − √
(vTV − vSV )2 − 2 ∗ (aTV − aSV ) ∗ xc

aTV − aSV
(2)

xc is defined as the distance; vr as the relative velocity (vTV − vSV ); vTV as
the velocity of the target vehicle, i.e., the leading truck; vSV as the velocity
of the subject vehicle, i.e., the following truck; aSV and aTV as the respective
acceleration.

These time-to-collision metrics can be calculated using a very simple Situa-
tion Description that exists of one fixed trajectory on which the subject vehicle
travels and a potential target vehicle that travels in front of it in the same direc-
tion on the same trajectory with a certain distance, velocity, and acceleration.
This model already allows the calculation of the time-to-collision metric using
the Eqs. 1 and 2. The simplicity of this Situation Description directly shows
the limits of the SSV that we are instantiating for the platoon driving system.
Static objects, vehicles in other lanes, or any other vehicles besides the subject
and target vehicles are not considered in the representation of the environment.
Consequently, no criticality metric refers to these elements and they are not
considered in the risk assessment of the current situation.
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By applying the ISO 22839 standard, we are using two prediction models for
the Situation Prediction. The first is a constant-relative-velocity model used for
the calculation in Eq. 1 and the second is a constant-relative-acceleration model
used for the calculation in Eq. 2. In both prediction models, it is assumed that
the vehicles keep on traveling along the same trajectory.

Risk Reduction Strategy. The Safety Supervisor uses the Safety World Model
to determine whether to become active. Once the decision to become active has
been made, the SSV needs to select a behavior that will lead to a less critical
situation. The knowledge needed to select the right behavior strategy is encap-
sulated in the Risk Reduction Strategy element. Also, different solutions are
possible in this field. The strategies can be derived by solving an optimization
problem regarding the Safety World Model and considering the control capa-
bilities given to the Safety Supervisor. Thoughts on this can be found in [4].
Alternatively, the set of strategies can be fixed as proposed in [26]. Considering
the selection of an adequate behavior as an optimization problem might be a
promising solution, but adds complexity to the SSV. Following the idea of a
layered Safety Supervisor presented above, such complex behavior can be con-
sidered on an outer layer that is only used if resources are available, while in
other cases a simpler Risk Reduction Strategy is used.

In the ISO 22830 standard, strategies are recommended based on the value of
the time-to-collision metrics. For rather high values, the standard recommends a
driver warning while for low values, the system shall actively perform a braking
maneuver. The definition of the exact thresholds is left to the producer of the
system. However, an SSV DEF could also assist in this step.

Safety Argumentation. It is hard to design a compelling safety argumenta-
tion for an autonomous system, in particular when AI algorithms are involved.
Actions towards this goal can be found in [25]. It is an interesting and highly
important, but still open question which role a Safety Supervisor can play in
an overall safety concept for autonomous systems. Especially in the domain
of autonomous vehicles, we can see that modern cars already contain systems
such as collision avoidance systems that override the input of the human driver
to avoid or mitigate the consequences of a collision in very critical situations.
These systems act as a Safety Supervisor for the human driver and we expect
high reuse of such systems for the supervision of autonomous vehicles. Neverthe-
less, the functionality of such existing avoidance and mitigation systems needs to
be placed into the context of a compelling safety argumentation for autonomous
systems. Related to the element of Safety Argumentation is the production of
evidences. After specifying the behavior of an SSV, we need to gain trust in
the correct implementation of this specification but also in its effectiveness for
making the system safe. Testing in the context of autonomous systems has been
considered a big challenge in the literature [13] and is one of the reasons why
we use monitoring at runtime in the first place. Thus, great care is necessary to
assure that the developed supervisor components can be tested and analyzed.
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Still, execution in a controlled environment is necessary before the release. As
argued in [29], this can only be done efficiently with the right methodological
and tool support. We see early multi-domain simulation in the form of virtual
validation as one of the key enablers for this [6].

For the platoon driving system, we derived the high-level safety goal Driving
performed by the system is acceptably safe. From this safety goal, three sub-
goals are derived: System is not performing situation-specific unsafe behavior,
The driver is performing the driving activity if the system is not capable to do it
sufficiently safe and System is not producing a situation of unreasonable risk. The
first goal leads to a description of what safe driving means. Thoughts on this part
of an overall safety concept for autonomous vehicles can be found in our earlier
work [1]. The second goal refers to a safe operator-in-the-loop concept and is a
crucial part for systems up to automation level three of the SAE standard [22].
A methodology for deriving safe operator-in-the-loop concepts is currently being
developed by the authors in parallel to this work. The last sub-goal is attached
to the SSV. At the early functional abstraction level, evidence for the fulfillment
of these goals needs to be created with the help of simulation. More thoughts on
this and thus on the evaluation part of the SSV DEF will be presented in the
following subsection.

2.2 Simulation Results

The narrative description of the instantiation of the Safety Supervisor meta-
model given in the previous subsection was translated into an executable
Simulink model. The resulting system with the SSV in place was used for the
simulation.

The results of the simulation of a specific scenario can be seen in Fig. 2. The
executed scenario is represented by the given acceleration of the leader truck
drawn on the right Y-axis. The platoon driving system shall adequately adapt the
acceleration of the following truck to this. The optimization goal is to minimize
the distance while avoiding forward collisions. Without the Safety Supervisor
in place, the system performs well regarding the first optimization goal, but
regarding freedom from collision, a violation occurs at the end of the simulated
scenario. The SSV, which uses the enhanced time-to-collision metric as in Eq. 2,
avoids this collision. As a drawback, the distance increases to an unacceptable
value as the SSV destabilizes the control algorithm. Using the time-to-collision
metric as in Eq. 1 shows good performance regarding both collision avoidance
and minimization of the distance between the trucks.

On the one hand, this simulation result provides evidence that the use of
an SSV can be beneficial for the safety of an autonomously acting system.
More important than this is the fact that it illustrates the need to analyze
the design alternatives of a Safety Supervisor component as early in the devel-
opment process as possible. Great care needs to be taken to maintain both safe
and adequate behavior of the overall system. Different design options exist for
the definition of a Safety Supervisor, as has been shown by pointing to related
work for the elements of the metamodel. It cannot be expected that any of these
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Fig. 2. Simulation results of the platoon driving system

approaches will be superior in all cases, but careful selection needs to take place.
Such a selection can be made on a more stable basis if evidence created by an
evaluation framework exists. In order to perform an appropriate evaluation and
produce sufficient evidence, more powerful simulation tools and more reasoning
about the safety argumentation are needed. As an important part of a future
SSV DEF we see an evaluation platform capable of delivering results regard-
ing the effectiveness of a particular design decision. As we are focusing on the
functional, i.e., the algorithmic level, we can abstract from details such as sen-
sor effects. This favors simulation solutions such as Pelops for automotive [7] or
FERAL as a more general solution [14] over solutions such as V-REP [20], which
focuses on a detailed physical simulation of the system. The question remains
what to simulate in such a tool. For autonomous vehicles, this question is cur-
rently being investigated in the Pegasus project [19]. As part of this project,
different OEMs are cooperating to build a database with relevant driving situ-
ations that shall be successfully executed by an autonomous vehicle to increase
trust in its safe behavior. As part of our future work, an appropriate simulator
has to be chosen and needs to be integrated with a meaningful set of scenarios
in the SSV definition framework.

3 Related Work

An analysis of related work on supervisors that are concerned with safety
led to the observation that these approaches share common aspects that are
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represented in the metamodel presented above. Safety Supervisor approaches
can be found, for example, in [10,18,23,28,31]. Of these approaches, only [18]
considers safety monitoring at runtime in general. The other approaches are
instantiations of the concept for the automotive domain, i.e., active safety sys-
tems for collision avoidance. All approaches need models to assess the current
safety of the system. We refer to this collection of models as the Safety World
Model. How this Safety World Model is built differs among the solutions, but pat-
terns can be found that helped us to derive our conceptual framework. We claim
that a complete Safety World Model needs models for Situation Description,
Situation Prediction, and Situation Risk Assessment. This is also in accordance
with Situation Awareness Theory [5]. In this theory, it takes three steps to cre-
ate situation awareness: Perception, Comprehension, and Projection. The Safety
World Model in the metamodel is our equivalent of Situation Awareness with
a focus on safety. Thus, the three elements of the Safety World Model map to
the three steps: Situation Description enables Perception, Situation Prediction
allows Projection, and Situation Risk Assessment is our special form of Com-
prehension for safety. Furthermore, we will demonstrate how the three elements
are represented in the related work listed above.

In [18], the authors explicitly model the possible state space that the system
can encounter with the values of observable variables. They present a methodol-
ogy for deriving properties that clearly classify the situation space into safe
states, warning states, and catastrophic states. In their work, the Situation
Description is done via the variables and value ranges. Situation Predictions
are paths leading from one state to another. In this prediction, they are not
probabilistic but are concerned with the reachability of critical states. In addi-
tion, the risk of situations or states is not quantified but qualitatively assessed
by assigning it to either the safe, the warning, or the catastrophic class of states.
In [28], the authors propose a Safety Decision Unit to safeguard a truck platoon-
ing scenario. In this decision unit, they quantify the risk of the current situation
using different metrics such as the Break Threat Number or the worst-case impact
speed (Situation Risk Assessment). Implicitly, they limit the analysis of the cur-
rent situation to the truck driving in front of the next vehicle in the truck platoon
(Situation Description). The prediction made from this situation is a worst-case
prediction where at any point in time it is assumed that the leading truck may
initiate maximum braking. Under the prerequisite that the leading truck commu-
nicates its environmental perception, they propose a method for a more precise
calculation of the probability of a braking maneuver by the leading truck. This
can help to reduce the false positives created by the supervisory component by
lowering the criticality of certain situations (Situation Prediction). The Safety
Supervisor approach presented in [23] and its implementation presented in [31]
motivated parts of the Safety World Model presented above. In their work, the
authors describe the current situation by assigning probabilities for maneuvers to
all vehicles in the driving scene. Based on these maneuvers, they then determine
probabilities for trajectories and quantify the situation’s risk with an extension of
the time-to-collision metric called Time-to-Critical-Collision Probability. Thus,
the three elements of the Safety World Model are explicitly represented in this
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solution. Another example was given when we instantiated the metamodel with
a forward collision avoidance system for a truck platooning system following the
ISO 22839 standard [10] in the previous section.

Thus, we can see patterns in what is needed to determine the risk of a current
situation, i.e., the elements of which a Safety World Model consists. Additionally,
a Safety Supervisor needs a Risk Reduction Strategy, which is also part of the
presented safety monitoring approaches. In their work [16], Kurd et al. present
GSN-based argumentation on how dynamic risk management assures the safety
of a system. We see our Safety Supervisor as a component realizing dynamic risk
management, and we further see the need to create proper safety argumentation
that sets the SSV in relation to the supervised system and argues how the safety
of the overall system is achieved. As for the safety criticality of the supervisor
component, we see this as a necessary and natural part of the development that
shall be supported by an SSV DEF through the production of evidences.

4 Conclusion

We see that monitoring at runtime will become necessary to create trust in the
safety of autonomously acting systems. In this work, we have presented a concep-
tual framework by means of a metamodel to define a component for safety mon-
itoring – a Safety Supervisor (SSV) – as an instantiation of the metamodel. The
central part of the metamodel – the Safety World Model – has been developed
by deriving patterns in an analysis of related work on existing Safety Supervi-
sor solutions. The Safety Supervisor Definition and Evaluation Framework (SSV
DEF) shall assist in conducting what-if analyses in the design of a concrete super-
visor component. To be able to validate design alternatives in a cost-efficient way,
we are focusing on the functional behavior of the supervisor and on the develop-
ment of a functional specification of the SSV in order to validate its conceptual
feasibility and to evaluate design alternatives through simulation. Furthermore,
the conceptual framework can assist in guiding future research in the field and
putting existing work into context. We demonstrated the complexity of the def-
inition of an SSV by highlighting an initial set of design alternatives of those
components that form the SSV. We exemplified the instantiation of the meta-
model by defining a supervisor for a platoon driving system and used simulation
results to demonstrate the methodological need to assess the design alternatives
early in the SSV development process. To pave the way for enriching the frame-
work with predefined functionality, we introduced related work in the specific
areas of interest. Following this path will lead from a conceptual framework to
a library-like definition framework for the functionality of a Safety Supervisor
for autonomous systems. We see great potential in such an approach as it allows
considering different design alternatives for a safety monitoring system based
on evidences early in the development process. As the concrete instantiations of
the metamodel elements will naturally be highly domain-specific, we will focus
on the automotive domain and thus on autonomous vehicles in future work.
The conceptual framework presented in this work, however, is domain-
independent and can be implemented for other domains as well.
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Another promising direction, staying on the conceptual level, is to consider
the elements of the metamodel not as being static but rather as elements that
can adapt during runtime. Turning the individual models into models-at-runtime
allows the supervisor to adapt to changes in the environment and learn from
experience. Such an open and adaptive SSV can be embedded into existing
conceptual frameworks for the safety assurance of open adaptive systems [27].

We also see great potential in the use of an SSV in the development
of autonomous vehicles that follow an end-to-end deep learning approach, as
demonstrated in [3]. In the learning process, a well-defined SSV can supervise
the learning and guarantee that, regardless of the precise learning objectives, no
unsafe behavior is learned.
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Abstract. When arguing safety for an autonomous road vehicle it is considered
very hard to show that the sensing capability is sufficient for all possible scenarios
that might occur. Already for today’s manually driven road vehicles equipped
with advanced driver assistance systems (ADAS), it is far from trivial how to
argue that the sensor systems are sufficiently capable of enabling a safe behavior.
In this paper, we argue that the transition from ADAS to automated driving
systems (ADS) enables new solution patterns for the safety argumentation
dependent on the sensor systems. A key factor is that the ADS itself can compen‐
sate for a lower sensor capability, by for example lowering the speed or increasing
the distances. The proposed design strategy allocates safety requirements on the
sensors to determine their own capability. This capability is then to be balanced
by the tactical decisions of the ADS equipped road vehicle.

Keywords: ISO 26262 · Automated driving systems · Systematic system design
faults · Sensor systems · Tactical decisions

1 Introduction

There is an increasing expectation for autonomous road vehicles to become available in
a not too distant future, and there are many initiatives in the automotive industry aiming
for such a development. One of the largest challenges is to come up with a safety case
arguing that the automated drive system (ADS) feature is sufficiently safe, and has equal
or better driving capability than the human driver it replaces. This is a difficult task,
especially when it comes to the environment sensing capability. In order to claim that
the verification and validation is sufficient, i.e. that the sensors of an ADS always have
the capability implied by the task of ADS operation, all relevant scenarios, potential
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failure modes and corresponding hazards must be covered by relevant test cases. As the
number of possible scenarios an ADS-equipped vehicle needs to handle is very large, it
is hard to show that the set of test cases provide sufficient evidence that the vehicle will
be able to act safely.

As a starting point when realizing an ADS feature, the functionality, limitations and
system boundaries must be defined. Given this definition, the task of showing that the
sensors will provide the information needed for the vehicle to behave sufficiently safe
implies three challenges. The first is to identify the use scenarios, potential failure modes
of the ADS feature, and carry out a hazard analysis and risk assessment. In the functional
safety standard for road vehicles, ISO 26262, the result is a number of safety goals (top
level safety requirements) each with an integrity level ranging from ASIL A (lowest) to
ASIL D (highest), where higher integrity levels require higher confidence in the absence
of failures. The second implication is the difficulty to reach the coverage of the argu‐
mentation required by the higher ASIL levels. The third is the implicit implication,
begging the question if it is at all reasonable to provide the sensor capability necessary
to reach the last part of the probability tail needed show coverage for the higher ASILs.
One typical safety goal for an ADS might be to control the vehicle in such a way as to
avoid collision with a vulnerable road user with a velocity that could cause a specific
harm. In order to argue that this safety goal is satisfied, we need to show that the ADS
has sufficient capability of the sensors that the vehicle can react in time to avoid a colli‐
sion; under various drive scenarios, road and weather conditions. Achieving such a
capability level can be both very difficult and very costly, but if we cannot argue that
the ADS vehicle will fulfill this safety goal to the required ASIL level, we cannot intro‐
duce this vehicle on the market. Based on the reasoning above, a number of key questions
need to be addressed for an ADS function:

• How to select a limited number of drive scenarios, carry out hazard analysis, define
safety goals and be able to argue completeness.

• How to define sufficient sensing capability to sense the surroundings and drive
scenarios in various conditions.

• How to define sufficient level of sensing redundancy given the limitations in tech‐
nology and cost.

In this paper, we argue that these challenges are solvable. ADS-equipped vehicles
need to perform tactical decisions [1, 2], such as e.g. when to perform a lane change,
preferred ego speed and preferred distance to vehicles in front. Therefore, we propose
to allocate safety requirements on tactical decisions such that the safety goals can more
easily be shown to be fulfilled. Instead of solving a statically defined sensing task, the
sensors need to report what they can promise, and the tactical decisions can be adjusted
by the ADS accordingly. In the example safety goal above regarding avoiding collision
with vulnerable road users, the maximum safe speed of the vehicle will depend on the
current ability of the sensors to detect vulnerable road users with enough confidence
regarding the required ASIL. This means that we get on the one hand a framework for
how to argue that the chosen sensors can have sufficiently specific test cases for showing
completeness with respect to the safety requirements. On the other hand we get a pattern

150 R. Johansson et al.



where we do not need to introduce unnecessarily expensive sensing solutions just to
meet the very last part of the probability tail for higher ASILs.

The rest of the paper is organized as follows: Related work is discussed in Sect. 2,
our solution is explained in detail in Sect. 3, and finally some conclusions and future
work is provided in Sect. 4.

2 Related Work

Terminology and definitions in this paper aims to conform to taxonomy and definitions
made in SAE J3016 [3]. This standard provides a taxonomy describing the full range of
levels of driving automation in on-road motor vehicles and includes functional defini‐
tions for advanced levels of driving automation and related terms and definitions.

2.1 Standards Addressing Sensor Performance

PAS 21448 - SOTIF1 (Safety of the Intended Function) [4] is an ISO TC 22/SC 32/WG 8
initiative that proposes “guidance on the design, verification and validation measures
applicable to avoid malfunctioning behavior in a system in the absence of faults, resulting
from technological and system definition shortcomings”. Hence, PAS 21448 claims that
this (safety violations in a system without failure) is outside the scope of ISO 26262, and
that this issue therefore requires additional guidance.

PAS 21448 proposes a process that aims to improve the nominal function specifi‐
cation to avoid or handle hazardous behavior due to the nominal function or technical
limitations in the implementation. To ensure that the intended function is sufficiently
safe PAS 21448 proposes a process to define and improve the function definition to
reduce to an acceptable level the risk of:

• residual risk of the intended function, through analysis.
• unintended behavior in known situations through verification
• residual unknown situations that could cause unintended behavior, through validation

of verification situations.

The updated intended function can be used as an input to the process of ensuring that
functional safety is achieved using ISO26262. Although applicable to ADS, SOTIF is
primarily focused on ADAS (Advanced Driver Assistance Systems) functions; that rely
on environmental sensors such as camera and radar.

Another approach to addressing sensor performance is considered by IEC TC44 in
the committee draft2 “IEC 62998 CD – Safety-related sensors used for protection of
person” [5], which aims to be complementary to the functional safety standards IEC
61508 [6], IEC 62061 [7] and ISO 13849 [8]. As opposed to PAS 21448, 62998 CD

1 The SOTIF PAS is in working draft phase and is available for internal review as of Q1 2017.
Hence the statements below are subject to change based on the outcome of the development
process of the PAS.

2 Since this description is based on a committee draft, the content is subject to change.
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does not claim that safety violations due to the sensor system making hazardous deci‐
sions about the environment is outside the scope of the corresponding functional safety
standard. Instead this draft provides guidance on how the safety-related sensors can
achieve the integrity levels determined by the HA&RA performed in the main standard,
when a sensor is used as a safety-related subsystem. The draft considers necessary
performance, which static (e.g. environmental conditions or reliability) and dynamic
(sensor readings and associated confidence) information must be available, and how to
validate the sensors for enabling their use as part of a safety-related control system. The
run-time confidence information can be used by the control system, to adapt the oper‐
ation to the current capabilities of the sensors. The draft also gives guidelines on sensor
fusion, and the separation of safety-related and automation-related information, where
the latter is information needed for non-safety critical detection requirements.

2.2 Aerospace

Automation in the aviation world (Aviation Automation Systems (AAS)) plays a pivotal
role nowadays. Its presence on board airplanes is pervasive and highly useful in
improving the pilots’ performance and to enhance safety. When developing safety crit‐
ical system in aerospace, MIL-STD-882 [9] shall be used. This standard uses a prescrip‐
tive process that details the steps that shall be taken. The methods employed in this
standard are qualitative, quantitative, or both. The development process based on MIL-
STD-882 is iterative in nature. The process begins with concept design and derives an
initial set of safety requirements. During design development, if any changes are made,
and the modified design must be reassessed to meet safety objectives. This may create
new design requirements. These in turn may necessitate further design changes. The
safety assessment process ends with verification that the design meets safety require‐
ments and regulatory standards.

In general, AAS is not designed to be responsible completely for safe operation of
the aircraft. This implies that if the AAS fails, the pilot has responsibility e.g. to safely
land the airplane. This is a similar relation as between the human driver and ADAS
functions. The vehicle environment (ADAS and ADS), on other hand, is less cooperative
than the environment in the air; meaning that Air Traffic Control (ATC) plays an impor‐
tant role to maintain safety, e.g. ensure the adequate separation of the airspace. Airplanes
do not need to “stay on the road”; as long as they are at normal flying altitude there are
no obstacles to avoid, no lane to follow, hardly any flying objects to avoid. Since an
airplane operates in three dimensions it is less likely that two randomly flying objects
will collide. A minor collision avoidance effort is required for the airplane, e.g. a simple
radar based avoidance algorithm. The number of scenarios and tactical decisions in AAS
are relatively low and the tactical decisions are the responsibility of pilot and the ATC
in controlled airspace. If something happens, the human pilot usually has in the order
of minutes to react. In a vehicle (ADAS and ADS), the reaction time for the driver is in
the order of seconds. This leads to high requirements on the human driver (ADAS) or
ADS. Further, due to the shorter time-frame any sensing may have lower precision. This
is mainly a challenge for ADS since with ADAS, omission of function is generally not
an issue.
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In contrast to AAS and ADAS (which assume human operator(s) e.g. ATC, pilot or
driver), ADS have low controllability. A challenge in ADS is to automate behavior
planning on a tactical level. This has different challenges related to the complexity of
real world traffic situations. Based on the above, we argue that ADS are more complex
than AAS or ADAS. Table 1 gives an overview of the comparison between AAS, ADAS
and ADS.

Table 1. Comparison between AAS, ADAS and ADS.

AAS ADAS ADS
Environment Cooperative Not

necessarily
cooperative

Not
necessarily
cooperative

Sensing
precision

High Low Low

Controllability
level

High High Low

Scenarios
number

Low High Low

Tactical
decisions
number

Low Low High

Failure
severity

Catastrophic Normal Severe

2.3 ISO 26262 Safety Requirement Refinement

The specification of requirements at different levels (Safety Goals (SG), Functional
Safety Concept (FSC)/Functional Safety Requirements (FSR), Technical Safety
Concept (TSC)/Technical Safety Requirements (TSR)) are described in the ISO 26262
standard. The definitions of SG, FSC and FSR are:

• SG is a top-level safety requirement as a result of a hazard analysis and risk assess‐
ment

• FSR is specification of implementation-independent safety behavior, or implemen‐
tation-independent safety measure, including its safety-related attributes.

• FSC specification of the functional safety requirements, with associated information,
their allocation to architectural elements, and their interaction necessary to achieve
the safety goals

The flow and sequence of the safety requirement development is illustrated in the
Fig. 1 below.
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Fig. 1. Safety requirements, design and test flow. Excerpt from ISO 26262

A critical factor for achieving a safe ADS is a proper division of responsibility
between sensors and sensor fusion blocks. In a sensor fusion system a significant effort
has to be put into evaluating the redundancy needed to take into account in order to get
a balanced and efficient design fulfilling all safety requirements. This is necessary when
for example evaluating operational capabilities (redundancy and degradation concepts).
Effort is put into identifying a methodology bridging the discrete domain of ASIL and
the continuous domain of probabilities.

Different Sensors have different efficiency in interpreting different objects, and are
even further differentiated with environmental conditions (rain, snow, dust). Radar for
instance may show absence of objects (soft tissue) even when there is an object present,
but if it shows presence of an object it is very accurate.

The “distance” between two requirement levels e.g. SG (Safety Goal) and FSRs
(Functional Safety Requirement), or any other adjacent requirements levels, is denoted
the Semantic Gap, see Fig. 2 (left) above. The concept phase of ISO 26262 describes
how SGs are determined from the results of the HA&RA (Hazard Analysis and Risk
Assessment). SGs are refined into FSRs, which implies that the SGs can be interpreted
as top-level safety requirements in a layered requirement hierarchy. An SG is a high-
level description of an objective on vehicle level, and the refinement of the SGs into an
FSC (Functional Safety Concept, i.e. a set of FSRs allocated to architectural elements)
may need a substantial amount of assumptions, domain knowledge and other input. If
no or only weak arguments for the refinement of SGs to FSC exist, then verification to
argue correctness and completeness is at best difficult.

A requirement (the upper level of two adjacent requirement levels) is refined into a
composition of lower level requirements and rationale, known as satisfaction arguments.
The satisfaction arguments shall be collected for the composition, see Fig. 2 (right). This
bridge of information should “fill” the semantic gap. Satisfaction arguments may be e.g.
assumptions, domain knowledge, design patterns. This is essential in almost every
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nontrivial refinement. The rationale justifies the “refinement path taken” through the
semantic gap and improves to traceability. This is further discussed in [10].

Filling the semantic gap is particular challenging with systems that use sensor fusions
due to the incomplete and overlapping redundancy that different sensors may have. To
prove the correctness of the refinement, the satisfaction argument must document the
overlaps and gaps between sensors. To attain this knowledge deep understanding needs
to be collected with e.g. field tests and simulation of sensor properties.

3 Arguing Safety for an ADS

The safety analysis procedure, as defined by the ISO26262, is to define the Item (i.e. the
overall system providing a specific vehicle-level function), carry out a hazard analysis
and risk assessment (HA&RA) of the Item’s potential failure modes, assess the risk, and
define associated safety goals with appropriate ASIL values. A safety goal expresses the
goal of preventing or avoiding a hazardous event, i.e. a combination of a specific failure
mode and a situation in which this failure mode may be hazardous. Each hazardous event
shall be covered by a safety goal. The task of performing hazard analysis for an ADS
and make sure the set of safety goals is complete and correct, taking into account all
driving scenarios the function is designed for, is a big challenge in itself. This is still
subject to research and not addressed in this paper, but initial attempts have been made
[11] and it is reasonable to expect more guidance for this task in the future. In the section
below we assume that safety goals have been identified, discuss what kind of safety
requirements that might be allocated to the sensors, and how to argue that we can get
evidence that all such safety requirements are met at all times under all conditions. As
an example, we present some safety goals that might be hard to show that they are always
fulfilled.

The functional safety concept (FSC), including functional safety requirements
(FSRs), is derived from the safety goals, typically based on function analysis of the Item,
evaluation of suitable architectural design patterns and other system design factors. FSRs
are typically allocated to sensors, control system and actuators. The arguing we propose

Fig. 2. The semantic gap (left) & activities between adjacent requirement levels (right)
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is illustrated by one typical architectural pattern for the functional safety concept, and
it is then further described what is needed from the different blocks of that architecture.
Note that the general argumentation in this paper is not limited to the architectural choice
of the example.

3.1 Some Safety Goals for an ADS

In an ADS-equipped vehicle, the responsibility of driving is moved from the human
driver to an ADS. In order to replace the driver, the ADS must be able to sense the
surroundings (road objects, road conditions, weather conditions), control the vehicle
behavior, assess any risks that lie ahead and make appropriate decisions. It must be at
least equally capable as the human at operating the vehicle without causing any accidents
and, as far as reasonable, mitigate dangerous situations caused by other road users. The
phrase “Avoid collision” in our example safety goals below shall be interpreted with
this definition in mind. Introducing the ADS function, means that we need to analyze
and specify the functional capability maneuvering the vehicle equal to an experienced
driver, taking in to account potential hazards caused by the limitations of the ADS and
its ability in sensing the surroundings. The resulting safety goals needs to be specific
and shall express what shall be avoided, e.g. a condition or functional limit, which could
cause a hazard. For instance, it is difficult to assign a fair ASIL to a very general safety
goal like ‘never collide’. The severity of collisions with different objects and at different
impact speeds varies. Hence, we need to refine the safety goal on avoiding collisions
into a number of specific ones. In this paper, we do not discuss further how to best elicit
a set of safety goals, we merely use a few examples to illustrate the reasoning needed
to show the safety goals we have are fulfilled. Here we chose a set of safety goals, for
the ADS, addressing the importance not to collide with another vehicle in front.

SG I. Avoid collision with a higher impact speed than 65 km/h with a vehicle being
on the road in front, ASIL D

SG II. Avoid collision with a higher impact speed than 40 km/h with a vehicle being
on the road in front, ASIL C

SG III. Avoid collision with a higher impact speed than 25 km/h with a vehicle being
on the road in front, ASIL B

SG IV. Avoid collision with a higher impact speed than 15 km/h with a vehicle being
on the road in front, ASIL A

The difference between the safety goals in this example comes from the severity
factors of the HA&RA. The numbers used are just examples, and could of course be
determined differently. The important thing is that different impact speeds and collisions
with different object types will result in different ASIL values.

3.2 Generic Architectural Pattern for ADS

On a very generic high level we could derive safety requirements on the sensors from
the safety goals based on a conceptual architecture like the one in Fig. 3 below.
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Fig. 3. Conceptual architecture for ADS

When defining the functional safety concept it is critical to show that all safety goals
are completely and correctly refined into functional safety requirements allocated to the
elements of the FSC architecture. This means that the division of responsibility between
the Environment Perception block and the Decision & Control block must support the
fulfilment of all the safety goals.

We assume that the Environment Perception block has a functional requirement:
“The Environment Perception block shall detect vehicles in front of the subject vehicle”.

What is needed as output from the Environment Perception block depends on the
needed input to the Decision & Control block to fulfill its duties. Let us for now assume
that the Decision & Control block would be satisfied if the Environment Perception block
always could fulfill the following functional safety requirements, still just addressing the
four safety goals in the example above:

FSR I. No omission of detected vehicles in front up to a distance of 30 m, ASIL D
FSR II. No omission of detected vehicles in front up to a distance of 40 m, ASIL C
FSR III. No omission of detected vehicles in front up to a distance of 50 m, ASIL B
FSR IV. No omission of detected vehicles in front up to a distance of 60 m, ASIL A

Note that these functional safety requirements might be needed to show that the
safety goals are completely and correctly refined. They are requirements that need to be
fulfilled regardless of what set of sensors that are chosen in the detailed implementation.
In further refinement into a technical safety concept, it is important to show that these
FSR always are fulfilled. As discussed above in the paragraph on ISO26262 refinement,
each refinement step needs a convincing argumentation.

Assuming that the above set of functional safety requirements are identified as appli‐
cable for the aggregated and fused sensor information employed in the realization of the
Environment Perception block above, we need to argue that the chosen sensors made
explicit on lower levels, can provide evidence to always and under all applicable condi‐
tions fulfill these functional safety requirements. If we choose a set of sensors for which
we cannot show compliance with all these FSRs, we will not be able to fulfill the
refinement verification step. And we could hence regard such a design candidate as
introducing a design fault: the E/E functionality will not fulfill all safety goals. This is
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not due to the presence of random hardware faults, but rather due to systematic faults
in the system design process.

A way to describe the challenge of showing that the sensors of an ADS have been
tested enough to show capabilities of all applicable scenarios according to its operational
design domain, ODD, [3] is to say that we need to address all system design failures for
the sensor blocks. Of course, we still have to show that the contributions from random
hardware faults and from systematic hardware and software faults are restricted
according to the ASIL levels, but we also need to obtain sufficient confidence that
systematic system design faults are avoided. This is nothing new for sensors. It is the
same problem whenever we choose to implement a given architectural element with a
specific component. If we for example chose a CPU with insufficient processing power
for the tasks allocated to it, this is to be regarded as a systematic system design fault.

To summarize the big challenge for sensor systems for ADS, it is to show sufficient
confidence in the avoidance of systematic design faults, such as selecting sensors that
do not meet the required capabilities according to the ODD, and hence violate the func‐
tional safety requirements. In order to argue for such freedom of systematic design faults,
we need evidence covering all ODD applicable scenarios and environmental situations.
To collect such a large set of evidence is very hard, and it is also very hard to argue that
the set of performed test cases etc, is complete with respect to this purpose.

3.3 Decision Hierarchy

One task that is characteristic for an ADS equipped vehicle is the need to perform tactical
decisions, which in this example, is part of the Decision & Control block (Fig. 3).
Examples of those are what target speed to aim for, what distance to aim for to the
vehicles in front, what lane to choose, whether to perform an overtake, etc. Such tasks
are generally left to the driver for manually driven vehicles, even when having ADAS
functionality. ADAS is in general focusing on operational decisions. For an adaptive
cruise control (ACC) it might be expected from the driver to choose a target speed and
some preferred distance to vehicle in front. Then the ACC in the operational decisions
determines what vehicle speed this implies in the actual situation, taking care of how
fast the vehicles in front are driving etc.

Returning to the example safety goals above, they can be more easily shown to be
fulfilled if we introduce requirements on the tactical decisions. Let us for example
assume four FSRs to be allocated to the Decision & Control block:

FSR V. Vehicle speed request shall be limited to a vehicle speed implying a maximal
impact speed of 65 km/h in any vehicle objects on road, ASIL D

FSR VI. Vehicle speed request shall be limited to a vehicle speed implying a maximal
impact speed of 40 km/h in any vehicle objects on road, ASIL C

FSR VII. Vehicle speed request shall be limited to a vehicle speed implying a maximal
impact speed of 25 km/h in any vehicle objects on road, ASIL B

FSR VIII. Vehicle speed request shall be limited to a vehicle speed implying a maximal
impact speed of 15 km/h in any vehicle objects on road, ASIL A
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This is functional safety requirement expression based on the four safety goals. But
we also say that we can give the full responsibility to the tactical decision to what is
considered safe in the current situation. Instead of giving an absolute static task to the
Environment Perception block, we now say that if the Environment Perception block
reports what it can promise, we can then compensate for this by means of the tactical
decisions.

Assume the Decision & Control block has a functional requirement: “The Decision
& Control block shall output world coordinates identifying where there is a higher/lower
risk of a hazard”.

Given that we have the above FSRs on the Decision & Control block, we can revise the
FSRs for the Environment Perception block to:

FSR I. No omission of detected vehicles in front inside the stated coordinates, ASIL D
FSR II. No omission of detected vehicles in front inside the stated coordinates, ASIL C
FSR III. No omission of detected vehicles in front inside the stated coordinates, ASIL B
FSR IV. No omission of detected vehicles in front inside the stated coordinates, ASIL A

At a first glance this might look like redundant requirements, but this is not the case.
What it says is that the Environment Perception block needs to state inside what boun‐
daries that each of the ASIL attributes apply. Instead of giving static horizon distance
requirements as in the example above (30 m ASILD, 40 m ASILC, 50 m ASILB, 60 m
ASILA), we ask the block to dynamically determine the borders for each ASIL with
respect to systematic design fault.

On the one hand we give a possibility for the sensor system to cut the assumed very
high extra cost for the probability tail for higher ASIL, but on the other hand we ask it
to determine itself what the ASIL capability is. What we say is that we can handle
temporary reductions of sensor capabilities as long as the system is continuously aware
of the current sensor capability. If we can determine the capability limit in run time, we
can by the tactical decision assure to avoid systematic design faults.

3.4 Dynamic ASIL Capability Maps

Above we list four different FSRs to be allocated to an Environment Perception block
all formulated as: ‘No omission of detected vehicles in front of ego vehicle inside the
stated coordinates’ with different ASIL values. This implies that for each of these
requirements the EP block is expected to provide a map of the boundaries that apply for
the respective ASIL value. Collecting such map data into one map showing information
of the integrity of claiming absence of a certain object type can look like what is depicted
in Fig. 4 below. The white area in this map, closest to the vehicle, is where the perception
block can provide the highest confidence (ASILD) that there is no object of the specified
kind. The black area in the map, most far away from the vehicle, shows that this is beyond
the high-integrity sensing horizon. There might be object here; at least there is no possi‐
bility for the Environment Perception block to claim the absence of the actual object.
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Fig. 4. Example map w.r.t. claiming absence of object of type vehicle. The ego vehicle is in the
bottom of this figure

For each type of object this kind of dynamic ASIL capability map is provided by the
Environment Perception block. Furthermore there is also one such map telling the ASIL
level of claiming the presence of each object kind.

By defining statically in design time exactly what object types to consider, the task
for the Environment Perception block is to provide all the dynamic ASIL capability
maps for claiming the absence and presence respectively of each object type. Then the
Decision & Control block, by means of tactical decision, can make sure that no system‐
atic design fault w.r.t. sensor capability will violate any safety requirement.

It is beyond the scope of this article to show in detail how an Environment Perception
block in run-time can produce such maps showing the ASIL-limits of absence of each
object category. The message from this paper is that by formulating the safety require‐
ments for an Environment Perception block in this way, it is possible to argue safety by
asking the tactical decisions to find a safe alternative for any set of maps. A detailed
strategy how to construct these maps is subject to current research. However, basic
means will be design-time information from each sensor based on extensive test under
various conditions, geographical data and sensing of environmental conditions showing
what conditions that the sensors are (not) facing, and run-time analysis of how the
different (redundant) sensors in the Environment Perception block are more or less
consistent in their observations.

4 Conclusions

This paper outlines a strategy that enables and supports the argumentation in a safety
case that the ADS is sufficiently safe, despite the difficulty to show sufficiently safe
environmental sensing capability. A key factor in such a safety case is to argue that at
all instances the vehicle will balance the sensing capability with the tactical decisions.
The higher sensor capability, the higher performance (e.g. vehicle speed on the road)
can be shown safe.

We argue that the ADS may need different sensor capabilities depending on the
driving conditions and the chosen style of driving. If the sensors in order to enable safety
for the vehicle are required to have a capability higher than they actually have, we denote
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this systematic design fault. This means that when performing a refinement of safety
requirements, we have not allocated such safety requirements on all blocks (for example
a sensor block), that can be shown to be fulfilled at all conditions.

Instead of allocating a static set of safety requirements on the sensors w.r.t. system‐
atic design faults, we propose to formulate the safety requirements in terms of dynamic
ASIL capability maps. This means that for each type of object, the sensing systems are
required to provide a map showing the limit for each ASIL confidence level. If such
maps can be provided to the block in charge of tactical decisions, the overall ADS
including both sensors and tactical decisions can be argued to behave safely at all times.
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Abstract. We develop a notion of safety architecture, based on an
extension to bow tie diagrams, to characterize the overall scope of the
mitigation measures undertaken to provide safety assurance in the con-
text of unmanned aircraft systems. We use a formal semantics as a
basis for implementation in our assurance case tool, AdvoCATE. We also
describe the functionality that a safety architecture affords to support
both the related safety analysis and subsequent development activities.
We motivate the need for a safety architecture through an example based
upon a real safety case, whilst also illustrating its application and utility.
Additionally, we discuss its role, when combined with structured argu-
ments, in providing a more comprehensive basis for the associated safety
case.

Keywords: Argument structures · Bow tie models · Safety architec-
ture · Safety case · Safety system · Unmanned aircraft systems

1 Introduction

Layered or barrier models of safety, as embodied by bow tie diagram (BTD),
have been used in civil aviation for operational safety risk management [1,2]. The
emphasis in this approach is, largely, on maintaining an established safety base-
line during operations, and integrating the safety management system (SMS) [3].
BTDs are now also being adopted in the context of regulatory acceptance and
operational approval of unmanned aircraft systems (UAS)—our main applica-
tion domain for this paper—being recommended as the basis for the associated
safety case [4,5].

We have also recently used them in our process for creating real UAS safety
cases [6], as part of NASA’s UAS traffic management (UTM) effort [7]. Based on
that experience, our observation is that the operational focus of BTDs, whilst
essential, is insufficient to fully address the different facets of the safety case
that must be provided: for example, the assurance concerns pertaining to the
changes that may be needed, such as introducing a new technical system that
implements a pre-existing safety function, or a new safety function altogether. In
this paper, our goal is to provide a more comprehensive basis for a UAS safety
case. Our approach is, broadly, to integrate BTDs into our process for safety
case/argument development [8].
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We have previously explored combining safety assurance arguments with
BTDs as a common framework that supports both operational safety assur-
ance [9], as well as pre-operational assurance concerns, such as type design com-
pliance and airworthiness [10]. In the current paper, we build upon our earlier
work, although our focus is on extending BTDs in the following ways:

(a) identified hazards can be associated with one or more BTDs, each of
which can themselves share different admissible BTD elements (described
in Sect. 2). To our knowledge, traditionally there is no representation or
means for viewing the full scope of safety concerns. We define a notion of
safety architecture (SA) to capture this “big picture” of the scope of safety
(described in more detail in Sect. 4).

(b) there is a notion of chaining BTDs1 that is loosely related to the above idea of
SA. However, so far as we are aware, there is a lack of compatibility rules. As
we will see subsequently (Sect. 3.3), arbitrarily combining certain legitimate
BTDs can produce some structures that we may want to reconcile or rule
out. Hence, we define structural properties to maintain internal consistency
across the whole assemblage of BTDs.

(c) we introduce a new notion of bow tie views to support specific activities
of the safety analysis, assurance, and the subsequent development processes,
e.g., risk assessment, specifying barrier functionality, etc. The idea is, in part,
to enable BTD use during the pre-operational stages of safety assurance, as
well as to facilitate reuse.

(d) there is a lack of support for integrating BTDs and assurance arguments
within a common safety case.2 We formalize BTDs and the safety archi-
tecture as first-class notions within our toolset, AdvoCATE [12], so as to
associate assurance arguments and various elements of the safety architec-
ture.

To the best of our knowledge, none of the commercial BTD tools currently
available offer a capability to create SAs, BTD views, or to check their properties.

2 Methodology

Safety risk assessment with the aim of developing a UAS safety case starts with
the concept of operations (CONOPS), which describes the intended mission, and
the system usage, boundaries, and characteristics. Per NASA program safety
requirements [13], we undertake a scenario-based hazard identification to create
hazard risk statements (HRS). That is, we elaborate the activities, conditions, or
entities that pose a potential for harm, specifying the relevant operational con-
text and system state. Then we identify the potential worst-case consequences,
after which we undertake a hazard analysis. Traditionally, this is documented
1 For example, see http://www.cgerisk.com/knowledge-base/risk-assessment/

chaining-bowties/.
2 We are aware of only one other tool that supports both BTDs and argument struc-

tures [11].

http://www.cgerisk.com/knowledge-base/risk-assessment/chaining-bowties/
http://www.cgerisk.com/knowledge-base/risk-assessment/chaining-bowties/
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Fig. 1. Simple BTD structure and elements, as implemented in AdvoCATE.

in the form of hazard tables, augmented here with BTDs that we incrementally
develop, in parallel with the hazard analysis.

Each HRS can be mapped to the hazard, and the so-called top event and
consequence elements of a BTD (Fig. 1). From a bow tie perspective, note that
hazards capture operational contexts, whereas top events reflect loss of control
system states that, if unmitigated, lead to harm. This is compatible with, but
subtly different from, hazards as traditionally specified. The events/situations
that precede the scenario described by the HRS, traditionally considered as
hazard causes, correspond to the threats leading to a top event in a BTD (Fig. 1).

In general, a top event can have a plurality of threats and consequences,
although Fig. 1 only illustrates a single threat and consequence for the top event.
Intuitively, multiple threats and consequences connected to a single central top
event can be seen to resemble a bow tie, giving the structure its name. Also note
that a BTD can be viewed as a combination of a fault tree (FT) and an event
tree (ET). For example, in one representation, (a) the left half of a BTD is the
FT (rotated right), so that the top event of the BTD is also the top event of the
FT, and (b) the right half of the BTD is the ET so that the top event of the
BTD is the initiating event of the ET. Other mappings are also feasible [14].

During hazard analysis, we identify pre-existing risk mitigation measures,
after which we undertake a risk analysis and assessment towards developing
new mitigations. This process iterates until the risk assessment indicates that
an acceptable level of safety risk—established on the basis of NASA standards
or guidelines, or as per the applicable Federal Aviation Regulations (FARs)—
will be attained. The collection of mitigation measures, in turn, represent the
prevention and/or recovery barriers in a BTD (Fig. 1), which will effect risk
reduction upon proper implementation. Depending on the level of detail to which
we develop the mitigations, we can refine the barriers on a specific path into their
constituent controls.3 Further, we can include the escalation factors (EFs) which
3 The term barrier is often used interchangeably with control in bow tie literature,

although we will distinguish them here.
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are, effectively, a second level of threats that can compromise barriers. In turn,
EFs can be managed by deploying escalation factor barriers (EFBs) that are,
themselves, identified during a (preliminary or functional) hazard analysis, or
through lower-level safety activities.

One of the key outcomes from this process are related BTDs corresponding to
the different HRS. Collectively, they give the scope of UAS mission safety, whilst
specifying the measures for safety risk mitigation and management. We can see
this as a coherent and high-level picture of the overall safety architecture, which
elaborates how safety is designed in, and maintained during operations. As we
will describe subsequently, this provides a convenient basis for risk assessment,
also serving as the interface to address specific assurance concerns. Indeed, the
safety architecture together with assurance arguments comprise two key compo-
nents of a UAS safety case. Although the focus of this paper is on the former,
in brief, we apply our methodology for assurance argument development [8] to
produce the latter at the level of individual BTDs, as well as for specific bow tie
elements, e.g., barriers.

3 Illustrative Example

3.1 Preliminary BTD

In a safety case that we recently developed [6], the CONOPS involves beyond
visual line of sight (BVLOS) operations with multiple small UAS, within a
defined operating range (OR). The OR is a volume of airspace that includes
sparsely populated and minimally built-up areas on the surface, as well as con-
ventionally piloted air traffic (i.e., aircraft with onboard human pilots) within
the surrounding airspace. We undertake a hazard analysis on this CONOPS
creating BTDs in parallel.

Figure 2 (made using our tool AdvoCATE) shows a fragment of the prelimi-
nary BTD for an identified hazard: airborne unmanned aircraft (UAs) operating
BVLOS within the OR. An associated top event is airborne conflict from a loss of
separation. There are other top events (not shown here), such as deterioration of
separation from the terrain. A credible worst-case consequence for the identified
hazard is a midair collision (MAC) between a UA and a non-cooperative manned
aircraft. One of the main causes leading to the top event is an airborne intru-
sion into the OR, which we have shown in Fig. 2 as the threat ‘non-cooperative
aircraft intrudes into the OR when UAs are airborne’.

Through the hazard analysis, we identify pre-existing mitigations deployed
in the current airspace system that we can use to reduce risk, e.g., pilot actions,
such as see-and-avoid (as shown in Fig. 2 to the immediate right of the top event).
We also develop new mitigation measures, e.g., invoking a flight abort capability
that grounds a UA, thereby precluding a near midair collision (NMAC) (shown
to the immediate left of the top event in Fig. 2). Figure 2 also shows some of the
identified EFs and corresponding EFBs for the identified barriers. For instance,
loss of voice communication capability is an EF which, if unchecked, will preclude
communication during emergencies, either with air traffic control (ATC), or with
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Fig. 2. Fragment of a preliminary BTD for the running example, showing the top event
(airborne conflict/near midair collision), an identified threat (intrusion into the OR),
and a worst-case consequence (midair collision), together with specific risk mitigation
controls, EFs, and EFBs. The specific barriers to which the controls belong have also
been given.

other pilots operating in the vicinity. EFBs that contribute to minimizing the
associated risk include redundancy in the aviation radios used, and spectrum
management to address potential radio frequency (RF) interference.

In general, the BTDs so created can be interpreted as follows: barri-
ers/controls to the left of the top event represent preventative mitigation mea-
sures, while those to the right of the top event are recovery measures to prevent
the consequence from occurring.

Also, the visual ordering of barriers/controls corresponds loosely to the tem-
poral order in which they may be invoked, so that they prevent the events pre-
ceding them. Thus, events given after a barrier indicate event occurrence after a
barrier has been breached. However, the diagrams (intentionally) abstract from
the exact ordering and organization of barriers. Indeed, barriers/controls may
operate sequentially, in parallel, in a continuous, or a demand mode, etc.

We assume that threats are independently occurring events, i.e., there is
a likelihood of simultaneous occurrence and, therefore, they are not disjoint.
Consequences can be disjoint events. With this interpretation, threats, top events
and consequences can be ascribed an initial and a residual risk level, computed
as a combination of their (initial/residual) likelihoods of occurrence and severity.
Barriers and controls are each ascribed a measure of integrity, that corresponds
to the likelihood that barriers are breached in a dangerous manner. We use these
parameters in safety risk assessment.
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3.2 Safety Architecture

We can now expand the scope of the preliminary BTD (a) to discover opportu-
nities to proactively manage hazards by considering precursors to the identified
threats, or (b) when the controls used may not suffice in terms of their effective-
ness.

For example, we can assess the identified threat of Fig. 2 further, by consid-
ering it as a top event in a different BTD. Within AdvoCATE, this would create
a new, partially developed BTD, where the (erstwhile) threat is now designated
as a top event, the top event of Fig. 2 is its consequence, and all the barriers
in between the two are retained. Then, we repeat hazard analysis to identify
additional threats, mitigating barriers, EFs, and EFBs as appropriate.

Thus, applying our methodology, we incrementally develop BTDs for the dif-
ferent top events for each identified hazard, giving the details of the relevant
operational risk scenarios for the CONOPS, and the applicable safety mitiga-
tions. The resulting collection of BTDs comprises the SA for the system, and
the overall structure can be seen to characterize the total scope of safety. There
is a subtle difference, however, since the SA makes no distinction between top,
threat, and consequence events. They are simply events. It is only when we focus
on an individual event as the top event of a bow tie that the distinction arises
in the resulting BTD.

In our implementation, AdvoCATE automatically assembles the SA in the
background as the BTDs are being created. If required, however, the SA can
be directly edited and AdvoCATE maintains consistency with the constituent
BTDs. Figure 3 shows a fragment of a (partially developed) SA for our running
example. Intuitively, this structure can be considered as a composition of related
BTDs [9]. As such, we do not distinguish top events from threats or consequences,
simply considering event chains and the measures that stop the temporal pro-
gression of the associated events. The shaded box to the bottom right shows the
part of the SA that corresponds to the BTD fragment shown in Fig. 2; the paths

Fig. 3. Fragment of a partially developed safety architecture (SA) (shown zoomed out).
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to its left are the events (threats) and controls resulting from further developing
the threat identified in Fig. 2, as described earlier in this section.

3.3 Views

When deploying a system that is to be integrated with or without changes to an
existing, wider system in which it will be situated, implicit or explicit choices may
be required—even during the early stages of development—that affect the SA
and, in turn, system safety, e.g., choosing a specific type or number of surveillance
sensors, or using specific equipment onboard the airborne system, etc.

The provision of different views of the overall SA can well support the asso-
ciated trade-offs as well as other insights that can be used to refine the SA.
Moreover, together with risk assessment, views can aid in providing early assur-
ance that the required safety targets can be met. In turn, that can be used to
drive subsequent development stages, e.g., by developing a high-level require-
ments specification for particular barrier functions. Next, we describe some of
the views that we have found useful.

Fig. 4. Barrier-centric view for the running example.

The barrier-centric view of the SA shows a BTD with only the barriers
shown, abstracting away the details of the specific constituent controls. Figure 4
is an example, which includes and expands on the BTD of Fig. 2 (not considering
the EF or EFBs). Specifically, it shows two additional threats, one of which is
obtained by further developing the BTD of Fig. 2 as described earlier (Sect. 3.2).

Although this view abstracts from the details of the controls being used it
is useful in a number of ways: (1) it gives a simple basis for a rapid, albeit
qualitative, risk assessment; (2) it is a higher-level of abstraction at which to
apportion risk across the various barriers, given a safety target—specified by a
regulator, or determined using a guideline such as [5]—and assigned either to
the top event or the consequence. That, in turn, provides a reliability (or safety
integrity) requirement for barrier design; and (3) it can be seen as a graphical
representation of the traceability from a specific hazard and top event to the
barriers used to mitigate their risk.

Another useful collection of views are slices relative to the different bow tie
elements. For example, a slice focusing on a specific (prevention) barrier gathers
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Fig. 5. Slice view of the ground-based surveillance barrier.

all the constituent controls, the threats (or top events) being mitigated and the
top events (or consequences) that may result if the barrier is breached.

Figure 5 shows an example of such a slice across the SA of Fig. 3, focusing
on the ground-based surveillance barrier. From the perspective of developing
and implementing a barrier function, this slice view can be thought of as a
system level specification of the required barrier functionality. Moreover, this
view presents all the safety concerns being addressed for a specific barrier, and
can be useful in communicating to the regulator what a new component of the
overall safety system—in this case, ground-based surveillance—is intending to
address. Here, note that since the SA of Fig. 3 is partially developed, the barrier
slice only shows those controls that have, thus far, been mapped to the barrier,
along with the appropriate events being managed. As the SA is developed to
completion, AdvoCATE automatically updates the view.

Similarly, a slice focusing on a specific threat can present all the resulting
top events and their related barriers. Effectively, that slice is the event chain
beginning from a single threat event, across the entire system. Such a view could
be useful to focus safety discussions on specific high priority threats presenting all
the safety assets available, and how they are organized to manage those threats.
A related slice focusing on a consequence shows all the top events leading to a
particular consequence/chain of consequences, the associated recovery barriers,
and their organization. Thus, we can define other such slices that focus on the
different elements (or combination of elements) of the SA, including EFs and
EFBs.
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3.4 Properties

Whilst creating the SA, it can be useful to highlight potential inconsistencies,
and to check that certain4 well-formedness properties are maintained.

For instance, in incrementally building up the SA, there can be legitimate
paths that bypass or short circuit controls/barriers [15]. That is, when some con-
trols/barriers on a path are breached, (different) controls (of either the same or
different barriers) subsequently used on that path are ineffective. Such structures
can result when the composition attempts to reconcile different paths between
the same pair of bow tie elements, such that there is at least one path with
no other elements between the pair. In the general case, either an intervening
independent control/barrier is required on the (short circuiting as well as the
short circuited) paths to correct the violation, or there are missing threats in at
least one of the BTDs comprising the SA.

Likewise, if there are two paths t—b—c1 and t—b—c2, in different BTDs,
where t is a threat (or top event), b represents a collection of barriers (or controls)
and c1, c2 are different intermediate/top events (or consequences), then there is
a potential inconsistency in the overall safety architecture, if there are different
outcomes for a common threat t and identical breaches of b. Such a situation
may arise if there are missing barriers (or events) on the two paths. In some
circumstances, though, we may want to allow both structures: e.g., when c1 and
c2 are, in fact, on the same causal chain but the respective BTDs are being
applied at different levels of abstraction.

Additional properties that can be checked include structural constraints such
as the conditions under which controls can be repeated (e.g., same path, different
threats, for a threat and an EF, etc.). In the implementation in our assurance
case tool, AdvoCATE, note that we enforce some properties by construction, e.g.,
loop-freedom and consistency of event ordering, whereas others are permitted
with warnings.

4 Formalization

Section 3 gave a worked example illustrating some of the functionality that Advo-
CATE supports for BTDs and SAs. We now give the formalization underlying
our implementation. First, we note that the structures we want to define are
parametrized over underlying sets of events, controls, and barriers.

Definition 1 (Safety Signature). A safety signature, Σ, is a tuple 〈E,C,B,
bar〉, where E, C, and B are disjoint sets of events, controls, and barriers,
respectively, and bar : C → B associates each control with a unique barrier.

We will henceforth assume the existence of a common safety signature for all
definitions. Before defining BTDs formally, we introduce the notion of controlled
event structure (CES), representing the totality of all events associated with a
4 E.g., Properties whose violations could translate into weaknesses in the risk analysis

and, as a consequence, in the implemented safety system.
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hazard and their associated barriers and controls. In a sense to be made precise
later, a collection of inter-related BTDs specifies this structure. In fact, Fig. 3
shows a CES for one hazard.

Definition 2 (Controlled Event Structure). A controlled event structure
(CES) is a tuple 〈N,→, l, esc〉whereN is a set of nodes disjoint from the underlying
safety signature, 〈N,→〉 is a DAG representing temporal ordering of events, lx,
x ∈ {t, d, c} is a family of labeling functions such that ld : E ∪ B ∪ C → string
gives descriptions and lt : N → E ∪ B gives node types. Writing Ne for {n ∈
N | lt(n) ∈ E} and similarly for Nb, we specify lc : Nb → P(C) such that if
c ∈ lc(nb) then bar(c) = lt(nb), and esc : Nb → P(Ne) such that if ne ∈ esc(nb)
then ne →∗ nb.

Let CES (Σ) denote the collection of CESs over signature Σ. Nodes of a CES
represent specific events or barriers (and their associated controls) in the safety
system. The same barriers can occur in multiple locations, though each may
have different controls (and, as we will see later, can have different integrities).
We refer to each such location as a barrier instance and likewise for controls.

In contrast to BTDs, which are intended to represent (eventually) well-
designed safety systems, a CES models a more general underlying set of events,
with a partially developed safety system, possibly without controls yet in place.
To facilitate more detailed modeling of a partially developed safety system, we
also allow multiple intermediate events between controls, allow events to have
multiple successors (i.e., consequences) and predecessors (i.e., causes), so that
paths can split and rejoin, and allow empty barriers (for when a particular bar-
rier function is known to be required, before we have chosen or developed its
constituent controls).

The interpretation of an escalation branch is that the barriers on the path
between the escalation e and barrier b represent escalation factor barriers. Note
that the definition allows n-ary escalations, that is, escalations of escalation
factor barriers, and so on, though in practice a single level of escalation is typical.

Next, we assign integrity and initial likelihood values to the elements of a
CES.

Definition 3 (Initial Risk Assignment). An initial risk assignment for a
CES consists of mappings intb : Nb → num and intc : Nb × C → num, giving
integrities of barrier and control instances, respectively, and lik : Ne → num
giving the initial likelihood of event instances.

We allow separate instances of controls and barriers to have distinct integri-
ties because it is feasible for controls and barriers to have different effectiveness
against different threats. Moreover, separate barrier instances can be imple-
mented with different controls. In general, we do not require any consistency
between risk assignments for different hazards, since the context is different.

Initial likelihood need only be specified for global threats, that is, those
that do not have any preceding events. We derive the residual likelihood for
all other events (working rightwards). We also assign severity to global conse-
quences (i.e., those that are rightmost), and derive severity on all other events
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(working leftwards—the simplest approach is to set the severity of an event to
be the maximum severity of its immediate successors). The integrity of a barrier
is, in principle, derived from its constituent controls. This should be computed
via a risk model, such as fault trees, possibly implemented via an external tool.
Currently, in our tool, we simply provide the integrities of barriers directly and
will not consider this further here.

We can now define a safety architecture (SA) as a set of mutually consistent
CESs.

Definition 4 (Safety Architecture). Given safety signature, Σ, a safety
architecture, 〈H, lh, ces〉 consists of a set of hazards, H, hazard descriptions,
lh : H → string, and a mapping ces : H → CES (Σ), which for each hazard, h,
returns a controlled event structure such that the CESs are mutually temporally
consistent, i.e., for hazards h1, h2 ∈ H, if e →∗

1 e′ then e′ �→∗
2 e.

Though we require mutual consistency for event ordering (in effect, that the
combined relation on events is a DAG), we do not require similar consistency
for controls between different CES since they represent different contexts in
which controls can be used in different ways. This definition of SA is slightly
more permissive than an earlier one given in [9], but is more convenient for
implementation and, as we will show below, is essentially equivalent. We now
define a BTD as a specific sub-structure of a CES.

Definition 5 (Bow Tie Diagram). A bow tie diagram, B, is a CES such
that: (1) there is a designated event, tp, called the top event; (2) there exists
at least one threat, i.e., an event, t such that t →∗ tp, and one consequence,
tp →∗ c; and (3) for all events e in B, e →∗ tp or tp →∗ e, (i.e., all threats lead
to a top event, all consequences follow from top events, and all escalations lead
to a control that leads to the top event).

In contrast to the classical notion of BTD, here we permit arbitrary breadth
BTDs with intermediate events and arbitrary depth escalations. Moreover, since
we allow arbitrary event chains, paths can split and rejoin. A “good” BTD,
however, will satisfy additional properties. For example, it is free of short circuits
(Sect. 3.4) if e → c → e′ → c′ implies e �→ c′. A stronger property that may be
enforced is that no barrier can have multiple outputs. We say that a BTD is
maximal relative to a safety architecture if it includes all events before or after
its top event, and well-controlled if it has controls between all events. Similar
structural conditions that can be indicative of poor design can also be checked.

Next, we show that a CES can be factorized into a set of mutually consistent
BTDs which, in combination, give the original CES. To simplify matters, we only
consider BTDs relative to a common parent structure, so they can be combined
simply by merging. We also assume the existence of initial risk assignments. For
shared threats, we must assume that the initial likelihood is the same. Likewise,
for severity levels of shared consequences. We need to take care with residual
likelihoods since they can differ depending on whether they are computed over
paths in a single BTD or the overall CES. However, since those values are derived,
we can ignore them when considering the factorization and combination of BTDs.
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Theorem 1 (Bow Tie Factorization). A CES is equivalent to a set of mutu-
ally consistent BTDs for distinct top events.

Proof. Define an ordering on events: e1 ≤ e2 ⇐⇒ ∀e . e1 ↔∗ e ⇒ e2 ↔∗ e,
where ↔∗ means comparable (either →∗ or ←∗). Intuitively, e2 subsumes the
set of potential threats and consequences of e1. It can be seen that ≤ is a partial
order, so we can talk of maximal elements. Say that maximal events in ≤ are
central. Define a relation, R, on central events, by saying that t1 and t2 are
co-central if they are = relative to ≤. Equivalently, t1 R t2 ⇐⇒ t1 ↔∗ t2 and
for all events, e, that are not between t1 and t2, if e →∗ t1 then e →∗ t2 and if
t1 →∗ e then t2 →∗ e. Since R is an equivalence relation on central events (and
a partial equivalence on all events), we can create the partition of central events
in the CES by R. Next, choose one member of each partition, and generate the
maximal BTD from it. This gives us a set of BTDs. They cover the CES, and
can overlap, but are disjoint for central events (and top events, in particular).
Since they are sub-dags of the CES they are mutually consistent. ��

Thus, a safety architecture can be thought of, equivalently, as a collection of
(mutually consistent) BTDs for each hazard.

5 Supporting the Safety Case

Recalling the CONOPS for our running example (Sect. 2), the safety case is con-
cerned with providing assurance that flight operations can be safely conducted,
i.e., that a level of safety can be met that is equivalent to the prevailing safety
target with respect to MACs, and that an acceptable level of risk is posed to
the population on the ground. Additionally the safety case is required to show
that a ground-based detect and avoid capability—comprising radar, transpon-
ders, surveillance displays, along with a suite of avoidance maneuvers, and crew
functions—can be safely used in lieu of visual observers, the prevailing means of
compliance with certain FARs.

Next, we describe the role played by the combination of the SA and argu-
mentation in providing a more comprehensive basis for the safety case. We also
discuss the utility of using an SA and its views, and the tool support we have
leveraged.

5.1 Assurance of Risk Reduction

We establish that the SA achieves an acceptable residual risk level for the con-
sequence(s), using (1) barrier integrity, given as nearest order of magnitude
estimates based upon data where available and/or conservative assumptions as
appropriate; (2) the (initial) likelihood of occurrence of the threats; (3) the (ini-
tial) severity of the worst-case consequence; and (4) a risk model, based on the
barrier-centric view, that combines the above.

Unless using barriers whose specific function is to substantially reduce conse-
quence severity (e.g., frangible airframes), the residual severity for the worst-case
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consequence is the same as its initial severity. Thus, to assess the magnitude of
risk reduction we compute the (residual) likelihood of the consequence(s). We
omit the details of the mathematical specification used to implement this capa-
bility in AdvoCATE. In brief, however, first we compute top event occurrence
likelihood from the initial likelihoods of occurrence of the identified threats,
and barrier integrities. Then we compute the likelihood that the consequence
in question occurs given the occurrence of the specific top event shown in the
view. In either case, the probability of an event (excepting those without any
preceding events) is the probability of the disjunction over all paths leading to
that event, which we compute using the inclusion-exclusion principle. That, in
turn, relies on the computation of path probabilities, which is determined for
a path as the joint probability that all the events on that path (including bar-
rier breach events) occur. Here, a key assumption is that barrier breaches occur
independently.

The safety target against which we compare the residual likelihood is based
upon a qualitative risk acceptance matrix [16], i.e., a risk classification. For
example, for a midair collision (MAC) consequence (which has a catastrophic
severity), the safety target is set as at least extremely improbable. For other con-
sequences that have different severities, the risk classification, likewise, provides
the corresponding safety targets.

5.2 Relationship to Structured Arguments

Whilst safety assurance using risk assessment based on views of the SA can be
very useful, it trades off accuracy for simplicity, at the cost of greater uncertainty
in the estimate. Although we can usefully improve model accuracy—e.g., consid-
ering the specific controls, EFs, EFBs, and by using formalisms such as Bayesian
networks, or dynamic event/fault trees [14]—that, itself, can present substan-
tial challenges in quantification and validation [17]. An acceptable compromise
is to combine the SA with structured assurance arguments that substantiate
specific safety-related assertions, to (qualitatively) offset risk assessment uncer-
tainty. Moreover, argument structures are well suited to supply the rationale
why the safety objectives and requirements for changes to a safety baseline—
e.g., as derived through a top-down, risk-based approach using BTDs [3]—have
been met.

In general, we can associate a number of assurance arguments, each address-
ing a specific assurance concern, either with a specific BTD (or a view), multiple
elements of a BTD, or multiple BTDs. For instance, we can augment the risk
assessment based on the barrier-centric view, as described earlier, with an argu-
ment that (1) not only marshals detailed rationale and evidence substantiating
how the barriers (especially those whose integrities are unknown or difficult to
quantify) contribute to risk reduction, but also (2) include a rigorous justifica-
tion of related assurance concerns such as barrier (failure) independence, suffi-
ciency of the identified threats and event chains, mitigation of common-cause
failure modes, etc. Similarly, we can associate arguments with specific barri-
ers [6] (and/or their constituent controls), whose top-level claims address the
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appropriate barrier-specific assurance concerns, e.g., provision of the required
safety functions, fitness for purpose, achievement of a specific level of safety
integrity, etc. At a mission level, assurance arguments straddle the collection of
BTDs, justifying why the overall SA enables safety in operation.

5.3 Utility and Tool Support

The SA provides an integrated and consistent view on the full scope of the
applicable safety concerns. The barrier-centric view (Sect. 3.3) supplies the core
rationale for how the SA reduces risk: defense-in-depth through independent,
loosely-coupled, layers (barriers) of protection. This view also gives a basis for a
risk assessment, towards providing assurance of safety during operations. These
facets constitute the core value addition provided by the extensions described in
this paper, over other approaches.

Additionally, combining assurance arguments and a SA affords a common
framework to provide (i) the pre-operational assurance required for regulatory
acceptance of both potential changes to an existing safety system, and the intro-
duction of new safety functions; as well as (ii) operational safety assurance.

In practice, the tool support that is currently commercially available for
creating barrier models5 largely permits creating only a disconnected collection
of BTDs. To the best of our knowledge, they neither support the creation of
an SA as we have described it, nor do they provide view-based abstraction.
In other words, none of the commercial tools provide the extensions we have
developed in this paper. Consequently, there is a need for implementing the
associated functionality for it to be useful in practice. The formalization we
have described in Sect. 4 underpins the implementation of BTDs, SAs, views,
and the support for risk assessment, in our toolset AdvoCATE. The models for
these notions, implemented using the Eclipse Modeling Framework [21], closely
follow the formalization we have described.

6 Concluding Remarks

We have described novel extensions to BTDs supporting view-based risk assess-
ment and its integration into an argument-based safety case methodology. We
have applied this methodology (including BTD-based risk assessment) in the
context of creating, managing, and updating real safety cases required for reg-
ulatory approval to conduct BVLOS UAS operations, as part of NASA’s UTM
effort.

For instance, in the safety case that provided the running example for this
paper, we used views of the underlying SA to communicate to the aviation
regulator how safety risk reduction would be achieved during UAS operations.

5 For example, BowTieXP: http://www.cgerisk.com/, BowTie Pro: http://www.
bowtiepro.com/, RiskView: http://www.meercat.com.au/, THESIS BowTie: http://
www.abs-group.com/, etc..

http://www.cgerisk.com/
http://www.bowtiepro.com/
http://www.bowtiepro.com/
http://www.meercat.com.au/
http://www.abs-group.com/
http://www.abs-group.com/
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That, in turn, proved to be one of the linchpins of the safety case that con-
tributed to its acceptance and, subsequently, a successful grant of operational
flight approval. Our efforts have leveraged our tool, AdvoCATE [12], making
full use of its functionality to construct and analyze both BTDs and assurance
arguments, including checking properties, creating views, and seamlessly link-
ing and navigating between the two. Our implementation is based on a formal
semantics that admits the construction of arbitrary event structures to guide an
incremental, interactive development of a well-designed safety architecture.

As mentioned earlier (Sect. 1), BTDs are used both in civil aviation and for
safety assurance of UAS, although existing tools do not implement the func-
tionality we have described here. Moreover, with the exception of one tool that
does support argument development [11], so far as we are aware, no other tool
provides a common framework to integrate BTDs with assurance arguments for
(UAS) safety case development.

Our notion of SA is compatible with classical safety control architectures
(i.e., 1oo1, 1oo2, etc.), which represent implementation-level organizations of
(largely hardware-based) safety instrumentation and typically exist at a lower-
level of abstraction. The work that is, perhaps, most closely related to ours
reconciles early architectural knowledge of a system—modeled using AADL—
with traditional safety analysis [18]. The focus, however, is on (safety) system
design and pre-operational assurance. Our notion of SA is, again, compatible
with this work, but conceptually at a higher-level of abstraction. A key point of
difference is that our notion retains an operational relevance and, thus, links to
the underlying SMS [1].

Our ongoing work is investigating the relationship between argument struc-
tures and BTDs both from (a) the perspective of formal mappings that can
be used to generate one from the other, and (b) how they best complement
each other in a safety case. For example, one possibility is to associate argument
patterns with generic controls, composing patterns to form an argument architec-
ture [9,19], analogously to how we combine barriers/controls to form the safety
architecture. Then, instantiating the argument patterns, based on the context
in which the controls are used, will generate the associated assurance argument.

We plan to further develop view generation, leveraging prior work on
queries [20]. Additionally, we plan to investigate various levels of integration
of more detailed quantitative risk analysis models [14], to be able to verify bar-
rier integrity requirements prior to deployment, and to update the risk assess-
ment during operations, based on safety performance monitoring. Eventually,
we want to provide capabilities for risk apportionment and deriving the related
safety requirements. More broadly, we envision tighter integration into a model-
based systems engineering process, with tool support for linking to, and main-
taining consistency across, all the safety artifacts relevant for through-life safety
assurance.
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Abstract. The availability of functionality is a crucial aspect of mission-
and safety-critical systems. This is for instance demonstrated by the pur-
suit to automate road transportation. Here, the driver is not obligated to
be part of the control loop, thereby requiring the underlying system to
remain operational even after a critical component failure. Advances in
the field of mixed-criticality research have allowed to address this topic
of fail-operational system behaviour more efficiently. For instance, gen-
eral purpose computing platforms may relinquish the need for dedicated
backup units, as their purpose can be redefined at runtime. Based on
this, a deterministic and resource-efficient reconfiguration mechanism is
developed, in order to address safety concerns with respect to availability
in a generic manner. To find a configuration for this mechanism that can
ensure all availability-related safety properties, a design-time method
to automatically generate schedules for different modes of operations
from declaratively defined requirements is established. To cope with the
inherent computational complexity, heuristics are developed to effectively
narrow the problem space. Subsequently, this method’s applicability and
scalability are respectively evaluated qualitatively within an automotive
case study and quantitatively by means of a tool performance analysis.

1 Introduction

Within the automotive domain, the demand for highly available systems is
increasing through the vision of automated driving. As a driver is not required
to constantly be part of the control loop in an automated vehicle, the underlying
control system must be capable of compensating for all safety-relevant failures.
With respect to availability, a system can either account for failure-induced
reduction of computational capacity by means of over-provisioning, for instance
with dedicated hardware and triple redundant architectures, or alternatively
resort to a form of graceful degradation [8]. Within the transportation domain
the need for fail-operational behaviour has traditionally been solved through ded-
icated redundancy in form of federated architectures [1], as most prominently
seen in the triple-triple redundant architecture of modern Fly-by-Wire systems
[16]. In contrast, the latter option of graceful degradation is of special interest in

c© Springer International Publishing AG 2017
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the cost-sensitive automotive industry in order to limit the required amount of
spare computing resources. Here, automated vehicles may only require a limited
set of functionality for a short period of time until the vehicle can be safely
halted.

With respect to availability, general purpose computing platforms pose as a
promising solution to limit the amount of required hardware, as there purpose
can be redefined at runtime. The foundation for such reconfiguration schemes
was laid in mixed-criticality research by allowing a platform to host multiple
independent functions, as for instance demonstrated by the Integrated Modu-
lar Avionics (IMA) in the aviation domain [15]. Despite this, reconfiguration
generally competes with the principles of safety-critical systems, which require
an operation free of unpredictable interference. This is for instance seen in the
functional safety standard ISO 26262 [7] of the automotive domain, which is
restrictive with respect to reconfiguration. Therefore, the question arises how
availability can be ensured through reconfiguration schemes in order to bene-
fit from the resource saving potential of integrated architectures and graceful
degradation while at least maintaining the current level of safety.

Consequently, this work develops a generic monitoring and reconfiguration
service (MRS) to ensure the availability of multiple independent functions during
runtime based on the notion of a Safety-Element-out-of-Context. As guarantee-
ing deterministic behaviour is imperative within the safety domain, this service
is designed in a static manner, thereby only utilising mitigation plans that were
previously verified. From a design perspective, the need to manage failure modes
further increases the effort of developing already complex automotive systems. As
such, this work further focuses on a method to define reconfiguration behaviour
declaratively and automatically calculate configurations for all managed modes
of operation. For this, a system model is developed, which is then enriched with
scheduling information through the use of a novel set of heuristics and mixed-
integer linear programme (MILP) techniques. This additional scheduling infor-
mation poses as an extension of the system’s interface description to guarantee
the required real-time behaviour when implemented correctly on each control
unit, thus providing the basis for a compositional system integration.

In detail, Sect. 2 introduces this monitoring and reconfiguration service, fol-
lowed by a method for synthesising schedules of fail-operational systems in
Sect. 3. Section 4 analyses applicability in an automotive case study and eval-
uates the performance quantitatively before concluding in Sect. 5.

2 Fail-Operational Safety Mechanism

2.1 Monitoring and Reconfiguration Service (MRS)

In the following, a monitoring and reconfiguration service (MRS) is developed in
order to provide a safety mechanism that can generically ensure the availability
of multiple independent functions within a set of distributed control units dur-
ing runtime. For this, a synchronously operating MRS instance is deployed onto
each control unit participating in the management of failure modes. The period
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of the software-based MRS is in turn based on the failover times of the managed
functionality, which describe the maximal amount of time a functionality can
remain unavailable. These figures are typically determined during a Hazard and
Risk Analysis. Further, the MRS itself consists of a reporting and an evaluating
task that are respectively responsible for informing all other control units about
the current state of the hosted applications in form of a heart-beat, and evaluat-
ing all received heart-beats to trigger a reconfiguration. Based on this heart-beat
information, each control unit can determine the status of the complete system.
More precisely, the state of all applications in the system is concatenated to
one lookup key for use in a reconfiguration database, which is deployed on each
control unit. Based on this key, a lookup occurs that either results in the control
unit remaining in the current state or alternatively performing a reconfigura-
tion based on the predetermined mitigation plan. A mitigation plan includes a
new schedule for all application instances hosted on the respective control unit.
Through this decentralised architecture it is possible to conduct reconfiguration
involving multiple control units without the need for a central coordinating unit.

2.2 Hardware Architecture

As each control unit expects to receive a heart-beat from each other control unit
within each period, the missing of a heart-heat is interpreted as the failure of a
control unit. From a hardware-perspective, additional guarantees with respect
to reliable communication links between control units are however necessary in
order to deduct the failure of a control unit from a missing heart-beat. Moreover,
control units utilising this reconfiguration scheme must be equipped with strong
diagnostic capabilities to perform fail-silent behaviour in case of unrecoverable
local faults, thereby ensuring the fail-operational properties of the entire system
(see Fig. 1). To provide fail-operational behaviour between control units in a
cost-efficient manner, a 1-out-of-2 safety architecture with diagnostics (1oo2D)
was deployed on basis of previous research [11]. Here, each unit is equipped with
strong diagnostic capabilities in form of lock-stepping mechanisms and additional
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Fig. 1. 1oo2D architecture
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monitoring elements, such as hardware watchdogs. In addition, the use of diverse
hardware platforms and bus systems further limits the potential occurrence of
faults originating from a common cause.

3 Method for Reconfiguration Planning

3.1 System Model

In order to configure the previously described monitoring and reconfiguration
service, an automated design process is used to generate mitigation plans for all
managed failure modes. Hereby special focus is laid on the declarative nature of
the approach. This allows system designers to only specify availability require-
ments without the need to manually determine a schedule for each failure mode
and without needing to ensure that all failover times are met. For this, a minimal
system model is derived under consideration of distributed topologies, operating
modes, hierarchical resources access patterns, and preemption. This model is
later formalised and used as part of a reconfiguration planning approach based
on the advances in constraint-based system synthesis [3].

Jobs, Tasks and Compositions. In this work, a task is defined as the use of
exactly one resource during a specific time interval, which is in turn bounded
by a task- and resource-specific worst case execution time (WCET), as seen in
the software architecture of a simplified automated driving use case depicted in
Fig. 2. Tasks in turn are logically grouped to task composition, to allow for an
abstraction of the system (e.g. Steer-by-Wire). As such, multiple instantiation
of a specific type of composition or task are required to provide functionality
redundantly (e.g. Wheel Tick tasks), which are each responsible for one specific
wheel of a vehicle. Moreover, a task consists of a sequence of jobs, each represent-
ing a specific invocation of a task. To ensure the periodic execution of a task’s
jobs, each task can be annotated with a period (cf. Steering or Highway Pilot).
In additional, other real-time constraints, such as the maximal age of processed
data (cf. Trajectory Planning or Steering Engine 1) or synchronous executions
between jobs of two tasks (cf. Steering Engine 1 & 2) can be defined.

Resources. A resource can represent a control unit or bus, but also any other
type of resource such as a hardware controller. For this, the concept of hierar-
chical dependencies between resources is introduced. For instance, a control unit
can pose as a top-level resource without dependencies to other resources, whereas
a memory region of this control unit is seen as a subordinate resource belonging
to the superordinate top-level control unit resource. Based on this, hierarchical
dependency between tasks are used to, for instance, describe that a subordinate
task can only access the memory region of that specific control unit if its super-
ordinate task is also assigned to the same control unit. Moreover, interleaved
access patterns are possible, allowing multiple tasks to cooperatively share a
resource through preemption. Despite this, some activities, such as accessing a
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Fig. 2. Example software architecture

critical memory structure, must remain atomic to prevent data corruption and
indeterministic behaviour. In such cases, a resource is deemed non-preemptable.

Graceful Degradation and Modes. As it is often not desirable to completely
eliminate functionality in overload conditions [4], a more fine-grained consider-
ation of required functionality in each system mode is needed. Despite this,
current mixed-criticality research often only applies a rigid model of HI and LO
criticality levels. Further, computational peaks and variable workloads are often
simply classified into hard and soft real-time requirements, thus squandering the
potential for resource-efficient designs. Consequently, a generalised taxonomy
was developed in [10] to classify resource access in the dimensions of quantity of
resources and frequency of occurrence. To incorporate these previous research
results, the developed system model captures such fine-grained information on
resource requirements by allowing compositions to be assigned to system modes
and sorted by their importance (e.g. the Comfort is less important than Steer-
by-Wire in Fig. 3). These system modes are defined for the entire (sub-)system,
including hardware component failures or environmental changes. In contrast,
functionality can be modelled as multiple distinct modes of a composition that
are only allowed to be admitted under mutual exclusion in order to address
functionality that can degrade internally (e.g. Normal & Degraded Mode for
Automated Driving in Fig. 3) or exhibit variable workloads. Moreover, tasks can
be annotated with different scheduling modes to account for application-specific
data consistency requirements of standby tasks. For instance, a cold-standby
task will only be assigned to a resource and thus only attain an internal state
after being scheduled, whereas a hot-standby task will exhibit similar scheduling
demands as an active task as only the task’s external effects will be suppressed.
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Fig. 3. Graceful degradation example

3.2 Mixed-Integer Linear Programme

Motivated by the fact that mixed-integer linear programmes have been success-
fully utilised for real-time system synthesis [13], a MILP representation of the
previously introduced system model was developed. This MILP formulation can
either be used to maximise the amount of active compositions or alternatively
find valid schedules for a predetermined set of required compositions for each
system mode. Due to the extensive nature of the derived MILP (22 constraints
in total), this work focuses on the most distinctive and less straight-forward
equations. All variables and constants are summarised in Table 1.

Target Function. In favour of limiting the wasteful deployment of processing
resources, it is desirable to achieve a high level of resource utilisation. For this, a
global view of the system is inevitable to always find an optimal configuration.
As such, this problem is formulated with the intention of maximising the amount
of compositions that can be successfully scheduled on a given set of resources (1).
The admission of a composition c ∈ C to the system’s configuration is encoded
in a binary variable uc by setting uc = 1.

max
C∑

c

uc (1)

Graceful Degradation. To account for the possibility of insufficient resources,
compositions may be assigned priorities to define a hierarchical ordering of their
importance. Therefore, a composition may only be admitted if all compositions
of a higher priority C+

c are also included in the schedule. All compositions of
lower priority are defined as C−

c . To enforce these restrictions, uc shall only
take a true value when all uc′ for c′ ∈ C+

c are also true. Therefore, uc is to
be multiplied with the cardinality of C+

c to prevent an unwanted admission of
composition c (cf. Fig. 3):

C∀
c
uc|C+

c | ≤
C+

c∑

c′
uc′ (2)

Tasks to Resources Mapping. To represent the smallest schedulable entities,
each composition is broken down into tasks t ∈ T which must be mapped to
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a single resource r out of a task-dependent set of resources Rt. The binary
variable atr = 1 indicates that a task is permanently assigned to a certain
resource. During implementation a substantial performance penalty was noticed
when formulating this constraint in form of an inequation (<= 1). Therefore, an
additional virtual resource, on which jobs can be executed with infinite speed,
is introduced, thus extending the set Rt with the virtual resources to R+

t . This
allows every task to always be assigned to exactly one resource (3).

C∀
c

Tc∀
t

R+
t∑

r

atr = 1 (3)

Mutual Exclusion. To account for the degradation within a functionality, it
must be ensured that the same functionality is not simultaneously provided by
multiple compositions. Therefore, the composition providing normal functional-
ity can disable tasks of its degraded compositions (e.g. Normal Mode is preferable
over Degraded Mode for Automated Driving in Fig. 3). All tasks in c that are
disabled by a composition c′ ∈ C−

c are contained in the set TD
cc′ . The Eq. 4 allows

a number of tasks in the composition c to be disabled, if c′ is enabled. However,
it does not specify which tasks. As only tasks replaced by tasks from other com-
positions may be disabled, the atr variable of each disabled task must be forced
to zero (5). Moreover, to ensure that either all or none of the tasks within a
composition are admitted, the sum of all respective binary variables atr must
either be equal to the amount |g| of tasks within that composition or zero.

C∀
c

Tc∑

t

Rt∑

r

atr = |Tc|uc −
C−

c∑

c′
|TD

cc′ |uc′ (4)

C∀
c

C−
c∀
c′

TD
cc′∑

t

Rt∑

r

atr = |TD
cc′ |uc − |TD

cc′ |uc′ (5)

Unified Timeline. During the implementation of this work, an up to 10-fold
performance benefit was attained by conceptually partitioning all resources along
one sequential timeline Z (see Fig. 4). For this, the concept of a hyper-period is
utilised. It is defined as the least common multiple of all occurring periods, thus
describing the shortest time frame after which a schedule may be repeated in a
symmetric manner. Based on this, the minimal length of the unified timeline Z
could be determined by multiplying the system’s hyper-period H with the num-
ber of resources and adding the largest deadline. This addition of max(Deadline)
is required to account for jobs that start within the last period of a hyper-period
and potential only end after the start of the next hyper-period.

Order of Execution and Preemption. To determine if a job j is activated
after a job j′ has ended, the activation time of j is represented by a real variable
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Fig. 4. Hyper-periods in a unified timeline

sj , whereas the time of completion of j′ is defined through the real variable e′
j .

For each period of a task t, the start-time of a respective job j ∈ Jt is bounded
by a constant start-offset PS

j and end-offset PE
j . With respect to the unified

timeline, the resource-specific offset must be subtracted in order to attain the
actual time value (6). The jitter of start- and end-times between a task’s periods
can also be bounded through this definition. In addition, the order of execution
between tasks is encoded in the binary variables bjj′ (see Fig. 5). To force the
variable bjj′ to only be zero if e′

j lies before sj , bjj′ is multiplied with a constant
that is larger than any other variable. As such, only a positive difference of
sj − ej′ leads to bjj′ = 0 (7).

T∀
t

J ′
t∀
j
PS
j ≤ sj −

Rt∑

r

Zratr ≤ PE
j (6)

T∀
t

Jt∀
j

T\t∀
t′

Jt′∀
j′

0 ≤ sj − ej′ + bjj′Z ≤ Z (7)

An overlap free schedule is defined as the start of an execution occurring
after another job’s execution ends. In this case, exactly one variable in the set
(bjj′ , bj′j) must be true, as all other cases lead to logical contradictions or execu-
tion overlaps (see Fig. 5). If an overlapping resource access is allowed for a spe-
cific resource, one job can preempt another job. Through setting bjj′ + bj′j = 1
such inter-job preemption can be selectively prohibited, for instance, to prevent
negatively influencing WCETs through cache invalidation effects.

Execution Times. When assigning a task t exclusive control over a resource,
the largest possible time that can elapse between its activation sj and completion
ej is defined as a task’s resource-specific WCET Wtr. In addition, tasks operating
on shared resources must also account for the preemption-incurred prolongation
of their jobs’ execution times by considering the overhead of every context switch.
The total time delay of a job j by any potentially preempting job j′ ∈ JP

j and the
therewith connected temporal overhead is represented by a variable ijj′ . In all,
the maximal distance between sj and ej is defined through the task’s resource-
dependent WCET and the sum of all interferences (8). As a job’s execution
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may only lie entirely before, within, or after another job’s execution window,
interruption ijj′ caused by each job j′ can be added together to obtain the total
time of preemption for job j, as depicted in Fig. 6.

T∀
t

Jt∀
j
ej − sj =

Rt∑

r

atrWtr +
JP
j∑

j′
ijj′ (8)

The non-negative preemption time ijj′ of a task’s job j by another job j′ ∈ Jt′

is defined by the resource-dependent WCET Wt′r of the preempting job and is
further influenced by effects related to the used resource, such as activation
jitters, or storing and loading of registers, which are all accounted for with a
worst-case constant overhead Or. As Or is only resource-dependant, it must be
chosen large enough to account for the worst performing task allocated on r. In
cases where this constant overhead is however too pessimistic, as for instance
seen in caching strategies, a set of finer constraints can be utilised instead of the
simplified model of cascading preemptions (see Fig. 6). Moreover, preemption
may be completely prohibited for a task or only permitted at predefined points.
When formulating this constraint, a one sided bound on ijj′ is sufficient, as
the target function indirectly minimises ijj′ . In consequence, every overlap ijj′

will diverge to its minimum in case of resource restrictions. Through this, the
introduction of another binary variable is circumvented. Equation 9 provides a
lower bound for the preemption time ijj′ :

T∀
t

Jt∀
j

JP
j ⊂Jt′

∀
j′

Rt∀
r
at′rWt′r + atrOr + bj′jZ + bjj′Z − 2Z ≤ ijj′ (9)
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Table 1. Table of notations

Notation Type Description

atr var {0, 1} Assignment of task t to resource r (atr = 1)

bjj′ var {0, 1} Start of job j is before end of j′ (bjj′ = 1)

C const set All compositions

C+
c /C−

c const set Composition with higher/lower importance than
composition c

ej var R End of job j

H const R Hyper-period (smallest common multiple of all periods)

ijj′ var R Time that j is preempted by j′

Jt const set Jobs of task t

JP
j const set Jobs that potentially preempt job j

Or const R Task-independent preemption overhead of resource r

PS
j & PE

j const R Begin and end of job j’s period

Rt const set Potential regular resources of task t

R+
t const set As Rt with additional virtual resource

sj var R Start of job j

T const set All tasks

TD
cc′ const set Tasks in c that can be replaced through tasks from c′

uc var {0, 1} Composition c is admitted to system schedule (uc = 1)

Wtr const R Raw WCET of task t on resource r

Zr const R Offset of resource r on unified timeline Z

3.3 Heuristics

Through the NP-hard nature of this optimisation problem, scalability becomes
an important concern. As general MILP solving techniques cannot fully exploit
problem-specific characteristics, heuristics pose as a promising solution for
extending the scope of systems that can be successfully synthesised [6]. The
following paragraphs describe three strategies (S1–S3) which aim at limiting the
problem space while trying to only minimally impair the solution space.

S1: Resource Assignment. To decrease the problem’s complexity, tasks may
be pre-assigned to a certain resource in cases where multiple potential resource
allocations exist. For this, tasks are ordered by the ratio between their WCET
and potential window of resource access (WCET-window ratio). Thereby, tasks
with small WCETs and large access windows are first assigned to resources. The
assignment process aims at balancing tasks fairly by selecting the resource with
the least utilisation. This process repeats until either the WCET-window ratio
or the resource utilisation grow above their respective threshold.
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S2: Grouping of Tasks. Moreover, multiple tasks may be combined into a
single task whenever their periods are identical. This strategy requires all tasks
grouped within the newly created task to be assigned to the same resource.

S3: Sequential Resource Access Windows. To eliminate further binary
MILP variables, potentially conflicting executions can be resolved through
sequentialisation. Here, each job’s earliest start and latest end time is deter-
mined by analysing the system’s data flow graph. Thereafter, the heuristic
sequentialises conflicts of jobs with similar WCETs, as these jobs are unlikely
to benefit from mutual preemption. In contrast, the enforcement of a sequential
execution pattern on jobs with strongly varying WCETs would remove oppor-
tunities for preemption. The pairs of tasks are then sorted based on how much
each job’s execution window must be narrowed to allow a sequential execution
(cf. Fig. 7). This sum is then weighted by the potential changes in ratios between
WCETs and execution windows, in order to find conflicts that barely overlap or
alternatively exhibit large WCET-window ratios. The respective earliest start
and latest end times of the best job pair are then narrowed by balancing the
remaining ratio between WCETs and potential execution windows. The process
is repeated until no pair can be sequentialised without falling below a threshold
based on the WCET-window ratio.

Fig. 7. S3 heuristic for sequential resource access (red: resource access windows) (Color
figure online)

4 Evaluation

To determine the value of this method, its applicability in the automotive domain
and scalability are of interest, as these factors are crucial for ensuring a successful
transfer of this prototypical concept into future systems throughout the indus-
try. As such, the applicability will be evaluated qualitatively by performing an
assessment based on criteria that was identified as relevant during the imple-
mentation of a full-scale e-vehicle with a fail-operational Steer-by-Wire system.
With respect to scalability, the solving performance of the MILP- and heuristic-
based system synthesis approach is analysed quantitatively for different synthetic
workloads to determine its practical limits with respect to realistic future system
sizes.
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4.1 Automotive Case Study

Within the SafeAdapt [12] research project an electric prototype vehicle was
developed that aims at integrating multiple critical functionalities, such as Steer-
and Brake-by-Wire compositions, onto a shared control infrastructure based on
a 1oo2D safety architecture (cf. Sect. 2.2). Here two diverse hardware platforms
were utilised on basis of an AURIX safety controller and two ARM MCUs with
software-based lock-stepping mechanism, which are interconnected by a time-
trigger redundant ethernet backbone.

To illustrate the granularity of a typical data flow, the Steer-by-Wire (SbW)
system is described. With this functionality, two independent timing chains exist
to respectively adjust the angle of the front wheels with a redundant pair of steer-
ing rack engines in accordance to the steering wheel angle and further provide
information to the driver with respect to the road surface conditions in form
of vibrations. Focusing on the steering engine control loop, both engines must
be readjusted periodically, actuate synchronously within a certain time margin,
and only apply control signals originating from recently sampled sensor data.
In addition, each of the steering wheel and steering angle position sensors is
individually modelled as three tasks: one for polling the sensor, one for placing
it in a designated buffer of a network chip, and one for the network controller’s
transmission of the queued data (cf. Fig. 8).
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Fig. 8. Steer-by-Wire architecture

4.2 Assessment of Applicability

To determine the applicability of the proposed method within the automotive
domain, a non-exhaustive set of criteria was identified as relevant through expe-
rience gained from the previously described e-vehicle project. Based on these
criteria, the method’s applicability is evaluated in the following:

Tool-interoperability. The generic and minimal nature of the developed sys-
tem model promotes the binding of different domain specific modelling con-
cepts. As an example, the vehicle’s hardware architecture, data flow, modes
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of operation, availability requirements, and timing characteristics were mod-
elled in the ARXML exchange format of the predominant AUTOSAR stan-
dard [2] and subsequently transformed into the domain-independent system
model (cf. Sect. 3). The results of the configuration planning process were then
again automatically added to the ARXML format, thus providing a seamless
integration into existing tool chains.

Stability. Extensions, changes, and fixes for individual applications are common
within the life-cycle of a vehicle. To not adversely affect other functionali-
ties, it is common practice to maintain a stable schedule for all bus systems.
With respect to the developed synthesis method, such stability can be easily
achieved by statically pre-defining the schedule for all applications that must
remain stable. Hence, only a new schedule for the remaining applications
must be found, thus guaranteeing future interoperability and the ability to
only partially update an already existing system.

Standardisation. As automotive system architectures are often based on com-
ponents from multiple independent vendors, it is crucial to standardise any
service that requires interoperability across control units. As such, the MRS
(cf. Sect. 2.1) was integrated as a basic AUTOSAR service with a uniform
communication protocol as part of an already standardised software architec-
ture in order to showcase the feasibly of a future standardisation.

Reusability. Through the design of the runtime reconfiguration mechanism
based on the concept of a Safety-Element-out-of-Context, the required recon-
figuration logic had to only be implemented once instead of individually for
each functionality, thus substantially reducing the development, verification,
and validation effort.

Runtime overhead. With respect to runtime overhead, the generic runtime
mechanism showed WCETs of less than 100µs and was executed in 5 ms peri-
ods in order to always meet the strictest failover times of 10 ms. Moreover,
the excepted overhead remains close to constant with an increasing amount
of managed functionalities. This is attributed to the fact that the execution
and usage of bus systems only occurs once per period for all functionalities
as compared to each functionality utilising an individual monitoring mecha-
nism and communication slot. In addition, mechanisms for ensuring the data
consistency of standby tasks more dominantly influences resource usage. Here
different concepts reaching from cold-standby over warm-standby (e.g. cyclic
data updates) to hot-standby implementation exist, depending on the task-
specific requirements of the individual compositions (cf. Sect. 3.1).

4.3 Scalability and Tool Performance

Setup. To experimentally evaluate how this approach scales, the total amount
of jobs, the number of interconnections, the degree of potentially overlapping
executions, and the system’s total utilisation were identified as factors that are
likely to influence the solving time. During non-exhaustive tests, the system’s
utilisation was identified as the most interesting factor, as an increased utilisation
already lead to monotonously growing and strongly diverging solving times at
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around 500 jobs. In contrast, the degree of potentially overlapping executions and
the amount of interconnections showed less divergent performance differences.
As such, the further evaluation focuses on determining the performance effects of
different levels of utilisation with an without the use of heuristics while increasing
the amount of jobs. For this, the other influencing factors are kept at a constant
ratio in relation to the amount of jobs in order to enable an isolated evaluation
of the utilisation parameter. The measurements are performed with the Gurobi
optimisation software (version 6.0.3) [5] on an Intel Xeon E5-2660 CPU (2.2
Ghz) with 8 cores by synthetically scaling the previous automotive example.

Performance Evaluation. Based on these synthesised workloads, 10 test sets
were extracted with four predefined average resource utilisations (20%, 40%,
60%, 80%). As seen in the experimental results in Fig. 9(a), performance gener-
ally deteriorates with increased utilisation. Further, the strategies S1 to assign
tasks to a fixed resource, S3 to sequentialise potentially conflicting resource util-
isations, and the combination of both strategies were applied to the 80% utilisa-
tion test set, representing a typically used utilisation limit within the automotive
industry. The strategy S2 for grouping tasks was not analysed in isolation, as its
performance is directly dependent on the amount of tasks with identical periods.
Moreover, non-exhaustive tests were conducted to experimentally determine an
acceptable parametrisation of the heuristics. As seen in Fig. 9(b), the point at
which the performance deteriorates could be substantially postponed through
the use of heuristics, allowing a system with 80% utilisation and 1000 jobs to be
synthesised in around ten minutes. Most notably, the combination of resource
assignment and sequential resource access heuristics exhibits the largest benefit,
thus proving a promising opportunity to design more complex systems.
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4.4 Discussion

Based on the experience collected in the automotive case study, the proposed
combination of a safety mechanism for generically ensuring availability and a sys-
tem synthesis process poses as a viable option for designing automated vehicles
in a more cost- and resource-efficient manner. Regardless, special rigour must be
applied during the design of a generic availability management component, as
an incorrect implementation could adversely affect multiple independent func-
tionalities. This concern is however mitigated by the simplicity of the runtime
mechanism, which is implemented on basis of a formally provable state machine.
In addition, all calculated mitigation plans can be verified through an simple
process by comparing the time-driven schedules of each operating mode against
the formalised availability and timing requirements. This already ensures the cor-
rectness of the mitigation plans and further fosters manual quality improvements,
such as jitter optimisations, by allowing an automated verification of any mod-
ification. Moreover, typically occurring timing issues during system integration
can be mitigated through the early enrichment of the system’s interface descrip-
tion with detailed timing requirements. This enables a compositional integration
in which the correct timing behaviour is ensured during system integration even
though each control unit was designed individually. Hereby, each control unit
must however adhere to its predetermined temporal interface description. In
addition, this reduced development effort can be utilised to create larger variant
diversity and customised products that would otherwise be deemed infeasible.

In light of the solving performance, it seems reasonable to presume that
automated schedule synthesis is a feasible method for substantially reducing
development effort. In addition, the long development-cycles of safety-critical
systems can even make solving times of multiple days an acceptable option.
Regardless, the future use of project specific knowledge as well as the creation
of more sophisticated heuristics is likely to substantially increase the method’s
performance and allow the synthesis of systems with higher complexity. Similarly,
an alternative implementation based on saturated module theory concepts, which
have proven to be useful for similar problems [14] and even outperform MILP
approaches [9], could further increase performance.

5 Conclusion

In pursuit of designing fail-operational systems in a cost-efficient manner, this
work exploits a monitoring and reconfiguration service that is utilised as a generic
safety mechanism for ensuring availability of independent functionalities. Based
on this, an accompanying synthesis process for automatically generating mitiga-
tion plans in form of schedules for all anticipated operational modes of a system
was researched and implemented. The method’s applicability was then demon-
strated successfully on basis of experiences gained during the development of
a real e-vehicle. Moreover, the performance of the synthesis was significantly
increased by applying heuristic strategies, thus ensuring its applicability with
respect to the more complex systems of future vehicles.
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Abstract. We show that a widely used benchmark set for the compari-
son of static analysis tools exhibits an impressive number of weaknesses,
and that the internationally accepted quantitative evaluation metrics
may lead to useless results. The weaknesses in the benchmark set were
identified by applying a sound static analysis to the programs in this
set and carefully interpreting the results. We propose how to deal with
weaknesses of the quantitative metrics and how to improve such bench-
marks and the evaluation process, in particular for external evaluations,
in which an ideally neutral institution does the evaluation, whose results
potential clients can trust.

1 Introduction

Some years ago static analysis meant manual review of programs. Nowadays,
automatic static analysis tools are gaining popularity in software development
as they offer a tremendous increase in productivity by automatically checking
the code under a wide range of criteria. They come in several flavors. Many
software development projects are developed according to coding guidelines, such
as MISRA C, aiming at a programming style that improves clarity and reduces
the risk of introducing bugs. For safety-critical software projects obeying to
such coding guidelines is strongly recommended by all current safety standards.
Compliance checking by static analysis tools has become common practice.

However, to prevent critical programming errors, checking coding guidelines
is not enough. This is recognized by the MISRA C norm by a particular rule
which recommends deeper analysis: “Minimization of run-time failures shall be
ensured by the use of at least one of (a) static analysis tools/techniques; (b)
dynamic analysis tools/techniques; (c) explicit coding of checks to handle run-
time faults.” (MISRA C:2004, rule 21.1). Current safety norms require demon-
strating the absence of runtime errors or data races, e.g. DO-178B/C, ISO-26262,
EN-50128, IEC-61508. Semantics-based static analysis has become the predom-
inant technology to detect runtime errors and data races.

Thus it is not surprising that there is a variety of different static analysis
tools on the market. Comparing them and choosing the best fitting tool is a
challenging task. The first problem is that the term static analysis is used for a
wide range of techniques that are conceptually very different. They all have in
common that they compute their results just from the program code, without
c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 197–212, 2017.
DOI: 10.1007/978-3-319-66266-4 13
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actually executing the program under analysis. They can be categorized in three
main groups:

Syntax Checkers. They are limited to investigating the program syntax. Most
of the algorithmically checkable MISRA C rules can be checked at a purely
syntactic level, e.g. in MISRA C:2012, 78 of the 143 rules are classified as
decidable, which in this context implies being checkable at a syntactic level.

Unsound Semantic Analyzers. They report semantic errors in the program,
such as runtime errors (division by zero, arithmetic overflows or buffer over-
flows) and data races. They can report false positives (spurious alarms where
there are no true defects) and false negatives (a true defect for which they
produce no alarm). Examples are Klocwork [18], CodeSonar [6], Polyspace
Bug Finder [10], and Coverity [21].

Sound Semantic Analyzers. They are mostly based on abstract interpreta-
tion, a formal method for program analysis, which provides a mathematically
rigorous way to prove the absence of defects without potential false negatives:
no defect is missed (from the class of defects under consideration). They can
report semantic errors in the program, including runtime errors and data
races, and can be used to prove functional assertions, e.g. that output values
will always be in an expected range. False positives, i.e. spurious alarms with-
out true defect, can still occur. Examples are Astrée [7,12], Polyspace Code
Prover [4,11], and AdaCore CodePeer [2].

The difference between these approaches can be illustrated at the example
of division by 0. In the expression x/0 the division by zero can be detected
syntactically, but not in the expression a/b. When an unsound analyzer does
not report a division by zero in a/b it might still happen in scenarios not taken
into account by the analyzer. When a sound analyzer does not report a division
by zero in a/b, this is a proof that b can never be 0.

Benchmarks for static analysis tools provide a basis for comparing different
tools. They should (at least) precisely define which defects are investigated, weigh
the severity of different defects, be aware of the analysis depth (i.e. syntactic vs.
unsound semantic vs. sound semantic), and determine false positive and false
negative rates.

This article builds on the publication by Shiraishi et al. [19] which proposes
benchmark suites for common types of code defects as well as evaluation criteria
for tool selection. We critically review their benchmark suites and the proposed
evaluation criteria and formulate explicit guidelines for designing and evaluating
such benchmarks. We apply those guidelines to the test cases in [19] to increase
their usefulness and propose improvements to the evaluation process.

2 Related Work

Shiraishi et al. [19] proposes benchmark suites of code defects aiming at safety
defects and suggests evaluation criteria tailored to static analysis tools. In addi-
tion to true/false positive rates, Shiraishi et al. propose advanced evaluation cri-
teria derived from the two primary evaluation criteria. They suggest to include
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a cost measurement to determine the cost efficiency of the tools evaluated. Shi-
raishi’s benchmark suite had a significant impact in industry.

Lu et al. collected representative bug benchmarks in their benchmark suite
BugBench [8]. They require a benchmark to be representative, diverse, portable,
accessible, and fair, for selecting suitable test cases for their benchmark suite
and propose several evaluation metrics to rate the effectiveness of bug detection
tools. They also propose additional criteria to measure usability (reliance on
manual effort and hardware, reporting and ease of investigating findings) and
further overhead (time for setting up and running the analysis, time and costs
for training) [8]. In contrast to their rather generic selection criteria we aim at
giving strict, easy-to-follow guidelines on how to design new test cases or rate
existing ones.

The Juliet benchmark sets [15] and the Secure Coding Validation Suite [20]
propose test cases aiming largely at covering security issues. Due to the interde-
pendence between safety and security many tests in those suites are also related
to safety properties.

3 Rating Static Analysis Tools

The two most important metrics for evaluating a static code analyzer usually
are:

– Rate of true positives R TP , i.e., percentage of intended, true defects
reported. Let P be the number of intended, true defects in the code and
TP be the number of intended, true defects recognized by the tool, then
R TP = TP/P ∗ 100.

– Rate of false positives (false alarms) R FP . The false alarm rate is defined
with respect to defect-free entities, e.g. expressions, statements, or test cases.
Let FP be the number of false positives, and N be the number of defect-free
entities, then R FP = FP/N ∗ 100.

Both criteria are listed in [19] as the two primary evaluation criteria. In [8],
they are listed as the functional metrics used to rate the effectiveness of a bug
detection tool.

Caveats

At a first glance this is straightforward, but actually these numbers are not only
hard to obtain, but they also have to be interpreted in context.

The analyzer might report unintended, true defects, i.e., defects not counted
by P above. A tool correctly identifying non-intended defects will actually be
penalized by increasing its false-positive rate! Even comparing the number of
findings per line might be inconclusive since different tools might report the
same defect in different ways, or there might be some leeway in choosing the
place to report it (e.g. position of macro definition vs. position of macro usage
for some MISRA rules). The solution proposed by [19] is to just consider findings
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for defects expected to be present/absent at specific code places in the test cases,
and completely ignore other findings. In general all relevant findings have to be
manually inspected to aggregate the correct number of false positives and false
negatives.

Another aspect to be considered is that the false alarm rate is meaningless
when the true positive rate is not taken into account. Otherwise, a tool which
does not report any defect might rank first because its false alarm rate is 0.
On the other hand, when comparing sound tools, the rate of true positives of
a covered defect type must always be 100%. In this case the primary metrics is
the false-positive rate.

Remedies

A company evaluating a set of tools will in their own interest be aware of the
shortcomings of the quantitative metrics. However, both external evaluators and
the tool providers themselves should always report the false-positive and the
false-negative rates together to avoid the pitfall described above. In the case of
unintended errors, they should correct the number P above.

An additional helpful metrics is the False Discovery Rate FDR, defined as
FDR = FP/(FP + TP ), with FP denoting the number of false positives and
TP the number of true positives. The advantage is that the numbers are clearly
defined and can be easily derived from the findings of the tool.

A given evaluation criterion relies on given properties of the test cases used.
So far, no exhaustive, commonly agreed-on design guidelines have been proposed
to ensure high quality test cases and, in consequence, to ensure the evaluation
criteria to be determined in a well-founded way.

4 Criteria for Benchmarks

To close this gap we propose a set of design guidelines for test cases to provide
a basis for quantitatively measuring the performance of static code analyzers.
Our work is focused on benchmarks targeting analyzers for detecting runtime
errors in C code, but the guidelines presented also apply to other types of static
analysis tools.

Test Cases Shall be Free of Unintended Defects. All test cases shall be
free of unintended defects. One single test cases may, however, contain sev-
eral defects, e.g., to allow the evaluated tool to demonstrate that defects may
not hide other defects. It might also be desirable to evaluate how tools con-
tinue their analysis after detecting a defect which also requires more than
one defect in a test case. All defects need to be documented such that the
intended analysis output is clear.
As suggested by [15], this criterion largely excludes real-life applications (nat-
ural code in the terms of [15]) where it is in practice too time-consuming to
judge whether or not all defects have been located. Adherence to the proposed



Benchmarking Static Code Analyzers 201

criterion may also lead to test cases being simpler than natural code.
Even for small, artificial test cases, test suites often fail to satisfy this crite-
rion. For the Juliet benchmarks, the documentation states that “many uncom-
mented incidental flaws remain in the test cases so users should not draw any
conclusions about tool reports of non-target flaw types without investigating
the reported result fully”. Section VII elaborates on our findings how the test
cases of [19] adhere to this criterion.

Defect Types Shall be Appropriately Weighted. Different defect types
may be more or less severe. Consider C where a distinction is often made
between undefined behavior (e.g., invalid pointer access), unspecified behavior
(e.g., bitfield alignment), bad coding style (e.g., integral type names instead
of typedefs that indicate size and signedness), and inappropriate code, which
may indicate a logical error (e.g., unreachable code or infinite loops). While
undefined behavior should always be detected and be fixed, suspicious-looking
code may be just bad style that does work as intended but never leads to a
bug.
In consequence defect types shall be weighted accordingly and penalize unde-
tected undefined behavior more than a situation in which bad coding style is
not reported.

Defect Types Shall be Commonly Accepted. The defect types covered by
the provided test cases shall be commonly accepted as defects. We propose
to restrict test cases to defects that are either (a) real runtime errors or (b)
violating industry-wide accepted coding rules. For example, code violating
MISRA C rules [13,14] may be considered a commonly-accepted defect as
MISRA adherence is widely enforced in the automotive sector. A company-
specific coding rule that will never provoke a runtime error, but is deemed to
indicate a logical bug, shall not be considered commonly accepted.
In addition, a benchmark set aiming at a particular type of industry should
cover the defect types relevant and only contain code typical for that indus-
trial domain.

Test Cases Shall Not Rely on Inappropriate Code. No test case shall
rely on a precise analysis of code commonly deemed inappropriate for the tar-
get industry. For example, recursive function calls are deemed inappropriate
for safety-critical code. This is not only commonly accepted in aerospace and
automotive industry, but across industry sectors as evidenced by the MISRA
rule set where recursion would violate rules 16.2 (MISRA C:2004) and 17.2
(MISRA C:2012), respectively. In consequence, test cases shall avoid recursive
function calls unless such calls themselves are the code defect whose detection
rate is being tested.

Test Cases Shall Document All Assumptions. Test cases shall not rely on
implicit assumptions, e.g., about the size of data types, and the definition of
derived types and constants (e.g., value of INT MAX, or definition of wchar t).
If there are test cases that specifically aim at 16-bit vs. 32-bit machines this
should be clearly documented. Similar requirements apply to the behavior
of library functions. As an example if there are test cases which implicitly
assume that malloc() never returns a null pointer, this should be clearly
documented.
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5 Pitfalls of Test Suites

We would like to note that even the best designed benchmark suite is prone to
several pitfalls. This section discusses our basic concerns even with well-designed
benchmark suites and recommends remedies.

5.1 Applicability

Benchmarking results generated by a third party potentially involving a large
set of analysis tools might be misleading. First, there is often a considerable
delay between running the benchmarks and publishing the results so that at
the time of publication the behavior of the tools might have changed. Also the
benchmark suite itself might have changed. Furthermore, the performance of a
static analyzer in terms of analysis precision and resource requirements (analysis
time, CPU and memory requirements) strongly depends on the application under
analysis. In consequence, the performance of such a tool on a given benchmark
set may be very different from its performance on real industry code.

Recommendation: Evaluation results should clearly show the version of the tools
and of the benchmarks. Benchmark suites may only be an additional, we pro-
pose first, step to evaluate a static analyzer. But benchmark suites should not
replace an evaluation phase in which the evaluated static analyzer is used on the
company’s real code.

5.2 Explicit Adaption to Test Cases

Once a benchmark suite is widely accepted, there is the risk that tool vendors
adapt their tools explicitly to the benchmark applications.

Unsound code analyzers are especially prone to such adaptations. Their
heuristics that decide whether or not a code fragment is likely defective can
often easily be adapted to known test cases in order to improve the analysis
results on these test cases. However, this may cause the rate of correct decisions
made by these heuristics on real applications to deteriorate and in the worst case
lead to more real defects staying undetected.

Sound tools must not miss a true defect, but still they might be tuned to
improve the false alarm rate on a specific benchmark – which might increase the
analysis time of real applications.

5.3 Comparison of Sound to Unsound Tools

If a benchmark is used to compare different static analysis tools, care should be
taken when comparing sound to unsound tools.
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Recommendation: In case sound and unsound tools are considered, a good strat-
egy is first to benchmark the sound tools against one another, the unsound tools
against one another, and only then compare tools from different groups.

This separation is reasonable because of the different designs of the two tool
classes: one is designed never to miss a real code defect and hence, must report
every code location that cannot be shown to be free of defects. The second class
can freely decide which potential code defects to present to the user, but cannot
guarantee the absence of defects. For all of them the false positive rate mirrors
the accuracy of the findings, but the preconditions are different for sound and
unsound tools.

5.4 Execution and Evaluation

The Juliet suite for C/C++ [15] consists of 61,387 test cases that cover 1,617 flaw
types which again cover 118 CWE entries [9]. Each test case targets exactly one
type of flaw and is either intended to contain the targeted flaw or be free of the
targeted flaw. Although, small artificial test cases are used instead of natural code
in order to avoid unintended flaws, unrelated flaws may be incidentally present.
Hence, Juliet’s user guide advises to just consider reports for the marked code
location targeting the intended flaw and ignore additional reports that may or
may not report true, but unintended flaws.

Given the number of test cases it is obvious that a completely automatic
execution of the analysis and a completely automatic evaluation of the results
is strongly desirable. However, due to unintended flaws the benchmark results
may not be reliable, so at least in case of unexpected findings, the issues have
to be manually investigated.

Recommendation: Well-defined test cases enable automatic result assessment.
Further hurdles to an automatic evaluation of the findings reported is leeway

in the reporting of a defect, and leeway in the code place for reporting a defect.
As an example when a C expression enclosed in parentheses may cause a

runtime error, a tool may choose to report it at the opening parenthesis, at
the closing parenthesis, or for the precise extent of the expression (i.e. for all
characters belonging to the expression). If there is an alarm about a potential
defect, say an overflow, one tool may choose to distinguish between overflow and
underflow while another subsumes both cases under one category ‘overflow’.

Finally there might be subtle tool configuration issues, e.g., regarding sizes
of data types, alignment restrictions, automatic variable initialization, handling
of volatile variables, etc.

Recommendation: All involved tools need to be carefully configured so that they
work under the same assumptions. The configuration should be documented in
the evaluation results.
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6 Remarks on the ITC Benchmark Set

In the past years, the test suites for benchmarking static analysis tools proposed
by Shiraishi et al. [19] (also known as ITC benchmark) were often utilized in
industry to measure the performance of tools. We choose to contribute to the
C benchmarks of the ITC benchmark suite as (a) in the safety-critical area, the
ITC benchmarks belong to the benchmarks most often encountered, (b) C (C99)
is the predominant implementation language for safety-critical systems.

In the following we will discuss whether and how the C benchmark suites of
ITC meet the criteria and design guidelines proposed in this paper.

Adherence to Test Cases Shall be Free of Unintended Defects. Other
wise tools reporting these defects will be penalized by a higher false-positive
rate. Our analysis found 442 issues with the test cases that are presumably
unintended. Hence, roughly 37% of the 1,188 analyzed test cases are affected.
A detailed list of our findings is given in Sect. 7.

Adherence to Defect Types Shall be Appropriately Weighted . The error
types covered by the ITC benchmark are only implicitly weighted by the num-
bers of test cases per error type.

Adherence to Defect Types Shall be Commonly Accepted . In the ITC
suites there are several defect types that do not exhibit undefined nor unspec-
ified behavior nor are they, to the best of our knowledge, discouraged by any
coding guidelines.

Adherence to Test Cases Shall Not Rely on Inappropriate Code. We
have found two test cases relying on interpreting recursive function calls.
Furthermore, dynamic memory allocation is frequently used in the test cases.
Both, recursion and dynamic memory management, are commonly deemed
inappropriate for safety-critical code [13,14,17]. Furthermore, there are 48
goto statements in the test cases. Rules prohibiting the use of goto, setjmp,
and longjmp are also very common [13,14,17] and test cases should in con-
sequence avoid such constructs.
The test cases aiming at concurrency defects rely on POSIX Threads
(Pthreads). In the relevant industries, typically more restricted concurrency
models are applied. Therefore, to satisfy the demand for industry-relevant
and industry-specific test cases, the test cases using pthread functionality
should be reimplemented using the OSEK/AUTOSAR library functions (to
target the automotive sector) and ARINC (to target the avionics sector),
respectively.

7 Contributions to the ITC Benchmarks

The ITC Benchmarks consist of 51 flaw types for C and one flaw type for C++.
The 51 C-related flaw types are grouped into 9 classes of flaw types (pointer-
related defects, numerical defects, dynamic memory defects, inappropriate code,
etc.). Each flaw type has several test cases covering different variations of the
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targeted flaw. The number of variations per flaw type ranges from 1 (e.g. for
types useless assignment and live lock) to 54 (for type static buffer overrun),
implicitly weighting the importance of the flaw. Each such test case exists in a
version with and without the intended flaw. In total, there are 638 test cases
with intended C flaws and 638 intended to be free of the targeted flaws. In total,
44 of test cases (totaling 88 versions) target concurrency flaws.

For the purpose of this article we used the sound static analyzer Astrée [1]
to detect both intended and unintended code defects in the test cases, including
runtime errors and concurrency-related errors like data races, deadlocks, etc.
Since Astrée is sound another goal was to prove the absence of errors in the code
parts marked as defect-free. In case of unintended errors in the test cases we
corrected the code aiming at minimal changes of the code. Consider for example
test case shown in Fig. 1:

Fig. 1. Example of flawed test case

There is no underflow present at the marked location as the result is
−2147483647 (value of min) + 2 (minus the −2 stored at index 2 of array
dlist) which is −2147483645. This is still greater than the smallest int value
(−2147483648). The minimal fix to make this test case work is to change
the operator from minus (−) to plus (+), i.e., compute the value of ret as
−2147483647 + (−2) which yields −2147483649 and hence underflows the data
type.

Following this approach, we identified and corrected the following types of
test case defects.

7.1 Wrong Error Markers

The test cases contain markers in which line the intended error is located and,
consequently, which line shall be reported by the evaluated analyzer. These
markers are at incorrect locations in 48 test cases. We moved the markers to
the correct locations.

Consider for example the test case shown in Fig. 2: The underrun occurs in
the array access within the for loop once i evaluates to −1. However, the error
marker is placed at the header of the loop.
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Fig. 2. Test case with wrong error marker

7.2 Missing Error Markers

Some test cases do not contain (non-)error markers. Consequently, there is no
hint to the user of the benchmarks for which location a report is to be expected.
In such cases, we added markers at the location where the code defect manifests
or no false alarm should be reported. We encountered this issue 2 times.

7.3 Unreachable Error Locations

In 8 test cases, the intentional code defects are actually unreachable. Static ana-
lyzers may therefore choose to simply mark these locations unreachable without
further attempts to interpret the code and report the desired error type.

Consider the example from Fig. 3: In the code from which the test case is
invoked the variable func pointer 018 global set is written two times: it is
set to 0 at initialization and later set to 1. Consequently, it can never take the
value 10, so the error location can never be reached during program execution.

Fig. 3. Test case with unreachable error location
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7.4 Hidden Error Locations

Similar to the previous category, there are test cases where the intended error
is preceded by an unintended, definitely occurring error. This may provoke ana-
lyzers to report the unintended error and stop the analysis for the context in
which the error occurs. This may cause the test case never to be reached. From
the analyzer perspective, this is a valid approach in cases of severe errors, e.g.,
due to undefined behaviors in C. As an example a write access via an illegal
pointer might cause the program to crash with segmentation fault, it may cor-
rupt data and cause erratic program behavior, and the compiler might even
change the program code. In such cases no reasonable assumptions can be made
about what happens after the defect occurred, so the analyzer may chose not
to continue the analysis in the context exhibiting the code defect. In such test
cases, we removed the unintended error.

Consider for example the test case from Fig. 4: As loc1 is always −1 when
reaching the assignment doubleptr[loc1][loc2]=′T′; the behavior at that
point is undefined. Hence, there is no reasonable continuation possible, so it
makes sense for an analyzer to stop at this point after reporting the detected
code defect. In total, we identified 14 such cases.

Fig. 4. Test case with hidden error locations

7.5 Error-Free Code Marked as Erroneous

In some cases marked, intended to-be-erroneous code is indeed legal, valid code.
We modified the code to provoke code defects fitting existing comments and the
overall aim of the respective test suite. We found 15 test cases in which valid
code has been considered invalid.
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7.6 Erroneous Code Marked as Error-Free

Conversely, we found 3 test cases which are documented to be free of a certain
defect, but actually contain an error of the covered error type at the marked
location.

Consider for example the test case from Fig. 5. As Z is not a character of
the string stored at s.buf at the marked location, variable len will eventually
be −1 and cause an array underrun. Note that the check to prevent this in the
example is only executed after the critical access.

Fig. 5. Test case with erroneous code marked as error-free

7.7 Valid Code that May Lead to Invalid Uses

Similar to the category Error-free code marked as erroneous, there are test cases
which do not contain errors, but construct objects that may be used in a way
that constitutes undefined or generally erroneous behavior. However, the test
cases do not contain any subsequent use of the objects. In all such cases, we
added a subsequent use that provokes an error. We counted 8 such test cases.

Consider the example in Fig. 6: First, the marked statement does not contain
any code defect. There is also no use of foo which might falsely assume that
foo points to a \0-terminated string which seems to be what the test case aims
at. Inserting e.g. a call strln(foo) before free(foo) would lead to the desired
flaw.
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Fig. 6. Test case with missing error trigger

7.8 Erroneous Code Labeled with an Incorrect Error Type

In further cases, the marked code does not exhibit the documented code defect or
is correctly marked as being free of a documented defect, but there is nonetheless
an unintended defect at that location. We found 8 such issues.

Consider for example the test case from Fig. 7: Consider the statement high-
lighted red and labeled as intentionally overflowing. Presumably due to a copy
and paste error, the data structure accessed at this location is not initialized at
all. There is, however, the definition of the structure visible. Hence, while there
is no overflow as indicated, there is nonetheless a true code defect: dereferencing
a null pointer.

7.9 Mismatch Between Documentation and Source Code

We refrained from a deeper analysis of source code documentation, but restricted
our analysis of the benchmark files to the actual C code. For the purpose of
completeness, we nonetheless note that source code comments are in many cases
misleading or plainly incorrect.

7.10 Wrong Assumptions About Language and Libraries

The test cases made some assumptions about the behavior of the standard C
library as well as properties of data types.

For example, 14 test cases require the benchmarked tool to report invocations
of free() as a code defect when called with a null pointer as parameter. How-
ever, the C standard explicitly states: “If ptr is a null pointer, no action occurs”
(7.20.3.2 ISO/IEC 9899:1999). Therefore calling free() with a null pointer para-
meter is perfectly legal. This behavior also is reflected in the clib model of Astrée.
To “successfully” evaluate these test cases we temporarily changed the Astrée
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Fig. 7. Excerpt H

clib to report null pointers passed to free(), after which all “defects” were
reported as expected. However, that means that in order to successfully pass
these tests a more restricted semantics has to be chosen than prescribed by the
C standard.

Furthermore, implicit assumptions about malloc and calloc have been
made. In many (but not all!) test cases it is assumed that dynamic memory
allocation will not fail, i.e., will not return a null pointer. As a sound analyzer
must not make such an assumption, this leads to justified reports about sub-
sequent usage of potential null pointers that the benchmark falsely classifies as
false alarms.

There are also implicit assumptions about the application binary interface.
For the 19 test cases (totaling to 38 versions) of flaw type data lost to work as
intended, the data type char needs to be signed.

In total, we investigated 1,188 test cases and found 442 issues that were
presumably unintended. We applied 106 code modifications to the ITC test cases
in order to remove unintended errors and other mistakes preventing the test cases
from working as intended. We incorporated observed implicit assumptions into
the analysis model to make 280 test cases work as intended. These 280 test
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cases sum up as follows: There were 214 unintended potential runtime errors
(92 in the test cases with errors and 122 in the test cases without errors) due
to implicitly assuming that memory allocations will always be successful and
another 14 test cases per benchmark group (with and without errors) relied
on wrong assumptions on free(); assumptions about the application binary
interface prevented 38 test cases from working as intended. Additionally, 56 of the
58 test cases related to the pow() library function did not work as intended for
various reasons (from misuse of the bitwise XOR operator to code not matching
the test case documentation).

Our corrected versions of the test cases are publicly available at
https://github.com/AbsInt/itc-benchmarks.

8 Evaluation Processes

Ideally, an external evaluation will be performed by a neutral institution, as hap-
pens in many Verification Challenges [3,5,16]. This institution would be respon-
sible for a fair process and a clear publication of the results.

9 Conclusion

Static analysis tools to check coding guidelines and detect code defects are widely
used in industry. Commonly available industry benchmarks designed for the
purpose of evaluating such tools play an important role in order to get a first
measurable rating of the available tools.

In this article we have summarized recent approaches to rate static analyz-
ers and discussed considerations to be taken into account when applying the
two primary tool evaluation criteria, the true positive rate and the false positive
rate. Our primary goal is to support establishing a commonly accepted set of
benchmark suites to objectively rate static analysis tools. To this end we have
discussed general design principles for test cases to ensure valid and meaning-
ful benchmark results. We have summarized common traps and pitfalls when
applying benchmarks, and have critically reviewed the ITC benchmark suites
with respect to our design principles. We have encountered flaws in 37% of the
ITC test cases, have fixed all issues detected, and made the improved version of
the ITC benchmarks publicly available.

Acknowledgment. The work presented in this paper is supported by the European
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Abstract. This paper introduces a static analysis technique for com-
puting formally verified round-off error bounds of floating-point func-
tional expressions. The technique is based on a denotational semantics
that computes a symbolic estimation of floating-point round-off errors
along with a proof certificate that ensures its correctness. The symbolic
estimation can be evaluated on concrete inputs using rigorous enclosure
methods to produce formally verified numerical error bounds. The pro-
posed technique is implemented in the prototype research tool PRECiSA
(Program Round-off Error Certifier via Static Analysis) and used in the
verification of floating-point programs of interest to NASA.

1 Introduction

Floating-point arithmetic is the most commonly used representation of real arith-
metic in computer programs. One significant problem of floating-point arithmetic
is the presence of round-off errors that can make a numerical computation sig-
nificantly different from the actual real arithmetic computation. These errors
are especially problematic in safety-critical applications such as aerospace and
avionics software, where even small computation errors can lead to catastrophic
consequences. Having a correct and externally verifiable estimation of how close
a computed result is to the ideal real number computation is fundamental to the
safety analysis of such systems.

This paper presents a modular static analysis technique for computing prov-
ably sound over-approximations of floating-point round-off errors. Given a set
of functions over floating-point values, symbolic upper bounds on the round-
off error of these functions are automatically computed by using a denotational
semantics framework. Additionally, proof certificates assuring the correctness of
such bounds are also generated. The main features of the proposed technique
are: (1) automatic generation of proof certificates that provide an externally ver-
ifiable guarantee that the computed error estimations are correct; (2) modularity
and reusability, due to being defined by a compositional denotational semantics
that symbolically models the accumulation of floating point round-off errors in
functional expressions; (3) correctly handling of conditional expressions, i.e., the
stable test hypothesis is not assumed in conditional if-then-else expressions where
c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 213–229, 2017.
DOI: 10.1007/978-3-319-66266-4 14
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the logical value of the condition is compromised by round-off errors; (4) extensi-
bility, i.e., new floating-point operations can be integrated into the denotational
semantic framework assuming they satisfy some basic properties; and (5) com-
putation of accurate round-off errors via a generic branch-and-bound algorithm
that supports several rigorous enclosure methods, e.g., interval arithmetic, affine
arithmetic [1], and Bernstein polynomials [2].

The static analysis presented in this paper has been implemented in a proto-
type tool called PRECiSA (Program Round-off Error Certifier via Static Analy-
sis). The current implementation of PRECiSA uses SRI’s Prototype Verification
System (PVS) [3], but the theoretical framework presented in this paper can
be implemented in any modern interactive proof assistant. PRECiSA accepts
as input a program composed of a set of functional floating-point expressions.
The output of the tool is a PVS theory that consists of a set of lemmas stat-
ing accumulated round-off error estimations for each function in the program.
These lemmas are equipped with PVS proof scripts that automatically discharge
them. When numerical values for the input variables appearing in the program
are provided, PRECiSA also generates PVS lemmas stating concrete numeri-
cal bounds on the round-off errors, along with corresponding proof scripts to
discharge them without user intervention. PRECiSA is publicly available under
NASA’s Open Source Agreement1 and can be used, without installation, through
a web interface2.

The paper is organized as follows. A formalization of floating-point round-
off errors is presented in Sect. 2. This formalization enables the generation of
proof certificates and the computation of provably correct bounds. In Sect. 3,
a compositional denotational semantics modeling the accumulation of floating-
point round-off errors is defined. This semantics is the core of the proposed
analysis and it computes a symbolic over-approximation of the round-off error
of a given function, along with a proof certificate ensuring its correctness. PRE-
CiSA, an implementation of the proposed analysis, is presented in Sect. 4. This
implementation is illustrated with an example taken from a verification effort
at NASA. Experimental results and comparison to similar tools are shown in
Sect. 5. Related work is discussed in Sect. 6.

2 Formalization of Floating-Point Round-Off Errors

The NASA PVS Library3 includes two formalizations of floating-point numbers:
a hardware-level model of the IEEE-854 floating-point standard [4] and high-
level model of the IEEE-754 standard [5]. These formalizations are related by
functions that translate from one representation into the other. In the high-level
model, a floating-point number, or simply a float, is defined as a pair of integers
(m, e), where m is called the significant and e the exponent of the float. A
conversion function R : F �→ R is defined to refer to the real number represented
1 https://github.com/nasa/PRECiSA.
2 http://precisa.nianet.org.
3 https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.
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by a given float, i.e., R((m, e)) = m · βe , where β ∈ N is called the base or
radix of the system. IEEE-754 formats, e.g., binary single and double precisions,
can be defined in this formalization by instantiating specific theory parameters.
As this representation is redundant, notions about normality and canonicity are
also defined (see [5] for details). By abuse of notation, ṽ will be used to represent
a floating-point number in F and its real value R(ṽ).

Since not every real number can be exactly represented by a float, a notion of
representation error is defined as follows. Let ṽ be a floating-point number that
represents a real number r , the difference |ṽ − r | is called the round-off error (or
rounding error) of ṽ with respect to r . The closest floating-point to r , denoted
F(r), is defined as a floating-point number for which the round-off error with
respect to r is minimal. In cases where this float is not unique, the IEEE-754
standard defines several rounding modes such as the round-ties-to-even mode,
where the float with even significand is chosen, and the round-ties-to-away mode,
where the float with the greater absolute value is chosen.

The unit in the last place (ulp) is a measure of the precision of a floating-point
number ṽ as a representation of a real number. It can be defined as ulp(ṽ) = βeṽ ,
where eṽ is the exponent of the canonical form of ṽ . Note that the canonical
form of a given float depends on the format being used (single precision, double
precision, etc.). Then, the ulp also depends on the format. The ulp of a floating
point can be used as a bound of the round-off error since, as shown in [5], if ṽ is
the closest representation of some real r , the two numbers are apart from each
other for no more than half of the ulp of ṽ . The ulp of a real number is defined
as the ulp of the canonical form of its closest floating-point representation, i.e.,
ulp(r) = ulp(F(r)). Then, the previous bound can be stated as follows [6].

|ṽ − r | ≤ 1
2 ulp(r). (1)

The work presented in this paper extends the high-level model with a for-
malization of round-off errors of floating-point expressions õp(ṽ1, . . . , ṽn) with
respect to a real-valued expression op(r1, . . . , rn), where õp is a floating-point
operator representing a real-valued operator op and ṽi is a floating-point value
representing a real value ri, for 1 ≤ i ≤ n. For that purpose, it is necessary to
consider: (a) the error introduced by the application of õp versus op and (b)
the propagation of the errors carried out by the arguments, i.e., the difference
between ṽi and ri, for 1 ≤ i ≤ n, in the application. In the case of arithmetic
operators, the IEEE-754 standard states that every operation should be per-
formed as if it would be calculated with infinite precision and then rounded
to the nearest floating-point value. Then, from Formula (1), the application of
an n-ary floating-point operator õp to the floating-point values ṽ1, . . . , ṽn must
fulfill the following condition.

|õp(ṽi)n
i=1 − op(ṽi)n

i=1| ≤ 1
2 ulp(op(ṽi)n

i=1), (2)

where the notation f(xi)n
i=1 is used to represent f(x1, . . . , xn).

To estimate how the errors of the arguments are propagated to the result of
the application of the operator, it is necessary to bound the difference between
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the application of the real operator on real values and the application of the same
operator on the floating-point arguments. The expression εop(ei)n

i=1 is used to
represent such difference, where each ei is a bound of the round-off error carried
by every floating point ṽi representing a real value ri, i.e., |ṽi−ri| ≤ ei. Therefore,
εop(ei)n

i=1 satisfies the following condition.

|op(ṽi)n
i=1 − op(ri)n

i=1| ≤ εop(ei)n
i=1. (3)

The following bound of the round-off error between the floating-point expres-
sion and the real-valued counterpart follows from Formula (2), Formula (3), the
triangle inequality, and the fact that ulp is monotonically increasing on non-
negative inputs [5].

|õp(ṽi)n
i=1 − op(ri)n

i=1| ≤ εõp(ri, ei)n
i=1, (4)

where εõp(ri, ei)n
i=1 = εop(ei)n

i=1 + 1
2 ulp(υ(ri, ei)n

i=1) and υ(ri, ei)n
i=1 is a real-

valued expression that satisfies |op(ṽi)n
i=1| ≤ υ(ri, ei)n

i=1.
Additional restrictions on the variables in Formula (4) are needed when the

operators are not total. For example, when dealing with the division operation,
it is necessary to guarantee that the second argument of both the floating-point
operator and the real-valued operator is not zero. The expressions ηop(ri)n

i=1 and
ηõp(ṽi)n

i=1 will be used to represent any such conditions on the arguments of the
operators.

In this work, the operators õp and op in Formula (4) are generic. They can
be instantiated with any floating point operation and its real counterpart as long
as Formula (4) holds for all ṽ1, . . . , ṽn ∈ F, ri, . . . , rn ∈ R, e1, . . . , en ∈ R≥0, when
|ṽi −ri| ≤ ei with 1 ≤ i ≤ n, ηop(ri)n

i=1, and ηõp(ṽi)n
i=1. Some examples of round-

off error approximation functions for arithmetic operators are presented below. It
is worth noting how the additional constraints are used in the division and in the
square root to guarantee the validity of the output, and in the subtraction and
arctangent to improve the precision of the error approximation. For example, as
mentioned in [5], the floating point subtraction ṽ1 −̃ ṽ2 can be exactly computed
when ṽ2 /̃ 2 ≤ x ≤ 2 ∗̃ ṽ2. This property is captured by the error approximation
function ε−̃′ and corresponding constraint η−̃′ shown below.

– ε+̃(r1, e1, r2, e2) := e1 + e2 + 1/2 ulp(|r1 + r2| + e1 + e2).
– ε−̃(r1, e1, r2, e2) := e1 + e2 + 1/2 ulp(|r1 − r2| + e1 + e2)η−̃(ṽ1, ṽ2) := (ṽ2/2 >

ṽ1) ∨ (ṽ1 > 2ṽ2).
– ε−̃′(r1, e1, r2, e2) := e1 + e2, η−̃′(ṽ1, ṽ2) := (ṽ2/2 ≤ ṽ1 ≤ 2ṽ2).
– ε∗̃(r1, e1, r2, e2) := |r1|e2 + |r2|e1 + e1e2 + 1/2 ulp((|r1| + e1)(|r2| + e2)).
– ε

/̃
(r1, e1, r2, e2) := |r1|e2+|r2|e1

r2r2−e2|r2| + 1/2ulp
(

|r1|+e1
|r2|−e2

)

, η/(r1, r2) := (r2 �= 0), and
η/̃(ṽ1, ṽ2) := (ṽ2 �= 0).

– ε−̃(r , e) := e.
– ε

˜abs
(r , e) := e.

– ε
˜floor

(r , e) := e + max (	r
 − 	r − e
, 	r
 − 	r + e
) + 1/2 ulp(|	r
| + e).
– ε

˜sqrt(r , e) :=
√

e+1/2 ulp(
√

r + e), ηsqrt(r) := (r ≥ 0), and η
˜sqrt(ṽ) := (ṽ ≥ 0).
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– ε
˜sin(r , e) := min(2, e) + 1/2 ulp(|sin(r)| + min(2, e)).

– εc̃os(r , e) := min(2, e) + 1/2 ulp(|cos(r)| + min(2, e)).
– ε

˜atan(r , e) := e + 1/2 ulp(atan(|r | + e)), ηatan(r , e) := (|r | ≤ e).
– ε

˜atan
′(r , e) := e

min((r−e)2,(r+e)2)+
1
2 ulp(atan(|r |+e)), ηatan′(r , e) := (|r | > e).

The fact that the previous definitions satisfy Formula (4) is formally proven
in PVS and the proofs are electronically available in the NASA PVS Library.

3 Denotational Semantics

In this section, a denotational semantics for a declarative expression language
that relies on the floating-point formalization presented in Sect. 2 is defined.
This semantics computes a symbolic expression representing the round-off error
of the program and collects the information needed to provide a certificate that
guarantees its soundness.

In the following, the sets of arithmetic and boolean expressions over reals are
denoted as A and B, respectively. The floating point counterparts of A and B

are denoted as ˜A and ˜B, respectively. The expression language considered in this
paper contains conditionals, let expressions, and function calls. Given a set Ω
of pre-defined arithmetic floating-point operations, a set Σ of function symbols,
and a denumerable set V of variables, ˜E denotes the set of program expressions,
which syntax is given by the following grammar.

˜A ::= k̃ | x | õp(˜A, . . . , ˜A) ˜B ::= true | false | ˜B ∧ ˜B | ˜B ∨ ˜B | ¬˜B | ˜A < ˜A | ˜A = ˜A

˜E ::= ˜A | if ˜B then ˜E else ˜E | let x = ˜A in ˜E | f̃(˜A, . . . , ˜A)
(5)

where ˜A ∈ ˜A, ˜B ∈ ˜B, ˜E ∈ ˜E, k̃ ∈ F, x ∈ V, õp ∈ Ω, and f̃ ∈ Σ.
A program is defined as a set of function declarations of the form

f̃(x1, . . . , xn) = ˜E , where x1, . . . , xn are pairwise distinct variables in V and all
free variables appearing in ˜E are in {x1, . . . , xn}. The natural number n is called
the arity of f̃ . Henceforth, it is assumed that programs are well-formed in the sense
that for every function call f̃(x1, . . . , xn) that occurs in a program ˜P , a unique
function f̃ of arity n is defined in ˜P . The set of programs is denoted as ˜P.

The proposed semantics collects, for each program path, the corresponding
path conditions (for both the real and the floating-point flow), and two symbolic
arithmetic expressions representing (1) the value of the output assuming the use
of real arithmetic and (2) an upper bound for the accumulated round-off error
that the result might include due to floating-point operations. Furthermore, the
semantics computes a symbolic proof of the correctness of the computed round-
off error. The set of symbolic proofs that can be generated by the semantics is
denoted by Π . The previous information is stored in a conditional error bound,
which is a tuple on the form (η, η̃, r, e, π) where η ∈ B, η̃ ∈ ˜B, r, e ∈ A, π ∈ Π ,
and such that η �= false and η̃ �= false. Intuitively, (η, η̃, r, e, π) means that
if the conditions η and η̃ are true, then the output of the ideal real numbers
implementation of the program is r, and π is a formal proof that the round-off
error of the floating-point implementation is bounded by e.
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Both real and floating-point path conditions are collected in order to detect
the presence of the program flow anomaly usually referred to as unstable test.

Definition 1 (Test Stability). Let R
B

: ˜B → B be the function converting
a floating-point expression to a real one, by simply replacing each operation on
floating-point with the corresponding operation on reals and by applying R to the
floating-point values.

A conditional expression if φ̃ then Ẽ1 else Ẽ2 is said to be unstable when it
exists an assignment for the variables in φ̃ to F such that φ̃ and R

B
(φ̃) evaluate

to a different boolean value. Otherwise the conditional expression is said to be
stable.

The presence of unstable tests makes the floating-point control flow different from
the real arithmetic execution flow, and leads to unsound results when rounding
errors provoke the unsound evaluation of conditionals. By separately collecting
the information about real and floating-point flows, it is possible to consider the
additional error of taking the incorrect branch in the cases in which the flows do
not match. This guarantees a sound treatment of unstable tests in the proposed
semantics.

Let C be the set of all conditional error bounds, and C := ℘(C) be the
domain formed by sets of conditional error bounds, which is the support domain
of the proposed semantics. An environment is defined as a function mapping a
variable to a set of conditional error bounds, i.e., Env = V → C. The empty
environment is denoted as ⊥Env and maps every variable to the empty set ∅.

The semantics of arithmetic expressions is a function A : ˜A × Env → C

defined as follows, where σ ∈ Env , x ∈ V, and φr, φe : V → V are two functions
that associate to each variable x a fresh variable representing the real value
and the error of x, respectively. Let õp be an n-ary floating-point operator in
Ω such that its real-valued counterpart is denoted as op. As stated in Sect. 2,
it is assumed that there exists a function εõp such that Formula (4) holds and
let πõp(πi)n

i=1 be a proof for that statement, which is defined in function of the
proofs πi corresponding to õp operands. Furthermore, πcnst and πvar are the
proofs of Formula (4) for the constant and variable cases, respectively, which
must be provided according to the formalization of Sect. 2.

A�k̃�σ := {(true, true, k̃ , 0, πcnst)} (6)
A�F(k)�σ := {(true, true, k, |k − F(k)|, πcnst)} (7)

A�x�σ :=

{
{(true, true, φr (x), φe(x), πvar (x))} if σ(x) = ∅

σ(x) otherwise
(8)

A�õp(Ãi)
n
i=1�σ := (9)

⋃
{ (

n∧
i=1

ηi ∧ ηop(ri)
n
i=1,

n∧
i=1

η̃i ∧ ηõp(Ãi)
n
i=1, op(ri)

n
i=1, εõp(ei)

n
i=1, πõp(πi)

n
i=1)

| ∀1 ≤ i ≤ n : (ηi, η̃i, ri, ei, πi) ∈ A�Ãi�σ, ηop(ri)
n
i=1 ∈ B, ηõp(Ãi)

n
i=1 ∈ B̃,

n∧
i=1

ηi ∧ ηop(ri)
n
i=1 �= false,

n∧
i=1

η̃i ∧ ηõp(Ãi)
n
i=1 �= false}
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No rounding error is associated to a floating-point constant k̃ , while the error
of rounding a real constant k is the difference between its real value and its
rounding. The semantics of a variable x ∈ V is composed of two cases. If x
belongs to the environment, then the variable has been previously bound to an
arithmetic expression ˜A through a let-expression. In this case, the semantics
of x is exactly the semantics of ˜A. If x is not in the environment, then x is a
parameter of the function. Here, a new conditional error bound is added with two
fresh variables, φr (x) and φe(x), representing the real value and the error of x,
respectively. In the case of a floating-point arithmetic operation õp, the new error
bound is obtained by applying εõp to the errors and real values of the operands
and the new conditions are obtained as the combination of the conditions of
the operands. Predicates ηop and ηõp represent the additional constraints needed
when op and õp are not total (as explained in Sect. 2). The proof for õp is defined
by merging πõp with the proofs of its operands.

Let K := {f̃(x1, . . . , xn) | f̃ ∈ Σ, x1, . . . , xn ∈ V} be the set of all possible
function calls. An interpretation is a function ρ : K → C modulo variance. The
set of all interpretations is denoted as Int . The empty interpretation is denoted
as ⊥Int and maps everything to the empty set. Given σ ∈ Env and ρ ∈ Int , the
semantics of program expressions, E : ˜E × Env × Int → C, returns the set of
conditional error bounds representing an upper bound of the round-off error for
each execution path, together with the corresponding conditions.

E�Ã�ρ
σ := A�Ã�σ (10)

E�let x = Ã in Ẽ�ρ
σ := E�Ẽ�ρ

σ[x �→A�˜A�σ ]
(11)

E�if B̃ then Ẽ1 else Ẽ2�
ρ
σ := E�Ẽ1�

ρ
σ ⇓(R

˜B
(˜B),˜B) ∪ E�Ẽ2�

ρ
σ ⇓(¬ R

˜B
(˜B),¬˜B) ∪ (12)⋃

{(η1 ∧ η2, η̃1, r2, e1 + |r1 − r2|, πun(r1, r2, π1)) | (η1, η̃1, r1, e1, π1) ∈ E�Ẽ1�
ρ
σ,

(η2, η̃2, r2, e2, π2) ∈ E�Ẽ2�
ρ
σ, η1 ∧ η2 �= false} ⇓(¬ R

˜B
(˜B),˜B) ∪⋃

{(η1 ∧ η2, η̃2, r1, e2 + |r1 − r2|, πun(r1, r2, π2))) | (η1, η̃1, r1, e1, π1) ∈ E�Ẽ1�
ρ
σ,

(η2, η̃2, r2, e2, π2) ∈ E�Ẽ2�
ρ
σ, η1 ∧ η2 �= false} ⇓(R

˜B
(˜B),¬˜B)

E�f̃(Ãi)
n
i=1�

ρ
σ :=

⋃
{(η ∧

n∧
i=1

ηi, η̃ ∧
n∧

i=1

η̃i, r̄, ē, π̄) | (η, η̃, r, e, π) ∈ ρ(f̃ (x1 . . . xn)),

(13)

∀1 ≤ i ≤ n : (ηi, η̃i, ri, ei, πi) ∈ A�Ãi�σ, r̄ = r[φr (x1)/r1, . . . , φr (xn)/rn],

ē = e[φe(x1)/e1, . . . , φe(xn)/en], π̄ = π[φr (x1)/r1, . . . , φr (xn)/rn, φe(x1)/e1,

. . . , φe(xn)/en, πvar (x1)/π1, . . . , πvar (xn)/πn], η ∧
n∧

i=1

ηi �= false, η̃ ∧
n∧

i=1

η̃i �= false}

Intuitively, the semantics of the expression let x = ˜A in ˜E updates the current
environment by associating to variable x the semantics of expression ˜A.

The semantics of the conditional uses an auxiliary operator ⇓ for propagating
new information in the conditions. Given b ∈ B and b̃ ∈ ˜B, (η, η̃, r, e, t) ⇓(b,b̃)=
(η ∧ b, η̃ ∧ b̃, r, e, t) if η ∧ b �= false and η̃ ∧ b̃ �= false, otherwise it is undefined.
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The definition of ⇓ naturally extends to sets of conditional error bounds: given
C ⊆ C, C ⇓(b,b̃)=

⋃

c∈C c ⇓(b,b̃). Tests in conditionals need to be treated carefully

to guarantee soundness. Consider the conditional if ˜B then ˜E1 else ˜E2. The
semantics of ˜E1 and ˜E2 are enriched with the information about the fact that
real and floating-point flows match, i.e., both ˜B and R

B
(˜B) have the same value.

If real and floating point flows do not coincide, the error of taking one branch
instead of the other has to be considered. For example, if ˜B is satisfied but R

B
(˜B)

is not, the then branch is taken in the floating point computation, but the else
would have been taken in the real one. In this case, the error is the difference
between the real value of the result of ˜E2 and the floating point result of ˜E1.
It is easy to show that this error is bounded by the round-off error of ˜E1 plus
the difference between the real values of ˜E1 and ˜E2. The condition (¬R

B
(˜B), ˜B)

is propagated in order to model that ˜B holds but R
B
(˜B) does not. The proof

πun formalizes the previous argumentation in terms of the formal development
defined in Sect. 2.

The semantics of a function call combines the conditions coming from the
interpretation of the function and the ones coming from the semantics of the
parameters. Variables representing real values and errors of formal parameters
are replaced with the symbolic expressions coming from the semantics of the
actual parameters, and the proofs for the variables representing formal parame-
ters are replaced by the proofs for the actual parameters.

The semantics of a program is a function F : ˜P × Env → C defined as
the least fixed point (lfp) of the immediate consequence operator P : ˜P ×
Env × Int → C, i.e., given ˜P ∈ ˜P, F� ˜P � := lfp(P� ˜P �⊥Int

⊥Env
), which is defined

as P� ˜P �ρ
σ(f̃ (x1 . . . xn)) := E�˜E�ρ

σ for each function symbol f̃ defined in ˜P such
that f̃ (x1 . . . xn) = ˜E ∈ ˜P . The least fixed point of P is guaranteed to exist
from the Knaster-Tarski Fixpoint theorem [7]. In fact, it is easy to see that
(C,⊆,∪,∩,C, ∅) is a complete lattice and P is monotonic over C, since at each
iteration new conditional error bounds are added but not removed. When the
program terminates in a finite number of steps for any possible input, this fix-
point computation converges in a finite number of steps. While this is a restrictive
assumption in general, it is not unreasonable in avionics or embedded software,
which tends to avoid recursion. However, in the future, the use of precise widen-
ing operators [8] on abstractions of this semantics will be explored in order to
ensure the convergence for a wider variety of programs.

The semantics presented in this section allows for a static analysis that is
compositional and parametric with respect to the functions used to approxi-
mate the round-off error of the arithmetic operations. Indeed, any floating-point
operation õp can be supported by this analysis, as long as an approximation
error function εõp satisfying Formula (4) is provided.

4 PRECiSA

PRECiSA (Program Round-off Error Certifier via Static Analysis) is a prototype
implementation of the static analysis proposed in Sect. 3. PRECiSA accepts as
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input a floating-point program in the grammar defined in Sect. 3 and automati-
cally generates an estimation of the floating-point round-off error together with
proof certificates in PVS ensuring this estimation is correct.

Figure 1 depicts the functional architecture of PRECiSA. Given an input pro-
gram, its semantics as defined in Sect. 3 is computed. This semantics is instan-
tiated with the error approximation functions of the floating-operators from
Sect. 2. Additionally, in order to improve the precision, PRECiSA distinguishes
special cases in which the error estimation can be refined depending on the
input. These cases include the subtraction x −̃ y when y /̃ 2 ≤ x ≤ 2 ∗̃ y, and the
multiplication for a non-negative power of 2, which can be computed exactly.

Fig. 1. PRECiSA architecture.

For each function f̃ in the input program, a set of conditional error bounds is
generated. Each conditional error bound, corresponding to a possible computa-
tional flow of f̃ , is then translated into a PVS lemma stating that, provided the
conditions are satisfied, the floating-point value resulting from the execution of
f̃ on floating-point values differs from the exact real-number computation by at
most the round-off error approximation computed by the semantics. The trans-
lation of a conditional error bound (η, η̃, r, e, π) into a PVS lemma is straight-
forward. The hypotheses of the lemma are η and η̃. The conclusion states that
the difference between r and the output of f̃ using floating-point arithmetic is at
most e. Since proving lemmas in PVS can be a tedious task and it often requires
a high level of expertise, PRECiSA generates the proof script corresponding to
each generated PVS lemma from the symbolic proof π.

PRECiSA computes round-off errors in symbolic form so that the analy-
sis is modular and independent from the initial values of the input variables.
As explained above, PRECiSA translates this symbolic information into PVS
lemmas and proofs. Additionally, given some initial ranges for the input vari-
ables, PRECiSA computes concrete numerical estimations of these symbolic
error expressions. Furthermore, it also generates PVS lemmas (and proof scripts)
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stating the correctness of such concrete bounds, and an additional lemma assur-
ing the overall concrete round-off error of the function, independently from the
chosen computational flow.

In order to compute the concrete numerical bounds, the branch-and-bound
algorithm presented in [9] has been enhanced to support the symbolic error
expressions produced by PRECiSA. This branch-and-bound algorithm relies on
a parametric enclosure method for computing provably correct approximations
of real-valued arithmetic expressions. PRECiSA currently uses interval arith-
metic, but other enclosure methods such as Bernstein polynomials and affine
arithmetic can be used since they are already defined in PVS [10,11]. The algo-
rithm recursively splits the domain of the function into smaller subdomains
and computes an enclosure of the original expression in these subdomains. The
recursion stops when a precise enclosure is found, based on a given precision, or
when the maximum recursion depth is reached. The output of the algorithm is
a numerical enclosure for the error expression. If the error expression is unde-
fined for the range of the input values, e.g., when the range of an input value
includes zero and that value is used in a division, the algorithm returns an error.
This enhanced branch-and-bound algorithm is specified and formally verified in
PVS. Hence, the numerical bounds of the error expressions are provably sound
concretizations of the symbolic bounds generated using the semantics of Sect. 3.

As shown in Fig. 1, the current version of PRECiSA outputs two different
PVS files: one containing the lemmas and proofs on the symbolic error bounds
and one including the lemmas and proofs on the concrete numerical error bounds
computed assuming specific initial ranges for the input variables. These files can
be automatically discharged in PVS with no user intervention.

The rest of this section illustrates the use of PRECiSA in the formal analy-
sis of the Compact Position Reporting (CPR) algorithm, which is part of the
Automatic Dependent Surveillance Broadcast (ADS-B) protocol. This protocol,
which is a safety-critical component of advanced air traffic operational concepts,
ensures that every aircraft automatically and periodically broadcast its current
position and velocity vectors to nearby aircrafts and ground stations. The CPR
algorithm is used to encode and decode the aircraft position (latitude and longi-
tude). The standard organizations responsible for this protocol (RTCA in the US
and EUROCAE in Europe) are currently studying reports of numerical stability
issues in CPR. As part of the work presented in this paper, the authors have
confirmed that under some circumstances, CPR may report incorrect aircraft
positions that are several miles off of the actual position.

The CPR decoding function rLat is presented below. This function recovers
the current latitude of the aircraft starting from the received encoded latitude
YZ and a given reference latitude LatS (in degrees). The reference latitude, in
general, corresponds to a previously decoded latitude.

j(LatS ,YZ) = fl̃oor((LatS /̃(360 /̃ 59) −̃(YZ /̃ 131072)) +̃ 0.5) (14)

rLat(LatS ,YZ) = 360 /̃ 59 ∗̃(j(LatS ,YZ) +̃(YZ /̃ 131072)) (15)
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PRECiSA is able to differentiate the cases in which the accumulated error
in the argument of the floating-point floor operation is large enough to make
its result different from the ideal result for at least one unit. In cases where the
accumulated error does not affect the result of the floor, PRECiSA computes a
round-off error of 6.547117 × 10−14 on rLat assuming double precision floating-
point arithmetic and the following ranges for the inputs: LatS ∈ [−90, 90] and
YZ ∈ [0, 131071]. The symbolic bound is generated in 0.18 s and the concrete
value is computed in 1.31 s. For these cases, it can be proved that the latitude
decoded by the double precision floating-point procedure corresponds to its ideal
definition.

On the contrary, when the accumulated error affects the result of the floor,
PRECiSA computes an error bound of ≈ 6.1, which corresponds to several hun-
dred nautical miles off with respect to the original position. The characterization
of the input values to CPR that cause the floor operation to be unstable is still
a matter of research.

5 Experimental Results

In this section, PRECiSA is compared in terms of accuracy and performance
with the following floating-point analysis tools: Gappa (ver. 1.3.1) [12], Fluctuat
(ver. 3.1376) [13], FPTaylor (ver. 0.9) [14] and Real2Float [15] (see Sect. 6 for
a description of each tool). This comparison was performed using benchmarks
taken from the FPTaylor repository. The selected benchmarks involve nonlinear
expressions and polynomial approximations of functions, taken from well-known
equations used in physics, control theory, and biological modeling. The exper-
imental environment consisted of a 2.5 GHz Intel Core i7-4710MQ with 24 GB
of RAM, running under Ubuntu 16.04 LTS. The benchmarks presented in this
section and the corresponding PVS certificates are available as part of the PRE-
CiSA distribution.

Table 1 shows the round-off error bounds computed by the aforementioned
tools. Since FPTaylor offers two different modes for the analysis, only the best
estimation obtained with either mode is reported in the table. Gappa and Fluc-
tuat allow the user to manually provide hints to obtain tighter error bounds.
However, for the sake of uniformity in the comparison, the table only shows
error estimations that are fully automatically computed. For the same reason,
for all examples and tools, input variables and constants are assumed to be real
numbers. This means that they carry a round-off error that has to be taken into
consideration in the analysis.

It can be seen in Table 1 that FPTaylor and PRECiSA produce more tight
results than the other approaches. This is probably because both tools use accu-
rate symbolic error expressions and optimization techniques to compute the
numerical error bounds.
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Table 1. Experimental results for absolute round-off error bounds (bold indicates the
best approximation, italic indicates the second best.)

Gappa Fluctuat Real2Float FPTaylor PRECiSA

carbonGas 2.61e−08 4.51e−08 2.21e−08 8.06e−09 7.32e−09

verhulst 4.18e−16 5.51e−16 4.66e−16 2.47e−16 2.91e−16

predPrey 2.04e−16 2.49e−16 2.51e−16 1.59e−16 1.77e−16

rigidBody1 2.95e−13 3.22e−13 5.33e−13 2.95e−13 2.95e−13

rigidBody2 3.61e−11 3.65e−11 6.48e−11 3.61e−11 3.60e−11

doppler1 2.02e−13 3.90e−13 7.65e−12 1.58e−13 1.99e−13

doppler2 3.92e−13 9.75e−13 1.57e−11 2.89e−13 3.83e−13

doppler3 1.08e−13 1.57e−13 8.59e−12 6.62e−14 1.05e−13

turbine1 8.40e−14 9.20e−14 2.46e−11 1.67e−14 2.33e−14

turbine2 1.28e−13 1.29e−13 2.07e−12 1.95e−14 3.07e−14

turbine3 3.99e+01 6.99e−14 1.70e−11 9.64e−15 1.72e−14

sqroot 5.71e−16 6.83E−16 1.28e−15 5.02e−16 4.29e−16

sine 1.13e−15 7.97E−16 6.03e−16 4.43e−16 5.96e−16

sineOrder3 8.89e−16 1.15E−15 1.19e−15 5.94e−16 1.11e−15

The times for the computation of the bounds in Table 1 are shown in Table 2.4

It can be noticed that Gappa and Fluctuat are the fastest approaches. How-
ever, Gappa sometimes produces too coarse over-estimates (see for example tur-
bine3 in Table 1) presumably because it uses interval arithmetic to compute
the bounds. Unlike the other tools considered here, Fluctuat does not produce
certificates for the soundness of its results.

PRECiSA, FPTaylor, and Real2Float show similar performance in half of
the cases. However, in the other half, PRECiSA takes much longer in computing
the bounds. This difference in the performance may be due to the fact that
the calculation of the concrete bounds is performed inside the theorem prover.
Conversely, the rest of the tools use specific developments that allow them to
perform more efficiently. A possible enhancement for PRECiSA is to use a more
performant tool to compute the bounds such as the Kodiak solver [16], a C++
implementation of the same branch and bound algorithm used by PRECiSA.

6 Related Work

Diverse techniques to estimate round-off error of floating-point computations can
be found in the literature. Fluctuat [13] is a commercial analyzer that accepts as

4 Times for PRECiSA do not include type-checking of the PVS formalization, which
takes approximately 4min. However, this type-checking only occurs once at the
beginning of the same PVS session used to compute all the bounds in Table 1.
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Table 2. Times in seconds for the generation of round-off error bounds. For PRECiSA
the parameters used for the branch-and-bound search are shown next to the time in
seconds as the pair (max depth, precision).

Gappa Fluctuat Real2Float FPTaylor PRECiSA

carbonGas 0.152 0.025 0.815 1.209 3.830 (5, 10−9)

verhulst 0.034 0.043 0.465 0.812 0.789 (3, 10−17)

predPrey 0.052 0.031 0.735 0.916 0.477 (1, 10−17)

rigidBody1 0.086 0.029 0.494 0.877 0.653 (1, 10−12)

rigidBody2 0.112 0.024 0.287 1.115 0.565 (1, 10−7)

doppler1 0.057 0.025 5.998 3.026 107.696 (12, 10−14)

doppler2 0.069 0.029 5.993 3.008 26.520 (10, 10−13)

doppler3 0.063 0.029 5.970 21.927 45.875 (10, 10−14)

turbine1 0.165 0.028 67.960 2.906 110.272 (14, 10−15)

turbine2 0.100 0.026 3.972 1.939 7.145 (5, 10−14)

turbine3 0.130 0.026 67.460 3.430 351.022 (18, 10−16)

sqroot 0.281 0.024 0.712 1.157 0.343 (1, 10−14)

sine 0.145 0.025 0.948 1.296 6.023 (5, 10−17)

sineOrder3 0.114 0.026 0.304 0.847 1.616 (6, 10−17)

input a C (or ADA) program with annotations about input ranges and uncer-
tainties, and produces bounds for the round-off error of the program expressions
decomposed with respect to its provenance. Fluctuat provides support for itera-
tive programs and unstable tests. It uses a zonotopic abstract domain [17] that
is based on affine arithmetic. The prototype implementation presented in this
paper is not competitive with Fluctuat in terms of speed. However, PRECiSA,
which is publicly available under NASA’s Open Source Agreement, provides a
formal proof certificate of the correctness of the computed error estimation. The
experimental evaluation shows that, for the considered benchmarks, both Fluc-
tuat and PRECiSA provide similar results in terms of accuracy.

The tool FPTaylor [14] uses symbolic Taylor expansions to approximate
floating-point expressions and applies a global optimization technique to obtain
tight bounds for round-off errors. In addition, FPTaylor emits certificates for
HOL Light [18], similarly to PRECiSA. Because of the technique used by FPTay-
lor, it is restricted to smooth functions. Therefore, it is not able to deal with
non-derivable functions such as absolute value or floor, which are used, for exam-
ple, in the CPR algorithm considered in Sect. 4. Unlike PRECiSA, which targets
programs with conditional and function calls, FPTaylor is designed to analyze
arithmetic expressions.

VCFloat [19] is a tool that automatically computes round-off error terms for
numerical C expressions along with their correctness proof in Coq. This tool
uses interval arithmetic to approximate the error bounds and generates validity
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conditions on the expressions. VCFloat computes the ulp by using the maximum
exponent allowed in the floating-point representation, while PRECiSA computes
the actual exponent for the maximum absolute value in the expression bounds,
leading to more accurate estimations.

Real2Float[15] computes certified bounds for round-off errors by using an
optimization technique employing semidefinite programming and sum of square
certificates. Real2Float handles the ulp in the same way as VCFloat, which can
result in coarser error approximations.

Gappa [12] computes enclosures for floating-point expressions via interval
arithmetic. This enclosure method enables a quick computation of the bounds,
but sometimes it can result in pessimistic error estimations. This tool also gen-
erates a proof of the results that can be checked in the Coq proof assistant. In
Gappa, the bound computation, the certification construction, and their verifi-
cation may require hints from the user. Thus, some level of expertise is required,
unlike PRECiSA which is fully automatic.

Rosa [20] automatically compiles an ideal real number program to a floating-
point one with the aim of minimizing the overall round-off error. In the same line,
FPTuner [21] implements a rigorous approach to precision allocation supporting
also mixed-precision.

7 Conclusion

In this paper, a static analysis technique for estimating floating-point round-
off errors is presented. The analysis enables the automatic generation of formal
proof certificates of the correctness of such estimations. The analysis enjoys
several useful features. It is defined in a compositional way, which allows for an
incremental, modular, and efficient treatment of the program being analyzed.
It is fully automatic, thus no human intervention is required to generate and
formally verify the error estimations. The technique supports the generation
of formal certificates that can be checked by an external tool. The proposed
static analysis is sound with respect to unstable conditions. In the literature,
the stable test hypothesis is widely used to deal with this problem. However, this
hypothesis may yield unsound results when the real flow does not correspond
to the floating-point one. To the best of the authors’ knowledge, the only other
techniques that are sound with respect to unstable tests are the one presented in
[22] for the Fluctuat analyzer and Rosa [20]. The proposed analysis is parametric
with respect to floating-point precision and rounding mode. Finally, it can be
extended with any floating-point operator provided the existence of a round-off
error estimation that satisfies some basic properties.

The proposed technique is implemented in the prototype tool PRECiSA.
PRECiSA is fully automatic and generates PVS certificates that guarantee the
correctness of the error bounds with respect to the floating-point IEEE-754 stan-
dard. Furthermore, given concrete ranges for the input variables of a program,
the numerical estimations computed by PRECiSA are provably sound over-
approximations of the possible round-off error that can occur in the program.
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The current implementation of PRECiSA supports single and double-precision
floating-point formats and provides all the to-the-nearest rounding modalities
introduced in the IEEE-754 standard. In the implementation of PRECiSA, the
semantics-based analysis and the PVS floating-point formalization are com-
pletely independent from the numerical evaluation of the error expression. This
means that different techniques can be used for the concrete bound estimation
depending on the expression type and on the desired precision/efficiency trade-
off. Currently, PRECiSA uses a branch-and-bound algorithm based on interval
arithmetic. Preliminary experimental results are encouraging for the applicabil-
ity of PRECiSA in the formal verification of software of interest to NASA.

The floating-point round-off error formalization presented in this paper is
available as part of the NASA PVS Library (https://github.com/nasa/pvslib).
It consists of more than 150 PVS theories and several new proof strategies.
Although the framework can be implemented in any modern proof assistant, the
choice of PVS for this research project is convenient for the following reasons.
First, PVS is used in the verification and validation of algorithms and concepts
developed under NASA’s Safe Autonomous Systems Operations (SASO) Project
such as separation assurance algorithms for unmanned aircraft systems [23].
These algorithms, which involve critical numerical computations, are used as test
cases for the framework and tool proposed here. Second, the NASA PVS Library
includes independently developed hardware-level [4] and high-level [5] formaliza-
tions of floating-point arithmetic, which are proved to be equivalent. The latter
formalization is used and extended in this paper. Third, the NASA PVS Library
also includes several formalizations of enclosure methods such as interval arith-
metic [24], Bernstein polynomial basis [11], and affine arithmetic [10], which can
be easily integrated in PRECiSA for computing concrete bounds of round-off
errors. Finally, because of the automation support provided by PVS, no exper-
tise in theorem proving is actually required to use the formalization presented
in this paper.

The main drawback of the proposed approach is that it can generate large
certificates for programs with nested conditionals. In fact, the number of condi-
tional error bounds may grow exponentially in some cases due to the unstable
tests handling (four different conditional error bounds may be generated for
each conditional). In order to deal with this problem, an abstract semantics col-
lapsing conditional error bounds produced after a given depth is being defined
and will be integrated into PRECiSA in the near future. In this way, the num-
ber of elements in the semantics is reduced and consequently also the size of
the generated proof certificate. Alternatively, the stable test hypothesis can be
optionally enabled by the user in order to reduce the number of generated lem-
mas as done in most tools, although this may come at the cost of soundness.
The support of recursion and loops will also be considered by defining abstrac-
tions on the domain of conditional error bounds and widening operators on these
domains. Another future direction is the automatic generation of ACSL anno-
tations related to round-off errors of C programs. The annotated program could
then be automatically verified in a tool like Frama-C [25].

https://github.com/nasa/pvslib
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Abstract. The Classification Tree Method (CTM) is a structured and
diagrammatic modeling technique for combinatorial testing. CTM can
express the notion of “parameter shielding”, the phenomenon that some
system parameters become invalidated depending on another system
parameter. The current form of CTM, however, is limited in its expres-
siveness: it can only express parameter shielding that depends on a single
parameter. In this paper, we extend CTM with parameter shielding that
depends on multiple parameters, proposing CTMshield. We evaluate the
proposed extension on several industrial systems. The evaluation finds
that parameter shielding often depends on multiple parameters in real
systems, and the effectiveness of the extension.

1 Introduction

Testing is an important and often a necessary system development process for
assuring system quality in current industrial practice. Combinatorial testing is a
system testing technique, that effectively tests the interactions of parameters in
a system under test. Combinatorial testing derives, typically from specification,
a test model, which consists of a list of parameter-values and constraints over
them. Based on such test models, test suites are designed, that consider various
coverage criteria, such as t-way testing [1,2].

Figure 1 shows an example test model, which specifies an IC card system with
six parameters, each having two to three values: the Age of the card owner, the
Balance that is already charged in the card, whether Credit Card (C.C.) informa-
tion is available or not, the Charge Method (C.M.) and Charge Amount (C.A.)
the owner specifies to the system, and the Monthly Total (M.T.) amount of
usage. The model also indicates constraints in logic formula, specifying valid
(and invalid) value combinations. The two constraints in the example model
specify the following specifications:
c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 230–241, 2017.
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Fig. 1. A test model example for an IC card system; it consists of a parameter-values
list (left) and a set of constraints (right).

– “An IC card owned by a child cannot have Credit Card information.”
– “The Charge Method can be by credit card only if a Credit Card information

is available.”

Table 1 shows, as a test suite example, a 2-way test suite of the test model.

Table 1. A 2-way test suite for the test model of Fig. 1, which covers all valid value
pairs but avoids invalid ones, e.g. 〈C.C.=with, Age=child〉, specified by the constraints.

No. Age Balance C.C. M.T. C.M. C.A.

1 child >190e w/o ≤390e cash 10e

2 child ≤190e w/o >390e cash 50e

3 adult >190e w/o ≤390e cash 50e

4 adult ≤190e with >390e c.c 10e

5 senior >190e with ≤390e c.c 50e

6 senior ≤190e w/o ≤390e cash 50e

7 senior >190e with >390e cash 10e

A key challenge in applying combinatorial testing in real-world development
is modeling, a. k. a. Input Parameter Modeling [2] or Input Domain Mod-
eling [3]. Models in real-world systems often involve complex constraints on
parameter-values. This makes modeling a time-consuming and error-prone task
that requires experience and creativity of test experts.

Classification Tree Method (CTM) [4–6] is a structured and diagrammatic
approach for the modeling problem. The main characteristic of CTM is that,
using a tree-structured modeling language called Classification Trees (CTs), is
to be able to describe the notion of “Parameter shielding” concisely, which is
a phenomenon that some parameters become invalided (i.e., shielded) if some
specific values are (or are not) assigned to another parameter.

Suppose, for instance, the following specification SPEC1 is added to the
system:

SPEC1: “Charging is allowed only if the Balance is below 190e.”
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Figure 2 shows a CTM model that expresses this specification using a tree struc-
ture. The tree structure expresses not only that (1) the relation between para-
meters and values, but also (2) compositions of parameters and (3) parame-
ter shielding. The rounded rectangle node Charge combines Charge Method and
Charge Amount of the previous example, and appears under value ≤190e of
Balance. This expresses that the two parameters become valid only when the
Balance is below 190e, and become invalid (shielded) otherwise. Table 2 shows
a 2-way test suite for the CTM model. Note that some parameters are assigned
the vain value “—” when they are invalid. Note also that the test suite of Table 1
is not a valid 2-way test suite for the current model anymore, since, e.g., test
case No. 1 in Table 1 is not executable under SPEC1.

Fig. 2. A CTM test model for the IC card system that expresses SPEC1.

Table 2. A 2-way test suite for the model of Fig. 2 under SPEC1, where parameters
C.M. and C.A. are shielded (as assigned the vain value ‘—’) when Balance is >190e.

No. Age Balance C.C. M.T. C.M. C.A.

1 child ≤190e w/o ≤390e cash 10e

2 child ≤190e w/o >390e cash 50e

3 child >190e w/o >390e — —

4 adult ≤190e with >390e c.c 10e

5 adult ≤190e w/o ≤390e cash 50e

6 adult >190e with ≤390e — —

7 senior ≤190e with >390e cash 10e

8 senior ≤190e with ≤390e c.c 50e

9 senior >190e w/o ≤390e — —

Parameter shielding expressed in a tree structure is a unique and useful fea-
ture of CTM; however, its limitation is that it can only describe parameter
shielding that depends on a single parameter-value. The reason is obvious: the
dependencies of parameter shielding are expressed within the tree structure, and
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Table 3. A valid 2-way test suite under SPEC2, where parameters C.M. and C.A. are
shielded when either Balance is >190e or M.T. is >390e.

No. Age Balance C.C. M.T. C.M. C.A.

1 child ≤190e w/o ≤390e cash 50e

2 child ≤190e w/o ≤390e cash 10e

3 child >190e w/o >390e — —

4 adult ≤190e with ≤390e cash 10e

5 adult ≤190e with ≤390e c.c 50e

6 adult >190e with ≤390e — —

7 senior ≤190e w/o >390e — —

8 senior ≤190e w/o ≤390e c.c 50e

9 senior ≤190e with ≤390e cash 10e

10 senior >190e with >390e — —

Fig. 3. A CTM test model for the IC card system uner SPEC2, which expresses a test
model of the test suite in Table 3.

hence a parameter can only have one parent. In our case studies applying combi-
natorial testing and CTM to industrial systems, however, we often encountered
a demand to express parameter shielding that depends on multiple parameter-
values.

For instance, suppose SPEC1 is refined as in the following specification
SPEC2:

SPEC2: “Charging is allowed only if the Balance is below 190e and
Monthly Total usage is below 390e.”

As the node Charge should be shielded depending on two (i.e., multiple)
parameter-values, this is a typical example of the multi-dependent parameter
shielding. Note this time that the test suite of Table 2 is not a valid 2-way test
suite anymore, since, e.g., test case No. 2 is not executable under the refined spec-
ification SPEC2. A valid 2-way test suite under SPEC2 is as shown in Table 3.
Further, it is now difficult to model SPEC2 concisely in CTM. The reason is, as
explained, a tree node cannot have multiple parents.



234 T. Kitamura et al.

A possible solution that CTM can do is to explicitly handle the vain values
and complex constraints involving them as in Fig. 3. However, we assume such
manipulations on test models makes themselves too complex and busy, losing
conciseness, for engineers to creates and maintain, especially in dealing with
industrial-scaled large systems.

In this paper, we propose CTMshield, by extending CTM with parameter
shielding that can depend on multiple parameter-values, or more generally an
arbitrary logic formula. Figure 4 shows the basic idea of the extension, by show-
ing an test model example in CTMshield which expresses SPEC2. Observe that
CTMshield is extended with the additional description called (parameter) shield-
ing conditions. Observe also that the shielding condition in Fig. 4 specifies SPEC2
directly, using the notation “P ←shield V ” to mean parameter-value V shields
parameter P . In such a way, we aim to avoid explicitly handling the vain values
and complex constraints to express parameter shielding, and thus to retain test
models concise and readable. To evaluate the effectiveness of the proposed exten-
sion, we conduct experiments via case studies, where we applied combinatorial
testing to test industrial systems in the railway domain, using CTMshield. As
summary, the experimental results showed that parameter shielding was used
in 72% of the cases; CTMshield was able to reduce the tree size by 7.13% and
the length of constraints by 22.9% on average, compared with CTM of [7,8].
Therefore, CTMshield contributes to saving human effort on modeling.

The paper is organized as follows. Section 2 mentions related studies.
Section 3 clarifies the design of CTMshield. Section 4 reports our experimental
study to evaluate the effectiveness of the proposed extension. Section 5 states
our plan for future work.

Fig. 4. A CTMshield test model that expresses SPEC2 and hence is a test model of the
test suite in Table 3.

2 Related Work

CTM has been recognized as a key technique in the field of combinatorial test-
ing [2], and has been studied on various aspects. For example, Lehmann and
Wegener [5] introduced constraints to the original CTM [7] to extend its expres-
siveness. Prioritizing test cases was studied for effective test design in the setting
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of CTM [6]. A test generation algorithm dedicated to CTM was developed in [8].
Also, experimental data in [8] indicate that the structured aspect of CTM reduces
the lengths of constraints to be described. For industrial aspects, CTM has been
used in industries of safety-critical domains: e. g., it is used in a standard test
documentation in automotive industry [9]. Driven by industrial demand, tools
to support CTM have been developed by several vendors [10].

The notion of parameter shielding in combinatorial testing has been stud-
ied in several different approaches. To our knowledge, the earliest work that
is relevant for CTM is by Grochtmann [4]; however, its focus does not seem
on parameter shielding but on diagrammatic approaches, as the phenomenon
of parameter shielding was not mentioned. Chen et al. [11] first clarified and
defined the notion of parameter shielding in the setting of Covering Arrays.
which considers only unconstrained and unstructured models. They provided
test generation algorithms for this special kind of Covering Arrays. Segall et al.
take yet another approach of “common patterns” [12]. They identified several
recurring properties in modeling as patterns, which are often hard to capture
correctly, and supply solutions for them. The notion of parameter shielding is
captured by one of their patterns, called “Conditionally-Excluded-Values” pat-
tern. Zhao et al. developed a test generation tool of combinatorial testing, called
Cascade, which can handle shielding parameters explicitly [13] and its handling
mechanism is basically same as the proposed solution in [12].

Our work differs from these works in that our contributions are to propose
a modeling language by extending CTM with parameter shielding to advance
CTM and evaluate its effectiveness via case studies.

3 Classification Tree Method with Parameter Shielding

This section proposes the modeling language CTMshield, which extends CTM
with the notion of parameter shielding. To be conscious about the extension,
we first define the language for combinatorial testing, next that for CTM, and
finally that for CTMshield.

The definition of combinatorial testing, whose example is in Fig. 1, is as
follows:

Definition 1 (Combinatorial testing). A combinatorial testing model is a
tuple m = 〈P, V, Φ〉, where P is a set of parameters, V = {Vp}p∈P is a family
of parameter-values, where Vp is the value domain of p, and constraints Φ are a
set of Boolean formula over parameter-values.

A test case is a value assignment to parameters in test model m. Formally, it can
be defined as a function γ : P → V such that γ(p) ∈ Vp for every p ∈ P . Note
that a test case γ must satisfy all the constraints Φ (noted as ∀φ ∈ Φ.γ |= φ or
γ |= Φ).

A CTM test model consists of a Classification Tree (CT) and constraints. A
CT consists of three kinds of nodes: classifications, which correspond to para-
meters in combinatorial testing; classes, which correspond to values; and com-
positions, a notion that does not appear in combinatorial testing.



236 T. Kitamura et al.

Definition 2 (CTM). A test model of CTM is a tuple m = 〈r, P, V, C, ↑, Φ〉 ∈
M , where 〈P, V, Φ〉 forms a test model of combinatorial testing, C is a set of
compositions, r ∈ C is a root node, and ↑ is a function from P ∪C\{r} to V ∪C
that expresses a part of the child-parent relation of the tree structure of CT.

As some parameters are shielded and assigned the vain value “—”, a test
case of CTM extends that of combinatorial testing as γ : P → {—} ∪ V , while
inheriting γ |= Φ. A parameter p is shielded, assigned “—”, in a test case γ,
if its nearest ancestor value is not chosen for the parameter in γ. For example,
parameter C.M. is shielded in test case No. 3 in Table 2, since its nearest ancestor
value “>190e” is not chosen for the parameter Balance in the test case.

Now, the definition of CTMshield is given as follows:

Definition 3 (CTMshield). A CTMshield model is a tuple m =
〈r, P, V, C, ↑, Φ, Φs〉 ∈ Ms, where 〈r, P, V, C, ↑, Φ〉 is a CTM model and Φs is a
function from P ∪ C to Boolean formulas. We denote Φs(n) as the (parameter)
shielding condition of n ∈ P ∪ C.

The definition of CTMshield extends that of CTM by the shielding conditions
Φs. A test case of CTMshield also inherits that of CTM, including the condition
of parameter shielding specified by the tree structure. Moreover, in CTMshield a
parameter p in a test case is shielded by Φs when its shielding condition Φs(p)
is satisfied by the test case.

In order to express Φs in practice, we take a list of pairs of form p ←shields φ
indicating that Φs(p) = φ, and assume Φs(q) = False when q is not specified
in the list. Note that a CTM model is a CTMshield model with an empty list of
such specifications. Figure 4 is an example of CTMshield, and Listing 1.1 shows
a formulation of the test model in Fig. 4 according to Definition 3.

Listing 1.1. A formulation of the test model in Fig. 4 according to Definition 3.

1 r = {charge IC card (CICC)}
2 C= {Charge}
3 P = {C.C. , Age , Balance , Method , Amount , Monthly Total (M.T.) }
4 VC.C. = {with , without} , VAmount = {10e , 50e} , VAge = {child , adult , senior ,
5 VBalance = {>190e , ≤190e} , VM.T. = {>390e , ≤390e } ,
6 VMethod = {cash , c.c.} , VC.A. = {10e , 50e} ,
7 ↑ = {(C.C., CICC) , (Age, CICC) , (Balance, CICC) , (Charge, ≤190e) , (Method, Charge) ,
8 (Amount, Charge)}
9 Φ = {¬(C.C. = with ∧ Age = child) , C.M. = c.c. ⇒ C.C = with }

10 Φs = {(>390e, Charge)}

4 Case Studies and Evaluations

This section reports our empirical studies to evaluate the effectiveness of the
proposed extension, i.e., CTMshield extending CTM with parameter shielding,
through case studies with industrial systems.

We determine the “effectiveness” of CTMshield by the conciseness of test
models in CTMshield compared to those in CTM (the one dealt in [5,8]). More
specifically, we measure the conciseness of models on their description complexity
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Table 4. Summary of experimental results.

in terms of the number of parameter-values and the length of constraints needed
to describe the models. Our evaluation poses the following three research ques-
tions:

RQ1: How often is the parameter shielding condition used? What is its usage
rate?
RQ2: How many tree nodes can CTMshield reduce, compared with CTM?
RQ3: How much length of constraints can CTMshield reduce, compared with
CTM?

4.1 Setting

In the case studies, we applied combinatorial testing to functional testing of 25
system-level functions of the following two distinct industrial systems in rail-
way domain, and in doing so we used CTMshield for modeling the functions: 19
functions from a ticket gate system (system A) and 7 functions from a payment
system (system B).
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For comparison between CTMshield and CTM, we also prepared test mod-
els in CTM. We prepare a program to translate test models in CTMshield to
equivalent ones in CTM; i.e., it handles complex manipulation of constraints
and dummy nodes. For example, it inputs the CTMshield test model in Fig. 4,
and outputs the CTM test model in Fig. 3.

Next, we measure the following metrics of the test models in CTMshield and
CTM:

1. P/V : The size of parameter-values; this is expressed as gk1
1 gk2

2 ...gkn
n , which

means that for each i there are ki parameters that have gi values, following
[14,15].

2. #N : The number of nodes; this is the summation of the numbers of compo-
sitions, parameters, and values.

3. l(φ): The length of constraints φ, which is defined in a similar way as [16]
as follows: l(a) = 1 for all atoms a, l(¬P ) = 1 + l(P ), and l(P ∗ Q) =
1 + l(P ) + l(Q) where ∗ is a binary operator of ∧,∨,⇒, and ⇔. E.g.,
l(¬1P2 = v12∨3P3 = v14) = 4.

Since CTMshield has an additional description component of parameter
shielding conditions, we also measure the following two metrics for test mod-
els of CTMshield:

4. l(Φs): The length of parameter shielding conditions Φs. As mentioned in
Sect. 3 and exemplified in Fig. 4, a shielding condition is expressed using
“←shield” in practice; e. g., “P1 ←shield ¬P2 = v1 ∨ P3 = v1” to mean
Φs(P1) = ¬P2 = v1 ∨ P3 = v2”, where P1, P2, P3 expresses parameters and v1
and v2 values. Thus, we define the length of a shielding condition for parame-
ter n by l(Φs(n)) + 2, regarding ←shield as a binary operator. For example,
l(Φs(P1)) = l(¬1P2 = v12∨3P3 = v14) + 2 = 6

5. |Φs|: The size of Φs in the form 1k12k2 ...nki , which this time means there are
ki conditions whose length is n for each n ∈ Nat while nki are omitted if
ki = 0.

In order to quantitatively answer the research questions, from data about the
test model of CTM (mc) and that of CTM (ms) for each function, we retrieve
the following:

– the reduction rate of the number of nodes ΔN
% :

ΔN
% =:

#Nmc − #Nms

#Nmc
(1)

– the reduction rate of constraint length ΔΦ
%:

ΔΦ
% =:

l(Φmc) − (l(Φms) + l(Φms
s ))

l(Φmc)
(2)
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where #Nm, l(Φm), and l(Φm
s ) respectively mean the number of nodes, length

of constraints, length of shielding conditions in test model m.
Note that ΔΦ

% considers not only the length of constraints, but also the
length of shielding conditions for test model in CTMshield ms. This is for a fair
comparison. We expect (and will see) CTMshield can in fact reduce the length of
the constraints. However, this is achieved at the cost of describing the shielding
conditions. To avoid such an unfair comparison, we designed in ΔΦ

% to consider
not only constraints length but also the length of shielding conditions in test
models of CTMshield.

4.2 Results and Observations

Table 4 summarizes the experimental results. The first column shows retrieved
data from the test model example in CTMshield in Fig. 4 and an equivalent test
model in CTM in Fig. 3, whose main points are read as follows:

1. The CTMshield test model in Fig. 4 has five parameters for two values and one
parameter for three values, hence its P/V is expressed as 2531. On the other
hand, the CTM test model in Fig. 3 has three parameters for two values, two
for three values, and one for four values, hence its P/V is expressed as 233241.

2. The number of nodes in the CT in CTM is 24, while that in CTMshield is
22. Thus, the number of nodes is reduced by 2 (= 24 − 22), and the node
reduction rate (ΔN

%) is 8.3%(= 2
24 ).

3. The constraint length of the CTM test model is 11, while that of CTMshield

is 6. We also take the description cost of shielding conditions for CTMshield

into account, as the length of shielding conditions which is 3. Thus, according
to the definition, the reduction rate of constraint length (ΔΦ

%) is 47.1%(=
(17−(3+6))

17 = 8
17 ).

From the summary of the experimental results shown in Table 4, we answer
the research questions as follows:

– Answer for RQ1: The shielding conditions were not necessarily used for all
the cases; instead, they are used in 12 out of 19 cases (63.1%) for system A
and in all the six cases (100%) for system B; hence 72% (= 18/25) in total of
systems A and B.

– Answer for RQ2: For the cases where parameter shielding are used, the
reduction rate of the number of tree nodes by CTMshield (ΔN

%) is on average
4.2% for system A and 11.0% for system B; 7.13% on the total average.

– Answer for RQ3: For the cases where parameter shielding are used,
CTMshield reduces the constraint length, compared with CTM, (i.e., ΔΦ

%)
on average by 14.7% for system A, by 39.4% for system B; by 22.9% on the
total average.

Note that all the test models for the functions in both systems are expressed
as trees, from which we can consider structured and diagrammatic modeling
approach of CTM is useful and effective in practice. Also, CTMshield shows a
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higher effectiveness in system B than system A, from which we may consider
that the effectiveness of using CTMshield differs between systems. As shorter and
simpler constraints reduce the human effort on modeling, we consider CTMshield

to be effective in real-world settings.

5 Conclusion and Future Work

This work tackled a modeling problem in combinatorial testing, which is a main
concern for its use in real developments. We extend CTM, which have been
studied and used as a practical modeling language in combinatorial testing, with
parameter shielding, and proposed CTMshield. Our experiments via case studies
confirmed its effectiveness.

We plan to conduct more empirical studies to evaluate the effectiveness of
CTMshield when used to model industrial systems. We leave to future work a
theoretical analysis of the proposed extension, such as consistency arguments
with different formalisms for parameter shielding [11], theoretical analysis of
effectiveness of the extension such as the maximum reduction of the number of
nodes, the size of constraints per shielding condition, etc. We also plan to extend
our combinatorial testing tool Calot [8,17,18] with this feature of parameter
shielding.

Acknowledgement. This work is partly supported by JST A-STEP grant
AS2524001H.
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Abstract. This paper introduces a new lightweight tool for simulative
error propagation analysis of Simulink models. The tool allows a user
to inject different types of faults that are common for embedded con-
trol systems and analyze error propagation to critical system parts and
outputs. The intended workflow comprises the following three steps: (i)
setup faulty and critical blocks of a Simulink model, (ii) setup and run
simulations, and (iii) observe and examine the obtained results. The tool
is implemented in MATLAB using the callback block functions from the
Simulink API. The graphical user interface allows the injection of sev-
eral types of faults including computing hardware faults such as single
and multiple bit-flips, sensor faults such as offsets, stuck-at faults, and a
noise, and network faults such as time delays and packet drops. The fault
occurrence and duration can be specified either with the classical relia-
bility metrics like mean time to failure and mean time to repair, or failure
rates with classical (normal, exponential, Poisson, Weibull etc.) or cus-
tom user-defined probability distributions. The error propagation to the
selected critical blocks is reported with several statistical metrics includ-
ing the mean number of errors, failure rate, and mean error value, as well
as performance indexes such as integral squared error, integral absolute
error, and integral time-weighted absolute error. The reported numerical
results support standard reliability and safety assessment methods such
as fault tree analysis and failure mode and effects analysis. The paper
demonstrates the tool with a case study Simulink model of fault-tolerant
control for a passenger jet.

Keywords: Dependability · Reliability · Safety · Fault injection · Error
propagation · Model-based analysis · Simulink · Stability · Control

1 Introduction

Nowadays, the challenge is not only to design a fail-safe system but also, to verify
and prove its safety and reliability properties. Safety critical hardware (HW) and
software (SW) systems shall comply with relevant industrial standards based on
c© Springer International Publishing AG 2017
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IEC 61508. Most of the big companies even have dedicated RAMS (Reliability,
Availability, Maintainability, Safety), V&V (Verification and Validation), or QA
(Quality Assurance) departments for this task.

Model-based approaches are widely used across safety-critical domains, espe-
cially for the control software development. They help to ensure consistency
between a model and a production code and avoid bugs that could be intro-
duced in case of conventional, manual programming. MATLAB Simulink [7] is
the most common development environment that gives a lot of practical free-
dom and allows a designer to develop, modify and test a system in a fast and
convenient way.

The certified development toolset [6], accompanied by detailed modeling
guidelines [2,10] and extensive testing requirements, significantly reduces the
number of systematic SW faults. However, the system stays vulnerable to dif-
ferent HW faults that have a random nature. The common types of these faults
such as sensor faults, computing HW faults, and network faults are listed in the
standards. The correct, failure-free operation of the system under the influence of
these faults should be ensured and carefully examined. Therefore, we introduce
ErrorSim, a new lightweight simulator of error propagation for Simulink models
that allows the user to inject common HW faults and analyze error propagation
to critical system parts and outputs.

2 Related Work

Fault injection is a group of methods for evaluation of system dependability
properties [1]. These methods are highly recommended by industrial safety stan-
dards. A lot of different techniques have been developed in recent years.

Several good surveys of fault injection methods and tools [3,5,11,16] propose
various classifications, based on injected fault types (HW/SW, transient/inter-
mittent/permanent etc.), systems under evaluation (HW/SW/Hybrid), and fault
injection methods (HW/SW/Model-implemented). ErrorSim supports the injec-
tion of different types of HW faults for evaluation of model-based HW/SW con-
trol systems implemented in Simulink using a model-implemented fault injection
method.

Relevant model-implemented fault injection tools for SCADE and Simulink
are introduced in [4,12–15]. MODIFI (MODel-Implemented Fault Injection) is
the closest tool to ErrorSim. MODIFI also allows the injection of the HW faults
such as single bit-flips and sensor faults into Simulink models. The main dif-
ference is that ErrorSim is a lightweight solution that works directly in the
MATLAB environment without code generation, complex external setups, and
any other third party tools or libraries. Also, our tool doesn’t alter the orig-
inal Simulink model with additional fault injection or error detection blocks.
ErrorSim exploits Simulink callback block functions instead.

The advantage of the ErrorSim over the “native” Test Harnesses of the
Simulink Test [8] is quite obvious. Our tool allows the injection of predefined
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common fault types in the fast and transparent manner without manual cre-
ation and setup of specific fault injectors and detectors. Also, ErrorSim reports
the results using widely used reliability metrics.

3 Description of ErrorSim

ErrorSim is implemented in MATLAB and consists of two main logical parts
that are responsible for fault injection and error detection. Figure 1 shows main
steps of intended ErrorSim workflow.

Fig. 1. Intended ErrorSim workflow comprises three major steps: (i) faulty blocks set-
up, (ii) simulations, and (iii) result examination. (Color figure online)

Firstly, the user should open a Simulink model and mark faulty and critical
blocks by changing their background colors to red and yellow respectively. After
that, the user runs ErrorSim and perform the set-up of faulty blocks with the
GUI shown in Fig. 2. Fault type and fault injection method should be specified
for each faulty block, see Fig. 3. ErrorSim supports the following fault types
defined in IEC 61508: sensor faults (offset, stuck-at fault, and noise), hardware
faults (single and multiple bit flips), and network faults (drops and delays).
The fault injection method is defined with two parameters: event and effect.
The parameter event specifies a stochastic method for fault injection: failure
probability, mean time to failure (MTTF), or failure rate distribution. The last
option allows the user to define the fault injection using either classical normal,
Weibull, gamma, exponential, Poisson, binomial or custom user-specified distrib-
utions. The parameter effect determines the duration of the fault. The following
options are available: just once, constant time, infinite time, and mean time to
repair (MTTR). A complete user-defined fault setup can be saved and loaded.

In the second step, ErrorSim performs one golden run followed by the user-
defined number of simulations with fault injections. During the golden run, cor-
rect inputs of the critical (yellow) blocks are stored. During each faulty sim-
ulation, ErrorSim injects faults into the outputs of the faulty (red) blocks.
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Fig. 2. The user interface for the faulty blocks set-up. The user selects and specifies a
fault type and a fault injection method. (Color figure online)

Fig. 3. Supported fault types and fault injection methods: supported fault types (a),
events (b) and effects (c) for the definition of the fault injection method. (Color figure
online)



ErrorSim: A Tool for Error Propagation Analysis of Simulink Models 249

Fig. 4. The user interface with statistical information about the errors propagated to
the critical blocks: signal values, reliability metrics, performance indices.

The inputs of the critical blocks are compared with the stored correct values
of the golden run in order to detect errors. ErrorSim exploits the mechanism of
block function callbacks to inject errors and store values.

In the third step, ErrorSim provides statistical information for each critical
block (see Fig. 4): (i) the plots of correct, faulty, and error signals, (ii) com-
mon reliability metrics such as mean number of errors and error value as well
as their time distributions, and (iii) widely used performance indices including
integral squared error, integral absolute error, and integral time absolute error.
The statistical information is presented with interactive MATLAB plots which
are stored by ErrorSim.

4 Case Study

A Simulink model of a fault-tolerant control of a passenger jet [9], shown in
Fig. 5, will be used in order to demonstrate ErrorSim’s capabilities. The purpose
of this example is to test and tune, state feedback parameters according to a
cost function given in [9], in order to achieve better fault tolerance. The Simulink
model is decomposed into several subsystems: a controller, a state-space model of
an aircraft, wind disturbances, and sensors. We assume that three sensor signals
that represent μ, α, and, β angles of an aircraft, suffer sensor faults. ErrorSim
will examine how these faults affect system behavior. The faulty blocks from the
Sensors subsystem are highlighted in red and the outputs to be analyzed (critical
blocks) are highlighted in yellow in the Fig. 5.
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Fig. 5. Fault-tolerant passenger jet Simulink model, adopted from [9]. (Color figure
online)

Three single-simulation experiments and one multiple-simulation experiment
have been performed. Table 1 shows the fault types and fault injection methods
for the single-simulation experiments. The plots in Fig. 6 demonstrate how the
injected faults affect the system stability. The red, blue, and green curves rep-
resent μ, α, and, β angles of the system output. Figure 6(a) shows the output
of a fault-free run. Figure 6(b) and (c) show that the system is able to tolerate
the injected faults of Experiment 1 and Experiment 2 with minor deteriorations
and steady state errors. Finally, Fig. 6(d) demonstrates that the system cannot
tolerate the faults which are injected during Experiment 3 and becomes unstable.

Table 2 shows the fault types and fault injection methods for the multiple-
simulation experiment with 50 faulty runs. Figure 7(a) shows how the average
error values for all three parameters change over time. We can observe that β
accumulates the error while the average error values of μ and α stay almost
constant. This means that β is the most vulnerable angle to the injected faults.
The right part of Table 2 also confirms this result with numerical performance
indices such as integral squared error (ISE), integral absolute error (IAE), and
integral time absolute error (ITAE).

ErrorSim allows the user to specify an error detection threshold. The error is
registered if the difference between actual and correct values, is higher than this
threshold. Two plots in Fig. 7(b) and (c) show the distribution of the average
number of registered errors over time for two different thresholds. This average
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Table 1. Fault setups of the three single-simulation experiments.

Experiment 1

Sensors Fault type Fault injection method

Event Effect

μ Noise, %10 Failure probability, 0.03 Constant time, 1 s

α Offset, +0.05 MTTF, 10 s Constant time, 0.2 s

β Stuck-at fault Failure probability, 0.05 MTTR, 2 s

Experiment 2

Sensors Fault type Fault injection method

Event Effect

μ Noise, %20 Failure probability, 0.1 Constant time, 1 s

α Offset, +0.05 MTTF, 4 s Constant time, 1 s

β Stuck-at fault Failure probability, 0.05 MTTR, 2 s

Experiment 3

Sensors Fault type Fault injection method

Event Effect

μ Noise, %20 Failure probability, 0.1 Constant time, 1 s

α Offset, +0.05 MTTF, 4 s Constant time, 1 s

β Stuck-at fault Failure probability, 0.05 MTTR, 5 s

Table 2. The fault setup (left) and average values of performance indices (right) for
the multi-simulation experiment with 50 runs.

Sensors Fault type Fault injection method Performance indices

Event Effect ISE IAE ITAE

μ Noise, %20 Failure probability, 0.05 Constant

time, 1s

538.6 2090.8 2.0977e+10

α Offset, +0.05 Weibull, a = 10, b =5.2 Constant

time, 1s

87.328 1699.2 2.0348e+10

β Stuck-at fault MTTF, 4 s MTTR, 5 s 88168 19323 1.9704e+11

number can also be interpreted as a failure rate of the system. Figure 7(b) shows
that, with a lower threshold (0.02), the failure rate of α tends to one after the
first half of the simulation. However, this is not the case if the threshold is higher
(0.05) which is shown in Fig. 7(c). This means that the errors of α are bounded
and not critical.
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Fig. 6. Single-simulation experiments: a correct run (a), Experiment 1 (b), Experiment
2 (c), Experiment 3 (d). (Color figure online)

Fig. 7. Average error values for μ, α and β (a). Failure rates for μ, α and β: error
thresholds 0.02 (b) and 0.05 (c).
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5 Conclusion

The general technical description of ErrorSim, a new lightweight tool for error
analysis of Simulink models, has been introduced in this paper. The key features
have been demonstrated with a case study that shows how the tool can help
to distinguish between critical and non-critical sensor faults for the closed-loop
control system of a passenger jet. ErrorSim offers a variety of options for both
fault injection and error detection, yielding numerical results which are help-
ful for the system dependability evaluation. ErrorSim has a transparent user
interface and works directly in the MATLAB environment without any need for
code generation, third-party libraries, or complex setup. The tool will be further
developed and extended with new features and performance optimizations and
aims to become a useful industrial tool.
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14. Vinter, J., Bromander, L., Raistrick, P., Edler, H.: Fiscade-a fault injection tool for
scade models. In: 2007 3rd Institution of Engineering and Technology Conference
on Automotive Electronics, pp. 1–9. IET (2007)

15. Vulinovic, S., Schlingloff, B.H.: Model based dependability evaluation for automo-
tive control functions. In: Invited Session: Model-Based Design and Test, 9th World
Multi-Conference on Systemics, Cybernetics and Informatics, Florida (2005)

16. Ziade, H., Ayoubi, R.A., Velazco, R., et al.: A survey on fault injection techniques.
Int. Arab J. Inf. Technol. 1(2), 171–186 (2004)



Early Safety Assessment of Automotive Systems Using
Sabotage Simulation-Based Fault Injection Framework

Garazi Juez(✉), Estíbaliz Amparan, Ray Lattarulo, Alejandra Ruíz, Joshué Pérez,
and Huáscar Espinoza

TECNALIA Research & Innovation, Derio, Spain
{garazi.juez,estibaliz.amparan,rayalejandro.lattarulo,

alejandra.ruiz,joshue.perez,huascar.espinoza}@tecnalia.com

Abstract. As road vehicles increase their autonomy and the driver reduces his
role in the control loop, novel challenges on dependability assessment arise.
Model-based design combined with a simulation-based fault injection technique
and a virtual vehicle poses as a promising solution for an early safety assessment
of automotive systems. To start with, the design, where no safety was considered,
is stimulated with a set of fault injection simulations (fault forecasting). By doing
so, safety strategies can be evaluated during early development phases estimating
the relationship of an individual failure to the degree of misbehaviour on vehicle
level. After having decided the most suitable safety concept, a second set of fault
injection experiments is used to perform an early safety validation of the chosen
architecture. This double-step process avoids late redesigns, leading to significant
cost and time savings. This paper presents a simulation-based fault injection
approach aimed at finding acceptable safety properties for model-based design of
automotive systems. We focus on instrumenting the use of this technique to obtain
fault effects and the maximum response time of a system before a hazardous event
occurs. Through these tangible outcomes, safety concepts and mechanisms can
be more accurately dimensioned. In this work, a prototype tool called Sabotage
has been developed to set up, configure, execute and analyse the simulation
results. The feasibility of this method is demonstrated by applying it to a Lateral
Control system.

Keywords: Fault Injection · Early safety assessment · Vehicle dynamics model

1 Introduction

Automated driving exhibits increasingly complex dependability challenges as the driver
reduces his role in the control loop, and the vehicle must operate under exceptional
situations, e.g. dealing with sensor noise. Fault Injection (FI) has been recognised as a
potentially powerful technique for the safety assessment and corner-case validation of
fault-tolerance mechanisms in manual and automated driving systems [1]. The major
aim of performing FI is not to validate functionality, but rather to test the fault tolerance
or probe how robust the vehicle is or their components are to arbitrary faults. The ISO
26262 standard [2] notably recommends its use across the validation and verification
phases of the V-Cycle development process.
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Despite the growing use of model-based tools in the design phases, FI is a technique
that has seen little widespread use in early phases [3]. The potential benefits of using FI
during pre-implementation phases of automotive systems range from providing an early
evaluation up to a preliminary validation of safety concepts. In the specific case of
manual driving, this could help determining (human-) controllability and fault tolerant
time interval (FTTI) values in early design phases. FTTI is defined as the time-span in
which a fault can be present in a system before a hazardous event occurs [2]. Concerning
highly automated driving, we believe that FI could be applied for dimensioning moni‐
toring functions by determining a system maximum response time before a hazardous
event occurs.

This paper explores how to use model-based FI to assess safety properties of vehicle
systems and how to augment vehicle simulation with appropriate fault models for safety
determination. To address these concerns, a simulation-based FI framework (Sabotage)
is coupled with the Dynacar vehicle simulator [4]. Dynacar includes a vehicle model
(e.g. dynamics), an environment model (e.g. driving circuit) and pre-defined sensor and
actuator model libraries for e.g. engine, transmission, steering system, and braking
system. The added value of including vehicle and environment models is that the
maximum time before the vehicle dynamics are unsafely affected can be identified. In
other words, it allows quantitatively estimating the relationship of an individual failure
to the degree of misbehaviour on vehicle level.

Our approach has been evaluated on a case study for the model-based design of a
Lateral Control system. We have focused on automatically inserting fault injection
model blocks (saboteurs), which represent failure modes, and forecast maximum system
reaction times based on the critical lateral deviation (maximum lateral error). This value
determines the required level of fault tolerance − e.g. redundancy or graceful degrada‐
tion − without affecting vehicle safety. A good estimation of these values helps engineers
to better define appropriate safety goals and requirements as main output of the safety
concept [5].

The remainder of this paper is structured as follows. Section 2 presents the related
state of the art. Section 3 introduces the Sabotage tool framework and how it can be used
for an early safety assessment. Afterwards, Sect. 4 shows how the aforementioned
method is applied to the Lateral Control case study. Finally, Sect. 5 presents conclusions
and future work.

2 Related Work

Fault injection has been deeply investigated by both academia and industry as surveyed
in [6] and described in [7]. The idea of using simulation-based FI in early design phases
is not that widely spread. For instance, Svenningson [8] investigated the benefits of
applying this technique on Simulink behavioural models, and Vinter et al. [9] developed
a similar approach for the SCADE toolset. Even if failures can be derived, those effects
and FTTI values cannot be estimated on vehicle level since no vehicle dynamics is
considered. The closest to an investigation of simulation-based FI that integrated vehicle
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dynamics is presented in [10, 11]. Silveira et al. [10] implemented a seamless co-
simulation approach that combines Matlab and CarSim for evaluating the fault impacts
on vehicle stability. Also, Jones et al. [11] introduced a similar co-simulation solution
using Matlab, CarMaker/TruckMaker and CRUISE tools. This work especially supports
the determination of Automotive Safety Integrity Levels (ASIL) during the concept
phase as per ISO 26262. The major drawback of these approaches is that the fault library
and the solution are language dependent and the automation level could be further
developed.

Concerning the use of FI across the range of abstraction levels of ISO 26262, most
of the work has been done as a way of verifying the implemented safety mechanisms or
safety requirements [12]. Only few works have emphasised its usage during early design
phases. Pintard [3] developed guidance for applying FI on both sides of the ISO
26262’s V-Cycle, including system and hardware pre-implementation phases; however,
the aim of the author was not to develop a fault injection framework.

3 Overview of the Simulation-Based Fault Injection Approach

3.1 The Sabotage Tool Framework

Simulation-based fault injection is a technique that uses a series of high-level abstrac‐
tions or models representing the system under study to evaluate and validate its depend‐
ability in early design phases. Thus the system is simulated on the basis of simplified
assumptions to (a) predict its behaviour in the presence of faults, (b) to estimate the
failure coverage and timing of fault tolerant mechanisms, or (c) to explore the effects of
different workloads, i.e. different activation profiles. Applying FI provides remarkable
benefits for designers. On the one hand, fault forecasting is achieved by performing an
evaluation of the system behaviour with respect to fault occurrence or activation. On
the other hand, as tackled in [14], FI is seen as a dynamic testing technique to achieve
fault removal during the development phase of a system (verification, diagnosis, and
correction).

Sabotage is a simulation-based fault injection tool framework based on the well-
known FARM environment model [13]. The FARM model is composed of: (1) the set
of Faults to be injected, (2) the set of Activations exercised during the experiment, (3)
the Readouts to define observers of system behaviour, and (4) the Measures obtained to
evaluate dependability properties. In the rest of this section, we describe the particular‐
ities of the proposed tool framework in light of the FARM constituents.

Figure 1 shows the Sabotage building blocks and the flow of models to perform a
safety assessment during vehicle simulation in early design phases. The tightly-coupled
simulation environment is constituted as follows: the Sabotage framework is used to set
up, configure, run and analyse FI experiments. The Dynacar vehicle simulator [4], inte‐
grated as a Matlab/Simulink system function (S-function), includes models to represent
some vehicle sensors, actuators and dynamics. An S-function is a computer language
description of a Simulink block written in Matlab, C, C++, or Fortran. Besides, Dynacar
provides a graphical user interface where the previously configured operational situa‐
tions are observed. The model of the whole system is completed by including simulation

Early Safety Assessment of Automotive Systems 257



models representing the Electronic Control Unit (ECU) functions (also known as
controller model or control strategies). By co-simulating the three applications we are
able to carry out a closed-loop modelling of the vehicle control system in the presence
of faults.

Fig. 1. Sabotage framework for simulation-based fault injection

The Sabotage framework operates as follows. First, a Workload Generator generates
the functional inputs to be applied to the system model under test (SMUT). All these
models are developed, for instance, using Matlab/Simulink. The Workload Generator
consists of (i) selecting the system model under test, (ii) choosing the operational
scenario from a driving circuit and environment scenario library, and (iii) configuring
fault injection experiments, i.e. creating the fault list and deciding the read-out or obser‐
vation points (signal monitors). Then a Fault Injector (for now implemented as Matlab
code) uses both, the fault list and a fault model library (implemented as C code templates
or XML), to create the saboteurs (S-functions) and generate as many Faulty SMUT as
the designer needs. Once a fault free version of the SMUT (Golden) and at least one
Faulty SMUT are available, the simulation environment is invoked through the Monitor
(the Oracle implemented in Java). The Monitor not only runs experiments under the
pre-configured vehicle scenario, but also compares and analyses the collected data.

Workload Generator. This block is in charge of three main activities: selecting the
SMUT, choosing the most appropriate driving scenario, which represents the operational
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situation, and configuring fault injection experiments. Safety analysis provides the basis
for specifying the operational situations (i.e. location, road conditions, environment
conditions and the like). After that, the designer selects the vehicle and a driving circuit
scenario that best symbolises those operational situations to be simulated. Dynacar
manages a scenario catalogue that includes up to 150 configurable parameters, thus
enabling the emulation of a wide range of vehicles and driving circuit scenarios. The
fault injection experiments configurator block in Sabotage also addresses the inclusion
of extra readout model blocks (signal monitors) in the target system (SMUT) to facilitate
the logging process of output data.

Moreover, the activity of fault list generation creates a subset of faults that can be
injected in a reasonable time but are still able to provide significant results. Our strategy
to identify a representative fault subset is to use the target system malfunctions or failure
modes, e.g. omission or commission, instead of injecting an exhaustive or random fault
set. The kinds of faults in the subset include permanent, intermittent and transient faults.

Fault Injector. The fault list is used to produce a Faulty SMUT only in terms of repro‐
ducible and prearranged fault models. Fault models are characterised by a type (e.g.
omission, frozen, delay, invert, oscillation or random), target location, injection trig‐
gering (e.g. driving circuit position or time driven), and duration. To create a Faulty
SMUT, the Fault Injector injects an additional saboteur model block per fault entry from
the fault list together with the associated fault models which are coded as templates in
a fault library. Saboteurs are extra components added as part of the model-based design
for the sole purpose of FI experiments. Algorithm 1 depicts a generic fault model for
omission represented by a stuck-at last value.

Require: input, pos,simutime,faultdur; 
1 
2 
3 
4 
5 

If pos== triggerpos then 
 Freeze=input; 
 enable=1; 
While enable==1 && simutime<=faultdur do return freeze; 
return input; 

Monitor. After setting up the FI scenarios and having conceived the required amount
of Faulty SMUT, the Monitor starts the simulation process. It tracks the execution flow
of the Golden and Faulty simulation runs via the readouts collection activity. The
Monitor compares Golden and Faulty SMUT results by the data analysis activity. The
pass/fail criterion of the tests, which was established by the designer as part of Step III
(cf. Fig. 1), is used to compute and finalise the results. This criterion includes different
properties like the maximum acceptable distance from optimal path considering the
vehicle behaviour is acceptable in terms of vehicle dynamics. This way, acceptable
maximum system reaction times are obtained. In brief, we are able to report the corrup‐
tion effects for fault forecasting and fault removal, as described in the next section.

Early Safety Assessment of Automotive Systems 259



3.2 Using Sabotage for an Early Safety Assessment

In this section, we explore a safety assessment process focused on supporting the creation
and an early validation of a safety concept by using Sabotage. Figure 2 shows how the
proposed approach can help to dimension the safety concept and to achieve its early
safety validation. The approach is discussed in the following sequence in which the
proposed safety assessment process is performed.

Fig. 2. Proposed early safety assessment flow by means of Sabotage

Sabotage Phase I: Start System Safety Evaluation. One assumption in this approach
is that we start from existing system models (i.e. vehicle dynamics and system func‐
tions), which did not implement safety mechanisms before. The purpose of the process
approach is to assist when creating the safety concept by including the vehicle dynamics.
By applying this method, fault effects and the maximum response time of the system
before a hazardous event occurs can be obtained. Furthermore, the severity of the
injected failure modes can be quantified in terms of vehicle dynamics effect. Through
these tangible outcomes, safety concepts and mechanisms can be more accurately
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dimensioned. Before completing any kind of fault injection simulation, the target system
must be defined and its main functions and failure modes (e.g. omission) have to be
stated. Likewise, a preliminary architecture is mandatory in order to know which func‐
tional failure modes could lead to system or vehicle failure and hazards.

By following the approach explained in Sect. 3.1, a first run of fault injection simu‐
lations needs to be configured. For that, the vehicle and the operational situations shall
be specified to select the vehicle and the driving scenarios. Some typical situation
scenarios that must be analysed are for example:

• Location: highway, urban;
• Road conditions: uphill, on a curve;
• Environment conditions: good conditions, heavy rain;
• Traffic situations: fluent;
• Vehicle speed (kph);
• Manoeuvres: parking, overtaking, lane keeping;
• People at risk: driver, passenger, pedestrians.

We foster the idea of complementing traditional safety analysis techniques by
performing fault injection already at the concept phase. Those traditional analysis tech‐
niques include FMEA (Failure Modes and Effect Analysis), FTA (Fault Tree Analysis),
DFA (Dependent Failure Analysis) or Preliminary Hazard Analysis (PHA). All of them
require not only knowing the failure modes but also to have a clear vision of the failure
effect. Yet sometimes those failure effects might not be clearly known in advance. Our
approach aims at deriving potential effects or hazards based on the FI simulation results.
As a starting point of such preliminary analysis, the malfunctions or failure modes are
clearly identified in this process step. As a result of this activity, a fault list can be created
by the Sabotage framework. This activity addresses the following questions:

• Where should the faults be injected?
• What is the most appropriate fault model representing the functional failure modes?
• How should the faults be triggered within the system?
• Where should the fault effect be observed?

After generating simulation settings and creating the fault list, Sabotage executes the
Golden (fault free) and Faulty simulations, as described in Sect. 3.1. A set of scripts
have been developed to achieve the required level of automation. The pass/fail criterion
of the simulation is defined as part of the Workload (cf. Fig. 2 Sabotage Step III). The
user can set that requirement as a vehicle dynamics property violation. The main goal
of comparing the Golden versus Faulty SMUT is to obtain the required results in an
automated way.

The results of the simulation experiments (c.f. Fig. 2 Phase I Results) can then
complete the safety analysis and help dimensioning the safety concept through the
maximum system reaction time. In other words, it can be used to better determine the
required level of fault tolerance (e.g. redundancy or graceful degradation). In brief,
Sabotage helps to identify those hazards (e.g. vehicle does not turn when it should) or
to rank the failure modes with respect to fault occurrence. Dynacar is used to visually
observe these system failures through its 3D virtual environment. To sum up, by using
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FI approach, it is possible to get data in order to forecast how the system will behave
under the effects of real faults for situations in which no previous data was available.
Considering engineering needs to prove that fault reaction times are shorter than the
FTTI, a good estimation of those values is relevant. This ensures that any fault reaction
is completed before a hazardous event occurs.

Sabotage Phase II: Start an Early Validation of the Safety Concept. Once the
model-based safety architecture has been defined, the designer can obtain an early vali‐
dation of the implemented safety concept. For that, a second run of fault-injection is
needed. After having the safety concept defined and its architecture designed as part of
the system behavioural model, a second run of the FI simulations can be performed.
This allows validating the safety of the system during early design phases. For instance,
if the needed diagnostic coverage it is not achieved, the corresponding design part must
be rebuilt. Furthermore, possible systematic faults or the robustness of the implemented
safety mechanisms can be tested. In this second phase, the user can establish pass/fail
criteria upon the defined safety goals and safety requirements.

4 Case Study: Automated Lateral Control

4.1 Automated Driving Control Architecture

After outlining the Sabotage FI simulation framework, the feasibility of this method is
demonstrated by applying it to a Lateral Control system. It is worth mentioning that no
safety was considered when modelling the system. For that reason, the Sabotage method
is applied starting from Phase I (safety evaluation).

The Lateral Control system is part of a complete control architecture for automated
driving developed in Matlab/Simulink. This automated control architecture consists of
two main systems: Lateral and Longitudinal control. The Lateral Control is the respon‐
sible for steering the vehicle along the most appropriate trajectory depending on the
vehicle and environment state. This automated function consists of three principal func‐
tions.

• Behavioural Planner: It selects the most convenient trajectory depending on the
vehicle manoeuvre (i.e. lane keeping, lane changing and obstacle avoidance). Behav‐
ioural Planner is composed of another three sub-functions (i.e. Perception, Local
Planner and Decision). The Perception function supplies information from the
vehicle state sensors and environment state sensor as Differential GPS (DGPS). It
has to be pointed out that no sensor fusion is considered in the current design. The
Local Planner receives information from the environment sensors to obtain vehicle
position. At last, the Decision function creates the optimal trajectory considering the
manoeuvre that the vehicle shall perform.

• Trajectory Controller: Keeps the vehicle correctly on the trajectory. Knowing the
lateral error, the angular error and the curvature of the path, Trajectory controller
calculates the Variation Correction “Cv”. The algorithm chosen for the evaluation of
this design is the so-called Control Law algorithm and it is defined as formula (1).
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Cv = K1 ∗ elat + K2 ∗ eang + K3 ∗ Curvature (1)

• The steering function: Controls the steering wheel to set the vehicle on the trajectory
defined by Behavioural Planner. It obtains the input values from the Trajectory
Controller.

4.2 Safety Evaluation of the Lateral Control System

Section 4.1 explains how the automated guidance must be performed synchronously
with the longitudinal and lateral control. As functional safety is a crucial requirement,
this section shows a safety evaluation for an existing preliminary Lateral Control System
Behavioural Model. By performing the required simulations, the safety of the system is
evaluated so that the most suitable safety concept is obtained. Hence, the following
issues have been addressed:

• Simulation-based data acquisition with regards to component failure effects in the
presence of real faults observed on vehicle level.

• Dimensioning the functional safety concept by applying the process explained in
Sect. 3.2. This implies elaborating a fault tolerant Lateral Control system to avoid
possible hazards and to ensure a high level of dependability through fail-operational
behaviour or graceful degradation.

In Sect. 4.1, the main functions of the Lateral Control system have been introduced
and the Malfunctions related to the Lateral Control system (cf. Fig. 2, Failure Modes
Identification) consist of: Behavioural Planner (Unwanted Local Planner, Unwanted
Perception, Unwanted Decision), Trajectory Controller (Omission, Commission) and
Steering (Omission, Commission). These malfunctions or failure modes are necessary
to derive a proper configuration of the required fault models (see Table 2, 2nd column).
Those functional failure modes can be reproduced at system level (e.g. steering omis‐
sion) or even as component level malfunctions (e.g. DGPS information omission). After
completing that step, the step one of the first phase of Sabotage is applied. This requires
the selection of the Lateral Control SMUT as the design-model for which the safety will
be evaluated. In detail, the operational situation is specified: the speed of the vehicle is
set to 45 kph maximum in a fluent urban traffic and performing a lane keeping manoeuvre
on a curve at a city intersection.

With the aim of seeing the failure effects on vehicle level, Functional Failure Modes
associated to the functions have been reproduced. The malfunctions are triggered while
the vehicle is driving on a curve. In order to see system and vehicle level effects, func‐
tional failure modes related to the DGPS (Differential GPS) and the steering controller
have been reproduced. The fault list (cf. Table 1) is specified as by following the template
depicted in Sect. 3.1. Fault durations are randomly filled in as multiple of the simulator
resolution (1 ms) and triggers are curve positions (X,Y).
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Table 1. Example of a fault list generation

Component Fault location
(target signals)

Fault model Fault duration Fault trigger
(X,Y)

DGPS X,Y FrozenLastValue 150 ms 10 m, 20 m
DGPS X,Y Delay 100 ms 20 m, 30 m
Steering ECU Steering FrozenLastValue 70 ms 30 m, 30 m

By employing the process described in Sect. 3.1, the saboteur blocks are automati‐
cally injected to the SMUT, through a custom Matlab script, which holds the proper
configuration by means of the previously built up fault list. Together with the saboteurs,
the read-out blocks are included as well. Then, the fault injection simulations are
performed by triggering them at many driving circuit points on a curve to obtain the
most critical ones (see Fig. 3).

Fig. 3. Faulty system behavioural model

Table 2 lists the most relevant Potential Effects and Hazards obtained by FI simu‐
lation. For this purpose, the Lateral Control malfunctions are modelled by means of
Fault Models which allow to obtain vehicle level effects and to get a more precise
definition of the safety goals.

As depicted in Table 3, based on the identified hazards, appropriate safety goals
have been derived. Figure 4 depicts how the maximum time before the vehicle
dynamics are unsafely affected is obtained. More precisely, it illustrates a steering
omission based on the Yaw Rate and the Lateral Error signals (observation points
or read-outs).
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Table 2. Hazard and potential effects obtained by FI simulation

Fault target Fault model Potential effects Hazard
Steering FrozenOutOfRange Steering shaft is broken Vehicle may perform a

sudden steering and go out
of control causing
multiple collisions

Frozen
SteeringValueMax

Strong deviation of
steering shaft position

Vehicle may perform an
oversteering, spin and
cause multiple collisions

Frozen
SteeringValueMin

Strong deviation of
steering shaft position

Vehicle may perform an
understeering and go out
of control causing
multiple collisions

Frozen LastValue Constant steering shaft
position

Vehicle may depart lane
due to blocked steering
angle causing multiple
collisions

Trajectory
controller

Frozen LastValue Constant Cv value Vehicle may depart lane
due to unwanted steering
angle causing multiple
collisions

Frozen OutOfRange Controller is saturated Vehicle may depart lane
due to unwanted steering
angle causing multiple
collisions

Behavioural
planner

FrozenLastValue The trajectory is not
updated

Vehicle may follow a not
updated trajectory

DGPS Frozen DGPSLastValue Behavioural planner is
not updated

Vehicle may depart lane
because of following an
unwanted trajectory and
cause multiple collisions

Frozen RandomValue Behavioural planner
change the trajectory

Vehicle may perform a
sudden steering, go out of
control and cause multiple
collisions

Table 3. Definitions of the lateral control safety goals

Safety goal ID Safety goal definition
SG1 An unwanted steering angle shall be prevented
SG2 A sudden steering manoeuvre due to an unwanted trajectory shall be

prevented
SG3 An unwanted behavioural planner shall be prevented
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Fig. 4. Basis for FTTI calculation

To calculate the proper FTTI (Fig. 4) value by simulation, the maximum lateral error
is taken into account as the pass/fail criterion. This value is analytically calculated using
the formula (2). The following formula is used to determine where the vehicle dynamics
is certainly affected:

LatErrormax =
(Lanewidth − Vehiclewidth)

2
=

3, 5 − 1, 9
2

= 0, 8 m (2)

Fig. 5. Lateral error values for different steering and DGPS fault durations
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Figure 5 depicts the collection of the results for faults introduced in X,Y DGPS
signals and in the steering controller.

In addition, Table 4 represents how the FTTI values, the safety goals (Table 3) and
the fault detection times (Fault duration) have been filled in based on FI experiments.

Table 4. Lateral control: hazard analysis

Function Malfunction SG Safe state FTTI
(ms)

Fault duration
(ms)

Steering Commission SG1 Ensure integrity of
command execution

196 70

Trajectory
controller

Commission SG2 Graceful degradation
and driver regains
control

250 114

Behavioural
planner

Commission SG3 Graceful degradation
and driver regains
control

327 123

Table 5 lists the Functional Safety Requirements (FSR) based on FI simulations.

Table 5. Lateral control: definition of safety requirements

FRS Related SG Definition
FSR1 SG1 The system shall always assure that the yaw rate does not increase

more than 16%
FSR2 SG1 The steering shall be fail-operational
FSR3 SG1 The operational state of the steering controller shall be monitored

and reported to superordinate controller
FSR4 SG1 The system shall always assure that the range of the steering shall be

between [–540, 540] degrees
FRS5 SG2 The system shall always assure that the LateralError value must be

less than LateralErrorMax
FSR6 SG2 The system shall always assure that the Controller Cv parameter

value is between [–1, 1]
FSR7 SG2 The operational state of the trajectory controller shall be monitored

and reported to superordinate controller
FSR8 SG3 The trajectory shall be calculated based on the most appropriate

manoeuvre (e.g. lane keeping, lane changing)
FRS9 SG3 The system shall assure that the new position (Xt+1,Yt+1) of the

trajectory based on vehicle speed shall not exceed more than 9% of
the current position(Xt,Yt)

FSR10 SG3 The system shall calculate its trajectory starting from the most
appropriate manoeuvre (e.g. lane keeping, lane changing)

FSR11 SG3 The operational state of the behavioural planner shall be monitored
and reported to superordinate controller
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In the selection of safety concepts, the main outcome is that a redundant steering is
necessary in order to achieve the required level of availability. The main reason is that
a failure related to the steering shall be detected within 70 ms and the availability must
be provided within 196 ms. Regarding failures coming from the Trajectory Controller,
the detection time is established at 114 ms and the maximum system failure reaction
time in terms of vehicle dynamics is 250 ms. Because of these timing results, graceful
degradation might be sufficient in this case. Behavioural Planner malfunctions shall be
detected in less than 123 ms and their effect on vehicle level controlled within 327 ms.
The same applies to the Behavioural Planner for which graceful degradation might be
sufficient.

5 Conclusion and Future Work

We have presented a simulation-based FI approach for an early safety assessment of
automotive systems. Our approach has been evaluated in a case study for the model-
based design of a Lateral Control system. From a novelty standpoint, we focused on
determining of the fault detection time interval for permanent faults based on the
maximum lateral error, as a vehicle dynamics property. A major strength of the method
introduced in this paper is its usage during early design phases to evaluate the safety of
the system. This allows dimensioning and trading-off between safety concepts and
performs an early safety validation of the design. The uncertainty related to some auto‐
motive systems, such as an automated vehicle, makes traditional safety analysis methods
definitely not sufficient, requiring additional virtual and simulation solutions. Forthwith,
FI establishes itself as a way of completing and verifying previously carried out safety
analyses. Given that analysing system reactions under the effects of real faults can a
burden-some issue, these FI experiments arise as a viable solution.

Our future work spans the spectrum from relaxing the fault simulation constraints
to instrumenting the automated assessment work. This includes: (1) adding the capability
of automatically collapsing the injection of faults to generate optimised fault lists, (2)
integrating with contract-based approaches, (3) connecting to other system modelling
environments such as Papyrus/SysML, (4) linking to model-based safety analysis tools,
and (5) comparing FI simulation results with the results of performing software fault
injection for a model-car.
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Abstract. Statically proving the adherence of a system to its safety
requirements specified at design-time provokes overcautious systems with
limited performance. Contrarily, dynamically assessing the quality of sen-
sor observations at run-time enables adapting a system’s performance
accordingly while maintaining its safety. While this could be shown by
Brade et al. [2] for a simulated scenario with one-dimensional sensors, we
apply the proposed scheme, that is, the Validity Concept to 3D depth
information. In this endeavour, we define a failure model covering the
failure types Noise, Outlier, and Illumination Artefacts, define functions
to estimate their severity at run-time and represent a 3D point cloud’s
quality in terms of validity information. Furthermore, we show that cal-
culated Validity Values correlate with sensor failures impairing sensor
observations and enable estimating the quality of subsequent applica-
tions.

1 Introduction

Nowadays, mobile robotic systems utilize the extensive knowledge of their dynam-
ically changing environment to autonomously perform even complex tasks. While
3D depth cameras are widely used to obtain such extensive knowledge [1,8,9,13],
they suffer from a variety of sensor failures (see Fig. 1), which highly depends on
environmental conditions. In traditional systems, the threat which sensor failures
pose on a system’s safety is countervailed by implementing appropriate failure
tolerance mechanisms at design-time while relying on these mechanisms at run-
time. Thus, the safety strategy implemented is dictated by the most severe sensor
failure possible. When considering context-dependent sensor failures, a system’s
safety strategy has to consider all possible scenarios in which the system may be
situated at run-time. This will result in an overcautious system as the scenario-
causing severe sensor failures may occur only infrequently but the system’s per-
formance is limited permanently. On the other hand, a system that maintains its
safety by adapting its performance depending on the quality of available sensor
c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 270–286, 2017.
DOI: 10.1007/978-3-319-66266-4 18
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Fig. 1. Two 3D point clouds obtained by an Intel RealSense F200 camera [11] observing
an aluminium profile. In the left picture, Outlier failures are visible between the work-
piece and the table. In the right picture, Illumination Artefacts occur at the edge of
the work-piece.

observations would implicitly react to changing environmental conditions with-
out permanently limiting its performance. An approach addressing this issue was
proposed by Brade et al. [2] who elaborated key functions developed within the
KARYON project [4] to implement a simulated autonomous car that adapts its
velocity depending on the quality of available sensor observations. The key to
this adaptation is the Validity-Based Failure Algebra [3], or in short, the Valid-
ity Concept, which introduces a validity-based quality measure of sensor observa-
tions applicable at design-time as well as at run-time. While the work of Brade
et al. shows that a run-time performance adaptation is possible without sacrific-
ing safety, the Validity Concept is tested solely with respect to one-dimensional
distance sensors [2,3]. Contrarily, we apply the Validity Concept to the distance
information of 3D depth cameras as a prerequisite to implementing a run-time
performance adaptation. In this endeavour, we firstly introduce the core points of
the Validity Concept in the following section and review the state of the art on
modelling failures of 3D depth information in Sect. 3. While existing approaches
address only separate failure types in their failure models, we introduce a sophis-
ticated model in Sect. 4 and describe its usage for applying the Validity Concept.
In Sect. 5, we evaluate our approach with respect to its intended usage, which is
the implementation of a run-time performance adaptation. To test the approach
with realistic data, we consider the RoboCup@Work league in which competitive
teams are required to perform object classification and pose estimation both fast
and safely [10]. Finally, we conclude our work in the last section and describe pos-
sible future work.

2 Validity-Based Failure Algebra

In this section, we introduce the core points of the Validity-Based Failure Alge-
bra proposed by Brade et al. [3]. While the concept enables us to assess the
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quality of sensor data consistently at design-time and at run-time, we focus
on the latter with respect to its usage for a run-time performance adaptation.
The Validity-Based Failure Algebra aims at describing the confidence that an
application can have in certain sensor data. In this endeavour, Brade et al. pre-
sume a failure model that describes a sensor’s failure characteristics by a set of
m failure types, {(A, p)|A ∈ R, p ∈ [0, 1]}. Each of these failure types is con-
sidered to cause a maximal failure amplitude A occurring with a likelihood p.
Brade et al. abstract this information by defining the Failure Vector �f in which
each element is associated with one failure type, see Fig. 2. The values of the
corresponding elements are determined by assigning the failure type’s maximal
failure amplitudes Al (l ∈ {0, 1, ...,m}) and normalizing the vector. In this way,
the value of each element Fl is the failure type’s share on the summed maximal
failure amplitude. In a subsequent step, the elements are multiplied with the
counter-probabilities (1 − pl) to determine the Validity Shares fl that form the
elements of the Validity Vector �v. Due to this multiplication, the Validity Shares
are restricted to the range of fl ∈ [0, Fl]. While the Validity Vector is initialised
with static design-time knowledge, its purpose is to inform about the failure
types impairing a sensor observation at run-time. Therefore, a separate Validity
Vector is associated with each observation provided by a sensor at run-time and
is updated whenever additional run-time knowledge about the severity of failure
types is available. Brade et al. consider detectors recognising occurrences of con-
sidered sensor failure types and filters as Processes of a subsequent processing
chain that produce such run-time knowledge. However, one can generalise this
idea by defining that each Process altering the sensor data also updates its asso-
ciated Validity Vector, see Fig. 2. To provide a more condensed quality measure
besides the Validity Vector, Brade et al. additionally define the Validity Value v
as the sum of all Validity Shares fl of the vector �v. Due to its relation to the
Failure Vector, the Validity Value ranges between 0 and 1, where 1 indicates
correct sensor observations and 0 indicates severe sensor failures. Brade et al. [2]
utilize this reduced quality measure to realize their run-time performance adap-
tation. At design-time, different performance levels of a system are defined. For
each level, the system is simulated with increasingly severe sensor failures. By
monitoring the severity of sensor failures in relation to the system’s safety, a
minimum Validity Value at which the system behaved safely is determined. This
proven safety is used at run-time where the highest possible level of performance
is inferred from the Validity Value of available sensor data. In this way, the
system’s performance is adapted at run-time while its safety is maintained.

3 State of the Art

The Validity Concept enables monitoring the quality of sensor data at run-time
by abstracting the failure model of a considered sensor. As we aim for applying
the concept to 3D depth cameras, we review the state of the art on modelling
their failures in this section. We focus on the most common techniques:
– In Stereo Vision, a scene is observed from two different perspectives to utilize

the displacement of features for triangulation [5].
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Fig. 2. Overview of the Validity Concept of Brade et al. [3]. RTK is the abbreviation of
Run-Time Knowledge, which is produced by any Process applied to a sensor’s output.

– Structured Light projects a pattern on a scene and exploits the observed
displacement of the pattern for triangulation too [14].

– Time-of-Flight (ToF) cameras illuminate a scene with modulated light and
measure the phase shift of reflected light to calculate a scene’s depth [19].

All these sensing techniques provide 3D depth information of an observed scene,
also called (3D) point clouds. Despite their differences, we identified the error
sources of common failure types in the literature causing common failure types.
An overview of this relation is shown in Table 1 and is discussed in Subsect. 3.1.
In a concluding subsection, we review failure models considering these failure
types and assess their applicability to the Validity Concept.

Table 1. Overview of error sources of sensing techniques for 3D depth information and
their associated data-centric failure types.

Failure type Triangulation-based Time-of-Flight

Structured light Stereo vision Continuous wave

Noise Quantization [24] Quantization [5] Non-uniform illumination [6]

Numerical errors [24] Inaccurate measuring time [6]

Object surface [14]

Mislocating features [24] Mislocating features [5]

Lighting condition [14] Lighting condition [14]

Motion Bblur [15] Motion blur [23] Motion blur [20]

Outlier Exceptional high/low Exceptional high/low

reflectivity of surfaces [22] reflectivity of surfaces [22]

Strong sun light [14] Strong sun light [14]

Object edges [6,22] Object edges [6,22]

Illumination Multiple light reception [9] Multiple light reception [6]

Artefacts Object edges [14]

Offset Parallel projection model [24] Perspective projection model [7] Emitted light modula-

tion model [6]

Incorrect calibration [13,19] Incorrect calibration [13,19] Incorrect calibration [13,19]

Inaccurate camera design [24] Inaccurate camera design [24] Inaccurate camera design [24]

Integration-time value [6]

Gaps Shadowing or Shadowing or Shadowing or

occluding effects [12,19] occluding effects [12] occluding effects [12]

Absorbing surfaces [12]
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3.1 Failure Types and Error Sources

By taking a data-centric perspective, we identified five failure types common to
all sensing techniques presented. These failure types are Noise, Outlier, Illumi-
nation Artefacts, Offset, and Gaps. In this subsection, we associate these failure
types with the error sources reported in the literature for each of the presented
methods, see Table 1.

Noise failures are random inaccuracies continuously affecting the 3D points.
In the case of triangulation-based methods, usual error sources are lighting con-
ditions [14], numerical errors [24], and motion blurring [6]. ToF cameras exhibit
this failure type when the scene is non-uniformly illuminated by their projectors
[6]. While a 3D point affected by a Noise failure still relates to an actual object
in the observed scene, Outlier failures are points that cannot be accounted to a
real object anymore. In that manner, the definition of an Outlier failure in this
context contrasts with the traditional one. While these potentially introduce
large inaccuracies, their occurrences are connected with the spatial situation of
the observed scene. Hence, common sources of these failures are edges of sur-
faces [6,22], along with strong sunlight [14], and surfaces with exceptionally high
or low reflectivity [22]. While the failure type Illumination Artefact is similar to
an Outlier failure, it usually affects multiple, neighbouring points. Due to this
characteristics, the affected points form long-tailed but flat clusters. The failure
type is caused by indirect illumination originated from concavity of an object or
sharp edges [14]. Another common failure type is Gaps that are missing depth
information. These occur inherently due to discretising a scene into 3D points as
well as shadowing or occluding effects [19]. In the case of the Structured Light
approach, this failure type can be caused by surfaces absorbing infrared light
too [12]. Finally, the Offset failure describes constant offsets in depth informa-
tion. It is usually caused by incorrect calibration parameters [14,19,24], inac-
curate camera design [24], or the usage of inadequate models for calculating
the depth information (parallel projection model [24], perspective projection
model [7], emitted light modulation model [6]).

3.2 Failure Models

The last subsection dealt with failure types that abstract the error sources of the
individual sensing techniques. Hence, the failure models addressing these failure
types apply to 3D depth information in general. Consequently, in this section,
we review such failure models.

A detailed representation of the Noise failure is provided by Rauscher
et al. [19]. They assume a Gaussian random failure with a mean value of zero
and describe the standard deviation by a polynomial function over the mea-
sured depth. Such a distance-related Noise failure model is commonly used and
is applied in [14] too. Another definition is provided by Pauly et al. [18] along
with an approach to reduce noisiness and model Gaps using the point density in
3D depth information. Despite their detailed failure representation, they neglect
considering the remaining failure types. Yang et al. [24], on the other hand,
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not only address quantisation errors and dislocated features as sources of Noise
failure, but also the parallel projection model as a source of Offset failures.
The approach of [9] investigated short-range and long-range effects as causes
for Illumination Artefacts but lack an explicit description of this failure type.
Likewise, the failure type Outlier is separately modelled in [25] exploiting the
local neighbourhood of single points in a 3D point cloud. Finally, Offset failures
are modelled in [14] to manage incorrect calibrations.

While the presented approaches model the failures of 3D depth information
in detail, they solely focus on a subset or individual failure types. When con-
sidering the run-time usage of failure models, it is reasonable to omit the Offset
failures as they are usually compensable by appropriate calibration at design-
time. Furthermore, Gaps failures highly depend on the object observed and are
therefore intractable to model in general. On the other hand, the failure types
Noise, Outliers, and Illumination Artefacts cannot be neglected. Nonetheless,
a failure model comprising these three failure types could not be found in the
literature. Hence, the current state of the art does not provide failure models
covering all relevant failure types to be used in the Validity Concept.

4 Applying the Validity Concept to 3D Depth
Information

While we showed in Sect. 2 that using the Validity Concept requires an appropri-
ate failure model, the last section demonstrated the lack of such a model for 3D
depth information. Consequently, in this section, we will define a failure model
and utilize it to apply the Validity-Based Failure Algebra to 3D point clouds.
Furthermore, we will discuss the definition, severity estimation, and validity cal-
culation of each failure type in a separate subsection but start with a general
discussion about challenges arising when applying the Validity Concept to 3D
point clouds. For that, we will define the set P which represents a 3D point cloud
extended with validity information:

P = {(�pi, �vi, vi) | �pi ∈ R
3
≥0, �vi = [fi1 fi2 ... fim]T , 1 ≤ i ≤ n} (1)

The set P of size n associates a Validity Vector �vi and a Validity Value vi to
each measurement point �pi. The Validity Vector comprises the Validity Shares
fi1 , ..., fim

, which represent the current severity estimation of their associated
failure types. In Sect. 3, we identified five failure types of which only Noise,
Outlier, and Illumination Artefacts are relevant at run-time. Hence, here we
consider m = 3 failure types, where fi1 maps to Noise, fi2 maps to Outlier,
and fi3 maps to Illumination Artefacts. As a consequence, applying the Validity
Concept to 3D point clouds requires determining the Validity Shares fi1 , fi2 ,
and fi3 for each point in P .

As defined by Brade et al. [3], these represent the currently estimated severity
of a failure type in relation to its maximal severity Fl, where l encodes the
failure type, see Sect. 2. Furthermore, the Validity Shares fl are initialised using
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the failure types’ occurrence probabilities pl. Brade et al. extract these values
statically from a sensor’s failure model. However, the failure types considered in
this paper are highly context-dependent [14,19]. Therefore, statically defining a
failure type’s maximum severity as well as its probability of occurrence is deemed
to be correct solely for a specific context, but cannot be considered as generally
correct.

To address these challenges, we argue for excluding the static knowledge.
Instead, we apply the Validity Concept by providing so-called distance-related
Belief Functions. Their purpose is two-fold. On the one hand, they estimate
the relative severity of failure types as the distance between the actual sensor
data and its estimated ideal value at run-time, and, on the other hand, they
transform the identified severities into their respective Validity Shares. As this
calculation directly constitutes the quality assessment of sensor data, an engineer
has to consider the application’s safety requirements when designing this func-
tion. Furthermore, as the Belief Functions directly calculate the Validity Shares
fl at run-time, the requirement for static knowledge of Fl or pl is circumvented
for assessing sensor data. However, as defined by Brade et al., the values of Fl

also serve as range limitations in which the Validity Share fl varies (fl ∈ [0, Fl]),
see Sect. 2. Due to the inherent uncertainty of static knowledge about the failure
types considered, we do not rely on these values but assign equal ranges to each
failure type. In the same way, we considered the m = 3 failure types, each Valid-
ity Share shall be in the range of fi1 , fi2 , fi3 ∈ [0, 1/3]. In summary, applying the
Validity Concept to 3D point clouds requires defining the failure types Noise,
Outlier, Illumination Artefacts, and the functions to estimate their severity as
well as their Belief Functions. These aspects of each considered failure type are
discussed in the following subsections.

4.1 Noise

In this subsection, we will provide a definition of the Noise failure type and a
Belief Function to estimate its severity and to calculate its Validity Share fi1 .

In literature, the failure type Noise is considered to be random inaccuracies
of sensor data occurring continuously [18]. While there are several models of
this failure type [19], we will refer to Pauly et al. [18] who define a confidence
measure estimating the noisiness of a single point in P . The measure quantifies
the deviation of a considered point �pi from a plane defined by its neighbouring
points. For defining this measure, Pauly et al. start by calculating the covariance
matrix Ci of each point �pi ∈ P [18]:

Ci =
n∑

j=1

�pij�pT
ijφi(‖�pij‖) (2)

where �pij = �pi−�pj is the distance between the considered point �pi and its neigh-
bouring point �pj . Furthermore, the radial Gaussian function φi(‖�pij‖) defines
the neighbourhood of point �pi and reflects the assumption that point �pj is
part of the same plane as point �pi only when the distance to each other is small.
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However, the presence of Noise influences the calculated covariance matrix itself,
resulting in a disturbed confidence measure. Hence, Pauly et al. propose to reduce
the Noise by defining another covariance matrix Ωi of point �pi with a restricted
neighbourhood [18]:

Ωi =
k∑

j=1

(�pj − �̄p) · (�pj − �̄p)T (3)

where k defines the number of neighbouring points of �pi, and �̄p is the geometric
centre of the neighbourhood. Using a second matrix Ωj for a neighbouring point
�pj , Pauly et al. adapt the neighbourhood-function [18]:

φij
′ = φi(

√
�pT

ij�pij + tr(Ωi) + tr(Ωj)) (4)

This function is used to modify (2) and to calculate a corrected matrix Ci
′ [18]:

Ci
′ =

n∑

j=1

�pij�pT
ijφij

′ + Ωi ·
n∑

j=1

φij
′ +

n∑

j=1

Ωj · φij
′ (5)

Due to the definition of each point �pi ∈ R
3
≥0, Ci

′ is a 3 × 3 matrix, yielding 3
eigenvectors with eigenvalues λ1

i , λ2
i and λ3

i . The two eigenvectors yielding the
highest eigenvalues are assumed to define the plane from which the noisiness of
a point is measured. Finally, Pauly et al. represent the noisiness of a point �pi

with their confidence measure [18]:

λ̄i = λmin
i /(λ1

i + λ2
i + λ3

i ) (6)

where λmin
i represents the minimum eigenvalue of these three. As a consequence,

λ̄i is always in the range of [0, 1/3]. Furthermore, as λmin
i quantifies the distance

of point �pi from the estimated plane, values of λ̄i close to 0 indicate a high confi-
dence, that is, a low noisiness, while increased values indicate reduced confidence,
which is increased noisiness. This interpretation is in contrast to the definition
of Validity Shares, where high values indicate high confidence. Hence, we apply
the following Belief Function to convert the confidence measure of Pauly et al.
into the Validity Share fi1 :

fi1 = 1/3 − λ̄i (7)

4.2 Outlier

In contrast to the Noise failure type, an observation is considered as an Outlier
when it lies outside the overall pattern of a distribution [17]. Albeit, this failure
type is rather infrequent, it impairs sensor data more severely. To detect whether
a point �pi is an Outlier, we define a confidence interval and estimate the failure’s
severity as its distance to the interval border. In this endeavour, we start by
calculating the average distance of a point �pi to its k-nearest neighbours as:

μi =
1
k

k∑

j=1

‖�pij‖ (8)



278 J. Höbel et al.

Similar to the last subsection, the values of ‖�pij‖ may be corrupted by Noise
failures. As these disturb the values of μi, we utilize the approach of Pauly et al.
to reduce the noisiness once again. However, this time we directly utilize the Ω-
matrices (see (3)). Using the matrices Ωi and Ωj , the calculated distance between
�pi and �pj is corrected by assuming a random distribution and calculating its
expected value E[‖�pij‖]. As this expected value is determined by the traces of
the matrices Ωi and Ωj , the corrected average distance μi

′ is given by:

μi
′ =

1
k

k∑

j=1

E[‖�pij‖] =
1
k

k∑

j=1

√
�pT

ij�pij + tr(Ωi) + tr(Ωj) (9)

By assuming that the distances μi
′ are distributed normally over the set P , we

define the confidence interval [μP − s · σP ;μP + s · σP ] using the mean μP and
standard deviation σP over all distances μi

′. The parameter s controls the width
of the confidence interval and is to be specified with respect to an application’s
safety requirements as well as its tolerance to Outlier failures. The interval itself
defines the pattern of the distribution. Following the definition [17], a point �pi is
an Outlier if it is outside the interval. However, points for which μi

′ < μP −s ·σP

are characterised by being close to their neighbouring points and likely to being
a part of a cluster, which is a pattern itself. Therefore, those points are not
considered to be Outliers. Contrarily, a point �pi for which μi

′ > μP + s · σP is
separated from the pattern and is consequently deemed as an Outlier. Finally,
by abbreviating the upper border as the threshold tO = μP + s · σP , we define
the Belief Function as an exponential function:

fi2 =

{
1/3 : μi

′ ≤ tO

1/3 · e−(μi
′−tO)2/t

aO
O : μi

′ > tO
(10)

with aO ∈ R>0. The term −(μi
′ − tO)2 squares the estimated severity (μi − tO)

and multiplies it with −1 to ensure function values between 0 and 1. By scaling
these values linearly with 1/3, the Outlier ’s Validity Share fi2 is within its range
[0, 1/3]. In this case an exponential mapping between the estimated severity and
the Outlier’s Validity Share is applied to account for the special characteristics
of an Outlier : its commonly severe occurrences. Due to the exponential mapping,
the slope of the Belief Function rapidly declines. Finally, the parameter aO also
tunes the slope of the Belief Function and can therefore be used by an engineer
to adjust the severity assessment of Outliers with respect to an application’s
safety requirement.

4.3 Illumination Artefacts

While points affected by Outliers show no relation to each other, Illumination
Artefacts affect clusters of points. Such a cluster forms a plane that is oriented
parallel to the view of the camera. Therefore, points on this plane should, if they
were real, hide other points from the view of the camera. However, their pres-
ence in P , despite not being able to be observed by the camera, leaves no other
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conclusion than deeming those points as Illumination Artefacts. In endeavour-
ing to detect those points, Fuchs et al. [8] propose comparing the angle between
vector �c, which is the camera’s line of sight, and the vector defined by the two
neighbouring points �pi and �pj . If the angle is greater than π − tI , where tI is a
threshold for which Fuchs et al. propose a value of tI = 0.087, �pi is assumed to
be an Illumination Artefact. However, since they consider only a single neigh-
bouring point �pj , this decision is not robust to noisy data. Contrarily, we have
to anticipate Noise failures and therefore adapt the approach. We start with the
Noise-reduced covariance matrix Ci

′ of point �pi, see (5). As a covariance matrix
is always symmetric and positive semi-definite, its eigenvectors span an ortho-
normal space. Therefore, the two eigenvectors yielding the highest eigenvalues
span a plane while the eigenvector yielding the lowest eigenvalue is the normal
vector �ni of this plane. In case the point �pi is affected by Illumination Artefacts,
the estimated plane is parallel to the line of sight of the camera �c, implying that
the angle βi between �c and the normal �ni is close to 90◦ (or π

2 in radiant). The
angle βi is calculated by:

βi = �ni · (�c − �pi)/|�ni| · |�c − �pi| (11)

Using the angle βi, a point �pi is considered as an Illumination Artefact if its
corresponding angle βi is greater or equal to π

2 −tI . By assuming a neighbourhood
of k points instead of relying on a single neighbouring point, this adapted version
is more tolerant to Noise failures. Finally, incorporating the threshold tI in the
Belief Function allows transforming the angle βi into the corresponding Validity
Share:

fi3 =

{
1/3 : βi < π

2 − tI

1/3 · e−β2
i / π

2
aI : βi ≥ π

2 − tI
(12)

where aI ∈ R>0 allows an engineer to tune the slope of the Belief Function. We
also used an exponential mapping for this function because of the similarity of
Illumination Artefacts to the Outlier failure type.

4.4 Validity of Points and Point Clouds

The previous considerations were focused on single points �pi. However, when
processing 3D point clouds, it is common to isolate regions of interest based on
segmentation [21]. These regions R are all subsets of the overall point cloud P
(R ⊆ P ). The included points share characteristics such as corresponding to
the same object. Similar to a point �pi of a point cloud P , a region R can be
attributed with a Validity Vector �vR and a Validity Value vR as well. As this
requires fusing the validity information of all points �pi ∈ R, there are several
options. In applications where the validity of a single point �pi is relevant to its
safety, it is feasible to form the Validity Vector �vR using the minimum values
of the Validity Shares. Contrarily, applications that might be robust to failures
of a single point would act overcautiously when using this option. In such case,
forming the vector �vR using the median of Validity Shares would be another
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option. On the one hand, this option is robust to exceptionally low or high
Validity Shares but, on the other hand, it is unable to represent slight changes
in their values. Therefore, to limit the effect of exceptionally low or high Validity
Shares while reflecting also slight changes in their values, we use the mean of
the Validity Shares:

fRl
=

1
|R| ·

|R|∑

i=1

fil
(13)

where l ∈ {1, 2, 3}. Hence, the Validity Shares fRl
are the average of the corre-

sponding Validity Shares fil
of the points �pi ∈ R. As the Validity Shares fRl

form the Validity Vector �vR, the Validity Value vR is the sum of its elements.
Furthermore, since R may be equal to P , the Validity Vector �vP and the Validity
Value vP of a complete 3D point cloud P are obtained in the same way.

5 Evaluation

To evaluate the approach presented with respect to its utilization in a run-time
performance adaptation, we need to consider two different aspects: First, we
need to show that the Validity Value vP adequately represents the quality of 3D
point clouds. Second, we need to show that the Validity Vector �vP of sensor data
and its elements fPl

allow inferring the quality of an application’s output data
from the quality of its input data. This is a mandatory prerequisite for defining
different levels of performance at design-time and to safely switch between them
at run-time. In Subsect. 5.2, we analyse the first aspect using real and simulated
sensor data from the RoboCup@Work league. To examine the second aspect,
in Subsect. 5.3, we reuse the sensor data and additionally assume the tasks of
object classification and position estimation. In the next subsection, however,
we start by describing the experimental setup of the evaluation.

5.1 Experimental Setup

Simulated and real 3D depth information were acquired for the evaluation. We
simulated 3D point clouds, consisting of 400 points each, by assuming a planar
surface of 1 m × 1 m, with a distance of 1.2 m to a virtual camera. To match
this with a realistic scenario, the x and y components of points are distributed
normally N (0, 1) as proposed by Pauly et al. [18]. To obtain real sensor data,
we studied a scenario from the RoboCup@Work league with an Intel RealSense
F200 [11] camera. The camera observed two different aluminium profiles sepa-
rately from a fixed position. The first was of size 20 mm× 20 mm × 100 mm, while
the second was of size 40 mm × 40 mm × 100 mm. Both were placed on a table
with a distance of 0.35 m to the camera. Figure 1 shows two examples of point
clouds obtained from this scene. To derive Validity Shares for evaluating the
approach, we parametrised the Belief Functions, using aO = aI = 2. Concerning
the Outlier failure type, we additionally used a value of s = 1.2 to specify its
confidence interval, see Subsect. 4.2. We implemented the presented approach in
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C++ using the Robot Operating System (ROS) Kinetic [16] on Ubuntu 16.04.
To evaluate the computation time tc, we executed the algorithms on 15 real point
clouds on an Intel Core i5-4200U CPU with 3.8 GiB of main memory. Each of
these point clouds contains 5561 points (+/−33). Furthermore, by reconsidering
the parameters of the Belief Functions (see Sect. 4), we assume that only the
parameter k has a major effect on tc. Therefore, we varied k from {8, 16, 24}.
Using this configuration, the mean tc to determine the Validity Shares and the
Validity Value is 1.11 s (k = 8), 2.71 s (k = 16), and 5.1 s (k = 24). These results
show a linear effect of increasing k on tc. To decrease tc, a GPU-based real-time
processing can be an alternative.

5.2 Correlation of Validity Values and Failure Severities

In this subsection, we analyse the acquired data with hypothesis tests to show
that the Validity Value vP correlates with the failure amplitude and likelihood of
the failure types Noise, Outlier, and Illumination Artefacts. We design seven tests
(see Table 2) where T1 and T2 show that the Validity Value vP reflects increased
failure amplitudes of Noise and Outlier failures. Similarly, tests T3, T4, and T5

evidence that increasing likelihood of occurrence of failure types causes a reduc-
tion in the Validity Value. Finally, tests T6 and T7 also show this relation but use

Table 2. Overview of parameters of failure injection (pl: Occurrence probability of
failure type, A: Failure amplitude of failure type in [mm]) to generate Control Samples
and Paired Samples of hypothesis tests and the tests’ results.

Test: Considered failure type Control samples Paired samples Test result
α = 0.05)

Failure severity - Simulated data

T1: Noise p1 = 1.0
A1 ∼ N (0, 10)

p1 = 1.0
A1 ∼ N (0, 15)

pT1 = 0.0 < α

T2: Outlier p2 = 0.05
A2 ∼ U(100, 200)

p2 = 0.05
A2 ∼ U(300, 500)

pT2 = 0.0 < α

Occurrence probability - Simulated data

T3: Noise p1 = 0.05
A1 ∼ N (0, 20)

p1 = 0.1
A1 ∼ N (0, 20)

pT3 = 0.0 < α

T4: Outlier p2 = 0.05
A2 ∼ U(200, 500)

p2 = 0.1
A2 ∼ U(200, 500)

pT4 = 0.0 < α

T5: Illumination artefacts p3 = 0.33
βi = π

2

p3 = 0.5
βi = π

2

pT5 = 0.0 < α

Occurrence probability - Real data

T6: Outlier p2 = 0.0
A2 = 0.0

p2 = 0.12 ± 0.007
A2 ∼ U(> 0, 20)

pT6 = 0.03 < α

T7: Illumination artefacts p3 = 0.0
A3 = 0.0

p3 = 0.03 ± 0.01
A3 ∼ U(> 0, 10)

pT7 = 0.01 < α
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real sensor data instead of simulated sensor data. For testing these hypotheses,
we applied paired two-sample Student’s t-tests (effect size d = 0.5, statistical
power of 0.9) to the simulated data and independent two-sample Student’s t-
tests (effect size d = 0.7, statistical power of 0.9) to the real sensor data. For
all tests, the significance level α was set to 0.05. As required by the tests’ type,
two sets (Control Samples and Paired Samples) of 44 Validity Values vP have
to be generated for each test. For tests using simulated data (T1, T2, T3, T4, and
T5), we calculated these values from 3D point clouds in which only the currently
considered failure type was injected using the parameters stated in Table 2. For
the tests using real sensor data (T6 and T7), the Validity Values of the Control
Samples were calculated from point clouds generated by manually removing all
failures while Validity Values of the Paired Samples were calculated from point
clouds generated by removing all unconsidered failure types. Thus, the samples
differ only in the number of occurrences of the considered failure type. The test
itself evaluates whether the mean of the differences between both sets is different
from zero, which is the case when the test’s statistic (pTt

-value, where t encodes
the test’s number) is less than the significance level α. As seen in Table 2, we
obtained this result for each test, which evidences that the differences in the
Validity Values between both samples are not random. Hence, as these differ-
ences were caused by increasing the likelihood or the failure amplitude of failure
types, the Validity Value vP of a 3D point cloud adequately represents its quality.

5.3 Correlation of Application Quality and Input Validity Values

To show that the quality of an application’s output data can be inferred from the
Validity Shares of its input data, we examine the tasks of object classification
and position estimation from the RoboCup@Work league as examples. We apply
these tasks to the real sensor data and associate the quality of their output data
with Validity Vectors of their input data. We visualise this association for each

Fig. 3. The quality of applications depending on the Validity Shares fP1 , fP2 , and fP3 .
Corresponding trend lines are shown along with Pearson’s correlation coefficient.
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Validity Share of these vectors by fitting a linear model in a least-squares manner.
Additionally, linear correlations are revealed when the calculated correlation
coefficient rfPl

is close to ±1. The results are shown in Fig. 3. In this work, the
applied object classification is based on the Ensemble of Shape Function (ESF)
descriptor [1] for RoboCup@Work objects with a weak geometric structure. The
ESF descriptor is a high-dimensional signature of an object’s cluster of points,
which describes information about the cluster’s geometry, and is stored in a
feature vector. As we consider solely the first aluminium profile for this task,
we obtain a single reference feature vector. At run-time, a similar feature vector
is extracted from a point cloud and is classified using the k-nearest neighbours
(NN) algorithm. In contrast to other classification algorithms, e.g. Deep Neural
Networks, k-NN directly provides a quality score by evaluating the Euclidean
distance between the newly classified feature vector and the reference feature
vector. The larger the distance to the reference vector, the less likely the feature
vector is a member of the object and the lower the quality of the application.
We applied this classification task to 11 real point clouds. As shown in the
left diagram in Fig. 3, the Validity Shares of Outlier and Illumination Artefacts
exhibit strong linear correlations to the application’s quality, their correlation
coefficients are close to −1. Contrarily, the Noise failure is uncorrelated, which
complies with the literature [1] in which this method is considered to be robust
to Noise failures. Variations of the application’s quality are caused by Outlier
and Illumination Artefacts, affecting the test data along with Noise.

Similar to the object classification, we used the approach of ESF for esti-
mating the position of the classified object. We assessed this task, utilizing the
Euclidean distance of the estimated position from the correct position. For this
task, we used 11 point clouds obtained from the second aluminium profile. The
results are shown in the right diagram in Fig. 3. While the Validity Shares of
Noise and Outlier exhibit moderate correlations, Illumination Artefacts prove
to be uncorrelated. The lack of correlations may have three reasons. First, our
approach does not adequately model the quality of 3D point clouds, which would
contradict Subsect. 5.2. Second, the considered failure model does not contain
all the relevant failure types. As our failure model neglects the Gaps and Off-
set failures, these could cause variations in the task’s quality that may not be
reflected by the Validity Shares. Third, the information represented by the input
data is not sufficient to correctly estimate the position of the object. Such insuf-
ficient information is not indicated by the Validity Shares since this is not the
purpose of the Validity Concept. Finally, we could identify relevant correlations
between the values of the Validity Shares and the quality of the object classi-
fication, showing that our approach is feasible for estimating an application’s
quality. According to Sect. 2, this is mandatory for implementing a run-time
performance adaptation in future work. However, as a similar statement cannot
be made for the second task, the reasons mentioned should be investigated in
future analysis.
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6 Conclusion and Future Work

In this work, we applied the Validity Concept introduced by Brade et al. [3] to
3D point clouds provided by camera-based sensor systems. For this, we defined a
failure model covering Noise, Outlier, and Illumination Artefacts, derived meth-
ods to estimate their severity, and proposed Belief Functions to derive valid-
ity information for each point of a 3D point cloud. Fusing this information to
obtain validity information for a complete 3D point cloud enabled us to show
that the proposed approach adequately represents the quality of such sensor
data. Regarding the task of object classification, we could correlate the Valid-
ity Shares of real 3D point clouds to the quality of the task’s output data.
Following the Validity Concept, this correlation can be used to implement a
run-time performance adaptation in future work. For instance, one could apply
filters to mitigate present failure types, depending on the quality of the current
sensor data. Hence, filtering the sensor data would be afforded only in case of
low quality, while otherwise, the effort is saved. Depending on the number of
applied filters, various levels of performance can be defined. While the safety
of a system should be guaranteed on all of these levels, one should contemplate
that Validity Shares solely provide information about failure types defined by an
underlying failure model. Thus, it is a system engineer’s obligation to guarantee
a sufficiently complete failure model. In fact, without correlation to the Validity
Shares of its input data, such an incomplete failure model could have caused the
quality of the position estimation task to be inconsistent. Consequently, in future
work, the incompleteness of failure models, along with the other mentioned rea-
sons, shall be investigated using different scenarios and different applications.
This also provides opportunities to address additional research questions, such
as: Which fusing methodologies (see Subsect. 4.4) are applicable with respect to
varying strict safety policies? To which kind of systems is the Validity Concept
(in general and with respect to 3D depth information) applicable? Furthermore,
the presented failure model is motivated by the failures of different sensing tech-
niques and therefore aims at the failures of 3D depth information in general.
However, the failure model and its application to the Validity Concept has been
investigated only in reference to a single experiment. Thus, while the generality
of the approach can be assumed, in future work, it has to be examined in more
detail.
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2. Brade, T., Jäger, G., Zug, S., Kaiser, J.: Sensor- and environment dependent per-
formance adaptation for maintaining safety requirements. In: Bondavalli, A., Cec-
carelli, A., Ortmeier, F. (eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 46–54.
Springer, Cham (2014). doi:10.1007/978-3-319-10557-4 7

http://dx.doi.org/10.1007/978-3-319-10557-4_7


Towards a Sensor Failure-Dependent Performance Adaptation 285

3. Brade, T., Zug, S., Kaiser, J.: Validity-based failure algebra for distributed sensor
systems. In: 2013 IEEE 32nd International Symposium on Reliable Distributed
Systems (SRDS), pp. 143–152. IEEE (2013)

4. Casimiro, A., Kaiser, J., Schiller, E.M., Costa, P., Parizi, J., Johansson, R., Librino,
R.: The karyon project: predictable and safe coordination in cooperative vehicular
systems. In: 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and
Networks Workshop (DSN-W), pp. 1–12. IEEE (2013)

5. Das, S., Ahuja, N.: Performance analysis of stereo, vergence, and focus as depth
cues for active vision. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1213–1219
(1995)

6. Foix, S., Alenya, G., Torras, C.: Lock-in time-of-flight (tof) cameras: a survey.
IEEE Sens. J. 11(9), 1917–1926 (2011)

7. Fooladgar, F., Samavi, S., Soroushmehr, S.M.R., Shirani, S.: Geometrical analysis
of localization error in stereo vision systems. IEEE Sens. J. 13(11), 4236–4246
(2013)

8. Fuchs, S., May, S.: Calibration and registration for precise surface reconstruction
with time-of-flight cameras. Int. J. Intell. Syst. Technol. Appl. 5(3–4), 274–284
(2008)

9. Gupta, M., Agrawal, A., Veeraraghavan, A., Narasimhan, S.G.: A practical app-
roach to 3d scanning in the presence of interreflections, subsurface scattering and
defocus. Int. J. Comput. Vision 102(1–3), 33–55 (2013)

10. Hochgeschwender, N., Kammel, R., Kraetzschmar, G., Nowak, W., Norouzi, A.,
Schnieders, B., Zug, S.: Robocup@work rulebook. http://www.robocupatwork.org/
download/rulebook-2017-01-24.pdf. Accessed 17 Feb 2017

11. Intel: Intel realsense f200 camera (2015). http://www.intel.co.uk/content/
www/uk/en/support/emerging-technologies/intel-realsense-technology/
intel-realsense-cameras/intel-realsense-camera-f200.html. Accessed 15 Feb
2017

12. Jain, R.C., Jain, A.: Analysis and Interpretation of Range Images. Springer,
New York (2012)
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Abstract. Safety-critical systems must satisfy safety requirements
ensuring that catastrophic consequences of combined component fail-
ures are kept below a certain probability occurrence threshold. Therefore,
designers must define a hardened architecture of the system, which fulfils
the required safety level by integrating safety mechanisms. We propose an
automatic SMT-based synthesis methodology to harden an initial archi-
tecture for a given safety objective. The proposed ideas are experimented
on an avionics flight controller case-study and several benchmarks.

1 Introduction

The design and development of safety critical applications must satisfy stringent
dependability requirements. In the avionics domain for instance, the correctness
of applications must be proven or at least argued to the certification authorities.
To help the designers achieve that goal, several avionics standards are available
such as the ARP-4754 [1]. Following these guidelines, any avionics function is
categorized according to the severity of its loss and subject to qualitative and
quantitative safety requirements.

1.1 Design-Space Exploration Problem

During the design, a preliminary functional architecture of a system is designed
as a combination of sub-functions providing the expected functionality. This
architecture is then analysed to check if the high-level safety requirements are
fulfilled assuming some properties (such as failure independence). Such an analy-
sis is done on a dysfunctional model, that is, a component-based description of
the architecture giving the failure modes (the observable effects of a failure) pro-
duced by the system in the context of failure events (the cause of a failure). If
the analysis fails, the designer must propose a hardened architecture, that is, a
modified architecture enriched with some safety mechanisms.

The automatic architectural optimization of fault-tolerant systems (also
called design space exploration or exploration problem) generally relies on com-
ponent substitution i.e substituting a component by a safer version [2,3] to gen-
erate new architectures (called candidates). The safer versions available for a
component (called alternatives of the component) are instances of well-formed
c© Springer International Publishing AG 2017
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safety design patterns of proven efficiency [4,5]. The patterns that can be used
to harden an architecture are often chosen depending on the designer’s exper-
tise, the expected safety increase and by considering the impact on the design of
non-functional criteria (such as CPU consumption, temporal performance, etc.).

1.2 Contribution

The main steps of the existing design space exploration approaches (detailed in
Sect. 7) are the followings:

(1) choose and replace some system’s components by safety patterns. This
requires in particular that designers must identify which are the relevant
components and the relevant patterns to use;

(2) assess the resulting candidate. This requires computing the structure func-
tion (a Boolean function indicating if the candidate fails) and the safety
indicators such as the reliability;

(3) if the result is compliant with the safety objectives, then the candidate is
a solution of the exploration problem, otherwise discard the candidate and
restart from 1.

Fig. 1. SMT-based resolution method overview

We propose a Satisfiability Modulo Theory (SMT) based design space explo-
ration method, detailed in Fig. 1, which improves the exploration process by:

Specification encoding the system’s model and safety requirements in the stan-
dardized language SMT-LIB [6] which allows to use off-the-shelf SMT solvers
for analysis and exploration;

Substitution Analysis assessing a priori the effect of substituting a compo-
nent by a pattern. This means computing for all pairs (component, pattern)
some safety values by an automatic analysis based on the resolution of SMT
problems using the Uninterpreted Functions and BitVector theory (UFBV).
Moreover, at the end of this stage, we provide a MDD (Multi-Valued Decision
Diagram) – named STMDD for System Trace MDD – usable to compute the
safety indicators of any potential candidate;

Exploration integrating the STMDD in a theory of our design called Safety.
Thus exploration is performed by an SMT solver which uses the Safety the-
ory for candidate assessment. This assessment is based on the safety values
directly computed from the STMDD. Moreover if the result is not compli-
ant with the safety objectives, the set of selected pairs (component, pattern)
causing the non conformity is removed from the exploration space.
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Thus, instead of performing a safety assessment from scratch for each candidate,
we compute the MDD only once. Furthermore, if the candidate is not compliant
with the safety objectives, the exploration space is drastically reduced thanks
to the conflict clauses generated by the Safety theory solver. However, we must
assess all pairs (component, pattern) during the preprocessing phase. This is
not really an issue, since the number of failures for one component or one pat-
tern is small (around 2 or 3) compared to the number of failures of a complete
architecture.

We first recall some basics on safety assessment in Sect. 2 and then formalize
the exploration problem in the many sorted first order logic (MSFOL).

2 Reminder on Safety Analysis

The system designer must build a dysfunctional model (simply called model)
encoding the system behaviour in the presence of failures.

2.1 Assumptions

We assume that the occurrence probability of basic failure events is known and
that the dysfunctional model satisfies the following properties: (1) Static: A
dysfunctional state does not depend on the order of failure events occurrence;
(2) Non repairable: A failed component cannot return to a working state; (3)
Closed: The system behaviour depends only on failure events; (4) Exponen-
tial law: The failure events are independent and their probability of occurrence
is modelled by an exponential distribution. (5) Substitution: The component
substitutions preserve the initial component’s interface. The hypotheses 1 and
5 allow us to leverage powerful analytic methods to compute minimal cutsets,
prime implicants and reliability values. Indeed dynamic systems would require
stochastic methods (e.g. [7]) which are less easily amenable to be handled with
satisfiability solvers. Moreover, the hypotheses 2–4 define a classic safety assess-
ment context for static systems [8].

Dysfunctional model is an abstract representation of the system that describes
its behaviour in the presence of failures. Let us first remind the safety-related
terminology.

Definition 1 (Terminology). Let C be a component, then: (1) a failure F of
C is the inability of C to provide a function; (2) failure modes FM of C are the
observable effects of the failure F; (3) a failure condition FC is FC =

∨
i FM i

where FM i are failure modes; (4) a failure event e is the cause of a failure F.

A model can be modular and hierarchical. Moreover, the user can constitute
packages of components definitions that can be reused, instantiated and manip-
ulated. However, due to the lack of space, we consider only the flat models and
conduct the analysis at the component level.
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Let us name the different entities of a dysfunctional model as follows: (1) C
are the components or pattern instances; (2) E are the failure events; (3) F are
the flows i.e the inputs and outputs of components that carry the failure modes
generated by components’ failure events; (4) V are the possible failure modes.

Example 1 (Rosace). We introduce a running example that is a simplification
of an open-source avionics control engineering case study Rosace defined in [9].
This control chain manages the longitudinal motion of a medium-range civilian
aircraft in en-route phase. Figure 2a shows the architecture of Rosace, which
is composed of four components. Three filters (FV z, FV a, Fq) receive and filter
some sensors values namely the vertical speed Vz, the true airspeed Va and the
pitch rate q. The filtered signals (Vaf , Vzf and Vqf ) are used by the airspeed
controller CV a to monitor Va by sending throttle command δthc to the engines.

Fig. 2. Rosace overview

In Rosace, the components are C = {CV a, FV a, FV z, Fq}. The fail-
ure modes V of all components are 1. erroneous data (E ) caused by the
failure event C.e; 2. omission of data (L) caused by the failure event
C.l; where C is the component’s name. The failure events are E =
{CV a.e, CV a.l, Fq.e, Fq.l, FV a.e, FV a.l, FV z.e, FV z.l, e, l}.

2.2 Safety Analysis

This section is a brief introduction to safety analysis, which is detailed in [8]. For
static systems, safety assessment is based on the system’s structure function. This
Boolean function over the system’s failure events, called ϕ, returns a Boolean
indicating whether the failure condition is true or not.

Example 2 (Structure function). The structure function ϕ of Rosace for the
failure condition: “the output δec of Rosaceis lost or erroneous” is:

ϕRosace = FV a.e ∨ FV a.l ∨ CV a.e ∨ CV a.l ∨ (Fq.e ∨ Fq.l) ∧ (FV z.e ∨ FV z.l)

The reliability is defined as the probability that ϕ becomes true within a given
operation time. Since the reliability computation cannot be performed without
failure events probabilities, we assume that these probabilities are defined by the
user before the exploration process.
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Definition 2 (Reliability). Let S be a model, e a failure event and te the
random variable modelling the instant where e occurs. Then the reliability Re(t)
(resp. the unreliability Re(t)) is the probability that e does not occur (resp. occurs)
during the time interval [0, t] knowing S is functional at t = 0. By abuse of
language we write p(e) (resp. p(e)) for p(te ≤ t) (resp. p(te > t)).

∀t ∈ R
+, Re(t)

def
= p(e) = 1 − p(e) = 1 − Re(t)

Example 3 (Reliability). Let us assume that the failure rate of Rosace’s events
is 10−5h−1 then the unreliability after one hour is R(1) � 4.10−5.

Another safety indicator is the set of minimal sets (MCS) of events needed
to trigger a given failure condition. For static systems, these sets are the prime
implicants of ϕ, [10], i.e conjunctions of failure events or their negation.

Definition 3 (Prime Implicants (PI)). Let S be the system model, ϕ the
structure function and p a subset of literals built over the system’s failure events.
p is a prime implicant iff: (1)

∧
l∈p l ⇒ ϕ and (2) ∀(l ∈ p),

∧
l′∈p\{l} l′ � ϕ.

Example 4 (PI). The prime implicants of ϕRosace are {{FV a.e}, {FV a.l},
{CV a.e}, {CV a.l}, {FV z.e, Fq.e}, {FV z.e, Fq.l}, {FV z.l, Fq.e}, {FV z.l, Fq.l}}.

The so-called minimal cutsets (mcs) are the restriction of prime implicants
to positive literals [10]. So the minimal cardinality of an mcs is the minimal
number of positive literals belonging to a prime implicant of ϕ.

2.3 Hardened Architecture

An hardened architecture must satisfy safety objectives. For Rosace, the failure
condition δthc is lost or erroneous is HAZ according to the ARP-4754, thus: (1)
the loss must be triggered by at least two independent failures; (2) the failure
rate must be lower than 10−7h−1 (per flight hour). In the sequel we approxi-
mate this requirement by the mean failure rate, i.e, the reliability divided by
the exposition time. Rosace does not fulfill the requirement, since there are
single points of failures (see example 4), therefore a hardening is mandatory.
For instance designers can instantiate a triplication pattern (replication of com-
ponent together with a two-out-of-three voting), as depicted in Fig. 2b. In the
sequel, we show how to model and solve the exploration problem automatically.

3 System Modelling: Illustration on Rosace

The system model is encoded as a Satisfiability problem over many sorted first
order logic (MSFOL) described with the SMT-LIB standardized language [6]. An
SMT problem is a Satifiability problem over a set of logic formula Modulo a set
of Theories [11]. In the following sections, we use the Uninterpreted Functions
and fixed size BitVectors theories, known as UFBV in the SMT-LIB standard
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and the algebraic datatypes (tuples for instance). Basically, the SMT modelling
of a system contains (1) sort and function definitions (said interpreted) which
describe components’ behaviours, (2) function declarations (said uninterpreted
i.e without a body definition) representing the unknowns of the satisfiability
problem, (3) assertions i.e the formula that must be satisfied.

A sort can be seen as a type, and some built-in sorts are provided by SMT-LIB
such as Boolean and bitvectors of fixed but arbitrary large size. Our modelling is
based on two kinds of sorts: (1) the bitvectors sorts representing the failure modes
of V, (2) the tuple sorts gathering several values when components have several
outputs. For Rosace, the failure modes of V are represented by a bitvector sort
t of size two declared using (declare − sort t ( BitVec 2)). For each failure
mode, a bitvector constant is defined.

(declare-sort t (_ BitVec 2)) (define-const E t #b10)
(define-const L t #b01) (define-const empty t #b00)

The following command illustrates the definition of a tuple type Tuple2 which
can be built using mkTuple2 constructor and its first (resp. second) fields are
accessed through fst (resp. snd) function.

(declare-datatype Tuple2 () ((mkTuple2((fst t) (snd t))))

A component c ∈ C is encoded as an interpreted function defined using
(define − fun). The function’s inputs are both the inputs and the failure events
of c whereas the function’s outputs are those of c. When the component has
several outputs, the values are gathered in a tuple sort TupleX. In the sequel,
the failure modes generation and propagation modelling is based on the following
built-in operators: (1) the let binder which defines an expression expr where
local identifiers x1, . . . , xn respectively equal to expr1, . . . , exprn are used to
define expr; (2) the conditional selection operator (ite b e1 e2) which stands for
if b then e1 else e2; (3) the classic operators over bitvectors. Thus for Rosace,
the models of a filter F (like FVa

, FV z and Fq) and CVa
are:

(define-fun F ((e Bool) (l Bool)) t (ite e E (ite l L empty)))
(define-fun CVa ((e Bool) (l Bool) (Vzf t) (qf t) (Vaf t)) t
(ite e E (ite l L (ite (= Vaf E) E (ite (= Vaf L) L

(ite (and (= Vzf E) (= qf E)) E
(ite (and (= Vzf L) (= qf L)) L empty))))))))

The system is also encoded by an interpreted function which composes its
sub-component’s functions. So for Rosace, the main system is:

(define-fun Rosace
((CVa.e Bool)(CVa.l Bool) (Fq.e Bool) (Fq.l Bool)
(FVa.e Bool) (FVa.l Bool) (FVz.e Bool) (FVz.l Bool)) t

(let ((Vaf (F FVa.e FVa.l)) (Vzf (F FVz.e FVz.l))
(qf (F Fq.e Fq.l)))
(CVa CVa.e CVa.l Vzf qf Vaf )))
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Eventually the failure condition fc is translated as an interpreted function
on the system outputs returning a Boolean (also called a predicate) if and only
if fc occurs.

(define-fun fc ((deltaThc t)) Bool (not (= deltaThc empty)))

Uninterpreted functions are declared using (declare − fun). For instance we
declare an unknown structure function phi.

(declare-fun phi (Bool Bool Bool Bool Bool Bool Bool Bool) Bool)

Assertions must be Boolean formulas, and are added by (assert a). A for-
mula is any Boolean expression composed of predicate calls, Boolean connectives,
term equalities and quantifiers. The quantifiers are used as shown below:

(forall ((x1 T1)...(xn Tn)) boolExpr)
(exists ((x1 T1)...(xn Tn)) boolExpr)

A forall (resp. exists) is true whenever boolExpr is true for all (resp. for
some) x1, . . . , xn. A term is a constant v or a function call (f t1...tn) where
each argument ti is a term of appropriate sort w.r.t the function signature. For
instance we can ensure that phi is true if and only if the failure condition is true
as follows:

(assert (forall

((CVa.e Bool) (CVa.l Bool) (Fq.e Bool) (Fq.l Bool)

(FVa.e Bool) (FVa.l Bool) (FVz.e Bool) (FVz.l Bool))

(= (phi CVa.e CVa.l Fq.e Fq.l FVa.e FVa.l FVz.e FVz.l)

(fc (Rosace CVa.e CVa.l Fq.e Fq.l FVa.e FVa.l FVz.e FVz.l)))))

Solving an SMT problem means: finding a definition for uninterpreted func-
tions which satisfies the assertions. These definitions are called a model of the
problem. The (check − sat) command asks the solver to find a model of the SMT
problem. If the answer is Sat a model can be obtained using the (get − model)
command. Otherwise the problem is Unsat and an unsatisfiability proof can,
optionally, be generated. Let us introduce the usage of the MSFOL system’s
model for design space exploration.

4 Component Traces

In this section we detail how the impact of a single component substitution on
safety indicators (i.e the reliability and the minimal cardinality of the mcs) is
computed in a preprocessing phase before design-space exploration.

4.1 Safety Patterns

We recall that safety patterns are generic safety mechanisms of proven efficiency
used to harden an architecture. For instance, on the right hand side, the COM/-
MON (command and monitoring) pattern is composed of two redundant com-
ponents that work in hot redundancy, computing a same value. A comparator
checks if the outputs are coherent, if so the consolidated value is forwarded,
otherwise no output is provided. This pattern is coded in SMT-LIB as DupF.
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C

C

=

(define-fun DupF
((F1.e Bool) (F1.l Bool)
(F2.e Bool) (F2.l Bool)) t
(let ((out1 (F F1.e F1.l))

(out2 (F F2.e F2.l)))
(ite (= out1 empty) out1 L)))

4.2 Flow-Based Analysis

Replacing a component by a pattern that may have different failure events and
propagation rules invalidates the system’s structure function and requires to
recompute it. This can become the main computational bottleneck of design-
space exploration. We propose a new representation based on failure modes
observed on the component interfaces, called component traces. The corre-
sponding safety indicators are shown below on the table on the right. For
instance, in the left Figure below, FM2 is observed on B output and results
from the event combination {A.e1, B.e2}. If instead, we represent this behav-
iour by the failure modes observed on the component’s interface, it becomes
(B, {(in, FM1), (out, FM2)}). We argue that a substitution is supposed to pre-
vent some failure modes but not to add new ones. That is why, the failure modes
produced by the safety pattern are often a subset of those produced by the initial
component. Thus the analysis performed on the initial failure modes observed
on the component’s interface can be reused after the substitution.

A B
E
e1

E
e2

FM1 FM2

event-based flow-based
event occurrence component trace
p(e) where e is an event p(tr) where tr is a trace
structure function ϕ system trace MDD

4.3 Component Trace Definition

A component trace is a valuation of the component’s inputs and outputs for
some (combination of) event occurrence. These traces are computed by solving
SMT problems as illustrated in the Example 5.

Example 5 (Component Trace). Let us consider a filter F of Rosace with one
output named out. Then the traces of F are the failure modes observed on its
outputs out resulting from some failure events e or l. Thus a valuation {(out,X)}
is a trace of F if and only if the below SMT problem is SAT. For F the possible
traces are {{(out , E)}, {(out , L)}, {(out , ∅)}}.

(declare-const e Bool) (declare-const l Bool)
(assert(= (F e l) X))

4.4 Computing Safety Indicators on Component Traces

To properly define safety indicators on component traces, we compute trigc

which gives the events valuations of the component c producing a given trace.
The function trigc is computed by solving an SMT problem for each possible
component trace tr, whose models provide the events valuations producing tr.
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Example 6. Let us consider again a filter F of Rosace, the event valua-
tions producing the trace {(out , E)} are the models of the following SMT
problem, i.e {{(e, true), (l, true)}, {(e, true), (l, false)}} that is simplified to
trigF ({(out , E)}) = {(e, true)}.

(declare-const e Bool) (declare-const l Bool)
(assert (= (F e l) E))

We introduce for each trace tr the notion of trace probability probc(tr) (resp.
cardinality cardc(tr)) as the probability associated with trigc(tr) (resp. the min-
imum cardinality of minimal cutsets of trigc(tr)). In practice the BDD encoding
trigc(tr) is first computed and then the classic computation methods are applied
[10]. This BDD is local to a single component and hence remains quite small.

Example 7 (Safety indicators on component traces). For tr = {(out , E)} of FVa
,

the probability (resp the cardinality) is probFVa
(trigFVa

(tr)) = p(e) = 0.01 (resp.
cardFVa

(trigFVa
(tr)) = min(|{e}|) = 1).

4.5 Component Traces and Substitutions

A component can be replaced by components taken from a set of alternative
components. For each alternative, we compute and store the prob and card values
in an array as shown in the Example 8. If an initial component trace is infeasible
after a substitution, the prob (resp. card) default value 0 (resp. +∞) is stored.

Example 8 (Component traces and substitutions). If FV a can be substituted by
DupF, the analysis of DupF traces give trigDupF (out , E) = {{FV a1.e, FV a2.e},
{FV a1.l, FV a2.l}} with a cardinality of 2 and a reliability of 0.0002. Figure below
shows the array for FV a.

{(out , E)}
F DupF

card 1 2
prob 10−2 2.10−4

{(out , ∅)}
F DupF

card 0 0
prob .98 .9996

{(out , L)}
F DupF

card 1 2
prob 10−2 2.10−4

5 System Trace MDD

5.1 System Trace Definition (STMDD)

Intuitively, a system trace, for a given failure condition, gathers all component
traces (interface flow valuations) consistent with the system definition and real-
izing a given failure condition. Such system traces are called dangerous system
traces. For space efficiency, dangerous traces are encoded as an Multi-valued
Decision Diagram [12], called System Trace MDD (STMDD), where variables are
components and edges indicate which component trace occurred. In the sequel,
the set of dangerous traces of a system encoded by a STMDD is named T .
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Example 9 (System trace). A dangerous system trace of Rosace for the failure
condition: “no failures modes are observed on the output δthc of Rosace”, is
{(FV a, {(out , E)}), (FV z, {(out , ∅)}), (Fq, {(out , ∅)}), (CV a, {(Vaf , E), (Vzf , ∅),
(qf , ∅), (out , E)})}.

Example 10 (STMDD). Let us assume that the filters can be substituted by
DupF and the controller by DupC, then the STMDD (where paths to zero ter-
minal are dismissed) for Rosace is shown in Fig. 3 where only FV a and CV a

can fail.

Fig. 3. STMDD of Rosace

The property 1 states that the STMDD and structure function characterize
the same set of system events valuations, allowing to use the STMDD ϕ’s BDD
to assess the system safety indicators.

Property 1. Let s be a system, fc a failure condition, ϕ be the structure function
of s for fc and T be the dangerous system traces represented by the STMDD of
s for fc then φ ⇔ ϕ where φ =

∨
tr∈T

∧
c∈C, tr′∈tr∧tr′∈trace(c) trigc(tr′).

As said previously, we want to use the STMDD of a system s to compute
the safety indicators of any system s′ obtained by substituting a component c
by another component c′ in s. Thus the set of dangerous system traces of s must
be included in the one of s′. This property holds if the set of c′ traces is a subset
of the corresponding traces of c. We call such a substitution an acceptable one.
This component traces inclusion boils down to prove that the following problem
is Unsat.

(assert (exists ((in1 tin1)...(inn tinn)(o1 tout1)...(om toutm)
(e1 Bool)...(ek Bool) (e1’ Bool)...(ek’ Bool))

(and (= (f_c’ e1’...ek in1...inn) (mkTupleM o1...om))
(not (= (f_c e1...ek in1...inn) (mkTupleM o1...om))))))

To conclude, the STMDD can be used to compute the safety indicators of
any candidate obtained by acceptable substitutions of the initial system’s com-
ponents.
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5.2 Computing Safety Indicators on STMDD

We now detail how safety indicators are computed over the STMDD. Since two
distinct system traces cannot be triggered for the same system’s events valuation,
the Boolean functions associated with the system traces are pairwise incompat-
ible. Moreover the events associated with two distinct component traces within
a given system trace are independent. Therefore, the below formula gives the
unreliability of a system encoded by a STMDD representing a set of dangerous
system traces T where subc is the selected substituting component for c.

R =
∑

tr∈T

∏

c ∈ C,
tr′ ∈ tr ∧ tr′ ∈ trace(c)

probsubc(tr
′) (1)

In the same way, the minimal cardinality of cutsets is equal to the minimal
number of events needed to produce any dangerous trace of the system. Thus,
the minimal cardinality of system’s cutsets is the minimal cardinality among
trace tree paths.

min
cs∈MCS

(|cs|) = min
tr∈T

⎛

⎜
⎜
⎜
⎝

∑

c ∈ C,
tr′ ∈ tr ∧ tr′ ∈ trace(c)

cardsubc(tr
′)

⎞

⎟
⎟
⎟
⎠

(2)

Example 11. If FV a remains unchanged and CV a is replaced by DupC then the
dimmed card and prob cells of the Rosace STMDD (see Fig. 3) are used in the
Eqs. 1 and 2 to compute the safety indicators. Hence, we have min

cs∈MCS
(|cs|) =

min(1, 2, 2, 1) = 1 and R = 0.01 + 0.98(2 × 0.0002) + 0.01 � 0.02.

6 SMT-Based Exploration

To solve the design-space exploration problem with SMT solvers, we define here
the Safety theory which provides predicates over safety requirement satisfaction.

6.1 Safety Theory

SMT solvers decide the satisfiability of a set of MSFOL formulas called asser-
tions. These assertions contain atomic formulas, that is, either a Boolean variable
or a theory predicate handled by its associated theory solver. Thus we introduce
the Safety theory and its solver which handle the safety requirement predicates
using the analysis of the system’s STMDD. So, this theory relies on the sort
TraceTree and the sort Sub to model the problem. A value of Sub determines
which substitutions are applied and a value of TraceTree is the SMT-LIB encod-
ing of the STMDD. The predicates of the Safety theory are (choose Sub Int) true
if the ith substitution is applied, (isSafeCard stt req) and (isSafeR stt req)
true if the minimal cardinality of the mcs (resp. the reliability) computed on stt
is greater or equal to req.
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6.2 SMT Encoding of Exploration Problem

The exploration problem is then encoded as a SMT problem, as the one generated
for Rosace shown below. It contains: 1. a constant declaration of sort Sub per
initial component which encodes substitution selection (here sCV a and sFV a);
2. a constant definition of sort TraceTree representing the STMDD (here a
STMDD node contains a list of triplets (subtree, cardinality array, unreliability
array)); 3. an assertion ensuring that exactly one substitution is chosen per
component; 4. the safety requirements added through isSafeCard and isSafeR
predicates.

(declare-const sFVa Sub) (declare-const sCVa Sub)
(define-const one TraceTree leaf)
(define-const CVaNode TraceTree (node
(cons (mkTuple3 one cardCVaE rCVaE)

(cons (mkTuple3 one cardCVaL rCVaL) nil))))
(define-const FVaNode TraceTree (node
(cons (mkTuple3 one cardFVaE rFVaE)
(cons (mkTuple3 one cardFVaL rFVaL)
(cons (mkTuple3 CVaNode cardFVaEmpty rFVaEmpty) nil )))))

(assert (exactly1 (choose sCVa 0) (choose SCVa 1)))
(assert (exactly1 (choose sFVa 0) (choose SFVa 1)))
(assert (safeCard FVaNode 3)) (assert (safeR FVaNode 0.999999999))

Thanks to the commands (check − sat) and (get − model) the solver
explores the design space using the Safety theory and eventually answers either
Sat and then gives a valid candidate or Unsat and generates a proof.

6.3 Experimental Setup

To evaluate our approach, we modelled several design-space exploration prob-
lems, and benchmarked our SMT-based method against an evaluation version
of HipHops [13], which uses genetic algorithms for design-space exploration.
Systems were modelling using a DSL called KCR from which the SMT-LIB
encodings used in this paper are generated automatically. The KCR DSL and
algorithms presented in this paper are fully implemented in the KCR analyser
tool1 based on the Z3 SMT solver [14] with associated benchmarks. The consid-
ered benchmarks are: 1. the complete Rosace case study (where all components
can fail); 2. the Fuel system given as example with the HipHops tool2; 3. the
HBS system, model of a hybrid breaking system [see Footnote 2]; 4. the Quad-
Copter system, model of a semi automatic drone navigation manager. For each
component, a dozen of alternatives extracted from [5] are modelled.

1 Available at http://www.onera.fr/en/staff/kevin-delmas?page=1.
2 Available at http://hip-hops.eu/index.php.

http://www.onera.fr/en/staff/kevin-delmas?page=1
http://hip-hops.eu/index.php
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6.4 Experiments

The Table 1 presents the exploration time to find any candidate fulfilling the
safety requirements. These requirements are a combination of a cardinality
requirement, i.e, any failure condition must occur in a triple failure context
and an unreliability requirement, i.e, the unreliability after one hour must
be less or equal to 10−5 or 10−9. Since HipHops cannot consider cardinal-
ity requirements, the comparison is only based on the reliability requirement.
For all benchmarks, the experiments demonstrate that our SMT-based method
solves the problem faster by several orders of magnitude than genetic-based app-
roach. This efficiency is due to the fast safety assessment offered by the STMDD.
Indeed HipHops must compute the unreliability from scratch for each of eval-
uated candidate which is time consuming. Moreover the generation of conflict
clauses during exploration prevents to generate systems which have been already
assessed in contrary to HipHops exploration process which is only directed by
the breeding/selection process of the genetic algorithm. Nevertheless, contrary
to HipHops, our tool is not able to optimize multi-costs criteria, this limitation
is discussed in the conclusion.

Table 1. Exploration time with KCR and HipHops

mincs∈MCS(|cs|) R(1)

Fuel HBS Rosace Quadcopter

10−5 10−9 10−5 10−9 10−5 10−9 10−5 10−9

KCR (s) - 9.45 0.063 1.68 0.78 4.38 4.7 0.43 0.48

HipHops (s) - 52.33 36.35 7.13 7.19 > 103 > 103 > 103 > 103

KCR (s) 3 0.117 0.059 0.66 0.62 4.07 4.45 0.33 0.28

7 Related Works

To harden an architecture, there are mainly two steps: first perform safety assess-
ment on candidates, second use these results to select and generate candidates.

7.1 Selection and Generation

The authors of [2,3] classify the selection and generation techniques in two
main families: evolutionary-based approaches, e.g. [13,15] and constraint-based
approaches, e.g. [16–18].

According to [2] evolutionary approaches, more precisely genetic algorithms,
are the most widely used techniques. These algorithms breed numerous alterna-
tive evolutions of an initial architectural design while continuously assessing their
fitness according to quantitative fault-tolerance properties and various other non-
functional aspects encoded as numerical criteria. They attempt to enumerate the
Pareto-front of the solution space to propose all possible design trade-offs to the
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user. For instance, the genetic-based exploration is currently implemented in
the commercial tool HipHops [13]. Nevertheless, these approaches can neither
ensure the optimality of found architectures nor prove that a problem does not
admit any solutions.

The constraint-based methods like [16,17] rely on constraints solvers to find
a valid and optimal candidate. For instance, the mixed-integer linear program-
ming (MILP) is largely used [16,19] to model the exploration problem. But
these approaches often imply some strong assumptions on the considered sys-
tem’s model and the possible substitutions. For instance, the approach of [16]
is focused on serial systems where each component can be replaced by a set
of redundant components. Our work is inspired by the approach of [20] and
the associated tool System Configuration Toolkit (SCP), which encodes the sys-
tem’s components by the properties it ensures (expressed as SMT predicates)
and which are asserted iff the component is chosen. The SMT solver must then
choose which component’s properties are needed to assert a given global goal.
This approach does not address specifically a safety assessment but suggests a
component-based translation of system to SMT problem and encourages the use
of custom theories, as the one we developed in this paper, to assert domain-
specific properties. Eventually, the methods presented in [21,22] address the
design space exploration of an automated air traffic controller under quantitative
and qualitative safety requirements. More precisely, the exploration is performed
by an exhaustive enumeration of the candidates and the assessment is based on a
contract-based model checking. Nevertheless the combinatorial explosion of the
design space prevents us to use such enumerative methods for the large-scale
systems.

This paper is also inspired by our previous work [18] on an iterative
constraint-based method for solving the exploration problem. More precisely,
this method selects the architecture substitutions needed to obtain a compli-
ant architecture. This procedure was based on a hardening loop composed of
the following steps: (1) Safety assessment : a safety analysis decides if the cur-
rent architecture satisfies the safety requirements with dedicated tools such that
Cecilia-OCAS [23], (2) Hardening : if an hardening is needed, the new substi-
tution selection is given by solving a Pseudo-Boolean problem that ensures that
the new selection improves system’s safety. (3) Substitution: The substitutions
are processed and the resulting architecture is used in a new iteration. This
Assessment, Hardening, Substitution process is repeated until an architecture
satisfying the safety requirements is obtained. The main improvement brought
by the proposed SMT-based method is to directly find the solution by solving
an SMT problem that encodes completely the exploration problem.

7.2 Assessment of a Candidate

The classic safety assessment methods are based on Binary Decision Diagram
(BDD) [24] representation of ϕ [25]. Thus the usage of BDDs to compute the
safety indicators during exploration seems to be a relevant choice. However dur-
ing exploration, a new candidate is generated by substituting a component by
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another one. So new failure events can appear, invalidating the current structure
function, forcing its regeneration from scratch after each substitution.

8 Conclusion

Summary. This paper introduced the STMDD and associated safety assessment
algorithms, as well as the Safety theory, which allows encoding design-space
exploration as an SMT problem. This approach allowed us to solve the design-
space exploration problem several orders of magnitude faster that more tradi-
tional approaches based on evolutionary algorithms on the considered bench-
marks.

Ongoing Works. The current work focuses on the enhancement of exploration
theory presented in Sect. 6. Indeed the current theory cannot indicate to the
solver a promising substitution choice. This information can help the solver to
generate relevant candidates and reduce the exploration time.

Future Works. As mentioned in the introduction, the safety designer must con-
sider safety requirements but also some cost functions to build a safe and cheap
architecture. We will, in a not too distant future, propose a formulation of
the exploration problem capable of optimizing cost functions using available
SMT/SAT optimization techniques such as Max-SAT [26].
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Abstract. The automotive industry relies increasingly on computer
technology in their cars, which malicious attackers can exploit. There-
fore, the Original Equipment Manufacturers (OEMs) have to adopt secu-
rity engineering practices in their development efforts, in addition to
their safety engineering efforts. In particular, information assets that can
undermine safety have to be identified and protected. Assessing the safety
relevance of specific information assets is best done by safety engineers,
who, unfortunately, often do not have the security expertise to do so.
In this paper, we propose a technique for identifying information assets
and protection goals that are relevant for safety. Our method is based on
security guide-words, which allow a structured identification of possible
attack scenarios. The method is similar to the Hazard and Operability
Study (HAZOP) in safety for eliciting possible faults. The similarity of
the approach shall ease the effort for non-security engineers to identify
information assets and protection goals to allow an exchange between
safety and security mindsets. In contrary to other proposed methods, we
performed an evaluation of our technique to show their practical appli-
cation. In our evaluation with a total of 30 employees of an automotive
supplier and employees of the University of Applied Sciences in Karl-
sruhe, results show that all non-security engineers achieved for precision,
productivity and sensitivity, on average, higher values than the security
control group.

Keywords: Safety and security co-analysis · Functional safety · Auto-
motive security · Threat analysis

1 Introduction

Modern automobiles host more than 50 Electronic Control Units (ECUs) which
contain and implement a total of up to 100 million code lines [3] to control
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safety-critical functionality. This fact and the close interconnectivity of automo-
tive ECUs open up new possibilities to attack these systems [9], which impair
the safe operation of the vehicle. To counter these attacks a holistic approach to
security by design has to be applied, starting with a threat analysis in the early
development phase. Such analyses are broadly applied in classical IT but are
rarely used in the automotive domain. Also security engineers who have knowl-
edge in automotive are rare. In contrast, analyses addressing functional safety
are mandatory. For this purpose, hazard analysis and risk assessment compliant
to ISO 26262 [6] is applied. The ISO 26262 identifies malfunctions in electric or
electronic components of passenger cars which can cause harm of human life.
During the analysis, hazards are identified and mapped to the car’s operational
situations to determine the values: severity, the occurrence of operational sit-
uation and controllability. Afterwards, these values are used to calculate the
Automotive Safety Integrity Level (ASIL) deriving safety requirements. How-
ever, security requirements remain unconsidered.

While security and safety look similar at first glance, the “execution details”
differ drastically and require a fundamentally different mindset. For instance,
safety engineers do not think about changing assumptions as physics remain
static, whereas thinking about changing assumptions is an essential requirement
for a security engineer. Thus, we argue that safety and security analysis must
not be conducted by the same persons. On the other hand, for a intertwined
safety and security analysis, safety engineers have to be trained to conduct the
tasks together with security experts. Because safety engineers have the domain
knowledge but may not be security experts. Conversely, security engineers often
do not know about safety and have less experience in the automotive safety
domain but need information assets and protection goals for their work. There-
fore, a method is needed to allow safety engineers defining information assets
and protection goals so that security engineers can take over. In this paper, we
propose a methodology that is based on so-called security guide-words [15]. The
method can be used by safety engineers to identify information assets and pro-
tection goals that are relevant for safety. Based on this, security engineers can
perform further security analysis and develop protection concepts. In particular,
the contributions of this paper are the following:

• The Security Guide-word Method (SGM), an approach that can be used
to reuse existing safety analysis artefacts to identify security assets
and protection goals. SGM is tailored to minimize the integration effort in
typical automotive engineering processes.

• An evaluation of SGM based on a study that was conducted based on
a set of 30 professionals from security and safety divisions of an automotive
engineering company and a control group from academia.

The paper is structured as follows: Sect. 2 summarises threat analyses approaches
for the automotive domain including approaches to combine safety and security,
followed by our proposed methodology in Sect. 3. Afterwards, we give an eval-
uation of SGM, presenting our hypotheses, the performed study, and achieved
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results. Section 5 discusses the study results and the significance of our state-
ments. Lastly, Sect. 6 summarises our outcomes and shows further work on SGM.

2 Related Work

Several approaches for threat analysis exist. In particular, for the automotive
domain, the Society of Automotive Engineers (SAE) guidebook J3061 [12] pro-
vides security guidelines in compliance with the ISO 26262 standard. The guide-
line summarises recommended security practices and suggests for threat analy-
ses: Attack Tree Analysis (ATA) as a counterpart to Fault Tree Analysis (FTA),
Microsoft’s STRIDE, and the E-Safety Vehicle Intrusion Protected Applications
(EVITA) project using dark-side scenarios in combination with ATAs. Addi-
tionally, EVITA propose the Threat and Operability Analysis (THROP) based
on the well-known HAZOP method, which uses guide-words for the analysis.
HAZOP was originally developed for the chemical industry and transferred to
automotive as analysis approach for functional safety. Unfortunately, EVITA
provides no structured approach which reuses artefacts of a safety analysis and is
further particularly extensive and complex. Furthermore, their presented guide-
words do not reflect the behaviour of an attacker.

A further holistic approach for co-analysis of safety and security for automo-
tive is the Combined Harm Assessment of Safety and Security for Information
Systems (CHASSIS), which applies use cases and sequence diagrams to identify
safety and security requirements. During a brainstorming session with engineers
of both domains and the application of HAZOP, potential misuses of the sys-
tem are identified [14]. Even though CHASSIS applies HAZOP, no guide-words
are presented in its guideline. Moreover, the approach proposes a widely sepa-
rate safety and security analysis with few information exchange between both
worlds [14].

We also based our method on HAZOP and its application of guide-words.
Especially the capability of the application on embedded systems [7] was an
important pre-step for adopting HAZOP in the automotive domain. Further,
Winther et al. [15] presented the “security-HAZOP” approach combining safety
and security analysis for Information and Communication Technology (ICT)-
systems. While our approach is also based on HAZOP, we differ from other
approaches by using HAZOP to interface safety and security processes together
instead of only security or only safety. Furthermore, compared to the related
work we provide a rigorous evaluation of the approach based on its intended real
world users.

3 SGM Approach

We propose an application of our SGM in an early development phase of a
modern car, based on the work of Winther et al. [15]. In particular, we consider
an application in the hazard and risk analysis according to ISO 26262 as feasible.
The required steps are illustrated in Fig. 1.
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Fig. 1. Security Guide-word Method (SGM) steps during hazard analysis in compliance
to ISO 26262.

Subsequently, Step 1–4 and Step 6, which are part of the well-known safety
process, are briefly explained. Step 5 and 7 explain in detail the extensions by
our SGM (see the highlighted steps in Fig. 1). We further explain the process
based on a running example that is shown in Fig. 2.

Step 1 - Provide an Item Definition: The initial step of our approach
starts with an item definition as required by ISO 26262. We consider a con-
text diagram extended by data flows as sufficient and easiest for this task. The
diagram includes high level architecture information, describing the involved

Fig. 2. Context diagram of ESCL-System based on our work in [1].
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entities namely ECUs, gateways(GWs), bus systems and domains surrounding
it, e.g., the driver. Furthermore, the diagram includes any data and information
flow between the entities, which are known by that time. The context diagram
used in this work is presented in Fig. 2. As notation for our example we use the
UML4PF [4] profile extension.

Figure 2 represents an Electronic Steering Column Lock (ESCL)-System for
locking the steering column of a car. Therefore, it is a part of the anti-theft device
of a modern car. The ESCL-System has two main requirements R1: The steering
column shall be locked when the driver wants to immobilise the vehicle and R2:
The steering column shall be unlocked, when the driver wants to drive. Given the
requirements of the item under analysis we know its basic functionality and its
environment.

Step 2 - Instantiate Fault-Type Guide-Words: We consider a set of so-
called fault-type guide-words inspired by the HAZOP standard [5] as appropriate
for safety analysis. The set contains words like no, unintended, early, late, more,
less, inverted, intermittent, after, other than and part of. The set of guide-words
is not unique and can be extended by domain specific words and helps developers
to consider all relevant faults by focussing on typical problems. As an example
we use Fig. 2 and the defined requirements from Step 1 (R1, R2 ) to identify
faults listed in Table 1.

Table 1. Identified faults related to the context diagram in Fig. 2

Fault-ID Fault

1 Unintended lock

2 No lock

Step 3 - Situation Classification: In this step, a hierarchically organized
list of operational situations is created. The list is often reused from previous
analyses, since operational situations change only little over time. Each situation
has to be rated as relevant or not for the actual item under analysis. Therefore,
the requirements of the item and its context diagram can help to reduce the
total set of situations. From the safety point of view, special situations like
maintenance is not considered, but we deem them as also important for security.
Hence, a consideration of maintenance and workshop situations makes sense for
protection goal identification and thus for the analysis.

Step 4 - Identification of Hazardous Situations: For each fault and func-
tion combination all situations that could lead to a potential hazard are identified
in the list of situations being relevant. The effect of a hazard is described on the
vehicle level and its consequences are listed in a table. For the given example we
list the following hazards in Table 2.
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Table 2. Identified hazards

ID Hazard

1 Loss of steering control while driving on highway

2 Loss of steering control while cornering fast

3 Steering will not lock if vehicle is parked

... ...

Step 5 - (SGM) Instantiate Security Guide-Words and Identify
Protection Goals: In this step, we insert our security analysis approach by
applying the automotive security guide-words. The guide-words are derived from
existent attacks on modern vehicles [11] and thus, they represent the malicious
intent of the attacker. We derived ten guide-words namely disclosure, disconnec-
tion, delay, deletion, stopping, denial, trigger, insertion, reset, and manipulation.
Moreover, for each presented guide-word, protection goals can be derived and
broken down to the Confidentiality, Integrity, and Availability (CIA) triad which
is well-known in the security domain. This enables security engineers to under-
stand safety issues under the view of security. Thus, an ideal interface between
the safety and security mindsets is created. For a structured collection of pro-
tection goals we provide an analysis template for the application of guide-words,
which is presented in Table 3.

Table 3. SGM template

Threat-ID Fault-ID Can be
triggered by

Signal or
function

Component or
subsystem

Entry point

T-ID F-ID (1) (2) (3) (4)

Even though SGM is used to identify protection goals and information assets,
we decided to call the first column in Table 3 a Threat-ID due to the fact that
each row represents a security threat which security engineers can directly under-
stand. The second column contains a Fault-ID which belongs to the protection
goal. It further points to the relevant fault identified during the safety analy-
sis (see Table 1). In particular, the columns contain: (1) one of the security
guide-words representing the type of malicious action, (2) one signal or function
existent in the given context diagram, (3) the component or subsystem, which
processes the signal or provides the function, and lastly (4) the entry point of the
manipulation. Furthermore, column 2–4 represent the protection goal identified
by the safety engineer. If we apply the template to the ESCL-System shown in
Fig. 2, we can identify the information assets and protection goals and list them
in Table 4.
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Table 4. SGM template for ESCL-System in Fig. 2 (Fault-ID 1:=unintended lock).

Threat-ID Fault-ID Can be
triggered by

Signal or
function

Component or
subsystem

Entry point

1 1 Triggering Lock function ESCL CAN

2 1 Reset - ESCL-ECU Physical,
CAN

3 1 Manipulation ESCL!{lock,
unlock}

ESCL Physical

4 ... ... ... ... ...

For example we can read Threat 1 in Table 4 as: Unintended lock can be
triggered by triggering the lock function of ESCL on Controller Area Network
(CAN).

Step 6 - Hazard Classification: For each hazard identified by the analyst val-
ues for severity, exposure of operational situation and controllability are defined
in compliance to ISO 26262. Based on these estimations, the ASIL is determined
using a matrix provided in ISO 26262 Part 3. The provided matrix allows a cal-
culation in five ASILs increasing from QM, A, B, C to the highest level D. Except
for level QM, safety goals are derived and recorded for the corresponding ASIL.

Step 7 - (SGM) Threat Classification Using the Severity Value of
Related Hazards: We rank identified threats by reusing artefacts of the safety
analysis. In particular, we select the associated Fault-ID for each Thread-ID in
Table 3. Then we collect those hazards which may directly occur because of this
selected fault. Finally, we pick the highest ASIL of all hazards in regard to the
fault. We consider this worst-case approach as reasonable as we have to assume
that attackers will trigger their attack in the most dangerous situation. At this
point, our method finishes (Fig. 1). But for a holistic approach we want to show
the next safety step demanded by ISO 26262 and also the next step which is
done by a security engineer representing the security requirements elicitation.

Step 8 - (Safety) Functional Safety Concept: For each recorded safety goal
of Step 6 safety requirements are derived leading to functional safety concept
demanded by ISO 26262. For this purpose a structured procedure is given by
the standard.

Step 8 - (Security) Security Requirements Elicitation: A downstream
step of our approach is to formulate security requirements based on the identified
protection goals of Step 5. As an example we show a threat and requirement
pair in Table 5. The identified threat shall allow security engineers to identify
and design suitable security countermeasures against it. In particular, security
engineers use established security methodologies to assess the threat occurrence
probability and the impact of a successful attack. For instance, to assess the
threat shown in Table 5, a security engineer has to determine the likeliness of an
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attacker being able to get access to the CAN bus. Note, that this mapping was
not part of our experiment but is added here to explain how threats will be used
to elicit security requirements by security experts.

Table 5. From threats to requirements

Threat Security requirement

An attacker can cause an unintended lock of
the steering column wheel by triggering the
lock function of the component lock actuator
on bus system CAN

The lock function of the
component lock actuator on bus
system CAN has to be protected
from unauthorised access

Besides, the presented SGM approach focuses on security for safety, we con-
sider an extension to other aspects of security e.g. privacy, as feasible. To do so,
the set of guide-words has to be supplemented by new words derived from a secu-
rity expert for the relevant scope. At this point, we will further point out that the
presented approach supports a security analysis from a safety view. Hence, the
approach does not replace a holistic security in depth analysis including aspects
like financial risk, reputation, etc.

4 Evaluation

The goal of the SGM method is to allow safety engineers to identify relevant
protection objectives and assets. In this section, we evaluate whether the SGM
method provides results that are comparable to results of regular security engi-
neers. We evaluate this question by carrying out a study conducted with 30
safety and security engineers of an automotive company and full-time employees
of a university. We divided our evaluation of the SGM into two main parts. In
part one, we used a questionnaire for background assessment of our participants
to determine their skills. In part two, we conducted the empirical evaluation of
SGM with the participants to test our hypotheses.

4.1 Hypotheses

Our primary hypothesis states that SGM enables safety engineers to identify
information assets and protection goals in the same manner as security engineers
can identify. To confirm this, we analysed how well non-security engineers can
find protection goals and how many of them are correct with respect to expert
assessments. Accordingly, we derived three test-hypotheses from our primary
hypothesis regarding to the metrics: precision (PPV), productivity (PRO), and
sensitivity/recall (TPR). Additionally, we also reported the efficiency of our
method, but we did not formulate a respective test-hypothesis. The reason is a
lack of comparative values.
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To consider one of the test-hypotheses to be correct the associated null-
hypothesis has to be rejected. In order to evaluate the defined null-hypothesis we
counted the True Positives (TP) of the instantiated fields. Two security experts,
who did not participate in the experiment, classified the instantiated fields as
TP if the identified protection goals were correct. Moreover, instantiated fields
which were marked as false by the two security experts are False Positives (FP).
The number of fields instantiated by our participants are called Fields Initiated
(FI). The total number of fields that can be instantiated by the participants are
called Number of Fields (NF). For each test-hypothesis (H1) we formulated an
associated null hypothesis (H0), which we tested.

Our prime interest is the precision (PPV) of our participants in order to
assess the applicability of our method. We defined the relation between FP and
TP as follows: PPV = TP/(TP + FP ). Our hypothesis is that correct results
are pre-dominant on average.

For pre-dominancy, we defined a value of more than 80%. The value is not
arbitrarily chosen, but based on previous research of Scandariato et al. [13].
The authors used this threshold to measure TP when applying the Microsoft
STRIDE threat analysis technique. As a result, we formulated the related null
hypothesis as follows:

HPPV
0,Saf : μ{PPV = TP/(TP + FP )} ≤ 0.80

In the same manner, we defined productivity (PRO) as the relation of the number
of fields instantiated to the total number of fields that can be instantiated by
the participants including FP: PRO = FI/NF . We are interested in how many
fields our participants instantiated and we formulated our related null hypothesis
accordingly:

HPRO
0,Saf : μ{PRO = FI/NF} ≤ 0.80

Hence, we consider it as possible that non-security engineers, on average, are
able to produce protection goals of at least 80%, which describes the alternative
hypothesis. Furthermore, we assume that non-security engineers can achieve at
least the same degree of sensitivity (recall) as the security group. Therefore, we
formulated the related null hypothesis for sensitivity (TPR=TP/(TP+FN)) as
follows:

HTPR
0,Saf : μ{TPRSaf} ≤ μ{TPRSec}

As we are not able to measure False Negatives (FN) directly, we decided to
replace FN with the number of not-found protection goals in the practical exper-
iment and thus, we used FN := NF − FI to formulate our null hypothesis.

4.2 Study Design

Our study design is based on the work of Scandariato et al. [13] and our pre-
vious study [2]. Therefore, we structured the study into three phases. The first
phase contains a short introduction to functional safety and automotive security.
We explained the relation between safety and security incidents to our partic-
ipants and how they can influence each other. Furthermore, we explained the
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terms safety and security and their fundamental differences. This was necessary,
because the groups novice and safety did not work on security topics before.
Afterwards, we handed out a questionnaire to all participants, assessing their
knowledge. The questionnaire is split into two parts. The first part is a self-
assessment of the following topics: automotive software engineering, functional
safety, automotive bus systems, real-time systems, security as well as hazard and
threat analysis. The participants selected out of five experience levels ranging
from unskilled to expert. In the second phase we asked questions regarding all
topics mentioned previously. This allowed us to validate the self-assessment. We
also assessed the flow experience of the participants during the experiment using
the scale of Rheinberg et al. [10]. A comprehensive analysis of the background
assessment and all used questionnaires are publicly available [8].

We started the practical task with an introduction of the Security Guideword
Method (SGM) (slides are available under [8]). Afterwards, we asked the partic-
ipants to apply the method to a real world example. The example was carefully
selected to ensure a complexity that can be managed within a time frame of
up to 15 min. We used the ESCL-System in Fig. 2.

4.3 Participants

Three different groups of people participated in our empirical evaluation. We
were able to enlist security and safety experts from an automotive supplier and
full-time employees of the University of Applied Science in Karlsruhe1. Table 6
shows a detailed overview of our participants.

Table 6. Participants for SGM evaluation.

No SGM SGM Participants

Team security X - 9

Team novice - X 7

Team safety - X 14

Overall full time employees participating in the experiment
∑

30

Group one consists of 9 security engineers of an automotive supplier, group
two of 7 novices in safety and security from the University and group three of
14 safety engineers from the same automotive supplier as the security engineers.
As team novice consist of doctoral students coming from working areas which
are not related to safety and security, they have never done a safety or security
analysis before. Therefore, we requested team novice and team safety to work
on the task with the SGM and for comparison, team security to work without
the SGM.
1 Note that these full time employees are doing a PhD, as well. In contrast to schol-

arship students they not exclusively work on their PhD.
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4.4 Study Results

As stated above, we measured Fields Initiated (FI), True Positives (TP) and
False Positives (FP) for each group. The achieved values and distributions are
summarized in the following Whisker-Plots (see Figs. 3a, b and 4).

Fig. 3. Results for Fields Initiated (FI), True Positives (TP) and False Positives (FP)
of the team safety and security.

Fig. 4. Results for FI, TP and
FP of the team novice

Table 7. Measured means for the
team: security, safety and novice.

Security Safety Novice

Precision 78.29% 84.75% 83.33%
Productivity 51.85% 57.14% 56.19%
Sensitivity 40.74% 48.09% 47.61%
Efficiency 31.111 34.29 33.71
FI 7.778 8.57 8.43

Figures 3a, b and 4 show the distribution of the measured values for FI,
TP and FP. We observed similar results for team safety and team novice, which
indicates consistent results considering both groups using the SGM. In particular
both groups achieved higher medians for TP than team security, as well as lower
minima of FI and TP. We consider this an indicator for the fact that team safety
and team novice had domain knowledge concerning safety, which team security
was lacking.

The maximum number of protection goals (FI) identified by team novice
was 12, the minimum was 4 and the median was 8. They further identified a
maximum of 11 correct protection goals (TP), a minimum of 3 and a median
of 7. For FI team safety (Fig. 3a) achieved a maximum number of 15 and a
minimum number of 5. For the median the team achieved 7.5 protection goals.
Team safety identified a maximum number of 12 TP, a minimum number of 4
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and for the median the team identified 7 correct protection goals. In contrast,
team security (Fig. 3b) identified a median of 8 for protection goals (FI) which
is slightly better than the result of team safety with an achieved value of 7.5.
Moreover, team security identified a maximum number of 12 protection goals
(TP) and a minimum of 2. For the median the team achieved 6 correct protection
goals which represents a lower value than the values achieved by team safety
and novice. Considering the results of Table 7, we can state that teams safety
and novice performed better because of their continuously higher means for
precision, productivity, and sensitivity. We assume this is based on the following
two facts. Firstly, SGM uses a structured approach for the analysis. Secondly,
SGM enables engineers to reuse their domain knowledge to identify protection
goals and information assets.

Testing Hypotheses (HPPV
0,Saf , H

PRO
0,Saf and HTPR

0,Saf). Following the analysis
of FI, TP and FP, we checked the validity of our proposed hypotheses. There-
fore, we used the calculated means for precision, productivity and sensitivity of
group safety (Table 7) to perform three independent right sided t-Tests. Based
on these results we accepted or rejected the hypotheses defined in Sect. 4.1. As
already mentioned, to accept a hypothesis (H1) we have to reject the related
null hypothesis (H0). Table 8 shows the results of the performed t-Tests.

Table 8. Results for right sided t-Tests with a significance level of α = 10%. All values
listed in the second column are derived from Sect. 4.1.

Hypothesis Accepted μ
(for H1)

State H0 t-value p-value of
t-Test for H0

State H1

Precision (PPV) >80% Rejected 1.6875 0.057 Accepted

Productivity (PRO) >80% Accepted 1.4695 0.998 Rejected

>51.85% Accepted −3.7101 0.203 Rejected

Sensitivity (TPR) >40.74% Rejected 0.8587 0.082 Accepted

As Table 7 shows, team safety achieved for productivity a value of 57.14%
leading to acceptance of the null hypothesis HPRO

0,Saf and thus to rejection of
our hypothesis for productivity (see Table 8). Related to our hypothesis that
non-security engineers can reach at least the same degree of productivity as
security engineers by applying of SGM, we decided to perform a further t-Test
for HPRO

0,Saf . As second threshold we used 51.85% which is the measured mean
of team security. Even though the achieved mean of 57.14% of team safety is
higher than the value of team security, the performed t-Test states that we have
to accept the null hypothesis HPRO

0,Saf again. Thus, we have to reject the assumed
hypothesis that safety engineers can reach the same degree of productivity as
security engineers.

In contrast, we can directly reject null hypothesis HPPV
0,Saf and HTPR

0,Saf without
a second test. In particular, for team safety and precision (PPV) we measured a
mean of 84.74%, which is greater than the defined threshold of 80%. Furthermore,
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for sensitivity (TPR) we measured a mean of 48.09% which is also a higher value
than the defined threshold of 40.74% (see Table 8) achieved by the security team.
Considering the fact that for both hypotheses the calculated p-values are smaller
than α, we reject the null hypothesis HPPV

0,Saf and HTPR
0,Saf . Consequently, we accept

our hypothesis that non-security engineers can achieve at least 80% for precision
(PPV) and we can accept the hypothesis that non-security engineers can achieve
at least the same level of sensitivity (TPR) as well as security engineers using
our SGM.

Furthermore, the results in Table 7 indicate that the proposed SGM enables
engineers with less security knowledge to identify correct protection goals and
information assets which further shows that a combined safety & security analy-
sis is possible by non-security experts. This statement seems feasible by the
consistently higher means in column 3 and 4 of Table 7. Additionally, we discov-
ered that almost all participants started with protecting goals that have a high
safety impact. We discovered this insight by evaluating the type of malfunc-
tion used in the SGM template. We measured a higher number of protection
goals related to malfunction 1 (unintended lock) as related to malfunction 2 (no
lock). In particular, malfunction 1 results in the highest number of hazards in
our sample solution. Furthermore, we analysed three values regarding the flow
experience [10] of our participants measured in parallel to the experiment [8]. In
particular, team safety responded that they felt more in work-flow, had fewer
concerns, and felt less challenged as team security.

Summing up, we can state that safety engineers are able to achieve at least
the same degree of precision and sensitivity as the security engineers by using the
SGM. Hence, we consider it as feasible that safety engineers are able to identify
correct protection goals and information assets supporting a security analysis by
applying SGM. Moreover, our methods allows safety engineers to reuse artefacts
of a previously performed safety analysis.

5 Threats to Validity

In this section, we discuss threats to validity of our study regarding the four
validity classes proposed by Wohlin et al. [16].

Construct validity: The measures made for the experiment in terms of preci-
sion, productivity and sensitivity might not be representative for measuring the
applicability of the method. There might be better measures than ours but when
we investigated further analysis work in the field [13], we did not identify any
method which is more precise than the one used in this publication.

Conclusion validity: For our experiment, we had only 21 non-security partici-
pants enrolled in the study reducing the significance of our statistical evaluation
and the stated hypotheses. However, all participants had automotive background
through their daily work or their bachelor and master studies which is shown
by the results in our assessment background [8]. Moreover, we had 14 safety
engineers as participants working daily on safety issues which distinguished us
from other previously performed evaluations. But most of all, it is a particular
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challenge to gather a large sample group of this type that is highly representative
for the target audience.

Internal validity: A threat to the internal validity is that we conducted the
experiment with participants having less knowledge in security and who may
felt overwhelmed with the task which reduces the meaningful application of the
SGM. However, we analysed the already mentioned values regarding the flow
experience [10] of our participants and team safety responded that they felt
more in work-flow, had fewer concerns, and felt less challenged as team security.

External validity: In this study we had a single group of non-safety engineers
(novice) conducting the experiment which do not correspond to the desired tar-
get group of safety engineers. However, we decided to publish the results of this
group to discuss them. Furthermore, group novice showed background [8] knowl-
edge in the automotive domain and therefore we consider them as representative,
too. Additionally, the possibility exists that some safety engineers heard about
security topics during their daily work or in presentations affecting the measure-
ment. Nevertheless, we consider that neither team safety nor team novice can be
regarded as security experts. This assumption is confirmed by the background
assessment of team safety and team novice [8].

6 Conclusions and Future Work

In this work, we proposed to use existing security guide-words for the identi-
fication of protection goals and information assets in the automotive domain
in order to create a common interface between safety and security. Our new
approach allows a structured identification of protection goals and information
assets by reusing artefacts of the ISO 26262 hazard analysis. The method will
reduce the effort of threat analyses of automotive systems by the distribution of
tasks to safety and security engineers. In particular, safety engineers will now be
able to produce protection goals that security engineers can directly understand
and adopt for their security analyses. Moreover, it is conceivable that SGM
will be a part of a security development life-cycle in automotive as proposed
in SAE J3061 [12]. This is further supported by the fact that SGM is based
on HAZOP, which is well-known in the automotive domain. Furthermore, we
contributed an empirical evaluation of our approach with a total number of 30
participants. To be precise, 14 safety engineers, 9 security engineers, and 7 full-
time employees of the University of Applied Sciences in Karlsruhe participated
in our experiment. Two groups applied SGM and achieved a precision above 80%
within a 15 min time frame for identification of protection goals and information
assets of a typical ISO 26262 item. Hence, the next steps will be to improve the
approach by including item attributes to better assist safety engineers. There-
fore, we want to use more details picked from the context diagram to preselect
guide-words for the engineers. This will further reduce the effort for the ana-
lyst and it might be possible that their task can be done with computer-aid e.g.
using an expert or recommender system. Besides, we will also conduct additional
studies with a higher number of safety engineers together with our automotive
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partners. For this purpose, we want to set-up a online survey including a short
introduction to the topic, an introduction to the ESCL example and a practical
task which can also be done online. We hope that this will give us access to a
greater number of safety engineers for a more significant validation.
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Abstract. We present the proposed security architecture Deutsche
Bahn plans to deploy to protect its trackside safety-critical signalling
system against cyber-attacks. We first present the existing reference
interlocking system that is built using standard components. Next, we
present a taxonomy to help model the attack vectors relevant for the
railway environment. Building upon this, we present the proposed “com-
partmentalized” defence concept for securing the upcoming signalling
systems.

1 Introduction

The state of the art in safety-critical railway signalling typically entails the
use of monolithic interlocking systems that are often proprietary, expensive and
not easily exchangeable. Consequently, the transition to more cost-effective and
growth-oriented open networks is desired that can also utilize commercial off-the-
shelf (COTS) hardware and software, provided the safety requirements are met.

These drivers have led Deutsche Bahn (DB) to explore transforming its sig-
nalling infrastructure using open networks and COTS to reduce cost and mainte-
nance overhead. At the same time, the risk of cyber-attacks introduced by open
networks and COTS needs to be explicitly addressed to avoid any compromise
of safety. This work documents DB’s ongoing experience in developing new sig-
nalling architectures that by-design decouple safety and security functionalities.

In this context, we first present a taxonomy of attacks outlining the potential
cyber-threats relevant to protecting a railway signalling system. Consequently,
utilizing the actual layout of the currently used German railway command and
control system, we propose a security architecture that explicitly delineates
safety and security, and will be deployed by DB in Germany’s new interlocking
systems (ILS) to address security concerns. The architecture is compartmental-
ized into zones and conduits following IEC 62443 [6]. Thereby we regard the
German prestandard DIN VDE V 0831-104 [2] which is a guideline to apply
IEC 62443 to the railway signalling domain with respect to the very strict safety
requirements.

c© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 320–328, 2017.
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Fig. 1. Architecture of a typical signalling network.

2 Current Interlocking Network Architecture

The reference architecture, as currently deployed by DB, is divided into three
layers: Operational Layer, Interlocking Layer and the Field Element Area.

The Operational Layer (upper blocks of Fig. 1) consists of an Operating Cen-
ter and a Security Center. The Operating Center is responsible for the central
monitoring and controlling of the system and is equipped with central switch-
ing points. The Security Center provides security services to the system such
as security monitoring of certain communication channels and management of
the Public Key Infrastructure (PKI). As depicted in Fig. 1, the communica-
tion between the Operational Layer and the Interlocking Layer of the reference
architecture is encrypted. The Security Center has the same or higher security
requirements compared to the rest of the components.

The Interlocking Layer (middle blocks in Fig. 1) provides the safety logic of
the system. The main components of the Interlocking Layer are the Technology
Center and the interface to the European Train Control System (ETCS), as
depicted in Fig. 1. The Technology Center is comprised of the ILS and auxiliary
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systems (e.g., needed for documenting the actions of the ILS). The ILS plays
a central role in the reference architecture by ensuring system’s safety given
its critical role to control signals, switches and to prevent any conflicting train
movements.

The Field Element Area (FEA) (lowest blocks in Fig. 1) provides the interface
to the actual trackside signalling elements called field elements. These are signals,
points, and train detection systems amongst others that are steered by Object
Controllers (OC).

Communication across the components of the Operational and Interlocking
layers takes place over a Wide Area Network (WAN) through the use of Stan-
dard Communication Interfaces. Typically, the Rail Safe Transport Application
(RaSTA) Protocol [3] is used as a unified communication protocol for all the
defined interfaces. RaSTA targets at guaranteeing safety in the communication
of railway systems. Each RaSTA-network is assigned a network identification
number which is unique within the given transport layer. A safety code is used
to guarantee the integrity of the transmitted messages. Required redundancy for
the system’s high availability is omitted in Fig. 1 to reduce complexity.

As can be seen in Fig. 1, only the communication between the Operational
and Interlocking Layers of the reference architecture is encrypted. This is insuffi-
cient from a security perspective, and naturally the entire communication chain
across the Technology Center, the FEAs and the linking communication inter-
faces need to be protected. However, enhancing the presented architecture in
terms of security is not a trivial task, as various operational and compatibility
constraints make introducing innovations to the interlocking system rather cum-
bersome. A complicating factor being re-ensuring that no safety violations get
introduced with any security related changes (i.e. proving freedom of interfer-
ence). In a normal computational environment, addressing security issues might
require rapid patching and frequent updates. However, for the safety-critical rail-
way environment any changes to a critical infrastructure, such as the signalling
system that might affect the safety of the system, require explicit approval by the
National Safety Authority. This can take significant time and exacerbates the
timely reaction to security risks. In addition, the limited hardware resources in
the signalling system do not allow deploying widely-used security solutions that
are computationally intensive. Moreover, it is expected that deployed systems
are used over a long operational lifetime (typically decades) and also provide
strong timeliness response guarantees. All of these constraints need to be explic-
itly addressed when proposing a security-oriented signalling system architecture.

3 Railway Security Assessment

In order to propose a security architecture, this section presents the prerequisites
needed for defending signalling infrastructure and also elucidates the capabili-
ties of attackers against which the signalling system needs to be protected. To
systematically tackle the problem of enhancing security in interlocking systems,
we first provide a taxonomy of the attacks relevant for the railway environment.
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Given the physically large spatial scattering of the railway infrastructure, it
is infeasible to install physical protection comparable to a limited area factory
premise. Access control and plant security, as important elements in a factory’s
security concept, do not apply to the full extent across the railway system. Only
some parts – for example the interlocking computer – reside in a building that
offers physical perimeter protection, while others (e.g., the field elements) lie
unprotected along the railtracks.

In addition, we need to ensure safety and high availability of railway signalling
systems. This is tightly coupled with the timeliness requirements of critical com-
munication between network entities. In cases where we cannot preclude attacks,
it is necessary to install monitoring systems that can detect ongoing attacks. For
setting up a proper security concept we first need to define the capabilities of the
attacker we want to defend the system against. In the railway signalling com-
munity it is widely recognized that some security incidents are already covered
by the established safety functions.

The design of DB’s security architecture follows the standard IEC 62443
[6] and the German prestandard DIN VDE V 0831-104 [2]. They classify the
strength of attackers according to their (financial) resources, their motivation,
and their knowledge. With the attacker strength in mind, we capture attacks that
can be performed in a taxonomy that scopes the applicable security measures.

A taxonomy can facilitate enhancing security, as it can represent the diverse
attack scenarios that threaten the railway signalling system, and also allows to
consider future threats. While sophisticated attack scenarios have been consid-
ered by the taxonomies in [4,5,7–9] as well, most of them go beyond attack
vectors and include information on the targeted system [4,8] that can be as
detailed as software versions. However, unlike contemporary taxonomies built
on full information access, we consider the systems from the operator perspec-
tive and do not know beforehand which technology the vendors use to meet the
requirements. Thus, we are constrained to only model generic requirements of
the systems.

Figure 2 outlines our approach to categorize threats. On the top level we dis-
tinguish across directed and undirected attacks. This is justified by the following
assumption: It is impossible for undirected attacks to cause an unsafe state in
the signalling system, as they will typically not circumvent the existing safety
measures. However, this class of attacks may affect the availability of the system.

Since casualties could be the consequence, we consider impersonation as the
most severe attack (i.e. an attacker being able to forge authentic messages of a
network entity such as a OC or the ILS computer itself). As in any other net-
work that comprises standard components, all known and unknown vulnerabili-
ties pose a threat to the system in case they are exploited. Thus, vulnerabilities
must be regarded in an attack model. Due to the scattered physical layout of
the network it is prone to many kinds of information gathering attempts, and
network entities like the field elements are difficult to protect against physical
tampering. Although confidentiality is not an important target of signalling secu-
rity, some information like cryptographic keys that are used to protect entities
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Fig. 2. A railway attack taxonomy.

and communication channels, as well as account credentials, need to be kept
secret. A compromised key would enable more severe attacks on the system, for
example impersonation. This interconnection shows that a holistic approach is
needed to secure railway signalling and neither perimeter protection nor isolated
solutions will suffice. Orthogonal to the presented threats are denial-of-service
attacks where no comprehensive countermeasure exists. The signalling systems
mitigate this threat by utilizing redundancy and avoiding single points of failure.
We do not explicitly depict redundancy in Figs. 1 and 3, though all signalling
relevant communication is performed over at least two separate channels pro-
vided by RaSTA. Entities such as the Security Center (from Fig. 1) also exist
redundantly.

4 New Security Architecture for Interlocking Systems

For safety-related railway systems, the dominant requirements are integrity,
timely delivery of critical messages and system availability. To ensure this, a
Reliability, Availability, Maintainability, and Safety (RAMS) lifecycle has been
introduced by EN 50126 [1] to make the current signalling systems resilient to
internal faults and human error. However, EN 50126 does not consider attackers
or malware that constitute a growing threat to all industrial control systems,
including railway signalling systems. Thus, enhanced security mechanisms are
needed, provided their potential to detrimentally affect safety and availability is
explicitly delineated. This makes it infeasible to introduce standard “commer-
cial” anti-malware and anti-virus systems into an ILS network, as the side effects
are not easily discernible to be controlled.
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Fig. 3. Proposed Security Architecture for interlocking systems of DB. (Color figure
online)

Based on the developed attack model taxonomy, a security architecture for
the new interlocking technology was engineered. The security engineering process
is based on the standard IEC 62443-3-3 [6] with guidance taken from DIN VDE
V 0831-104 [2]. According to the general system design the signalling system
has been partitioned into functional blocks e.g., Object Controllers (OC) and
ILS (see Fig. 3). The reference architecture is additionally divided into zones
and conduits, where each zone is logically or physically defined [6]. According to
IEC 62443 each object within the architecture being hardware, software, user,
etc. is assigned to exactly one zone or to exactly one conduit. A zone (colored
areas) is a grouping of assets that have common security requirements which is
expressed as a Security Level (SL) that is assigned to each zone. Conduits are
the communication channels between zones with both the same and different
security requirements.
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A risk analysis yielded SLs of 2 or 3 for every zone. Based on these SLs,
the security requirements were defined for every component of the system to
ensure the fulfilment of a defence-in-depth concept. The requirements range from
password changing abilities over cryptographic functions to a set of requirements
that support the later detection and analysis of attacks e.g., logging capabilities.

After the zones have been provided with security measures, the conduits
between them remain a vulnerable point. In contrast to the zones, IEC 62443-3-
3 does not contain guidance on how to secure conduits. Over our requirements
and taxonomy process two types of conduits have been identified, namely: (a)
conduits connecting zones of equal SL, and (b) conduits connecting zones of
different SLs. Conduits which only have unidirectional data flow could also be
considered, but these are only a subtype of one of the former described conduits.

The system layout of Fig. 1 has been extended to secure the zones and con-
duits, as shown in Fig. 3. Again, redundancy is omitted. The FEA is provided
in more detail to show the security application. Multiple OCs are presented as
there are a number of field elements to steer in a single FEA. For redundancy,
they are organized in a ring topology with switches (angular boxes) and routers
(round boxes). The relation between OC and field element is usually one-to-one.
Security boxes have been added to every OC (depicted as locks) in the FEA
within a junction box (labelled FeAk). They provide the system with encryption
capabilities and the possibility for basic filtering and DoS prevention rules. The
capabilities are required for securing conduits between zones with equal SLs.
The boxes are based on a ruggedized and hardened hardware platform. As they
are completely separated from the safety functionality, they can be applied as
a replacement of switch components in the interlocking network and even be
introduced during system upgrades. The security terminates in the security box,
thus the safety hardware need to be protected by physical measures. The FEA
junction boxes are thus physically protected by “housing alerts” that trigger an
alarm to prohibit attackers from tampering with the system.

In the Technology Center, a termination point for the field element encryption
has been introduced. Also, several zones with different SLs have to be connected,
e.g., the interlocking system has to be connected to the maintenance and data
management subsystem (MDM) with different SL.

To tackle this challenge, an application layer gateway (ALG) has been intro-
duced as a central entity of the Technology Center. This device is configured
to only allow desired connections between zones. Via packet inspection mecha-
nisms malicious code can be identified. If zones of different SL are connected,
the allowed communication can be limited via white-list filtering on different
layers. If anomalous behaviour is detected the ALG reports this to the Security
Operation Center (SOC), where an operator can decide what actions have to
be taken. In certain cases the separation of a zone from the rest of the network
(quarantine) may be needed, which then can be realized by the ALG. Upon the
detection of new attack scenarios the operator also has the possibility to change
the rule set and filtering of the ALG to mitigate the new attack.
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On the operational layer the SOC has been extended by a Security and Infor-
mation Event Management (SIEM) system besides elements for system manage-
ment, such as PKI, domain name service, network time server, and a directory
service. The SIEM system aggregates information from every component and
analyses it for possible attacks. If it detects a possible attack the security opera-
tor is informed, starts with further investigation on the issue, and finally performs
some action to solve it.

As the provisioning of security requires the application of tools and meth-
ods on a sustained basis, a process based approach is implemented to ensure a
constant level of security. For this a patch management process has been devel-
oped. Changes to components are first checked in a simulated environment for
quality assurance before they are applied to the operational components. For a
rapid reaction to attacks, the rule sets of the ALG and security boxes can be
altered to mitigate the vulnerability until a patch can be applied. Furthermore,
processes for incident management and an Information Security Management
System (ISMS) have been implemented. Upon the detection of an anomaly it is
checked against a database of known incidents and relevant actions are applied.
For unclassified anomalies, forensics are performed to determine the relevant
reaction. After solving the incident, the findings are used as input for the ISMS
to enhance the security processes.

By having added security features to the communication channel of the safety
building blocks, the architecture allows to control that strict safety requirements
such as availability and timeliness are still met. The communication channel is
transparent to the safety system such that the security blocks can be updated
independently and without affecting the safety homologation process. The decou-
pling of safety and security still requires to make the physical gap between them
as small as possible (e.g., on the same circuit board), to avoid attacks just behind
the security component.

5 Conclusion

The existing interlocking architecture provides insufficient security against
cyber-attacks. To overcome this, DB plans to deploy the presented security archi-
tecture in Germany’s new ILS to mitigate security risks without detrimentally
impacting the system’s safety. The presented security concept includes moni-
toring and information systems as well as basic security building blocks such
as cryptography support and filtering. It ensures security not only cross the
Operational and Interlocking layers but also provides security functions for the
Technology Center and the Field Element Areas. In addition, processes are estab-
lished to ensure the correct handling of incidents and functional requirements to
each building block in order to help build security enabled components.
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Abstract. Future automotive systems will exhibit increased levels of automation
as well as ever tighter integration with other vehicles, traffic infrastructure, and
cloud services. From safety perspective, this can be perceived as boon or bane -
it greatly increases complexity and uncertainty, but at the same time opens up
new opportunities for realizing innovative safety functions. Moreover, cyberse‐
curity becomes important as additional concern because attacks are now much
more likely and severe. Unfortunately, there is lack of experience with security
concerns in context of safety engineering in general and in automotive safety
departments in particular. To remediate this problem, we propose a systematic
pattern-based approach that interlinks safety and security patterns and provides
guidance with respect to selection and combination of both types of patterns in
context of system engineering. The application of a combined safety and security
pattern engineering workflow is shown and demonstrated by an automotive use
case scenario.

Keywords: ISO 26262 · SAE J3061 · Engineering workflow · Safety pattern ·
Security pattern · Automotive

1 Introduction

Future applications in the automotive domain will be highly connected. They will rely
on interacting functionalities exchanging data via various networking channels, and
storing or receiving their operational data in or from the cloud. On the one hand, there
is enormous potential in these new types of cyber-physical-system (CPS) applications
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and services, which are bound to revolutionize the automotive domain, as we know it
today. On the other hand, ensuring safety and security of next-generation automotive
systems is a significant and comprehensive challenge that needs to be addressed before
promising visions can become reality and an economic and societal success story.

Today, practitioners in the automotive domain are well experienced to deal with
safety aspects during CPS development. However, there is a lack of knowledge on how
to handle related security aspects, because the knowledge is either just non-existent or,
maybe even more often, distributed over different organizational units in a company and
thus not easily accessible.

Given the tight interconnection and the mutual impact of safety and security aspects,
we argue that there is a need for a combined engineering approach enabling safety and
security co-engineering. Moreover, given the present lack of experience in safety and
security co-engineering, we think that providing additional guidance to engineers would
be highly beneficial.

In this paper, we specifically focus on the proper and due consideration of the security
aspect within a safety engineering lifecycle, which is one particularly urgent problem
related to the aforementioned challenge. Consequently, we propose a systematic pattern-
based and ISO 26262-oriented approach for safety and security co-engineering in the
automotive domain. Through the use of patterns, we hope to close the security knowl‐
edge gap by harvesting its manifold benefits: conservation and reuse of design knowl‐
edge, best practices and tested solutions, reuse of architectural artifacts enabled by
abstraction, cross-domain exchange of solution concepts, etc. Apart from the systematic
interlinking of safety and security patterns, we elaborate how these patterns can be
specified and maintained.

2 Background and Related Work

This section provides background knowledge about architectural patterns in general,
safety patterns, security patterns, safety and security co-engineering, and current rele‐
vant automotive guidance for safety and cybersecurity.

2.1 Relevant Automotive Guidance for Safety and Cybersecurity

ISO 26262 – “Road Vehicles – Functional Safety” [1] is an automotive domain-
specific safety standard. It provides a structured and generic approach for the
complete safety lifecycle of an automotive E/E system including design, develop‐
ment, production, service processes, and decommissioning. ISO 26262 recommends
requirements and techniques for system, software, and hardware design to achieve
functional safety of E/E systems. For instance, the Usage of established design
patterns is recommended (i.e. “+”) for all ASIL levels for each sub-phase of soft‐
ware development, as described in Subsect. 4.4.7 of Part 6. Concerning security, the
first edition, released in 2011, does not consider it explicitly neither there is any
support or guidance. The second edition, to be released mid-2018, is expected to
provide some notes regarding the interaction of safety and security activities.
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SAE J3061 [10] is a cybersecurity process framework for the development lifecycle
of in-car systems. It provides guidance on best practice methods and techniques for
secure system development tailored to the automotive domain by using a corresponding
V model, as defined in ISO 26262. In J3061, safety and security interaction points are
defined to coordinate the two engineering processes.

2.2 Safety and Security Co-analysis and Co-engineering

In our view, safety & security co-analysis refers to methods and techniques that can be
used to identify safety hazards and security threats. Safety & security co-engineering
refers to engineering activities that consider both safety and security and their interac‐
tions in the development lifecycle. Co-analysis includes activities in the early stage of
the development lifecycle, e.g. in the requirements engineering as well as the design
phase. Co-engineering considers all phases of the lifecycle, in which co-analysis is an
integral part.

In the context of automotive domain, existing co-analysis methods Hazard Anal‐
ysis and Risk Management (HARA) is standardized in ISO 26262 for safety, which
can be extended with security Threat Analysis and Risk Assessment (TARA)
method, as mentioned in SAE J3061 to identify cybersecurity risks [15]. Other
proposals include Failure mode and Vulnerability Effect Analysis (FMVEA) [4] and
Security Aware Hazard Analysis and Risk Assessment (SAHARA) [16] that aim at
combining both safety and security analysis in parallel. A safety and security co-
engineering approach should include all engineering activities in the automotive
system development lifecycle according to relevant standards such as ISO 26262 and
SAE J3061 based on the V-model [17].

2.3 Architectural Patterns

Patterns are used to solve similar problems with a general and universal solution. A well-
known and proven solution for a specific problem is generalized so that it can be reused
for similar recurring problems in other projects. Alexander describes the concept of
using architecture patterns to solve similar problems in different projects [9].

The concept of patterns is used in many different domains including hardware and
software. A good and very well-known reference is the book by Gamma et al. [11] (also
known as the Gang of Four), which had a significant impact on making the pattern
approach popular for software development. The book includes some general back‐
ground and concepts as well as a collection of concrete patterns for object-oriented
software design.

The state-of-the-art provides a few dozen safety architecture patterns [2, 3], with
some being just a variation of simpler ones. Armoush introduced in his PhD thesis [3]
new safety patterns and provides a collection of existing safety patterns and a charac‐
terization of the main pattern representation attributes for embedded systems patterns
(e.g. Name, Type, ID, Abstract, Context, Problem, Structure,…). These patterns are
mostly based on the work of Douglas [12, 13] for hardware patterns and on Pullum [14]
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for software fault tolerance techniques brought into pattern notation for software
patterns.

Safety patterns usually include some kind of hardware redundancy, multiple chan‐
nels with voters, or sanity checks [2]. They can address software or hardware issues and
they allow systems to remain fully functional or to bring them to a safe state. Describing
existing patterns, but the ones used in the presented case study, is out of the scope of
this work.

Security engineering is an iterative and incremental process. Security patterns can
be seen as the essence of sound security designs and best practices from an existing body
of knowledge that can be used to solve security problems in new scenarios. During the
security engineering process, security patterns can be used in requirements analysis and
design to eliminate security flaws and provide additional information for security vali‐
dation. Security patterns have attracted the attention of both academic researchers and
industry [5]. The main focus of existing work is on the construction (including repre‐
sentation, classification, and organization) and application of security patterns. Security
patterns are represented as textual templates or combined with UML models, in a hier‐
archically layered architecture or in a searchable pattern library. Security patterns have
been proposed for requirements engineering, software system design such as web serv‐
ices, and Service-Oriented Architectures [6]. Open Security Architecture1 is a
community-based online repository of security control patterns based on the ISO 27000
information security standard family for enterprise IT systems, in which patterns are
represented as text and graphical architecture designs in a consistent template. In recent
years, security patterns have also been proposed for cyber-physical systems [7].

3 Methodology

Although patterns address specific problems, the context in which a pattern is applied
influences how it should be applied. Therefore, more than a catalogue of patterns, prac‐
titioners require a workflow to systematically guide their efforts when using patterns to
tackle safety and security problems. We propose a safety and security pattern engi‐
neering lifecycle that aims at combining the two engineering processes for pattern iden‐
tification and design and allows for the necessary interaction and balancing of safety
and security concerns.

3.1 Pattern Engineering Lifecycle

The Pattern Engineering Lifecycle is the approach proposed in this paper to help engi‐
neers selecting and applying safety and security patterns to develop safe and secure
systems. The Pattern Engineering Lifecycle is meant to be used in unison (and tightly
integrated) with the usual safety and security engineering approaches. It therefore does
not substitute established approaches but rather enhances them with further tasks. The
approach is suitable to be used with all existing patterns as well as ones to be developed.

1 http://www.opensecurityarchitecture.org.
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The lifecycle takes place at the end of the Product Development: System level phase
of the V-Model framework of ISO 26262 [1]. At this point, the Functional and Technical
Concept are fully developed and both are used as input for the lifecycle. The output of
the lifecycle is then consumed by the next phases of the V-Model, namely Product
Development: Hardware level and Software level.

The lifecycle is divided into three main phases happening one after the other in a
waterfall fashion (cf. Fig. 1). The first phase, Safety Pattern Engineering, comes before
Security Pattern Engineering, the second phase. The rationale for this is that the approach
explicitly focuses on “security for safety” (i.e., safety concerns are the main engineering
drivers) and that security should start working when the final architecture is almost
finished. Also, in general, further changes in the architecture might open new vulnera‐
bility points or might not be properly covered by mechanisms already implemented.
However, security measures can influence system properties that can alter safety. For
this reason, we introduce the Safety and Security Co-Engineering Loop, the third phase
of the lifecycle. The loop prevents safety-motivated changes from creating unforeseen
vulnerabilities and security-motivated changes from jeopardizing safety characteristics
of the system. Each of these phases will be described in detail in the next paragraphs.

Fig. 1. Pattern engineering lifecycle

Safety Pattern Engineering. Safety Pattern Engineering involves safety-related tasks
and is composed of three main tasks (cf. Fig. 2), which will be described in the following
paragraphs.

Fig. 2. Safety pattern engineering and security pattern engineering tasks

Perform Safety Engineering. As described above, patterns are used to tackle specific
problems; therefore, we need to have a good understanding of the system and the context
in order to select and apply patterns appropriately. The workflow starts with established
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safety engineering approaches and techniques that need to be carried out until Safety
Requirements (Functional or Technical) are available.

Select Safety Pattern. The decision about which pattern best fits a specific system
should be analyzed taking into account the problem to be addressed and the context of
the system. Besides, there are a few trade-offs that one needs to take into consideration
when choosing an architectural pattern, such as costs (hardware, development effort) or
standardization. The Safety Requirements guide safety engineers into selecting a safety.
Current state-of-the-art [3, 12, 13] provides many patterns with detailed information
about the impact in the system in the view of different dimensions (e.g. Cost, Reliability,
Safety). There might be cases that no pattern is suitable for the discovered problems,
thus the engineer needs to come up with an ad-hoc solution.

Apply/Instantiate Safety Pattern. The engineers should apply the safety pattern to the
architecture, performing required changes on the architecture or on the pattern. Using
the pattern “as-is” is usually not possible and some adaptation might be required. The
updated system architecture is the prerequisite for the next task.

Security Pattern Engineering. In the previous phase, the architecture was updated
with safety measures. In the second phase, Security Pattern Engineering, the architecture
will be analyzed with regard to security vulnerabilities. The weak points are to be
addressed by applicable security patterns and a secure architecture will be the output of
this phase.

Perform Security Engineering. In this step, Security Engineering is performed on the
existing system context such as functional requirements, results of Safety Engineering,
and intermediate architectural design of the system, including the safety patterns. Estab‐
lished Security Engineering methods and techniques such as attack surface analysis,
attack trees, and threat modeling can be used to identify vulnerabilities and threats. The
results of this task leads to security measures that either mitigate potential threats or
reduce the risks to an acceptable level. Special attention is given to vulnerabilities caused
by safety patterns.

Select Security Pattern. The security engineers should give priority to the selection of
re-usable security solutions from well-established security patterns for mitigating the
security risks. If multiple security patterns are available, the selection of a security
pattern is then a design decision that optimizes cost-benefit. Similar to the selection of
safety patterns, if no security pattern is available, an ad-hoc solution is applied.

Apply/Instantiate Security Pattern. In this step, the instantiated security pattern is
incorporated into the existing system architecture design. If the information how to
integrate is not available in the pattern description, the security engineers should adapt
the security pattern to the specific system context and requirements.

Safety and Security Co-engineering Loop. After the initial two phases of the Pattern
Engineering Lifecycle, the Safety and Security Co-Engineering Loop starts. In this
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phase, lightweight versions of safety pattern engineering and security pattern engi‐
neering take place one after the other until no extra modification is required in the archi‐
tecture. The fact that they are performed as a lightweight version means that the focus
is on checking those aspects that experienced alteration and their respective influence
on the overall system.

The Loop starts with the safety pattern engineering task requiring safety engineers
to analyze how the newly added security patterns might impact the system safety. Some
security architecture strategy might impair, for example, the communication time
between components, causing a command to arrive late. Also in this task, the results of
the first security pattern engineering phase help the safety engineers to identify further
points of failure that could be caused by an attack. The initial safety pattern might require
some modification to add extra safety.

On the other hand, if the newly proposed safety mechanisms imply new vulnerabil‐
ities or changes in the attack surface, the security engineers should detect, assess, and
propose new solutions. This is what happens during the security pattern engineering
performed in the lightweight version. This goes on like a cycle and stops when the system
fulfills the desired safety and security requirements. Updating supporting documentation
and updating the architecture are also tasks to be performed.

4 Implementation of Pattern Engineering Approach

In the following section, the technical implementation of the approach shall be demon‐
strated on an automotive case study.

4.1 Use Case Description

Our automotive use case example of a connected electrified hybrid powertrain is a
combination of one or more electric motor(s) and a conventional internal combustion
engine, which is currently the most common variant of hybrid powertrains. The variety
of powertrain configuration options increases the complexity of the powertrain itself as
well as the required control systems, which include software functions and electronic
control units. With the integration of connectivity features, further novel vehicle func‐
tionalities and new business models can be discovered. Therefore, we focus on an inte‐
gral part of every connected hybrid powertrain, the battery management system (BMS),
and its functionalities related to the connection to the external world; in this case espe‐
cially the connections with the charging unit.

In this paper, we investigate a specific use case scenario of the connected hybrid
powertrain use case: charging of the battery system by connecting it with an external
charging unit. Figure 3 left shows the most relevant elements: battery satellite modules,
battery management system, CAN communication, the charging interface, and the
external charging unit.
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Fig. 3. Left: Automotive Battery Use Case, Right: Architecture with the safety pattern applied

4.2 Application of the Approach

In this subsection, we apply the Pattern Engineering Lifecycle in the use case scenario
presented in the previous subsection. The concept phase is considered in this example.

4.2.1 Safety Pattern Engineering
Perform Safety Engineering. We describe in the following a small summary of the
results of this task up to the level of Functional Safety Requirements:

Hazard: Wrong estimation of charging status.
Comment: The battery of electric vehicles can be very dangerous in case of over‐

charging, even causing explosions. If the charging status of a battery is estimated
wrongly, extra energy might be supplied, leading to a hazardous situation.

Operational situation: Parking
Comment: The hazard will only happen while charging, and this can only be

performed while the car is parked. This hazard might also occur while driving when
architectures with regenerative systems are considered.

Hazard classification:

• Severity: 3 || Exposure of frequency: 4 || Controllability: 2
• Resulting hazard ASIL: [C]
• Safety goal: Estimate correct status of cycle while charging.

– Safe state: Disconnect HV battery, Alert driver.
• Functional Safety requirement: Detect Failure and errors from BMS.

Select Safety Pattern. The results from Safety Engineering describe two possible safe
states for the system that are compliant with the Safety goal. The “Disconnect HV
battery” measure would cut off the power supply, the source of the hazard. The “Alert
driver” measure would issue a warning to the driver. The car will be in parking mode if
the hazard occurs (operational situation: Parking); therefore, full functionality in case
of fault occurrence is not required.
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We should apply to the architecture a pattern that helps fulfilling the Functional
Safety Requirement “Detect Failure and errors from BMS”. We selected the Monitor-
Actuator Pattern [12] (cf. Fig. 3 Right) which provides heterogeneous redundancy. This
pattern adds to the architecture a monitoring channel that detects possible faults and
triggers the primary channel to enter its fail-safe state. The Monitor-Actuator Pattern is
suitable to systems with low availability requirements and addresses the problem of
finding an appropriate mechanism for detecting failures or errors without incurring
higher costs.

Apply/Instantiate Safety Pattern. The Monitor-Actuator Pattern was instantiated as
depicted in Fig. 3. Only changes to the BMS component were made.

4.2.2 Security Pattern Engineering
Perform Security Engineering. In this context, Security Engineering follows the initial
definition of a safety pattern to identify potential security vulnerabilities, threats, and
risks in order to find appropriate countermeasures and apply corresponding security
patterns. In this example, we use the threat modeling methodology [8], in which a system
is modeled in a data flow diagram (DFD). When modeling the functional blocks from
the safety pattern (cf. Fig. 3.) in a DFD, a few transitions and extrapolations occur. First,
since threat modeling assumes that attacks happen when data flow from one process
(i.e., a software component that takes input and either produces output or performs an
action) to another, the logic signal flows in the safety pattern need to be translated into
directional data flows according to the software architecture implementing this safety
logic. Therefore, additional components are added such as the “CAN bus” process,
which represents the communication bus in the in-car system. Second, the trust boun‐
daries need to be defined in the DFD in order to identify attacks originating from data
flows across trust boundaries. As a result, the charging interface is split into two parts:
an in-car charging interface and the corresponding interface at the charging station. The
interface on the charging station is modeled as an external interactor outside the “In-car
system” trust boundary. There can be different levels of trust boundaries. In this case,
we assume that attacks can only originate from outside the “In-car system” boundary.
Third, at the system level, security has an influence on components beyond the scope of
the safety pattern. Since the communication between the primary and monitor channel
and the charging interface goes through the CAN bus, and the powertrain unit is
connected to the same bus, the security of the charging interface also influences the
security of the powertrain unit. Thus even though the two safety modules cannot be
attacked directly due to the unidirectional data flows, there are risks that an attacker
might use the system charging function to attack the powertrain unit. Figure 4 shows
the modeled architecture in DFD using the Microsoft Threat Modeling Tool.

The security analysis provides a list of threats according to the STRIDE method. In
our case, the threats we identified are the communications from the external charging
interface to the CAN bus that is responsible for establishing and maintaining commu‐
nications for charging control. An attacker can use the in-car charging interface as an
entry point by compromising the external charging interface or tampering with the
communications between the interfaces to inject malicious content into the CAN bus.
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Select Security Pattern. One possible solution is to add a security gateway between the
external unit and the internal CAN bus as shown in Fig. 5. The security gateway is a
security pattern that is placed between an unprotected internal network and untrusted
external entities when communication to the outside is inevitable. As a repeatable solu‐
tion, the security gateway is not limited to the charging interface. It can be applied to
any communication between the CAN bus and untrusted external devices. In general, it
controls the network access to the internal ECUs according to predefined security poli‐
cies and can also inspect packet content to detect intrusion attempts and anomalies. It
can also serve as an endpoint for secure communication with external entities that
implement network or application level securities. In this way, it adds security protection
and segments the system without fundamentally changing the existing in-car system
architecture.

Fig. 5. Security Gateway as a security pattern (Tool: MS Threat Modeling Tool 2016)

Apply/Instantiate Security Pattern. In Fig. 5, we see the altered architecture with the
Security Gateway module. Beyond the many benefits, a security gateway might intro‐
duce latency into the communication, which is a subject of safety impact analysis.

4.2.3 Safety and Security Co-engineering Loop
First Safety Pattern Engineering Iteration. With the inputs from previous tasks we
perform a HAZOP analysis to identify potential anomalies in the provision of the service

Fig. 4. Threat modeling of architecture (Tool: MS Threat Modeling Tool 2016)
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controlling the Charging Interface (cf. Table 1). The focus is thus on the changes
performed to the architecture by the security engineers.

Table 1. HAZOP Guideword analysis of the architecture.

Function: Command to the charging interface to stop charging
Guideword Possible causes Possible consequences
Commission – –
Omission The Gateway blocks a

message to stop charging.
Message gets corrupted

The Charging Interface keeps
providing energy to the battery

Early – –
Late The extra processing time

required slows the reaction
time of the components

Battery is charged for a couple
of hundreds of milliseconds
more than required

Value High – –
Value Low – –

Based on the analysis we identified failure modes Omission and Late as potential
causes of a hazard (cf. Table 1). Other potential failure modes are not relevant for this
scenario. As input from the Security Pattern Engineering phase, we get the information
that the Security Gateway adds a small latency to the communication between the
Charging Interface and the BMS. This small delay can cause a minor amount of extra
charging in the battery which is not a source of hazard.

From the input received from the previous phase, we also discovered that the safety
functions on the charging interface will not suffice in the case of a hacker attack. To
tackle this issue a Charging Interface fail-safe device connected to the Monitor channel
was integrated (cf. Fig. 6). Of course, one obvious drawback in this solution is the extra
cost incurred due to extra hardware and installation.

First Security Pattern Engineering Iteration. The changes in the architecture neither
create new vulnerabilities nor jeopardize the current mechanisms already in place. Since
further modification of the architecture was not required, the Loop reaches an end. After
finalization of the safety and security pattern engineering activities, the design can be
reviewed to check whether all applied patterns can co-exist and whether there is no

Fig. 6. Architecture after the first Iteration of safety and security co-engineering
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unwanted influence. While there is a direct review of the design with the applied patterns
after each iteration, a final check can ensure the soundness of the design. It was decided
to add the Security Gateway as an additional component in the system, to not only ensure
that safety pattern and the security pattern do not interfere with each other, but also to
support the maintainability of the security solution. Updates to the gateway do not impact
the safety pattern directly.

5 Discussion

The availability of recurring process steps, based on automotive industry standards,
results in faster and cheaper product development while fulfilling the need for intangible
product properties, namely safety and security. This means that if, for instance, a safety
(architectural) pattern is selected to address a specific safety requirement, additional
information and guidance with respect to neuralgic aspects from a security point of view
is needed. These might be subject to further security analyses and the application of an
additional security (architectural) pattern might be warranted. The security pattern, in
turn, can have a safety impact, which is again explicitly specified.

The decision about which pattern fits best for a specific system should be analyzed
taking into account the problem to be addressed and the context of the system. Besides,
there are a few trade-offs that one needs to take into consideration when choosing an
architectural pattern, such as costs (e.g. available hardware, development effort) or
standardization. These trade-offs are project specific can also involve managerial deci‐
sions.

As stated, safety and security engineering are very closely related disciplines and
their synergy can be fostered when their similarities are recognized and adequate inter‐
actions are established correctly.

6 Conclusion and Future Work

This paper focused on the selection, combination, and application of safety and security
patterns. The introduction of the Pattern Engineering Lifecycle provided a systematic
way of safety- and security-related pattern engineering process steps to development,
and included already existing work products, such as the results of safety analyses. The
Safety and Security Co-Engineering Loops helped to align these activities systemati‐
cally. It benefits from tight integration of safety- and security-related process steps,
which requires increased exchange of information between them.

An industrial use case demonstrated the practical realization of our approach: the
architecture of an automotive battery system was described in a semi-formal way,
including identification of its main components, physical interconnections, and flows of
information. Within the Safety Pattern Engineering step, the “Monitor-Actuator Pattern”
was selected as an appropriate measure for detecting failures originating from the BMS.
Within the Security Pattern Engineering step, the “Security Gateway Pattern” was
selected to protect the CAN bus from attacks on the Charging Interface. During the
Safety and Security Co-Engineering Loop, the conducted HAZOP analysis identified
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additional modifications to the overall system. As result, a dedicated risk reduction
measure was proposed to enhance the integrity due to combination of the two patterns.
Finally, the complete system was presented after the first iteration of the introduced
Safety and Security Co-Engineering Loop.

With the presented approach, we aimed to derive the manifold benefits from patterns
inherent to their nature. This is a mean for accelerating the application of adequate safety
and security co-engineering in the automotive domain. In particular, we showed a way
to remediate the lack of security knowledge and facilitate easier and more informed
integration of these two “separate” yet interfering disciplines. Future work should inves‐
tigate an advanced model-based tool support for the proposed steps of the approach with
interfaces to existing external tools.
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