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Preface

This volume contains the papers presented at SAT 2017, the 20th International
Conference on Theory and Applications of Satisfiability Testing, held from 28 August
until 1 September 2017 in Melbourne, Australia. This 20th edition of SAT was
co-located with CP 2017 (23rd International Conference on Principles and Practice of
Constraint Programming) and ICLP 2017 (33rd International Conference on Logic
Programming), featuring joint workshops, tutorials, invited talks, social events, and a
doctoral consortium. It was held at the Melbourne Convention and Exhibition Centre,
starting with a workshop day on 28 August 2017.

The International Conference on Theory and Applications of Satisfiability Testing
(SAT) is the premier annual meeting for researchers focusing on the theory and
applications of the satisfiability problem, broadly construed. In addition to plain
propositional satisfiability, it also includes Boolean optimization (such as MaxSAT and
Pseudo-Boolean (PB) constraints), Quantified Boolean Formulas (QBF), Satisfiability
Modulo Theories (SMT), and Constraint Programming (CP) for problems with clear
connections to Boolean-level reasoning.

Many hard combinatorial problems can be tackled using SAT-based techniques
including problems that arise in Formal Verification, Artificial Intelligence, Operations
Research, Computational Biology, Cryptography, Data Mining, Machine Learning,
Mathematics, etc. Indeed, the theoretical and practical advances in SAT research over
the past 25 years have contributed to making SAT technology an indispensable tool in
a variety of domains.

SAT 2017 aimed to further advance the field by welcoming original theoretical and
practical contributions in these areas with a clear connection to satisfiability. Specifi-
cally, SAT 2017 welcomed scientific contributions addressing different aspects of SAT
interpreted in a broad sense, including (but not restricted to) theoretical advances (such
as algorithms, proof complexity, parameterized complexity, and other complexity
issues), practical search algorithms, knowledge compilation, implementation-level
details of SAT solvers and SAT-based systems, problem encodings and reformulations,
applications (including both novel application domains and improvements to existing
approaches), as well as case studies and reports on findings based on rigorous
experimentation.

A total of 65 papers were submitted to SAT, including 47 long papers, 13 short
papers, and 5 tool papers. The Program Committee chairs decided on a summary reject
for one short paper. Each of the remaining 64 submissions was reviewed by at least 3
Program Committee members, sometimes with the help of expert external reviewers.
The committee decided to accept 30 papers, consisting of 22 long papers, 5 short
papers, and 3 tool papers. This included two conditional accepts that were accepted
after a revision. There was no reclassification of papers.



The Program Committee decided to single out the following three papers:

– Joshua Blinkhorn and Olaf Beyersdorff, Shortening QBF Proofs with Dependency
Schemes
for the Best Paper Award,

– Miguel Terra-Neves, Inês Lynce, and Vasco Manquinho, Introducing Pareto
Minimal Correction Subsets
for the Best Student Paper Award, and

– Jia Liang, Vijay Ganesh, Krzysztof Czarnecki, Pascal Poupart, and Hari Govind V K,
An Empirical Study of Branching Heuristics through the Lens of Global Learning Rate
for a Best Student Paper Honourable Mention.

In addition to the contributed talks, the program featured five invited talks, which
were joint invited talks with CP 2017 and ICLP 2017:

– The Role of SAT, CP, and Logic Programming in Computational Biology
by Agostino Dovier (University of Udine, Italy),

– The Best of Both Worlds: Machine Learning Meets Logical Reasoning
by Holger H. Hoos (Leiden Institute of Advanced Computer Science, Netherlands
and University of British Columbia, Canada),

– Recent Advances in Maximum Satisfiability
by Nina Narodytska (VMware Research, USA),

– Back to the Future - Parallelism and Logic Programming
by Enrico Pontelli (New Mexico State University, USA), and

– Constraints and the 4th Industrial Revolution
by Mark Wallace (Monash University and Opturion, Australia).

The joint program also featured tutorials organized to enable participants to engage
in the program of the other co-located conferences:

– Introduction to Constraint Programming - If You Already Know SAT or Logic
Programming
by Guido Tack (Monash University, Australia),

– An Introduction to Satisfiability
by Armin Biere (Johannes Kepler University Linz, Austria),

– Introduction to Machine Learning and Data Science
by Tias Guns (Vrije Universiteit Brussel, Belgium), and

– Mixed Integer Nonlinear Programming: An Introduction
by Pietro Belotti (FICO, UK).

All 8 workshops were also affiliated with SAT 2017, CP 2017, and ICLP 2017:

– Workshop on Parallel Methods for Constraint Solving (PaSeO 2017)
organized by Philippe Codognet, Salvador Abreu, and Daniel Diaz,

– Pragmatics of Constraint Reasoning (PoCR 2017)
organized by Daniel Le Berre and Pierre Schaus,

– Workshop on Answer Set Programming and Its Applications
(IWASP/ASPIA 2017)
organized by Kewen Wang and Yan Zhang,
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– Workshop on Constraint Solvers in Testing, Verification and Analysis (CSTVA
2017)
organized by Zakaria Chihani, Sébastien Bardin, Nikolai Kosmatov, and Arnaud
Gotlieb,

– Workshop on Logic and Search (LaSh 2017)
organized by David Mitchell,

– Progress Towards the Holy Grail (PTHG 2017)
organized by Eugene Freuder, Christian Bessiere, Narendra Jussien, Lars Kotthoff,
and Mark Wallace,

– International Workshop on Constraint Modeling and Reformulation (ModRef 2017)
organized by Özgür Akgün, and

– Colloquium on Implementation of Constraint Logic Programming Systems
(CICLOPS 2017)
organized by Jose F. Morales and Nataliia Stulova.

As in previous years, the results of several competitive events were announced at
SAT 2017:

– the 2017 MaxSAT Evaluation (MSE 2017)
organized by Carlos Ansótegui, Fahiem Bacchus, Matti Järvisalo, and Ruben
Martins,

– the 2017 Competitive Evaluation of QBF Solvers (QBFEVAL’17)
organized by Luca Pulina and Martina Seidl, and

– the 2017 SAT Competition
organized by Marijn Heule, Matti Järvisalo, and Tomas Balyo.

SAT 2017 also hosted a Doctoral Program, jointly organized by the three co-located
conferences and chaired by Christopher Mears and Neda Saeedloei.

We thank everyone who contributed to making SAT 2017 a success. We are
indebted to the Program Committee members and the external reviewers, who dedi-
cated their time to review and evaluate the submissions to the conference. We thank the
authors of all submitted papers for their contributions, the SAT association for their
guidance and support in organizing the conference, the EasyChair conference man-
agement system for facilitating the submission and selection of papers, as well as the
assembly of these proceedings. We also thank the SAT 2017 organizing committee for
handling the practical aspects of the organization of the conference, and the workshop
chair, Stefan Rümmele, for organizing the workshop program in collaboration with the
workshop chairs of CP 2017 and ICLP 2017. We also thank IJCAI 2017, held the
preceding week at the same location, and anyone else who helped promote the con-
ference. Finally, we thank CP 2017 and ICLP 2017 for a smooth collaboration in the
co-organization of the three conferences.

The SAT Association greatly helped with financial support for students attending
the conference and Springer sponsored the Best Paper Awards for SAT 2017. SAT, CP,
and ICLP 2017 were also sponsored by the Association for Constraint Programming,
the Association for Logic Programming, CSIRO Data61, Monash University, the
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University of Melbourne, COSYTEC, Satalia, Google, CompSustNet, Cosling, the
Artificial Intelligence journal, and EurAI. Thank you!

July 2017 Serge Gaspers
Toby Walsh
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Probabilistic Model Counting with Short XORs

Dimitris Achlioptas1 and Panos Theodoropoulos2(B)

1 Department of Computer Science, University of California Santa Cruz,
Santa Cruz, USA

optas@cs.ucsc.edu
2 Department of Informatics and Telecommunications,

University of Athens, Athens, Greece
ptheodor@di.uoa.gr

Abstract. The idea of counting the number of satisfying truth assign-
ments (models) of a formula by adding random parity constraints can be
traced back to the seminal work of Valiant and Vazirani, showing that
NP is as easy as detecting unique solutions. While theoretically sound,
the random parity constraints in that construction have the following
drawback: each constraint, on average, involves half of all variables. As
a result, the branching factor associated with searching for models that
also satisfy the parity constraints quickly gets out of hand. In this work
we prove that one can work with much shorter parity constraints and
still get rigorous mathematical guarantees, especially when the number
of models is large so that many constraints need to be added. Our work
is based on the realization that the essential feature for random systems
of parity constraints to be useful in probabilistic model counting is that
the geometry of their set of solutions resembles an error-correcting code.

1 Introduction

Imagine a blind speaker entering an amphitheater, wishing to estimate the num-
ber of people present. She starts by asking “Is anyone here?” and hears several
voices saying “Yes.” She then says “Flip a coin inside your head; if it comes
up heads, please never answer again.” She then asks again “Is anyone here?”
and roughly half of the people present say “Yes.” She then asks them to flip
another coin, and so on. When silence occurs after i rounds, she estimates that
approximately 2i people are present.

Given a CNF formula F with n variables we would like to approximate
the size of its set of satisfying assignments (models), S = S(F ), using a sim-
ilar approach. Following the path pioneered by [13,16,18], in order to check if
|S(F )| ≈ 2i we form a random set Ri ⊆ {0, 1}n such that Pr[σ ∈ Ri] = 2−i

for every σ ∈ {0, 1}n and determine if |S(F ) ∩ Ri| ≈ 1. The key point is that
we will represent Ri implicitly as the set of solutions to a system of i random

D. Achlioptas—Research supported by NSF grant CCF-1514128 and grants from
Adobe and Yahoo!
P. Theodoropoulos—Research supported by the Greek State Scholarships
Foundation (IKY).

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-66263-3 1



4 D. Achlioptas and P. Theodoropoulos

linear equations modulo 2 (parity constraints). Thus, to determine |S(F ) ∩ Ri|
we simply add the parity constraints to F and invoke CryptoMiniSAT [15] to
determine the number of solutions of the combined set of constraints (clauses
and parity equations).

There has already been a long line of practical work along the lines described
above for model counting, including [6–10] and [1–5,11]. In most of these works,
each parity constraint includes each variable independently and with probability
1/2, so that each parity constraint includes, on average, n/2 variables. While such
long parity constraints have the benefit that membership in their set of solutions
enjoys pairwise independence, making the probabilistic analysis very simple, the
length of the constraints can be a severe limitation. This fact was recognized at
least as early as [8], and efforts have been made in some of the aforementioned
works to remedy it by considering parity equations where each constraint still
includes each variable independently, but with probability p < 1/2. While such
sparsity helps with computing |S(F )∩R|, the statistical properties of the result-
ing random sets, in particular the variance of |S(F ) ∩ R|, deteriorate rapidly as
p decreases [7].

In this work we make two contributions. First, we show that bounding |S(F )|
from below and from above should be thought of as two separate problems, the
former being much easier. Secondly, we propose the use of random systems of
parity equations corresponding to the parity-check matrices of low density binary
error-correcting codes. These matrices are also sparse, but their entries are not
indepedent, causing them to have statistical properties dramatically better than
those of similarly sparse i.i.d. matrices. As a result, they can be used to derive
upper bounds on |S(F )|, especially when log2 |S(F )| = Ω(n).

2 Lower Bounds are Easy

For a distribution D, let R ∼ D denote that random variable R is distributed
according to D.

Definition 1. Let D be a distribution on subsets of a set U and let R ∼ D. We
say that D is i-uniform if Pr[σ ∈ R] = 2−i for every σ ∈ U .

When U = {0, 1}n, some examples of i-uniform distributions are:

(i) R contains each σ ∈ {0, 1}n independently with probability 2−i.
(ii) R is a uniformly random subcube of dimension n − i.
(iii) R = {σ : Aσ = b}, where A ∈ {0, 1}i×n is arbitrary and b ∈ {0, 1}i is

uniformly random.

We can use any i-uniform distribution, Di, to compute a rigorous lower bound
on the number of satisfying truth assignments of a formula (models), as follows.
We note that CryptoMiniSAT has an optional cutoff parameter s ≥ 1 such that if
s solutions are found, the search stops without completing. We use this capacity
in line 6 in Algorithm 1 and lines 6, 23 of Algorithm 3.

The only tool we use to analyze Algorithm 1 is Hoeffding’s Inequality.



Probabilistic Model Counting with Short XORs 5

Algorithm 1. Decides if |S| ≥ 2i with 1-sided error probability θ > 0
1: t ← �8 ln(1/θ)� � θ is the desired error probability bound
2: Z ← 0
3: j ← 0
4: while j < t and Z < 2t do � The condition Z < 2t is an optimization
5: Sample Rj ∼ Di � Where Di is any i-uniform distribution
6: Yj ← min{4, |S(F ) ∩ Rj |} � Search for up to 4 elements of S(F ) ∩ Rj

7: Z ← Z + Yj

8: j ← j + 1
9: if Z/t ≥ 2 then

10: return “Yes, I believe that |S(F )| ≥ 2i”
11: else
12: return “Don’t know”

Lemma 1 (Hoeffding’s Inequality). If Z = Y1 + · · · + Yt, where 0 ≤ Yi ≤ b
are independent random variables, then for any w ≥ 0,

Pr[Z/t ≥ EZ/t + w] ≤ e−2t(w/b)2 and Pr[Z/t ≤ EZ/t − w] ≤ e−2t(w/b)2 .

Theorem 1. The output of Algorithm 1 is correct with probability at least 1−θ.

Proof. Let S = S(F ). For the algorithm’s answer to be incorrect it must be that
|S| < 2i and Z/t ≥ 2. If |S| < 2i, then EYj ≤ |S|2−i < 1, implying EZ/t < 1.
Since Z is the sum of t i.i.d. random variables 0 ≤ Yj ≤ 4, Hoeffding’s inequality
implies that Pr[Z/t ≥ 2] ≤ Pr[Z/t ≥ EZ/t + 1] ≤ exp (−t/8).

Notably, Theorem 1 does not address the efficacy of Algorithm 1, i.e., the
probability of “Yes” when |S| ≥ 2i. As we will see, bounding this probability
from below requires much more than mere i-uniformity.

2.1 Searching for a Lower Bound

We can derive a lower bound for log2 |S(F )| by invoking Algorithm 1 with i =
1, 2, 3, . . . , n sequentially. Let � be the greatest integer for which the algorithm
returns “Yes” (if any). By Theorem 1, log2 |S(F )| ≥ � with probability at least
1− θn, as the probability that at least one “Yes” answer is wrong is at most θn.

There is no reason, though, to increase i sequentially. We can be more aggres-
sive and invoke Algorithm 1 with i = 1, 2, 4, 8, . . . until we encounter our first
“Don’t know”, say at i = 2u. At that point we can perform binary search
in {2u−1, . . . , 2u − 1}, treating every “Don’t know” answer as a (conservative)
imperative to reduce the interval’s upper bound to the midpoint and every “Yes”
answer as an allowance to increase the interval’s lower bound to the midpoint.
We call this scheme “doubling-binary search”. In fact, even this scheme can be
accelerated by running Algorithm 1 with the full number of iterations only for
values of i for which we have good evidence of being lower bounds for log2 |S(F )|.

Let A1(i, z) denote the output of Algorithm 1 if line 1 is replaced by t ← z.
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Algorithm 2. Returns i such that |S| ≥ 2i with probability at least 1 − θ

1: j ← 0 � Doubling search until first “Don’t Know”
2: while {A1(2j , 1) = “Yes”} do
3: j ← j + 1
4: if j = 0 then return 0
5:
6: h ← 2j − 1 � First “Don’t Know” occurred at h + 1
7: i ← 2j−1 � Last “Yes” occurred at i
8:
9: while i < h do � Binary search for “Yes” in [i, h]

10: m ← i + �(h − i)/2� � where i holds the greatest seen “Yes” and
11: if A1(m, 1) = “Yes” then � h + 1 holds the smallest seen “Don’t know”
12: i ← m
13: else
14: h ← m − 1
15: � i holds the greatest seen “Yes”
16: j ← 1
17: repeat � Doubling search backwards starting
18: i ← i − 2j � from i − 2 for a lower bound that
19: j ← j + 1 � holds with probability 1 − θ/�log2 n�
20: until i ≤ 0 or A1(i, �8 ln(�log2 n�/θ)�) = “Yes”
21: return max{0, i}

Theorem 2. If S 
= ∅, the probability that the output of Algorithm 2 exceeds
log2 |S| is at most θ.

Proof. For the answer to be wrong it must be that some invocation of
Algorithm 1 in line 20 with i > log2 |S| returned “Yes”. Since Algorithm 2
invokes Algorithm 1 in line 20 at most �log2 n
 times, and in each such invoca-
tion we set the failure probability to θ/�log2 n
, the claim follows.

2.2 Choice of Constants

We can make Algorithm 1 more likely to return “Yes” instead of “Don’t know”
by increasing the number 4 in line 6 and/or decreasing the number 2 in lines 4,
9. Each such change, though, increases the number of iterations, t, needed to
achieve the same probability of an erroneous “Yes”. The numbers 4, 2 appear to
be a good balance in practice between the algorithm being fast and being useful.

2.3 Dealing with Timeouts

Line 6 of Algorithm 1 requires determining min{4, |S(F ) ∩ Rj |}. Timeouts may
prevent this from happening, since in the allotted time the search may only find
s < 4 elements of S(F )∩Rj but not conclude that no other such elements exist.
Nevertheless, if Yj is always set to a number no greater than min{4, |S(F )∩Rj |},
then both Theorem 1 and its proof remain valid. So, for example, whenever
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timeout occurs, we can set Yj to the number s < 4 of elements of S(F ) ∩ Rj

found so far. Naturally, the modification may increase the probability of “Don’t
know”, e.g., if we trivially always set Yj ← 0.

3 What Does it Take to Get a Good Lower Bound?

The greatest i ∈ [n] for which Algorithm 1 will return “Yes” may be arbitrarily
smaller than log2 |S|. The reason for this, at a high level, is that even though
i-uniformity is enough for the expected size of S ∩ R to be 2−i|S|, the actual
size of S ∩ R may behave like the winnings of a lottery: typically zero, but huge
with very small probability. So, if we add j = log2 |S| − Θ(1) constraints, if a
lottery phenomenon is present, then even though the expected size of S ∩ R is
greater than 1, in any realistic number of trials we will always see S ∩ R = ∅,
in exactly the same manner that anyone playing the lottery a realistic number
of times will, most likely, never experience winning. Yet concluding |S| < 2j is
obviously wrong.

The above discussion makes it clear that the heart of the matter is controlling
the variance of |S∩R|. One way to do this is by bounding the “lumpiness” of the
sets in the support of the distribution Di, as measured by the quantity defined
below, measuring lumpiness at a scale of M (the smaller the quantity in (1), the
less lumpy the distribution, the smaller the variance).

Definition 2. Let D be any distribution on subsets of {0, 1}n and let R ∼ D.
For any fixed M ≥ 1,

Boost(D,M) = max
S⊆{0,1}n

|S|≥M

1
|S|(|S| − 1)

∑

σ,τ∈S
σ �=τ

Pr[σ, τ ∈ R]
Pr[σ ∈ R] Pr[τ ∈ R]

. (1)

To get some intuition for (1) observe that the ratio inside the sum equals the
factor by which the a priori probability that a truth assignment belongs in R is
modified by conditioning on some other truth assignment belonging in R. For
example, if membership in R is pairwise independent, then Boost(D, ·) = 1, i.e.,
there is no modification. Another thing to note is that since we require |S| ≥ M
instead of |S| = M in (1), the function Boost(D, ·) is non-increasing.

While pairwise independence is excellent from a statistical point of view,
the corresponding geometry of the random sets R tend to be make determining
|S ∩ R| difficult, especially when |R| is far from the extreme values 2n and 1.
And while there are even better distributions statistically, i.e., distributions for
which Boost(D, ·) < 1, those are even harder to work with. In the rest of the
paper we restrict to the case Boost(D, ·) ≥ 1 (hence the name Boost). As we will
see, the crucial requirement for an i-uniform distribution Di to be useful is that
Boost(Di, Θ(2i)) is relatively small, i.e., an i-uniform distribution can be useful
even if Boost(Di) is large for sets of size much less than 2i. The three examples
of i-uniform distributions discussed earlier differ dramatically in terms of Boost.
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4 Accurate Counting Without Pairwise Independence

For each i ∈ {0, 1, . . . , n} let Di be some (arbitrary) i-uniform distribution on
subsets of {0, 1}n. (As mentioned, we consider F , and thus n, fixed, so that we
can write Di instead of Di,n to simplify notation.) We will show that given any
0 ≤ L ≤ |S|, we can get a guaranteed probabilistic approximation of |S| in time
proportional to the square of B = max�≤i≤n Boost(Di, 2i). We discuss specific
distributions and approaches to bounding B in Sects. 7 and 8.

Algorithm 3. Returns a number in (1 ± δ)|S| with probability at least 1 − θ

1: Choose the approximation factor δ ∈ (0, 1/3] � See Remark 1
2: Choose the failure probability θ > 0
3:
4: Receive as input any number 0 ≤ L ≤ |S| � We can set L = 0 by default
5:
6: if |S| < 4/δ then return |S| � If L < 4/δ then search for up to 4/δ models of F
7:
8: Let � = max{0, 
log2(δL/4)�}
9:

10: if all distributions {Di}n
i=� enjoy pairwise independence then

11: B ← 1
12: else
13: Find B ≥ max

�≤i≤n
Boost(Di, 2

i) � See Sects. 7, 8

14:
15: ξ ← 8/δ
16: b ← �ξ + 2(ξ + ξ2(B − 1))� � If B = 1, then b = �24/δ�
17: t ← �(2b2/9) ln(2n/θ)�
18:
19: for i from � to n do
20: Zi ← 0
21: for j from 1 to t do
22: Sample Ri,j ∼ Di

23: Determine Yi,j = min{b, |S ∩ Ri,j |} � Seek up to b elements of S(F ) ∩ Ri,j

24: Zi ← Zi + Yi,j

25: Ai ← Zi/t
26: j ← max{i ≥ � : Ai ≥ (1 − δ)(4/δ)}
27: return max{L, Aj2

j}

Theorem 3. The probability that the output of Algorithm 3 does not lie in the
range (1 ± δ)|S| is at most θ.

Remark 1. Algorithm 3 can be modified to have accuracy parameters β ∈ (0, 1)
and γ ∈ (1,∞) so that its output is between β|S| and γ|S| with probability at
least 1 − θ. At that level of generality, both the choice of ξ and the criterion
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for choosing j in line 26 must be adapted to β, γ, θ. Here we focus on the high-
accuracy case, choosing ξ, b, t with simple form.

Let q = �log2(δ|S|/4)�. We can assume that q ≥ 0, since otherwise the
algorithm reports |S| and exits. The proof of Theorem 3, presented in Sect. 6,
boils down to establishing the following four propositions:

(a) The probability that Aq2q is not in (1 ± δ)|S| is at most e−9t/(2b2).
(b) The probability that Aq+12q+1 is not in (1 ± δ)|S| is at most e−9t/(2b2).
(c) If Aq2q is in the range (1 ± δ)|S|, then the maximum in line 26 is at least q

(deterministically).
(d) For each i ≥ q + 2, the probability that the maximum in line 26 equals i is

at most exp
(−8t/b2

)
.

These propositions imply that the probability of failure is at most the sum of
the probability of the bad event in (a), the bad event in (b), and the (at most)
n − 2 bad events in (d). The fact that each bad event concerns only one random
variable Aj allows a significant acceleration of Algorithm 3, discussed next.

5 Nested Sample Sets

In Algorithm 3, for each i ∈ [n] and j ∈ [t], we sample each set Ri,j from an
i-uniform distribution on subsets of {0, 1}n independently. As was first pointed
out in [5], this is both unnecessary and inefficient. Specifically, as a thought
experiment, imagine that we select all random subsets of {0, 1}n that we may
need before Algorithm 3 starts, in the following manner (in reality, we only
generate the sets as needed).

Algorithm 4. Generates t monotone decreasing sequences of sample sets
R0,j ← {0, 1}n for j ∈ [t]
for i from 1 to n do

for j from 1 to t do
Select Ri,j ⊆ Ri−1,j from a 1-uniform distribution on Ri−1,j

Organize now these sets in a matrix whose rows correspond to values of
0 ≤ i ≤ n and whose columns correspond to j ∈ [t]. It is easy to see that:

1. For each (row) i ∈ [n]:
(a) Every set Ri,j comes from an i-uniform distribution on {0, 1}n.
(b) The sets Ri,1, . . . , Ri,t are mutually independent.

2. For each column j ∈ [t]:
(a) R0,j ⊇ R1,j ⊇ · · · ⊇ Rn−1,j ⊇ Rn,j .
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With these new random sets Propositions (a)–(d) above hold exactly as in
the fully independent sets case, since for each fixed i ∈ [n] the only relevant
sets are the sets in row i and their distribution, per (1a)–(1b), did not change.
At the same time, (2a) ensures that Y1,j ≥ Y2,j ≥ · · · ≥ Yn,j for every j ∈ [t]
and, as a result, Z1 ≥ Z2 ≥ · · · ≥ Zn. Therefore, the characteristic function
of Ai = Zi/t ≥ (1 − δ)(4/δ) is now monotone decreasing. This means that in
order to compute j in line 26, instead of computing Zi for i from � to n, we can
compute A�, A�+1, A�+2, A�+4, A�+8, . . . until we encounter our first k such that
Ak < (1 − δ)(4/δ), say at k = � + 2c, for some c ≥ 0. At that point, if c ≥ 1,
we can perform binary search for j ∈ {A�+2c−1 , . . . , A�+2c−1} etc., so that the
number of times the loop that begins in line 21 is executed is logarithmic instead
of linear in n−�. Moreover, as we will see, the number of iterations t of this loop
can now be reduced from O(ln(n/θ)) to O(ln(1/θ)), shaving off another log n
factor from the running time.

6 Proof of Theorem 3

To prove Theorem 3 we will need the following tools.

Lemma 2. Let X ≥ 0 be an arbitrary integer-valued random variable. Write
EX = μ and Var(X) = σ2. Let Y = min{X, b}, for some integer b ≥ 0. For any
λ > 0, if b ≥ μ + λσ2, then EY ≥ EX − 1/λ.

Proof. Omitted due to space limitations. The main idea is to use that if Z is a
non-negative, integer-valued random variable, then EZ =

∑
j>0 Pr[Z ≥ j], and

then apply Chebychev’s inequality.

Lemma 3. Let D be any i-uniform distribution on subsets of {0, 1}n. For any
fixed set S ⊆ {0, 1}n, if R ∼ D and X = |S ∩ R|, then Var(X) ≤ EX +
(Boost(D, |S|) − 1)(EX)2.

Proof. Omitted due to space limitations. The main idea is to write X as a sum
of |S| indicator random variables and use linearity of expectation.

Proof (Proof of Theorem 3). Let q = �log2(δ|S|/4)�. Recall that if |S| < 4/δ,
the algorithm returns |S| and exits. Therefore, we can assume without loss of
generality that q ≥ 0. Fix any i = q + k, where k ≥ 0. Let Xi,j = |S ∩ Ri,j | and
write EXi,j = μi, Var(Xi,j) = σ2

i .
To establish propositions (a), (b) observe that the value � defined in line 8

is at most q, since L ≤ |S|, and that |S| ≥ 2q+1, since δ ≤ 2. Thus, since
Boost(D,M) is non-increasing in M , and max�≤i≤n Boost(Di, 2i) ≤ B,

max
k∈{0,1}

Boost(Dq+k, |S|) ≤ max{Boost(Dq, 2q),Boost(Dq+1, 2q+1)} ≤ B.

Therefore, we can apply Lemma 3 for i ∈ {q, q + 1} and conclude that σ2
i ≤

μi + (B − 1)μ2
i for such i. Since μi < 8/δ for all i ≥ q while ξ = 8/δ, we see

that b = �ξ + 2(ξ + ξ2(B − 1))
 ≥ μi + 2σ2
i . Thus, we can conclude that for
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i ∈ {q, q + 1} the random variables Xi,j , Yi,j satisfy the conditions of Lemma 2
with λ = 2, implying EYi,j ≥ EXi,j − 1/2. Since Zi is the sum of t independent
random variables 0 ≤ Yi,j ≤ b and EZi/t ≥ μi−1/2, we see that for i ∈ {q, q+1}
Hoeffding’s inequality implies

Pr[Zi/t ≤ (1 − δ)μi] ≤ exp

(
−2t

(
δμi − 1/2

b

)2
)

. (2)

At the same time, since Zi is the sum of t independent random variables
0 ≤ Yi,j ≤ b and EZi/t ≤ μi, we see that for all i ≥ q, Hoeffding’s inequality
implies

Pr[Zi/t ≥ (1 + δ)μi] ≤ exp

(
−2t

(
δμi

b

)2
)

. (3)

To conclude the proof of propositions (a) and (b) observe that μq+k ≥ 22−k/δ.
Therefore, (2) and (3) imply that for k ∈ {0, 1}, the probability that Aq+k2q+k

is outside (1 ± δ)|S| is at most

2 exp

(
−2t

(
22−k − 1/2

b

)2
)

< 2 exp(−9t/(2b2)) .

To establish proposition (c) observe that if Aq ≥ (1 − δ)μq, then Aq ≥
(1 − δ)(4/δ) and, thus, j ≥ q. Finally, to establish proposition (d) observe that
μi < 2/δ for all i ≥ q + 2. Thus, for any such i, requiring μi + w ≥ (1 − δ)(4/δ),
implies w > 2(1 − 2δ)/δ, which, since δ ≤ 1/3, implies w > 2. Therefore, for
every k ≥ 2, the probability that j = q + k is at most exp(−8t/b2).

Having established propositions (a)–(d) we argue as follows. If Aq+k2q+k is
in the range (1 ± δ)|S| for k ∈ {0, 1} and smaller than (1 − δ)(4/δ) for k ≥ 2,
then the algorithm will report either Aq2q or Aq+12q+1, both of which are in
(1 ± δ)|S|. Therefore, the probability that the algorithm’s answer is incorrect is
at most 2 · 2 exp(−9t/(2b2)) + n · exp(−8t/b2) < θ, for n > 2.

6.1 Proof for Monotone Sequences of Sample Sets

Theorem 4. For any s > 0, if the sets Ri,j are generated by Algorithm 4 and
t ≥ (2b2/9) ln(5s) in line 17, then the output of Algorithm 3 lies in the range
(1 ± δ)|S| with probability at least 1 − exp(−s) > 0.

Proof. Observe that for any fixed i, since the sets Ri,1, . . . , Ri,t are mutually
independent, Eqs. (2) and (3) remain valid and, thus, propositions (a)–(c) hold.
For proposition (d) we note that if the inequality Aq+k2q+k < (1− δ)(4/δ) holds
for k = 2, then, by monotonicity, it holds for all k ≥ 2. Thus, all in all, when
monotone sequences of sample sets are used, the probability that the algorithm
fails is at most 4 exp(−9t/(2b2))+exp(−8t/b2), a quantity smaller than exp(−s)
for all t ≥ (2b2/9) ln(5s).
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7 Low Density Parity Check Codes

In our earlier discussion of i-uniform distributions we saw that if both A ∈
{0, 1}i×n and b ∈ {0, 1}i are uniformly random, then membership in the random
set R = {σ : Aσ = b} enjoys the (highly desirable) property of pairwise inde-
pendence. Unfortunately, this also means that each of the i parity constraints
involves, on average, n/2 variables, making it difficult to work with when i and
n are large (we are typically interested in the regime log2 |S(F )| = Ω(n), thus
requiring i = Ω(n) constraints to be added).

The desire to sparsify the matrix A has long been in the purview of the model
counting community. Unfortunately, achieving sparsity by letting each entry of
A take the value 1 independently with probability p < 1/2 is not ideal [7]: the
resulting random sets become dramatically “lumpy” as p → 0.

A motivation for our work is the realization that if we write |S| = 2αn, then
as α grows it is possible to choose A so that it is both very sparse, i.e., with each
row having a constant non-zero elements, and so that the sets R have relatively
low lumpiness at the 2αn scale. The key new ingredient comes from the seminal
work of Sipser and Spielman on expander codes [14] and is this:

Require each column of A to have at least 3 elements.

Explaining why this very simple modification has profound implications is
beyond the scope of this paper. Suffice it to say, that it is precisely this require-
ment of minimum variable degree that dramatically reduces the correlation
between elements of R and thus Boost(D).

For simplicity of exposition, we only discuss matrices A ∈ {0, 1}i×n where:

– Every column (variable) has exactly l ≥ 3 non-zero elements.
– Every row (parity constraint) has exactly r = ln/i ∈ non-zero elements.

Naturally, the requirement ln/i ∈ N does not always hold, in which case some
rows have �ln/i� variables, while the rest have �ln/i
 variables, so that the
average is ln/i. To simplify discussion we ignore this point in the following.

Given n, i, and l a (bi-regular) Low Density Parity Check (LDPC) code is
generated by selecting a uniformly random matrix as above1 and taking the set
of codewords to be the set of solutions of the linear system Aσ = 0. (While,
for model counting we must also take the right hand side of the equation to be
a uniformly random vector, due to symmetry, we can assume without loss of
generality that b = 0.) In particular, note that σ = 0 is always a solution of the
system and, therefore, to discuss the remaining solutions (codewords) instead of
referring to them by their distance from our reference solution σ = 0 we can
refer to them by their weight, i.e., their number of ones.

1 Generating such a matrix can be done by selecting a random permutation of [ln]
and using it to map each of the ln non-zeros to equations, r non-zeros at a time;
when l, r ∈ O(1), the variables in each equation will be distinct with probability
Ω(1), so that a handful of trials suffice to generate a matrix as desired.
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It is well-known [12] that the expected number of codewords of weight w in a
bi-regular LDPC code is given by the following (rather complicated) expression.

Lemma 4 (Average weight-distribution of regular LDPC ensembles).
The expected number of codewords of weight w in a bi-regular LDPC code with n
variables and i parity equations, where each variable appears in l equations and
each equation includes r variables equals the coefficient of xwl in the polynomial

(
n

w

)(∑
i

(
r
2i

)
x2i

)n l
r

(
nl
wl

) . (4)

We will denote the quantity described in Lemma 4 by codewords(w).

8 Tractable Distributions

Let Di be any i-uniform distribution on subsets of {0, 1}n.

Definition 3. Say that Di is tractable if there exists a function f , called the
density of Di, such that for all σ, τ ∈ {0, 1}n, if R ∼ Di, then Pr[τ ∈ R | σ ∈
R] = f(Hamming(σ, τ)), where

– f(j) ≥ f(j + 1) for all j < n/2, and,
– either f(j) ≥ f(j + 1) for all j ≥ n/2, or f(j) = f(n − j) for all j ≥ n/2.

For any S ⊂ {0, 1}n and σ ∈ S, let Hσ(d) denote the number of elements of
S at Hamming distance d from σ. Recalling the definition of Boost in (5), we
get (6) by i-uniformity and (7) by tractability,

Boost(Di,M) = max
S⊆{0,1}n

|S|≥M

1
|S|(|S| − 1)

∑

σ,τ∈S
σ �=τ

Pr[σ, τ ∈ R]
Pr[σ ∈ R] Pr[τ ∈ R]

(5)

= max
S⊆{0,1}n

|S|≥M

2i

|S|(|S| − 1)

∑

σ∈S

∑

τ∈S−σ

Pr[τ ∈ S | σ ∈ S] (6)

= max
S⊆{0,1}n

|S|≥M

2i

|S|(|S| − 1)

∑

σ∈S

n∑

d=1

Hσ(d)f(d) (7)

≤ max
S⊆{0,1}n

|S|≥M
σ∈S

2i

|S| − 1

n∑

d=1

Hσ(d)f(d). (8)

Let z be the unique integer such that |S|/2 =
(
n
0

)
+

(
n
1

)
+ · · · + (

n
z−1

)
+ α

(
n
z

)
,

for some α ∈ [0, 1). Since z ≤ n/2, tractability implies that f(j) ≥ f(j + 1) for
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all 0 ≤ d < z, and therefore that
∑n

d=1 Hσ(d)f(d)
|S| − 1

≤
∑n

d=0 Hσ(d)f(d)
|S| (9)

≤
∑n/2

d=0 Hσ(d)f(d) +
∑

d>n/2 Hσ(d)f(n − d)

|S| (10)

≤
2
(∑z−1

d=0

(
n
d

)
f(d) + α

(
n
z

)
f(z)

)

|S| (11)

=
∑z−1

d=0

(
n
d

)
f(d) + α

(
n
z

)
f(z)

∑z−1
d=0

(
n
d

)
+ α

(
n
z

) (12)

≤
∑z−1

d=0

(
n
d

)
f(d)

∑z−1
d=0

(
n
d

) (13)

:= B(z). (14)

To bound B(z) observe that B(j) ≥ B(j + 1) for j < n/2, inherited by the
same property of f . Thus, to bound B(z) from above it suffices to bound z for
below. Let h : x �→ −x log2 x − (1 − x) log2 x be the binary entropy function and
let h−1 : [0, 1] �→ [0, 1] map y to the smallest number x such that h(x) = y. It is
well-known that

∑z
d=0

(
n
d

) ≤ 2nh(z/n), for every integer 0 ≤ z ≤ n/2. Therefore,
z ≥ �nh−1(log2(|S|/2)/n)
, which combined with (8) implies the following.

Theorem 5. If Di is a tractable i-uniform distribution with density f , then

Boost(Di,M) ≤ 2iB

(⌈
nh−1

(
log2 M − 1

n

)⌉)
, (15)

where B(z) =
∑z−1

d=0

(
n
d

)
f(d)/

∑z−1
d=0

(
n
d

)
and h−1 : [0, 1] �→ [0, 1] maps y to the

smallest number x such that h(x) = y, where h is the binary entropy function.

Before proceeding to discuss the tractability of LDPC codes, let us observe
that the bound in (14) is essentially tight, as demonstrated when S comprises a
Hamming ball of radius z centered at σ and a Hamming ball of radius z centered
at σ’s complement (in which case the only (and miniscule) compromise is (9)).
On the other hand, the passage from (7) to (8), mimicking the analysis of [7],
allows the aforementioned worst case scenario to occur simultaneously for every
σ ∈ S, an impossibility. As |S|/2n grows, this is increasingly pessimistic.

8.1 The Lumpiness of LDPC Codes

Let Di be the i-uniform distribution on subsets of {0, 1}n that results when
R = {σ : Aσ = b}, where A corresponds to a biregular LDPC code with i parity
equations. The row- and column-symmetry in the distribution of A implies that
the function f(d) = codewords(d)/

(
n
d

)
is the density of Di. Regarding tractabil-

ity, it is easy to see that if l is odd, then codewords(2j +1) = 0 for all j and that
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if r is even, then codewords(d) = codewords(n−d) for all d. Thus, for simplicity
of exposition, we will restrict to the case where both l and r are even, noting
that this is not a substantial restriction.

With l, r even, we are left to establish that f(j) ≥ f(j+1) for all 0 ≤ j < n/2.
Unfortunately, this is not true for a trivial reason: f is non-monotone in the
vicinity of n/2, exhibiting minisucle finite-scale-effect fluctuations (around its
globally minimum value). While this renders Theorem 5 inapplicable, it is easy
to overcome. Morally, because f is asymptotically monotone, i.e., for any fixed
β ∈ [0, 1/2), the inequality f(βn) ≥ f(βn+1) holds for all n ≥ n0(β). Practically,
because for the proof of Theorem 5 to go through it is enough that f(j) ≥ f(j+1)
for all 0 ≤ j < z (instead of all 0 ≤ j < n/2), something which for most sets
of interest holds, as z � n/2. Thus, in order to provide a rigorous upper bound
on Boost, as required in Algorithm 3, it is enough to verify the monotonicity of
f up to z in the course of evaluating B(z). This is precisely what we did with
l = 8, log2 M = 2n/5, and n ∈ {100, 110, . . . , 200}, resulting in r = 20, i.e.,
equations of length 20. The resulting bounds for B are in Table 1 below.

Table 1. Upper bounds for Boost for equations of length 20

n 100 110 120 130 140 150 160 170 180 190 200

Boost 75 50 35 26 134 89 60 44 34 154 105

Several comments are due here. First, the non-monotonicity of the bound is
due to the interaction of several factors in (15), most anomalous of which is the
ceiling. Second, recall that the running time of Algorithm 3 is proportional to the
square of our upper bound for Boost. While the bounds in Table 1 are not ideal,
they do allow us to derive rigorous results for systems with 40 − 80 equations
and n ∈ [100, 200] after ∼ 104 (parallelizable) solver invocations. Results for
such settings are completely outside the reach of CryptoMiniSAT (and, thus,
ApproxMC2) when equations of length n/2 are used. Finally, as we will see in
Sect. 9, these bounds on Boost appear to be extremely pessimistic in practice.

9 Experiments

The goal of our this section is to demonstrate the promise of using systems of
parity equations corresponding to LDPC codes empirically. That is, we will use
such systems, but make far fewer solver invocations than what is mandated by
our theoretical bounds for a high probability approximation. In other words, our
results are not guaranteed, unlike those of ApproxMC2. The reason we do
this is because we believe that while the error-probability analysis of Theorems 3
and 4 is not too far off the mark, the same can no be said for Theorem 5 providing
our rigorous upper bounds on Boost.
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Formula name #SAT LDPC AMC2 1/4 #SAT LDPC AMC2 1/4

jburnim morton.sk 13 530 NA 248.49 NA NA NA 27826.4 NA NA

blasted case37 NA 151.02 NA NA NA 4149.9 NA NA

blasted case 0 b12 even1 NA 147.02 NA NA NA 1378.8 NA NA

blasted case 2 b12 even1 NA 147.02 NA NA NA 1157.5 NA NA

blasted case42 NA 147.02 NA NA NA 1008.0 NA NA

blasted case 1 b12 even1 NA 147.02 NA NA NA 1102.0 NA NA

blasted case 0 b12 even2 NA 144.02 NA NA NA 881.6 NA NA

blasted case 1 b12 even2 NA 144.02 NA NA NA 1156.3 NA NA

blasted case 2 b12 even2 NA 144.02 NA NA NA 1050.5 NA NA

blasted case 3 4 b14 even NA 138.02 NA NA NA 293.4 NA NA

blasted case 1 4 b14 even NA 138.02 NA NA NA 472.6 NA NA

log2.sk 72 391 — 136.00 NA NA — 12811.1 NA NA

blasted case1 b14 even3 NA 122.02 NA NA NA 169.6 NA NA

blasted case 2 b14 even NA 118.02 NA NA NA 89.2 NA NA

blasted case3 b14 even3 NA 118.02 NA NA NA 107.7 NA NA

blasted case 1 b14 even NA 118.02 NA NA NA 94.7 NA NA

partition.sk 22 155 NA 107.17 NA NA NA 5282.3 NA NA

scenarios tree delete4.sb.pl.sk 4 114 — 105.09 NA NA — 708.4 NA NA

blasted case140 NA 103.02 NA NA NA 1869.0 NA NA

scenarios tree search.sb.pl.sk 11 136 NA 96.46 NA NA NA 3314.2 NA NA

s1423a 7 4 90.59 90.58 NA NA 6.2 32.4 NA NA

s1423a 3 2 90.16 90.17 NA NA 5.7 28.3 NA NA

s1423a 15 7 89.84 89.83 NA NA 13.6 44.8 NA NA

scenarios tree delete1.sb.pl.sk 3 114 — 89.15 NA NA — 431.3 NA NA

blasted case 0 ptb 2 NA 88.02 NA NA NA 463.6 NA NA

blasted case 0 ptb 1 NA 87.98 NA NA NA 632.0 NA NA

scenarios tree delete2.sb.pl.sk 8 114 — 86.46 NA NA — 210.3 NA NA

scenarios aig traverse.sb.pl.sk 5 102 NA 86.39 NA NA NA 3230.0 NA NA

54.sk 12 97 82.50 81.55 NA NA 20.4 235.8 NA NA

blasted case 0 b14 1 79.00 79.09 NA NA 28.8 33.5 NA NA

blasted case 2 ptb 1 NA 77.02 NA NA NA 10.1 NA NA

blasted case 1 ptb 1 NA 77.02 NA NA NA 9.5 NA NA

blasted case 1 ptb 2 NA 77.02 NA NA NA 17.8 NA NA

blasted case 2 ptb 2 NA 77.00 NA NA NA 25.0 NA NA

blasted squaring70 66.00 66.04 NA NA 5822.7 87.7 NA NA

blasted case19 66.00 66.02 NA NA 25.1 6.9 NA NA

blasted case20 66.00 66.02 NA NA 2.0 4.4 NA NA

blasted case15 65.00 65.02 NA NA 172.3 12.4 NA NA

blasted case10 65.00 65.02 NA NA 209.8 8.8 NA NA

blasted TR b12 2 linear NA 63.93 NA NA NA 1867.1 NA NA

blasted case12 NA 62.02 NA NA NA 21.5 NA NA

blasted case49 61.00 61.02 NA NA 8.9 15.6 NA NA

blasted TR b12 1 linear NA 59.95 NA NA NA 767.9 NA NA

scenarios tree insert insert.sb.pl.sk 3 68 — 51.86 NA NA 12.1 54.3 NA NA

blasted case18 NA 51.00 NA NA NA 16.7 NA NA

blasted case14 49.00 49.07 NA NA 117.2 7.6 NA NA

blasted case9 49.00 49.02 NA NA 123.6 7.1 NA NA

blasted case61 48.00 48.02 NA NA 154.2 6.7 NA NA

ProjectService3.sk 12 55 — 46.55 46.58 46.55 — 12.9 273.4 267.1

(continued)
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(continued)

Formula name #SAT LDPC AMC2 1/4 #SAT LDPC AMC2 1/4

blasted case145 46.00 46.02 NA 46.02 29.2 8.4 NA 5570.4

blasted case146 46.00 46.02 46.02 NA 29.3 4.8 9528.6 NA

ProcessBean.sk 8 64 — 42.83 42.91 42.83 — 17.0 323.2 207.3

blasted case106 42.00 42.02 42.02 42.02 10.2 3.3 325.0 14728.3

blasted case105 41.00 41.00 41.04 NA 7.5 4.0 368.5 NA

blasted squaring16 40.76 40.83 NA 41.07 99.4 50.3 NA 1633.3

blasted squaring14 40.76 40.70 NA 41.00 102.1 34.3 NA 2926.5

blasted squaring12 40.76 40.61 NA 41.00 117.3 39.6 NA 1315.6

blasted squaring7 38.00 38.29 38.00 38.11 45.4 34.9 432.4 263.2

blasted squaring9 38.00 38.04 37.98 38.15 36.3 24.2 489.8 238.6

blasted case 2 b12 2 38.00 38.02 38.02 38.00 29.3 4.4 186.8 87.2

blasted case 0 b11 1 38.00 38.02 38.02 38.04 45.5 2.5 190.4 180.7

blasted case 0 b12 2 38.00 38.02 38.02 38.02 29.2 3.8 181.1 69.9

blasted case 1 b11 1 38.00 38.02 38.02 37.81 45.2 3.5 159.5 119.2

blasted case 1 b12 2 38.00 38.02 38.02 38.02 30.6 2.9 185.3 80.0

blasted squaring10 38.00 38.02 37.91 38.04 17.6 32.0 415.1 221.7

blasted squaring11 38.00 37.95 38.02 38.09 19.8 19.7 470.1 207.3

blasted squaring8 38.00 37.93 38.09 39.00 18.6 28.0 431.5 727.8

sort.sk 8 52 — 36.43 36.43 36.36 — 92.0 339.2 156.8

blasted squaring1 36.00 36.07 36.07 36.00 6.6 20.0 367.8 156.9

blasted squaring6 36.00 36.04 36.00 35.93 8.5 17.1 429.1 170.5

blasted squaring3 36.00 36.02 36.02 36.02 7.7 18.7 397.3 198.5

blasted squaring5 36.00 35.98 36.02 36.04 8.5 28.8 384.0 228.2

blasted squaring2 36.00 35.98 36.00 36.07 7.5 30.6 411.5 195.8

blasted squaring4 36.00 35.95 36.04 35.98 7.9 23.2 469.8 180.0

compress.sk 17 291 NA 34.00 NA NA NA 1898.2 NA NA

listReverse.sk 11 43 NA 32.00 32.00 32.00 NA 2995.3 2995.3 2995.7

enqueueSeqSK.sk 10 42 NA 31.49 31.39 31.43 NA 67.6 252.0 124.6

blasted squaring29 26.25 26.36 26.29 26.39 1.3 42.7 218.7 75.2

blasted squaring28 26.25 26.32 26.36 26.36 1.9 57.6 185.1 59.0

blasted squaring30 26.25 26.25 26.29 26.17 1.6 40.9 179.8 60.8

tutorial3.sk 4 31 NA 25.29 25.32 25.25 NA 3480.5 19658.2 2414.7

blasted squaring51 24.00 24.11 24.15 24.07 1.6 4.8 49.3 5.3

blasted squaring50 24.00 23.86 24.00 24.02 1.3 4.7 54.2 5.1

NotificationServiceImpl2.sk 10 36 — 22.64 22.49 22.55 — 13.7 29.6 9.6

karatsuba.sk 7 41 — 20.36 NA 20.52 — 24963.0 NA 19899.0

LoginService.sk 20 34 — 19.49 19.39 19.43 — 28.1 33.0 20.7

LoginService2.sk 23 36 — 17.55 17.43 17.43 — 72.9 40.8 32.6

To illuminate the bigger picture, besides ApproxMC2 we also included in the
comparison the exact sharpSAT model counter of Thurley [17], and the modifica-
tion of ApproxMC2 in which each equation involves each variable independently
with probability p = 1/2j , for j = 2, . . . , 5. (ApproxMC2 corresponds to j = 1).

To make the demonstration as transparent as possible, we only made two
modifications to ApproxMC2 and recorded their impact on performance.

– We incorporated Algorithm 2 for quickly computing a lower bound.
– We use systems of equations corresponding to LDPC codes instead of systems

where each equation involves n/2 variables on average (as ApproxMC2 does).

Algorithm 2 is invoked at most once, while the change in the systems of equations
is entirely encapsulated in the part of the code generating the random systems.
No other changes to ApproxMC2 (AMC2) were made.

We consider the same 387 formulas as [5]. Among these are 2 unsatisfiable
formulas which we removed. We also removed 9 formulas that were only solved
by sharpSAT and 10 formulas whose number of solutions (and, thus, equations)
is so small that the LDPC equations devolve into long XOR equations. Of the
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remaining 366 formulas, sharpSAT solves 233 in less than 1 s, in every case sig-
nificantly faster than all sampling based methods. At the other extreme, 46
formulas are not solved by any method within the given time limits, namely
8 h per method-formula pair (and 50 min for each solver invocation for the sam-
pling based algorithms). We report on our experiments with the remaining 87
formulas. All experiments were run on a cluster of 13 nodes, each with 16 cores
and 128 GB RAM.

Our findings can be summarized as follows:

1. The LDPC-modified version of AMC2 has similar accuracy to AMC2, even
though the number of solver invocations is much smaller than what theory
mandates for an approximation guarantee. Specifically, the counts are very
close to the counts returned by AMC2 and sharpSAT in every single formula.

2. The counts with p = 1/4 are as accurate as with p = 1/2. But for p ≤ 1/8,
the counts were often significantly wrong and we don’t report results.

3. The LDPC-modified version of AMC2 is faster than AMC2 in all but one
formulas, the speedup typically exceeding 10x and often exceeding 50x.

4. In formulas where both sharpSAT and the LDPC-modified version of AMC2
terminate, sharpSAT is faster more often than not. That said, victories by a
speed difference of 50x occur for both algorithms.

5. The LDPC-modified version of AMC2 did not time out on any formula. In
contrast, sharpSAT timed out on 38% of the formulas, AMC2 with p = 1/4
on 59% of the formulas, and AMC2 on 62%.

In the following table, the first four columns report the binary logarithm of
the estimate of |S| returned by each algorithm. The next four columns report
the time taken to produce the estimate, in seconds. We note that several of
the 87 formulas come with a desired sampling set, i.e., a subset of variables V
such that the goal is to count the size of the projection of the set of all models
on V . Since, unlike AMC2, sharpSAT does not provide such constrained counting
functionality, to avoid confusion, we do not report a count for sharpSAT for these
formulas, writing “—” instead. Timeouts are reported as “NA”.
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Abstract. A strong backdoor in a CNF formula is a set of variables such
that each possible instantiation of these variables moves the formula into
a tractable class. The algorithmic problem of finding a strong backdoor
has been the subject of intensive study, mostly within the parameterized
complexity framework. Results to date focused primarily on backdoors
of small size. In this paper we propose a new approach for algorithmi-
cally exploiting strong backdoors for SAT: instead of focusing on small
backdoors, we focus on backdoors with certain structural properties. In
particular, we consider backdoors that have a certain tree-like structure,
formally captured by the notion of backdoor treewidth.

First, we provide a fixed-parameter algorithm for SAT parameterized
by the backdoor treewidth w.r.t. the fundamental tractable classes Horn,
Anti-Horn, and 2CNF. Second, we consider the more general setting
where the backdoor decomposes the instance into components belonging
to different tractable classes, albeit focusing on backdoors of treewidth
1 (i.e., acyclic backdoors). We give polynomial-time algorithms for SAT
and #SAT for instances that admit such an acyclic backdoor.

1 Introduction

SAT is the problem of determining whether a propositional formula in con-
juntive normal form (CNF) is satisfiable. Since SAT was identified as the first
NP-complete problem, a significant amount of research has been devoted to the
identification of “islands of tractability” or “tractable classes,” which are sets
of CNF formulas on which SAT is solvable in polynomial time. The notion of a
strong backdoor, introduced by Williams et al. [28], allows one to extend these
polynomial-time results to CNF formulas that do not belong to an island of
tractability but are close to one. Namely, a strong backdoor is a set of variables
of the given CNF formula, such that for all possible truth assignments to the
variables in the set, applying the assignment moves the CNF formula into the
island of tractability under consideration. In other words, using a strong back-
door consisting of k variables transforms the satisfiability decision for one general
CNF formula into the satisfiability decision for 2k tractable CNF formulas. A
natural way of exploiting strong backdoors algorithmically is to search for small
strong backdoors. For standard islands of tractability, such as the class of Horn
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formulas and the class of 2CNF formulas, one can find a strong backdoor of size
k (if it exists) in time f(k)Lc (where f is a computable function, c is a constant,
and L denotes the length of the input formula) [22]; in other words, the detection
of a strong backdoor of size k to Horn or 2CNF is fixed-parameter tractable [10].
The parameterized complexity of backdoor detection has been the subject of
intensive study. We refer the reader to a survey article [16] for a comprehensive
overview of this topic.

In this paper we propose a new approach for algorithmically exploiting strong
backdoors for SAT. Instead of focusing on small backdoors, we focus on back-
doors with certain structural properties. This includes backdoors of unbounded
size and thus applies in cases that were not accessible by previous backdoor
approaches. In particular, we consider backdoors that, roughly speaking, can be
arbitrarily large but have a certain “tree-like” structure. Formally, this structure
is captured in terms of the treewidth of a graph modeling the interactions between
the backdoor and the remainder of the CNF formula (this is called the backdoor
treewidth [14]). Treewidth itself is a well-established structural parameter that
can be used to obtain fixed-parameter tractability of SAT [26]. The combination
of strong backdoors and treewidth, as considered in this paper, gives rise to new
tractability results for SAT, not achievable by backdoors or treewidth alone.

The notion of backdoor treewidth outlined above was recently introduced in
the context of the constraint satisfaction problem (CSP) [14]. However, a direct
translation of those results to SAT seems unlikely. In particular, while the results
for CSP can be used “out-of-the-box” for CNF formulas of bounded clause width,
additional machinery is required in order to handle CNF formulas of unbounded
clause width.

The first main contribution of our paper is hence the following.

(1) SAT is fixed-parameter tractable when parameterized by the backdoor
treewidth w.r.t. any of the following islands of tractability: Horn, Anti-Horn,
and 2CNF (Theorem 1).

For our second main contribution, we consider a much wider range of islands
of tractability, namely every island of tractability that is closed under partial
assignments (a property shared by most islands of tractability studied in the lit-
erature). Moreover, we consider backdoors that split the input CNF formula into
components where each of them may belong to a different island of tractability
(we can therefore speak of an “archipelago of tractability” [15]). This is a very
general setting, and finding such a backdoor of small treewidth is a challenging
algorithmic task. It is not at all clear how to handle even the special case of
backdoor treewidth 1, i.e., acyclic backdoors.

In this work, we take the first steps in this direction and settle this spe-
cial case of acyclic backdoors. We show that if a given CNF formula has an
acyclic backdoor into an archipelago of tractability, we can test its satisfiability
in polynomial time. We also obtain an equivalent result for the model counting
problem #SAT (which asks for the number of satisfying assignments of the given
formula).



22 R. Ganian et al.

(2) SAT and #SAT are solvable in polynomial time for CNF formulas with an
acyclic backdoor into any archipelago of tractability whose islands are closed
under partial assignments (Theorems 2 and 3).

We note that the machinery developed for backdoor treewidth in the CSP setting
cannot be used in conjunction with islands of tractability in the general context
outlined above; in fact, we leave open even the existence of a polynomial-time
algorithm for backdoor treewidth 2. An interesting feature of the algorithms
establishing Theorems 2 and 3 is that they do not explicitly detect an acyclic
backdoor. Instead, we only require the existence of such a backdoor in order
to guarantee that our algorithm is correct on such inputs. In this respect, our
results add to the rather small set of backdoor based algorithms for SAT (see
also [13]) which only rely on the existence of a specific kind of backdoor rather
than computing it, in order to solve the instance.

We now briefly mention the techniques used to establish our results. The
general idea behind the proof of Theorem1 is the translation of the given CNF
formula F into a “backdoor-equivalent” CNF formula F ′ which has bounded
clause width. Following this, we can safely perform a direct translation of F ′

into a CSP instance I which satisfies all the conditions for invoking the previous
results on CSP [14]. For Theorems 2 and 3, we consider the biconnected compo-
nents of the incidence graph of the CNF formula and prove that the existence of
an acyclic backdoor imposes useful structure on them. We then design a dynamic
programming algorithm which runs on the block decomposition of the incidence
graph of the CNF formula and show that it correctly determines in polynomial
time whether the input CNF formula is satisfiable (or counts the number of sat-
isfying assignments, respectively) as long as there is an acyclic backdoor of the
required kind.

2 Preliminaries

Parameterized Complexity. We begin with a brief review of the most important
concepts of parameterized complexity. For an in-depth treatment of the subject
we refer the reader to textbooks [8,10].

The instances of a parameterized problem can be considered as pairs (I, k)
where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable (FPT) if instances (I, k) of size n (with respect to some
reasonable encoding) can be solved in time O(f(k)nc) where f is a computable
function and c is a constant independent of k. The function f is called the
parameter dependence.

We say that parameter X dominates parameter Y if there exists a computable
function f such that for each CNF formula F we have X(F ) ≤ f(Y (F )) [25]. In
particular, if X dominates Y and SAT is FPT parameterized by X, then SAT
is FPT parameterized by Y [25]. We say that two parameters are incomparable
if neither dominates the other.
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Satisfiability. We consider propositional formulas in conjunctive normal form
(CNF), represented as sets of clauses. That is, a literal is a (propositional) vari-
able x or a negated variable x; a clause is a finite set of literals not containing
a complementary pair x and x; a formula is a finite set of clauses. For a literal
l = x we write l = x; for a clause c we set c = {l | l ∈ c}. For a clause c, var(c)
denotes the set of variables x with x ∈ c or x ∈ c, and the clause width of c is
|var(c)|. Similarly, for a CNF formula F we write var(F ) =

⋃
c∈F var(c). The

length (or size) of a CNF formula F is defined as
∑

c∈F |c|. We will sometimes
use the a graph representation of a CNF formula F called the incidence graph
of F and denoted Inc(F ). The vertices of Inc(F ) are variables and clauses of F
and two vertices a, b are adjacent if and only if a is a clause and b ∈ var(a).

A truth assignment (or assignment, for short) is a mapping τ : X → {0, 1}
defined on some set X of variables. We extend τ to literals by setting τ(x) =
1−τ(x) for x ∈ X. F [τ ] denotes the CNF formula obtained from F by removing
all clauses that contain a literal x with τ(x) = 1 and by removing from the
remaining clauses all literals y with τ(y) = 0; F [τ ] is the restriction of F to τ .
Note that var(F [τ ]) ∩ X = ∅ holds for every assignment τ : X → {0, 1} and
every CNF formula F . An assignment τ : X → {0, 1} satisfies a CNF formula
F if F [τ ] = ∅, and a CNF formula F is satisfiable if there exists an assignment
which satisfies F . In the SAT problem, we are given a CNF formula F and the
task is to determine whether F is satisfiable.

Let X ⊆ var(F ). Two clauses c, c′ are X-adjacent if (var(c)∩var(c′))\X �= ∅.
We say that two clauses c, d are X-connected if there exists a sequence c =
c1, . . . , cr = d such that each consecutive ci, ci+1 are X-adjacent. An X-
component Z of a CNF formula F is then an inclusion-maximal subset of X-
connected clauses, and its boundary is the set var(Z) ∩ X. An ∅-component of
a CNF formula F is also called a connected component of F .

A class F of CNF formulas is closed under partial assignments if, for each
F ∈ F and each assignment τ of a subset of var(F ), it holds that F [τ ] ∈ F .
Examples of classes that are closed under partial assignment include 2CNF, Q-
Horn, hitting CNF formulas and acyclic CNF formulas (see, e.g., the Handbook
of Satisfiability [2]).

Backdoors and Tractable Classes for SAT. Backdoors are defined relative to
some fixed class C of instances of the problem under consideration (i.e., SAT);
such a class C is then often called the base class. One usually assumes that the
problem is tractable for instances from C, as well as that the recognition of C is
tractable; here, tractable means solvable by a polynomial-time algorithm.

In the context of SAT, we define a strong backdoor set into F of a CNF
formula F to be a set B of variables such that F [τ ] ∈ F for each assignment
τ : B → {0, 1}. If we know a strong backdoor of F into F , we can decide the
satisfiability of F by looping over all assignments τ of the backdoor variables
and checking the satisfiability of the resulting CNF formulas F [τ ] (which belong
to F). Thus SAT decision is fixed-parameter tractable in the size k of the strong
backdoor, assuming we are given such a backdoor as part of the input and F
is tractable. We note that every natural base class F has the property that if
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B ⊆ var(F ) is a backdoor of F into F , then B is also a backdoor of every
B-component of F into F ; indeed, each such B-component can be treated sep-
arately for individual assignments of B. We will hence assume that all our base
classes have this property.

Here we will be concerned with three of the arguably most prominent polyno-
mially tractable classes of CNF formulas: Horn, Anti-Horn and 2CNF, defined
in terms of syntactical properties of clauses. A clause is (a) Horn if it contains
at most one positive literal, (b) Anti-Horn if it contains at most one negative
literal, (c) 2CNF if it contains at most two literals,1

A CNF formula belongs to the class Horn, Anti-Horn, or 2CNF if it contains
only Horn, Anti-Horn, or 2CNF clauses, respectively; each of these classes is
known to be tractable and closed under partial assignments. It is known that
backdoor detection for each of the classes listed above is FPT, which together
with the tractability of these classes yields the following.

Proposition 1 ([16]). SAT is fixed-parameter tractable when parameterized by
the size of a minimum backdoor into F , for each F ∈ {Horn,Anti-Horn, 2CNF}.

We note that in the literature also other types of backdoors (weak backdoors
and deletion backdoors) have been considered; we refer to a survey article for
examples [16]. In the sequel our focus lies on strong backdoors, and for the sake
of brevity will refer to them merely as backdoors.

The Constraint Satisfaction Problem. Let V be a set of variables and D a
finite set of values. A constraint of arity ρ over D is a pair (S,R) where
S = (x1, . . . , xρ) is a sequence of variables from V and R ⊆ Dρ is a ρ-ary
relation. The set var(C) = {x1, . . . , xρ} is called the scope of C. An assign-
ment α : X → D is a mapping of a set X ⊆ V of variables. An assignment
α : X → D satisfies a constraint C = ((x1, . . . , xρ), R) if var(C) ⊆ X and
(α(x1), . . . , α(xρ)) ∈ R. For a set I of constraints we write var(I) =

⋃
C∈I var(C)

and rel(I) = {R | (S,R) ∈ C,C ∈ I}. A finite set I of constraints is satisfiable
if there exists an assignment that simultaneously satisfies all the constraints in
I. The Constraint Satisfaction Problem (CSP, for short) asks, given a finite set
I of constraints, whether I is satisfiable.

Next, we will describe how a partial assignment alters a given CSP instance.
Let α : X → D be an assignment. For a ρ-ary constraint C = (S,R) with
S = (x1, . . . , xρ) and R ∈ Dρ, we denote by C|α the constraint (S′, R′) obtained
from C as follows. R′ is obtained from R by (i) deleting all tuples (d1, . . . , dρ)
from R for which there is some 1 ≤ i ≤ ρ such that xi ∈ X and α(xi) �= di,
and (ii) removing from all remaining tuples all coordinates di with xi ∈ X. S′

is obtained from S by deleting all variables xi with xi ∈ X. For a set I of
constraints we define I|α as {C|α | C ∈ I}. It is important to note that there is
a crucial distinction between assignments in SAT and assignments in CSP: while
in SAT one deletes all clauses which are already satisfied by a given assignment,

1 A clause containing exactly two literals is also known as a Krom clause.
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in CSP this is not the case – instead, constraints are restricted to the tuples
which match the assignment (but never deleted).

A constraint language (or language, for short) Γ over a domain D is a set
of relations (of possibly various arities) over D. By CSP(Γ ) we denote CSP
restricted to instances I with rel(I) ⊆ Γ . A constraint language is tractable if
for every finite subset Γ ′ ⊆ Γ , the problem CSP(Γ ′) can be solved in polynomial
time. Let Γ be a constraint language and I be an instance of CSP. A variable
set X is a (strong) backdoor to CSP(Γ ) if for each assignment α : X → D
it holds that I|α ∈ CSP(Γ ). A language is closed under partial assignments if
for each I ∈ CSP(Γ ) and for each assignment α, it holds that I|α ∈ CSP(Γ ).
Finally, observe that the notions of being X-adjacent, X-connected and being a
X-component can be straightforwardly translated to CSP. For example, a CSP
instance containing three constraints ((a, b, d), R1), ((c, d), R2), and ((e, b), R3)
would contain two {b}-components: one containing ((a, b, d), R1), ((c, d), R2) and
the other containing ((e, b), R3).

Each SAT instance (i.e., CNF formula) admits a direct encoding into a CSP
instance (over the same variable set and with domain {0, 1}), which transforms
each clause into a relation containing all tuples which do not invalidate that
clause. Note that this will exponentially increase the size of the instance if the
CNF formula contains clauses of unbounded clause width; however, for any fixed
bound on the clause width of the original CNF formula, the direct encoding into
CSP will only increase the bit size of the instance by a constant factor.

Treewidth and Block Decompositions. The set of internal vertices of a path P
in a graph is denoted by Vint(P ) and is defined as the set of vertices in P which
are not the endpoints of P . We say that two paths P1 and P2 in an undirected
graph are internally vertex-disjoint if Vint(P1) ∩ Vint(P2) = ∅. Note that under
this definition, a path consisting of a single vertex is internally vertex-disjoint to
every other path in the graph.

The graph parameter treewidth will be of particular interest in the context of
this paper. Let G be a simple, undirected, finite graph with vertex set V = V (G)
and edge set E = E(G). A tree decomposition of G is a pair ({Bi : i ∈ I}, T )
where Bi ⊆ V , i ∈ I, and T is a tree with elements of I as nodes such that (a)
for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and (b) for each
vertex v ∈ V , T [{i ∈ I | v ∈ Bi}] is a (connected) tree with at least one node.
The width of a tree decomposition is maxi∈I |Bi| − 1. The treewidth [21,24] of G
is the minimum width taken over all tree decompositions of G and it is denoted
by tw(G). We call the elements of I nodes and Bi bags. It is well known that,
for every clique over Z ⊆ V (G) in G, it holds that every tree decomposition of
G contains an element Bi such that Z ⊆ Bi [21].

We now recall the definitions of blocks and block decompositions in a graph.
A cut-vertex in an undirected graph H is a vertex whose removal disconnects
the connected component the vertex belongs to.

A maximal connected subgraph without a cut-vertex is called a block. Every
block of a graph G is either a maximal 2-connected subgraph, or an isolated
vertex or a path on 2 vertices (see, e.g., [9]).
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By maximality, different blocks of a graph H overlap in at most one vertex,
which is then easily seen to be a cut-vertex of H. Therefore, every edge of H lies
in a unique block and H is the union of its blocks.

Let A denote the set of cut-vertices of H and B the set of its blocks. The
block-graph of H is the bipartite graph on A ∪ B where a ∈ A and b ∈ B are
adjacent if and only if a ∈ b. The set of vertices in B are called block-vertices.

Proposition 2 ([9]). The block-graph of a connected undirected graph is a tree.

Due to the above proposition, we will henceforth refer to block-graphs of
connected graphs as block-trees. Furthermore, this proposition implies that the
block-graph of a disconnected graph is precisely the disjoint union of the block-
trees of its connected components. As a result, we refer to block-graphs in general
as block-forests. Finally, it is straightforward to see that the leaves of the block-
tree are all block-vertices.

The block decomposition of a connected graph G is a pair (T, η : V (T ) →
2V (G)) where T is the block-tree, and (a) for every t ∈ V (T ) such that t is a
block-vertex, G[η(t)] is the block of G corresponding to this block-vertex and
(b) for every t ∈ V (T ) such that t is a cut-vertex, η(t) = {t}. For a fixed root of
the tree T and a vertex t ∈ V (T ), we denote by child(t) the set of children of t
with respect to this root vertex.

Proposition 3 ([7,18]). There is an algorithm that, given a graph G, runs in
time O(m + n) and outputs the block decomposition of G.

3 Backdoor Treewidth

The core idea of backdoor treewidth is to fundamentally alter how the quality of
a backdoor is measured. Traditionally, the aim has always been to seek for back-
doors of small size, since these can easily be used to obtain fixed-parameter algo-
rithms for SAT. Instead, one can define the treewidth of a backdoor—obtained
by measuring the treewidth of a graph obtained by “collapsing” the CNF formula
into the backdoor—and show that this is more beneficial than focusing merely
on its size. In line with existing literature in graph algorithms and theory, we
call the resulting “collapsed graph” the torso.

Definition 1. Let F be a CNF formula and X be a backdoor in F to a class
F . Then the X-torso graph GX

F of F is the graph whose vertex set is X and
where two variables x, y are adjacent if and only if there exists an X-component
A such that x, y ∈ var(A). The treewidth of X is then the treewidth of GX

F , and
the backdoor treewidth of F w.r.t. F is the minimum treewidth of a backdoor
into F .

Given the above definition, it is not difficult to see that backdoor treewidth
w.r.t. F is upper-bounded by the size of a minimum backdoor to F , but can be
arbitrarily smaller than the latter. As a simple example of this behavior, consider
the CNF formula {{x1, x2}, {x2, x3}, . . . , {xi−1, xi}}, which does not contain a
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constant-size backdoor to Horn but has backdoor treewidth 1 w.r.t. Horn (one
can use, e.g., a backdoor containing every variable with an even index). This
motivates the design of algorithms for SAT which are fixed-parameter tractable
when parameterized not by the size of a smallest backdoor into a particular base
class but by the value of the backdoor treewidth with respect to the base class.
Our first main contribution is the following theorem.

Theorem 1. SAT is fixed-parameter tractable when parameterized by the back-
door treewidth w.r.t. any of the following classes: Horn, Anti-Horn, 2CNF.

In order to prove Theorem1, we first show that a backdoor of small treewidth
can be used to design a fixed-parameter algorithm for solving SAT if such a
backdoor is provided in the input; we note that the proof of this claim proceeds
along the same lines as the proof for the analogous lemma in the case of constraint
satisfaction problems [14].

Lemma 1. Let F be a CNF formula and let X be a strong backdoor of F into
a tractable class F . There is an algorithm that, given F and X, runs in time
2tw(G

X
F )|F |O(1) and correctly decides whether F is satisfiable or not.

Proof. We prove the lemma by designing an algorithm which constructs an
equivalent CSP instance I (over domain {0, 1}) and then solves the instance
in the specified time bound. The variables of I are precisely the set X. For
each X-component Z of F with boundary B, we add a constraint cB into I
over var(Z), where cB contains one tuple for each assignment of B which can
be extended to a satisfying assignment of Z. For instance, if B = {a, b, c} and
the only assignment which can be extended to a satisfying assignment for Z is
a 
→ 0, b 
→ 1, c 
→ 1, then cB will have the scope (a, b, c) and the relation with a
single tuple (0, 1, 1).

We note that since B is a backdoor of Z to F of size at most k = GX
F (as

follows from the fact that B is a clique in GX
F and hence must fully lie in some

bag of T , and from our discussion following the introduction of backdoors), we
can loop through all assignments of B and test whether each such assignment
can be extended to satisfy Z or not in time at most 2k · |B|O(1). Consequently, we
can construct I from F and X in time 2k|F |O(1). As an immediate consequence
of this construction, we see that any assignment satisfying I can be extended
to a satisfying assignment for F , and vice-versa the restriction of any satisfying
assignment for F onto X is a satisfying assignment in I.

Next, in order to solve I, we recall the notion of the primal graph of a CSP
instance. The primal graph of I is the graph whose vertex set is X and where two
vertices a, b are adjacent iff there exists a constraint whose scope contains both
a and b. Observe that in the construction of I, two variables a, b will be adjacent
if and only if they occur in some X-component of F , i.e., a, b are adjacent in I iff
they are adjacent in GX

F . Hence the primal graph of I is isomorphic to GX
F , and

in particular the primal graph of I must have treewidth at most k. To conclude
the proof, we use the well-known fact that boolean CSP can be solved in time
2t · nO(1), where n is the number of variables and t the treewidth of the primal
graph [27]. ��
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With Lemma 1 in hand, it remains to show that a backdoor of small treewidth
can be found efficiently (if such a backdoor exists). The main tool we will use in
this respect is the following result, which solves the problem of finding backdoors
of small treewidth in the context of CSP for classes defined via finite languages;
we note that backdoor treewidth on backdoors for CSP is defined analogously
as for SAT.

Proposition 4 ([14]). Let Γ be a finite language. There exists a fixed-parameter
algorithm which takes as input a CSP instance I and a parameter k, and either
finds a backdoor of treewidth at most k into CSP(Γ ) or correctly determines that
no such backdoor exists.

In order to prove Proposition 4, Ganian et al. [14] introduced a subroutine
that is capable of replacing large parts of the input CSP by a strictly smaller CSP
in such a way that the existence of a backdoor of treewidth at most k into CSP(Γ )
is not affected. Their approach was inspired by the graph replacement tools
dating back to the results of Fellows and Langston [11] and further developed by
Arnborg, Bodlaender, and other authors [1,3–5,12]. Subsequently, they utilized
the recursive-understanding technique, introduced by Grohe et al. [17] to show
that as long as the instance has a size exceeding some function of k, then it is
possible to find a large enough part of the input instance which can then be
strictly reduced. Their theorem then follows by a repeated application of this
subroutine, followed by a brute-force step at the end when the instance has size
bounded by a function of k.

There are a few obstacles which prevent us from directly applying
Proposition 4 to our SAT instances and backdoors to our classes of interest
(Horn, Anti-Horn and 2CNF). First of all, while SAT instances admit a direct
encoding into CSP, in case of unbounded clause width this can lead to an expo-
nential blowup in the size of the instance. Second, the languages corresponding
to Horn, Anti-Horn and 2CNF in such a direct encoding are not finite. Hence,
instead of immediately using the direct encoding, we will proceed as follows:
given a CNF formula F , we will first construct an auxiliary CNF formula F ′ of
clause width at most 3 which is equivalent as far as the existence of backdoors
is concerned. We note that the CNF formula F ′ constructed in this way will
not be satisfiability-equivalent to F . But since F ′ has bounded clause width, we
can then use a direct encoding of F ′ into CSP and apply Proposition 4 while
circumventing the above obstacles.

Lemma 2. Let F ∈ {Horn,Anti-Horn, 2CNF}. There exists a polynomial-time
algorithm which takes as input a CNF formula F and outputs a 3-CNF formula
F ′ such that var(F ) = var(F ′) with the following property: for each X ⊆ var(F ),
X is a backdoor of F into F if and only if X is a backdoor of F ′ into F .

Proof. We first describe the construction and then complete the proof by arguing
that the desired property holds. We construct the CNF formula F ′ as follows:
for each clause c ∈ F of width at least 4, we loop over all sets of size 3 of literals
from c and add each such set into F ; afterwards, we remove c. Observe that
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|F ′| ≤ (2 · |var(F )|)3 and each clause in F ′ is either equal to or “originated
from” at least one clause in F .

Now consider a set X ⊆ var(F ) which is a backdoor of F into F (for an
arbitrary choice of F ∈ H). We claim that X must also be a backdoor of F ′

into F . Indeed, if F = Horn then for each assignment τ of X, each clause c in
F [τ ] must be a horn clause, i.e., cannot contain more than one positive literal.
But then each c′ in F ′[τ ] that originated from taking a subset of literals from
c must also be a horn clause. If F = 2CNF then for each assignment τ of X,
each clause c in F [τ ] must contain at most two literals; once again, each c′ in
F ′[τ ] that originated from taking a subset of literals from c must also contain
at most 2 literals. Finally, the same argument shows that the claim also holds if
F = Anti-Horn.

On the other hand, consider a set X ⊆ var(F ) which is a backdoor of F ′ into
some F ∈ H. Once again, we claim that X must also be a backdoor of F into
F . Indeed, let F = Horn and assume for a contradiction that there exists an
assignment τ of X such that F [τ ] contains a clause c with at least two positive
literals, say a and b. Then F ′[τ ] must either also contain c, or it must contain
a subset c′ of c such that a, b ∈ c′; in either case, we arrive at a contradiction
with X being a backdoor of F ′ into Horn. The argument for F = Anti-Horn is,
naturally, fully symmetric. Finally, let F = 2CNF and assume for a contradiction
that there exists an assignment τ of X such that F [τ ] contains a clause c or width
at least 3; let us pick three arbitrary literals in c, say a1, a2, a3, and observe that
these cannot be contained in X. Then, by construction, F ′[τ ] contains the clause
{a1, a2, a3}—contradicting the fact that X is a backdoor of F ′ into 2CNF. ��

Our final task in this section is to use Lemma 2 to obtain an algorithm
to detect a backdoor of small treewidth, which along with Lemma1 implies
Theorem 1.

Lemma 3. Let F ∈ {Horn,Anti-Horn, 2CNF}. There exists a fixed-parameter
algorithm which takes as input a CNF formula F and a parameter k, and either
finds a backdoor of treewidth at most k into F or correctly determines that no
such backdoor exists.

Proof. We begin by invoking Lemma 2 to obtain a 3-CNF formula F ′ which
preserves the existence of backdoors. Next, we construct the direct encoding of
F ′ into a CSP instance I; since F ′ has bounded clause width, it holds that |I| ∈
O(|F ′|). For each choice of class F , we construct the language Γ corresponding
to the class in the setting of CSPs with arity at most 3. Specifically, if F is
2CNF, then Γ will contain all relations of arity at most 2; if F is Horn, then for
each Horn clause of width at most 3, Γ will contain a relation with all tuples
that satisfy the clause; and analogously for Anti-Horn. Finally, since Γ is a finite
language, we invoke Proposition 4 to compute a backdoor of width at most k or
correctly determine that no such backdoor exists in I. Correctness follows from
Lemma 2, the equivalence of F and CSP(Γ ), and the natural correspondence of
backdoors of F ′ into F to backdoors of I into CSP(Γ ). ��
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4 Acyclic Backdoors to Scattered Classes for SAT

In this section, we build upon the notion of so-called scattered classes [15] and
backdoor treewidth to introduce a new polynomial time tractable class of CNF
formulas.

Definition 2. Let U = {F1, . . . ,Fr} be a set of classes of CNF formulas. For
a CNF formula F , we say that X ⊆ var(F ) is a backdoor of F into U if for
every X-component F ′ and every partial assignment τ to var(F ′) ∩ X, the CNF
formula F ′[τ ] belongs to a class in U .

We let btwU (F ) = min{tw(GX
F ) | X is a strong backdoor of F into U}, and

observe that if U = {F} then backdoors into U coincide with backdoors into F .
Next, we define the general property we will require for our base classes. We note
that these precisely coincide with the notion of permissive classes [23], and that
being permissively tractable (see Definition 3) is clearly a necessary condition for
being able to use any sort of backdoor into F .

Definition 3. Let F be a class of CNF formulas closed under partial assign-
ments. Then F is called permissively tractable if there is a polynomial time
algorithm that, given a CNF formula F , either correctly concludes that F /∈ F
or correctly decides whether F is satisfiable.

Similarly, the class F is called #-permissively tractable if there is a polyno-
mial time algorithm that, given a CNF formula F either correctly concludes that
F /∈ F or correctly returns the number of satisfying assignments of F .

We now state the two main results of this section.

Theorem 2. Let U = {F1, . . . ,Fr} be a set of permissively tractable classes.
There is a polynomial time algorithm that decides whether any given CNF for-
mula F with btwU (F ) = 1 is satisfiable.

Theorem 3. Let U = {F1, . . . ,Fr} be a set of #-permissively tractable classes.
There is a polynomial time algorithm that counts the number of satisfying assign-
ments for any given CNF formula F with btwU (F ) = 1.

We call S an acyclic (strong) backdoor of F into U if it is a backdoor of F
into U and the treewidth of the S-torso graph GS

F is 1. Let us now illustrate
a general high-level example of CNF formulas that can now be considered as
polynomial time tractable due to Theorem2. Let U contain the tractable class
Q-Horn [6] and the tractable class of hitting CNF formulas [19,20]. The class
Q-Horn is a proper superset of 2CNF, Horn and Anti-Horn, and hitting CNF
formulas are those CNF formulas where, for each pair of clauses, there exists a
variable x which occurs positively in one clause and negatively in the other. We
can solve any CNF formula F which is iteratively built from “building blocks”,
each containing at most 2 backdoor variables such that any assignment of these
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variables turns the block into a hitting CNF formula or Q-Horn formula. Next we
provide one example of such a building block (with backdoor variables x1, x2).

F ′ =
{{x1, x2, a, b, c}, {x1, x2, a, c}, {x1, x2, a, c}, {x1, x2, a, b, c},

{x1, x2, a, b, c}, {x1, x2, a, b, c}, {x1, x2, a, b, c
}

Observe that, for each assignment to x1, x2, we are either left with a Q-Horn
formula (in case of all assignments except for x1, x2 
→ 1) or a hitting CNF
formula (if x1, x2 
→ 1). Now we can use F ′ as well as any other building blocks
with this general property (including blocks of arbitrary size) to construct a
CNF formula F of arbitrary size by identifying individual backdoor variables
inside the blocks in a tree-like pattern. For instance, consider the CNF formula
F defined as follows. Let n be an arbitrary positive integer and define var(F ) =
{y1, . . . , yn}⋃ {ai, bi, ci|1 ≤ i ≤ n − 1}. We define

F =
n−1⋃

i=1

{{yi, yi+1, ai, bi, ci}, {yi, yi+1, ai, ci}, {yi, yi+1, ai, ci},

{yi, yi+1, ai, bi, ci}, {yi, yi+1, ai, bi, ci},

{yi, yi+1, ai, bi, ci}, {yi, yi+1, ai, bi, ci}
}
.

Observe that Y = {y1, . . . , yn} is a strong backdoor of F into {Q-Horn, Hitting
CNF formulas} and the Y -torso graph is a path.

We now proceed to proving Theorems 2 and 3. For technical reasons, we
will assume that every clause in the given CNF formula occurs exactly twice.
Observe that this does not affect the satisfiability of the CNF formula or the
fact that a set of variables is an acyclic strong backdoor into U . However, it does
impose certain useful structure on the incidence graph of F , as is formalized
in the following observation (recall that a cut-vertex is a vertex whose deletion
disconnects at least 2 of its neighbors). For the following, recall that Inc(F )
denotes the incidence graph of F .

Observation 1. Let F be a CNF formula where every clause has a duplicate.
Then, every cut-vertex of the graph Inc(F ) corresponds to a variable-vertex.

Proof. Let c and c′ be the clause-vertices in Inc(F ) corresponding to a clause and
its duplicate. Observe that if c were a cut-vertex, then deleting it must disconnect
at least two variables contained in c. But this leads to a contradiction due to the
presence of the clause-vertex c′. ��

The following lemma is a consequence of Proposition 3 and the fact that the
size of the incidence graph of F is linear in the size of F .

Lemma 4. There is an algorithm that takes as input a CNF formula F of size
n and outputs the block decomposition of Inc(F ) in time O(n).

Henceforth, we will drop the explicit mention of F having duplicated clauses.
We will also assume without loss of generality that Inc(F ) is connected. Let (T, η)
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be the block decomposition of Inc(F ). For every t ∈ T , we define the tree βt as
the subtree of T rooted at t and we denote by γt the subformula of F induced by
the clauses whose corresponding vertices are contained in the set

⋃
t′∈V (βt)

η(t′).
We provide a useful observation which allows us to move freely between

speaking about the CNF formula and its incidence graph. For a graph G and
X ⊆ V (G), we denote by TorsoG(X) the graph defined over the vertex set X
as follows: for every pair of vertices x1, x2 ∈ X, we add the edge (x1, x2) if (a)
(x1, x2) ∈ E(G) or (b) x1 and x2 both have a neighbor in the same connected
component of G − X.

Observation 2. Let F be a CNF formula, G = Inc(F ) and X ⊆ var(X). Then,
there is an edge between x1 and x2 in the X-torso graph GX

F if and only if there
is an edge between x1 and x2 in the graph TorsoG(X).

The following lemma formalizes the crucial structural observation on which
our algorithm is based.

Lemma 5. Let F be a CNF formula and let S ⊆ var(F ) be such that the S-torso
graph is a forest. Let G = Inc(F ). Then, the following statements hold.

1. No block of G contains more than two variables of S.
2. In the rooted block decomposition (T, η(T )) of G, no block vertex has three dis-

tinct children x0, x1, x2 such that var(γxi
) intersects S for every i ∈ {0, 1, 2}.

Proof. Due to Observation 2, it follows that the graph TorsoG(S) is acyclic. Now,
suppose that the first statement does not hold and let v0, v1, v2 be variables of
S contained in the same block of G. We prove that for every i ∈ {0, 1, 2}, there
is a pair of internally vertex-disjoint vi-vi+1 (mod3) and vi-vi+2 (mod3) paths in
TorsoG(S). This immediately implies that the graph TorsoG(S) contains a cycle;
indeed, the existence of vertex-disjoint v0-v1 and v0-v2 paths would mean that
any v1-v2 path disjoint from v0 guarantees a cycle, and the existence of vertex-
disjoint v1-v2 and v1-v0 paths means that such a v1-v2 path must exist. We only
present the argument for i = 0 because the other cases are analogous.

Observe that since v0, v1, v2 are in the same block of G, there are paths P
and Q in G where P is a v0-v1 path, Q is a v0-v2 path and P and Q are internally
vertex-disjoint. Let p1, . . . , ps be the vertices of S which appear (in this order)
when traversing P from v0. If no such vertex appears as an internal vertex of
P then we set p1 = ps = v1. Similarly, let q1, . . . , qr be the vertices of S which
appear when traversing Q from v0 and if no such vertex appears as an internal
vertex of Q, then we set q1 = qr = v2.

It follows from the definition of TorsoG(S) that if s = 1 (r = 1), then
there are edges (v0, v1) and (v0, v2) in this graph. Otherwise, there are edges
(v0, p1), (p1, p2), . . . , (ps, v1) and edges (v0, q1), (q1, q2), . . . , (qr, v2). In either
case, we have obtained a pair of internally vertex-disjoint paths in TorsoG(S);
one from v0 to v1 and the other from v0 to v2. This completes the argument for
the first statement.

The proof for the second statement proceeds along similar lines. Suppose to
the contrary that there are three cut-vertices x0, x1, x2 which are children of a
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block-vertex b such that var(γxi
) intersects S for every i ∈ {0, 1, 2} and let vi be

a variable of S chosen arbitrarily from γxi
(see Fig. 1). Observe that there are

paths P0, P1, P2 in G such that for every i ∈ {0, 1, 2}, the path Pi is a vi-xi path
which is vertex-disjoint from any vertex (variable or clause) of G in γxi+1 (mod3)

or γxi+2 (mod3) . Without loss of generality, we assume that vi is the only vertex
of S on the path Pi.

Now, following the same argument as that for the first statement, the
paths P0, P1, P2 and the fact that x0, x1, x2 are contained in the same block
of G together imply that TorsoG(S) has a pair of internally vertex-disjoint vi-
vi+1 (mod3) and vi-vi+2 (mod3) paths for every i ∈ {0, 1, 2}. This in turn implies
that v0, v1, v2 are in the same block of TorsoG(S). Hence, we conclude that
TorsoG(S) is not acyclic, a contradiction. ��

Fig. 1. An illustration of the configuration in the second statement of Lemma 5. The
vertices denoted as concentric circles correspond to S. The dotted edges are edges of
TorsoG(S).

We are now ready to present the proofs of Theorems 2 and 3. Since the
proofs of both theorems are similar, we present them together. In what fol-
lows, we let U = {F1, . . . ,Fr} be a set of permissively tractable classes and
let U� = {F�

1 , . . . ,F�
q } be a set of #-permissively tractable classes. For each

i ∈ {1, . . . , r}, we let Ai denote a polynomial time algorithm that certifies that
Fi is permissively tractable and for each i ∈ {1, . . . , q}, we let A�

i denote a poly-
nomial time algorithm that certifies that F�

i is permissively tractable. Finally,
let F be a CNF formula such that btwU (F ) = btwU�(F ) = 1.

Proof (of Theorems 2 and 3). Let S be a hypothetical strong backdoor of F
into U (U�) such that the S-torso graph is acyclic. We first handle the case
when |S| ≤ 2. In this case, we simply go over all possible pairs of variables
and by assuming that they form a strong backdoor of F into U (respectively
U�), go over all instantiations of this pair of variables and independently solve
(count the satisfying assignments of) each distinct connected component of the
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resulting CNF formula. For this, we make use of the polynomial time algorithms
A1, . . . ,Ar and A�

1, . . . ,A�
q respectively.

This step takes polynomial time and if |S| ≤ 2, then for some guess of a
pair of variables, we will be able to correctly determine whether F is satisfiable
(correctly compute the number of satisfying assignments of F ). In the case when
for every pair x, y ∈ var(F ) there is an assignment τ : {x, y} → {0, 1} and
a connected component of F [τ ] which is found to be not in any class of U
(respectively U�), it must be the case that |S| > 2.

Since S must have at least 3 variables, it follows from Lemma 5 (1) that S
cannot be contained in a single block of Inc(F ), which implies that Inc(F ) has
at least 2 distinct blocks. We now invoke Lemma 4 to compute (T, η), the block
decomposition of Inc(F ) (recall that by our assumption, Inc(F ) is connected) and
pick an arbitrary cut-vertex as the root for T . We will now execute a bottom up
parse of T and use dynamic programming to test whether F is satisfiable and
count the number of satisfying assignments of F . The high-level idea at the core
of this dynamic programming procedure is that, by Lemma5, at each block and
cut-vertex we only need to consider constantly many vertices from the backdoor;
by “guessing” these (i.e., brute-forcing over all possible choices of these), we can
dynamically either solve or compute the number of satisfying assignments for
the subformula “below them” in the rooted block decomposition.

For every t, b ∈ V (T ) such that t is a cut-vertex, b is a child of t and i ∈ {0, 1},
we define the function δi(t, b) → {0, 1} as follows: δ0(t, b) = 1 if γb[t 
→ 0]
is satisfiable and δ0(t, b) = 0 otherwise. Similarly, δ1(t, b) = 1 if γb[t 
→ 1] is
satisfiable and δ1(t, b) = 0 otherwise. Finally, for every t ∈ V (T ) such that t
is a cut-vertex, we define the function αi(t) → {0, 1} as follows. α0(t) = 1 if
γt[t = 0] is satisfiable and α0(t) = 0 otherwise. Similarly, α1(t) = 1 if γt[t = 1] is
satisfiable and α1(t) = 0 otherwise. Clearly, the formula is satisfiable if and only
if α1(t̂) = 1 or α0(t̂) = 1, where t̂ is the root of T .

Similarly, for every t, b ∈ V (T ) such that t is a cut-vertex, b is a child of
t and i ∈ {0, 1}, we define δ�

i (t, b) to be the number of satisfying assignments
of the CNF formula γb[t = i]. For every t ∈ V (T ) such that t is a cut-vertex
and i ∈ {0, 1}, we define α�

i (t) to be the number of satisfying assignments of
γt[t = i]. Clearly, the number of satisfying assignments of F is α�

0(t̂) + α�
1(t̂),

where t̂ denotes the root of T .
Due to Observation 1, every cut-vertex corresponds to a variable and hence

the functions δ and δ� are well-defined. We now proceed to describe how we
compute the functions δ, δ�, α, and α� at each vertex of T assuming that the
corresponding functions have been correctly computed at each child of the vertex.

We begin with the leaf vertices of T . Let b be a leaf in T . We know that b
corresponds to a block of Inc(F ) and it follows from Lemma 5 (1) that S contains
at most 2 variables of γb. Let Zb = S ∩ var(η(b)). We guess (i.e., branch over
all possible choices for) the set Zb and for every τ : Zb ∪ {t} → {0, 1}, we
run the algorithms A1, . . . ,Ar (respectively A�

1, . . . ,A�
q) on the CNF formula

γb[τ ] to decide whether γb[τ ] is satisfiable or unsatisfiable (respectively count
the satisfying assignments of γb[τ ]) or it is not in F for any F ∈ U . By going
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over all possible partial assignments τ : Zb ∪ {t} → {0, 1} in this way, we can
compute δi(t, b) and δ�

i (t, b) for i ∈ {0, 1} . Hence, we may assume that we have
computed the functions δi(t, b) and δ�

i (t, b) for i ∈ {0, 1} for every leaf b. We now
proceed to describe the computation of α, α�, δ and δ� for the internal nodes of
the tree.

Let t be a cut-vertex in T such that δi(t, b) (δ�
i (t, b)) has been computed for

every i ∈ {0, 1} and b ∈ child(t). Then, αi(t) is simply defined as
∧

b∈child(t) δi(t, b)
for each i ∈ {0, 1}. On the other hand, for each i ∈ {0, 1} α�

i (t) is defined as∏
b∈child(t) δi(t, b).
Finally, let b be a block-vertex in T such that for every i ∈ {0, 1}, the value

αi(t) (α�
i (t)) has been computed for every child t of b. Let t∗ be the parent of b

in T . It follows from Lemma 5 (2) that for at most 2 children t1, t2 ∈ child(b), the
CNF formulas γt1 and γt2 contain a variable of S. Furthermore, it follows from
Lemma 5 (1) that at most 2 variables of S are contained in η(b). This implies
that the CNF formula γb\(γt1 ∪γt2) has a strong backdoor of size at most 2 into
U (respectively U�). Hence, we can simply guess the set Z = {t1, t2}∪ (S ∩ η(b))
which has size at most 4. We can then use the polynomial time algorithms
A1, . . . ,Ar (A�

1, . . . ,A�
q) to solve (count the satisfying assignments of) the CNF

formula (γb\(γt1 ∪γt2))[τ ] for every partial assignment τ : Z ∪{t∗} → {0, 1} and
along with the pre-computed functions αi(tj), α�

i (tj) for i ∈ {0, 1}, j ∈ {1, 2},
compute δp(t∗, b) and δ�

p(t∗, b) for each p ∈ {0, 1}. While computing δp(t∗, b) is
straightforward, note that δ�

p(t∗, b) is defined as
∑

τ :τ(t∗)=p(ατ(t1)(t1) ·ατ(t2)(t2) ·

τ ), where 
τ is the number of satisfying assignments of (γb\(γt1 ∪ γt2))[τ ].

The only remaining technical subtlety in the case of counting satisfying
assignments is the following. If b has exactly one child, then t2 is left unde-
fined and we call the unique child t1 and work only with it in the definition of
δp(b, t∗). In other words, we remove the term ατ(t2)(t2) from the definition of
δ�
p(t∗, b). On the other hand, if b has at least two children but there is exactly

one t ∈ child(b) such that γt contains a variable of S, then we set t1 = t and t2
to be an arbitrary child of b distinct from t. Finally, if b has at least two children
and there is no t ∈ child(b) such that γt contains a variable of S, then we define
t1 and t2 to be an arbitrary pair of children of b. Since the set of possibilities
has constant size, we can simply iterate over all of them.

Since we go over a constant number (at most 25) of partial assignments of
Z ∪{t∗}, we will execute the algorithms A1, . . . ,Ar (A�

1, . . . ,A�
q) only a constant

number of times each. Therefore, this step also takes polynomial time, and the
algorithm as a whole runs in polynomial time. This completes the proof of both
theorems. ��

5 Conclusions

We have introduced the notion of backdoor treewidth in the context of SAT and
developed algorithms for deciding the satisfiability of formulas of small backdoor
treewidth: (1) a fixed-parameter tractability result for backdoor treewidth with
respect to Horn, Anti-Horn, and 2CNF, and (2) a polynomial-time result for
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backdoor treewidth 1 with respect to a wide range or archipelagos of tractability.
Both results significantly extend the borders of tractability for SAT. Our work
also points to several avenues for interesting future research. In particular, our
first result raises the question of whether there are further tractable classes
w.r.t. which backdoor treewidth allows fixed-parameter tractability of SAT. Our
second result provides a promising starting point towards the goal of obtaining
a polynomial time algorithm for SAT (and #-SAT) for every fixed value of the
backdoor treewidth with respect to a set of permissively tractable classes.
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Abstract. We study the parameterized complexity of the propositional
model counting problem #SAT for CNF formulas. As the parameter we
consider the treewidth of the following two graphs associated with CNF
formulas: the consensus graph and the conflict graph. Both graphs have
as vertices the clauses of the formula; in the consensus graph two clauses
are adjacent if they do not contain a complementary pair of literals,
while in the conflict graph two clauses are adjacent if they do contain a
complementary pair of literals. We show that #SAT is fixed-parameter
tractable for the treewidth of the consensus graph but W[1]-hard for the
treewidth of the conflict graph. We also compare the new parameters
with known parameters under which #SAT is fixed-parameter tractable.

1 Introduction

Propositional model counting (#SAT) is the problem of determining the num-
ber of models (satisfying truth assignments) of a given propositional formula in
conjunctive normal form (CNF). This problem arises in several areas of arti-
ficial intelligence, in particular in the context of probabilistic reasoning [1,23].
The problem is well-known to be #P-complete [29], and remains #P-hard even
for monotone 2CNF formulas and Horn 2CNF formulas. Thus, in contrast to
the decision problem SAT, restricting the syntax of instances does not lead to
tractability.

An alternative to restricting the syntax is to impose structural restrictions
on the input formulas. Structural restrictions can be applied in terms of certain
parameters (invariants) of graphical models, i.e., of certain graphs associated with
CNF formulas. Among the most frequently used graphical models are primal
graphs (sometimes called variable interaction graphs or VIGs), dual graphs, and
incidence graphs (see Fig. 1 for definitions and examples).

The most widely studied and prominent graph parameter is treewidth, which
was introduced by Robertson and Seymour in their Graph Minors Project. Small
treewidth indicates that a graph resembles a tree in a certain sense (e.g., trees
have treewidth 1, cyles have treewidth 2, cliques on k+1 vertices have treewidth
k). Many otherwise NP-hard graph problems are solvable in polynomial time
for graphs of bounded treewidth. It is generally believed that many practically
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relevant problems actually do have low treewidth [2]. Treewidth is based on cer-
tain decompositions of graphs, called tree decompositions, where sets of vertices
(“bags”) of a graph are arranged at the nodes of a tree such that certain condi-
tions are satisfied (see Sect. 2.3). If a graph has treewidth k then it admits a tree
decomposition of width k, i.e., a tree decomposition where all bags have size at
most k + 1.

Depending on whether we consider the treewidth of the primal, dual, or inci-
dence graph of a given CNF formula, we speak of the primal, dual, or incidence
treewidth of the formula, respectively. It is known that the number of models
of a CNF formula of size L with primal, dual, or incidence treewidth k can be
computed in time f(k)Lc for a computable function f and a constant c which
is independent of k; in other words, #SAT is fixed-parameter tractable parame-
terized by primal, dual, or incidence treewidth (see, e.g., [26]).

1.1 Contribution

In this paper we consider the treewidth of two further graphical models: the
consensus graph and the conflict graph (see, e.g., [10,18,27]), giving rise to the
parameters consensus treewidth and conflict treewidth, respectively. Both graphs
have as their vertices the clauses of the formula. In the consensus graph two
clauses are adjacent if they do not contain a complementary pair of literals; in the
conflict graph, two clauses are adjacent if they do contain a complementary pair
of literals (see Fig. 1 for examples). Here, we study the parameterized complexity
of #SAT with respect to the new parameters and provide a comparison to known
parameters under which #SAT is fixed-parameter tractable.

Our main result regarding consensus treewidth is a novel fixed-parameter
algorithm for model counting (Theorem 1). The algorithm is based on dynamic
programming along a tree decomposition of the consensus graph. This result is
particularly interesting as none of the known parameters under which #SAT is
fixed-parameter tractable dominates consensus treewidth, in the sense that there
are instances of small consensus treewidth where all the other parameters can
be arbitrarily large (Proposition 1). Hence consensus treewidth pushes the state-
of-the-art for fixed-parameter tractability of #SAT further, and moreover does
so via a parameter that forms a natural counterpart to the already established
primal, dual and incidence treewidth parameters. We also note that the presented
fixed-parameter algorithm generalizes the polynomial-time algorithm on hitting
formulas (see Fact 1 below).

This positive result is complemented by our results on conflict treewidth.
First we observe that when considering the conflict treewidth one needs to
restrict the scope to formulas without pure literals: recall that #SAT remains
#P-complete for monotone 2-CNF formulas, and the conflict graph of such for-
mulas is edge-less and therefore of treewidth 0. We show that conflict treewidth
in its general form does not provide a parameter under which #SAT is fixed-
parameter tractable, even for formulas without pure literals (subject to the well-
established complexity theoretic assumption W[1] �= FPT [8]). In fact, we show
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that already the decision problem SAT for formulas without pure literals is W[1]-
hard when parameterized by conflict treewidth, or even by a weaker parameter,
the size of a smallest vertex cover of the conflict graph (Proposition 2). However,
if we bound in addition also the width of clauses (i.e., the number of literals in
clauses), then #SAT becomes fixed-parameter tractable for formulas without
pure literals. This result, however, does not add anything new to the complexity
landscape, as we show that the incidence treewidth of a formula without pure
literals is upper bounded by a function of conflict treewidth and clause width
(Proposition 3).

2 Preliminaries

The set of natural numbers (that is, positive integers) will be denoted by N. For
i ∈ N we write [i] to denote the set {1, . . . , i}.

2.1 SAT and #SAT

We consider propositional formulas in conjunctive normal form (CNF), repre-
sented as sets of clauses. That is, a literal is a (propositional) variable x or a
negated variable x; a clause is a finite set of literals not containing a comple-
mentary pair x and x; a formula is a finite set of clauses.

For a literal l = x we write l = x; for a clause C we set C = { l | l ∈ C }.
For a clause C, var(C) denotes the set of variables x with x ∈ C or x ∈ C,
and the width of C is |var(C)|. Similarly, for a formula F we write var(F ) =⋃

C∈F var(C). The length of a formula F is the total number of literals it contains,
i.e.,

∑
C∈F |var(C)|. We say that two clauses C,D overlap if C ∩ D �= ∅; we say

that C and D clash if C and D overlap. Note that two clauses can clash and
overlap at the same time. Two clauses C,D are adjacent if var(C)∩ var(D) �= ∅.
A variable is pure if it only occurs as either a positive literal or as a negative
literal; the literals of a pure variable are then called pure literals.

The dual graph of a formula F is the graph whose vertices are clauses of F
and whose edges are defined by the adjacency relation of clauses. We will also
make references to the primal graph and the incidence graph of a formula F .
The former is the graph whose vertices are the variables of F and where two
variables a, b are adjacent iff there exists a clause C such that a, b ∈ var(C),
while the latter is the graph whose vertices are the variables and clauses of F
and where two vertices a, b are adjacent iff a is a clause and b ∈ var(a) (see Fig. 1
for an illustration).

A truth assignment (or assignment, for short) is a mapping τ : X → {0, 1}
defined on some set X of variables. We extend τ to literals by setting τ(x) =
1 − τ(x) for x ∈ X. F [τ ] denotes the formula obtained from F by removing all
clauses that contain a literal x with τ(x) = 1 and by removing from the remain-
ing clauses all literals y with τ(y) = 0; F [τ ] is the restriction of F to τ . Note
that var(F [τ ]) ∩ X = ∅ holds for every assignment τ : X → {0, 1} and every
formula F . An assignment τ : X → {0, 1} satisfies a formula F if F [τ ] = ∅.
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Fig. 1. The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d)
and consensus graph (e) of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y},
C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z)}. (a) The primal graph has as vertices the
variables of the given formula, two variables are joined by an edge if they occur together
in a clause. (b) The dual graph has as vertices the clauses, two clauses are joined by an
edge if they share a variable. (c) The incidence graph is a bipartite graph where one
vertex class consists of the clauses and the other consists of the variables; a clause and
a variable are joined by an edge if the variable occurs in the clause. (d) The conflict
graph has as vertices the clauses of the formula, two clauses are joined by an edge
if they do contain a complementary pair of literals. (e) The consensus graph has as
vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

A truth assignment τ : var(F ) → {0, 1} that satisfies F is a model of F .
We denote by #(F ) the number of models of F . A formula F is satisfiable if
#(F ) > 0. In the SAT problem, we are given a formula F and the task is to
determine whether F is satisfiable. In the #SAT problem, we are also given a
formula F and the task is to compute #(F ).

A hitting formula is a CNF formula with the property that any two of its
clauses clash (see [14,15,20]). The following result makes SAT and #SAT easy
for hitting formulas.

Fact 1 ([13]). A hitting formula F with n variables has exactly 2n −∑
C∈F 2n−|C| models.
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2.2 Parameterized Complexity

Next we give a brief and rather informal review of the most important concepts
of parameterized complexity. For an in-depth treatment of the subject we refer
the reader to other sources [8,19].

The instances of a parameterized problem can be considered as pairs (I, k)
where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable (FPT) if instances (I, k) of size n (with respect to some
reasonable encoding) can be solved in time f(k)nc where f is a computable
function and c is a constant independent of k. The function f is called the
parameter dependence.

To obtain our lower bounds, we will need the notion of a parameterized
reduction. Let L1, L2 be parameterized problems. A parameterized reduction (or
fpt-reduction) from L1 to L2 is a mapping P from instances of L1 to instances
of L2 such that

1. (x, k) ∈ L1 iff P (x, k) ∈ L2,
2. the mapping can be computed by a fixed-parameter algorithm w.r.t. parame-

ter k, and
3. there is a computable function g such that k′ ≤ g(k), where (x′, k′) = P (x, k).

The class W[1] captures parameterized intractability and contains all para-
meterized decision problems that are fpt-reducible to Multicolored Clique
(defined below) [8]. Showing W[1]-hardness for a problem rules out the existence
of a fixed-parameter algorithm unless the Exponential Time Hypothesis fails.

Multicolored Clique
Instance: A k-partite graph G = (V,E) with a partition V1, . . . , Vk of V .
Parameter: The integer k.
Question: Are there vertices v1, . . . , vk such that vi ∈ Vi and {vi, vj} ∈ E
for all i and j with 1 ≤ i < j ≤ k (i.e. the subgraph of G induced by
{v1, . . . , vk} is a clique of size k)?

2.3 Treewidth

Let G be a simple, undirected, finite graph with vertex set V = V (G) and edge
set E = E(G). A tree decomposition of G is a pair (T, {Bi : i ∈ I}) where
Bi ⊆ V , T is a tree, and I = V (T ) such that:

1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Bi, and
2. for each vertex v ∈ V , T [{ i ∈ I | v ∈ Bi }] is a (connected) tree with at least

one node.

The width of a tree decomposition is maxi∈I |Bi| − 1. The treewidth [16,22] of G
is the minimum width taken over all tree decompositions of G and it is denoted
by tw(G). We call the elements of I nodes and Bi bags. As an example, consider
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the graphs depicted in Fig. 1: graphs (b), (d), (e) have treewidth 2, while graphs
(a) and (c) have treewidth 3.

While it is possible to compute the treewidth exactly using a fixed-parameter
algorithm [3], the asymptotically best running time is achieved by using the
recent state-of-the-art 5-approximation algorithm of Bodlaender et al. [4].

Fact 2 ([4]). There exists an algorithm which, given an n-vertex graph G and
an integer k, in time 2O(k) · n either outputs a tree decomposition of G of width
at most 5k + 4 and O(n) nodes, or correctly determines that tw(G) > k.

For other standard graph-theoretic notions not defined here, we refer to [7]. It
is well known that, for every clique over Z ⊆ V (G) in G, it holds that every tree
decomposition of G contains an element Bi such that Z ⊆ Bi [16]. Furthermore,
if i separates a node j from another node l in T , then Bi separates Bj \ Bi from
Bl \ Bi in G [16]; this inseparability property will be useful in some of our later
proofs..

A tree decomposition (T,B) of a graph G is nice if the following conditions
hold:

1. T is rooted at a node r.
2. Every node of T has at most two children.
3. If a node t of T has two children t1 and t2, then Bt = Bt1 = Bt2 ; in that case

we call t a join node.
4. If a node t of T has exactly one child t′, then exactly one of the following

holds:
(a) |Bt| = |Bt′ | + 1 and Bt′ ⊂ Bt; in that case we call t an introduce node.
(b) |Bt| = |Bt′ | − 1 and Bt ⊂ Bt′ ; in that case we call t a forget node.

5. If a node t of T is a leaf, then |Bt| = 1; we call these leaf nodes.

The main advantage of nice tree decompositions is that they allow the design
of much more transparent dynamic programming algorithms, since one only
needs to deal with four very specific types of nodes. It is well known (and easy
to see) that for every fixed k, given a tree decomposition of a graph G = (V,E)
of width at most k and with O(|V |) nodes, one can construct in linear time a
nice tree decomposition of G with O(|V |) nodes and width at most k [5]. We say
that a vertex v was forgotten below a node t ∈ V (T ) if the subtree rooted at t
contains a (forget) node s with a child s′ such that Bs′ \ Bs = {v}.

Finally, we summarize known algorithms for SAT and #SAT when parame-
terized by the treewidth of the three natural graph representations discussed
in previous Subsect. 2.1; we note that the original results assumed that a tree
decomposition is supplied as part of the input, and we can obtain one using
Fact 2 (even while retaining the running time bounds).

Fact 3 ([26]). #SAT is FPT when parameterized by the treewidth of any of the
following graphical models of the formula: the incidence graph, the primal graph,
or the dual graph.
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3 Consensus Treewidth

Recall that the consensus graph of a CNF formula F is the graph G whose
vertices are the clauses of F and which contains an edge ab iff clauses a and b
do not clash. Observe that the consensus graph of a hitting formula is edgeless.
The consensus treewidth of F , denoted contw(F ), is then the treewidth of its
consensus graph.

Before proceeding to the algorithm, we make a short digression comparing
the new notion of consensus treewidth to established parameters for SAT. We
say that parameter X dominates parameter Y if there exists a computable func-
tion f such that for each formula F we have X(F ) ≤ f(Y (F )) [25]. In particular,
if X dominates Y and SAT is FPT parameterized by X, then SAT is FPT para-
meterized by Y [25]. We say that two parameters are incomparable if neither
dominates the other. We note that in our comparison, we only consider parame-
ters which are known to give rise to fixed-parameter algorithms for SAT (i.e.,
not incidence cliue-width [21]) and can be used without requiring additional
information from an oracle (i.e., not PS-width [24]).

In the following, we show that consensus treewidth is incomparable with
the signed clique-width [6,28] (the clique-width of the signed incidence graph;
we note that a decomposition for signed clique-width can be approximated by
using signed rank-width [11]), with clustering-width [20] (the smallest number of
variables whose deletion results in a variable-disjoint union of hitting formulas)
and with h-modularity [12] (a structural parameter inspired by the community
structure of SAT instances). We remark that the former claim implies that con-
sensus treewidth is not dominated by the treewidth of neither the incidence
nor the primal graph, since these parameters are dominated by signed clique-
width [28]. Furthermore, consensus treewidth is also not dominated by signed
rank-width [11], which both dominates and is dominated by signed clique-width.

Proposition 1. The following claims hold.

1. Signed clique-width and consensus treewidth are incomparable.
2. Clustering-width and consensus treewidth are incomparable.
3. H-modularity and consensus treewidth are incomparable.

Proof. We prove these claims by showing that there exist classes of formulas
such that each formula in the class has one parameter bounded while the other
parameter can grow arbitrarily. For a formula F , let scw(F ) and clw(F ) denote
its signed clique-width and clustering width, respectively.

Let us choose an arbitrary positive integer i ∈ N. For the first claim, it is known
that already the class of all hitting formulas has unbounded scw [20]. In particular,
this means that there exists a hitting formula F1 such that scw(F1) ≥ i. Observe
that the consensus graph of F1 is edgeless, and hence contw(F1) = 0.

Conversely, consider the following formula F2 = {c1, . . . , ci}. The formula
contains variables x1, . . . xi, and each variable x� occurs only in clause c�. Since
the incidence graph of F2 is just a matching, its signed clique-width is bounded
by a constant (in particular, it will be 2). However, the consensus graph of F2 is
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a complete graph on i vertices, and it is known that such graphs have treewidth
precisely i − 1, hence contw(F2) = i − 1.

We proceed similarly for the second and third claims; in fact, we can use a
single construction to deal with both h-modularity and clustering width. Let us
once again fix some i ∈ N, let F ′

1 be the union of two variable-disjoint hitting
formulas each containing i clauses. Both h-modularity and clustering width have
a value of 0 for variable-disjoint hitting formulas. However, the consensus graph
of F ′

1 is a complete bipartite graph with each side containing precisely i vertices,
and it is well-known that such graphs have treewidth i; hence, contw(F ′

1) = i.
Conversely, consider the formula F ′

2 over variable sets Y = {y1, . . . , yi} and
X = {x1, . . . , xi}. For each subset α of X, we will add two clauses to F ′

2:

– cα contains α as positive literals and X \ α as negative literals;
– cy

α contains α as positive literals, X \ α as negative literals, and all variables
in Y as positive literals.

We observe that for each α, clause cy
α clashes with all other clauses except for cα

(and vice-versa for cα). This implies that the consensus graph of F ′
2 is a matching,

and hence contw(F ′
2) = 1. On the other hand, note that for each distinct pair

of subsets α, β ⊆ X, the clauses cα, cβ , cy
α, cy

β form a formula which is not a
variable-disjoint union of hitting formulas. However, deleting a subset of X from
F ′
2 will only resolve this obstruction for choices of α and β which differed in X;

for instance, even if we deleted all of X except for a single variable (w.l.o.g. say
x1), the resulting formula would still not be a disjoint union of hitting formulas
(it would contain clauses {x1} ∪ Y, {x1}, {x1} ∪ Y, {x1}). Similarly, deleting any
proper subset Y ′ ⊂ Y will also clearly not result in a disjoint union of hitting
formulas (it would, in fact, not change the consensus graph at all), and the same
goes for any combination of deleting Y ′ along with a proper subset of X. Hence
we conclude that clw(F ′

2) ≥ i.
Finally, we argue that F ′

2 has h-modularity at least i. We note that we will
not need the definition of h-modularity to do so, as it will sufficent to follow the
proof of Lemma 1 in the paper [12] which provides a suitable lower-bound for
h-modularity. In particular, closely following that proof, let us fix q = i and a
clause c ∈ F ′

2. Then:

1. the set Z0 defined in the proof will be equal to F ′
2;

2. the set Z1 defined in the proof will be empty;
3. the set Z defined in the proof will be equal to F ′

2;
4. the set W defined in the proof will be equal to F ′

2;
5. since W is not a hitting formula, by point 3 of the proof it holds that F ′

2 has
h-modularity greater than q = i.

The above general constructions show that for any choice of i, one can produce
formulas with a gap of at least i between consensus treewidth and any of the
three other measures under consideration. �


Next, we proceed to our main algorithmic result. Our algorithm will in cer-
tain cases invoke the previously known algorithm [26] for #SAT parameterized
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by dual treewidth as a subroutine, and so we provide the full statement of its
runtime below. We note that the runtime of that algorithm depends on the time
required to multiply two n-bit integers, denoted δ.

Fact 4 ([26]). Given a nice tree decomposition (T, B) of the dual graph of a
formula F , #SAT can be solved in time 2k(k� + δ)N , where N is the number of
nodes of T , k is its width, and � is the maximum width of a clause in F .

In the literature there exist several algorithms for multiplying two n-bit
integers; we refer the interested reader to Knuth’s in-depth overview [17].
One of the most prominent of these algorithms is due to Schönhage and
Strassen [17] and runs in time O(n log n log log n). Thus, we can assume that
δ = O(n log n log log n), where n is the number of variables of the given CNF
formula. Recently, Fürer [9] presented an even faster algorithm. If arithmetic
operations are assumed to have constant runtime, that is, δ = O(1), then we
obtain an upper bound on the runtime of 2O(k) · L2.

Theorem 1. #SAT can be solved in time 2O(k) ·L(L+δ), where L is the length
of the formula and k is the consensus treewidth.

Proof. Let F be an input formula over n variables, and let G be its consensus
graph. Let (T,B) be a nice tree decomposition of G of width at most 5k + 4;
recall that such (T,B) can be computed in time 2O(k) by Fact 2. For brevity,
we will use the following terminology: for a node t with bag Bt and a clause
set X ⊆ Bt, we say that an assignment is Xt-validating if it satisfies all clauses
in X but does not satisfy any clause in Bt \ X. For instance, if X = ∅ then a
Xt-validating assignment cannot satisfy any clause in Bt, while if X = Bt then
a Xt-validating assignment must satisfy every clause in Bt.

Consider the following leaf-to-root dynamic programming algorithm A on T .
At each bag Bt associated with a node t of T , A will compute two mappings
φ+

t , φ∼
t , each of which maps each X ⊆ Bt to an integer between 0 and 2d.

These mappings will be used to store the number of Xt-validating assignments
of var(F ) under an additional restriction:

– in φ+
t , we count only assignments which satisfy all clauses that were already

forgotten below t, and
– in φ∼

t , we count only assignments which invalidate at least one clause that
was already forgotten below t.

Since we assume that the root r of a nice tree decomposition is an empty
bag, the total number of satisfying assignments of F is equal to φ+

r (∅). The
purpose of also keeping records for φ∼

t will become clear during the algorithm;
in particular, they will be needed to correctly determine the records for φ+

t at
certain stages.

At each node t, let σt be the set of clauses which were forgotten below t; for
example, σr = F and σ� = ∅ for each leaf � of T . We now proceed to explain
how A computes the mappings φ+

t , φ∼
t at each node t of T , starting from the

leaves, along with arguing correctness of the performed operations.
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1. Leaf nodes. Since σt is empty, φ∼
t will map each subset of Bt to 0. As for φ+

t ,
we observe that there are precisely 2n−|c| many assignments which invalidate a
clause c ∈ Bt. Hence we correctly set φ+

t (c) = 2n−|c| and φ+
t (∅) = 2n −2n−|c|.

2. Forget nodes. Let t be a forget node with child p and let Bp \ Bt = {c}.
We begin by observing that the number of Xt-validating assignments which
satisfy all clauses in σt is precisely equal to the number of (X∪{c})p-validating
assignments which satisfy all clauses in σp. In other words, for each X ⊆ Bt

we correctly set φ+
t (X) = φ+

p (X ∪ {c}).
On the other hand, Xt-validating assignments which do not satisfy at least
one clause in σt are partitioned into the following mutually exclusive cases:
(a) (X∪{c})p-validating assignments which do not satisfy at least one clause

in σp;
(b) Xp-validating assignments which do not satisfy at least one clause in σp;
(c) Xp-validating assignments which satisfy all clauses in σp.

Hence, we correctly set φ∼
t (X) = φ∼

p (X ∪ {c}) + φ∼
p (X) + φ+

p (X).
3. Join nodes. Let t be a join node with children p, q. Recall that σp ∩ σq = ∅

and σt = σp ∪ σq due to the properties of tree decompositions. Furthermore,
an assignment satisfies all clauses in σt if and only if it satisfies all clauses
in both σp and σq. In other words, Xt-validating assignments which do not
satisfy at least one clause in σt are partitioned into the following mutually
exclusive cases (recall that Bp = Bq by the definition of join nodes):
(a) Xp-validating assignments which do not satisfy at least one clause in σp

but satisfy all clauses in σq;
(b) Xp-validating assignments which do not satisfy at least one clause in σq

but satisfy all clauses in σp;
(c) Xp-validating assignments which invalidate at least one clause in σp and

also at least one clause in σq.
Recall that Bt is a separator between σp and σq, which means that every
clause in σp clashes with ever clause in σq. That in turn implies that the
number of assignments covered by point 3c must be equal to 0: every assign-
ment that does not satisfy at least one clause in one of σp, σq must satisfy
all clauses in the other set. Since we now know that every assignment which
does not satisfy a clause in σp must satisfy all clauses in σq and vice-versa,
we can correctly set φ∼

t (X) = φ∼
q (X) + φ∼

p (X). Finally, to compute φ+
t (X)

we can subtract φ∼
t (X) from the total number of Xt-validating assignments

(which is equal to the sum of φ+
p (X) and φ∼

p (X) and hence is known to us),
i.e., we set φ+

t (X) = φ+
p (X) + φ∼

p (X) − φ∼
t (X).

4. Introduce nodes. Let t be an introduce node with child p and let Bt = Bp∪{c}.
For each X ⊆ Bp, we consider two cases and proceed accordingly. On one
hand, if φ∼

p (X) = 0 (i.e., there exists no Xp-validating assignment invalidating
at least one clause in σp), then clearly φ∼

p (X) = φ∼
t (X) + φ∼

t (X ∪ {c}) = 0
and in particular φ∼

t (X) = φ∼
t (X ∪ {c}) = 0. On the other hand, assume

φ∼
p (X) > 0 and consider a Xp-validating assignment α which invalidates at

least one clause in σp. Since c clashes with all clauses in σp, it follows that
α must satisfy c. Consequently, we correctly set φ∼

t (X) = φ∼
p (X ∪ c) and
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φ∼
t (X) = 0. Since each subset of Bt is a subset of Bp ∪ {c}, it follows that

using the above rules A has computed the mapping φ∼
t for all X ′ ⊆ Bt.

The last remaining step is to compute φ+
t (X ′) for each X ′ ⊆ Bt. In order to

do so, we will first use Fact 4 to compute the number sX′ of all X ′t-validating
assignments of F . Since we are now interested in assignments which must
invalidate all clauses in Bt \ X ′, we can construct the subformula F ′ from
F by
(a) removing all clauses except for those in X ′, i.e., F ′ := X ′, and
(b) assigning all variables which occur in Bt\X ′ in order to invalidate clauses

outside of X ′. Formally, for each clause c ∈ Bt \X ′, we apply the partial
assignment x �→ 0 whenever x ∈ c and the partial assignment x �→ 1
whenever x ∈ c. If a contradiction arises for some variable, then we know
that there exists no X ′-validating assignment and hence set sX′ = 0.

Clearly, F ′ can be constructed in time O(L) and satisfies #F ′ = sX′ . Fur-
thermore, since F ′ contains at most k clauses, we can construct a trivial nice
tree decomposition of F ′of width at most k containing at most 2k+1 nodes in
linear time by first consecutively introducing all of its nodes and then consec-
utively forgetting them. With this decomposition in hand, we invoke Fact 4
to compute #F ′ in time at most 2k(kL+ δ)(2k +1), i.e., 2O(k) · (L+ δ). Once
we compute sX′ , we use the fact that sX′ = φ∼

t (X) + φ+
t (X) and correctly

set φ+
t (X) = sX′ − φ∼

t (X).

Observe that the time requirements for performing the above-specified oper-
ations at individual nodes of T are dominated by the time requirements for
processing introduce nodes, upper-bounded by 2k · (L + 2O(k) · (L + δ)) =
2O(k) · (L+ δ). Furthermore, a nice tree decomposition with at most O(L) nodes
and width at most 5k + 4 can be obtained in time 2O(k) · L by Fact 2. Hence
we conclude that it is possible to compute φ+

r (∅) = #(F ) in time at most
2O(k) · L(L + δ). The correctness of the whole algorithm follows from the cor-
rectness of computing the mappings φ∼

t and φ+
t at each node t in T . �


4 Conflict Treewidth

The algorithmic applications of the consensus graph, as detailed above, gives rise
to a natural follow-up question: what can we say about its natural counterpart,
the conflict graph? Recall that the conflict graph of a CNF formula F is the
graph G whose vertices are the clauses of F and which contains an edge ab if
and only if clauses a and b clash. Observe that the conflict graph of a hitting
formula is a complete graph, and that the conflict graph is the complement graph
of the consensus graph. The conflict treewidth of F is then the treewidth of its
conflict graph.

Since the conflict graph is a subgraph of the dual graph, conflict treewidth
can be much (and in fact arbitrarily) smaller than the dual treewidth. However,
unlike the case of dual treewidth, we will show that SAT does not admit a fixed-
parameter algorithm parameterized by conflict treewidth (unless W[1] �= FPT).
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Proposition 2. SAT is W[1]-hard when parameterized by conflict treewidth.
Furthermore, SAT remains W[1]-hard when parameterized by the size of a min-
imum vertex cover of the conflict graph, even for instances without pure literals.

Proof. We provide a parameterized reduction from Multicolored Clique.
Given an instance G of Multicolored Clique over vertex set V = V1∪· · ·∪Vk,
we construct a formula F over the variable set V (i.e., each vertex in G is a
variable in F ). We add the following clauses to F (observe that F contains no
pure literals):

1. for each i ∈ [k], we add one clause containing one positive literal of each
variable x ∈ Vi;

2. for each i ∈ [k] and each distinct x, y ∈ Vi, we add one clause {x, y};
3. for each non-edge between distinct vertices x, y in G, we add one clause {x, y}.

F can clearly be constructed from G in polynomial time. The intuition behind
the construction is the following: variables set to true correspond to the vertices
of a multicolored clique, clauses in groups 1 and 2 enforce the selection of a single
vertex from each color class, and the remaining clauses ensure that the result is
a clique.

To formally prove that the reduction is correct, consider a solution X to G,
and consider the assignment α which sets variables in X to true and all other
variables to false. Since X contains precisely one vertex from each color class
Vi, α clearly satisfies all clauses in groups 1 and 2. Now consider any clause
in group 3, and observe that it can only be invalidated if both of its variables
are set to true. However, since X is a clique it must hold that for each pair of
distinct variables x, y ∈ C we’ll never have a clause in group 3 between x and y,
and hence in particular each such clause will always contain at least one variable
that is set to false and that therefore satisfies it.

On the other hand, consider a satisfying assignments α for F . Then clauses
in group 1 ensure that at least one variable is set to true in each color class, and
clauses in group 2 ensure that at most one variable is set to true in each color
class. Finally, clauses in group 3 prevent α from setting two variables to true if
they are the endpoints of a non-edge in G. Consequently, the variables set to
true by α must form a solution to the multicolored clique instance G.

Finally, we argue that the parameter values are bounded by k, as claimed
by the hardness result. Observe that all literals in clause groups 2 and 3 are
negative, which means that whenever two clauses clash, at least one of them
must be in group 1. Furthermore, recall that there are precisely k clauses in
group 1. Hence the clauses in group 1 form a vertex cover of size k in the conflict
graph of F . It is well known (and easy to verify) that the vertex cover is an
upper bound on the treewidth of a graph. �


Observe that Proposition 2 implies that there exist instances where the con-
flict treewidth is arbitrarily smaller than the incidence treewidth (since SAT
is known to be FPT when parameterized by the latter). On the other hand,
we can show that in the case of formulas of bounded clause width and without
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pure literals, conflict treewidth (denoted conflict-tw) is dominated by incidence
treewidth.

Proposition 3. For any formula F with clauses of width at most d and without
pure literals, it holds that itw(F ) ≤ (d + 1) · (conflict-tw(F ) + 1).

Proof. Let G be the conflict graph of F and (T,B) be a tree decomposition of G
of width k. Consider the structure (T,B′) obtained as follows: for each Bi ∈ B,
we create a set B′

i in B′ where B′
i = Bi ∪ {x | ∃c ∈ Bi : x ∈ var(c) }. Informally,

the set B′ is obtained by extending the bags in (T,B) by the variables that occur
in the clauses of that bag. We claim that (T,B′) is a tree decomposition of the
incidence graph G′ of F .

Towards proving this claim, first observe that T is still a tree and each B′
i ∈ B′

is a subset of V (G′). Furthermore, for any edge ab of G′ between a clause a and
variable b, it must hold that a ∈ Bi for some Bi ∈ B. By construction, B′

i

must then contain both a and b and so condition 1 of the definition of tree
decompositions is satisfied. As for condition 2, assume first for a contradiction
that some vertex v ∈ G′ is not contained in any bag of (T, B′). This clearly
cannot happen if v is a clause, and so v must be a variable; furthermore, since
F contains no pure literals, v must occur in at least two clauses.

It remains to show that all bags containing v induce a connected subtree of
T . So, let us assume once more for a contradiction that this is not the case. By
construction of (T,B′) this implies that (T,B) must contain a node t such that
Bt separates some set of clauses containing v, say X1, from all remaining clauses
containing v, say X2. Next, observe that X1 ∪ X2 forms a complete bipartite
graph in G: indeed, one side consists of all clauses containing v as a literal, while
the other side consists of all clauses containing v. But these two facts together
contradict the inseparability property of tree decompositions: X1 ∪ X2 induce a
connected subgraph of G′, and yet they are supposedly separated by Bt which
does not intersect X1 ∪ X2. Hence we conclude that no such node Bt exists and
that the bags containing v indeed induce a connected subtree of T .

We conclude the proof by observing that the size of each bag B′
i ∈ B′ is

equal to d+1 times |Bi|, since we added at most d extra vertices for each vertex
in Bi. �


As a consequence of Proposition 3, restricted to formulas of bounded clause
width, #SAT is FPT when parameterized by conflict treewidth, since in this
case the parameter is dominated by incidence treewidth [26]. We note that the
domination is strict: for each i ∈ N there exists a formula Fi of clause width 2
and without pure literals such that itw(Fi) = 1 and contw(Fi) ≥ i. Indeed,
one such example is the formula Fi = {{y, x1}, {x1}, {y, x2}, {x2}, . . . , {y, xi},
{xi}} ∪ {{y, z1}, {z1}, {y, z2}, {z2}, . . . , {y, zi}, {zi}}.

5 Concluding Remarks

We have considered two natural graphical models of CNF formulas and estab-
lished whether #SAT is fixed-parameter tractable parameterized by their
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treewidth or not. The introduced notion of consensus treewidth generalizes and,
in some sense, builds upon the classical #SAT algorithm on hitting formulas [13],
and as such may be efficient in cases where other structural parameters fail. Our
results show that it is worthwhile to consider further graphical models in addition
to the already established ones such as primal, dual, and incidence graphs.
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Abstract. Itsykson and Sokolov in 2014 introduced the class of
DPLL(⊕) algorithms that solve Boolean satisfiability problem using the
splitting by linear combinations of variables modulo 2. This class extends
the class of DPLL algorithms that split by variables. DPLL(⊕) algo-
rithms solve in polynomial time systems of linear equations modulo 2
that are hard for DPLL, PPSZ and CDCL algorithms. Itsykson and
Sokolov have proved first exponential lower bounds for DPLL(⊕) algo-
rithms on unsatisfiable formulas.

In this paper we consider a subclass of DPLL(⊕) algorithms that
arbitrary choose a linear form for splitting and randomly (with equal
probabilities) choose a value to investigate first; we call such algorithms
drunken DPLL(⊕). We give a construction of a family of satisfiable CNF
formulas Ψn of size poly(n) such that any drunken DPLL(⊕) algorithm
with probability at least 1− 2−Ω(n) runs at least 2Ω(n) steps on Ψn; thus
we solve an open question stated in the paper [12]. This lower bound
extends the result of Alekhnovich, Hirsch and Itsykson [1] from drunken
DPLL to drunken DPLL(⊕).

1 Introduction

The Boolean satisfiability problem (SAT) is one of the most popular
NP-complete problems. However, SAT solvers have different behaviors on satisfi-
able and unsatisfiable formulas. The protocol of a SAT solver on an unsatisfiable
formula φ may be considered as a proof of unsatisfiability of φ. Therefore, the
study of propositional proof systems is connected with the study of SAT solvers.
It is well known that protocols of DPLL solvers on an unsatisfiable formula are
equivalent to tree-like resolution proofs of this formula and protocols of CDCL
solvers correspond to dag-like resolution proofs [3]. Thus lower bounds on the
running time of DPLL and CDCL solvers on unsatisfiable instances follow from
lower bounds on the size of tree-like and dag-like resolution proofs.

Satisfiable formulas are usually simpler for SAT solvers rather than unsat-
isfiable ones. Also, satisfiable instances are of much interest in the case where
we reduce some NP search problem (for example, the factorization) to SAT.

The research is partially supported by the Government of the Russia (grant
14.Z50.31.0030).

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 53–61, 2017.
DOI: 10.1007/978-3-319-66263-3 4



54 D. Itsykson and A. Knop

DPLL [7,8] algorithm is a recursive algorithm. On each recursive call, it simpli-
fies an input formula F (without affecting its satisfiability), chooses a variable
v and makes two recursive calls on the formulas F [v := 1] and F [v := 0] in
some order. Every DPLL algorithm is determined by a heuristic A that chooses
a variable for splitting and by a heuristic B that chooses a value that should be
investigated at first. If P = NP, then DPLL can solve all satisfiable instances
in polynomial time: a heuristic B always chooses a correct value of a variable.
Alekhnovich, Hirsch, and Itsykson [1] proved exponential lower bounds on sat-
isfiable instances for two wide classes of DPLL algorithms: for myopic DPLL
algorithms and drunken DPLL algorithms. In myopic DPLL the both heuristics
have the following restrictions: they can see only the skeleton of the formula
where all negation signs are erased, they also have access to the number of posi-
tive and negative occurrences of every variable and they are allowed to read n1−ε

of clauses precisely. Drunken algorithms have no restrictions on the heuristic A
that chooses the variable, but the heuristic B chooses a value at random with
equal probabilities. There are also known lower bounds on the complexity of
the inversion of Goldreich’s one-way function candidate by myopic and drunken
DPLL algorithms [5,10,11].

Itsykson and Sokolov [12] introduced a generalization of DPLL algorithms
that split by the value of linear combinations of variables modulo 2; we call them
DPLL(⊕) algorithms. DPLL(⊕) algorithms quickly solves formulas that encode
linear systems over GF(2) (unsatisfiable linear systems are hard for resolution
[19] and even for bounded-depth Frege [2]; satisfiable linear systems are hard
for drunken and myopic DPLL [1,10] and PPSZ [16,18]) and perfect matching
principles for graphs with odd number of vertices (these formulas are hard for
resolution [17] and bounded-depth Frege [4]).

It is well known that the tree-like resolution complexity (and hence the run-
ning time of DPLL) of the pigeonhole principle PHPn+1

n is 2Θ(n log n) [6]. Itsyk-
son and Sokolov [12] proved a lower bound 2Ω(n) and Oparin recently proved an
upper bound 2O(n) [14] on the running time of DPLL(⊕) algorithms on PHPn+1

n .
There are three other families of formulas that are hard for DPLL(⊕) algo-
rithms proposed by Itsykson and Sokolov [12], Krajiček [13], and Garĺık and
Ko�lodziejczyk [9].

Our results. Itsykson and Sokolov [12] formulated the following open question:
to prove a lower bound on satisfiable formulas for drunken DPLL(⊕) algorithms
that arbitrary choose a linear combination and randomly with equal probabilities
chooses a value that would be investigated at first. In this paper we answer to
the question and give a construction of a family of satisfiable formulas Ψn in
CNF of size poly(n) such that any drunken DPLL(⊕) algorithm with probability
1 − 2−Ω(n) runs at least 2Ω(n) steps on Ψn.

In order to construct Ψn we take the pigeonhole principle PHPn+1
n and man-

ually add one satisfying assignment to it. We prove that with high probability
a drunken DPLL(⊕) algorithm will make incorrect linear assumption and the
algorithm will have to investigate a large subtree without satisfying assignments.
To show that this subtree is indeed large we extend the technique that was used
for PHPn+1

n [12].
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Further research. The constructed family Ψn has clauses with large width. It
would be interesting to prove lower bounds for formulas in O(1)-CNF. It is also
interesting to prove a lower bound for myopic DPLL(⊕) algorithms.

2 DPLL(⊕) and Parity Decision Trees

DPLL(⊕) algorithms are parameterized by two heuristics: A and B. The heuris-
tic A takes a CNF formula and a system of linear equations and returns a linear
combination (a DPLL(⊕) algorithm will use this linear combination for split-
ting). The heuristic B takes a CNF formula, a system of linear equations, and
a linear combination and returns a value from {0, 1} (this value would be con-
sidered at first by a DPLL(⊕) algorithm). The set of DPLL(⊕) algorithms is
the set of algorithms DA,B for all heuristics A and B that are defined below.
An algorithm DA,B takes on the input a CNF formula Φ and a system of linear
equations F (we may omit the second argument if the system F is empty) and
works as follows:

1. If the system F does not have solutions (it can be verified in polynomial
time), then return “Unsatisfiable”.

2. If the system F contradicts to a clause C of the formula Φ (a system G
contradicts a clause �1 ∨ . . . ∨ �k iff for all i ∈ [k] the system G ∧ (�i = 1) is
unsatisfiable, hence this condition may be verified in polynomial time), then
return “Unsatisfiable”.

3. If the system F has the unique solution τ (in variables of Φ) and this solution
satisfies Φ (it can also be verified in polynomial time), then return τ .

4. f := A(Φ,F ).
5. α := B(Φ,F, f).
6. If DA,B(Φ,F ∧ (f = α)) returns an assignment, then return it.
7. Return the result of DA,B(Φ,F ∧ (f = 1 − α)).

The class of drunken DPLL(⊕) consists of all algorithms DA,rand , where A
is an arbitrary heuristic and rand always returns a random element from {0, 1}
with equal probabilities.

A parity decision tree for (Φ,F ) is a rooted binary tree such that all its
internal nodes are labeled with linear combinations of variables of Φ, for every
internal node labeled with a linear form f one of its outgoing edge is labeled
with f = 0 and the other one with f = 1. Let l be a leaf l of the tree, we denote
by Dl the system of linear equations written on the edges of the path from the
root to l. There are three kinds of leaves:

degenerate leaf: F ∧ Dl does not have a solution;
satisfying leaf: F ∧ Dl has the only solution in the variables of Φ and this

solution satisfies Φ;
contradiction: F ∧ Dl contradicts to a clause C of Φ.

If Φ ∧ F is unsatisfiable, then the recursion tree of DA,B(Φ,F ) is a parity
decision tree for (Φ,F ) that does not contain satisfying leaves. Additionally the
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minimal size of a decision tree for (Φ,F ) is a lower bound on the running time
of DA,B(Φ,F ). If Φ ∧ F is satisfiable then the recursion tree of DA,B(Φ,F ) is a
part of a parity decision tree since the execution stops when the algorithm DA,B

finds a satisfying assignment.

3 Lower Bound

In this section we construct a satisfiable formula that is hard for all drunken
DPLL(⊕) algorithms. Our hard example is based on the pigeonhole principle.
The pigeonhole principle (PHPm

n ) states that it is possible to put m pigeons into
n holes such that every pigeon is in at least one hole and every hole contains
at most one pigeon. For every pigeon i ∈ [m] and hole j ∈ [n] we introduce a
variable pi,j ; pi,j = 1 iff i-th pigeon is in the j-th hole. The formula PHPm

n is
the conjunction of the following clauses:

short clauses: ¬pi,k ∨ ¬pj,k for all i �= j ∈ [m] and k ∈ [n];

long clauses:
n∨

k=1

pi,k for all i ∈ [m].

The formula PHPm
n is unsatisfiable iff m > n. Let Pm,n denote the set of

variables {pi,j | i ∈ [m], j ∈ [n]}.
Let σ be a substitution to the variables x1, . . . , xn and Φ be a CNF formula

on the variables x1, . . . , xn. We denote by Φ + σ a CNF obtained from Φ in the
following manner: for every clause C of Φ and variable xi, the formula Φ + σ

contains a clause C ∨x
σ(xi)
i , where for every propositional variable x, x0 denotes

¬x and x1 denotes x. Note that it is possible that C ∨ x
σ(xi)
i is a trivial clause.

Proposition 1. If Φ is unsatisfiable, then Φ + σ has the only satisfying assign-
ment σ.

Proof. It is straightforward that σ satisfies Φ + σ. Assume that τ satisfies Φ + σ
and τ �= σ. Consider i ∈ [n] such that τ(xi) �= σ(xi). Let for every CNF formula
φ, variable x, and α ∈ {0, 1} φ[x := α] denote the result of the substitution
x := α applied to φ. Note that the formula (Φ + σ)[xi := τ(xi)] contains all
clauses of Φ[xi := τ(xi)], but Φ is unsatisfiable, hence (Φ + σ)[xi := τ(xi)] is
unsatisfiable and τ can not satisfy Φ + σ. ��

We call an assignment σ to the variables Pm,n proper if it satisfies all short
clauses of PHPm

n , that is there are no two pigeons in one hole in σ.
Let f1, f2,. . . , fk, and g be linear equations in variables Pm,n. We say that

f1, f2,. . . , fk properly implies g iff every proper assignment that satisfies all f1,
f2,. . . , fk also satisfies g.

Let F be a linear system in variables Pm,n. A proper rank of the system F is
the size of the minimal set of equations from F such that linear equations from
this set properly implies all other equations from F .

Notice that if F does not have a proper solutions, then its proper rank is the
size of the minimal subsystem of F that has no proper solutions.
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Proposition 2. Let F and G be two linear systems in variables Pm,n. Then the
proper rank of F ∧ G is at most the sum of the proper ranks of F and G.

Proof. Let F ′ and G′ be the minimal subsystems of F and G such that F ′

properly implies all equations from F and G′ properly implies all equation from
G. Hence F ′ ∪ G′ properly implies all equations from F ∧ G.

Remark 1. In contrast to the case of the common rank it is possible that a
linear system F does not properly implies linear equation f but the proper rank
of F ∧ f does not exceed the proper rank of F . For example, p1,3 + p2,3 = 1 does
not properly implies p2,3 = 1 but the proper rank of (p1,3 +p2,3 = 1)∧ (p2,3 = 1)
equals 1 since p2,3 = 1 properly implies p1,3 + p2,3 = 1.

Our goal is to prove the following theorem:

Theorem 1. For every m > n > 0 and every proper assignment σ to the vari-
ables Pm,n the running time of any drunken DPLL(⊕) algorithm DA,rand on the
formula PHPm

n + σ is at least 2
n−1
4 with probability at least 1 − 2−n−1

4 .

In what follows we assume that m > n.
We use the following Lemma that was proposed in the paper of Itsykson and

Sokolov [12]. We give its proof for the sake of completeness.

Lemma 1 ([12]). Let us assume that a linear system Ap = b in the variables
Pm,n has at most n−1

2 equations and it has a proper solution. Then for every i ∈
[m] this system has a proper solution that satisfies the long clause pi,1∨ . . .∨pi,n.

Proof. Note that if we change 1 to 0 in a proper assignment, then it remains
proper. Let the system have k equations; we know that k ≤ n−1

2 . We consider a
proper solution π of the system Ap = b with the minimum number of ones. We
prove that the number of ones in π is at most k. Let the number of ones is greater
than k. Consider k +1 variables that take value 1 in π: pr1 , pr2 , . . . , prk+1 . Since
the matrix A has k rows, the columns that correspond to the variables pr1 , pr2 ,
. . . , prk+1 are linearly depended. Therefore, there exists a nontrivial solution π′

of the homogeneous system Ap = 0 such that every variable with the value 1 in
π′ is from the set {pr1 , pr2 , . . . , prk+1}. The assignment π′ + π is also a solution
of Ap = b and is proper because π′ + π can be obtained from π by changing
ones to zeros. Since π′ is nontrivial, the number of ones in π′ +π is less than the
number of ones in π and this statement contradicts the minimality of π.

The fact that π has at most k ones implies that π has at least n − k empty
holes. From the statement of the Lemma we know that n− k ≥ k +1; we choose
k+1 empty holes with numbers l1, l2, . . . , lk+1. We fix i ∈ [m]; the columns of A
that correspond to the variables pi,l1 , . . . , pi,lk+1 are linearly depended, therefore,
there exists a nontrivial solution τ of the system Ap = 0 such that every variable
with value 1 in τ is from the set {pi,l1 , . . . , pi,lk+1}. The assignment π + τ is a
solution of Ap = b; π + τ is proper since holes with numbers l1, l2, . . . , lk+1 are
empty in π, and τ puts at most one pigeon to them (if τ puts a pigeon in a hole,
then this is the i-th pigeon). The assignment π + τ satisfies pi,1 ∨ pi,2 ∨ · · · ∨ pi,n

because τ is nontrivial. ��
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Corollary 1. If a linear system F in variables Pm,n has a proper solution and
the proper rank of F is at most n−1

2 then for every i ∈ [m] the system F has a
proper solution that satisfies the long clause pi,1 ∨ . . . ∨ pi,n.

Proof. Let F ′ be the minimal subsystem of F that properly implies all equations
from F . The number of equations in F ′ is the proper rank of F that is at most
n−1
2 . F ′ also has a proper solution since it is a subsystem of F . Thus by Lemma 1

F ′ has a proper solution that satisfies pi,1 ∨ . . . ∨ pi,n. This solution should also
be a solution of F by the choice of F ′. ��
Corollary 2. Assume that a linear system Ap = b in the variables Pm,n has a
proper solution and its proper rank is at most n−1

2 , then this system has at least
two proper solutions.

Proof. Let σ be a solution of Ap = b. Since PHPm
n is unsatisfiable there is a long

clause C such that σ falsify this clause. Though, by Corollary 1 for any clause
there is a proper solution τ of Ap = b that satisfies the clause C. Hence τ �= σ,
thus τ and σ are different proper solutions of Ap = b. ��
Lemma 2. Let a system of linear equations Ap = b in the variables Pm,n have
a proper solution and let its proper rank be at most n−1

4 . Then the size of any
parity decision tree for (PHPm

n , Ap = b) is at least 2
n−1
4 .

Corollary 3. Let a system Ap = b of linear equations in the variables Pm,n

have a proper solution and let its proper rank be at most n−1
4 . Let σ be a proper

assignment to variables Pm,n that does not satisfy Ap = b. Then the size of any
parity decision tree for (PHPm

n + σ,Ap = b) is at least 2
n−1
4 .

Proof (Proof of Corollary 3). Consider a parity decision tree T for
(PHPm

n + σ,Ap = b). Since σ is the only satisfying assignment of PHPm
n + σ

and it does not satisfy Ap = b, there are no satisfying leaves in T . We claim that
the tree T may be also considered as a parity decision tree for (PHPm

n , Ap = b),
and thus the size of T is at least 2

n−1
4 by Lemma 2.

Consider any leaf of T . If this leaf corresponds to the situation where the
system F contradicts to a clause C of PHPm

n + σ, then it also contradicts to
some clause C ′ of PHPm

n since every clause of PHPm
n + σ is a superclause of a

some clause of PHPm
n Thus, tree T also may be considered as a parity decision

tree for (PHPm
n , Ap = b). ��

In order to prove Lemma 2 we generalize Prover–Delayer games introduced
by Pudlak and Impagliazzo [15].

Consider the following game with two players: Prover and Delayer. They are
given a CNF formula Φ and a system of linear equations F such that formula
Φ∧F is unsatisfiable. On each step Prover chooses a linear form f that depends
on variables of formula Φ, then Delayer may choose a value α ∈ {0, 1} of f
or return ∗. If Delayer returns ∗, then Prover chooses a value α ∈ {0, 1} of f
by himself. We add the equality f = α in the system F . The game ends if the



Hard Satisfiable Formulas for Splittings by Linear Combinations 59

current linear system F is inconsistent or refutes some clause of Φ. Delayer earns
a coin for every ∗. The goal of Delayer is to earn the maximum number of coins
and the goal of Prover is to minimize the number of coins earned by Delayer.

Lemma 3 (similar to [15]). Consider some CNF formula Φ and linear system
F such that Φ ∧ F is unsatisfiable. Assume that there is a strategy for Delayer
that allows Delayer to earn t coins, then the size of any parity decision tree for
(Φ,F ) is at least 2t.

Proof. Consider some parity decision tree T for (Φ,F ). We construct a proba-
bilistic distribution on the leaves of T that corresponds to the strategy of Delayer
and the following randomized strategy of Prover. Prover uses the tree T , initially
he asks the question for the linear form in the root, if Delayer returns ∗, Prover
chooses a value at random with equal probabilities and go to the next vertex
along an edge labeled with the chosen value. By the statement of the Lemma
the probability that the game will finish in every particular leaf is at most 2−t.
Since with probability 1 the game will finish in a leaf, the number of leaves of T
is at least 2t. ��
Proof (Proof of Lemma 2). Let us construct a strategy for Delayer that will
guarantee that Delayer earns at least n−1

4 coins. Let G be the current linear
system that consists of all equations that are already made by Prover or Delayer
in the game and equations from the system Ap = b. At the beginning G equals
Ap = b. The strategy of the Delayer the following: assume that Prover chooses a
linear form f , then if G properly implies f = α for some α ∈ {0, 1}, then Delayer
returns α, otherwise Delayer returns ∗.

We prove by induction on the number of steps that the following invariant
holds: the system G always has a proper solution. Basis case is true since Ap = b
has a proper solution. Assume that Prover chooses a linear form f . If G has a
proper solution, then either G ∧ (f = 0) or G ∧ (f = 1) has the same proper
solution. Assume that for some α ∈ {0, 1}, G ∧ (f = α) does not have proper
solutions. In this case G properly implies f = 1 − α hence Delayer chooses the
value 1 − α and F ∧ G ∧ (f = 1 − α) has a proper solution. Consider three
situations at the end of the game.

– The system G becomes unsatisfiable. This situation is impossible since G has
a proper solution.

– The system G contradicts a short clause. This situation is also impossible
since G has a proper solution.

– The system G contradicts a long clause pi,1∨ . . .∨pi,n. Let G′ be a subsystem
of G that corresponds to answers ∗ of Delayer. By the construction every
equation from G is properly implied from (Ap = b)∧G′. Hence, (Ap = b)∧G′

does not have proper solutions that satisfy pi,1 ∨ . . .∨pi,n. Corollary 1 implies
that the proper rank of the system (Ap = b) ∧ G′ is greater than n−1

2 . By
Proposition 2 the rank of G′ is greater than n−1

4 , hence G′ contains more than
n−1
4 equations. Note that Delayer earns a coin for every equation in G′, hence

Delayer earns more than n−1
4 coins. Hence by Lemma 3 the size of any parity

decision tree for (PHPm
n , Ap = b) is at least 2

n−1
4 . ��
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Now we are ready to prove Theorem 1.

Proof (Proof of Theorem 1). We may assume that a heuristic A does not use
random bits. Indeed otherwise we may prove the lower bound for fixed random
bits of heuristic A and then apply the averaging principle to handle the case of
randomized A. If A is deterministic we may consider the whole parity decision
tree T of the algorithm DA,B on the input PHPm

n + σ that corresponds to all
possible answers of heuristic B. For every execution of the algorithm DA,B , this
algorithm bypasses only a part of the tree T until it finds a satisfying assignment.
Tree T contains exactly one branch that correspond to the satisfying assignment
σ; we call this branch a satisfying path. We prove that with high probability the
algorithm will deviate from the satisfying path and will fall in a hard unsatisfiable
subtree.

Assume that algorithm is in the state in the accepting path, that is the
current linear system F is satisfied by σ. There are two possibilities to deviate
from the satisfying path:

1. The algorithm chooses an equation f = α such that the system F ∧ (f = α)
has no proper solutions. In this case f = 1−α is properly implied by F . Thus
the adding of f = 1 − α to F does not increase the proper rank.

2. The algorithm chooses an equation f = α and the system F ∧ (f = α) has
proper solutions but σ is not a solution of F ∧(f = α). In this case the proper
rank of F ∧ (f = α) may be larger by one then the proper rank of F (but it is
also possible that the proper rank of F ∧ (f = α) does not exceed the proper
rank of F , see Remark 1). If the proper rank of F ∧ (f = α) is at most n−1

4 ,
then by Corollary 3 the algorithm falls in an unsatisfiable subtree of size at
least 2(n−1)/4.

Consider the leaf of the satisfying path; the linear system F in this leaf has
the only solution σ. Hence by Corollary 2 the proper rank of F is greater than
n−1
2 . The value of the proper rank of F in the root is zero, the rank of F increases

along the satisfying path. Consider the first nodes of the path when the proper
rank equals 1, 2, . . . , n−1

4 . The algorithm should visit this nodes, hence it should
visit the predecessors of these nodes. In every of these predecessors algorithm
have chance 1

2 to deviate from the acceptance path. And since the proper rank
increases, all this deviations correspond to the case 2 of the above. Thus, with
probability at least 1 − 2−n−1

4 the algorithm goes to an unsatisfiable subtree of
size at least 2

n−1
4 . ��
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Abstract. Following the impressive progress made in the quest for effi-
cient SAT solving in the last years, a number of researches has focused
on explaining performances observed on typical application problems.
However, until now, tentative explanations were only partial, essentially
because the semantic of the original problem was lost in the translation
to SAT.

In this work, we study the behavior of so called “modern” SAT solvers
under the prism of the first successful application of CDCL solvers, i.e.,
Bounded Model Checking. We trace the origin of each variable w.r.t. its
unrolling depth, and show a surprising relationship between these time
steps and the communities found in the CNF encoding. We also show
how the VSIDS heuristic, the resolution engine, and the learning mech-
anism interact with the unrolling steps. Additionally, we show that the
Literal Block Distance (LBD), used to identify good learnt clauses, is
related to this measure.

Our work shows that communities identify strong dependencies among
the variables of different time steps, revealing a structure that arises
when unrolling the problem, and which seems to be caught by the LBD
measure.

1 Introduction

We observed in the last years an impressive explosion of A.I. and Formal Meth-
ods tools using SAT solvers as backbones. The practical interest in SAT solver
technologies really took off in the early 2000’s when Conflict-Driven Clause
Learning (CDCL) algorithms were introduced [14,24]. This allowed huge SAT
instances, encoding application problems, to be solved in practice, where pre-
vious adhoc methods had failed. One of the first successful application of SAT
solvers, Bounded Model Checking (BMC), unrolls a transition system for a given
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number of steps, quickly producing a huge number of clauses and variables. On
this kind of applications, the laziness of data structures is crucial but such an
efficiency comes with a price: SAT solvers are now some kind of complex sys-
tems for which performances can be hardly explained. We know how to build an
efficient1 SAT solver, but the reasons of its efficiency are not clearly known.

Moreover, it has been shown that SAT formulas, now arising from many
different fields, are highly heterogeneous: some problems can have thousands
of decisions levels whereas others just have a few dozens. Some problems with
millions of variables can be solved in a few seconds whereas others still resist
after a few hundreds. If this is due to the diversity of applications using SAT
solvers, it makes harder to analyze and explain the reasons of why SAT solvers
are good: possible explanations are probably not the same on all problems.

Thus, hidden behind the success story of SAT solvers, the fact that they
are complex systems working on a wide range of different problems seems to
have prevented any simple explanation for their efficiency to arise. This is a
crucial issue for the future of SAT solving, because additional speed-ups will
certainly come from a better understanding of all the components of SAT solvers
(branching heuristic, learning mechanism, clause database cleaning). This is even
more crucial for parallel SAT solving, where simply identifying a good clause to
share or how to split the search space between cores is still unclear. Somehow
paradoxically, the reasons of most of the improvements in sequential and parallel
SAT solving are hardly understood yet. Of course, a number of works proposed
some explanations. For instance it was shown that CDCL solvers are stronger
than DPLL, unleashing the full power of propositional resolution [23]. More
recently, it was shown that other branching heuristics were possible [15]. Closer
to our current work, it was also shown that most industrial instances have a
community structure [1], which could even be used as an estimator of solver
success [21]. Moreover, it has been also shown that the measure used for learnt
clause usefulness (the Literal Block Distance) is highly related to this notion
of clusters, where the literals of the same decision level seem to belong to the
same community. In this direction, some models of random SAT formulas with
community structure have been presented to better understand SAT solvers
components [11–13]. In fact, the community structure has been successfully used
in some SAT and MaxSAT approaches [2,17,19].

However, none of these works link the structure of the SAT formulas with
the original problem they encode. If communities are clearly identified as a key
structure in real-world instances, their origin is unknown. The paper we propose
aims at answering this crucial question. We propose an experimental paper,
aiming at pointing out observed correlations between the high-level description
of problems and the behavior of the main components of the SAT solver, thus
tracing the origin of communities to the high-level description of the problem. We
chose to focus on Bounded Model Checking, because of its historical importance
in the rapid development of SAT solver technologies. More precisely, we study the

1 CDCL is nowadays the dominant technique solving this kind of problems.
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relationship between communities, clauses scoring, variable branching, conflict
analysis w.r.t. the unrolling depth of variables.

Contributions of This Paper. We show that:

– communities are built on small unrolling of time steps, revealing a structure
that is not present inside a single depth;

– LBD measures the proximity of literals in the clause, w.r.t. time steps;
– computation tends to produce clauses (proof) at larger and larger time steps;
– the learning mechanism implies touching literals when (1) deciding, (2) ana-

lyzing and (3) learning. We show that literals touched in (1), (2) and (3) show
clearly distinct time step extents. Typically, resolution variables (phase 2)
belong to more distant time steps than learnt clause literals (phase 3), which
belong to more distant than decisions literals.

Let us emphasize here the first item in the above list. It shows that the general
idea on the existence of communities in BMC is wrong, or at least only partial.
It is indeed believed that communities are simply a side effect of the unrolling
mechanism, each community (or set of communities) being simply inside a single
time step. Our work shows that variables connections between communities are
stronger than previously believed.

2 Preliminaries

We assume the reader familiar with SAT but let us just recall here the global
schema of CDCL solvers [7,9,14,18,24]: a branch is a sequence of decisions (taken
accordingly to the VSIDS heuristic), followed by unit propagations, repeated
until a conflict is reached. Each decision literal is assigned at a distinct, increas-
ing decision level, with all propagated literals assigned at the same level (we
call ”block of literals” to the set of literals assigned at the same decision level).
Each time a conflict is reached, a series of resolution steps, performed during the
conflict analysis, allows the solver to extract a new clause to learn. This clause
is then added to the clause database and a backjumping is triggered, forcing the
last learnt clause to be unit propagated. Solvers also incorporate other impor-
tant components such as preprocessing [8], restarts and learnt clause database
reduction policies. It was shown in [3] that the strategy based on Literal Block
Distance (LBD) was a good way of scoring clauses. The LBD is computed during
conflict analysis: it measures the number of distinct decisions levels occurring
in the learnt clause. Restarts are commonly following the Luby series [16], but
recent studies shown that LBD-based restarts is generally more efficient on real-
world instances [4], especially on UNSAT instances [22].

Bounded Model Checking. In this paper, we focus on finite-state transition
systems with Boolean variables only, which are commonly used to model sequen-
tial circuits. A transition system is a tuple M = 〈V, I, T, P 〉, where V is a set of
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variables, I(V ) and P (V ) are formulas over V representing the initial states and
safe states, respectively. We also refer to ¬P (V ) or Bad(V ) to express the set
of bad states. T (V, V ′) is a transition relation over V ,V ′ defining the accepted
transitions. V ′ = {v′ | v ∈ V } is the primed version of the set V , used to rep-
resent next state variables. When multiple transition relations are required, we
will use Vi to represent variables in V after i steps.

Bounded Model Checking [5,26] is an efficient bug-finding algorithm. BMC
explores bounded paths of a transition system and checks if they can lead to a
bad state. The main idea is to build a formula that is satisfiable if there exists a
path of length k from the initial states to a bad state. To this end, BMC unrolls
the transition relation k times, s.t.:

I(V0) ∧ T (V0, V1) ∧ . . . ∧ T (Vk−1, Vk) ∧ Bad(Vk)

This formula is usually translated into a CNF and then solved with a SAT solver.
If the formula is unsatisfiable, P holds for all states reachable in k iterations.
However, this definition does not ensure that Bad cannot be reached in less than
k transitions. Hence, BMCk is usually performed incrementally for k = 0 to n.
Another approach consists in extending Bad(Vk) to

∨k
i=0 Bad(Vi). If the formula

is satisfiable, the transition system has a counterexample, i.e. there exists a path
in the transition system leading to a state that contradicts the property P .

Community Structure of SAT Instances in CNF. A graph is said to
have community structure (or good clustering), if in a partition of its nodes
into communities, most edges connect nodes of the same community. In order to
analyze the quality of such partition, community structure is usually analyzed
via scoring functions. The most popular one is modularity [10,20].

Recently, it has been shown that most industrial SAT instances used in SAT
competitions have a clear community structure (or high modularity) [1], when
the CNF formula is represented as a graph. In this paper, we use the same
approach of [1] to analyze the community structure of CNF formulas. This is:
creating the Variable-Incidence Graph2 (VIG) of the CNF, and using the Louvain
method [6] to compute a lower-bound of the maximal modularity Q, which also
returns its associated partition P of the graph, i.e., a partition of the Boolean
variables of the CNF. Since we analyze the relation between variables in the
high-level BMC encoding and the low-level CNF formula, we consider VIG as
the most suitable graph representation of the formula.

We also emphasize that, although we use an approximate method to compute
the community structure, our conclusions do not seem to be a consequence of
computing a wrong partition (much different to the optimal one), as we will
show in the next section.

2 In this model, the variables of the CNF are the nodes of the graph, and there is
an edge between two variables if they appear together in a clause. In its weighted
version –the one we use–, the clause size is also considered.



On the Community Structure of Bounded Model Checking SAT Problems 69

3 Communities and Unrolling Depth in SAT Encodings

The origins of community structure in industrial SAT formulas remain unknown.
In previous works, the heterogeneous set of industrial benchmarks used in the
competitions has been analyzed as a whole, regardless of where they come from or
which problems they encode. Interestingly enough, it has been shown that (clear)
community structure is a property in most of these instances. In this section, we
provide an exhaustive analysis of the relations between the community structure
and the high-level structure of the problem, on the case study of BMC problems.

Fig. 1. Relation between unrolling iterations and community structure in the instance
6s7, for different number of unrolling timesteps k.

For a given problem, we can generate different CNF formulas representing
BMCk, for different values of k. For these formulas, each Boolean variable belongs
to a certain unrolling depth x,3 and it is also assigned to a certain community y
by the clustering algorithm. Notice that it is possible that two (or more) variables
are characterized by the same (x, y) coordinates, when they both belong to the
same unrolling iteration and they both are assigned to the same community.

In Fig. 1, we represent the relation between the unrolling iterations and the
community structure of the instances BMCk encoding the problem 6s7, for dif-
ferent values of the unrolling depth k = {5, 15, 25, 35, 45, 55, 65, 75}. This is, the
iteration x and the community y of the variables of each CNF. The y-value for
some k are slightly shifted to improve the visualization.

We can observe that when the total number of unrolling iterations is small
(see k = 5), the community structure is not related to the unrolling depth, since
most communities have variables in all depths. The number of communities is

3 For simplicity, we omit the very few variables which do not belong to any iteration.
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greater than k. Interestingly enough, as we increase the total number of iterations
k, there is a clear pattern, suggesting that the correlation may be very strong
(see cases k ≥ 45).

However, each point represented in the previous plot can be just due to a
single variable. Therefore, it is hard to say if the unrolling iterations and the
community structure are indeed correlated. In order to solve this problem, we
can compute the Pearson’s correlation coefficient r between these two variables
X and Y over all these (x, y) points. The correlation coefficient is defined as:

r
X,Y

=
σX Y

σX σY
=

∑n
i=1 (xi − x̄) (yi − ȳ)

√∑n
i=1 (xi − x̄)2

√∑n
i=1 (yi − ȳ)2

where n is the size of the sample with datasets X = {x1, . . . , xn} and Y =
{y1, . . . , yn}, x̄, σX , ȳ and σY their means and standard deviations, respectively,
and σXY the covariance. Notice that when r is close to 1 (resp. to 0), the variables
X and Y are highly (resp. almost no) correlated.

For the instance analyzed in Fig. 1, we obtain the following results: r = 0.423
when k = 5, r = 0.769 when k = 25, and r = 0.968 when k = 45. These results
confirm that the community structure is actually a good proxy to represent the
unrolling depths of this problem.

Table 1. Statistics of the correlation coefficient r between unrolling iterations and
community structure over the instances of the HWMCC15, for different k.

k Mean Std Median Max P5% Min

5 0.594 0.304 0.667 0.995 0.055 0.000

10 0.677 0.304 0.808 0.997 0.108 0.023

20 0.856 0.170 0.918 0.999 0.492 0.108

40 0.892 0.155 0.956 0.999 0.580 0.109

60 0.904 0.152 0.973 0.999 0.643 0.131

Now the question is whether this occurs in all BMC problems. To answer
this question, we analyze the 513 problems of the Hardware Model Checking
2015 competition (HWMCC15). For each of these benchmarks, we create dif-
ferent BMCk, with k = {5, 10, 20, 40, 60}, compute the community structure of
those, and finally calculate the correlation coefficient r as before. In this analysis,
we have omitted those benchmarks for which the computation of the commu-
nity structure requires more than 5000 s (notice that some problems become
extremely large after a big number of unrolling iterations). Even though, the
resulting sets of instances always contain more than 400 benchmarks; the size
of the set varies for each value of k, from 400 instances when k = 60, to 509
instances when k = 5.

In Table 1, we represent the aggregated results of this analysis. In particular,
for each depth k, we compute mean, standard deviation (std), median, max,
min, and percentile 5% (P5%), over the r coefficients of all these instances.
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It is clear that, in general, the correlation between the unrolling depth and
the community structure is very strong (high mean and median, with small
deviation). In fact, it becomes stronger for bigger values of k (as we expected
from the previous experiment). We can also observe that such correlation is
surprisingly small for some instances (very small min). However, it is only the
case for a very reduced number of problems, as the percentile 5% indicates.
This analysis strongly suggests that the community structure is originated by the
process of unrolling depth iterations to create the BMC formula.

Additionally, an interesting observation depicted in Fig. 1 is that communities
computed by the clustering algorithm contain variables from different unrolling
depths, rather than just aggregating all variables of the same depth. Therefore,
the community structure reveals a non-trivial structure existing in the CNF
encoding: Our analysis also suggests that communities are spread over successive
time steps.

3.1 Communities are Stronger When Spreading over Time Steps

Our last observation above is important enough to be checked in detail. It goes
against the general belief about the existence of communities in BMC problems.
We thus propose here to search for additional evidences validating it. We also
need to check whether this is a property shared by all the BMC problems we
gathered.

For this purpose, we consider the partition of the formula in which all the
variables of the same unrolling depth conform a distinct community, and com-
pute its associated modularity Qd. In order to check that our results are not
a consequence of computing a wrong partition, much different to the optimal
one, we compare Qd w.r.t. the modularity Q computed by the clustering algo-
rithm. In Table 2, we represent the aggregated results of Q and Qd over the set of
benchmarks of the HWMCC15. Again, we represent some statistics for different
values of k.

As expected, we observe that the modularities Q and Qd increase for big-
ger values of the unrolling depth k. Interestingly, the actual modularity of the

Table 2. Statistics of the actual modularity Q and the modularity Qd using as partition
the variables of the same unrolling depth, over the instances of the HWMCC15, for
different values of depth k. The highest values between Q̄ and Q̄d are highlighted, for
each depth k.

Q Qd

k Mean Std Median Min Max P5% Mean Std Median Min Max P5%

5 0.850 0.053 0.857 0.681 0.970 0.747 0.616 0.083 0.607 0.480 0.826 0.387

10 0.874 0.047 0.877 0.701 0.977 0.786 0.687 0.085 0.676 0.549 0.901 0.450

20 0.887 0.043 0.894 0.731 0.981 0.813 0.728 0.086 0.717 0.588 0.945 0.488

40 0.906 0.038 0.907 0.759 0.986 0.837 0.751 0.086 0.739 0.609 0.968 0.509

60 0.917 0.036 0.917 0.776 0.988 0.856 0.761 0.094 0.767 0.614 0.976 0.516
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formula Q is clearly greater than Qd, independently of the number of iterations
k the problem is unrolled. In fact, in many instances, the number of communi-
ties is smaller than the number of unrolling iterations k, when k is big enough
(e.g., k = 60). Another interesting observation is that Qd fluctuates less than
the correlation coefficient r (see Table 1).

These observations support our hypothesis. Therefore, this analysis indicates
that the existence of community structure in BMC problems encoded as SAT
instances is due to the process of unrolling iterations in the high-level problem,
and the larger the unrolling depth is, the more clear the community structure
becomes. However, this structure seems to identify strong dependencies among
the Boolean variables in the CNF encoding, which is different from just the
unrolling depths they belong to.

4 Unrolling Depth of Decisions, Resolutions and Learnt
Clauses

In the previous section, we have studied the static structure of SAT formulas
w.r.t. the unrolling depths of propositional variables. We now propose to analyze
where the solver performs the search in these formulas. In particular, we show
that, although the solver is not aware about the semantics of each variable (i.e.,
the unrolling iteration it belongs to), it is able to exploit some features of the
BMC encoding. This is probably due to the relation between the high-level BMC
encoding and the CNF formula, captured by the community structure.

Our experimental investigations will be based on a set of 106 BMC instances.
This set of formulas contains all the problems of the HWMCC15, unrolled until
obtaining a satisfiable answer or not solved within a timeout of 6600 s (for the
largest possible depth). We excluded the easy instances, solved in less than a
minute. We base our experimental observations on an instrumented version of
the solver Glucose.

For our analysis, we compute three sets of variables that characterize the
solver at each conflict. First, the set dec contains all the decision variables, i.e.,
all the decisions stored in the trail of the solver. Some decisions may not be
related to the current conflict, but we think that observing the evolution of dec
may be a better trace of the solver search (for instance, top decision variables may
be useful in conflicts). Second, the set res of variables used in all the resolution
steps, performed during conflict analysis. And finally, the set learnt of literals in
the learnt clause. One may notice here that resolution variables (res) are disjoint
from decision and learnt variables (dec ∪ learnt). In some sense, dec will be the
witness of the VSIDS heuristics (even if dec has a longer memory of variables
decisions, because a variable with a low VSIDS score can still be in the dec if
it was chosen at the top of the search tree and its score has been decreased).
Moreover, one may notice that the VSIDS heuristic bumps all the variables in
the set res ∪ learnt. It is thus very surprising to find different distributions of
values in these 3 sets of variables, as we will show in Sect. 4.3.
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For each of these sets, and for every conflict, we store the set size, and some
statistics about the unrolling depths in the high-level problem. Namely, they are:
min, max, mean, standard deviation (std), median, median absolute deviation
(mad) and skewness. Clearly enough, on hard problems involving millions of
conflicts, we cannot simply summarize all these data. Thus, we decided to take
samples of 10,000 values and only report summaries of the above values for each
sample. Every 10,000 conflicts, we aggregate the results by computing the same
values (min, max, et cetera) for each measure (we thus recorded, for example,
the median of min, the skewness of skewness, et cetera). After investigating all
these data, we found that working on the mean of means for each set dec, res
and learnt is sufficient to draw some conclusions; it is a good estimator of the
measured values in the sample and it is easily understood. We thus report in this
paper the mean values (computed over 10,000 conflicts) of the average number
of unrolling depths found in each set dec, res and learnt. Note that we recorded
this for SAT and UNSAT instances, and also for instances that timed-out, where
final statistics were printed before exiting. We found 7 SAT instances, 61 UNSAT
ones and 39 time-outs. We cumulated more than 1.2 billion conflicts, and 3.8
millions samples averaging each measure over 10,000 conflicts.

Fig. 2. Unrolling depth of the decision variables during the first conflict versus the last
conflicts. Values are normalized w.r.t. the total depth of each BMC SAT formula.
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4.1 Relation Between Solver Progress and Unrolling Depths

In our first experiment, we want to investigate whether the solver is first working
on the variables of certain unrolling depths before moving to variables of other
depths. For this, we compare the values of dec, res and learnt during the first
conflicts w.r.t. to these values measured during the last conflicts. In Fig. 2, we
represent this comparison for the set dec. The “first conflicts” are computed
between the first 10,000 and the 20,000 conflicts (thus, avoiding any possible
initialization phase in the very early conflicts, that could introduce a bias), and
the value of the last conflicts is computed between the last 10,000 +X conflicts,
where X is the total number of conflicts modulo 10,000. Results are normalized
w.r.t. the total number of unrolling iterations of each SAT instances. A value
close to 1 means that the set dec contains variables of the last unrolling iterations,
whilst a value close to 0 means that it contains the ones of the first iterations.

As we can see, the unrolling iterations involved in the early conflicts are
smaller than the ones at the latest stages of the search. This is the case in most
of the formulas analyzed, regardless of the answer of the solver. Interestingly
enough, this also happens in non-solved instances, indicating a common tendency
which suggests that the solver tends to start the search by the first unrolling
depths, and continues it by exploring variables of higher depths. We have only
reported the unrolling depths of the decision variables (dec). However, the same
kind of increasing tendency also occurs for the resolving variables (res), and the
variables in the learnt clause (learnt), with very similar scatter plots.

As a conclusion, we show here a general behavior of CDCL solvers over
BMC benchmarks: all the efforts of the solver (variable decisions, clause analy-
sis / resolution, clause learning) is moving to larger unrolling dephts along the
computation. This results cast a new light on previous observations [25] made on
the evolution of the centrality of variables in different parts of the solver engine
in the general case.

4.2 Unrolling Depth and Literal Block Distance

In [21], it was shown that the LBD measure correlates with the number of
communities in SAT instances, in a majority of the cases. Here, we want to
know how the LBD measure correlates with the unrolling depth of the variables of
BMC formulas. The Fig. 1 shown in Sect. 3 suggests that communities are defined
on a small number of successive unrolling iterations. We have tested a large
number of hypotheses about the correlation between the LBD of a clause and
the information of the high-level problem its variables encode (i.e., the unrolling
depth they belong to). Interestingly, the highest correlation we found relates
LBD with the (max − min) measure. This is, the maximum depth minus the
minimum depth of the variables of each learnt clause. We can represent this
relation using a heatmap for every problem. In Fig. 3, we represent one of the
most striking ones. There is clearly a relationship between these two values.

However, such a strong visual relationship does not occur in all formulas, even
if we observed it in the immense majority of the cases. In order to summarize
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Fig. 3. Heatmap showing the correlation between LBD values of clauses and the (max−
min) value of the unrolling depths of its variables. The pearson correlation is only 0.315
on this example, showing that even small values are already good indicators for a good
correlation on our set of problems.

Fig. 4. CDF of pearson correlation coefficient of LBD against (max−min) of unrolling
depth. We also show the pearson coefficient for the sizes of clauses instead of LBD.

all the results, we decided to compute, for each problem, the Pearson correlation
coefficient r between the LBD and the value of (max−min) of all learnt clauses.
Of course this correlation will not be perfect: the Pearson coefficient measures
the correlation between two lines, and we immediately see in Fig. 3 that, even if
we observe a clear tendency, the cloud of points are dispersed around a line. The
Pearson coefficient here will just indicates the general tendency of the cloud,



76 G. Baud-Berthier et al.

and we typically cannot expect values greater than 0.5 on this kind of clouds. In
Fig. 4, we represent the cumulative distribution function of r. We also report on
the same Figure the CDF of the Pearson coefficients using sizes of clauses instead
of LBD. Our results show that, in most of the cases, the Pearson coefficient is
sufficiently high to indicates that these two values are related in most of the
cases. However, this correlation could be a simple artifact due to the length of
the learnt clause. In particular, a larger clause can have, in general, a larger
number of different decision levels, and as a consquence, a larger number of
different unrolling iterations, thus increasing the (max−min) measure as a side
effect. We test this hypothesis, and show the results on the same Fig. 4. It can
be observed that the CDF of the Pearson correlation coefficient for the clause
size (instead of the LBD) shows a much weaker correlation, suggesting that the
LBD correlation is not due to a simple syntactical artifact. These results suggest
that LBD is indeed a good metric, which is able to capture an existing structure
of the high-level problem which possibly makes the solver to exploit it.

As a conclusion, we show that, in the majority of the cases, the LBD measure
is related to the max-min unrolling depth of clauses.

4.3 On the Relation Between Decisions, Resolutions and Learning
During Solver Search

In this section, we report an interesting and surprising phenomenon we observed,
for which, unfortunately, we do not currently have a final explanation.

Let us now focus on the (max − min) value of unrolling iterations for the
set of decision variables (dec), resolutions variables (res), and variables in the
learnt clause (learnt). Based on our observations, we conjecture now that dec
has the smallest (max − min) value, whilst res has the highest one. This is:

(max − min)dec ≤ (max − min)learnt ≤ (max − min)res

In Fig. 5, we represent the percentage of samples for which this relation holds.
Notice that for each formula, we have to analyze as many samples as learnt
clauses. Thus, for reducing the computational effort, we aggregated some data
to reduce the number of samples to treat, by taking their average every 10,000
conflicts.

It can be observed that the previous relation occurs in an immense majority of
the analyzed samples. Decisions variables links fewer unrolling iterations than
the variables in the learnt clauses, which relate less unrolling iterations than
resolution variables. The CDF plot is clearly showing that this hypothesis holds
for almost all the samples we measured. This result is also surprising because
variables from dec are chosen thanks to VSIDS, which bumps variables from res
and learnt. Measuring a significant difference between these sets indicates that
a strong mechanism is at work.

This phenomenon is possibly due to variable dependencies w.r.t unit prop-
agations, which tends to imply variables of smaller/larger unrolling iterations
as the solver goes deeper in the search tree. However, we have not been able
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Fig. 5. CDF of the percentage of samples s.t. (max−min)dec ≤ (max−min)learnt ≤
(max − min)res (left Y-axis). We also report the CDF of the number of samples per
problem (right Y-axis).

to simply link this to the high-level BMC problem. We also make the hypoth-
esis that if the analysis is done on a greater number of unrolling depths, only
a restricted set of iterations is bumped more often, allowing the solver to focus
on a restricted set of iterations only. This means that, even if unit propagation
tends to propagate variables in the next unrolling iterations (which is a reason-
able hypothesis), only a few variables are more often bumped. These variables
tends to be localized near the top decision variables of the current search tree.

4.4 On the Relation Between Variable Unrolling Depths
and Variable Eliminations

The classical preprocessing used in Minisat, and hence in Glucose as well, is
essentially built on top of the Variable Elimination (VE) principle [8]. Variable
Elimination is crucial for many SAT problems, and particularly for BMC ones.
On a typical BMC problem, hundreds of thousands variables can be eliminated.
More precisely, the preprocessor orders the variables according to the (current)
product of their positive and negative occurrences in the formula, thus trying
to eliminate variables that will limit the combinatorial explosion first. Then, a
variable is eliminated only if it does not increase the formula size too much (i.e.,
no more clause after the elimination, and no clause larger than a constant in the
resolvents). We want to check here where the preprocessing is working. Our initial
hypothesis is that in most of the cases, variables are eliminated inside a single
unrolling depth. We thus build the following experimentation. We measure, for
each eliminated variable, the maximal depth of the variables occurring in the set
of all produced clauses (by the cross product) minus their minimal depth. Thus,
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Fig. 6. CDF of the percentage of eliminated variables within the same depth, at dis-
tance 1, 2, ... The number of eliminated variable within the same depth is taken as a
reference for scaling all the problems.

a (max − min) value 0 means that eliminating a variable does not add any link
between two unrolled depths.

In Fig. 6, we represent the results. This plot can be read as follows. On
approximately 50 problems (where the blue curve representing (max−min) = 1
crosses the red curve representing (max − min) = 0) there are more eliminated
variables inside a single unrolling iteration than connecting two of them. We can
see that on almost all the problems, there are only very few variable eliminations
that involve a large (max − min) value of depths. It is however surprising to
see that some problems involve the elimination of a larger set of variables not
strictly within the same community (i.e., when the blue curve is above the red
line). We think that an interesting mechanism may be at work here and fur-
ther investigations on the role of these variables may be important. However,
in general, the elimination of the variable chosen by the classical preprocessing
heuristic only involves clauses of very limited (max − min) values, as expected.

5 Discussions About Improving SAT Solvers

We strongly believe that a better understanding of what CDCL solvers are doing,
and how they are doing that is needed by the community for improving SAT
solving. Given the observations we made in this paper, we naturally tried a
number of Glucose hacks in order to try to exploit the unrolling iterations of
variables. However, until now, our attempts were at least partially unsuccessful.
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5.1 Shifting Variables Scores

We tried, at each restart triggered by the solver, to force it to branch more
deeper (or shallower) in the formula. For this, during the first descent right after
a restart, we modified the variable picking heuristics as follows: each time a
variable was picked, we took the same variable (1) one time step after, (2) on
the last time step, (3) one time step before, (4) on the first time step. What we
observed is that only the hack (2) was competitive with the original Glucose (it
solved the same amount of problems). All the other versions were degrading the
performances.

5.2 Scoring Clauses w.r.t. Max-Min of Unrolling Iterations

Of course, because of the clear relationship of LBD and the (max − min)
of unrolling iterations of variables, we tried to change Glucose clause scoring
scheme. Instead of the LBD, we simply used this (max − min) metric. We how-
ever observed a small degradation of its performance. Further experiments are
needed here, essentially because the LBD mechanism is important in Glucose
for scoring the clauses, but also for triggering restarts.

5.3 Forcing Variable Elimination According to Their Unrolling
Iterations

We also tried to change the order of variable eliminations during the preprocess-
ing step [8]. In our attempt, we first eliminate all the variables from within a
single time step: when the cross product does not produce any clause with vari-
able from different unrolling iterations. Then, variable elimination is allowed to
produce clauses containing variables from two successive time steps. Then 3, 4, ...
time steps. We observed, as expected, that almost all the variable eliminations
are done during the first round (all clauses are generated within the same time
step), even if other variables are eliminated in the other rounds. From a perfor-
mance point of view, these versions show a slightly degradation of performance.

5.4 Further Possible Ways of Improvements

Despite the disappointing experimental improvements we reported above, we
strongly believe that our work can lead to a significant improvement of SAT
solvers over BMC problems. Our work advocates for a better specialization of
SAT solvers. For instance, it may probably be possible to use the notion of
variables time steps to estimate the progress of the solver along its computation.
We are also thinking of using this knowledge for a better parallelization of SAT
solvers, for instance, by splitting the search on deeper variables only.
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6 Conclusions

Despite the empirical success of SAT solvers, they lack from a simple explanation
supporting the observed performances. One intriguing question is why they are
more efficient, at the CNF level, than adhoc approaches that can access to higher
level semantic information. In our study, we focus on the historical success appli-
cation of SAT solvers, i.e., Bounded Model Checking. We show that community
structures, identified a few years ago in most of the SAT formulas encoding
real-world problems, are not a trivial artifact due to the circuit unrolling when
encoding BMC problems. Our work is an important effort for a SAT solver exper-
imental study. We report evidences that the community structure identified in
previous works, and well captured by current SAT solvers, is unveiling a struc-
ture that arise when unrolling the circuit only (on our set of BMC problems).
This is an interesting finding, that answers open questions about the origin of
communities. We also show that the proof built by the SAT solver, approximated
in our study by the set of all learnt clauses is evolving along the computation,
producing clauses of higher unrolling depths at the latest stages of the search,
rather than at the beginning of the execution.

We plan to extend our work in many ways. First, we would like to study
the semantic of SAT formulas in other domains, like CSP benchmarks encoding
planning or scheduling problems, or cryptographic formulas. In all these cases,
we think that working on benchmark structures could help SAT solver designers
to specialize their solvers to some important applications. We could also expect
that CSP solvers could benefit from an expertise of how SAT solvers are working
on the underlying SAT formula representing such CSP problems. In particular,
this may be useful to refine the heuristic used to solve such instances. Second,
we would like to test whether SAT solvers could benefit from the unrolling depth
information for BMC problems. We particularly think of studying the unsatisfi-
able proof in order to work on a better parallelization of SAT solvers specialized
for BMC problems.
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Abstract. The presence of symmetry in Boolean satisfiability (SAT)
problem instances often poses challenges to solvers. Currently, the most
effective approach to handle symmetry is by static symmetry breaking,
which generates asymmetric constraints to add to the instance. An alter-
native way is to handle symmetry dynamically during solving. As modern
SAT solvers can be viewed as propositional proof generators, adding a
symmetry rule in a solver’s proof system would be a straightforward
technique to handle symmetry dynamically. However, none of these pro-
posed symmetrical learning techniques are competitive to static symme-
try breaking. In this paper, we present symmetric explanation learning,
a form of symmetrical learning based on learning symmetric images of
explanation clauses for unit propagations performed during search. A key
idea is that these symmetric clauses are only learned when they would
restrict the current search state, i.e., when they are unit or conflicting.
We further provide a theoretical discussion on symmetric explanation
learning and a working implementation in a state-of-the-art SAT solver.
We also present extensive experimental results indicating that symmetric
explanation learning is the first symmetrical learning scheme competitive
with static symmetry breaking.

Keywords: Boolean satisfiability · Symmetry · Proof theory ·
Symmetric learning · Dynamic symmetry breaking

1 Introduction

Hard combinatorial problems often exhibit symmetry. When these symmetries
are not taken into account, solvers are often needlessly exploring isomorphic
parts of a search space. Hence, we need methods to handle symmetries that
improve solver performance on symmetric instances.

One common method to eliminate symmetries is to add symmetry breaking
formulas to the problem specification [1,10], which is called static symmetry
breaking. For the Boolean satisfiability problem (SAT), the tools Shatter [3]
and BreakID [14] implement this technique; they function as a preprocessor
that can be used with any SAT solver.
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Dynamic symmetry handling, on the other hand, interferes in the search
process itself. For SAT, dynamic symmetry handling has taken on many forms.
Early work on this topic dynamically detects symmetry after failing a search
branch to avoid failing symmetrical search branches, using an incomplete symme-
try detection strategy [7]. Next, dynamic symmetry breaking posts and retracts
symmetry breaking formulas during search, dynamically detecting symmetry
with graph automorphism techniques [5].

A more principled approach is implemented by SymChaff, a structure-aware
SAT solver [29]. Next to a conjunctive normal form (CNF) theory, SymChaff
assumes as input a special type of symmetry, structuring the Boolean variables
from the theory in so-called k-complete m-classes. This structure is then used
to branch over a subset of variables from the same class instead of over a single
variable, allowing the solver to avoid assignments symmetric to these variables.

Arguably, the most studied dynamic symmetry handling approach is sym-
metrical learning, which allows a SAT solver to learn symmetrical clauses when
constructing an unsatisfiability proof. The idea is that SAT solvers do not only
search for a satisfying assignment, but simultaneously try to prove that none
exists. For this, their theoretical underpinning is the propositional resolution
proof system [28], which lets a SAT solver learn only those clauses that are
resolvents of given or previously learned clauses. A SAT solver’s proof system
provides upper bounds on the effectiveness of SAT solvers when solving unsat-
isfiable instances. For instance, for encodings of the pigeonhole principle, no
polynomial resolution proofs exist [19], and hence, a SAT solver cannot solve
such encodings efficiently.

However, if one were to add a rule that under a symmetry argument, a
symmetrical clause may be learned, then short proofs for problems such as the
pigeonhole encoding exist [23]. As with the resolution rule, the central question
for systems that allow the symmetry argument rule then becomes what selec-
tion of symmetrical clauses to learn, as learning all of them is infeasible [20]
(nonetheless, some have experimented with learning all symmetrical clauses in
a SAT solver [30]). The symmetrical learning scheme (SLS) only learns the
symmetrical images of clauses learned by resolution, under some small set of
generators of a given symmetry group [6]. Alternatively, symmetry propagation
(SP) learns a symmetrical clause if it is guaranteed to propagate a new literal
immediately [15]. Finally, for the graph coloring problem, symmetry-handling
clauses can be learned based on Zykov contraction [20]. Unfortunately, none of
these are competitive to state-of-the-art static symmetry breaking for SAT, as
we will show with extensive experiments.

Symmetrical learning, as discussed in the previous paragraph differs signif-
icantly from the other methods discussed. These other methods all prune the
search tree in a satisfiability-preserving way, but possibly also prune out mod-
els, for instance by adding symmetry breaking clauses or by not considering all
possible choices at a given choice point. As such, they change the set of models
of the theory, hence why we call them symmetry breaking. Symmetrical learn-
ing exploits symmetry in another way: if unsatisfiabilty of a certain branch of
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the search tree is concluded, it manages to learn that symmetrical parts of the
search tree are also unsatisfiable; all clauses learned by symmetrical learning are
consequences of the original specification. Hence, it never eliminates any models:
symmetries are not broken, but merely exploited.

In this paper, we propose a new approach to symmetrical learning – sym-
metric explanation learning (SEL) – that improves upon our earlier work on
symmetry propagation [15]. SEL’s central idea is to learn a symmetric image
of a clause only if (i) the clause is an explanation for a unit propagated literal
and if (ii) the symmetric image itself is either unit or conflicting. In short, (i)
limits the number of symmetric images under investigation to a manageable set,
and (ii) guarantees that any learned symmetric clause is useful – it restricts the
search state – at least once.

We experimentally validate this algorithm and conclude that SEL is the first
dynamic symmetry exploitation approach to successfully implement a symmetric
learning scheme. It performs on-par with the award winning static symmetry
breaking tool BreakID [14] and outperforms previous symmetrical learning
algorithms such as SLS [6] and SP [15].

The rest of this paper is structured as follows. In Sect. 2 we recall some
preliminaries on symmetry and satisfiability solving. Afterwards, we introduce
our new algorithm in Sect. 3 and compare it to related work in Sect. 4. We present
experimental results in Sect. 5 and conclude in Sect. 6.

2 Preliminaries

Satisfiability problem. Let Σ be a set of Boolean variables and B = {t, f} the
set of Boolean values denoting true and false respectively. For each x ∈ Σ,
there exist two literals; the positive literal denoted by x and the negative literal
denoted by ¬x. The negation ¬(¬x) of a negative literal ¬x is the positive literal
x, and vice versa. The set of all literals over Σ is denoted Σ. A clause is a finite
disjunction of literals (l1∨. . .∨ln) and a formula is a finite conjunction of clauses
(c1∧ . . .∧cm). By this definition, we implicitly assume a formula is an expression
in conjunctive normal form (CNF).

A (partial) assignment is a set of literals (α ⊂ Σ) such that α contains at
most one literal over each variable in Σ. Under assignment α, a literal l is said
to be true if l ∈ α, false if ¬l ∈ α, and unknown otherwise. An assignment α
satisfies a clause c if it contains at least one true literal under α. An assignment
α satisfies a formula ϕ, denoted α |= ϕ, if α satisfies each clause in ϕ. If α |= ϕ,
we also say that ϕ holds in α. A formula is satisfiable if an assignment exists
that satisfies it, and is unsatisfiable otherwise. The Boolean satisfiability (SAT)
problem consists of deciding whether a formula is satisfiable. Two formulas are
equisatisfiable if both are satisfiable or both are unsatisfiable.

An assignment α is complete if it contains exactly one literal over each vari-
able in Σ. A formula ψ (resp. clause c) is a logical consequence of a formula ϕ,
denoted ϕ |= ψ (resp. ϕ |= c), if for all complete assignments α satisfying ϕ, α
satisfies ψ (resp. α satisfies c). Two formulas are logically equivalent if each is a
logical consequence of the other.
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A clause c is a unit clause under assignment α if all but one literals in c are
false. A clause c is a conflict clause (or conflicting) under α if all literals in c are
false.

We often consider a formula ϕ in the context of some assignment α. For this,
we introduce the notion of ϕ under α, denoted as ϕ ↓ α, which is the formula
obtained by conjoining ϕ with a unit clause (l) for each literal l ∈ α. Formally,
ϕ ↓ α is the formula

ϕ ∧
∧

l∈α

l

Symmetry in SAT. Let π be a permutation of a set of literals Σ. We extend π to
clauses: π(l1∨ . . .∨ ln) = π(l1)∨ . . .∨π(ln), to formulas: π(c1∧ . . .∧cn) = π(c1)∧
. . . ∧ π(cn), and to assignments: π(α) = {π(l) | l ∈ α}. We write permutations
in cycle notation. For example, (a b c)(¬a ¬b ¬c)(¬d d) is the permutation that
maps a to b, b to c, c to a, ¬a to ¬b, ¬b to ¬c, ¬c to ¬a, swaps d with ¬d, and
maps any other literals to themselves.

Permutations form algebraic groups under the composition relation (◦). A
set of permutations P is a set of generators for a permutation group G if each
permutation in G is a composition of permutations from P. The group Grp(P)
is the permutation group generated by all compositions of permutations in P.
The orbit OrbG(x) of a literal or clause x under a permutation group G is the
set {π(x) | π ∈ G}.

A symmetry π of a propositional formula ϕ over Σ is a permutation over Σ
that preserves satisfaction to ϕ; i.e., α |= ϕ iff π(α) |= ϕ.

A permutation π of Σ is a symmetry of a propositional formula ϕ over Σ if
the following sufficient syntactic condition is met:

– π commutes with negation: π(¬l) = ¬π(l) for all l ∈ Σ, and
– π fixes the formula: π(ϕ) = ϕ.

It is easy to see that these two conditions guarantee that π maps assignments
to assignments, preserving satisfaction to ϕ.

Typically, only this syntactical type of symmetry is exploited, since it can be
detected with relative ease. One first converts a formula ϕ over variables Σ to a
colored graph such that any automorphism – a permutation of a graph’s nodes
that maps the graph onto itself – of the graph corresponds to a permutation of
Σ that commutes with negation and that fixes the formula. Next, the graph’s
automorphism group is detected by tools such as nauty [25], Saucy [22] or
bliss [21], and is translated back to a symmetry group of ϕ.

The technique we present in this paper works for all kinds of symmetries,
syntactical and others. However, our implementations use BreakID for symme-
try detection, which only detects a syntactical symmetry group by the method
described above.

2.1 Conflict Driven Clause Learning SAT Solvers

We briefly recall some of the characteristics of modern conflict driven clause
learning SAT (CDCL) solvers [24].
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A CDCL solver takes as input a formula ϕ over a set of Boolean variables
Σ. As output, it returns an (often complete) assignment satisfying ϕ, or reports
that none exists.

Internally, a CDCL solver keeps track of a partial assignment α – called the
current assignment – which initially is empty. At each search step, the solver
chooses a variable x for which the current assignment α does not yet contain a
literal, and adds either the positive literal x or the negative literal ¬x to α. The
added literal is now a choice literal, and may result in some clauses becoming unit
clauses under the refined current assignment. This prompts a unit propagation
phase, where for all unknown literals l occurring in a unit clause, the current
assignment is extended with l. Such literals are propagated literals; we refer to
the unit clause that initiated l’s unit propagation as l’s explanation clause. If no
more unit clauses remain under the resulting assignment, the unit propagation
phase ends, and a new search step starts by deciding on a next choice literal.

During unit propagation, a clause c can become conflicting when another
clause propagates the last unknown literal l of c to false. At this moment, a CDCL
solver will construct a learned clause by investigating the explanation clauses
for the unit propagations leading to the conflict clause. This learned clause c
is a logical consequence of the input formula, and using c in unit propagation
prevents the conflict from occurring again after a backjump.1 We refer to the set
of learned clauses of a CDCL solver as the learned clause store Δ.

Formally, we characterize the state of a CDCL solver solving a formula ϕ by
a quadruple (α, γ,Δ, E), where

– α is the current assignment,
– γ ⊆ α is the set of choice literals – the set of literals α \ γ are known as
propagated literals,

– Δ is the learned clause store,
– E is a function mapping the propagated literals l ∈ α \ γ to their explanation

clause E(l), which can be either a clause from the input formula ϕ or from
the learned clause store Δ.

During the search process, the invariant holds that the current assignment is
a logical consequence of the decision literals, given the input formula. Formally:

ϕ ↓ γ |= ϕ ↓ α.

Secondly, the learned clauses are logical consequences of the input formula:

ϕ |= c for each c ∈ Δ.

3 Symmetric Explanation Learning

From the definition of symmetry, the following proposition easily follows:
1 Backjumping is a generalization of the more classical backtracking over choices in

combinatorial solvers.
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Proposition 1. Let ϕ be a propositional formula, π a symmetry of ϕ, and c a
clause. If ϕ |= c, then also ϕ |= π(c).

Proof. If ϕ |= c then π(ϕ) |= π(c), as π renames the literals in formulas and
clauses. Symmetries preserve models, hence π(ϕ) is logically equivalent to ϕ,
hence ϕ |= π(c).

Since learned clauses are always logical consequences of the input formula,
every time a CDCL solver learns a clause c, one may apply Proposition 1 and
add π(c) as a learned clause for every symmetry π of some symmetry group of G.
This is called symmetrical learning, which extends the resolution proof system
underpinning a SAT solver’s learning technology with a symmetry rule.

Symmetrical learning can be used as a symmetry handling tool for SAT:
because every learned clause prevents the solver from encountering a certain
conflict, the orbit of this clause under the symmetry group will prevent the
encounter of all symmetrical conflicts, resulting in a solver never visiting two
symmetrical parts of the search space.

However, since the size of permutation groups can grow exponentially in the
number of permuted elements, learning all possible symmetrical clauses will in
most cases add too many symmetrical clauses to the formula to be of practical
use. Symmetrical learning approaches need to limit the amount of symmetrical
learned clauses [20].

Given a set of input symmetries P, the idea behind symmetric explanation
learning (SEL) is to aim at learning symmetrical variants of learned clauses
on the moment these variants propagate. A naive way to obtain this behav-
iour would be to check at each propagation phase for each clause c ∈ Δ and
each symmetry π ∈ P whether π(c) is a unit clause. Such an approach would
have an unsurmountable overhead. Therefore, we implemented SEL using two
optimizations.

The first is that we make a selection of “interesting” clauses: the symmetrical
variants of clauses in Δ that are explanation clauses of some propagation in
the current search state. The intuition is that an explanation clause c contains
mostly false literals, so, assuming that the number of literals permuted by some
symmetry π is much smaller than the total number of literals in the formula,
π(c) has a good chance of containing the same mostly false literals.

Secondly, we store those promising symmetrical variants in a separate sym-
metrical learned clause store Θ. Clauses in this store are handled similar to
clauses in Δ, with the following differences:

1. propagation with Δ is always prioritized over propagation with Θ,
2. whenever a clause in Θ propagates, it is added to Δ,
3. whenever the solver backjumps over a propagation of a literal l, all symmet-

rical clauses π(E(l)) are removed from Θ.

The first two points ensure that no duplicate clauses will ever be added to Δ
without the need for checking for duplicates. Indeed, by prioritizing propagation
with Δ, a clause in Θ can only propagate if it is not a part of Δ yet. The third
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point guarantees that Θ contains only symmetrical variants of clauses that have
shown to be relevant in the current branch of the search tree.

On a technical note, Θ contains clauses π(E(l)) from the moment l is prop-
agated until a backjump unassigns l. As a result, it is useless to add π(E(l)) to
Θ if it is satisfied at the moment l is propagated, as it will never become an
unsatisfied unit clause before backjumping over l. Similarly, it is not necessary
to store any literals of π(E(l)) that are false at the moment l is propagated,
as these will not change status before backjumping over l. To combat this, Θ
contains an approximation π(E(l))∗ of π(E(l)), which excludes any literals that
are false at the moment l is propagated. If π(E(l))∗ ever becomes unit, so does
π(E(l)). At this point, we recover the original clause π(E(l)) from some stored
reference to π and l, by simply applying π to E(l) again. Additionally, before
adding a unit π(E(l)) as a learned clause to Δ, our implementation performs
a self-subsumption clause simplification step, as this is a simple optimization
leading to stronger learned clauses [31].

Finally, keeping track of unit clauses in Θ during refinement of the current
assignment is efficiently done by the well-known two-watched literal scheme [27].

We give pseudocode for SEL’s behavior during a CDCL solver’s propagation
phase in Algorithm 1.

data: a formula ϕ, a set of symmetries P of ϕ, a partial assignment α, a set of
learned clauses Δ, an explanation function E , a set of symmetrical
explanation clauses Θ

1 repeat
2 foreach unsatisfied unit clause c in ϕ or Δ do
3 let l be the unassigned literal in c;
4 add l to α;
5 set c as E(l);
6 foreach symmetry π in P do
7 if π(E(l)) is not yet satisfied by α then
8 add the approximation π(E(l))∗ to Θ;
9 end

10 end

11 end
12 if an unsatisfied unit clause π(E(l))∗ in Θ exists then
13 add the self-subsumed simplification of π(E(l)) to Δ;
14 end

15 until no new literals have been propagated or a conflict has occurred ;
Algorithm 1. propagation phase of a CDCL solver using SEL

Example 1 presents a unit propagation phase with the SEL technique.

Example 1. Let a CDCL solver have a state (α, γ,Δ, E) with current assignment
α = ∅, choice γ = ∅, learned clause store Δ = {(a∨b), (¬c∨d∨e)} and explanation
function E the empty function. Let π = (a c)(¬a ¬c)(b d)(¬b ¬d) be a syntactical
symmetry of the input formula ϕ, and assume for the following exposition that
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no propagation happens from clauses in ϕ. As the current assignment is currently
empty, the symmetrical learned clause store Θ is empty as well.

Suppose the CDCL algorithm chooses ¬a, so α = γ = {¬a}. During unit
propagation, the CDCL algorithm propagates b, so α = {¬a, b}, γ = {¬a} and
E(b) = a ∨ b. By Algorithm 1, SEL adds π(E(b)) = c ∨ d to Θ, so Θ = {c ∨ d}.
No further unit propagation is possible, and c ∨ d is not unit or conflicting, so
the solver enters a new decision phase.

We let the solver choose ¬d, so α = {¬a, b,¬d}, γ = {¬a,¬d}. Still, no unit
propagation on clauses from ϕ or from the learned clause store Δ is possible.
However, c ∨ d in Θ is unit, so SEL adds c ∨ d to Δ.

Now unit propagation is reinitiated, leading to the propagation of c with
reason E(c) = c ∨ d and e with reason E(e) = ¬c ∨ d ∨ e, so α = {¬a, b,¬d, c, e}.
As both π(E(c)) = a∨ b and π(E(e)) = ¬a∨d∨ e are satisfied by α, they are not
added to Θ. No further propagation is possible, ending the propagation loop. �

Note that if a symmetry π is a syntactic symmetry of a formula ϕ, SEL will
never learn a symmetrical clause π(c) from a clause c ∈ ϕ, as π(c) ∈ ϕ already,
and has propagation priority on any other π(c) constructed by SEL. Moreover,
due to technical optimizations, π(c) will not even be constructed by SEL, as it
is satisfied due to unit propagation from ϕ’s clauses. From another perspective,
any clause learned by SEL is the symmetrical image of some previously learned
clause.

Also note that SEL is able to learn symmetrical clauses of symmetry compo-
sitions π′ ◦ π, with π and π′ two symmetries of the input formula. This happens
when at a certain point, c is an explanation clause and π(c) an unsatisfied unit
clause, and at some later moment during search, π(c) is an explanation clause
and π′(π(c)) an unsatisfied unit clause.

3.1 Complexity of SEL

Assuming a two-watched literal implementation for checking the symmetrical
clause store Θ on conflict or unit clauses, the computationally most intensive
step for SEL is filling Θ with symmetrical explanation clauses during unit prop-
agation. Worst case, for each propagated literal l, SEL constructs π(E(l)) for
each π in the set of input symmetries P. Assuming k to be the size of the largest
clause in ϕ or Δ, this incurs a polynomial O(|P|k) time overhead at each propa-
gation. As for memory overhead, SEL must maintain a symmetrical clause store
containing O(|P||α|) clauses, with α the solver’s current assignment.

Of course, as with any symmetrical learning approach, SEL might flood the
learned clause store with many symmetrical clauses. In effect, as only symmet-
rical explanation clauses are added to the learned clause store if they propagate
or are conflicting, an upper bound on the number of symmetrical clauses added
is the number of propagations performed by the solver, which can be huge.
Aggressive learned clause store cleaning strategies might be required to main-
tain efficiency.
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4 Related Work

In this section, we describe the relation of SEL and symmetric learning to other
SAT solving techniques from literature.

4.1 SEL and SLS

One proposed way to restrict the number of clauses generated by symmetrical
learning is the symmetrical learning scheme (SLS) [6]. Given an input set of
symmetries P, SLS only learns π(c) for each π ∈ P, and for each clause c
learned by resolution after a conflict. If c contains only one literal, the set of
symmetrical learned clauses from c is extended to the orbit of c under the group
generated by P.

A disadvantage of SLS is that not all symmetrical learned clauses are guar-
anteed to contribute to the search by propagating a literal at least once. This
might result in lots of useless clauses being learned, which do not actively avoid
a symmetrical part of the search space. It also is possible that some clauses
learned by this scheme already belong to the set of learned clauses, since most
SAT solvers do not perform an expensive check for duplicate learned clauses.

In Sect. 5, we give experimental results with an implementation of SLS.

4.2 SEL and SP

Another way to restrict the number of learned symmetrical clauses is given by
symmetry propagation (SP) [15]. SP also learns symmetrical clauses only when
they are unit or conflicting, but it uses the notion of weak activity to derive
which symmetrical clauses it will learn.

Definition 1. Let ϕ be a formula and (α, γ,Δ, E) the state of a CDCL solver.
A symmetry π of ϕ is weakly active for assignment α and choice literals γ if
π(γ) ⊆ α.

Weak activity is a is a refinement of activity ; the latter is a technique used in
dynamic symmetry handling approaches for constraint programming [18,26].

Now, if a symmetry π of a formula ϕ is weakly active in the current solver
state (α, γ,Δ, E), then SP’s implementation guarantees that for propagated lit-
erals l ∈ α \ γ, π(E(l)) is unit [15]. Then, SP adds any unsatisfied unit clauses
π(E(l)) to the learned clause store, and uses these to propagate π(l).2

As SEL checks whether π(E(l)) is unit for any input symmetry π, regardless
of whether π is weakly active or not, SEL detects at least as many symmetri-
cal clauses that are unit and unsatisfied as SP. Note that in Example 1, after
making the choice ¬a, π is not weakly active, as ¬a ∈ α but π(¬a) = ¬c 
∈ α.
2 SP focuses its presentation on propagating symmetrical literals π(l) for weakly active

symmetries, hence the name symmetry propagation. We present SP from a sym-
metrical learning point of view, using the fact that SP employs π(E(l)) as a valid
explanation clause for π(l)’s propagation.
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Furthermore, after propagation of b and making the choice ¬d, SEL does learn
the symmetrical explanation clause π(E(b)) = (c ∨ d), propagating π(a) = c in
the process. This shows that SEL learns strictly more symmetrical clauses, per-
forms more propagation than SP, and closes an increasing number of symmetrical
search branches over time.

4.3 Compatibility of Symmetrical Learning and Preprocessing
Techniques

As modern SAT solvers employ several preprocessing techniques [8] to transform
an input formula ϕ to a smaller, hopefully easier, equisatisfiable formula ϕ′, we
should argue the soundness of SEL combined with those techniques. We do this
by giving a sufficient condition of the preprocessed formula for which symmetrical
learning remains a sound extension of a SAT solver’s proof system.

Theorem 1. Let ϕ and ϕ′ be two formulas over vocabulary Σ, and let π be a
symmetry of ϕ. Also, let ϕ′ be

1. a logical consequence of ϕ and
2. equisatisfiable to ϕ.

If clause c is a logical consequence of ϕ then ϕ′ ∧ π(c) is

1. a logical consequence of ϕ and
2. equisatisfiable to ϕ.

Proof. As c is a logical consequence of ϕ, π(c) is as well, by Proposition 1. Hence,
ϕ′ ∧ π(c) remains a logical consequence of ϕ, since both ϕ′ and π(c) hold in all
models of ϕ, proving 1.

This also means that any satisfying assignment to ϕ is a satisfying assignment
to ϕ′ ∧ π(c), so if ϕ is satisfiable, ϕ′ ∧ π(c) is satisfiable too. As the addition of
an extra clause to a formula only reduces the number of satisfying assignments,
if ϕ′ is unsatisfiable, ϕ′ ∧π(c) is unsatisfiable too. Since ϕ′ is equisatisfiable with
ϕ, ϕ′ ∧ π(c) is unsatisfiable if ϕ is unsatisfiable. This proves 2.

Corollary 1. Let ϕ be a formula and π be a symmetry of ϕ. Symmetrical learn-
ing with symmetry π is sound for CDCL SAT solvers over a preprocessed formula
ϕ′ if ϕ′ is a logical consequence of ϕ and if ϕ′ is equisatisfiable to ϕ.

Proof. Any clause c learned by resolution or symmetry application on clauses
from ϕ′ or logical consequences of ϕ is a logical consequence of ϕ. Hence, by
Theorem 1, it is sound to learn the symmetrical clause π(c) when solving for ϕ′.

In other words, if a preprocessing technique satisfies the conditions from
Theorem 1, it is sound to symmetrically learn clauses in a CDCL SAT solver, as
is done by the SEL algorithm.

This is not a trivial, but also not a strict requirement. For instance, common
variable and clause elimination techniques based pioneered by SatELite [16]
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and still employed by i.a. Glucose satisfy this requirement. One exception,
ironically, is static symmetry breaking, as the added symmetry breaking clauses
are not logical consequences of the original formula. Also, a preprocessing tech-
nique that introduces new variables does not satisfy the above requirements, and
risks to combine unsoundly with symmetrical learning.

4.4 Symmetrical Learning Does Not Break Symmetry

The earliest techniques to handle symmetry constructed formulas that removed
symmetrical solutions from a problem specification, a process that breaks the
symmetry in the original problem specification. Ever since, handling symmetry
seems to have become eponymous with breaking it, even though a symmetrical
learning based technique such as SEL only infers logical consequences of a for-
mula, and hence does not a priori remove any solutions. In this paper, we tried
to consistently use the term symmetry handling where appropriate.

An advantage of non-breaking symmetry handling approaches is that it
remains possible for a solver to obtain any solution to the original formula.
For instance, non-breaking symmetry handling approaches such as SEL can be
used to generate solutions to a symmetric formula, which are evaluated under
an asymmetric objective function [2]. Similarly, approaches such as SEL can be
used in a #SAT solver [9].

5 Experiments

In this section, we present experiments gauging SEL’s performance. We imple-
mented SEL in the state-of-the-art SAT solver Glucose 4.0 [4] and made
our implementation available online [12]. Symmetry was detected by running
BreakID, which internally uses Saucy as graph automorphism detector.

All experiments have a 5000 s time limit and a 16 GB memory limit. The
hardware was an Intel Core i5-3570 CPU with 32 GiB of RAM and Ubuntu
14.04 Linux as operating system. Detailed results and benchmark instances have
been made available online3.

We first present a preliminary experiment on row interchangeability – a par-
ticular form of symmetry detected by BreakID – in Subsect. 5.1, and give our
main result in Subsect. 5.2.

5.1 Row Interchangeability

Row interchangeability is a particular form of symmetry where a subset of the
literals are arranged as a matrix with k rows and m columns, and any permu-
tation of the rows induces a symmetry [14]. This type of symmetry is common,
occurring often when objects in some problem domain are interchangeable. For
example, the interchangeability of pigeons in a pigeonhole problem, or the inter-
changeability of colors in a graph coloring problem lead to row interchangeability
3 bitbucket.org/krr/sat symmetry experiments.

https://bitbucket.org/krr/sat_symmetry_experiments
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at the level of a propositional specification. This type of symmetry can be broken
completely by static symmetry breaking formulas of polynomial size, resulting in
exponential search space reduction in e.g. pigeonhole problem specifications [14].

While the dynamic symmetry breaking solver SymChaff specializes in row
interchangeability, it is unclear how SEL (or symmetrical learning in general)
can efficiently handle this type of symmetry. As SEL only supports an input set
of simple symmetries as defined in Sect. 2, we currently use a set of generators
as a representation for a row interchangeability symmetry group. We investigate
two possible representations for a row interchangeability group with k rows:

– a linear representation, containing k − 1 symmetries that swap consecutive
rows, as well as the one symmetry swapping the first and last row.

– a quadratic representation, containing k(k − 1)/2 symmetries that swap any
two rows, including non-consecutive ones.

To experimentally verify the effectiveness of both approaches, we generated
two benchmark sets. The first consists of unsatisfiable pigeonhole formulas,
which assign k pigeons to k−1 holes. We only provided the row interchangeabil-
ity symmetry group stemming from interchangeable pigeons to the symmetry
handling routines. We shuffled the variable order of the formulas, to minimize
lucky guesses by Glucose’s heuristic. The number of pigeons in the instances
ranges between 10 and 100.

The second benchmark set consists of 110 both satisfiable and unsatisfiable
graph coloring problems, where we try to color graphs with k or k − 1 col-
ors, where k is the input graph’s chromatic number4. We only provided the
row interchangeability symmetry group stemming from interchangeable colors
to the symmetry handling routines, ignoring any potential symmetry in the
input graph. Input graphs are taken from Michael Trick’s web page [32].

As a baseline, we use Glucose 4.0 coupled with the static symmetry break-
ing preprocessor BreakID, whose symmetry detection routine is disabled and
only gets to break the row interchangeability groups mentioned previously. The
results for pigeonhole are given in Table 1, and for coloring are given in Table 2.
Solving time needed by BreakID’s symmetry detection is ignored, as this was
always less than 2.1 s, and the same for any approach.

On pigeonhole, the quadratic approach outperforms the linear approach,
solving instances with up to 30 pigeons opposed to only 16 pigeons. However,
even the quadratic approach does not reach the speedup exhibited by BreakID,
easily handling instances with 100 pigeons. On coloring, the quadratic approach
does manage to outperform both the linear approach and BreakID.

Based on this experiment, we default SEL to use a quadratic amount of row-
swapping symmetry generators to represent a row interchangeability symmetry
group.

4 For the few instances where the chromatic number was not known, we made an
educated guess based on the graph’s name.
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Table 1. Solving time in seconds of BreakID and SEL with different generator sets
for pigeonhole interchangeability. A “-” means the time limit of 5000 s was reached.

# pigeons BreakID SEL–quadratic SEL–linear

10 0 0 0.04

11 0 0.06 0.3

12 0 0.15 0.08

13 0 0.93 0.81

14 0 0.01 4.97

15 0 0.03 791.26

16 0 0.04 4766.31

17 0 0.53 -

18 0 0.25 -

19 0 3.73 -

20 0 42.85 -

25 0.01 0.9 -

30 0.02 277.57 -

40 0.05 - -

50 0.13 - -

70 0.41 - -

100 1.47 - -

Table 2. Total number of graph coloring instances solved within 5000 s for BreakID
and SEL with different generator sets for graph coloring interchangeability.

# instances BreakID SEL–quadratic SEL–linear

110 70 87 74

5.2 Evaluation of SEL

We evaluate SEL by comparing the following five solver configurations:

– Glucose: pure Glucose 4.0, without any symmetry detection or handling
routines.

– BreakID: Glucose 4.0 coupled with the BreakID symmetry breaking pre-
processor in its default settings.

– SEL: our implementation of SEL in Glucose 4.0, taking as input the sym-
metries detected by BreakID in its default settings. This includes any row
interchangeability symmetry detected by BreakID, which is interpreted as
a quadratic set of row swapping symmetries.

– SP: the existing implementation of Symmetry propagation [13] in the classic
SAT solver MiniSAT [17], using its optimal configuration [15]. We slightly
extended this implementation to take BreakID’s symmetry output as input,
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and interpreted any row interchangeability symmetry as a quadratic set of
symmetries.

– SLS: our implementation of SLS in Glucose 4.0, taking as input the sym-
metries detected by BreakID in its default settings. This includes any row
interchangeability symmetry detected by BreakID. Contrary to the other
solvers, we interpret interchangeability here as the linear amount of genera-
tors. The reason for this is that we noticed in preliminary testing that SLS
simply couldn’t handle a quadratic number of generators: with this it almost
always ran out of memory.

Our benchmark instances are partitioned in five benchmark sets:

– app14: the application benchmarks of the 2014 SAT competition. 300
instances; BreakID detected some symmetry for 160 of these.

– hard14: the hard-combinatorial benchmarks of the 2014 SAT competition.
300 instances; BreakID detected some symmetry for 107 of these.

– app16: the application benchmarks of the 2016 SAT competition. 299
instances; BreakID detected some symmetry for 131 of these.

– hard16: the hard-combinatorial benchmarks of the 2016 SAT competition.
200 instances; BreakID detected some symmetry for 131 of these.

– highly: an eclectic set of highly symmetric instances collected over the years.
204 instances; BreakID detected some symmetry for 202 of these. Instance
families include graph coloring, pigeonhole, Ramsey theorem, channel routing,
planning, counting, logistics and Urquhart’s problems.

We reiterate that detailed experimental results, benchmark instances and
source code of the employed systems have been made available online [11–13].

Table 3 lists the number of successfully solved instances for each of the five
solver configurations and each of the five benchmark sets. Except for Glucose,
BreakID’s symmetry detection and breaking time are accounted in the total
solving time.

Table 3. Total number of successfully solved instances for each of the five solver
configurations and each of the five benchmark sets.

Benchmark set Glucose BreakID SEL SP SLS

app14 (300/160) 222 220 215 179 187

hard14 (300/107) 174 189 188 172 175

app16 (299/131) 150 151 151 127 141

hard16 (200/131) 52 93 80 48 70

highly (204/202) 106 151 152 151 113

First and foremost, BreakID jumps out of the pack as the best all-around
configuration: performing well on the strongly symmetric highly instances, as
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well as on the more challenging SAT competition instances, of which especially
app14 and app16 feature very large instances.

Second, SEL seems quite competitive. In hard14, app16 and highly, SEL
and BreakID trade blows. Only on hard16, SEL’s performance seems signifi-
cantly inferior to BreakID.

Third, Glucose performs badly on highly, which can be expected given the
strong symmetry properties of those instances. hard16’s low success rate is due
to 35 pigeonhole instances and 38 highly symmetric tseitingrid instances.

Fourth, SP performs very well on highly, but is dead last in all other bench-
mark sets. This might be due to its embedding in the older MiniSAT, or due to
the overhead of keeping track of weakly inactive symmetries.

Finally, SLS is not able to clinch the lead in any of the benchmark sets, and
especially the bad results on highly are surprising for a symmetry exploiting
technique. We conjecture that highly symmetric instances lead to an uncontrolled
symmetrical clause generation, choking SLS’s learned clause store.

For this, it is worth looking at the number of instances where a solver
exceeded the 16 GB memory limit (a memout). These results are given in Table 4.

Table 4. Total number of instances that exceeded the 16GB memory limit.

Benchmark set Glucose BreakID SEL SP SLS

app14 (300/160) 0 0 18 23 41

hard14 (300/107) 0 0 1 1 13

app16 (299/131) 0 0 2 21 47

hard16 (200/131) 0 0 14 0 49

highly (204/202) 0 0 5 3 50

From Table 4, it is clear that all symmetrical learning approaches (SEL, SP,
SLS) struggle with heavy memory consumption. SLS in particular is unable to
solve many symmetrical instances due to memory constraints. SEL on the other
hand, has relatively few memouts, concentrated mainly in the benchmark sets
app14 and hard16 – the same as those were it had to give BreakID the lead.

We conclude that SEL is a viable symmetrical learning, and by extension,
dynamic symmetry handling approach. However, care must be taken that not
too many symmetrical clauses are learned, filling up all available memory.

6 Conclusion

In this paper, we presented symmetric explanation learning (SEL), a form of
symmetrical learning based on learning symmetric images of explanation clauses
for unit propagations performed during search. A key idea is that these symmet-
ric clauses are only learned when they would restrict the current search state,
i.e., when they are unit or conflicting.
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We related SEL to symmetry propagation (SP) and the symmetrical learning
scheme (SLS), and gave a sufficient condition on when symmetrical learning can
be combined with common SAT preprocessing techniques.

We further provided a working implementation of SEL and SLS embed-
ded in Glucose, and experimentally evaluated SEL, SLS, SP, Glucose and
the symmetry breaking preprocessor BreakID on more than 1300 benchmark
instances. Our conclusion is that SEL outperforms other symmetrical learning
approaches, and functions as an effective general purpose dynamic symmetry
handling technique, almost closing the gap with static symmetry breaking.

For future work, we expect that the efficiency of our implementation can still
be improved. Specifically, investigating how to reduce SEL’s memory overhead,
perhaps by aggressive learned clause deletion techniques, has definite potential.

On the theoretical front of symmetrical learning, much work remains to be
done on effectiveness guarantees similar to those provided by complete static
symmetry breaking. Informally, a symmetry breaking formula ψ is complete
for a given symmetry group if no two symmetric solutions satisfy ψ [33]. For
instance, BreakID guarantees that its symmetry breaking formulas are com-
plete for row interchangeability symmetry, resulting in very fast pigeonhole solv-
ing times. Maybe a similar guarantee can be given for some form of symmetrical
learning?
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Abstract. This paper presents a technique for symmetry reduction that
adaptively assigns a prefix of variables in a system of constraints so that
the generated prefix-assignments are pairwise nonisomorphic under the
action of the symmetry group of the system. The technique is based on
McKay’s canonical extension framework [J. Algorithms 26 (1998), no. 2,
306–324]. Among key features of the technique are (i) adaptability—the
prefix sequence can be user-prescribed and truncated for compatibility
with the group of symmetries; (ii) parallelisability—prefix-assignments
can be processed in parallel independently of each other; (iii) versatility—
the method is applicable whenever the group of symmetries can be con-
cisely represented as the automorphism group of a vertex-colored graph;
and (iv) implementability—the method can be implemented relying on
a canonical labeling map for vertex-colored graphs as the only nontrivial
subroutine. To demonstrate the tentative practical applicability of our
technique we have prepared a preliminary implementation and report on
a limited set of experiments that demonstrate ability to reduce symmetry
on hard instances.

1 Introduction

Symmetry Reduction. Systems of constraints often have substantial symmetry.
For example, consider the following system of Boolean clauses:

(x1 ∨ x2) ∧ (x1 ∨ x̄3 ∨ x̄5) ∧ (x2 ∨ x̄4 ∨ x̄6) . (1)

The associative and commutative symmetries of disjunction and conjunc-
tion induce symmetries between the variables of (1), a fact that can be
captured by stating that the group Γ generated by the two permutations
(x1 x2)(x3 x4)(x5 x6) and (x4 x6) consists of all permutations of the variables
that map (1) to itself. That is, Γ is the automorphism group of the system (1),
cf. Sect. 2.

Known symmetry in a constraint system is a great asset from the perspec-
tive of solving the system, in particular since symmetry enables one to disregard
partial solutions that are isomorphic to each other under the action of Γ on the
space of partial solutions. Techniques for such isomorph rejection1 [42] (alterna-
tively, symmetry reduction or symmetry breaking) are essentially mandatory if
1 A term introduced by J.D. Swift [42]; cf. Hall and Knuth [20] for a survey on early

work on exhaustive computer search and combinatorial analysis.
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one desires an exhaustive traversal of the (pairwise nonisomorphic) solutions of
a highly symmetric system of constraints, or if the system is otherwise difficult
to solve, for example, with many “dead-end” partial solutions compared with
the actual number of solutions.

A prerequisite to symmetry reduction is that the symmetries are known. In
many cases it is possible to automatically discover and compute these symme-
tries to enable practical and automatic symmetry reduction. In this context the
dominant computational approach for combinatorial systems of constraints is
to represent Γ via the automorphism group of a vertex-colored graph that cap-
tures the symmetries in the system. Carefully engineered tools for working with
symmetries of vertex-colored graphs [15,27,35,37] and permutation group algo-
rithms [10,40] then enable one to perform symmetry reduction. For example,
for purposes of symmetry computations we may represent (1) as the following
vertex-colored graph:

In particular, the graph representation (2) enables us to discover and reduce
symmetry to avoid redundant work when solving the underlying system (1).

Our Contribution. The objective of this paper is to document a novel technique
for symmetry reduction on systems of constraints. The technique is based on
adaptively assigning values to a prefix of the variables so that the obtained prefix-
assignments are pairwise nonisomorphic under the action of Γ . The technique
can be seen as an instantiation of McKay’s [36] influential canonical extension
framework for isomorph-free exhaustive generation.

To give a brief outline of the technique, suppose we are working with a sys-
tem of constraints over a finite set U of variables that take values in a finite set
R. Suppose furthermore that Γ ≤ Sym(U) is the automorphism group of the
system. Select k distinct variables u1, u2, . . . , uk in U . These k variables form the
prefix sequence considered by the method. The technique works by assigning val-
ues in R to the variables of the prefix, in prefix-sequence order, with u1 assigned
first, then u2, then u3, and so forth, so that at each step the partial assignments
so obtained are pairwise nonisomorphic under the action of Γ . For example, in
(1) the partial assignments x1 �→ 0, x2 �→ 1 and x1 �→ 1, x2 �→ 0 are isomorphic
since (x1 x2)(x3 x4)(x5 x6) ∈ Γ maps one assignment onto the other; in total
there are three nonisomorphic assignments to the prefix x1, x2 in (1), namely (i)
x1 �→ 0, x2 �→ 0, (ii) x1 �→ 0, x2 �→ 1, and (iii) x1 �→ 1, x2 �→ 1. Each partial
assignment that represents an isomorphism class can then be used to reduce
redundant work when solving the underlying system by standard techniques—
in the nonincremental case, the system is augmented with a symmetry-breaking
predicate requiring that one of the nonisomorphic partial assignments holds,
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while in the incremental setting [22,43] the partial assignments can be solved
independently or even in parallel.

Our contribution in this paper lies in how the isomorph rejection is imple-
mented at the level of isomorphism classes of partial assignments by careful
reduction to McKay’s [36] isomorph-free exhaustive generation framework. The
key technical contribution is that we observe how to generate the partial assign-
ments in a normalized form that enables both adaptability (that is, the prefix
u1, u2, . . . , uk can be arbitrarily selected to match the structure of Γ ) and pre-
computation of the extending variable-value orbits along a prefix.

Among further key features of the technique are:

1. Implementability. The technique can be implemented by relying on a canon-
ical labeling map for vertex-colored graphs (cf. [27,35,37]) as the only non-
trivial subroutine that is invoked once for each partial assignment considered.

2. Versatility. The method is applicable whenever the group of symmetries can
be concisely represented as a vertex-colored graph; cf. (1) and (2). This is
useful in particular when the underlying system has symmetries that are
not easily discoverable from the final constraint encoding, for example, due
to the fact that the constraints have been compiled or optimized2 from a
higher-level representation in a symmetry-obfuscating manner. A graphical
representation can represent such symmetry directly and independently of
the compiled/optimized form of the system.

3. Parallelisability. As a corollary of implementing McKay’s [36] framework, the
technique does not need to store representatives of isomorphism classes in
memory to perform isomorph rejection, which enables easy parallelisation
since the partial assignments can be processed independently of each other.

The main technical contribution of this paper is developed in Sect. 4 where we
present the prefix-assignment technique. The required mathematical prelimi-
naries on symmetry and McKay’s framework are reviewed in Sects. 2 and 3,
respectively. Our development in Sect. 4 relies on an abstract group Γ , with
the understanding that a concrete implementation can be designed e.g. in terms
of a vertex-colored graph representation, as will be explored in Sect. 5.

Preliminary Implementation and Experiments. To demonstrate the tentative
practical applicability of our technique we have prepared a preliminary exper-
imental implementation.3 The implementation is structured as a preproces-
sor that works with an explicitly given graph representation and utilizes the
nauty [35,37] canonical labeling software for vertex-colored graphs as a subrou-
tine to prepare an exhaustive collection of nonisomorphic prefix assignments rel-
ative to a user-supplied or heuristically selected prefix of variables. In Sect. 6 we

2 For a beautiful illustration, we refer to Knuth’s [31, Sect. 7.1.2, Fig. 10] example
of optimum Boolean chains for 5-variable symmetric Boolean functions—from each
optimum chain it is far from obvious that the chain represents a symmetric Boolean
function. (See also Example 2.)

3 This implementation can be found at https://github.com/pkaski/reduce/.

https://github.com/pkaski/reduce/
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report on a limited set of experiments with solving systems of Boolean poly-
nomial equations that demonstrate the ability to reduce symmetry on hard
instances and give an initial favorable comparison with earlier techniques.

Earlier Work. A classical way to exploit symmetry in a system of constraints is
to augment the system with so-called symmetry-breaking predicates (SBP) that
eliminate either some or all symmetric solutions [5,14,19,39]. Such constraints
are typically lexicographic leader (lex-leader) constraints that are derived from
a generating set for the group of symmetries Γ . Among recent work in this
area, Devriendt et al. [16] extend the approach by presenting a more compact
way for expressing SBPs and a method for detecting “row interchangeabilities”.
Itzhakov and Codish [26] present a method for finding a set of symmetries whose
corresponding lex-leader constraints are enough to completely break symmetries
in search problems on small (10-vertex) graphs; this approach is extended by
Codish et al. [12] by adding pruning predicates that simulate the first itera-
tions of the equitable partition refinement algorithm of nauty [35,37]. Heule [23]
shows that small complete symmetry-breaking predicates can be computed by
considering arbitrary Boolean formulas instead of lex-leader formulas.

Our present technique can be seen as a method for producing symmetry-
breaking predicates by augmenting the system of constraints with the disjunc-
tion of the nonisomorphic partial assignments. The main difference to the related
work above is that our technique does not produce the symmetry-breaking pred-
icate from a set of generators for Γ but rather the predicate is produced recur-
sively, and with the possibility for parallelization, by classifying orbit represen-
tatives up to isomorphism using McKay’s [36] framework. As such our technique
breaks all symmetry with respect to the prescribed prefix, but comes at the cost
of additional invocations of graph-automorphism and canonical-labeling tools.
This overhead and increased symmetry reduction in particular means that our
technique is best suited for constraint systems with hard combinatorial symme-
try that is not easily capturable from a set of generators, such as symmetry in
combinatorial classification problems [28]. In addition to McKay’s [36] canonical
extension framework, other standard frameworks for isomorph-free exhaustive
generation in this context include orderly algorithms due to Faradžev [18] and
Read [38], as well as the homomorphism principle for group actions due to Kerber
and Laue [30].

It is also possible to break symmetry within a constraint solver during the
search by dynamically adding constraints that rule out symmetric parts of the
search space (cf. [11,19] and the references therein). If we use the nonisomorphic
partial assignments produced by our technique as assumption sequences (cubes)
in the incremental cube-and-conquer approach [22,43], our technique can be
seen as a restricted way of breaking the symmetries in the beginning of the
search, with the benefit—as with cube-and-conquer—that the portions of the
search space induced by the partial assignments can be solved in parallel, either
with complete independence or with appropriate sharing of information (such as
conflict clauses) between the parallel nodes executing the search.
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2 Preliminaries on Group Actions and Symmetry

This section reviews relevant mathematical preliminaries and notational conven-
tions for groups, group actions, symmetry, and isomorphism for our subsequent
development. (Cf. [10,17,25,28,29,40] for further reference.)

Groups and Group Actions. Let Γ be a finite group and let Ω be a finite set
(the domain) on which Γ acts. For two groups Λ and Γ , let us write Λ ≤ Γ
to indicate that Λ is a subgroup of Γ . We use exponential notation for group
actions, and accordingly our groups act from the right. That is, for an object
X ∈ Ω and γ ∈ Γ , let us write Xγ for the object in Ω obtained by acting on X
with γ. Accordingly, we have X(βγ) = (Xβ)γ for all β, γ ∈ Γ and X ∈ Ω. For
a finite set V , let us write Sym(V ) for the group of all permutations of V with
composition of mappings as the group operation.

Suppose that Γ acts on two sets, Ω and Σ. We extend the action to the
Cartesian product Ω × Σ elementwise by defining (X,S)γ = (Xγ , Sγ) for all
(X,S) ∈ Ω × Σ and γ ∈ Γ . Isomorphism extends accordingly; for example, we
say that (X,S) and (Y, T ) are isomorphic and write (X,S) ∼= (Y, T ) if there
exists a γ ∈ Γ with Y = Xγ and T = Sγ . Suppose that Γ acts on a set U . We
extend the action of Γ on U to an elementwise action of Γ on subsets W ⊆ U
by setting W γ = {wγ : w ∈ W} for all γ ∈ Γ and W ⊆ U .

Orbit and Stabilizer, Automorphisms, Isomorphism. For an object X ∈ Ω let us
write XΓ = {Xγ : γ ∈ Γ} for the orbit of X under the action of Γ and ΓX =
{γ ∈ Γ : Xγ = X} ≤ Γ for the stabilizer subgroup of X in Γ . Equivalently we
say that ΓX is the automorphism group of X and write Aut(X) = ΓX whenever
Γ is clear from the context; if we want to stress the acting group we write
AutΓ (X).

We write Ω/Γ = {XΓ : X ∈ Ω} for the set of all orbits of Γ on Ω. For
Λ ≤ Γ and γ ∈ Γ , let us write Λγ = γ−1Λγ = {γ−1λγ : λ ∈ Λ} ≤ Γ for the
γ-conjugate of Λ. For all X ∈ Ω and γ ∈ Γ we have Aut(Xγ) = Aut(X)γ . That
is, the automorphism groups of objects in an orbit are conjugates of each other.

We say that two objects are isomorphic if they are on the same orbit of
Γ in Ω. In particular, X,Y ∈ Ω are isomorphic if and only if there exists an
isomorphism γ ∈ Γ from X to Y that satisfies Y = Xγ . An isomorphism from
an object to itself is an automorphism. Let us write Iso(X,Y ) for the set of all
isomorphisms from X to Y . We have that Iso(X,Y ) = Aut(X)γ = γAut(Y )
where γ ∈ Iso(X,Y ) is arbitrary. Let us write X ∼= Y to indicate that X and Y
are isomorphic. If we want to stress the group Γ under whose action isomorphism
holds, we write X ∼=Γ Y .

Canonical Labeling and Canonical Form. A function κ : Ω → Γ is a canonical
labeling map for the action of Γ on Ω if

(K) for all X,Y ∈ Ω it holds that X ∼= Y implies Xκ(X) = Y κ(Y )

(canonical labeling).
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For X ∈ Ω we say that Xκ(X) is the canonical form of X in Ω. From (K) it
follows that isomorphic objects have identical canonical forms, and the canonical
labeling map gives an isomorphism that takes an object to its canonical form.

We assume that the act of computing κ(X) for a given X produces as a
side-effect a set of generators for the automorphism group Aut(X).

3 McKay’s Canonical Extension Method

This section reviews McKay’s [36] canonical extension method for isomorph-
free exhaustive generation. Mathematically it will be convenient to present the
method so that the isomorphism classes are captured as orbits of a group action
of a group Γ , and extension takes place in one step from “seeds” to “objects”
being generated, with the understanding that the method can be applied induc-
tively in multiple steps so that the “objects” of the current step become the
“seeds” for the next step. We stress that all material in this section is well
known (Cf. [28].).

Objects and Seeds. Let Ω be a finite set of objects and let Σ be a finite set of
seeds. Let Γ be a finite group that acts on Ω and Σ. Let κ be a canonical labeling
map for the action of Γ on Ω.

Extending Seeds to Objects. Let us connect the objects and the seeds by means
of a relation e ⊆ Ω × Σ that indicates which objects can be built from which
seeds by extension. For X ∈ Ω and S ∈ Σ we say that X extends S and write
XeS if (X,S) ∈ e. We assume the relation e satisfies

(E1) e is a union of orbits of Γ , that is, eΓ = e (invariance), and
(E2) for every object X ∈ Ω there exists a seed S ∈ Σ such that XeS

(completeness).

For a seed S ∈ Σ, let us write e(S) = {X ∈ Ω : XeS} for the set of all objects
that extend S.

Canonical Extension. Next let us associate with each object a particular
isomorphism-invariant extension by which we want to extend the object from a
seed. A function M : Ω → Σ is a canonical extension map if

(M1) for all X ∈ Ω it holds that (X,M(X)) ∈ e (extension), and
(M2) for all X,Y ∈ Ω we have that X ∼= Y implies (X,M(X)) ∼=

(Y,M(Y )) (canonicity).

That is, (M1) requires that X is in fact an extension of M(X) and (M2) requires
that isomorphic objects have isomorphic canonical extensions. In particular,
X �→ (X,M(X)) is a well-defined map from Ω/Γ to e/Γ .
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Generating Objects from Seeds. Let us study the following procedure, which is
invoked for exactly one representative S ∈ Σ from each orbit in Σ/Γ :

(P) Let S ∈ Σ be given as input. Iterate over all X ∈ e(S). Perform
zero or more isomorph rejection tests on X and S. If the tests
indicate we should accept X, visit X.

Let us first consider the case when there are no isomorph rejection tests. Here
and in what follows we indicate with the “†”-symbol that a proof of a claim can
be found in the full version of this conference abstract.4

Lemma 1 (†). The procedure (P) visits every isomorphism class of objects in
Ω at least once.

Let us next modify procedure (P) so that any two visits to the same iso-
morphism class of objects originate from the same procedure invocation. Let
M : Ω → Σ be a canonical extension map. Whenever we construct X by extend-
ing S in procedure (P), let us visit X if and only if

(T1) (X,S) ∼= (X,M(X)).

Lemma 2 (†). The procedure (P) equipped with the test (T1) visits every iso-
morphism class of objects in Ω at least once. Furthermore, any two visits to the
same isomorphism class must (i) originate by extension from the same procedure
invocation on input S, and (ii) belong to the same Aut(S)-orbit of this seed S.

Let us next observe that the outcome of test (T1) is invariant on each Aut(S)-
orbit of extensions of S.

Lemma 3 (†). For all α ∈ Aut(S) we have that (T1) holds for (X,S) if and
only if (T1) holds for (Xα, S).

Lemma 3 in particular implies that we obtain complete isomorph rejection
by combining the test (T1) with a further test that ensures complete isomorph
rejection on Aut(S)-orbits. Towards this end, let us associate an arbitrary order
relation on every Aut(S)-orbit on e(S). Let us perform the following further test:

(T2) X = min XAut(S).

The following lemma is immediate from Lemmas 2 and 3.

Lemma 4. The procedure (P) equipped with the tests (T1) and (T2) visits every
isomorphism class of objects in Ω exactly once.

A Template for Canonical Extension Maps. We conclude this section by describ-
ing a template of how to use an arbitrary canonical labeling map κ : Ω → Γ to
construct a canonical extension map M : Ω → Σ.

4 Available at https://arxiv.org/abs/1706.08325.

https://arxiv.org/abs/1706.08325
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For X ∈ Ω construct the canonical form Z = Xκ(X). Using the canonical
form Z only, identify a seed T with ZeT . In particular, such a seed must exist
by (E2). (Typically this identification can be carried out by studying Z and
finding an appropriate substructure in Z that qualifies as T . For example, T
may be the minimum seed in Σ that satisfies ZeT . Cf. Lemma 9.) Once T has
been identified, set M(X) = Tκ(X)−1

.

Lemma 5 (†). The map X �→ M(X) above is a canonical extension map.

4 Generation of Partial Assignments

This section describes an instantiation of McKay’s method that generates partial
assignments of values to a set of variables U one variable at a time following a
prefix sequence at the level of isomorphism classes given by the action of a group
Γ on U . Let R be a finite set where the variables in U take values.

Partial Assignments, Isomorphism, Restriction. For a subset W ⊆ U of vari-
ables, let us say that a partial assignment of values to W is a mapping
X : W → R. Isomorphism for partial assignments is induced by the follow-
ing group action.5 Let γ ∈ Γ act on X : W → R by setting Xγ : W γ → R where
Xγ is defined for all u ∈ W γ by

Xγ(u) = X(uγ−1
) . (3)

Lemma 6 (†). The action (3) is well-defined.

For an assignment X : W → R, let us write X = W for the underlying set of
variables assigned by X. Observe that the underline map is a homomorphism of
group actions in the sense that Xγ = Xγ holds for all γ ∈ Γ and X : W → R.
For Q ⊆ X, let us write X|Q for the restriction of X to Q.

The Prefix Sequence and Generation of Normalized Assignments. We are now
ready to describe the generation procedure. Let us begin by prescribing the
prefix sequence. Let u1, u2, . . . , uk be k distinct elements of U and let Uj =
{u1, u2, . . . , uj} for j = 0, 1, . . . , k. In particular we observe that

U0 ⊆ U1 ⊆ · · · ⊆ Uk

with Uj \ Uj−1 = {uj} for all j = 1, 2, . . . , k.

5 For conciseness and accessibility, the present conference version develops the method
only for variable symmetries, and accordingly the group action (3) acts only on the
variables in U and not on the values in R. However, the method does extend to
capture symmetries on both variables in U and values in R (essentially by consider-
ation of the Cartesian product U × R in place of U), and such an extension will be
developed in a full version of this paper.
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For j = 0, 1, . . . , k let Ωj consist of all partial assignments X : W → R with
W ∼= Uj . Or what is the same, using the underline notation, Ωj consists of all
partial assignments X with X ∼= Uj .

We rely on canonical extension to construct exactly one object from each
orbit of Γ on Ωj , using as seeds exactly one object from each orbit of Γ on
Ωj−1, for each j = 1, 2, . . . , k. We assume the availability of canonical labeling
maps κ : Ωj → Γ for each j = 1, 2, . . . , k.

Our construction procedure will work with objects that are in a normal form
to enable precomputation for efficient execution of the subsequent tests for iso-
morph rejection. Towards this end, let us say that X ∈ Ωj is normalized if
X = Uj . It is immediate from our definition of Ωj and (3) that each orbit in
Ωj/Γ contains at least one normalized object.

Let us begin with a high-level description of the construction procedure, to be
followed by the details of the isomorph rejection tests and a proof of correctness.
Fix j = 1, 2, . . . , k and study the following procedure, which we assume is invoked
for exactly one normalized representative S ∈ Ωj−1 from each orbit in Ωj−1/Γ :

(P’) Let a normalized S ∈ Ωj−1 be given as input. For each p ∈
u
Aut(Uj−1)
j and each r ∈ R, construct the assignment

X : Uj−1 ∪ {p} → R

defined by X(p) = r and X(u) = S(u) for all u ∈ Uj−1. Perform
the isomorph rejection tests (T1’) and (T2’) on X and S. If both
tests accept, visit Xν(p) where ν(p) ∈ Aut(Uj−1) normalizes X.

From an implementation perspective it is convenient to precompute the orbit
u
Aut(Uj−1)
j together with group elements ν(p) ∈ Aut(Uj−1) for each p ∈

u
Aut(Uj−1)
j that satisfy pν(p) = uj . Indeed, a constructed X with X = Uj−1 ∪{p}

can now be normalized by acting with ν(p) on X to obtain a normalized Xν(p)

isomorphic to X.

The Isomorph Rejection Tests. Let us now complete the description of procedure
(P’) by describing the two isomorph rejection tests (T1’) and (T2’). This para-
graph only describes the tests with an implementation in mind, the correctness
analysis is postponed to the following paragraph.

Let us assume that the elements of U have been arbitrarily ordered and that
κ : Ωj → Γ is a canonical labeling map. Suppose that X has been constructed
by extending a normalized S with X = S ∪ {p} = Uj−1 ∪ {p}. The first test is:

(T1’) Subject to the ordering of U , select the minimum q ∈ U such that
qκ(X)−1ν(p) ∈ u

Aut(Uj)
j . Accept if and only if p ∼=Aut(X) qκ(X)−1

.

From an implementation perspective we observe that we can precompute the
orbit u

Aut(Uj)
j . Furthermore, the only computationally nontrivial part of the

test is the computation of κ(X) since we assume that we obtain generators for
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Aut(X) as a side-effect of this computation. Indeed, with generators for Aut(X)
available, it is easy to compute the orbits U/Aut(X) and hence to test whether
p ∼=Aut(X) qκ(X)−1

. Let us now describe the second test:

(T2’) Accept if and only if p = min pAut(S) subject to the ordering of U .

From an implementation perspective we observe that since S is normalized we
have Aut(S) ≤ Aut(S) = Aut(Uj−1) and thus the orbit u

Aut(Uj−1)
j considered

by procedure (P’) partitions into one or more Aut(S)-orbits. Furthermore, gen-
erators for Aut(S) are readily available (due to S itself getting accepted in the
test (T1’) at an earlier level of recursion), and thus the orbits u

Aut(Uj−1)
j /Aut(S)

and their minimum elements are cheap to compute. Thus, a fast implementa-
tion of procedure (P’) will in most cases execute the test (T2’) before the more
expensive test (T1’).

Correctness. This section establishes the correctness of procedure (P’) together
with the tests (T1’) and (T2’) by reduction to McKay’s framework and Lemma4.
Fix j = 1, 2, . . . , k. Let us start by defining the extension relation e ⊆ Ωj ×Ωj−1

for all X ∈ Ωj and S ∈ Ωj−1 by setting XeS if and only if

there exists a γ ∈ Γ such that Xγ = Uj , S
γ = Uj−1, and Xγ |Uj−1 = Sγ . (4)

This relation is well-defined in the context of McKay’s framework:

Lemma 7 (†). The relation (4) satisfies (E1) and (E2).

The following lemma establishes that the iteration in procedure (P’) con-
structs exactly the objects X ∈ e(S); cf. procedure (P).

Lemma 8 (†). Let S ∈ Ωj−1 be normalized. For all X ∈ Ωj we have XeS if
and only if there exists a p ∈ u

Aut(Uj−1)
j with X = Uj−1 ∪ {p} and X|Uj−1 = S.

Next we show the correctness of the test (T1’) by establishing that it is
equivalent with the test (T1) for a specific canonical extension function M .
Towards this end, let us use the assumed canonical labeling map κ : Ωj → Γ
to build a canonical extension function M using the template of Lemma 5. In
particular, given an X ∈ Ωj as input with X = Uj−1 ∪ {p}, first construct the
canonical form Z = Xκ(X). In accordance with (T1’), select the minimum q ∈ U

such that qκ(X)−1ν(p) ∈ u
Aut(Uj)
j . Now construct M(X) from X by deleting the

value of qκ(X)−1
.

Lemma 9 (†). The mapping X �→ M(X) is well-defined and satisfies both (M1)
and (M2).

To complete the equivalence between (T1’) and (T1), observe that since X

and p determine S by X|X\{p} = S, and similarly X and qκ(X)−1
determine

M(X) by X|X\{qκ(X)−1} = M(X), the test (T1) is equivalent to testing whether
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(X, p) ∼= (X, qκ(X)−1
) holds, that is, whether p ∼=Aut(X) qκ(X)−1

holds. Observe
that this is exactly the test (T1’).

It remains to establish the equivalence of (T2’) and (T2). We start with a
lemma that captures the Aut(S)-orbits considered by (T2).

Lemma 10 (†). For a normalized S ∈ Ωj−1 the orbits in e(S)/Aut(S) are in
a one-to-one correspondence with the elements of (uAut(Uj−1)

j /Aut(S)) × R.

Now order the elements X ∈ e(S) based on the lexicographic ordering of
the pairs (p,X(p)) ∈ u

Aut(Uj−1)
j × R. Since the action (3) fixes the values in R

elementwise, we have that (T2’) holds if and only if (T2) holds for this ordering
of e(S). The correctness of procedure (P’) equipped with the tests (T1’) and
(T2’) now follows from Lemma 4.

Selecting a Prefix. This section gives a brief discussion on how to select the
prefix. Let Uk = {u1, u2, . . . , uk} be the set of variables in the prefix sequence. It
is immediate that there exist |R|k distinct partial assignments from Uk to R. Let
us write RUk for the set of these assignments. The group Γ now partitions RUk

into orbits via the action (3), and it suffices to consider at most one representative
from each orbit to obtain an exhaustive traversal of the search space, up to
isomorphism. Our goal is thus to select the prefix Uk so that the setwise stabilizer
ΓUk

has comparatively few orbits on RUk compared with the total number of
such assignments. In particular, the ratio of the number of orbits |RUk/ΓUk

| to
the total number of mappings |R|k can be viewed as a proxy for the achieved
symmetry reduction and as a rough6 proxy for the speedup factor obtained
compared with no symmetry reduction at all.

Subroutines. By our assumption, the canonical labeling map κ produces as a side-
effect a set of generators for the automorphism group Aut(X) for a given input
X. We also assume that generators for the groups Aut(Uj) for j = 0, 1, . . . , k
can be precomputed by similar means. This makes the canonical labeling map
essentially the only nontrivial subroutine needed to implement procedure (P’).
Indeed, the orbit computations required by tests (T1’) and (T2’) are imple-
mentable by elementary permutation group algorithms [10,40]. The next section
describes how to implement κ by reduction to vertex-colored graphs.7

6 Here it should be noted that executing the symmetry reduction carries in itself a non-
trivial computational cost. That is, there is a tradeoff between the potential savings
in solving the system gained by symmetry reduction versus the cost of performing
symmetry reduction. For example, if the instance has no symmetry and Γ is a trivial
group, then symmetry reduction merely makes it more costly to solve the system.

7 Reduction to vertex-colored graphs is by no means the only possibility to obtain the
canonical labeling map to enable (P’), (T1’), and (T2’). Another possibility would be
to represent Γ directly as a permutation group and use dedicated permutation-group
algorithms [33,34]. Our present choice of vertex-colored graphs is motivated by easy
availability of carefully engineered implementations for working with vertex-colored
graphs.
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5 Representation Using Vertex-Colored Graphs

This section describes one possible approach to represent the group of sym-
metries Γ ≤ Sym(U) of a system of constraints over a finite set of variables
U taking values in a finite set R. Our representation of choice will be vertex-
colored graphs over a fixed finite set of vertices V . In particular, isomorphisms
between such graphs are permutations γ ∈ Sym(V ) that map edges onto edges
and respect the colors of the vertices; that is, every vertex in V maps to a vertex
of the same color under γ. It will be convenient to develop the relevant graph
representations in steps, starting with the representation of the constraint sys-
tem and then proceeding to the representation of setwise stabilizers and partial
assignments. These representations are folklore (see e.g. [28]) and are presented
here for completeness of exposition only.

Representing the Constraint System. To capture Γ ∼= Aut(G) via a vertex-
colored graph G with vertex set V , it is convenient to represent the variables U
directly as a subset of vertices U ⊆ V such that no vertex in V \ U has a color
that agrees with a color of a vertex in U . We then seek a graph G such that
Aut(G) ≤ Sym(U)×Sym(V \U) projected to U is exactly Γ . In most cases such
a graph G is concisely obtainable by encoding the system of constraints with
additional vertices and edges joined to the vertices representing the variables in
U . We discuss two examples.

Example 1. Consider the system of clauses (1) and its graph representation (2).
The latter can be obtained as follows. First, introduce a blue vertex for each of
the six variables of (1). These blue vertices constitute the subset U . Then, to
accommodate negative literals, introduce a red vertex joined by an edge to the
corresponding blue vertex representing the positive literal. These edges between
red and blue vertices ensure that positive and negative literals remain consistent
under isomorphism. Finally, introduce a green vertex for each clause of (1) with
edges joining the clause with each of its literals. It is immediate that we can
reconstruct (1) from (2) up to labeling of the variables even after arbitrary color-
preserving permutation of the vertices of (2). Thus, (2) represents the symmetries
of (1).

Let us next discuss an example where it is convenient to represent the sym-
metry at the level of original constraints rather than at the level of clauses.

Example 2. Consider the following system of eight cubic equations over 24 vari-
ables taking values modulo 2:

x11y11z11 + x12y12z12 + x13y13z13 = 0 x21y11z11 + x22y12z12 + x23y13z13 = 0
x11y11z21 + x12y12z22 + x13y13z23 = 0 x21y11z21 + x22y12z22 + x23y13z23 = 1
x11y21z11 + x12y22z12 + x13y23z13 = 1 x21y21z11 + x22y22z12 + x23y23z13 = 1
x11y21z21 + x12y22z22 + x13y23z23 = 1 x21y21z21 + x22y22z22 + x23y23z23 = 1

This system seeks to decompose a 2 × 2 × 2 tensor (whose elements appear on
the right hand sides of the equations) into a sum of three rank-one tensors.
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The symmetries of addition and multiplication modulo 2 imply that the sym-
metries of the system can be represented by the following vertex-colored graph:

Indeed, we encode each monomial in the system with a product-vertex, and
group these product-vertices together by adjacency to a sum-vertex to represent
each equation, taking care to introduce two uniquely colored constant-vertices
to represent the right-hand side of each equation.

The representation built directly from the system of polynomial equations
in Example 2 concisely captures the symmetries in the system independently
of the final encoding of the system (e.g. as CNF) for solving purposes. In par-
ticular, building the graph representation from such a final CNF encoding (cf.
Example 1) results in a less compact graph representation and obfuscates the
symmetries of the original system, implying less efficient symmetry reduction.

Representing the Values. In what follows it will be convenient to assume that the
graph G contains a uniquely colored vertex for each value in R. (Cf. the graph
in Example 2.) That is, we assume that R ⊆ V \ U and that Aut(G) projected
to R is the trivial group.

Representing Setwise Stabilizers in the Prefix Chain. To enable procedure (P’)
and the tests (T1’) and (T2’), we require generators for Aut(Uj) ≤ Γ for each
j = 0, 1, . . . , k. More generally, given a subset W ⊆ U , we seek to compute a set
of generators for the setwise stabilizer AutΓ (W ) = ΓW = {γ ∈ Γ : W γ = W},
with W γ = {wγ : w ∈ W}. Assuming we have available a vertex-colored graph
G that represents Γ by projection of AutSym(V )(G) to U , let us define the graph
G ↑ W by selecting one vertex r ∈ R and joining each vertex w ∈ W with an
edge to the vertex r. It is immediate that AutSym(V )(G ↑ W ) projected to U is
precisely AutΓ (W ).

Representing Partial Assignments. Let X : W → R be an assignment of values
in R to variables in W ⊆ U . Again to enable procedure (P’) together with the
tests (T1’) and (T2’), we require a canonical labeling κ(X) and generators for the
automorphism group Aut(X). Again assuming we have a vertex-colored graph
G that represents Γ , let us define the graph G↑X by joining each vertex w ∈ W
with an edge to the vertex X(w) ∈ R. It is immediate that AutSym(V )(G ↑ X)
projected to U is precisely AutΓ (X). Furthermore, a canonical labeling κ(X)
can be recovered from κ(G↑X) and the canonical form (G↑X)κ(G↑X).
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Using Tools for Vertex-Colored Graphs. Given a vertex-colored graph G as input,
practical tools exist for computing a canonical labeling κ(G) ∈ Sym(V ) and a
set of generators for Aut(G) ≤ Sym(V ). Such tools include bliss [27], nauty [35,
37], and traces [37]. Once the canonical labeling and generators are available in
Sym(V ) it is easy to map back to Γ by projection to U so that corresponding
elements of Γ are obtained.

6 Preliminary Experimental Evaluation

This section documents a preliminary and limited experimental evaluation of an
implementation of the adaptive prefix-assignment technique. The implementa-
tion is written in C and structured as a preprocessor that works with an explic-
itly given graph representation and utilizes the nauty [35,37] canonical labeling
software for vertex-colored graphs as a subroutine.

As instances we study systems of polynomial equations aimed at discovering
the tensor rank of a small m×m×m tensor T = (tijk) modulo 2, with tijk ∈ {0, 1}
and i, j, k = 1, 2, . . . m. Computing the rank of a given tensor is NP-hard [21].8 In
precise terms, we seek to find the minimum r such that there exist three m × r
matrices A,B,C ∈ {0, 1}m×r such that for all i, j, k = 1, 2, . . . ,m we have

r∑

�=1

ai�bj�ck� = tijk (mod 2) . (5)

Such instances are easily compilable into CNF with A,B,C constituting three
matrices of Boolean variables so that the task becomes to find the minimum r
such that the compiled CNF instance is satisfiable. Independently of the target
tensor T such instances have a symmetry group of order at least r! due to the
fact that the columns of the matrices A,B,C can be arbitrarily permuted so
that (5) maps to itself. In our experiments we select the entries of T uniformly
at random so that the number of 1s in T is exactly n.

Hardware and Software Configuration. The experiments were performed on a
cluster of Dell PowerEdge C4130 compute nodes, each equipped with two Intel
Xeon E5-2680v3 CPUs and 128 GiB of main memory, running Linux version
3.10.0514.10.2.el7.x86 64. All experiments were executed by allocating a
single core on a single CPU of a compute node. Other unrelated compute load
was in general present on the nodes during the experiments. A time-out of five
hours of CPU time was applied.

Symmetry Reduction Tools and SAT Solvers. We report on three methods for
symmetry reduction on aforementioned tensor-rank instances: (1) no reduction

8 Yet considerable interest exists to determine tensor ranks of small tensors, in
particular tensors that encode and enable fast matrix multiplication algorithms;
cf. [1–4,8,9,13,24,32,41,44].
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(“raw”), (2) breakid version 2.2 [16], (3) our technique (“reduce”) with a user-
selected prefix consisting of 2r variables that constitute the first two rows of the
matrix A, and a graph representation of (5) as in Example 2. Three different
SAT solvers were used in the experiments: lingeling and ilingeling version
bbc-9230380 [7], and glucose version 4.1 [6]. We use the incremental solver
ilingeling together with the incremental CNF output of reduce.

Results. Table 1 shows the results of a tensor rank computation modulo 2 for
two random tensors T with m = 5, n = 16 and m = 5, n = 18. In both cases
we observe that the rank is 9. The running times displayed in the table are in
seconds, with “t/o” indicating a time-out. For both tensors we observe decreased
running time due to symmetry reduction, with reduce performing better than
breakid, but also taking more time to perform the preprocessing (indicated in
columns labelled with “prep.”) due to repeated calls to canonical labeling.

We would like to highlight that the comparison between reduce and breakid
in particular illustrates the relevance of a graph representation of the symme-
tries in (5), which are not easily discoverable from the compiled CNF. In our
experiments reduce receives as input the graph representation of the system (5)
constructed as in Example 2, whereas breakid works on the compiled CNF input
alone. This demonstrates the serendipity and versatility of using an auxiliary
graph to represent the symmetries so that the symmetries are easily accessible.
In fact, if we rely on the standard representation (2) built from the compiled
CNF, the standard representation does not represent all the symmetries in (5).

Table 1. Computing tensor rank for two 5 × 5 × 5 tensors

m r n raw prep.

breakid

breakid prep.

reduce

reduce Sat?

glucose lingeling glucose lingeling glucose lingeling ilingeling

5 6 16 60.02 114.14 0.06 36.01 81.86 0.29 3.70 9.67 7.28 UNSAT

5 7 16 t/o t/o 0.19 t/o t/o 1.07 372.43 614.04 249.10 UNSAT

5 8 16 t/o t/o 0.12 t/o t/o 2.56 t/o t/o 15316.01 UNSAT

5 9 16 3.20 23.78 0.07 1.20 158.44 5.03 0.72 149.82 1.16 SAT

5 10 16 0.99 12.56 0.07 0.69 21.49 9.06 30.64 166.37 0.80 SAT

5 11 16 0.16 33.17 0.28 0.09 52.71 16.24 1.37 6.36 1.48 SAT

5 6 18 14.37 31.34 0.23 11.05 23.96 0.53 2.79 2.90 4.25 UNSAT

5 7 18 4606.30 t/o 0.18 3604.87 t/o 1.01 114.77 116.80 94.89 UNSAT

5 8 18 t/o t/o 0.06 t/o t/o 3.23 6901.79 t/o 3867.00 UNSAT

5 9 18 395.75 444.84 0.06 2.68 209.66 5.93 40.32 39.21 1.32 SAT

5 10 18 13.05 22.03 0.07 3.79 356.18 10.46 7.75 11.67 1.45 SAT

5 11 18 19.47 43.68 0.22 27.29 859.40 17.11 31.86 112.62 1.42 SAT
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Abstract. In this paper, we analyze a suite of 7 well-known branching
heuristics proposed by the SAT community and show that the better
heuristics tend to generate more learnt clauses per decision, a metric we
define as the global learning rate (GLR). Like our previous work on the
LRB branching heuristic, we once again view these heuristics as tech-
niques to solve the learning rate optimization problem. First, we show
that there is a strong positive correlation between GLR and solver effi-
ciency for a variety of branching heuristics. Second, we test our hypothe-
sis further by developing a new branching heuristic that maximizes GLR
greedily. We show empirically that this heuristic achieves very high GLR
and interestingly very low literal block distance (LBD) over the learnt
clauses. In our experiments this greedy branching heuristic enables the
solver to solve instances faster than VSIDS, when the branching time is
taken out of the equation. This experiment is a good proof of concept
that a branching heuristic maximizing GLR will lead to good solver per-
formance modulo the computational overhead. Third, we propose that
machine learning algorithms are a good way to cheaply approximate the
greedy GLR maximization heuristic as already witnessed by LRB. In
addition, we design a new branching heuristic, called SGDB, that uses a
stochastic gradient descent online learning method to dynamically order
branching variables in order to maximize GLR. We show experimentally
that SGDB performs on par with the VSIDS branching heuristic.

1 Introduction

Searching through a large, potentially exponential, search space is a reoccurring
problem in many fields of computer science. Rather than reinventing the wheel
and implementing complicated search algorithms from scratch, many researchers
in fields as diverse as software engineering [7], hardware verification [9], and
AI [16] have come to rely on SAT solvers as a general purpose tool to efficiently
search through large spaces. By reducing the problem of interest down to a
Boolean formula, engineers and scientists can leverage off-the-shelf SAT solvers
to solve their problems without needing expertise in SAT or developing special-
purpose algorithms. Modern conflict-driven clause-learning (CDCL) SAT solvers
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can solve a wide-range of practical problems with surprising efficiency, thanks
to decades of ongoing research by the SAT community. Two notable milestones
that are key to the success of SAT solvers are the Variable State Independent
Decaying Sum (VSIDS) branching heuristic (and its variants) [23] and conflict
analysis techniques [22]. The VSIDS branching heuristic has been the dominant
branching heuristic since 2001, evidenced by its presence in most competitive
solvers such as Glucose [4], Lingeling [5], and CryptoMiniSat [26].

One of the challenges in designing branching heuristics is that it is not clear
what constitutes a good decision variable. We proposed one solution to this issue
in our LRB branching heuristic paper [19], which is to frame branching as an
optimization problem. We defined a computable metric called learning rate and
defined the objective as maximizing the learning rate. Good decision variables
are ones with high learning rate. Since learning rate is expensive to compute a
priori, we used a multi-armed bandit learning algorithm to estimate the learning
rate on-the-fly as the basis for the LRB branching heuristic [19].

In this paper, we deepen our previous work and our starting point remains the
same, namely, branching heuristics should be designed to solve the optimization
problem of maximizing learning rate. In LRB, the learning rate metric is defined
per variable. In this paper, we define a new metric, called the global learning
rate (GLR) to measure the solver’s overall propensity to generate conflicts, rather
than the variable-specific metric we defined in the case of LRB. Our experiments
demonstrate that GLR is an excellent objective to maximize.

1.1 Contributions

1. A new objective for branching heuristic optimization: In our previous
work with LRB, we defined a metric that measures learning rate per variable.
In this paper, we define a metric called the global learning rate (GLR), that
measures the number of learnt clauses generated by the solver per decision,
which intuitively is a better metric to optimize since it measures the solver as
a whole. We show that the objective of maximizing GLR is consistent with
our knowledge of existing branching heuristics, that is, the faster branching
heuristics tend to achieve higher GLR. We perform extensive experiments
over 7 well-known branching heuristics to establish the correlation between
high GLR and better solver performance (Sect. 3).

2. A new branching heuristic to greedily maximize GLR: To further
scientifically test the conjecture that GLR maximization is a good objective,
we design a new branching heuristic that greedily maximizes GLR by always
selecting decision variables that cause immediate conflicts. It is greedy in
the sense that it optimizes for causing immediate conflicts, and it does not
consider future conflicts as part of its scope. Although the computational
overhead of this heuristic is very high, the variables it selects are “better”
than VSIDS. More precisely, if we ignore the computation time to com-
pute the branching variables, the greedy branching heuristic generally solves
more instances faster than VSIDS. Another positive side-effect of the greedy
branching heuristic is that relative to VSIDS, it has lower learnt clause literal
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block distance (LBD) [3], a sign that it is learning higher quality clauses. The
combination of learning faster (due to higher GLR) and learning better (due
to lower LBD) clauses explains the power of the greedy branching heuristic.
Globally optimizing the GLR considering all possible future scenarios a solver
can take is simply too prohibitive. Hence, we limited our experiments to the
greedy approach. Although this greedy branching heuristic takes too long to
select variables in practice, it gives us a gold standard of what we should aim
for. We try to approximate it as closely as possible in our third contribution
(Sect. 4).

3. A new machine learning branching heuristic to maximize GLR:
We design a second heuristic, called stochastic gradient descent branch-
ing (SGDB), using machine learning to approximate our gold standard, the
greedy branching heuristic. SGDB trains an online logistic regression model
by observing the conflict analysis procedure as the CDCL algorithm solves an
instance. As conflicts are generated, SGDB will update the model to better fit
its observations. Concurrently, SGDB also uses this model to rank variables
based on their likelihood to generate conflicts if branched on. We show that
in practice, SGDB is on par with the VSIDS branching heuristic over a large
and diverse benchmark but still shy of LRB. However, more work is required
to improve the learning in SGDB (Sect. 5).

2 Background

Clause Learning: Clause learning produces a new clause after each conflict
to prevent the same or similar conflicts from reoccurring [22]. This requires
maintaining an implication graph where the nodes are assigned literals and edges
are implications forced by Boolean constraint propagation (BCP). When a clause
is falsified, the CDCL solver invokes conflict analysis to produce a learnt clause
from the conflict. It does so by cutting the implication graph, typically at the
first-UIP [22], into the reason side and the conflict side with the condition that
the decision variables appear on the reason side and the falsified clause appears
on the conflict side. A new learnt clause is constructed by negating the reason
side literals incident to the cut. Literal block distance (LBD) is a popular metric
for measuring the “quality” of a learnt clause [3]. The lower the LBD the better.

Supervised Learning: Suppose there exists some function f : Input → Output
that we do not have the code for. However, we do have labeled training data in
the form of 〈Inputi, f(Inputi)〉 pairs. Given a large set of these labeled training
data, also called a training set, there exists machine learning algorithms that
can infer a new function f̃ that approximates f . These types of machine learning
algorithms are called supervised learning algorithms. If everything goes well, f̃
will return the correct output with a high probability when given inputs from
the training set, in which case we say f̃ fits the training set. Ideally, f̃ will also
return the correct output for inputs that are not in the training set, in which
case we say the function generalizes.
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Most supervised learning algorithms require the input data to be represented
as a vector of numbers. Feature extraction solves this issue by transforming each
input data into a vector of real numbers, called a feature vector, that summarizes
the input datum. During training, the feature vectors are used for training in
place of the original input, hence learning the function f̃ : Rn → Output where
R

n is the feature vector’s type. Deciding which features to extract has a large
impact on the learning algorithm’s success.

In this paper, we only consider a special subclass of supervised learning called
binary classification. In other words, the function we want to learn has the type
f : Input → {1, 0}, hence f maps every input to either the class 1 or the class 0.

We use logistic regression [10], a popular technique for binary classification,
to learn a function f̃ that cheaply approximates f . The function learned by
logistic regression has the type f̃ : R

n → [0, 1] where R
n is from the feature

extraction and the output is a probability in [0, 1] that the input is in class 1.
Logistic regression defines the function f̃ as follows.

f̃([x1, x2, ..., xn]) := σ(w0 + w1x1 + w2x2 + ... + wnxn), σ(z) :=
1

1 + e−z

The weights wi ∈ R measure the significance of each feature. The learning algo-
rithm is responsible for finding values for these weights to make f̃ approximate f
as closely as possible. The sigmoid function σ simply squeezes the linear function
to be between 0 and 1. Hence f̃ outputs a real number between 0 and 1, which
is expected since it is a probability.

The learning algorithm we use to set the weights is called stochastic gradient
descent (SGD) [6], which is a popular algorithm for logistic regression. SGD
minimizes the misclassification rate by taking a step in the opposite direction
of the gradient with respect to each data point. The misclassification rate of a
data point can be computed by the following error function:

Err(x, y,W) = y(1 − f̃(x;W)) + (1 − y)(f̃(x;W))

where x is the input of a data point, y is the corresponding target class (0 or 1)
for this data point and W is a vector weights. SGD takes a step in the opposite
direction of the gradient as follows:

W′ ← W − α
∂Err(x, y,W)

∂W

Here α is the step length (also known as the learning rate, not to be confused
with the unrelated definition of learning rate in LRB). Under normal conditions,
f̃ with the new weights W′ will fit the training set better than with the old
weights W. If training time is not an issue, then SGD can be applied repeatedly
until a fixed point is reached. The parameter 0 < α < 1 controls how aggressively
the technique converges.

A common problem with machine learning in general is overfitting, where the
trained function f̃ predicts correctly for the inputs it has seen in the training
set, but works poorly for inputs it has not seen. We use a common technique
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called L2 regularization [24] to mitigate overfitting. L2 regularization introduces
a new term in the error function that favors small weights

Err(x, y,W) = y(1 − f̃(x;W)) + (1 − y)(f̃(x;W)) + λ||W||22
Here λ is a parameter that determines the importance of the regularization
penalty. How this prevents overfitting is beyond the scope of this paper.

SGD is also commonly used in an online fashion. Each time new data comes
in, SGD is applied to this new data to update the weights, then the data is
discarded. This has two advantages. Discarding the data keeps the memory usage
low, especially useful when data is abundant. Additionally, the distribution in
which the data is created can change over time. Online stochastic gradient does
not assume the distribution is fixed and adjusts the weights accordingly after
enough time. These two advantages are critical in our use of SGD.

3 GLR Maximization as a Branching Heuristic Objective

We framed the branching heuristic as an optimization problem in our earlier
work [19], and we will continue to do so here. Formalizing the problem as an
optimization problem opens up the problem to a wide range of existing opti-
mization algorithms, and we exploited this very idea to develop the LRB [19]
branching heuristic. The big difference between our previous papers and the
current one is that the objective function for optimization in our previous work
was learning per variable, whereas here we define it as the global learning rate
(GLR) discussed below.

The first step to solving an optimization problem is to define the objective.
Ideally the objective of the branching heuristic is to minimize the total running
time. However, it is infeasible to calculate the running time a priori, which makes
it unsuitable as an objective for branching. Instead, we target an easy to compute
feature that correlates with solving time.

We define the global learning rate (GLR) of a solver as GLR := # of conflicts
# of decisions .

Our goal is to construct a new branching heuristic to maximize the GLR. We
assume that one clause is learnt per conflict. Learning multiple clauses per con-
flict has diminishing returns since they block the same conflict. But before
we present our branching heuristic, let us justify why maximizing GLR is a
reasonable objective for a branching heuristic. Past research concludes that
clause learning is the most important feature for good performance in a CDCL
solver [15], so perhaps it is not surprising that increasing the rate at which clauses
are learnt is a reasonable objective. In our experiments, we assume the learning
scheme is first-UIP since it is universally used by all modern CDCL solvers.

3.1 GLR vs Solving Time

We propose the following hypothesis: for a given instance, the branching heuristic
that achieves higher GLR tends to solve that instance faster than heuristics with
lower GLR. We provide empirical evidence in support of the hypothesis.
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In the following experiment, we tested the above hypothesis on 7 branch-
ing heuristics: LRB [19], CHB [18], VSIDS (MiniSat [11] variation of VSIDS),
CVSIDS (Chaff [23] variation of VSIDS), Berkmin [13], DLIS [21], and Jeroslow-
Wang [14]. We created 7 versions of MapleSAT [1], one for each branching heuris-
tic, keeping the code unrelated to the branching heuristic untouched. We ran all
7 branching heuristics on each application and hard combinatorial instance from
every SAT Competition and SAT Race held between 2009 and 2016 with dupli-
cate instances removed. At the end of each run, we recorded the solving time,
GLR at termination, and the average LBD of clauses learnt. All experiments in
this paper were conducted on StarExec [28], a platform purposefully designed
for evaluating SAT solvers. For each instance, the solver was given 1800 seconds
of CPU time and 8GB of RAM. The code for our experiments can be found on
the MapleSAT website [2].

The results are presented in Table 1. Note that sorting by GLR in decreas-
ing order, sorting by instances solved in decreasing order, sorting by LBD in
increasing order, and sorting by average solving time in increasing order pro-
duces essentially the same ranking. This gives credence to our hypothesis that
GLR correlates with branching heuristic effectiveness. Additionally, the experi-
ment shows that high GLR correlates with low LBD.

Table 1. The GLR, number of instances solved, and average solving time for 7 different
branching heuristics, sorted by the number of solved instances. Timed out runs have a
solving time of 1800 s in the average solving time.

Heuristic Avg LBD Avg GLR # Instances solved Avg solving time (s)

LRB 10.797 0.533 1552 905.060

CHB 11.539 0.473 1499 924.065

VSIDS 17.163 0.484 1436 971.425

CVSIDS 19.709 0.406 1309 1043.971

BERKMIN 27.485 0.382 629 1446.337

DLIS 20.955 0.318 318 1631.236

JW 176.913 0.173 290 1623.226

To better understand the correlation between GLR and solving time, we
ran a second experiment where for each instance, we computed the Spearman’s
rank correlation coefficient [27] (Spearman correlation for short) between the 7
branching heuristics’ GLR and solving time. We then averaged all the instances’
Spearman correlations by applying the Fisher transformation [12] to these cor-
relations, then computing the mean, then applying the inverse Fisher transfor-
mation. This is a standard technique in statistics to average over correlations.
This second experiment was performed on all the application and hard combina-
torial instances from SAT Competition 2013 using the StarExec platform with
a 5400 s timeout and 8 GB of RAM. For this benchmark, the average Spearman
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correlation is −0.3708, implying a negative correlation between GLR and solving
time, or in other words, a high (resp. low) GLR tends to have low (resp. high)
solving time as we hypothesized. Table 2 shows the results of the same correla-
tion experiment with different solver configurations. The results show that the
correlations remain moderately negative for all the configurations we tried.

Table 2. The Spearman correlation relating GLR to solving time between the 7 heuris-
tics. The experiment is repeated with different solver configurations. MapleSAT is the
default configuration which is essentially MiniSat [11] with phase saving [25], Luby
restarts [20], and rapid clause deletion [3] based on LBD [3]. Clause activity based
deletion is the scheme implemented in vanilla MiniSat.

Configuration Spearman correlation

MapleSAT −0.3708

No phase saving −0.4492

No restarting −0.3636

Clause deletion based on clause activity −0.4235

Clause deletion based on LBD −0.3958

Rapid clause deletion based on clause activity −0.3881

Maximizing GLR also makes intuitive sense when viewing the CDCL solver as
a proof system. Every conflict generates a new lemma in the proof. Every decision
is like a new “case” in the proof. Intuitively, the solver wants to generate lemmas
quickly using as few cases as possible, or in other words, maximize conflicts with
as few decisions as possible. This is equivalent to maximizing GLR. Of course
in practice, not all lemmas/learnt clauses are of equal quality, so the quality is
also an important objective. We will comment more on this in later sections.

4 Greedy Maximization of GLR

Finding the globally optimal branching sequence that maximizes GLR is
intractable in general. Hence we tackle a simpler problem to maximize GLR
greedily instead. Although this is too computationally expensive to be effective
in practice, it provides a proof of concept for GLR maximization and a gold
standard for subsequent branching heuristics.

We define the function c : PA → {1, 0} that maps partial assignments to
either class 1 or class 0. Class 1 is the “conflict class” which means that apply-
ing BCP to the input partial assignment with the current clause database would
encounter a conflict once BCP hits a fixed-point. Otherwise the input partial
assignment is given the class 0 for “non-conflict class”. Note that c is a mathe-
matical function with no side-effects, that is applying it does not alter the state
of the solver. The function c is clearly decidable via one call to BCP, although
it is quite costly when called too often.
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Algorithm 1. Pseudocode for the GGB heuristic using the function c to greed-
ily maximize GLR. Note that GGB is a meta-heuristic, it takes an existing
branching heuristic (VSIDS in the following pseudocode) and makes it greedier
by causing conflicts whenever possible. In general, VSIDS can be replaced with
any other branching heuristic.
1: function PhaseSaving(Var) � Return the variable plus a sign.
2: return mkLit(V ar, V arsavedP olarity)
3:
4: function VSIDS(Vars) � Return the variable with highest VSIDS activity plus a sign.
5: return PhaseSaving(argmaxv∈V arsvactivity)
6:
7: function GGB
8: CPA ← CurrentPartialAssignment
9: V ← UnassignedV ariables
10: oneClass ← {v ∈ V | c(CPA ∪ {PhaseSaving(v)}) = 1}
11: zeroClass ← V \ oneClass
12: if oneClass �= ∅ then � Next BCP will cause a conflict.
13: return VSIDS(oneClass)
14: else � Next BCP will not cause a conflict.
15: return VSIDS(zeroClass)

The greedy GLR branching (GGB) heuristic is a branching heuristic that
maximizes GLR greedily. When it comes time to branch, the branching heuristic
is responsible for appending a decision variable (plus a sign) to the current partial
assignment. GGB prioritizes decision variables where the new partial assignment
falls in class 1 according to the function c. In other words, GGB branches on
decision variables that cause a conflict during the subsequent call to BCP, if such
variables exist. See Algorithm 1 for the implementation of GGB.

Unfortunately, GGB is very computationally expensive due to the numerous
calls to the c function every time a new decision variable is needed. However, we
show that GGB significantly increases the GLR relative to the base branching
heuristic VSIDS. Additionally, we show that if the time to compute the deci-
sion variables was ignored, then GGB would be a more efficient heuristic than
VSIDS. This suggests we need to cheaply approximate GGB to avoid the heavy
computation. A cheap and accurate approximation of GGB would in theory be
a better branching heuristic than VSIDS.

4.1 Experimental Results

In this section, we show that GGB accomplishes its goal of increasing the GLR
and solving instances faster. Experiments were performed with MapleSAT using
the StarExec platform with restarts and clause deletion turned off to minimize
the effects of external heuristics. For each of the 300 instances in the SAT Com-
petition 2016 application category, MapleSAT was ran twice, the first run con-
figured with VSIDS and the second run configured with GGB. The run with
VSIDS used a timeout of 5000 s. The run with GGB used a timeout of 24 h to
account for the heavy computational overhead. We define effective time as the
solving time minus the time spent by the branching heuristic selecting variables.
Figure 1 shows the results of effective time between the two heuristics. Only com-
parable instances are plotted. An instance is comparable if either both heuristics
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Fig. 1. GGB vs VSIDS. Each point in the plot is a comparable instance. Note that the
axes are in log scale. GGB has a higher GLR for all but 2 instances. GGB has a mean
GLR of 0.74 for this benchmark whereas VSIDS has a mean GLR of 0.59.

solved the instance or one heuristic solved the instance with an effective time of
x seconds while the other heuristic timed out with an effective time greater than
x seconds.

Of the comparable instances, GGB solved 69 instances with a lower effective
time than VSIDS and 29 instances with a higher effective time. Hence if the
branching was free, then GGB would solve instances faster than VSIDS 70%
of the time. GGB achieves a higher GLR than VSIDS for all but 2 instances,
hence it does a good job increasing GLR as expected. Figure 2 shows the same
experiment except the points are colored by the average LBD of all clauses learnt
from start until termination. GGB has a lower LBD than VSIDS for 72 of the 98
comparable instances. We believe this is because GGB by design causes conflicts
earlier when the decision level is low, which keeps the LBD small since LBD
cannot exceed the current decision level.

5 Stochastic Gradient Descent Branching Heuristic

GGB is too expensive in practice due to the computational cost of computing
the c function. In this section, we describe a new branching heuristic called the
stochastic gradient descent branching (SGDB) heuristic that works around this
issue by cheaply approximating c : PA → {1, 0}.

We use online stochastic gradient descent to learn the logistic regression
function c̃ : Rn → [0, 1] where R

n is the partial assignment’s feature vector and
[0, 1] is the probability the partial assignment is in class 1, the conflict class.
Online training is a good fit since the function c we are approximating is non-
stationary due to the clause database changing over time. For an instance with
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Fig. 2. GGB vs VSIDS. GGB has a lower average LBD for 72 of the 98 comparable
instances. GGB has a mean average LBD of 37.2 for this benchmark whereas VSIDS
has a mean average LBD of 61.1.

n Boolean variables and a partial assignment PA, we introduce the features
x1, ..., xn defined as follows: xi = 1 if variable i ∈ PA, otherwise xi = 0.

Recall that c̃ := σ(w0 + w1x1 + w2x2 + ... + wnxn) is parameterized by the
weights wi, and the goal of SGDB is to find good weights dynamically as the
solver roams through the search space. At the start of the search all weights are
initialized to zero since we assume no prior knowledge.

To train these weights, SGDB needs to generate training data of the form
PA × {1, 0} where 1 signifies the conflicting class, that is, applying BCP on
PA with the current clause database causes a conflict. We leverage the existing
conflict analysis procedure in the CDCL algorithm to create this data. Whenever
the solver performs conflict analysis, SGDB creates a partial assignment PA1

by concatenating the literals on the conflict side of conflict analysis with the
negation1 of the literals in the learnt clause and gives this partial assignment the
label 1. Clearly applying BCP to PA1 with the current clause database leads
to a conflict, hence it is assigned to the conflict class. SGDB creates another
partial assignment PA0 by concatenating all the literals in the current partial
assignment excluding the variables in the current decision level and excluding
the variables in PA1. Applying BCP to PA0 does not lead to a conflict with
the current clause database, because if it did, the conflict would have occurred
at an earlier level. Hence PA0 is given the label 0. In summary, SGDB creates
two data points at every conflict, one for each class (the conflict class and the
non-conflict class) guaranteeing a balance between the two classes.

1 Recall that the learnt clause is created by negating some literals in the implication
graph, this negation here is to un-negate them.
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During conflict, two data points are created. SGDB then applies one step
of stochastic gradient descent on these two data points to update the weights.
Since we are training in an online fashion, the two data points are discarded
after the weights are updated. To reduce the computation cost, regularization
is performed lazily. Regularization, if done eagerly, updates the weights of every
variable on every step of stochastic gradient descent. With lazy updates, only the
weights of non-zero features are updated. As is typical with stochastic gradient
descent, we gradually decrease the learning rate α over time until it reaches a
fixed limit. This helps to rapidly adjust the weights at the start of the search.

When it comes time to pick a new decision variable, SGDB uses the c̃ function
to predict the decision variable that maximizes the probability of creating a par-
tial assignment in class 1, the conflict class. More precisely, it selects the following
variable: argmaxv∈UnassignedV arsc̃(CPA ∪ PhaseSaving(v)) where CPA is the
current partial assignment and PhaseSaving(v) returns v plus the sign which
the phase saving heuristic assigns to v if it were to be branched on. However,
the complexity of the above computation is linear to the number of unassigned
variables. Luckily this can be simplified by the following reasoning:

argmaxv∈UnassignedV arsc̃(CPA ∪ PhaseSaving(v))

= argmaxv∈UnassignedV arsσ(w0 + wv +
∑

l∈vars(CPA)

wl)

Note that σ is a monotonically increasing function.

= argmaxv∈UnassignedV ars(w0 + wv +
∑

l∈vars(CPA)

wl)

Remove the terms common to all the iterations of argmax.

= argmaxv∈UnassignedV arswv

Hence it is equivalent to branching on the unassigned variable with the high-
est weight. By storing the weights in a max priority queue, the variable with
the highest weight can be retrieved in time logarithmic to the number of unas-
signed variables, a big improvement over linear time. The complete algorithm is
presented in Algorithm 2.

Differences with VSIDS: The SGDB branching heuristic presented thus far
has many similarities with VSIDS. During each conflict, VSIDS increments the
activities of the variables in PA1 by 1 whereas SGDB increases the weights of
the variables in PA1 by a gradient. Additionally, the VSIDS decay multiplies
every activity by a constant between 0 and 1, the L2 regularization in stochastic
gradient descent also multiplies every weight by a constant between 0 and 1.
SGDB decreases the weights of variables in PA0 by a gradient, VSIDS does not
have anything similar to this.

Sparse Non-conflict Extension: The AfterConflictAnalysis procedure in
Algorithm 2 takes time proportional to |PA1| and |PA0|. Unfortunately in prac-
tice, |PA0| is often quite large, about 75 times the size of |PA1| in our experi-
ments. To shrink the size of PA0, we introduce the sparse non-conflict extension.
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Algorithm 2. Pseudocode for the SGDB heuristic.
1: function PhaseSaving(Var) � return the variable plus a sign
2: return mkLit(V ar, V arSavedP olarity)
3:
4: procedure Initialize
5: for all v ∈ V ars do
6: α ← 0.8, λ ← 0.1 × α, wv ← 0
7: rv ← 0 � Stores the last time v was lazily regularized.
8: conflicts ← 0 � The number of conflicts occurred so far.
9:
10: function GetPA1(learntClause, conflictSide)
11: return {¬l | l ∈ learntClause} ∪ conflictSide
12:
13: function GetPA0(PA1)
14: return {v ∈ AssignedV ars | DecisionLevel(v) < currentDecisionLevel} \ PA1
15:
16: procedure AfterConflictAnalysis(learntClause, conflictSide) � Called after a learnt

clause is generated from conflict analysis.
17: if α > 0.12 then
18: α ← α − 2 × 10−6, λ ← 0.1 × α
19: conflicts ← conflicts + 1
20: PA1 ← GetPA1(learntClause, conflictSide)
21: PA0 ← GetPA0(PA1)
22: for all v ∈ vars(PA1 ∪ PA0) do � Lazy regularization.
23: if conflicts − rv > 1 then
24: wv ← wv × (1 − αλ

2 )conflicts−rv−1

25: rv ← conflicts
26: error1 ← σ(w0 +

∑
i∈vars(P A1) wi) � Compute the gradients and descend.

27: error0 ← σ(w0 +
∑

i∈vars(P A0) wi)

28: w0 ← w0 × (1 − αλ
2 ) − α

2 (error1 + error2)

29: for all v ∈ vars(PA1) do
30: wv ← wv × (1 − αλ

2 ) − α
2 (error1)

31: for all v ∈ vars(PA0) do
32: wv ← wv × (1 − αλ

2 ) − α
2 (error0)

33:
34: function SGDB
35: d ← argmaxv∈UnassignedV arswv

36: while conflicts − rd > 0 do � Lazy regularization.
37: wd ← wd × (1 − αλ

2 )conflicts−rd

38: rd ← conflicts

With this extension PA0 is constructed by randomly sampling one assigned lit-
eral for each decision level less than the current decision level. Then the literals in
PA1 are removed from PA0 as usual. This construction bounds the size of PA0

to be less than the number of decision levels. See Algorithm 3 for the pseudocode.

Reason-Side Extension: SGDB constructs the partial assignment PA1 by
concatenating the literals in the conflict side and the learnt clause. Although
PA1 is sufficient for causing the conflict, the literals on the reason side are the
reason why PA1 literals are set in the first place. Inspired by the LRB branching
heuristic with a similar extension, the reason-side extension takes the literals on
the reason side adjacent to the learnt clause in the implication graph and adds
them to PA1. This lets the learning algorithm associate these variables with the
conflict class. See Algorithm 4 for the pseudocode.
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Algorithm 3. Pseudocode for the sparse non-conflict extension. Only the
GetPA0 code is modified, the rest remains the same as SGDB.
1: function Sample(level)
2: C ← {v ∈ V ars | DecisionLevel(v) = level}
3: return a variable sampled uniformly at random from C
4:
5: function GetPA0(PA1)
6: return (

⋃
i∈{1,2,...,currentDecisionLevel−1} Sample(i)) \ PA1

Algorithm 4. Pseudocode for the reason-side extension. Only the GetPA1 code
is modified, the rest remains the same as SGDB.
1: function GetPA1(learntClause, conflictSide)
2: adjacent ← ⋃

lit∈learntClause Reason(¬lit)

3: return {¬l | l ∈ learntClause} ∪ conflictSide ∪ adjacent

5.1 Experimental Results

We ran MapleSAT configured with 6 different branching heuristics (LRB, VSIDS,
SGDB with four combinations of the two extensions) on all the application
and hard combinatorial instances from SAT Competitions 2011, 2013, 2014,
and 2016. At the end of each run, we recorded the elapsed time, the GLR at
termination, and the average LBD of all clauses learnt from start to finish.
Table 3 and Fig. 3 show the effectiveness of each branching heuristic in solving
the instances in the benchmark. The reason-side extension (resp. sparse non-
conflict extension) increases the number of solved instances by 97 (resp. 155).
The two extensions together increase the number of solved instances by 219,
and in total solve just 12 instances fewer than VSIDS. LRB solves 93 more
instances than VSIDS. Table 4 shows the GLR and the average LBD achieved
by the branching heuristics. Both extensions individually increased the GLR and
decreased the LBD. The extensions combined increased the GLR and decreased
the LBD even further. The best performing heuristic, LRB, achieves the highest
GLR and lowest LBD in this experiment. It should not be surprising that LRB
has high GLR, our goal when designing LRB was to generate lots of conflicts by
branching on variables likely to cause conflicts. By design, LRB tries to achieve
high GLR albeit indirectly by branching on variables with high learning rate.

6 Threats to Validity

1. Did we overfit? One threat is the possibility that the parameters are
overtuned for the benchmarks and overfit them, and hence work poorly for
untested benchmarks. To avoid overtuning parameters, we chose α

2 in SGD
to be the same as the step-size in LRB from our previous paper [19] and also
chose (1− αλ

2 ) to be the same as the locality extension penalty factor in LRB
from the same paper. We fixed these parameters from the start and never
tuned them. Also, note that the training is online per instance.

2. What about optimizing for quality of learnt clauses? This remains
a challenge. We did notice that when we maximize GLR we get a very nice
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Table 3. # of solved instances by various configurations of SGD, VSIDS, and LRB.

Benchmark Status SGDB +

No Ext

SGDB +

Reason Ext

SGDB +

Sparse Ext

SGDB +

Both Ext

VSIDS LRB

2011

Application

SAT 84 89 96 93 95 103

UNSAT 87 87 96 94 99 98

BOTH 171 176 192 187 194 201

2011 Hard

Combinatorial

SAT 85 92 91 97 88 93

UNSAT 36 50 43 51 48 64

BOTH 121 142 134 148 136 157

2013

Application

SAT 91 92 108 112 127 132

UNSAT 75 75 86 81 86 95

BOTH 166 167 194 193 213 227

2013 Hard

Combinatorial

SAT 107 109 118 118 115 116

UNSAT 57 88 60 99 73 111

BOTH 164 197 178 217 188 227

2014

Application

SAT 79 86 100 107 105 116

UNSAT 65 62 79 73 94 76

BOTH 144 148 179 180 199 192

2014 Hard

Combinatorial

SAT 82 82 91 86 91 91

UNSAT 41 61 56 73 59 89

BOTH 123 143 147 159 150 180

2016

Application

SAT 52 55 62 62 60 61

UNSAT 52 50 55 57 63 65

BOTH 104 105 117 119 123 126

2016 Hard

Combinatorial

SAT 5 7 6 7 3 6

UNSAT 19 29 25 26 42 25

BOTH 24 36 31 33 45 31

TOTAL (no

duplicates)

SAT 585 612 672 682 684 718

UNSAT 432 502 500 554 564 623

BOTH 1017 1114 1172 1236 1248 1341

Table 4. GLR and average LBD of various configurations of SGD, VSIDS, and LRB
on the entire benchmark with duplicate instances removed. LRB not solves the most
instances and achieves the highest GLR and lowest average LBD in our experiments.

Metric Status SGDB +

No Ext

SGDB +

Reason

Ext

SGDB +

Sparse Ext

SGDB +

Both Ext

VSIDS LRB

Mean GLR SAT 0.324501 0.333763 0.349940 0.357161 0.343401 0.375181

UNSAT 0.515593 0.518362 0.542679 0.545567 0.527546 0.557765

BOTH 0.403302 0.409887 0.429420 0.434854 0.419337 0.450473

Mean Avg LBD SAT 22.553479 20.625091 19.470764 19.242937 28.833872 16.930723

UNSAT 17.571518 16.896552 16.249930 15.832730 22.281780 13.574527

BOTH 20.336537 18.965914 18.037512 17.725416 25.918232 15.437237

side-effect of low LBD. Having said that, in the future we plan to explore
other notions of quality and integrate that into a multi-objective optimization
problem view of branching heuristics.
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Fig. 3. A cactus plot of various configurations of SGD, VSIDS, and LRB on the entire
benchmark with duplicate instances removed.

7 Related Work

The VSIDS branching heuristic, currently the most widely implemented branch-
ing heuristic in CDCL solvers, was introduced by the authors of the Chaff solver
in 2001 [23] and later improved by the authors of the MiniSat solver in 2003 [11].
Carvalho and Marques-Silva introduced a variation of VSIDS in 2004 where the
bump value is determined by the learnt clause length and backjump size [8]
although their technique is not based on machine learning. Lagoudakis and
Littman introduced a new branching heuristic in 2001 that dynamically switches
between 7 different branching heuristics using reinforcement learning to guide
the choice [17]. Liang et al. introduced two branching heuristics, CHB and LRB,
in 2016 where a stateless reinforcement learning algorithm selects the branching
variables themselves. CHB does not view branching as an optimization problem,
whereas LRB, GGB, SGDB do. As stated earlier, LRB optimizes for learning
rate, a metric defined with respect to variables. GGB and SGDB optimize for
global learning rate, a metric defined with respect to the solver.

8 Conclusion and Future Work

Finding the optimal branching sequence is nigh impossible, but we show that
using the simple framework of optimizing GLR has merit. The crux of the ques-
tion since the success of our LRB heuristic is whether solving the learning rate
optimization problem is indeed a good way of designing branching heuristics.
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A second question is whether machine learning algorithms are the way to go
forward. We answer both questions via a thorough analysis of 7 different notable
branching heuristics, wherein we provide strong empirical evidence that better
branching heuristics correlate with higher GLR. Further, we show that higher
GLR correlates with lower LBD, a popular measure of quality of learnt clauses.
Additionally, we designed a greedy branching heuristic to maximize GLR and
showed that it outperformed VSIDS, one of the most competitive branching
heuristics. To answer the second question, we designed the SGDB that is com-
petitive vis-a-vis VSIDS. With the success of LRB and SGDB, we are more
confident than ever before in the wisdom of using machine learning techniques
as a basis for branching heuristics in SAT solvers.

Acknowledgement. We thank Sharon Devasia Isac and Nisha Mariam Johnson from
the College Of Engineering, Thiruvananthapuram, for their help in implementing the
Berkmin and DLIS branching heuristics.
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Abstract. Many heuristics, such as decision, restart, and clause reduc-
tion heuristics, are incorporated in CDCL solvers in order to improve
performance. In this paper, we focus on learnt clause reduction heuris-
tics, which are used to suppress memory consumption and sustain prop-
agation speed. The reduction heuristics consist of evaluation criteria, for
measuring the usefulness of learnt clauses, and a reduction strategy in
order to select clauses to be removed based on the criteria. LBD (literals
blocks distance) is used as the evaluation criteria in many solvers. For the
reduction strategy, we propose a new concise schema based on the cover-
age ratio of used LBDs. The experimental results show that the proposed
strategy can achieve higher coverage than the conventional strategy and
improve the performance for both SAT and UNSAT instances.

1 Introduction

Many heuristics, such as decision, phase selection, restart, and clause reduc-
tion heuristics, are used in CDCL solvers in order to improve performance. For
example, Katebi et al., show that decision and restart heuristics have resulted in
significant performance improvement in their paper evaluating the components
of CDCL solvers [5]. In this paper, we focus on clause reduction heuristics, which
remove useless learnt clauses in order to suppress memory consumption and sus-
tain propagation speed. Clause reduction is practically required since CDCL
solvers learn a large number of clauses while solving. The reduction heuristics
consist of evaluation criteria to measure the usefulness of learnt clauses and the
reduction strategy for selecting clauses to be removed based on the criteria.

As the former evaluation criteria, LBD (literals blocks distance) [1] is imple-
mented in many solvers. LBD is an excellent measure to identify learnt clauses
that are likely to be used frequently. In this paper, we present experimental
evidence of the identification power of LBD in a wide range of instances. More-
over, we show that an appropriate threshold for LBD, which are used to decide
if clauses should be maintained or not, is determined depending on a given
instance. However, a certain fixed threshold of LBD is often used in latter reduc-
tion strategies. In this paper, we propose a new reduction strategy based on
the coverage of used LBDs, which dynamically computes an appropriate LBD
c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 136–144, 2017.
DOI: 10.1007/978-3-319-66263-3 9
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threshold in order to cover most propagations and conflicts. The experimental
results show that our schema effectively maintains the used clauses and achieves
performance improvement for both SAT and UNSAT instances.

The rest of this paper is organized as follows: Sect. 2 reviews clause reduc-
tion heuristics used in CDCL solvers. In Sects. 3 and 4, we provide experimental
results, in order to clarify the property of LBD, and to point out some issues in
the LBD-based reduction strategy, respectively. Our proposed reduction strat-
egy is described in Sect. 5. Section 6 shows the experimental results and Sect. 7
concludes this paper.

2 Clause Reduction Heuristics

We briefly review the CDCL algorithm [3,6]. We assume that the reader is
familiar with notions of propositional satisfiability (propositional variable, literal,
clause, unit clause, unit propagation, and so on). The CDCL algorithm repeats
the following two operations until a conflict occurs.

1. Unit propagation: the unassigned literal in each unit clause is assigned as true
to satisfy the clause. This operation repeats until there is no unit clause.

2. Decision: when no unit clauses exist, an unassigned literal is selected and a
truth value (true or false) is assigned to it.

For each assigned literal l, the decision level of l is defined as the number of
decision literals on and before assigning l. By dl(l), we denote the decision level
of the literal l. When a conflict (falsified clause) occurs in the first step, the
algorithm analyzes a cause of the conflict and learns a clause from the cause in
order to prevent repeating the same conflict. The learnt clause is added to the
clause database; then, the algorithm backjumps to the appropriate decision level
computed from the clause.

CDCL solvers learn a large number of clauses during the search process of a
given SAT instance. Hence, solvers should reduce the clause database periodically
in order to suppress memory consumption and sustain propagation speed. In
this section, we introduce reduction heuristics based on LBD, which was firstly
introduced in Glucose solver. First, we present the evaluation criteria LBD in
order to sort learnt clauses according to usefulness.

Definition 1 (Literals Blocks Distances (LBD) [1]). The LBD of a clause
C is defined as |{dl(l) | l ∈ C} ∩ N|, where N is the set of all natural numbers
including 0; that is, the number of kinds of decision levels of literals in C.

By lbd(C), we denote the LBD of clause C. When a learnt clause is generated,
the LBD of the clause is computed based on the current assignment. Additionally,
the LBD is updated when the clause is used in unit propagations and the new
LBD is smaller than the old one1. Literals with the same decision level have
1 In Glucose 3.0 or later, the LBD update is executed only for clauses used in unit

propagations on and after the first UIP in conflict analysis.
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a possibility to be assigned at the same time in the future. Hence, small LBD
clauses have a high possibility, which will be used in unit propagations and
conflicts. We show the experimental evidence in the next section.

Next, we review the clause reduction strategy used in Glucose. The clause
database reduction is executed every lfirst + linc × x conflicts2, where x is
the number of reduction calls (initially x = 0). On each reduction, clauses are
reduced according to the following policy that contains two exceptional condi-
tions:

– Half of learnt clauses are removed in descending order of LBD except the
following clauses.

• keeps clauses whose LBDs ≤ 2 (these are called glue clauses).
• keeps clauses used after the last reduction and updated LBD is less than

a certain threshold.

In the following, we refer the above base policy and two exceptional conditions
as BP, E1 and E2, respectively. This Glucose reduction strategy and its deriva-
tives are used in many solvers. For example, Lingeling dynamically selects either
Glucose-based or classical activity-based strategies [4]. If the standard deviation
of the LBDs of learnt clauses is too small or too large, then, the activity-based
strategy is selected. MapleCOMSPS uses the reduction strategy combining both.
This keeps clauses whose LBDs ≤ 6, while others are managed by the activity-
based strategy. In addition, clauses with LBDs of 4 to 6, which have not been
used for a while, are managed by the activity-based strategy [8]. In Sect. 4, we
show some issues in the Glucose reduction strategy.

3 Experimental Evaluation of LBD

LBD is a well-known criterion for identifying learnt clauses that are likely to be
used frequently. In this section, we present the experimental evidence of LBD use-
fulness in a wide variety of instances. From the results, we design our reduction
strategy based on LBD. Throughout the paper, we use 755 instances, exclud-
ing duplicates, from the application instances used in competitions over the last
3 years,3 as benchmark instances. All experiments were conducted on a Core
i5 (1.4 GHz) with 4 GB memory. We set the timeout for solvers to 5,000 CPU
seconds. We used our SAT solver GlueMiniSat 2.2.10. The main difference with
Glucose is that GlueMiniSat uses the lightweight in-processing techniques [7].
Detailed results and the source code of GlueMiniSat can be found at http://
www.kki.yamanashi.ac.jp/∼nabesima/sat2017/.

Figure 1 shows the distributions of LBDs of learnt clauses (left) and used
LBDs (right) for each instance. In this experiment, learnt clause reduction was
disabled; that is, the solver held every learnt clause. The numbers in the legend
represent LBDs. The red line in the left graph will be explained in Sect. 4. Each

2 In Glucose 3.0 or later, lfirst and linc are 2000 and 300 respectively [2].
3 SAT 2014 competition, SAT-Race 2015 and SAT 2016 competition.

http://www.kki.yamanashi.ac.jp/~nabesima/sat2017/
http://www.kki.yamanashi.ac.jp/~nabesima/sat2017/


Coverage-Based Clause Reduction Heuristics for CDCL Solvers 139

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

R
at

io
 [%

]

Instances

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30≥
RUB 50%

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

R
at

io
 [%

]

Instances

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30≥

Fig. 1. Distribution of LBDs of learnt clauses (left) and used LBDs (right). Instances
are sorted by ascending order of CPU time. (Color figure online)

stacked bar in the left graph represents the ratio distribution of LBDs, for all
learnt clauses, after the solver stopped (e.g., if there are 10% learnt clauses
whose LBDs are 2, the height of LBD 2 bar is 10%). In the right graph, each bar
represents the ratio distribution of clause LBDs, which caused propagations or
conflicts (e.g., if 50% of propagations or conflicts are caused by LBD 2 clauses,
then the height of the LBD 2 bar is 50%).

The left graph shows that learnt clauses have various LBDs. In easy instances
at the left end of the graph, small LBDs are somewhat dominant; however, the
other instances have many different LBDs. On the other hand, from the right
graph, it is clear that most propagations or conflicts are caused by small LBD
clauses. This strongly supports the identification power of the LBD criterion.

4 Issues of Glucose Reduction Strategy

The Glucose reduction schema consists of BP, E1 and E2, described in Sect. 2.
In this section, we discuss the issues of the schema. We consider the base policy
BP. Suppose that Lk is the number of learnt clauses after k-th reductions (k ≥ 1)
and r is the residual ratio (0 ≤ r < 1, 0.5 in Glucose). Lk is defined as follows:

Lk =

{
rlfirst (k = 1)
r(Lk−1 + lfirst + (k − 1)linc) (k > 1)

(1)

We consider the difference dk = Lk − Lk−1, which can be represented as dk =
rdk−1+rlinc. For this equation, when we add − r

1−r linc to both sides, it represents
a geometric progression with initial value rlfirst − r

1−r linc and common ratio r.
Hence, we can get the following relationship:

Lk − Lk−1 = (rlfirst − r

1 − r
linc))rk−1 +

r

1 − r
linc (2)

The difference between Lk and Lk−1 represents the number of clauses that can
be newly held. The limit of Lk − Lk−1 as k approaches ∞ is a constant:

lim
k→∞

(Lk − Lk−1) =
r

1 − r
linc (3)
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On the other hand, the interval between reductions increases exponentially. This
means that the ratio of number of clauses that can be newly held, gradually
approaches 0 as k increases. This is the first issue regarding BP.

The red line in the left graph of Fig. 1 represents the upper bound of the
number of clauses held when following BP. In most instances, the number of
glue clauses exceeds the bound. Glue clauses are never removed by E1. As a
result, the solver can not hold new non-glue clauses at all, as long as it follows
BP and E1. Even with a high residual ratio, the increment becomes a constant
by (3); therefore, the issue essentially remains. Moreover, by keeping only glue
clauses (E1) is sometimes insufficient to cover most propagations and conflicts.
In the right graph of Fig. 1, the purple and green bars at the bottom represent
the ratio of LBD 1 and 2. This indicates that the appropriate upper bound of
LBD depends on a given instance. These are the second issue regarding E1.

In Glucose, clauses used after the last reduction and with LBD less than, or
equal to 30, are not removed (E2). The right graph in Fig. 1 shows that this
threshold can cover most propagations and conflicts; however, it may be overly
retentive. This is the third issue related to E2.

In the next section, we propose a new concise reduction strategy to address
the above mentioned concerns.

5 Coverage-Based Reduction Strategy

Most propagations and conflicts are caused by small LBD clauses. We propose
a reduction strategy to dynamically compute the upper bound of LBD in order
to cover most propagations and conflicts.

Let c be the specified coverage (0 ≤ c ≤ 1) and fk be the number of times
that LBD k clauses are used, where we call that a clause is used when it causes
a unit propagation or a conflict, that is, when the clause becomes a unit or a
falsified clause in a unit propagation process. We define the cumulative frequency
up to k as f cum

k =
∑k

i=1 fi and the total frequency as f tot = f cum
|V | , where V

is the set of variables at a given instance. The LBD threshold lbd − thld(c) is
defined as the minimum LBD l such that f cum

l achieves the cover rate c of f tot

uses, that is,

lbd − thld(c) = l s.t. (f cum
l−1 < cf tot ) ∧ (cf tot ≤ f cum

l ). (4)

This does not guarantee that the rate c of used clauses in the future will be cov-
ered by holding clauses with LBD ≤ lbd − thld(c), because a discarded clause
may be required in order to propagate a clause with LBD ≤ lbd − thld(c). Never-
theless, we will present experimental results that our approach can achieve high
coverage rate.

Next, we consider the trade-off between coverage and number of kept clauses.
A high coverage requires the retention of a large number of clauses. Figure 2
exhibits the holding ratio, which is the number of maintained clauses at the
termination of solver divided by the total number of learnt clauses, when we
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Fig. 2. Holding ratio of coverage of 80% (left) and 99% (right) for unsolved instances.
Instances are sorted by ascending order of holding ratio. (Color figure online)

specify the coverage as 80% (left) and 99% (right). The red line represents the
holding ratio and the white line denotes the ratio of unused and held clauses4.
At the right end of the left graph, the red line is 30% and the white line is
10%. This means that a maximum of 30% of learnt clauses are required to cover
at least 80% of uses of learnt clauses, and that a maximum of 10% of clauses
are unused. The right graph at Fig. 2 shows that it is necessary to keep the
majority of clauses in order to cover almost all uses, in the worst case, and that
approximately half of them are not used.

In order to suppress the number of held clauses while covering propagations
and conflicts as much as possible, we classify learnt clauses into three types: core,
support, and other clauses. We make core clauses cover most uses (e.g. 80%),
and support clauses cover the remains (e.g. 99%). We give support clauses a
short lifetime since their number can be enormous; we give core clauses a longer
lifetime, where the lifetime n of clause C means that C will be removed when
it is unused while n reductions occur. We provide the formal definition of core,
support, and other clauses. Let C be a clause, and ccore and csupp be the specified
coverage of core and support clauses (ccore ≤ csupp), respectively.

– C is a core clause if lbd(C) ≤ lbd − thld(ccore).
– C is a support clause if lbd − thld(ccore) < lbd(C) ≤ lbd − thld(csupp).
– Otherwise, C is an other clause.

The coverage-based clause reduction is executed every lfirst+linc×x conflicts,
same as in the Glucose schema, where x is the number of reduction calls (initially
x = 0). For each reduction, we compute the core LBD threshold lbd − thld(ccore)
and the support LBD threshold lbd − thld(csupp) based on the frequency distri-
bution of used LBDs. The lifetime of a core and support clause is the specified
value lcore and lsupp (lcore ≥ lsupp), respectively. Other clauses are removed
at the next reduction (that is, the lifetime is 0). The computational cost of
the coverage-based reduction strategy is O(n), where n is the number of learnt
4 A clause is unused if it does not produce any propagation or conflict, except for the

UIP propagation immediately after being learn it.
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clauses. Because the computation of the LBD threshold (4) is O(m), where m is
the maximum LBD, the removal of clauses exceeding the threshold is O(n), and
usually m � n. The Glucose reduction strategy requires O(n log n) since it needs
to sort learnt clauses by their LBDs. Note that our reduction strategy does not
impose the upper bound to the number of clauses (BP).

6 Experimental Results

We evaluated the coverage-based and Glucose reduction strategies. In the eval-
uation, we use the following parameters: ccore = 0.8, csupp = 0.99, lcore = 10,
lsupp = 1, lfirst = 2000 and linc = 300. The first 4 parameters were determined
by preliminary experiments. lfirst and linc are the same as in Glucose. We also
compared our approach with Glucose 4.0, MapleCOMSPS, and Lingeling. The lat-
ter two solvers use the Glucose-style schema as part of the reduction strategy,
as described in Sect. 2. These solvers took the first and third place in the main
track of the SAT 2016 competition, respectively5.

Table 1. Solved instances, where “X (Y + Z)” denotes the number of solved instances
(X), solved satisfiable instances (Y) and solved unsatisfiable instances (Z), respectively.

Solver Solved instances

GlueMiniSat 2.2.10 (Glucose schema) 510 (255 + 255)

GlueMiniSat 2.2.10 (Coverage schema) 524 (259 + 265)

Glucose 4.0 484 (244 + 240)

MapleCOMSPS 519 (276 + 243)

Lingeling bbc 522 (249 + 273)

Virtual best solver 597 (305 + 292)

Table 1 shows the number of instances solved by each solver and Fig. 3 is the
cactus plot of these results. GlueMiniSat, with the Glucose schema, has better
performance than Glucose. The coverage schema can further improve perfor-
mance for both SAT and UNSAT instances. MapleCOMSPS and Lingeling show
the superior results for SAT and UNSAT instances, respectively. GlueMiniSat,
with the coverage schema, shows that the well-balanced result and total number
of solved instances are comparable with these state of the art solvers.

Table 2 is the comparison of statistics between Glucose and coverage schema.
Each value in the first 5 lines denotes the average for commonly solved 494
instances of both strategies. The first two lines in the table show that the Glu-
cose schema reduces more clauses than the coverage schema; hence, the Glucose
schema shows higher propagation speed. On the other hand, the coverage schema
5 We exclude Riss 6, which ranked 2nd in the competition. Because it uses Linux-

specific APIs, we could not compile it in our computing environment (Mac OS X).
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Fig. 3. Time to solve instances

Table 2. Comparison of two reduction strategies in GlueMiniSat.

Solver Glucose schema Coverage schema

Removed learnt [%] 76.4 72.9

Propagation speed [literals/sec] 1749748 1716494

CPU time [sec] 812.0 757.5

Conflicts 2519806 2325005

Reduction time [sec] 6.9 2.5

Coverage [%] 73.3 85.0

Precision [%] 67.0 74.1

Recall [%] 33.9 44.1

requires shorter CPU time and less conflicts in order to solve instances. It shows
that the coverage schema can hold more useful clauses than the Glucose schema.
In the coverage schema, the reduction of learnt clauses is slightly faster since the
computational cost is O(n) while the Glucose schema is O(n log n).

The last three lines in Table 2 are the results of different experiments, in
which each solver does not actually remove learnt clauses to calculate coverage,
precision, and recall. Each value indicates the average for commonly solved 406
instances. Coverage in Table 2 is the ratio of the number of used clauses that
are caused only by maintained clauses to the total number of used clauses that
are caused by all clauses. Precision is the ratio of used and held clauses to held
clauses; recall is the ratio of used and held clauses to used clauses. In the coverage
schema, these values have improved. This indicates that the coverage schema can
better identify which clauses will be used.
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7 Conclusion

We have shown that LBD can identify which clauses will be used, and proposed
a concise and lightweight coverage-based reduction strategy, which provides an
appropriate LBD threshold in order to cover most propagations and conflicts.
The experimental results show that the coverage schema can effectively hold
clauses to be used. Many solvers use LBD as an evaluation criterion for learnt
clauses. Our approach can be applicable to such solvers.
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Abstract. With more than 30 million attendees each year in the U.S.
alone, music festivals are a fast-growing source of entertainment, visited
by both fans and industry professionals. Popular music festivals are large-
scale events, often spread across multiple venues and lasting several days.
The largest festivals exceed 600 shows per day across dozens of venues.
With many artists performing at overlapping times in distant locations,
preparing a personal schedule for a festival-goer is a challenging task.
In this work, we present an automated system for building a personal
schedule that maximizes the utility of the shows attended based on the
user preferences, while taking into account travel times and required
breaks. Our system leverages data mining and machine learning tech-
niques together with combinatorial optimization to provide optimal per-
sonal schedules in real time, over a web interface. We evaluate MaxSAT
and Constraint Programming formulations on a large set of real festival
timetables, demonstrating that MaxSAT can provide optimal solutions
in about 10 s on average, making it a suitable technology for such an
online application.

1 Introduction

In recent years, music festival have been growing in popularity, generating sig-
nificant revenue [14–16]. In the U.S. alone, over 30 million people attend music
festivals each year, with more than 10 million attending more than one festival
each year [17].

Modern music festivals are large-scale events consisting of a set of musi-
cal shows, scheduled over the course of a few days at several different venues.
Preparing a personal schedule for a music festival is a challenging task due to
the existence of time conflicts between shows and travel times between venues.
Festival-goers often spend a significant amount of time deciding which shows to
attend, while trying to account for their musical preferences, travel times, and
breaks for eating and resting. This problem is often discussed in the entertain-
ment media:

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 147–163, 2017.
DOI: 10.1007/978-3-319-66263-3 10
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“The majority of the major conflicts come late in each day—will you dance
to HAIM or Flume on Sunday? Will you opt for the upbeat melodies of
St. Lucia or Grimes on Saturday?” [12].

“Just when Coachella is upon us and you couldn’t be more excited, a
cloud enters – the set times are out, and there are heartbreaking conflicts.
Difficult decisions must be made. Do you pass over an artist you love
because an artist you love even more is playing all the way across the
fest?” [13].

In this work, we address the problem of building an optimal schedule based on
user preferences. We present a system that uses combinatorial optimization and
machine learning techniques to learn the user musical preferences and generate
a schedule that maximizes the user utility, while taking into account travel times
and required breaks. Our system is implemented over a web interface and is able
to generate optimal schedules in less than 10 s.

2 Problem Definition

The problem we address consists of two subproblems that need to be solved
sequentially. The preference learning subproblem consists of predicting the user’s
musical preferences based on a small sample of preferences provided by the user.
The scheduling subproblem then consists of finding an optimal personal schedule
based on the user’s preferences.

We first define the problem parameters and then the two subproblems.

2.1 Parameters

Shows. We consider a set of n festival shows S := {s1, s2, ..., sn}, each associated
with one of the performing artists (or bands) in the festival and taking place in
one of the festival venues V := {v1, v2, ..., v|V |}. Each show si ∈ S has a fixed
start time, tsi , and a fixed end time, tei , such that the show length is tli = tei − tsi .

Travel Times. We consider an n × n travel time matrix TT , such that TTij

is the travel time between the venue of show si and the venue of show sj . We
do not restrict TT to be symmetric, however, we assume it satisfies the triangle
inequality.

Show Preferences. To represent the user’s musical preferences, we consider
the tuple 〈fp,M,N〉. fp : S → Z

+ ∪ {⊥} is a mapping from a show to either an
integer score or the special value ⊥ indicating that the user did not provide a
score for the show. M := {m1,m2, ...,m|M |} is a set of show groups, mi ⊆ S,
such that the user must attend at least one show in each group. These groups
can be used to model a simple list of shows the user has to attend (i.e., if each
group is a singleton), as well as more sophisticated musical preferences such as
seeking a diversity of musical styles by grouping shows based on style. Finally,
N ⊆ S is a set of shows the user is not interested in attending.
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Break Preferences. We consider a set of l required breaks B := {b1, b2, ..., bl},
such that for each bk ∈ B, ws

k and we
k represent the start and end of a time

window in which the break should be scheduled and wt
k represents the required

break length. We assume that breaks are ordered temporally by their index,
the time windows are non-overlapping, and at most one break can be scheduled
between each pair of consecutive scheduled shows. The breaks are not allocated
to a specific venue: the user can choose to enjoy a break at any location (e.g., at
one of the venues or on the way to the next venue). The purpose of scheduling
the breaks is to guarantee that sufficient free time is reserved for each bk during
the requested time window.

2.2 Preference Learning Subproblem

Given a function fp : S → Z
+ ∪ {⊥} that maps shows to scores, our preference

learning problem consists of replacing each ⊥ value by an integer value to produce
a full mapping f∗

p that is consistent with the user’s preferences. Formally, our
problem consists of finding a function g : S → Z

+ that minimizes the mean
squared error [10], a common measure of fit, over the set of shows for which a
score was provided Q = {si | fp(si) 	= ⊥}:

min
1

|Q|
∑

si∈Q

(g(si) − fp(si))2

The function g will then be used to predict the missing scores:

f∗
p (s) =

{
fp(s), if fp(s) 	= ⊥
g(s), if fp(s) = ⊥

2.3 Scheduling Subproblem

Our scheduling subproblem consists of finding an assignment of values for a set
of boolean variables {xi | i∈[1..n]}, representing whether or not the festival-goer
attends show si, and a set of integer values {yj | j∈[1..l]}, specifying the start
time of break bj . The assignment has to satisfy the user preference w.r.t. M , N ,
and B (i.e., groups, shows not attended, and break time-windows). Our objective
is to maximize the sum of the user-specified scores for the attended shows:

max
∑

si∈S

xi · f∗
p (si)

3 System Architecture

The proposed system architecture is illustrated in Fig. 1. Our system implements
a web interface, accessible using any web-enabled device.

Given an input of user preferences (fp,M,N,B), provided over a web inter-
face, we start by populating the missing scores in fp using our preference learning
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Fig. 1. The system architecture

algorithm. Then, we formulate the scheduling problem as a MaxSAT problem
and solve it using an off-the-shelf MaxSAT solver. The details of the shows, S,
and the travel time matrix, TT , for all festivals are stored in a database on the
server. The results are processed and a schedule is produced and displayed over
the web interface.

In Sect. 4 we present our MaxSAT model for the scheduling problem, fol-
lowed in Sect. 5 with an alternative constraint programming (CP) model for
the same problem. In Sect. 6 we describe our preference learning algorithm.
Section 7 describes an empirical evaluation of the system, in which we compare
the MaxSAT and the CP model, and compare our preference learning method
to a simple baseline.

4 MaxSAT Model

In this section, we present our MaxSAT formulation of the problem. We first
describe a boolean formulation and then provide a weighted partial MaxSAT
encoding of the problem.

4.1 A Boolean Formulation

Consider the scheduling subproblem defined in Sect. 2.3. The variables xi that
represent show attendance are boolean while the variables yk that represent the
start time of each break are integer.

A time-indexed formulation of the problem would consist of replacing each
yk variable with a set of yk,p boolean variables such that yk,p=1 ⇐⇒ yk=p.
Assuming a time horizon of H time units, we need H×|B| variables, to represent
the breaks. This size may not be unreasonable but here we develop an equivalent
model that does not scale with the horizon length.

For any feasible solution for our problem, we can show that there exists a
feasible solution with the same objective value, in which if there exists a break
bk between the shows si and sj , it is scheduled in one of the following positions:
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1. Immediately after si.
2. At the beginning of bk’s time window.

We prove this observation starting with the introduction of required notation
and definitions.

We start with z, an assignment of values to the xi and yk variables of our
problem, and bk ∈ B, an arbitrary break scheduled at start time yk. We use
beforez(k) to denote the end time of the latest scheduled show before break
bk and afterz(k) to denote the start time of the earliest scheduled show after
break bk, according to the assignment z. We also use ttz(k) to denote the travel
time between the location of the user at time beforez(k) and the location the
user needs to be at time afterz(k).

Definition 1 (Feasible Assignment). Let z be an assignment of values to
variables xi and yk. We consider z to be a feasible solution if

1. All attended shows are non-overlapping.
2. The scheduled breaks and the attended shows do not overlap.
3. All scheduled breaks are within their time windows, i.e., yk≥ws

k and
yk+wt

k≤we
k.

4. For every break bk that is scheduled between the attended shows si and sj,
there is enough time to travel between the show venues and have the break:
afterz(k) − beforez(k) ≥ ttz(k) + wt

k.

Definition 2 (Earliest-break Assignment). Let z be a feasible assignment
of values to variables xi and yk. We consider z∗, to be the earliest-break assign-
ment of z if:

x∗
i = xi ∀si ∈ S

y∗
k =

{
beforez(k), if beforez(k) ≥ ws

k

ws
k, if beforez(k) < ws

k

Figure 2 demonstrates the two possible locations of earliest-break assignments.
Note that by definition of z∗, y∗

k ≤ yk (otherwise yk is not feasible).

Lemma 1. There exists a feasible assignment z if and only if there exists a
feasible earliest-break assignment z∗.

Proof. Direction =⇒ : We show that if z is feasible, we can construct a z∗ that
satisfies all the requirements of a feasible solution.

1. Since z is feasible, the attended shows {si|xi = true} are not overlapping
(Definition 1). Since z∗ is an earliest-break assignment of z, x∗

i = xi ∀si ∈ S
(Definition 2). Therefore, the attended shows {si|x∗

i = true} do not overlap
(z∗ satisfies requirement 1).

2. Since z∗ is an earliest-break assignment of z, beforez(k) ≤ y∗
k ≤ yk

(Definition 2). Consequently, y∗
k+wt

k ≤ afterz(k). Since the shows and breaks
do not overlap in z, they do not overlap in z∗ (z∗ satisfies requirement 2).
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3. Since z∗ is an earliest-break assignment of z, ws
k ≤ y∗

k ≤ yk (Definition 2).
Consequently, y∗

k + wt
k ≤ yk + wt

k. Therefore, all breaks in z∗ are within their
time windows (z∗ satisfies requirement 3).

4. beforez(k), afterz(k), ttz(k), and wt
k remain in z∗ as they were in z. There-

fore, z∗ satisfies requirement 4.

Direction ⇐= : If exists an earliest-break assignment z∗ that is feasible, then
z = z∗ is a feasible assignment. ��
Note that because the cost function depends only on the xi variables and x∗

i = xi

for all i, z∗ has the same objective value.

Fig. 2. The two possible locations of earliest-break assignments.

We can, therefore, translate the integer start time of a break to a set of
boolean variables representing the two possible locations for each break: qk,i
that represents whether break bk is scheduled immediately after show si and
rk that represents whether break bk is scheduled at the beginning of its time
window.

4.2 Weighted Partial MaxSAT Encoding

We present a weighted partial MaxSAT model in Fig. 3, using soft clauses to
model the objective function by attaching a weight for each show that corre-
sponds to the user preferences. In our model, (c, w) denotes a clause c with a
weight w, while (c,∞) denotes that c is a hard-clause.

We use R(k) to denote the set of all pairs of shows si, sj ∈ S, such that
the break bk cannot be scheduled between the si and sj , due to the necessary
transition time. Formally, R(k)={(i, j) | tsi≤tsj ∧ tsj−tei≤TTij+wt

k}.
We use the following boolean decision variables in our MaxSAT formulation:
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xi := show si ∈ S is attended.
qk,i := break bk is scheduled immediately after show si.
rk := break bk is scheduled at the beginning of its time window.

Fig. 3. MaxSAT model

Constraint (1) makes sure that for every pair of shows that cannot both be
attended (either because they are overlapping or because of insufficient travel
time), at most one will be attended. Constraint (2) ensures the shows that the
user must attend are part of the schedule and constraint (3) ensures the shows
the user is not interested in attending are not part of the schedule.

Constraints (4) and (5) ensure that a break is not scheduled immediately
after a show, if it means that the break start time or end time is not inside the
break’s time window.

Constraints (6), (7) and (8) ensure that a break is not scheduled at the
beginning of its time window if it overlaps an attended show. Constraints (9)
ensures that a break is not scheduled immediately after a show that is not
attended.

Constraint (10) and (11) ensure that a break is not scheduled in any of the
two possible locations between two attended shows, if there is not sufficient time.

Constraint (12) ensures that all breaks are scheduled at least once (if a break
can be scheduled more than once while maintaining optimality we arbitrarily
select one). Constraint (13) is the only soft constraint and is used for optimiza-
tion. Each clause corresponds to a show with weight equal to the show’s score.
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5 Constraint Programming Model

We present a CP model in Fig. 4. For this model, we utilize optional interval
variables, which are decision variables whose possible values are a convex interval:
{⊥}∪{[s, e) | s, e ∈ Z, s ≤ e}. s and e are the start and end times of the interval
and ⊥ is a special value indicating the interval is not present in the solution [9].
The variable pres(var) is 1 if interval variable var is present in the solution, and
0 otherwise. Model constraints are only enforced on interval variables that are
present in the solution. start(var) and end(var) return the integer start time
and end time of the interval variable var, respectively.

We use the following decision variables in our CP formulation:

xi := (interval) present if the user attends show si and absent otherwise,
yk := (interval) always present interval representing bk such that start(yk)
and end(yk) represent the start and end time of break bk, respectively.

Fig. 4. Constraint programming model

Objective (1) maximizes the user’s utility, by summing the utility values of
the attended shows. Constraints (2) and (3) set the shows’ interval variables, of
fixed duration and at fixed times, based on the festival schedule. Constraint (4)
ensures that for every group in M , at least one show is attended and constraint
(5) ensures the shows the user is not interested in attending are not attended.

Constraints (6) and (7) define the time window for each break based on the
user’s request by setting a lower bound on the start time and an upper bound
on the end time of each break. Constraint (8) defines the length of the break
based on the requested break length.
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Constraint (9) is responsible for enforcing the feasibility of attending the
chosen shows. We use the noOverlap global constraint which performs efficient
domain filtering on the interval variables with consideration for transition times
[9]. Here, the noOverlap global constraint ensures that the attended shows do not
overlap in time, with consideration for the transition time between the different
venues. For example, two consecutive shows can be attended if they are in the
same venue. However, if the transition time between the venues is larger than
the time difference between the end time of the first show and the start time of
the following show, it is impossible to attend both shows.

Constraint (10) ensures the consistency of the break schedule with the
attended shows. It verifies that a break is not scheduled between a pair of
attended shows that does not have sufficient time difference to allow traveling
and taking the break. For every triplet of two attended shows and a break such
that the break cannot be scheduled between the two shows due to time (i.e., the
time difference between the two shows is smaller than the sum of the transition
time and the break time), we make sure the break is either scheduled before
the earlier show or after the later show. Note that simple noOverlap constraints
are not sufficient as we need to ensure the break will be scheduled either before
the earlier show or after the later one and there is no required transition time
between the end (resp., start) of a show and the start (resp. end) of a break.

Constraint (11) reduces the domains of each break variable, based on
Lemma 1. While it does not enforce an earliest-break assignment (not required),
it does reduce the domains of the break interval variables by allowing each break
to be scheduled only at the beginning of the break’s time window, or immediately
after shows that end in the break’s time window.

6 Learning User Preferences

The user cannot be expected to know all the performing artists in a festival or
to spend time assigning a score to every artist. Therefore, we employ a learning-
based approach to populate the missing scores based on the user’s assignment
of scores to a subset of the shows. We leverage the availability of large on-line
music datasets to mine the features to predict the user’s score.

As every show is associated with a performing artist, we assume the score
assigned to each show reflects the user preference for the musical style of the
performing artist. Therefore, our approach is to use the tags assigned to each
artist on Last.fm,1 a popular music website, as a feature set for a regression
model that predicts the user score. The tags typically describe the artist musical
style and origin (e.g., pop, indie rock, punk, australian, spanish, etc.). Tag-based
features have been shown to be successful in recommending music [6,11]. In this
work, we use linear regression model, due to its simplicity and its success in
tag-based recommendation systems [22].

Given a training set of K inputs of (−→oi , pi) for 1 ≤ i ≤ K where −→oi if a vector
of F features and pi ∈ R is a real value, the regression problem finds a set of
1 http://www.last.fm.

http://www.last.fm
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weights, βi, that expresses the value as a linear combination of the features and
an error εi: pi = β0 +β1o1i +β2o2i + ...+βKoKi + εi, such that the mean squared
error over the training set is minimized [21]:

min
1
K

K∑

i=1

ε2i

We collect the tags associated with all performing artists in the festival using
Last.fm API.2 For each artist, we construct a binary feature vector describing
whether a tag applies to an artist. We train our model based on the subset of
artists for which a score has been provided by the user. We then predict scores
for the rest of performing artists, based on their associated tags. The predicted
scores are rounded to integers as per the problem definition.

Due to the properties of this problem, notably a large number of features
compared to a small training set, we choose to use Elastic Nets [26]. Elastic Nets
employ a convex combination of L1 and L2 regularization using a parameter α,
such that α = 1 corresponds to ridge regression [8] and α = 0 corresponds to
lasso regression [24]. We use 5-fold cross-validation on the training set to choose
the α value from a set of 10 values in [0, 1]. To reduce training time, we start by
performing a univariate feature selection based on the F -test for regression [4],
i.e., for each feature we calculate the F -test value for the hypothesis that the
regression coefficient is zero, and select the top 75 features.

For comparison, we also consider Support Vector Regression (SVR). In our
empirical evaluation we compare the linear regression based on Elastic Nets,
to a linear SVR model. Linear SVR are much faster to train and to generate
predictions than nonlinear SVR, and often give competitive results [7], making
them an interesting candidate for our application. The regularization parameter
and the loss function are chosen using a 5-fold cross validation on the training
set.

7 Empirical Evaluation

In this section we present an empirical evaluation of our system. As our work
consists of two parts – preference learning and scheduling, we evaluate each part
separately.

A thorough evaluation of our application would require performing an exper-
iment with real users to evaluate their satisfaction of the system. Unfortunately,
such experiment is outside the scope of this research at this time. Instead, we
leverage the existence of on-line datasets to empirically evaluate our system using
real data.

First, we perform an experiment that evaluates the success of our preference
learning method in predicting the musical taste of real users. Then, we perform
an empirical evaluation of the scheduling system based on the timetables of real
music festivals.
2 http://www.last.fm/api.

http://www.last.fm/api
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7.1 Preference Learning Evaluation

In this section we present an experiment designed to evaluate the success of
our preference learning method in predicting the musical taste of a user. The
preference learning method we develop in Sect. 6 takes in a training set of tuples
(user, artist, score) and predicts the score for (user, artist) tuples using tags
from Last.fm. To evaluate this method without real users, we need a way to
generate potential user scores on a subset of artists as an input to our learning
algorithm and then a way to find a set of “ground truth” scores for the rest of
the artists to compare against our predicted scores.

We could not find a dataset of this form that we can directly apply our
method on. Instead, we take an existing dataset describing the listening habits
of users and manipulate it into the required form of (user, artist, score). We
then split it to a training set used to train our learning algorithm and a test set
on which we can compare our predicted score.

Data Preparation. The chosen dataset r is a collection of tuples
(user, artist,#plays) describing the listening habits of 360,000 users on Last.fm,
collected by Celma [3]. Each tuple describes the number of times each user lis-
tened to songs of each artist. For this experiment, we sample a set of 1000 users,
U , each with at least 50 tuples. On average, each user in our sample has tuples
for 57.85 artists.

In order to transform this dataset to the required form, we need to substitute
the #plays column with a score column. To do so, we sort each user’s records
based on #plays, and provide a score between 1 to 8, based on the corresponding
quantile of #plays. The artists with the lowest #plays will have a score of 1, and
the artists with the highest #plays will have a score of 8. For convenience, we
refer to the transformed dataset as a set of 1000 user-specific datasets. Given a
user u ∈ U , we use ru to denote the dataset that consists of (artist, score) tuples
that correspond to the user’s tuples in r, ri = Π〈artist,score〉(σuser=u(r)) ∀u ∈ U .

Experiment Setup. To evaluate the preference learning method, we split each
user’s transformed dataset into a training set (60%) and a test set (40%). Given
approximately 58 tuples per user, we get an average training set of approximately
35 records. We consider this to be a reasonable number of input scores to expect
from a music festival attendee.

For each user, we train the model described in Sect. 6 based on the training set
and then measure the Minimum Squared Error (MSE) and Minimum Absolute
Error (MAE) in predicting the score of the records in the test set. We then
calculate the median value of MSE and MAE across all users.

We compare our preference learning method, based on Elastic Net, with a
linear SVR model and a baseline that consists of substituting all the missing
scores with the mean score.
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Table 1. Median MSE, median MAE and average time across a dataset of 1000 users

Algorithm Median MSE Median MAE Mean runtime (sec)

Elastic Net 3.45 1.56 0.94

Linear SVR 3.79 1.64 0.35

Mean score baseline 6.24 2.25 0.24

Experiment Results. Table 1 shows the median MSE, the median MAE, and
the mean runtime (train + test) across all ru, for the Elastic Net, the linear SVR,
and the mean baseline. It is clear that the learning based methods significantly
outperform the baseline. The Elastic Net method yields more accurate results,
however it requires longer runtime. Note that we expect the runtime in our
system to be longer due to a larger set of shows for which we must predict scores
(all shows in the festival).

7.2 Schedule Evaluation

In this section we present an empirical evaluation of the scheduling system. All
experiments were run on a dual-core i5 (2.7 GHz) machine with 16 GB of RAM
running Mac OS X Sierra. For our MaxSAT model, we used MaxHS v2.9, that
employs a hybrid SAT and MIP approach [5]. For our CP model, we used CP
Optimizer from the IBM ILOG CPLEX Optimization Studio version 12.6.3,
single-threaded with default search and inference settings. We use a 10-minute
run-time limit for each experiment.

Problem Instances. We consider 34 instances based on the real timetables
of seven popular music festivals in the recent years as shown in Table 2. The
instances have a large range of sizes defined by the number of shows, |S|, the
number of venues, |V |, the number of must-attend groups, |M |, the number of
shows the user is not interested in attending, |N |, and the number of required
breaks, |B|. The parameters S and V are based on the real festival timetable. The
travel time matrix TT is randomly generated in a range based on the estimated
travel time between the real festival venues and it satisfies the triangle inequality.
The breaks in B are generated in two configurations: either 2 breaks of 30 min or
one break of 60 min. The shows in M and N were arbitrarily chosen, discarding
infeasible instances. Each M has a mix of singletons and groups with multiple
items. Random scores between 1–10 were assigned to a subset of the artists
that ranged between 50% for the smallest festival to 15% for the largest one.
The missing scores are predicted using our Elastic Net model. The preference
learning runtime for each instance ranges between 2 to 6 s per user.
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Table 2. Description of the problem instances: number of shows |S|, number of venues
|V |, number of must-attend groups |M |, number of unattended shows |N |, and the time
it takes to train the learning model and predict the missing scores.

Timetable source |S| |V | |M | |N | |B| Learning time (sec)

Pitchfork’16 Saturday 17 3 1 1 2 5.72

Pitchfork’16 Sunday 16 3 2 2 1 3.27

Pitchfork’17 Saturday 14 3 1 1 2 2.64

Pitchfork’17 Sunday 14 3 2 2 1 3.38

Lollapalooza Chile’17 Saturday 34 6 1 1 2 2.92

Lollapalooza Chile’17 Sunday 34 6 3 3 1 2.97

Primavera’16 Thursday 35 6 1 1 1 2.65

Primavera’16 Friday 35 6 3 3 2 2.52

Primavera’17 Thursday 35 6 1 1 2 2.42

Primavera’17 Friday 35 6 3 3 1 2.68

Osheaga’15 Friday 40 6 1 1 2 2.73

Osheaga’15 Saturday 38 6 3 3 1 2.29

Osheaga’15 Sunday 38 6 5 5 2 2.63

Osheaga’16 Friday 38 6 1 1 1 3.25

Osheaga’16 Saturday 38 6 3 3 2 2.36

Osheaga’16 Sunday 37 6 5 5 1 2.54

Glastonbury’15 Friday 90 10 1 1 2 3.21

Glastonbury’15 Saturday 92 10 3 3 1 2.91

Glastonbury’15 Sunday 94 10 5 5 2 2.84

Glastonbury’16 Friday 95 10 1 1 1 2.40

Glastonbury’16 Saturday 90 10 3 3 2 2.65

Glastonbury’16 Sunday 90 10 5 5 1 2.60

Tomorrowland’14 #1 Friday 149 15 1 1 2 2.76

Tomorrowland’14 #1 Saturday 139 15 3 3 1 2.51

Tomorrowland’14 #1 Sunday 118 14 5 5 2 2.73

Tomorrowland’14 #2 Friday 149 15 1 1 1 2.58

Tomorrowland’14 #2 Saturday 139 15 3 3 2 2.96

Tomorrowland’14 #2 Sunday 129 15 5 5 1 2.56

SXSW’15 Thursday 685 100 1 1 1 4.21

SXSW’15 Friday 706 102 3 3 2 4.04

SXSW’15 Saturday 715 99 5 5 1 4.19

SXSW’17 Thursday 644 96 1 1 2 3.60

SXSW’17 Friday 564 94 3 3 1 3.62

SXSW’17 Saturday 566 77 5 5 2 3.66

Mean learning time: 3.03
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Table 3. Time to find and prove optimal solution and time to find optimal solution
for MaxSAT and CP (results that are at least 10 times better are in bold).

Instance Objective Find+Prove Opt. (sec) Find Opt. (sec)

MaxSAT CP MaxSAT CP

Pitchfork’16 Saturday 40 0.02 0.02 0.00 0.00

Pitchfork’16 Sunday 30 0.02 0.02 0.00 0.00

Pitchfork’17 Saturday 43 0.02 0.01 0.00 0.00

Pitchfork’17 Sunday 39 0.02 0.02 0.00 0.00

Lollapalooza Chile’17 Saturday 34 0.04 0.39 0.00 0.01

Lollapalooza Chile’17 Sunday 33 0.03 0.04 0.00 0.00

Primavera’16 Thursday 50 0.03 0.06 0.00 0.01

Primavera’16 Friday 60 0.04 0.48 0.01 0.19

Primavera’17 Thursday 36 0.03 0.05 0.00 0.00

Primavera’17 Friday 38 0.03 0.39 0.00 0.06

Osheaga’15 Friday 52 0.12 0.91 0.00 0.01

Osheaga’15 Saturday 38 0.02 0.05 0.00 0.01

Osheaga’15 Sunday 33 0.02 0.04 0.00 0.00

Osheaga’16 Friday 51 0.05 0.39 0.00 0.00

Osheaga’16 Saturday 26 0.04 0.09 0.01 0.02

Osheaga’16 Sunday 38 0.03 0.04 0.00 0.00

Glastonbury’15 Friday 64 0.59 91.27 0.38 15.28

Glastonbury’15 Saturday 67 0.13 3.13 0.03 0.20

Glastonbury’15 Sunday 53 0.06 0.20 0.00 0.07

Glastonbury’16 Friday 85 0.06 110.78 0.01 1.33

Glastonbury’16 Saturday 70 0.06 1.90 0.01 0.12

Glastonbury’16 Sunday 61 0.18 1.07 0.01 0.05

Tomorrowland’14 #1 Friday 67 1.81 532.46 1.71 211.99

Tomorrowland’14 #1 Saturday 49 0.39 4.08 0.02 0.12

Tomorrowland’14 #1 Sunday 45 0.06 0.34 0.00 0.13

Tomorrowland’14 #2 Friday 58 11.13 408.23 0.02 0.42

Tomorrowland’14 #2 Saturday 48 0.09 2.68 0.01 0.99

Tomorrowland’14 #2 Sunday 42 0.37 1.15 0.30 0.08

SXSW’15 Thursday 133 8.00 T/O 4.67 61.10

SXSW’15 Friday 119 3.00 T/O 1.11 16.41

SXSW’15 Saturday 116 9.88 218.35 6.59 8.72

SXSW’17 Thursday 98 6.82 T/O 2.73 25.18

SXSW’17 Friday 101 2.76 80.04 0.19 5.93

SXSW’17 Saturday 125 4.90 T/O 0.57 96.04

Mean run-time 1.50 113.49 0.54 13.07
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Numerical Results. Table 3 shows the time it takes to find and prove an
optimal solution. The table is ordered in increasing size of the festivals. For the
smaller instances, both MaxSAT and CP find and prove an optimal solution in
a short time (usually less than 1 s). For the medium to large instances (starting
from Glastonbury), CP struggles to find and prove optimal solutions, especially
for the less constrained instances (i.e., smaller |M | and |N |). For the largest
music festival (SXSW), CP times-out on some of the instances (denoted “T/O”),
failing to prove optimality (although it does find an optimal solution in all cases).
MaxSAT, however, seems to be able to scale well, with the hardest instance
taking approximately 12 s to find an optimal solution and prove its optimality.

Table 3 also shows the time it took to find the optimal solution without
proving its optimality. MaxSAT still demonstrates better results in most cases,
however in almost all cases, CP manages to find the optimal solution in less than
one minute.

8 Related Work

Personal-level scheduling has received little attention in recent optimization lit-
erature. Refanidis and Yorke-Smith [20] presented a CP model for the problem
of automating the management of an individual’s time, noting the problem’s
difficulty due to the variety of tasks, constraints, utilities, and preference types
involved. Alexiadis and Refanidis [1,2] presented a post-optimization approach,
in which an existing personal schedule is optimized using local search. They
developed a bundle of transformation methods to explore the neighborhood of
a solution using either hill climbing or simulated annealing and achieved more
than 6% improvement on average.

Closely-related problems, such as conference scheduling, have only been
addressed from the perspective of building the event schedule with the objective
of either meeting the presenters’ or attendees’ preferences [23]. An example for a
presenter-based perspective approach can be found in Potthoff and Brams’s inte-
ger programming formulation for conference scheduling w.r.t. presenters’ avail-
ability [18]. Examples for attendee-based perspective approaches can be found
in Quesnelle and Steffy’s work on minimizing attendee conflicts [19], using an
integer programming model, and Vangerven et al.’s work on maximizing atten-
dance using a hierarchical optimization approach [25]. We are not aware of any
work that directly addresses music festival scheduling nor of any work which
takes the event schedule as input and optimizes for the individual attendee.

9 Conclusions and Future Work

We present a preference-based scheduling system for concert-goers at multi-
venue music festivals. We utilize data mining and machine learning techniques
to learn the user preferences and reduce the required user input. We use MaxSAT
to efficiently find and prove an optimal schedule that maximizes the user utility,
while taking into consideration the travel times between venues and the user’s
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break preferences. Our system implements a web interface in which the user
provides the required inputs and accesses the resulting schedule.

Our empirical evaluation shows that the use of preference learning allows us
to provide more accurate results and the use of a MaxSAT model allows us to
provide an efficient online service, with most instances taking less than 5 s and
the hardest instances reaching 15 s for learning and optimization.

We believe this system can easily be adapted to other kinds of multi-venue
events, such as conferences and large sporting events. For example, in the context
of a conference, the preference learning can rely on the keywords of each talk
and generate a preference-based personal schedule of talks to attend.

Another potential extension of this work is to explore ways to provide the
users with alternative schedules. In this work the preference learning method is
aimed at finding a schedule that is consistent with the user preferences. How-
ever, as some visitors often use the festival to expand their musical horizons,
investigating ways to generate schedules that introduce the users to music they
are not familiar with is an interesting direction of research.
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Abstract. The practical success of Boolean Satisfiability (SAT) solvers
stems from the CDCL (Conflict-Driven Clause Learning) approach to
SAT solving. However, from a propositional proof complexity perspec-
tive, CDCL is no more powerful than the resolution proof system, for
which many hard examples exist. This paper proposes a new problem
transformation, which enables reducing the decision problem for formu-
las in conjunctive normal form (CNF) to the problem of solving max-
imum satisfiability over Horn formulas. Given the new transformation,
the paper proves a polynomial bound on the number of MaxSAT reso-
lution steps for pigeonhole formulas. This result is in clear contrast with
earlier results on the length of proofs of MaxSAT resolution for pigeon-
hole formulas. The paper also establishes the same polynomial bound in
the case of modern core-guided MaxSAT solvers. Experimental results,
obtained on CNF formulas known to be hard for CDCL SAT solvers,
show that these can be efficiently solved with modern MaxSAT solvers.

1 Introduction

Boolean Satisfiability (SAT) solvers have made remarkable progress over the
last two decades. Unable to solve formulas with more than a few hundred vari-
ables in the early 90s, SAT solvers are now capable of routinely solving formulas
with a few million variables [13,17]. The success of SAT solvers is supported by
the CDCL (Conflict-Driven Clause Learning) [17, Chap. 04] paradigm, and the
ability of SAT solvers to learn clauses from induced conflicts [17]. Nevertheless,
being no more powerful than the general resolution proof system [60], CDCL
SAT solvers are also known not to scale for specific formulas, which are hard for
resolution [23,39,69]. Recent work has considered different forms of extending
CDCL with techniques adapted from more powerful proof systems as well as oth-
ers [7,12,16,22,40,68], with success in some settings. Nevertheless, for pigeonhole
formulas [27], and with the exception of the lingeling SAT solver [14] on specific
encodings, modern CDCL SAT solvers are unable to prove unsatisfiability even
for a fairly small numbers of pigeons.
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This paper proposes an alternative path to tackle the difficulties of the resolu-
tion proof system, by developing an approach that aims to complement existing
SAT solvers, and which also builds upon efficient CDCL SAT solvers. The moti-
vation is to transform the original problem, from one clausal form to another,
the latter enconding a restricted maximum satisfiability problem, but in such
a way that CDCL SAT solvers can still be exploited. Given any CNF formula
F , the paper shows how to encode the problem as Horn Maximum Satisfiability
(HornMaxSAT), more concretely by requiring a given cost on the HornMaxSAT
formulation. This enables solving the modified problem with either a MaxSAT
solver or with a dedicated HornMaxSAT solver. The paper then shows that for
propositional encodings of the pigeonhole principle [27], transformed to Horn-
MaxSAT, there exists a polynomially time bounded sequence of MaxSAT reso-
lution steps which enables deriving a number of falsified clauses that suffices for
proving unsatisfiable the original PHP formula. Similarly, the paper also proves
that for modern core-guided MaxSAT solvers there exist sequences of unsatis-
fiable cores that enable reaching the same conclusion in polynomial time. This
in turn suggests that MaxSAT algorithms [55] can be effective in practice when
applied to such instances.

Experimental results, obtained on different encodings of the pigeonhole prin-
ciple, but also on other instances that are well-known to be hard for resolu-
tion [69], confirm the theoretical result. Furthermore, a recently-proposed family
of MaxSAT solvers [29,64], based on iterative computation of minimum hitting
sets, is also shown to be effective in practice and on a wider range of classes of
instances.

The paper is organized as follows1. Section 2 introduces the definitions
and notation used throughout the paper. Section 3 develops a simple encod-
ing from SAT into HornMaxSAT. Section 4 derives a polynomial bound on the
number and size of MaxSAT-resolution steps to establish the unsatisfiability
of propositional formulas encoding the pigeonhole principle transformed into
HornMaxSAT. The section also shows that there are executions of core-guided
MaxSAT solvers that take polynomial time to establish a lower bound of the cost
of the MaxSAT solution which establishes the unsatisfiability of the original CNF
formula. Experimental results on formulas encoding the pigeonhole principle, but
also on other formulas known to be hard for CDCL SAT solvers [69] are analyzed
in Sect. 5.2. The paper concludes in Sect. 6.

2 Preliminaries

The paper assumes definitions and notation standard in propositional satisfia-
bility (SAT) and maximum satisfiability (MaxSAT) [17]. Propositional variables
are taken from a set X = {x1, x2, . . .}. A Conjunctive Normal Form (CNF)
formula is defined as a conjunction of disjunctions of literals, where a literal
is a variable or its complement. CNF formulas can also be viewed as sets of
1 An extended version of the paper containing additional detail and proofs can be

found in [42].
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sets of literals, and are represented with calligraphic letters, A, F , H, etc. A
truth assignment is a map from variables to {0, 1}. Given a truth assignment,
a clause is satisfied if at least one of its literals is assigned value 1; otherwise it
is falsified. A formula is satisfied if all of its clauses are satisfied; otherwise it
is falsified. If there exists no assignment that satisfies a CNF formula F , then
F is referred to as unsatisfiable. (Boolean) Satisfiability (SAT) is the decision
problem for propositional formulas, i.e. to decide whether a given propositional
formula is satisfiable. Since the paper only considers propositional formulas in
CNF, throughout the paper SAT refers to the decision problem for propositional
formulas in CNF.

To simplify modeling with propositional logic, one often represents more
expressive constraints. Concrete examples are cardinality constraints and
pseudo-Boolean constraints [17]. A cardinality constraint of the form

∑
xi ≤ k

is referred to as an AtMostk constraint, whereas a cardinality constraint of the
form

∑
xi ≥ k is referred to as an AtLeastk constraint. The study of propo-

sitional encodings of cardinality and pseudo-Boolean constraints is an area of
active research [1,4,5,9,10,17,25,34,59,66,70].

A clause is Horn if it contains at most one positive literal. A Horn clause
is a goal clause if it has no positive literals; otherwise it is a definite clause.
The decision problem for Horn formulas is well-known to be in P, with linear
time algorithms since the 80s [32,53]. A number of function problems defined on
Horn formulas can be solved in polynomial time [49]. These include computing
the lean kernel, finding a minimal unsatisfiable subformula and finding a maximal
satisfiable subformula.

2.1 Propositional Encodings of the Pigeonhole Principle

The propositional encoding of the pigeonhole hole principle is well-known [27].

Definition 1 (Pigeonhole Principle, PHP [27]). The pigeonhole principle states
that if m + 1 pigeons are distributed by m holes, then at least one hole contains
more than one pigeon. A more formal formulation is that there exists no injective
function mapping from {1, 2, ...,m + 1} to {1, 2, ...,m}, for m ≥ 1.

Propositional formulations of PHP encode the negation of the principle, and ask
for an assignment such that the m + 1 pigeons are placed into m holes. The
propositional encoding of the PHPm+1

m problem can be derived as follows. Let
the variables be xij , with 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m, with xij = 1 iff the ith

pigeon is placed in the jth hole. The constraints are that each pigeon must be
placed in at least one hole, and each hole must not have more than one pigeon.

m+1∧

i=1

AtLeast1(xi1, . . . , xim) ∧
m∧

j=1

AtMost1(x1j , . . . , xm+1,j) (1)

An AtLeast1 constraint can be encoded with a single clause. For the AtMost1
constraint there are different encodings, including [17,34,66]. For example, the
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pairwise encoding [17] of AtMost1(x1j , . . . , xm+1,j) uses no auxiliary variables
and the clauses ∧m+1

r=2 ∧r−1
s=1 (¬xrj ∨ ¬xsj). It is well-known that resolution has

an exponential lower bound for PHP [11,39,62].

2.2 MaxSAT, MaxSAT Resolution and MaxSAT Algorithms

MaxSAT. For unsatisfiable formulas, the maximum satisfiability (MaxSAT)
problem is to find an assignment that maximizes the number of satisfied clauses
(given that not all clauses can be satisfied). There are different variants of the
MaxSAT problem [17, Chap. 19]. Partial MaxSAT allows for hard clauses (which
must be satisfied) and soft clauses (which represent a preference to satisfy those
clauses). There are also weighted variants, in which soft clauses are given a
weight, and for which hard clauses (if any) have a weight of � (meaning clauses
that must be satisfied). The notation (c, w) will be used to represent a clause c
with w denoting the cost of falsifying c. The paper considers partial MaxSAT
instances, with hard clauses, for which w = �, and soft clauses, for which w = 1.
〈H,S〉 is used to denote partial MaxSAT problems with sets of hard (H) and
soft (S) clauses. In the paper, a MaxSAT solution represents either a maximum
cardinality set of satisfied soft clauses or an assignment that satisfies all hard
clauses and also maximizes (minimizes) the number of satisfied (falsified, resp.)
soft clauses.

MaxSAT Resolution [18,47]. In contrast with SAT, the MaxSAT resolution
operation requires the introduction of additional clauses other than the resolvent,
and resolved clauses cannot be resolved again. Let (x∨A, u) and (¬x∨B,w) be
two clauses, and let m � min(u,w), u 	 w � (u ==�) ? � : u − w, with u ≥ w.
The (non-clausal) MaxSAT resolution step [47] is shown in Table 1. (We could
have used the clausal formulation [18], but it is more verbose and unnecessary for
the purposes of the paper. It suffices to mention that clausal MaxSAT resolution
adds at most 2n clauses at each resolution step, where the number of variables is
n and the number of literals in each clause does not exceed n.) It is well-known
that MaxSAT-resolution is unlikely to improve propositional resolution [18]. For
the original PHPm+1

m formulas, there are known exponential lower bounds on
the size of deriving one empty clause by MaxSAT-resolution (given that the
remaining clauses are satisfiable) [18, Corollary 18].

Table 1. Example MaxSAT-resolution steps

Clause 1 Clause 2 Derived Clauses

(x ∨ A, u) (¬x ∨ B,w)
(A ∨ B,m), (x ∨ A, u � m), (¬x ∨ B,w � m),

(x ∨ A ∨ ¬B,m), (¬x ∨ ¬A ∨ B,m)

(x ∨ A, 1) (¬x,�) (A, 1), (¬x,�), (¬x ∨ ¬A, 1)

MaxSAT Algorithms. Many algorithms for MaxSAT have been proposed
over the years [17, Chap. 19]. The most widely investigated can be broadly
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organized into branch and bound [17, Chap. 19], iterative-search [12,36,46], core-
guided [2,36,50,51,54,55,57], and minimum hitting sets [29,64]. In most pro-
posed algorithms, core-guided and minimum hitting sets MaxSAT algorithms
iteratively determine formulas to be unsatisfiable, until satisfiability is reached
for a formula that relaxes clauses of minimum cost. This paper analyzes the oper-
ation of core-guided MaxSAT algorithms, concretely the MSU3 algorithm [50]2.
Moreover, and to our best knowledge, the relationship between core-guided
MaxSAT algorithms and MaxSAT resolution was first investigated in [57].

2.3 Related Work

The complexity of resolution on pigeonhole formulas has been studied by dif-
ferent authors, e.g. see [11,27,39,58,62] and references therein, among oth-
ers. It is well-known that for other proof systems, including cutting planes
and extended resolution, PHP has polynomial proofs [6,20,21,26,28,65]. Dif-
ferent authors have looked into extending CDCL (and so resolution) with the
goal of solving formulas for which resolution has known exponential lower
bounds [7,12,13,16,37,38,40,44,45,68]. Some SAT solvers apply pattern match-
ing techniques [14], but these are only effective for specific propositional encod-
ings. Furthermore, there has been limited success in applying cutting planes and
extended resolution in practical SAT solvers.

3 Reducing SAT to HornMaxSAT

The propositional satisfiability problem for CNF formulas can be reduced to
HornMaxSAT, more concretely to the problem of deciding whether for some
target Horn formula there exists an assignment that satisfies a given number of
soft clauses.

Let F be a CNF formula, with N variables {x1 . . . , xN} and M clauses
{c1, . . . , cM}. Given F , the reduction creates a Horn MaxSAT problem with hard
clauses H and soft clauses S, 〈H,S〉 = HEnc(F). For each variable xi ∈ X, create
new variables pi and ni, where pi = 1 iff xi = 1, and ni = 1 iff xi = 0. Thus, we
need a hard clause (¬pi ∨ ¬ni), to ensure that we do not simultaneously assign
xi = 1 and xi = 0. (Observe that the added clause is Horn.) This set of hard
Horn clauses is referred to as P. For each clause cj , we require cj to be satisfied,
by requiring that one of its literals not to be falsified. For each literal xi use ¬ni,
and for each literal ¬xi use ¬pi. Thus, cj is encoded with a new (hard) clause c′

j

with the same number of literals as cj , but with only negative literals on the pi
and ni variables, and so the resulting clause is also Horn. The set of soft clauses
S is given by (pi) and (ni) for each of the original variables xi. If the resulting
Horn formula has a HornMaxSAT solution with at least N variables assigned
2 Different implementations of the MSU3 have been proposed over the years [2,50,51,

55], which often integrate different improvements. A well-known implementation of
MSU3 is OpenWBO [51], one of the best MaxSAT solvers in the MaxSAT Evalua-
tions since 2014.
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value 1, then the original formula is satisfiable; otherwise the original formula is
unsatisfiable. (Observe that, by construction, the HornMaxSAT solution cannot
assign value 1 to more than N variables. Thus, unsatisfiability implies being
unable to satisfy more than N − 1 soft clauses.) Clearly, the encoding outlined
in this section can be the subject of different improvements.

The transformation proposed above can be related with the well-known dual-
rail encoding, used in different settings [19,43,48,61,63]. To our best knowledge,
the use of this encoding for deriving a pure Horn formula has not been proposed
in earlier work.

Lemma 1. Given 〈H,S〉 = HEnc(F), there can be no more than N satisfied
soft clauses.

Lemma 2. Let F have a satisfying assignment ν. Then, there exists an assign-
ment that satisfies H and N soft clauses in 〈H,S〉 = HEnc(F).

Lemma 3. Let ν′ be an assignment that satisfies the clauses in H and N clauses
in S. Then there exists an assignment ν that satisfies F .

Theorem 1. F is satisfiable if and only if there exists an assignment that sat-
isfies H and N clauses in S.
Example 1 (Pigeonhole Principle). The reduction of SAT into HornMaxSAT
can also be applied to the PHPm+1

m problem. With each variable xij ,
1 ≤ i ≤ m + 1, 1 ≤ j ≤ m, we associate two new variables: nij and pij . The
set of clauses P prevents a variable xi from being assigned value 0 and 1 simul-
taneously: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}. Li represents the
encoding of each AtLeast1 constraint, concretely Li = (¬ni1 ∨ . . . ∨ ¬nim). Mj

represents the encoding of each AtMost1 constraint, which will depend on the
encoding used. The soft clauses S are given by,

{(n11), . . . , (n1m), . . . , (nm+1 1), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+1 1), . . . , (pm+1m)}

with |S| = 2m(m + 1). Thus, the complete reduction of PHP into MaxSAT
becomes:

HEnc
(
PHPm+1

m

)
� 〈H,S〉 =

〈∧m+1
i=1 Li ∧ ∧m

j=1Mj ∧ P,S〉
(2)

Clearly, given P, one cannot satisfy more the m(m + 1) soft clauses. By
Theorem 1, PHPm+1

m is satisfiable if and only if there exists an assignment that
satisfies the hard clauses H and m(m + 1) soft clauses from S.

4 Short MaxSAT Proofs for PHP

This section shows that the reduction of PHPm+1
m to HornMaxSAT based on

a dual-rail encoding enables both existing core-guided MaxSAT algorithms and
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also MaxSAT resolution, to prove in polynomial time that the original problem
formulation3 is unsatisfiable. Recall from Theorem1, that PHPm+1

m is satisfiable
if and only if, given (2), there exists an assignment that satisfies H and m(m+1)
soft clauses in S. This section shows that for both core-guided algorithms and
for MaxSAT resolution, we can conclude in polynomial time that satisfying H
requires falsifying at least m(m + 1) + 1 soft clauses, thus proving PHPm+1

m to
be unsatisfiable.

The results in this section should be contrasted with earlier work [18], which
proves that MaxSAT resolution requires an exponentially large proof to produce
an empty clause, this assuming the original propositional encoding for PHPm+1

m .

4.1 A Polynomial Bound on Core-Guided MaxSAT Algorithms

This section shows that a core-guided MaxSAT algorithm will conclude in poly-
nomial time that more than m(m + 1) clauses must be falsified, when the hard
clauses are satisfied, thus proving the original PHPm+1

m to be unsatisfiable.
The analysis assumes the operation of basic core-guided algorithm, MSU3 [50],
but similar analyses could be carried out for other families of core-guided
algorithms4.

The following observations about (2) are essential to prove the bound on
the run time. First, the clauses in the Li constraints do not share variables in
common with the clauses in the Mj constraints. Second, each constraint Li is
of the form (¬ni1 ∨ . . . ∨ ¬nim) and so its variables are disjoint from any other
Lk, k �= i. Third, assuming a pairwise encoding, each constraint Mj is of the
form ∧m+1

r=2 ∧r−1
s=1 (¬prj ∨ ¬psj), and so its variables are disjoint from any other

Ml, l �= j. Since the sets of variables for each constraint are disjoint from the
other sets of variables, we can exploit this partition of the clauses, and run
a MaxSAT solver separately on each one. (Alternatively, we could assume the
MSU3 MaxSAT algorithm to work with disjoint unsatisfiable cores.)

Table 2 summarizes the sequence of unit propagation steps that yields a lower
bound on the number of falsified clauses larger than m(m + 1).

For each Li, the operation is summarized in the second row of Table 2. Unit
propagation yields a conflict between m soft clauses and the corresponding hard
clause. This means that at least one of these soft clauses must be falsified. Since
there are m + 1 constraints Li, defined on disjoint sets of variables, then each
will contribute at least one falsified soft clause, which puts the lower bound on
the number of falsified clauses at m + 1.

For each Mj the operation is summarized in rows 3 to last of Table 2. Each
row indicates a sequence of unit propagation steps that produces a conflict, each
on a distinct set of soft clauses. Observe that each soft clause (pkj), k ≥ 2, induces

3 This section studies the original pairwise encoding of PHPm+1
m . However, a similar

argument can be applied to PHPm+1
m provided any encoding of AtMost1 constraints

Mj , as confirmed by the experimental results in Sect. 5.2.
4 Basic knowledge of core-guided MaxSAT algorithms is assumed. The reader is

referred to recent surveys for more information [2,55].
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Table 2. Partitioned core-guided unit propagation steps

Con-
straint

Hard clause(s) Soft clause(s) Relaxed clauses
Updated
AtMostk

Constraints

LB
increase

Li (¬ni1 ∨ . . . ∨ ¬nim)
(ni1), . . . , (nim) (ril ∨ ni1),

1 ≤ l ≤ m

∑m
l=1 ril ≤ 1 1

Mj (¬p1j ∨ ¬p2j) (p1j), (p2j)
(r1j ∨ p1j),
(r2j ∨ p2j)

∑2
l=1 rlj ≤ 1 1

Mj

(¬p1j ∨ ¬p3j),
(¬p2j ∨ ¬p3j),

(r1j ∨ p1j),
(r2j ∨ p2j),∑2

l=1 rlj ≤ 1

(p3j) (r3j ∨ p3j)
∑3

l=1 rlj ≤ 2 1

· · ·

Mj

(¬p1j ∨ ¬pm+1j), . . .,
(¬pmj ∨ ¬pm+1j),

(r1j ∨ p1j), . . .,
(rmj ∨ pmj),∑m
l=1 rlj ≤ m − 1

(pm+1j) (rm+1j ∨ pm+1j)
∑m+1

l=1 rlj ≤ m 1

a sequence of unit propagation steps, that causes the AtMost{k − 1} constraint
to become inconsistent. Concretely, for iteration k (where row 3 corresponds to
iteration 1), the sequence of unit propagation steps is summarized in Table 35.

Table 3. Analysis of Mj , iteration k

Clauses Unit Propagation

(pk+1 j) pk+1 j = 1

(¬p1j ∨ ¬pk+1 j), . . . , (¬pkj ∨ ¬pk+1 j) p1j = . . . = pkj = 0

(r1j ∨ p1j), . . . , (rkj ∨ pkj) r1j = . . . = rkj = 1
∑k

l=1 rlj ≤ k − 1
(∑k

l=1 rlj ≤ k − 1
)

�1 ⊥

Since there are m such rows, then each Mj contributes at least m falsified
soft clauses. Moreover, the number of Mj constraints is m, and so the Mj

constraints increase the bound by m · m.
Given the above, in total we are guaranteed to falsify at least m+1+m ·m =

m(m+1)+1 clauses, thus proving that one cannot satisfy m(m+1) soft clauses
if the hard clauses are satisfied. In turn, this proves that the PHPm+1

m problem
is unsatisfiable.

We can also measure the run time of the sequence of unit propagation steps.
For each Li, the run time is O(m), and there will be m such unit propagation

5 The notation Φ �1 ⊥ indicates that inconsistency (i.e. a falsified clause) is derived by
unit propagation on the propositional encoding of Φ. This is the case with existing
encodings of AtMostk constraints.
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steps, for a total O(m2). For each Mj there will be m unit propagation steps,
with run time between O(1) and O(m). Thus, the run time of the sequence of
unit propagation steps for each Mj is O(m2). Since there are m constraints Mj ,
then the total run time is O(m3).

Proposition 1. Given (2), and for a core-guided MSU3-like MaxSAT solver,
there is a sequence of unit propagation steps such that a lower bound of m(m +
1) + 1 is computed in O(m3) time.

Moreover, it is important to observe that the unit propagation steps consid-
ered in the analysis above avoid the clauses in P, i.e. only the clauses in Li, Mj ,
S, and relaxed clauses, are used for deriving the lower bound of m(m + 1) + 1
on the minimum number of falsified soft clauses. As shown in Sect. 5.2, and
for the concrete case of PHP, the clauses in P are unnecessary and actually
impact negatively the performance of core-guided MaxSAT solvers. Finally, and
although the proof above assumes an MSU3-like core-guided algorithm, similar
ideas could be considered in the case of other variants of core-guided MaxSAT
algorithms [2,36,55,57].

4.2 A Polynomial Bound on MaxSAT Resolution

We can now exploit the intuition from the previous section to identify the
sequence of MaxSAT resolution steps that enable deriving m(m + 1) + 1 empty
clauses, thereby proving that any assignment that satisfies the hard clauses must
falsify at least m(m+1)+1 soft clauses, and therefore proving that the proposi-
tional encoding of PHP is unsatisfiable. As before, we assume that the pairwise
encoding is used to encode each constraint Mj . As indicated earlier in Sect. 2.2,
we consider a simplified version of MaxSAT resolution [47], which is non-clausal.
As explained below, this is not problematic, as just a few clauses are of inter-
est. For the clausal version of MaxSAT resolution, the other clauses, which our
analysis ignores, are guaranteed to be linear in the number of variables at each
step, and will not be considered again.

Table 4 summarizes the essential aspects of the MaxSAT resolution steps
used to derive m(m + 1) + 1 empty clauses. (Also, Sect. 4.1 clarifies that the
formula can be partitioned if P is ignored.) Similarly to the previous section, the
Li constraints serve to derive m + 1 empty clauses, whereas each Mj constraint
serves to derive m empty clauses. In total, we derive m(m+1)+1 empty clauses,
getting the intended result.

As shown in Table 4, for each constraint Li, start by applying MaxSAT res-
olution between the hard clause Li � (¬ni1 ∨ . . . ∨ ¬nim) and soft clause (ni1)
to get soft clause (¬ni2 ∨ . . . ∨ ¬nim), and a few other clauses (which are irrele-
vant for our purposes). Next, apply m − 1 additional MaxSAT resolution steps,
resolving soft clause (¬nik ∨ . . . ∨ ¬nim) with soft clause (nik) to get soft clause
(¬nik+1 ∨ . . . ∨ ¬nim). Clearly, the final MaxSAT resolution step will yield an
empty clause. Therefore, over all m + 1 Li constraints, we derive m + 1 empty
clauses. Table 4 also illustrates the application of the MaxSAT resolution steps
to the pairwise encoding of Mj . At iteration i, with 2 ≤ i ≤ m + 1, we apply
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Table 4. Simplified MaxSAT resolution steps

Constraint Clauses Resulting clause(s)

Li
(¬ni1 ∨ . . . ∨ ¬nim,�),

(ni1, 1) (¬ni2 ∨ . . . ∨ ¬nim, 1) , . . .

Li
(¬ni2 ∨ . . . ∨ ¬nim, 1),

(ni2, 1) (¬ni3 ∨ . . . ∨ ¬nim, 1) , . . .

· · ·

Li
(¬nim, 1),
(nim, 1) (⊥, 1) , . . .

Mj
(¬p1j ∨ ¬p2j ,�),

(p1j , 1) (¬p2j , 1), (¬p1j ∨ ¬p2j ,�), (p1j ∨ p2j , 1)

Mj
(¬p2j , 1),
(p2j , 1) (⊥, 1)

Mj
(¬p1j ∨ ¬p3j ,�),

(p1j ∨ p2j , 1)
(p2j ∨ ¬p3j , 1) , (¬p1j ∨ ¬p3j ,�),

(¬p1j ∨ ¬p3j ∨ ¬p2j , 1), (p1j ∨ p2j ∨ p3j , 1)

Mj
(¬p2j ∨ ¬p3j ,�),
(p2j ∨ ¬p3j , 1) (¬p3j , 1) , (¬p2j ∨ ¬p3j ,�)

Mj
(¬p3j , 1),
(p3j , 1) (⊥, 1)

· · ·

Mj
(¬p1j ∨ ¬pm+1j ,�),
(p1j ∨ . . . ∨ pmj , 1) (p2j . . . pmj ∨ ¬pm+1j , 1) , . . .

Mj

(¬p2j ∨ ¬pm+1j ,�),
(p2j ∨ . . . ∨ pmj ∨

¬pm+1j , 1)
(p3j . . . pmj ∨ ¬pm+1j , 1) , . . .

· · ·

Mj
(¬pmj ∨ ¬pm+1j ,�),
(pmj ∨ ¬pm+1j , 1) ¬pm+1j , 1) , . . .

Mj
(pm+1j , 1),
(¬pm+1j , 1) (⊥, 1)

i MaxSAT resolution steps to derive another empty clause. In total, we derive
m empty clauses for each Mj . An essential aspect is selecting the initial clause
from which each sequence of MaxSAT resolution steps is executed. These reused
clauses are highlighted in Table 4, and are crucial for getting the right sequence
of MaxSAT resolution steps. For each Mj , the MaxSAT resolution steps can
be organized in m phases, each yielding an empty soft clause. For phase l, the
previous phase l − 1 produces the clause (p1j ∨ p2j ∨ . . . ∨ plj , 1), which is then
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iteratively simplified, using unit soft clauses, until the empty soft clause for phase
l is derived. It should be noted that the first phase uses two unit soft clauses
to produce (p1j ∨ p2j , 1), which is used in the second phase. As in Sect. 4.1, is
immediate that each soft clause is never reused.

Regarding the run time complexity, observe that each MaxSAT resolution
step runs in time linear on the number of literals in the clauses. The clauses in
the problem formulation have no more than O(m) literals. This also holds true as
MaxSAT resolution steps are applied. By analogy with the analysis of the core-
guided algorithm, a total of O(m2) empty soft clauses will be derived. From
the analysis above, summarized in Table 4, deriving the O(m2) empty clauses
requires a total of O(m3) MaxSAT resolution steps. For non-clausal MaxSAT
resolution, since the number of generated (non-clausal) terms is constant for
each MaxSAT resolution step, then the run time is O(m3). In contrast, for
clausal MaxSAT resolution [18, Definition 1], since the number of literals for
each resolution step is O(m2), then the run time becomes O(m5).

Proposition 2. For the HornMaxSAT encoding of PHPm+1
m , there exists a

polynomial sequence of MaxSAT resolution steps, each producing a number of
constraints polynomial in the size of the problem formulation, that produces
m(m + 1) + 1 soft empty clauses.

4.3 Integration in SAT Solvers

This section shows that off-the-shelf MaxSAT solvers, which build on CDCL
SAT solvers, can solve PHPm+1

m in polynomial time, provided the right order of
conflicts is chosen. This motivates integrating core-guided MaxSAT reasoning
into SAT solvers. Similarly, one could consider integrating MaxSAT resolution
(or a mix of both [57]) but, like resolution, MaxSAT resolution is harder to
implement in practice. The proposed transformation can be applied on demand,
and the operation of CDCL can be modified to integrate some form of core-
guided reasoning. In contrast to other attempts at extending CDCL, the use of
MaxSAT reasoning, will build also on CDCL itself.

MaxHS-like Horn MaxSAT. The reduction to Horn MaxSAT also motivates
the development of dedicated MaxSAT solvers. One approach is to build upon
MaxHS-solvers [29,64], since in this case the SAT checks can be made to run in
linear time, e.g. using LTUR [53]. Similar technique can possibly be integrated
into SAT solvers.

Handling P clauses. The P clauses prevent assigning a variable simultaneously
value 0 and value 1. As the analysis for the PHP instances suggests, and the
experimental results confirm, these clauses can be responsible for non-polynomial
run times. One can envision attempting to solve problems without considering
P clauses, and adding these clauses on demand, as deemed necessary to block
non-solutions. The operation is similar to the counterexample-guided abstraction
refinement paradigm (CEGAR) [24].
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5 Experimental Evaluation

5.1 Experimental Setup

To illustrate the main points of the paper, a number of solvers were tested.
However and in order to save space, the results are detailed below only for some
of the tested competitors.6 The families of the evaluated solvers as well as the
chosen representatives for the families are listed in Table 5. The family of CDCL
SAT solvers comprises MiniSat 2.2 (minisat) and Glucose 3 (glucose) while the
family of SAT solvers strengthened with the use of other powerful techniques (e.g.
Gaussian elimination, GA and/or cardinality-based reasoning, CBR) includes
lingeling (lgl) and CryptoMiniSat (crypto). The MaxSAT solvers include the
known tools based on implicit minimum-size hitting set enumeration, i.e. MaxHS
(maxhs) and LMHS (lmhs), and also a number of core-guided solvers shown to
be best for industrial instances in a series of recent MaxSAT Evaluations7, e.g.
MSCG (mscg), OpenWBO16 (wbo) and WPM3 (wpm3 ), as well as the recent
MaxSAT solver Eva500a (eva) based on MaxSAT resolution. Other competitors
considered include CPLEX (lp), OPB solvers cdcl-cuttingplanes (cc) and Sat4j
(sat4j ) as well as a solver based on ZBDDs called ZRes (zres).

Table 5. Families of solvers considered in the evaluation (their best performing rep-
resentatives are written in italics). SAT+ stands for SAT strengthened with other
techniques, IHS MaxSAT is for implicit hitting set based MaxSAT, CG MaxSAT is
for core-guided MaxSAT, MRes is for MaxSAT resolution, MIP is for mixed integer
programming, OPB is for pseudo-Boolean optimization, BDD is for binary decision
diagrams.

SAT SAT+ IHS MaxSAT CG MaxSAT MRes MIP OPB BDD

minisat glucose lgl crypto maxhs lmhs mscg wbo wpm3 eva lp cc sat4j zres

[33] [8] [14,15] [67,68] [29–31] [64] [56] [52] [3] [57] [41] [35] [12] [22]

Note that three configurations of CPLEX were tested: (1) the default con-
figuration and the configurations used in (2) MaxHS and (3) LMHS. Given the
overall performance, we decided to present the results for one best performing
configuration, which turned out to be the default one. Also, the performance
of CPLEX was measured for the following two types of LP instances: (1) the
instances encoded to LP directly from the original CNF formulas (see lp-cnf ) and
(2) the instances obtained from the HornMaxSAT formulas (lp-wcnf ). A similar
remark can be made with regard to the cc solver: it can deal with the original
CNF formulas as well as their OPB encodings (the corresponding configurations
of the solver are cc-cnf and cc-opb8, respectively).
6 The discussion focuses on the results of the best performing representatives.

Solvers that are missing in the discussion are meant to be “dominated” by their
representatives.

7 http://www.maxsat.udl.cat.
8 The two tested versions of cc-opb behave almost identically with a minor advantage

of linear search. As a result, cc-opb stands for the linear search version of the solver.

http://www.maxsat.udl.cat
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Regarding the IHS-based MaxSAT solvers, both MaxHS and LMHS imple-
ment the Eq-Seeding constraints [30]. Given that all soft clauses constructed by
the proposed transformation are unit and that the set of all variables of Horn-
MaxSAT formulas is covered by the soft clauses, these eq-seeding constraints
replicate the complete MaxSAT formula on the MIP side. As a result, after all
disjoint unsatisfiable cores are enumerated by MaxHS or LMHS, only one call
to an MIP solver is needed to compute the optimum solution. In order to show
the performance of an IHS-based MaxSAT solver with this feature disabled, we
considered another configuration of LMHS (lmhs-nes).9

All the conducted experiments were performed in Ubuntu Linux on an Intel
Xeon E5-2630 2.60 GHz processor with 64 GByte of memory. The time limit was
set to 1800 s and the memory limit to 10 GByte for each individual process to
run.

5.2 Experimental Results

The efficiency of the selected competitors was assessed on the benchmark suite
consisting of 3 sets: (1) pigeonhole formulas (PHP) [27], (2) Urquhart formulas
(URQ) [69], and (3) their combinations (COMB).

Pigeonhole principle benchmarks. The set of PHP formulas contains 2 fam-
ilies of benchmarks differing in the way AtMost1 constraints are encoded: (1)
standard pairwise-encoded (PHP-pw) and (2) encoded with sequential coun-
ters [66] (PHP-sc). Each of the families contains 46 CNF formulas encoding the
pigeonhole principle for 5 to 100 pigeons. Figure 110 shows the performance of the
solver on sets PHP-pw and PHP-sc. As can be seen, the MaxSAT solvers (except
eva and wbo) and also lp-∗ are able to solve all instances. As expected, CDCL
SAT solvers perform poorly for PHP with the exception of lingeling, which in
some cases detects cardinality constraints in PHP-pw. However, disabling car-
dinality constraints reasoning or considering the PHP-sc benchmarks impairs
its performance tremendously. Also note that we were unable to reproduce the
performance of zres applied to PHP reported in [22].

On discarding P clauses. To confirm the conjecture that the P clauses can
hamper a MaxSAT solver’s ability to get good unsatisfiable cores, we also con-
sidered both PHP-pw and PHP-sc instances without the P clauses. Figure 2
compares the performance of the solvers working on PHP formulas w/ and w/o
the P clauses. The lines with (no P) denote solvers working on the formulas w/o
P (except maxhs and lmhs whose performance is not affected by removal of P).
As in Fig. 2b, the efficiency of wbo is improved by a few orders of magnitude if P
clauses are discarded. Also, mscg gets about an order of magnitude performance
improvement outperforming other solvers.

9 We chose LMHS (not MaxHS) because it has a command-line option to disable
eq-seeding.

10 Note that all the shown cactus plots below scale the Y axis logarithmically.
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Fig. 1. Performance of the considered solvers on pigeonhole formulas.

Fig. 2. Performance of MaxSAT solvers on PHP-pw ∪ PHP-sc w/ and w/o P clauses.

Urquhart benchmarks and combined instances. The URQ instances are
known to be hard for resolution [69], but not for BDD-based reasoning [22].
Here, we follow the encoding of [22] to obtain the formulas of varying size given
the parameter n of the encoder. In the experiments, we generated 3 CNF for-
mulas for each n from 3 to 30 (i.e. URQn,i for n ∈ {3, . . . , 30} and i ∈ {1, 2, 3}),
which resulted in 84 instances. As expected, the best performance on the URQ
instances is demonstrated by zres. Both maxhs and lmhs are not far behind. Note
that both maxhs and lmhs do exactly 1 call to CPLEX (due to eq-seeding) after
enumerating disjoint unsatisfiable cores. This contrasts sharply with the poor
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Fig. 3. Performance of the considered solvers on URQ and combined formulas.

performance of lp-wcnf, which is fed with the same problem instances. Lingeling
if augmented with Gaussian elimination (GA, see lgl in Fig. 3a) performs reason-
ably well being able to solve 29 instances. However, as the result for lgl-nogauss
suggests, GA is crucial for lgl to efficiently decide URQ. Note that lp-cnf and
cc-opb are not shown in Fig. 3a due to their inability to solve any instance.

The COMB benchmark set is supposed to inherit the complexity of both
PHP and URQ instances and contains formulas PHPm+1

m ∨ URQn,i with the
PHP part being pairwise-encoded, where m ∈ {7, 9, 11, 13}, n ∈ {3, . . . , 10},
and i ∈ {1, 2, 3}, i.e. |COMB| = 96. As one can observe in Fig. 3b, even these
small m and n result in instances that are hard for most of the competitors. All
IHS-based MaxSAT solvers (maxhs, lmhs, and lmhs-nes) perform well and solve
most of the instances. Note that lgl is confused by the structure of the formulas
(neither CBR nor GA helps it solve these instances). The same holds for zres.
As for CPLEX, while lp-cnf is still unable to solve any instance from the COMB
set, lp-wcnf can also solve only 18 instances. The opposite observation can be
made for cc-cnf and cc-opb.

Summary. As shown in Table 6, given all the considered benchmarks sets, the
proposed problem transformation and the follow-up IHS-based MaxSAT solving
can cope with by far the largest number of instances overall (see the data for
maxhs, lmhs, and lmhs-nes). The core-guided and also resolution based MaxSAT
solvers generally perform well on the pigeonhole formulas (except wbo, and this
has to be investigated further), which supports the theoretical claims of papers.
However, using them does not help solving the URQ and also COMB bench-
marks. Also, as shown in Fig. 2, the P clauses can be harmful for MaxSAT solvers.
As expected, SAT solvers cannot deal with most of the considered formulas as
long as they do not utilize more powerful reasoning (e.g. GA or CBR). However,
and as the COMB instances demonstrate, it is easy to construct instances that
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Table 6. Number of solved instances per solver.

glucose lgl lgl-noa maxhs lmhs lmhs-nes mscg wbo eva lp-cnf lp-wcnf cc-cnf cc-opb zres

PHP-pw (46) 7 29 7 46 46 29 46 10 46 46 46 6 5 10

PHP-sc (46) 13 11 11 46 46 45 46 15 40 46 46 6 2 8

URQ (84) 3 29 4 50 44 37 5 22 3 0 6 3 0 84

COMB (96) 11 37 41 78 91 80 7 13 6 0 18 6 0 39

Total (272) 34 106 63 220 227 191 104 60 95 92 116 21 7 141
aThis represents lgl-nogauss for URQ and lgl-nocard for PHP-pw, PHP-sc, and COMB.

are hard for the state-of-the-art SAT solvers strengthened with GA and CBR.
Finally, one should note the performance gap between maxhs (also lmhs) and
lp-wcnf given that they solve the same instances by one call to the same MIP
solver with the only difference being the disjoint cores precomputed by maxhs
and lmhs.

6 Conclusions and Research Directions

Resolution is at the core of CDCL SAT solving, but it also represents its Achilles’
heel. Many crafted formulas are known to be hard for resolution, with pigeon-
hole formulas representing a well-known example [27]. More importantly, some
of these examples can occur naturally in some practical settings. In the con-
text of MaxSAT, researchers have proposed a dedicated form of resolution, i.e.
MaxSAT resolution [18,47], which was also shown not to be more powerful than
propositional resolution [18] for the concrete case of pigeonhole formulas [27].

This paper proposes a general transformation for CNF formulas, by encoding
the SAT decision problem as a MaxSAT problem over Horn formulas. The trans-
formation is based on the well-known dual-rail encoding, but it is modified such
that all clauses are Horn. More importantly, the paper shows that, on this modi-
fied formula, MaxSAT resolution can identify in polynomial time a large enough
number of empty soft clauses such that this number implies the unsatisfiability
of the original pigeonhole formula. Furthermore, the paper shows that the same
argument can be used to prove a polynomial run time for the well-known class
of core-guided MaxSAT solvers [55]. Experimental results, obtained on formu-
las known to be hard for SAT solvers, show that different families of MaxSAT
solvers perform far better than the best performing SAT solvers, and also ILP
solvers, on these instances. Future work will investigate effective mechanisms for
integrating Horn MaxSAT problem transformation and MaxSAT reasoning tech-
niques into SAT solvers. In contrast to cutting planes or extended resolution,
MaxSAT algorithms already build on CDCL SAT solvers; this is expected to
facilitate integration. Another research direction is to investigate similar trans-
formations for the many other examples for which resolution has exponential
lower bounds, but also when to opt to apply such transformations.
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Abstract. Enumeration of minimal correction sets (MCSes) of conjunc-
tive normal form formulas is a central and highly intractable problem in
infeasibility analysis of constraint systems. Often complete enumeration
of MCSes is impossible due to both high computational cost and worst-
case exponential number of MCSes. In such cases partial enumeration
is sought for, finding applications in various domains, including axiom
pinpointing in description logics among others. In this work we propose
caching as a means of further improving the practical efficiency of cur-
rent MCS enumeration approaches, and show the potential of caching
via an empirical evaluation.

1 Introduction

Minimal correction sets (MCSes) of an over-constrained system are subset-
minimal sets of constraints whose removal restores the consistency of the sys-
tem [6]. In terms of unsatisfiable conjunctive normal form (CNF) propositional
formulas, the focus of this work, MCSes are hence minimal sets of clauses such
that, once removed, the rest of the formula is satisfiable. Due to the generality
of the notion, MCSes find applications in various domains where understand-
ing infeasibility is a central problem, ranging from minimal model computation
and model-based diagnosis to interactive constraint satisfaction and configura-
tion [17], as well as ontology debugging and axiom pinpointing in description
logics [1].

On a fundamental level, MCSes are closely related to other fundamen-
tal notions in infeasibility analysis. These include maximal satisfiable subsets
(MSSes), which represent the complement notion of MCSes (sometimes referred
to as co-MSSes [11]), and minimally unsatisfiable subsets (MUSes), with the well-
known minimal hitting set duality providing a tight connection between MCSes
and MUSes [4,6,26]. Furthermore, MCSes are strongly related to maximum sat-
isfiability (MaxSAT), the clauses satisfied in an optimal MaxSAT solution being
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the residual formula after removing a smallest (minimum-weight) MCS over the
soft clauses. Not surprisingly, MCS extraction surpasses in terms of computa-
tional complexity the task of satisfiability checking, deciding whether a given
subset of clauses of a CNF formula is an MCS being DP-complete [7]. Despite
this, and on the other hand motivated by the various applications and fundamen-
tal connections, several algorithms for extracting an MCS of a given CNF formula
have been recently proposed [3,11,17–20,22,24], iteratively using Boolean sat-
isfiability (SAT) solvers as the natural choice for the underlying practical NP
oracle.

In this work we focus on the computationally more challenging task of MCS
enumeration. Complete enumeration of MCSes is often impossible due to both
high computational cost and the worst-case exponential number of MCSes.
In such cases partial enumeration is sought for, which finds many application
domains, including axiom pinpointing in description logics [1] among others.

Instead of proposing a new algorithm for MCS enumeration, we propose the
use of caching as a means of further improving the scalability of current state-
of-the-art MCS enumeration algorithms. Caching (or memoization) is of course
a well-known general concept, and has been successfully applied in speeding up
procedures for other central problems related to satisfiability. A prime example is
the use of subformula caching in the context of the #P-complete model counting
problem [2,5,12,13,27,30]. Similarly, clause learning in CDCL SAT solvers [23,
28] can be viewed as a caching mechanism where learned clauses summarize and
prevent previously identified conflicts.

In more detail, we propose caching unsatisfiable cores met during search
within SAT-based MCS enumeration algorithms. Putting this idea into practice,
we show that core caching has clear potential in scaling up MCS enumeration,
especially for those instances whose extraction of a single MCS is not trivial. In
terms of related work, to the best of our knowledge the use of caching to scale
up MCS enumeration has not been previously proposed or studied. Partial MUS
enumerators (e.g. [14,31]) store MUSes and MCSes in order to exploit hitting
set duality and enumerate both. In contrast, we use caching to avoid potentially
hard calls to a SAT solver.

The rest of this paper is organized as follows. In Sect. 2 we overview nec-
essary preliminaries and notation used throughout, and in Sect. 3 provide an
overview of MCS extraction and enumeration algorithms. We propose caching
as a means of improving MCS enumeration in Sect. 4, and, before conclusions,
present empirical results on the effects of using this idea in practice in Sect. 5.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF). A CNF
formula F over a set of Boolean variables X = {x1, ..., xn} is a conjunction of
clauses (c1 ∧ ... ∧ cm). A clause ci is a disjunction of literals (li,1 ∨ ... ∨ li,ki

) and
a literal l is either a variable x or its negation ¬x. We refer to the set of literals
appearing in F as L(F). CNF formulas can be alternatively represented as sets
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of clauses, and clauses as sets of literals. Unless explicitly specified, formulas and
clauses are assumed to be represented as sets.

A truth assignment, or interpretation, is a mapping μ : X → {0, 1}. If each
of the variables in X is assigned a truth value, μ is a complete assignment. Inter-
pretations can be also seen as conjunctions or sets of literals. Truth valuations
are lifted to clauses and formulas as follows: μ satisfies a clause c if it contains
at least one of its literals, whereas μ falsifies c if it contains the complements of
all its literals. Given a formula F , μ satisfies F (written μ |= F) if it satisfies all
its clauses, in which case μ is a model of F .

Given two formulas F and G, F entails G (written F |=G) if and only if each
model of F is also a model of G. A formula F is satisfiable (F �|= ⊥) if it has a
model, and otherwise unsatisfiable (F |=⊥). SAT is the NP-complete [8] decision
problem of determining the satisfiability of a given propositional formula.

The following definitions give central notions of subsets of an unsatisfiable
formula F in terms of (set-wise) minimal unsatisfiability and maximal satisfia-
bility [15,17].

Definition 1. M ⊆ F is a minimally unsatisfiable subset (MUS) of F if and
only if M is unsatisfiable and ∀c ∈ M,M \ {c} is satisfiable.

Definition 2. C ⊆ F is a minimal correction subset (MCS) if and only if F \C
is satisfiable and ∀c ∈ C,F \ (C \ {c}) is unsatisfiable.

Definition 3. S ⊆ F is a maximal satisfiable subset (MSS) if and only if S is
satisfiable and ∀c ∈ F \ S,S ∪ {c} is unsatisfiable.

Note that an MSS is the set-complement of an MCS. MUSes and MCSes
are closely related by the well-known hitting set duality [4,6,26,29]: Every MCS
(MUS) is an irreducible hitting set of all MUSes (MCSes) of the formula. In the
worst case, there can be an exponential number of MUSes and MCSes [15,25].
Besides, MCSes are related to the maximum satisfiability (MaxSAT) problem,
which consists in finding an assignment satisfying as many clauses as possible;
a smallest MCS (i.e., largest MSS) is the set of clauses left unsatisfied by some
optimal MaxSAT solution.

Given the practical significance of handling soft constraints [21], we consider
that formulas may be partitioned into sets of hard and soft clauses, i.e., F =
FH ∪ FS . Hard clauses must be satisfied, while soft clauses can be relaxed if
necessary. Thus, an MCS will be a subset of FS .

The following simple proposition will be useful in the remainder of this paper.

Proposition 1. Let M be an unsatisfiable formula. Then, for any M′ ⊇ M we
have that also M′ is unsatisfiable.

3 MCS Extraction and Enumeration

In this section we overview the state-of-the-art MCS enumeration algorithms.
These algorithms work on a formula F = FH ∪ FS partitioned into hard and



Improving MCS Enumeration via Caching 187

soft clauses, FH and FS , respectively. The hard clauses are added as such to
a SAT solver. Each soft clause ci is extended, or reified, with a fresh selector
(or assumption) variable si, i.e., soft clause ci results in the clause (¬si ∨ ci),
before adding them to the SAT solver. The use of selector variables is a standard
technique used to add and remove clauses, enabling incremental SAT solving.
Selector variables are set as assumptions at the beginning of each call to the SAT
solver in order to activate (add) or deactivate (remove) a clause. In particular,
if si is set to 1, then the associated clause is activated. If si is set to 0, then ci is
deactivated. The addition of the selector variables makes F satisfiable (provided
that FH is satisfiable). When all the selector variables si are set to 1, the result is
the original formula F . MCS algorithms use the selector variables as assumptions
for selecting subsets of FS over which to check satisfiability together with the
hard clauses. We will refer to the subset of soft clauses of FS identified by a set
of selector variables together with the hard clauses as the induced formula. In
presenting the algorithms, we will avoid referring explicitly to selector variables;
rather, we identify a formula F with all selector variables of the soft clauses in
FS being set to 1.

State-of-the-art MCS extraction algorithms rely on making a sequence of
calls to a SAT solver that is used as a witness NP oracle. The solver is queried
a number of times on subformulas of the unsatisfiable input formula F . A SAT
solver call is represented on line 5 by 〈st, μ, C〉 ← SAT(F), where st is a Boolean
value indicating whether the formula is satisfiable or not. If the formula is sat-
isfiable, the SAT solver returns a model μ. Otherwise it returns an unsatisfiable
core C over the soft clauses.

We overview in more detail a simple example of such algorithms: the basic
linear search (BLS) approach, depicted in Algorithm 1. This algorithm maintains
a partition of F in two disjoint sets during the computation of an MCS. The set
S represents a satisfiable subformula of F , i.e., the MSS under construction. The
set U is formed by the clauses that still need to be checked. The initial assignment
used to split F is a model μ of FH . All the clauses in F satisfied by μ are put
in S, while the falsified clauses become part of U . These operations are enclosed
inside the function InitialAssignment(F) on line 3. Then, iteratively until all
the clauses in U have been checked, the algorithm picks a clause c ∈ U and
checks the satisfiability of S ∪{c}. If it is satisfiable, c is added to S. Otherwise,
c is known to belong to the MCS under construction and is added to M. Upon
termination, S represents an MSS and M = F \ S represents an MCS of F .

In linear search, the number of SAT solver calls necessary is linear in terms
of the number of soft clauses in the input formula. Different alternatives and
optimization techniques have been proposed in recent years, leading to sub-
stantial improvements, including FastDiag [10], dichotomic search [25], clause
D (CLD) [17], relaxation search [3], and the CMP algorithm [11]. In addition,
algorithms such as the literal-based extractor (LBX) [20] represent the current
state-of-the-art for extracting a single MCS. Recently, algorithms such as LOPZ,
UCD and UBS, which also target the extraction of a single MCS, have been pro-
posed [18], requiring a sublinear number of SAT solver calls on the number
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Algorithm 1. Basic linear search
1 Function bls(F)

2 M ← ∅
3 (S, U) ← InitialAssignment(F)
4 foreach c ∈ U do
5 〈st, μ, C〉 ← SAT(S ∪ {c})
6 if st then S ← S ∪ {c}
7 else M ← M ∪ {c}
8 return M // MCS of F

of clauses. Optimization techniques include exploiting satisfying assignments,
backbone literals, and disjoint unsatisfiable cores [17], among others, and are
integrated into MCS extraction algorithms for improving efficiency, giving rise
to, e.g., enhanced linear search (ELS) [17].

MCS enumeration relies on iteratively extracting an MCS C ∈ F and blocking
it by adding the hard clause

∨
l∈L(C) l to F . This way, no superset of C will

subsequently be considered during the enumeration. The process continues until
FH becomes unsatisfiable, at which time all MCSes have been enumerated.

To the best of our knowledge, the current state-of-the-art in MCS enumera-
tion is represented by the algorithms implemented in the tool mcsls [17], specif-
ically, ELS and CLD. These algorithms have been shown to be complementary
to each other [16].

4 Caching for MCS Enumeration

We will now introduce caching as a way to improve MCS enumeration. For some
intuition, when a formula has a large number of MCSes, many of the MCSes
tend to share many clauses. This suggests that similar satisfiability problems are
solved in the computation of several MCSes. Our proposal aims at making use
of this observation by storing information that could lead to avoiding potentially
time-consuming calls to the SAT solver on S ∪ {c}.

The idea is to keep a global database which is updated and queried by the
MCS extraction algorithm during the enumeration process. The only require-
ments for realizing the database are the two operations store(C) and hasSub-
set(K), where C is an unsatisfiable core of F and K ⊆ F . The intent of the
function hasSubset(K) is to check for a given subset K of F whether an unsatis-
fiable core C of F with C ⊆ K has already been extracted. If this is the case, we
know by Proposition 1 that K is unsatisfiable. Naturally, as the cache database
queries should avoid the cost of calling a SAT solver on the actual instance, the
functions store(C) and hasSubset(K) need to be fast to compute.

Considering these requirements, as well as ease of implementing the cache
and queries to the cache, in this work we implement the database by means
of a SAT solver, storing a formula referred to as D formula in Algorithm2.
Variables of this formula are the selector variables of the original formula F , while
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clauses represent unsatisfiable cores of F . For an unsatisfiable core C of F the
corresponding clause is given by (

∨
ci∈C ¬σ(ci)), where σ(ci) is a function which

for a given clause ci returns the associated selector variable si. As an example,
suppose that C = {c1, c2, c3} is an unsatisfiable core of F . The corresponding
clause added to D is (¬s1 ∨ ¬s2 ∨ ¬s3). Notice that in D all literals are pure,
since no positive literal is part of any clause. The D formula is in fact monotone.
Consequently, checking the satisfiability of the D formula under any assumptions
can be done in polynomial time. From a theoretical point of view, this clearly
shows an advantage compared to calling a SAT solver on the formula F .

Algorithm 2 shows the BLS algorithm extended with caching. The algorithm
is here presented for simplicity in terms of extracting a single (next) MCS. To
avoid repetition, we assume that the formula FH contains blocking clauses of
all the previously computed MCSes. As a consequence, any initial assignment
computed at line 3 is guaranteed to split the formula in two parts S and U such
that for any MCS M ⊆ U , M is not an already computed MCS.

Proposition 2. Let G be a formula and A = {si|ci ∈ G}. If D ∪ A |=⊥, then
G |= ⊥.

Proof. Recall that each clause in D represents an unsatisfiable core. For D ∪
A |= ⊥ to hold, there has to be a clause c ∈ D whose literals are all falsified.
This can happen if and only if we have c ⊆ A′, where A′ = {¬si|si ∈ A}. Since
the formula induced by c is unsatisfiable and c ⊆ A′, by Proposition 1 it follows
that G is unsatisfiable. ��
Proposition 2 is applied on line 6 of Algorithm2. In case D∪A is unsatisfiable, the
call to the SAT solver on line 10 becomes unnecessary and we can immediately

Algorithm 2. Basic linear search with caching
1 Function bls-caching(F)

Global: D
2 M ← ∅ // MCS under construction

3 (S, U) ← InitialAssignment(F)
4 foreach c ∈ U do
5 A ← {si|ci ∈ S ∪ {c}}
6 〈st, μ, C〉 ← SAT(D ∪ A)
7 if not st then
8 M ← M ∪ {c}
9 continue

10 〈st, μ, C〉 ← SAT(S ∪ {c})
11 if not st then
12 D ← D ∪ {(

∨
ci∈C ¬σ(ci))}

13 M ← M ∪ {c}
14 else S ← S ∪ {c}
15 return M // MCS of F
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add c to M and proceed with testing the next clause. Otherwise, we are forced
to test the clause c on the original formula (line 10). If S ∪ {c} is unsatisfiable,
we add the unsatisfiable core C to the formula D and c to the MCS under
construction M. If instead the outcome returned by the call is satisfiable, we
add the clause to S, the MSS under construction. When all clauses have been
tested, the MCS M = F \ S is returned.

Example 1. Assume that F = {c1, c2, c3, c4, c5} is an unsatisfiable formula with
M1 = {c1, c2, c3} and M2 = {c1, c4, c5} the only MUSes of F . An example run
of Algorithm 2 is shown in Table 1. First D is empty and a SAT call on the
original formula is made to identify c3 as part of the MCS under construction.
The query returns UNSAT, c3 is added to the MCS under construction, and the
unsatisfiable core {c1, c2, c3} is added to D. For testing S ∪{c5} = {c1, c4, c2, c5},
D ∪A (represented in CNF as (¬s1 ∨¬s2 ∨¬s3)∧ s1 ∧ s4 ∧ s2 ∧ s5) is satisfiable,
so another SAT call on F is required. This adds the additional unsatisfiable core
{c1, c4, c5} to D and c5 to M1, which is now a complete MCS. Finally, when
testing clauses c3 and c4 (for the next MCS), we have that in both cases D ∪ A
is unsatisfiable and the two clauses are added to M2. This example shows that
while two SAT solver calls are needed for determining the first MCS, for the
second one it suffices to query the core database. �

Table 1. Example execution of Algorithm 2

S ∪ {c} D Query M1

{c1, c4, c2} ∪ {c3} ∅ F : UNSAT {c3}
{c1, c4, c2} ∪ {c5} {c1, c2, c3} F : UNSAT {c3, c5}
S ∪ {c} D Query M2

{c1, c2, c5} ∪ {c3} {c1, c2, c3}, {c1, c4, c5} D ∪ A: UNSAT {c3}
{c1, c2, c5} ∪ {c4} {c1, c2, c3}, {c1, c4, c5} D ∪ A: UNSAT {c3, c4}

5 Experimental Results

We implemented the proposed approach (Algorithm2), mcscache-els, on top of
the state-of-the-art MCS enumeration tool mcsls [17] in C++, extending the
ELS algorithm to use a core database for caching, and using Minisat 2.2.0 [9]
as a backend solver. We implemented two optimizations: we use (i) satisfying
assignments obtained from satisfiable SAT solver calls to extend the set S with
all clauses in U satisfied by the assignments, and (ii) disjoint unsatisfiable cores
by computing a set of disjoint cores at the beginning of search, which can lead
to avoiding some calls to the SAT solver during the computation of MCSes. The
current implementation does not use the so-called backbone literals optimiza-
tion [17] with the intuition that this would make the core database non-monotone
and thereby queries to the cache potentially more time-consuming.
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We compare mcscache-els with two state-of-the-art approaches: ELS, which is
the basis of mcscache-els, and CLD [17]. Both ELS (mcsls-els) and CLD (mcsls-
cld) are implemented in the tool mcsls [17]. All algorithms accept formulas with
soft and hard clauses. As benchmarks, we used the 811 instances from [17] for
which an MCS could be extracted. These instances were originally used for
benchmarking algorithms for extracting only a single MCS. Note that, in terms
of MCS enumeration, these are therefore hard instances, and we expect caching
to be most beneficial on such hard instances. The experiments were run on a
computing cluster running 64-bit Linux on 2-GHz processors using a per-instance
memory limit of 8 GB and a time limit of 1800 s.

We compare the performance of the algorithms in terms of the number
of MCSes enumerated within the per-instance time limit. A comparison of
mcscache-els and mcsls-els is shown in Fig. 1. Using caching clearly and consis-
tently improves performance: with only few exceptions, caching enables enumer-
ating higher numbers of MCSes. Note that the only difference between mcscache-
els and mcsls-els is that the first uses the caching approach proposed in this work.
We also compare mcscache-els to mcsls-cld; in this comparison the base algo-
rithms are different. As can be observed from Fig. 2, mcsls-cld exhibits better
performance for instances on which a lower number of MCSes are enumerated.
However, as the number of MCSes enumerated increases, the performance of
mcsls-cld noticeably degrades compared to mcscache-els and mcscache-els starts
to clearly dominate.

Fig. 1. mcscache-els vs mcsls-els Fig. 2. mcscache-els vs mcsls-cld

Finally, we consider more statistics on the effects of caching. First, we
observed that on a significant number of the instances the number of cache
misses (cache queries which do not find the core queried for in the database)
was very low, i.e., the success rate in querying the cache was high, as >90% of
MCS clauses were often detected from the cache, without direct access to the
original formula. On the other hand, querying the core database as currently
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implemented can still take a substantial amount of time on some instances. The
query time seems to correlate with the average size of cores in the cache. In
particular, on some instances cores can be very large (up to 200,000 clauses),
which made the databases queries for the SAT solver time-consuming. In the
present implementation, this seems to introduce an unnecessary overhead. This
observation, together with the empirical results, motivates studying alternative
ways of querying the database by taking into account the very simplistic form of
the database, in order to mitigate the observed negative effects. Alternatively,
heuristics aiming at removing unused or too large cores could also be a viable
and practical solution.

6 Conclusions

Analysis of over-constrained sets of constraints finds a widening range of prac-
tical applications. A central task in this context is the enumeration of minimal
correction sets of constraints, namely, MCSes. Best-performing algorithms for
the highly intractable task of MCS enumeration make high numbers of increas-
ingly hard SAT solver calls as the number of MCSes increases. Motivated by this,
we developed caching mechanisms to speed-up MCS enumeration. By keeping
a global database in which unsatisfiable cores found during the computation of
MCSes are stored, future calls to the SAT solver in the computation of new
MCSes can be substituted by a polynomial-time check. In particular, the global
database can be represented with a monotone formula, and even queried with
low overhead using an off-the-shelf SAT solver. Empirical results confirm that
caching is effective in practice, bringing significant performance gains to a state-
of-the-art MCS algorithm. These results encourage further research on the topic.
The development of dedicated solvers for handling the database represents a
promising line of future research. Also, research on forgetting heuristics to keep
the database small could improve performance. Finally, future efforts will target
the integration of caching within different MCS extraction algorithms.
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Abstract. A Minimal Correction Subset (MCS) of an unsatisfiable con-
straint set is a minimal subset of constraints that, if removed, makes the
constraint set satisfiable. MCSs enjoy a wide range of applications, one of
them being approximate solutions to constrained optimization problems.
However, existing work on applying MCS enumeration to optimization
problems focuses on the single-objective case.

In this work, a first definition of Pareto Minimal Correction Sub-
sets (Pareto-MCSs) is proposed with the goal of approximating the
Pareto-optimal solution set of multi-objective constrained optimization
problems. We formalize and prove an equivalence relationship between
Pareto-optimal solutions and Pareto-MCSs. Moreover, Pareto-MCSs and
MCSs can be connected in such a way that existing state-of-the-art MCS
enumeration algorithms can be used to enumerate Pareto-MCSs.

An experimental evaluation considers the multi-objective virtual
machine consolidation problem. Results show that the proposed Pareto-
MCS approach outperforms the state-of-the-art approaches.

1 Introduction

Given an unsatisfiable set of constraints F , a Minimal Correction Subset (MCS)
is a minimal subset of constraints C such that, if all constraints in C are removed
from F , then F becomes satisfiable. MCSs enjoy a wide range of applications,
such as analysis of over-constrained systems [8,11], minimal model computa-
tion [3], interactive constraint satisfaction [17] and approximation of constrained
combinatorial optimization problems [15]. Many efficient MCS enumeration algo-
rithms have been proposed in the recent years [1,8,9,14,16], and MCS-based
approximation algorithms are able to compute good quality approximations of
optimal solutions efficiently [15]. However, the usage of MCSs has focused only
on approximating single-objective problems.

In many scenarios, a decision maker may need to optimize multiple conflict-
ing objectives [21]. In this case, multiple optimal solutions may exist, referred to
as Pareto-optimal solutions [18], each of them favoring certain objectives at the
expense of others. One such example is Virtual Machine Consolidation (VMC),
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where a cloud provider is interested in finding a virtual machine placement over
a set of servers that minimizes energy consumption while also minimizing the
performance penalty incurred by the new placement. Current state-of-the-art
solutions for multi-objective VMC are mostly based on meta-heuristics, such as
genetic algorithms [22] and biogeography-based optimization [23], as is the case
for many other Multi-Objective Combinatorial Optimization (MOCO) problems.
Such approaches are non-deterministic and are known to be parameter sensi-
tive, resulting in each different problem requiring a distinct configuration of
the algorithm to achieve a competitive performance. Moreover, meta-heuristics
are known to struggle as instances become more tightly constrained. On the
other hand, it is widely accepted that constraint-based methods, compared to
other approaches, usually thrive in tightly constrained problems, and some exact
algorithms exist for computing the set of Pareto-optimal solutions of a MOCO
instance [19]. However, such solutions are impractical for large scale problems.

The main contributions of this paper are as follows: (1) a first definition
of Multi-MCSs and Pareto-MCSs, an extension of MCSs to constrained multi-
objective optimization problems; (2) a proof of an equivalence relationship
between Pareto-MCSs and Pareto-optimal solutions; (3) a proof of a relationship
between Multi-MCSs and MCSs that allows one to use state-of-the-art MCS enu-
merators right off-the-shelf as Multi-MCS enumerators; (4) an extensive experi-
mental evaluation on VMC instances from the Google Custer Data project which
clearly shows the suitability of the Pareto-MCS approach for finding good quality
approximations of the solution sets of MOCO instances.

The paper is organized as follows. In Sect. 2, the basic definitions are intro-
duced along with the notation used in the remainder of the paper. In Sect. 3, a
definition of Multi-MCSs and Pareto-MCSs is proposed and some of their prop-
erties are described and proven. Section 4 introduces the VMC problem and the
corresponding instances are evaluated in Sect. 5 using the Pareto-MCS approach.
Section 6 concludes this paper and suggests future work directions.

2 Preliminaries

In this section, we introduce the necessary definitions and notations that will be
used throughout the rest of the paper. We start by describing Weighted Boolean
Optimization (WBO) in Sect. 2.1. Next, Minimal Correction Subsets (MCSs) are
defined and the ClauseD (CLD) algorithm for MCS enumeration is presented.
Finally, Multi-Objective Combinatorial Optimization (MOCO) and the Guided
Improvement Algorithm (GIA) for solving MOCO problems are described.

2.1 Weighted Boolean Optimization

Let X = {x1, x2, . . . , xn} be a set of n Boolean variables. A literal is either a
variable xi or its complement ¬xi. Given a set of m literals l1, l2, . . . , lm and their
respective coefficients ω1, ω2, . . . , ωm ∈ Z, a Pseudo-Boolean (PB) expression has
the following form: ∑

ωi · li. (1)
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Given an integer k ∈ Z, a PB constraint is a linear inequality with the form:
∑

ωi · li �� k, �� ∈ {≤,≥,=}. (2)

Given a set F = {c1, c2, . . . , ck} of k PB constraints defined over a set of X
Boolean variables, the Pseudo-Boolean Satisfiability (PBS) problem consists of
deciding if there exists a complete assignment α : X → {0, 1}, such that all PB
constraints in F are satisfied. If that is the case, we say that F is satisfiable and
α satisfies F , denoted α(F ) = 1. Otherwise, we say that F is unsatisfiable and
α(F ) = 0 for any assignment α. Analogously, given a PB constraint c, α(c) = 1
(α(c) = 0) denotes that α satisfies (does not satisfy) c. A weighted PB constraint
is a pair (c, ω), where c is a PB constraint and ω ∈ N+ is the cost of not satisfying
c. In WBO [13], given a formula F = (FH , FS), where FH and FS denote sets
of hard and soft weighted PB constraints respectively, the goal is to compute
a complete assignment that satisfies all of the constraints in FH and minimizes
the sum of the weights of the constraints in FS that are not satisfied.

Example 1. Let FH = {(x1 + x2 + x3 ≤ 2)} be the set of hard PB constraints
and FS = {(x1 ≥ 1, 4), (x2 ≥ 1, 2), (x3 ≥ 1, 3)} the set of weighted soft PB con-
straints of a WBO instance. α1 = {(x1, 1), (x2, 0), (x3, 1)} is an optimal assign-
ment that does not satisfy only the second soft constraint (x2 ≥ 1), having a
cost of 2. α2 = {(x1, 0), (x2, 1), (x3, 1)} is not an optimal assignment because it
does not satisfy (x1 ≥ 1), which has a weight of 4. α3 = {(x1, 1), (x2, 1), (x3, 1)}
is an invalid assignment because it does not satisfy FH .

For simplicity reasons, given p PB constraints c1, c2, . . . , cp, the disjunction
operator ∨ is used to represent the constraint that at least one of the PB con-
straints must be satisfied (e.g. c1 ∨ c2 ∨ · · ·∨ cp). Note that such disjunctions can
be easily converted to sets of PB constraints using auxiliary variables.

2.2 Minimal Correction Subsets

Given an unsatisfiable set of PB constraints F , a minimal correction subset
(MCS) is a minimal subset C ⊆ F such that F\C is satisfiable.

Definition 1. Let F be an unsatisfiable set of PB constraints. A subset C ⊆ F
is an MCS of F if, and only if, F\C is satisfiable and (F\C)∪{c} is unsatisfiable
for all c ∈ C.

Example 2. Consider the unsatisfiable set of PB constraints F = {(x1 + x2 = 1),
(x1 ≥ 1), (x2 ≥ 1)}. F has three MCSs C1 = {(x1 ≥ 1)}, C2 = {(x2 ≥ 1)} and
C3 = {(x1 + x2 = 1)}.

Several algorithms exist for finding MCSs [2,8,14–16]. For the purpose of this
work, the state-of-the-art CLD algorithm was used [14]. CLD’s pseudo-code is
presented in Algorithm 1. It starts by initializing the sets S and C of satisfied and
not satisfied PB constraints respectively (lines 1 and 2). Initially, all constraints
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Algorithm 1. CLD algorithm for computing an MCS of a PB formula [14]
Input: F

1 S ← ∅
2 C ← F
3 status ← SAT
4 while status = SAT do
5 D ← (

∨
c∈C c)

6 (status, α) ← PBS(S ∪ {D})
7 if status = SAT then
8 S ← S ∪⋃c∈C,α(c)=1{c}
9 C ← F \ S

10 return C

are not satisfied. Then, the CLD algorithm repeatedly checks if it is possible to
satisfy at least one of the constraints in C, while satisfying all constraints in S
(lines 5 and 6). If so, then sets S and C are updated accordingly (lines 8 and 9).
If not, then C is an MCS and is returned by the algorithm (line 10).

Algorithm 1 computes a single MCS C, but it can be used to find another
MCS by incorporating the constraint (

∨
c∈C c) in the initialization process of S

in line 1. Such a constraint “blocks” MCS C from being identified again by the
algorithm. Hence, the CLD algorithm can be used to enumerate all MCSs of F
by blocking previous MCSs in subsequent invocations of the algorithm.

The following definition extends the notion of MCS to WBO instances. For
simplicity, we assume that the set of hard PB constraints FH of a WBO instance
is always satisfiable. (This can be checked using a single call to a PBS solver.)

Definition 2. Let F = (FH , FS) be a WBO instance, where FH and FS denote
the hard and soft PB constraint sets respectively. A subset C ⊆ FS is an MCS of
F if, and only if, FH ∪(FS\C) is satisfiable and FH ∪(FS\C)∪{c} is unsatisfiable
for all c ∈ C.

Observe that Algorithm 1 can be used to enumerate MCSs of F by initializing
S as FH and C as FS in lines 1 and 2. An MCS provides an approximation to a
WBO optimal solution, and in some problems is faster to compute [10]. Actually,
the WBO problem can be reduced to finding the MCS C ⊆ FS that minimizes
the sum of the weights of the soft constraints in C [4].

Example 3. Consider the WBO instance given by FH = {(x1 + x2 = 1)} and
FS = {(x1 ≥ 1, 1), (x2 ≥ 1, 2), (¬x1 ≥ 1, 4), (¬x2 ≥ 1, 6)}. This instance has two
MCSs C1 = {(x1 ≥ 1, 1), (¬x2 ≥ 1, 6)} and C2 = {(x2 ≥ 1, 2), (¬x1 ≥ 1, 4)}.
The sum of the weights of the constraints in C1 and C2 is 7 and 6 respectively. C2

is the MCS that minimizes the sum of the weights of its constraints. Therefore,
any assignment that satisfies {(x1 + x2 = 1), (x1 ≥ 1), (¬x2 ≥ 1)} is an optimal
solution of the WBO instance.
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2.3 Multi-Objective Combinatorial Optimization

A Multi-Objective Combinatorial Optimization (MOCO) [21] instance is com-
posed of two sets: a set F = {c1, c2, . . . , ck} of constraints that must be satisfied
and a set O = {f1, f2, . . . , fl} of objective functions to minimize. In this work, we
focus on the special case where c1, c2, . . . , ck are PB constraints and f1, f2, . . . , fl

are PB expressions over a set X of Boolean variables. Given an objective func-
tion f ∈ O and a complete assignment α : X → {0, 1}, we denote as f(α) the
objective value of α for f .

Definition 3. Let M = (F,O) be a MOCO instance, where F and O are the
constraint and objective function sets respectively. Let α, α′ : X → {0, 1} be
two complete assignments such that α 	= α′ and α(F ) = α′(F ) = 1. We say
that α dominates α′, written α ≺ α′, if, and only if, ∀f∈Of(α) ≤ f(α′) and
∃f ′∈Of ′(α) < f ′(α′).

Definition 4. Let M = (F,O) be a MOCO instance and α : X → {0, 1} a
complete assignment. α is said to be Pareto-optimal if, and only if, α(F ) = 1
and no other complete assignment α′ exists such that α′(F ) = 1 and α′ ≺ α.

In MOCO, the goal is to find the set of Pareto-optimal [18] solutions, also
referred to as solution set.

Example 4. Let F = {(x1+x2 ≤ 1)} be the set of PB constraints and O = {(x1+
2 ·¬x2), (¬x1)} the set of objective functions of a MOCO instance. Table 1 shows
the objective values for each possible assignment. The lines that correspond
to Pareto-optimal solutions are highlighted in bold. Note that {(x1, 1), (x2, 1)}
violates the constraint in F . Hence, it is not a valid assignment. {(x1, 0), (x2, 0)}
is not Pareto-optimal because it is dominated by {(x1, 0), (x2, 1)}. However,
{(x1, 0), (x2, 1)} and {(x1, 1), (x2, 0)} are Pareto-optimal solutions because they
are not dominated by any other assignment that satisfies F .

Table 1. Possible assignments and objective values for the instance in Example 4.

x1 x2 x1 + 2 · ¬x2 ¬x1

0 0 2 1

0 1 0 1

1 0 3 0

1 1 - -

Next, we review the Guided Improvement Algorithm (GIA) [19] for finding
the solution set of a MOCO instance. The GIA algorithm is implemented in the
optimization engine of Microsoft’s SMT solver Z3 [5] for finding Pareto-optimal
solutions of SMT instances with multiple objective functions.
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Algorithm 2. Guided Improvement Algorithm for MOCO problems [19]
Input: (F, O)

1 FW ← F
2 αsol ← ∅
3 (status, α) ← PBS(FW )

4 while status = SAT do
5 F ′

W ← FW

6 while status = SAT do
7 αsol ← α
8 (v1, v2, . . . , vl) ← (f1(α), f2(α), . . . , fl(α))

9 F ′
W ← F ′

W ∪⋃fi∈O{(fi ≤ vi)} ∪ {
(∨

fi∈O fi ≤ vi − 1
)
}

10 (status, α) ← PBS(F ′
W )

11 yield(αsol)

12 FW ← FW ∪ {
(∨

fi∈O fi ≤ vi − 1
)
}

13 (status, α) ← PBS(FW )

The pseudo-code for the GIA algorithm is presented in Algorithm2. It starts
by building a working formula FW , that is initialized to F (line 1), and checking if
FW is satisfiable (line 3). If so, then the algorithm enters a loop that enumerates
the Pareto-optimal assignments (lines 4 to 13). At each iteration, the algorithm
first builds a second working formula F ′

W (line 5). Next, it searches for a single
Pareto-optimal solution by repeatedly adding constraints to F ′

W that force future
assignments to dominate the assignment α obtained in the last PBS call (lines 8
and 9) and checking if F ′

W is still satisfiable (line 10). The algorithm guarantees
that it found a Pareto-optimal solution when F ′

W becomes unsatisfiable.
After finding a Pareto-optimal assignment α, the algorithm adds new con-

straints to FW that force at least one of the objective values of future assignments
to be better than α’s (line 12). Then, it checks if FW remains satisfiable (line 13),
in which case, more Pareto-optimal solutions exists. The loop in lines 4 to 13 is
repeated until all Pareto-optimal assignments have been found.

3 Pareto Minimal Correction Subsets

This section introduces the novel concept of Multi-MCSs and explains how they
can be used to approximate the solution set of a MOCO instance. First, the
multi-objective version of WBO is introduced. Next, Multi-MCSs and Pareto-
MCSs are defined. Finally, we describe some properties of Multi-MCSs and
Pareto-MCSs. In particular, we prove a relationship between MCSs and Multi-
MCSs that allows MCS enumerators to be used off-the-shelf as Multi-MCS enu-
merators.
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3.1 Multi-Objective Weighted Boolean Optimization

A Multi-Objective Weighted Boolean Optimization (MOWBO) instance is com-
posed of a set FH = {c1, c2, . . . , ck} of hard PB constraints and a set OS =
{FS1, FS2, . . . , FSl} of soft weighted PB constraint sets. Given an assignment
α and a set FSi ∈ OS , let w(FSi, α) denote the sum of the weights of the PB
constraints in FSi unsatisfied by α, i.e.,

w(FSi, α) =
∑

(c,ω)∈FSi, α(c)=0

ω. (3)

Like in MOCO, the goal is to find the set of Pareto-optimal solutions. Dominance
in MOWBO is defined as follows.

Definition 5. Let W = (FH , OS) be a MOWBO instance, with OS = {FS1,
FS2, . . . , FSl}. Let α, α′ : X → {0, 1} be two complete assignments such that
α 	= α′ and α(FH) = α′(FH) = 1. We say that α dominates α′ (α ≺ α′) if, and
only if, ∀FS∈OS

w(FS , α) ≤ w(FS , α′) and ∃F ′
S∈OS

w(F ′
S , α) < w(F ′

S , α′).

Similarly to the reduction from the single-objective case to WBO [13], a
MOCO instance M = (F,O) can be reduced to a MOWBO instance W =
(FH , OS) as follows: (1) we set FH = F ; (2) for each f ∈ O, with f = ω1 · l1 +
ω2 · l2 + · · ·+ωm · lm, we add a soft constraint set FS = {(¬l1, ω1), (¬l2, ω2), . . . ,
(¬lm, ωm)} to OS .

Example 5. Recall the MOCO instance from Example 4, with F = {(x1 + x2 ≤
1)} and O = {(x1 +2 · ¬x2), (¬x1)}. An equivalent MOWBO instance has FH =
{(x1 + x2 ≤ 1)} and OS = {FS1, FS2}, where FS1 = {(¬x1, 1), (x2, 2)} and
FS2 = {(x1, 1)}.

3.2 Multi and Pareto Minimal Correction Subsets

The definition of Multi-MCSs, an extension of MCSs to MOWBO formulas,
builds upon the concept of MCS for PBS and WBO formulas (see Sect. 2.2).

Definition 6. Let W = (FH , OS) be a MOWBO instance, with OS = {FS1,
FS2, . . . , FSl}. Let C = (C1, C2, . . . , Cl) be a tuple of sets such that Ci ⊆ FSi,
1 ≤ i ≤ l. C is a Multi-MCS of W if, and only if, FH∪⋃l

i=1(FSi\Ci) is satisfiable
and FH ∪ ⋃l

i=1(FSi\Ci) ∪ {c} is unsatisfiable for all c ∈ ⋃l
i=1 Ci.

The dominance relation between two MOWBO solutions in Definition 5 can
also be extended to pairs of Multi-MCSs as follows.

Definition 7. Let W = (FH , OS) be a MOWBO instance. Let C = (C1, C2, . . . ,
Cl) and C′ = (C ′

1, C
′
2, . . . , C

′
l) be two Multi-MCSs of W. We say that C dom-

inates C′ (C ≺ C′) if, and only if, ∀1≤i≤l

∑
(c,ω)∈Ci

ω ≤ ∑
(c′,ω′)∈C′

i
ω′ and

∃1≤j≤l

∑
(c,ω)∈Cj

ω <
∑

(c′,ω′)∈C′
j
ω′.
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Considering the definition of dominance for Multi-MCSs, the concept of
Pareto-MCS can be formalized.

Definition 8. Let W = (FH , OS) be a MOWBO instance and C a Multi-MCS
of W. C is a Pareto-MCS if, and only if, no other Multi-MCS C′ exists such
that C′ ≺ C.

Example 6. Recall the MOWBO instance W = (FH , OS) from Example 5, with
FH = {(x1 + x2 ≤ 1)} and OS = {FS1, FS2}, where FS1 = {(¬x1, 1), (x2, 2)}
and FS2 = {(x1, 1)}. W has two Multi-MCSs C1 = ({}, {(x1, 1)}) and C2 =
({(¬x1, 1), (x2, 2)}, {}), which are also Pareto-MCSs of W.

3.3 Properties of Multi and Pareto Minimal Correction Subsets

Recall from Sect. 2.2 that an MCS provides an approximation to a WBO optimal
solution. Moreover, the WBO problem can be reduced to finding an MCS that
minimizes the sum of the weights of its soft constraints. Therefore, one could
expect that a MOWBO instance can be reduced to finding the set of its Pareto-
MCSs. The following results reveal an equivalence relationship between Pareto-
MCSs and Pareto-optimal solutions.

Proposition 1. Let W = (FH , OS) be a MOWBO instance, with OS = {FS1,
FS2, . . . , FSl}, and α a Pareto-optimal solution of W. Let C = (C1, C2, . . . , Cl),
where Ci = {(c, ω) : (c, ω) ∈ FSi ∧ α(c) = 0} for all 1 ≤ i ≤ l. Then, C is a
Pareto-MCS of W.

Proof. We prove this by contradiction. Suppose that C is not a Pareto-MCS.
Then, there exists some Multi-MCS C′ = (C ′

1, C
′
2, ..., C

′
l) such that C′ ≺ C.

Therefore, by Definition 7, the following holds:
⎛

⎝∀1≤i≤l

∑

(c′,ω′)∈C′
i

ω′ ≤
∑

(c,ω)∈Ci

ω

⎞

⎠ ∧
⎛

⎝∃1≤j≤l

∑

(c′,ω′)∈C′
j

ω′ <
∑

(c,ω)∈Cj

ω

⎞

⎠ . (4)

If C′ is a Multi-MCS, then by Definition 6 we have that FH ∪ ⋃l
i=1(FSi\C ′

i) is
satisfiable, and thus some complete assignment α′ exists such that α′ satisfies
FH ∪⋃l

i=1(FSi\C ′
i). For all 1 ≤ i ≤ l, α′ satisfies all of the constraints in FSi\C ′

i.
Then, w(FSi, α

′) ≤ ∑
(c′,ω′)∈C′

i
ω′. Moreover, note that, by definition of C, we

have w(FSi, α) =
∑

(c,ω)∈Ci
ω. Replacing in Eq. (4), we get

(∀1≤i≤l w(FSi, α
′) ≤ w(FSi, α)) ∧ (∃1≤j≤l w(FSj , α

′) < w(FSj , α)) . (5)

By Definition 5, we have that α′ ≺ α, but α is a Pareto-optimal solution, thus
we have a contradiction. ��
Proposition 2. Let W = (FH , OS) be a MOWBO instance, with OS = {FS1,
FS2, . . . , FSl}, and C = (C1, C2, . . . , Cl) a Pareto-MCS of W. Then, any com-
plete assignment α that satisfies FH ∪⋃l

i=1(FSi\Ci) is a Pareto-optimal solution.
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Proof. Let α be a complete assignment that satisfies FH∪⋃l
i=1(FSi\Ci). Suppose

that α is not Pareto-optimal. Then, there exists a complete assignment α′ such
that α′ is Pareto-optimal and α′ ≺ α. Let C′ = {C ′

1, C
′
2, ..., C

′
l} such that C ′

i =
{(c, ω) : (c, ω) ∈ FSi ∧ α′(c) = 0} for all 1 ≤ i ≤ l. By Proposition 1, we have
that C′ is a Pareto-MCS. Since α′ ≺ α, the following holds:

(∀1≤i≤l w(FSi, α
′) ≤ w(FSi, α)) ∧ (∃1≤j≤l w(FSj , α

′) < w(FSj , α)) . (6)

For all 1 ≤ i ≤ l, since α satisfies FH ∪ ⋃l
i=1(FSi\Ci), we also have that

w(FSi, α) ≤ ∑
(c,ω)∈Ci

ω and, by definition of C′, w(FSi, α
′) =

∑
(c′,ω′)∈C′

i
ω′.

Replacing in Eq. (6), we have:
⎛

⎝∀1≤i≤l

∑

(c′,ω′)∈C′
i

ω′ ≤
∑

(c,ω)∈Ci

ω

⎞

⎠ ∧
⎛

⎝∃1≤j≤l

∑

(c′,ω′)∈C′
j

ω′ <
∑

(c,ω)∈Cj

ω

⎞

⎠ . (7)

By Definition 7, we have that C′ ≺ C, but C is a Pareto-MCS, thus we have a
contradiction. ��

Propositions 1 and 2 show that for each Pareto-MCS there is at least one
Pareto-optimal solution and that each Pareto-optimal solution has an associated
Pareto-MCS. Therefore, MOWBO can be reduced to Pareto-MCS enumeration
much in the same way that WBO can be reduced to MCS enumeration.

Proposition 3. Let W = (FH , OS) be a MOWBO instance, with OS = {FS1,

FS2, . . . , FSl}, and C = (C1, C2, . . . , Cl) a Multi-MCS of W. Then, C =
⋃l

i=1 Ci

is an MCS of the WBO instance F = (FH ,
⋃l

i=1 FSi).

Proof. By Definition 6, we have that FH ∪ ⋃l
i=1(FSi\Ci) is satisfiable and FH ∪⋃l

i=1(FSi\Ci)∪{c} is unsatisfiable for all c ∈ C. First, we show that the following
equation holds:

FH ∪
l⋃

i=1

(FSi\Ci) = FH ∪
(

l⋃

i=1

FSi\
l⋃

i=1

Ci

)
. (8)

That is the case if at least one of the following is true: (1) FS1, FS2, . . . , FSl are
disjoint; or (2) for all 1 ≤ j, k ≤ l such that j 	= k and all c ∈ FSj ∩FSk, if c ∈ Cj

then c ∈ Ck. By definition, we have that, if c ∈ Cj for some 1 ≤ j ≤ l, then
FH ∪ ⋃l

i=1(FSi\Ci) is satisfiable and FH ∪ ⋃l
i=1(FSi\Ci) ∪ {c} is unsatisfiable.

Therefore, if c ∈ FSk for some 1 ≤ k ≤ l such that k 	= j, then c ∈ Ck,
otherwise we would have c ∈ FSk\Ck and, consequently, FH ∪ ⋃l

i=1(FSi\Ci) =
FH ∪⋃l

i=1(FSi\Ci)∪{c}, which is a contradiction. Therefore, Eq. (8) holds. Due

to (8), FH ∪
(⋃l

i=1 FSi\
⋃l

i=1 Ci

)
is satisfiable and FH ∪

(⋃l
i=1 FSi\

⋃l
i=1 Ci

)
∪

{c} is unsatisfiable for all c ∈ C. By Definition 2, then C is an MCS of F. ��
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Proposition 3 implies that Pareto-MCS enumeration of a MOWBO instance
W = (FH , OS) can be reduced to enumerating MCSs of the WBO instance
F = (FH ,

⋃
FS∈OS

FS) as follows: (1) build F from W; (2) enumerate MCSs C of
F using an off-the-shelf MCS enumerator and convert them to Multi-MCSs C =
(C1, C2, . . . , Cl) of W, where Ci = {(c, ω) : (c, ω) ∈ C ∩FSi} for all 1 ≤ i ≤ l; (3)
filter out Multi-MCSs dominated by any other Multi-MCS using nondominated
sorting [6]. Therefore, efficient state-of-the-art algorithms for MCS enumeration
can be used to enumerate Pareto-MCSs right off-the-shelf.

4 Virtual Machine Consolidation

This section introduces a multi-objective formulation for the Virtual Machine
Consolidation (VMC) problem. The VMC problem instances are later considered
as a test case for the techniques proposed in the paper. The VMC problem occurs
in the context of data centers management where the goal is to place a set of
Virtual Machines (VMs) in a set of servers such that the quality of service
contracted with the data center clients is achieved. Moreover, the minimization
of multiple objectives are to be considered, in particular the minimization of
energy usage, resource wastage and migration of VMs.

Consider a set J = {j1, j2, ..., jm} of m jobs in a data center, where each job
is composed of several VMs. For each job j ∈ J , let Vj = {ν1, ν2, ..., νkj

} denote
the set of kj VMs in job j. Furthermore, let V =

⋃
j∈J Vj denote the set of

all VMs and for each VM ν ∈ V , reqCPU (ν) and reqRAM (ν) are the CPU and
memory requirements of VM ν, respectively.

Let S = {s1, s2, ..., sn} denote the set of n servers in the data center. For each
server s ∈ S, we denote as capCPU (s) and capRAM (s) the CPU and memory
capacity of server s, respectively. A server s is said to be active if at least one
VM is placed in s. Otherwise, it is inactive.

We denote as ldr(s) the total requirements of a resource r ∈ {CPU,RAM}
of the VMs placed in s. nrm ldr(s) denotes the normalized load of s for resource
r, and is computed as follows:

nrm ldr(s) =
ldr(s)
capr(s)

. (9)

The residual capacity of s for resource r, denoted rsd capr(s), is given by:

rsd capr(s) = 1 − nrm ldr(s). (10)

The energy consumption of a server considers that energy consumption can
be accurately described as a linear function of the server’s CPU load [7,23]. Let
enridle(s) and enrfull(s) denote, respectively, the energy consumed by s when
there are no VMs placed in s and when s is at its full capacity. If ldCPU (s) = 0,
then we assume that s is inactive and consumes no energy. Otherwise, the energy
consumption of s is given by the following equation:

energy(s) = (enrfull(s) − enridle(s)) · nrm ldCPU (s) + enridle(s). (11)
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Different VM placements may utilize the resources of a given server differ-
ently. If the remaining capacities of a server’s resources are not well balanced,
it may prevent future VMs from being placed in that server. For example, if a
server s has very little memory left, but its CPU is far from being fully utilized,
it is very likely that s will not be able to host any CPU intensive VMs anyway
due to lack of memory. The resource wastage of s is quantified with the equation:

wastage(s) = |rsd capCPU (s) − rsd capRAM (s)| . (12)

In a realistic scenario, one must consider that some VMs can already be
placed in some server. If necessary, these already placed VMs can be migrated
to a different server, but this process has an associated cost to the data center
provider. Therefore, the VM set can be seen as partitioned into two sets, a set
of placed VMs that can be migrated and a set of fresh VMs that have not yet
been placed. We denote as M the existing placement of VMs in servers, i.e.

M = {(ν, s) : ν ∈ V ∧ s ∈ S ∧ ν is placed in s}. (13)

The associated cost of each VM migration is proportional to the amount
of resources the VM is using. Consider the migration of a VM ν to some other
server. Based on the observation that the cost of a migration depends on its mem-
ory size and memory access patterns [20], we assume that the cost of migrating
ν is equal to its memory requirement.

In the VMC problem the goal is to determine a placement of all VMs of
V in the servers of S that simultaneously minimizes total energy consumption,
resource wastage and migration costs. The VM placement is subject to the fol-
lowing constraints: (1) each VM ν ∈ V must be placed in exactly one server and
(2) for each server s ∈ S, the sum of the CPU (memory) requirements of the
VMs placed in s cannot exceed its CPU (memory) capacity. In order to achieve
higher fault tolerance levels, some applications require that all its VMs have to
be assigned to different servers. Hence, the VMC problem also considers anti-
collocation constraints among VMs in the same job. Given a job j ∈ J and two
VMs ν, ν′ ∈ Vj , then ν and ν′ must be placed in different servers.

We also consider that the provider may enforce a migration budget constraint
in order to prevent algorithms from producing placements that exceed a given
memory budget b. The purpose of this constraint is to discard placements that
require too many migrations, thus deteriorating the performance of the data
center. The budget b is specified by the provider and depends on the size of
the data center and the nature of its workload. For example, the provider may
specify a percentile bp of the data center’s total memory capacity. In this case,
the budget is defined as b = bp ·∑s∈S capRAM (s). We refer to bp as the migration
budget percentile.

For each server sk ∈ S, a Boolean variable yk is introduced that indicates if
sk is active or not. For each VM-server pair νi ∈ V and sk ∈ S, we introduce a
Boolean variable xi,k that indicates whether νi is placed in server sk. Given a
resource r and a server sk, ldr(sk) denotes the load of server sk for resource r
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and is given by:
ldr(sk) =

∑

νi∈V

reqr(νi) · xi,k. (14)

∑

sk∈S

[(enrfull(sk) − enridle(sk)) · nrm ldCPU (sk) + enridle(sk) · yk]

∑

sk∈S

wastage(sk)

∑

(νi,sk)∈M

reqRAM (νi) · ¬xi,k

ldr(sk) ≤ yk × capr(sk) k ∈ {1, . . . , n}, r ∈ {CPU, RAM}
∑

νi∈Vj

xi,k ≤ 1 j ∈ J, k ∈ {1, . . . , n}
∑

sk∈S

xi,k = 1 i ∈ {1, . . . , m}
∑

(νi,sk)∈M

reqRAM (νi) · ¬xi,k ≤ b

xi,k, yk ∈ {0, 1} i ∈ {1, . . . , m}, k ∈ {1, . . . , n}

Fig. 1. Multi-objective VMC problem formulation.

Figure 1 presents the multi-objective VMC problem formulation, where n
denotes the number of available servers in the data center and m the number of
VMs to be placed. Objective functions (15), (16) and (17) represent, respectively,
the energy consumption, resource wastage and migration costs to be minimized.
The constraints in (18) ensure that the resource capacities of each server are not
exceeded, while constraints in (19) correspond to the anti-collocation constraints.
Constraints in (20) guarantee that each VM is placed on exactly one server.
Finaly, the constraint in (21) corresponds to the migration budget constraint.
Note that nrm ldCPU (sk), wastage(sk) and ldr(sk) correspond to the values
obtained from the expressions introduced in (9), (12) and (14), respectively.

Observe that the VMC formulation is not a MOCO formulation as defined in
Sect. 2.3 because the resource wastage objective function is not a PB expression.
In order to apply the GIA and CLD algorithms, the modulus in Eq. (12) must
be removed through the use of auxiliary variables and constraints. Moreover,
the coefficients in Eqs. (15) and (16) might not be integers. In this case, a scal-
ing factor is applied so that all coefficients are integer and the aforementioned
algorithms can be applied.
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5 Experimental Results

In this section, the performance of the Pareto-MCS based approach is eval-
uated on the multi-objective VMC use case described in Sect. 4. We refer to
our approach for enumerating Pareto-MCSs as PCLD, since the CLD algorithm
(Sect. 2.2) was used. First, we compare the performance of PCLD with GIA.
Next, the performance of PCLD is compared with that of the state-of-the-art
evolutionary algorithms for VMC. All algorithms were implemented in Java.
Sat4j-PB [12] (version 2.3.4) was used as the PBS solver, and the evolutionary
algorithms were implemented on top of the MOEA Framework1 (version 2.9.1).

The VMC benchmarks used in this evaluation are based on subsets of work-
load traces randomly selected from the Google Cluster Data project2. The bench-
mark set includes instances with 32, 64 and 128 servers. For each instance, the
sum of VM resource requirements is approximately 25%, 50%, 75% and 90% of
the total capacity of the servers. The existing placements (set M) were generated
by placing a subset of the VMs. Placements with a sum of requirements of the
VMs comprising approximately 0% (no placements), 25%, 50%, 75% and 100%
(all VMs placed) of the total VM resource requirements were used. Five different
instances were generated for each number of servers, total VM resource require-
ment and mapping requirement percentile combination, amounting to a total of
300 benchmarks3. For each server, the energy consumption parameters enridle

and enrfull were chosen from the ranges [110, 300] and [300, 840], respectively,
depending on their resource capacities. These ranges are based on the energy
consumption values of the Amazon EC2 dataset used in previous works [23].

In the VMC problem instances, it is impractical to find the full set of Pareto-
optimal solutions within a reasonable amount of time. Therefore, the evaluation
process considers approximations of the Pareto-optimal solution set that each
algorithm is able to produce within the time limit of 1800 s. The hypervolume
(HV) [24] provides a combined measure of convergence and diversity of a given
approximation, thus being a quality indicator commonly used to compare the
performance of multi-objective optimization algorithms. HV measures the vol-
ume of the objective space between the set of non-dominated solutions and a
given reference point. The reference point depends on the benchmark, and is
set to the worst possible objective values. Hence, larger values of HV mean that
the solution set is composed of solutions of better quality and/or diversity. The
evaluation was conducted on an AMD Opteron 6376 (2.3 GHz) running Debian
jessie and each algorithm was executed with a memory limit of 4 GB. Evolu-
tionary algorithms were executed with 10 different seeds for each instance, and
the analysis is performed using the median values over all executions.

1 http://moeaframework.org/.
2 http://code.google.com/p/googleclusterdata/.
3 http://sat.inesc-id.pt/dome.

http://moeaframework.org/
http://code.google.com/p/googleclusterdata/
http://sat.inesc-id.pt/dome
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5.1 Pareto-MCSs vs GIA

Table 2, compares the performance of PCLD with that of GIA, with migration
budget percentiles of 100% (no migration restriction), 5%, 1% and 0.5%. Observe
that migration budgets are not relevant for the 60 instances where M = ∅ (no
VMs already placed in servers). Hence, these are not considered in the 5%, 1%
and 0.5% rows. The ‘Solved’ column presents the number of instances for which
at least one solution was found. The ‘HV’ columns show the number of instances
for which the algorithm had the best hypervolume (HV) among both algorithms
(‘wins’ column) and the average of the differences between the HV obtained by
the algorithm and the best HV (‘avg’ column). For example, assuming that the
best HV obtained for an instance is 0.9, and the algorithm obtained an HV of
0.8, then the difference for that instance is 0.1.

Table 2. Number of VMC instances solved and overall comparison of GIA and PCLD.

Algorithm Budget percentile Solved HV

Wins Avg.

GIA 100% 215 49 0.01212

PCLD 217 178 0.00094

GIA 5% 186 51 0.00909

PCLD 187 152 0.00101

GIA 1% 198 59 0.00704

PCLD 199 157 0.00124

GIA 0.5% 199 72 0.00658

PCLD 199 147 0.00163

Results in Table 2 clearly show that PCLD is able to find much better quality
approximations of the solution set than those found by GIA. However, the quality
difference becomes smaller as the budget percentile decreases. This happens
because migration budget constraints reduce the search space of the problem,
possibly resulting in instances that are easier to solve using constraint based
methods. This claim is backed by the results in Table 2, where one can observe
that both algorithms are able to find solutions for more instances when using
smaller migration budgets.

5.2 Pareto-MCSs vs Evolutionary Algorithms

Table 3, shows the results PCLD and evolutionary algorithms VMPMBBO [23],
MGGA [22] and NSGAII [6]. MGGA was adapted to consider migration costs
instead of thermal dissipation and configured to use a population size of 12, and
crossover rate and mutation rate as suggested by Xu and Fortes [22].
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Table 3. Comparison of PCLD, VMPMBBO, MGGA and NSGAII on VMC instances.

Algorithm Budget percentile Solved HV

Always Median Wins Avg.

PCLD 100% 217 217 32 0.17980

VMPMBBO 226 227 212 0.01777

MGGA 220 225 0 0.17508

NSGAII 224 231 17 0.16518

PCLD 5% 187 187 108 0.05170

VMPMBBO 103 111 85 0.00606

MGGA 12 13 0 0.30225

NSGAII 13 14 0 0.28676

PCLD 1% 199 199 182 0.00158

VMPMBBO 76 83 21 0.05155

MGGA 0 0 - -

NSGAII 0 0 - -

PCLD 0.5% 199 199 187 0.00060

VMPMBBO 67 76 15 0.06063

MGGA 0 0 - -

NSGAII 0 0 - -

We note that VMPMBBO was originally designed for optimizing energy
consumption and resource wastage. When M = ∅, no migrations occur and
VMPMBBO was run with the configuration suggested by Zheng et al. [23]. How-
ever, when M 	= ∅, we have to consider migration costs. VMPMBBO’s popula-
tion is divided into subsystems and each subsystem optimizes a single objective
function. The suggested configuration uses 4 subsystems, 2 per objective. When
M 	= ∅, we use 6 subsystems instead to account for migration costs. NSGAII [6]
is a general purpose genetic algorithm. It was configured with a population size,
crossover rate and mutation rate of 100, 0.8 and 0.05 respectively, as suggested
by our fine tuning experiments.

When compared with the remaining algorithms, VMPMBBO with a bud-
get percentile of 100% has the best performance, finding solution sets for more
instances and of better quality. However, considering large migration costs is
not realistic for an active data center where live migrations may result in a large
performance deterioration of running applications. Therefore, considering a lim-
ited budget for migrations of VMs is more realistic. In these cases, PCLD is,
by far, the best performing algorithm when smaller budgets are used. MGGA’s
and NSGAII’s performance deteriorates the most as the budget decreases. Both
algorithms are barely able to find even a single solution for budgets of 5% or less.
With a budget of 5%, VMPMBBO already solves less 75 instances than PCLD,
despite being competitive in some instances. However, with budgets of 1% and
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0.5%, VMPMBBO is completely outclassed by PCLD. Not only is PCLD able
to find solutions for many more instances (116 and 122 more with budgets of 1%
and 0.5% respectively), the corresponding solution sets are of far better quality
than VMPMBBO’s.

6 Conclusion and Future Work

This paper introduces the Pareto Minimal Correction Subset (Pareto-MCS) of
a multi-objective constraint optimization problem. An equivalence relationship
between Pareto-MCSs and Pareto-optimal solutions is proved, showing that
Pareto-optimal solution enumeration can be reduced to Pareto-MCS enumer-
ation. Additionally, we show that Pareto-MCS enumeration can be reduced to
MCS enumeration, allowing for state-of-the-art efficient MCS enumeration algo-
rithms to be used right off-the-shelf instead of developing entirely new algorithms
for Pareto-MCS enumeration.

An experimental evaluation on instances of the Virtual Machine Consolida-
tion (VMC) problem shows that Pareto-MCS enumeration clearly outperforms
the state-of-the-art on a large set of problem instances, while remaining com-
petitive on all instances. Not only is this new approach able to find solutions for
more instances, but it is also able to find solution sets of far higher quality.

Finally, we note that there is still room for improvement in the Pareto-MCS
enumeration procedure. Our approach does not yet account for weights of soft
constraints in the search process. We plan to develop heuristics to help guiding
the MCS enumeration process towards Pareto-optimal solutions more effectively.
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Abstract. A portfolio SAT solver has to share clauses in order to be
efficient. In a distributed environment, such sharing implies additional
problems: more information has to be exchanged and communications
among solvers can be time consuming. In this paper, we propose a new
version of the state-of-the-art SAT solver Syrup that is now able to
run on distributed architectures. We analyze and compare different pro-
gramming models of communication. We show that, using a dedicated
approach, it is possible to share many clauses without penalizing the
solvers. Experiments conducted on SAT 2016 benchmarks with up to
256 cores show that our solver is very effective and outperforms other
approaches. This opens a broad range of possibilities to boost parallel
solvers needing to share many data.

1 Introduction

Using SAT technology to solve problems coming from different areas is increas-
ingly becoming a standard practice. As recent examples, one can cite the use of
SAT solvers to solve mathematical conjectures [19,20]. These new application
domains produce harder and harder SAT formulas. At the same time, it becomes
difficult to improve SAT solvers. It is noticeable even by reading the contents of
the last SAT conferences. Then, a way to solve such hard SAT formulas is to use
parallel SAT solvers [19].

During the last decade, several parallel SAT solvers have been developed
[5,7,9,13,18,32]. Even if it exists some distributed parallel SAT solvers, that is,
SAT solvers working on different computers [5,9,13], most of them, are multi-
core ones. In that case, solvers use multiple cores of only one computer [7,18,32].
One of the reasons is that parallel SAT solvers exchange data between sequen-
tial solvers, and communications are easier with a multi-core architecture rather
than a distributed one. Nevertheless, computers with more than 32 cores are
very expensive and remain limited to a given number of cores. A way to over-
come this problem and thus, acquire many more cores, consists in considering
several computers. This case is easy to obtain by using the tremendous number
of computers available in grid or cloud computing.
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In distributed environment, one has to deal with two issues: the increase of
search units and the exchange of learned clauses through the network. The for-
mer implies that systematically more clauses will be produced and the latter
that more messages need to be exchanged between the units and thus, causing
overheads. To confront the first problem, already present in multi-core archi-
tectures, solvers carefully select the clauses to exchange or manage each shared
clause in a different way [3,7]. Concerning the second problem, to the best of our
knowledge, the best approach consists in using topologies of message exchange
as proposed in TopoSAT [13].

The aim of this paper is to extend the parallel SAT solver Syrup [7] to dis-
tributed environments. This solver is a portfolio based approach with clause shar-
ing, initially designed for multi-core architectures. The key point of its efficiency
comes from the way that clauses are carefully selected before being exchanged
and a dedicated data structure is used to manage them. Both are necessary to
avoid overloading search units.

Although Syrup is scalable up to 32 cores (see Sect. 3), it was not initially
designed to run over this number of cores. During the last SAT competition
Syrup used 24 cores out of the 48 available cores. In particular, the quantity
of clauses exchanged between the search units, and thus the number of clauses
a solver has to deal with, increases with the number of cores. To reduce the
impact of exchanging this potentially huge quantity of information, the number
of clauses that can be stored in the buffer, that is placed in the shared memory,
was limited in the initial version of Syrup. This limit depends on the number
of available cores and was set empirically. Consequently, it is not obvious that
parameters selected to tune Syrup on less than 32 cores are always the best when
the number of cores increases. Therefore, in Sect. 4, the impact of this parameter
on each solver (taken individually) is empirically evaluated. The results show that
sharing too many clauses dramatically slows down the solvers. Consequently, a
new limit for the buffer size is proposed.

Another important point concerns the way the information is communicated
between solvers. When running Syrup on multi-core architecture information
is exchanged by using the shared memory almost for free. Nevertheless, when
considering distributed architectures, communication can be costly and not so
trivial to implement. Indeed, as empirically demonstrated in Sect. 4, it exists
several ways to communicate information between solvers and the used schema
has a direct impact on the effectiveness of the solver. It is shown that if solvers
do fewer communication cycles then they can share more clauses without affect-
ing performances (namely the number of unit propagation per second does not
dramatically decrease). To avoid these cycles, a new fully hybrid distributed
implementation of Syrup is proposed. This schema allows to exchange clauses
faster and, as it is empirically shown in the end of the Sect. 4, sharing clauses,
as soon as possible, among search units provides better results.

The rest of the paper is organized as follows. In the next section, basic notions
about SAT as well as sequential and parallel CDCL SAT solvers are provided.
In Sect. 3, we briefly describe the global architecture of the parallel SAT solver
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Syrup. In Sect. 4, we present and evaluate two existing distributed programming
models which are already used for SAT. Section 5 introduces our fully hybrid ver-
sion of Syrup. Before concluding and providing original perspectives (Sect. 7),
in Sect. 6 we compare the different versions of Syrup itself and then, the fully
hybrid version of Syrup against two state-of-the-art distributed solvers.

2 Preliminaries

A CNF formula is a conjunction of clauses built on a finite set of Boolean
variables where a clause is a disjunction of literals. A literal is either a Boolean
variable (x) or the negation of a Boolean variable (¬x). A unit (resp. binary)
clause is a clause with only one literal (resp. two literals), called unit literal
(resp. binary clause). An interpretation assigns a value from {0, 1} to every
Boolean variable, and, following usual compositional rules, naturally extended
to a CNF formula. A formula φ is consistent or satisfiable when it exists at least
one interpretation that satisfies it. This interpretation is then called a model of
φ and is represented by the set of literals that it satisfies.

SAT is the NP-complete problem that consists in checking whether or not a
CNF is satisfiable, i.e. whether or not the CNF has a model. Several techniques
have been proposed to tackle this problem in practice (see [14] for more details).
In this paper, we focus on CDCL SAT solvers exploiting the so-called Conflict
Driven Clause Learning features (see e.g. [12,24,25,34]) which are currently the
most efficient complete SAT solvers. Let us recall briefly the global architecture of
a CDCL SAT solver. CDCL solving is a branching search process, where at each
step a literal is selected for branching. Usually, the variable is picked w.r.t. the
VSIDS heuristic [25] and its value is taken from a vector, called polarity vector,
in which the previous value assigned to the variable is stored [28]. Afterwards,
Boolean constraint propagation is performed. When a literal and its opposite
are propagated, a conflict is reached, a clause is learnt from this conflict [24] and
a backjump is executed. These operations are repeated until a solution is found
(satisfiable) or the empty clause is derived (unsatisfiable). CDCL SAT solvers
can be enhanced by considering restart strategies [16] and deletion policies for
learnt clauses [4,15]. Among the measures used to identify relevant clauses, the
Literal Blocked Distance measure (LBD in short) proposed in Glucose is one of
the most efficient. Then, as experimentally shown by the authors of [6], clauses
with smaller LBD should be considered more relevant.

Many attempts have been made recently to build SAT solvers on top of
multi-core architectures. These solvers can partition the search space and so,
work on subformula [22,32] or they can work on the entire formula using a
portfolio approach [3,10,18]. Clause sharing plays a key role in such solvers. Each
thread selects some of the learnt clauses and shares them using shared memory.
Since sharing too many clauses can have a negative impact on the effectiveness
of solvers (for instance by slowing down the Boolean constraint propagation),
several strategies have been proposed in order to select which clauses have to be
communicated [3,7,18]. In addition to this problem, communications between
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solvers can be prohibitive. Usually, one has to deal with critical section, shared
memory and cache misses, involving an important bottleneck in communications
(see [1] for a thorough experimental evaluation of parallel solvers on multi-core
architectures).

Some SAT solvers are also implemented on distributed architectures [5,9,13].
When considering such distributed architectures using message passing such as
MPI (Message Passing Interface), one has to take the cost brought from the data
link (CPU time, memory and network speed) into account. Typically, there are
two ways to tackle this problem. The first one consists in reducing the number
of messages exchanged by sharing clauses carefully between solvers using graph
topologies (one-to-one, ring, . . . ) [13]. Another way to reduce the communica-
tion cost, is by realizing a hybridization between Multi-Threading and Distrib-
uted architectures. When considering pure message passing architectures, such
as those used in [5,13], messages between programs are exchanged as if processes
are running on independent computers. Conversely, in hybrid models, processes
running on the same computer communicate via shared memory and messages
are used only to communicate between computers. As demonstrated in [9] for
SAT and more generally in [2,30], using such hybridization drastically reduces
the network congestion. The authors of [11] present an extended taxonomy of
different distributed programming models. In Sect. 4, we will study in details the
communication in distributed architectures.

3 SYRUP: A Portfolio Approach

Syrup is a portfolio-based parallel SAT solver based on Glucose [7]. In Syrup,
clauses are exchanged using the shared memory. Figure 1 gives an overview of
how two (Glucose) solvers, S1 and S2, working on two different threads com-
municate. Let us present how clauses are imported and exported. When a solver
decides to share a clause (represented by black dotted lines), then this clause is
added into a buffer located in the shared memory. Similarly to its predecessors
[3,10,18], Syrup tries to reduce the number of clauses shared between cores by
only sending learnt clauses that are expected to be very useful. That is, unit
clauses, binary and glue (LBD = 2) ones. The other clauses are only exported if
they are seen at least twice during the conflict analysis. It is important to note
that clauses are exported using a buffer of limited size (by default the size is set to
0.4 MB× the number of threads), and that a clause is removed from the buffer
when all threads have imported it. Consequently, if the buffer is full, clauses
that should have been exchanged are discarded and therefore not exported. This
buffer prevents an overload of the shared memory.

In Syrup, imported clauses (represented by black plain lines) are considered
by a solver only right after a restart occurs. In addition, imported clauses are
not directly added into the solver. As a special feature, Syrup allows their
importation in a lazy manner. Imported clauses are initially watched by only one
literal which is sufficient to ensure that any conflicting clause will be detected
during unit propagation. If an imported clause is conflicting, then it is treated as
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SM

S 1

LEARNT CLAUSES
(2 − Watched)

IMPORTED CLAUSES
(1 − Watched)

DELETED

CLAUSES

S 2

Fig. 1. Schematic overview of Syrup. A black dotted (resp. plain) line means that a
clause is exported to (resp. imported from) the shared memory (SM). A gray dotted line
represents a promoted clause due to a conflict. The gray plain lines represent deleted
clauses during the databases reduction.

a local learnt clause and becomes 2-watched (represented by gray dotted lines).
This allows to dynamically select useful clauses to be imported, namely, the
ones that are relevant to the current solver search space. Furthermore, using
the 1-literal watched scheme limits the overhead of imported clauses. Since the
number of imported clauses can become huge, Syrup uses a dedicated strategy
to periodically remove clauses that are supposed to be useless for the search
(represented by gray plain lines).

In order to evaluate the scalability of Syrup, we ran it on all hundred bench-
marks of the SAT Race 2015 (parallel track) using 1 (which is the version 4.1 of
Glucose), 2, 4, 8, 16 and 32 cores. The wall clock time limit was set to 1,800 s.
For these experiments a computer of 32 cores with 256 GB of RAM has been
used (quad-processor Intel XEON X7550). As shown in Fig. 2, Syrup is clearly
scalable. The sequential Glucose solves 26 benchmarks (15 SAT, 11 UNSAT),
Syrup with 8 cores solves 56 (31 SAT, 25 UNSAT) and with 32 cores it solves
70 benchmarks (42 SAT, 28 UNSAT).

Fig. 2. Scalability of Syrup
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Since Syrup is scalable up to 32 cores, the next step is to use it with more
cores. However, computers with more than 32 cores are very expensive and
remain limited to a given number of cores. Nevertheless, another way to obtain
an unlimited number of cores consists in considering several computers as those
available in grid or cloud computing. Unfortunately, Syrup was designed to
only work on multi-threading architecture. Hence, a distributed architecture is
appropriate for using more available cores. The remaining part of the paper is
dedicated to this end.

4 Parallel SAT in Distributed Architecture

As aforementioned, parallel portfolio solvers exchange a tremendous quantity of
information. When considering multi-core architectures this information can be
efficiently collected by the different solvers using the shared memory. Since all
processors share a single view of the data, the communication between the solvers
can be as fast as memory accesses to the same location, which explains the need of
such a centralized scheme. However, when considering a distributed architecture,
using a centralized scheme can be prohibitive when the number of processes that
need to communicate is huge. Indeed, as experimentally demonstrated in [5], the
process in charge of collecting information and sharing them between the solvers
becomes quickly congested. Consequently, using a centralized architecture to
communicate information may not be the best solution when the aim is to use
distributed architecture with a considerable number of computers.

To overcome the bottleneck induced by centralized architecture, each process
will directly communicate with all others. However, communications have to be
realized carefully to avoid deadlocks occurring when a process requests a resource
that is already occupied by others. For instance, let us consider the case where
each process is implemented so that it first realizes a blocking send and then it
realizes a blocking receive. In such a situation, if two processes send a message
at once, since each process has to wait that the message is received by the other
to go on, then they are both blocked. More specifically, a blocking send is not
completed until the corresponding receive is not executed. This problem is well
known and several solutions exist to avoid and detect such deadlocks [8,21].
In SAT behavior, most of the approaches proposed in the literature [5,9,13] use
non-blocking or/and collective communications to avoid this problem. Generally,
the retained solution consists in waiting that all sender buffers can be safely
accessed and modified (using MPI Waitall) in order to finalize a communication
cycle (and then avoid deadlock). We follow this approach for the distributed
versions of Syrup presented in this section.

Another important point concerns the way communications are performed
between sequential SAT solvers. Two solutions are generally considered: (i) only
one thread serially alternates search and communication steps (it is the solution
retained in AmPharoS [5]) or (ii) two distinct threads that separately realize
these two tasks (it is the solution retained by the authors of HordeSAT [9] and
TopoSAT [13]). In the following, we decide to combine communicator threads
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devoted to exchange information (clauses and solution notification) and search
threads dedicated to solve the problem. In such a solution, each communicator
thread can be attached to one or several solver threads running on the same
machine. Therefore, a communicator thread alternates between sharing clauses
phase and sleeping phase (this thread is in standby during a given time). A com-
munication cycle consists in one sharing clauses phase followed by one sleeping
phase. During a communication cycle, and in order to avoid deadlocks, commu-
nicator threads use critical sections (mutex) and have to wait for sender buffers
to be available twice (via MPI Waitall): a first time to check if a solution has
been found and a second time to exchange clauses.

In the rest of this section, we empirically evaluate a distributed version of
Syrup using communicator threads with communication cycles as aforemen-
tioned. In this evaluation we make the distinction between a pure message pass-
ing programming model, where couples (solver, communicator) threads are con-
sidered as computers (allows to only use a MPI library), and a partially hybrid
programming model, where communication between solvers on the same machine
are realized using shared memory (using both MPI and shared memory libraries).

4.1 Pure Message-Passing Programming Model

This programming model respects the communication protocol presented in
introduction of this section. Precisely:

– it uses several processes per computer;
– each sequential SAT solver forms a process: it is able to perform search as

well as communication by managing one or two threads (solver and commu-
nicator);

– it uses the message passing (i.e., MPI library or equivalent) to exchange data
between processes, even between processes running on the same computer;

– data are duplicated for each solver on both network and shared memory.

Figure 3 illustrates this programming model with two threads per solver
process. The solver process (PROCESS1), represented by a dashed square, embeds
a search thread S1 and its own communicator thread C1. Data (i.e., clauses)
are shared between these two threads using the shared memory via a recep-
tion buffer called DATA. On this picture, we focus on data sent by C1 to all
other solvers. In fact, in pure message passing model, each solver behaves as
an independent computer. The main drawback of this architecture is the data
replication which decreases the communication speed. On the same computer, it
requires the copy of the data between solvers without sharing a global address
space (black arrows). And, when data have to be sent to solvers running on
another computer, it requires sending one message for each sequential solver
(gray arrows) rather than one per computer. As a result, the same data is dupli-
cated as many times as the number of solvers and thus, data exchange may cause
network congestion. However, the advantage of this programming scheme is the
possibility to use only a MPI library or equivalent, thereby facilitating applica-
tion development and their debugging. This means that, using this programming
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COMPUTER 1
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DATA
PROCESS5 PROCESS6 PROCESS7 PROCESS8
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Fig. 3. Pure message passing programming model: a focus is performed on data
(clauses) sent by the solver S1 to other solvers with two computers.

model, a distributed solver can directly be created from a sequential SAT solver
rather than a multi-core one.

The pure message-passing programming model is the solution retained by
the authors of TopoSAT to realize their communications. They have chosen
5 s for their communication cycles. A key point of TopoSAT architecture is
the use of non-blocking and point to point communication that allow building
different topologies of message exchange (2-dimensional grid, medium-coupled,
. . . ). These topologies reduce the network congestions caused by this model.
However, since our aim is not to compare topologies but low level communication
models, we only implement the topology where each process communicates with
all others.

In order to compare the different programming models, we have developed
a pure message-passing approach based on the sequential SAT solver Glucose
using communicator threads as presented in introduction of this section. This
implementation directly provides a distributed version of Syrup. In a first exper-
iment, we have studied the impact of the reception buffer size (DATA) and the fre-
quency of exchange on the global performance of each sequential solver (roughly,
the number of unit propagation per second). To this end, 256 processes have been
run on 32 computers of 8 cores during 100 s (wall clock time). We have selected
20 varied instances coming from the SAT Race 2015 (parallel track) and not
solved by Syrup within 300 s (results obtained in the Sect. 3 with 32 cores). In
order to evaluate the impact of the reception buffer sizes and the communica-
tion cycles times on the solver effectiveness, three reception buffer sizes (20 MB,
100 MB, and 200 MB) and three different communication cycles times (every 0.5,
5, and 10 s) have been considered.

Table 1 reports for each combination the average number of received clauses
noted “Received” in the table, the average number of received clauses really
retained by solvers noted “Retained” (imported clauses through the network
that effectively become 1-watched, see Sect. 3), the average number of retained
clauses that lead to a conflict noted “Retained (conflicts)”, the average number
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Table 1. Pure message passing model. Impact of the reception buffer size (DATA) and
the frequency of exchange on the global performances of solvers. All results correspond
to the obtained average of all processes per second.

20MB 100MB 200MB

Com. cycle 0.5 s 5 s 10 s 0.5 s 5 s 10 s 0.5 s 5 s 10 s

Received 8,270 30,989 38,820 9,920 28,369 39,890 11,007 28,296 34,346

Retained 82% 25% 0.8% 93% 51% 34% 93% 71% 62%

Ret. (conflicts) 43 55 26 54 51 16 72 33 12

Ret. (useful) 494 618 306 553 575 173 783 452 192

Propagation 100,379 489,289 525,738 91,103 479,145 540,286 69,912 469,021 443,696

Conflicts 216 823 1,101 254 734 1,069 275 721 891

of retained clauses used during the unit propagation process noted “Retained
(useful)”, the average number of unit propagation per second noted “Propaga-
tion” and the average number of conflicts per second noted “Conflicts”. For all
these measures the average is taken on all benchmarks.

Firstly, we can observe that whatever the DATA buffer size is, the worst
results are obtained for a cycle of 0.5 s. Indeed the number of propagation and
conflicts per second is drastically affected: 5 times less than when using cycles of
5 or 10 s. This is due to blocking functions (MPI WaitAll and Mutex operations)
used during the communication cycles. Indeed, the shorter the cycle is, the more
these functions are called. When we increase the communication cycle to 5 s,
the number of these blocking functions is reduced and consequently the global
performance of the solver in term of propagations and conflicts is improved.
However, we can observe that the number of retained clauses decreases when
the time of the communication cycle increases. Indeed, more clauses have to be
exchanged, consequently the shared memory buffer has more chance to become
full. This is a potential drawback, because some of these discarded clauses can
be useful ones.

We focus now on a cycle of 5 s. We observe that the percentage of retained
clauses increases as the buffer size grows. The same amount of data is sent but
fewer clauses are deleted. The number of retained clauses for useful and conflicted
as well as the number of propagation and conflicts slightly decreases when the
size of the buffer increases. This is explained by an overload of the solvers due
to the management of the clauses database.

4.2 Partially Hybrid Programming Model

We propose a partially hybrid model as an alternative to overcome the drawbacks
of the pure message passing scheme. This programming scheme is as follows:

– it embeds only one process per computer;
– several sequential SAT solvers form a process: it is a clustering of search

threads associated with only one communicator thread;
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NETWORK

COMPUTER 1 COMPUTER 2

DATA

PROCESS2PROCESS1
S5 S6 S7 S8
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DATA
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S2 S3 S4

Fig. 4. Partially hybrid programming model: a focus is performed on data (clauses)
sent by the solver S1 to other solvers with two computers.

– two independent libraries are used to communicate: one to deal with shared
memory and another one to deal with network communications;

– it pools data that have to be sent over the network.

The communicator thread is used as an interface to share data between
solvers on distinct computers whereas the shared memory allows to exchange
data between solvers on the same computer. Figure 4 depicts this schema. Each
computer uses a single process that embeds all sequential solvers. In this figure,
solver S1 sends clauses to S2, S3, S4 and its communicator C1 using the buffer
located in the shared memory (DATA). Communicator C1 sends clauses through
the network to the communicator C2 which distributes them to S5, S6, S7, S8.
Obviously, the main advantage of this approach is the mutualization of data sent
over the network.

Table 2. Partially hybrid programming model. Impact of the buffer size (DATA) and
the frequency of exchange on the global performances of solvers. All results correspond
to the obtained average of all processes per second.

20MB 100MB 200MB

Com. cycle 0.5 s 5 s 10 s 0.5 s 5 s 10 s 0.5 s 5 s 10 s

Received 28,202 38,448 41,826 26,980 36,505 36,370 26,836 34,643 35,427

Retained 84% 68% 43% 86% 85% 81% 86% 86% 86%

Ret. (conflicts) 342 318 209 325 280 190 326 258 176

Ret. (useful) 3,841 3,256 2,578 3,429 2,688 2,008 3,647 2,603 1,853

Propagation 504,540 636,850 658,177 528,529 577,653 603,685 511,709 559,477 595,084

Conflicts 976 1,364 1,283 928 1,253 1,248 929 1,184 1,203

The solver HordeSAT is based on this programming model. Its key feature is
the management of sent messages through the communicator thread. It involves
a collective communication of fixed buffer size of clauses (every 5 s). If the amount
of data that has to be sent is not sufficient, some padding is added to obtain
the desired size. Reversely, when the size limit is reached, clauses are simply
skipped. To avoid this phenomena, the authors propose to adapt (for the next
sending) the amount of clauses provided by the search threads to the demand.

We have developed our own partially hybrid solver, using communicator
threads as presented in the beginning of this section, and based on the par-
allel SAT solver Syrup (version 4.1). Note that in this programming model, one
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has to deal with two different buffers: the buffer located in the shared mem-
ory and used by Syrup, and the buffer used to send clauses over the network.
Nevertheless, we think that the collective communication of fixed size used by
HordeSAT to send clauses on the network is an obstacle for the efficiency of
distributed SAT solvers. Therefore, we propose to perform a collective commu-
nication that exchanges data of different sizes. This is allowed by MPI libraries.
It discards sending useless integers and prevent discarding some clauses.

As in Sect. 4.1, we also investigate the impact of the buffer size DATA located
in the shared memory and the frequency of exchange on the global performances
of solvers for the partially hybrid programming model. Results are presented in
Table 2. They show the same trend as for the pure model (Table 1). Indeed, we
can also observe that short communication cycles penalize the performances of
the sequential solvers and a large size of buffer reduces the number of useful
clauses retained. An important point to note is that the partially hybrid model
provides higher propagations and conflicts rates, showing that this approach
seems more beneficial.

5 Fully Hybrid Programming Model

As suggested by the results reported in Table 2, it seems beneficial to share
clauses between sequential solvers over the network as soon as possible. Indeed,
we observed that the amount of useful retained clauses, whatever the buffer
size (see lines Retained (conflicts) and Retained (useful)) is more important
when the communication cycles frequency increases. However, when considering
short cycle times, we pointed out that the partially hybrid model suffers from
critical section problems that drastically reduce the effectiveness of solvers. In
this section, we tackle this problem by introducing an algorithm that has fewer
critical sections and sends clauses as soon as possible without communication
cycle.

NET WORK

COMPUTER 1 COMPUTER 2

DATA

PROCESS2PROCESS1
S5 S6 S7 S8

R2

DATA

S1

R1

S2 S3 S4

Fig. 5. Fully hybrid message passing programming model: a focus is performed on data
sent by the solver S1 to other solvers between two computers.

In order to communicate clauses directly, search threads bypass the com-
municator and send clauses themselves on the network. Consequently, the com-
municator thread of each computer becomes a receiver thread. Contrary to the
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partially hybrid model, this programming model allows several threads to com-
municate on the network at the same time. We call such a programming model
fully hybrid.

Since there is no more communication cycle, one has to avoid deadlock in
a different way. Thread safety has to be established to ensure that sender and
listener threads never deadlock for any ordering of thread execution [8]. This
is guaranteed due to the distributed mutual exclusion algorithms [23,27,29,33]
which state that only one process is allowed to execute the critical section at
any given time. The overhead for imposing thread safety for MPI have been
largely studied [31], and most implementations do not have sophisticated lock-
ing mechanisms algorithms. However, the MPICH implementation [26] of MPI
works fine with the fully hybrid programming model. In [17], the authors detail
a new conceptual concurrency support mechanism for MPI to deal with this
problem. To the best of our knowledge, no distributed SAT solver is based on
this programming model.

Figure 5 depicts the fully hybrid programming model. Each computer uses
a single process that embeds all solver threads and one receiver thread. In this
picture, the solver S1 sends data with S2, S3 and S4 via the shared memory
(DATA) and to the 2nd computer via the network. The receiver thread R2 receives
data (here a clause and not a pool of clauses) and sends it to S5, S6, S7 and S8

via the shared memory buffer.

Table 3. Fully hybrid model. Impact of the buffer size (DATA) on the global perfor-
mances of solvers. All results correspond to the obtained average of all processes on 20
instances per second. Last two columns recall best compromise for pure and partially
hybrid models.

Model Fully Partially Pure

20 MB 100MB 200 MB 20 MB 20 MB

Received 35,776 32,840 33,343 38,448 30,989

Retained 83% 86% 86% 68% 25%

Ret. (conflicts) 477 445 473 318 55

Ret. (useful) 5,845 5,899 6,184 3,256 618

Propagation 626,658 629,126 614,832 636,850 489,289

Conflicts 1,344 1,246 1,268 1,364 823

Theoretically, the search thread is blocked until a sent clause is received by
all other computers. However, in practice a buffer is used to allow the solver
to send clauses without waiting the end of the communication. Concerning the
receiver thread of each computer, it receives clauses one after another using
blocking operations. Therefore, this thread performs a busy-waiting until the
message is received. However, since many data are sent by all search threads,
this thread always receives clauses and does not wait much. Furthermore, busy-
waiting allows to receive clauses faster than non-blocking communication.
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Using the same protocol as used in Sects. 4.1 and 4.2, we evaluate the impact
of this programming model on the sequential solvers effectiveness. Table 3 dis-
plays the results. Since clauses are sent as soon as they are selected, there is
no communication cycle. So, we just show the impact of the different sizes of
the buffer (DATA). Here again, the best compromise seems to be a buffer of
size 20 MB. Interestingly, we have a propagation and conflict rate comparable
to the partially hybrid one. But, the number of useful retained clauses is more
important. It seems that our goal is achieved: maintaining a good propagation
rate while sharing many useful clauses. In the next section, we will show that
this programming model effectively outperforms the two others.

6 Experiments

In the first part of this section we compare the different programming models
on the benchmarks of the SAT competition 2015 in order to tune our solver.
Then, we compare the best combination we found against the distributed SAT
solvers TopoSAT and HordeSAT on the benchmarks coming from the SAT
competition 2016.

6.1 Comparison of the Different Programming Models

Initially, we compare the three programming models: pure, partially and fully
hybrid on the 100 instances of SAT-Race 2015 of the parallel track. As in Sect. 4,
we use 32 computers containing 8 cores each (32 bi-processors Intel XEON X7550
at 2 GHz with a gigabyte Ethernet controller), resulting in a solver with 256
cores. Again the wall time is set to 1,800 s. We use the best configuration for
each model, namely the shared memory buffer size is set to 20 MB for all models,
and communication cycles are done every 5 s for pure MPI and partially hybrid
model. Results are reported in the cactus plot Fig. 6a. It is easy to see that the
pure message programming model is the worst one. It is only able to solve 61
instances whereas the partially (resp. fully) hybrid model solves 84 (resp. 87)
problems. The main reason is that the pure message passing model replicates
too many data. Note that on the same hardware, Syrup solves 57 instances with
only 8 cores. Therefore, a distributed approach can become inefficient due to its
communication cost! This explains why TopoSAT (based on this programming
model) tries to reduce the number of shared clauses in order to remain efficient.
Now, if we perform a pairwise comparison between the partially and the fully
hybrid models (see Fig. 6b), we observe that the fully hybrid model is signifi-
cantly better. More precisely, we show that, except for some satisfiable instances,
most of the instances are solved faster with the fully hybrid programming model.

All these results validate the experimental study held previously in Sects. 4
and 5. They also validate that the more retained clauses are present, the better
the solver is. It is noticeable that in order to increase the number of useful shared
clauses, a good practice is to share them as soon as possible.
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(a) Cactus plot (b) Partially vs fully hybrid model

Fig. 6. Comparison of pure, partially and fully hybrid models on SAT’15 instances
(parallel track). (a) shows the classical cactus plot and (b) compares the partially to
the fully hybrid models. In the latter, each dot corresponds to an instance and dots
below the diagonal are instances solved faster by the fully hybrid model.

6.2 Evaluation on SAT’16 Benchmarks

In this last section, we compare our fully hybrid version of Syrup, called D-
Syrup, against the partially hybrid HordeSAT which embeds the solver plin-
geling and the pure TopoSAT which embeds the solver Glucose 3.0. All
solvers use 256 threads (i.e., 32 computers with 8 cores each). In order to be
fair, we use new benchmarks coming from SAT’16 competition, application track
that includes 300 instances. Due to limited resources, the wall time is now set
to 900 s. To give a wider picture, we also add the sequential solver Glucose,
the parallel solver Syrup with 8 cores and a version of D-Syrup with 128 cores
(16 computers with 8 cores) to see if, on this benchmarks set, D-Syrup is also
scalable.

Results are reported in Fig. 7. Clearly, on this test set, D-Syrup outper-
forms HordeSAT and TopoSAT. HordeSAT seems penalized first because
its communication cycles are too short (1 s) thus leading to more access to crit-
ical sections and second because it uses a collective communication buffer of
fixed size (see Sect. 4.2). Concerning TopoSAT, it is clearly inefficient because
it uses the pure message passing programming model. For a more detailed view,
Fig. 8a displays a pairwise comparison between D-Syrup and HordeSAT with
256 cores. It confirms that our solver outperforms HordeSAT for almost all
instances.

When comparing D-Syrup on both 128 and 256 cores, in Figs. 7b and 8b, we
see that D-Syrup scales well. Additionally, when comparing Syrup on 8 cores
to D-Syrup, we observe a big improvement in terms of solved benchmarks.
Note that the multi-core version of Syrup on a 32 cores computer solves 154
benchmarks (62 SAT and 82 UNSAT). These results show that the Syrup with
its lazy strategy maintains its efficiency independently of the number of cores
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Fig. 7. Comparing D-Syrup versus the portfolio distributed solvers and scalability
evaluation of D-Syrup with respect to 1 core (Glucose), 8 cores (Syrup) and 128
cores (D-Syrup).

(a) D-Syrup Versus HordeSAT (b) D-Syrup 256 Versus 128 cores

Fig. 8. Scatter plots. For each plot, each dot represents an instance, dots below the
diagonal correspond to instances solved faster by D-Syrup (256 cores).

used. Indeed, recall that all clauses shared by Syrup are also shared to all
computers with D-Syrup.

7 Conclusion and Future Work

In this paper we designed and evaluated a distributed version of the multi-core
parallel portfolio SAT solver Syrup. For this purpose, we developed several pro-
gramming models to manage communications. In particular, we implemented
the programming models that are currently the state-of-the-art distributed SAT
solvers and used communication cycles. We have shown that the higher the fre-
quency of the communication cycles is, the fewer unit propagations are done per
second. Due to this observation, we proposed a fully hybrid model that is able to
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share clauses without communication cycles. We empirically demonstrated that,
this scheme allows to share many more clauses without penalizing the solvers,
since the number of propagation per second is less affected. In these first exper-
iments, we have also shown that the size of the buffer used in Syrup is impor-
tant. More precisely, we showed that beyond a certain threshold, the number of
clauses the solvers have to deal with increases that much that decreases the num-
ber of unit propagation done per second. Therefore, we designed three versions
of Syrup using the pure, partially hybrid and fully hybrid programming model,
each tuned with the best parameters. Then, we compared these versions between
each other, showing that the fully hybrid model is the best choice. This model
significantly outperforms the state-of-the-art distributed SAT solvers TopoSAT
and HordeSAT on a wide set of benchmarks.

Our direct plan for the near future is to provide docker containers to simplify
the deployment of the proposed distributed version of Syrup in a distributed
architecture and thus, facilitate its use. Another research direction, is to explore
more advanced concepts that are related to clause managements, in order to
make a better selection of the clauses to be removed before the buffer becomes
full. A first attempt could be to sort clauses w.r.t. their size (or other measures
(PSM for example)) and then keep the shortest clauses in priority. Alternatively,
we could build a strategy that selects carefully which clauses to remove. For
instance, selection criteria could be: only keep clauses of size 2 when the buffer’s
capacity is below 10% or remove clauses of size greater than 8 if the buffer is
half full.

From our experiments, it seems that sharing the clauses as soon as possible
has a positive impact on the effectiveness of the solvers. To continue this direc-
tion, we could try to delay the transmission of clauses. In case the delayed clauses
are less important, then we could possibly use heuristics to remove clauses from
the buffer, based on the time these clauses were created.
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learnt clauses. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp.
188–200. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21581-0 16

http://dx.doi.org/10.1007/978-3-642-31612-8_16
http://dx.doi.org/10.1007/978-3-642-31612-8_16
http://dx.doi.org/10.1007/978-3-642-21581-0_16


A Distributed Version of SYRUP 231

5. Audemard, G., Lagniez, J.-M., Szczepanski, N., Tabary, S.: An adaptive parallel
SAT solver. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 30–48. Springer,
Cham (2016). doi:10.1007/978-3-319-44953-1 3

6. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence,
IJCAI 2009, pp. 399–404 (2009)

7. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers. In:
Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 197–205. Springer, Cham
(2014). doi:10.1007/978-3-319-09284-3 15

8. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Thakur, R.: Fine-grained mul-
tithreading support for hybrid threaded MPI programming. Int. J. High Perform.
Comput. Appl. IJHPCA 24(1), 49–57 (2010)

9. Balyo, T., Sanders, P., Sinz, C.: HordeSat: a massively parallel portfolio SAT solver.
In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 156–172. Springer,
Cham (2015). doi:10.1007/978-3-319-24318-4 12

10. Biere, A.: (P)lingeling. http://fmv.jku.at/lingeling
11. Carribault, P., Pérache, M., Jourdren, H.: Enabling low-overhead hybrid

MPI/OpenMP parallelism with MPC. In: Sato, M., Hanawa, T., Müller, M.S.,
Chapman, B.M., Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 1–14.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13217-9 1
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Abstract. Over the last decade, parallel SAT solving has been widely
studied from both theoretical and practical aspects. There are now
numerous solvers that differ by parallelization strategies, programming
languages, concurrent programming, involved libraries, etc.

Hence, comparing the efficiency of the theoretical approaches is a chal-
lenging task. Moreover, the introduction of a new approach needs either
a deep understanding of the existing solvers, or to start from scratch the
implementation of a new tool.

We present PaInleSS: a framework to build parallel SAT solvers for
many-core environments. Thanks to its genericity and modularity, it pro-
vides the implementation of basics for parallel SAT solving like clause
exchanges, Portfolio and Divide-and-Conquer strategies. It also enables
users to easily create their own parallel solvers based on new strategies.
Our experiments show that our framework compares well with some of
the best state-of-the-art solvers.

Keywords: Parallel · Satisfiability · Clause sharing · Portfolio · Cube
and conquer

1 Introduction

Boolean satisfiability (SAT) has been used successfully in many contexts such
as planning decision [19], hardware and software verification [6], cryptology [27]
and computational biology [22], etc. This is due to the capability of modern SAT
solvers to solve complex problems involving millions of variables and billions of
clauses.

Most SAT solvers have long been sequential and based on the well-known
DPLL algorithm [8,9]. This initial algorithm has been dramatically enhanced by
introducing sophisticated heuristics and optimizations: decision heuristics [21,
29], clauses learning [25,32,35], aggressive cleaning [2], lazy data structures [29],
preprocessing [11,23,24], etc. The development of these enhancements has been
greatly simplified by the introduction of MiniSat [10], an extensible SAT solver
easing the integration of these heuristics in an efficient sequential solver.
c© Springer International Publishing AG 2017
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The emergence of many-core machines opens new possibilities in this domain.
Two classes of parallel techniques have been developed: competition-based
(a.k.a., Portfolio) and cooperation-based (a.k.a., Divide-and-Conquer). In the
Portfolio settings [14], many sequential SAT solvers compete for the solving of
the whole problem. The first one to find a solution, or proving the problem to
be unsatisfiable ends the computation. Divide-and-Conquer approaches use the
guiding path method [34] to decompose, recursively and dynamically, the origi-
nal problem in sub-problems that are solved separately by sequential solvers. In
both approaches, sequential solvers can dynamically share learnt information.
Many heuristics exist to improve this sharing by proposing trade-off between
gains and overhead.

While the multiplication of strategies and heuristics provides perspectives for
parallel SAT solving, it makes more complex development and evaluation of new
proposals. Thus, any new contribution faces three main problems:

Problem 1: concurrent programming requires specific skills (synchronization,
load balancing, data consistency, etc.). Hence, the theoretical efficiency of an
heuristic may be annihilated by implementation choices.

Problem 2: most of the contributions mainly target a specific component in
the solver while, to evaluate it, a complete one (either built from scratch
or an enhancement of an existing one) must be available. This makes the
implementation and evaluation of a contribution much harder.

Problem 3: an implementation, usually, only allows to test a single composition
policy. Hence, it becomes hard to evaluate a new heuristic with different
versions of the other mechanisms.

This paper presents PArallel INstantiabLE Sat Solver (PaInleSS)1, a frame-
work that simplifies the implementation and evaluation of new parallel SAT
solvers for many-core environments. The components of PaInleSS can be instan-
tiated independently to produce a new complete solver. The guiding principle is
to separate the technical components dedicated to some specific aspect of con-
current programming, from the components implementing heuristics and opti-
mizations embedded in a parallel SAT solver.

Our main contributions are the following:

– we propose a new modular and generic framework that can be used to imple-
ment new strategies with minimal effort and concurrent programming skills;

– we provide adaptors for some state-of-the-art sequential SAT solvers: gluco-
se [2], Lingeling [5], MiniSat [10], and MapleCOMSPS [21].

– we show that it is easy to implemented strategies in PaInleSS, and pro-
vide some that are present in the classical solvers of the state-of-the-art:
glucose-syrup [3], Treengeling [5], and Hordesat [4];

– we show the effectiveness of our modular design by instantiating, with a
minimal effort, new original parallel SAT solver (by mixing strategies);

1 painless.lrde.epita.fr.
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– we evaluate our approach on the benchmark of the parallel track of the SAT
Race 2015. We compare the performance of solvers instantiated using the
framework with the original solvers. The results show that the genericity
provided by PaInleSS does not impact the performances of the generated
instances.

The rest of the paper is organized as follows: Sect. 2 introduces useful back-
ground to deal with sequential SAT solving. Section 3 is dedicated to parallel
SAT solving. Section 4 shows the architecture of PaInleSS. Section 5 presents
different solvers implemented using PaInleSS. Section 6 analyzes the results of
our experiments and Sect. 7 concludes and gives some perspectives work.

2 About Sequential SAT Solving

In this section, after some preliminary definitions and notations, we introduce
the most important features of modern sequential SAT solvers.

A propositional variable can have two possible values � (True) or ⊥ (False). A
literal l is a propositional variable (x) or its negation (¬x). A clause ω is a finite
disjunction of literals (noted ω =

∨k
i=1 �i). A clause with a single literal is called

unit clause. A conjunctive normal form (CNF) formula ϕ is a finite conjunction
of clauses (noted ϕ =

∧k
i=1 ωi). For a given ϕ, the set of its variables is noted:

Vϕ. An assignment A of variables of ϕ, is a function A : Vϕ → {�,⊥}. A is total
(complete) when all elements of Vϕ have an image by A, otherwise it is partial.
For a given formula ϕ, and an assignment A, a clause of ϕ is satisfied when it
contains at least one literal evaluating to true, regarding A. The formula ϕ is
satisfied by A iff ∀ω ∈ ϕ, ω is satisfied. ϕ is said to be sat if there is at least one
assignment that makes it satisfiable. It is defined as unsat otherwise.

Conflict Driven Clause Leaning. The majority of the complete state-of-the-
art sequential SAT solvers are based on the Conflict Driven Clause Learning
(CDCL) algorithm [25,32,35], that is an enhancement of the DPLL algorithm
[8,9]. The main components of a CDCL are depicted in Algorithm1.

At each step of the main loop, unitPropagation2 (line 4) is applied on the
formula. In case of conflict (line 5), two situations can be observed: the conflict
is detected at decision level 0 (dl == 0), thus the formula is declared unsat
(lines 6–7); otherwise, a new asserting clause is derived by the conflict analysis
and the algorithm backjumps to the assertion level [25] (lines 8–10). If there is
no conflict (lines 11–13), a new decision literal is chosen (heuristically) and the
algorithm continues its progression (adding a new decision level: dl ← dl + 1).
When all variables are assigned (line 3), the formula is said to be sat.

2 The unitPropagation function implements the Boolean Constraint Propagation
(BCP) procedure that forces (in cascade) the values of the variables in asserting
clauses [8].
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1 function CDCL()

2 dl ← 0 // Current decision level

3 while not all variables are assigned do
4 conflict ← unitPropagation()

5 if conflict then
6 if dl = 0 then
7 return ⊥ // ϕ is unsat

8 ω ← conflictAnalysis()

9 addLearntClause(ω)
10 dl ← backjump(ω)

11 else
12 assignDecisionLiteral()

13 dl ← dl + 1

14 return � // ϕ is sat

Algorithm 1. CDCL algorithm.

The Learning Mechanism. The effectiveness of the CDCL lies in the learning
mechanism. Each time a conflict is encountered, it is analyzed (conflictAnaly-
sis function in Algorithm1) in order to compute its reasons and to derive a
learnt clause. While present in the system, this clause will avoid the same mistake
to be made another time, and therefore allows faster deductions (conflicts/unit
propagations).

Since the number of conflicts is very huge (in avg. 5000/s [2]), controlling the
size of the database storing learnt clauses is a challenge. It can dramatically affect
performance of the unitPropagation function. Many strategies and heuristics
have been proposed to manage the cleaning of the stored clauses (e.g., the Literal
Block Distance (LBD) [2] measure).

With the two classical approaches used for parallel SAT solving: Portfolio and
Divide-and-Conquer (see Sect. 3), multiple sequential solvers are used in parallel
to solve the formula. With these paradigms sequential solvers can be seen as
black boxes providing solving and clause sharing functionalities.

3 About Parallel SAT Solving

The arrival of many-core machines leads to new possibilities for SAT solving.
Parallel SAT solving rely on two concepts: parallelization strategy and learnt
clause exchanges. Two main parallelization methods have been developed: Port-
folio and Divide-and-Conquer. We can also mention the hybrid approaches as
alternatives, that are combinations of the first two techniques. With these paral-
lelization strategies, it is possible to exchange learnt clauses, between the under-
ling sequential solvers.



PaInleSS: A Framework for Parallel SAT Solving 237

3.1 Parallelization Strategies

Portfolio. The Portfolio scheme has been introduced by [14], in ManySat. The
main idea of this approach is to run sequential solvers working in parallel on
the entire formula, in a competitive way. This strategy aims at increasing the
probability of finding a solution using the diversification [12] (also known as
swarming in others contexts) principle.

The diversification can only concern the used heuristics: several solvers (work-
ers) with different heuristics are instantiated. They differ by their decision strate-
gies, learning schemes, the used random seed, etc.

Another type of diversification, introduced in HordeSat [4], uses the phase
of the variables: before starting the search each solver receives a special phase,
acting as a soft division of the search space. Solvers are invited to visit a certain
part of the search space but they can move out of this region during the search.

Another technique to ensure the diversification is the block branching [33]:
each worker focuses on a particular subset (or block) of variables. Hence, the
decision variables of a worker are chosen from the block it is in charge of.

Divide-and-Conquer. The Divide-and-Conquer approach is based on split-
ting the search space in disjoint parts. These parts are solved independently, in
parallel, by different workers. As the parts are disjunct, if one of the partitions
is proven to be sat then the initial formula is sat. The formula is unsat if all
the partitions are unsat. The challenging points of the this method are: dividing
the search space and balancing jobs between workers.

To divide the search space, the most used technique is based on the Shannon’s
decomposition, known as the guiding path [34]. The guiding path is a vector of
literals (a.k.a., cube) that are assumed by the worker when solving the formula.

Choosing the best division variables is a hard problem requiring heuristics.
If some parts are too easy this will lead to repeatedly divide the search space
and ask for a new job (phenomenon known as ping-pong effect). As all the
partitions do not require the same solving time, some workers may become idle
and a mechanism for load balancing is needed. Each time a solver proves that
its partition is unsat3, it needs a new job. Another solver is chosen as target to
divide its search space (i.e., to extend its guiding path). The target will work on
one of the new partition and the idle worker on the other one. This mechanism
is often called work stealing.

Hybrid Approaches. As already presented, Portfolio and Divide-and-
Conquer, are the two main explored approaches to parallelize SAT solving.

The Portfolio scheme is simple to implement, and uses the principle of diversi-
fication to increase the probability of solving the problem. However, since workers
can overlap their search regions, the theoretical resulting speed-up is not as good
as the one of the Divide-and-Conquer approach [17]. Surprisingly, while giving

3 If the result is sat the global solving ends.
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a better theoretical speed-up, the Divide-and-Conquer approach suffers from the
two challenging issues we mentioned: dividing the search space and balancing
jobs between workers.

Emerging techniques, called hybrid approaches, propose to use simultaneously
the two strategies, so that we benefit from the advantages of each, while trying
to avoid their drawbacks.

A basic manner to mix the two approaches is to compose them. There are two
possible strategies: Portfolio of Divide-and-Conquer (introduced by c-sat [30]),
and Divide-and-Conquer of Portfolios (e.g., ampharos [1] an adaptive Divide-
and-Conquer that allows multiple workers on the same sub-part of the search
space). Let us mention other more sophisticated ways to mix approaches like
scattering [16,18] or transition heuristics based strategies [1,7,26,31].

3.2 Clauses Sharing

In all these parallelization paradigms, sharing information between workers is
possible, the most important one being clauses learnt by each worker. Hence, the
main questions are: which clauses should be shared? And between which workers?
Indeed, sharing all clauses can have a bad impact on the overall behavior.

To answer the first question, many solvers rely on the standard measures,
defined for sequential solvers (i.e., activity, size, LBD): only clauses under a given
threshold for these measures are shared. One simple way to get the threshold is
to define it as constant it (e.g., clauses up to size 8 are shared in ManySat [14]).
More sophisticated approaches adapt thresholds dynamically in order to control
the flow of shared clauses during the solving [4,13].

A simple solution to the second question, adopted in almost all parallel SAT
solvers, is to share clauses between all workers. However, a finer (but more com-
plex) solution is to let each worker choose its emitters [20].

As a conclusion of this section, we can say that parallel SAT solving is based on
two distinct concepts. First, there exist numerous strategies to parallelize SAT
solving by organizing the workers search. Secondly, with all these strategies is it
possible to share clauses between the workers. This two concepts have been our
intuition sources for the design of the architecture of PaInleSS.

4 Architecture of the Framework

There exist numerous strategies to parallelize SAT solving, their performances
heavily relying on their implementation. The most difficult issues deal with con-
current programming. Languages and libraries provide abstractions to deal with
this difficulties, and according to these abstractions developers have more or less
control on mechanisms such as memory or threads management (e.g., Java vs
C++). This will affect directly the performance of the produced solver.

Therefore, it is difficult to compare the strategies without introducing tech-
nological bias. Indeed, it is difficult to integrate new strategies on top of existing
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Fig. 1. Architecture of PaInleSS.

solvers, or to develop a new solver from scratch. Moreover, an implementation
usually offers the possibility to modify a particular component, it is then difficult
to test multiple combinations of components.

PaInleSS aims to be a solution to these problems. It is a generic, modular,
and efficient framework, developed in C++11, allowing an easy implementation of
parallel strategies. Taking black-boxed sequential solvers as input, it minimizes
the effort to encode new parallelization and sharing strategies, thus enabling the
implementation of complete SAT solvers at a reduced cost.

As mentioned earlier, a typical parallel SAT solver relies mainly on three core
concepts: sequential engine(s), parallelization, and sharing. These last form the
core of the PaInleSS architecture (see Fig. 1): the sequential engine is handled
by the SolverInterface component. The parallelization is implemented by the
WorkingStrategy and SequentialWorker components. Components Sharing-
Strategy and Sharer are in charge of the sharing.

Sequential Engine. SolverInterface is an adapter for the basic functions
expected from a sequential solver, it is divided in two subgroups: solving and
clauses export/import (respectively represented by arrows 1 and 2 in Fig. 1). Sub-
group 1 provides methods that interact with the solving process of the underling
solver. The most important methods of this interface are:

– SatResult solve(int[*] cube): tries to solve the formula, with the given
cube (that can be empty in case of Portfolio). This method returns sat,
unsat, or unknown.

– void setInterrupt(): stops the current search initiated using the solve
method.

– void setPhase(int var, bool value): set the phase of variable var to
value.

– void bumpVariableActivity(int var, int factor): bumps factor
times the activity of variable var.

– void diversify(): adjusts internal parameters of the solver, to diversify its
behaviour.
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Subgroup 2 provides methods to add/fetch learnt clauses to/from the solver:

– void addClause(Clause cls): adds a permanent clause to the solver.
– void addLearntClause(Clause cls): adds a learnt clause to the solver.
– Clause getLearntClause(): gets the oldest produced learnt clause from the

solver.

The interface also provides methods to manipulate sets of clauses. The clauses
produced or to be consumed by the solver, are stored in local lockfree queues
(based on algorithm of [28]).

Technically, to integrate a new solver in PaInleSS, one needs to create
a new class inheriting from SolverInterface and implement the required
methods (i.e., wrapping the methods of the API offered by the underlying
solver). The framework currently provides some basic adaptors for Lingeling [5],
glucose [2], Minisat [10], and MapleCOMSPS [21].

Parallelization. Basic parallelization strategies, such as those introduced in
Sect. 3, must be implemented easily. We also aim at creating new strategies and
mixing them.

A tree-structured (of arbitrary depth) composition mechanism enables the
mix of strategies: internal nodes represent parallelization strategies, and leaves
solvers. As an example (see Fig. 2(a)), a Divide-and-Conquer of Portfolios is
represented by a tree of depth 3: the root corresponds to the Divide-and-Conquer
having children representing the Portfolios acting on several solvers (the leaves
of the tree).

Fig. 2. Example of a composed parallelization strategy.

PaInleSS implements nodes using the WorkingStrategy class, and leaves
with the SequentialWorker class. This last is a subclass of WorkingStrategy
that integrates an execution flow (a thread) operating the associated solver.

The overall solving workflow within this tree is user defined and guaranteed
by the two main methods of the WorkingStrategy (arrows 3 in Fig. 1):
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– void solve(int[*] cube): according to the strategy implemented, this
method manages the organization of the search by giving orders to the chil-
dren strategies.

– void join(SatResult res, int[*] model): used to notify the parent
strategy of the solving end. If the result is sat, model will contain an assign-
ment that satisfies the sub-formula treated by this node.

It is worth noting that the workflow must start by a call to the root’s solve
method and eventually ends by a call to the root’s join method. The propagation
of solving orders from a parent to one of its child nodes, is done by a call to the
solve method of this last. The results are propagated back from a child to its
parent by a call to the join method of this last. The solving can not be effective
without a call to the leaves’ solve methods.

Back to the example of Fig. 2(a). Consider the execution represented in
Fig. 2(b). The solving order starts by a call to the root’s (DC node) solve method.
It is relayed trough the tree structure to the leaves (SW nodes). Here, once its
problem is found sat by one of the SW, it propagates back the result to its PF
node parent via a call to the join method. According to the strategy of the PF,
the DC’s join method is called and ends the global solving.

Hence, to develop its own parallelization strategy, the user should create one
or more subclass of WorkingStrategy and to build the tree structure.

Sharing. In parallel SAT solving, we must pay a particular attention to the
exchange of learnt clauses. Indeed, beside the theoretical aspects, a bad imple-
mentation of the sharing can dramatically impact the efficiency of the solver
(e.g., improper use of locks, synchronization problems). We now present how
sharing is organized in PaInleSS.

When a solver learns a clause, it can share it according to a filtering policy
such as the size or the LBD of the clause. To do so it puts the clause in a
special buffer (buff exp in Fig. 3). The sharing of the learnt clauses is realized by
dedicated thread(s): Sharer(s). Each one is in charge of a set of producers and
consumers (these are references to SolverInterface). Its behaviour reduces to

Fig. 3. Sharing mechanism implemented in PaInleSS.
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a loop of sleeping and exchange phases. This last is done by calling the interface
of SharingStrategy class (arrow 4 in Fig. 1). The main method of this class is
the following:

– void doSharing(SolverInterface[*] producers, SolverInterface[*]
consumers): according to the underlying strategy, this method gets clauses
from the producers and add them to the consumers.

In the example of Fig. 3, the Sharer uses a given strategy, and all the solvers
(Si) are producers and consumers. The use of dedicated workflows (i.e., threads)
allows CPU greedy strategies to be run on a dedicated core, thus not interfering
with the solving workers. Moreover, sharing phase can be done manipulating
groups of clauses, allowing the use of more sophisticated heuristics. Finally, dur-
ing its search a solver can get clauses from its import buffer (buff imp in Fig. 3)
to integrate them in its local database.

To define a particular sharing strategy the user only needs to provide a
subclass of SharingStrategy. With our mechanism it is possible to have sev-
eral groups of sharing each one manage by a Sharer. Moreover, solvers can be
dynamically added/deleted from/to the producers and/or customers sets of a
Sharer.

Engine Instantiation. To create a particular instance of PaInleSS, the user
has to adapt the main function presented by Algorithm2. The role of this func-
tion is to instantiate and bind all the components correctly. This actions are
simplified by the use of parameters.

First, the concrete solver classes (inheriting from SolverInterface) are
instantiated (line 2). Then the WorkingStrategy (including SequentialWorker)
tree is implemented (line 3). This operation links SequentialWorker
to their SolverInterface. Finally, the Sharer(s) and their concrete
SharingStrategy(s) are created; the producers and consumers sets are initial-
ized (line 4).

1 function main-PaInleSS (args: the program arguments)
2 solvers ← Create SolverInterface

3 root ← Create WorkingStrategy tree (solvers)
4 sharers ← Create SharingStrategy and Sharer (solvers)
5 root.solve()
6 while timeout or stop do
7 sleep(...)

8 print(root.getResult() )
9 if root.getResult() == sat then

10 print(root.getModel() )

Algorithm 2. The main function of PaInleSS.
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The solving starts by the call to the solve method of the root WorkingStra-
tegy tree. The main thread will execute a loop, where it sleeps for an amount
of time, and then checks if either the timeout has been reached or the solving
ended (lines 6–7). It prints the final result (line 8), plus the model in case of a
sat instance (lines 9–10).

5 Implementing and Combining Existing Strategies

To validate the generic aspect of our approach, we selected three efficient state-
of-the-art parallel SAT solvers: glucose-syrup [3], Treengeling [5], and Horde-
sat [4]. For each selected solver, we implemented a solver that mimics the original
one using PaInleSS. To show the modularity of PaInleSS, we used the already
developed components to instantiate two new original solvers that combine exist-
ing strategies.

Solver “à la Glucose-Syrup”. The glucose-syrup4 solver is the winner of
the parallel track of the SAT Race 2015. It is a Portfolio based on the sequen-
tial solver glucose [2]. The sharing strategy exchanges all the exported clauses
between all the workers. Beside, the workers have customized settings in order
to diversify their search.

Hence, implementing a solver “à la glucose-syrup”, namely
PaInleSS-breakglucose-syrup, required the following components: Glucose
an adaptor to use the glucose solver; Portfolio a simple WorkingStrategy
that implements a Portfolio strategy; SimpleSharing a SharingStrategy that
exchanges all the exported clauses from the producers to all the consumers with
no filtering.

The implementation of PaInleSS-glucose-syrup required 355 lines of code
(LoC) for the adaptor, 95 LoC for the Portfolio, and 44 LoC for the sharing
strategy.

Solver “à la Treengeling”. The Treengeling5 solver is the winner of the
parallel track of the SAT Competition 2016. It is based on the sequential engine
Lingeling [5]. Its parallelization strategy is a variant of Divide-and-Conquer
called Cube-and-Conquer [15]. The solving is organized in rounds. Some workers
search for a given number of conflicts. When the limit is reached, some are
selected to split their sub-spaces using a lookahead heuristic. The sharing is
restricted to the exchange of unit clauses from a special worker. This last is also
in charge of the solving of the whole formula during all the execution.

To implement a solver “à la Treengeling”, namely PaInleSS-treengeling,
we needed the following components: Lingeling, an adaptor of the sequen-
tial solver Lingeling; CubeAndConquer a WorkingStrategy, that implements a

4 www.labri.fr/perso/lsimon/downloads/softwares/glucose-syrup.tgz.
5 www.fmv.jku.at/lingeling/lingeling-bbc-9230380-160707.tar.gz.

http://www.labri.fr/perso/lsimon/downloads/softwares/glucose-syrup.tgz
http://www.fmv.jku.at/lingeling/lingeling-bbc-9230380-160707.tar.gz
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Cube-and-Conquer [15]; SimpleSharing already used to define for the glucose-
syrup like solver. In this case, the underlying sequential solvers are parametrized
to export only unit clauses, and only the special worker is a producer.

For the CubeAndConquer we choose time to manage rounds because it allows,
once one worker has encountered an unsat situation, to restart the worker with
another guiding-path. In the original implementation, rounds are managed using
numbers of conflicts, this makes the reuse of idle CPU much harder.

The implementation of PaInleSS-treengeling needed 377 LoC for the
adaptor and 249 LoC for CubeAndConquer.

Solver “à la Hordesat”. Hordesat6 is a Portfolio-based solver with a modular
design. Hordesat uses as sequential engine either Minisat [10] or Lingeling. It
is a Portfolio where the sharing is realized by controlling the flow of exported
clauses. Every second, 1500 literals (i.e., sum of the size of the clauses) are
exported from each sequential engine. Moreover, we used the Lingeling solver
and the native diversification of Plingeling [5] (a Portfolio solver of Lingeling)
combined to the random sparse diversification (presented as the best combination
by [4]).

The solver “à la Hordesat”, namely PaInleSS-hordesat, required the fol-
lowing components: Lingeling and Portfolio that have been implemented
earlier; HordesatSharing a SharingStrategy that implements the Hordesat
sharing strategy. This last required only 148 LoC.

Combining Existing Strategies. Based on the implemented solvers, we
reused the obtained components to quickly build two new original solvers.

PaInleSS-treengeling-hordesat: it is a PaInleSS-treengeling-based
solver that shares clauses using the strategy of Hordesat. The implementation
of this solver reuses the Lingeling, CubeAndConquer, and HordesatSharing
classes. To instantiate this solver we only needed a special parametrization.
Beside, the modularity aspects, by this instantiation, we aimed to investi-
gate the impact of a different sharing strategy on the overall performances of
PaInleSS-treengeling.
PaInleSS-treengeling-glucose: it is a Portfolio solver that mixes Cube-and-
Conquer of Lingeling, and a Portfolio of Glucose solvers. Here, Glucose
workers export unit and glue clauses [2] (i.e., clauses with LBD equals to
2) to the other solvers. This last solver reuses the following components:
Lingeling, Glucose, Portfolio, CubeAndConquer, SimpleSharing. Only 15
LoC are required to build the parallelization strategy tree. By the instantia-
tion of this solver, we aimed to study the effect of mixing some parallelisation
strategies.

6 baldur.iti.kit.edu/hordesat/files/hordesat.zip.

http://www.baldur.iti.kit.edu/hordesat/files/hordesat.zip
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6 Numerical Results

This section presents the results of experiments we realized using the
solvers described in Sect. 5: PaInleSS-glucose-syrup, PaInleSS-treengeling,
PaIn-leSS-hordesat, PaInleSS-treengeling-hordesat, and PaInleSS-
treenge-ling-glucose. The goal here is to show that the introduction of gener-
icity does not add an overhead w.r.t. the original solvers.

All the experiments have been executed on a parallel machine with 40 proces-
sors Intel Xeon CPU E7- 2860 @ 2.27 GHz, and 500 Go of memory. We used the
100 instances of the parallel track of the SAT Race 20157. All experiments have
been conducted using the following parametrisations: each solver has been run
once on each instance, with a time-out of 5000 s (as in the SAT Race). We limited
the number of involved CPUs to 36.

Table 1. Results of the different solvers. The different columns represent: the number of
unsat solved instances, sat solved instances, total solved instances, and the cumulative
time spent solving the instances solved by the two solvers.

Solver UNSAT SAT Total Cum. Time Inter.

glucose-syrup 30 41 71 15 h37

PaInleSS-glucose 32 46 78 13 h18

Treengeling 32 50 82 20 h55

PaInleSS-treengeling 32 50 82 14 h12

Hordesat 31 44 75 15 h05

PaInleSS-hordesat 31 43 74 14 h19

The number of solved instances per solver are reported in Table 1. Globally,
these primary results show that our solvers compare well to the studied state-
of-the-art solvers. We can deduce that the genericity offered by PaInleSS does
not impact the global performances. Moreover, on instances solved by both, the
original solver and our implementation, the cumulative solving time is in our
favor (see column Cum. Time. Inter. in Table 1). A more detailed analysis is
given for each solver in the rest of the section.

PaInleSS-glucose-syrup vs. glucose-syrup. Our implementation of the
glucose-syrup parallelization strategy was able to solve 7 more instances com-
pared to glucose-syrup. This concerns both sat and unsat instances as shown
in the scatter plot of Fig. 4(a) and, in the cactus plots of Figs. 5(a) and 6(b).
This gain is due to our careful design of the sharing mechanism that is decen-
tralized and uses lock-free buffers. Indeed in glucose-syrup a global buffer is
used to exchange clauses, which requires import/export to use a unique lock,
thus introducing a bottleneck. The absence of bottleneck in our implementation
increases the parallel all over the execution, explaining our better performances.
7 baldur.iti.kit.edu/sat-race-2015/downloads/sr15bench-hard.zip.

http://www.baldur.iti.kit.edu/sat-race-2015/downloads/sr15bench-hard.zip
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(a) glucose-syrup (b) Treengeling (c) Hordesat

Fig. 4. Scatter plots of PaInleSS’s solvers against state-of-the-art ones.

(a) glucose-syrup (b) Treengeling (c) Hordesat

Fig. 5. Cactus plots of sat instances of PaInleSS’s solvers against state-of-the-art
ones.

(a) glucose-syrup (b) Treengeling (c) Hordesat

Fig. 6. Cactus plots of unsat instances of PaInleSS’s solvers against state-of-the-art
ones.

PaInleSS-treengeling vs. Treengeling. Concerning Treengeling, our imple-
mentation has comparable results. Figure 4(b) shows that the average solving
time of sat instances is quite similar, while for the unsat instances, our imple-
mentation is in average faster. This is corroborated by the cactus plot depicted
in Fig. 6(b). This speed up is due to our fine implementation of the Cube-and-
Conquer strategy, thus increasing the real parallelism all over the execution and
explaining our better performances on unsat instances.
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PaInleSS-hordesat vs. Hordesat. Although Hordesat was able to solve 1
more instance than our tool, results are comparable. Moreover scatter plot of
Fig. 4(c), and cactus plots of Figs. 5(c) and 6(c) exhibit quit similar results for
the two tools. For instances solved by both tools, our tool was a beat faster
and used almost 3000 seconds less as pointed out in Table 1. As the sharing
strategy of Hordesat is mainly based on two parameters, namely the number of
exchanged literals per round, and the sleeping time of sharer by round, we think
that a finer tuning of this couple of parameters for our implementation could
improve the performances of our tool.

(a) treengeling-hordesat (b) treengeling-glucose

Fig. 7. Scatter plots of the composed solvers against PaInleSS-treengeling.

Results of the Composed Solvers. PaInleSS-treengeling-hordesat
solved 81 instances (49 sat and 32 unsat), and PaInleSS-treengeling-
glucose solved 81 instances (48 sat and 33 unsat). The scatter plot of the
two strategies (Fig. 7), show that these strategies are almost equivalent w.r.t.
the original ones. These results allow us to conclude that the introduced strate-
gies do not add any value to the original one.

7 Conclusion

Testing and implementing new strategies for parallel SAT solving has become
a challenging issue. Any new contribution in the domain faces the following
problems: concurrent programming requires specific skills, testing new strategies
required a prohibitive development of a complete solver (either built from scratch
or an enhancement of an existing one), an implementation often allows to test
only a single composition policy and avoids the evaluation of a new heuristic
with different versions of the other mechanisms.

To tackle these problems we proposed PaInleSS, a modular, generic and
efficient framework for parallel SAT solving. We claimed that its modularity
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and genericity allow the implementation of basic strategies, as well as new onces
and their combination with a minimal effort and concurrent programming skills.

We have proven our claims, first, by the implementation of strategies present
in some state-of-the-art solvers: glucose-syrup, Treengeling, and Hordesat.
Second, we reused the developed complements to derive, easily, new solvers that
mix strategies. We also show that the instantiated solvers are as efficient as the
original one (and even better), by conducting a set experiments using bench-
marks of the SAT Race 2015.

As perspectives, we plan to adapt our framework for mutli-machine environ-
ments. We also would like to enhance PaInleSS with helpful tools to monitor
algorithm metrics (e.g., number of shared clauses), system metrics (e.g., synchro-
nization time, load balancing), and to facilitate the debugging work. Another
interesting point is the simplification of the instantiation mechanism by provid-
ing a domain specific language (DSL).
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Abstract. In this paper, we present a divide-and-conquer SAT solver,
MapleAmpharos, that uses a novel propagation-rate (PR) based splitting
heuristic. The key idea is that we rank variables based on the ratio of
how many propagations they cause during the run of the worker conflict-
driven clause-learning solvers to the number of times they are branched
on, with the variable that causes the most propagations ranked first. The
intuition here is that, in the context of divide-and-conquer solvers, it is
most profitable to split on variables that maximize the propagation rate.
Our implementation MapleAmpharos uses the AMPHAROS solver as
its base. We performed extensive evaluation of MapleAmpharos against
other competitive parallel solvers such as Treengeling, Plingeling, Paral-
lel CryptoMiniSat5, and Glucose-Syrup. We show that on the SAT 2016
competition Application benchmark and a set of cryptographic instances,
our solver MapleAmpharos is competitive with respect to these top par-
allel solvers. What is surprising that we obtain this result primarily by
modifying the splitting heuristic.

1 Introduction

Over the last two decades, sequential Boolean SAT solvers have had a transfor-
mative impact on many areas of software engineering, security, and AI [8,10,25].
Parallel SAT algorithms constitute a natural next step in SAT solver research,
and as a consequence there has been considerable amount of research in par-
allel solvers in recent years [21]. Unfortunately, developing practically efficient
parallel SAT solvers has proven to be a much harder challenge than antici-
pated [12,13,27]. Nonetheless, there are a few solver architectures that have
proven to be effective on industrial instances. The two most widely used archi-
tectures are portfolio-based and variants of divide-and-conquer approach.

Portfolio solvers [1,5,6,15] are based on the idea that a collection of solvers
each using a different set of heuristics are likely to succeed in solving instances
obtained from diverse applications. These portfolio solvers are further enhanced
with clause sharing techniques. By contrast, divide-and-conquer techniques are
based on the idea of dividing the search space of the input formula F and solving
the resulting partitions using distinct processors. Partitions are defined as the
c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 251–260, 2017.
DOI: 10.1007/978-3-319-66263-3 16
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original formula F restricted with a set of assumptions P (i.e., F ∧ P ). These
sets of assumptions cover the whole search space and each pair of them has at
least one clashing literal [11,16–18,26,29].

Different strategies for choosing assumptions to split the search space (known
as splitting heuristics in parallel SAT solver parlance) and the relative speedup
obtained by splitting some or all of the variables have been studied in detail in
the literature [21]. It is well-known that the choice of splitting heuristic can have
a huge impact on the performance of divide-and-conquer solvers. One successful
approach is to use look-ahead to split the input instance into sub-problems,
and solve these sub-problems using CDCL solvers. Such methods are generally
referred to as cube-and-conquer solvers [16], where the term cube refers to a
conjunction of literals. In their work, Heule et al. [16] split the input instances
(cube phase) and solve the partitions (conquer phase) sequentially, one after
another. A potential problem with this approach is that it might result in sub-
problems of unbalanced hardness and might lead to a high solving time for a
few sub-problems. By contrast, in concurrent-cube-and-conquer [29] these two
phases are run concurrently.

In this paper, we propose a new propagation rate-based splitting heuris-
tic to improve the performance of divide-and-conquer parallel SAT solvers. We
implemented our technique as part of the AMPHAROS solver [2], and showed
significant improvements vis-a-vis AMPHAROS on instances from the SAT 2016
Application benchmark. Our key hypothesis was that variables that are likely to
maximize propagation are good candidates for splitting in the context of divide-
and-conquer solvers because the resultant sub-problems are often simpler. An
additional advantage of ranking splitting variables based on their propensity
to cause propagations is that it can be cheaply computed using conflict-driven
clause-learning (CDCL) solvers that are used as workers in most modern divide-
and-conquer parallel SAT solvers.

Contributions. We present a new splitting heuristic based on propagation rate,
where a formula is broken into two smaller sub-formulas by setting the high-
est propagating variable to True and False. We evaluate the improved solver
against the top parallel solvers from the SAT 2016 competition on the Appli-
cation benchmark and a benchmark of cryptographic instances obtained from
encoding of preimage attacks on the SHA-1 cryptographic hash function. Our
solver, called MapleAmpharos, outperforms the baseline AMPHAROS and is
competitive against Glucose, parallel CryptoMiniSat5, Treengeling and Plin-
geling on the SAT 2016 Application benchmark. Additionally, MapleAmpharos
has better solving time compared to all of the solvers on our crypto benchmark.

2 Background on Divide-and-Conquer Solvers

We assume that the reader is familiar with the sequential conflict-driven clause-
learning (CDCL) solvers. For further details we refer the reader to the Handbook
of Satisfiability [9].
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All divide-and-conquer SAT solvers take as input a Boolean formula which
is partitioned into many smaller sub-formulas that are subsequently solved by
sequential CDCL solvers. Usually the architecture is of a master-slave type. The
master maintains the partitioning using a tree, where each node is a variable and
can have at most two children. Left branch represents setting parent variable to
False and right branch is for setting it to True. It means that if the original
formula is F , and variable x is used to split the formula, the two sub-formulas
would be F1 = F ∧¬x and F2 = F ∧x. We refer to the variable x as the splitting
variable. Each leaf in this tree is called a cube (conjunction of literals). The path
from root to each of the leaves represents different assumption sets that will be
conjuncted to the original formula to generate partitions. The slave processes
are usually CDCL solvers and they solve the sub-formulas simplified against the
respective cubes, and report back to the master the results of completely or
partially solving these sub-formulas.

Depending on the input problem, there could be redundant work among the
workers when the formula is split. When the workers are directed to work on the
same problem (with different policies), it is called intensification, and when the
search space of workers are less overlapping, we call it diversification. Maintaining
a balance between these two usually leads to a better performance [14].

3 Propagation Rate-Based Splitting Heuristic

In this Section we describe our propagation rate based splitting heuristic, start-
ing with a brief description of AMPHAROS that we use as our base solver [2].
We made our improvements in three steps: (1) We used MapleSAT [19] as
the worker or backend solver. This change gave us a small improvement over
the base AMPHAROS. We call this solver Ampharos-Maplesat in Table 1; (2)
We then used a propagation-rate based splitting heuristic on top of Ampharos-
Maplesat, and we call this solver MapleAmpharos-PR. This gave us the biggest
boost; (3) MapleAmpharos: Here we combined 3 heuristics, namely, MapleSAT
backend, PR-based splitting heuristics, and different restart policies at worker
solvers of MapleAmpharos-PR. The last change gave us a small boost over the
MapleAmpharos-PR.

3.1 The AMPHAROS Solver

AMPHAROS is a divide-and-conquer solver wherein each worker is a CDCL
SAT solver. The input to each worker is the original formula together with
assumptions corresponding to the path (from the root of the splitting tree to the
leaf) assigned to the worker. The workers can switch from one leaf to another
for the sake of load balancing and intensification/diversification. Each worker
searches for a solution to the input formula until it reaches a predefined limit or
upper bound on the number of conflicts. We call this the conflict limit. Once the
conflict limit is reached, the worker declares that the cube1 is hard and reports
1 While the term cube refers to a conjunction of literals, we sometimes use this term
to also refer to a sub-problem created by simplifying a formula with a cube.
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the “best variable” for splitting the formula to the master. A variable is deemed
“best” by a worker if it has the highest VSIDS activity over all the variables
when the conflict limit is reached. The Master then uses a load balancing policy
to decide whether to split the problem into two by creating False and True
branches over the reported variable.

3.2 Propagation Rate Splitting Heuristic

As mentioned earlier, the key innovation in MapleAmpharos is a propagation
rate-based splitting heuristic. Picking variables to split on such that the resultant
sub-problems are collectively easier to solve plays a crucial role in the perfor-
mance of divide-and-conquer solvers. Picking the optimum sequence of split-
ting variables such that the overall running time is minimized is in general an
intractable optimization problem.

For our splitting heuristic, we use a dynamic metric inspired by the measures
that look-ahead solvers compute as part of their “look-ahead policy”. In a look-
ahead solver, candidate variables for splitting are assigned values (True and
False) one at a time, and the formula is simplified against this assigned variable.
A measure proportional to the number of simplified clauses in the resultant
formula is used to rank all the candidate variables in decreasing order, and the
highest ranked variable is used as a split. However, look-ahead heuristics are
computationally expensive, especially when the number of variables is large.
Propagation rate-based splitting on the other hand is very cheap to compute.

In our solver MapleAmpharos when a worker reaches its conflict limit, it picks
the variable that has caused the highest number of propagations per decision
(the propagation rate) and reports it back to the Master node. More precisely,
whenever a variable v is branched on, we sum up the number other variables
propagated by that decision. The propagation rate of a variable v is computed
as the ratio of the total number of propagations caused whenever v is chosen as
a decision variable divided by the total number of times v is branched on during
the run of the solver. Variables that have never been branched on during the
search get a value of zero as their propagation rate.

When a worker solver stops working on a sub-problem due to it reaching the
conflict limit, or proving the cube to be UNSAT, it could move to work on a
completely different sub-problem which has a different set of assumptions. Even
through this node switching we do not reset the propagation rate counters.

The computational overhead of our propagation rate heuristic is minimal,
since all the worker solvers do is maintain counters for the number of propaga-
tions caused by each decision variable during their runs. An important feature
of our heuristic is that the number of propagation per decision variable is deeply
influenced by the branching heuristic used by the worker solver. Also, the search
path taken by the worker solver determines the number of propagations per
variable. For example, a variable v when set to the value True might cause lots
of propagation, and when set to the value False may cause none at all. Despite
these peculiarities, our results show that the picking splitting variables based on
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the propagation rate-based heuristic is competitive for Application and crypto-
graphic instances.

3.3 Worker Diversification

Inspired by the idea of using different heuristics in a competitive solver set-
ting [15], we experimented with the idea of using different restart policies in
worker CDCL solvers. We configured one third of the workers to use Luby
restarts [20], another third to use geometric restarts, and the last third to use
MABR restarts. MABR is a Multi-Armed Bandit Restart policy [22], which
adaptively switches between 4 different restart policies of linear, uniform, geo-
metric and Luby. We note that while we get some benefit from worker diversifi-
cation, the bulk of the improvement in the performance of MapleAmpharos over
AMPHAROS and other solvers is due to the propagation rate splitting heuristic.

4 Experimental Results

In our experiments we compared MapleAmpharos against 5 other top-performing
parallel SAT solvers over the SAT 2016 Application benchmark and a set of
cryptographic instances obtained from encoding of SHA-1 preimage attacks as
Boolean formulas.

4.1 Experimental Setup

We used the Application benchmark of the SAT competition 2016 which has 300
industrial instances obtained from diverse set of applications. Timeout for each
instance was set at 2 h wall clock time. All jobs were run on 8 core Intel Xeon
CPUs with 2.53 GHz and 8 GB RAM. We compared our solver MapleAmpharos
against the top parallel solvers from the SAT 2016 competition, namely, Treen-
geling and Plingeling [7], CryptoMiniSat5 [28], Glucose-Syrup [4] and also base-
line version of AMPHAROS solver [2]. Our parallel solver MapleAmpharos uses
MapleSAT [19] as its worker CDCL solver.

4.2 Case Study 1: SAT 2016 Application Benchmark

Figure 1, shows the cactus plot comparing the performance of MapleAmpharos
against the other top parallel SAT solvers we considered in our experiments. In
this version of the MapleAmpharos solver we used the best version of worker
diversification (which is a combination of Luby, Geometric and MAB-restart
referred to Sect. 3.3). As can be seen from the cactus plot in Fig. 1 and the
Table 1, MapleAmpharos outperforms the baseline AMPHAROS, and is com-
petitive vis-a-vis Parallel CryptoMiniSat, Glucose-Syrup, Plingeling and Treen-
geling. However, MapleAmpharos performs the best compared to the other
solvers when it comes to solving cryptographic instances.
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Fig. 1. Performance of MapleAmpharos vs. competing parallel solvers over the SAT
2016 Application benchmark

Table 1. Solving time details of MapleAmpharos and competing parallel solvers on
SAT 2016 Application benchmark

MapleAmpharos MapleAmpharos-PR Ampharos-Maplesat AMPHAROS

Avg. time (s) 979.396 1035.73 310.94 392.933

# of solved 182 171 107 104

SAT 77 72 44 42

UNSAT 105 99 63 62

CryptoMiniSat Syrup Plingeling Treengeling

Avg. time (s) 942.894 898.767 965.167 969.467

# of solved 180 180 192 184

SAT 72 74 76 77

UNSAT 108 106 116 107

4.3 Case Study 2: Cryptographic Hash Instances

We also evaluated the performance of our solver against these parallel SAT
solvers on instances that encode preimage attacks on the SHA-1 cryptographic
hash function. These instances are known to be hard for CDCL solvers. The
best solvers to-date can only invert at most 23 rounds automatically (out of
maximum of 80 rounds in SHA-1) [22,23]. Our benchmark consists of instances
corresponding to a SHA-1 function reduced to 21, 22 and 23 rounds, and for
each number of rounds, we generate 20 different random hash targets. The solu-
tion to these instances are preimages that when hashed using SHA-1, generate
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Fig. 2. Performance of MapleAmpharos vs. competing parallel solvers on SHA-1
instances

Table 2. Average solving time comparison on SHA-1 benchmark

MapleAmpharos MapleAmpharos-PR Ampharos-Maplesat AMPHAROS

Avg. time (s) 1048.53 1457.14 1518.76 1619.1

# of solved 43 43 42 42

CryptoMiniSat Syrup Plingeling Treengeling

Avg. time (s) 3056.31 2912.84 2668.48 4783.35

# of solved 35 43 31 23

the same hash targets. The instances were generated using the tool used for
generating these type of instances in SAT competition [24]. The timeout for
each instance was set to 8 hours. Figure 2 shows the performance comparison
and Table 2 shows details of the average solving times on this benchmark. We
compute the average for each solver only over the instances for which the resp.
solvers finish. As can be seen from these results, MapleAmpharos performs the
best compared to all of the other solvers. In particular, for the hardest instances
in this benchmark (encoding of preimage attacks on 23 rounds of SHA-1), only
Glucose-Syrup, AMPHAROS, and MapleAmpharos are able to invert some of
the targets. Further, MapleAmpharos generally solves these SHA-1 instances
much faster.
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5 Related Work

Treengeling [7], one of the most competitive parallel SAT solvers to-date, uses
a concurrent-cube-and-conquer architecture wherein a look-ahead procedure is
used to split the formula, and sequential CDCL worker solvers are used to solve
the sub-formulas thus generated. Treengeling is multi-threaded, and uses Lin-
geling as the backend sequential solver.

AMPHAROS [2] is a divide-and-conquer solver that uses VSIDS scoring as
its splitting heuristic. The unit literals and low-LBD learnt clauses in each of
the workers are shared with other workers through the master node. It also
adaptively balances between intensification and diversification by changing the
number of shared clauses between the workers as well as number of cubes.
AMPHAROS uses MPI for communication between master and workers. It uses
MiniSat and Glucose as worker solvers, and other sequential solvers can be easily
retrofitted as worker solvers.

The parallel version of CryptoMiniSat5 [28] that participated in the SAT
2016 competition implements various in-processing techniques that can run in
parallel. Unlike AMPHAROS that shares clauses based on LBD, it shares only
unary and binary clauses.

Unlike AMPHAROS, Glucose-Syrup [3] uses a shared memory architecture.
Additionally, it uses a lazy exchange policy for learnt clauses. They share clauses
between cores when they are deemed to be useful locally rather than right after
they are learnt. Furthermore, it implements a strategy for importing shared
clauses into each of the workers. It checks whether the clauses are in the UNSAT
proof of a cube and if not, they will be flagged as useless. This approach reduces
the burden on propagation by reducing the sharing of not useful clauses.

Plingeling [7] is a portfolio solver which uses Lingeling as the CDCL solver.
It launches workers with different configurations and shares clauses among the
workers. The workers may also exchange facts derived using simplifications (e.g.,
the equivalence between variables) applied to their copy of the formula.

6 Conclusion

We present a propagation rate-based splitting heuristic for divide-and-conquer
solvers, implemented on top of the AMPHAROS solver, that is competitive
with respect to 5 other parallel SAT solvers on industrial and cryptographic
instances. Many of these competing solvers were top performers in the SAT 2016
competition. Our key insight is that attempting to maximize propagations is a
good strategy for splitting in divide-and-conquer solvers because the resultant
sub-problems are significantly simplified and hence easier to solve. Finally, a
crucial advantage of our approach is that the computational overhead associated
with propagation rate-based splitting heuristic is minimal.
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Abstract. We provide the first proof complexity results for QBF depen-
dency calculi. By showing that the reflexive resolution path dependency
scheme admits exponentially shorter Q-resolution proofs on a known
family of instances, we answer a question first posed by Slivovsky and
Szeider in 2014 [30]. Further, we conceive a method of QBF solving in
which dependency recomputation is utilised as a form of inprocessing.
Formalising this notion, we introduce a new calculus in which a depen-
dency scheme is applied dynamically. We demonstrate the further poten-
tial of this approach beyond that of the existing static system with an
exponential separation.

1 Introduction

Proof complexity is the study of proof size in systems of formal logic. Since its
beginnings the field has enjoyed strong connections to computational complexity
[8,10] and bounded arithmetic [9,17], and has emerged in the past two decades
as the primary means for the comparison of algorithms in automated reasoning.

Recent successes in that area, epitomised by progress in SAT solving, have
motivated broader research into the efficient solution of computationally hard
problems. Amongst them, the logic of quantified Boolean formulas (QBF) is an
established field with a substantial volume of literature. QBF extends propo-
sitional logic with the addition of existential and universal quantification, and
naturally accommodates more succinct encodings of problem instances. This
gives rise to diverse applications in areas including conformant planning [11,23],
verification [1], and ontologies [16].

It is fair to say that much of the early research into QBF solving [13,25,33],
and later the proof complexity of associated theoretical models [4–6], was built
upon existing techniques for SAT. For example, QCDCL [12] is a major para-
digm in QBF solving based on conflict-driven clause learning (CDCL [28]), the
dominant paradigm for SAT. By analogy, the fundamental theoretical model of
QCDCL, the calculus Q-resolution (Q-Res [15]), is an extension of propositional
resolution, the calculus that underpins CDCL. Given, however, that the decision
problem for QBF is PSPACE-complete, it is perhaps unsurprising that the
implementation of QCDCL presents novel obstacles for the practitioner, beyond
those encountered at the level of propositional logic.

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 263–280, 2017.
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Arguably, the biggest challenge concerns the allowable order of variable
assignments. In traditional QCDCL, the freedom to assign variables is limited
according to a linear order imposed by the quantifier prefix. Whereas decision
variables must be chosen carefully to ensure sound results, coercing the order of
assignment to respect the prefix is frequently needlessly restrictive [19]. More-
over, limiting the choice adversely affects the impact of decision heuristics. In
contrast, such heuristics play a major role in SAT solving [18,21,26,27], where
variables may be assigned in an arbitrary order.

Dependency awareness, as implemented in the solver DepQBF [7], is a QBF-
specific paradigm that attempts to maximise the impact of decision heuristics.
By computing a dependency scheme before the search process begins, the linear
order of the prefix is effectively supplanted by a partial order that better approx-
imates the variable dependencies of the instance, granting the solver greater
freedom regarding variable assignments. Use of the scheme is static; dependen-
cies are computed only once and do not change during the search. Despite the
additional computational cost incurred, empirical results demonstrate improved
solving on many benchmark instances [19].

Dependency schemes themselves are tractable algorithms that identify depen-
dency information by appeal to the syntactic form of an instance. From the
plethora of schemes that have been proposed in the literature, two have emerged
as principal objects of study. The standard dependency scheme (Dstd [24]), a vari-
ant of which is used by DepQBF, was originally proposed in the context of back-
door sets. This scheme uses sequences of clauses connected by common existential
variables to determine a dependency relation between the variables of an instance.
The reflexive resolution path dependency scheme (Drrs [31]) utilises the notion of
a resolution path, a more refined type of connection introduced in [32].

A solid theoretical model for dependency awareness was only recently pro-
posed in the form of the calculus Q(D)-Res [31], a parametrisation of Q-resolution
by the dependency scheme D. Whereas the body of work on Q(D)-Res and
related systems has focused on soundness [2,22,31], authors of all three papers
have cited open problems in proof complexity. Indeed, prior to this paper there
were no proof-theoretic results to support any claims concerning the potential
of dependency schemes in the practice of QBF solving.

In this work, not only do we provide the first such results, we also demonstrate
the potential of dependency schemes to further reduce the size of proofs if they
are applied dynamically. We summarise our contributions below.

1. The First Separations for QBF Dependency Calculi. We use the
well-known formulas of Kleine Büning et al. [15] to prove the first exponential
separation for Q(D)-Res. We show that Drrs can identify crucial independencies
in these formulas, leading to short proofs in the system Q(Drrs)-Res. In contrast,
we show that Dstd cannot identify any non-trivial independencies, allowing us
to lift the exponential lower bound for Q-Res [3,15] to Q(Dstd)-Res.
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2. A Model of Dynamic Dependency Analysis. We propose the new calcu-
lus dyn-Q(D)-Res that models the dynamic application of a dependency scheme
in Q-resolution. The system employs a so-called ‘reference rule’ that allows new
axioms, called reference clauses, to be introduced into the proof. The key insight
is that the application of an assignment to an instance formula may allow the
dependency scheme to unlock new independencies. As such, the reference rule
alludes to an explicit refutation of the formula under an appropriate restriction,
and is analogous to the recomputation of dependencies at an arbitrary point
of the QCDCL procedure. We prove that dyn-Q(D)-Res is sound whenever the
dependency scheme D is fully exhibited.

3. Exponential Separation of Static and Dynamic Systems. Our final
contribution demonstrates that the dynamic application of dependency schemes
can shorten Q-resolution proofs even further, yielding an exponential improve-
ment even over the static approach. Using a modification of the aforementioned
formulas from [15], we prove that dyn-Q(Drrs)-Res is exponentially stronger than
Q(Drrs)-Res.

2 Preliminaries

Quantified Boolean Formulas. In this paper, we consider quantified Boolean
formulas (QBFs) in prenex conjunctive normal form (PCNF), typically denoted
Φ = Q . φ. A PCNF over Boolean variables z1, . . . , zn consists of a quantifier
prefix Q = Q1z1 · · · Qnzn, Qi ∈ {∃,∀} for i ∈ [n], in which all variables are quan-
tified either existentially or universally, and a propositional conjunctive normal
form (CNF) formula φ called the matrix. The prefix Q imposes a linear ordering
<Φ on the variables of Φ, such that zi <Φ zj holds whenever i < j, in which case
we say that zj is right of zi.

A literal is a variable or its negation, a clause is a disjunction of literals, and
a CNF is a conjunction of clauses. Throughout, we refer to a clause as a set of
literals and to a CNF as a set of clauses. We typically write x for existential
variables, u for universals, and z for either. For a literal l, we write var(l) = z
iff l = z or l = ¬z, for a clause C we write vars(C) = {var(l) | l ∈ C}, and for a
PCNF Φ we write vars(Φ) for the variables in the prefix of Φ.

A (partial) assignment δ to the variables of Φ is represented as a set of literals,
typically denoted {l1, . . . , lk}, where literal z (resp. ¬z) represents the assignment
z �→ 1 (resp. z �→ 0). The restriction of Φ by δ, denoted Φ[δ], is obtained by
removing from φ any clause containing a literal in δ, and removing the negated
literals ¬l1, . . . ,¬lk from the remaining clauses, while the variables of δ and their
associated quantifiers are removed from the prefix Q. For assignments to single
variables we may omit the braces; for example, we write Φ[l] for Φ[{l}].

QBF Resolution. Resolution is a well-studied refutational proof system for
propositional CNF formulas with a single inference rule: the resolvent C1 ∪ C2
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may be derived from clauses C1 ∪ {x} and C2 ∪ {¬x} (variable x is the pivot).
Resolution is refutationally sound and complete: that is, the empty clause can
be derived from a CNF iff it is unsatisfiable.

There exist a host of resolution-based QBF proof systems – see [3] for a
detailed account. Q-resolution (Q-Res) introduced in [15] is the standard refu-
tational calculus for PCNF. In addition to resolution over existential pivots, the
calculus has a universal reduction rule which allows a clause C to be derived
from C ∪ {l}, provided var(l) is a universal variable right of all existentials in
C. Tautologies are explicitly forbidden; one may not derive a clause containing
both z and ¬z.

For a QBF resolution system P, a P derivation of a clause C from a PCNF Φ
is a sequence C1, . . . , Cm of clauses in which C = Cm, and each clause is either
an axiom or is derived from previous clauses in the sequence using an inference
rule. A refutation of Φ is a derivation of the empty clause from Φ.

A proof system P p-simulates a system Q (denoted Q ≤p P) if each Q-proof
can be transformed in polynomial time into a P-proof of the same formula [10].
The systems P and Q are p-equivalent (denoted P ≡p Q) if P ≤p Q and Q ≤p P.

QBF Models. Let Φ = Q1z1 · · · Qnzn . φ be a PCNF over existential variables
V∃ and universal variables V∀. A model f for Φ is a mapping from total assign-
ments to V∀ to total assignments to V∃ that satisfies two conditions: (a) whenever
α and α′ agree on all universals left of a variable zi, then f(α) and f(α′) agree
on all existential variables left of (and including) zi; (b) for each α in the domain
of f , α∪f(α) satisfies every clause C ∈ φ (that is, C ∩ (α∪f(α)) �= ∅). A PCNF
is true iff it has a model, otherwise it is false.

Following [25], a model can be depicted naturally as a tree, as shown in Fig. 1.
For each α in the domain of f , the literals of the set α ∪ f(α) are written in
prefix order on a unique path from the root of the tree to some leaf. As such, a
model can be uniquely identified with a set of 2|V∀| paths, each of which is one

u1¬u1

x1¬x1

u2¬u2u2¬u2

x2¬x2x2¬x2

u3¬u3u3¬u3u3¬u3u3¬u3

Fig. 1. Tree depiction of a model for the PCNF with prefix ∀u1∃x1∀u2∃x2∀u3 and
clauses {u1, ¬x1}, {¬u1, x1} and {¬u1, ¬u2, x2, ¬u3}.
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of the sets α ∪ f(α). This is a convenient interpretation (cf. [2]), and we adopt
this approach for all technicalities concerning QBF models.

3 Static Dependency Awareness in Q-Resolution

In this section, we provide the necessary background for dependency schemes and
their incorporation into Q-resolution. We recall the definitions of the standard
[24] and reflexive resolution path [31] dependency schemes, and the definition of
the dependency calculus Q(D)-Res.

3.1 Overview of Dependency Schemes

For the duration of this work, we deal only with the (in)dependence of existential
variables on universal variables1. This is a convenience afforded by the fact that
we deal with refutational calculi, in which the (in)dependence of universals on
existentials does not feature. We therefore take the opportunity to work with
tighter (and in some cases considerably simpler) definitions than those referenced
in the literature.

A dependency scheme is presented as a function mapping PCNFs to binary
relations. The binary relations represent variable dependencies. For an arbitrary
PCNF Φ, the trivial dependency relation captures the linear order of the quanti-
fier prefix of Φ, and is given by Dtrv(Φ) = {(u, x) ∈ vars∀(Φ)×vars∃(Φ) | u <Φ x}.
Formally, a dependency scheme D is a mapping from the set of all PCNFs that
satisfies D(Φ) ⊆ Dtrv(Φ) for each PCNF Φ. The existence of a pair (u, x) ∈ D(Φ)
should be interpreted as ‘existential x depends on universal u in Φ accord-
ing to dependency scheme D’. We say that D′ is at least as general as D iff
D′(Φ) ⊆ D(Φ) for each PCNF Φ, and is strictly more general if the inclusion is
strict for some PCNF.

All non-trivial dependency schemes that have appeared in the literature to
date are based in some way or another on connections between clauses in the
matrix. In the standard dependency scheme Dstd, an existential x depends on
a universal u whenever a clause containing variable x is connected to a clause
containing variable u, whereby clauses are connected iff they share a common
existential variable that is right of u. The absence of such a connection ensures
that x is independent of u according to Dstd.

Definition 1 (standard dependency scheme [24]). Let Φ = Q .φ be a
PCNF. The pair (u, x) ∈ Dtrv(Φ) is in Dstd(Φ) iff there exists a sequence of
clauses C1, . . . , Cn ∈ φ with u ∈ vars(C1), x ∈ vars(Cn), such that, for each
i ∈ [n − 1], vars(Ci) ∩ vars(Ci+1) contains an existential variable right of u.

Whereas connections in Dstd are based on common variables, the reflexive
resolution path dependency scheme Drrs improves upon Dstd by taking polar-
ity into account. The connecting existential variable must appear in opposite
1 In practice, the dual notion of (in)dependence of universals on existentials is equally

important.
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polarities in the connected clauses, yielding a strictly more general scheme. As
explained above, we present a simplified formulation of Drrs tailored to the cur-
rent work.

Definition 2 (reflexive resolution path dependency scheme [31]). Let
Φ = Q .φ be a PCNF, and let (u, x) ∈ Dtrv(Φ). Then (u, x) ∈ Drrs(Φ) iff there
is a sequence of clauses C1, . . . , Cn ∈ φ and a sequence of existential literals
l1, . . . , ln−1 for which the following four conditions hold:

(a) u ∈ C1 and ¬u ∈ Cn,
(b) x = var(li), for some i ∈ [n − 1],
(c) u <Φ var(li), li ∈ Ci and ¬li ∈ Ci+1, for each i ∈ [n − 1],
(d) var(li) �= var(li+1) for each i ∈ [n − 2].

3.2 Dependency Schemes in Q-Resolution

The theoretical model for the use of dependency schemes in dependency-aware
solving is captured by the calculus Q(D)-Res, introduced in [31]. The main idea
is to generalise Q-Res by replacing the implicit reference to the trivial depen-
dency scheme with an explicit reference to a strictly more general scheme. Note
that Q-Res allows a universal variable u to be reduced only if it is right of all
existentials in the clause, or, equivalently, whenever all existentials in the clause
are trivially independent of u. By contrast, in Q(D)-Res u can be reduced when-
ever all existentials in the clause are D-independent of u. We recall the rules of
Q(D)-Res in Fig. 2.

Soundness of the calculusQ(D)-Res is not guaranteed, and hinges on the choice
of the dependency scheme D. Previous work has shown that the concept of full

Axiom rule: axiom(φ)

C
C is a clause in the matrix φ.

Reduction rule: red(C, l)

C
C \ {l}

– literal l is universal.
– (var(l), x) /∈ D(Φ) holds for each

existential variable x in vars(C).

Resolution rule: res(C1, C2, x)

C1 C2

(C1 ∪ C2) \ {x, ¬x}
– variable x is existential.
– x ∈ C1 and ¬x ∈ C2.
– the resolvent is non-tautological.

Fig. 2. The rules of Q(D)-Res [31]. D is a dependency scheme and Φ = Q . φ is a PCNF.
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exhibition2, which imposes a natural condition on D, is sufficient to prove sound-
ness in Q(D)-Res [29], and indeed in stronger dependency calculi for QBF [2]. Fol-
lowing [2], we say that a model f exhibits the independence of x on u iff, for each
α in the domain of f , the assignment to x in f(α) remains unchanged when the
assignment to u in α is flipped.

Definition 3 (full exhibition [2,29]). A model f for a PCNF Φ is a D-model
iff, for each (u, x) ∈ Dtrv(Φ) \ D(Φ), f exhibits the independence of x on u. A
dependency scheme D is fully exhibited iff each true PCNF has a D-model.

Informally, full exhibition ensures that a true PCNF has a particular model
in which existentials do not depend on the universals from which they are inde-
pendent according to the dependency scheme. As in [29], we refer to such a
model as a D-model. In Sect. 5, we show that full exhibition remains sufficient
for soundness when a dependency scheme is applied dynamically, as opposed to
the static application offered in Q(D)-Res.

It should be clear that Q(D)-Res is simulated by Q(D′)-Res whenever D′ is
at least as general as D. We conclude this section by noting the following trivial
simulations for Q(D)-Res.

Proposition 4. Q-Res ≡p Q(Dtrv)-Res ≤p Q(Dstd)-Res ≤p Q(Drrs)-Res.

4 Exponential Separation of Q(Dstd)-Res and Q(Drrs)-Res

In this section, we prove that Q(Drrs)-Res is exponentially stronger than
Q(Dstd)-Res. Given that Q(Dstd)-Res p-simulates Q-Res (Proposition 4), we
thereby separate Q(Drrs)-Res and Q-Res, thus answering the question initially
posed by Slivovsky and Szeider in [30]. The separating formulas are a well-
studied family of PCNFs, originally introduced in [15]. We recall the definition
of this formula family, which is referred to as Ψ(n) throughout this paper.

Definition 5. (formulas of Kleine Büning et al. [15]). The formula family
Ψ(n) := Q(n) .ψ(n) has prefixes Q(n) := ∃x1∃y1∀u1 · · · ∃xn∃yn∀un∃t1 · · · ∃tn
and matrices ψ(n) consisting of the clauses

A := {¬x1,¬y1},
Bi := {xi, ui,¬xi+1,¬yi+1} B′

i := {yi,¬ui,¬xi+1,¬yi+1} i ∈ [n − 1],
Bn := {xn, un,¬t1, . . . ,¬tn} B′

n := {yn,¬un,¬t1, . . . ,¬tn},
Ci := {ui, ti} C ′

i := {¬ui, ti} i ∈ [n].

We first show that the standard dependency scheme cannot identify any
non-trivial independencies for Ψ(n).

Proposition 6. For each n ∈ N, Dstd(Ψ(n)) = Dtrv(Ψ(n)).

2 The term ‘full exhibition’ was coined in [2]. The concept itself and the term ‘D-model’
originate from [29].
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Proof. Let n ∈ N and let i, j ∈ [n].
For (ui, tj) ∈ Dtrv(Ψ(n)), consider the sequence of clauses Bi, . . . , Bn, and

observe that ui ∈ vars(Bi) and tj ∈ vars(Bn). For each k ∈ [i, n − 1], the
existential variable xk+1, which is right of ui, is in the set vars(Bk)∩vars(Bk+1).
Therefore (ui, tj) ∈ Dstd(Ψ(n)).

For each (ui, xj) ∈ Dtrv(Ψ(n)) with i < j, the fact that (ui, xj) ∈ Dstd(Ψ(n))
is shown similarly, using the sequence of clauses Bi, . . . , Bj . For the final case
(ui, yj) ∈ Dtrv(Ψ(n)) take the sequence B′

i, . . . , B
′
j . ��

The salient consequence of Proposition 6 is that every application of
∀-reduction in a Q(Dstd)-Res derivation from Ψ(n) is also available in Q-Res.
As a result, the Q-Res lower bound for Ψ(n) lifts directly to Q(Dstd)-Res.

Theorem 7. The QBFs Ψ(n) require exponential-size Q(Dstd)-Res refutations.

Proof. It is known that Ψ(n) require exponential-size Q-Res refutations [3,15].
By Proposition 6, any Q(Dstd)-Res refutation of Ψ(n) is a Q(Dtrv)-Res refutation
of Ψ(n). The result follows since Q-Res and Q(Dtrv)-Res are p-equivalent, by
Proposition 4. ��

In contrast, the more general dependency scheme Drrs can identify some
crucial non-trivial independencies in Ψ(n).

Proposition 8. For each n ∈ N and for each i, j ∈ [n], if i �= j then (ui, tj) /∈
Drrs(Ψ(n)).

Proof. Let n ∈ N and let i, j ∈ [n] with i �= j. Suppose that D1, . . . , Dk ∈ ψ(n)
and l1, . . . , lk−1 are sequences of clauses and literals respectively, satisfying the
four conditions of Definition 2 with respect to the pair (ui, tj) ∈ Dtrv(Ψ(n)). By
condition (b), the literal sequence contains a literal in the variable tj . Observe
that, in the matrix ψ(n), the positive literal tj occurs only in the clauses Cj =
{uj , tj} and C ′

j = {¬uj , tj}. Hence, by condition (c), there is some clause D in
the clause sequence such that D = Cj or D = C ′

j . Since tj is the only existential
literal in D, the clause must be an endpoint of the sequence by condition (d),
and hence we must have D = D1 or D = Dk. However, since i �= j, this implies
that either ui /∈ D1 or ui /∈ Dk, contradicting condition (a). ��
According to Proposition 8, a Q(Drrs)-Res refutation of Ψ(n) may contain ∀-
reduction steps that are disallowed in Q-Res. For example, under Drrs it is possi-
ble to remove literal un from the clause {xn, un,¬t1, . . . ,¬tn−1}. As we demon-
strate in the proof of the following theorem, it is precisely this step (which is
unavailable in Q-Res due to the presence of existentials right of u) that permits
the construction of O(n)-size Q(Drrs)-Res refutations.

Theorem 9. The formulas Ψ(n) have linear-size Q(Drrs)-Res refutations.

Proof. A portion of a linear-size Q(Drrs)-Res refutation of Ψ(n) is shown in Fig. 3.
The clauses {xn−1, un−1,¬t1, . . . ,¬tn−1} and {yn−1,¬un−1,¬t1, . . . ,¬tn−1} are
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derived in a constant number of steps, and the task is reduced to the refutation
of Ψ(n − 1). The complete refutation is therefore linear in size.

According to Proposition 8, in a Q(Drrs)-Res derivation from Ψ(n) the variable
ui may be removed from a clause D provided that the existential variables in D
that are right of ui are contained in the set {t1, . . . , tn} \ {ti}. Such ∀-reduction
steps, which would be disallowed in Q-Res, are marked with an asterisk (∗) in
Fig. 3. ��

{un, tn} {xn, un, ¬t1, . . . , ¬tn}

{xn, un, ¬t1, . . . , ¬tn−1}

{xn, ¬t1, . . . , ¬tn−1}

{xn−1, un−1, ¬xn, ¬yn}

{xn−1, un−1, ¬yn, ¬t1, . . . , ¬tn−1}

{xn−1, un−1, ¬t1, . . . , ¬tn−1}

{¬un, tn}{yn, ¬un, ¬t1, . . . , ¬tn}

{yn, ¬un, ¬t1, . . . , ¬tn−1}

{yn, ¬t1, . . . , ¬tn−1}

{yn−1, ¬un−1, ¬xn, ¬yn}

{yn−1, ¬un−1, ¬xn, ¬t1, . . . , ¬tn−1}

{yn−1, ¬un−1, ¬t1, . . . , ¬tn−1}

∗ ∗

Fig. 3. Portion of a linear size Q(Drrs)-Res refutation of Ψ(n). The ∀-reduction
steps marked with ∗ are forbidden in Q-Res, but are allowed in Q(Drrs)-Res due to
Proposition 8.

The following result is an immediate consequence of Theorems 7 and 9.

Theorem 10. Q(Drrs)-Res is exponentially stronger than Q(Dstd)-Res.

5 Modelling Dynamic Dependency Awareness

In this section, we introduce the dynamic dependency calculus dyn-Q(D)-Res
and prove that it is sound for a fully exhibited scheme D.

5.1 Dynamic Dependencies in Q-Resolution

We first define a particular kind of assignment to the variables of a PNCF that,
in a clear sense, ‘respects’ the dependency scheme D.

Definition 11 (D-assignment). Let D be a dependency scheme and let δ be
a partial assignment to the variables of a PCNF Φ. Then δ is a D-assignment
for Φ iff, whenever δ assigns an existential literal l, then δ assigns all universal
variables in the set {u | (u, var(l)) ∈ D(Φ)}.

We also define the largest falsified clause of an assignment.
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Definition 12 (largest falsified clause). Let δ = l1, . . . , lk be an assignment.
The largest falsified clause of δ is {¬l1, . . . ,¬lk}.
Definition of the Calculus. We define dyn-Q(D)-Res as the proof system that has
the rules of Q(D)-Res in addition to the reference rule shown in Fig. 4. On an
intuitive level, the reference rule is based on the following fact: Given a PCNF Φ
and a fully exhibited dependency scheme D, if Φ is false under restriction by a
D-assignment δ, then adding the largest falsified clause of δ to the matrix of Φ pre-
serves satisfiability3 (note that this does not hold for an arbitrary assignment δ).
Therefore, if the calculus is capable of refuting Φ[δ], it should be able to introduce
the largest falsified clause of δ.

Reference rule: ref(δ, π)

C

– δ is a D-assignment for Φ.
– π is a dyn-Q(D)-Res refutation of Φ[δ]
– C is the largest falsified clause of δ.

Fig. 4. The reference rule of dyn-Q(D)-Res. D is a dependency scheme and Φ = Q . φ
is a PCNF.

We refer to a clause derived by application of the reference rule as a reference
clause. As stated in the rule itself, a reference clause may only be introduced
if an explicit refutation π of Φ[δ] can be given. This feature allows the size of
a dyn-Q(D)-Res derivation to be suitably defined. We refer to π as a referenced
refutation.

The power of the reference rule lies in the fact that the dependency scheme
D may identify (or unlock) new non-trivial independencies in the restricted for-
mula, meaning that it may be easier to refute the restricted formula Φ[δ] than
to derive the reference clause from Φ directly. We note that the referenced refu-
tation π, being a derivation from Φ[δ], can make use of these newly unlocked
independencies. In this way, the calculus models the recomputation of depen-
dencies during the QCDCL search procedure. We elaborate on this point in
Subsect. 5.3.

Reference Degree. The reference degree of a dyn-Q(D)-Res derivation is 0 iff it
does not contain any reference clauses (i.e. it is a Q(D)-Res derivation). For all
other derivations π, the reference degree is d+1, where d is the largest reference
degree of a refutation referenced from π.

Proof Size. The size of a dyn-Q(D)-Res derivation π of reference degree 0 is the
number of clauses in the proof. The size of a derivation π with non-zero reference
degree is a + b, where a is the number of clauses in π and b is the sum of the
sizes of refutations referenced from π.
3 We prove this statement formally in Subsect. 5.2 (Lemma 14).
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5.2 Soundness of dyn-Q(D)-Res

The task of proving that dyn-Q(D)-Res is sound for a fully exhibited dependency
scheme D (Theorem 15) can essentially be reduced to proving that the reference
clauses derived from a true PCNF are satisfied by a D-model (Lemma 14).

In what follows, we find it convenient to introduce a notion of restriction for
models. Let f be a model for a PCNF Φ, and let l be a literal with var(l) ∈
vars(Φ). If l is universal, then f [l] is obtained from f by removing all paths
containing ¬l and removing l from all remaining paths. If l is existential, then
f [l] is obtained from f by removing all occurrences of l and ¬l from the paths
of f .

It should be clear that f [l] is a model for Φ[l] if l is universal. The same is
also true for an existential literal l provided that it is unopposed in f , by which
we mean that its negation ¬l does not appear in any path in f . These facts are
useful enough in the sequel to be the subject of the following proposition.

Proposition 13. Let Φ be a PCNF, let f be a model for Φ and let l be a literal
with var(l) ∈ vars(Φ). Then f [l] is a model for Φ[l] if either (a) l is universal, or
(b) l is existential and unopposed in f .

We extend the restriction of a model to an arbitrary assignment δ =
{l1, . . . , lk} in the natural way; that is, f [δ] is the result of the successive restric-
tion of f by the literals in δ. It should be clear that the order of successive
restrictions does not matter.

We proceed to prove that a D-model of a PCNF Φ satisfies any reference
clause derivable from it in dyn-Q(D)-Res.

Lemma 14. Let D be a dependency scheme, let f be a D-model for a PCNF Φ,
and let δ be a D-assignment for Φ. If Φ[δ] is false, then f satisfies the largest
falsified clause of δ.

Proof. Let Φ = Q . φ, and let C be the largest falsified clause of δ. We prove the
contrapositive statement: if f does not satisfy C, then Φ[δ] is true.

The idea of the proof is to restrict f by δ, obtaining a model for Φ[δ]. The
simplest way to do this is to restrict first by the universal subassignment of
δ, and then by the existential subassignment. To that end, let δ∀ := {l ∈ δ |
var(l) is universal} and define δ∃ similarly.

By successive application of Proposition 13 (a), it follows that f [δ∀] is a model
for Φ[δ∀]. We claim that every literal in δ∃ is unopposed in f [δ∀]. We will therefore
prove the result since, by successive application of Proposition 13 (b), it follows
that (f [δ∀])[δ∃] = f [δ] is a model for (Φ[δ∀])[δ∃] = Φ[δ].

It remains to prove that the literals in δ∃ are indeed unopposed in f [δ∀].
Suppose that f falsifies C. Then there is some path P in f that contains none of
the literals in C. Since P contains a literal for every variable, it must therefore
contain the negation of every literal in C. It follows, by definition of largest falsi-
fied clause (Definition 12), that δ ⊆ P . Then, by definition of model restriction,
there is some path P ′ = P \ δ∀ in f [δ∀] with δ∃ ⊆ P ′. The result follows since
each existential variable in vars(δ∃) appears in f [δ∀] in a single polarity. To see
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this, let x ∈ vars(δ∃), and note that {u | (u, x) ∈ D(Φ)} ⊆ vars(δ∀), since δ is
a D-assignment. Hence, f [δ∀] exhibits the independence of x on all remaining
universals, and x therefore occurs in a single polarity. ��

To prove that dyn-Q(D)-Res is sound, we must prove that one cannot derive
the empty clause from any true PCNF. The proof is obtained by the addition of
Lemma 14 to the literature’s existing proof of soundness for Q(D)-Res.

Theorem 15. The dynamic dependency calculus dyn-Q(D)-Res is sound if D is
fully exhibited.

Proof. In [29] it is shown that Q(D)-Res is sound if D is fully exhibited. The
result may be proved by induction on derivation depth in the following way
(for a detailed proof cf. [2]): Let D be a fully exhibited dependency scheme, let
Φ := Q . φ be a true PCNF and assume π is a Q(D)-Res refutation of Φ. Since D
is fully exhibited, there exists a fully exhibiting model f for Φ (with respect to D)
that satisfies every matrix clause. Moreover, if f satisfies the antecedent clauses
of any application of resolution or reduction, then f satisfies the consequent
clause. We therefore reach a contradiction, since f satisfies the conclusion of π,
the empty clause.

Now, if we instead let π be a dyn-Q(D)-Res refutation, the above method
can be lifted provided that the fully exhibiting model f satisfies every clause
introduced by application of the reference rule. In this way, we prove soundness
by induction on the reference degree d of π.

The base case d = 0 is already established [29], since any dyn-Q(D)-Res
refutation of degree 0 is a Q(D)-Res refutation. For the inductive step, let d ≥ 1,
and suppose that all dyn-Q(D)-Res refutations of reference degree less than d are
sound. Further, let C be the first reference clause of π, introduced by application
of ref(δ, π′). Since π′ is a dyn-Q(D)-Res refutation of Φ[δ] of reference degree at
most d−1, Φ[δ] is false by the inductive hypothesis. Since C is the largest falsified
clause of δ, it is therefore satisfied by f , by Lemma 14. Successive application of
the argument demonstrates that f satisfies every reference clause in π. ��

As it is known that Drrs is fully exhibited [2], the fact that dyn-Q(Drrs)-Res
is sound is a corollary to Theorem15. Since Drrs is strictly more general than
Dstd, every dyn-Q(Dstd)-Res refutation is a dyn-Q(Drrs)-Res refutation, hence
dyn-Q(Dstd)-Res is also sound.

Corollary 16. The calculi dyn-Q(Dstd)-Res and dyn-Q(Drrs)-Res are both sound.

5.3 Motivations for dyn-Q(D)-Res

We chose to define a D-assignment in order to replicate the kind of assignment
that is maintained by a QCDCL solver using a dependency scheme, whereby
decision variables are assigned only after all others on which they depend. In
line with our discussion in Sect. 3, we can relax the theoretical model so that
only the (in)dependence of existentials on universals is considered, and hence
universals may be assigned arbitrarily in a D-assignment.
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The motivation for dyn-Q(D)-Res is this observation: If, by recomputing
dependencies, the solver is able to refute the formula under its current assign-
ment δ, it should be able to learn the largest falsified clause of δ. In this way,
the system shares similarities with ‘Q-resolution with generalised axioms’ [20].
Regarding proof complexity, a drawback of that calculus is that every false for-
mula may be refuted in a single step. Our system resolves this difficulty, using
the notion of referencing to accommodate a suitable definition of proof size.

In line with [20], we could have allowed assignments due to unit propaga-
tion and pure literal elimination in dyn-Q(D)-Res. This would allow additional
existential literals to be included in a D-assignment provided that they are valid
assignments under Boolean constraint propagation. Doing so would result in a
stronger version of dyn-Q(D)-Res, since such a modification extends the set of D-
assignments for any instance. However, we prefer to the present simpler system,
since propagation is not necessary for the separation in the following section.

Soundness of the system with propagation can be proved by an extension
of our argument in Lemma 14. This is because existential literals that become
unit under restriction are always unopposed in the restricted model, and hence
Proposition 13 still applies. Existential literals that become pure can be assigned
unopposed throughout the restricted model without falsifying any clauses.

6 Static vs Dynamic Dependency Awareness in Q(D)-Res

In this section, we investigate the relative proof complexities of Q(D)-Res and
dyn-Q(D)-Res. We prove an exponential separation when D is the reflexive res-
olution path dependency scheme. In contrast, the two systems are p-equivalent
when D is the trivial dependency scheme. The latter result, while a perfectly
natural conjecture, requires a non-trivial proof.

Theorem 17. Q-Res and dyn-Q(Dtrv)-Res are p-equivalent proof systems.

Proof (sketch). Since dyn-Q(Dtrv)-Res trivially p-simulates Q-Res (Proposi-
tion 4), we need only prove the reverse simulation. We prove by induction on
reference degree that any dyn-Q(Dtrv)-Res derivation can be transformed into
a Q-Res derivation of the same size, in time linear in the size of the original
derivation. To that end, let π be a dyn-Q(Dtrv)-Res derivation of a clause C from
a PCNF Φ of reference degree d.

If d = 0, then π is a Q-Res derivation, so the base case is established trivially.
For the inductive step, let d ≥ 1, and let R be a reference clause in π derived
by application of rule ref(δ, π′). Note that the reference degree of π′ is less than
d, and hence, by the inductive hypothesis, π′ can be transformed in linear time
into a Q-Res refutation ρ of Φ[δ] with |ρ| = |π′|. A Dtrv-assignment assigns
variables strictly in block order and assigns no variable before the preceding
block is fully assigned. As a result, adding the literals in R to each clause of
ρ cannot invalidate any ∀-reduction step, nor introduce a universal tautology.
Moreover, doing so transforms ρ in linear time into a Q-Res derivation ρ′ of R,
with |ρ′| = |ρ|. Since every axiom clause in ρ′ is subsumed by some clause in
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the matrix of Φ, ρ′ can be transformed into a derivation of R from Φ simply
by omitting any steps that are rendered unnecessary by the absence of a literal.
This last transformation can clearly be carried out in linear time and does not
increase the size of the derivation.

Successive application of this method to all the reference clauses in π yields
a Q-Res derivation of C of size at most |π|. The complete transformation can be
carried out in time linear in |π|. ��

The remainder of this section is devoted to the separation of dyn-Q(Drrs)-Res
from Q(Drrs)-Res. The separating formulas are a modification of Ψ(n), for which
we make use of the following operation.

Definition 18 (clause-matrix product). Let C be a clause and let φ be a
CNF matrix. The clause-matrix product C ⊗ φ is the CNF matrix with clauses
{C ∪ C ′ | C ′ ∈ φ}.

We modify Ψ(n) by adding two fresh existential variables a and b, quantified
at the very beginning and very end of the prefix, respectively. Taking two copies
of the matrix ψ(n), to each clause of the first copy we add literals a and b, and to
each clause of the second we add literals ¬a and ¬b. Finally, we add the clauses
{a,¬b} and {¬a, b} so that the modified formulas are false.

Definition 19 (modification of the formulas of Kleine Büning et al.).
Let Ψ(n) := Q(n) .ψ(n) be the formulas of Kleine Büning et al. (as in Defini-
tion 5). We define the formula family

Ξ(n) := ∃aQ(n)∃b . ({a, b} ⊗ ψ(n)) ∪ ({¬a,¬b} ⊗ ψ(n)) ∪ {{a,¬b}, {¬a, b}}.

The purpose of variable b is to introduce sufficiently many Drrs connections
between clauses, such that Drrs can no longer identify any non-trivial indepen-
dencies. This means that static application of Drrs cannot improve upon Q-Res.
However, under either assignment to variable a, one copy of the matrix ψ(n) van-
ishes, and the connections due to b disappear with it. The restricted formulas
Ξ(n)[a] and Ξ(n)[¬a] are sufficiently similar to Ψ(n) to admit short Q(Drrs)-Res
refutations. Hence, dynamic application of Drrs yields shorter proofs.

To prove the lower bound for the static calculus, we first show that Drrs(Ξ(n))
= Dtrv(Ξ(n)), from which it follows that any Q(Drrs)-Res refutation of Ξ(n) is
also a Q-Res refutation. We then show that any Q-Res refutation of Ξ(n) contains
an embedded refutation of Ψ(n), which has size at least 2n [3,15].

Theorem 20. The QBFs Ξ(n) require exponential-size Q(Drrs)-Res refutations.

Proof. To see that Drrs does not identify any spurious existential dependencies
for Ξ(n) – or, equivalently, that Drrs(Ξ(n)) = Dtrv(Ξ(n)) – we must show that,
for each pair (v, z) ∈ Dtrv(Ξ(n)), there exists a sequence of k clauses and a
sequence of k − 1 literals satisfying the four conditions of Definition 2.

Let i, j ∈ [n]. For (ui, b) ∈ Dtrv(Ξ(n)), the clauses {a, b} ∪ Bi, {¬a,¬b} ∪ B′
i

and the single literal b form suitable sequences. For (ui, tj) ∈ Dtrv(Ξ(n)),
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the clauses {a, b} ∪ Bi, {¬a,¬b} ∪ Cj , {a, b} ∪ Bn, {¬a,¬b} ∪ B′
i and the lit-

erals b, tj , b are suitable. For (ui, xj) ∈ Dtrv(Ξ(n)) (with i < j), the clauses
{a, b} ∪ Bi, {¬a,¬b} ∪ Bj , {a, b} ∪ {Bj−1}, {¬a,¬b} ∪ B′

i and the literals b, xj , b
are suitable, and the case for (ui, yj) ∈ Dtrv(Ξ(n)) is similar.

Now, let π be a Q(Drrs)-Res refutation of Ξ(n), and let α be the assignment
{¬a,¬b}. Since α assigns only existential variables, π[α] is a refutation of Ξ(n)[α]
that is no larger than π. Observe that Ξ(n)[α] = Ψ(n), hence the size of π[α] is
at least 2n [3,15], and we must have |π| ≥ 2n. ��

The upper bound argument makes use of the construction of short refutations
from the proof of Theorem9. By referencing those refutations, dyn-Q(Drrs)-Res
admits simple O(n)-size refutations of Ξ(n).

Theorem 21. The formulas Ξ(n) have linear-size dyn-Q(Drrs)-Res refutations.

Proof. We construct linear-size Q(Drrs)-Res refutations of Ξ(n)[¬a] and Ξ(n)[a].
Since a and ¬a are Drrs-assignments for Ξ(n), in dyn-Q(Drrs)-Res one can intro-
duce the unit clauses {a} and {¬a} by application of the reference rule, from
which the empty clause is derived by a single resolution step. As the two refer-
enced refutations are of linear size, so is the complete refutation.

It remains to construct the referenced refutations of Ξ(n)[¬a] and Ξ(n)[a].
We describe the case for Ξ(n)[¬a] – the other case is similar.

Note that the formula Ξ(n)[¬a] may be obtained from Ψ(n) by adding the
literal b to every clause, and then adding the unit clause {¬b} to the matrix. We
make two observations. First, since the negative literal ¬b occurs only in a unit
clause, such a modification of Ψ(n) cannot introduce any new existential Drrs

dependencies; no Drrs path can go through variable b. As a result, Proposition 8
lifts from Ψ(n) to Ξ(n)[¬a]; that is, (ui, tj) /∈ Drrs(Ξ(n)[¬a]) for each i, j ∈ [n]
with i �= j. Second, Ψ(n) can be derived in O(n) resolution steps from Ξ(n)[¬a]
simply by resolving the unit clause {¬b} with every other clause (there are O(n)
clauses in Ξ(n)[¬a]). It follows that Q(Drrs)-Res can refute Ξ(n)[¬a] in O(n)
steps by first deriving the clauses of Ψ(n) and then replicating the refutation
given in the proof of Theorem9. ��

Our final result is immediate from Theorems 20 and 21.

Theorem 22. dyn-Q(Drrs)-Res is exponentially stronger than Q(Drrs)-Res.

7 Conclusions

We demonstrated that the use of dependency schemes in Q-resolution can yield
exponentially shorter proofs, and thereby provided strong theoretical evidence
supporting the notion that dependency schemes can be utilised for improved
solving. We also demonstrated that the dynamic use of schemes has further
potential, beyond that of the static approach in existing implementations.

We emphasize that, at the present time, there is no implementation for Drrs,
and that DepQBF uses (a refinement of) Dstd. Since we do not separate Q-Res
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and Q(Dstd)-Res, our theoretical results are not exactly in line with experimen-
tal results. We believe, however, that our results should be viewed as sound
motivation for further research into (dynamic) dependency-aware solving.

Finally, we suggest strongly that the results in this paper will lift to further
QBF calculi, and most notably to expansion-based systems. We therefore high-
light the potential for dependency schemes in expansion solving, and endorse
the move in this direction mooted at the conclusion of [14].
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17. Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory,
Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University
Press, Cambridge (1995)

18. Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understand-
ing VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In:
Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 225–241. Springer, Cham
(2015). doi:10.1007/978-3-319-26287-1 14

19. Lonsing, F.: Dependency schemes and search-based QBF solving: theory and prac-
tice. Ph.D. thesis, Johannes Kepler University (2012)

20. Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 435–452. Springer, Cham
(2016). doi:10.1007/978-3-319-40970-2 27

21. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of Design Automation Conference
(DAC), pp. 530–535 (2001)

22. Peitl, T., Slivovsky, F., Szeider, S.: Long distance Q-resolution with dependency
schemes. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
500–518. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2 31

23. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF.
In: National Conference on Artificial Intelligence (AAAI), pp. 1045–1050. AAAI
Press (2007)

24. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. J. Autom.
Reasoning 42(1), 77–97 (2009)

25. Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 578–592. Springer, Heidelberg (2005). doi:10.1007/11564751 43

26. Shacham, O., Zarpas, E.: Tuning the VSIDS decision heuristic for bounded model
checking. In: International Workshop on Microprocessor Test and Verification
(MTV), p. 75 (2003)

27. Silva, J.P.M.: The impact of branching heuristics in propositional satisfiability
algorithms. In: Portugese Conference on Progress in Artificial Intelligence (EPIA),
pp. 62–74 (1999)

28. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: International Conference on Computer-Aided Design (ICCAD), pp. 220–227
(1996)

29. Slivovsky, F.: Structure in #SAT and QBF. Ph.D. thesis, Vienna University of
Technology (2015)

30. Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 269–284. Springer, Cham (2014).
doi:10.1007/978-3-319-09284-3 21

31. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
TCS 612, 83–101 (2016)

http://dx.doi.org/10.1007/978-3-319-26287-1_14
http://dx.doi.org/10.1007/978-3-319-40970-2_27
http://dx.doi.org/10.1007/978-3-319-40970-2_31
http://dx.doi.org/10.1007/11564751_43
http://dx.doi.org/10.1007/978-3-319-09284-3_21


280 J. Blinkhorn and O. Beyersdorff

32. Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-23786-7 59

33. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability
solver. In: International Conference on Computer-aided Design (ICCAD), pp. 442–
449 (2002)

http://dx.doi.org/10.1007/978-3-642-23786-7_59


A Little Blocked Literal Goes a Long Way

Benjamin Kiesl1(B), Marijn J.H. Heule2, and Martina Seidl3

1 Institute of Information Systems, Vienna University of Technology, Austria
kiesl@kr.tuwien.ac.at

2 Department of Computer Science, The University of Texas at Austin, USA
3 Institute for Formal Models and Verification, JKU Linz, Austria

Abstract. Q-resolution is a generalization of propositional resolution
that provides the theoretical foundation for search-based solvers of quan-
tified Boolean formulas (QBFs). Recently, it has been shown that an
extension of Q-resolution, called long-distance resolution, is remarkably
powerful both in theory and in practice. However, it was unknown how
long-distance resolution is related to QRAT, a proof system introduced
for certifying the correctness of QBF-preprocessing techniques. We show
that QRAT polynomially simulates long-distance resolution. Two simple
rules of QRAT are crucial for our simulation—blocked-literal addition and
blocked-literal elimination. Based on the simulation, we implemented a
tool that transforms long-distance-resolution proofs into QRAT proofs.
In a case study, we compare long-distance-resolution proofs of the well-
known Kleine Büning formulas with corresponding QRAT proofs.

1 Introduction

Quantified Boolean formulas (QBF) [19] extend propositional formulas with exis-
tential and universal quantifiers over the propositional variables. These quanti-
fiers lead to increased expressiveness, which makes QBF attractive for reasoning
problems in areas such as formal verification and artificial intelligence [3].

To obtain a better understanding of the strengths and limitations of differ-
ent QBF-solving approaches, their underlying proof systems have been exten-
sively analyzed, providing a comprehensive proof-complexity landscape for
QBF [4,6,9,10,16]. Two kinds of proof systems have received particular atten-
tion: instantiation-based proof systems [5,6], which provide the foundation
for expansion-based solvers like RAReQS [18], and resolution-based proof sys-
tems [1,2,7,16,17,20,23,24,26], which provide the foundation for search-based
solvers like DepQBF [22]. Apart from these, also sequent systems have been stud-
ied [8,10]. There is, however, another practically useful proof system—quite dif-
ferent from the aforementioned ones—whose place in the complexity landscape
was still unclear: the QRAT proof system [15].

The QRAT proof system is a generalization of DRAT [25] (the de-facto stan-
dard for proofs in practical SAT solving) that has its strengths when it comes
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to preprocessing: Many QBF solvers use preprocessing techniques to simplify
a QBF before they actually evaluate its truth. With the QRAT system, it is
possible to certify the correctness of virtually all preprocessing simplifications
performed by state-of-the-art QBF solvers and preprocessors. Additionally, there
exist efficient tools for checking the correctness of QRAT proofs as well as for
extracting winning strategies (so-called Skolem functions) from QRAT proofs
of satisfiability [15].

It can be easily seen that QRAT simulates the basic Q-resolution calculus [20]
that allows only resolution upon existential variables. Likewise, it simulates the
calculus QU-Res [24], which extends Q-resolution by allowing resolution upon
universal variables. So far, however, it was unclear how QRAT is related to the
long-distance-resolution calculus [1,26]—a calculus that is particularly popular
because it allows for short proofs both in theory and in practice [11].

In this paper, we prove that QRAT can polynomially simulate the long-
distance-resolution calculus. For our simulation, we need only Q-resolution and
universal reduction together with blocked-literal elimination and blocked-literal
addition using fresh variables [14,21]. These four rules are allowed in QRAT. To
illustrate the power of blocked literals, we present handcrafted QRAT proofs of
the formulas commonly used to display the strength of long-distance resolution—
the well-known Kleine Büning formulas [20]. Our proofs are slightly smaller than
the long-distance resolution proofs of these formulas described by Egly et al. [11].

To put our simulation into practice, we implemented a tool that transforms
long-distance-resolution proofs into QRAT proofs. With this tool it is now possi-
ble to obtain QRAT proofs that certify the correctness of both the preprocessing
and the actual solving, even when using a QBF solver based on long-distance
resolution. We used our tool to transform long-distance-resolution proofs of the
Kleine Büning formulas into QRAT proofs. We compare the resulting proofs with
the handcrafted QRAT proofs as well as with the original proofs. Rounding off the
picture, we locate QRAT in the proof-complexity landscape of resolution-based
proof systems and discuss open questions.

2 Preliminaries

In the following, we introduce the background required to understand the rest
of the paper. A literal is either a variable x (a positive literal) or the negation x̄
of a variable x (a negative literal). The complement l̄ of a literal l is defined as x̄
if l = x and as x if l = x̄. A clause is a disjunction of literals. A (propositional)
formula in conjunctive normal form (CNF) is a conjunction of clauses. A clause
can be seen as a set of literals and a formula can be seen as a set of clauses.

A quantifier prefix has the form Q1X1 . . . QqXq, where all the Xi are mutually
disjoint sets of variables, Qi ∈ {∀,∃}, and Qi �= Qi+1. A quantified Boolean
formula (QBF) φ in prenex conjunctive normal form (PCNF) is of the form Π.ψ
where Π is a quantifier prefix and ψ, called the matrix of φ, is a propositional
formula in CNF. The quantifier Q(Π, l) of a literal l is Qi if var(l) ∈ Xi. Let
Q(Π, l) = Qi and Q(Π, k) = Qj , then l ≤Π k if i ≤ j, and l <Π k if i < j.

Using the truth constants 1 (true) and 0 (false), a QBF ∀xΠ.ψ is false iff at
least one of Π.ψ[x/1] and Π.ψ[x/0] is false where Π.ψ[x/t] is obtained from Π.ψ
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by replacing all occurrences of x in ψ by t and removing x from Π. Respectively,
a QBF ∃xΠ.ψ is false iff both Π.ψ[x/1] and Π.ψ[x/0] are false. If the matrix
ψ of φ contains the empty clause (denoted by ⊥) after eliminating the truth
constants according to standard rules, then φ is false. If ψ is empty, φ is true.

2.1 Resolution-Based Calculi

In resolution-based calculi, a proof P of a QBF Π.ψ = Π.C1 ∧ · · · ∧ Cm is a
sequence Cm+1, . . . , Cn of clauses with Cn = ⊥ and for every Ci (m+1 ≤ i ≤ n),
it holds that Ci has been derived from clauses in ψ or from earlier clauses in P
(i.e., from clauses with index strictly smaller than i) by applications of either
the ∀-red rule (also called universal reduction) or instantiations of the resolution
rule which are defined as follows:

C ∨ x
(∀-red)

C
C ∨ l D ∨ l̄

(resolution)

C ∨ D

The rule ∀-red is only applicable if the literal x is universal and if for every
existential literal l ∈ C, it holds that l <Π x. In the resolution rule, the resolvent
C ∨ D is derived from its two antecedent clauses. We assume that no clause in
ψ contains complementary literals, otherwise the ∀-red rule is unsound.

The most basic resolution-based calculus for QBF is the Q-resolution calcu-
lus (Q-Res) [20]. It uses the resolution rule Q-res which requires that (1) l is
existential and (2) C does not contain a literal x such that x̄ ∈ D. In contrast,
the long-distance-resolution calculus (LQ-Res) [1,26] uses a less restrictive vari-
ant of the resolution rule, called LQ-res, which requires that (1) l is existential
and (2) for every literal x ∈ C such that x̄ ∈ D, it holds that x is universal
and l <Π x. Note that every Q-res step is also an LQ-res step. In the rest of
the paper, we refer to resolution steps as LQ-res steps only if they are not Q-res
steps, otherwise we refer to them as Q-res steps. Note that in the literature a
complementary pair x, x̄ is also represented by a so-called merged literal x∗.

Example 1. Consider the QBF φ = ∃a∀x∃b∃c.(ā∨x̄∨c)∧(x̄∨b∨c̄)∧(a∨x∨b)∧(b̄).
The following is a long-distance-resolution proof of φ: ā ∨ x̄ ∨ b, x ∨ x̄ ∨ b, x ∨ x̄,
x, ⊥. We explain this proof in more detail later (also see Fig. 1).

2.2 The QRAT Proof System Light

In this paper, we do not need the power of the full QRAT proof system [15]. We
therefore introduce only a very restricted version of QRAT that is sufficient for
the simulation of the long-distance-resolution calculus.

One of the main concepts in this variant of QRAT is the concept of a blocked
literal. For the definition of blocked literals, we first have to introduce so-called
outer resolvents. Given two clauses C∨x,D∨x̄ of a QBF Π.ψ, the outer resolvent
C∨x ��x

Π D∨x̄ of C∨x with D∨x̄ upon x is the clause consisting of all literals in
C together with those literals of D that occur outer to x, i.e., the outer resolvent
is the clause C ∪ {l | l ∈ D and l ≤Π x}. We can now define blocked literals:
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Definition 1. A universal literal x is blocked in a clause C ∨ x w.r.t. a QBF
Π.ψ if, for every clause D ∨ x̄ ∈ ψ \{C ∨x}, the outer resolvent C ∨x ��x

Π D ∨ x̄
contains a pair of complementary literals.

Example 2. Let φ = ∃a∀x, y∃b.(a ∨ x ∨ y) ∧ (ā ∨ x̄ ∨ b) ∧ (ȳ ∨ x̄ ∨ b). The literal x
is blocked in a ∨ x ∨ y w.r.t. φ: There are two outer resolvents of a ∨ x ∨ y upon
x, namely a ∨ y ∨ ā, obtained by resolving with ā ∨ x̄ ∨ b, and a ∨ y ∨ ȳ, obtained
by resolving with ȳ ∨ x̄ ∨ b. Both contain a pair of complementary literals. ��
If a literal is blocked in a clause, its removal is called blocked-literal elimination
(BLE) [14]. If, after adding a literal to a clause, the literal is blocked in that
clause, then this addition is called blocked-literal addition (BLA). Both BLE
and BLA do not change the truth value of a formula.

In our restricted variant of QRAT, a derivation for a QBF φ is a sequence
M1, . . . ,Mn of proof steps. Starting with φ0 = φ, every Mi modifies φi−1 in one
of the following four ways, which results in a new formula φi: (1) It adds to φi−1

a clause that is derived from two clauses in φi−1 via a resolution step. (2) It adds
to φi−1 a clause C that is obtained from a clause C ∨ x ∈ φi−1 by a ∀-red step,
with the additional restriction that C does not contain x̄. (3) It adds a blocked
literal to a clause in φi−1. (4) It removes a blocked literal from a clause in φi−1.

A QRAT derivation M1, . . . ,Mn therefore gradually derives new formulas
φ1, . . . , φn from the starting formula φ. If the final formula φn contains the empty
clause ⊥, then the derivation is a (refutation) proof of φ. Note that the ∀-red
rule in QRAT is more restricted than the ∀-red rule from the resolution-based
calculi, making it sound also when clauses contain complementary literals.

To simplify the presentation, we do not specify how the modification steps
Mi are represented syntactically. We also do not include clause deletion. Note
that certain proof steps can modify the quantifier prefix by introducing new or
removing existing variables. Note also that Q-resolution proofs do not contain
complementary literals, so they can be simply rewritten into QRAT proofs using
only Q-res and ∀-red steps. Finally, we want to highlight that for our simulation,
we do not need the unrestricted resolution rule; the Q-res rule suffices.

3 Illustration of the Simulation

We start by illustrating on an example how our restricted variant of QRAT
can simulate the long-distance-resolution calculus. As already mentioned, the
∀-red rule used in QRAT is more restricted than the one in the long-distance-
resolution calculus because it does not allow us to remove a literal x from a clause
that contains x̄. This means that once we derive a clause that contains both a
literal x and its complement x̄, we cannot simply get rid of the two literals by
using the ∀-red rule. We therefore want to avoid the derivation of clauses with
complementary literals entirely. Now, the only way the long-distance-resolution
calculus can derive such clauses is via resolution (LQ-res) steps. So to avoid
the complementary literals, we eliminate them already before performing the
resolution steps. We demonstrate this on an example:
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a ∨ x ∨ b
x̄ ∨ b ∨ c̄ ā ∨ x̄ ∨ c

(Q-res)
ā ∨ x̄ ∨ b

(LQ-res)
x ∨ x̄ ∨ b b̄

(Q-res)
x ∨ x̄

(∀-red)x
(∀-red)⊥

Fig. 1. LQ-res proof of QBF φ = ∃a∀x∃b∃c.(ā ∨ x̄ ∨ c) ∧ (x̄ ∨ b ∨ c̄) ∧ (a ∨ x ∨ b) ∧ (b̄).

Example 3. Consider the QBF φ = ∃a∀x∃b∃c.(ā∨x̄∨c)∧(x̄∨b∨c̄)∧(a∨x∨b)∧(b̄)
from Example 1. To increase readability, we illustrate its long-distance-resolution
proof as a proof tree in Fig. 1. To simulate this proof with QRAT, we first add
the resolvent ā∨ x̄∨b to φ via a Q-res step to obtain the new formula φ′. Now we
cannot simply perform the next derivation step (the LQ-res step) because the
resulting resolvent x ∨ x̄ ∨ b would contain complementary literals. To deal with
this, we try to eliminate x from the clause a ∨ x ∨ b. This is where the addition
and elimination of blocked literals come into play.

We cannot yet eliminate x from φ′ because x is not blocked in a ∨ x ∨ b with
respect to φ′: For x to be blocked, all outer resolvents of a ∨ x ∨ b upon x must
contain complementary literals. The clauses that can be resolved with a ∨ x ∨ b
are ā ∨ x̄ ∨ c, ā ∨ x̄ ∨ b, and x̄ ∨ b ∨ c̄. While the outer resolvents with the former
two clauses contain the complementary literals a and ā, the outer resolvent a∨b,
obtained by resolving with x̄ ∨ b ∨ c̄, does not contain complementary literals.

Now we use a feature of QRAT to make x blocked in a∨x∨ b: We add a new
literal x′ (which goes to the same quantifier block as x) to a∨x∨b to turn it into
a ∨ x′ ∨ x ∨ b. The addition of x′ is clearly a blocked-literal addition as there are
no outer resolvents of a ∨ x′ ∨ x ∨ b upon x′. Likewise, we add the complement
x̄′ of x′ to x̄ ∨ b ∨ c̄ to turn it into x̄′ ∨ x̄ ∨ b ∨ c̄. Again this is a blocked-literal
addition since a∨x′ ∨x∨ b (which is the only clause containing the complement
x′ of x̄′) contains x while x̄′ ∨ x̄ ∨ b ∨ c̄ contains x̄.

Now the complementary pair x′, x̄′ is contained in the outer resolvent of
a ∨ x′ ∨ x ∨ b with x̄′ ∨ x̄ ∨ b ∨ c̄ upon x. Thus, the literal x becomes blocked in
a∨x′ ∨x∨ b and so we can remove it to obtain a∨x′ ∨ b. We have thus replaced
x in a ∨ x ∨ b by x′ and now we can resolve a ∨ x′ ∨ b with ā ∨ x̄ ∨ b upon a
to obtain the resolvent x′ ∨ x̄ ∨ b (instead of x ∨ x̄ ∨ b as in the original proof).
Finally, we resolve x′ ∨ x̄ ∨ b with b̄ to obtain x′ ∨ x̄ from which we derive the
empty clause ⊥ via ∀-red steps. ��
To summarize, we start by adding clauses of a given long-distance-resolution
proof to our formula until we bump into an LQ-res step. To avoid complementary
literals in the resolvent of the LQ-res step, we then use blocked-literal addition
and blocked-literal elimination to replace these literals. After this, we can derive
a resolvent without complementary literals and move on until we encounter the
next LQ-res step, which we again eliminate. We repeat this procedure until the
whole long-distance-resolution proof is turned into a QRAT proof.
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Note that the modification of existing clauses has an impact on later deriva-
tions. For instance, by replacing a ∨ x ∨ b in the above example with a ∨ x′ ∨ b,
we not only affected the immediate resolvent x ∨ x̄ ∨ b, which we turned into
x′ ∨ x̄ ∨ b, but also the later resolvent x ∨ x̄, which became x′ ∨ x̄. We therefore
have to show that these modifications are harmless in the sense that they do
not lead to an invalid proof. We do so in the next section, where we define our
simulation in detail before proving that it indeed produces a valid QRAT proof.

4 Simulation

We first describe our simulation procedure on a high level before we specify
the details and prove its correctness. As we have seen, given a long-distance-
resolution proof, we can use QRAT to derive all clauses up to the first LQ-res
step. The crucial part of the simulation is then the elimination of complementary
literals from this LQ-res step, which might involve the modification of several
clauses via the addition and elimination of blocked literals.

Let φ = Π.C1 ∧ · · · ∧ Cm be a QBF and P = Cm+1, . . . , Cr, . . . , Cn be
a long-distance-resolution proof of φ where Cr is the first clause derived via an
LQ-res step. If there is no such Cr, the proof can be directly translated to QRAT.
Otherwise, in a first step, our procedure produces a QRAT derivation that adds
all the clauses Cm+1, . . . , Cr−1 to φ by using Q-res and ∀-red steps. It then uses
blocked-literal addition and blocked-literal elimination to avoid complementary
literals in the resolvent Cr, which it thereby turns into a different resolvent C ′

r.
After this, it adds C ′

r to φ via a Q-res step. The result is a QRAT derivation of
a formula φ′ from φ. We explain this first step in Sect. 4.1.

In a second step, the procedure first removes all the clauses Cm+1, . . . , Cr

from P since they—or their modified variants—are now all contained in φ′. As
several clauses have been modified via blocked-literal addition and blocked-literal
elimination in the first step, it then propagates these modifications through the
remaining part of P . This turns P into a long-distance resolution proof P ′ of φ′.
We explain this second step in Sect. 4.2.

By repeating these two steps for every LQ-res step, we finally obtain a QRAT
proof of φ. Thus, we have to show that after the above two steps (i.e., after one
iteration of our procedure), φ′ is obtained by a valid QRAT derivation and the
proof P ′ is a valid long-distance-resolution proof of φ′ that is shorter than P .
The correctness of the simulation follows then simply by induction.

To simplify the presentation, we assume that the long-distance resolvent Cr

contains only one pair of complementary literals, i.e., Cr = C ∨ D ∨ x ∨ x̄ was
derived from two clauses C ∨ l ∨ x and D ∨ l̄ ∨ x̄ where C does not contain a
literal k such that k̄ is contained in D. Although this assumption leads to a
loss of generality, we show later that our argument can be easily extended to
the more general case where C and D are allowed to contain multiple pairs of
complementary literals.
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4.1 QRAT Derivation of the Formula φ′

Below we describe the QRAT derivation of φ′ from φ. Initially, φ′ = φ.

1. Add the clauses Cm+1, . . . Cr−1 to φ′ via Q-res and ∀-red steps.
2. Consider the LQ-res step that derived Cr = C ∨ D ∨ x ∨ x̄ from two clauses

C ∨ l ∨ x and D ∨ l̄ ∨ x̄:

C ∨ l ∨ x D ∨ l̄ ∨ x̄
(LQ-res)

C ∨ D ∨ x ∨ x̄

Towards making x blocked in C ∨ l ∨ x, add a new literal x′ (that goes to the
same quantifier block as x) to C ∨ l ∨ x to turn it into C ∨ l ∨ x′ ∨ x.

3. Add x̄′ to each clause Ci ∈ φ′ for which (1) x̄ ∈ Ci, and (2) the outer resolvent
of C ∨ l ∨ x′ ∨ x and Ci upon x is not a tautology.

4. Now x is a blocked literal in C ∨ l ∨ x′ ∨ x. Eliminate it to obtain C ∨ l ∨ x′.
5. Add the clause C ∨ D ∨ x′ ∨ x̄ to φ′ by performing a Q-res step of C ∨ l ∨ x′

and D ∨ l̄ ∨ x̄ upon l.

To see that this results in a valid QRAT derivation, observe the following: In
step 2, the addition of x′ is a blocked-literal addition, since x̄′ is not contained
in any of the clauses. In step 3, for every Ci with x̄ ∈ Ci, the addition of x̄′ is
a blocked-literal addition as only C ∨ l ∨ x′ ∨ x can be resolved with Ci upon
x̄′ and the corresponding outer resolvent contains x and x̄. Note that instead of
eliminating x from C ∨ l ∨ x, we could have also eliminated x̄ from D ∨ l̄ ∨ x̄. It
remains to modify the long-distance-resolution proof P of φ so that it becomes
a valid proof of φ′.

4.2 Modification of the Long-Distance-Resolution Proof

We next turn the proof P = Cm+1, . . . , Cr, . . . , Cn of φ into a proof P ′ of φ′.
First, we remove the clauses Cm+1, . . . , Cr from P since φ′ already contains vari-
ants C ′

m+1, . . . , C
′
r of these clauses. Second, since we have modified the clauses

in φ′, we have to propagate these modifications through the remaining proof.
Assume, for instance, that in P the clause Cr+1 has been obtained by resolv-

ing a clause Ci with a clause Cj . Both Ci and Cj might have been affected by
blocked-literal additions so that they are now different clauses C ′

i, C
′
j ∈ φ′. To

account for these modifications of Ci and Cj , we replace Cr+1 in P by the resol-
vent of C ′

i and C ′
j . Moreover, in cases where P removes x from a clause via a

∀-red step, we now also remove x′. Analogously for x̄′ and x̄.
To formalize these modifications, we first assign to every clause Ci with

1 ≤ i ≤ r its corresponding clause of φ′ as follows:

C ′
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ci ∪ {x̄′} if x̄ ∈ Ci and the outer resolvent of C ∨ l ∨ x ∨ x′
and Ci upon x is not a tautology;

(Ci \ {x}) ∪ {x′} if Ci = Cr or Ci = C ∨ l ∨ x;

Ci otherwise.
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Note that, by construction, C ′
i ∈ φ′ for 1 ≤ i ≤ r. For every i such that r < i ≤ n,

we step-by-step, starting with i = r + 1, define C ′
i based on the derivation rule

that was used for deriving Ci in P . We distinguish between clauses derived by
resolution steps and clauses derived by ∀-red steps:

Case 1: Ci has been derived via a resolution step of two clauses Cj = C ∨ l and
Ck = D ∨ l̄ upon l, i.e., Ci = C ∨ D. We define C ′

i = C ′
j \ {l} ∨ C ′

k \ {l̄}.

Case 2: Ci has been derived from a clause Cj via a ∀-red step. If the ∀-red step
removes a literal l with var(l) �= var(x), we define C ′

i = C ′
j \{l}. If it removes x,

we define C ′
i = C ′

j \ {x, x′}, and if it removes x̄, we define C ′
i = C ′

j \ {x̄, x̄′}.

Note that ∀-red steps of x and x̄ in P ′ might remove two literals at once. Although
such ∀-red steps do not constitute valid derivation steps in a strict sense, this
is not a serious problem: These steps can be easily rewritten into two distinct
∀-red steps since x and x′ are in the same quantifier block. For instance, the left
step below can be rewritten into the two steps on the right:

C ∨ x ∨ x′
(∀-red)

C

C ∨ x ∨ x′
(∀-red)

C ∨ x
(∀-red)

C

Next, we show that the resulting proof P ′ is—apart from the minor detail just
mentioned—a valid long-distance-resolution proof of φ′.

4.3 Correctness of the Simulation

To prove the correctness of our simulation, we first introduce a lemma that
guarantees that the modified long-distance-resolution proof P ′ has a similar
structure as the original proof P :

Lemma 1. Let φ′ = Π ′.C ′
1 ∧ · · · ∧ C ′

r and P ′ = C ′
r+1, . . . , C

′
n be obtained from

φ = Π.C1 ∧ · · · ∧ Cm and P = Cm+1, . . . , Cr, . . . , Cn as defined above. Then, for
every clause C ′

i with 1 ≤ i ≤ n, the following holds: (1) If x′ or x is in C ′
i, then

x ∈ Ci. (2) If x̄′ or x̄ is in C ′
i, then x̄ ∈ Ci. (3) C ′

i agrees with Ci on all literals
whose variables are different from x and x′, i.e., C ′

i \ {x, x̄, x′, x̄′} = Ci \ {x, x̄}.
Proof. By induction on i.

Base Case (i ≤ r): The claim holds by the definition of C ′
i.

Induction Step (r < i): Consider the clause Ci in P that corresponds to C ′
i.

We proceed by a case distinction based on how Ci was derived in P .

Case 1: Ci is a resolvent Cj \ {l} ∨ Ck \ {l̄} of two clauses Cj , Ck. In this case,
C ′

i = C ′
j \{l}∨C ′

k \{l̄}. By the induction hypothesis, the statement holds for C ′
j

and C ′
k. Now, if C ′

i contains x′ or x, then at least one of C ′
j and C ′

k must contain
x′ or x and thus one of Cj and Ck must contain x, hence x ∈ Ci. Analogously,
if C ′

i contains x̄′ or x̄, then Ci contains x̄. Now, C ′
j agrees with Cj on all literals
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whose variables are different from x and x′, and the same holds for C ′
k and Ck.

Thus, C ′
i agrees with Ci on all literals whose variables are different from x and x′.

Case 2: Ci has been derived from a clause Cj via a ∀-red step, i.e., Ci = Cj \{y}
for some universal literal y. By the induction hypothesis, the statement holds for
C ′

j . If var(y) �= var(x′), then C ′
i = C ′

j \ {y} and thus the claim holds. If y = x,
then C ′

i = C ′
j \ {x, x′} and thus the claim holds too. The case where y = x̄ is

analogous to the case where y = x. ��

We can now show that the proof P ′, produced by our simulation procedure, is
a valid long-distance-resolution proof of φ′:

Theorem 2. Let φ′ = Π ′.C ′
1 ∧· · ·∧C ′

r and P ′ = C ′
r+1, . . . , C

′
n be obtained from

φ = Π.C1 ∧ · · · ∧ Cm and P = Cm+1, . . . , Cr, . . . , Cn by our procedure. Then, P ′

is a valid long-distance-resolution proof of φ′.

Proof. We have to show that every clause C ′
i in P ′ has been derived from clauses

in C ′
1, . . . , C

′
i−1 via a valid application of a derivation rule and that C ′

n = ⊥.
To show that every clause in P ′ has been derived via a valid application of a
derivation rule, let C ′

i be a clause in P ′. We proceed by a case distinction based
on the rule via which its counterpart Ci has been derived in P :

Case 1: Ci has been derived from two clauses Cj , Ck via a Q-res step or an
LQ-res step upon some existential literal l. In this case, C ′

i = C ′
j \ {l} ∨ C ′

k \ {l̄}.
We have to show that l ∈ C ′

j , l̄ ∈ C ′
k, and for every literal l′ ∈ C ′

j such that l′ �= l

and l̄′ ∈ C ′
k, it holds that l′ is universal and l <Π′ l′. By Lemma 1, C ′

j agrees
with Cj on all literals whose variables are different from the universal literals x
and x′. Likewise for C ′

k and Ck. Therefore, l ∈ C ′
j and l̄ ∈ C ′

k.
Now, assume C ′

j contains a literal l′ such that l′ �= l and l̄′ ∈ C ′
k. If the

variable of l′ is different from x and x′, then it must be the case that l′ is
universal and l <Π′ l′, for otherwise the derivation of Ci in P were not valid.
Assume thus that the variable of l′ is either x or x′. If l′ is either x or x′, then
Lemma 1 implies that Cj contains x and also, since l̄′ ∈ C ′

k, that Ck contains x̄.
Therefore, it holds that l <Π′ x (since otherwise the derivation of Ci in P were
not valid) and since x′ and x are in the same quantifier block, it also holds that
l <Π′ x′, hence l <Π′ l′. The case where l′ is x̄ or x̄′ is symmetric.

Case 2: Ci has been derived from a clause Cj via a ∀-red step, that is, by
removing a universal literal y such that for every existential literal l′ ∈ Cj , it
holds that l′ <Π y. If var(y) �= x, then C ′

j = C ′
i \ {y} and since, by Lemma 1,

C ′
i coincides with Ci on all existential variables, it holds for every existential

literal l′ ∈ C ′
i that l′ <Π′ y. If var(y) = x, then C ′

j is of the form C ′
i \ {x, x′} or

C ′
i \ {x̄, x̄′}. Now, x and x′ are in the same quantifier block and thus, with the

same argument as for var(y) = x, it holds for every existential literal l′ ∈ C ′
j

that l′ <Π′ y.

Finally, to see that C ′
n = ⊥, observe the following: By Lemma 1, since x and x̄ are

not in Cn, it follows that x′ and x̄′ are not in C ′
n. Moreover, again by Lemma1,

Cn and C ′
n agree on all other literals. Therefore, C ′

n = Cn = ⊥. ��
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We can also show that our simulation does not introduce new LQ-res steps.
Hence, if a long-distance-resolution proof contains n LQ-res steps, our simulation
terminates after at most n iterations (the proof is omitted due to space reasons):

Theorem 3. Let P ′ be obtained from φ = Π.ψ and P by our procedure. Then,
P ′ contains fewer LQ-res steps than P .

4.4 Clashes of Several Universal Literals

Until now, we assumed that LQ-res steps involve only one pair of complementary
universal literals. When multiple such pairs are involved, the procedure changes
only slightly: Instead of eliminating only a single literal from one of the clauses
that are involved in the LQ-res step, we now eliminate several of them. If we
start with the outermost one and gradually move inwards, we ensure that at
most one blocked literal is added per clause. We illustrate this on an example.
Consider the QBF φ = ∃a∃b∀x∃c∀y∃d.(b∨x∨c∨y∨d)∧(a∨ x̄∨c)∧(ā∨ b̄∨ ȳ∨d)
and the following derivations in a long-distance-resolution proof:

b ∨ x ∨ c ∨ y ∨ d

a ∨ x̄ ∨ c ā ∨ b̄ ∨ ȳ ∨ d
(Q-res)

b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d
(LQ-res)

x ∨ x̄ ∨ c ∨ y ∨ ȳ ∨ d

In the LQ-res step, there are two pairs of complementary universal literals,
namely x, x̄ and y, ȳ. We therefore try to get rid of both x and y in the left
antecedent L = b∨x∨ c∨y ∨d of the LQ-res step. As in the case where only one
literal is removed, we start by deriving in QRAT all clauses that occur before
the LQ-res step. In this case, we add b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d to φ via a Q-res step and
denote the resulting formula by φ′.

Now we want to remove x from L via blocked-literal elimination. In order for
x to be blocked in φ′, all outer resolvents of L upon x have to be tautologies.
The formula φ′ contains two clauses that can be resolved with L upon x, namely
b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d and a ∨ x̄ ∨ c. As the first clause contains b̄ and L contains b,
the corresponding outer resolvent upon x contains b, b̄. But there are no comple-
mentary literals in the outer resolvent a∨ b with the second clause. We therefore
add a fresh literal x′ to L and add its complement x̄′ to ā ∨ x̄ ∨ c to obtain φ′ =
∃a∃b∀x∀x′∃c∀y∃d.(b∨x∨x′∨c∨y∨d)∧(a∨x̄∨x̄′∨c)∧(ā∨b̄∨ȳ∨d)∧(b̄∨x̄∨c∨ȳ∨d).

We can now remove the blocked literal x from (b∨x∨x′ ∨ c∨y ∨d) to obtain
L′ = b ∨ x′ ∨ c ∨ y ∨ d. If we now resolved L′ with b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d, we would get
the following LQ-res step:

b ∨ x′ ∨ c ∨ y ∨ d b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d
(LQ-res)

x′ ∨ x̄ ∨ c ∨ y ∨ ȳ ∨ d

Since there is still a clash of y and ȳ, we need to get rid of y in L′. We are
lucky because we do not need to perform any blocked-literal additions: The only
clauses in φ′ that contain ȳ are ā ∨ b̄ ∨ ȳ ∨ d and b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d, and the outer
resolvents of L′ with both of them contain complementary literals. We can thus
remove y from L′ and use a Q-res step to add the resulting resolvent to φ′:
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b ∨ x′ ∨ c ∨ d b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d
(Q-res)

x′ ∨ x̄ ∨ c ∨ ȳ ∨ d

Similarly to the case where we only eliminated one literal, we then propagate
the corresponding changes through the rest of the proof to turn it into a valid
long-distance resolution proof of φ′.

5 Complexity of the Simulation

After showing how a long-distance-resolution proof can be translated into a
QRAT proof, we still have to prove that the size (the number of derivation steps)
of the resulting QRAT proof is polynomial w.r.t. the size of the original proof and
the formula. We have seen that the long-distance-resolution proof and the QRAT
proof correspond one-to-one on resolution steps and ∀-red steps. Therefore, we
only need to estimate the number of blocked-literal addition and blocked-literal
elimination steps to obtain an upper bound on the size of the QRAT proof.

Consider a long-distance-resolution proof Cm+1, . . . , Cr, . . . , Cn of a QBF
Π.C1 ∧ · · · ∧ Cm, where Cr is the first clause that is derived via an LQ-res step:

C ∨ l ∨ x1 ∨ · · · ∨ xk D ∨ l̄ ∨ x̄1 ∨ · · · ∨ x̄k
(LQ-res)

Cr = C ∨ D ∨ x1 ∨ x̄1 ∨ · · · ∨ xk ∨ x̄k

We can make the following observation: To remove all the literals x1, . . . , xk from
C ∨ l ∨ x1 ∨ · · · ∨ xk via blocked-literal elimination, we have to add at most one
new literal of the form x̄′

i to every clause C1, . . . , Cr−1 if we start by eliminating
the outermost universal literal x1 and step-by-step work ourselves towards the
innermost literal xk. The reason this works is as follows:

Assume we have added the literal x′
1 to C ∨ l ∨ x1 ∨ · · · ∨ xk and the cor-

responding literal x̄′
1 to another clause Ci = C ′

i ∨ x̄1 to obtain complementary
literals in the outer resolvent of the resulting clauses C ∨ l∨x1 ∨x′

1 ∨· · ·∨xk and
C ′ ∨ x̄1 ∨ x̄′

1 upon x1. Then, the outer resolvent of C ∨ l ∨ x1 ∨ x′
1 ∨ · · · ∨ xk with

C ′ ∨ x̄1 ∨ x̄′
1 upon a literal xj that is inner to x1 (i.e., x1 <Π xj) contains the

complementary pair x′
1, x̄

′
1, so we have to add no further literals to C ′ ∨ x̄1 ∨ x̄′

1.
Hence, the number of blocked-literal additions for literals of the form x̄′

i is
bounded by the number of clauses, that is, by n. Moreover, for every addition
of a literal x̄′

i to some clause, there is at most one addition of the corresponding
literal x′

i. Therefore, there are at most 2n blocked-literal additions per LQ-res
step. Now, for every addition of a literal x′

i, there is exactly one elimination of
the corresponding literal xi. Thus, overall there are at most 3n blocked-literal
additions and eliminations for every LQ-res step. Since the number of LQ-res
steps is bounded by the number of clauses in the proof, the size of the QRAT
derivation is at most 3n2. It follows that whenever a QBF has a long-distance-
resolution proof of polynomial size, it also has a polynomial-size QRAT proof:

Theorem 4. The QRAT proof system polynomially simulates the long-distance-
resolution calculus.
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6 Evaluation

We now know that QRAT can polynomially simulate long-distance resolution.
But what does it mean in practice? Can we have short QRAT proofs for formu-
las that have short long-distance-resolution proofs? To answer this question at
least partly, we consider the formulas well-known for having short long-distance-
resolution proofs while only having long Q-resolution proofs—the Kleine Büning
formulas [20]. A Kleine Büning formula of size n, in short KBKFn, has the prefix
∃a0, a1, b1∀x1∃a2, b2∀x2 . . . ∃an, bn∀xn∃c1, c2, . . . , cn and the following clauses:

I : ā0 I ′ : a0 ∨ ā1 ∨ b̄1
Ai : ai ∨ x̄i ∨ āi+1 ∨ b̄i+1 Bi : bi ∨ xi ∨ āi+1 ∨ b̄i+1 for i ∈ {1..n − 1}
C : an ∨ x̄n ∨ c̄1 ∨ · · · ∨ c̄n C ′ : bn ∨ xn ∨ c̄1 ∨ · · · ∨ c̄n

Xi : x̄i ∨ ci X ′
i : xi ∨ ci for i ∈ {1..n}

We can reduce a formula KBKFn to a formula KBKFn−1 by using only Q-res,
blocked-literal elimination, and clause-deletion steps1 (no ∀-red steps or resolu-
tion upon universal literals). To do so, we use the clauses An, Bn, C, C ′, Xn, and
X ′

n of KBKFn to construct the clauses C and C ′ of KBKFn−1. The required 12
steps are shown below. The last two clauses (11 and 12) respectively correspond
to the clauses C and C ′ of KBKFn−1.

1. an ∨ x̄n ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of C and Xn)
2. bn ∨ xn ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of C ′ and X ′

n)
3. (delete C, C ′, Xn, X ′

n)
4. an−1 ∨ x̄n−1 ∨ b̄n ∨ x̄n ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of 1 and An−1)
5. bn−1 ∨ xn−1 ∨ ān ∨ xn ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of 2 and Bn−1)
6. an−1 ∨ x̄n−1 ∨ b̄n ∨ c̄1 ∨ · · · ∨ c̄n−1 (BLE of x̄n from 4)
7. bn−1 ∨ xn−1 ∨ ān ∨ c̄1 ∨ · · · ∨ c̄n−1 (BLE of xn from 5)
8. an−1 ∨ x̄n−1 ∨ xn ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of 6 and Bn−1)
9. bn−1 ∨ xn−1 ∨ x̄n ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of 7 and An−1)

10. (delete 4, 5, 6, 7, An−1, Bn−1)
11. an−1 ∨ x̄n−1 ∨ c̄1 ∨ · · · ∨ c̄n−1 (BLE of xn from 8)
12. bn−1 ∨ xn−1 ∨ c̄1 ∨ · · · ∨ c̄n−1 (BLE of x̄n from 9)

Table 1 shows the sizes of the Kleine Büning formulas as well as of the corre-
sponding long-distance-resolution proofs (in the QRP format) and QRAT proofs.
The latter are obtained by the construction mentioned in this section. The size
of both types of proofs is linear in the size of the formula. Although QRAT proofs
use about twice as many proof steps (including deletion steps), the file size of
QRAT proofs is smaller. The explanation for this is that long-distance-resolution
proofs increase the length of clauses, while QRAT proofs decreases their length.

Short proofs of the KBKF formulas can also be obtained by using resolution
upon universal variables as in the calculus QU-Res [24]. There is, however, a vari-
ant of the KBKF formulas, called KBKFn−qu [2], which has only exponential
proofs in the QU-Res calculus. A KBKFn−qu formula is obtained from KBKFn

1 Clause deletion was not used in the simulation, but is allowed in the QRAT system.
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Table 1. The size of Kleine Büning formulas in the number of variables (#var) and
clauses (#cls). Additionally, the size of their long-distance-resolution proofs (in the
QRP format) in the number of Q-res steps (#Q), LQ-res steps (#L), ∀-red steps (#∀),
and the file size in KB (ignoring the part that represents the formula). On the right,
the number of Q-res (#Q), BLE (#B), and deletion (#D) steps as well as the file size
for the manual QRAT proofs.

input LD proofs (QRP) QRAT proofs
formula #var #cls #Q #L #∀ file size #Q #B #D file size

KBKF 10 41 42 41 18 38 6 57 38 92 6
KBKF 50 201 202 201 98 198 138 297 198 492 112
KBKF 100 401 402 401 198 398 573 597 398 992 421
KBKF 200 801 802 801 398 798 2321 1197 798 1992 1627
KBKF 500 2001 2002 2001 998 1998 16 259 2997 1998 4992 11 890

by adding a universal literal yi (occurring in the same quantifier block as xi)
to every clause in KBKFn that contains xi, and a literal ȳi to every clause in
KBKFn. For these formulas, blocked-literal elimination can remove all the yi

and ȳi literals, which reduces a KBKFn−qu formula to a KBKFn formula that
can then be efficiently proved using resolution upon universal literals.

In addition to the handcrafted QRAT proofs, we implemented a tool (called
ld2qrat) that, based on our simulation, transforms long-distance-resolution
proofs into QRAT proofs. We used ld2qrat to transform the long-distance-
resolution proofs of the KBKFn formulas (by Egly et al. [11]) into QRAT proofs
and validated the correctness of these proofs with the proof checker QRAT-trim.
In the plain mode, ld2qrat closely follows our simulation. Additionally, it fea-
tures two optimizations: (1) Given an LQ-res step upon l with the antecedents
C ∨ l ∨ x and D ∨ l̄ ∨ x̄, if one of x or x̄ is already a blocked literal, it is removed
with blocked-literal elimination. This avoids the introduction of new variables.
(2) Clauses are deleted as soon as they are not needed later in the proof anymore.

Table 2 shows properties of the QRAT proofs produced by ld2qrat from the
long-distance-resolution proofs of the KBKF formulas. On the left are the sizes
of proofs obtained without the clause-deletion optimization. On the right are
the sizes of proofs with this optimization. A (least squares) regression analysis
confirms that the length (number of steps) of the QRAT proofs without deletion is
quadratically related to the length of the corresponding long-distance-resolution
proofs: The function f(x) = 0.22x2 − 4.48x+54.58 (where x is the length of the
long-distance-resolution proof and f(x) is the length of the QRAT proof) fits the
data from the above tables perfectly (the error term R2 of the regression is 1).

7 QRAT in the Complexity Landscape

After the analysis of QRAT in theory and practice, we now locate it in the proof-
complexity landscape of resolution-based calculi for QBF, which is shown in
Fig. 2. Besides the long-distance-resolution calculus LQ-Res, another well-known
proof system is the calculus QU-Res [24], which extends the basic Q-resolution
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Table 2. Comparison of the QRAT proofs obtained by applying ld2qrat to long-
distance-resolution proofs (in the QRP format) of the Kleine Büning formulas. The file
size is given in KB and the time for translating the proof (time) is given in seconds.

QRP to QRAT w/o deletion QRP to QRAT w/ deletion
formula #var #step file size time #var #step file size time

KBKF 10 59 1690 103 0.07 59 448 26 0.01
KBKF 50 299 52 170 18 774 0.45 299 6288 2227 0.12
KBKF 100 599 214 270 154 299 3.77 599 22 588 16 192 0.86
KBKF 200 1199 868 470 1 309 559 30.70 1199 85 188 126 375 7.95
KBKF 500 2999 5 471 070 23 622 369 497.32 2999 512 988 2 229 195 124.10

calculus (Q-Res) by allowing resolution upon universals literals if the resulting
resolvent does not contain complementary literals. As QRAT also allows reso-
lution upon universal literals, it simulates QU-Res. Balabanov et al. [2] showed
the incomparability between LQ-Res and QU-Res by exponential separations. It
thus follows that QRAT is strictly stronger than both LQ-Res and QU-Res.

Another system that is stronger than both LQ-Res and QU-Res is the calculus
LQU+-Res [2], which extends LQ-Res by allowing (long-distance) resolution upon
universals literals. We know that either QRAT is strictly stronger than LQU+-Res
or the two systems are incomparable: On purely existentially-quantified formu-
las, LQU+-Res boils down to ordinary propositional resolution (without com-
plementary literals in resolvents) whereas the QRAT system boils down to the
RAT system [25]. As the RAT system is strictly stronger than resolution—there
exist polynomial-size RAT proofs of the well-known pigeon hole formulas [13]
while resolution proofs of these formulas are necessarily exponential in size [12]—
LQU+-Res cannot simulate QRAT.

On the other hand, QRAT might be able to simulate LQU+-Res, but not with
our simulation of the long-distance-resolution calculus, because the simulation
cannot convert all LQU+-Res proofs into QRAT proofs. To see this, consider the
QBF ∃a∀x∀y∃b.(a ∨ x ∨ b) ∧ (ā ∨ x̄ ∨ b) ∧ (x ∨ b̄) ∧ (x̄ ∨ ȳ ∨ b̄) with the following
LQU+-Res proof [2]: x ∨ x̄ ∨ b, ȳ ∨ b̄, x ∨ x̄ ∨ ȳ, x ∨ x̄, x, ⊥. The proof can be
illustrated as follows:

a ∨ x ∨ b ā ∨ x̄ ∨ b
(LQ-res)

x ∨ x̄ ∨ b

x ∨ b̄ x̄ ∨ ȳ ∨ b̄
(QU-res)

ȳ ∨ b̄
(Q-res)

x ∨ x̄ ∨ ȳ
(∀-red)

x ∨ x̄
(∀-red)

x
(∀-red)

⊥
In our simulation, we first replace the literal x in a ∨ x ∨ b by x′ before resolving
the resulting clause a∨x′ ∨b with ā∨ x̄∨b. The replacement of x by x′ also leads
to the addition of x̄′ to x̄∨ ȳ ∨ b̄. If we now perform the universal resolution step
of x ∨ b̄ with x̄ ∨ x̄′ ∨ ȳ ∨ b̄, then we obtain the following partial proof:

a ∨ x′ ∨ b ā ∨ x̄ ∨ b
(Q-res)

x′ ∨ x̄ ∨ b

x ∨ b̄ x̄ ∨ x̄′ ∨ ȳ ∨ b̄
(QU-res)

x̄′ ∨ ȳ ∨ b̄
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Q-Res [20]

LQ-Res [26, 1]

QU-Res [24]

QRAT [15]

LQU+-Res [2]

?

Fig. 2. Complexity landscape including QRAT. A directed edge from a proof system A
to a proof system B means that A is strictly stronger than B.

The Q-res step upon b is now impossible because x′ is in x′ ∨ x̄ ∨ b and x̄′

is in x̄′ ∨ ȳ ∨ b̄. We also cannot eliminate x′ from x′ ∨ x̄ ∨ b via blocked-literal
elimination: This would require us to add a new literal x′′ to x′ ∨ x̄ ∨ b and to
add x̄′′ to x̄′ ∨ ȳ ∨ b̄ leading to the new pair x′′, x̄′′ of complementary literals.

Our key result, Lemma 1, does not hold anymore when allowing resolution
over universal literals. Lemma 1 guarantees that whenever a new literal x̄′ is
in a proof clause C ′

i of the modified long-distance-resolution proof, then x̄ was
contained in the corresponding clause Ci in the original proof. The above example
shows that resolution over universal literals destroys this property: Although x̄′ is
contained in the clause x̄′∨ȳ∨b̄, the literal x is not contained in the corresponding
clause y ∨ ȳ ∨ b of the original proof because we resolved it away.

8 Conclusion

We showed that the QRAT proof system polynomially simulates long-distance
resolution. In our simulation, we used only a small subset of the QRAT rules:
Q-resolution, universal reduction, blocked-literal addition, and blocked-literal
elimination. Based on our simulation, we implemented a tool that transforms
long-distance-resolution proofs into QRAT proofs. The tool allows to merge a
QRAT derivation produced by a QBF-preprocessor with a long-distance-resolu-
tion proof produced by a search-based solver. The correctness of the resulting
QRAT proof can then be checked with a proof checker such as QRAT-trim [15]. We
evaluated the tool on long-distance-resolution proofs of the well-known Kleine
Büning formulas and manually constructed QRAT proofs of these formulas that
are smaller than their long-distance counterparts.

We further noted that our simulation breaks down if the long-distance-
resolution calculus is extended by resolution upon universal literals, as in the
calculus LQU+-Res. Investigating the exact relationship between LQU+-Res and
QRAT therefore remains open for future work. Another open question is whether
blocked-literal elimination can be polynomially simulated in LQU+-Res. We also
do not know whether it is possible to simulate long-distance resolution with
only Q-resolution, universal reduction, clause deletion, and blocked-literal elim-
ination (but no blocked-literal addition). Finally, what is still unclear is how
QRAT relates to instantiation-based proof systems and sequent proof systems.
Answers to these questions will shed more light on the proof-complexity land-
scape of QBF.
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Abstract. Quantified Boolean Formulas (QBFs) can be used to suc-
cinctly encode problems from domains such as formal verification, plan-
ning, and synthesis. One of the main approaches to QBF solving is Quan-
tified Conflict Driven Clause Learning (QCDCL). By default, QCDCL
assigns variables in the order of their appearance in the quantifier prefix
so as to account for dependencies among variables. Dependency schemes
can be used to relax this restriction and exploit independence among
variables in certain cases, but only at the cost of nontrivial interferences
with the proof system underlying QCDCL. We propose a new technique
for exploiting variable independence within QCDCL that allows solvers
to learn variable dependencies on the fly. The resulting version of QCDCL
enjoys improved propagation and increased flexibility in choosing vari-
ables for branching while retaining ordinary (long-distance) Q-resolution
as its underlying proof system. In experiments on standard benchmark
sets, an implementation of this algorithm shows performance comparable
to state-of-the-art QBF solvers.

1 Introduction

Conflict Driven Clause Learning (CDCL) represents the state of the art in
propositional satisfiability (SAT) solving (see, e.g., [23]). Modern CDCL solvers
are able to handle input formulas with thousands of variables and millions of
clauses [22]. Their remarkable performance has led to the adoption of SAT solv-
ing in electronic design automation (for a survey, see [33]), it has turned algo-
rithms relying on SAT oracles into viable tools for solving hard problems (see,
e.g., [24]), and it has even helped resolve open questions in combinatorics [12].

Encouraged by this success, researchers are turning to an even harder prob-
lem: the satisfiability problem of Quantified Boolean Formulas (QSAT). Quan-
tified Boolean Formulas (QBFs) enrich propositional formulas with universal
and existential quantification over truth values and offer much more succinct
encodings of problems from domains such as planning and synthesis [9]. This
expressive power comes at a price: QSAT is complete for the complexity class
PSPACE and thus believed to be significantly harder than SAT.

Quantified CDCL [7,34] is a natural generalization of CDCL and one of two
dominant algorithmic paradigms in QSAT solving (the other being approaches
broadly based on quantifier expansion [3,14,15,21,27,29,31]). While the perfor-
mance of QCDCL solvers has much improved over the past years, they have so

c© Springer International Publishing AG 2017
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far failed to replicate the success of CDCL in the domain of SAT. One of the
main obstacles in lifting CDCL to QSAT is that the alternation of existential
and universal quantifiers in the quantifier prefix of a QBF (we consider formu-
las in prenex normal form) introduces dependencies among variables that have
to be respected by the order of variable assignments. The resulting constraints
not only reduce the empirical effectiveness of branching heuristics but impose
severe theoretical limits on the power of QCDCL [13]. By default, QCDCL only
considers variables from the outermost quantifier block with unassigned vari-
ables for branching. In the worst case, this forces solvers into a fixed branch-
ing order. Among several techniques that have been introduced to relax this
restriction, dependency schemes are arguably the most general. Given a QBF,
a dependency scheme efficiently computes an overapproximation of its variable
dependencies—that is, the result contains every pair of variables for which there
is a “real” dependency, but it may contain “spurious” dependencies. Lonsing and
Biere [5] introduced a generalization of QCDCL that uses dependency schemes
to relax constraints on the order of variable assignments and implemented this
algorithm in the solver DepQBF.

The use of dependency schemes within DepQBF often leads to performance
improvements, but it has several drawbacks. First, it changes the proof system
underlying constraint learning, and proving soundness of the resulting algorithm
is nontrivial even for a simple version of QCDCL and common dependency
schemes [25,30]. The continuous addition of solver features makes QCDCL a
moving target, and the integration of dependency schemes with any new tech-
nique usually requires a new soundness proof. Second, even if soundness of
the resulting proof system can be established, efficient (linear-time) strategy
extraction from proofs—a common requirement for applications—does not fol-
low. Third, and perhaps most importantly, the syntactic criteria for identifying
dependencies used by common dependency schemes (such as the standard depen-
dency scheme or the resolution-path dependency scheme) are fairly coarse, so
that the set of dependencies computed by such schemes frequently coincides with
the “trivial” dependencies implicit in the quantifier prefix (see Table 3 in Sect. 5).

In this paper, we describe a new approach to exploiting variable independence
in QCDCL solvers we call dependency learning. The idea is that the solver main-
tains a set D of dependencies that is used in propagation and choosing variables
for branching just like in QCDCL with dependency schemes: a clause is consid-
ered unit under the current assignment if it contains a single existential variable
that does not depend, according to D, on any universal variable remaining in the
clause; a variable is eligible for branching if it does not depend, according to D,
on any variable that is currently unassigned (cf. [5]). But instead of initializing D
using a dependency scheme, dependencies are added on the fly as needed. Ini-
tially, the set D is empty, so every clause containing a single existential variable
is considered unit and variables can be assigned in any order. When propagation
runs into a conflict, the solver attempts to derive a new clause by long-distance
Q-resolution [1,8]. Because propagation implicitly performs universal reduction
relative to D but Q-resolution applies universal reduction according to the prefix
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order, the solver may be unable to generate a learned clause. If this happens, a set
of variable dependencies can be identified as the reason for this failure and added
to D, preventing this situation from occurring in the future. The resulting ver-
sion of QCDCL potentially improves on the flexibility provided by dependency
schemes but retains long-distance Q-resolution as its underlying proof system
and therefore supports linear-time strategy extraction [2].

To explore the effectiveness of this technique, we implemented Qute, a
QCDCL solver that supports dependency learning. In experiments with bench-
mark instances from the 2016 QBF evaluation, Qute is competitive with state-
of-the-art QBF solvers on formulas in prenex conjunctive normal form (PCNF).
For formulas represented as quantified circuits in the QCIR format, Qute solves
more instances than any other available solver. Additional experiments show that
the number of dependencies learned by Qute on PCNF instances preprocessed
by Bloqqer is typically only a fraction of those identified by the standard depen-
dency scheme and even the (reflexive) resolution-path dependency scheme, and
that dependency learning allows QCDCL to deal with formulas that are provably
hard to solve for vanilla QCDCL [13].

The remainder of this paper is organized as follows. In Sect. 2, we cover basic
definitions and notation. In Sect. 3, we introduce QCDCL and (long-distance)
Q-resolution, its underlying proof system. In Sect. 4, we describe how to modify
QCDCL to support dependency learning, and prove that the resulting algorithm
is sound and terminating. In Sect. 5, we provide an experimental evaluation of
Qute. In Sect. 6, we conclude with a discussion of our results and future research
directions.

2 Preliminaries

We consider QBFs in Prenex Conjunctive Normal Form (PCNF), i.e., formulas
Φ = Q.ϕ consisting of a (quantifier) prefix Q and a propositional CNF formula ϕ,
called the matrix of Φ. The prefix is a sequence Q = Q1x1 . . . Qnxn, where
Qi ∈ {∀,∃} is a universal or existential quantifier and the xi are variables. We
write xi ≺Φ xj if 1 ≤ i < j ≤ n and Qi �= Qj , dropping the subscript if the
formula Φ is understood. A CNF formula is a finite conjunction C1 ∧ · · ·∧Cm of
clauses, a clause is a finite disjunction (�1 ∨ · · · ∨ �k) of literals, and a literal is a
variable x or a negated variable ¬x. Dually, a DNF formula is a finite disjunction
of T1 ∨ · · · ∨ Tk of terms, and a term is a finite conjunction (�1 ∧ · · · ∧ �k) of
literals. Whenever convenient, we consider clauses and terms as sets of literals,
CNF formulas as sets of clauses, and DNF formulas as sets of terms. We assume
that PCNF formulas are closed, so that every variable occurring in the matrix
appears in the prefix, and that each variable appearing in the prefix occurs in the
matrix. We write var(x) = var(¬x) = x to denote the variable associated with a
literal and let var(C) = { var(�) : � ∈ C } if C is a clause, var(ϕ) =

⋃
C∈ϕ var(C)

if ϕ is a CNF formula, and var(Φ) = var(ϕ) if Φ = Q.ϕ is a PCNF formula.
An assignment is a sequence σ = (�1, . . . , �k) of literals such that var(�i) �=

var(�j) for 1 ≤ i < j ≤ n. If S is a clause or term, we write S[σ] for the the result
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of applying σ to S. For a clause C, we define C[σ] = 
 if �i ∈ C for some 1 ≤
i ≤ k, and C[σ] = C \ {�1, . . . , �k} otherwise, where x = ¬x and ¬x = x. For a
term T , we let T [σ] = ⊥ if �i ∈ T for some 1 ≤ i ≤ k, and T [σ] = T \{�1, . . . , �k}
otherwise. An assignment σ falsifies a clause C if C[σ] = ∅; it satisfies a term T
if T [σ] = ∅. For CNF formulas ϕ, we let ϕ[σ] = {C[σ] : C ∈ ϕ,C[σ] �= 
}, and
for PCNF formulas Φ = Q.ϕ, we let Φ[σ] = Q′.ϕ[σ], where Q′ is obtained by
deleting variables from Q not occurring in ϕ[σ].

The semantics of a PCNF formula Φ are defined as follows. If Φ does not
contain any variables then Φ is true if its matrix is empty and false if its matrix
contains the empty clause ∅. Otherwise, let Φ = QxQ.ϕ. If Q = ∃ then Φ is true
if Φ[(x)] is true or Φ[(¬x)] is true, and if Q = ∀ then Φ is true if both Φ[(x)]
and Φ[(¬x)] are true.

3 QCDCL and Q-Resolution

We briefly review QCDCL and Q-resolution [17], its underlying proof system.
More specifically, we consider long-distance Q-resolution, a version of Q-resolu-
tion that admits the derivation of tautological clauses in certain cases. Although
this proof system was already used in early QCDCL solvers [34], the formal
definition shown in Fig. 1 was given only recently [1]. A dual proof system
called (long-distance) Q-consensus, which operates on terms instead of clauses,
is obtained by swapping the roles of existential and universal variables (the ana-
logue of universal reduction for terms is called existential reduction).

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

The resolution rule allows the derivation of C1 ∨ C2 from clauses C1 ∨ e and ¬e ∨ C2,
provided that the pivot variable e is existential and that e ≺ var(�u) for each universal
literal �u ∈ C1 such that �u ∈ C2. The clause C1 ∨ C2 is called the resolvent of C1 ∨ e
and ¬e ∨ C2.

C (universal reduction)
C \ {u, ¬u}

The universal reduction rule admits the deletion of a universal variable u from a clause C
under the condition that e ≺ u for each existential variable e in C.

Fig. 1. Long-distance Q-resolution.

A (long-distance) Q-resolution derivation from a PCNF formula Φ is a
sequence of clauses such that each clause appears in the matrix of Φ or can
be derived from clauses appearing earlier in the sequence using resolution or
universal reduction. A derivation of the empty clause is called a refutation, and
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one can show that a PCNF formula is false, if, and only if, it has a long-dis-
tance Q-resolution refutation [1]. Dually, a PCNF formula is true, if, and only
if, the empty term can be derived from a DNF representation of its matrix by
Q-consensus.

Starting from an input PCNF formula, QCDCL generates (“learns”) con-
straints—clauses and terms—until it produces an empty constraint. Every clause
learned by QCDCL can be derived from the input formula by Q-resolution, and
every term learned by QCDCL can be derived by Q-consensus [8,10]. Accord-
ingly, the solver outputs true if the empty term is learned, and false if the
empty clause is learned.

One can think of QCDCL solving as proceeding in rounds. Along with a set of
clauses and terms, the solver maintains an assignment σ. During each round, this
assignment is extended by quantified Boolean constraint propagation (QBCP)
and—possibly—branching.

Quantified Boolean constraint propagation consists in the exhaustive appli-
cation of universal and existential reduction in combination with unit assign-
ments.1 More specifically, QBCP reports a clause C as falsified if C[σ] �= 
 and
universal reduction can be applied to C[σ] to obtain the empty clause. Dually,
a term T is considered satisfied if T [σ] �= ⊥ and T [σ] can be reduced to the
empty term. A clause C is unit under σ if C[σ] �= 
 and universal reduction
yields the clause C ′ = (�), for some existential literal � such that var(�) is unas-
signed. Dually, a term T is unit under σ if T [σ] �= ⊥ and existential reduction
can be applied to obtain a term T ′ = (�) containing a single universal literal �. If
C = (�) is a unit clause, then the assignment σ has to be extended by � in order
not to falsify C, and if T = (�) is a unit term, then σ has to be extended by �
in order not to satisfy T . If several clauses or terms are unit under σ, QBCP
nondeterministically picks one and extends the assignment accordingly. This is
repeated until a constraint is empty or no unit constraints remain.

If QBCP does not lead to an empty constraint, the assignment σ is extended
by branching. That is, the solver chooses an unassigned variable x such that
every variable y with y ≺ x is assigned, and extends the assignment σ by x
or ¬x.

The resulting assignment can be partitioned into so-called decision levels.
The decision level of an assigment σ is the number of literals in σ that were
assigned by branching. The decision level of a literal � in σ is the decision level
of the prefix of σ that ends with �. Note that each decision level greater than 0
can be associated with a unique variable assigned by branching.

Eventually, the assignment maintained by QCDCL must falsify a clause or
satisfy a term. When this happens (this is called a conflict), the solver proceeds
to conflict analysis to derive a learned constraint C. Initially, C is the falsified
clause (satisfied term), called the conflict clause (term). The solver finds the
existential (universal) literal in C that was assigned last by QBCP, and the
antecedent clause (term) R responsible for this assignment. A new constraint
is derived by resolving C and R and applying universal (existential) reduction.

1 We do not consider the pure literal rule as part of QBCP.
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This is done repeatedly until the resulting constraint C is asserting. A clause
(term) S is asserting if there is a unique existential (universal) literal � ∈ S with
maximum decision level among literals in S, the corresponding decision variable
is existential (universal), and every universal (existential) variable y ∈ var(S)
such that y ≺ var(�) is assigned at a lower decision level (an asserting constraint
becomes unit after backtracking). Once an asserting constraint has been found,
it is added to the solver’s set of constraints. Finally, QCDCL backtracks, undoing
variable assignments until reaching a decision level computed from the learned
constraint.

4 QCDCL with Dependency Learning

We now describe how to modify QCDCL to support dependency learning. First,
the solver maintains a set D ⊆ { (x, y) : x ≺ y } of variable dependencies. Second,
both QBCP and the decision rule must be modified as follows:

– qbcp() uses universal and existential reduction relative to D. Universal
reduction relative to D removes each universal variable u from a clause C
such that there is no existential variable e ∈ var(C) with (u, e) ∈ D (exis-
tential reduction relative to D is defined dually).

Algorithm 1. QCDCL with Dependency Learning

1: procedure solve( )
2: D = ∅
3: while true do
4: conflict = QBCP()
5: if conflict == none then
6: decide()
7: else
8: constraint , btlevel = analyzeConflict(conflict)
9: if constraint != none then

10: if isEmpty(constraint) then
11: if isTerm(constraint) then
12: return true
13: else
14: return false
15: end if
16: else
17: addLearnedConstraint(constraint)
18: end if
19: end if
20: backtrack(btlevel)
21: end if
22: end while
23: end procedure
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– decide() may assign any variable y such that there is no unassigned vari-
able x with (x, y) ∈ D (note that (x, y) ∈ D implies x ≺ y).

This is how DepQBF uses the dependency relation D computed by a depen-
dency scheme in propagation and decisions [5]. Unlike DepQBF, QCDCL with
dependency learning does not use the generalized reduction rules during conflict
analysis (resolve and reduce in lines 7 and 8 refer to resolution and reduction
as defined in Fig. 1). As a consequence, the algorithm cannot always construct a
learned constraint during conflict analysis (see the example below). Such cases
are dealt with in lines 9 through 12 of analyzeConflict (Algorithm 2):

– existsResolvent(constraint , reason, pivot) determines whether the resol-
vent of constraint and reason exists.

– If this is not the case, there has to be a variable v (universal for clauses,
existential for terms) satisfying the following condition: v ≺ pivot and there
exists a literal � ∈ constraint with var(�) = v and � ∈ reason. The set of
such variables is computed by illegalMerges. For each such variable, a
new dependency is added to D. No learned constraint is returned by conflict
analysis, and the backtrack level (btlevel) is set so as to cancel the decision
level at which pivot was assigned.

The criteria for a constraint to be asserting must also be slightly adapted:
a clause (term) S is asserting with respect to D if there is a unique existential
(universal) literal � ∈ S with maximum decision level among literals in S, the cor-
responding decision variable is existential (universal), and every universal (exis-
tential) variable y ∈ var(S) such that (y, var(�)) ∈ D is assigned (again, this cor-
responds to the definition of asserting constraints used in DepQBF [19, p. 119]).
Finally, in the main QCDCL loop, we have to implement a case distinction to
account for the fact that conflict analysis may not return a constraint (line 9).

Algorithm 2. Conflict Analysis with Dependency Learning
1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do
4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: if existsResolvent(constraint , reason, pivot) then
7: constraint = resolve(constraint , reason, pivot)
8: constraint = reduce(constraint)
9: else

10: illegal merges = illegalMerges(constraint , reason, pivot)
11: D = D ∪ { (v, pivot) : v ∈ illegal merges }
12: return none, decisionLevel(pivot)
13: end if
14: end while
15: btlevel = getBacktrackLevel(constraint)
16: return constraint , btlevel
17: end procedure
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4.1 Examples

We now illustrate the two possible outcomes of conflict analysis with simple
examples. First, take the QBF

Φ = ∀u∃e.(u ∨ e).

Starting from an empty set D of dependencies, QCDCL with dependency learn-
ing initially assumes that e is independent of u. By applying universal reduction
relative to D to the clause (u ∨ e), one derives the unit clause (e). Accordingly,
the solver appends e to its current assignment and finds the matrix satisfied.
Since (e) is a term in the DNF representation of Φ’s matrix and (e) can be
reduced to the empty term by existential reduction, QCDCL learns the empty
term and correctly reports that Φ is true. Now consider

Ψ = ∀u∃e.(u ∨ e) ∧ (¬u ∨ ¬e).

Again, QCDCL with dependency learning starting with empty D considers the
first clause unit and appends e to its assignment. Propagating this assignment
to the second clause results in a conflict, as (¬u ∨ ¬e)[e �→ 1] = (¬u), which
simplifies to the empty clause by universal reduction. During conflict analysis,
the solver attempts to construct a learned clause by resolving the conflict clause
(¬u ∨ ¬e) with the clause (u ∨ e) responsible for propagating e. But since u ≺ e
is universal and appears negated in the first and unnegated in the second clause,
these two clauses do not have a resolvent in long-distance Q-resolution, and the
solver is unable to learn a clause. Instead, it adds the dependency (u, e) to D
and backtracks until e is unassigned. Now that D contains the dependency (u, e),
the universal variable u can no longer be reduced from a clause that contains e,
so neither clause is unit. Moreover, the solver cannot branch on e while u is
unassigned. It is easy to see that from this point on, the solver behaves just like
ordinary QCDCL on this example.

4.2 Soundness and Termination

Soundness of QCDCL with dependency learning is an immediate consequence
of the following observation.

Observation 1. Every constraint learned by QCDCL with dependency learning
can be derived from the input formula by long-distance Q-resolution or Q-con-
sensus.

To prove termination, we argue that the algorithm learns a new constraint or a
new dependency after each conflict. Just as in QCDCL, every learned constraint
is asserting, so learning does not introduce duplicate constraints.

Observation 2. QCDCL with dependency learning never learns a constraint
already present in the database.



306 T. Peitl et al.

The only additional argument required to prove termination is one that tells us
that the algorithm cannot indefinitely “learn” the same dependencies.

Lemma 1. If QCDCL with dependency learning does not learn a constraint
during conflict analysis, it learns a new dependency.

Proof. To simplify the presentation, we are only going to consider clause learning
(the proof for term learning is analogous). We first establish an invariant of
intermediate clauses derived during conflict analysis: they are empty under the
partial assignment obtained by backtracking to the last literal in the assignment
that falsifies an existential literal in the clause. Formally, let C be a clause
and let σ = (�1, . . . , �k) be an assignment. We define lastC(σ) = max({ i ∈
[k] : �i ∈ C, var(�i) ∈ var∃ }∪{0}) and let σC = (�1, . . . , �lastC(σ)). In particular,
if lastC(σ) = 0 then σC is empty.

We now prove the following claim: if σ is an assignment that falsifies a clause,
then, for every intermediate clause C constructed during conflict analysis, C[σC ]
is empty after universal reduction. The proof is by induction on the number of
resolution steps in the derivation of C. If C is the conflict clause then C[σ] reduces
to the empty clause. That means C[σC ] can only contain universal literals and
can also be reduced to the empty clause by universal reduction. Suppose C is
the result of resolving clauses C ′ and R and applying universal reduction, where
C ′ is an intermediate clause derived during conflict analysis and R is a clause
that triggered unit propagation. The induction hypothesis tells us that C ′[σC′ ]
reduces to the empty clause. Since the pivot literal � is chosen to be the last
existential literal falsified in C ′, we must have σC′ = (�1, . . . , �k) where �k = �.
Let τ = (�1, . . . , �k−1). We must have C ′[τ ] = U ′ ∪ {�}, where U ′ is a purely
universal clause. Because R is responsible for propagating �, we further must
have R[τ ] = U ′′ ∪{�}, where U ′′ again is a purely universal clause. It follows that
their resolvent C[τ ] = (C ′ \ {�})[τ ] ∪ (R \ {�})[τ ] = U ′ ∪ U ′′ is a purely universal
clause. Since τ is a prefix of σ, it follows that C[σC ] is a purely universal clause
as well and therefore empty after universal reduction. This proves the claim.

We proceed to prove the lemma. If the algorithm does not learn a clause
during conflict analysis, this must be due to a failed attempt at resolving an
intermediate clause C with a clause R responsible for unit propagation. That
is, if e is the existential pivot variable, there must be a universal variable u ≺ e
such that u ∈ var(C) ∩ var(R) and {u,¬u} ⊆ C ∪ R. Towards a contradiction,
suppose that (u, e) ∈ D. Let σ denote the assignment that caused the conflict
and assume without loss of generality that {u, e} ⊆ R and {¬u,¬e} ⊆ C. Since
R caused propagation of e but (u, e) ∈ D, the variable u must have been assigned
before e and ¬u ∈ σ. As the pivot ¬e is the last existential literal falsified in C,
it follows that ¬u ∈ σC . Because ¬u ∈ C, this implies that the assignment σC

satisfies C, in contradiction with the claim proved above.
The number of dependencies and constraints is bounded by a function of the

number n of variables, and QCDCL runs into a conflict at least every n variable
assignments, so Observation 2 and Lemma 1 imply termination.

Theorem 1. QCDCL with dependency learning is sound and terminating.
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5 Experiments

To see whether dependency learning works in practice, we implemented a
QCDCL solver that supports this technique named Qute.2 We evaluated the
performance of Qute in several experiments. First, we measured the number of
instances solved by Qute on benchmark sets from the 2016 QBF evaluation [26].
We compare these numbers with those of the best performing publicly avail-
able solvers for each benchmark set. In a second experiment, we computed the
dependency sets given by the standard dependency scheme [4,28] and the reflex-
ive resolution-path dependency scheme [30,32] for preprocessed instances, and
compared their sizes to the number of dependencies learned by Qute. Finally, we
revisit an instance family which is known to be hard to solve for QCDCL [13]
and show they pose no challenge to Qute. For our experiments, we used a cluster
with Intel Xeon E5649 processors at 2.53 GHz running 64-bit Linux.

5.1 Solved Instances for QBF Evaluation 2016 Benchmark Sets

In our first experiment, we used the prenex non-CNF (QCIR [16]) benchmark
set from the 2016 QBF evaluation consisting of 890 formulas. Time and memory
limits were set to 10 min and 4 GB, respectively. The results are summarized
in Table 1 and Fig. 2. Qute is able to solve signficantly more instances within
the timeout than the other solvers, and this appears to be in large part due to
dependency learning: when dependency learning is deactivated, the number of
solved instances drops significantly.

Table 1. Instances from the 2016 QBF evaluation prenex non-CNF (QCIR) benchmark
set solved within 10 min.

Solver Total Sat Unsat

Qute+dl 581 274 307

GhostQ 524 228 296

QuAbS 515 225 290

Qute 494 228 266

RAReQS 403 174 229

For our second experiment, we used the prenex CNF (PCNF) benchmark set
from the 2016 QBF evaluation consisting of 825 instances. Time and memory
limits were again set to 10 min and 4 GB. We performed this experiment twice:
with and without preprocessing using bloqqer [6]. In order not to introduce vari-
ance in overall runtime through preprocessing, each instance was preprocessed
only once and solvers were run on the preprocessed instances with a timeout
corresponding to the overall timeout minus the time spent on preprocessing.
2 http://github.com/perebor/qute.

http://github.com/perebor/qute


308 T. Peitl et al.

Fig. 2. Solved instances from the 2016 QBF evaluation prenex non-CNF (QCIR)
benchmark set (x-axis) sorted by runtime (y-axis).

Since Qute shows good performance on QCIR instances, we included config-
urations that perform partial circuit reconstruction using qcir-conv3 and then
solve the resulting QCIR instance.

The results obtained without using bloqqer are shown on the left hand side
of Table 2. When not using qcir-conv, Qute solves more instances with depen-
dency learning than without dependency learning. Curiously, the opposite is the
case when qcir-conv is used: in this case, Qute solves 3 more instances when
dependency learning is turned off. Overall, we see that circuit reconstruction

Table 2. Instances from the QBF evaluation 2016 prenex CNF (PCNF) benchmark set
solved within 10min without preprocessing (left) and with preprocessing using bloqqer
(right).

solver total sat unsat

GhostQ 584 297 287
Qute+qcir-conv 538 283 255
Qute+dl+qcir-conv 535 277 258
DepQBF 451 200 251
Qute+dl 434 190 244
Qute 416 191 225
CAQE 358 167 191
RAReQS 335 128 207

solver total sat unsat

RAReQS 615 299 316
DepQBF 585 294 291
CAQE 577 288 289
GhostQ 563 289 274
Qute+dl+qcir-conv 556 276 280
Qute+qcir-conv 541 266 275
Qute+dl 519 252 267
Qute 510 242 268

3 http://www.cs.cmu.edu/∼wklieber/qcir-conv.py.

http://www.cs.cmu.edu/~wklieber/qcir-conv.py
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(also used internally by GhostQ [18]) substantially increases the performance
of Qute.

The results including preprocessing with bloqqer are shown on the right hand
side of Table 2. With the exception of GhostQ, all solvers and configurations solve
more instances when paired with bloqqer. However, the increase is less significant
for Qute compared to other solvers, in particular in combination with qcir-conv.
Notably, dependency learning increased the number of instances solved by Qute
regardless of whether qcir-conv was used.

5.2 Learned Dependencies Compared to Dependency Relations

To get an idea of how well QCDCL with dependency learning is able to exploit
independence, we compared the number of dependencies learned by Qute with
the number of standard and resolution-path dependencies for instances from
the PCNF benchmark set after preprocessing with bloqqer. We only considered
instances with at least one quantifier alternation after preprocessing. Qute was
run with a 10 min timeout (excluding preprocessing). If an instance was not
solved we used the number of dependencies learned within that time limit.4

Summary statistics are shown in Table 3. On average, the standard depen-
dency scheme does not provide a significant improvement over trivial dependen-
cies. The reflexive resolution-path dependency scheme does better, but the high
median shows that the set of trivial dependencies it can identify as spurious is
still small in many cases. The fraction of learned dependencies is much smaller
than either dependency relation on average, and the median fraction of trivial
dependencies learned is even below 1%.

This indicates that proof search in QCDCL with dependency learning is less
constrained than in QCDCL with either dependency scheme: since QCDCL is
allowed to branch on a variable x only if every variable that x depends on has
already been assigned, decision heuristics are likely to have a larger pool of
variables to choose from if fewer dependencies are present.

Table 3. Learned dependencies, standard dependencies, and reflexive resolution-path
dependencies for instances preprocessed by bloqqer, as a fraction of trivial
dependencies.

Dependencies Mean Median Variance

Learned 0.082 0.008 0.030

Standard 0.938 1.000 0.030

Resolution-path 0.660 0.942 0.172

4 We cannot rule out that, for unsolved instances, Qute would have to learn a larger
fraction of trivial dependencies before terminating. However, the solver tends to
learn most dependencies at the beginning of a run, with the fraction of learned
trivial dependencies quickly converging to a value that does not increase much until
termination.
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5.3 Dependency Learning on Hard Instances for QCDCL

For our third experiment, we chose a family of instances CRn recently used to
show that ordinary QCDCL does not simulate tree-like Q-resolution [13]. Since
the hardness of these formulas is tied to QCDCL not propagating across quanti-
fier levels, they represent natural test cases for QCDCL with dependency learn-
ing. We recorded the number of backtracks required to solve CRn by Qute with
and without dependency learning, for n ∈ {1, ..., 50}. As a reference, we used
DepQBF.5 For this experiment, we kept the memory limit of 4 GB but increased
the timeout to one hour. The results are summarized in Fig. 3. As one would
expect, Qute without dependency learning and DepQBF were only able to solve
instances up to n = 7 and n = 8, respectively. Furthermore, it is evident from the
plot that the number of backtracks grows exponentially with n for both solvers.
By contrast, Qute with dependency learning was able to solve all instances within
the timeout.

Fig. 3. Backtracks for instances CRn based on the completion principle [13], as a func-
tion of n.

6 Discussion

In our experiments, Qute performed much better when presented with non-
CNF input. In particular, dependency learning was most effective on the prenex
non-CNF (QCIR) benchmark set, accounting for a 15% increase in the num-
ber of solved instances. Even for PCNF formulas, the best configuration(s)
5 For sake of comparing with Qute in prefix mode, we disabled features recently added

to DepQBF such as dynamic quantified blocked clause elimination [20] and oracle
calls to the expansion-based solver Nenofex.
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used tools for partially recovering circuit structure from CNF. This is consis-
tent with the fact that Qute did not benefit from preprocessing nearly as much
as other solvers, since preprocessing is known to adversely affect circuit recon-
struction [11]. Whether this bias towards non-CNF representations is inherent to
QCDCL with dependency learning or an artifact of other design choices imple-
mented in our solver remains to be seen.

Dependency learning has several advantages over the use of dependency
schemes within QCDCL: by retaining long-distance Q-resolution as its under-
lying proof system, the resulting algorithm is amenable to a simple correctness
proof and supports linear-time strategy extraction. Moreover, our experiments
indicate that proof search is less constrained with dependency learning, since
typically only a small fraction of the dependencies computed by known depen-
dency schemes has to be learned.

Sometimes, this additional freedom can be detrimental to performance, and a
significant proportion of the overall runtime has to be spent on learning depen-
dencies that are not spurious. To deal with such cases, we hope to find some
middle ground between our current “tabula rasa” implementation of depen-
dency learning and approaches that include too many spurious dependencies,
by introducing a (small) set of dependencies that steer proof search in the right
direction. For instance, Qute uses Tseitin conversion to obtain a set of initial
clauses and terms from non-CNF (QCIR) instances. We found that assigning a
Tseitin variable before a variable used in its definition often results in learning a
dependency, so that it pays off to simply include dependencies of a Tseitin vari-
able on the variables used in its definition from the start. For similar reasons,
users may want to initialize D with pairs of variables that they know are depen-
dent by construction. We hope to address this question by designing heuristics
for “seeding” dependencies in a smart way as part of future work.

Acknowledgments. The authors thank Florian Lonsing for helpful discussions
related to QCDCL. This research was kindly supported by FWF grants P27721 and
W1255-N23.

References

1. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods Syst. Des. 41(1), 45–65 (2012)

2. Balabanov, V., Jiang, J.R., Janota, M., Widl, M.: Efficient extraction of QBF
(counter)models from long-distance resolution proofs. In: Bonet, B., Koenig, S.
(eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
Austin, Texas, USA, 25–30 January 2015, pp. 3694–3701. AAAI Press (2015)

3. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005). doi:10.1007/11527695 5

4. Lonsing, F., Biere, A.: A compact representation for syntactic dependencies in
QBFs. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 398–411. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 37

http://dx.doi.org/10.1007/11527695_5
http://dx.doi.org/10.1007/978-3-642-02777-2_37


312 T. Peitl et al.

5. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7 14

6. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
101–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 10

7. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate
Quantified Boolean Formulae and its experimental evaluation. J. Autom. Reason.
28(2), 101–142 (2002)

8. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and
strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp,
A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-45221-5 21

9. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
354–370. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54577-5 20

10. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416
(2006)

11. Goultiaeva, A., Bacchus, F.: Recovering and utilizing partial duality in QBF.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 83–99.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5 8

12. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). doi:10.
1007/978-3-319-40970-2 15

13. Janota, M.: On Q-resolution and CDCL QBF solving. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 402–418. Springer, Cham (2016). doi:10.
1007/978-3-319-40970-2 25

14. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with
counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31612-8 10

15. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q.,
Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, pp. 325–331. AAAI Press (2015)

16. Jordan, C., Klieber, W., Seidl, M.: Non-cnf QBF solving with QCIR. In: Darwiche,
A. (ed.) Beyond NP, Papers from the 2016 AAAI Workshop. AAAI Workshops,
vol. WS-16-05. AAAI Press (2016)
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Abstract. This paper presents a sound and complete proof system for
Dependency Quantified Boolean Formulas (DQBF) using resolution, uni-
versal reduction, and a new proof rule that we call fork extension. This
opens new avenues for the development of efficient algorithms for DQBF.

1 Introduction

Dependency quantified Boolean formulas (DQBF) extend quantified Boolean for-
mulas (QBF) by Henkin quantifiers ∃x : Y. ϕ, which bind a variable x and also
specify a dependency set Y of universal variables that x may depend on [17,22].
Henkin quantifiers allow us to succinctly express the existence of functions sat-
isfying quantified constraints. For example, we can formulate the existence of a
function add : B32 × B

32 → B
32 implementing the axioms of addition in 32-bit

arithmetic: ∀x. add(x, 0) = x ∧ ∀x, y. add(x, y + 1) = add(x, y) + 1, where x + 1
stands for the increment-by-one circuit encoded as constraints. The formula can
be rewritten into DQBF syntax without much overhead, as we discuss in Sect. 3.

DQBF enables elegant encodings for applications such as bounded reactive
synthesis [9] and partial equivalence checking of circuits [14]. Its elegance and
expressiveness make DQBF a potential candidate logic to serve as the inter-
face between algorithms and applications in synthesis, verification, and artificial
intelligence that require impractically large encodings in other logics such as
QBF and propositional Boolean logic (SAT). Recently, there has been a surge
of interest in practical algorithms for DQBF [11–15,32], but their performance
is still unsatisfactory [8]. We argue that this is due to the lack of suitable proof
systems.

Resolution is one of the fundamental proof rules for first-order logic [7]. It
says that given two clauses (x ∨ a1 ∨ · · · ∨ an) and (¬x ∨ b1 ∨ · · · ∨ bm) we can
infer the clause (a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bm), which we call the resolvent. The
best known application of resolution is the conflict analysis step of the conflict-
driven clause learning (CDCL) algorithm, which is the basis for modern SAT
solvers [26].

While resolution is sufficient to prove or disprove any propositional Boolean
formula, we need a second proof rule for QBF. The universal reduction rule says
that we can delete a literal of a universal variable from a clause, if no variable in
the clause may depend on it, i.e. no existential variable in this clause is bound in
the scope of the universal variable. Resolution and universal reduction form the

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 314–325, 2017.
DOI: 10.1007/978-3-319-66263-3 20
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Q-resolution proof system, which plays a similar role for QBF as resolution plays
for SAT [6]. Some of the recently popular algorithms for QBF, QCDCL [20,33],
CEGAR [18,19,24,27], and Incremental Determinization [23], can be phrased as
variants of Q-Resolution [28].

While resolution is complete for propositional Boolean logic, and Q-resolution
is complete for QBF [6], resolution and Q-resolution were shown to be incom-
plete for DQBF [1,2]. The only known complete proof systems for DQBF resort
to expansion or (similarly) annotating literals with partial instantiations of
the universal variables [2]. While expansion is widely used in preprocessors for
QBF [4,32], using expansion as a solving technique is less popular due to its
often excessive memory requirements. Instead, most of the popular solvers for
SAT and QBF rely on resolution in their reasoning. A resolution-style proof
system for DQBF might therefore help to lift efficient algorithms to DQBF.

In this paper, we present a resolution-style proof system for DQBF, called
Fork-Resolution. It uses resolution, universal reduction, and, to achieve com-
pleteness, introduces a new proof rule called fork extension. Fork extension is
derived from the extension rule from extended resolution [29] and says that, given
a clause (a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bm), we can infer the clauses (x ∨ a1 ∨ · · · ∨ an)
and (¬x∨b1 ∨· · ·∨bm), where x is a fresh variable. The key insight in this paper
is that it is sufficient to apply extension to a specific type of clauses that we call
information forks.1

An information fork is a clause that contains variables with incomparable
dependency sets. Consider a DQBF with a single clause ∃x1 : {y1}. ∃x2 :
{y2}. (x1∨x2). To satisfy the clause with a Skolem function, we have to decide in
which cases the clause is satisfied by x1 and in which cases x2 is responsible for
satisfying the clause. As x1 and x2 have disjoint dependency sets, they cannot
depend on the value of the other variable. So the only way to make sure the
clause is always satisfied is to require that one of x1 and x2 is always responsible
for satisfying the clause. In other words, there must be a constant that indicates
which side of the clause is responsible for satisfying the clause. With the fork
extension rule, we introduce a variable x that represents this constant. We split
the clause into two clauses (x1 ∨ x) and (¬x ∨ x2) and introduce x with the
empty dependency set (∃x : ∅). In general, the decision of which side of the
clause has to satisfy the clause must be decided based only on the information
that is available to both literals, i.e. the intersection of their dependency sets.

This paper is structured as follows. We introduce basic notation in Sect. 2 and
provide an encoding of functions in DQBF in Sect. 3. In Sect. 4, we introduce the
Fork-Resolution proof system. Section 5 demonstrates that Fork-Resolution can
disprove a formula for which Q-resolution is incomplete. The proofs of sound-
ness and completeness can be found in Sect. 6. We briefly discuss how Fork-
Resolution is separated exponentially from other proof systems for DQBF in
Sect. 7. Section 8 discusses related work.

1 The concept is loosely connected to information forks in reactive synthesis of dis-
tributed systems [10].
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2 Dependency Quantified Boolean Formulas

Dependency quantified Boolean formulas (DQBFs) over a set of variables V are
generated by the following grammar with starting symbol ψ:

ψ := ∃ v : {v, . . . , v}. ψ | ϕ
ϕ := 0 | 1 | v | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ,

where v ∈ V , and {v, . . . , v} stands for a finite subset of V . Quantifiers in DQBF
∃x : {y1, . . . , yn} specify a single existential variable x and also a finite set of
universal variables {y1, . . . , yn} that x may depend on. We call {y1, . . . , yn} also
the dependency set of x, denoted dep(x). The variables that occur in dependency
sets are the universal variables. All variables that are not universal are called
existential variables. We say that a quantifier ∃x : Y. ϕ binds the existential vari-
able x in its subformula ϕ. To simplify the discussion, we assume that existential
variables are bound at most once and that universal variables are never bound.
A DQBF is closed if it only contains universal variables and bound existential
variables.

In the following we define the semantics of DQBF for which we assume that
the reader is familiar with the natural semantics of propositional Boolean for-
mulas. An assignment y to a set of variables Y is a function y : Y → B that
maps each variable y ∈ Y to either 1 or 0. Given a set of variables Y , we denote
the set of assignments to Y with 2Y . Given a propositional formula ϕ over vari-
ables X and an assignment x′ for X ′ ⊆ X, we define ϕ(x′) to be the formula
obtained by replacing the variables X ′ by their truth value in x′. By ϕ(x′,x′′) we
denote the replacement by multiple assignments for disjoint sets X ′,X ′′ ⊆ X. A
Skolem function fx maps assignments to dep(x) to assignments to x, interpreted
as assignments to x. We define the truth of a DQBF ϕ with existential variables
X = {x1, . . . , xn} and universal variables Y as the existence of Skolem functions
fX = {fx1 , . . . , fxn

}, such that ϕ(y, fX(y)) is satisfiable for every assignment y
to Y .

A literal l is either a variable x ∈ X, or its negation ¬x. We use l to denote
the complement operation that gives the literal with the negated value of l and
we define var(l) to be the variable that the literal contains. Given a set of literals
{l1, . . . , ln}, their disjunction (l1 ∨ . . . ∨ ln) is called a clause. As usual in the
community, we use set notation for the manipulation of clauses. A clause C is
called tautological if it contains a literal l and its complement l. We use vars(C)
to denote the variables occurring in C.

A propositional formula is in conjunctive normal form (CNF), if it is a con-
junction of clauses. A closed DQBF is in CNF if its propositional subformula is
in CNF. Every DQBF ϕ can be transformed into a closed DQBF in CNF with
size O(|ϕ|), preserving satisfiability. In the rest of this work we assume DQBFs
to be in CNF.

We extend the notation of dependency sets to negated variables (and thus
literals), dep(¬v) = dep(v). Applied to clauses, dep(C) denotes the union of the
universal variables and the dependencies of the existential variables in C.
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3 On Quantification over Functions

Our interest in DQBF is rooted in the fact that we can encode existential quan-
tification over functions. In the following, we present a transformation that allows
us to eliminate functions from a formula. For the (first-order) theory of equality
and uninterpreted functions, there is a similar transformation, called Ackerman-
nization [5]. Unlike Ackermannization, the transformation below is linear in the
size of the formula.

Consider a formula ϕ = ∃f : B
N → B . ψ. We can turn that into an

equivalent formula ϕ′ that does not use f . Let f have k function applica-
tions f(e1,1, . . . , e1,N ), . . . , f(ek,1, . . . , ek,N ) in ψ, where ei,j are terms. We intro-
duce fresh variables f1, . . . , fk and dependency sets X1, . . . , Xk, each Xi =
{xi,1, . . . , xi,N} consisting of N fresh variables, for the function applications.
We then define ϕ′ as

∃f1 : X1. . . . ∃fk : Xk.
∧k

i=2

((∧N
j=1 x1,j =xi,j

)
=⇒ f1 = fi

)
∧

[(∧k
i=1

∧N
j=1 ei,j =xi,j

)
=⇒ ψ[{f(ei,1, . . . , ei,N )/fi | 1 ≤ i ≤ k}]

]

The conjunct
∧k

i=2

((∧N
j=1 x1,j =xi,j

)
=⇒ f1 = fi

)
requires that variables

f1, . . . , fk represent the same function. If f1 and fi have different values for some
“input” x∗, we set x1 = xi = x∗ and see that f1 = fi is violated. Transitivity of
equality allows us to avoid encoding the pairwise equality explicitly.

The second conjunct of the formula states that if f1, . . . , fk represent the
outputs of this function for the k function applications, the formula where we
replace the function applications by the fi has to hold.

The constraints can be transformed into a CNF of linear size with the Tseitin
transformation [29].

If ϕ contains multiple functions they can be replaced independently, by first
introducing new variables such that no argument of a function contains a func-
tion application. Then replacing one function does not affect the function appli-
cations of other functions. So, the linear increase in size does not multiply over
multiple applications of the function elimination and we only get a linear increase
in the size of the formula overall.

4 The Fork-Resolution Proof System

The Fork-Resolution proof system consists of the following three rules:

Resolution [7]:
C1 ∪ {l} C2 ∪ {l}

C1 ∪ C2
(Res)

We call the clause (C1\{l})∪ (C2\{l}) that is obtained by the resolution rule
the resolvent of C1 and C2 and we call var(l) the pivot. The resolution rule is



318 M.N. Rabe

only applied when the resolvent is not a tautology, i.e. does not contain two
complementary literals.

Universal Reduction [6]:

C var(l) /∈ dep(C\{l}) l /∈ C var(l) is universal
C\{l} (∀Red)

Fork Extension:

C1 ∪ C2 dep(C1) 
⊆ dep(C2) dep(C1) 
⊇ dep(C2) x is fresh
∃x : dep(C1) ∩ dep(C2). C1∪{x} ∧ C2∪{¬x} (FEx)

The fork extension rule introduces a new quantified variable x to split a
clause into two parts. The dependency set of x is defined as the intersection
of dep(C1) and dep(C2). We only apply fork extension to clauses C1 ∪ C2 that
consist of two parts have incomparable dependency sets (dep(C1) 
⊆ dep(C2) and
dep(C1) 
⊇ dep(C2)). We call such clauses information forks.

The idea is that for each assignment to the universal variables one of the
two parts C1 and C2 is “responsible” for satisfying the original clause C1 ∪ C2.
The variables in C1 and C2, however, may have different dependency sets, and
so they must coordinate their responsibility only based on the information that
is common to them.

5 Example

We demonstrate the proof system along an example. We use a shortened version
of the example used to show incompleteness of Q-resolution for DQBF [1]. The
formula states ∃y1 : {x1}. ∃y2 : {x2}. (x1 ∧ x2) ↔ (y1 = y2). The formula states
that the existential variables y1 and y2 have to be equal iff x1 and x2 are true.
But y1 and y2 can each only see one of x1 and x2 and thus cannot coordinate
to satisfy the constraint. That is, the formula is false. The propositional part of
the formula can be represented in CNF as follows:

y1 ∨ y2 ∨ x1 (1)
¬y1 ∨ ¬y2 ∨ x1 (2)
y1 ∨ y2 ∨ x2 (3)
¬y1 ∨ ¬y2 ∨ x2 (4)
y1 ∨ ¬y2 ∨ ¬x1 ∨ ¬x2 (5)
¬y1 ∨ y2 ∨ ¬x1 ∨ ¬x2 (6)

Despite the formula being false, we can see with a little effort that all resol-
vents of the clauses above are tautologies. This demonstrates that Q-resolution
for DQBF is incomplete [1].

The Fork-Resolution proof system can disprove the formula as we show in
the following. Variables y1 and y2 are leaf-existentials, and all six clauses are
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information forks. Applying FEx to clauses (1)–(6) introduces variables t1 to t6
with empty dependencies (∃t1 : ∅. . . . ∃t6 : ∅.) and yields the following clauses:

t1 ∨ y1 ∨ x1 (1a)
t2 ∨ ¬y1 ∨ x1 (2a)
t3 ∨ y1 (3a)
t4 ∨ ¬y1 (4a)
t5 ∨ y1 ∨ ¬x1 (5a)
t6 ∨ ¬y1 ∨ ¬x1 (6a)

¬t1 ∨ y2 (1b)
¬t2 ∨ ¬y2 (2b)
¬t3 ∨ y2 ∨ x2 (3b)
¬t4 ∨ ¬y2 ∨ x2 (4b)
¬t5 ∨ ¬y2 ∨ ¬x2 (5b)
¬t6 ∨ y2 ∨ ¬x2 (6b)

Next, we derive six resolvents as listed below. Their names indicate the pair of
clauses they originate from. (We drop universal variables by universal reduction.)

t1 ∨ t4 (1a4a)
t3 ∨ t6 (3a6a)
t4 ∨ t5 (4a5a)

¬t1 ∨ ¬t5 (1b5b)
¬t2 ∨ ¬t6 (2b6b)
¬t3 ∨ ¬t4 (3b4b)

Resolving clauses (4a5a) and (1b5b) gives us (¬t1∨ t4), which we resolve with
(1a4a) to get t4. Similarly, we resolve clauses (3a6a) and (2b6b) to get (¬t2 ∨ t3),
which we resolve with (t2 ∨ t3) to get t3. Resolving t3 and t4 with (3b4b) derives
the empty clause, which shows that the formula is false.

6 Proofs of Soundness and Completeness

The central insight of this paper is that when we eliminate information forks
from a DQBF, we can eliminate existential variables using resolution like in
QBF. Eliminating variables may introduce new information forks, so in general
we have to alternate fork extension and resolution.

An important technique we are going to use is that variables will be defined
only in terms of the variables that they share clauses with. The following defin-
itions help us to zoom in on the neighborhood of a variable.

Definition 1 (Projection of assignments). Given two sets of variables X
and X ′ with X ′ ⊆ X and an assignment x to X. We call an assignment x′ to
X ′ the projection of x to X ′, if x′(x) = x(x) for all x ∈ X ′. We denote the
projection of x to X ′ with x|X′ .

Definition 2 (Projection of Skolem functions). Let ϕ be a true DQBF in
PCNF, let C be a clause in ϕ, and let f : 2Y → 2X be a Skolem function.
We call a function fC : 2dep(C) → 2vars(C) the projection of f to C, if for all
assignments y to Y and variables x in C it holds f(y)(x) = fC(d)(x), where d
is the projection d of y to dep(C). We denote the projection of f to C with f |C .

In the following lemma we recall the soundness of resolution and universal
reduction and we prove the soundness of the fork extension rule.

Lemma 1. The fork-resolution proof system for DQBF is sound.
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Proof. We show soundness for each proof rule individually.

Res. The resolution rule is as usual, with the exception that it is possible to apply
resolution to tautological clauses, in which case the resolvent is subsumed by of
C1 ∪ {l} or C2 ∪ {l}. For all other clauses soundness follows from the soundness
of QU-resolution for DQBF [2,30].

∀Red. (Similarly in [1]). Let l be a literal of a universal variable x and let C
be a clause with l ∈ C and l /∈ C and let x /∈ dep(C). If the DQBF is true,
there is a function fC mapping assignments d to dep(C) to values fC(d) for
the existential variables in C, such that clause C is satisfied. In particular, C is
satisfied for each assignment to the universals setting l to 0 because l /∈ C. Since
fC is independent of x, we know that after removing l from C, the clause is still
satisfied.

FEx. Let Q. ϕ be a true DQBF in PCNF with quantifier prefix Q, universal
variables Y , and existential variables X, let C1∪C2 be a clause in ϕ, and let x be
a fresh variable. We show that Q.∃x : dep(C1)∩dep(C2). ϕ ∧ C1∪{x} ∧ C2∪{¬x}
is true by constructing a Skolem function fx : dep(C1) ∩ dep(C2) → 2{x} for x
that together with fC , satisfies the (new) constraints.

Consider an arbitrary Skolem function f for Q. ϕ and let y be an assignment
to Y . We fix fx(y|dep(x)) to be 1, if C1 is not satisfied by y or f(y), and we fix
fx(y|dep(x)) to be 0, if C2 is not satisfied by y or f(y). In case both C1 and C2

are satisfied, we (arbitrarily) fix x to be 1. The case that neither C1 and C2 are
satisfied contradicts the fact that f is a Skolem function.

Let us assume that for the given y and Skolem function f one part of the
clause is violated, which we assume w.l.o.g. to be C1. To prove the correctness
of fx we have to show that there cannot exist a second assignment y′ to Y
that agrees with y on the variables dep(C1) ∩ dep(C2) but violates C2 instead.
Assuming that there is such an assignment y′, we can construct an assignment
y′′ to Y that agrees with y on all but the variables of dep(C2), and agrees with
y′ on the variables of dep(C2). Since y and y′′ agree on dep(C1) ∩ dep(C2),
assignment y′′ violates both C1 and C2, which contradicts the satisfaction of
C1 ∪ C2. The soundness of the FEx rule follows by way of contradiction. ��

The Lemmas 2 and 4 show that after fork extension and variable elimination
the clauses to which they were applied become obsolete and can be removed.
Even though the proof system does not allow us to remove clauses this will be
an important tool to understand which clauses we do not have to worry about
any more.

Lemma 2. Let Q . ϕ ∧ C1∪C2 be a DQBF in PCNF with quantifier prefix Q
and let x be a fresh variable. Then Q. ϕ ∧ C1∪ C2 and Q.∃y : dep(C1) ∩
dep(C2). ϕ ∧ C1∪{x} ∧ C2∪{¬x} are equivalent.

Proof. Soundness of the FEx rule was proven in Lemma 1. The other direction
follows from the soundness of resolution and the soundness of removing con-
straints and unused variables. ��
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Variable elimination by resolution is a well known technique for SAT and
QBF [3,6]. Given a propositional formula ϕ in CNF over variables X we can
eliminate a variable x ∈ X by adding all resolvents for pivot x and removing
all clauses with literals of x. We denote the formula obtained through variable
elimination elim(x, ϕ).

Proposition 1 (Variable elimination [3,6]). Let ϕ be a propositional for-
mula in CNF over variables X and a variable x ∈ X. Then for all assignments
x to X\{x} we have that elim(x, ϕ)(x) if, and only if, ∃x. ϕ(x).

To lift variable elimination to DQBF we need a stronger property of resolu-
tion. Instead of expressing the notion of equivalence between ϕ and elim(x, ϕ)
via existential quantification, we provide a function with minimal dependencies
resolving the quantification.

Lemma 3 (Variable elimination with dependencies). Let ϕ be a propo-
sitional formula in CNF over variables X and a variable x ∈ X and let X ′ ⊆ X
be the set of variables occurring together with x in some clause in ϕ but not x
itself. Then there is a function fx mapping assignments to X ′ to assignments to
x such that for all assignments x to X\{x} we have that elim(x, ϕ)(x) if, and
only if, ϕ(x, fx(x|X′)).

Proof. Let ϕ′ be the clauses that contain a literal of x. For every assignment x′

to X ′, we define fx(x′) as the value that satisfies ϕ′, if one exists. If there is no
such value, we arbitrarily fix fx(x′) to be 1.

“⇐=”: Whenever ϕ is true, also elim(x, ϕ) must be true, because of the soundness
of the elimination rule and because removing clauses only makes it easier to
satisfy the formula.

“=⇒”: Let x be an assignment to X\{x} such that ϕ(x, fx(x|X′)) is false. If
a clause that does not contain x is violated, then also elim(x, ϕ)(x) is false,
as it contains the same clause. Otherwise, a clause C containing x is violated.
By choice of fx we know that x is chosen to be 1, but also for value 0 not all
constraints could be satisfied. Thus there must be a clause C ′ that is violated if
we changed the assignment of x. The resolvent of C and C ′ is violated for x. ��

Next we show that leaf-existentials in DQBFs without information forks can
be eliminated through resolution. We call an existential variable x in a DQBF
ϕ a leaf-existential if all existentials x′ in ϕ have a smaller or incomparable
dependency set than x (dep(x) 
⊂ dep(x′)).

Lemma 4 (Similarly in [31], Theorem4). Let ψ = ∃x1 : Y1. . . . ∃xn : Yn. ϕ
be a DQBF without information forks. Further let x1 be a leaf-existential. Then
there is an equivalent DQBF ψ′ = ∃x2 : Y2. . . . ∃xn : Yn. elim(x1, ϕ).

Proof. The soundness of resolution immediately gives us that ψ =⇒ ψ′. We
prove ψ′ =⇒ ψ in the following:
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Let ϕ′′ be the conjunction of all resolvents with pivot x1. Let ψ′ be true and
let fx2 , . . . , fxk

be the Skolem functions proving ψ′ to be true. Further, let X ′

be the variables occurring in ϕ′. By Lemma 3 we obtain a function fx1 for x1

mapping the assignments to X ′\{x1} to B such that ϕ′[x1/fx1(Y
′)] and ϕ′′ are

equivalent. We can transform fx1 to a Skolem function for x1 with domain Y1

by inlining the definitions for the other Skolem functions, as dep(X ′\{x1}) ⊆
dep(x1) due to the lack of information-forks and x1 being a leaf-existential. ��

Theorem 1 shows how the lemmas can be put into action. We give a sound
and complete algorithm that just applies the proof rules of Fork Resolution.
Like algorithms for SAT and QBF that just rely on variable elimination, this
algorithm is only a theoretical possibility and will likely not scale to interesting
applications. Yet, more efficient algorithms may be possible using the same proof
rules, just as CDCL is based on the resolution proof system.

Theorem 1. A DQBF is false if, and only if, we can derive an empty clause in
the Fork-Resolution proof system.

Proof. We provide an round-based algorithm based on the proof rules. Each
round consists of two steps. The first step is to eliminate all information forks
using Lemma 2. The second step is to eliminate a leaf-existential with a depen-
dency set of maximal size using Lemma 4. The proof system does not allow us
to remove clauses as suggested in Lemmas 2 and 4, but additional clauses can
never impede the derivation of the empty clause.

The termination guarantee for the (Q-)resolution proof systems for SAT and
QBF can be easily established, since variable elimination reduces the number
of variables in the formula. However, Fork-Resolution introduces variables with
the fork extension rule, so its termination guarantee is based on the dependency
sets that occur in the formula: Each round reduces either the number of existen-
tials with a maximally sized dependency set or the size of the maximally sized
dependency set. The lexicographic ordering of the two provides the termination
relation. ��

7 Separation from Other Proof Systems

Our definition of resolution admits universal variables as pivots and thus includes
QU-resolution [30]. This already gives us the result that Fork-Resolution has
exponentially smaller proofs for some formulas than D-IR-calc and ∀Exp-Res [2].
For the other direction consider a QBF, where the FEx rule cannot be applied and
Fork-Resolution coincides with QU-resolution. IR-calc and ∀Exp-Res are exponen-
tially more succinct on some formulas than QU-resolution [2].

The question whether without resolution on universal variables Fork-Resolut-
ion proofs can be exponentially more succinct than proofs by D-IR-calc is open.
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8 Related Work

Previous (sound and complete) proof systems for DQBF rely on universal
expansion or instantiation [2], which is also the basis for DQBF solvers, such
as iDQ [13]. Earlier DQBF solvers relied on a search procedure generalizing
DPLL [12], on generating refutation proofs of increasing size [11], or on expan-
sion in symbolic datastructures [15].

In QBF, clausal abstraction is a technique to split clauses with variables in
order to separate the quantifiers [18,24]. Clausal abstraction is applied when the
dependency sets of two parts of a clause are different but ordered, while FEx is
applied when they are incomparable.

The Bernays-Schönfinkel class of first-order logic, also called the effectively
propositional fragment (EPR), and DQBF are related in that they share the
same complexity class NEXPTIME [21]. Translations between the two logics are
known. Like iDQ, EPR solvers rely on instantiation and a number of proof rules
that are quite different from SAT solvers and QBF solvers. A recent attempt
to run an EPR solver in the QBF competition suggested that EPR is not com-
petitive on the type of problems in the QBF libraries [16]. Hence, by lifting
the resolution-based solver technologies from SAT and QBF to DQBF, Fork-
Resolution may enable solving new classes of problems.

9 Conclusion

The beauty of DQBF lies it its unified representation of propositional vari-
ables, quantified variables, and functions. It offers incredible succinctness but
still presents a big challenge for the development of practical algorithms. In a
recent work solvers for SAT, QBF, and DQBF were compared on encodings of
the same problem [9]. The experiment showed that current DQBF solvers on
their compact encodings fall far behind QBF solvers on the longer QBF encod-
ing, and even SAT solver on the much longer propositional encoding of the
same problem. This suggests that the current solving technologies for DQBF are
unable to leverage the succinctness of DQBF encodings. Arguably, instantiation
and expansion—the currently used techniques for solving DQBF—are aimed at
making a DQBF more QBF-like. So it is maybe not that surprising that directly
encoding the problem in QBF outperforms the DQBF approach.

In this paper, we presented an alternative approach to DQBF. The Fork-
Resolution proof system is sound and complete and lifts resolution to reasoning
about functions without instantiating their inputs. This opens new paths in the
development of practical algorithms for DQBF. It remains to be shown that
efficient algorithms can be built based on Fork-Resolution.
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Abstract. In this paper, we propose the elimination of dependencies
to convert a given dependency quantified Boolean formula (DQBF) to
an equisatisfiable QBF. We show how to select a set of dependencies to
eliminate such that we arrive at a smallest equisatisfiable QBF in terms
of existential variables that is achievable using dependency elimination.
This approach is improved by taking so-called don’t-care dependencies
into account, which result from the application of dependency schemes
to the formula and can be added to or removed from the formula at
no cost. We have implemented this new method in the state-of-the-art
DQBF solver HQS. Experiments show that dependency elimination is
clearly superior to the previous method using variable elimination.

1 Introduction

Dependency quantified Boolean formulas (DQBFs) have received considerable
attention in research during the last years. They are a generalization of ordi-
nary quantified Boolean formulas (QBFs). While the latter have the restric-
tion that every existential variable depends on all universal variables in whose
scope it is, DQBFs allow arbitrary dependencies, which are explicitly specified
in the formula. This makes DQBFs more expensive to solve than QBFs – for
DQBF the decision problem is NEXPTIME-complete, for QBF ‘only’ PSPACE-
complete. However, there are practically relevant applications that require the
higher expressiveness of DQBF for a natural and tremendously more compact
modeling. Among them is the analysis of multi-player games with incomplete
information [22], the synthesis of safe controllers [4] and of certain classes of LTL
properties [8], and the verification of incomplete combinational and sequential
circuits [12,27,35].

Driven by the needs of the applications mentioned above, research on DQBF
solving has not only led to fundamental theoretical results on DQBF [1,3], but
also to first solvers like iDQ and HQS [10,11,13,32].
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While iDQ uses instantiation-based solving, i.e., it reduces deciding a DQBF
to deciding a series of SAT problems which correspond to partial universal expan-
sions, HQS [13] uses the elimination of universal variables to turn the DQBF at
hand into an equisatisfiable QBF, which can be solved by an arbitrary QBF solver.
The basic method is complemented by several preprocessing techniques for DQBF
[9,32,33] and the application of dependency schemes [34] for manipulating the
dependency sets of the DQBF formula without changing its truth value.

In this paper we improve on the state-of-the-art solver HQS by making the
following contributions:

(1)We introduceanoveltechniquecalled ‘dependencyelimination ’ for trans-
forming a DQBF into an equisatisfiable QBF. While [13] uses a minimal number of
universal expansions for turning a DQBF ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : φ
into an equisatisfiable QBF with linearly ordered dependency sets, dependency
elimination is able not only to remove universal variables xi completely from the
formula, but also to remove universal variables xi from single dependency sets Dyj

,
i.e., it works with a finer granularity. Dependency elimination is used with the goal
of producing fewer copies of existential variables in the final QBF.
(2) We provide a method for selecting an optimal elimination set. The
main ingredients of this method are:

(a) Dependencies can be represented in a natural way by a bipartite tourna-
ment graph, also called the dependency graph. Determination of an optimal
elimination set then corresponds to breaking cycles in this graph by flipping
a cost-minimal set of edges. A (non-linear) cost function takes into account
the number of existential variables after eliminating a set of dependencies.

(b) An exact and efficient solution for the optimization problem in (a) is pre-
sented. It is based on integer linear programming with dynamically added
constraints similar to the so-called cutting plane approach [36].

(c) The efficiency of the optimal elimination set computation is significantly
increased by integrating symmetry reduction. Symmetry reduction is based
on the observation that in typical applications the number of different
dependency sets is rather small. We prove that optimal solutions based on
symmetry-reduced graphs are optimal solutions for the original graphs as well.
Based on research on dependency schemes [34] we consider in our optimization
also dependencies which can be removed ‘free of charge’ without dependency
elimination, since their removal does not change the truth value of the DQBF.

(d) Furthermore, we prove that the problem of finding an optimal elimination set
for DQBFs with ‘don’t-care dependencies’ is NP-complete. Note that there
are related problems in the literature like ‘Minimal Feedback Arc Set’ (FAS)
for bipartite tournament graphs. FAS for bipartite tournament graphs has
been shown to be NP-complete as well in [14], but it differs from our problem
in two aspects: We are only allowed to flip a subset of all edges (only the
edges representing dependencies of existential variables on universal ones)
and our cost function does not simply count the number of flipped edges,
but it is more complicated and non-linear.
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(3) We perform an extensive experimental evaluation, proving that the
computation time for selecting an optimal elimination set is typically negligible,
the number of variable copies produced by the optimal dependency elimination
is much smaller compared to full universal variable elimination in many cases,
and – overall – that the performance of the solver HQS could be improved to a
great extent by the novel approach.

The paper is structured as follows: In the next section we introduce the neces-
sary foundations. Section 3 presents dependency elimination and our procedure
which selects an appropriate set of dependencies to eliminate. In Sect. 4 we exper-
imentally evaluate this novel method. Finally, in Sect. 5 we draw conclusions and
point out future work.

2 Foundations

For a finite set V of Boolean variables, A(V ) denotes the set of variable assign-
ments of V , i.e., A(V ) = {ν : V → B} with B = {0, 1}. Given quantifier-
free Boolean formulas φ and κ over V and a Boolean variable v ∈ V , φ[κ/v]
denotes the Boolean formula which results from φ by replacing all occurrences
of v simultaneously by κ (simultaneous replacement is necessary when κ contains
the replaced variable v).

Dependency quantified Boolean formulas are obtained by prefixing Boolean
formulas with so-called Henkin quantifiers [15].

Definition 1 (Syntax of DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a finite
set of Boolean variables. A dependency quantified Boolean formula (DQBF) ψ
over V has the form ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : φ, where Dyi
⊆

{x1, . . . , xn} is the dependency set of yi for i = 1, . . . ,m, and φ is a quantifier-
free Boolean formula over V , called the matrix of ψ.

We denote the existential variables of a DQBF ψ with V ∃
ψ = {y1, . . . , ym} and

its universal variables by V ∀
ψ = {x1, . . . , xn}. As the order of the variables in

the quantifier prefix Q does not matter, we can regard it as a set: For instance,
Q\{v} with a variable v ∈ V is the prefix which results from Q by removing the
variable v together with its quantifier (as well as its dependency set in case v is
existential, and all its occurrences in dependency sets if it is universal).

The semantics of a DQBF is typically defined in terms of so-called Skolem
functions.

Definition 2 (Semantics of DQBF). Let ψ be a DQBF as above. It is sat-
isfied if there are functions sy : A(Dy) → B for y ∈ V ∃

ψ such that replacing each
existential variable y by (a Boolean expression for) sy turns φ into a tautology.
The functions (sy)y∈V ∃

ψ
are called Skolem functions for ψ.

Deciding whether a given DQBF is satisfied is NEXPTIME-complete [22].

Definition 3 (Equisatisfiability of DQBFs). Two DQBFs ψ and ψ′ are
equisatisfiable iff they are either both satisfied or both not satisfied.
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The elimination of universal variables in solvers like HQS [13] is done by
universal expansion and leads to an equisatisfiable DQBF [1,5,6,12]:

Definition 4 (Universal Expansion). For a DQBF ψ = ∀x1 . . . ∀xn∃y1
(Dy1) . . . ∃ym(Dym

) : ϕ with Zxi
=

{
yj ∈ V ∃

ψ

∣
∣ xi ∈ Dyj

)
}
, the universal expan-

sion of variable xi ∈ V ∀
ψ is defined by

(
Q\{xi}

)∪{∃y′
j(Dyj

\{xi})
∣
∣ yj ∈ Zxi

}
: ϕ[1/xi]∧ϕ[0/xi][y′

j/yj for all yj ∈ Zxi
].

An important special case of DQBFs is known as quantified Boolean formulas.
They exhibit a linearly ordered quantifier prefix, where each existential variable
y depends on all universal variables in whose scope it is:

Definition 5 (Syntax of QBF, Equivalent QBFs). Let V = {x1, . . . , xn, y1,
. . . , ym} be a finite, non-empty set of Boolean variables, X1, . . . , Xk ⊆
{x1, . . . , xn} a partition of {x1, . . . , xn} such that Xi 	= ∅ for i = 2, . . . , k,
and Y1, . . . , Yk ⊆ {y1, . . . , ym} a partition of {y1, . . . , ym} such that Yi 	= ∅ for
i = 1, . . . , k − 1. Additionally let φ be a quantifier-free Boolean formula over V .

A quantified Boolean formula (QBF) Ψ (in prenex form) is given by

Ψ :=∀X1∃Y1∀X2∃Y2 . . . ∀Xk∃Yk : φ.

The QBF Ψ is equivalent to the DQBF ψ :=∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym
) :

φ, if Dyi
=

⋃L
�=1 X� such that L is the unique index with yi ∈ YL. In this case

we say that the DQBF ψ ‘can be written as a QBF Ψ ’ or the DQBF ψ ‘has an
equivalent QBF prefix’.

Lemma 1 ([13]). A DQBF ψ has an equivalent QBF prefix if Dy ⊆ Dy′ or
Dy′ ⊆ Dy holds for all y, y′ ∈ V ∃

ψ .

QBFs can be solved more efficiently than general DQBFs. For QBF, the
decision problem is “only” PSPACE-complete [21], and rather efficient solvers
for QBF are available like DepQBF [19,20], AIGSolve [23,24], Qesto [17],
RAReQS [16], to name just a few. Therefore the goal is to manipulate the DQBF
at hand – preserving the truth value – in a way such that the resulting formula
has an equivalent QBF prefix and can be solved by any available QBF solver.

3 Dependency Elimination

The DQBF solver HQS [13] uses universal expansion to turn the DQBF at hand
into an equisatisfiable QBF. It determines a smallest possible set of universal
variables whose elimination yields a QBF. This is done by solving a MAXSAT
problem. Using universal expansion has the drawback that it copies all variables
which depend on the eliminated universal variable.
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Example 1. The DQBF ∀x1∀x2∃y1(x1)∃y2(x2)∃y3(x1, x2) . . . ∃yn(x1, x2) : ϕ
does not have an equivalent QBF prefix. Therefore the expansion of either x1

or x2 is necessary. When x1 is eliminated, y1, y3, . . . , yn are doubled, creating
n − 1 additional existential variables. The elimination of x2 creates copies of
y2, y3, . . . , yn. However, only the dependencies of y1 on x1 and of y2 on x2 are
responsible for the formula not being a QBF.

Therefore we propose an alternative operation that we can use to obtain
an equisatisfiable DQBF with an equivalent QBF prefix, namely dependency
elimination, which allows to remove single dependencies from a formula.

Theorem 1 (Dependency Elimination). Assume ψ is a DQBF as in
Definition 1 and, w.l.o.g., x1 ∈ Dy1 . Then ψ is equisatisfiable to:

ψ′ := ∀x1 . . . ∀xn ∃y0
1

(
Dy1\{x1}

) ∃y1
1

(
Dy1\{x1}

) ∃y2
(
Dy2

)
. . . ∃ym

(
Dym

)
:

φ
[(

(¬x1 ∧ y0
1) ∨ (x1 ∧ y1

1)
)
/y1

]
.

Proof. Assume ψ is satisfiable with Skolem functions syi
for yi (1 ≤ i ≤ m). We

have sy1 = (¬x1 ∧ sy1 |x1=0) ∨ (x1 ∧ sy1 |x1=1) for the negative cofactor sy1 |x1=0

w.r.t. x1 and the positive cofactor sy1 |x1=1 w.r.t. x1. Then ψ′ is satisfiable, too,
with Skolem functions syi

for yi (2 ≤ i ≤ m), sy1 |x1=0 for y0
1 and sy1 |x1=1 for

y1
1 . Conversely, if ψ′ is satisfiable with Skolem functions syi

for yi (2 ≤ i ≤ m),
sy0

1
for y0

1 and sy1
1

for y1
1 , then ψ is satisfiable with Skolem function sy1 =

(x1 ∧ sy1
1
) ∨ (¬x1 ∧ sy0

1
) for y1 and syi

for yi (2 ≤ i ≤ m). 
�
Example 2. Consider again the formula from Example 1. If we eliminate the
dependency of y1 on x1 we obtain the formula

∀x1∀x2∃y0
1(∅)∃y1

1(∅)∃y2(x2)∃y3(x1, x2) . . . ∃yn(x1, x2) : ϕ[(¬x1 ∧ y0
1) ∨ (x1 ∧ y1

1)/y1].

This formula can be written as the QBF

∃y0
1∃y1

1∀x2∃y2∀x1∃y3 . . . ∃yn : ϕ[(¬x1 ∧ y0
1) ∨ (x1 ∧ y1

1)/y1].

Instead of creating n−1 additional existential variables as in Example 1, we only
had to double y1 in order to obtain an equisatisfiable QBF.

The main question that we have to answer is which dependencies should be
eliminated in order to obtain an equisatisfiable QBF. If we eliminate n depen-
dencies of an existential variable y, we have to create 2n − 1 new copies of y.
Therefore it is typically not feasible to eliminate all dependencies, but we have to
take care to find a set of dependencies which requires the fewest variable copies
and still turns the formula into a QBF.
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3.1 Selecting Dependencies to Eliminate

In order to facilitate the selection of dependencies to eliminate we make use of
the following dependency graph:

Definition 6 (Dependency Graph). Let ψ be a DQBF as above. The depen-
dency graph Gψ =

(
Vψ, Eψ

)
is a directed graph with the set Vψ = V of variables

as nodes and edges

Eψ =
{
(x, y) ∈ V ∀

ψ × V ∃
ψ

∣
∣ x ∈ Dy

} ∪̇ {
(y, x) ∈ V ∃

ψ × V ∀
ψ

∣
∣ x /∈ Dy

}
.

Gψ is a so-called bipartite tournament graph [2,7,14]: The nodes can be
partitioned into two disjoint sets according to their quantifier and there are only
edges that connect variables with different quantifiers – this is the bipartiteness
property. We also write Gψ = (V ∀

ψ , V ∃
ψ , Eψ) to make the two disjoint node sets

apparent. Additionally, for each pair (x, y) ∈ V ∀
ψ × V ∃

ψ there is either an edge
from x to y or vice-versa – this property is referred to by the term ‘tournament’.

Theorem 2. Let ψ be a DQBF and Gψ its dependency graph. The graph Gψ is
acyclic iff ψ has an equivalent QBF prefix.

Proof. Assume that ψ has an equivalent QBF prefix. The left-to-right order of
this QBF prefix defines a total order ≺ on V with Dy = {x ∈ V ∀

ψ |x ≺ y} for
all y ∈ V ∃

ψ . Then for all edges (x, y) ∈ Eψ we have x ≺ y, and y ≺ x holds for
all edges (y, x) ∈ Eψ. That means all edges point to larger elements w.r.t. ≺.
Therefore Gψ is acyclic.

Now assume that Gψ is acyclic. Then we can find a topological order for
Gψ, i. e., there exists a total order ≺ on the nodes of Gψ such that we have:
If (v1, v2) ∈ Eψ then v1 ≺ v2. Now choose the QBF prefix from left to right
according to the total order ≺. If x ∈ Dy, then (x, y) ∈ Eψ, x ≺ y and x is to
the left of y; if x /∈ Dy, then (y, x) ∈ Eψ, y ≺ x and x is to the right of y. Thus
we have found an equivalent QBF prefix. 
�

Eliminating a dependency essentially corresponds to flipping the direction of
an edge (x, y) ∈ Eψ ∩ (V ∀

ψ × V ∃
ψ ) from a universal to an existential variable. The

cost of copying existential variables will be taken into account by choosing an
appropriate cost for flipping sets of edges. This cost will count the number of
existential variables after eliminating a set of dependencies. Our goal is to find a
cost-minimal set of edges such that flipping those edges makes the dependency
graph acyclic.

In the following, we will first determine a set R ⊆ Eψ ∩ (V ∀
ψ × V ∃

ψ ) of edges
whose deletion makes GR

del := (V ∀
ψ , V ∃

ψ , Eψ\R) acyclic. However, if R is such a
set of edges, then we can turn it into a set R′ ⊆ R such that flipping the
edges in R′ yields an acyclic graph: Let ≺ be a topological order of GR

del’s
nodes. Then we set R′ :=

{
(x, y) ∈ R

∣
∣ x ⊀ y

}
, i.e., we flip only those edges

of R which point backward according to ≺. Then ≺ is also a topological order
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of GR′
flip := (V ∀

ψ , V ∃
ψ , (Eψ\R′) ∪ {(y, x) | (x, y) ∈ R′}). Of course, ≺ is a topolog-

ical order of GR′
del := (V ∀

ψ , V ∃
ψ , Eψ\R′) as well and GR′

del is acyclic. Thus, if we

choose a minimal set Rmin ⊆ Eψ ∩ (V ∀
ψ × V ∃

ψ ) such that GRmin

del is acyclic, then
GRmin

flip is acyclic as well. So we can restrict our attention to removing edges from
Eψ ∩ (V ∀

ψ × V ∃
ψ ) for turning Gψ into an acyclic graph, as long as we remove a

minimal set of edges – although in our application (turning a DQBF into a QBF
by elimination of dependencies) we are only able to flip edges from V ∀

ψ to V ∃
ψ .

We define an elimination set as follows.

Definition 7 (Elimination set). A set R ⊆ Eψ ∩ (V ∀
ψ × V ∃

ψ ) is an elim-
ination set for the bipartite tournament graph Gψ = (V ∀

ψ , V ∃
ψ , Eψ) if GR

del =
(V ∀

ψ , V ∃
ψ , Eψ\R) is acyclic. An elimination set R is minimal if R\{e} is not an

elimination set for every e ∈ R.

Let R be a minimal elimination set. For y ∈ V ∃
ψ , we set Ry = {x ∈

V ∀
ψ | (x, y) ∈ R}. The cost of R is then given by cost(R) :=

∑
y∈V ∃

ψ
2|Ry|. The

cost of R corresponds to the number of existential variables in the formula after
the dependencies in R have been eliminated. Hence, our goal is to determine an
elimination set of minimal cost.

3.2 Symmetry Reduction

Before we look into the optimization problem of computing an elimination set of
minimal cost, we consider reducing the size of the dependency graph by exploit-
ing symmetries: The existential and universal variables are partitioned according
to the dependency sets. We define an equivalence relation ∼ by:

yi ∼ yj ⇔ Dyi
= Dyj

xi ∼ xj ⇔ {y� ∈ V ∃
ψ |xi ∈ Dy�

} = {y� ∈ V ∃
ψ |xj ∈ Dy�

}.

The dependency graph modulo ∼ is based on the equivalence classes [v]∼ of ∼
and is defined by G∼

ψ = (V ∼
ψ , E∼

ψ ) where

V ∼
ψ =

{
[v]∼

∣
∣ v ∈ V

}
and

E∼
ψ =

{
([xi]∼, [yj ]∼)

∣
∣ xi ∈ Dyj

} ∪̇ {
([yj ]∼, [xi]∼)

∣
∣ xi /∈ Dyj

}
.

By definition, the resulting graph G∼
ψ is a bipartite tournament graph again. It

is well defined: If ([x]∼, [y]∼) ∈ E∼
ψ holds for some x ∈ V ∀

ψ and y ∈ V ∃
ψ , then

x′ ∈ Dy′ holds for all x′ ∈ [x]∼ and all y′ ∈ [y]∼. If ([y]∼, [x]∼) ∈ E∼
ψ holds, then

x′ /∈ Dy′ for all x′ ∈ [x]∼ and all y′ ∈ [y]∼.
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A further reduction can be obtained by the following observation: Incident
edges of sources (i.e., nodes without incoming edges) and sinks (i.e., nodes with-
out outgoing edges) never need to be flipped, since they cannot occur on a cycle.
They can be removed from the graph, together with their incident edges. This
can be repeated until the graph does not change anymore. The result is again a
bipartite tournament graph.

If R∼ is the set of edges to be eliminated, transferring the cost function to
the reduced graph yields:

cost∼(R∼) =
∑

[y]∼∈V ∼
ψ

∣
∣[y]∼

∣
∣ · 2

∑
([x]∼,[y]∼)∈R∼ |[x]∼|.

The intuition behind the definition of cost∼(R∼) is that eliminating ([x]∼, [y]∼)
in G∼

ψ ‘means’ eliminating all edges (x′, y′) in Gψ with x′ ∈ [x]∼ and y′ ∈ [y]∼.
The following Theorem 3 justifies the application of symmetry reduction to

the dependency graph: A cost-optimal elimination set for the reduced graph
induces a cost-optimal elimination set for the original graph.

Theorem 3. (a) If R∼ is a minimal elimination set for G∼
ψ , then R =

{
(x, y) ∈

(V ∀
ψ × V ∃

ψ ) ∩ Eψ

∣
∣ ([x]∼, [y]∼) ∈ R∼}

is a minimal elimination set for Gψ such
that cost(R) = cost∼(R∼).

(b) If R is a minimal elimination set for Gψ, then the set R∼ :=
{
([x]∼, [y]∼)

∣
∣

(x, y) ∈ R
}

is a minimal elimination set for G∼
ψ such that cost(R) = cost∼(R∼).

Before we prove Theorem 3, we show the following Lemma 2.

Lemma 2. Let R be a minimal elimination set for Gψ. Then for all (x, y) ∈
V ∀

ψ × V ∃
ψ , we have (x, y) ∈ R iff [x]∼ × [y]∼ ⊆ R.

Proof (Lemma2). Let x1 → y1 → x2 → · · · → yk → x1 be a cycle of Gψ. Assume
that for all 1 ≤ i ≤ k [xi]∼ × [yi]∼ ⊆ R does not hold. Then for all 1 ≤ i ≤ k
there are (x′

i, y
′
i) with x′

i ∼ xi and y′
i ∼ yi such that (x′

i, y
′
i) /∈ R. According to

the definition of the relation ∼, Gψ contains the cycle x′
1 → y′

1 → x′
2 → · · · →

y′
k → x′

1 which is not broken by R. This contradicts our assumption that R is
an elimination set.

We conclude that for each cycle x1 → y1 → x2 → · · · → yk → x1 we have
[xi]∼ × [yi]∼ ⊆ R for some 1 ≤ i ≤ k. All other (xj , yj) with [xj ]∼ × [yj ]∼ 	⊆ R
are not needed to break cycles in Gψ and are thus not included in R due to
minimality of R. 
�

Proof (Theorem3). Proof of part (a): Let x1 → y1 → x2 → · · · → yk → x1

be an arbitrary cycle in Gψ (if there is no cycle in Gψ, then it trivially follows
that R is an elimination set). By definition of G∼

ψ , [x1]∼ → [y1]∼ → [x2]∼ →
· · · → [yk]∼ → [x1]∼ is a cycle in G∼

ψ . Since R∼ is an elimination set for G∼
ψ ,(

[xi]∼, [yi]∼
) ∈ R∼ for some i ∈ {1, . . . , k} and by definition of R we have
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(xi, yi) ∈ R. Therefore R is an elimination set. That the values of the cost
functions coincide is easy to see.

We still have to show that R is minimal. Assume the contrary, i.e., there is
(x1, y1) ∈ R such that R\{(x1, y1)

}
is still an elimination set. By construction,

([x1]∼, [y1]∼) ∈ R∼. Due to minimality of R∼, there has to be a cycle in G∼
ψ

containing ([x1]∼, [y1]∼). Let [x1]∼ → [y1]∼ → [x2]∼ → · · · → [yk]∼ → [x1]∼
be such a cycle without node repetitions (i.e., a simple cycle). By definition of
G∼

ψ , x1 → y1 → x2 → · · · → yk → x1 is a cycle in Gψ and (xi, yi) ∈ R for
some i ∈ {2, . . . , k}, since R\{

(x1, y1)
}

is an elimination set. By definition of R,
([xi]∼, [yi]∼) ∈ R∼ and ([xi]∼, [yi]∼) 	= ([x1]∼, [y1]∼), since the cycle is simple.
Therefore, all simple cycles broken by ([x1]∼, [y1]∼) are also broken by another
edge from R∼. That means, R∼ is not minimal, contradicting our assumption.

The proof of part (b) immediately follows from Lemma2. 
�

3.3 An Optimization Approach

The Underlying Optimization Problem. Our goal in the above described prob-
lem is to determine an elimination set R∼ of minimal cost cost∼(R∼). We can
determine such an elimination set by selecting one edge from each simple cycle
in the dependency graph. A cycle is called simple if it does not contain any sub-
cycle. This can be formulated as an optimization problem in a given arbitrary
bipartite tournament graph G with disjoint node sets X,Y and node weights
ω : X ∪Y → R>0. (Remember that in our application the nodes X ∪Y represent
equivalence classes [v]∼. Their weights correspond to the cardinality of [v]∼.)
We introduce a decision variable d(x,y) ∈ {0, 1} for each edge (x, y) ∈ EXY ,
where EXY = E ∩ (X ×Y ) with the interpretation that d(x,y) = 1 indicates that
(x, y) belongs to the elimination set. Let C denote the set of all simple cycles
c = x1 → y1 → x2 → · · · → yk → x1 such that xi ∈ X, yi ∈ Y for all i = 1, . . . , k
and xi 	= xj , yi 	= yj for i 	= j. Moreover, for a simple cycle c ∈ C, let us denote
with F (c) = E(c)∩ (X ×Y ), the set of all arcs in c that are directed from a node
in X to a node in Y . The optimization problem can then be formulated as

minimize
∑

y∈Y

ω(y) · 2
∑

x∈pre(y) ω(x)·d(x,y) (1a)

such that
∑

(x,y)∈F (c)

d(x,y) ≥ 1 ∀c ∈ C (1b)

d(x,y) ∈ {0, 1} ∀(x, y) ∈ EXY (1c)

Two challenges make solving this optimization problem difficult: First, the
objective function is non-linear as it is the sum of exponential functions. Second,
the number of cycles in the dependency graph may be prohibitively large.
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Solving the Optimization Problem. In order to bring the optimization problem
into a more convenient form, we first rewrite it by introducing variables fy ∈ Z

and zy ∈ Z for every y ∈ Y :

minimize
∑

y∈Y

ω(y) · zy (2a)

such that
∑

(x,y)∈F (c)

d(x,y) ≥ 1 ∀c ∈ C (2b)

∑

x∈pre(y)

ω(x) · d(x,y) = fy ∀y ∈ Y (2c)

zy ≥ 2fy ∀y ∈ Y (2d)
d(x,y) ∈ {0, 1} ∀(x, y) ∈ EXY (2e)

After this transformation, (2d) is the only non-linear constraint and the objec-
tive function is linear. We will handle these non-linear constraints dynamically
as follows. We first solve the optimization problem consisting only of (2b), (2c),
and (2e). These constraints form an integer linear program (ILP). Solving this
ILP yields a solution d̄, f̄ , z̄ that are not necessarily feasible for the complete
optimization problem (2). Thus, we check whether, for some y ∈ Y , the con-
straint z̄y ≥ 2f̄y is violated. In this case, we add a linear inequality (lazy con-
straint approach) that cuts off this infeasible solution, but none of the feasi-
ble points. Such an inequality is, e.g., the constraint that zy lies on or above
the tangent to the function 2fy in the current value f̄y of fy. This tangent is
described by t(fy) = 2f̄y · (1+ (fy − f̄y) · ln 2). Thus, we could add the inequality
zy ≥ 2f̄y · (

1 + (fy − f̄y) · ln 2
)
. However, such inequalities are not rational and

their closure yields non-integral extreme points. Instead, we can take the secants
through two adjacent extreme points of the convex hull of the integer points sat-
isfying (2d) (feasible solutions are integer). The secants through f̄y and f̄y + 1
and through f̄y − 1 and f̄y yield the constraints

zy ≥ 2f̄y (1 − f̄y + fy) and zy ≥ 2f̄y−1(2 − f̄y + fy).

Taken together, the two secant constraints are tighter than the tangent constraint
and moreover their description contains only integer coefficients. This is why the
secant constraints are preferable (see Fig. 1).

To further increase efficiency, we also relax the cycle constraints (2b) by
only adding constraints for C4, the set of all 4-cycles, first.1 The longer cycle
constraints are handled dynamically as well: If we obtain a solution, we check
by depth-first search whether the induced graph is acyclic. If it is not, we add
(2b) for the found cycle.2 The described approach leads to Algorithm1. Adding
1 Note that each cyclic bipartite tournament graph has a cycle of length 4.
2 The approach of dynamically or lazily adding constraints is similar to the cutting

plane approach [36] and is used as one of the main ingredients for efficiently solv-
ing many NP-hard problems for which only a description with exponentially many
constraints is at hand, as for example the traveling salesman problem.
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2 3 4

4

8

16

zy = 2f̄y(1 − f̄y + fy)

zy = 2f̄y−1 · (2−
f̄y + fy)

zy = 2fy

Fig. 1. The two secants on the function zy = 2fy at f̄y = 2. The shaded area denotes
the feasible region defined by the two inequalities corresponding to the two secants.

separation constraints dynamically is typically supported by ILP solvers like
Gurobi using call-back functions.

3.4 Don’t-Care Dependencies

During preprocessing, often dependencies can be identified, which are only
pseudo-dependencies (also called don’t-care dependencies), i.e., an existential
variable y contains a universal variable x in its dependency set, but it can be
shown that removing the dependency does not change the satisfiability of the
formula. Don’t-care dependencies correspond to edges in the dependency graph
which can be flipped without any costs.

Definition 8 (DQBF with Don’t-Care Dependencies). Let ψ = ∀x1 . . .
∀xn∃y1(Dy1) . . . ∃ym(Dym

) : φ be a DQBF as before and Syi
⊆ Dyi

for i =
1, . . . ,m. The sets Syi

are called don’t-care sets of ψ if ψ is equisatisfiable to

∀x1 . . . ∀xn∃y1(Dy1\Sy1) . . . ∃ym(Dym
\Sym

) : φ.

Detecting Don’t-Care Dependencies. Using the same proof idea as described in [26]
for QBF, we can show that deciding whether a dependency is a don’t-care depen-
dency has the same complexity as deciding DQBF itself. Therefore one usually
resorts to efficient approximations for computing don’t-care dependencies.

Lemma 3. Let ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym
) : φ be a DQBF. Decid-

ing whether x ∈ Dy for x ∈ V ∀
ψ and y ∈ V ∃

ψ is a don’t-care dependency is
NEXPTIME-complete.

Don’t-care dependencies can be detected using so-called dependency schemes,
which provide over-approximations of the actually dependent variables, see
[25,28–30] for QBF and [32,34] for DQBF. Dependency schemes are based on
efficient syntactic criteria, and by over-approximating the dependent variables
they under-approximate the sets of don’t-care dependencies.
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Algorithm 1. SolveExact(G = (X,Y,E), ω)
C ← C4, P ← ∅
while True do

Determine (d̄, f̄ , z̄) as the optimal solution of

minimize
∑

y∈Y

ω(y) · zy

such that
∑

(x,y)∈F (c)

d(x,y) ≥ 1 ∀c ∈ C

∑

x∈pre(y)

ω(x) · d(x,y) = fy ∀y ∈ Y

zy ≥ 2f̄y (1 − f̄y + fy)

zy ≥ 2f̄y−1(2 − f̄y + fy)
∀(y, f̄y) ∈ P

d(x,y) ∈ {0, 1} ∀(x, y) ∈ EXY

constr added ← false
for y ∈ Y do

if z̄y < 2f̄y then
P ← P ∪ {(y, f̄y)}, constr added ← true

if cycle c exists in G′ := (X, Y, E\{(x, y) : d(x,y) = 1}) then
C ← C ∪ c, constr added ← true

if not constr added then
return (d̄, f̄ , z̄)

Exploiting Don’t-Care Dependencies. To exploit don’t-care dependencies, we
first have to refine the symmetry reduction to take not only the dependency
sets, but also the don’t-care dependencies into account. This yields the following
refined equivalence relation ≈ ⊆ V × V :

yi ≈ yj ⇔ Dyi
= Dyj

∧ Syi
= Syj

,

xi ≈ xj ⇔ {y ∈ V ∃
ψ |xi ∈ Dy} = {y ∈ V ∃

ψ |xj ∈ Dy}
∧ {y ∈ V ∃

ψ |xi ∈ Sy} = {y ∈ V ∃
ψ |xj ∈ Sy}.

The graph G≈
ψ , resulting from Gψ by merging equivalent nodes, is again a bipar-

tite tournament graph.
Let G = (X,Y,E) be the bipartite graph corresponding to a DQBF ψ with

don’t-care sets. We define the weight function ω : X∪Y → R as follows: ω(v) = 1
for all v ∈ X ∪ Y if the graph was not reduced, otherwise ω(v) =

∣
∣[v]≈

∣
∣ if we

have applied symmetry reduction using ≈. Let DC = {(x, y) |x ∈ Sy} be the set
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of all don’t-care dependencies and let R ⊆ EXY be an elimination set. Then we
just do not count the cost for eliminating don’t-care dependencies, i.e.,

cost(R) =
∑

y∈Y

ω(y) · 2
∑

(x,y)∈(R\DC) ω(x).

The don’t-care sets can easily be taken into account in Algorithm 1: Before
applying Algorithm1 we delete all edges in DC (i.e., all edges corresponding to
don’t-care dependencies) from the dependency graph, since those eliminations
are free of charge, and apply Algorithm1 without any other change. This means
that we implicitly start with R = DC and then add to the elimination set all
(x, y) ∈ V ∀

ψ × V ∃
ψ with d̄(x,y) = 1 in the solution returned by Algorithm1. The

resulting elimination set R is not necessarily minimal and thus eliminating all
those dependencies (which corresponds to flipping all edges in R) does not neces-
sarily make the dependency graph acyclic. However, we can find an appropriate
subset R′ ⊆ R such that flipping all edges from R′ makes the dependency graph
acyclic using the method from Sect. 3.1. (Another option would be to remove ele-
ments of DC from R one after the other as long as the resulting set R remains
an elimination set, finally arriving at a minimal elimination set.)

Finally, we provide a complexity result for computing cost-minimal elimina-
tion sets in the presence of don’t-care dependencies.

Lemma 4. Given a bipartite tournament graph Gψ =
(
(X,Y ), Eψ

)
, a set of

don’t-care dependencies Sψ ⊆ Eψ, and an integer c ≥ 0, deciding whether an
elimination set R with cost(R) ≤ c exists is NP-complete.

This lemma can be proven by a reduction from vertex cover [18]. It is easy
to see that Lemma 4 holds for symmetry-reduced graphs as well.

Since there is a one-to-one correspondence between dependency graphs and
DQBF prefixes, we can conclude:

Theorem 4. Given a DQBF with don’t-care dependencies and an integer c ≥ 0,
deciding whether there is an elimination set R with cost(R) ≤ c is NP-complete.

4 Experimental Evaluation

We have extended the DQBF solver HQS [13] to support dependency elimination
on its internal formula representation as an And-Inverter Graph (AIG). To deter-
mine an optimal elimination set, we use a Python script which is called by HQS
and which in turn calls the MILP solver Gurobi 7.0.2 to solve the optimization
problem as in Algorithm 1. We use our preprocessor HQSpre [33] to simplify
the instances before the actual solution process starts. Since the benchmarks
used for evaluation were generated from incomplete circuits and controller syn-
thesis problems, we run HQSpre in its gate-preserving mode. Additionally, we
apply the reflexive quadrangle resolution path dependency scheme [34] to iden-
tify don’t-care dependencies. As the last step of preprocessing, we use syntactic
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gate detection to reconstruct the underlying circuit structure; this removes vari-
ables which have been introduced artificially to obtain a formula in conjunctive
normal form and leads to more compact AIGs.

All experiments were run on one core of an Intel Xeon CPU E5-2450 (8 cores)
running at 2.10 GHz clock frequency and having 32 GB of main memory. Ubuntu
16.04 in 64 bit mode was used as the operating system. We aborted each experi-
ment which took more than 3600 s of CPU time or more than 10 GB of memory. We
used the same 4811 benchmark instances as in [13,31,32,34]. They mainly encom-
pass partial equivalence checking problems [12,27] for combinational circuits, con-
troller synthesis problems for sequential circuits and safety properties [4].

For the comparison of variable and dependency elimination, we switched off
the UNSAT filtering procedure, which is based on QBF abstractions [9]; it affects
both solution procedures in exactly the same way. Additionally we skipped those
instances which were solved by the preprocessor or which the preprocessor could
turn into QBFs. This led to a benchmark set of 3618 instances.

We solved all instances with the original version of HQS [13] using variable
elimination and by dependency elimination for a cost-minimal elimination set
as described in Sect. 3. In the latter case, if the elimination set contains, for
some universal variable x ∈ V ∀

ψ , all dependencies x is involved in, then we call
universal expansion for x instead as it has the same effect as first eliminating
the dependencies and then expanding x, but is slightly faster. Otherwise we
eliminate the selected dependencies according to Theorem 1. We distinguished
instances for which only universal expansion needed to be applied from those
which also required the elimination of dependencies.

For 3233 out of 3618 instances, the optimal elimination set removed univer-
sal variables from all dependency sets they were involved in, i.e., only universal
expansion was used. Those instances do not profit from dependency elimination
in terms of copied existential variables. From those instances, variable elimi-
nation as in [13] was able to solve 2429 instances, and the novel dependency
elimination 2411 instances. The reason for the small difference of 18 instances
is that both methods do not necessarily expand the same variables. Since the
selection procedures only consider the formula’s prefix and not the structure of
the matrix, there is no guarantee that an elimination set is found which leads to
small formulas during subsequent solution of the resulting QBF. This can also be
observed in Fig. 2 where we compare dependency and variable elimination. The
left plot compares the computation times, the right one the number of existential
variables in the resulting QBF.

For the remaining 385 instances, dependency elimination has an advantage
over variable elimination. It can yield an equisatisfiable QBF with fewer exis-
tential variables. Accordingly, using dependency elimination, we could solve
325 instances, while variable elimination succeeded only for 177. All instances
which could be solved using variable elimination were also solved using depen-
dency elimination. A more detailed comparison of the two methods on these 385
instances is shown in Fig. 3. We can distinguish two subsets of instances: There
are some for which the difference between variable and dependency elimination
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Fig. 2. Comparing the total computation times (in seconds) (left) and the number
of existential variables in the resulting QBF (right) after variable and dependency
elimination on the instances for which variable elimination is optimal.
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Fig. 3. Comparing the total computation times (in seconds) (left) and the number
of existential variables in the resulting QBF (right) after variable and dependency
elimination on the instances for which variable elimination is not optimal.

is small. Here the computation times are similar. Note that the number of exis-
tential variables in the QBF can even be slightly smaller for variable elimination
because during expansion often unit and pure variables are detected which are
immediately replaced by appropriate constants [13]. In contrast, dependency
elimination replaces an existential variable by the representation of a multi-
plexer. This is an efficient local operation on AIGs, but typically does not allow
to detect unit and pure variables. They are found later during the QBF solution
process.

For the other subset of instances, dependency elimination is by orders of mag-
nitude superior compared to variable elimination. While the latter runs exceed
the memory limit for most of the instances, dependency elimination was able to
solve them in little time and with much less memory consumption.

The computation times for selecting an optimal elimination set are negligible
in most cases and are always below 10 s for our benchmark set. One reason for the
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small computation times is that most benchmarks contain only a small number
of different dependency sets and thus our symmetry reduction from Sect. 3.2
works nicely; typically the reduced graphs consisted of 10–50 nodes only; the
largest one had 54 nodes.

In our current (preliminary) implementation the effect of don’t-care depen-
dencies is negligible. The reason for this lies (a) in a restricted preprocessing
that is tailored to our backend QBF solver AIGSolve and (b) in the structure of
most of our benchmarks. The dependency schemes find a considerable amount of
don’t-care dependencies on our set of benchmarks [34], but only after intensive
preprocessing including operations like blocked clause elimination. Since AIG-
Solve profits from structure extraction from a CNF, we omit such preprocessing
steps that destroy the structure. If we used a different backend QBF solver which
does not rely on structure extraction, then we could use the full power of pre-
processing, obtain many more don’t-care dependencies, and profit much more
from don’t-care dependencies than in the current scenario.

In summary, for instances where variable elimination is already optimal,
dependency elimination yields similar results. However, dependency elimination
can yield equisatisfiable QBF that are smaller by orders of magnitude and allows
to solve more instances in less time when variable elimination is not optimal.
Therefore, dependency elimination is clearly superior to variable elimination.

5 Conclusion

We have presented a novel method to turn a DQBF into an equisatisfiable QBF.
This is done by eliminating an appropriate set of dependencies from the formula,
which requires to create copies of the involved existential variables. To determine
an optimal elimination set that requires the fewest variable copies, we formulate
this problem as a constraint system with non-linear objective function. This
is solved using an MILP solver by handling the non-linearities by separation.
Experiments show that dependency elimination allows to solve more instances
with less memory consumption compared to variable elimination. Future research
will try to integrate the structure of the formula into the selection process (which
is currently only based on the quantifier prefix).
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Abstract. Recent progress in automated formal verification is to a large
degree due to the development of constraint languages that are suffi-
ciently light-weight for reasoning but still expressive enough to prove
properties of programs. Satisfiability modulo theories (SMT) solvers
implement efficient decision procedures, but offer little direct support
for adapting the constraint language to the task at hand. Theory refine-
ment is a new approach that modularly adjusts the modeling precision
based on the properties being verified through the use of combination
of theories. We implement the approach using an augmented version of
the theory of bit-vectors and uninterpreted functions capable of directly
injecting non-clausal refinements to the inherent Boolean structure of
SMT. In our comparison to a state-of-the-art model checker, our pro-
totype implementation is in general competitive, being several orders of
magnitudes faster on some instances that are challenging for flattening,
while computing models that are significantly more succinct.

1 Introduction

The satisfiability modulo theories (SMT) [14] reasoning framework is currently
one of the most successful approaches to verifying software in a scalable way. The
approach is based on modeling the software and its specifications in propositional
logic, while expressing domain-specific knowledge with first-order theories con-
nected to the logic through equalities. Once a satisfying assignment is found for
the propositional model, its consistency is queried as equalities from the theory
solvers, which, in case of inconsistency, provide an explanation as a proposi-
tional clause. Successful verification of software relies on finding a model that is
expressive enough to capture software behavior relevant to correctness, while suf-
ficiently high-level to prevent reasoning from becoming prohibitively expensive.
Since in general more precise theories are both more expensive computationally
and potentially distracting for the automatic reasoning, finding such a balance
is a non-trivial task.

We introduce theory refinement, a counter-example-guided abstraction refine-
ment (CEGAR) [11,12] approach for modeling software modularly using theories
c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 347–363, 2017.
DOI: 10.1007/978-3-319-66263-3 22
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that are partially ordered with respect to their precision. Our main contribution
is the process of gradually encoding a program using the most precise theory only
for a critical subset of all program statements, while keeping lower precision for
the rest of the statements. The critical subset of theories is identified based on
counter-examples, and theories of different precision are bound to each other
through special identities. We study several automatic heuristics for guiding the
encoding and provide also a manual encoding option. We apply theory refinement
on verification of safety properties of software through bounded model checking.
However, we believe that the technique is applicable in most verification tech-
niques where higher level information is available on the problem structure. This
includes model checking [5] and upgrade checking [15], k-induction [23], the IC3
algorithm [6], and generation of inductive invariants [16]. We show that the mod-
ular composition of the theories preferring lower precision can be used to both
obtain speed-up in solving and identifying statements whose precise semantics do
not affect the program safety, providing the model checker with cleaner proofs.

Many SMT solvers use over-approximation through theories as a means of
speeding up solving. For instance [8,9,17] organizes the theory solvers into layers
that solve problems represented in QF BV. The query is first given to fast and
less precise theory solvers, and only passed on to the exact solver if previous
layers fail to show unsatisfiability. In contrast to low-level SMT solving, this work
studies how to automatically identify statements whose exact semantics can be
ignored in model-checking. This shift of view point has several advantages: (i)
the approach can be used both to obtain speed-up in solving, and as a means for
synthesis and finding fix-points for transition relations; (ii) the guidance from
the source code allows the use of more powerful heuristics for choosing which
statements should remain abstract; and (iii) the refinement takes place on the
level of the program, not at the level of the theory query, an approach potentially
more natural from the point of view of the semantics of the program.

We present theory refinement with two new theories called uninterpreted
functions for programs (UFP) and bit vectors for programs (BVP) that are based
on the theories of quantifier-free uninterpreted functions with equality (QF UF),
and bit vectors (QF BV), respectively. The two theories were chosen since they
represent two natural extremes in precision and are commonly used in the layered
solver approach (see, e.g., [17]). In addition to the functionality of QF UF, UFP
provides interpretations for constants, conversion of abstract values to concrete
values, and commutativity for uninterpreted functions when applicable. The key
difference in BVP compared to QF BV is that BVP is capable of directly inject-
ing non-clausal refinements, modeling the program statements bit-precisely, to
the inherent Boolean structure maintained in the SMT solver.

We implemented theory refinement on the SMT solver OpenSMT [19] and
the bounded model checker HiFrog [3] supporting a subset of the C language.
We report promising results both with respect to speed and the amount of refined
program statements on both instances from a software verification competition
and our own regression test suite. We demonstrate that the approach has a
potential of several orders of magnitude of improvement over the approach based
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solely on flattened bit-vectors, as implemented in the state-of-the-art tool cbmc
and in our own tool. The implementation and the benchmarks are available
at [1].

Related Work. Solving bit-vector problems with layers of theory solvers is intro-
duced in [9] and further developed in [17]. While we work directly on software
verification instead of bit-vectors, our approach is related, as we also use hierar-
chy of solvers combined with rewriting techniques. However, we work explicitly
on the modeling language by automatically adjusting the precision to be dif-
ferent in different parts of the problem, and adding additional constraints that
seams these parts together. In [8] a CEGAR based approach is used for solv-
ing problems involving arrays by transforming an abstract representation into
clauses. We differ from this approach in that we integrate the system on the the-
ory solver level, employing in the experiments the congruence closure algorithm
together with a propositional solver. To the best of our knowledge, no existing
approach uses this level of granularity in the modeling. Furthermore, we use
counter-examples that are checked against the bit-precise implementation, and
this way can avoid refinement of program parts that would need to be refined in
approaches based on layered theory solvers.

Exploiting simultaneously several theories for one verification goal is not
new. For example, [16] presents a system for synthesizing safe bit-precise induc-
tive invariants for software. Compared to our work, the refinement direction is
inverted: the software is first flattened, and in case of a time-out, converted to a
domain-specific theory. Furthermore, we integrate seamlessly the theories UFP
and BVP into an SMT solver whereas [16] considers real arithmetics.

Uninterpreted functions have been used together with the bit-precise encod-
ing for verifying the equivalence of Verilog designs in [7,18]. The approach uses
machine learning to identify sub-components that can likely be abstracted. In
contrast, our emphasis is on software verification and integration to the SMT
solver. A related approach [22] constructs test cases for scientific software by
computing difference constraints from non-linear mathematical functions. This
approach can be viewed as a special case of the framework we present in this
paper; the formulas we derive can also be used for generating test cases, although
this is not the focus of this paper. Similarly, [10] combines linear real arithmetic
and equality of uninterpreted functions (QF UF) for the SMT encoding of the
program. The algorithm initially uses QF UF to abstract non-linear operators,
and then uses the monotonicity and the multiplication checks to identify spuri-
ous counterexample thus avoiding simulation and code execution. Both checks
might result in a refinement formula, which is added then to the current SMT
encoding. Unlike ours, their approach cannot be applied as such for bit-precise
reasoning. In [3] we report early, very positive results on using the combination
of EUF, LRA, and propositional flattening for encoding model checking prob-
lems. The current work which explores the possibilities in much more depth and
rigor is motivated by this early result.
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Another program-based refinement approach was proposed in [20], where
compositional program is approximated with a program-specific theory of tran-
sition systems. Our approach is orthogonal to this, as we are able to handle
programs in a more general way through the eventual flattening, while the the-
ory of transition systems could likely be integrated as an additional theory.

2 Preliminaries

Let P be a loop-free program represented as a transition system, and t a safety
property, that is, a logical formula over the variables of P . We are interested in
determining whether all reachable states of P satisfy t. Given a program P and
a safety property t, the task of a model checker is to find a counter-example, that
is, an execution of P that does not satisfy t, or prove the absence of counter-
examples on P . In the bounded, symbolic model checking approach followed in
this paper the model checker encodes P into a logical formula, conjoins it with
the negation of t, and checks the satisfiability of the encoding using an SMT
solver. If the encoding is unsatisfiable, the program is safe, and we say that t
holds in P . Otherwise, the satisfying assignment the SMT solver found is used
to build a counter-example.

A sort is a set of constants. For example the Boolean sort B = {�,⊥} consists
of the Boolean constants, true and false. Given a set of sorts {T0, . . . , Tn}, a
function op : T1 × . . . × Tn → T0 maps a (possibly empty) sequence of constants
v1, . . . , vn such that vi ∈ Ti to a return value v0 ∈ T0. Functions mapping
empty sequences are variables, and a term is either a constant, a variable, or an
application of a function op(t1, . . . , tn) where ti are, recursively, terms with a
return value in the sort Ti. In most cases in this paper we use the usual infix
notation together with parentheses to express the well-known arithmetic and
logical functions.

3 Combination of Theories in Theory Refinement

This section fixes a notation for describing instances of the safety problem using
SMT, and provides two communicating theories for solving the safety problem.
The goal of the presentation is to clarify how the modeling works in the SMT
framework, placing particular emphasis to the use of symbols and their semantic.

In modeling programs we consider sets of quantifier-free symbolic statements
of the form x = t, where x is a variable, and t is a term. This form essentially
corresponds to the Single static assignment (SSA) form [13] for loop-free pro-
grams. The symbolic statements are defined over a sort of bounded integers Sz
and a Boolean sort Sb = {�l,⊥l}; we distinguish between these sorts and, for
instance, the sorts of integers Z and Booleans B to clarify the difference between
this symbolic encoding (hence the S) and the representation used by an SMT
solver. Table 1 lists the non-variable functions we consider in our encoding. Note
that unlike some programming languages, including C and C++, we do not
allow the encodings to interpret terms from Sz as terms from Sb or vice versa.
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Table 1. The functions used in the encoding we consider. Note that unsigned and
signed sum coincide.

Functions Descriptions

Logical functions

&& , || Sb × Sb → Sb Logical and, or

! Sb → Sb Logical not

Non-logical functions

+ , *u , *s , /u , /s Sz × Sz → Sz Sum, unsigned and signed
product and division

% u , % s Sz × Sz → Sz Unsigned and signed
remainder

� , �a , �l Sz × Sz → Sz left shift, arithmetic and
logical right shift

& , | , ˆ Sz × Sz → Sz Bitwise and, or, exclusive or

∼ : Sz → Sz bitwise complement

≤s , ≤u , <s , <u , ≥s , ≥u , >s , >u Sz × Sz → Sb Signed and unsigned less
than or equal to and greater
than or equal to

We distinguish between the functions defined over the sort Sb and those defined
over Sz , calling the former logical functions and the latter non-logical functions.
The control-flow structures, such as if-then-elses, are encoded using the func-
tions ! , || , and && . For the purpose of this presentation we assume that the
encodings do not contain arrays and pointers.1 Figure 1 (left) shows an example
sequence of statements that we will use as a running example in the discussion
of this section.

3.1 Bit Vectors for Programs

Our theory of bit vectors for programs (BVP) has a single sort BVz bw containing
the integers representable in bw ∈ N bits. When the bit-width of the sort is clear
from the context we simply write BVz for the sort. Each BVP term t of sort
BVz bw is associated with the bits t1, . . . , tbw which are variables from the sort
B. The bits t1 and tbw are called, respectively, the least significant bit and the
most significant bit of t.

The BVP theory has two special constants 1b and 0b. For the constant 0b,
0bi = ⊥, 1 ≤ i ≤ bw . For the constant 1b, 1b1 = � and 1bi = ⊥ for 2 ≤ i ≤ bw .
The equality of BVP is =BVz : BVz × BVz → BVz . The interpretation of the
equality is that if x =BVz y holds, then the value of the equality term is 1b and
otherwise 0b. Finally, BVP has the functions defined in Table 1 with all sorts

1 We do support these in our implementation, but their results are treated nondeter-
ministically, that is, as unbound variables from Sz .
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c = (a % u 2) + (b % u 2)
)
% u 2

c′ = (a + b) % u 2

d = f *u e *u c

d′ = e *u f *u c′

(
cb =BVz (ab

% u 2b) + (bb % u 2b)
)
% u 2b

)
1
∧

(
(c′)b =BVz (ab

+ bb) % u 2b
)
1
∧

(
du = fu

*u eu *u cu
)
∧

(
(d′)u = eu *u fu

*u (c′)u
)
∧

cu = (c′)u
) ↔

(
cb1 ↔ (c′)b1

) ∧ . . . ∧ cbbw ↔ (c′)bbw
))

Fig. 1. (Left) a sequence of statements and (right) the corresponding encoding in com-
bined UFP and BVP (to be described in Sect. 3.3). On the left all the variables are of
sort Sz , and e and f are unbound.

replaced by the sort BVz . For a term t, the Boolean functions determining the
bits ti are computed through propositional flattening (see, e.g., [21]).

We encode a sequence of statements P = {x1 = t1, . . . , xn = tn} in BVP
as follows. Each statement xi = ti is converted to |xi|b =BVz |ti|b, where the
operator | · |b is defined for a symbolic term t recursively:

|t|b def=

⎧
⎨

⎩

xb if t
.= x is a variable or a constant

|x|b �� |y|b if t
.= x �� y where �� is a binary function,

◦|x|b if t
.= ◦x where ◦ is a unary function

(1)

where a
.= b denotes that the term a matches the form of b. Conjunction of the

least significant bits of encoded statements in P defines its BVP-encoding [P ]b:

[P ]b def= (|x1|b =BVz |t1|b)1 ∧ . . . ∧ (|xn|b =BVz |tn|b)1 (2)

We say that a safety property t holds in program P if and only if [P ]b ∧¬[t]b1
is unsatisfiable. Based on the definition we can see that the symbolic encoding
in Fig. 1 satisfies the safety property (d = d′) due to properties of modular
arithmetics. The BVP encoding is often inefficient due to the quadratic growth of
the formula with respect to bw . However, in many cases, the bit-precise encoding
of statements (e.g., *u in Fig. 1) are irrelevant to the safety property, and can
therefore be over-approximated. This motivates the use of less precise but more
efficiently solvable encodings such as those based on uninterpreted functions.

3.2 Uninterpreted Functions for Programs

The logic UFP (Uninterpreted Functions for Programs) is the standard logic of
quantifier-free uninterpreted functions having the Boolean sort B, the standard
Boolean functions op : B× . . .×B → B where op is an operator such as ∨,∧, and
¬, and an unbounded number of variables. In addition the logic is augmented
with



Theory Refinement for Program Verification 353

– a sort UFPn of real or integer numbers;
– the functions listed in Table 1 treated as uninterpreted functions with the

sorts UFPn and B instead of Sz and Sb respectively;
– commutativity of the functions + , *u , *s , & , and | ; and
– the concept of constants beyond the Boolean � and ⊥.

As usual, UFP also contains the equality function =S : T × T → B for all sorts
T . As in the symbolic encoding, also in UFP we differentiate between two types
of functions: those with a return sort B, and those with a return sort UFPn.

Given a sequence of statements P = {x1 = t1, . . . , xn = tn}, we denote its
encoding in UFP by [P ]u def= ([x1]u =T1 [t1]u) ∧ . . . ∧ ([xn]u =Tn

[tn]u), where Ti

is either UFPn or B depending on the related sort. The encoding operator [·]u
is defined as follows for a term t:

[t]u def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xu if t
.= x is a variable or a constant

[x]u ∧ [y]u if t
.= x && y

[x]u ∨ [y]u if t
.= x || y

¬[x]u if t
.= ! x

[x]u �� [y]u if t
.= x �� y where �� is a non-logical function.

(3)

We distinguish between the notions of program safety in UFP and in BVP.
In particular, we say that a safety property t holds in program P in UFP if and
only if [P ]u ∧ ¬[t]u is unsatisfiable.

The program in Fig. 1 is safe with respect to the safety property ! (c =
c′) || (d = d′) in UFP and therefore also in BVP. However, it is not safe in UFP
with respect to the safety property d = d′ that is safe in BVP. For checking safety of
programs in UFP we use a theory solver implementing a congruence closure algo-
rithm [14] that is modified to support constants and commutativity. The modifi-
cations are described in more detail in Sect. 5.1.

In our recent experiments [3] we showed that safety of many programs can be
established by interpreting the arithmetic functions as uninterpreted functions.
In the next subsection we describe how the UFP logic and the BVP logic can be
combined.

3.3 Combination of UFP and BVP

We present the theory refinement approach using a seamless integration of
the UFP and BVP encoding, and therefore require a form of theory combi-
nation. However, unlike in conventional theory combination on bit vectors (see,
e.g., [17]), we do not need to consider bit-vectors as theories, but instead they
are embedded directly to the Boolean structure of the SMT solver. The two
theories UFP and BVP are combined using a binding formula defined as follows.

Definition 1. Given a symbolic statement t, let [t]u and [t]b be its UFP and
BVP-encodings respectively. If both [t]u and [t]b appear together in a formula,
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we say that t is bound. Let B be the set of all bound statements. The binding
formula for B (denoted FB) is defined as

FB
def=

∧

t,t′∈B

([t]u = [t′]u) ↔ (
([t]b1 ↔ [t′]b1) ∧ . . . ∧ ([t]bbw ↔ [t′]bbw )

)
(4)

Intuitively, the combination of the theories UFP and BVP with FB allow us
to express an over-approximation of the symbolic encoding of a program. This
is stated more formally in the following theorem.

Theorem 1. Let P be a program. Then [P ]b ∧ FB |= [P ]u.

Proof (sketch). By simulation of executions in BVP: if there exist values
vb
1, . . . , v

b
n for the variables xb

1, . . . , x
b
n in a term [a = t]b then the same values

vu
1 , . . . , vun satisfy the corresponding equality [a]u = [t]u. ��

Figure 2 shows the combined UFP and BVP encoding schematically. The
symbolic encoding of a program is partitioned by the model checker into three
parts: the UFP encoding, the BVP encoding, and the binding formula FB . The
conjunction of these is solved by the SMT solver. Figure 1 (right) describes a
combination encoding of UFP and BVP together with the necessary binding
formula for the running example.

SMT solver

Model checker

UFP
BVP

BVPBVP

FB

FB

Symbolically encoded program

Fig. 2. A symbolic encoding of a program and the corresponding SMT formula. In the
schematic example most of the program is encoded using UFP, while certain critical
parts are encoded in BVP and made to communicate with the UFP encoding using
the binding formula FB .

4 Counterexample-Guided Theory Refinement

This section provides an algorithm for verifying safety of programs by grad-
ually refining the precision ρ of the symbolic encoding from UFP to BVP in
parts where satisfying truth assignments show that it is necessary for sound-
ness. Algorithm 1 describes the high-level idea. The algorithm takes as input
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Algorithm 1. The Counterexample-Guided Theory Refinement Algorithm
input : P = {(x1 = t1), . . . , (xn = tn)}: a program, and t: a safety property
output: 〈Safe, ⊥〉 or 〈Unsafe,CE b〉

1 For all 1 ≤ i ≤ n initialize ρ[xi = ti] ← [xi = ti]
u

2 ρ[t] ← [t]u

3 FB ← �
4 while true do
5 Query ← ρ[x1 = t1] ∧ . . . ∧ ρ[xn = tn] ∧ ¬ρ[t] ∧ FB

6 〈result ,CE〉 ← checkSAT(Query)
7 if result is UnSAT then
8 return 〈Safe, ⊥〉
9 end

10 CE b ← getValues(CE)

11 foreach s ∈ P ∪ {t} s.t. ρ[s] �|= [s]b do

12 〈result , 〉 ← checkSAT([s]b ∧ CE b)
13 if result is UnSAT then
14 ρ[s] ← refines(ρ[s])
15 FB ← computeBinding(ρ)
16 break

17 end

18 end
19 if No s was refined at line 14 then

20 return 〈Unsafe,CE b〉
21 end

22 end

a symbolically encoded problem P and a safety property t, and returns either
Safe, if t holds in P , or Unsafe with a bit-precise counter-example if t does
not hold in P . During the execution the algorithm picks statements s ∈ P ∪ {t}
and refines their approximations in ρ until ρ[s] is equivalent to [s]b. Based on ρ,
the algorithm constructs the binding formula FB sufficient to connect the UFP
and BVP terms.

The safety of the program is tested at lines 5–9 using the current precision
ρ and the binding formula. If the check succeeds, the algorithm terminates at
line 9. Otherwise, a satisfying truth assignment is extracted at line 10 and then
used to refine ρ at lines 11–18.

The need for refinement is checked for every statement s with a precision ρ[s]
not equivalent to [s]b. If the truth assignment CE b is inconsistent with [s]b then
ρ[s] is refined to block the truth assignment. If at least one such replacement
happens in the current iteration, the execution proceeds to line 5. In practice it
is a good idea to refine several statements based on a single counter-example, as
discussed in Sect. 6. If no refinement is done, the truth assignment corresponds
to a counter-example and the algorithm terminates at line 20.

The algorithm uses four sub-procedures checkSAT, getValues, refines, and
computeBinding. checkSAT(F ) determines the satisfiability of a formula F ,
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getValues(CE ) computes a BVP encoding of CE through substituting the
abstract values from UFP with concrete BVP values. refines(F ) refines the
statement s with respect to the previous precision F , and computeBinding(ρ)
computes the binding formula using Definition 1. Below we give a definition for
the refine procedure, while the other procedures will be discussed in more detail
in Sect. 5.3.

Definition 2. The procedure refines(F ) returns an iterative refinement of
the statement s of the symbolic encoding with respect to F , such that (i)
refines(F ) |= F , and (ii) refines has a fix-point that is equivalent to [s]b

and reachable in a finite number of applications of refines.

While in the implementation discussed in Sect. 5 we use refines(F ) = [s]b∧ [s]u,
we want to point out the possibility of using interpolation-based methods (see,
e.g., [4]) for the refinement.

Theorem 2. Algorithm1 terminates in a finite number of steps.

Proof. Assume that Algorithm 1 does not terminate. Then there is a term in
P ∪ {t} that can be refined an unbounded number of times before the fix-point
equivalent to [s]b is reached, which contradicts Definition 2. ��
Theorem 3. Algorithm1 returns Unsafe if and only if the symbolic encoding
P has an execution violating the safety property t.

Proof. The algorithm maintains the invariants

Inv1 [x1 = t1]b ∧ . . . ∧ [xn = tn]b |= ρ[x1 = t1] ∧ . . . ∧ ρ[xn = tn]
Inv2 [t]b |= ρ[t] (5)

at line 14 by Definition 2 and Theorem 1. Assume that the algorithm returns
Unsafe but there is no execution violating the safety property t. Then there is
a truth assignment σ such that ρ[x1 = t1] ∧ . . . ∧ ρ[xn = tn] ∧FB is true and ρ[t]
is false. The truth assignment σ must also satisfy [x1 = t1]b ∧ . . . ∧ [xn = tn]b.
By Inv2, if ρ[t] is false also [t]b is false, hence contradicting the unsafety of (P, t).
Now assume the algorithm returns Safe but there is an execution of P violating
t. Then there is a truth assignment satisfying [P ]b ∧ ¬[t]b. Since by Theorem 1
both [P ]b ∧ FB |= ρ[x1 = t1] ∧ . . . ∧ ρ[xn = tn] and ¬[t]b ∧ FB |= ¬ρ[t], also the
query on line 5 is satisfiable, contradicting the assumption. ��

5 Implementation of Theory Refinement Algorithm

This section describes the prototype implementation of the theory refinement
algorithm. The algorithm is implemented on the SMT solver OpenSMT [19]
and the bounded model checker HiFrog [3]. The overview of implementation
including the three main components and interactions between them is depicted
in Fig. 3.
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Fig. 3. The SMT-based model checking framework implementing a theory refinement
approach used in the experiments.

5.1 The Solver for UFP

The UFP theory solver is based on the co-operation between a congruence closure
algorithm, which maintains sets of equivalence classes and inequalities between
the classes, and a SAT solver, which enforces a propositional structure describing
the relations between the equalities. We refer the reader to [14] for the full
description of the egraph algorithm that the UFP solver bases on.

Constants. The original egraph algorithm does not support constants other than
the Boolean � and ⊥, but constants play often an important role in our bench-
marks. The egraph algorithm can represent an inequality between two terms
t1, t2 by asserting explicitly the inequality t1 �= t2 over these terms. This rep-
resentation grows quadratically in the number of constants and therefore is not
scalable. We adopt a different strategy for representing the inequalities between
constants. An equivalence class in the egraph algorithm is represented by a linked
list binding together the terms in the same class. Each class is represented by
a canonical term from the linked list. In the original algorithm of [14], when
two equivalence classes a and b are joined, the canonical term of the new class
a ∪ b is the representative of whichever class a or b contains more terms. This
is done to allow efficient joining and splitting in the backtracking search driven
by the SMT solver. In our implementation the representative of a class a is
always a constant if a contains a constant. The implicit inequality between con-
stants is then implemented by a check that the respective equivalence classes are
not both represented by a constant term. This approach fits naturally into the
egraph algorithm and explanation generation. In the experiments we observed
no noticeable slowdown compared to the original approach.

Values. Algorithm 1 requires concrete values from the UFP theory to construct a
counter-example candidate. In general the values for UFP are obtained by assign-
ing a running number for each equivalence class that the egraph algorithm main-
tains. However, there are two special cases for the values. First, if the equiva-
lence class contains a constant, the value is that of the constant. Second, a pre-
processing step in the SMT solver removes terms that only appear on clauses that
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are true by construction. Since these terms can have any value, we indicate this
with a special flag.

Commutativity. The commutativity of the functions Co = { + , *u , *s , & , | }
is implemented by conjoining the set {◦(a, b) ↔ ◦(b, a) | ◦ ∈ Co, ◦(a, b) in P}
to the instance [P ]u being solved. A similar approach is followed, for instance,
in [10].

5.2 The Solver for BVP

The BVP theory is solved through propositional flattening [21]. The solver sup-
ports the operations listed in Table 1, and allows the use of arbitrary bit-widths.2

Based on an extensive testing the implementation is robust, but still prototyp-
ical in the sense that we implement no sophisticated pre-processing techniques
that are available in many other bit-vector solvers (see, e.g., [9]).

Unlike many other SMT solvers (see, e.g., [17]), we do not implement the bit-
vector solver as a separate SAT solver working on the flattening and driven by
the main SAT solver. Instead, we flatten the problem directly to the main SAT
solver. This has several advantages: we avoid the overhead of duplicate solver
instantiation, and we enable the solver to potentially learn much more intricate
relationships between the flattened formula and the formula in UFP. However,
an in-depth analysis of the implications of this design is beyond the scope of this
paper.

5.3 Theory Refinement in Model Checking

We integrated Algorithm 1 into the bounded model checker HiFrog for C pro-
grams. HiFrog obtains first the symbolic encoding of the program P and a
safety property t through a sequence of pre-processing steps, builds then the UFP
formula, and finally gradually transforms parts of the UFP formula into BVP
based on truth assignments until the safety is determined. We follow the app-
roach where safety properties are expressed as assertions in the C code. The
architecture is depicted in Fig. 3. HiFrog maintains two SMT solvers during
the execution and which are represented by the checkSAT calls in Algorithm 1:
the main solver for checking the satisfiability query constructed at line 5 (shown
on the bottom of Fig. 3) and the refinement solver for checking the spuriousness
of each counter-example at line 10 (shown on the right of Fig. 3). This choice
was taken so that the expensive calls on the main solver would not be slowed
down by unnecessary clauses at the refinement solver.

The counter-examples are flattened to propositional logic through the call to
getValues by mapping the values in UFP to a unique bit-vector constant of the
given bit width bw . At this stage of the development we ignore the case where
the UFP solver gives more equivalence classes than what is representable in bw
bits, since this limitation did not affect our results.

2 The shift operations � , �a , �l assume a bit-width that is a power of two.
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The binding formula (see Definition 1) is updated whenever a statement x = t
is refined. This is done by first constructing the BVP formulas [x]b and [t]b, and
then adding the missing equalities to FB with the call to computeBinding.

6 Experimental Results

We evaluated the theory-refinement mode of HiFrog on C programs mostly
coming from the software model checking competition (SV-COMP). The bench-
marks were split into the safe (128 instances) and unsafe (30 instances) sets,
indicating whether the bad behavior is reachable or not. Among safe instances,
17 require refinements.

For benchmarking we used Ubuntu 14.04 Linux system with two Intel Xeon
E5620 CPUs clocked at 2.40 GHz and 12 GB memory limit per process using a
timeout of 300 s CPU time. The model checker was compiled with the GNU C++
compiler and the O3 optimization level. The complete experimental results, the
source code, and a virtual machine are all available at [1].

Figure 4 shows the verification results on safe properties. We compared (Fig. 4,
left) the HiFrog’s theory-refinement mode against cbmc version 5.7, the win-
ner of the software model checking competition falsification track in 2017.3
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Fig. 4. Timings of cbmc (left) and HiFrog’s flattening (right) against HiFrog’s theory
refinement for the safe instances.
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Fig. 5. Timings of cbmc (left) and HiFrog’s flattening (right) against HiFrog’s theory
refinement for the unsafe instances.

3 OpenSMT2: https://scm.ti-edu.ch/repogit/opensmt2.git, git ID: 99c960e4c;
HiFrog (including cbmc that shares the CProver framework [2] with HiFrog):
https://scm.ti-edu.ch/repogit/hifrog, git ID b35956f2c.

https://scm.ti-edu.ch/repogit/opensmt2.git
https://scm.ti-edu.ch/repogit/hifrog
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In 101 cases, HiFrog was either as fast or faster than cbmc, sometimes by
orders of magnitude. Furthermore, HiFrog’s theory refinement mode is com-
pared against HiFrog’s propositional flattening (Fig. 4, right), hence ensuring
that the only difference in the solvers is in how the symbolic encoding is presented
to the SMT solver. In 115 cases, the theory refinement was either as fast or faster
than flattening in determining safety, providing a more convincing evidence that
the theory refinement approach works well in practice.

The verification results of unsafe benchmarks are shown in Fig. 5. In five
cases, bug detection by HiFrog was slower than the one by cbmc since HiFrog
required iterative refining of all the expressions to confirm the validity of the
counter-example. However, in the remaining cases, HiFrog was comparable to
cbmc.

6.1 Experiments on Refinement Heuristic

Algorithm 1 does not address which exact statement should be refined based on
a counter-example on Line 11 in case there are several possibilities. However this
selection affects the run time of the model checking and is therefore of practical
interest. We consider the following three features while building a refinement
heuristic:

– Traversal order: the algorithm can proceed either by choosing from P the first
statement (forward order) or the last statement (backward order) satisfying
the condition on Line 11.

– All statements falsified by the counter-example are refined simultaneously
(simultaneous refinement).

– All statements that depend on refined statements are refined simultaneously
(dependency refinement).

The heuristics are as follows: H0 – Forward order; H1 – Backward order; H2 –
Forward order with simultaneous refinement; H3 – Backward order with simulta-
neous refinement; H4 – Forward order with dependency refinement; H5 – Back-
ward order with dependency refinement; H6 – Forward order with simultaneous
and dependency refinement; and H7 – Backward order with simultaneous and
dependency refinement. Based on the experimentation, the fastest solver on aver-
age results from using Forward order with dependency refinement. This is the
heuristic we use in the results on Figs. 4 and 5. We briefly report on the results of
the heuristics in Table 2 over the 17 instances of our total benchmark set where
statements were refined. This benchmark set contains three crafted instances
and the rest from the bitvector category of SV-COMP. The row labeled #solved
reports how many instances the heuristic could solve before the timeout, #ref
reports how many statements in total had to be refined over the set, and time
reports the total run time. As a reference the table also reports results on the
heuristic Min that requires no run time and computes a minimum set of refine-
ments required to prove the property.
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Table 2. Comparison of the heuristics against Min on instances requiring refinement.

H0 H1 H2 H3 H4 H5 H6 H7 Min

#solved 17 16 17 17 17 17 17 17 17

#ref 660 2218 1250 1250 533 2266 1442 1831 162

time (s) 538 223 257 317 123 166 147 158 46.2
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Fig. 6. The number of refined statements using the Min heuristic with respect to the
total number of statements.

Finally, in Fig. 6 we show the reduction in the number of refined statements
when using the Min heuristic on the 17 instances. As expected, the performance
of the heuristic depends on the instance, but when effective, dramatically reduces
the amount of flattened statements.

While the results are still preliminary mostly due to the prototype nature of
the tools we are developing, we believe that they make a very strong point for
the potential of the theory refinement approach in software model checking.

7 Conclusions and Future Work

We presented a new approach for abstraction refinement in software verifica-
tion with SMT solvers. Our approach introduces iterative theory refinement and
supports solving of formulas of combined theories in the SMT solver, where
the binding to the theory is maintained by a series of identities in the original
formula. Our main contribution is the gradual encoding process that uses the
most precise theory only for a subset of all program statements, while handling
the rest of the statements by using the less precise theories. This subset of the
statements could either be identified by checking spurious counter-examples or
simply specified by the user. Our framework can be extended by sets of theo-
ries with a partial order of refinement defined among them. In this paper, we
demonstrated the framework on the UFP theory with the partial refinement to
the BVP theory. We implemented this framework in the OpenSMT [19] solver
and the model checker HiFrog [3].

We study different refinement strategies and compare them against a strategy
computed off-line, as well as with the encoding into propositional logic, known
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as flattening or bit-blasting. Improvement is seen both in the running time and
in the size of the resulting formula, demonstrating that the spurious counter-
examples are usually eliminated by refining a small number of statements in the
formula.

In future we plan to progress in several directions. We will study theory
refinement with arithmetic theories and arrays, defining a partial order among
theories based on the level of abstraction/refinement that they provide. We will
further improve the automatic refinement based on an analysis of the counter-
examples using approaches such as interpolation. We also plan to develop more
sophisticated heuristics and strategies for refinement.
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Abstract. Preprocessing of the input formula is an essential part of all
modern smt solvers. An important preprocessing step is formula simpli-
fication. This paper elaborates on simplification of quantifier-free formu-
las containing unconstrained terms, i.e. terms that can have arbitrary
values independently on the rest of the formula. We extend the idea
in two directions. First, we introduce partially constrained terms and
show some simplification rules employing this notion. Second, we show
that unconstrained terms can be used also for simplification of formulas
with quantifiers. Moreover, both these extensions can be merged in order
to simplify partially constrained terms in formulas with quantifiers. We
experimentally evaluate the proposed simplifications on formulas in the
bit-vector theory.

1 Introduction

For most of the modern smt solvers, preprocessing of the input formula is a cru-
cial step for the efficiency of the solver. Therefore, modern smt solvers employ
hundreds of rewrite rules in order to simplify the input formula [10]. The aim
of most of the simplifications is to reduce the size of the input formula and to
replace expensive operations by easier ones. One class of these simplification
rules focuses on formulas containing unconstrained variables. An unconstrained
variable is a variable that occurs only once in the formula and therefore can be
set to any suitable value without affecting the rest of the formula. For example,
the formula x + (5 ∗ y + z) = y ∗ z can be rewritten to an equisatisfiable formula
u = y ∗ z because, regardless of the values of y and z, the term x + (5 ∗ y + z)
can be evaluated to any value of u by choosing a suitable value of x. Such
terms, which can be set to an arbitrary value by a well-suited choice of val-
ues of unconstrained variables, are called unconstrained terms. The principle of
simplifications of unconstrained terms is recalled in more detail in Sect. 3. This
simplification technique was proposed by Bruttomesso [8] and Brummayer [7],
who independently observed that industrial benchmarks often contain non-trivial
amount of unconstrained variables. For example, consider smt queries coming
from symbolic execution of a program, where a query is satisfiable if and only
if the symbolically executed program path is feasible. There are basically two
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sources of unconstrained variables in such queries. One source is input variables:
such a variable is unconstrained in all queries corresponding to the symbolic
execution of a path that reads the input variable at most once. The second
source is program variables that are assigned on an executed path, but not read
yet. For instance, the execution of an assignment y := x + 5 leads to a conjunct
y = x + 5 in the path condition query, where y does not appear anywhere else
in the query (unless it is read) and thus it is unconstrained. Such situations are
especially frequent when analyzing Static Single Assignment (ssa) code such as
llvm, which uses many program variables.

1.1 Contribution and Structure of the Paper

In this paper, we extend the notion of unconstrained terms in several ways:

– In some cases, the definition of unconstrained term is too restrictive by
allowing only terms that can evaluate to every possible value by a suitable
choice of values of unconstrained variables. For example, Bruttomesso and
Brummayer describe the simplification rule that replaces the bit-vector term
c · x by a fresh variable y, if x is an unconstrained variable and c is an
odd constant. However, if c is even, the simplification is no longer possible.
We describe a less restrictive simplification using partially constrained terms,
which for example allows replacing the term 6 · x by the term 2 · y; although
these two terms can not evaluate to all possible values, they can evaluate to
precisely the same set of values.
Partially constrained terms are studied in Sect. 4. This section also shows that
several ad-hoc simplification rules introduced by Bruttomesso can be seen as
instances of simplification of partially constrained terms. Our definition of
partially constrained terms allows construction of more similar rules.

– Previously, the simplifications of unconstrained terms were described only on
quantifier-free formulas. In Sect. 5, we formalize the conditions under which
a simplification of unconstrained terms can be performed on quantified for-
mulas.

– Sect. 6 combines techniques from the two preceding sections and describes
simplification of partially constrained terms in quantified formulas. Further-
more, the resulting technique is combined with quantifier-specific simplifica-
tion rules to allow more efficient and straightforward applications.

Sect. 7 experimentally evaluates the influence of proposed simplifications on per-
formance of state-of-the-art smt solvers Z3 [9], Boolector [13], and Q3B [12] on
quantified bit-vector formulas arising in software and hardware verification.

We emphasize that the presented approach is not tied to any particular the-
ory. We use the bit-vector theory in many examples and in evaluation as its
functions tend to produce unconstrained terms when at least one argument is
an unconstrained.



366 M. Jonáš and J. Strejček

2 Preliminaries

This section briefly recalls the theory of fixed sized bit-vectors (BV or bit-vector
theory for short). It is a multi-sorted first-order theory with infinitely many
sorts corresponding to bit-vectors of various lengths. The BV theory uses only
three predicates, namely equality (=), unsigned inequality of binary-encoded nat-
ural numbers (≤u), and signed inequality of integers in two’s complement rep-
resentation (≤s). The theory also contains various functions, namely addition
(+), multiplication (·), unsigned division (÷), bit-wise and (bvand), bit-wise or
(bvor), bit-wise exclusive or (bvxor), left-shift (�), right-shift (�), concatena-
tion (concat), and extraction of n bits starting from position p (extractn

p ). The
signature of BV theory also contains constants c[n] for each bit-width n > 0 and
a number 0 ≤ c ≤ 2n−1. Additionally, as in smt-lib [1] and in Hadarean [11], we
suppose a distinguished sort Boolean and instead of treating formulas and terms
differently, formulas are merely the terms of sort Boolean. This sort is similar to
bit-vectors of length 1, but Boolean uses standard logic operators (∧,∨,¬) and
not the bit-vector ones. If a bit-width of a constant or a variable is not specified,
we suppose that it is equal to 32. The precise description of the multi-sorted
logic can be found for example in Barrett et al. [3]. For a precise description of
the syntax and semantics of the BV theory, we refer the reader to Hadarean [11].

For a valuation μ that assigns to each variable a value in its domain, [[ ]]μ
denotes the evaluation function, which assigns to each formula ϕ the value
obtained by substituting free variables in ϕ by values given by μ and evalu-
ating all functions, predicates, logic operators etc. A formula ϕ is satisfiable if
[[ϕ]]μ = � for some valuation μ; it is unsatisfiable otherwise. Formulas ϕ and ψ
are equivalent if they have the same set of free variables and for each valuation
μ of these free variables, the equality [[ϕ]]μ = [[ψ]]μ holds. Formulas ϕ and ψ are
equisatisfiable, if either both are satisfiable, or both are unsatisfiable.

If ϕ is a formula and t, s are terms of the same sort, we use ϕ[t ← s] to denote
the formula ϕ with every occurrence of the term t replaced by the term s. In
particular, if x is a variable, ϕ[x ← t] is the result of substituting the variable
x by the term t. Further, vars(ϕ) denotes the set of free variables in ϕ. Finally,
a variable v ∈ vars(ϕ) is called unconstrained in ϕ, if it occurs only once in the
formula ϕ and it is called constrained otherwise.

If convenient, we work with functions as with sets of pairs. For example, the
union of functions f : A → B and g : C → D where A ∩ C = ∅ is a function
f ∪ g : (A ∪ C) → (B ∪ D). Similarly, {(a, b)} is a function from the set {a} to
the set {b}. This function is also denoted as {a �→ b}.

3 Unconstrained Terms in Quantifier-Free Formulas

This section formalizes known simplifications of quantifier-free formulas contain-
ing unconstrained terms. Intuitively, a term t is unconstrained in the formula ϕ if
for every assignment to the variables occurring in the term, every possible value
of the sort of the term t can be obtained by changing values of only variables
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that are unconstrained in ϕ. The idea of simplification is to replace a nontrivial
unconstrained term by a fresh variable, which leads to a smaller equisatisfiable
formula. For example, consider the formula (x + 3y = 0 ∧ y > 0) in the theory
of integers. The formula contains one unconstrained variable x. The term x+3y
is unconstrained as it can attain any integer value, regardless of the value of y.
If we replace the term x + 3y by a fresh variable v, we get the equisatisfiable
formula (v = 0 ∧ y > 0). Alternatively, one can realize that the whole term
x + 3y = 0 is unconstrained and thus it can be replaced by a fresh Boolean
variable w. In this way, we get an equisatisfiable formula (w ∧ y > 0). In both
cases, the variable y of the simplified formula become unconstrained and the
formula can be further simplified.

To formalize the simplification principle, we define when a term is uncon-
strained due to a set of variables U , which means that a term can evaluate to an
arbitrary value by changing only values of variables in U . Further, we define when
a term is unconstrained in a formula ϕ, which means that it is unconstrained
due to a set of variables that are unconstrained in ϕ.

Definition 1. Let t be a term and U ⊆ vars(t) be a set of variables. We say
that the term t is unconstrained due to U if, for each valuation μ of variables
in (vars(t) � U) and every value b of the same sort as the term t, there exists a
valuation ν of variables in U such that [[t]]μ∪ν = b.

Example 1. In the bit-vector theory, the following terms are unconstrained due
to {x} for any term t′ not containing x:

– x + t′ and t′ + x,
– c[n] · x and x · c[n] if c is an odd constant,
– bvnot(x), bvxor(x, t′) and bvxor(t′, x),
– x <u c[n] if c �= 0,
– c[n] <u x if c �= 2n − 1,
– x = t′ and x �= t′.

Note that the last two terms are unconstrained due to {x} because each sort
of the bit-vector theory contains at least two elements. Further, the terms x · y,
bvand(x, y), bvor(x, y) are unconstrained due to {x, y}. A comprehensive list of
unconstrained terms can be found for example in Franzén’s doctoral thesis [10].

On the contrary, multiplication by an even constant is not an unconstrained
term. For example, the term 2 · x over the theory of bit-vectors never evaluates
to 3 as the number 3 does not have a multiplicative inverse in the ring of integers
modulo 232. As a consequence, the term x · y is neither unconstrained due to
{x}, nor unconstrained due to {y}.

Definition 2. A subterm t of a formula ϕ is called unconstrained in the formula
ϕ if it is unconstrained due to a set of variables that are unconstrained in ϕ.

The following theorem states the correctness of simplification based on uncon-
strained terms.
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Theorem 1 ([8,10]). Let ϕ be a quantifier-free formula and t its subterm uncon-
strained in ϕ. Then ϕ is equisatisfiable with the formula ϕ[t ← v], where v is a
fresh variable of the same sort as t.

Note that our definition of unconstrained terms and the statement of The-
orem 1 are slightly more general than the ones given by Brummayer and
Bruttomesso, which consider unconstrained terms containing only a single
unconstrained variable. The definition of unconstrained term used in this paper
is due to Franzén [10].

The approach where subformulas are identified with terms of sort Boolean
brings some additional benefits. In particular, a subformula can be an uncon-
strained term even if it consists of terms that are not unconstrained. For example,
let us consider the formula ϕ ≡ (3x + 3y = 0 ∧ y > 0) over the theory of inte-
gers. The term 3x + 3y is not unconstrained as its value is always a multiple of
3. However, term 3x + 3y = 0 of sort Boolean is unconstrained due to {x}. As
x is unconstrained in ϕ, we can simplify the formula to the equisatisfiable form
(v ∧ y > 0). Elimination of pure literals can then further reduce the formula to
the form (y > 0). As both � and ⊥ can be obtained by suitable choices of the
value of the variable y, the term y > 0 is unconstrained due to {y}, and thus
the formula can be simplified to v′, where v′ is a Boolean variable.

Note on Models. The simplified formulas are in general equisatisfiable to the
original ones, but not equivalent. For example, the formulas (x+3y = 0 ∧ y > 0)
and (v = 0 ∧ y > 0) mentioned above are both satisfiable, but they use different
sets of variables and thus they have different models. In this case, a model of
the original formula can be easily computed from the model μ of the simplified
formula: it assigns to y the value [[y]]μ and to x the value [[−3y]]μ. However, in
some cases, the computation of a model for the original formula can be harder.
For example, assume that we have replaced the unconstrained term 180423[32] ·x
over the bit-vector theory by a fresh variable y. To get the value of x such that
the term 180423[32] · x evaluates to a given value of y then means to find the
multiplicative inverse of 180423 in the ring of integers modulo 232 and multiply it
by the value of y. Although this inverse can be still computed using an extended
Euclidean algorithm, it is computationally not trivial.

Note that algorithms for effective retrieval of models for the original formulas
from models of the simplified formulas are beyond the scope of this paper.

4 Partially Constrained Terms in Quantifier-Free
Formulas

The key property of the simplification presented in the previous section is that
the possible values of an unconstrained term are precisely the same as the possi-
ble values of a fresh variable of the same sort. This approach can be generalized
even to terms that are partially constrained : a complex term can be replaced by
a simpler one representing the same values. For example, the value of the term
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6 · x over the bit-vector theory can be any number divisible by 2. Therefore, if
6 · x is a subterm of a formula where x is unconstrained, then the subterm 6 · x
can be replaced by 2 · y where y is a fresh variable of the same sort as x.

The following definition formalizes the notion that two terms represent the
same set of possible values for any fixed valuation of variables in C. Intuitively,
in applications of this definition, the set C will contain all constrained variables.

Definition 3. Let C be a set of variables and t, s be terms of the same sort. Fur-
ther, let U = (vars(t)∪vars(s))�C. Terms t and s are called C-interchangeable,

written t
C� s, if for every valuation μ of variables in C it holds that

{[[t]]μ∪ν | ν is a valuation of U} = {[[s]]μ∪ρ | ρ is a valuation of U}.

Now we formulate the simplification principle for partially constrained terms
and prove its correctness.

Theorem 2. Let ϕ be a quantifier-free formula and C be the set of its con-

strained variables. For any subterm t of ϕ and any term s such that t
C� s and

vars(s)∩vars(ϕ) ⊆ C, the formula ϕ is equisatisfiable with the formula ϕ[t ← s].

Proof. All variables of ϕ and ϕ[t ← s] can be divided into three disjoint sets:

1. the set C of all constrained variables in ϕ,
2. the set U = (vars(t)∪ vars(s))�C of all variables in t or s that are not in C,
3. the set U ′ containing all variables that are neither in C, nor in U .

The precondition vars(s) ∩ vars(ϕ) ⊆ C formulated in the theorem implies that
every variable of U appears either only in t or only in s and not in any other
part of the formula. Moreover, variables of U ′ appear neither in t, nor in s.

Suppose that ϕ is satisfiable. Hence, there exists a valuation μ of variables
in C, a valuation ν of variables in U , and a valuation ν′ of variables in U ′ such
that μ ∪ ν ∪ ν′ is a satisfying assignment of ϕ. As t and s are C-interchangeable
and do not contain any variable from U ′, there exists a valuation ρ of variables
in U such that [[t]]μ∪ν = [[s]]μ∪ρ. As valuations ν and ρ concern only variables
of U that do not appear outside t and s, we get that the assignment μ ∪ ρ ∪ ν′

satisfies ϕ[t ← s].
It remains to show that satisfiability of ϕ[t ← s] implies satisfiability of ϕ.

However, the arguments are completely symmetric. ��
Note that the definition of C-interchangeability generalizes Definition 1 in the

sense that a term t is unconstrained due to U if and only if it is C-interchangeable
with a fresh variable u of the same sort, where C = vars(t) � U . Theorem 1 can
then be seen as a corollary of Theorem 2.

Applications. Now we show some applications of the previous theorem. We
start with an example from the theory of non-linear real arithmetic and then
focus on terms over the bit-vector theory. In particular, we focus on simplifica-
tion of partially constrained terms with multiplication as this operation is very
expensive for some smt solvers, especially these based on bdds.
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Example 2. Consider the term t · u in the theory of non-linear real arithmetic,
where u is an unconstrained variable and t is an arbitrary term not containing
the variable u. The term t · u can be replaced by ite(t = 0, 0, v), where v is a
fresh variable, as the terms t · u and ite(t = 0, 0, v) are vars(t)-interchangeable.
In general, this simplification can be performed in any theory in which addition
and multiplication form a field.

Example 3. In the bit-vector theory, the term 4 · u can be evaluated to any
bit-vector where the two least significant bits are zeroes. The same holds for
the term 12 · u. In general, the term c[n] · u with a constant c[n] can represent
any bit-vector ending with i zeroes, where i is the highest integer such that 2i

divides c. This follows from the fact that c can be expressed as 2i · m for some
odd number m and every odd number has a multiplicative inverse m−1 in the
bit-vector theory. All bit-vectors with i zeroes at the end can be also represented
by the term v � i. Hence, the terms c[n] · u and v � i are ∅-interchangeable.
Finally, Theorem 2 implies that a formula ϕ with an unconstrained variable u
and a term c[n] ·u is equisatisfiable with the formula ϕ[c[n] ·u ← v � i] where v is
a fresh variable and i is the constant described above. Note that the term v � i
is easier to compute and express as a circuit than the original multiplication by
a potentially large constant c[n].

Example 4. More interestingly, we can simplify also the term t · u where u is
unconstrained, even if t is a term with a non-constant value. As an example,
consider the term t · u[3] for a 3-bit variable u. We write t[i] as a shortcut for
the extraction of the i-th least significant bit of the term t where 0 ≤ i ≤ 2,
i.e. t[i] ≡ extract12−i(t). Then t · u[3] is vars(t)-interchangeable with the term

ite
(
t[0] = 1[1], v0, ite

(
t[1] = 1[1], v1 � 1[3], ite(t[2] = 1[1], v2 � 2[3], 0[3])

))
.

In general, the term t · u[k] is vars(t)-interchangeable with the term defined as

ite
(
t[0] = 1[1], v0,

ite
(
t[1] = 1[1], v1 � 1[k],

. . .

ite(t[k − 1] = 1[1], vk−1 � (k − 1)[k], 0[k]) . . .
))

.

Therefore, in a formula ϕ with an unconstrained variable u[k], a term t · u[k]

can be replaced by the term above with fresh variables v0, v1, . . . , vk−1 and the
resulting formula is equisatisfiable with ϕ.

In the previous two examples, the multiplications has been replaced by oper-
ations like bit-equality and bit-shift by a constant, which are very cheap for
bdd-based smt solvers.

Example 5. Now we discuss some simplification rules mentioned by Bruttomesso
without a proof of correctness. For example, consider the simplification rule that
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rewrites the term t >u u containing an unconstrained bit-vector variable u by
the term b ∧ t �= 0, where b is a fresh Boolean variable. Intuitively, the rule is
correct as t >u u can be evaluated to both � and ⊥ unless t is evaluated to 0. If
the value of t is 0, t >u u evaluates to ⊥. Correctness of this rule follows directly
from Theorem 2 and the fact that the term t >u u is vars(t)-interchangeable
with the term b ∧ t �= 0 assuming that u, b �∈ vars(t). Similar simplification rules
can be derived from pairs of vars(t)-interchangeable terms presented in Table 1.

Table 1. Each line presents a pair of vars(t)-interchangeable terms, assuming that
b, u �∈ vars(t). Terms on the right are considered simpler for smt solvers than these on
the left.

t <u u b ∧ t �= 2k − 1

t <s u b ∧ t �= 2k−1 − 1

u <u t b ∧ t �= 0

u <s t b ∧ t �= −2k−1

t ≤u u b ∨ t = 0

t ≤s u b ∨ t = −2k−1

u ≤u t b ∨ t = 2k − 1

u ≤s t b ∨ t = 2k−1 − 1

5 Unconstrained Terms in Quantified Formulas

In this section, we extend the treatment of unconstrained variables to formulas
containing quantifiers. To simplify the presentation, we suppose that all formulas
are in the prenex normal form and do not contain any free variables. That is,
ϕ = Q1B1Q2B2 . . . QnBnψ, where ψ is a quantifier-free formula, Qi ∈ {∀,∃} for
all 1 ≤ i ≤ n, and all Bi are pairwise disjoint sets of variables. Sequences QiBi

are called quantifier blocks. Quantifier blocks are supposed to be maximal, that
is Qi �= Qi+1. A quantifier block QiBi is existential if Qi = ∃ and universal
otherwise. The level of a variable x is i such that x ∈ Bi. For a variable x, we
denote as level(x) its level and for a set of variables X we define levels(X) =
{level(x) | x ∈ X}. If the set X contains only variables of the same level, we
denote as level(X) the level of all variables in that set. We say that an occurrence
of a Boolean variable has the positive polarity if the occurrence is under an even
number of negations and that it has the negative polarity otherwise. A variable
is called unconstrained in the quantified formula ϕ if it is unconstrained in its
quantifier-free part ψ.

It is easy to see that Theorem 1 can not be directly applied to quantified for-
mulas. As an example, consider the formula ϕ ≡ ∃x∀y (x+y = 0). Although the
variable x is unconstrained in the formula ϕ and the term x+y is unconstrained
due to {x}, the conclusion of Theorem 1 is not true regardless of the position
of the quantifier for the fresh variable v: the formula ϕ is equisatisfiable neither
with ∃v∀y (v = 0) nor with ∀y∃v (v = 0). The following modified definition of
the unconstrained term solves this problem.
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Definition 4. Let ϕ be a quantified formula, t its subterm, and U ⊆ vars(t) a
set of variables such that |levels(U)| = 1. We say that the term t is unconstrained
due to U if, for each valuation μ of variables in (vars(t) � U) and every value b
of the same sort as the term t, there exists a valuation ν of variables in U such
that [[t]]μ∪ν = b and, furthermore,

level(U) ≥ max
(
levels

(
vars(t) � U

))
.

For example, in the formula ∃x∀y (x + y = 0) mentioned above, the subterm
x + y is not unconstrained due to {x}, since level(x) < level(y). On the other
hand, it is unconstrained due to {y}.

The following theorem shows that a subterm that are unconstrained due to
a set of unconstrained variables can be simplified even in quantified formulas.

Theorem 3. Let ϕ be a formula, t be a term, U be a subset of vars(t), and v be
a variable not occurring in ϕ. If t is unconstrained due to the set of variables U
and all variables in U are unconstrained in ϕ, then ϕ is equivalent to the formula
ϕ in which the term t is replaced by v and the variables of U are replaced in their
quantifier block by the variable v.

Proof. The definition of unconstrained subterm implies that all variables in U
have the same level. Let k = level(U) and let ϕ ≡ Q1B1 . . . QkBk ψ, where
the formula ψ can contain quantifiers. We show that the formula QkBk ψ is
equivalent to the formula Qk((Bk � U) ∪ {v}) (ψ[t ← v]).

Let V =
⋃

1≤i<k Bi. Observe that U ⊆ Bk and the last line of the definition
of an unconstrained term implies (vars(t) � U) ⊆ V ∪ (Bk � U). Let μ be an
assignment of values to all variables in V . We distinguish two cases according to
the quantifier Qk.

– Suppose that Qk = ∃. If [[∃Bkψ]]μ = �, then there is a valuation ν of variables
in Bk such that [[ψ]]μ∪ν = �. Note that the function μ ∪ ν assigns values to
a superset of vars(t) and therefore can be used to evaluate the term t. Let
bv be the value [[t]]μ∪ν . For this value, we have [[ψ[t ← v]]]μ∪ν∪{v �→bv} = �
and therefore also [[∃(Bk ∪ {v})ψ[t ← v]]]μ = �. Since all variables in U are
unconstrained, the formula ψ[t ← v] does not contain any variable from U
and therefore [[∃((Bk � U) ∪ {v})ψ[t ← v]]]μ = �.
Conversely, if [[∃((Bk � U) ∪ {v})ψ[t ← v]]]μ = �, there is a valuation
ν of variables in (Bk � U) ∪ {v} such that [[ψ[t ← v]]]μ∪ν = �. As t
is unconstrained due to the set U , there is a valuation νU of variables
in U such that [[t]]μ∪ν∪νU

= ν(v). Therefore [[ψ]]μ∪ν∪νU
= � and in turn

[[∃(Bk ∪ {v})ψ]]μ = �, because ν ∪ νU is an assignment to variables from
Bk ∪ {v}. Finally, because the formula ψ does not contain the variable v, we
know that [[∃Bk ψ]]μ = �.

– If Qk = ∀, the proof is dual to the ∃ case, but each existential quantifier is
replaced by the universal quantifier and each � is replaced by ⊥. ��
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As an example, consider again the formula ∃x∀y (x + y = 0). According to
the previous theorem, it is equivalent with ∃x∀v (v = 0), because the term x+ y
is unconstrained due to {y}. Moreover, as the term v = 0 is unconstrained due to
{v}, it is equisatisfiable with ∃x∀p p, where p is a Boolean variable. This formula
is trivially equivalent to ⊥.

6 Partially Constrained Terms in Quantified Formulas

Both described extensions of unconstrained terms – i.e. partially constrained
terms and unconstrained terms in quantified formulas – can be combined
together in a fairly obvious way. The next theorem precisely describes this com-
bination. The proof of this theorem is a straightforward extension of already
presented proofs.

Theorem 4. Let ϕ be a quantified formula and t be its subterm such that the
set U of unconstrained variables appearing in t satisfies |levels(U)| = 1 and

level(U) ≥ max
(
levels(C)

)
,

where C = vars(t) � U . Further, let s be an arbitrary term such that t
C� s and

vars(s) ∩ vars(ϕ) ⊆ C. Then the formula ϕ is equivalent with the formula ϕ
where the term t is replaced by the term s and the variables of U are replaced in
their quantifier block by the set of variables vars(s) � vars(ϕ).

Note that due to this theorem, we can easily transfer simplification rules men-
tioned by Bruttomesso to quantified formulas, because they can be reformulated
using the notion of interchangeable terms, as was described in Sect. 4.

Moreover, such simplifications can be combined with additional quantifier-
specific simplification rules. The key observation is that the simplifications using
unconstrained and partially constrained terms often introduce fresh – and there-
fore unconstrained – Boolean variables (see Table 1). For example, if b is an
existentially quantified Boolean variable that is unconstrained in a formula ϕ,
it can be replaced by � if it occurs in ϕ with the positive polarity and by ⊥ if
it occurs with the negative polarity and the resulting formula will be equivalent
to the original one. Similarly, an unconstrained universally quantified Boolean
variable can be replaced by ⊥ if it has the positive polarity and by � if it has
the negative polarity. Combining those simplifications with simplifications using
unconstrained and partially constrained terms therefore yields more straight-
forward simplification rules, which are shown in Table 2. Although this table
shows only rules for terms with positive polarity, the dual versions for terms
with negative polarity are straightforward.

7 Experimental Evaluation

We have implemented all mentioned simplifications of quantified bit-vector for-
mulas containing partially constrained terms – including all rules mentioned by
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Table 2. Derived simplification rules for partially constrained terms (in the left col-
umn) with positive polarity in quantified formulas. We assume that u is an uncon-
strained variable and level(u) ≥ max

(
levels(vars(t))

)
.

Term Quantifier type of u

Existential Universal

u = t or t = u � ⊥
u �= t or t �= u � ⊥
t <u u t �= 2k − 1 ⊥
t <s u t �= 2k−1 − 1 ⊥
u <u t t �= 0 ⊥
u <s t t �= −2k−1 ⊥
t ≤u u � t = 0

t ≤s u � t = −2k−1

u ≤u t � t = 2k − 1

u ≤s t � t = 2k−1 − 1

Franzén and rules from Examples 3 and 4, and Table 2. The algorithm itera-
tively simplifies the input formula up to the fixed point. The implementation
is written in C++, uses Z3 api to parse the input formula, and is freely avail-
able at https://gitlab.fi.muni.cz/xjonas/BVExprSimplifier. We have evaluated
the effect of implemented simplifications on the performance of the solvers Z3 [9],
Boolector [13], and the bdd-based solver Q3B [12] on two sets of benchmarks.

The first set of benchmarks contains all 191 formulas from the BV1 category
of the smt-lib benchmark repository [2]. The second set of benchmarks consists
of 5 461 formulas generated by the model checker SymDivine [4] when run on
verification tasks from SV-COMP [5]. The generated quantified formulas arise
from an equivalence check of two symbolic states, both of which are represented
by path conditions. Since the input for the tool SymDivine is an llvm bit-code,
the resulting formulas are expected to contain a large number of unconstrained
variables.

All experiments were performed on a Debian machine with two six-core Intel
Xeon E5-2620 2.00 GHz processors and 128 gb of ram. Each benchmark run was
limited to use 8 gb of ram and 15 min of cpu time. All measured times are cpu
times and include both the time of formula preprocessing and the time of the
actual smt solving, unless explicitly stated otherwise. For reliable benchmarking
we employed BenchExec [6], a tool that allocates specified resources for a
program execution and measures their use precisely. We used the solver Z3 in the
latest stable version 4.5.0, Boolector in the version attached to the paper [13], and
the solver Q3B in the latest development version (commit 6830168 on GitHub).

1 BV is a category of quantified bit-vector formulas without arrays and uninterpreted
functions.

https://gitlab.fi.muni.cz/xjonas/BVExprSimplifier
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For all three smt solvers, we compare the performance of two different con-
figurations:

– In configurations Z3, Boolector, and Q3B, smt solvers are run on the input
formula, after performing cheap local simplifications done by Z3.

– In configuration Z3-s, Boolector-s, and Q3B-s, the input file is simplified
using the implemented simplifications based on unconstrained variables and
the same cheap local simplifications performed by Z3 up to the fixed point
and the result is fed to smt solvers.

Table 3 summarizes the obtained results. Thanks to the simplifications, the
solver Z3 was able to decide 2 more benchmarks from the smt-lib benchmark
set and 195 more benchmarks from the SymDivine benchmark set. The solver
Boolector can decide 8 more smt-lib benchmarks and 314 more SymDivine
benchmarks thanks to the simplifications. On the other hand, the number of
benchmarks decided by Q3B does not change after performing simplifications.
This is not surprising, as the remaining 122 formulas in the SymDivine bench-
mark set, which Q3B did not solve, do not contain any unconstrained variables.

We have also examined the time needed to solve benchmarks. Even when the
time of performing simplifications is counted, simplifications helped to reduce
solving time of Z3 on SymDivine benchmarks to 18 %, the solving time of
Boolector on smt-lib benchmarks to 84 %, the solving time of Boolector on
SymDivine benchmarks to 7 %, the solving time of Q3B on smt-lib bench-
marks to 75 %, and the solving time of Q3B on SymDivine benchmarks to 35 %
of the original cpu time. On the other hand, simplifications increased the solving
time of Z3 on smt-lib benchmarks to 105 %, which is in part due to the time
needed to perform simplifications and in part due to the fact that after the sim-
plification, Z3’s quantifier instantiation heuristics needed more instantiations to

Table 3. For each benchmark set, solver, and configuration, the table provides the
numbers of formulas decided as satisfiable (sat), unsatisfiable (unsat), or undecided
(other) because of an error, a timeout or a memory out. The table also shows the time
necessary to decide benchmarks in the benchmark set in the form of simplification
time + solving time, or just solving time if the simplification was not performed. Only
benchmarks that were decided by both configurations of the given solver are counted
into solving times.

smt-lib SymDivine

Sat Unsat Other Time (s) Sat Unsat Other Time (s)

Z3 70 92 29 426 1137 3999 325 3006

Z3-s 72 92 27 16 + 430 1137 4194 130 169 + 381

Boolector 78 95 18 1 513 1137 3296 1028 20 269

Boolector-s 86 95 10 16 + 1 257 1137 3610 714 169 + 1 173

Q3B 94 94 3 2 986 1137 4202 122 9 046

Q3B-s 94 94 3 16 + 2 233 1137 4202 122 169 + 3 082
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Fig. 1. The figure shows quantile plots for three configurations of all solvers run on both
benchmark sets. The configuration standard runs on original formulas and the other
two run on simplified formulas. The times of unconstrained do not include simplification
time, the times of unconstrained+simpl do.
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Fig. 2. The figure shows comparison of solving times with and without simplifications
for all three smt solvers on benchmarks from the SymDivine benchmark set. The times
are in seconds and include the time of performing simplifications.

solve some of the formulas. Overall, the time needed to perform simplifications is
usually negligible when compared to the actual solving time – each formula was
simplified in less than 1.3 s and the average simplification time is 0.03 s. Quantile
plots on Fig. 1 show comparison of benchmarks solved within a given time for
configurations with and without simplifications.

Additionally, scatter plots on Fig. 2 show comparison of time needed to solve
benchmarks for formulas from the SymDivine benchmark set. For this bench-
mark set, the proposed simplifications are clearly beneficial, as was expected.
Interestingly, the benchmarks from SymDivine set for which the simplifications
improved the solving time are not the same for all three smt solvers – the per-
formance of Z3 improved mainly on benchmarks originating in the SV-COMP
category eca; the performance of Boolector and Q3B improved on benchmarks
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from all SV-COMP categories. Scatter plots for smt-lib benchmarks are not
presented in the paper, because the differences are not so significant. However,
they can be found along with detailed results of all experiments on the address
http://www.fi.muni.cz/∼xstrejc/sat2017/evaluation.html.

In general, the experimental results clearly show that the proposed simplifi-
cations are beneficial for all the considered smt solvers.

8 Conclusion

We have extended known simplifications of quantifier-free first-order formulas
containing unconstrained terms to a more general notion of a partially con-
strained terms and to quantified formulas. We have further implemented the
proposed simplifications for the theory of bit-vectors and shown the beneficial
effect of such simplifications for benchmarks arising in verification of software
and hardware.
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Abstract. Verification tasks frequently require deciding systems of lin-
ear constraints over modular (machine) arithmetic. Existing approaches
for reasoning over modular arithmetic use bit-vector solvers, or else
approximate machine integers with mathematical integers and use arith-
metic solvers. Neither is ideal; the first is sound but inefficient, and the
second is efficient but unsound. We describe a linear encoding which
correctly describes modular arithmetic semantics, yielding an optimistic
but sound approach. Our method abstracts the problem with linear arith-
metic, but progressively refines the abstraction when modular semantics
is violated. This preserves soundness while exploiting the mostly integer
nature of the constraint problem. We present a prototype implementa-
tion, which gives encouraging experimental results.

1 Introduction

Linear integer arithmetic (LIA) and its decision procedures have been studied
for a long time. Here we consider the important variant in which the integers
involved are in fact integers modulo m for some m. We refer to this variant
as modular LIA, MLIA in short. Decision procedures for MLIA are needed for
sound reasoning about “machine arithmetic” and related problems in software
verification and analysis. In this paper we address the problem of deciding a
Boolean combination of MLIA constraints, that is, whether a system of MLIA
constraints is satisfiable, and if so, how.

Existing approaches for deciding MLIA either use bit-vector solvers, or else
approximate fixed-size integers (Zm, the integers modulo m) with unbounded
mathematical integers (Z) and use LIA solvers. The theory of bit-vectors allows
modeling the precise semantics of two’s complement arithmetic and is a natural
candidate for modelling MLIA constraints. However this approach is inefficient,
especially for large bit-vector problems that are primarily arithmetic in nature,
and for problems involving long bit-vectors [19,28,37]. Most bit-vector solvers
are based on some form of SAT encoding which tends to obscure word-level
information and consume excessive memory. On the other hand, the LIA app-
roach is efficient but unsound because approximating fixed-size integers with
mathematical integers ignores the “wrap around” nature of fixed-width integer
c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 380–397, 2017.
DOI: 10.1007/978-3-319-66263-3 24
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arithmetic. As a result, the (un)satisfiability of a problem over Z does not imply
its (un)satisfiability over Zm, as we now show. To keep examples simple we shall
usually assume unsigned 4-bit arithmetic (so that m = 16). (Our method han-
dles signed or unsigned arithmetic equally well.) Constraints will often be given
in the form id : c, so that constraint c can be referred to through the identifier
id . We indicate a formula F interpreted in Zm with the notation [F ]m.

Example 1. Consider F1 = c1 : x ≥ y ∧ c2 : x + 1 = y. Clearly [F1]16 allows solu-
tion x = 15(1111) and y = 0(0000), but F1 is unsatisfiable in Z since c1 is in
conflict with c2. ��
Example 1 is adapted from a benchmark in the pspace subset [18] of SMT-LIB
QF BV [11], translated to MLIA form. It is typical of software verification prob-
lems; it tests the overflow of integer addition. Its model consists of x with only
1-bits and y with only 0-bits regardless of the size of bit-vectors x and y. But
it has proven to be a challenging example for sufficiently long bit-vectors for
bit-blasting solvers, and the problem becomes increasingly intractable as the size
of bit-vectors increases [37]. On the other hand, LIA solvers may be efficient but
they produce an unsound result for Example 1 since F1 is unsatisfiable over Z

and satisfiable over Zm.
A formula may just as well be unsatisfiable over Zm and satisfiable over Z.

Example 2. Consider F2 = c1 : y = x + 9 ∧ c2 : z = y + 9 ∧ c3 : x ≤ y ∧ c4 : y ≤ z.
Here F2 is satisfiable in Z with solutions like x = 0, y = 9, z = 18. But [F2]16
is unsatisfiable, as it requires (x + 18) ≡16 z, so there must be a wrap around
between x and z. And so at least one of the two inequalities fails not hold. ��
Hence we can trust neither “satisfiable” nor “unsatisfiable” verdicts from a LIA
solver. In practice, neither conventional approach is satisfactory.

In this paper, we develop an optimistic but sound approach—abstracting the
problem with linear arithmetic, but progressively refining the abstraction when
modular semantics is violated. By transforming MLIA constraints to LIA con-
straints that correctly describe the modular arithmetic semantics, we can reuse
existing approaches for LIA problems while maintaining soundness. In contrast
to bit blasting, the method is independent of the number of bits used to represent
the variables and it uniformly handles (large) moduli, not necessarily powers of
2, including large primes. It is rather easy to understand and applies beyond
linear arithmetic. Moreover, assuming two’s complement arithmetic, signed and
unsigned integers can be treated uniformly.

In summary we make the following contributions:

1. We give a semantics preserving transformation of MLIA constraints to LIA
constraints (Sect. 3).

2. We design novel algorithms for deciding MLIA constraints which use this
transformation effectively (Sect. 4).

3. We present experimental results obtained with a prototype implementation
(Sect. 5). As they are comparable to those of the best state-of-the-art solvers,
we consider this a significant proof-of-concept.
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2 Preliminaries

In this paper, we consider a logic of quantifier-free MLIA constraints defined as
follows, where F ranges over formulas, C over atomic constraints, E over fixed-
size linear arithmetic expressions, v over fixed-size integer variables and a over
fixed-size integer constants:

F = C | ¬C | F ∨ F | F ∧ F

C = E < E | E ≤ E | E = E E = a | v | a · E | E − E | E + E

The other linear constraints {>,≥, 	=} are rewritten as negated elements of C.
For e ∈ E, let vars(e) denote the set of variables appearing in e. We extend this
to elements of F and C in the obvious way.

For an integer k ∈ Z, let [k]m denote its value modulo m (the remainder on
division by m). This is the unique value satisfying:

0 ≤ [k]m < m ∧ ∃q ∈ Z . k = m · q + [k]m (1)

The quotient q encodes the number of times k “wraps around” in a number
circle before landing in the range [0,m). Equation 1 can be equivalently written
as Eq. 2, where q′ = −q.

0 ≤ [k]m < m ∧ ∃q′ ∈ Z . [k]m = m · q′ + k (2)

We extend [ ]m onto integer-valued expressions such that all subexpressions are
computed in Zm: [E1 + E2]m = [[E1]m + [E2]m]

m
= (E1 + E2) mod m, and

similarly for subtraction and multiplication by a constant. Observe that [ ]m is
preserved under translation by multiples of m. Thus for e ∈ E, [e]2b reflects e
computed with b bit fixed precision machine arithmetic. We also extend [ ]m to
functions and maps pointwise.

Note that by our definition of Zm, negative E values are mapped to posi-
tive [E]m, so it is necessary to distinguish signed two-complement comparisons
(<s,≤s) from unsigned ones (<u,≤u). For � ∈ {<,≤,=}, the interpretation
of E1 �u E2 under Zm is [E1 �u E2]m ≡ [E1]m � [E2]m; for the signed case,
[E1 �s E2]m ≡ [

E1 + m
2

]
m

�
[
E2 + m

2

]
m

. In the following, we shall assume
unsigned comparisons, but signed comparisons can be handled this way. Observe
that we must be careful when manipulating modular linear constraints: rewrit-
ing [A ≤ B]m as [A − B ≤ 0]m does not preserve equivalence (for either signed
or unsigned comparison).

An assignment μ to F is a mapping from vars(F ) onto Zm. We write μ(E)
to denote the value of E under μ. μ is a model of F if F evaluates to True under
μ and we denote it by μ |=Zm

F . Similarly if μ is a Z-model of F , we simply
write μ |= F . Also observe that if μ is a model of F , and for any expression E
appearing in an inequality 0 ≤ μ(E) < m, then [μ]m is a model of [F ]m (as then
[μ(E)]m = μ(E)).
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2.1 Benders Decomposition

Benders decomposition [4] is an approach for solving large integer linear pro-
gramming problems, frequently applied where a problem consists of independent
subproblems, connected via a small set of variables.

Consider the mixed integer programming problem (MIP) shown in Fig. 1(a).
P is an optimisation problem, minimising f(x) over variables x, y, consisting of
constraints A over x, and additional constraints over x, y. Rather than solving
P directly, we may instead fix x to some optimal value x̃, then check whether
there exists a consistent extension ỹ satisfying B(x̃, ỹ).

P = minx,y f(x)

s.t. A(x) ≥ b ∧
B(x, y) ≥ c ∧
. . .

x ∈ Dx, y ∈ Dy

P � = minx f(x)

s.t. A(x) ≥ b ∧
B�(x) ≥ c ∧
x ∈ Dx

Q(x̃) = miny 0

s.t. B(x̃, y) ≥ c ∧
y ∈ Dy

(a) )c()b(

Fig. 1. (a) A decomposable MIP, (b) initial relaxed master, (c) Benders subproblem

We thus construct a relaxed master problem P �, shown in Fig. 1(b), which is
a relaxation of the projection ∃y. P . The projection constraint B�(x) ≥ c is a
relaxation of ∃y. B(x, y) ≥ c; this may be any constraint (or set of constraints)
satisfying B�(x) ≥ supy∈Dy

Bi(x, y). As B�(x) may permit invalid solutions, this
is combined with a subproblem Q(x̃) which check feasibility. Solving P � yields
a candidate optimum x̃. If Q(x̃) is satisfiable, we have found an optimum. If
not, we extract from Q a new constraint a′x ≥ b′, excluding x̃, which is added
to P � (effectively strengthening B�). This procedure is repeated until either an
assignment is found, or P � is proven unsatisfiable.

The classical form of Benders decomposition requires the subproblems to be
linear programs (i.e. over Q). However, in logic-based Benders decomposition [25],
the subproblem may be an arbitrary decision problem, and the feasibility cut is
extracted from the unsatisfiability proof of Q.

3 From MLIA to Equivalent LIA Constraints

In this section, we describe a linear encoding over Z of the semantics of con-
straints over Zm. Recall the definition of [k]m, being the unique value satisfying
Eq. 2. By introducing fresh variables for the quotients and remainders, we can
encode a modular linear constraint [E1 � E2]m as a conjunction of linear con-
straints on Z. We define a mapping Γ as:
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Γ (E1 � E2) = ∃q1, q2, e1, e2 .

⎛

⎜
⎜
⎝

0 ≤ e1, e2 < m
∧ e1 = E1 + m · q1
∧ e2 = E2 + m · q2
∧ e1 � e2

⎞

⎟
⎟
⎠

The first three conjuncts compute the interpretation of Ei under Zm, and the
final constraint enforces the constraint of interest. Because [[E1]m + [E2]m]m =
[E1 + E2]m, and similarly for all operations in a MLIA expression, it is sufficient
to introduce one quotient variable qi in each of E1 and E2; quotient variables
are not needed for subexpressions. Γ (E1 � E2) can be simplified by eliminating
the existential variables e1 and e2 leaving behind only the quotient variables.

Γ (E1 � E2) = ∃q1, q2 .

(
0 ≤ E1 + m · q1, E2 + m · q2 < m

∧ E1 + m · q1 � E2 + m · q2

)

We extend Γ to Boolean combinations of constraints in the natural manner
(eliminating 	= through disjunction). The above encoding (Γ (F )) preserves equi-
satisfiability as stated in Lemma 1. Note that variables are not bounded in Γ (F ).

Lemma 1 (Equi-satisfiability). Let F be a formula and Γ (F ) be its LIA
encoding. Then F and Γ (F ) are equi-satisfiable. Further if Γ (F ) is satisfiable,
then there exists a model of Γ (F ) such that

∧
v∈vars(F ) 0 ≤ v < m. ��

Let Γ1(F ) be Γ (F ) ∧ ∧
v∈vars(F ) 0 ≤ v < m. These bounds restrict the search

space of LIA solvers; possibly resulting in a faster convergence. Γ1(F ) correctly
encodes the semantics of modular arithmetic as stated in Proposition 1.

Proposition 1 (Soundness of the encoding). Let F be a formula and Γ1(F )
be its LIA encoding. Then F and Γ1(F ) are logically equivalent. �

Note that Γ1(F ) is a quantified-formula though not F .
The formula Γ1(E1 � E2) contains: two constraints expressing the lower and

upper bounds of each expression Ei(i = 1, 2), a constraint computing the inter-
pretation of each expression and a constraint of interest totalling 5. In addition,
there are 2n constraints representing the upper and lower bounds of the vari-
ables, where n = # vars(E1 � E2). Then, the size of the transformed formula is
given by the following proposition.

Proposition 2 (Bound on the size of the transformed formula). Given
a formula F with n variables and m atomic constraints, Γ1(F ) contains at most
2n + 5m atomic constraints. ��

3.1 Encoding Simplification

While straightforward, the quotient variables have unbounded domains and large
coefficients (the modulo integer m). This can have a dramatic impact on perfor-
mance, as it substantially weakens the (real) linear relaxation underlying the LIA
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decision procedure. However, we can frequently infer reasonably tight bounds on
feasible quotient values as we show next. For some expression E, let lE and uE

be the minimum and maximum feasible values of E under Z (assuming variables
are restricted to [0,m)). As we have [E]m = E + m · qE , we may impose the
constraint − ⌊

uE

m

⌋ ≤ qE ≤ − ⌊
lE
m

⌋
without changing satisfiability.

For example, given a modular expression x + 2y over unsigned integer and
its corresponding LIA expression x + 2y + m.q, we derive −2 ≤ q ≤ 0.

An expression bound can be extended to a constraint E1 � E2 as follows.

Definition 1 (Quotient bound). Given a MLIA constraint E1�E2, we have
E1 + m · qE1 � E2 + m · qE2 as the corresponding LIA constraint. The following
conjunction of constraints is called a quotient bound for E1 � E2.

−
⌊uE1

m

⌋
≤ qE1 ≤ −

⌊
lE1

m

⌋
∧ −

⌊uE2

m

⌋
≤ qE2 ≤ −

⌊
lE2

m

⌋
.

If we infer a fixed value for qE (as will be the case for variables and constant
expressions), we may replace m · qE with the appropriate constant. If bounds on
qE are narrow but do not fix a value for qE , we may eliminate qE by introducing
a disjunction for the possible values of qE—moving the wrapping decision from
the LIA solver to the SAT solver. In case the bounds are not tight, we apply
Benders decomposition, as discussed in Sect. 4.

Example 3. Consider the constraint c2 : [x + 1 = y]m from Example 1. Com-
puting bounds for the LHS and RHS, we find that y (unsurprisingly) cannot
overflow, and x + 1 overflows at most once. This yields the encoding

x + 1 + m · qx = y ∧ 0 ≤ x + 1 + m · qx ≤ 15 ∧ − 1 ≤ qx ≤ 0
∧ 0 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15

As the domain of qx is small, we eliminate it by case-splitting:

x − 15 = y ∧ 0 ≤ x − 15 ≤ 15 ∧ 0 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15 (where qx = −1)
∨ x + 1 = y ∧ 0 ≤ x + 1 ≤ 15 ∧ 0 ≤ y ≤ 15 ∧ 0 ≤ x ≤ 15 (where qx = 0)

Similarly, the constraint [x ≥ y]m yields x ≥ y ∧ 0 ≤ x, y ≤ 15. ��

3.2 Challenges in Solving LIA Formula Directly

However, the resulting encodings turn out to be difficult to solve directly with
current MIP solvers. This is, in part, due to weakening of the linear relaxation.

Example 4. Consider the pair of constraints:

P = [x = y + 3 ∧ y = x − 4]m

These are inconsistent for any modulus m ≥ 2,m 	= 7. The transformed con-
straints are:

Γ (P ) = (x = m · qy + y + 3 ∧ y = m · qx + x − 4 ∧ x, y ∈ [0,m))
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If integrality constraints on qx, qy are relaxed, Γ (P ) is easily satisfied—with
{x = 0, y = 0, qx = 4

m , qy = − 3
m}. Indeed, any pair of (x, y) values admits a

corresponding solution to the relaxation of the quotients. However, for any fixed
integer assignment to (qx, qy), the residual subproblem can easily be shown to
be inconsistent. ��

A second pragmatic difficulty to solving these problems is due to numerical
behaviour of MIP solvers. Commercial MIP solvers are well known to return
non-solutions or claim optimality for non-optimal solutions due to rounding
errors [30,31]. These problems are exacerbated in the presence of very large
coefficients: not only is the solver forced to divide by large constants, inter-
mediate computations and even integral solutions may have no exact floating-
point representation. This becomes a significant problem when using moduli
above 232.

We now consider how to solve these problems in practice.

4 Solving MLIA Constraints

For the reasons discussed above, the transformed formulae are difficult to solve
directly. We can ameliorate this in several ways. First, we can try to avoid
introducing quotient variables altogether; optimistically solving under integer
semantics, and transforming only when necessary (Algorithm 1). This can accel-
erate solving, but in the worst case still requires transforming all constraints.
Second, we can reduce the impact of quotient variables by adopting a Benders
decomposition approach (Algorithm2) to isolate quotient selection from the rest
of the problem. We detail these approaches below.

4.1 Solving Algorithms

For simplicity of presentation we assume, without loss of generality, that the
input is a conjunction of MLIA constraints (though our method applies more
generally to a Boolean combination). Our algorithms assume the availability of
the following methods.

LIA Decide(H): An LIA solver (oracle) capable of generating either a model
or an unsatisfiable core (a minimal set of unsatisfiable constraints). We assume
that its output is a tuple of the form 〈Result ,Witness〉, which can be either
〈SAT,Model〉 or 〈UNSAT,Unsat Core〉.

MLIA Model(H,μ): Given an interpretation μ such that μ |= H (in this
context, returned by LIA Decide), the procedure checks whether μ |=Zm

H
or not. It returns a tuple 〈Result ,Witness〉, which can be either 〈Yes,Model〉 or
〈No,Conflict〉. We call c a conflict with respect to μ iff μ 	|=Zm

c.
Putting all the pieces together, we present three algorithm for solving MLIA

problems. The third is the final product; it combines Algorithms 1 and 2.
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Algorithm 1. Solves MLIA constraints lazily
1: function MLIA Decide Lazily(H)
2: Input: A set of linear constraints of the form
3: E1 � E2, with � ∈ {<, =, ≤}
4: Output: 〈SAT,Model〉 or 〈UNSAT,Unsat Core〉
5: T ← ∅ � transformed constraints
6: while True do
7: 〈S, R〉 ← LIA Decide(H)
8: if S = SAT then
9: 〈IS , r〉 ← MLIA Model(H, R)

10: if IS = Yes then
11: return 〈SAT, R〉
12: else
13: H ← H \ {r} ∪ Γ1(r); T ← T ∪ {Γ1(r)}
14: else
15: if R ⊆ T then return 〈UNSAT, R〉
16: else
17: for each c ∈ R do
18: if c /∈ T then
19: H ← H \ {c} ∪ Γ1(c); T ← T ∪ {Γ1(c)}

1. Transforming Constraints Lazily. Algorithm 1 proceeds as follows. A set
H of MLIA constraints is passed to an LIA solver (line 7). The solver returns
one of the following:

– SAT(line 8): We have R |= H. Then we check whether R |=Zm
H or not. If

so, the procedure returns SAT and a model (line 11). Otherwise there exists
a constraint c such that R 	|=Zm

c, which is replaced by Γ1(c) (line 13).
– UNSAT(line 14): In this case, there is an unsatisfiable core R over Z. If all

constraints in R are transformed then it is also the core over Zm and the
algorithm terminates (line 15). Otherwise, it replaces each c ∈ R by Γ1(c) in
the solver (line 17–19).

The algorithm runs until it exits from one of the above cases. During the run of
the algorithm, we keep track of the set of the transformed constraints, which is
initialized to empty set at the start of the algorithm (line 5).

Example 5. Let us run the algorithm on Example 1. Applied to the original set of
constraints, the LIA solver returns UNSAT with {c1, c2} as unsat core. Next we
transform each MLIA constraint in the unsat core to LIA. Note that the resulting
constraint system becomes equivalent to the system of constraints obtained by
eager transformation as presented in Example 3. The resulting constraints are
fed to the solver which finds them satisfiable, with R = {x = 15, y = 0} as a
model. One can easily verify that this is in fact a model of the original constraints
over Zm. Then the algorithm terminates, returning 〈SAT, R〉.

Applied instead to the constraints from Example 2, the algorithm finds these
satisfiable over Z, returning the model {x = 0, y = 9, z = 18}. However, the
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Algorithm 2. Solves MLIA constraints using Benders decomposition
1: function MLIA Decide Benders(H)
2: Input: A set of linear constraints of the form
3: E1 � E2, with � ∈ {<, =, ≤}
4: Output: 〈SAT,Model〉 or 〈UNSAT,Unsat Core〉
5: Q ← true � Quotient formula
6: Hr ← ∅
7: for each c ∈ H do
8: Hr ← Hr ∪ {Γ1(c)}
9: Q ← Q ∧ Quotient Bound(c) � Definition 1

10: Hb ← Hr

11: while True do
12: if UNSAT(Q) then
13: return 〈UNSAT, Hb〉
14: Let μQ be a model of Q (μQ |= Q) � Q is satisfiable
15: Hb ← {E + m · μQ(qi) � F + m · μQ(ri) | (E + m · qi � F + m · ri) ∈ Hr}
16: 〈S, R〉 ← LIA Decide(Hb)
17: if S = SAT then
18: return 〈SAT, R〉
19: else � (R is the unsat core in this case)
20: CR ← ∨{σ(c) | c ∈ R} � (CR: a cut generated from R, σ: Equation 3)
21: Q ← Q ∧ CR

constraint c4 : y ≤ z is not satisfied under this model considering Z16 seman-
tics, as 9 	≤ 2. So we replace c4 in the solver by Γ1(c4). The resulting system of
constraints would still be satisfiable over Z but would still violate another con-
straint. We continue transforming MLIA constraints and finally we reach a state
where all the constraints are transformed and the LIA solver returns UNSAT,
thus proving the original system of constraints unsatisfiable over Zm. ��

2. Applying Benders Decomposition. Though we can infer tight bounds on
quotient variables, the presence of quotient variables with large coefficient (m) in
the constraints causes problems for LIA solvers. To avoid this, we adopt a logic-
based Benders decomposition strategy. The master problem Q assigns values to
the quotient variables, and the subproblem Hb tests whether the chosen quotients
can be extended to a model of H. If so, we terminate. Otherwise, we extract a
feasibility cut from the unsatisfiable core of Hb. See Algorithm 2.

Feasibility Cuts. Let Cb = {Ei + q̃im ≤ Fi + r̃im | i = 1 . . . n} be the
unsatisfiable core of Hb, where q̃i and r̃i are the current assignments to quotients
qi, ri. To restore feasibility, at least one constraint in Cb must be relaxed—so
some qi must decrease, or some ri must increase. A valid cut, then, would be
c =

∨
i qi < q̃i ∨ ri > r̃i. However, this is somewhat weak: the constraint is only

relaxed if the difference between qi and ri increases. Instead, then, we add the
more general cut

∨
i ri − qi > r̃i − q̃i.
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Let σ be the mapping defined as follows:

σ(Ei + q̃im � Fi + r̃im) =

{
ri − qi > r̃i − q̃i if � ∈ {≤, <}
ri − qi 	= r̃i − q̃i if � ∈ {=} (3)

Then for an unsat core Cb = {Ei + q̃im�Fi + r̃im | i = 1 . . . n}, the cut is given
by the formula

∨n
i=1 σ(Ei + q̃im � Fi + r̃im).

Example 6. Consider again solving constraint [c1 : x ≥ y ∧ c2 : x + 1 = y]16, but
this time using Algorithm 2. Encoding the constraints as LIA constraints, we
obtain

c1 : x ≥ y ∧ 0 ≤ y ≤ 15 ∧ 0 ≤ x ≤ 15 ∧
c2 : x + 1 + m · qx = y ∧ 0 ≤ x + 1 + m · qx ≤ 15 ∧

0 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15

The progress of the algorithm is outlined in Fig. 2. Computing bounds on
qx, we derive the master problem Q1. Solving Q1, we obtain a model μQ1 =
{qx = 0}. Substituting μQ into H, we obtain the subproblem Hb. We find Hb is
unsatisfiable, with an unsatisfiable core of {x + 1 + m · 0qx = y, x ≥ y} (having
noted occurrences of qx). From this, we derive the feasibility cut {qx > 0∨qx < 0}
and derive a new master problem. Solving Q2, we obtain μQ2 = {qx = −1}.
We again substitute into H, obtaining Hb2 . Solving Hb2 , we obtain a model
{x = 15, y = 0}, and terminate. ��

iteration 1 iteration 2

Q1 = [−1 ≤ qx ≤ 0], µQ1 = {qx = 0} Q2 = Q1 ∧ [qx �= 0], µQ1 = {qx = −1}

Hb

c1 : x ≥ y ∧ 0 ≤ y ≤ 15 ∧ 0 ≤ x ≤ 15 ∧
c2 : x + 1 + m · 0 = y ∧ 0 ≤ x + 1 + m · 0 ≤ 15 ∧

0 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15

c1 : x ≥ y ∧ 0 ≤ y ≤ 15 ∧ 0 ≤ x ≤ 15 ∧
c2 : x − 15 = y ∧ 0 ≤ x − 15 ≤ 15∧

15 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15

R C = {c1, c2}, Cb = [qx �= 0] µHb = {x = 15, y = 0}

Fig. 2. Steps performed during Algorithm 2 solving [x ≥ y ∧ x + 1 = y]16.

Proposition 3 (Soundness of cut). Given a system of MLIA constraints
H, let Hb be an infeasible sub-problem of H for the quotient μQ and C = {Ei +
q̃im�Fi + r̃im | i = 1 . . . n} be any unsat core of Hb, and Cb =

∨{σ(c) | c ∈ C}.
Then (1) Cb excludes μQ and (2) Cb does not exclude any model of H.
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Algorithm 3. Solves MLIA constraints using Benders decomposition lazily
1: function MLIA Decide Mix(H)
2: Input: A set of linear constraints of the form
3: E1 � E2, with � ∈ {<, =, ≤}
4: Output: 〈SAT,Model〉 or 〈UNSAT,Unsat Core〉
5: T ← ∅ � transformed constraints
6: Q ← true � Quotient formula
7: Hr ← H
8: while True do
9: if UNSAT(Q) then

10: return 〈UNSAT, Hr〉
11: Let μQ be a model of Q (μQ |= Q) � Q is satisfiable
12: Hb ← {E + m · μQ(qi) � F + m · μQ(ri) | (E + m · qi � F + m · ri) ∈ Hr}
13: 〈S, R〉 ← LIA Decide(Hb)
14: if S = SAT then
15: 〈IS , r〉 ← MLIA Model(H, R)
16: if IS = Yes then
17: return 〈SAT, R〉
18: else
19: Hr ← Hr \ {r} ∪ {Γ1(r)}; T ← T ∪ {Γ1(r)}
20: Q ← Q ∧ Quotient Bound(r) � Definition 1
21: else � R is unsat core in this case
22: if R ⊆ T then
23: CR ← ∨{σ(c) | c ∈ R} � (CR: a cut from R, σ: Equation 3)
24: Q ← Q ∧ CR

25: else
26: for each s ∈ R do
27: if s �∈ T then
28: Hr ← Hr \ {s} ∪ {Γ1(s)}; T ← T ∪ {Γ1(s)}
29: Q ← Q ∧ Quotient Bound(s) � Definition 1

3. Applying Benders Decomposition Lazily. Algorithms 1 and 2 are com-
plementary: the first algorithm transforms constraints lazily, whereas the second
deals with large coefficients of quotient variables. We now present Algorithm 3
which in a sense combines them. The first two algorithms are presentation-
purpose stepping stones for Algorithm3 so the reader understands the two inno-
vations separately. We do not evaluate and compare those algorithms.

All three algorithms are guaranteed to terminate. For the lazy approach
(Algorithm 1), each iteration causes at least one (of the finitely many) initial
constraints to be transformed. For the Benders decomposition, Q has finitely
many models (as all variables are integral and bounded), and each iteration
adds a cut eliminating at least one model. For the lazy Benders decomposition,
each iteration either transforms at least one initial constraint, or eliminates some
model of Q (without changing the number of transformed constraints), which
again yields a finite descending chain.



A Benders Decomposition Approach 391

Example 7. Recall again the problem of Example 1, extended with additional
variables and constraints:

H = [c1 : x ≥ y ∧ c2 : x + 1 = y ∧ c3 : z + y ≤ 7x ∧ c4 : w − 2z ≤ 3y + 2x]16

Under Algorithm 3, the Q is initially trivial, and Hb = Hr = H (as no constraints
are initially transformed).

As before, this is unsatisfiable, with a core of R = {c1, c2}. R contains some
constraint c2 which is not yet transformed, so we replace c2 with Γ (c2), intro-
ducing quotient variable qx and appropriate bounds:

H ′ = (c1 :x ≥ y ∧ c′
2 : x + 1 + m · qx = y ∧ c3 : z + y ≤ 7x ∧

c4 :w − 2z ≤ 3y + 2x ∧ c5 : −1 ≤ qx ≤ 0 ∧ c6 : 0 ≤ x ∧ y < m)

Resolving Q, we obtain μQ = {qx = 0}. As in Example 6, we find this to be
unsatisfiable, having a core of R = {c1, c

′
2}, yielding a feasibility cut qx 	= 0.

Solving again, we obtain a model μQ = {qx = −1}. Solving Hb now gives us
a model: μHb

= {x = 15, y = 0, z = 105, w = 240}. Evaluating this model under
Z16, we obtain μH = {x = 15, y = 0, z = 9, w = 0}. As μH is a valid model of
H, we terminate. ��

Deciding Boolean Combinations of MLIA Constraints. Algorithms 2 and
3 can be extended to support Boolean combinations of MLIA constraints by
adding a selection of ‘active’ constraints to the quotient problem, implicitly enu-
merating the Boolean skeleton.

5 Implementation and Experiments

Implementation. The algorithms are implemented in SoMoLIA (Solver for
Modular LIA) which is written in Java. It uses Z3 [14] for input reading and
pre-processing, and Gurobi [23] for solving LIA problems. The use of Gurobi
is driven by unsatisfiable core extraction; in Z3 this incurs severe performance
penalties (several orders of magnitude). Also, the Z3 LIA engine is ill-suited to
our problems (optimized for incrementality, not for hard instances). To mitigate
unsoundness, we fall back to Z3 if precision limits are exceeded as indicated by
Gurobi (e.g., pspace instances) or non-integral solutions are obtained. The pre-
processing we used includes simple word-level rewriting, constant propagation,
Gaussian elimination and elimination of unconstrained variables [9], which are
available from Z3 as tactics [14,15]. Such pre-processing, including the more
advanced ones are common to all bit-blasting solvers (see [24]). Our tool supports
input in SMT-LIB2 format [3] expressed over QF BV or QF LIA.

Benchmarks. Our main intent is to handle conjunctions of “pure” integer
constraints efficiently. Accordingly, we chose a set of 1271 benchmarks from
the CAV 2009, dillig, check, pb2010, pidgeons, miplib2003 and cut lemmas
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sub-categories of the QF LIA category of SMT-COMP’16 [11] and interpreted
them over Zm (not over Z). These are first translated into QF BV logic so that
we can reuse the pre-processing for bit-vector formulas as well as compare our
results with the bit-vector solvers. Ideally, we would like to evaluate our approach
on some challenging benchmarks from the QF BV category, but unfortunately
they contain problems with bit-wise operations (bvand, bvor, etc.), not purely
word level operations (bvsub, bvmul, bvadd etc.) supported by SoMoLIA.
However we selected the 41 problems from the pspace sub-category of the QF BV
category (containing only word level operations) and experimented with them.
These contain very large bit-vectors (in the order of ≈ 23k bits).

Experimental Setting. We have conducted experiments on these bench-
marks and compared the results (using Algorithm 3) with four state-of-the-art
SMT(BV) solvers (the best of the currently available): Boolector [8] (winner
SMT-COMP’16, QF BVmain track), Yices2 [16] (winner SMT-COMP’16, QF BV
application track), Z3 [14] and CVC4 [2]. The pspace instances use very large
moduli, making Gurobi unsound. Therefore, for these instances (and these
instances only), SoMoLIA uses Z3 in place of Gurobi as the LIA solver. The
experiments were carried out on a MacBook Pro with a 2.7 GHz Intel Core
i5 processor and 16 GB memory running OS X 10.11.6. The timeout for each
experiment is set to 10 min and the memory limit is 6 GB. The benchmarks
and the tool itself are available at http://people.eng.unimelb.edu.au/gkgange/
mod-arith/. The results are summarized in Table 1. The first column indicates
the sub-category (and the number of problem instances in that sub-category).
The columns that follow present the number of correctly solved instances (#cor-
rect) and average time taken (Time) to solve that many instances for the solvers
Boolector [8] Yices2 [16], CVC4 [2], Z3 [14] and SoMoLIA respectively. The
best result in each sub-category is bold-faced.

Discussion of the Results. The different tools are seen to have complemen-
tary success or timeout profiles. No solver consistently outperforms the others.

Table 1. Experimental results. Time (sec) is the average time over # solved instances
of each category (timeout 10 min). † indicates SoMoLIA run using Z3 as LIA solver.

Category (#inst) Boolector Yices2 CVC4 Z3 SoMoLIA

#correct Time #correct Time #correct Time #correct Time #correct Time

cut lemmas (93) 93 14.33 93 7.45 91 0.81 93 5.41 34 10.14

dillig (233) 230 3.47 233 0.08 217 16.73 126 69.00 233 0.37

miplib2003 (16) 16 6.25 16 9.93 11 208.36 16 3.81 16 5.38

CAV 2009 (591) 591 3.62 591 0.45 544 3.71 343 27.51 591 0.34

check (5) 5 0.20 5 0.01 5 0.20 5 0.01 5 0.40

pb2010 (81) 81 2.62 81 0.77 53 161.90 81 1.49 81 1.71

pidgeons (19) 13 15.00 10 4.10 7 4.28 10 32.40 19 0.78

pspace (41) 41 155.70 25 92.04 41 0.02 0 0.00 41† 0.34

http://people.eng.unimelb.edu.au/gkgange/mod-arith/
http://people.eng.unimelb.edu.au/gkgange/mod-arith/
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We note that SoMoLIA performed well on all sub-categories except cut lemmas,
owing to its ability to propagate “pure integer” level information, avoiding bit-
blasting completely. We find that performance quite remarkable for a tool which
is currently nothing more than a proof-of-concept. To us, it shows a great poten-
tial of a lazy form of Benders decomposition for this type of constraint problems.

Note that SoMoLIA leads in the CAV-2009 and pidgeons cases, and it
is the only solver which solves all the instances from pidgeons. The margin
is significant in some cases. The problems from the cut lemmas sub-category
contain large coefficients, resulting in a large range of values for the quotient
variables and requiring many iterations. The computation of unsat-cores also
hindered performance. We note that 101 instances were solved by pre-processing
alone. However we also note that it made a small number of problems timeout.

The problems from pspace sub-category are hard for all bit-blasting solvers
(since they often make solvers run out of memory). Our approach, which is
independent on the size of bit vectors, performed well on this subset and CVC4
performed extremely well. We believe CVC4’s strong performance is due to its
word level pre-processing of the formula. The approach taken by Zeljic et al. [37]
also appears to perform well on SAT instances of this subset (albeit not on
UNSAT instances as their experiment shows), but unfortunately we were not
able to experiment with their tool and include it in the evaluation. A comparison
of our approach against other solvers (with pre-processing turned off) allows us
to measure the impact of pre-processing as well as the performance of purely
bit-blasting approach against ours and we leave this task as future work.

6 Related Work

The ubiquity of two-complement semantics has raised considerable interest in
the efficient solution of modular arithmetic constraints. Unfortunately, logics
over modular arithmetic also resist efficient analysis and decision procedures.

Systems of linear arithmetic equations, as well as systems of linear congru-
ences, can be solved in polynomial time [12]. However, the presence of inequalities
hampers tractability; the general integer programming problem is NP-complete
in the strong sense. For the special case of sets of integer difference constraints
of the form x−y ≤ k and x ≤ k (as used in our examples), there are well-known
efficient algorithms (for example, utilising the Bellman-Ford algorithm [12]), but
the modular arithmetic version is already intractable for this special case [5,21].
In the absence of efficient decision procedures for even restricted subclasses of
constraints over modular arithmetic, it is typical to either use general bit-vector
solvers, or to simply interpret the problem over Z (rather than Zm).

Bit-Vector Constraints. The theory of bit-vectors offers a natural encoding
of modular arithmetic constraints (over modulus 2w), yet is no more amenable to
reasoning. The standard approach to solving bit-vector problems is bit-blasting :
mapping bit-vector operations down to the corresponding Boolean circuits, and
using a SAT solver to solve the resulting constraint system. They implement
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lazy/eager bit-blasting procedures; see Hadarean et al. [24] for comparison of
these approaches. The most effective SMT(BV) solvers, such as Boolector [32],
Yices2 [16], MathSAT [10], Z3 [14] CVC [2] and STP [20] also apply word-
level simplification and rewriting, abstraction [32] and presolving over tractable
sub-theories [24]. An alternate approach which avoids bit-blasting is to use a
constraint programming (CP) approach—maintaining a compact abstraction
of feasible assignments for bit-vector variables, and applying word-level filter-
ing algorithms to prune inconsistent assignments. Such techniques have been
integrated into pure CP [29] and CLP [1] frameworks. These approaches share
the same domain abstraction, tracking which individual bits are fixed to par-
ticular values (and therefore have expressiveness equivalent to the bit-blasted
representation). They offer compact representations and efficient local pruning,
but cannot reason about relationships between variables. More recently, hybrid
approaches which combine word-level filtering with SAT-style conflict reasoning
have also arisen from both CP [36] and SMT [37] lineages.

Integer Arithmetic. A common alternative is to simply decide that mathe-
matical integers are “near enough” to the desired semantics, and ignore wrapping
effects altogether. Of course this is unsound, but it has the pragmatic advantage
of allowing use of existing procedures for reasoning over Z and R—particularly
abstract domains (for static analysis), decision procedures (for constraint solv-
ing) and interpolation algorithms (for verification). As a result, interpretation
over Z is a strategy adopted by many abstract interpretation-based static analy-
sis [13,27] and program verification [22,26] tools.

LIA Encoding. Solving bit-vector constraints by translation into arithmetic
constraints (linear and non-linear) is not new and has been studied for a while,
though their efficient solving has been a challenge [1,6,7,17,34,35]. Bozzano et
al. [6] discuss encoding of bit-vector formulae into LIA. Their focus, however,
is on linearizing non-linear bit-vector constraints (e.g. bitwise expressions, non-
constant multiplication) by decomposing a word v of width w into individual bits
bw−1, . . . , b0 with w =

∑
i 2ibi, then encoding bit-vector constraints using the

introduced bi variables. This approach effectively emulates bit-blasting with 0–1
variables; it allows handling of a more extensive range of operations, but suffers
both the weak linear relaxation discussed in Sect. 3 and the encoding blow-up of
bit-blasting.

7 Conclusion

We have presented a practical and efficient algorithm for solving MLIA con-
straints and evaluated it on a set of SMT-COMP’16 benchmarks. The main
characteristic of the tool, SoMoLIA, is that it utilises Benders decomposition.
Importantly, unlike bit-vector solvers, our approach uniformly handles (large)
moduli, not necessarily powers of 2, including large primes, and the LIA encod-
ing is bit-width independent. In spite of its increased scope, we find that our
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proof-of-concept implementation is competitive with state of the art bit-vector
solvers, even when benchmarks are restricted to using moduli of form 2w.

The experimental results are promising though there are many avenues for
improvement. For example, additional simplification and pre-solving may lead to
significant performance improvements (as has been seen in other solvers). More-
over, the current feasibility cuts are disjunctive, and somewhat weak; methods for
deriving stronger cuts should greatly reduce the number of necessary iterations.
Embedding this approach in a lazy DPLL(T) framework would provide several
advantages: early detection of inconsistent quotient assignments, more efficient
handling of Boolean combinations of constraints, and access to complementary
theories, such as the theory of arrays.

Currently, we are also exploring ways to extend our work to non-linear bit-
vectors problems. We can either encode non-linear bit-vector problems as non-
linear integer arithmetic [6] and use non-linear integer solvers or combine linear
integer and bit-blasted non-linear constraints and use a solver like IntSat [33],
which is good at handling clausal linear constraints.
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Abstract. Many hard problems can be solved efficiently for problem
instances that can be decomposed by tree decompositions of small width.
In particular for problems beyond NP, such as #P-complete counting
problems, tree decomposition-based methods are particularly attractive.
However, finding an optimal tree decomposition is itself an NP-hard
problem. Existing methods for finding tree decompositions of small width
either (a) yield optimal tree decompositions but are applicable only to
small instances or (b) are based on greedy heuristics which often yield
tree decompositions that are far from optimal. In this paper, we propose
a new method that combines (a) and (b), where a heuristically obtained
tree decomposition is improved locally by means of a SAT encoding. We
provide an experimental evaluation of our new method.

1 Introduction

Treewidth is arguably the most prominent graph invariant with important
application in discrete algorithms and optimization [5,8], constraint satisfac-
tion [11,16], knowledge representation and reasoning [19], computational biology
[30], and probabilistic networks and inference [10,24,26]. Treewidth was intro-
duced by Robertson and Seymour in their Graph Minors Project and according
to Google Scholar1, the term is mentioned in over 17000 research articles.

Small treewidth of a graph indicates in a certain sense its tree-likeness and
sparsity. Many otherwise NP-hard graph problems such as Hamiltonicity and 3-
colorability, but also problems “beyond NP” such as the #P-complete problem
of determining the number of perfect matchings in a graph are solvable in poly-
nomial time for graphs of bounded treewidth [9]. Treewidth is based on certain
decompositions of graphs, called tree decompositions, where sets of vertices of
the input graph are arranged in bags at the nodes of a tree such that certain
conditions are satisfied. The width of a tree decomposition is the size of a largest
bag minus 1. A tree decomposition is optimal for a given graph if the graph has
no tree decomposition of smaller width. The treewidth of a graph is the width
of an optimal tree decomposition.
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Algorithms that exploit the small treewidth of a graph usually proceed by
dynamic programming along the tree decomposition where at each node of the
tree, information is gathered in tables. The size of these tables is usually expo-
nential or even double exponential in the size of the bag. Thus, it is important
to obtain a tree decomposition of small width. However, since finding an optimal
tree decomposition is an NP-hard task [2], the following two main approaches
have been proposed in the literature:

(a) Exact methods that compute optimal tree decompositions. Optimal tree
decompositions are found using specialized combinatorial algorithms based
on graph separators [2], branch-and-bound algorithms [18], but also by
means of SAT encodings [4,28]. These exact methods are limited to rather
small graphs with about hundred vertices.

(b) Heuristic methods that compute sub-optimal tree decompositions. These
algorithms are usually based on so-called elimination orderings which are
found by a greedy approach [6,20]. The heuristic methods are quite fast
and scale up to large graphs with thousands of vertices, but lead to tree
decompositions that can be far from optimal.

In fact, because of the split into these two categories of algorithmic approaches,
also the recent PACE challenge [13], where finding good tree decompositions was
one of the main tasks, featured two respective categories: one asking for the exact
treewidth of small graphs, and one asking for sub-optimal tree decompositions
of large graphs.

SAT-Based Local Improvement. In this paper, we propose a new approach to
finding tree decompositions, which combines exact methods with heuristics. The
basic idea is to (i) start with a tree decomposition obtained with a heuristic
method (the global solver) and (ii) subsequently select parts of the tree decom-
position, trying to improve it with another method (the local solver). It turned
out that SAT-based exact methods are particularly well-suited for providing the
local solver.

Consider a given graph G and a tree decomposition T of G, obtained by the
global solver. We select a small part S of T , which is a tree decomposition of the
subgraph GS of G, induced by all the vertices that appear in bags at nodes in S.
Once the local solver finds a better tree decomposition of GS , we would like to
replace S in T with the new tree decomposition found by the local solver. This,
however, does not work in general, as the new tree decomposition might not fit
into the remaining parts of T . Fortunately we can make this approach work by
using the following trick. We add to GS certain cliques, which we call marker
cliques, and which tell us how to replace the original local tree decomposition
S with the new one. Due to a general property of tree decompositions, there is
always a bag that contains all vertices of a clique. Hence, in particular, the new
local decomposition will contain for each marker clique a bag that contains it,
and this bag will be an anchor point for connecting the new decomposition to
the parts of the old one. Details of this construction are explained in Sect. 3.
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Related Work. A SAT-based local improvement approach was first proposed,
implemented and evaluated by Lodha et al. [25] for finding branch decomposi-
tions of small width of graphs and hypergraphs. As the definitions of a branch
decompositions and tree decompositions differ significantly, the methods for find-
ing and replacing local decompositions are quite different. Also the SAT encoding
of branchwidth and treewidth are different, as the former focuses on edges, while
the latter focuses on vertices.

There are several approaches for improving treewidth heuristics based on
elimination orderings. For instance, Kask et al. [21] use randomization to recom-
pute the last few steps of the ordering computed so far, picking the best of the
runs, whereas Gaspers et al. [17] use a different approach: as soon as a given
width bound is exceeded during the computation of the ordering, the last c ver-
tices of the ordering are recomputed with an exact method, trying to stay within
the width bound.

2 Preliminaries

In this section we introduce some relevant graph theoretic notions.
All considered graphs are finite, simple, and undirected. Let G be a graph.

V (G) and E(G) denote the vertex set and the edge set of G, respectively. We
denote an edge between vertices u and v by uv (or equivalently by vu). The
subgraph of G induced by a set S ⊆ V (G) has as vertex set S and as edge set
{uv ∈ E(G) | u, v ∈ S }.

A tree decomposition of a graph G is a pair T = (T, χ) where T is a tree and
χ is a mapping that assigns to each node t ∈ V (T ) a set χ(t) ⊆ V (G), called
a bag, such that the following conditions hold (we refer to the vertices of T as
nodes to make the distinction between T and G clearer).

1. V (G) =
⋃

t∈V (T ) χ(t) and E(G) ⊆
⋃

t∈V (T ){uv | u, v ∈ χ(t) }.
2. The sets χ(t1)\χ(t) and χ(t2)\χ(t) are disjoint for any three nodes t, t1, t2 ∈

V (T ) such that t lies on a path from t1 to t2 in T .

The width of T , denoted w(T ), is maxt∈V (T ) |χ(t)| − 1. The treewidth tw(G) of
G is the minimum w(T ) over all tree decompositions T of G.

We will make use of the following well-known fact.

Fact 1 ([23]). Let (T, χ) be a tree decomposition of a graph G and K a clique
in G. Then there exists at least one node t ∈ V (T ) such that V (K) ⊆ χ(t).

3 Local Improvement of Tree Decompositions

3.1 Local Tree Decompositions

For the following considerations we fix a graph G and a tree decomposition
T = (T, χ) of G. We consider a subtree S of T .
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We call S = (S, χS) a local tree decomposition of T (induced by S), where
χS is the restriction of χ to the nodes of S. Let GS denote the subgraph of
G induced by all the vertices of G that appear in a bag of S. The following
observation is an immediate consequence of the definitions.

Observation 1. S is a tree decomposition of GS of width ≤ w(T ).

Our goal is to replace S with an improved tree decomposition S ′ of GS , i.e.,
one of smaller width, and to insert S ′ back into T so that we obtain a new tree
decomposition T ′ of G of possibly smaller width. In order to make this work, we
need to modify GS such that any tree decomposition of the modified graph can
be added back into T .

Let us first introduce some auxiliary notions. For an edge st of T we define
λT (st) = χ(s) ∩ χ(t) to the cut set associated with st. We call an edge st of T
to be a boundary edge (w.r.t. S) if s ∈ V (S) and t /∈ V (S).

Now we define the augmented local graph G∗
S by setting V (G∗

S) to be the set
of all vertices of G that appear in a bag of S, and E(G∗

S) to be the set of edges
uv with u, v ∈ V ∗ such that uv ∈ E(G) or u, v ∈ λT (e) for a boundary edge
e of T . In other words, the augmented local graph G∗

S is obtained from GS by
forming cliques over cut sets associated with boundary edges. We will use these
cliques as “markers” in order to connect a new tree decomposition of G∗

S to the
parts of the tree decomposition T that we keep. Therefore we call these cliques
marker cliques.

Observation 2. S is a tree decomposition of G∗
S of width ≤ w(T ).

Proof. In view of Observation 2 it remains to check that for each edge uv ∈
E(G∗

S) \ E(GS) there is a node s of S such that u, v ∈ χ(s). For such an edge
uv there is a boundary edge e of T such that u, v ∈ λT (e). By definition of a
boundary edge, exactly one end of e, say s, belongs to V (S). Now u, v ∈ λT (e) ⊆
χ(s). ��

Let S∗ = (S∗, χ∗) be another tree decomposition of G∗
S with w(S∗) ≤ w(S).

W.l.o.g., we assume that S∗ and T do not share any vertices (if not, we can
simply use a tree that is isomorphic to S∗). We define a new tree decomposition
T ′ = (T ′, χ′) of G as follows.

Let T1, . . . , Tr be the connected components of T − S (each Ti is a tree).
Each Ti gives raise to a local tree decomposition Ti = (Ti, χi) where χi is the
restriction of χ to the nodes of Ti.

For each Ti let ti be the leaf of Ti that was incident with a boundary edge
ei = tisi in T . The boundary edge ei is responsible for a marker clique K(ei)
on the vertices in λT (ei). By Fact 1, we can choose a node s′

i ∈ V (S∗) such that
V (K(ei)) = λT (ei) ⊆ χ∗(s′

i).
We define a new tree decomposition T ′ = (T ′, χ′) where T ′ is the tree

defined by V (T ′) = V (S∗) ∪
⋃r

i=1 V (Ti) = V (S∗) ∪ V (T )\V (S) and E(T ′) =
E(S∗) ∪

⋃r
i=1 E(Ti) ∪ {t1s

′
1, . . . , trs

′
r}. It remains to define the bags of the tree

decomposition T ′. For t ∈ V (Ti) we define χ′(t) = χ(t) and for s ∈ V (S∗) we
define χ′(s) = χ∗(s).
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We denote T ′ as T
(S
S′

)
and say that T ′ is obtained from T by replacing S

with S ′.

Observation 3. T
(S
S′

)
is a tree decomposition of G of width

max(w(T1), . . . ,w(Tr),w(S∗))≤ max(w(T ),w(S∗))≤ max(w(T ),w(S))≤ w(T ).

Proof. Let T
(S
S′

)
= T ′ = (T ′χ′). First we observe that T ′ is indeed a tree, as

each tree Ti is connected to the central tree S∗ with exactly one edge. Clearly T ′

satisfies the first of the two conditions in the definition of a tree decomposition.
To see that it also satisfies the second condition, we observe that if a vertex v
of G appears in bags at two different local tree decompositions Ti and Tj then v
must also appear in the sets λT (ei) and λT (ej). Consequently, it appears in the
bags of s′

i and s′
j (we use the notation from above). As S∗ satisfies the second

condition of a tree decomposition, v is contained in all the bags on the path
between s′

i and s′
j in S∗. This shows that T ′ is indeed a tree decomposition of

G. The claimed bound on its width follows directly from the construction. ��

3.2 SAT Encodings for Tree Decompositions

A SAT encoding for tree decompositions was first proposed by Samer and
Veith [28]. Given a graph G and an integer k, a CNF formula Φ(G, k) is produced
which is satisfiable if and only if G has a tree decomposition of width ≤ k. For the
construction of Φ(G, k), an alternative characterization of tree decompositions
in terms of elimination orderings is used. Here a linear ordering of the given
graph G is guessed, and based on the ordering certain “fill-in edges” are added
to the graph, providing a “triangulation” of G. The ordering is represented by
Boolean variables, one for every pair of vertices, whose truth value indicates the
relative ordering of the two vertices. Transitivity of the ordering is ensured by
suitable clauses. Then, for each vertex v of G it is checked whether it has at
most k neighbors that appear in the ordering right to v. This is checked via
cardinality constraints [29]. The exact treewidth is then found by systematically
calling a SAT solver for a heuristically computed upper bound u with Φ(G, k)
for k = u, u − 1, u − 2, . . . and until Φ(G, k) is found unsatisfiable. From a satis-
fying assignment of Φ(G, k) one can obtain a tree decomposition of G of width
k efficiently by a decoding procedure.

3.3 The Local Improvement Loop

We describe the overall algorithm. Let G be an input graph. First we obtain a
tree decomposition T = (T, χ) of G using a standard heuristic method, which
we refer to as the global solver.

The local improvement loop operates with the following parameters which
are positive integers: the local budget lb, the local timeout lt, the global timeout
gt, and the number of no-improvement rounds ni.

We select a node t from T with largest bag size, i.e., |χ(t)| = w(T ).



406 J.K. Fichte et al.

In T we perform a modified breadth-first-search (BFS) starting at t. We use
an auxiliary set variable L which, at the beginning of the BFS is set to χ(t). For
each node t′ visited by the BFS, we add the new elements of χ(t′) to L. If a node
t′ was visited via an edge e, a neighbor t′′ of t′ is only visited if λT (t′t′′) < λT (e).
The BFS terminates as soon as visiting another node would increase the size of
L beyond the local budget lb. Now the visited nodes induce a subtree S of T ,
and in turn, this yields a local tree decomposition S = (S, χS) of T , as defined
above. The set L contains the vertices of the local graph GS (or equivalently, of
the augmented local graph G∗

S) which by construction can be at most lb many
vertices.

Next we run the local solver, that is, we check satisfiability of the formula
obtained by the SAT encoding, trying to get a tree decomposition S∗ of G∗

S whose
width is as small as possible. We start the SAT encoding with k = w(S)− 1 and
upon success decrease k step by step. Each SAT-call has a timeout of lt seconds,
and we stop if either we get an unsatisfiable instance or we hit the timeout.
With the reached value of k, the treewidth of G∗

S is at most k+1. Since the SAT
encoding with value k+1 is satisfiable, we can extract with a decoding procedure
from the satisfying assignment a tree decomposition S∗ of G∗

S . Now we replace S
in T by S∗, and we repeat the local improvement loop with T

( S
S∗

)
. We note that

a local replacement is done even if there was no local width improvement, i.e., if
w(S∗) = w(S), as there is the possibility that the change triggers improvements
in subsequent rounds of the local improvement loop.

We repeat the local improvement loop until either the global timeout gt
is reached, or if the loop has been iterated ni times without any local width
improvements.

4 Experimental Results

Solvers. As the global solver we used the greedy ordering heuristics-based algo-
rithm from Abseher et al. [1, rev. 075019f] which we refer to as heur. It com-
putes upper bounds for treewidth and outputs a certificate decomposition. The
solver scored third in the heuristic track of the PACE 2016 challenge [13]. It is
very space efficient and reports initial useful tree decompositions extremely fast
compared to other solvers. It leaves almost the full time resource for the local
improvement. We used the following three local solvers:

1. sat: a solver based on an improved version of Samer and Veith’s [28] SAT
encoding by Bannach et al. [3, rev. 25d6a98]. The solver employs Glucose as a
SAT solver, PBLib for cardinality encodings, and progresses downwards from
an upper bound. The solver scored third in the exact track of the PACE 2016
treewidth challenge and was there the best SAT-based solver.

2. comb: an implementation of Arnborg et al.’s combinatorial algorithm [2] by
Tamaki [31, rev. d5ba92a], This solver won the exact track of the PACE
2016 treewidth challenge. It incrementally checks for the exact treewidth, it
progresses upwards from 1.

3. heur: the same solver that we also use as global solver.
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Our implementation is publicly available on GitHub [15]. Our experiments
mainly focus on two questions: (i) can we improve with local improvement over
traditional greedy heuristics and (ii) which solvers are favorable as local solver.

Instances. We considered an initial selection of overall 3168 graphs from various
publicly available graph sets. Our sets consisted of the TreewidthLIB [7], net-
works from the UAI competition [12], publicly available transit graphs from
GTFS-transit feeds [14], and graphs from the PACE 2016 treewidth chal-
lenge [13]. Since we aimed for larger graphs where exact methods cannot be
used, we restricted ourselves to graphs that contain more than 100 vertices,
resulting in 1946 graphs in total.

Experimental Setup. The experiments ran on a Scientific Linux cluster of 24
nodes (2x Xeon E5520 each) and overall 224 physical cores [22]. Due to the
large number of instances, we started only from one initial decomposition (with
random seed) and did not repeat the runs. In order to have reproducible results
we used a benchmark cluster run generator and analysis tool2. All solvers have
been compiled with gcc version 4.9.1, ran on Python 2.7.5, and Java 1.8.0 122
HotSpot 64-bit server VM, respectively. We executed solvers in single core mode.
We limited available memory (RAM) to 8 GB, wall clock time of the global solver
to 15 s, wall clock time of the overall search to 7800 s, and wall clock time of the
local solver to 1800 s. For the SAT solver we imposed an additional restriction
that the individual SAT call runs at most 900 s (st). Resource limits where
enforced by runsolver [27].

For our experiments, we systematically tested the parameters lb ∈ {75,
100,125,150}, lt ∈ {90, 900, 1800}, gt = 7200, and ni = 10. For the parameter ni
we also tried values 40 and 100 on a selected set of instances, but obtained no
improvements. Individual results are publicly available [15].

Results. Table 1 summarizes the improvements we obtained with our experi-
ments. Configurations in the legend are given in the form solver-lb-lt(st).
The best results in each column are highlighted in bold font. Table 2 shows some
of the best and notable improvements we obtained with local improvements. The
value “hash” provides the first four digits of sha-1 hash sum for the instance in
DIMACS graph format. Column “htw” has the heuristically obtained treewidth,
and “itw” has the treewidth after local improvement. The configuration with
which we got these improvements are in the column “local solver.” The best
improvement we obtained is 20, for the instance or chain 224.fg, from the graph
set networks. Among further entries in the table are instance graph13pp with
a width over 100, and instance Promedus 38 where we could reduce the width
from 23 to 16, which makes this instance feasible for dynamic programming.

2 The run and analysis tool is available online at https://github.com/daajoe/
benchmark-tool. The file benchmark-tool/runscripts/treewidth/localimprovement.
xml contains all solver flags to reproduce our benchmark runs.

https://github.com/daajoe/benchmark-tool
https://github.com/daajoe/benchmark-tool
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Table 1. Summary of treewidth improvements.

# Improved Improvements (sum) Improvement (max) Solver configuration

647 2015 13 sat-100-1800(900)

584 1984 16 sat-125-1800(900)

630 1805 15 comb-100-1800

493 1676 20 sat-150-1800(900)

631 1548 12 comb-075-1800

609 1460 12 comb-075-1800

447 1077 19 comb-125-1800

368 822 14 comb-150-1800

325 538 9 heur-150-1800

258 421 8 heur-100-1800

Table 2. Some of the best and notable improvements

Instance (hash) |V | |E| Graphs itw htw Local solver

or chain 224.fg (a4cb) 1638 3255 networks 75 95 sat-150-1800-10

or chain 54.fg (a6fc) 1404 2757 networks 65 84 comb-125-1800-10

or chain 187.fg (826a) 1668 3197 networks 79 97 sat-150-1800-10

1bkr graph (003a) 107 1340 twlib 44 56 comb-075-1800-10

dimacs fpsol2.i.1-pp (69aa) 191 4418 pace2016 61 72 sat-150-1800-10

graph13pp (eb9d) 456 1874 twlib 115 125 comb-150-1800-10

Cell120 (b625) 600 1200 pace2016 94 104 comb-150-1800-10

bkv-zrt 20120422 0314 (fbca) 907 2209 transit 74 83 sat-150-1800-10

Promedus 38 (02d7) 668 1235 networks 16 23 sat-150-1800-10

Discussion. For our instance set, we can see that even a heuristic solver as
local solver (lb = 150) improved the upper bounds. Both in terms of number of
improved instances and when considering the cumulative sum of improvements,
the SAT-based solver performed best. For both the combinatorial solver and the
SAT-based solver, a local budget lb = 100 resulted in more solved instances.
However, in terms of overall improvement the difference between the two local
solvers is small. A local budget lb = 125 allowed us to increase the cumulative
sum of improvements relatively early.

In consequence, we obtained the best results by using a SAT-based solver
as local solver. Using a SAT-based solver, we can hope that an improved SAT
encoding or new techniques in solvers immediately yield better upper bounds for
treewidth using local improvement. We also computed the virtually best solver,
which improved 200 instances more than the best SAT-based configuration. This
indicates that we can very likely improve a much higher number of instances
when applying a portfolio based solving approach.
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5 Concluding Remarks

We have presented a new SAT-based approach to finding tree decompositions
of small width based on a cross-over between standard heuristic methods and
exact methods. Our work offers several directions for further research.

For instance, one could possibly improve the current setup by (a) upgrading
the method for selecting the local tree decomposition, which is currently based on
a relatively simple breadth-first-search, and (b) tuning and optimizing the SAT-
based local solver specially to handle the type of instances that arise within the
local improvement loop.

Another promising direction involves adding additional constraints to the
SAT encoding, which yield local tree decompositions with special properties. For
instance, when the local solver cannot improve the width of the current local
tree decomposition, it could still replace it with one that increases the likelihood
of success for further rounds of local improvements (for instance, by minimizing
the number of large bags). Another application would be the computation of
“customized tree decompositions” [1] which are designed to speed-up dynamic
programming algorithms. Such additional constraints are relatively easy to build
into a SAT-based local solver, but seem difficult to build into a local solver based
on combinatorial methods.

Finally, due to the modularity of our approach (local solver, budget, time out,
invoked SAT solver), it could benefit from automated algorithm configuration
and parameter tuning, and it could provide the elements of a portfolio approach.

References

1. Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for
(customized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M.
(eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 376–386. Springer, Cham (2017).
doi:10.1007/978-3-319-59776-8 30

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

3. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: a modular library for computing tree
decompositions. Technical report, Lübeck University, Germany (2016)
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Abstract. Constraint “at most one” is a basic cardinality constraint
which requires that at most one of its n boolean inputs is set to 1. This
constraint is widely used when translating a problem into a conjunctive
normal form (CNF) and we investigate its CNF encodings suitable for
this purpose. An encoding differs from a CNF representation of a func-
tion in that it can use auxiliary variables. We are especially interested
in propagation complete encodings which have the property that unit
propagation is strong enough to enforce consistency on input variables.
We show a lower bound on the number of clauses in any propagation
complete encoding of the “at most one” constraint. The lower bound
almost matches the size of the best known encodings. We also study
an important case of 2-CNF encodings where we show a slightly better
lower bound. The lower bound holds also for a related “exactly one”
constraint.

Keywords: Knowledge compilation · Cardinality constraint · At most
one constraint · Propagation complete encoding

1 Introduction

In this paper we study the properties of one of the most basic cardinality
constraints—the “at most one” constraint on n boolean variables which requires
that at most one input variable is set to 1. This constraint is widely used when
translating a problem into a propositional formula in conjunctive normal form
(CNF). Note that the “at most one” constraint is anti-monotone. This means
that if we increase the value of any input variable, the value of the constraint as a
boolean function does not increase. It follows that the “at most one” constraint
has a unique minimal prime CNF representation which requires
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n
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)
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clauses, where n is the number of input variables. However, there are CNF encod-
ings of size O(n) which use additional auxiliary variables. Several encodings for
this constraint were considered in literature. Let us mention sequential encod-
ing [17] which addresses also more general cardinality constraints. The same
encoding was also called ladder encoding by [13], and it forms the smallest vari-
ant of the commander-variable encodings [14]. After a minor simplification, it
requires 3n − 6 clauses and n − 3 auxiliary variables. Similar, but not smaller
encodings can be also obtained as special cases of totalizers [5] and cardinal-
ity networks [1]. Currently the smallest known encoding is the product encoding
introduced by Chen [9]. It consists of 2n+4

√
n+O( 4

√
n) clauses and uses O(

√
n)

auxiliary variables. Other encodings introduced in the literature for the “at most
one” constraint use more clauses than either sequential or product encoding does.
These include the binary encoding [6,12] and the bimander encoding [13].

All the encodings for the “at most one” constraint we have mentioned are in
the form of a 2-CNF formula, which is a CNF formula where all clauses consist of
at most two literals. This restricted structure guarantees that the encodings are
propagation complete. The notion of propagation completeness was introduced
by [8] as a generalization of unit refutation completeness introduced by [18]. We
say that a formula ϕ is propagation complete if for any set of literals ei, i ∈ I
the following property holds: either ϕ ∧ ∧

i∈I ei is contradictory and this can
be detected by unit propagation, or unit propagation started with ϕ ∧ ∧

i∈I ei

derives all literals f that logically follow from this formula. It was shown in [3]
that a prime 2-CNF is always propagation complete. Since unit propagation is
a standard tool which is used in state-of-the-art SAT solvers [7], this makes
2-CNFs as a part of a larger instance simple for them.

When encoding a constraint into a CNF formula, a weaker condition is often
required. Namely, we require that unit propagation on the encoding is strong
enough to enforce some kind of local consistency, for instance generalized arc
consistency (GAC), see for example [4]. In this case we only care about prop-
agation completeness with respect to input variables and not necessarily about
behaviour on auxiliary variables. Later we formalize this notion as propagation
complete encoding (PCE).

Chen [9] conjectures that the product encoding is the smallest possible. In
this paper we provide support for the positive answer to this conjecture. Our
lower bound almost matches the size of the product encoding. We show that any
propagation complete encoding of the “at most one” constraint on n variables
requires at least 2n +

√
n − O(1) clauses. The lower bound actually holds for a

related constraint “exactly one” as well. We also consider the important special
case of 2-CNF encodings for which we achieve a better lower bound—any 2-CNF
encoding of “at most one” constraint on n variables requires at least 2n+2

√
n−

O(1) clauses.
We should note that having a smaller encoding is not necessarily an advan-

tage when a SAT solver is about to be used. Adding auxiliary variables can be
costly because a SAT solver has to deal with them and possibly use them for deci-
sions. Encodings using auxiliary variables are mainly useful for constraints on a
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large number of input variables, when the full prime representation is too large.
Moreover, the experimental results in [16] suggest that a SAT solver can be mod-
ified to minimize the disadvantage of introducing auxiliary variables. Another
experimental evaluation of various cardinality constraints and their encodings
appears in [11]. A propagation complete encoding can also be used as a part of
a general purpose CSP solver where unit propagation can serve as a propagator
of GAC, see [4]. As a conclusion, there are situations, when it is advantageous
to consider encodings with auxiliary variables even for a simple constraint such
as “at most one”. If we allow using auxiliary variables, the number of clauses
can decrease and it is natural to ask how many of them are necessary. Moreover,
investigating lower bounds on the number of clauses needed in an encoding of a
constraint can be helpful in search for better encodings of the constraint as well.

The paper is organized as follows. In Sect. 2 we give necessary definitions and
recall the results we use in the rest of the paper. In Sect. 3 we describe reduc-
tion from a general propagation complete encoding to a regular form. Section 4
contains the proof of a lower bound on the size of any propagation complete
encoding of the “at most one” constraint. In Sect. 5 we give a sketch of the proof
of a stronger lower bound on the size of 2-CNF encodings. Due to space limi-
tations, some of the proofs are omitted or replaced with sketches, this mostly
affects Sect. 5. The full version of this paper can be found in [15].

2 Preliminaries

In this section we state various results which will be used throughout the paper.

2.1 Formulas in CNF

Given a finite vector z of variables with |z| = n, a boolean function f(z) is
a mapping f : {0, 1}n → {0, 1}, which assigns a boolean value f(α) to each
boolean assignment α ∈ {0, 1}n. The value of assignment α on a variable x is
denoted as α(x). For simplicity, we write x ∈ z for variable x which occurs in z.

A literal is a variable x ∈ z or its negation ¬x. We use var (g) to denote
the variable in literal g, i.e. var (g) = x if g ∈ {x,¬x}. Given a set of literals
C, var (C) = {var (g) | g ∈ C}. Given a variable x, we denote lit (x) = {x,¬x}.
Given a set z of variables, we denote lit (z) =

⋃
z∈z lit (z).

A clause is a disjunction of a set of literals, which does not contain a comple-
mentary pair of literals. A formula ϕ is in conjunctive normal form (CNF ) if it is
a conjunction of clauses. We treat clauses as sets of literals and formulas in CNF
as sets of clauses. Since in this paper we consider only formulas in conjunctive
normal form, we often simply refer to formulas, by which we mean formulas in
CNF. The empty clause (the contradiction) is denoted ⊥ and the empty formula
(the tautology) is denoted �.

A unit clause consists of a single literal and we identify such a clause with
its single literal. A binary clause consists of two literals. A formula ϕ in CNF
where every clause has at most k literals is said to be in k-CNF.
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A partial assignment ρ of variables z is a subset of lit (z) such that |ρ ∩
lit (x) | ≤ 1 for each x ∈ z. By ϕ(ρ) we denote the formula obtained by the
application of a partial assignment ρ to a formula ϕ, i.e. ϕ(ρ) originates from ϕ
by substituting the values which satisfy literals in ρ.

2.2 Unit Resolution

We say that a clause C is an implicate of a formula ϕ if any satisfying assignment
α of ϕ satisfies C as well. We denote this property with ϕ |= C. We say that
implicate C of ϕ is a prime implicate, if no sub-clause C ′ of C is an implicate of
ϕ (in other words clause C is a set-minimal implicate of ϕ). We say that CNF
formula ϕ is prime if it consists only of prime implicates of ϕ.

Clauses C1 and C2 are resolvable if there is exactly one literal l such that
l ∈ C1 and ¬l ∈ C2. Then clause R(C1, C2) = (C1 ∪ C2)\{l,¬l} is called the
resolvent of C1 and C2. It is a well known fact that if C1 and C2 are implicates
of a CNF formula ϕ, then so is their resolvent. If one of C1 and C2 is a unit
clause, we say that R(C1, C2) was derived from C1 and C2 by unit resolution.
Repeated application of unit resolution on a given formula is also called unit
propagation and it is an important derivation rule used in SAT solvers.

We use ϕ �1 C to denote the fact that clause C can be derived from formula
ϕ by a series of unit resolutions (or in other words by unit propagation). We will
mostly consider the case when C is a unit clause or ⊥. Given a CNF formula
ϕ and literals g1, . . . , gk on variables in ϕ we denote Uϕ(g1, . . . , gk) the set of
literals which can be derived by unit resolution from ϕ ∧ g1 ∧ · · · ∧ gk that is

Uϕ(g1, . . . , gk) =

{

h | ϕ ∧
k∧

i=1

gi �1 h

}

2.3 Encodings of Boolean Functions

We define an encoding of a boolean function as follows.

Definition 1. Let f(x) be a boolean function on variables x = (x1, . . . , xn). Let
ϕ(x,y) be a CNF formula on n + � variables, where y = (y1, . . . , y�).

1. We call ϕ an encoding of f if for every α ∈ {0, 1}n we have that

f(α) = 1 ⇐⇒ (∃β ∈ {0, 1}�) [ϕ(α, β) = 1] . (1)

2. We call ϕ a propagation complete encoding (PCE) of f(x) if, moreover, for
any g1, . . . , gp ∈ lit (x), p ≥ 1, it either holds that

ϕ ∧
p∧

i=1

gi �1 ⊥, (2)

or

f(x) ∧
p∧

i=1

gi |= h =⇒ ϕ ∧
p∧

i=1

gi �1 h (3)

holds for each h ∈ lit (x). If ϕ is a prime CNF, we call it prime PCE.
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If ϕ(x,y) is an encoding of f(x), then the variables from x and y are called
input variables and auxiliary variables, respectively. Note that the definition of a
propagation complete encoding is less restrictive than requiring that ϕ is propa-
gation complete as defined in [8]. The difference is that in a PCE we only consider
literals on input variables as assumptions and consequences. The authors of [8]
did not distinguish input and auxiliary variables and instead required condi-
tion (3) for all literals on all variables. The following propositions follow from
definition of PCE.

Lemma 1. A prime CNF obtained from a given PCE ϕ(x,y) of f(x) by replac-
ing every clause by a prime implicate contained in it, is also a PCE of f(x).

Lemma 2. If ϕ(x,y) is a PCE of f(x) of minimum size, then it does not
contain a unit clause on an auxiliary variable.

2.4 Identification of Variables in a Unit Resolution Proof

If ϕ(z) is a formula and g1, g2 ∈ lit (z), we denote by ϕ[g1 ← g2] the formula
obtained from ϕ as follows. If the literal g1 is positive, then the variable var (g1)
is substituted by the literal g2. If g1 is negative, then the variable var (g1) is
substituted by the literal ¬g2. The following proposition easily follows from the
properties of unit propagation. The proof can be found in [15].

Lemma 3. Let ϕ(z) be a formula, let g1, g2, h1, h2 ∈ lit (z), such that var (g1) �∈
{var (h1) , var (h2)} and assume, ϕ[g1 ← g2] ∧ h1 is satisfiable. Then

ϕ ∧ h1 �1 h2 =⇒ ϕ[g1 ← g2] ∧ h1 �1 h2.

2.5 At-Most-One and Related Functions

In this paper we are interested in two special cases of cardinality constraints
represented by “at most one” and “exactly one” functions. First we define the
“at most one” function.

Definition 2. The function AMOn(x1, . . . , xn) ( at most one) is defined as fol-
lows: Given an assignment α ∈ {0, 1}n, the value AMOn(α) is 1 if and only if
there is at most one index i ∈ {1, . . . , n} for which α(xi) = 1.

The “exactly one” function differs from AMOn only on zero input.

Definition 3. The function EOn(x1, . . . , xn) ( exactly one) is defined as follows:
Given an assignment α ∈ {0, 1}n, the value EOn(α) is 1 if and only if there is
exactly one index i ∈ {1, . . . , n} for which α(xi) = 1.

One can easily verify the following lemma characterizing propagation com-
plete encodings of AMOn and EOn.

Lemma 4. Let ϕ(x,y) be a formula with x = (x1, . . . , xn), y = (y1, . . . , y�),
n ≥ 1, � ≥ 0 and let us consider the following conditions on ϕ.
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(P1) ϕ ∧ xi is satisfiable for each i ∈ {1, . . . , n},
(P2) ϕ ∧ xi �1 ¬xj holds for each i, j ∈ {1, . . . , n} with i �= j,
(P3) ϕ ∧ ∧n

i=1 ¬xi is satisfiable,
(P4) ϕ ∧ ∧

j∈{1,...,n}\{i} ¬xj �1 xi holds for each i ∈ {1, . . . , n}.
Then the following equivalences hold:

(i) ϕ is a PCE of AMOn if and only if it satisfies (P1), (P2), and (P3).
(ii) ϕ is a PCE of EOn if and only if it satisfies (P1), (P2), and (P4).

The first two conditions (P1) and (P2) from Lemma 4 are frequently used
in the rest of the paper. By Lemma 4 the propagation complete encodings of
AMOn and EOn share these two properties. Although our main focus is on the
function AMOn, some of the induction arguments we use in proofs rely on the
fact that we do not require that a formula satisfies condition (P3). It turns out
that properties (P1) and (P2) are enough to show the lower bound which means
that it holds for both constraints. In order to work with both functions AMOn

and EOn in a unified way we introduce the following notation.

Definition 4. Let AMO∗
n denote the set {AMOn,EOn}.

The first two conditions of Lemma 4 allow us to characterize the notion of
PCE of AMO∗

n.

Definition 5. Let ϕ(x,y) be a CNF formula on n + � variables, where x =
(x1, . . . , xn) and y = (y1, . . . , yl).

– We say that the formula ϕ is an encoding of AMO∗
n, if it is an encoding of

one of the functions in this set.
– We say that the formula ϕ is a propagation complete encoding of AMO∗

n (or
PCE of AMO∗

n), if it moreover satisfies conditions (P1) and (P2).

Let us point out that a PCE of AMO∗
n, which is an encoding of EOn, may

not be a PCE of EOn. An example of such a formula is

ϕ′ = (x1 ∨ . . . ∨ xn−2 ∨ xn ∨ y) ∧ (xn−1 ∨ xn ∨ ¬y) ∧ ϕ(x),

where ϕ(x) represents AMOn. Note that ϕ′ ∧ ∧
i∈{1,...,n−1} ¬xi ��1 xn.

Definition 6. The size of a formula is the number of its clauses. We denote
the minimum size of a PCE of AMOn with A(n), the minimum size of a PCE
of EOn with E(n), the minimum size of a PCE of AMO∗

n with S(n), and the
minimum size of a 2-CNF encoding of AMOn with A2(n).

2.6 Basic Size Estimates

The proof of the following lemma presents a variant of the sequential encod-
ing [17], which addresses also more general cardinality constraints.
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Lemma 5. For every n ≥ 3, we have A2(n) ≤ 3n − 6.

Proof. By induction using the formula ϕ3(x1, x2, x3) = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨
¬x3) ∧ (¬x2 ∨ ¬x3) and the formula ϕn(x1, . . . , xn) = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ y) ∧
(¬x2 ∨ y) ∧ ϕn−1(y, x3, . . . , xn) for each n > 3.

Let us now describe the product encoding ϕp
n of AMOn introduced by

Chen [9]. This encoding serves as an example of an encoding in regular form
defined later. The base case for n = 3 is ϕp

3(x1, x2, x3) = (¬x1 ∨ ¬x2) ∧
(¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3). For n > 3, denote m = �√n � and arrange the
input variables in n different cells of a square matrix of dimension m × m. Let
r : {1, . . . , n} → {1, . . . , m} and c : {1, . . . , n} → {1, . . . , m} be the functions,
such that r(i) is the row index and c(i) the column index of the cell containing
xi. Let yj , j = 1, . . . , m and zj , j = 1, . . . ,m be new auxiliary variables. Then
we set

ϕp
n(x) =

∧

i

(¬xi ∨ yr(i)) ∧
∧

i

(¬xi ∨ zc(i)) ∧ ϕp
m(y) ∧ ϕp

m(z) (4)

Chen [9] shows that |ϕp
n| = 2n + 4

√
n + O( 4

√
n). It turns out that n = 25 is the

smallest value where the product encoding outperforms the sequential encoding
(68 vs. 69 clauses). On the other hand, we show below that the sequential encod-
ing is the smallest possible for n ≤ 6. It is not clear whether this holds also for
7 ≤ n ≤ 24.

We can observe the following basic relations between the sizes of encodings
of AMOn, AMO∗

n, and EOn.

Lemma 6. For each n ≥ 1 we have that

E(n) ≤ A(n) + 1 (5)
S(n) ≤ min(E(n),A(n)). (6)

Proof. The inequality (5) follows from the fact that EOn(x) ≡ AMOn(x) ∧
(
∨n

i=1 xi) and (6) follows from Lemma 4 and Definition 5, which imply that
every propagation complete encoding of AMOn or EOn is also a propagation
complete encoding of AMO∗

n.

We have the following sizes of minimum encodings for n = 2, 3.

Lemma 7. We have A(2) = S(2) = 1 and A(3) = S(3) = 3.

3 Reducing to Regular Form

Let us look at properties of propagation complete encodings of AMO∗
n, in par-

ticular, of encodings of minimum size. Using Lemma 2, we assume without loss
of generality that a PCE of AMO∗

n does not contain unit clauses. The core of
the proof of the lower bound lies in studying encodings in regular form defined
in this section. In such an encoding, for every input variable xi, there are exactly
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two clauses containing the negative literal ¬xi. Moreover these two clauses are
binary and the other literal in each of these clauses is an auxiliary variable or
its negation. The aim of this section is to show that if n is large enough and ϕ
is a minimum size PCE of AMO∗

n which is not in regular form, then there is a
PCE ϕ′ of AMO∗

n−1 of size at most |ϕ| − 3. This allows to use induction on n
for encodings that are not in regular form. Showing the lower bound then relies
on analyzing encodings in regular form. This analysis differs for general encod-
ings and for 2-CNF encodings. In the latter case a stronger lower bound can be
shown. Analysis of the general case is presented in Sect. 4 and the analysis of
the 2-CNF case is presented in Sect. 5.

We start with basic properties of PCE of AMO∗
n.

Lemma 8. Let ϕ(x,y) be a formula with input variables x = (x1, . . . , xn) and
auxiliary variables y = (y1, . . . , x�). Assume that ϕ is a propagation complete
encoding of AMO∗

n. For each distinct xi, xj ∈ x it holds that

(a) ϕ ∧ xi ∧ ¬xj ��1 ⊥,
(b) ϕ ∧ xi ��1 xj,
(c) ϕ ∧ ¬xi ��1 ¬xj,
(d) ϕ contains a binary clause containing the literal ¬xi.

The following lemma shows that fixing any set of input variables to zero in
a PCE of AMO∗

n gives us a PCE of AMO∗
m on the remaining m input variables.

Lemma 9. Let ϕ(x,y) be a propagation complete encoding of AMO∗
n(x). Let

I ⊆ {1, . . . , n} be a set of indices and consider the partial assignment ρ = {¬xj |
j �∈ I}. Then ϕ(ρ) is a propagation complete encoding of AMO∗

|I|(xI), where xI

denotes the vector of input variables xi, i ∈ I.

We now concentrate on clauses with negative literals on input variables.

Lemma 10. Let ϕ(x,y) be a prime PCE of AMO∗
n(x), C ∈ ϕ and ¬xi ∈ C.

Then one of the following is satisfied

(i) C = (¬xi ∨ A), where ∅ �= A ⊆ lit (y),
(ii) C = (¬xi ∨ ¬xj) for some j �= i.

Proof. We have C = (¬xi ∨ A) for a non-empty set of literals A. If there is a
literal ¬xj ∈ A for some j �= i then necessarily C = (¬xi ∨ ¬xj) because this
is a prime implicate of both functions in AMO∗

n. If xj ∈ A for some j �= i then
C ′ = R(C, (¬xi ∨ ¬xj)) is an implicate as well which is in contradiction with
primality of ϕ. The proposition follows.

Lemma 11. Let n ≥ 3 and let ϕ(x,y) be a propagation complete encoding of
AMO∗

n(x). Let xi ∈ x. Suppose that ¬xi occurs only once in ϕ. Then there is a
PCE ϕ′ of AMO∗

n with |ϕ| ≥ |ϕ′| + 1. Moreover, if ϕ is a 2-CNF formula, then
so is ϕ′.
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Proof. Using Lemma 1, we can assume that ϕ is a prime formula. Lemma 8(d)
provides a binary clause C = (¬xi ∨ e) ∈ ϕ with some e ∈ lit (x ∪ y). Let
us assume for a contradiction that var (e) = xj with j �= i. By Lemma 10,
C = (¬xi ∨ ¬xj). Let xk ∈ x\{xi, xj}. We have that ϕ ∧ xi �1 ¬xk. Since C is
the only clause of ϕ containing ¬xi, unit resolution uses xi to derive ¬xj and
does not use xi in any of the later steps. Hence, we have ϕ ∧ ¬xj �1 ¬xk, which
is a contradiction with Lemma 8. This implies e ∈ lit (y).

Let ϕ′ = ϕ[e ← xi]. We can show that ϕ′ satisfies the conditions (P1)
and (P2). In particular (P2) follows by Lemma 3. The details can be found
in [15]. Note that after substitution ϕ′ = ϕ[e ← xi], clause C becomes (¬xi ∨xi)
and is omitted in ϕ′. Hence ϕ′ has size smaller than ϕ. This completes the proof.

Given a variable xi, i ∈ {1, . . . , n}, unit propagation on formula ϕ∧xi starts
with clauses which contain the negative literal ¬xi. The structure of these clauses
is important for the analysis of PCEs of minimum size. For each i = 1, . . . , n let
us denote

Qϕ,i = {C ∈ ϕ | ¬xi ∈ C}. (7)

Definition 7. A propagation complete encoding ϕ(x,y) of AMO∗
n is in regular

form if the following conditions hold for each i ∈ {1, . . . , n}:
(R1) |Qϕ,i| = 2.
(R2) Clauses in Qϕ,i contain no input variables other than xi.
(R3) Clauses in Qϕ,i are all binary.

Note that for n > 3 the product encoding ϕp
n of AMOn given by Eq. (4)

is in regular form. In particular for each xi, i = 1, . . . , n we have that Qϕ,i =
{(¬xi ∨ yr(i)), (¬xi ∨ zc(i))}.

Proposition 1. Let ϕ(x,y) be a propagation complete encoding of AMO∗
n(x),

n ≥ 3, such that (R1) is not satisfied. Then, there is a formula ϕ′, which satisfies
one of the following

(a) ϕ′ is a PCE of AMO∗
n and |ϕ| ≥ |ϕ′| + 1,

(b) ϕ′ is a PCE of AMO∗
n−1 and |ϕ| ≥ |ϕ′| + 3.

Moreover, if ϕ is a 2-CNF formula, then so is ϕ′.

Proof. Assume that |Qϕ,i| �= 2 for some i ∈ {1, . . . , n}. Lemma 8 implies that
|Qϕ,i| ≥ 1. Assume that |Qϕ,i| = 1. According to Lemma 11, there is a PCE ϕ′

of AMO∗
n(x) satisfying condition (a) of the conclusion. If |Qϕ,i| ≥ 3, then setting

xi = 0 yields a formula ϕ′ of size at most |ϕ| − 3. By Lemma 9, this formula is
a PCE of AMO∗

n−1. Hence, condition (b) of the conclusion is satisfied.

Lemma 12. Let ϕ be a PCE of AMO∗
n, n ≥ 4, and let i, j, k ∈ {1, . . . , n} be

three different indices. Then Qϕ,i �= {(¬xi ∨ ¬xj), (¬xi ∨ ¬xk)}.
Proof. Let � ∈ {1, . . . , n} \ {i, j, k}. We have ϕ ∧ xi �1 ¬x�. Assume that Qϕ,i

consists only of two clauses (¬xi ∨ ¬xj), (¬xi ∨ ¬xk). Then, we have ϕ ∧ ¬xj ∧
¬xk �1 ¬x�. This implies that (xj ∨ xk ∨ ¬x�) is an implicate of ϕ which is in
contradiction with the assumption that ϕ is an encoding of AMO∗

n.
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Proposition 2. Let ϕ(x,y) be a prime PCE of AMO∗
n, n ≥ 4, such that (R1)

is satisfied, but (R2) is not satisfied. Then there is a PCE ϕ′ of AMO∗
n−1, such

that |ϕ| ≥ |ϕ′| + 3. If ϕ is a 2-CNF formula, then so is ϕ′.

Proof. Since ϕ violates (R2), we get by Lemma 10 that there is an index i,
such that Qϕ,i contains the clause (¬xi ∨ ¬xj) for some j �= i. Without loss of
generality, assume i = 1, j = 2, so ϕ contains clauses (¬x1 ∨ ¬x2), (¬x1 ∨ B1),
(¬x2 ∨ B2) for some sets of literals B1, B2. By lemmas 10 and 12, both B1

and B2 are sets of auxiliary literals. By Lemma 9 we have that ψ = ϕ({¬x1})
is a propagation complete encoding of AMO∗

n−1 on variables x2, . . . , xn. Since
|Qϕ,i| = 2, we have that |ϕ| ≥ |ψ| + 2. Since the literal ¬x2 occurs only once in
ψ, Lemma 11 implies that there is a PCE ϕ′ of AMO∗

n−1 with |ψ| ≥ |ϕ′| + 1.
Together we get |ϕ| ≥ |ψ| + 2 ≥ |ϕ′| + 3 as required.

We are now ready to show the main result of this section.

Theorem 1. If ϕ(x,y) is a prime PCE for AMO∗
n, n ≥ 4, then at least one of

the following holds:

(a) There is a PCE ϕ′ for AMO∗
n, such that |ϕ| ≥ |ϕ′| + 1.

(b) There is a PCE ϕ′ for AMO∗
n−1, such that |ϕ| ≥ |ϕ′| + 3.

(c) Formula ϕ is in regular form.

Moreover if ϕ is a 2-CNF formula, then so is ϕ′ in cases (a) and (b).

Proof. By Propositions 1 and 2, we have that either one of the conditions (a), (b)
is satisfied, or ϕ satisfies (R1) and (R2). If ϕ is a 2-CNF formula, the condi-
tion (R3) is satisfied and we are done.

If ϕ is not a 2-CNF formula, assume, ϕ does not satisfy (R3) for some i ∈
{1, . . . , n}. By Lemma 8 we have that one of the clauses in Qϕ,i is a binary
clause. Since Qϕ,i does not satisfy (R3), the other clause consists of at least
three literals (due to (R1) we have |Qϕ,i| = 2). Moreover, due to (R2) the only
input variable which appears in some clause in Qϕ,i is xi. Thus we can write
Qϕ,i = {C1 = (¬xi ∨ y), C2 = (¬xi ∨ z1 ∨ . . . ∨ z�)} for some literals y, z1, . . . , z�

on auxiliary variables where � > 1. We claim that for every j ∈ {1, . . . , �} we
have that

ϕ ∧ xi ��1 ¬zj (8)

and
ϕ ∧ y ��1 ¬zj . (9)

Let us assume by contradiction that there is a j ∈ {1, . . . , �} satisfying negation
of (8) or negation of (9). Using clause C1, ϕ∧ y �1 ¬zj implies ϕ∧xi �1 ¬zj , so
we can assume ϕ ∧ xi �1 ¬zj . Then, (¬xi ∨ ¬zj) is an implicate of ϕ. However
resolvent R((¬xi ∨¬zj), C2) is a strict subclause of C2 which is in contradiction
with primality of C2.

Consider any input variable xj , j �= i. Since ϕ satisfies (P2) we have that
ϕ∧xi �1 ¬xj . Since C1 is the only clause in ϕ which becomes unit when resolved
with xi and considering (9) we get that necessarily

Uϕ(xi) = Uϕ(y) ∪ {xi} (10)



422 P. Kučera et al.

and in particular
ϕ ∧ y �1 ¬xj . (11)

Let ψ = (ϕ\{C2})∪{C3}, where C3 = (¬y∨z1∨ . . .∨z�). We shall prove that
ψ is an encoding of AMO∗

n. Since |ψ| = |ϕ| and |ψ| contains only one occurrence
of ¬xi, we get by Lemma 11 that there is a formula ϕ′ satisfying condition (a).
According to Definition 5 it remains to show that ψ satisfies conditions (P1)
and (P2).

(P1) Let xj , j ∈ {1, . . . , n} be an arbitrary input variable and let us show that
ψ ∧ xj is satisfiable.

– If j = i, we have ϕ ∧ xj |= z1 ∨ · · · ∨ z�, since C2 is contained in ϕ and
xj = xi. Consequently, ϕ ∧ xj |= C3.

– If j �= i, we have ϕ |= ¬y ∨ ¬xj by (11). Hence, ϕ ∧ xj |= ¬y and
ϕ ∧ xj |= C3.

In both cases, since ϕ ∧ xj is satisfiable, so is ψ ∧ xj and ψ satisfies (P1).
(P2) Let j, k ∈ {1, . . . , n} be two different indices of input variables and let us

show that ψ ∧ xj �1 ¬xk. Let us look at derivation of ϕ ∧ xj �1 ¬xk.
– If j = i, then clause C2 is not used in the derivation ϕ ∧ xi �1 ¬xk. This

follows by (8), because in order for C2 to be used in a unit resolution
derivation, at least one of z1, . . . , z� must be derived first. It follows that
ψ ∧ xi �1 ¬xk as well.

– Let us now suppose that j �= i. If C2 is not used in derivation of ϕ∧xj �1

¬xk, then also ψ ∧ xj �1 ¬xk and we are done. If C2 were used to derive
some zk for k ∈ {1, . . . , �}, then in order to do that we need ϕ ∧ xj �1 xi,
which is not true. As the last case let us assume that C2 is used to derive
¬xi. Before that we have ϕ ∧ xj �1 ¬zr for all r ∈ {1, . . . , �} and this is
true in ψ as well. Hence, ψ ∧ xj �1 ¬zr for all r ∈ {1, . . . , �}. Moreover,
we obtain ψ ∧ xj �1 ¬xi because we can replace the step using C2 in the
original unit resolution derivation with two steps. The first uses C3 to
derive ¬y and the second uses C1 to derive ¬x1. Together, we get that
also in this case ψ ∧ xj �1 ¬xk.

This concludes the proof.

Let ϕ be a PCE of AMOn in regular form. It follows that for every i ∈
{1, . . . , n} the two clauses in Qϕ,i are binary and each consists of ¬xi together
with an auxiliary variable or its negation. We will use the following sets which
consist of these two auxiliary literals.

Lϕ,i = {e | (¬xi ∨ e) ∈ Qϕ,i} . (12)

For example, in case of the product encoding ϕp
n of AMOn given by equation (4),

we have Lϕ,i = {yr(i), zc(i)} for each i = 1, . . . , n.
By Condition (R1) we have that |Lϕ,i| = |Qϕ,i| = 2. Moreover, if i, j ∈

{1, . . . , n} are two different indices of input variables, then Lϕ,i �= Lϕ,j . Indeed,
assuming Lϕ,i = Lϕ,j , we get a contradiction with conditions (P1) and (P2) as
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follows. The formula ϕ∧xi is satisfiable and derives both literals in Lϕ,i = Lϕ,j .
Hence, it is not possible to have ϕ ∧ xi �1 ¬xj .

We shall distinguish the following two types of clauses in ϕ.

– Clauses from
⋃n

i=1 Qϕ,i are of type Q.
– The remaining clauses in ϕ are of type R.

Note that since ϕ is in regular form, all clauses of type Q are binary and the
number of clauses of type Q is 2n. In the next two sections we aim to provide
a lower bound on the number of clauses of type R in a general PCE in regular
form (Sect. 4) and in a 2-CNF PCE in regular form (Sect. 5).

4 A Lower Bound for General Encodings

This section is devoted to the proof of a lower bound for PCE of AMO∗
n for

general CNF formulas. The main part of the proof consists of showing a lower
bound on the number of clauses of type R in a PCE in regular form. This is
combined with an inductive argument based on Theorem 1.

Lemma 13. Let ϕ(x,y) be a PCE of AMO∗
n in regular form. Let i, j, k be

different indices with Lϕ,i = {g, h1}, Lϕ,j = {g, h2}, and Lϕ,k = {g, h3} for
g, h1, h2, h3 ∈ lit (y). Then variables var (h1), var (h2), and var (h3) are pairwise
different.

Proof. First, let us note that the literals h1, h2, h3 have to be pairwise distinct,
this follows from the arguments given at the end of Sect. 3. Let us show by
contradiction that var (h1) �= var (h2). To this end, assume var (h1) = var (h2).
Since Lϕ,i �= Lϕ,j we have that h1 = ¬h2. By condition (P2) we have that
ϕ ∧ xk �1 ¬xi and ϕ ∧ xk �1 ¬xj . Since ϕ ∧ xk �1 g, necessarily ϕ ∧ xk �1 ¬h1

and ϕ∧xk �1 ¬h2. However, then ϕ∧xk �1 ⊥ which is in contradiction with (P1).
The cases var (h1) �= var (h3) and var (h2) �= var (h3) are symmetrical.

Corollary 1. Let ϕ be a PCE of AMO∗
n in regular form and let h be a literal

which appears in Lϕ,i for some i ∈ {1, . . . , n}. Let Ih = {i ∈ {1, . . . , n} | h ∈
Lϕ,i}, and Lh =

⋃
i∈Ih

Lϕ,i. If |Ih| ≥ 3, then |var (Lh) | = |Ih| + 1.

Proof. This is a simple corollary of Lemma 13. If we remove literal h from
each Lϕ,i, i ∈ Ih, then the remaining literals are on pairwise different variables
different from var (h).

Lemma 14. If ϕ(x,y) is a PCE of AMO∗
n in regular form and n ≥ 5, then

there exists i ∈ {1, . . . , n} such that |Uϕ(xi) ∩ lit (y) | ≥ √
n − 1.

Proof. Let L =
⋃n

i=1 Lϕ,i be the set of auxiliary literals in clauses of type Q.
For each h ∈ L, let Ih and Lh be defined as in Corollary 1. Choose g ∈ L that
maximizes |Ig| and fix some i ∈ Ig.

If |Ig| ≥ 3 then according to Corollary 1, we get that |var (Lg) | = |Ig| + 1.
In order to derive all ¬xj , j ∈ Ig \ {i} from xi, the literals in Lg \ Lϕ,i must
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be falsified by unit propagation. Moreover the literals in Lϕ,i are derived as well
and thus we have

|Mi| ≥ |Ig| + 1, (13)

where Mi = Uϕ(xi) ∩ lit (y).
On the other hand, each ¬xj , j ∈ {1, . . . , n}\{i} must be derived from some

h ∈ Mi using a clause of type Q. As |Ih| ≤ |Ig| for each h ∈ Mi, any fixed h
covers at most |Ig| values of j. Thus,

|Mi| · |Ig| ≥ n − 1. (14)

Finally, we get |Mi| ≥ max{|Ig|, (n − 1)/|Ig|} as follows:

– If |Ig| ≥ 3, the claims (13) and (14) apply.
– If |Ig| ≤ 2, we observe that by (14) we have |Mi| ≥ (n − 1)/2, which is at

least 2 for each n ≥ 5.

Clearly, the function s �→ max{s, (n − 1)/s} on positive s achieves the smallest
value when s = (n − 1)/s which is equivalent to s =

√
n − 1.

Lemma 15. If n ≥ 5 and ϕ(x,y) is a PCE of AMO∗
n in regular form, then

|ϕ| ≥ 2n +
√

n − 1 − 2.

Proof. Formula ϕ contains 2n clauses of type Q. Moreover, by Lemma 14, there
is an index i, such that Uϕ(xi) contains at least

√
n − 1 literals on auxiliary

variables. As ϕ ∧ xi is satisfiable, these literals contain different variables. Only
two of them are derived by clauses of type Q, while the others must be derived
by clauses of type R, which implies the required estimate.

The following theorem is one of the main results of this paper.

Theorem 2. For n ≥ 3, the minimum size S(n) of a PCE of AMO∗
n satisfies

1. If n ≤ 6, then S(n) = 3n − 6.
2. If n ≥ 7, then S(n) ≥ 2n +

√
n − 1 − 2.

Proof. We treat the two claims separately:

1. It was shown in Lemma 5 that S(n) ≤ 3n − 6. To show that S(n) ≥ 3n − 6,
we proceed by induction on n. The basis, i.e. S(3) = 3, is given by Lemma 7.
For n > 3, a minimum prime encoding ϕ of AMO∗

n must satisfy one of the
conditions in Theorem 1. The condition (a) is excluded, since ϕ has minimum
size. The condition (b) and the induction hypothesis imply

|ϕ| ≥ S(n − 1) + 3 ≥ 3(n − 1) − 3 = 3n − 6,

while (c) leads to S(n) = |ϕ| ≥ 2n, which is at least 3n − 6 for n ≤ 6.
2. Let ϕ be a minimum-size PCE of AMO∗

n, n ≥ 7. It follows from Theorem 1
that either ϕ is regular and thus |ϕ| ≥ 2n +

√
n − 1 − 2 due to Lemma 15, or

|ϕ| ≥ S(n − 1) + 3. In the latter case we observe that:
– If n = 7, we obtain S(n−1)+3 = 15 > 2n+

√
n − 1−2 by the first claim

of this theorem.
– If n > 7, the induction hypothesis implies S(n − 1) + 3 ≥ 2(n − 1) +√

n − 2 + 1, which exceeds 2n +
√

n − 1 − 2, since
√

n − 2 + 1 >
√

n − 1.
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5 A Lower Bound for 2-CNF Encodings

In this section we present a lower bound 2n + 2
√

n − 5 on the number of clauses
for the special case of 2-CNF encodings of AMOn. Due to space limitation we
present only a sketch of the proof. For a detailed version see [15]. On the con-
trary to the general encodings, the result of this section implies a lower bound
on the size of any 2-CNF encodings of AMOn, not only for propagation com-
plete encodings. This can be seen as follows. By Lemma 1, a size minimal 2-CNF
encoding can be chosen as a prime formula and, moreover, a prime 2-CNF for-
mula is propagation complete with respect to any literals, not just the input
ones, see [3]. The importance of the special case of 2-CNF encodings of AMOn

stems from the fact that the smallest known encodings are in 2-CNF as well as
all the other encodings suggested in the literature.

In order to prove a lower bound on the size of a 2-CNF encoding of AMOn,
we use Theorem 1 similarly as in Sect. 4 to handle encodings, which are not in
regular form. However, the analysis of encodings in regular form is different and
implies a stronger lower bound.

One of the differences in case of 2-CNF formulas is that a unit resolution
derivation can be reversed in the following sense: Given a formula ϕ in 2-CNF
and two literals g and h, each of which is consistent with the formula, we have
that ϕ ∧ g �1 ¬h if and only if ϕ ∧ h �1 ¬g. Due to this, it is useful to represent
a 2-CNF formula with an implication graph introduced in [2], see also [10]—
it is a directed graph on literals where each clause (g ∨ h) corresponds to two
arcs (¬g, h) (represents the implication (¬g → h)) and (¬h, g) (represents the
implication (¬h → g)).

We can exploit the properties of the implication graph to show stronger
properties of sets Lϕ,i defined in (12) than in the case of general CNF encodings.
In particular, we can show that the main part of the analysis can be reduced to
the case where the sets L′

ϕ,i = var (Lϕ,i) are pairwise different for i = 1, . . . , n.
The following three lemmas show the important properties of sets L′

ϕ,i.

Lemma 16. Let ϕ(x,y) be a minimum 2-CNF encoding of AMOn. Let r, s ∈
{1, . . . , n} be different and let us suppose that L′

ϕ,r = L′
ϕ,s and Lϕ,r = {g, h} for

g, h ∈ lit (y). Then Lϕ,s = {¬g,¬h}.
Lemma 17. Let ϕ(x,y) be a minimum size 2-CNF encoding of AMOn. Let
r, s ∈ {1, . . . , n} be two different indices and let us suppose that Lϕ,r = {g, h}
and Lϕ,s = {¬g,¬h} for g, h ∈ lit (y). Then |ϕ| ≥ A2(n − 2) + 5.

Lemma 18. Let n ≥ 4 and let ϕ(x,y) be a minimum size 2-CNF encoding of
AMOn in regular form. If there are different indices r, s, t ∈ {1, . . . , n}, s.t.

1. L′
ϕ,r, L′

ϕ,s, and L′
ϕ,t are pairwise distinct,

2. |L′
ϕ,r ∪ L′

ϕ,s ∪ L′
ϕ,t| = 3,

then |ϕ| ≥ A2(n − 2) + 5.

The second main result of this paper is the following.
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Theorem 3. For n ≥ 3, the minimum size A2(n) of a 2-CNF PCE of AMOn

satisfies

1. If n ≤ 6, then A2(n) = 3n − 6.
2. If n ≥ 7, then A2(n) ≥ 2n + 2

√
n − 5.

Proof. (Sketch) Consider a minimum 2-CNF encoding ϕ(x,y) of AMOn. We
use induction on encodings which are not in regular form as in the proof of
Theorem 2. Moreover, based on Lemmas 16 and 17, we can use induction also
in case when the sets L′

ϕ,r, i = 1, . . . , n are not pairwise different. Let us now
define graph G = (y, E) on auxiliary variables where two auxiliary variables y, y′

form an edge if there is a binary clause in ϕ which contains both the variables
y, y′. We can show that G consists of at most three connected components, it
follows that there are at least |y|−3 binary clauses with both literals on auxiliary
variables. We now use Lemma 18 to show that either we can use induction to
show the required bound, or L′

ϕ,1, . . . , L
′
ϕ,n are pairwise distinct and form edges

of a triangle-free undirected graph G′ on y. Mantel’s theorem implies that the
number n of edges in such a graph is at most 1

4 |y|2. Thus, |y| ≥ 2
√

n and there
is at least 2

√
n − 3 clauses containing only auxiliary variables. Together with 2n

clauses of type Q we obtain |ϕ| = 2n + |ψ| ≥ 2n + 2
√

n − 3 in this case.

6 Conclusion and Further Research

We have shown that any propagation complete encoding of the AMOn or EOn

constraint for n ≥ 7 contains at least 2n +
√

n − 1 − 2 clauses. This shows that
the best known upper bound of 2n + 4

√
n + O( 4

√
n) clauses achieved by product

encoding introduced by [9] is essentially best possible. Let us point out that the
product encoding is an encoding of AMOn in regular form which is the notion
playing central role in our proof.

The encodings of AMOn which appear in the literature are 2-CNF formulas
which have an advantage that they are always propagation complete. We have
therefore considered this special case and were able to show that for n ≥ 7 a
stronger lower bound 2n + 2

√
n − 5 holds.

A function can have a 2-CNF encoding only if it is expressible by a 2-CNF
formula and function AMOn can be represented by an anti-monotone 2-CNF
formula (i.e. a 2-CNF formula containing only negative literals). It is quite nat-
ural to ask if there is a minimum PCE of AMOn which is a 2-CNF formula or
a CNF formula without positive occurrences of input variables. We conjecture
that the answer to both questions is positive, but that remains open. We can
only prove that a positive answer to the first question implies a positive answer
to the second question.

Even in case of 2-CNF encodings there is still a gap between our lower bound
and the upper bound given by the product encoding. We conjecture that the size
of the optimal encoding matches the upper bound. The regular form used in our
proof helps to understand the structure of the part of the encoding close to the
input variables. A better understanding of the structure of the clauses of type
can possibly lead to improving the lower bound.
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Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOF-
SEM 2012. LNCS, vol. 7147, pp. 612–624. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27660-6 50

9. Chen, J.: A new SAT encoding of the at-most-one constraint. In: ModRef 2010
(2010)

10. Crama, Y., Hammer, P.: Boolean Functions: Theory, Algorithms, and Applications.
Encyclopedia of Mathematics and Its Applications. Cambridge University Press,
Cambridge (2011)

11. Frisch, A.M., Giannaros, P.A.: SAT encodings of the at-most-k constraint. some
old, some new, some fast, some slow. In: Proceeding of the Tenth International
Workshop of Constraint Modelling and Reformulation (2010)

12. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.W.: Solving non-
boolean satisfiability problems with stochastic local search: A comparison of encod-
ings. J. Autom. Reason. 35(1), 143–179 (2005). doi:10.1007/s10817-005-9011-0

13. Hölldobler, S., Nguyen, V.H.: An efficient encoding of the at-most-one con-
straint. Technical Report MSU-CSE-00-2, Knowledge Representation and Reason-
ing Groupp. 2013–04, Technische Universitt Dresden, 01062 Dresden, Germany
(2013). http://www.wv.inf.tu-dresden.de/Publications/2013/report-13-04.pdf

14. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from n objects. In:
Fourth Workshop on Constraints in Formal Verification (2007)
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Abstract. Decomposition width parameters such as treewidth provide
a measurement on the complexity of a graph. Finding a decomposition of
smallest width is itself NP-hard but lends itself to a SAT-based solution.
Previous work on treewidth, branchwidth and clique-width indicates that
identifying a suitable characterization of the considered decomposition
method is key for a practically feasible SAT-encoding.

In this paper we study SAT-encodings for the decomposition width
parameters special treewidth and pathwidth. In both cases we develop
SAT-encodings based on two different characterizations. In particular, we
develop two novel characterizations for special treewidth based on parti-
tions and elimination orderings. We empirically obtained SAT-encodings.

1 Introduction

The decomposition of graphs is a central topic in combinatorics and combina-
torial optimization where various decomposition methods have been developed.
Decomposition methods gives rise to a so-called width parameters that indicates
how well the graph is decomposable by the considered decomposition method.
For instance tree decomposition, the most famous decomposition method, gives
rise to the parameter treewidth, where the treewidth of a graph is the smallest
width over all tree decompositions. Typically, finding an optimal decomposi-
tion (i.e., one of smallest width), is an NP-hard problem, for which various
exponential-time algorithms have been suggested. Previous work indicates that
SAT provides a valuable practical approach for finding optimal decompositions.
This approach was pioneered by Samer and Veith for treewidth [16]; their meth-
ods was further improved [2] and achieved excellent results in a recent solver
challenge [8]. Heule and Szeider [11] developed the first practically feasible app-
roach for computing the decomposition parameter clique-width by means of a
SAT encoding, which allowed for the first time to identify the clique-width of
some well-known named graphs. A SAT-encoding for the decomposition para-
meter branchwidth was suggested by Lodha et al. [14], who also showed how the
encoding can be used to improve heuristically obtained branch decompositions
of large graphs.

Special Treewidth and Pathwidth. In this paper we consider new SAT encod-
ings for the decomposition parameters special treewidth and pathwidth. Spe-
cial treewidth, a decomposition parameter introduced by Courcelle [6,7], is
c© Springer International Publishing AG 2017
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closely related to the well-known decompositional parameters pathwidth and
treewidth [13]. A tree decomposition of a graph G is a tree T whose nodes are
labeled with sets of vertices, called bags, such that for each edge of G there is a
bag containing both ends of the edge, and for each vertex of G, the nodes of T
labeled with bags containing this vertex form a non-empty connected subtree.
The width of the tree decomposition is the size of a largest bag minus 1, and the
treewidth of a graph is the smallest width over all its tree decompositions. Spe-
cial treewidth is defined similar to treewidth, with the additional property that
T is a rooted tree, and for each vertex of G there is some root-to-leaf path in T
which contains all the nodes labeled with bags containing this vertex. Pathwidth
is also defined similar to treewidth, where T itself is a path. It follows from these
definitions that special treewidth is in-between treewidth and pathwidth, i.e.,
for every graph G we have

treewidth(G) ≤ special treewidth(G) ≤ pathwidth(G).

The motivation for special treewidth is that it allows for more efficient model-
checking algorithms for variants of Monadic Second Order Logic than treewidth,
but is often smaller than pathwidth. Special treewidth has been the subject of
several theoretical investigations [4,5]. Pathwidth, on the other hand, was intro-
duced by Robertson and Seymour in the first of their famous series of papers on
graph minors [15] and has since then attracted a lot of attention. The compu-
tation of special treewidth and pathwidth are NP-hard problems. For the latter
this has been known [1] for long, for the former we observe that it can be deduced
from known results (Theorem 1).

Characterizations of Width Parameters. Previous work on SAT encodings for
treewidth, branchwidth and clique-width indicates that identifying a suitable
characterization of the considered decomposition method is key for a practically
feasible SAT-encoding. In fact, the standard encoding for treewidth [16] is based
on the characterization of treewidth in terms of elimination orderings, which
are linear orderings of the vertices of the decomposed graph, where after adding
certain “fill-in” edges, the largest number of neighbors of a vertex ordered higher
than the vertex itself, gives the width of the decomposition. For clique-width, on
the other hand, no characterization based on elimination ordering is known, and
the known SAT-encoding [11] uses a partition-based characterization, where one
considers a sequence of partitions of the vertex set. A similar partition-based
characterization was used for the SAT encoding of branchwidth [14]. Recently,
an encoding for pathwidth and similar decompositional parameters based on the
interval model of a path-decomposition has been introduced by Biedl et al. [3].

In this paper we develop and compare SAT encodings based on two charac-
terizations of special treewidth and two characterizations for pathwidth.

Results for Special Treewidth. For special treewidth we develop a new charac-
terization based on elimination orderings (Theorem 3), as one could expect that
a characterization that is similar to the characterization successfully used for a



SAT-Encodings for Special Treewidth and Pathwidth 431

SAT encoding of treewidth also works well for special treewidth. We also develop
a partition-based characterization which is close to the original characterization
by Courcelle [6]. Our experiments show that the partition-based encoding clearly
outperforms the ordering-based encoding. For instance, the former could process
square grids and complete graphs being almost twice as large as the square grids
and complete graphs within the reach of the latter. The partition-based encoding
also beats the ordering-based encoding on many of the well-known named graphs
that we consider by an order of magnitude and is competitive in running-times
to the currently leading encoding for treewidth.

Results for Pathwidth. For pathwidth, there exists a well known characterization
in terms of linear orderings [12] which gives rise to a natural SAT encoding,
similar in spirit to the Samer-Veith encoding for treewidth [16]. However, we
also considered a partition-based encoding, similar in spirit to the Heule-Szeider
encoding for clique-width [11]. Our experiments indicate that the ordering-based
encoding has a slight advantage on average over the partition-based encoding.
However, the partition-based encoding has an extraordinary advantage on dense
graphs. This encourages the development of a portfolio-based approach for SAT-
encodings for pathwidth.

2 Preliminaries

2.1 Satisfiability and SAT-Encodings

We consider propositional formulas in Conjunctive Normal Form (CNF formulas,
for short), which are conjunctions of clauses, where a clause is a disjunction
of literals, and a literal is a propositional variable or a negated propositional
variable. A CNF formula is satisfiable if its variables can be assigned true or false,
such that each clause contains either a variable set to true or a negated variable
set to false. The satisfiability problem (SAT) asks whether a given formula is
satisfiable.

We will now introduce a few general assumptions and notation that is shared
among the encodings. Namely, for our encodings we will assume that we are
given an undirected graph G = (V,E) and an integer ω, which represents the
width that we are going to test. Moreover, we will assume that the vertices of
G are numbered from 1 to n and similarly the edges are numbered from 1 to m.
Details on how we used the formulas to calculate the exact width of a graph are
given in Sect. 6.1. For the counting part of all our encodings we will employ the
sequential counter approach [16] since this approach has turned out to provide
the best results in our setting. To illustrate the idea behind the sequential counter
consider the case that one has a variable S(v) for every vertex v ∈ V (G) and one
needs to restrict the number of vertices for which the variable S(v) is set to true
to be at most some integer ω. In this case one introduces a counting variable
#(v, j) for every v ∈ V (G) and j with 1 ≤ j ≤ ω, which is true whenever there
are at least j variables S(v) set to true in {S(u) | 1 ≤ u ≤ v }. Then the following
clauses ensure the semantics for the variable #(v, i) and ensure that at most ω of
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the variables S(v) are set to true. A clause ¬S(v)∨#(v, 1) for every v ∈ V (G), a
clause ¬#(v−1, j)∨#(v, j) for every v ∈ V (G) and j with v > 1 and 1 ≤ j ≤ ω,
a clause ¬S(v) ∨ ¬#(v − 1, j − 1) ∨ #(v, j) for every v ∈ V (G) and j with v > 1
and 1 < j ≤ ω, and a clause ¬S(v)∨¬#(v−1, ω) for every v ∈ V (G) with v > 1.

2.2 Graphs

We consider finite and simple undirected graphs. For basic terminology on graphs
we refer to a standard text book [9]. For a graph G we denote by V (G) the vertex
set of G and by E(G) the edge set of G. If E ⊆ E(G), we denote by G \ E the
graph with vertices V (G) and edges E(G) \ E.

We will often consider various forms of trees, i.e., connected acyclic graphs,
as they form the backbone of tree decompositions. Let T be an undirected tree
and t ∈ V (T ). We will often assume that T is rooted (in some arbitrary vertex
r) and hence the parent and child relationships between its vertices are well-
defined. We write Tt to denote the subtree of T rooted in t, i.e., the component
of T\{{t, p}} containing t, where p is the parent of t in T . For a tree T , we
denote by h(T ), the height of T , i.e., the length of a longest path between the
root and any leaf of T plus one.

2.3 Special Treewidth

To define special treewidth, it is convenient to first introduce treewidth and
pathwidth and then show how to adapt the definition to obtain special treewidth.

A tree decomposition T of a graph G = (V,E) is a pair (T, χ), where T is a
tree and χ is a function that assigns each tree node t a set χ(t) ⊆ V of vertices
such that the following conditions hold: (T1) for every vertex u ∈ V , there is a
tree node t such that u ∈ χ(t), (T2) for every edge {u, v} ∈ E there is a tree
node t such that {u, v} ⊆ χ(t), and (T3) for every vertex v ∈ V , the set of
tree nodes t with v ∈ χ(t) forms a subtree of T . The sets χ(t) for any t ∈ V (T )
are called bags of the decomposition T and χ(t) is the bag associated with the
tree node t. The width of a tree decomposition (T, χ) is the size of a largest
bag minus 1. A tree decomposition of minimum width is called optimal. The
treewidth of a graph G is the width of an optimal tree decomposition of G. A
path decomposition is a tree decomposition T = (T, χ), where T is required to
be a path and the pathwidth of a graph is the minimum width of any of its path
decompositions.

A special tree decomposition T = (T, χ) of a graph G = (V,E) is a tree
decomposition that is rooted at some node r ∈ V (T ) and additionally satisfies
the following property [4,6]: (ST) for every vertex v ∈ V , the set of tree nodes
t with v ∈ χ(t) forms a subpath of a path in T from r to a leaf. Note that (ST)
subsumes (T3), which implies that a special tree decomposition merely needs
to satisfy (T1), (T2), and (ST). The width of a special tree decomposition as
well as the special treewidth of a graph G are defined analogously to the width
of a tree decomposition and the treewidth, respectively. Figure 1 illustrates an
(optimal) special tree decomposition of a graph.
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Fig. 1. A graph G (left) and an optimal (special) tree decomposition T = (T, χ) of G
(right).

As a prerequisite for the development of SAT-encodings for the problem, and
since to the best of our knowledge this has never been explicitly stated previously,
we first show that computing the special treewidth of a graph is NP-hard.

Theorem 1. Given a graph G and an integer ω, then determining whether G
has special treewidth at most ω is NP-complete.

Proof. The problem is clearly in NP, because there is always an optimal (spe-
cial) tree decomposition, where the number of nodes is at most the number of
vertices in the graph. The NP-hardness follows from [10], where it was shown
that pathwidth equals treewidth on the class of co-comparability graphs and
moreover computing both width measures for co-comparability graphs is still
NP-hard. Because special treewidth is in-between pathwidth and treewidth it
equals both width measures on co-comparability graphs and its computation is
therefore also NP-hard.

We remark that if ω is constant and not part of the input, then one can check in
linear time whether a given graph has special treewidth at most ω (the running
time depends exponentially on ω) [4]; similar results are well known to hold for
treewidth and pathwidth.

2.4 Weak Partitions

A weak partition of a set S is a set P of nonempty subsets of S such that any two
sets in P are disjoint. We denote by U(P ) the union of all sets in P . If additionally
S = U(P ), then P is a partition. The elements of P are called equivalence classes.
Let P, P ′ be weak partitions of S. Then P ′ is a refinement of P if U(P ) ⊆ U(P ′)
and any two elements x, y ∈ S that are in the same equivalence class of P ′ are
not in distinct equivalence classes of P (this entails the case P = P ′). Moreover,
we say that P ′ is a k-ary refinement of P if additionally it holds that for every
p ∈ P there are p1, . . . , pk in P ′ such that p ⊆

⋃
1≤i≤k pi. Intuitively, if P ′ is a

k-ary refinement of P , then P is obtained from P ′ by forgetting some elements
and joining up to k equivalence classes.

3 Partition-Based Approach for Special Treewidth

In this section we introduce a novel characterization of special treewidth, in
terms of special derivations. The characterization is inspired by the partition-
based approaches employed for branchwidth and clique-width [11,14].
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3.1 Characterization: Special Derivations

Let G = (V,E) be a graph. A special derivation P of G of length l is a sequence
(P1, . . . , Pl) of weak partitions of V such that: (SD1) U(P1) = V , (SD2) for
every i ∈ {1, . . . , l − 1}, Pi is a refinement of Pi+1, and (SD3) for every edge
{u, v} ∈ E it holds that there is a Pi and a set p ∈ Pi such that {u, v} ⊆ p. The
width of P is the maximum size of any set in P1 ∪ . . .∪Pl minus 1. We will refer
to Pi as the i-th level of P and we will refer to elements in

⋃
1≤i≤l Pi as sets

of P. We will show that any special tree decomposition can be transformed into
a special derivation of the same width and vice verse. The following example
illustrates the close connection between special tree decompositions and special
derivations.

Example 1. Consider the special tree decomposition T given in Fig. 1. Then
T can, e.g., be translated into the special derivation P = (P1, . . . , P4) defined
by setting P1 = {{1}, {2, 3}, {4, 5}, {6, 7}}, P2 = {{1, 2}, {4, 5}, {6, 7}}, P3 =
{{1, 4}, {6, 7}}, P4 = {{1, 6}}. The width of T is equal to the width of P.

The following theorem shows that special derivations provide an alternative
characterization of special tree decompositions. The main observation behind the
proof of the equivalence between the two characterizations is that after padding
the special tree decomposition such that every leaf has the same distance from
the root, it holds that the weak partition on a certain level of a special derivation
is given by the set of bags that are at the same distance from a leaf in a special
tree decomposition and vice versa.

Theorem 2. A graph G has a special tree decomposition of width at most ω and
height at most h if and only if G has a special derivation of width at most ω and
length at most h. Moreover, there is a special derivation of optimal width with
length at most |V (G)| − ω.

Note that the second statement of the above theorem allows us to restrict our
search to special derivations of length at most |V (G)|−ω. Its proof crucially uses
the observation that a restricted form of tree decompositions, so called small tree
decompositions, can be shown to have height at most |V (G)| − ω.

3.2 SAT-Encoding of a Special Derivation

Here we will provide our encoding for special derivations. Namely, we will con-
struct a CNF formula F (G,ω, l) that is satisfiable if and only if G has a special
derivation of width at most ω and length at most l. Because of Theorem 2 (after
setting l to the value specified in the theorem) it holds that F (G,ω, n − ω) is
satisfiable if and only if G has special treewidth at most ω. To achieve this aim
we first construct a formula F (G, l) that is satisfiable if and only if G has a
special derivation of length at most l

The formula F (G, l) uses a set variable set(u, v, i), for every u, v ∈ V (G) and
i with u ≤ v and 1 ≤ i ≤ l. Informally, set(u, v, i) is true whenever either u �= v
and u and v are contained in the same set at level i of the special derivation or
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u = v and u is contained in some set at level i. We now describe the clauses of
the formula. The following clauses ensure transitive of the relation between two
vertices u, v ∈ V (G) defined by set(u, v, i) for every i with 1 ≤ i ≤ l.

(¬set(u, v, i) ∨ ¬set(u,w, i) ∨ set(v, w, i))
∧(¬set(u, v, i) ∨ ¬set(v, w, i) ∨ set(u,w, i))
∧(¬set(u,w, i) ∨ ¬set(v, w, i) ∨ set(u, v, i))
∧(¬set(u, v, i) ∨ ¬set(u, u, i)) for u, v, w ∈ V (G), u < v < w, 1 ≤ i ≤ l.

To ensure Property (SD1), we add the clause set(u, u, 1) for every u ∈ V (G).
The following clauses ensure (SD2), i.e., Pi is a refinement of Pi+1 for every
1 ≤ i < l.

(¬set(u, u, i + 1) ∨ ¬set(v, v, i + 1) ∨ set(u, v, i + 1) ∨ ¬set(u, v, i))
wedge(set(u, u, i) ∨ ¬set(u, u, i + 1)) for u, v ∈ V (G), u < v, 1 ≤ i < l

Towards presenting the clauses employed to ensure (SD3), we will use the fol-
lowing property that is easily seen to be equivalent to (SD3).
(SD3’) For every edge {u, v} ∈ E, it holds that:

– if there is an i with 1 ≤ i < l such that u, v ∈ U(Pi) and v /∈ U(Pi+1), then
u, v ∈ p for some p ∈ Pi and

– if u, v ∈ U(Pl), then u, v ∈ p for some p ∈ Pl.

Note that (SD3) and (SD3’) are equivalent because whenever there is a set
p ∈ Pi for some i with 1 ≤ i ≤ l containing two vertices u and v, then such a set
also exists in every Pj for j ≥ i as long as u, v ∈ U(Pj). The following clauses
now ensure (SD3’) and thereby (SD3).

((¬set(u, u, i) ∨ ¬set(v, v, i) ∨ set(u, u, i + 1)) ∨ set(u, v, i))
∧ ((¬set(u, u, i) ∨ ¬set(v, v, i) ∨ set(v, v, i + 1)) ∨ set(u, v, i))
∧ ((¬set(u, u, l) ∨ ¬set(v, v, l)) ∨ set(u, v, l))

for e ∈ E(G), u, v ∈ e, u < v, 1 ≤ i < l

We now ready to to extend F (G, l) to the formula F (G,ω, l). We achieve this
by restricting the sizes of all sets in Pi for every 1 ≤ i ≤ l to be at most ω +1, or
in other words for every v ∈ V (G) and i with 1 ≤ i ≤ l, we need to restrict the
number of variables set(v, u, i) set to true to be at most ω + 1. We achieve this
by using the sequential counter approach described in Subsect. 2.1. The obtained
formula F (G, l, ω) contains O(n3ω) variables and O(n4 + mn3) clauses.

4 Ordering-Based Approach for Special Treewidth

In this section we introduce a second characterization of special treewidth,
namely special elimination orderings, inspired by elimination orderings char-
acterizing treewidth [13].
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4.1 Characterization: Special Elimination Orderings

We start by introducing elimination orderings characterizing treewidth and then
show how to adapt the notion in the context of special treewidth. Towards this
aim we start with a slightly non-standard definition of elimination orderings for
treewidth, from which it is particularly easy to obtain our adaptation for special
treewidth.

Let G be a graph with n vertices and let ≤S be a total order (v1, . . . , vn) of
the vertices of G. For two vertices u and v with u ≤S v we denote by N≤S

G (u, v)
the set of all neighbors of u in G that are larger than v w.r.t. ≤S . We extend this
notation to sets U ⊆ V (G), where u ≤S v for every u ∈ U , by setting N≤S

G (U, v)
to be the set

⋃
u∈U N≤S

G (u, v). We next define the sequence G≤S

0 , . . . , G≤S

n−1 of
supergraphs of G inductively as follows: We set G≤S

0 = G and for every i with 1 ≤
i < n we let G≤S

i be the graph obtained from G≤S

i−1 after adding all edges in the
set E≤S

i , which is defined as follows. Let C≤S

i be the set of all components of the
graph Gi−1[v1, . . . , vi−1, vi]. Then E≤S

i is the set { {u, v} | u, v ∈ N≤S

Gi−1
(C, vi) ∧

C ∈ C≤S

i }. We call G≤S
= G≤S

n−1 the fill-in graph of G w.r.t. ≤S and G≤S

i

the i-th fill-in graph of G w.r.t. ≤S . Then any total ordering ≤S gives rise to
an elimination ordering of G and the width of an elimination ordering ≤S is
the maximum of max{ |N≤S

G≤S
(C, vi)| | C ∈ C≤S

i } over all i with 1 ≤ i < n.
Furthermore, the elimination width of a graph G is the minimum width of any
elimination ordering of G. It is known that the elimination width of a graph is
equal to the treewidth of a graph [13].

We are now ready to show how to adapt elimination orderings for special
treewidth. Informally, the crucial observation here is that because of Property
(ST) a special tree decomposition, in contrast to a normal tree decomposi-
tion, cannot have separate branches for components that have at least one
common neighbor. This property directly translates to elimination orderings
in the sense that whenever two components C and C ′ in C≤S

i share a neighbor
that comes later in the ordering, they need to be handled together both for
obtaining the fill-in edges as well as for determining the width of the ordering.
To formalize this idea, we say that two components C and C ′ in C≤S

i clash if
N≤S

Gi−1
(C, vi) ∩ N≤S

Gi−1
(C ′, vi) �= ∅. Moreover, let H be the graph with vertex-set

C≤S

i having an edge between two vertices C and C ′ if and only if their associated
components clash and let P≤S

i be the partition of C≤S

i that corresponds to the
connected components of H. Then special elimination orderings are obtained
from elimination orderings by using P≤S

i instead of C≤S

i to determine both the
fill-in edges as well as the width of the ordering. Formally, for special elimination
orderings the set E≤S

i becomes { {u, v} | u, v ∈ N≤S

Gi−1
(P, vi) ∧ P ∈ P≤S

i } and

the width of ≤S becomes the maximum of max{ |N≤S

G≤S
(P, vi)| | P ∈ P≤S

i } over
all i with 1 ≤ i < n. We show next that special elimination orderings properly
characterize special treewidth. The main ideas behind the proof of the theorem
are similar to the proof showing the equivalence between eliminations orderings
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and treewidth [13], however, the proof is significantly more involved due to the
properties of special treewidth.

Theorem 3. A graph G has a special tree decomposition of width at most ω if
and only if G has a special elimination ordering of width at most ω.

4.2 SAT-Encoding for Special Elimination Orderings

Here we provide our encoding for special elimination orderings as introduced in
the previous subsection. In particular, we will construct a CNF formula F (G,ω)
that is satisfiable if and only if G has a special elimination ordering of width at
most ω. Because of Theorem 3 it then holds that F (G,ω) is satisfiable if and
only if G has special treewidth at most ω. Towards this aim we first construct
the formula F (G) that is satisfiable if and only if G has a special elimination
ordering and building upon F (G) we will then use cardinality constraints to
obtain F (G,ω). For the definition of the formula we use the same notation as
introduced in Sect. 4.1, i.e., we refer to the required elimination ordering by
≤S , and use C≤S

v and P≤S
v to refer to the components and parts of the graph

G≤S

v−1[1, . . . , v] (recall that we assume that the vertices of G are numbered from
1 to n).

The formula F (G) uses the following variables. An order variable o(u, v) for
all u, v ∈ V (G) with u < v. The variable o(u, v) will be true if and only if u < v
and u ≤S v. The idea behind the variable o(u, v) is that it can used to model
the total ordering ≤S witnessing the elimination width of G by requiring that
u ≤S v for arbitrary u, v ∈ V (G) if and only if u = v or u < v and u ≤S v or
u > v and ¬o(v, u). In order to be able to refer to ≤S in the clauses of F (G), we
define the “macro” o∗(u, v) by setting o∗(u, v) = true if u = v, o∗(u, v) = o(u, v)
if u < v and o∗(u, v) = ¬o(v, u) if u > v. Additionally, F (G) contains an arc
variable a(u, v) for all u, v ∈ V (G). The variable a(u, v) is true if u ≤S v and
{u, v} ∈ E(G≤S

) and moreover it is not true if v <S u. Finally, F (G) has a part
variable p(u, v) for all u, v ∈ V (G). The variable p(u, v) is true if and only if
the vertices u and v belong to the same part in P≤S

v . Observe that whenever a
vertex u belongs to the same part as a vertex v in P≤S

v , then u will also be in
the same part as v in P≤S

w for any w with v ≤S w.
We will now provide the clauses for the formula F (G). The following clauses

ensure that o∗(u, v) is a total ordering of V (G) by ensuring that the relation
between u and v defined by o∗(u, v) is transitive:

(¬o∗(u, v) ∨ ¬o∗(v, w) ∨ o∗(u,w))
for u, v, w ∈ V (G) where u, v, and w are pairwise distinct.

We also introduce the clause a(u, v) ∨ a(v, u) for every {u, v} ∈ E(G), which
ensure that at least one of a(u, v) or a(v, u) is true for every edge {u, v} ∈ E(G).
Towards ensuring that the ordering ≤S represented by o∗(u, v) is compatible with
the direction of the edges given by a(u, v), we introduce the clause ¬a(u, v) ∨
o∗(u, v) for every u, v ∈ V (G). Moreover, to ensure that the relation given by



438 N. Lodha et al.

p(u, v) is reflexive, i.e., every vertex belongs to its own part, we introduce the
clause p(v, v) for every v ∈ V (G).

The following clauses ensure that if p(u, v) is true, then also p(w, v) is true
for every w that is in the same component as u in C≤S

v . This is achieved by
enforcing that whenever a vertex w with w ≤S v is connected via an edge in
G≤S

to some vertex u with p(u, v) being true, then also p(w, v) is true.

(¬a(u,w) ∨ ¬p(u, v) ∨ ¬o∗(w, v) ∨ p(w, v))
∧(¬a(w, v) ∨ ¬p(u, v) ∨ ¬o∗(w, v) ∨ p(w, v))

for u,w, v ∈ V (G) and u �= w and w �= v.

The following clauses complete the definition of p(u, v) by enforcing that when-
ever there is a vertex u with u ≤S v that shares a neighbor x with some vertex
w with p(w, v) being true, then also p(u, v) is true, as u must also be in this
part.

¬a(u, x) ∨ ¬a(w, x) ∨ ¬p(w, v) ∨ ¬o∗(u, v) ∨ p(u, v)
for u,w, x, v ∈ V (G) and u �= w �= x.

The following clauses ensure that at least one of a(u, v) or a(v, u) is true for
every “fill-in edge”, i.e., for every edge in E(G≤S

)\E(G).

¬p(u1, v) ∨ ¬p(u2, v) ∨ ¬a(u1, w1) ∨ ¬a(u2, w2) ∨ ¬o∗(v, w1) ∨ ¬o∗(v, w2)
∨a(w1, w2) ∨ a(w2, w1) for u1, u2, w1, w2, v ∈ V (G) with w1 �= w2.

This completes the construction of F (G). Informally, the crucial parts to verify
the correctness of the formula are that for any ordering of the vertices of G,
which is defined by the setting of the ordering variables o(u, v), the formula
ensures that whenever {u, v} ∈ G≤S

then either a(u, v) or a(v, u) is true. This
way the formula ensures that all edges of G≤S

are considered for the definition of
the part variables p(u, v), which in turn ensures the correctness of the formula.

We are now ready to construct the formula F (G,ω). To achieve this it only
remains to restrict the sizes of the sets N≤S

G≤S
(P, v) to be at most ω for every

v ∈ V (G) and P ∈ P≤S
v . Indeed we need to restrict the number of vertices w sat-

isfying the formula a(u,w)∧p(u, v)∧ o∗(v, w) for every u, v ∈ V (G). We achieve
this again by using the sequential cardinality counter described in Subsect. 2.1.
This concludes the description of the formula F (G,ω), which contains O(n2ω)
variables and O(n5) clauses.

5 SAT-Encodings for Pathwidth

In this section we introduce our characterizations and encodings for pathwidth.
Namely, we first introduce an encoding for pathwidth based on the well-known
vertex separation number and then provide a second encoding based on path
decompositions, which can be seen as a special case of the derivation-based
encoding for special treewidth.
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5.1 Partition-Based Encoding for Pathwidth

In this section we provide the partition-based encoding for pathwidth. Note
that since a path decomposition has no branches, and therefore the partition on
every level consists merely of a single set, the partition-based characterization
of pathwidth becomes much simpler than its counterpart for special treewidth.
In particular, the encoding is very closely based on the characterization of path-
width in terms of a path decomposition, which can be equivalently stated as
follows. A path decomposition can be seen as a sequence (P1, . . . , P�) of bags
satisfying the following conditions: (P1) for every v ∈ V (G) there is a bag Pi

with v ∈ Pi, (P2) for every i with 1 ≤ i < l, if v ∈ Pi and v /∈ Pi+1, then v /∈ Pj

for every j > i. We say that the vertex v has been forgotten at level i + 1. (P3)
for every u, v ∈ V (G) with {u, v} ∈ E(G) and every i with 1 ≤ i < �, it holds
that if u and v have not yet been forgotten at level i but u is forgotten at level
i + 1, then u and v are contained in Pi. In the following we describe the CNF
formula F (G,ω, �), which for a graph G and two integers ω and � is satisfied
if and only if G has a path decomposition of width at most ω with at most
� bags. Note that since path decompositions are a special case of special tree
decompositions, we can bound the maximum number of bags in an optimal path
decomposition by n − ω in accordance with Theorem 2. Therefore, the formula
F (G,ω, n − ω) is satisfied if and only if G has a path decomposition of width at
most ω.

F (G,ω, �) contains the following variables for every v ∈ V (G) and every i
with 1 ≤ i ≤ �: The bag variable s(v, i), which is true if Pi contains the vertex v,
and the forgotten variable f(v, i), which is true if the vertex v has been forgotten
at some step j ≤ i. Moreover, F (G,ω, �) contains the following clauses:

– for every v ∈ V (G), the clause ¬f(v, 1) mirroring the property that no vertex
is marked forgotten at (or before) the first bag of the path decomposition,

– for every v ∈ V (G), the clause f(u, �), which ensures Property (P1),
– for every v ∈ V (G) and every i with 1 ≤ i < �, the clause ¬s(v, i) ∨ ¬s(v, i +

1) ∨ f(v, i), which ensures that if a vertex does occur in the bag at level i but
not in the bag at level i + 1, then it is marked as forgotten.

– for every v ∈ V (G) and every i with 1 ≤ i < �, the clause ¬f(v, i) ∨ ¬s(v, i),
which ensures that if a vertex has already been forgotten at level i, then it
does not occur in the i-th bag of the path decomposition,

– for every v ∈ V (G) and every i with 1 ≤ i < �, the clause ¬f(v, i)∨ f(v, i+1),
which ensures that if a vertex is forgotten at level i then it remains forgotten
at any level j > i (note that these clauses together with the clauses defined
in the previous item ensure Property (P2),

– for every u, v ∈ V (G) with {u, v} ∈ E(G) and every i with 1 ≤ i < �, the
clauses f(u, i)∨f(v, i)∨¬f(u, i+1)∨s(u, i) and f(u, i)∨f(v, i)∨¬f(u, i+1)∨s(v, i),
which together ensure Property (P3).

Finally, it remains to restrict the maximum size of the set s(u, i) for any level i
to be at most ω + 1, i.e., for every level i with 1 ≤ i ≤ �, we need to restrict the
number of variables s(u, i) set to true to be at most ω +1. We achieve this using
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the sequential cardinality counter described in Subsect. 2.1. This completes the
construction of the formula F (G,ω, �), which including the counter variables and
clauses contains O(n2ω) variables and O(n3) clauses.

5.2 Ordering-Based Encoding for Pathwidth

Our second encoding for pathwidth is based on the characterization of pathwidth
in terms of the vertex separation number, which is defined as follows. Given a
graph G, an ordering ≤V of the vertices of G, and a vertex v ∈ V (G), we denote
by S≤V

(v) the set of all vertices in G that are smaller or equal to v w.r.t. ≤V .
Moreover, for a subset S of the vertices of G, we denote by δ(S), the set of guards
of S in G, i.e., the set of all vertices in S that have a neighbor in V (G)\S. Then
a graph G has vertex separation number at most ω if and only if there is an
ordering ≤V of its vertices such that |δ(S≤V

(v))| ≤ ω for every v ∈ V (G). It is
well-known that G has vertex separation number at most ω if and only if G has
pathwidth at most ω [12].

We will now show how to construct the formula F (G,ω) which is satisfiable
if and only if G has vertex separation number (and hence pathwidth) at most
ω. Apart from the variables needed for counting (which we will introduce later),
the formula F (G,ω), has an order variable o(u, v) for every u, v ∈ V (G) with
u < v. The variable o(u, v) will be true if and only if u < v and u ≤V v. The
idea behind the variable o(u, v) is that it can used to model the total ordering
≤V witnessing the vertex separation number of G by requiring that u ≤V v for
arbitrary u, v ∈ V (G) if and only if u = v or u < v and u ≤V v or u > v and
¬o(v, u). In order to be able to refer to ≤V in the clauses, we define the “makro”
o∗(u, v) by setting o∗(u, v) = true if u = v, o∗(u, v) = o(u, v) if u < v and
o∗(u, v) = ¬o(v, u) if u > v. Moreover, F (G,ω) has a guard variable c(v, u) for
every u, v ∈ V (G), which is true if u ≤V v and vertex u has a neighbor vertex
w such that v ≤V w, i.e., vertex u contributes to the separation number for
vertex v.

We will next provide the clauses for F (G,ω). Towards ensuring that o∗(u, v)
is a total ordering of V (G), it is sufficient to ensure that the relation described
by o∗(u, v) is transitive, which is achieved by the following clauses:

¬o∗(u, v) ∨ ¬o∗(v, w) ∨ o∗(u,w)
for u, v, w ∈ V (G) where u, v, and w are pairwise distinct.

The next clauses provide the semantics for the variables c(v, u). Namely, c(v, u)
is set to true if u ≤V v and there is an edge {u,w} ∈ E(G) with v ≤V w.

¬o∗(u, v) ∨ ¬o∗(v, w) ∨ c(v, u) for v ∈ V (G), {u,w} ∈ E(G) and v �= w.

It remains to restrict the number of guards of each vertex set S≤V
(v) given by

the ordering o∗(u, v). Using the variables c(v, u) this is equivalent to restricting
the number of variables c(v, u) that are true to be at most ω for every v ∈ V (G).
Towards this aim, we again employ the sequential cardinality counter described
in Subsect. 2.1. This completes the construction of the formula F (G,ω), which
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including the variables and clauses used for counting has O(n2ω) variables and
O(n3) clauses.

6 Experiments

We run the experiments on a 4-core Intel Xeon CPU E5649, 2.35 GHz, 72 GB
RAM machine with Ubuntu 14.04 with each process having access to at most
8 GB RAM. For each individual SAT call we set a timeout of 1000 s and we do not
impose an overall timeout for the whole process. The compilation of all encodings
is implemented in C++ and we compared the performance of the encodings
using the SAT solvers Minisat 2.2 (m), Glucose 4.0 (g), and MapleSAT (a). As
benchmark instances we used the benchmark set of well-known named graphs
from the literature [17] (previously also used in [11,14]) as well as uniformly
generated instances like square grids and complete graphs. In the following we
will refer to the two encodings introduced in Subsects. 3.2 and 5.1 as partition-
based encodings (P) and to the encodings introduced in Subsects. 4.2 and 5.2 as
ordering-based encodings (O). All our experimental results as well as the code for
the compilation of our encodings can be found at https://github.com/nehal73/
SATencoding.

6.1 Results

Our main experimental results are provided in Tables 1 and 3. Table 1 shows our
results for the benchmark set of well-known named graphs from the literature.
The benchmark set is a collection of well-known small to mid-sized graphs from
the literature that has already been used in the comparison of encodings for
other width measures such as clique-width [11] and branchwidth [14]. For each
graph in the benchmark set we run our four encodings as well as, for comparison,
the encoding for treewidth based on elimination orderings [16], using the three
above mentioned SAT-solvers with the aim of computing the exact width of the
graph. Namely, starting from width zero (ω = 0) we increased ω by one as long
as either the instance became satisfiable (in which case the current ω equals the
width of the graph) or the SAT-call reached the timeout of 1000 s (in which
case the current ω minus 1 is a lower bound for the width of the graph). If we
reached a timeout, we further increased ω until the instance could be solved again
within the timeout and returned satisfiable, thereby obtaining an upper bound
for the width of the graph. In three cases (marked with an asterix in Table 1) we
obtained the exact width using a longer timeout of 10000 s using the partition-
based encoding for special treewidth. For each width parameter the obtained
width of the graph (or an interval for the width giving the best possible lower
bound and upper bound obtained by any encoding) is provided in the ω column of
the table. Moreover, for special treewidth and pathwidth, the table contains the
two columns (P) and (O), which show the best result obtained by any SAT-solver
for the partition-based and ordering-based encodings, respectively. Namely, if
the exact width of the graph could be determined, then the column shows the

https://github.com/nehal73/SATencoding
https://github.com/nehal73/SATencoding
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overall running-time in seconds (the sum of all SAT-calls) for the best SAT-
solver, whose initial is given as a superscript. Otherwise the table shows the best
possible interval that could be obtained within the timeout or “M.O.” if every
SAT-call resulted in a memory out.

Table 3 shows our results for square grids and complete graphs. The idea
behind using square grids and complete graphs is that they represent two types of
graphs with high treewidth, i.e., sparse and dense graphs. Moreover, square grids
and complete graphs are also naturally well-suited to compare the encodings
along the three considered width measures (i.e., pathwidth, special treewidth,
and treewidth) as it is well-known that all three width measures coincide on
square grids and complete graphs. Namely, the pathwidth, special treewidth,
and treewidth of an n × n-grid and a complete graph on n vertices is n and
n − 1, respectively. For all our encodings, the table shows the largest size of
square grids and complete graphs, whose width could be determined exactly
within the timeout (using any of the three considered SAT-solvers). That is,
starting from n = 1 we called each encoding for ω = n − 1 and ω = n (in the
case of the n × n-grid) and for ω = n − 1 and ω = n − 2 (in the case of the
complete graph on n vertices) and increased n as long as both calls completed
within the timeout.

6.2 Discussion

In the case of special treewidth, our experiments indicate that the partition-based
encoding is superior to the ordering-based encoding for all of the considered
instances. Namely, the partition-based encoding can solve grids and complete
graphs that are almost twice as large as the ones solvable using the ordering-
based encoding (Table 3). The partition-based encoding almost always beats the
ordering-based encoding by at least one order of magnitude on the well-known
named graphs, and it also provides better lower bounds and upper bounds for
the graphs that could not be solved exactly (Table 1). Overall, the partition-
based encoding can be seen as the clear winner for special treewidth, which is
somewhat unexpected for two reasons: (i) the ordering-based encoding is similar
in spirit to the currently leading encoding for treewidth and (ii) asymptotically,
the ordering-based encoding has fewer variables and almost the same number of
clauses as the partition-based encoding (Table 2). It can be observed that the
partition-based encoding for special treewidth is competitive with the leading
encoding for treewidth, with both encodings showing advantages on different
instances.

In the case of pathwidth the difference between the two encodings is far less
pronounced. Whereas the ordering-based encoding has a clear advantage on the
benchmark set of well-known named graph (Table 1), although far less significant
than the advantage of the partition-based encoding for special treewidth, the
partition-based encoding has an extraordinary advantage on complete graphs
(Table 3). We note that both encodings have asymptotically the same numbers
of clauses and variables (Table 2). It seems that in general the partition-based
encoding has an advantage on dense graphs, whereas the ordering-based encoding
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Table 1. Results for the benchmark set of the well-known named graphs.

Instance |V | |E| Special treewidth Pathwidth Treewidth

ω O P ω O P ω O

Petersen 10 15 5 5.03m 0.48m 5 0.28a 0.35m 4 0.15

Goldner-Harary 11 27 4 2.53m 0.27m 4 0.17m 0.17m 3 0.11

Grötzsch 11 20 5 4.27m 0.43m 5 0.18a 0.36m 5 0.28

Herschel 11 18 4 3.32m 0.34m 4 0.17a 0.20m 3 0.14

Chvátal 12 24 6 11.09m 0.92m 6 0.44g 0.69a 6 0.61

Dürer 12 18 4 7.28a 0.63m 4 0.13m 0.33m 4 0.25

Franklin 12 18 5 12.30a 1.40m 5 0.30m 0.60m 4 0.30

Frucht 12 18 4 7.56g 0.71m 4 0.21g 0.31a 3 0.12

Tietze 12 18 5 11.34m 1.26m 5 0.27m 0.53m 4 0.21

Paley13 13 39 8 22.13m 1.16m 8 1.02a 1.23m 8 2.60

Poussin 15 39 6 61.07a 1.65m 6 0.39m 0.65m 6 0.37

Clebsch 16 40 9 234.28m 13.20m 9 25.76a 17.17a 8 6.30

4 × 4-grid 16 24 4 97.98m 1.13m 4 0.22a 0.39m 4 0.28

Hoffman 16 32 7 204.73a 20.22m 7 6.30g 8.21m 6 2.39

Shrikhande 16 48 9 234.76m 10.42m 9 11.78a 8.04m 9 131.11

Sousselier 16 27 5 127.87m 3.33m 5 0.24m 0.62m 5 0.31

Errera 17 45 6 153.83a 2.78m 6 0.40m 0.76m 6 0.49

Paley17 17 68 12 504.54a 15.76m 12 106.99a 27.52a 11 35.23

Pappus 18 27 7 912.69a 438.24g 7 16.47g 54.62g 6 160.90

Robertson 19 38 8 1082.73a 130.26m 8 11.84g 36.02g 8 307.21

Desargues 20 30 6 1349.67m 237.57g 6 0.84m 10.16m 6 324.21

Dodecahedron 20 30 6 1564.23a 337.20g 6 4g 38.52g 4–6 4–6

FlowerSnark 20 30 6 1352.67m 201.40g 6 1.04m 10.99m 6 400.06

Folkman 20 40 7 1434.93a 130.20m 7 2.84g 23.15m 6 10.87

Brinkmann 21 42 8 2548.46m 354.62m 8 14.85g 63.71g 8 593.45

Kittell 23 63 7 160.33g 24.70m 7 1.05m 8.28m 7 4.38

McGee 24 36 8∗ 5–8 5–8 8 62.47a 524.21g 5–7 5–7

Nauru 24 36 8∗ 5–8 5–8 8 181.73a 6–8 6 457.92

Holt 27 54 10∗ 7–10 6–10 10 386.16a 8–10 7–9 7–9

Watsin 50 75 3–8 M.O. 3–8 7 76.77m 5–7 4–7 4–7

B10Cage 70 106 2–20 M.O. 2–20 8-16 8-16 6–16 4–17 4–17

Ellingham 78 117 3–9 M.O. 3–9 6 22.88m 5–7 4–6 4–6

Table 2. The number of variables and
clauses for our four encodings in terms of
the number n of vertices, the number m
of edges m, and the width ω

sptw pw

Vars Cls Vars Cls

P O(n3ω) O(n4 + mn3) O(n2ω) O(n3)

O O(n2ω) O(n5) O(n2ω) O(n3)

Table 3. Experimental results for
square-grids and complete graphs:
number of vertices of largest
graphs solved within the timeout

Graphs sptw pw

O P O P

Square grids 16 36 81 64

Complete graphs 34 76 26 123
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is better suited for sparse graphs. The results seem to indicate that different
encodings should be employed for different classes of graphs. This underlines the
importance of developing different encodings for the same width parameter and
encourages the development of a portfolio-based approach for SAT-encodings.

Moreover, we would like to mention a few general observations concerning the
performance of the three SAT-solvers. Generally the differences in the performance
of the three SAT-solvers were quite minor over all encodings. In particular, the
conclusions drawn about the comparison of the different encodings were the same
for each of the three SAT-solvers. With respect to the special treewidth encodings,
it can be inferred from Table 1 that MiniSAT has the best performance for more
instances than Glucose or MapleSAT. However, we observed that Glucose was the
most robust among the three solvers, since there are instances that could only be
solved by Glucose and all instances that could be solved by any of the solvers could
also be solved by Glucose. With respect to the pathwidth encodings, the differences
between the solvers is less pronounced, each having advantages on about the same
number of instances.

We also conducted initial experiments on random graphs, whose results (due
to space limitations) can only be found in our github repository. Namely, we
tested all our encodings on random graphs with 20, 40, and 60 vertices and edge
probabilities 0.1, 0.2, . . . , 0.9. For each setting we generated 10 random graphs
and reported the average running time for each of our encodings (we used a
timeout of 2000s per SAT-call as well as an overall timeout of 6 h). Our results
on random graphs strongly support our conclusions reported above concerning
the relative performance of the various encodings.

7 Conclusion

We compared two SAT encodings for special tree width and pathwidth respec-
tively. For the former we introduced two novel characterizations which might be
of independent interest. Based on these characterizations for special treewidth
and two related characterizations for pathwidth, we developed and empirically
compared SAT-encodings for the computation of special treewidth and path-
width. Our empirical results emphasize that the performance of SAT-encodings
can strongly depend on the underlying characterization. Interestingly, for spe-
cial treewidth, a partition-based encoding far outperforms an ordering-based
encoding, although the latter encoding is closely related to the currently leading
encoding for the prominent width parameter treewidth. It is only natural to ask
whether a similar partition-based approach can be fruitful for treewidth. More-
over, for pathwidth, we obtained two SAT-encodings which both perform well,
each of them having an advantage on different classes of instances; thus suggests
a portfolio-based approach.

Acknowledgments. The authors kindly acknowledge the support by the Austrian
Science Fund (FWF, projects W1255-N23 and P-26200).
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MaxPre: An Extended MaxSAT Preprocessor
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Abstract. We describe MaxPre, an open-source preprocessor for
(weighted partial) maximum satisfiability (MaxSAT). MaxPre imple-
ments both SAT-based and MaxSAT-specific preprocessing techniques,
and offers solution reconstruction, cardinality constraint encoding, and
an API for tight integration into SAT-based MaxSAT solvers.

1 Introduction

We describe MaxPre, an open-source preprocessor for (weighted partial) max-
imum satisfiability (MaxSAT). MaxPre implements a range of well-known and
recent SAT-based preprocessing techniques as well as MaxSAT-specific tech-
niques that make use of weights of soft clauses. Furthermore, MaxPre offers solu-
tion reconstruction, cardinality constraint encoding, and an API for integration
into SAT-based MaxSAT solvers without introducing unnecessary assumptions
variables within the SAT solver. In this paper we overview the implemented tech-
niques, implementation-level decisions, and usage of MaxPre, and give a brief
overview of its practical potential. The system, implemented in C++, is avail-
able in open source under the MIT license via https://www.cs.helsinki.fi/group/
coreo/maxpre/.

Due to space limitations, we will assume familiarity with conjunctive normal
form (CNF) formulas and satisfiability. An instance of (weighted partial) max-
imum satisfiability (MaxSAT) consists of two CNF formulas, the hard clauses
Fh and the soft clauses Fs, and a weight function w associating a non-negative
weight with each soft clause. A truth assignment that satisfies the hard clauses is
a solution, and is optimal if it minimizes cost, i.e., the weight of the soft clauses
left unsatisfied, over all solutions.

The preprocessing flow of MaxPre is illustrated in Fig. 1. Given a MaxSAT
instance in DIMACS format (extended with cardinality constraints, see
Sect. 2.1), MaxPre starts by rewriting all cardinality constraints to clauses (step
1). MaxPre then enters the first preprocessing loop (step 2), using only tech-
niques that are directly sound for MaxSAT (see Sect. 2.2). The sound use of
SAT-based preprocessing more generally requires extending each (remaining)
soft clause C with a fresh label variable lC to form C ∨ lC and then restricting

Work supported by Academy of Finland (grants 251170 COIN, 276412, and 284591)
and DoCS Doctoral School in Computer Science and Research Funds of the Univer-
sity of Helsinki.
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Fig. 1. MaxPre preprocessing flow

the preprocessor from resolving on the added labels [4,5]. Labelling of the soft
clauses with assumption variables is done in steps 3–5. First (step 3) MaxPre
applies group detection [7] to identify literals in the input that can be directly
used as labels. All soft clauses that remain without a label are then given one
(step 4); during the rest of the preprocessing, all clauses are treated as hard
and the weight wC of a soft clause C is associated with the label lC attached
to C. After each clause is instrumented with a label, a novel technique label
matching (step 5, see Sect. 2.2) is used to identify labels which can be sub-
stituted with other labels in the instance. The main preprocessing loop (step
6) allows for applying all implemented techniques. Depending on how MaxPre
was invoked (see Sect. 2.3), MaxPre will then either output the resulting pre-
processed MaxSAT instance or invoke a given external MaxSAT solver binary
on the instance. In the former case, MaxPre will provide a solution reconstruc-
tion stack in a separate file. In the latter, MaxPre will internally apply solution
reconstruction on the solution output by the solver. We will give more details
on the internals, usage, and API of MaxPre, as well as a brief overview of its
performance in practice.

2 Supported Techniques

2.1 Cardinality Constraints

MaxPre offers cardinality network [2] based encodings of cardinality constraints,
encoded as clauses (Step 1) before preprocessing. This allows the user to spec-
ify cardinality constraints over WCNF DIMACS literals as an extension of the
standard WCNF MaxSAT input format. Cardinality constraints can be speci-
fied using lines of form CARD l1 l2 . . . ln ◦ K, where each li is a literal of the
formula, ◦ ∈ {<,>,<=, >=,=, !=.}, and K ∈ N. The constraints are encoded
as hard clauses enforcing

∑n
i=1 li ◦K. MaxPre can also encode the truth value of∑n

i=1 li◦K to a specific literal L. A line of form CARD l1 l2 . . . ln◦K OUT L is
rewritten as L → ∑n

i=1 li◦K. Lines of form CARD l1 l2 . . . ln ◦ K OUT L IFF
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extend the implication to an equivalence, and are rewritten as L ↔ ∑n
i=1 li ◦K.

Additionally, direct control on the output literals of the cardinality networks
can be provided. A line of form CARD l1 l2 . . . ln � K OUT o1 . . . oK is
encoded as a K-cardinality network [2] where o1, . . . , oK are the output literals
of the network and � ∈ {<:, >:, ::}. If � is <:, the network is encoded so
that ¬oi → ∑n

i=1 li < i for any i. If � is >:, the network is encoded so that
oi → ∑n

i=1 li ≥ i; and if � = ::, the network is encoded so that oi ↔ ∑n
i=1 li ≥ i.

2.2 Preprocessing

SAT-Based Preprocessing. In addition to removing tautologies, soft clauses
with 0 weight and duplicate clauses, MaxPre implements the following SAT-
based techniques: unit propagation, bounded variable elimination (BVE) [11],
subsumption elimination (SE), self-subsuming resolution (SSR) [11,13,17],
blocked clause elimination (BCE) [15], Unhiding [14] (including equivalent literal
substitution [1,9,18,24]), and bounded variable addition (BVA) [20]. In terms
of implementation details, SE and SSR use three different approaches depend-
ing on the number of clauses they have to process. The asymptotically worst
approach of checking all pairs of clauses can be improved by computing hashes
of clauses, and by the asymptotically best approach using the AMS-Lex algo-
rithm [3], implemented in MaxPre based on [21]. The average time complexity
of AMS-Lex in finding subsumed clauses seems to be nearly linear (dominated
by sorting). We have observed that in practice the BVA implementation can be
in cases significantly faster than the implementation given in the original paper;
this is achieved by using polynomial hashes of clauses. In contrast to using time
stamping (directed spanning trees) as in the original work on Unhiding [14],
MaxPre implements Unhiding using undirected spanning trees, which can be
provably more effective in terms of the covered binary implications.

MaxSAT-Specific Techniques. MaxPre also includes the following (to the
best of our knowledge unique) combination of MaxSAT-specific techniques that
work directly on the label variables (recall Fig. 1). The first two are techniques
meant to decrease the total number of fresh label variables that are introduced
into the formula. Assume MaxPre is invoked on an instance F = (Fh, Fs, w).

Group detection [7] (Step 3) Any literal l for which (¬l) ∈ Fs, l /∈ C for any
C ∈ (Fs \ {(¬l)}) and ¬l /∈ C for any C ∈ Fh ∪ (Fs \ {(¬l)}) can be directly
used as a label [7].

Label matching (Step 5) Label lC is matched, i.e., substituted, with lD if (i)
wC = wD, (ii) lC only appears in a single soft clause C, (iii) lD only appears
in a single soft clause D, and (iv) C ∨ D is a tautology. MaxPre implements
label matching by computing a maximal matching using a standard greedy
algorithm.

Group-subsumed label elimination (GSLE) Generalizing SLE [8], label
lD is subsumed by a group of labels L = {lC1 , . . . , lCn

} if for some lCi
∈ L,

we have lCi
∈ C whenever lD ∈ C, and

∑
lCi

∈L wCi
≤ wD. GSLE removes
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group-subsumed labels. SLE corresponds to GSLE with n = 1. Since GSLE
corresponds to the NP-complete hitting set problem, MaxPre implements
an approximate GSLE via a slightly modified version of a classical ln(n)–
approximation algorithm for the hitting set problem [10,23].

Binary core removal (BCR) is the MaxSAT-equivalent of Gimpel’s reduc-
tion rule for the binate covering problem [12]. Assume labels lC , lD with
wC = wD and the clause (lC ∨ lD). Let FlC = {Ci | lC ∈ Ci} and
assume that (i) FlC ∩ FlD = {(lC ∨ lD)}, (ii) |FlC | > 1, and (iii) |FlD | > 1.
BCR replaces the clauses in FlC ∪ FlD with the non-tautological clauses in
{(Ci ∨Dj) \ {lC} | Ci ∈ FlC \ (lC ∨ lD),Dj ∈ FlD \ (lC ∨ lD)}. MaxPre applies
BCR whenever the total number of clauses in the formula does not increase.
Notice that given lC , lD with wC = wD and a clause (lC ∨ lD), assumptions
(i)–(iii) for BCR follow by applying SE and SLE.

Structure-based labeling Given a label l and a clause C s.t. C is blocked (in
terms of BCE) when assuming l to true, structure-based labelling replaces C
by C∨ l. The correctness of structure-based labelling is based on the invariant
that a clause C is redundant whenever l is true.

2.3 Options and Usage

MaxPre is called from the command line. Full details on command line options
are available via ./maxpre -h. One of the directives preprocess, solve,
reconstruct needs to be specified after the input file. preprocess and solve
assume a single input file containing a WCNF MaxSAT instance (possibly with
cardinality constraints). Further, solve expects the solver binary and its com-
mand line arguments to be given via the -solver and -solverflags options.
reconstruct expects as input a solution to a WCNF MaxSAT instance and the
corresponding reconstruction stack file.

Solution Reconstruction. To map a solution of a preprocessed instance to
a solution of the original instance, the reconstruction stack file produced by
MaxPre needs to be specified via -mapfile. For example, to obtain an orig-
inal solution from a solution sol0.sol of the preprocessed instances using
the reconstruction stack in input.map, use ./maxpre sol0.sol reconstruct
-mapfile=input.map. To obtain the mapfile when preprocessing, -mapfile
should be used in conjunction with preprocess.

Specifying Preprocessing Techniques. Following [19], MaxPre allows for
specifying the order in which individual preprocessing techniques are applied
via a technique string The default application order is specified by the string
[bu]#[buvsrgc], i.e. to run BCE and UP in the first preprocessing loop and
BCE, UP, BVE, SSR, GSLE and BCR in the second.

Enforcing Time Limits and Bounds. The running time of MaxPre is lim-
ited using the -timelimit option: e.g., -timelimit=60 sets the time limit to
60 s. This limits the running time of preprocessing techniques somewhat inde-
pendently of each other. Each technique gets allocated a proportion of the time
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to use, and if a technique leaves some of its time unused, it is dynamically real-
located to other techniques. By default no time limits are imposed. Another way
to prevent MaxPre from wasting efforts on the potentially more time-consuming
techniques such as BVE via -skiptechnique: e.g., with -skiptechnique=100,
MaxPre first tries to apply each of such preprocessing technique to 100 random
variables/literals in a touched list. If no simplifications occur, MaxPre will subse-
quently skip the particular preprocessing technique. By default -skiptechnique
is not enforced.

2.4 API

MaxPre is implemented in a modular fashion, and offers an API for tight inte-
gration with MaxSAT solvers. Via the API, the solver becomes aware of labels
used for preprocessing which can be directly used as assumptions in SAT-based
MaxSAT solving; without this, the solvers will add a completely redundant new
layer of assumption variables to the soft clauses before search [6]. Unnecessary
file I/O is also avoided.

To use MaxPre via its API, create a PreprocessorInterface object for
the MaxSAT instance, call preprocess to preprocess, and then getInstance
to obtain the preprocessed instance. After solving, an original solution is recon-
structed by calling reconstruct. PreprocessorInterface encapsulates the pre-
processing trace (mapfile) and maps/unmaps variables to/from internal pre-
processor variable indexing. For more concreteness, main.cpp implements Max-
Pre using these API methods, and serves as an example of their use. The API
handles literals as int-types and clauses as C++ standard library vectors of
literals. The most central parts of the API are the following.

PreprocessorInterface constructs a PreprocessorInterface object from a
vector of clauses, a vector of their weights and a top weight, which is used to
identify hard clauses.

preprocess takes a technique string and preprocesses the instance using given
techniques.

getInstance returns (by reference) the preprocessed instance as vectors of
clauses, weights, and labels.

reconstruct takes a model for the preprocessed instance and returns a model
for the original instance.

setSkipTechnique corresponds to -skiptechnique command line flag.
print* methods print solutions, instances, mapfiles, or logs to an output stream.

3 Experiments

While an extended empirical evaluation of different components of MaxPre
is impossible within this system description, we shortly discuss the potential
of MaxPre in practice. For the experiments, we used all of the 5425 partial
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and weighted partial MaxSAT instances collected and made available by the
2008–2016 MaxSAT Evaluations. Figure 2 show a comparison of MaxPre and
the Coprocessor 2.0 [19] preprocessor in terms of the number of variables and
clauses, and the sums of weights of the soft clauses, in the output instance. Here
we used Coprocessor by first adding a label to each soft clauses, and used the
“white listing” option of Coprocessor on the labels to maintain soundness of
preprocessing for MaxSAT. The SAT-based techniques used with Coprocessor
and MaxPre are the same; the preprocessing loop used in coprocessor consisted
of BVE, pure literal elimination, UP, SE, SSR and BCE. MaxPre additionally
applied the MaxSAT-specific techniques shortly described earlier in this paper;
the first preprocessing loop used BCE and UP and the second BCE (which
also removes pure literals), UP, BVE, SE, SSR, GSLE and BCR. MaxPre pro-
vides noticeably more simplifications in terms of these parameters, while the

Fig. 2. Comparison of MaxPre and Coprocessor in terms of preprocessing effects: num-
ber of clauses and variables, and the sum of the weights of soft clauses, in the pre-
processed instances.

Fig. 3. Left: Comparison of preprocessing times: MaxPre vs Coprocessor. Right: Per-
formance impact on LMHS.
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preprocessing times as comparable (see Fig. 3 left); in fact, MaxPre performs
faster on a majority of the instances. The few timeouts observed for MaxPre are
on very large instances (>10M clauses) which are in fact not solved by current
state-of-the-art MaxSAT solvers. Coprocessor contains fixed constants which
switch off preprocessing on very large instances; while we did not enforce any
limits on MaxPre for this experiment, the -timelimit and -skiptechniques
options would enable faster preprocessing on such very large intances. In terms of
potential impact on solver performance, our LMHS SAT-IP MaxSAT solver [22]
previously integrated Coprocessor 2.0 as its internal preprocessor. Figure 3 right
shows that, although the effects are mild, replacing Coprocessor with MaxPre
in LMHS improves its performance.

4 Conclusions

We introduced MaxPre, an open-source MaxSAT preprocessor with extended
capabilities, including cardinality constraint encodings and MaxSAT-specific
simplification techniques not implemented in the current (Max)SAT preproces-
sors. The API of MaxPre allows for tight integration with MaxSAT solvers, e.g.,
avoiding unnecessary introduction of assumption variables after preprocessing,
and potentially opening up further avenues for inprocessing MaxSAT solving [16].
Empirical results suggest that MaxPre is a viable option for integrating pre-
processing into MaxSAT solvers.
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The GRAT Tool Chain

Efficient (UN)SAT Certificate Checking with Formal
Correctness Guarantees
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Abstract. We present the GRAT tool chain, which provides an efficient
and formally verified SAT and UNSAT certificate checker. It utilizes a
two phase approach: The highly optimized gratgen tool converts a DRAT
certificate to a GRAT certificate, which is then checked by the formally
verified gratchk tool.

On a realistic benchmark suite drawn from the 2016 SAT competition,
our approach is faster than the unverified standard tool drat-trim, and
significantly faster than the formally verified LRAT tool. An optional
multithreaded mode allows for even faster checking of a single certificate.

1 Introduction

The complexity and high optimization level of modern SAT solvers makes them
prone to bugs, and at the same time hard to (formally) verify. A common app-
roach in such situations is certification, i. e. to make the SAT solver produce a
certificate for its output, which can then be checked independently by a sim-
pler algorithm. While SAT certificates describe a satisfying assignment and are
straightforward to check, UNSAT certificates are more complex. The de facto
standard are DRAT certificates [15] checked by drat-trim [3]. However, efficiently
checking a DRAT certificate still requires a quite complex and highly optimized
implementation.1 A crucial idea [2] is to split certificate checking into two phases:
The first phase produces an enriched certificate, which is then checked by the
second phase. This effectively shifts the computationally intensive and algorith-
mically complex part of checking to the first phase, while the second phase is
both computationally cheap and algorithmically simple, making it amenable to
formal verification.

Cruz-Filipe et al. [2] originally implemented this approach for the weaker
DRUP certificates [14], and later extended it to DRAT certificates [1,6], obtain-
ing the LRAT tool chain. Independently, the author also extended the approach
to DRAT certificates [9]. While Cruz-Filipe et al. use an extended version of drat-
trim to enrich the certificates, the author implemented the specialized gratgen
tool for that purpose. Compared to drat-trim, gratgen’s distinguishing feature is

1 We found several bugs in drat-trim. Most of them are already fixed [4,9].
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its support for multithreading, allowing it to generate enriched certificates sev-
eral times faster at the cost of using more CPU time and memory. Moreover, we
have implemented some novel optimizations, making gratgen faster than drat-
trim even in single-threaded mode. While [9] focuses on the formal verification of
the certificate checker (gratchk), this paper focuses on gratgen. The GRAT tools
and raw benchmark data are available at http://www21.in.tum.de/∼lammich/
grat/.

2 The GRAT Toolchain

To obtain a formally verified solution for a CNF formula, it is first given to a
SAT solver. If the formula is satisfiable, the SAT-solver outputs a valuation of
the variables, which is then used by gratchk to verify that the formula is actually
satisfiable. If the formula is unsatisfiable, the SAT-solver outputs a DRAT certifi-
cate. This is processed by gratgen to produce a GRAT certificate, which, in turn,
is used by gratchk to verify that the formula is actually unsatisfiable. We have
formally proved that gratchk only accepts satisfiable/unsatisfiable formulas.

2.1 DRAT Certificates

A DRAT certificate [15] is a list of clause addition and deletion items. Clause
addition items are called lemmas. The following pseudocode illustrates the for-
ward checking algorithm for DRAT certificates:

F := F0 // F0 is CNF formula to be certified as UNSAT

F := unitprop(F); if F == conflict then exit "s UNSAT"

for item in certificate do
case item of

delete C => F := remove_clause(F,C)

| add C =>

if not hasRAT(C,F) then exit "s ERROR Lemma doesn’t have RAT"

F := F ∧ C

F := unitprop(F); if F == conflict then exit "s UNSAT"

exit "s ERROR Certificate did not yield a conflict"

The algorithm maintains the invariant that F is satisfiable if the initial CNF
formula F0 is satisfiable. Deleting a clause and unit propagation obviously pre-
serve this invariant. When adding a clause, the invariant is ensured by the clause
having the RAT property. The algorithm only reports UNSAT if F has clearly
become unsatisfiable, which, by the invariant, implies unsatisfiability of F0.
A clause C has the RAT property wrt. the formula F iff there is a pivot lit-
eral l ∈ C, such that for all RAT candidates D ∈ F with ¬l ∈ D, we have
(F ∧¬(C ∪D \ {¬l}))u = {∅}. Here, F u denotes the unique result of unit propa-
gation, where we define F u = {∅} if unit propagation yields a conflict. Exploiting
that (F ∧ ¬(C ∪ D))u is equivalent to ((F ∧ ¬C)u ∧ ¬D)u, the candidates do

http://www21.in.tum.de/~lammich/grat/
http://www21.in.tum.de/~lammich/grat/
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not have to be checked if the first unit propagation (F ∧ ¬C)u already yields
a conflict. In this case, the lemma has the RUP property. This optimization is
essential, as most lemmas typically have RUP, and gathering the list of RAT
candidates is expensive.

2.2 GRAT Certificates

The most complex and expensive operation in DRAT certificate checking is
unit propagation,2 and highly optimized implementations like two watched lit-
erals [11] are required for practically efficient checkers. The main idea of enriched
certificates [2] is to make unit propagation output a sequence of the identified
unit and conflict clauses. The enriched certificate checker simulates the forward
checking algorithm, verifying that the clauses from the certificate are actually
unit/conflict, which is both cheaper and simpler than performing fully fledged
unit propagation. For RAT lemmas, the checker also has to verify that all RAT
candidates have been checked.

A GRAT certificate consists of a lemma and a proof part. The lemma part
contains a list of lemmas to be verified by the forward checking algorithm, and
the proof part contains the unit and conflict clauses, deletion information, and
counters how often each literal is used as a pivot in a RAT proof.

The lemma part is stored as a text file roughly following DIMACS CNF for-
mat, and the proof part is a binary file in a proprietary format. The gratchk tool
completely reads the lemmas into memory, and then streams over the proof during
simulating the forward checking algorithm. We introduced the splitting of lemmas
and proof after gratchk ran out of memory for some very large certificates.3

2.3 Generating GRAT Certificates

Our gratgen tool reads a DIMACS CNF formula and a DRAT certificate, and
produces a GRAT certificate. Instead of the simple forward checking algorithm,
it uses a multithreaded backwards checking algorithm, which is outlined below:

fun forward_phase:

F := unitprop(F); if F == conflict then exit "s UNSAT"

for item in certificate do
case item of

delete C => F := remove_clause(F,C)

| add C =>

F := F ∧ C

F := unitprop(F);

if F == conflict then truncate certificate; return

exit "s ERROR Certificate did not yield a conflict"

2 We found that more than 90% of the execution time is spent on unit propagation.
3 LRAT [6] uses a similar streaming optimization, called incremental mode.
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fun backward_phase(F):

for item in reverse(certificate) do
case item of

delete C => F := F ∧ C

| add C =>

remove_clause(F,C); undo_unitprop(F,C)

if is_marked(C) && acquire(C) then
if not hasRAT(C,F) then exit "s ERROR Lemma doesn’t have RAT"

fun main:

F := F0 // F0 is formula to be certified as UNSAT

forward_phase

for parallel 1..N do
backward_phase(copy(F))

collect and write out certificate

The forward phase is similar to forward checking, but does not verify the lemmas.
The backward phase iterates over the certificate in reverse order, undoes the
effects of the items, and verifies the lemmas. However, only marked lemmas are
actually verified. Lemmas are marked by unit propagation, if they are required
to produce a conflict. This way, lemmas not required for any conflict need not be
verified nor included into the enriched certificate, which can speed up certificate
generation and reduce the certificate size. Moreover, we implement core-first
unit propagation, which prefers marked lemmas over unmarked ones, aiming
at reducing the number of newly marked lemmas. While backwards checking
and core-first unit propagation are already used in drat-trim, the distinguishing
feature of gratgen is its parallel backward phase: Verification of the lemmas is
distributed over multiple threads. Each thread has its own copy of the clause
database and watch lists. The threads only synchronize to ensure that no lemma
is processed twice (each lemma has an atomic flag, and only the thread that
manages to acquire it will process the lemma), and to periodically exchange
information on newly marked lemmas (using a spinlock protected global data
structure).

We implemented gratgen in about 3k lines of heavily documented C++ code.

2.4 Checking GRAT Certificates

We have formalized GRAT certificate checking in Isabelle/HOL [12], and used
program refinement techniques [8,10] to obtain an efficient verified implementa-
tion in Standard ML, for which we proved:

theorem verify_unsat_impl_correct:

<DBi �→a DB>

verify_unsat_impl DBi prf_next F_end it prf

<λresult. DBi �→a DB * ↑(¬isl result =⇒ formula_unsat_spec DB F_end)>

This Hoare triple states that if DBi points to an integer array holding the ele-
ments DB, and we run verify_unsat_impl, the arwill be unchanged, and if the
return value is no exception, the formula represented by the range 1. . . F_end
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in the array is unsatisfiable. For a detailed discussion of this correctness state-
ment, we refer the reader to [7,9]. Similarly, we also defined and proved correct
a verify_sat_impl function.

The gratchk tool contains the verify_unsat_impl and verify_sat_impl

functions, a parser to read formulas into an array, and the logic to stream the
proof file. As the correctness statement does not depend on the parameters
prf_next, prf, and it, which are used for streaming and iterating over the
lemmas, the parser is the only additional component that has to be trusted.

The formalization is about 12k lines of Isabelle/HOL text, and gratchk is 4k
lines of Standard ML, of which 3.5k lines are generated from the formalization
by Isabelle/HOL.

2.5 Novel Optimizations

Apart from multithreading, gratgen includes two key optimizations that make it
faster than drat-trim, even in single-threaded mode: First, we implement core-
first unit propagation by using separate watch lists for marked and unmarked
clauses. Compared to the single watch list of drat-trim, our approach reduces the
number of iterations over the watch lists in the inner loop of unit propagation,
while requiring some more time for marking a lemma.

Second, if we encounter a run of RAT lemmas with the same pivot literal, we
only collect the candidate clauses once for the whole run. As RAT lemmas tend
to occur in runs, this approach saves a significant amount of time compared to
drat-trim’s recollection of candidates for each RAT lemma.

3 Benchmarks

We have benchmarked GRAT with one and eight threads against drat-trim and
(incremental) LRAT [6] on the 110 problems from the 2016 SAT competition
main track that CryptoMiniSat could prove unsatisfiable, and on the 128 prob-
lems that silver medalist Riss6 proved unsatisfiable. Although not among the Top
3 solvers, we included CryptoMiniSat because it seems to be the only prover that
produces a significant amount of RAT lemmas.

Using a timeout of 20,000 s (the default for the 2016 SAT competition), single-
threaded GRAT verified all certificates, while drat-trim and LRAT timed out
on two certificate, and segfaulted on a third one. For fairness, we exclude these
from the following figures: GRAT required 44 h, while drat-trim required 72 h
and LRAT required 93 h. With 8 threads, GRAT ran out of memory for one
certificate. For the remaining 234 certificates, the wall-clock times sum up to
only 21 h.

The certificates from CryptoMiniSAT contain many RAT lemmas, and
thanks to our RAT run optimization, we are more than two times faster than
drat-trim, and three times faster than LRAT. (17 h/42 h/51 h) The certificates
from Riss6 contain no RAT lemmas at all, and we are only slightly faster.
(26 h/30 h/42 h) The scatter plot in Fig. 1 compares the wall-clock times for
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Fig. 1. Comparison of drat-trim and GRAT, ran on a server board with a 22-core
XEON Broadwell CPU @ 2.2 GHz and 128 GiB RAM.

drat-trim against GRAT, differentiated by the SAT solver used to generate the
certificates.

We also compare the memory consumption: In single threaded mode, grat-
gen needs roughly twice as much memory as drat-trim, with 8 threads, this
figure increases to roughly 7 times more memory. Due to the garbage collection
in Standard ML, we could not measure meaningful memory consumptions for
gratchk. The extra memory in single-threaded mode is mostly due to the proof
being stored in memory, the extra memory in multithreaded mode is due to the
duplication of data for each thread.

The certificates for the 64 satisfiable problems that CryptoMiniSat solved at
the 2016 SAT competition main track [13] have a size of 229 MiB and could be
verified in 40 s.

4 Conclusion

We have presented a formally verified (un)satisfiability certificate checker, which
is faster than the unverified state-of-the-art tool. An optional multithreaded
mode makes it even faster, at the cost of using more memory. Our tool utilizes a
two-phase approach: The highly optimized unverified gratgen tool produces an
enriched certificate, which is then checked by the verified gratchk tool.

Future Work. We plan to reduce memory consumption by writing out the proof
on the fly, and by sharing the clause database between threads. While the former
optimization is straightforward, the latter has shown a significant decrease in
performance in our initial experiments: Reordering of the literals in the clauses
by moving watched literals to the front seems to have a positive effect on unit
propagation, which we have not fully understood. However, when using a shared
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clause database, we cannot implement such a reordering, and the algorithm
performs significantly more unit propagations before finding a conflict. Note
that parallelization at the level of unit propagation is conjectured to be hard [5].

Acknowledgement. We thank Simon Wimmer for proofreading, and the anonymous
reviewers for their useful comments.
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Abstract. We present CNFgen, a generator of combinatorial benchmarks
in DIMACS and OPB format. The proof complexity literature is a rich
source not only of hard instances but also of instances that are theoret-
ically easy but “extremal” in different ways, and therefore of potential
interest in the context of SAT solving. Since most of these formulas
appear not to be very well known in the SAT community, however, we
propose CNFgen as a resource to make them readily available for solver
development and evaluation. Many formulas studied in proof complexity
are based on graphs, and CNFgen is also able to generate, parse and do
basic manipulation of such objects. Furthermore, it includes a library
cnfformula giving access to the functionality of CNFgen to Python pro-
grams.

1 Introduction

The Boolean satisfiability problem (SAT) is a foundational problem in computa-
tional complexity theory. It was the first problem proven NP-complete [21], and
is widely believed to be completely infeasible to solve in the worst case—indeed,
a popular starting point for many other impossibility results in computational
complexity theory is the Exponential Time Hypothesis (ETH) [33] postulating
that there are no subexponential-time algorithms for SAT.

From an applied perspective SAT looks very different, however. In the last
15–20 years there has been a dramatic increase in the performance of satisfia-
bility algorithms, or SAT solvers, and so-called conflict-driven clause learning
(CDCL) solvers [5,37,41] are now routinely used to solve real-world instances
with hundreds of thousands or even millions of variables.

Surprisingly, although the performance of current state-of-the-art SAT solvers
is very impressive indeed, our understanding of why they work so well (at least
most of the time) leaves much to be desired. Essentially the only known rigorous
method for analysing SAT solvers is to use tools from proof complexity [22] to study
the potential and limitations of the methods of reasoning they use.

The basic CDCL algorithm searches for resolution proofs [12]. Some solvers
such as PolyBoRi [14,15] use algebraic Gröbner basis computations, but it seems
hard to make them competitive with resolution-based solvers. A compromise
is to have Gaussian elimination inside a resolution-based solver as in [30,48].

Webpage: https://massimolauria.github.io/cnfgen/.
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The power of these algebraic methods is captured by the polynomial calculus
(PC) proof system [1,20]. There are also pseudo-Boolean solvers such as [18,24,
35,47] exploring the geometric proof system cutting planes (CP) [23], although
again it seems like a tough challenge to make these solvers as efficient as CDCL.
We refer to the survey [42] and references therein for a more detailed discussion
about the connections between proof complexity and SAT solving.

It seems fair to say that research in proof complexity into the proof systems
mentioned above has not yielded too much by way of interesting insights for
applied SAT solving so far. This is natural, since this research is driven mainly
by theoretical concerns in computational complexity theory. However, what this
body of work has produced is a wide selection of combinatorial formulas with
interesting properties, and these we believe could be fruitfully mined for insights
by SAT practitioners. As the SAT community starts to focus not only on pro-
ducing blisteringly fast SAT solvers, but also on understanding better why these
SAT solvers work the way they do, we expect that a study of combinatorial
benchmarks could be particularly useful.

This immediately raises a question, however: Why do we need more crafted
SAT problems? Is there really a need for more combinatorial benchmarks on top
of what is already available in the standard SAT competition benchmarks?

We believe the answer is an emphatic “yes.” In fact, it is our feeling that
the SAT community has made quite limited use of crafted benchmarks so far.
Most of these benchmarks are known to be dead hard for the resolution proof
system, and will hence quickly grow out of reach of any CDCL solver (except if
these solvers have dedicated preprocessing techniques to deal with such formulas,
such as cardinality detection or Gaussian reasoning, but even then further minor
tweaks to the benchmarks can easily make them infeasible).

This does not seem to be very informative—these benchmarks are hard sim-
ply because the method of reasoning employed by CDCL solvers cannot solve
them efficiently in principle. A more interesting question is how well SAT solvers
perform when there are short proofs to be found, and the solvers therefore have
the potential to run fast. Studying solvers performance on such benchmarks can
shed light on the quality of proof search, and indicate potential for improvement.

As a case in point, for the first time (to the best of our knowledge) many of
the crafted benchmarks used in the SAT Competition 2016 [4] (and generated
by CNFgen) had the property that they possess extremely short resolution proofs
and that SAT solvers can even be guided to find these proofs by, e.g., simply
following a good fixed variable decision order. Yet the competition results showed
that many of these benchmarks were beyond reach of even the best solvers.

It would seem that such formulas that are easy in theory for resolution but
hard in practice for CDCL would merit further study if we want to understand
what makes CDCL solvers fast and how they can be improved further, and
CNFgen is a convenient tool for providing such formulas. An obvious downside
is that such benchmarks can appear to be somewhat artificial in that one would
not really run into them while solving applied problems. We readily concede
this point. However, these formulas have the very attractive property that they



466 M. Lauria et al.

can be scaled freely to yield instances of different sizes—as opposed to applied
benchmarks, that typically exist for a fixed size—and running the solvers on
instances from the same family while varying the instance size makes it possible
to tease out the true asymptotic behaviour.

By judiciously choosing formulas with different theoretical properties one can
“stress-test” CDCL solvers on memory management (using formulas with size-
space trade-off properties), restart policy (for formulas that are hard for strict
subsystems of resolution), decision heuristic (for formulas that are easy with a
good fixed variable order), et cetera, as done, e.g., in [26,34].

Furthermore, even theoretically hard crafted benchmarks can yield interest-
ing insights in that they can be used to compare SAT solvers based on different
methods of reasoning, for instance by benchmarking CDCL against algebraic
solvers on formulas that are hard for resolution but easy for algebraic meth-
ods of reasoning, or against pseudo-Boolean solvers on formulas easy for cut-
ting planes. CNFgen has been heavily used in work on analysing pseudo-Boolean
solvers [25,52], which has so far generated quite intriguing and counter-intuitive
results. (In particular, state-of-the-art pseudo-Boolean solvers sometimes strug-
gle hopelessly with instances that are dead easy for the cutting planes method
which they use to search for proofs, as also confirmed by benchmarks submitted
to the Pseudo-Boolean Competition 2016 [43].)

The CNFgen tool generates all of the CNF formulas discussed above in the
standard DIMACS and OPB formats, thus making these benchmarks accessible
to the applied SAT community. The included Python library allows formulas
construction and manipulation, useful when encoding problems in SAT.

In Sect. 2 we present a small selection of the benchmarks in CNFgen and in
Sect. 3 we illustrate some of its features. Concluding remarks are in Sect. 4.

2 Some Formula Families in CNFgen

A formula generator is a Python function that outputs a CNF, given parameters.
A CNF is represented in our cnfformula library as a sequence of constrains (e.g.,
clauses, linear constraints, . . . ) defined over a set of named variables. CNFgen
command line tool is essentially a wrapper around the available generators and
the others CNF manipulation and SAT solving utilities in cnfformula.

Let us now describe briefly some examples of formulas available in CNFgen.
Due to space constraints we are very far from giving a full list, and since new fea-
tures are continuously being added such a list would soon be incomplete anyway.
Typing cnfgen --help shows the full list of available formulas. The command
cnfgen <name> <params> generates a formula from the family <name>, where
the descriptions of the parameters needed is shown by cnfgen <name> --help.

Pigeonhole principle formulas (php) claim that m pigeons can be placed in
n separate holes, where the variable xi,j encodes that pigeon i flies to hole j and
the indices range over all i ∈ [m] and j ∈ [n] below. Pigeon clauses

∨n
j=1 xi,j

enforce that every pigeon goes to a hole, and hole clauses xi,j ∨ xi′,j for i < i′
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forbid collisions. One can optionally include functionality clauses xi,j ∨ xi,j′ for
j < j′ and/or onto clauses

∨m
i=1 xi,j specifying that the mapping is one-to-one

and onto, respectively. PHP formulas are unsatisfiable if and only if m > n
and if so require exponentially long proofs for all variants in resolution [29,44].
Functional onto-PHP formulas are easy for polynomial calculus (PC) but the
other versions are hard (at least for a linear number of pigeons m = O(n)) [40].
All versions are easy for cutting planes (CP).

Tseitin formulas (tseitin) encode linear equation systems over GF(2) gen-
erated from connected graphs G = (V,E) with charge function χ : V → {0, 1}.
Edges e ∈ E are identified with variables xe, and for every vertex v ∈ V we
have the equation

∑
e�v xe ≡ χ(v) (mod 2) encoded in CNF, yielding an unsat-

isfiable formula if and only if
∑

v∈V χ(v) �≡ 0 (mod 2). When G has bounded
degree and is well-connected, the formula is hard for resolution [50] and for PC
over fields of characteristic distinct from 2 [16], but is obviously easy if one can
do Gaussian elimination (as in PC over GF(2)). Such Tseitin formulas are also
believed to be hard for CP, but this is a major open problem in proof com-
plexity. For long, narrow grid graphs, Tseitin formulas exhibit strong time-space
trade-offs for resolution and PC [6,7].

Ordering principle formulas (op) assert that there is a partial ordering �
of the finite set {e1, . . . , en} so that no element is minimal, where variables
xi,j , i �= j ∈ [n], encode ei � ej . Clauses xi,j ∨ xj,i and xi,j ∨ xj,k ∨ xi,k for
distinct i, j, k ∈ [n] enforce asymmetry and transitivity, and the non-minimality
claim is encoded as clauses

∨
i∈[n]\{j} xi,j for every j ∈ [n]. The total ordering

principle also includes clauses xi,j ∨ xj,i specifying that the order is total.
The graph ordering principle (gop) is a “sparse version” where the non-
minimality of ej must be witnessed by a neighbour ei in a given graph (which
for the standard version is the complete graph). For well-connected graphs these
formulas are hard for DPLL but easy for resolution [13,49]. If the well-connected
graphs are sparse, so that all initial clauses have bounded size, the formulas
have the interesting property that any resolution or PC proof must still contain
clauses/polynomials of large size/degree [13,27].

Random k-CNF formulas (randkcnf) with m clauses over n variables are
generated by randomly picking m out of the 2k

(
n
k

)
possible k-literal clauses

without replacement. These formulas are unsatisfiable with high probability for
m = Δk · n with Δk a large enough constant depending on k, where Δ2 = 1
(provably) and Δ3 ≈ 4.26 (empirically). Random k-CNFs for k ≥ 3 are hard for
resolution and PC [3,19] and most likely also for CP, although this is again a
longstanding open problem.

Pebbling formulas (peb) are defined in terms of directed acyclic graphs
(DAGs) G = (V,E), with vertices v ∈ V identified with variables xv, and con-
tain clauses saying that (a) source vertices s are true (a unit clause xs) and
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(b) truth propagates through the DAG (clauses
∨�

i=1 xui
∨ xv for each non-

source v with predecessors u1, . . . , u�) but (c) sinks z are false (a unit clause xz).
Pebbling formulas are trivially refuted by unit propagation, but combined with
transformations as described in Sect. 3 they have been used to prove time-space
trade-offs for resolution, PC, and CP [7–9,32] and have also been investigated
from an empirical point of view in [34].

Stone formulas (stone) are similar to pebbling formulas, but here each vertex
of the DAG contains a stone, where (a) stones on sources are red and (b) a non-
source with all predecessors red also has a red stone, but (c) sinks have blue
stones. This unsatisfiable formula has been used to separate general resolution
from so-called regular resolution [2] and has also been investigated when com-
paring the power of resolution and CDCL without restarts [17].

k-clique formulas (kclique) declare that a given graph G = (V,E) has a k-
clique. Variables xi,v, i ∈ [k], v ∈ V , constrained by

∑
v∈V xi,v = 1 identify

k vertices, and clauses xi,u ∨ xj,v for every non-edge {u, v} �∈ E and i �= j ∈ [k]
enforce that these vertices form a clique. For k constant it seems plausible that
their proof length should scale roughly like |V |k in the worst case but this remains
wide open even for resolution and only partial results are known [10,11].

Subset cardinality formulas (subsetcard). For a 0/1 n×n matrix A = (ai,j),
identify positions where ai,j = 1 with variables xi,j . Letting Ri = {j | ai,j =
1} and Cj = {i | ai,j = 1} record the positions of 1s/variables in row i and
column j, the formula encodes the cardinality constraints

∑
j∈Ri

xi,j ≥ |Ri|/2
and

∑
i∈Cj

xi,j ≤ |Ci|/2 for all i, j ∈ [n]. In the case when all rows and columns
have 2k variables, except for one row and column that have 2k + 1 variables,
the formula is unsatisfiable but is hard for resolution and polynomial calculus
if the positions of the variables are “scattered enough” (such as when M is
the bipartite adjacency matrix of an expander graph) [39,51]. Cutting planes,
however, can just add up all constraints to derive a contradiction immediately.

Even colouring formulas (ec) are defined on connected graphs G = (V,E)
with all vertices having bounded, even degree. Edges e ∈ E correspond to vari-
ables xe, and for all vertices v ∈ V constraints

∑
e�v xe = deg(v)/2 assert that

there is a 0/1-colouring such that each vertex has an equal number of incident
0- and 1-edges. The formula is satisfiable if and only if the total number of
edges is even. For suitably chosen graphs these formulas are empirically hard for
CDCL [36], but we do not know of any formal resolution lower bounds. Despite
being easy for CP, they still seem hard for pseudo-Boolean solvers.

3 Further Tools for CNF Generation and Manipulation

Formula transformations. A common trick to obtain hard proof complexity
benchmarks is to take a CNF formula and replace each variable x by a Boolean
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function g(x1, . . . , x�) of arity � over new variables. As an example, XOR sub-
stitution y ← y1 ⊕ y2, z ← z1 ⊕ z2 applied to the clause y ∨ z yields

(y1 ∨ y2 ∨ z1 ∨ z2) ∧ (y1 ∨ y2 ∨ z1 ∨ z2) ∧ (y1 ∨ y2 ∨ z1 ∨ z2) ∧ (y1 ∨ y2 ∨ z1 ∨ z2) .

Note that such transformations can dramatically increase formula size, and so
they work best when the size of the initial clauses and the arity � is small. Sim-
ilar substitutions, and also other transformations such as lifting, shuffling, and
variable compression from [45], can be applied either in CNFgen during formula
generation (using command line options -T), or alternatively to a DIMACS file
using the included cnftransform program. Multiple occurrences of -T <params>
results in a chain of transformations as in, e.g., this 2-xorified pebbling formula
over the pyramid graph of height 10, with random shuffling.

$ cnfgen peb --pyramid 10 -T xor 2 -T shuffle

Formulas based on graphs. Many formulas in CNFgen are generated from
graphs, which can be either read from a file or produced internally by the tool.
In the next example we build a Tseitin formula over the graph in the file G.gml
and then a graph ordering principle on a random 3-regular graph with 10 vertices.

$ cnfgen tseitin -i G.gml --charge randomodd | minisat

UNSATISFIABLE

$ cnfgen gop --gnd 10 3 | minisat

UNSATISFIABLE

The CNFgen command line provides some basic graph constructions and also
accepts graphs in different formats such as, e.g., Dot [46], DIMACS [38], and
GML [31]. Inside Python there is more flexibility since any NetworkX [28] graph
object can be used, as sketched in the next example.

from cnfformula import GraphColoringFormula

G= ... # build the graph

GraphColoringFormula(G,4). dimacs () # Is G is 4-colourable?

As already discussed in Sect. 2, the hardness of many formulas generated from
graphs are governed by (different but related notions of) graph expansion. Going
into details is beyond the scope of this paper, but in many cases a randomly
sampled regular graph of bounded vertex degree almost surely has the expansion
required to yield hard instances.

OPB output format. CNFgen supports the OPB format used by pseudo-
Boolean solvers, which use techniques based on cutting planes. CNFgen can pro-
duce formulas that are easy for cutting planes but seem quite hard for pseudo-
Boolean solvers (e.g., subset cardinality formulas, even colouring formulas, some
kinds of k-colouring instances).
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4 Concluding Remarks

We propose CNFgen as a convenient tool for generating crafted benchmarks in
DIMACS or OPB. CNFgen makes available a rich selection of formulas appear-
ing in the proof complexity literature, and new formulas can easily be added
by using the cnfformula library. It is our hope that this tool can serve as
something of a one-stop shop for, e.g., SAT practitioners wanting to benchmark
their solvers on tricky combinatorial formulas, competition organizers looking
for crafted instances, proof complexity researchers wanting to test theoretical
predictions against actual experimental results, and mathematicians performing
theoretical research by reducing to SAT.
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40. Mikša, M., Nordström, J.: A generalized method for proving polynomial calculus
degree lower bounds. In: Proceedings of the 30th Annual Computational Com-
plexity Conference (CCC 2015). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 33, pp. 467–487 (2015)

41. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Chaff, M.S.: Engineering
an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference
(DAC 2001), pp. 530–535 (2001)

42. Nordström, J.: On the interplay between proof complexity and SAT solving. ACM
SIGLOG News 2(3), 19–44 (2015)

43. Pseudo-Boolean competition (2016). http://www.cril.univ-artois.fr/PB16/
44. Razborov, A.A.: Resolution lower bounds for perfect matching principles. J. Com-

put. Syst. Sci. 69(1), 3–27 (2004). Preliminary version in CCC ’02
45. Razborov, A.A.: A new kind of tradeoffs in propositional proof complexity. J. ACM

63, 16:1–16:14 (2016)
46. AT and T Research: Dot Language. http://www.graphviz.org/content/

dot-language. Accessed 11 Feb 2016
47. Sheini, H.M., Sakallah, K.A.: Pueblo: a hybrid pseudo-Boolean SAT solver. J.

Satisf. Boolean Model. Comput. 2(1–4), 165–189 (2006). Preliminary version in
DATE ’05

http://dx.doi.org/10.1007/11527695_12
http://dx.doi.org/10.1007/978-3-642-33558-7_25
http://prolland.free.fr/works/research/dsat/dimacs.html
http://prolland.free.fr/works/research/dsat/dimacs.html
http://dx.doi.org/10.1007/978-3-319-09284-3_10
http://www.cril.univ-artois.fr/PB16/
http://www.graphviz.org/content/dot-language
http://www.graphviz.org/content/dot-language


CNFgen: A Generator of Crafted Benchmarks 473

48. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 24

49. St̊almarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta
Inform. 33(3), 277–280 (1996)

50. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)
51. Gelder, A., Spence, I.: Zero-one designs produce small hard SAT instances. In:

Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 388–397. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14186-7 37
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