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Preface

Over the last two decades, inflammation has emerged as the key underlying

pathology of a variety of diseases including but not limited to rheumatoid disorders,

cancer, and cardiovascular disease. Inflammation within the vessel wall clearly

promotes the nascence of atherosclerotic lesions and consequently the rise of clinical

complications such as myocardial infarction and stroke. A plethora of basic and

clinical evidence clearly links this inflammatory process with disease burden. We

appreciate today that atherosclerotic lesions containing a multitude of inflammatory

cells tend to be much weaker in composition and consistence, rendering them more

prone to rupture and subsequent clinical sequelae. While the role of classic inflam-

matory cells and immunologic cell types has been extensively characterized

throughout the last decade, it only recently became evident that nontraditional

inflammatory cell types such as the platelet take a center stage in initiation, promo-

tion, and ultimately complication of vascular inflammation. This book focuses on

the platelet as a versatile cell type unraveling its role as a mediator between

hemostasis and inflammation. Finally, we propose several platelet-targeting and

alternate anti-inflammatory therapies as novel and promising therapeutic

approaches to ultimately combat the high residual risk of cardiovascular disease in

our world.

We thank our internationally renowned faculty for their outstanding contribution

and wish you, our readers, joy and enlightenment with our book.

Freiburg, Germany Andreas Zirlik

Freiburg, Germany Christoph Bode

Tübingen, Germany Meinrad Gawaz

The original version of this book was revised. The correction is available at
https://doi.org/10.1007/978-3-319-66224-4_18
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Cardiac Imaging of Platelets
and Inflammation 1
Constantin von zur Mühlen and Robin P. Choudhury

Abstract

Platelets and inflammation play a pivotal role in a wide range of cardiac

pathophysiologies, such as coronary vessel atherosclerosis, ischemia/reperfu-

sion injury, or myocarditis. Imaging of early stages of these diseases would be

helpful. Molecular imaging is a promising approach for characterizing

biological processes and especially atherosclerosis, which presents numerous

mechanistically important targets. Inflammation and thrombus formation as key

events are reflected by a wide range of potential targets, e.g., inflammatory

adhesion molecules, inflammatory cells and proteases, or fibrin and platelets.

Molecular imaging of these processes is possible by applying single imaging

techniques, such as MRI, or the combination of different imaging modalities,

such as PET and CT. In this chapter, we describe current concepts, challenges,

and the future potential of molecular imaging in the context of platelets and

inflammation involved in atherosclerosis.
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1.1 Introduction

Platelets and inflammation play a pivotal role in a wide range of cardiac

pathophysiologies, such as coronary vessel atherosclerosis, ischemia/reperfusion

injury, or myocarditis [1–3]. Imaging of early stages of these diseases would be

helpful to manage the patient, and imaging of established disease could help to

guide or optimize treatment. Various imaging techniques are available, either

already clinically established or at an experimental level. In this chapter, different

imaging approaches to target platelets and/or inflammation will be described, with a

focus on vascular inflammation and thrombosis in atherosclerosis. We describe

techniques applied in animal studies, but also in humans, and the challenging path

from “bench to bedside.”

1.2 Understanding Coronary Atherosclerosis: Still a Long Way
to Go

Years ago the idea of atherosclerosis development was very simple. Depositions of

fatty tissue, so-called “fatty streaks,” already develop during early childhood

[4]. Over time and with the exposure toward certain risk factors, they progress

toward atherosclerotic plaques, progressively resulting in luminal narrowing and

symptoms in the patient. At some point, plaque rupture occurs, and a rapid

superimposed thrombosis results in immediate vessel occlusion and therefore

myocardial infarction or stroke [1, 5]. However, we have learned that it is not

such a linear progression of disease and that smaller and nonobstructive plaques can

rupture abruptly and cause vascular occlusion [6]. Such plaques are often missed by

conventional imaging techniques available in routine clinical practice. A coronary

angiogram, which is routinely performed in patients with symptoms suggestive of

coronary artery disease (CAD), only shows the luminal filling with contrast agent

but cannot characterize the occult vascular inflammation of the vascular wall that

does not result in significant luminal narrowing. In 2011, the “PROSPECT” study

was published, which tried to characterize nonocclusive lesion in patients with an

acute coronary syndrome (ACS) [7]. Patients with an ACS and therefore subtotal/

total occlusion of a coronary vessel were treated by percutaneous coronary inter-

vention (PCI) and stent placement at the so-called “culprit” lesion. Nonocclusive,

non-culprit lesions were characterized by gray-scale and radiofrequency intravas-

cular ultrasonographic imaging (IVUS) after PCI, and median follow-up period was

3.4 years. 20.4% of patients came back with new major adverse cardiac events
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(death from cardiac causes, cardiac arrest, myocardial infarction, or rehospitaliza-

tion due to unstable or progressive angina). However, only 12.9% of these new

events were related to the initially treated culprit lesion; the other 11.6% were

related to non-culprit lesions, which were angiographically mild at baseline. These

potentially “vulnerable” non-culprit lesions were characterized by a plaque burden

of 70% or greater, or a minimal luminal area of 4.0 mm2 or less, or were classified

as thin-cap fibroatheromas (TCFA) by virtual histology in IVUS. However, also the

combination of these different nonocclusive plaque characteristics did not result in

a reliable prediction of MACE: when combining TCFA, plaque burden, and MLA,

only 18.2% of patients with MACE had these characteristics present in the initial

coronary angiogram.

Although these data might provide us with some prognostic information on

IVUS-VH, we need other techniques to image more selectively plaque components

and characteristics that might allow us to more precisely predict the fate of a

coronary plaque. Especially targeting cells involved in certain stages of vascular

inflammation or thrombosis by molecular imaging is an interesting and promising

strategy.

1.3 Molecular Imaging: Definition, Goals, and Imaging
Techniques

Molecular imaging can be defined as visualization, characterization, and noninva-

sive measurement of biological processes at the molecular and cellular levels in

humans and other living systems [8]. This could help to accelerate and refine

diagnosis, provide insights that reveal disease diversity, and monitor the effects

of therapies. Molecular imaging contrast agents usually consist of two components:

an antibody or peptide-mimetic targeting a certain cell or cellular receptor, conju-

gated toward a signal-giving carrier element. It now depends on which imaging will

be used: for magnetic resonance imaging (MRI), paramagnetic chalets such as

gadolinium (Gd) or superparamagnetic iron oxide particles (SPIOs) are attractive.

While Gd causes a positive contrast in T1-weighted MRI, SPIO or in general iron

oxide-based contrast agents result in a negative contrast due to susceptibility

artifact in T2*-weighted MRI sequences [9, 10]. SPIOs are available in different

sizes, e.g., as ultrasmall SPIOs (USPIOs) or microparticles of iron oxide (MPIOs).

Depending upon the size and formulation, particles can be loaded with different

quantities of iron and therefore have variable effects on susceptibility. These

artifacts appear as black signal extinctions in T2*-weighted MRI, and 1 μm-sized

MPIOs can cause signal effect extending their effective diameter on the image by a

factor of 50.

When choosing a strategy of PET or SPECT for molecular imaging,

radionuclides are usually conjugated with the targeting antibody or peptide

mimetic. For ultrasound molecular imaging, air-filled microbubbles can be used

to cause imaging artifacts.

1 Cardiac Imaging of Platelets and Inflammation 3



The selection of the optimal imaging technique is crucial in molecular imaging,

depending on the localization and distribution of the imaging target in the patho-

physiology of interest (also see next paragraph). Each imaging technology has its

advantages and disadvantages. While PET and SPECT have a very high sensitivity

for molecular probes marked with radionuclides (nanogram range), the spatial

resolution is usually low (PET: 1–2 mm; SPECT: 0.3–1 mm). MRI has a better

spatial resolution of 50–250 μm, thereby providing important anatomical informa-

tion, while molecular probes can be detected in a micro- and milligram range [11].

1.4 Imaging Targets in Vascular Inflammation
and Thrombosis

Atherosclerosis is a very complex disease, involving a large number of vascular

receptors, cell types, and other processes [1, 5, 8]. Usually, atherosclerosis begins

with endothelial activation. Inflammatory endothelial markers such as vascular

cellular adhesion molecule (VCAM) and P-selectin can be found, but also platelets

adhere at early stages of atherosclerotic plaque formation [2]. This vascular inflam-

mation attracts macrophages, which adhere to the plaque surface and finally

migrate into the plaque. In the course of inflammation progression, a lipid core

may develop, and proteolysis and apoptosis further promote formation of a lipid-

rich necrotic core, neovessels, and formation of a fibrous cap separating this process

from the bloodstream. Plaque rupture and exposure of the inflammatory core is a

critical event in the pathogenesis of acute vascular syndromes since aggregation of

circulating platelets and fibrin can result in immediate vessel closure and therefore

acute ischemia in the remote tissue, leading to myocardial infarction in the context

of a coronary artery, and stroke when a cerebral vessel such as the carotid artery is

occluded. As mentioned above, growth of an atherosclerotic plaque is not a

continuous sequence, and also nonobstructive plaques can rupture, particularly

where there is an accumulated lipid core and cap thinning associated with local

inflammation.

1.5 What to Consider When Performing Imaging Approaches
in Vascular Pathologies

Multiple studies have been published over the last years describing molecular

imaging approaches in atherosclerosis, involving proof of feasibility or mechanistic

studies. Important factors when evaluating such approaches are the following

questions: does this study provide a diagnostic value? Does it even allow a

prognostic value? Or can it help to guide therapies or evaluate an outcome benefit?

When thinking about imaging studies in atherosclerosis, it is also important to

consider the stage at which the imaging is performed, and if the epitopes or

processes of interest are exposed superficially, and therefore readily accessible to

blood-borne agents (e.g., VCAM or P-selectin), or inside plaque (e.g.,
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macrophages, apoptosis). In this context, it is then crucial to choose the sort of

imaging technique and the preparation of the contrast agent itself. It is hypothesized

that macrophages can phagocytose USPIOs in the bloodstream and enter the plaque

carrying the particles and the accumulated USPIO can then provide a signal from

“inside” the plaque [12]. By contrast, USPIO would potentially not provide suffi-

cient contrast to image epitopes on the plaque surface in the flowing blood, since the

iron load is too low. For this purpose, MPIOs would be more attractive: although

they are exposed to high shear stress in the flowing blood, even single particles are

detectable by MRI due to the large signal extinction caused [13].

Other thoughts involve the differentiation of noninvasive or invasive imaging.

The latter one can be performed with IVUS or optical coherence tomography

(OCT), which will be described further below. Finally, the question of whether

the imaging is performed on an experimental level in animals or clinically in

humans is important. Not all contrast agents described in well-recognized animal

imaging studies are necessarily compatible for application in humans due to issues

of toxicity or biocompatibility.

1.6 Imaging of Inflammation

In the following section, exemplary studies for imaging of inflammation will be

described, using different contrast agent and imaging approaches.

1.6.1 Magnetic Resonance Imaging

As already mentioned above, microparticles of iron oxide (MPIOs) can deliver high

payloads of iron toward endothelial epitopes.

In a study published by our group, we performed dual targeting of MPIOs with

two different markers of inflammation, imitating leukocyte binding: VCAM and

p-selectin [14]. The resulting VCAM/p-selectin-MPIO contrast agent was injected

into Apolipoprotein E knockout mice (ApoE�/�), which develop atherosclerotic

plaques in the ascending aorta and aortic root. Dual-targeted MPIOs, injected

intravenously in vivo, bound the aortic root endothelium and were quantifiable by

MRI ex vivo. MPIOs were well tolerated in vivo by all mice, with sequestration in

the spleen after 24 h. This approach allowed the design of a functional MRI probe

for detecting endothelial-specific markers not only in atherosclerosis but in a range

of vascular pathologies [15, 16].

Also ultrasmall superparamagnetic iron oxides were used for imaging of endo-

thelial and intraplaque markers of atherosclerosis. In a study by Burtea et al.,

VCAM-1 and apoptotic cell-targeted peptides were conjugated to USPIO and

assessed in ApoE�/� mice by MRI [17]. Plaques enhanced by VCAM-targeted

USPIOs contained macrophages concentrated in the cap and a large necrotic core,

whereas apoptosis-targeted USPIOs produced a negative enhancement of

macrophage-rich plaques inside the plaque.

1 Cardiac Imaging of Platelets and Inflammation 5



As discussed above, applications in humans would be desirable, also adding

another dimension, such as monitoring of therapeutical effects. One example is the

ATHEROMA study, which evaluated the effects of low-dose (10 mg) and high-

dose (80 mg) atorvastatin on carotid artery plaque inflammation, as measured by

USPIO-enhanced MRI [18]. Twenty patients completed the full 12 weeks of

treatment in each group. A significant reduction from baseline in USPIO-defined

inflammation was observed in the 80-mg group at both 6 weeks and 12 weeks,

whereas there was no visible effect in the low-dose regimen. Interestingly, USPIO

were cycled out of the plaque region in between the imaging time points. Unfortu-

nately, to our knowledge, no further clinical studies were performed with this agent,

although this molecular imaging strategy could have been a useful biomarker

imaging strategy for screening and assessment of therapeutic response to anti-

inflammatory interventions in patients with atherosclerotic lesions.

1.6.2 Hybrid Imaging Approaches

Underlying the strategy to combine two different imaging techniques is the idea of

getting the best out of each technology. A study by Taqueti et al. investigated the

potential of imaging the relationship between markers of inflammatory activation,

plaque microvascularization, and vessel wall permeability [19]. Patients with

carotid artery plaques were imaged using a multimodality approach combining (1)

FDG positron emission tomography (FDG-PET), (2) dynamic contrast-enhanced

magnetic resonance imaging (dce-MRI), and (3) histopathology after endarterec-

tomy in 32 subjects with carotid artery stenosis. As a result, plaque regions with

active inflammation, as determined by macrophage content and major histocompat-

ibility complex class II expression, showed increased FDG-PET uptake. This

correlated with increased microvascularization and permeability, as measured by

dce-MRI. Interestingly, the correlation was independent of clinical symptoms and

plaque luminal severity, which might therefore be an option for detecting

nonobstructive but highly vulnerable/inflamed plaques. Larger studies are desirable

to confirm and further strengthen such findings.

Another approach aiming for the detection of ruptured or high-risk coronary

atherosclerotic plaques has been described by Joshi et al., combining PET and CT

with the radioactive tracers [18]F-sodium fluoride ((18)F-NaF) and [18]F-

fluorodeoxyglucose ((18)F-FDG) [20]. Invasive coronary angiography, [18]F-NaF,

and [18]F-FDG PET-CT were performed in patients with myocardial infarction and

stable angina, and tissue-to-background ratios of culprit and non-culprit coronary

plaques of patients with acute myocardial infarction were evaluated. Figure 1.1a

shows the PET-CT of a patient with acute ST-segment elevation myocardial infarc-

tion with proximal occlusion of the left anterior descending artery on invasive

coronary angiography and intense focal 18F-fluoride uptake at the site of the culprit

plaque but in remote myocardium. In contrast, the corresponding

18F-fluorodeoxyglucose PET-CT image shows no uptake at the site of the culprit

plaque. Another example of a patient with anterior non-ST-segment elevation
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myocardial infarction with a culprit lesion (red arrow) and bystander non-culprit

lesion demonstrates that only the culprit lesion had increased 18F-NaF uptake on

PET-CT; the corresponding 18F-fluorodeoxyglucose PET-CT shows no uptake at

either the culprit or the bystander stented lesion (Fig. 1.1b). In this study, [18]F-NaF

PET-CT was the first noninvasive imaging method to identify and localize ruptured

and high-risk coronary plaque in a noninvasive way. This is also an interesting and

exciting approach of how to combine two imaging modalities and get the best

information from each: functional information by PET and anatomical information

by CT.

1.7 Imaging of Thrombosis

Thrombosis after plaque rupture involves platelet activation and cross-linking of

platelets with fibrin. Both therefore constitute a promising approach for molecular

imaging of plaque rupture and atherothrombosis. Platelets are also involved into the

inflammatory processes after ischemia caused by reperfusion.

18F-NaF PET-CT 18F-FDG PET-CTInvasive angiography
ST

EM
I

N
ST

EM
I

A

B

Fig. 1.1 (a) PET-CT of a patient with acute ST-segment elevation myocardial infarction with

proximal occlusion of the left anterior descending artery on invasive coronary angiography and

intense focal 18F-fluoride uptake at the site of the culprit plaque but in remote myocardium. The

corresponding 18F-fluorodeoxyglucose PET-CT image shows no uptake at the site of the culprit

plaque. (b) Example of a patient with anterior non-ST-segment elevation myocardial infarction

with a culprit lesion (red arrow) and bystander non-culprit lesion demonstrates that only the culprit

lesion had increased 18F-NaF uptake on PET-CT; the corresponding 18F-fluorodeoxyglucose

PET-CT shows no uptake at either the culprit or the bystander stented lesion
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Concerning imaging of fibrin in coronary thrombosis, an interesting study in pigs

has been published by the group of Spuentrup [21]. In this approach, a fibrin-specific

peptide was conjugated to gadolinium, called EP-2104R. Human thrombi were

engineered ex vivo and delivered into coronary arteries of pigs by conventional

angiography. MRI of the coronaries was then performed before and after application

of EP2104R, and the gadolinium-specific signal enhancement was observed in the

coronary arteries. Some years later, EP2104R was also applied in a mixed setting of

clinical scenarios in humans [22]. MRI was again performed before and after

application of EP2104R, thereby detecting ventricular thrombi, fibrinous pericardial

effusions, or symptomatic carotid artery plaques. Although the latter study was

published in 2009, so far no further or even routine application in humans has

been described.

Our group has an interest in targeting activated platelets. Activated platelets

can not only be found on ruptured plaques further promoting thrombosis but also

on the surface of inflamed plaques, even those not resulting in coronary flow

obstruction. We have previously developed a single-chain antibody targeting

so-called ligand-induced binding sites (LIBS) of the activated glycoprotein

IIb/IIIa receptor (GPIIb/IIIa), which becomes exposed only upon platelet activa-

tion and/or fibrin binding [23]. For construction of a molecular contrast agent with

this very specific antibody, we have conjugated MPIO toward the LIBS, resulting

in the LIBS-MPIO contrast agent. LIBS-MPIO has been studied by our group in

various settings of murine vascular inflammation or atherothrombosis [24–28].

In one study, wall-adherent nonocclusive thrombosis was induced by ferric

chloride in carotid arteries of mice, which simulated the situation of a ruptured

plaque with thrombus formation [24]. MRI of the carotid arteries was performed

before and after injection of LIBS-MPIO. After injection of the contrast agent,

increasing signal extinction as the typical MPIO-induced effect was observed at the

site of thrombosis, which was reversible after performing thrombolysis. Also in

artificially induced plaque rupture in ApoE�/� mice, vascular thrombosis was

detectable by this approach [28].

The technology was also transferred into human pathology. Patients with symp-

tomatic carotid artery disease who underwent surgery were included in this study.

The surgically removed endarterectomies were imaged before and after incubation

with LIBS-MPIO, and the MPIO-induced signal void was well visible after incu-

bation. MRI correlated well with results from histology, demonstrating specific

binding of LIBS-MPIO at sites of platelet aggregation on the surface of these

symptomatic plaques [24].

Of course, imaging of coronary thrombosis is the ultimate goal, but challenging

in a mouse model due to the small size of the coronary vessels and the high heart

rate in mice (ca. 600 bpm). We performed surgery in mice and exposed the left

anterior descending artery (LAD) to ferric chloride, which again induced a wall-

adherent, nonocclusive thrombosis in the vessel, similar to the approach described

above with the carotid artery. Again, LIBS-MPIO was injected, but the heart

removed thereafter and imaged by MRI ex vivo. MPIO-induced signal extinction

was well visible inside the coronary artery and correlated well with the presence of
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local thrombi and platelet aggregation in histology (Fig. 1.2a,c); no signal was

detectable in animals with control-MPIO injection (Fig. 1.2b).

Concerning inflammation in remote myocardium in the context of reperfusion

after coronary ligation, LIBS-MPIO also helped to image the extent of the ische-

mia/reperfusion injury [29]. After ligation and reopening of the LAD, in vivo MRI

of the heart and especially the area of ischemia was performed after injection of (1)

LIBS-MPIO and (2) gadolinium. LIBS-MPIO-induced signal extinction correlated

well with platelet aggregates on histology but also with platelet–neutrophil conju-

gated reflecting the severity of the myocardial inflammatory process. Gadolinium

was used to detect necrotic myocardium in the same imaging approach, which

worked well and confirmed the concept of a dual imaging study.

These studies seem as a promising strategy to target activated platelets in

vascular thrombosis, since the antibody works in mouse and men and is less

immunogenic due to its small molecular size. However, the MPIOs used for

targeting are potentially toxic, and therefore research is ongoing toward the devel-

opment of human compatible signal-giving elements. Magnetoliposomes appear as

a promising strategy [30]; however, reliable in vivo applicability still has to be

demonstrated.

Fig. 1.2 Molecular imaging of platelets in coronary thrombosis. Nonocclusive thrombosis of the

left anterior descending coronary artery was induced. LIBS-MPIO was injected, the heart removed

and imaged by MRI ex vivo. MPIO-induced signal extinction was well visible inside the coronary

artery and correlated well with the presence of local thrombi and platelet aggregation in histology

(a/c); no signal was detectable in animals with control-MPIO injection (b)
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1.8 Current Interventional Imaging Approaches of Vascular
Wall Characterization

As already discussed above, intravascular ultrasound (IVUS) can be used to

characterize coronary plaques during interventional procedures. Adding Virtual

histology to IVUS can help to characterize plaque components. However, the

predictive value of this technique is still not entirely clear. Studies describe

unpredictable outcome of lesions in IVUS, e.g., potentially vulnerable lesions that

transform into a potentially stable fibrofatty lesion, and vice versa [31]. Further,

spatial resolution of IVUS is limited, which makes application for molecular

imaging purposes difficult; adding another imaging technique on top of IVUS

therefore seems reasonable. Jaffer et al. describe such an approach of IVUS

combined with a two-dimensional rotational and automated pullback near-infrared

fluorescence (NIRF) intravascular catheter apparatus, capable of nanomolar-

sensitive, intra-arterial molecular imaging in larger diameter coronary arteries

[32]. In combination with a cysteine protease-activatable imaging reporter, intra-

arterial 2D NIRF imaging was performed in rabbit aortas with atherosclerosis for

the detection of vascular wall inflammation, while IVUS provided co-registered

anatomical images. Images of vessel wall inflammation with high signal-to-noise

ratios were obtainable in real time through blood, without flushing or occlusion,

revealing increased inflammation-regulated cysteine protease activity in

atheromata and stent-induced arterial injury. Although this appears as a promising

approach for molecular characterization of vascular pathologies, a transfer into

human pathologies is still pending.

Another interventional imaging technique already used in clinical routine is the

optical coherence tomography (OCT), using light to capture micrometer-resolution

images from within optical scattering media, e.g., biological tissue. However,

current concepts only allow the generation of anatomical information at a very

good spatial resolution (ca. 15 μm). In one study, a dual-modality intra-arterial

catheter for simultaneous microstructural and molecular imaging was applied,

using a combination of optical frequency domain imaging (OFDI) and near-infrared

fluorescence (NIRF) imaging [33]. By providing simultaneous molecular informa-

tion in the context of the surrounding tissue microstructure, this new catheter was

evaluated for investigating coronary atherosclerosis and identifying high-risk

biological and structural coronary arterial plaques in rabbits. Two different targets

were studied: fibrin and factors promoting plaque progression. After injection of a

fluorochrome binding to fibrin, the combined imaging approach provided a molec-

ular signal along the vascular wall with a very efficient signal-to-noise ratio, and

correlation with findings in histology was excellent. The same was true for the

inflammatory protease activity by using a cathepsin protease-activatable NIRF

molecular beacon. Compared to the IVUS-NIRF approach, OFDI-NIRF provides

higher resolution of potentially localized processes on the vascular wall, such as

vascular thrombosis reflected by fibrin accumulation. Although very promising,

transfer into human applicability is also pending.
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1.9 Perspectives

Molecular imaging is a promising approach for characterizing biological processes

and especially atherosclerosis, which presents numerous mechanistically important

targets. Inflammation and thrombus formation as key events are reflected by a wide

range of potential targets, e.g., inflammatory adhesion molecules, inflammatory

cells and proteases, or fibrin and platelets. Molecular imaging of these processes is

possible by applying single imaging techniques, such as MRI, or the combination of

different imaging modalities, such as PET and CT. Currently, transfer into routine

applications is ongoing but challenging, mainly due to the lack of human compati-

ble or nontoxic signaling elements.
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In the Heat of the Artery: Inflammation
as Trigger and Target of Atherosclerosis 2
Peter Stachon and Andreas Zirlik

Abstract

Abundant experimental and clinical work identifies inflammation of the vessel

wall as a crucial factor in the development of atherosclerosis. Low-density

lipoprotein (LDL) cholesterol initiates besides other factors endothelial activa-

tion. Monocytes and other immune cells invade the nascent lesion and create a

pro-inflammatory milieu ultimately facilitating plaque rupture, the pathologic

correlate of an acute coronary syndrome. We particularly shed light on the basic

and clinical data implicating inflammation and immunity with this disease and

its clinical sequelae. Furthermore, we comment on the large phase III CANTOS

trial investigating the effect of an anti-inflammatory treatment with the IL-1b

antibody canakinumab in over 10,000 patients with coronary heart disease and

inflammatory status. This proof-of-concept trial showed for the first time that

anti-inflammatory treatment may be a feasible and working option for patients

with coronary heart disease. Finally, we end with an outlook on other promising

targets for therapeutic intervention.
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2.1 Introduction

Coronary heart disease is a multifactorial disorder triggered by modifiable and

non-modifiable risk factors. Current treatment strategies include risk factor

modification, platelet inhibition, and revascularization [1]. However, abundant

experimental and clinical studies identify plaque inflammation and immune cell

recruitment as crucial pathogenic factors in atherogenesis. This chapter discusses the

current understanding of how inflammation initiates, promotes, and complicates the

course of this devastating disease. Finally, we will shed some light on targeting

inflammation clinically as a novel promising therapeutic approach [2–4] (Fig. 2.1).

2.2 Initiation of Atherosclerosis: Endothelial Cells
and “Response to Injury”

Inflammation drives atherosclerotic plaque formation, growth, and vulnerability

[5]. Upon initiation of atherogenesis, low-density lipoprotein cholesterol (LDL)

accumulates in the arterial wall and is oxidized (ox) by reactive oxygen species,

myeloperoxidase, or lipoperoxidase [6]. OxLDL enhances the expression of cell

adhesion molecules such as E-selectin, vascular cell adhesion molecule 1 (VCAM-

1), and intercellular cell adhesion molecule 1 (ICAM-1) on endothelial cells

(EC) [7]. Thus, monocytes are attracted to the vessel wall, enter the intimal layer,

and ingest oxLDL upon differentiation to macrophages. These steps lead to the

formation of so-called “fatty streaks,” the first manifestation of atherosclerosis. The

concept of endothelial activation during atherogenesis is part of the “response-to-

injury” hypothesis raised by Russel Ross and John Glomset in 1976 [8]. Beyond

lipids, a variety of other factors elicit endothelial activation: arterial hypertension

induces shear stress promoting expression of adhesion molecules. Inflammatory

cytokines, e.g., arising from abdominal fat masses in obesity, may facilitate or

directly activate the endothelium [9]. Other triggers include so-called advanced

glycation end products (AGEs) forming in diabetic individuals and components of

cigarette smoke or particulate matter from air pollution [10–12].
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Fig. 2.1 LDL cholesterol enters the intimal wall and is oxidized to oxLDL. OxLDL activates

endothelial cells, which express chemokines and cell adhesion molecules in order to attract

monocytes (1). Due to the interaction of selectins, monocytes roll along the endothelium and

adhere firmly by the interaction of VCAM-1 and VLA-1. Finally, they transmigrate into the

intimal wall (2). Under the influence of endothelial and smooth muscle cells, derived M-CSF

monocytes develop to macrophages, which uptake oxLDL and form lipid-loaded foam cells (3).
These foam cells are inflammatory active and attract further leukocytes such as B- or T-cells by

release of cytokines and chemokines (4). T- and B-cells are activated by antigen presentation. Th1
T-cells are pro-inflammatory; Th2 and T-regulatory cells are their anti-inflammatory counterparts

(5). Release of IFNg and MMP does weaken the protective fibrotic cap (6). Finally, the plaque can
rupture and prothrombotic components are released into the bloodstream. This results in a platelet

activation and vessel occlusion (7)
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2.3 Plaque Progression: How Immune Cells Enter
the Arterial Wall

Resting EC are anti-inflammatory and prevent invasion of the intima by patrolling

leukocytes. Upon activation, EC release chemokines and express integrins such as

E- and P-selectin, which attract monocyte to the vessel wall [13]. The interaction

between endothelial selectins and monocyte P-selectin glycoprotein ligand

1 (PSGL1) induces monocyte rolling along the endothelial layer [14]. Rolling

slows down under the influence of chemokines such as RANTES, MCP-1, and

CXCL5 [15]. The interaction between endothelial cell adhesion molecules VCAM-

1 and ICAM-1 with monocyte very late antigen 4 (VLA4) and lymphocyte

function-associated antigen 1 (LFA1) results in firm adhesion, respectively

[16, 17]. Adherent monocytes spread, crawl along the endothelial layer, and

transmigrate through gaps of EC into the intima. Here, they transform to resident

macrophages by influence of macrophage colony-stimulating factor (M-CSF)

released by activated EC and smooth muscle cells (SMC) [18]. Patrolling effector

T cells also enter the atherosclerotic lesion by binding to adhesion molecules [19].

2.4 The Advanced Atherosclerotic Lesion: The Role
of Inflammatory Cells

Monocyte and macrophage heterogeneity is crucial for balance of pro- or anti-

inflammatory status of the atherosclerotic lesion and for development of

atherosclerosis [20]. Pro-inflammatory murine Gr-1high/Ly6Chigh monocytes are

induced by hypercholesterolemia [21]. They enter the atherosclerotic lesion and

differentiate into macrophages. As shown recently, the latter also have the potential

to proliferate within the plaque. Particularly at later stages of atherosclerotic

plaques, intra-plaque macrophage proliferation outruns monocyte uptake

[22]. Lesional macrophages are divided into pro-inflammatory M1 and anti-

inflammatory M2 phenotype [23]. However, the net effect of macrophages is

pro-inflammatory, since a complete depletion of macrophages reduces experimen-

tal atherosclerosis [24]. Similarly, attenuation of monocyte/macrophage turnover

and activation, e.g., by inhibition of spleen tyrosine kinase (SYK), slows de novo

atherogenesis [25, 26]. The macrophages are activated by oxLDL, which they take

up via scavenger receptors SR-A, SR-B1, CD36, or lectin-type oxLDL receptor

1 (LOX-1) and form foam cells [27]. If the intracellular cholesterol concentrations

increase, microcrystals are formed and activate inflammation via the inflammasome

[28]. Foam cells propagate plaque inflammation and promote further leukocyte

uptake via direct pro-inflammatory effector functions, e.g., pro-inflammatory

cytokine expression as well as induction of a T-cell-dependent adaptive immune

response via antigen presentation [29]. However, foam cell formation is reversible

since cholesterol efflux via ATP-binding cassette transporter A1 (ABCA-1) and G1

(ABCA-G1) can reduce it [30]. If LDL cholesterol uptake dominates, macrophages

are eventually overloaded with cholesterol and become apoptotic [31]. The cell
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debris, pro-inflammatory components such as cholesterol crystals, matrix

metalloproteinases (MMP), and tissue factor form the necrotic core [32].

About 10% of cells within the plaque are CD3þ and CD4þ T-helper cells. Most

of these T cells are pro-inflammatory Th1 cells, which are generated under the

influence of IL-12 [33]. After activation by antigen-presenting cells (APC) such as

dendritic cells or macrophages Th1 cells release interferon γ (IFNγ), interleukin
2 (IL-2), IL-3, and tumor necrosis factor α and β (TNFα and β) and aggravate

plaque inflammation by activating macrophages, SMC, and EC [34, 35]. However,

Th2 and T-regulatory cells are the anti-inflammatory counterpart of Th1 cells by

releasing IL-1, IL-5, IL-10, and transforming growth factor β (TGFβ) [36]. The
precise antigens leading to T-cell activation by APCs are under investigation. LDL

cholesterol and heat shock proteins (i.e., HSP60) have been suggested as likely

auto-antigens [37, 38]. Infiltrating mast cells support the pro-inflammatory milieu

by releasing pro-inflammatory mediators and enzymes [39]. Divergent B-cell

subsets have pro- and anti-atherogenic properties. B1 cells produce

atheroprotective Immunoglobulin M (IgM) [40]. However, depletion of B2 cells

attenuates atherosclerosis indicating a pro-inflammatory effect [41]. The imbalance

between pro- and anti-inflammatory cells leads to a growing and maturing of the

atherosclerotic lesion. Furthermore, repair mechanisms are suppressed, and the

plaque becomes vulnerable.

2.5 The Plaque Extracellular Matrix: The Pro-inflammatory
Micro-milieu for Cell–Cell Communication

The extracellular matrix contains a pro-inflammatory micro-milieu with a diversity

of cytokines, chemokines, enzymes, and damage-associated molecular patterns

(DAMP) released by activated or dying cells but also protective factors such as

stabilizing collagen fibers. Consequently, there is a growing interest in the biology

of the extracellular matrix [42]. Various cytokines orchestrate the inflammation by

supporting the cell–cell communication within the plaque but also within the whole

vascular system since atherosclerosis is a systemic disease. Macrophage-derived

TNFα, IL-1β, and IL-6 activate endothelial cells to express integrins, cell adhesion

molecules, and chemokines [43]. Furthermore, macrophages produce IL-12-pro-

moting Th1 differentiation of T cells [37, 44]. Th1 cells are further activated by

co-stimulatory factors. A crucial co-stimulatory factor is CD40 ligand (CD40L)-

promoting inflammation classically via CD40 and alternatively via the leukocyte

integrin Mac-1 [45, 46]. The latter interaction appears to be particularly relevant for

CD40L-induced recruitment of inflammatory cells and the development of athero-

sclerosis [47]. Similarly, other costimulatory molecules as well as adaptor proteins

downstream of CD40L and the TNFα/IL-1 receptor superfamily potently affect

vascular inflammation and atherosclerosis [48–51]. Activated T cells support the

inflammation by the release of IL-2 and IFNγ. The inflammatory activation leads to

a release of chemokines such as IL-8 and MCP-1 recruiting more leukocytes to the

vessel wall perpetuating vascular inflammation.
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However, macrophages and Th2 cells also release anti-inflammatory cytokines

such as IL-10, IL-33, IL1-receptor antagonist, or TGFβ with the ability to dampen

the inflammatory response. Therefore, it is mainly a disbalance of pro-inflammatory

and anti-inflammatory cytokines favoring a pro-inflammatory extracellular milieu

that exacerbates atherosclerosis. Beyond cytokines, chemokines, and stabilizing

collagen, the lesional extracellular matrix contains a variety of other molecules

affecting the inflammatory response. Cholesterol microcrystals, which develop

after accumulation of LDL cholesterol, activate pattern recognition receptors

(PRR) such as Toll-like or scavenger receptors and activate the inflammasome

[28, 52]. The inflammasome activates Caspase-1, and pro-IL1β is cleaved to active

IL-1β, which is secreted. However, the inflammasome can be co-activated by other

factors. DAMPs such as extracellular adenosine-30-phosphate (ATP) released by

dying cells bind to the purinergic receptor X7 (P2X7), thereby propagating

inflammasome activation [53]. A recent study showed that deficiency of the

P2X7 receptor inhibits the lesional NLRP3 inflammasome activation and reduces

atherosclerosis [54]. Similarly overall inhibition of the inflammasome attenuates

experimental atherosclerosis. IL-1b can activate itself and promotes further IL-1b

release turning on a vicious inflammatory circle [55]. Moreover, other purinergic

receptors such as P2Y2 and P2Y6, which bind to extracellular nucleotides as danger

signals, promote atherosclerosis [56, 57]. During this process, lesional cells, mostly

macrophages, are dying by necrosis or apoptosis. The resulting cell debris mingled

with components of the extracellular matrix forms the necrotic core [31].

2.6 Inflammation Drives Atherosclerotic Complications:
Plaque Rupture and Endothelial Erosion

A fibrous cap formed by EC, collagen fibers, and SMC separates the procoagulant

necrotic core from circulation. Collagen fibers produced by SMC are crucial to the

integrity of this cap. The breakdown of the fibrous cap leads to a vulnerable plaque

and can promote plaque rupture [58]. Consequently, prothrombotic molecules

including tissue factor, phospholipids, and further pro-thrombotic material are

released to the bloodstream, activate platelets, which form a thrombus, and ulti-

mately occlude the vessel [59]. If the inflammation within a nascent atherosclerotic

lesion maintains, foam cells are activated by IL1β and secret matrix

metalloproteinases (MMP), enzymes degrading collagen fibers. Furthermore,

IL-12 derived by foam cells induces T-cell transformation into Th1-effector cells

releasing IFNγ [60]. The latter has two effects on SMC: First, it dampens plaque-

stabilizing collagen synthesis. Second, it inhibits SMC proliferation further limiting

the source of collagen [61]. Thus, the fibrous cap thins and the plaque can rupture

with potential life-threatening consequences. These data directly causally link

increased inflammation within atherosclerotic lesions with plaque rupture and its

unfavorable clinical sequela [62, 63]. Accordingly, in the PROSPECT trial follow-

ing up 697 patients suffering from an acute coronary syndrome with IVUS
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identified thin-cap atheroma along with plaque burden and a luminal area smaller

than 4.00 mm2 as major predictor of clinical events (REF). Beyond plaque rupture,

erosions within the endothelial layer may promote thrombocyte activation and

vessel occlusion by the exposure of prothrombotic plaque material to the blood

stream. The erosions occur even in younger patients with relatively small athero-

sclerotic lesions [64]. It is speculated, that activation of endothelial Toll-like

receptor 2 (TLR2) results in endothelial apoptosis after ligation of extracellular

hyaluronan or components of Gram-positive bacteria [59, 65, 66].

2.7 From Bench to Bedside: Clinical Perspective
of Anti-inflammatory Treatment of Atherosclerosis

Two decades of experimental work clearly identify unresolved inflammation as

driving force behind atherosclerosis. In accord, large clinical trials associate an

increased inflammatory status in humans, e.g., as indicated by the elevation of high

sensitive C-reactive protein (hsCRP), with cardiovascular events [67]. Yet, we still

lack a genuine anti-inflammatory or immune-modulatory treatment option for

atherosclerosis beyond lipid-lowering therapies. The time is ripe for stringent

translation of experimental work to clinical development of such anti-inflammatory

and/or immune-modulatory treatments combating atherosclerosis. In that respect

we need to recognize that most the experimental data available have been acquired

in mice. While extremely valuable, by no means are these data guaranteed to hold

up their promise in humans and therefore no single mouse experiment can replace a

rigorous clinical investigation [68].

The large statins trials provide convincing evidence that reduction of systemic

inflammation reduces cardiovascular events: indeed, treatment with rosuvastatin

decreases levels of hsCRP, an effect most likely independent of the lipid-lowering

effect of statins [69]. However, several clinical trials challenging potentially anti-

inflammatory treatment options failed: The selective inhibitor for lipoprotein-

associated phospholipase A2, darapladib, which has large experimental evidence

on its side to drive inflammation in atherosclerosis, did not reduce cardiovascular

events in the SOLID-TIMI 52 and STABILITY trial [70, 71]. Similarly, strategies

of increasing high-density lipoproteins by CETP [72] inhibition failed to translate

into reduction of cardiovascular events. Epidemiological data also suggest that

cyclooxygenase (COX) [73] inhibition may even be associated with

cardiovascular harm.

Some promising data arise from smaller trials: In the BLAST study, 225 patients

undergoing effective coronary angioplasty received an alendronate-loaded lipo-

some treatment (LABR-312) attenuating macrophage biology. In subjects with

elevated monocyte counts, this treatment resulted in lower late lumen loss [74]. Col-

chicine inhibits expression of cell adhesion molecule, the inflammasome, and

inflammatory cytokines through the inhibition of tubulin polymerization. It is a
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widely used anti-inflammatory drug approved for acute use in patients with gout

and pericarditis or chronically in patients with Familial Mediterranean Fever. An

open-label pilot study found a relative reduction of hsCRP at 60% in patients with

CHD [75]. Accordingly, a retrospective analysis indicated that the continuous

treatment with colchicine in patients with gout or Familial Mediterranean Fever

reduces myocardial infarctions [76, 77]. The prospective Low Dose Colchicine

(LoDoCo) trial demonstrated a reduction of cardiovascular events in patients with

stable CHD with a hazard ratio of 0.33 [78]. Potential benefits are also observed in

patients with ST-segment elevation myocardial infarction (STEMI), but clinical

end point trials are missing [79].

Large trials testing the inflammatory hypothesis are currently under way: The

IL-1β antibody canakinumab reduces level of hsCRP, IL-6, and fibrinogen without

influencing the lipid metabolism [80]. The canakinumab anti-inflammatory throm-

bosis outcome study (CANTOS) enrolled over 10,000 participants with coronary

heart disease and elevated hsCRP and tests for cardiovascular events in patients

treated with canakinumab or placebo. The results were presented in Summer 2017:

Treatment with Canakinumab could reduce cardiovascular events and mortality.

The positive results of the CANTOS trial induce a paradigm shift in the treatment of

patients with coronary heart disease. The inflammatory nature of atherosclerosis

can be addressed directly in patients with increased inflammatory status [81].

Therefore, it is a step toward an individualized therapy for patients with coronary

heart disease. It is well known that treatment with methotrexate reduces cardiovas-

cular events in patients with rheumatoid arthritis [81]. The aim of the Cardiovascu-

lar Inflammation Reduction Trial (CIRT) is to evaluate whether low-dose

methotrexate can reduce cardiovascular events among patients with a cardiovascu-

lar inflammatory status such as type 2 diabetes or metabolic syndrome. The CIRT

trial is currently recruiting; results will be available in 2019 [82].

2.8 Conclusion

Atherosclerosis is a chronic inflammatory disease. Inflammation drives all steps of

atherogenesis from initiation, plaque progression, and plaque rupture. Despite its

crucial role in atherosclerosis, a genuine anti-inflammatory therapy is not

established in atherosclerosis. However, several promising large clinical endpoint

trials investigating IL1β-antibody, methotrexate, or colchicine in patients with

CHD are ongoing. These will likely provide us with novel, valuable, tailored

treatment options.
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Abstract

Atherosclerosis and attendant cardiovascular disease account for most deaths

worldwide. Despite considerable progress in understanding disease mechanisms,

the only causal treatment strategy is lowering LDL cholesterol. Atherosclerosis

is a complex disorder that is initiated and maintained by dyslipidemia, inflam-

mation, and (auto-) immunity. This complex interplay is orchestrated by cells of

the innate and adaptive immune system. It has been proposed that modulating

the aberrant immune response by vaccination against specific antigens could

become a new causal treatment for atherosclerosis. Immune-modulatory

therapies have been explored using strategies designed to dampen autoimmunity

by immuno-modulators, tolerize for auto-antigens, remove potentially harmful

antigens, or neutralize proteins that participate in atherogenesis by active and

passive immunization. Beneficial effects of such strategies have been shown in

animal models of atherosclerosis and other cardiovascular diseases. This chapter

categorizes and summarizes the efforts that have been made in the last decades

to design a vaccine to prevent cardiovascular disease.
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3.1 Atherosclerosis: The Driving Pathology
in Cardiovascular Disease

Cardiovascular events account for over 30% of all deaths, more than all forms of

cancer combined [1]. The most common underlying cause of all these events is

atherosclerosis, a systemic immune-inflammatory and fibro-proliferative disease, in

which the intima of medium-sized and large arteries is focally thickened by a fibro-

fatty plaque containing immune cells [2]. Neovascularization and hemorrhage

destabilize plaque and lead to calcification, which promotes the rupture of the cap

overlying atherosclerotic lesions. Plaque rupture, ulceration, and erosion can trigger

sudden thrombosis and occlusion, which precipitate acute life-threatening clinical

manifestations, such as acute coronary syndrome, myocardial infarction, occlusion

of peripheral arties, and stroke [3].

Elevated levels of serum cholesterol, especially low-density lipoprotein (LDL)

cholesterol, represent a major risk factor for initiation and progression of athero-

sclerosis [4–6]. The primary protein constituent of the LDL particle is apolipopro-

tein B (ApoB)-100, which organizes a core of cholesterol esters and triglycerides

and stabilizes a shell of phospholipids and free cholesterol. ApoB-100 contains the

binding site for the LDL receptor (LDLR) in the liver [7].

During early atherosclerosis, monocyte-derived macrophages accumulate in

the developing atherosclerotic lesion. In the plaque, LDL and ApoB-100 become

susceptible to modification and oxidation [8, 9]. Modified lipids are recognized by

Toll-like and other innate receptors and initiate a cascade of inflammatory and

pro-atherogenic events that include the development of foam cells, fatty streaks,

and ultimately complex atherosclerotic lesions [7, 10]. Both innate and adaptive

immune cells produce inflammatory cytokines and proteases that destabilize the

plaque and drive thinning of the plaque cap, lesion progression, and the risk of

rupture [11].
Several players, of which two are of great therapeutic interest, maintain the

homeostasis of LDL cholesterol: HMG-CoA reductase is the rate-limiting

enzyme of endogenous cholesterol biosynthesis [12]. By competitive inhibition

of this enzyme, statins effectively block cholesterol synthesis in the liver, which
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reduces overall cardiovascular mortality. Statins are now recommended in prim-

ary and secondary prevention [12–15]. Proprotein convertase subtilisin/kexin

type 9 (PCSK9) is a serine protease expressed in hepatocytes, which acts by

enhancing LDLR degradation and removal from the cell surface [16]. Blocking

PCSK9 increases LDL clearance and effectively reduces plasma cholesterol

levels [17]. Despite the success of lipid-lowering treatment [13], cardiovascu-

lar disease has frequently been observed to occur in individuals without hyper-

lipidemia or the traditional risk factors such as age, smoking, hypertension,

and diabetes [4, 18]. Based on these epidemiologic data, it is clear that atten-

tion must be focused on alternative pathophysiological processes beyond lipid

homeostasis.

3.2 Rationale for an Atherosclerosis Vaccine

Atherosclerosis has been studied for over 100 years [19]. The adaptive immune

component of atherosclerosis was discovered in 1986, when Hansson et al.

described CD4+ T-helper cells in the plaque [20]. However, immune modulation

has not yet translated to promising clinical prevention strategies. The potency of

anti-inflammatory therapies has best been shown for statins, which have many

pleiotropic anti-inflammatory effects [17, 21] and are now recommended for

individuals at high risk for cardiovascular disease, even in the absence of clinical

atherosclerosis [22]. Several anti-inflammatory therapies have been shown to be

effective in animal models of atherosclerosis [23]. In humans, an antibody to IL-1β
has successfully been tested in clinical trials [24]. However, despite their concomi-

tant immune-modulating effects, anti-inflammatory therapies are not capable of

specifically targeting autoimmunity and still hold the risk to dampen host defense or

to promote cancer.

Lymphocytes are found even in the healthy aortic wall in mice [25]. Therefore, it

is reasonable to suspect that lymphocytes initiate the immune response in athero-

sclerosis [26]. In particular, T-lymphocytes, which appear in early stages of athero-

sclerosis and account for over 10% of all cells found in human plaque [20, 27],

seem to be early key modulators of atherosclerosis [28, 29] (Table 3.1). Certain

self- and non-self antigens, such as ApoB-100 [30] or heat-shock proteins (HSPs)

[31], have been proposed as candidate antigens in the plaque that trigger CD4+

T cell interaction with antigen-presenting cells in the aortic wall [32]. Modulating

these early events by antigen-specific immunization or immune modulation

could represent a causal treatment for atherosclerosis [33, 34]—a concept first

tested in rabbits by Gero et al. in 1959 [35]. Such immune-modulatory approaches

(Table 3.2) could represent antigen-specific therapies that would not affect host

defense [11].
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3.3 Atherosclerosis-Associated Antigens

Among all cells of the adaptive immune system that can be found in the atheroscle-

rotic plaque, CD4+ T-helper (TH) cells predominate, while CD8+ cytotoxic T cells

and B cells are a minority of plaque lymphocytes [25]. Lymphocytes are activated

Table 3.2 Modulation of the immune system

Tolerance Immunosuppression

Active

immunization Passive immunization

– Non-reactivity of

the immune system

toward a foreign

antigen or self-antigen

– Can prevent

autoimmune disease

– Shaped in thymus

(central tolerance) or

in peripheral tissue

(peripheral tolerance)

– Therapeutic

reduction of immune

activity by drugs,

plasmapheresis, or

radiation

– Clinically used in

organ transplantation

and autoimmune

disease

– Induction of

immunity

through an

antigen

– Elicits a

humoral

response by

antibodies

targeting the

antigen

– Induces a

cellular (CD4+/

CD8+ T cell)

response

– Antigen-

specific memory

– Induction of immunity

through delivery of

antigen-specific

antibodies or blood

products containing

antibodies (sera, ivIG)

– Generates no cellular

response

– Effects are immediate

ivIG intravenous immunoglobulin

Table 3.1 Lymphocyte subsets in atherosclerosis

Lymphocyte Lineage Markers Effector cytokines

Role

in atherosclerosis

CD4+ T

cells

TH1 T-bet IFN-γ, TNF, IL-2,
IL-3

Pro-atherogenic

[87, 158, 159]

TH2 GATA3 IL-4, IL-5, IL-13 Controversial [29, 88]

TH17 ROR-γT IL-17AþF, IL-21,

IL-22

Controversial [89–92]

Treg FoxP3, CD25,

CTLA-4

IL-10, TGF-β Protective [160–164]

TR1 Unknown

(FoxP3� CD25�)
IL-10, TGF-β
IFN-γ, IL-5þ

Protective [162, 165]

TFH Bcl6, CXCR5,

PD-1

IL-21 Not tested

Subset Cell markers Antibodies

B cells B1 B220low, CD11b+,

CD23�
IgM, IL-10 Protective [106, 107]

B2 B220+, CD23+,

CD11b�
IgG Pro-atherogenic

[108–111]

TH T-helper, Treg T-regulatory cell, TFH T-follicular-helper cell, IgM Immunoglobulin M, IgG
Immunoglobulin G
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by specific antigens that can be recognized by unique surface molecules, the T cell

receptor (TCR), and the B cell receptor (BCR), respectively [36]. The BCR is

essentially a cell surface version of the antibody made by that B cell and can

recognize any structure, protein, lipid, carbohydrate, and even chemicals [36]. By

contrast, the TCR must recognize antigen-derived peptides presented by specific

cell surface molecules, MHC-II for CD4+ T cells and MHC-I for CD8+ T cells.

MHC-I is expressed on almost all cells and MHC-II is expressed on antigen-

presenting cells, such as dendritic cells, macrophages, and B cells in the atheroscle-

rotic plaque or the draining lymph nodes [37]. Several reports have strengthened the

importance of specific antigen recognition in atherosclerosis. T-helper cells interact

frequently with antigen-presenting cells in the plaque [32]. T cells found in human

coronary arteries and mouse lesions showed a restricted repertoire of TCRs

[38, 39], indicating that only T cells accumulate and proliferate in the plaque that

are specific for atherosclerosis-associated antigens. The challenge in recent years

was to identify specific antigens that initiate the immune response in the plaque

[34]. Exogenous antigens stem from bacteria, viruses, or other invading organisms

and have spawned the infectious hypothesis of atherosclerosis [40], which was not

supported by clinical trials using various antibiotics. An immune reaction to self-

antigens, endogenously expressed by the host organism or generated by cell death,

gave rise to the autoimmune hypothesis [33, 41] (Fig. 3.1). It is currently unknown

whether the autoimmune response in atherosclerosis is pro- or anti-atherogenic.

Exogenous antigens Endogenous protein antigens
Cytomegalovirus 

Chlamydia pneumonia 
Mycoplasma pneumonia 

P. gingivitis 
Streptococcus pneumonia  

LDL/ApoB-100 Heat-shock proteins (HSP) 
beta2-GPI

T-regulatory cells 
IL-10 

IgG auto-antibodies 

outcome and 
mechanism 
uncertain

outcome and 
mechanism 
uncertain

Therapeutic targets

PCSK9  
CETP 
IL-12 

IgM auto-antibodies 
uptake of LDL through macrophages 

MHC-II binding 
peptides

LDL

known antigens: 
Phosphorylcholine (PC)

inactivation of target 
through antibody 

blockade

Endogenous lipid antigens

boost protective immunityneutralize antigens

Fig. 3.1 Proposed cardiovascular vaccination strategies
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3.4 Modulating Autoimmunity to Endogenous Protein
Antigens

LDL/ApoB-100 Of all particles that accumulate in the plaque, LDL is most highly

positively correlated with adverse clinical outcomes [2] including coronary athero-

sclerosis [42]. LDL is a large heterogeneous particle with a diameter of 25 nm

[6]. Upon deposition in the atherosclerotic lesions, LDL is modified by oxidative

processes and eventually taken up by lesional macrophages, which promotes their

transition into foam cells [43, 44]. LDL was suggested to contain auto-epitopes

recognized by T cells. Indeed, T cells resident in the plaque specifically respond and

proliferate when LDL is presented by APCs [32]. Unexpectedly, vaccination with

either native or modified (oxidized) LDL was shown to prevent atherosclerosis in

different animal species. Successful vaccination with LDL has been described for

various adjuvant combinations, dosages, and routes [45–52]. The protective effect

of immunizing against LDL appears to encompass two fundamental mechanisms:

(1) the recognition of peptide antigens derived from ApoB-100 by CD4+ T cells and

(2) the recognition of (modified) lipid epitopes that induce B cells, which differen-

tiate into plasma cells and produce antibodies to modified LDL.

CD4+ T cells recognize peptides from autoantigens that are presented on Major

Histocompatibility Complex (MHC)-II but not the antigen itself or lipid epitopes.

ApoB-100 contains the most plausible candidates for the primary immunogenic

peptide epitopes. Indeed, vaccination with ApoB-100 alone was effective in pre-

venting atherosclerosis [53, 54], suggesting that ApoB-100 may represent an

important self-antigen in atherosclerosis. Fredrikson et al. have identified specific

peptide sequences originating from human ApoB-100 that were recognized by

autoantibodies in human plasma. Vaccination with these human peptides was

reported to be protective in murine atherosclerosis [55], but the mechanism was

not identified. Recently, peptide sequences were identified within mouse ApoB-100

that can bind with strong affinity to I-Ab, the MHC-II haplotype of C57Bl6 mice

[56]. Binding of these peptides to MHC-II depends on specific amino acid residues

(anchor residues) within the peptides that can interact with corresponding parts of

the MHC molecule. Without such interaction, antigen-presenting cells cannot

present peptides to CD4+ T cells. Immunization with these MHC-II-binding pep-

tides prevented atherosclerosis in a mouse model [56]. Now, at least five specific

peptide epitopes within human or murine ApoB-100 were identified, including p2,

p3, p6, p143, and p210. Notably, human plasma of CVD patients contains

antibodies that cross-reacted with some of these ApoB-100 peptides. One of the

human ApoB-100 peptides, p210, was extensively tested in different adjuvant

formulations, including intranasal, subcutaneous, and intraperitoneal immunization

[53]. Immunization against p210 was shown to be protective in atherosclerosis, as

well as angiotensin II-induced hypertension, aneurysm formation, and renal fibrosis

[57–59]. However, p210 does not bind mouse MHC-II [28], and thus, it is unlikely

to elicit a specific CD4+ T cell response.
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Heat-Shock Proteins (HSP) Another group of self-antigens that may trigger the

autoimmune response in atherosclerotic lesions are heat-shock proteins

[60]. HSPs are intracellular chaperones that are expressed upon cellular stress,

cold, UV light, and changes in pH [61]. They are highly conserved throughout

different organisms [61]. In humans, HSP60 antibody titers correlate with cardio-

vascular disease [62, 63]. The efficacy of immunization against HSPs remains

controversial: Immunization against HSP60/65 increased atherosclerosis in sev-

eral reports [64–69], while others reported atheroprotection [70–73]. Interestingly,

human HSP60 and bacterial HSP65 share some B cell epitopes [74], giving rise

to the hypothesis that molecular mimicry could support cross-reactivity between

infectious epitopes and self-epitopes. Such cross-reactivity was previously

shown for epitopes within Streptococcus pneumoniae and oxidation-specific

epitopes in mice [75]. A systematic approach to screen for immunogenic pep-

tides derived from HSPs has not been described so far. Only recently, a 24-amino

acid peptide within HSP60, termed p266, has been reported to accelerate

atherosclerosis [69].

β2-Glycoprotein I (β2GPI) β2GPI—the target of anti-cardiolipin antibodies

[76]—is a plasma protein that is the principal auto-antigen in patients with the

anti-phospholipid syndrome [77], a hypercoagulation disorder that accompanies

systemic lupus erythematosus. β2GPI is found in human atherosclerotic lesions

[78]. The outcome of vaccination against β2GPI is controversial: Immunization

against β2GPI accelerated early atherosclerosis in LDL receptor-deficient mice

[79–81], while it was protective in another study [82]. Notably, lymphocytes

from mice immunized with β2GPI promoted lesion formation in LDLR�/�

mice [83].

3.4.1 Atheroprotective Mechanisms

In principle, two different mechanisms have been proposed to mediate athero-

protection following immunization: a humoral antibody-driven response initiated

by B cells or a cellular protective immune response by CD4+ T cells.

Autoantibodies induced by vaccination can neutralize the target antigen. If the

antigen is a cytokine, antibodies can increase or decrease its activity at the receptor.

Antibodies can also promote or diminish antigen uptake by macrophages in the

context of atherosclerosis [108, 109]. An increase of autoantibodies has been

observed in some but not in all atheroprotective immunization protocols. For

example, Freigang et al. observed that immunization with malondialdehyde

(MDA)-modified LDL as well as native LDL protected from atherosclerosis in

LDLR�/� mice. However, only MDA-modified LDL induced an IgG1 and IgG2

antibody response, while antibodies targeting native LDL were not found in

LDL-immunized mice [45]. Vaccination with ApoB-100-derived peptides pro-

tected from atherosclerosis and induced IgG antibodies against the peptides. How-

ever, these antibodies did not cross-react with intact LDL [56]. Another study
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reported atheroprotection by a mix of different ApoB-100-derived peptides without

induction of autoantibodies against these peptides [84], suggesting that such

antibodies are not required for atheroprotection. If this is true, antibodies may

just be biomarkers of vaccination and not causal actors in atheroprotection: Upon

intracellular processing of the antigen, anti-peptide antibodies are generated, but

the relevant peptide sequence is not accessible in the native protein. As such

antibodies would exhibit no biological function. Indeed, vaccination against HSPs

induced antibodies, but IgG antibodies did not correlate with the disease outcome

after vaccination. Interestingly, direct transfer of IgGs induced by immunization

enhanced atherosclerosis, while vaccination strategies that resulted in athero-

protection did also show enhanced IgG antibody titers [53, 64]. Of note, it has

been shown that IgG antibodies against LDL can promote LDL aggregation and

enhance uptake of LDL into macrophages, which may provide a link between

autoantibody generation and disease progression [85]. Antibodies directed against

a peptide epitope of HSP60 bound to endothelial cells and caused increased

cytotoxicity [69]. The direct effect of specific IgG antibodies against peptide

epitopes from ApoB-100 has not been tested systematically.

The alternative hypothesis is that atheroprotection following immunization may

be due to atheroprotective cytokines secreted by antigen-specific CD4+ T-helper

cells. This is supported by the observation that immunization with oxLDL

generated T cells that did only respond to native LDL but not to oxLDL [54]. CD4
+ T-helper cells are the main lymphocytes residing in the atherosclerotic plaque

[25]. The majority of lesional T cells are CD4+ and show distinct lineage commit-

ment into Type 1 T-helper (TH1), Type 2 T-helper (TH2), Type 17 T-helper (TH17),

or T-regulatory helper (Treg) cells (an overview of T-helper cell lineages is provided

in [86], Table 3.1). TH1 cells and the main TH1-derived cytokine IFN-γ clearly

exacerbate atherosclerosis [28, 87]. TH2 responses, mainly based on the TH2

signature cytokine IL-4, antagonize TH1 pro-atherogenic effects and protect against

early lesion formation [29], although in some studies, depletion of IL-4 has been

suggested to be atheroprotective [88]. Studies on the role of IL-17-producing TH17

cells have yielded inconsistent results. Blockade or genetic deletion of IL-17

reduced atherosclerosis and induced a stable plaque phenotype [89–91], while in

other reports IL-17 deficiency accelerated plaque formation [92]. Tregs secrete

IL-10, TGF-β, and other anti-inflammatory cytokines. Tregs are the main mecha-

nism that curbs autoimmunity [93], dramatically demonstrated by the rampant,

lethal autoimmunity in mice [94] or humans [95] with defective Tregs. Tregs are

beneficial in atherosclerosis and the prototypic Treg cytokines TGF-β and IL-10

show anti-inflammatory and atheroprotective effects [96]. The finding that much

fewer Treg cells are found in all stages of atherosclerotic lesions than in other

chronic inflammatory diseases [97] has led to the hypothesis that local breach of

self-tolerance against potential antigens in the plaque and a loss of balance between

protective Tregs and pro-atherogenic T-effector cells may be promoting factors of

inflammation and lesion progression [28, 97].
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Atheroprotection following immunization has been proposed to skew the polar-

ization of T cells into distinct, favorable TH lineages, such as into Tregs [28]. Wigren

et al. reported increased percentage of CD25+ FoxP3+ Treg cells in the spleen.

FoxP3 is the signature transcription factor defining Tregs. Splenic T cells following

immunization with the ApoB-100 peptide p210 showed Treg polarization [98]. Deple-

tion of Treg cells abolished the atheroprotective effect of a set of ApoB-100

peptides in another study [84]. The exact cellular and molecular mechanisms by

which Treg cells can protect from atherosclerosis in the context of immunization, as

well as their antigen specificity, are unknown. It has been reported that IL-10

secreted by Tregs protects from atherosclerosis [99]. Consistent with this finding,

immunization with the ApoB-100 peptides p3 and p6 induced IL-10 expression in

the atherosclerotic aorta [56]. Other studies reported a decrease in TH1 and TH2

cytokines upon vaccination [84], which could also be a result of increased Treg-

mediated effector T cell suppression. A recent report indicated that immunization in

autoimmune disease induces TR1 cells and CD4+ T-helper cells that express IL-10

but not the Treg marker FoxP3 [100]. Vaccination with HSP60 induces both Tregs

and TR1 cells in the spleen and cervical lymph nodes of mice [73]. This effect was

accompanied by increased levels of circulating IL-10 and TGF-β and decreased

secretion of IL-17 and IFN-γ. Notably, inhibition of IL-10 abrogated the

atheroprotective effect [73]. It is unknown which specific pathways induce the

activation of Treg cells in the context of vaccination. It was proposed that Fms-like

tyrosine kinase 3 (Flt3)-expressing tolerogenic dendritic cells drive the generation

of Treg cells in atherosclerosis [101–103], an effect thought to be dependent on

expression of TGFβ and retinoic acid by dendritic cells [104]. Injection of ApoB-

100-loaded dendritic cells treated with IL-10 protected from atherosclerosis and

induced a Treg response in lymphoid organs, corroborating this concept [54]. Taken

together, these findings identify Tregs and TR1 cells, as well as the atheroprotective

cytokine IL-10, as the best candidates to cause atheroprotection after vaccination.

Antigen-specific T cell responses to protein antigens during the natural course

of atherosclerosis or after vaccination have not been studied. All published data

stem either from analyzing bulk T cells at different locations or from indirect

evidence, mainly by restimulation protocols, in which CD4+ T cells were isolated

from atherosclerosis-prone animals, atherosclerotic lesions, or after vaccination

with the proposed antigens and exposed to antigen-loaded APCs to activate and

expand the responding T cells. These classical strategies, albeit capable of

identifying a part of the auto-reactive T cell repertoire, are neither effective in

detecting T cells with a low-affinity TCR that are less likely to proliferate (likely

Tregs), nor can they identify the natural phenotype of these cells without prior

stimulation in vitro. It is likely that only a tiny proportion of all T cells are specific

for a given antigen [105]. T cell-mediated atheroprotection has been shown to be

important early in atherosclerosis in mice [26]. Thus, it is unclear whether

manipulating response cell immunity in patients with already established athero-

sclerosis would be beneficial.
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3.5 Modulating the Autoimmune Response to Endogenous
(Modified) Lipid Antigens

B cells figure in all stages of atherosclerosis, but their effect on lesion formation is

complex. B cells have been reported to protect from atherosclerosis [106, 107] or to

promote atherosclerosis [108–111], depending on the particular B cell subset

studied. Plasma cells derived from B cells secrete antigen-specific IgM or IgG

antibodies that can bind to the antigen and neutralize it. It has been reported that

treatment with infused polyclonal immunoglobulin preparations (ivIg) protects

from murine atherosclerosis, although the mechanism is unclear [112]. It has

been demonstrated that B1 cells, which can be defined by expression of certain

surface markers (Table 3.1), are capable of inducing a protective humoral immune

response that can protect from atherosclerosis and do not require participation of T

cells [113]. The protective response of B1 cells depends on the generation of IgM

antibodies that can cross-react with lipid B cell epitopes within LDL. Such

antibodies help clearing LDL from the plaque and inhibit uptake of LDL into

macrophages [113, 114]. Oxidation-specific (neo-) epitopes that are generated by

oxidation of LDL, such as phosphorylcholine (PC) and oxidized cholesterol, have

been identified as primary targets of these antibodies [115]. The majority of reports

suggested that IgM but not IgG antibodies that require T cell help carry out this

protective response. Notably, the majority of all IgM antibodies found in mice and

humans target oxidation-specific epitopes [115]. In humans, IgM and in some

studies also IgG antibodies to modified LDL correlate negatively with disease

[116–118], although other studies have reported a positive correlation between

IgM and IgG antibodies with the extent of atherosclerotic lesions [119]. Antibodies

against oxidation-specific epitopes protected mice from atherosclerosis

[120, 121]. Vaccination against oxLDL, MDA-modified LDL, or Streptococcus
pneumoniae, which shows molecular mimicry with oxidized LDL [75], generated

antibodies specific for PC. Anti-PC antibodies generated after vaccination with PC

protected from atherosclerosis [122]. Some of these neo-epitopes within oxLDL are

also found in apoptotic cells. In fact, some antibodies against oxLDL can also bind

to apoptotic cells and vice versa [123]. Injection of apoptotic cells that bear similar

neo-epitopes as found in oxLDL induced oxidation-specific antibodies in the spleen

and protected from atherosclerosis in ApoE�/� mice [123]. B1a, B1b, and marginal

zone B cells (MZB) have been proposed as origin of this protective IgM response

[124, 125].

3.6 Clearance of Potential Exogenous Antigens

A considerable number of different pathogens were identified in human and mouse

atherosclerotic lesions, including bacteria, such as Chlamydia pneumoniae, Myco-
plasma pneumoniae, and Porphyromonas gingivalis, as well as viruses like Cyto-
megalovirus (CMV), Hepatitis C Virus (HCV), Human Immunodeficiency Virus
(HIV), or Human Papillomavirus (HPV) [126, 127]. Infectious diseases caused by

some of these pathogens have been linked to CVD in some epidemiological studies.

38 D. Wolf et al.



For instance, infection with the varicella-zoster virus (VZV) that causes chickenpox

and herpes zoster upon reactivation is clinically linked to stroke [128, 129].Whether

vaccination against VZV alters cardiovascular outcome is not known. Notably,

clinical trials that neutralized Chlamydia infection by an antibiotic treatment have

failed to translate into a measurable cardiovascular disease protection [130]. Influ-

enza is clinically associated with increased risk for CVD, in particular for acute

myocardial infarction and overall cardiovascular mortality [131]. It has been

proposed that enhanced plaque inflammation following influenza accounts for this

increase in CVD [132, 133]. Interestingly, a recent meta-analysis shows a reduction

of cardiovascular events following influenza vaccination within 1 year [134]. These

findings have been confirmed in further case-controlled trials [135, 136]. Based on

these findings, influenza vaccination is now recommended as secondary prevention

for patients with heart disease [137].

Whether these results suggest a causal link between influenza and T cell immu-

nity is unclear. However, it is possible that TCRs or BCRs cross-react with epitopes

on pathogens that have similarities to self-antigens [105], which could elicit an

immune response against a self-antigen, that was initiated by the foreign antigen.

Vaccination against S. pneumoniae suppressed atherosclerosis in a mouse model

[75]. Interestingly, anti-oxLDL antibodies are also found more frequently in car-

diovascular healthy individuals after pneumococcal vaccination [138]. Whether

this antibody response is beneficial in protecting from cardiovascular disease has

been controversial [139]. Particularly, one study found no protection from acute

myocardial infarction and stroke within 30 days after pneumococcal vaccination

[140]. It has also been proposed that immune activation caused by infection or other

autoimmune disease could trigger an immune response to atherosclerosis antigens

by indirect pathways.

3.7 Vaccination to Neutralize Protein-Effector Functions

The classic concept of vaccination is to induce a specific immune response that is

capable of clearing the infectious organisms or neutralizing the relevant antigen,

often a toxin [36]. This concept has been translated into cardiovascular vaccination

strategies to neutralize potential pro-atherogenic mediators that interfere with lipid

metabolism or TCR functioning.

Blocking TCR-MHC II Interaction Hermansson et al. recently identified that

CD4+ T cells generated by immunization against native LDL showed oligoclonal

usage of TCR variable (V) β segments as determined by TCR sequencing

[141]. Hybridomas generated from these T cells were enriched for the TCRBV31

segment. The V segment is involved in TCR interaction with MHC-II and is

therefore needed for priming and expansion of T cells by antigen-presenting

cells. Immunization with a TCRBV31 peptide resulted in antibodies specific for

this TCR and protected from atherosclerosis, likely by eliminating atherosclerosis-

specific T cell clones.
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Neutralizing Interleukin-12 (IL-12) IL-12 is a cytokine secreted by macrophages

and other antigen-presenting cells that activates T cells and induces an atherogenic

TH1 polarization. Immunization of LDLR�/�mice with an IL-12-adjuvant complex

resulted in IL-12 specific, neutralizing antibodies that blocked IL-12 downstream

signaling, diminished IFN-γ production in T cells, and decreased atherosclerotic

lesions with a clinically more favorable stable plaque phenotype in mice [142].

PCSK9 Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein that

helps to degrade LDL receptor. Its expression is negatively correlated with cardio-

vascular events and individuals with a loss-of-function mutation are greatly

protected [16]. In a recent study, neutralizing antibodies to PCSK9 were induced

in mice and primates by vaccination with virus-like particles that displayed PCSK9-

derived peptides [143]. However, vaccination did not reduce LDL cholesterol.

CETP Cholesteryl ester transfer protein (CETP) is an enzyme critically involved

in cholesterol loading and transfer from high-density lipoproteins (HDL) to LDL

and very-low-density lipoproteins (VLDL), which have a strong pro-atherogenic

potential, while HDL negatively correlates with disease. Antibodies directed

against CETP, induced by vaccination with a CETP fusion protein with a fragment

of tetanus toxin can inhibit cholesterol loading of VLDL and LDL. CETP antibody

titers are negatively correlated with atherosclerosis. Preclinical studies have shown

that such antibodies are atheroprotective and increase HDL cholesterol [144, 145].

3.8 Considerations for Translational Strategies

Vaccination is a powerful tool in primary prevention of infectious diseases. Recent

advances in checkpoint inhibitors suggest that vaccines could also effectively

prevent or treat cancer. However, current vaccination approaches against athero-

sclerosis remain at the preclinical level. Many questions that are fundamental to

ultimately translate these findings into a human vaccine remain unresolved. Devel-

opment of a vaccine to prevent cardiovascular disease requires a stepwise approach

of (1) identifying of the exact epitopes within antigens that modify atherosclerosis,

(2) defining the atheroprotective mechanisms with respect to their cellular origins,

and (3) specifying immune-tolerizing adjuvants, doses, and routes of antigen

delivery that could be translated to humans.

Immune-Tolerizing Adjuvants and Routes It has been demonstrated that the

effect of vaccination is greatly dependent on the choice of adjuvants. Many

clinically used vaccines are adjuvanted by aluminum salts (alum). Traditional

vaccination protocols in rodents use a combination of complete Freud’s adjuvant

(CFA), which contains heat-inactivated Mycobacterium tuberculosis in an emul-

sion with mineral oil for prime injection, and incomplete Freud’s adjuvant (IFA),

which does not contain M. tuberculosis, for subsequent booster injections

[34]. It has been shown that some adjuvants, including IFA and the clinically
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widely used alum, may foster an atheroprotective response alone, even without a

specific antigen [98, 146]. This effect was thought to be partially caused by

enhanced autoantibody generation and a yet undefined immune mechanism that

depends on the site of injection [147]. Also, booster injections have been placed in

the peritoneal cavity of mice and other animals, a strategy that is not translatable to

humans. The route of antigen delivery seems to be important: nasal and oral

application of an HSP65 vaccine was atheroprotective [71, 72], while intra- or

subcutaneous injection promoted lesion formation [64, 65]. Alternative routes have

also been exploited in vaccination against oxLDL and an ApoB-100 fusion protein,

including oral and nasal antigen delivery [53, 148].

Multivalent Vaccines Several antigens have been successfully tested in animal

models of atherosclerosis. It has been proposed that multivalent vaccines that

incorporate not one but instead several antigens could help to design a broader

and more efficient vaccine [149], because they may induce synergistic, beneficial

effects. In particular, simultaneous immunization with two ApoB-100 and HSP60

peptides was more effective than one of the peptides alone [150], albeit the

mechanisms were not identified. Efforts have also been made to incorporate

antigenic peptides from HSPs, ApoB-100, and β2GPI into one multivalent vaccine

[151]. Recently, it has been proposed that delivery of peptides embedded in

MHC-II molecules, rather than the peptide alone, may be more potent to trigger a

T cell specific responses capable of inducing a protective TR1 response in autoim-

mune disease [100], but this approach has not been tested in atherosclerosis.

DNA Vaccines The delivery of antigens not through the antigen itself but by

delivery of DNA plasmids that encode for the antigen that is de novo expressed

in target cells has been tested in animal models of autoimmunity, including EAE

and rheumatoid arthritis [152–154]. In the context of atherosclerosis, DNA

vaccines have been shown to induce a specific response toward vascular endothelial

growth factor 2 (VEGF2), which is expressed in stressed endothelial cells. DNA

immunization induced CD8+ cytotoxic T cells that neutralized VEGF-2 expressing

endothelial cells and protected from atherosclerosis [155].

Passive Immunization in Clinical Trials It has been proposed that some species

of autoantibodies against modified LDL may be atheroprotective. A human IgG1

antibody specific for an oxidation-specific epitope from ApoB-100, termed p45,

was protective in mouse atherosclerosis [120, 121]. This antibody, MLDL1278a,

showed anti-inflammatory properties in obese primates [156] and was later tested in

the multicenter, randomized GLACIER trial (Goal of Oxidized LDL and Activated

Macrophage Inhibition by Exposure to a Recombinant Antibody). The primary

endpoint in this study was arterial wall inflammation quantified by positron emis-

sion tomography (PET) imaging with 18F-fluorodeoxyglucose (FDG). Despite

promising experimental evidence in animals, the trial failed to show an effect in

its primary endpoint [157].
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3.9 Conclusion

Atherosclerosis is the main underlying pathologic process that drives CAD, MI,

stroke, and PAD. Its initiation and progression in now understood as a complex

interplay of innate and adaptive immunity that engages humoral and cellular

immunity. Adaptive immune responses to foreign antigens and to self-antigens

have been reported. Several antigens that could trigger such autoimmune response

in disease-prone animals and individuals have been identified. Vaccination against

such antigens was atheroprotective in different species, albeit precise mechanisms

and antigen specificity have not been identified. T-regulatory cells, the

atheroprotective cytokine IL-10, and antigen-specific IgM antibodies are

candidates that may confer atheroprotection. The first clinical trial to test passive

immunization in humans has failed. These results should not discourage but instead

drive future work to define epitopes in humans, clarify the mechanisms that

underlie atheroprotective vaccination, and design vaccination protocols that can

be translated to clinical practice.
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Platelets as Regulators of Thrombosis
and Inflammation 4
Daniel Duerschmied and Steffen Massberg

Abstract

This chapter describes features of blood platelets that serve in the regulation of

thrombosis and inflammation. Classically, platelets have been known for

decades to promote hemostasis of wounds and arterial thrombosis, in particular

atherothrombosis following atherosclerotic plaque rupture. More recently, the

importance of platelets for the development of deep vein thrombosis has been

recognized. But platelets also link thrombosis and inflammation in

“immunothrombosis” within microvessels. In a collaborative “effort” of several

cell types, plasma proteins, and neutrophil extracellular traps, platelets orches-

trate the recognition, trapping, and killing of pathogens. Immunothrombosis also

occurs in microvessels during ischemia–reperfusion injury, e.g., following

myocardial infarction. In acute and chronic inflammation, platelets further

cooperate with neutrophils, monocytes, and lymphocytes without clot formation

to promote physiological—and pathophysiological—responses to pathogens or

auto-antigens.
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4.1 Introduction

A quarter million platelets circulate in 1 μl of human blood (more than 600,000 μl�1

in murine blood). Considering that the mean volume of a platelet is 10 fl [1], up to

one-fifth of the entire blood volume is actually platelet volume—divided into a

large number of single small cells. In fact, platelets are the smallest and most

numerous cells in the blood. They originate from bone marrow megakaryocytes

[2, 3] and do not need a cell nucleus to regulate thrombosis and inflammation

(among other functions). This chapter explains how platelets adhere to the vessel

wall, form aggregates, and release soluble factors in venous and arterial thrombo-

sis—and in acute and chronic inflammation. A table lists features that platelets need

for these tasks. This collection of known platelet features may serve as a reference

for researchers to further investigate immunothrombotic platelet functions or

possible therapeutic targets.
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4.2 Platelets Drive Arterial Thrombosis

Thrombus formation after vessel wall injury in arteries (or veins) is driven by

platelets. This is important not only for hemostasis in bleeding wounds but also

in atherothrombosis (Fig. 4.1). Circulating platelets adhere to the site of injury,

become activated, and secrete soluble factors [4, 5]. Only if these autocrine agonists

amplify activation, platelets then recruit other platelets to form a growing thrombus

that needs to be stabilized. In myocardial infarction, platelet activation occurs at the

site of atherosclerotic plaque rupture (and where a stent is implanted during

percutaneous coronary intervention). The exposed plaque component collagen

first induces platelet adhesion and activation, followed by tissue factor-driven

coagulation in flow niches downstream of platelet aggregates [6]. Platelet

Fig. 4.1 Atherothrombosis. Platelets drive thrombus formation in acute coronary syndrome and

are the primary therapeutic target. A near-occlusive intracoronary plaque creates blood flow

perturbations, inducing formation of discoid platelet aggregates in a von Willebrand factor

(VWF)-dependent manner. Once a plaque ruptures or a stent is implanted, collagen from the

extracellular matrix is exposed and binds unfolded plasma VWF. Circulating platelets adhere to

collagen-bound VWF and get activated by binding to collagen. Activated platelets release the

depicted autocrine agonists and promote the formation of thrombin, initiating a second wave of

platelet activation. Stable platelet aggregation via activated glycoprotein (GP) IIb/IIIa requires

adenosine diphosphate (ADP) binding to P2Y12 receptor, which can be inhibited by clopidogrel.

PDE phosphodiesterase, ASA acetylsalicylic acid, 5HT2A—serotonin receptor, TP—thromboxane

A2 receptor, PAR1—thrombin receptor
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glycoprotein (GP)Ibα binding to collagen-bound von Willebrand factor (VWF)

constitutes the primary adhesion mechanism for platelets under arterial shear

conditions [5, 7]. Subsequent binding of GPVI to collagen initiates platelet

activation [8].

4.2.1 Platelet Signaling

Initially, activated platelets release thromboxane A2 (after cyclooxygenase activa-

tion) and ADP as mediators for a second wave of platelet activation. Enhanced

platelet activation then induces a conformational change of the cell-adhesion

molecule integrin αIIbβ3 (GPIIb/IIIa). In its active conformation, GPIIb/IIIa is

the key molecule for platelet–platelet binding (via fibrinogen, VWF, and fibronec-

tin) and stabilization of platelet aggregates [4].

At sites of high shear stress and blood flow perturbation, discoid—i.e., primarily

unactivated—platelets also form tethers and aggregate loosely without plaque

rupture [9, 10]. This process is VWF/GPIbα mediated and followed by aggregate

stabilization requiring ADP. Platelet activation also leads to the exposure of

phosphatidyl serine on the platelet surface, providing binding sites for coagulation

factors to promote the generation of thrombin [11]. Platelet activation by thrombin

or collagen leads to GPIIb/IIIa activation via two synergistic signaling pathways

involving Ca2+- and diacylglycerol-regulated guanine nucleotide exchange factor I

(CalDAG-GEFI) and protein kinase C (PKC) [12–14]. Intracellular Ca2+ release is

sensed by CalDAG-GEFI and translated into activation of the small GTPase Rap1.

Activated Rap1 then induces thromboxane A2 release (another positive feedback

mediator) and activates GPIIb/IIIa [15]. In the other pathway, activation of PKC

induces granule release, initiating the abovementioned second-wave activation of

Rap1 and GPIIb/IIIa by ADP binding to the P2Y12 receptor (Fig. 4.1). If P2Y12 is

blocked, GPIIb/IIIa activation relies solely on signaling through CalDAG-GEFI for

Rap1 activation, which is reversible and insufficient for stable thrombus formation

under arterial flow [12].

4.2.2 ADP Receptors

Resting platelets store ADP in their dense granules at very high concentrations

(650 mM) and, once activated, produce an ADP-rich environment [4, 16]. In the

second-wave reaction, ADP then potentiates platelet aggregation by binding to both

the P2Y1 and P2Y12 receptor [17, 18]. This mechanism ensures sustained platelet

activation, which is crucial for the development of stable thrombi under arterial

flow conditions [12, 17]. The Gαq-coupled P2Y1 receptor amplifies initial platelet

activation via Ca2+ mobilization and is important for the first phase of thrombus

formation [19, 20]. Positive feedback through the Gαi-coupled P2Y12 receptor is

critical for the formation of stable platelet aggregates, and P2Y12 antagonists

effectively inhibit arterial thrombus formation [18, 21]. Activation of P2Y12 by
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ADP inhibits the formation of cyclic adenosine monophosphate (cAMP) by

adenylyl cyclase [22]. Consequently, cAMP-dependent protein kinase (PKA)-

mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP), a

negative modulator of GPIIb/IIIa activation, is inhibited. VASP phosphorylation

is not lowered by ADP stimulation when P2Y12 is blocked. Further signaling events

downstream of P2Y12 are primarily mediated by phosphatidyl inositol-3 kinase

(PI-3K). The P2Y12 receptor hence amplifies platelet secretion, platelet aggrega-

tion, and platelet procoagulant activity.

4.2.3 Thrombin Receptors

The serine protease thrombin activates its receptors indirectly by enzymatic cleav-

age of a silencing domain, which allows subsequent binding of its unmasked ligand

site to the receptor body (“autoactivation”) [23, 24]. Human platelets express the

Gq protein-coupled protease-activated receptors (PAR)-1 and PAR-4 (murine

platelets express PAR-3 and PAR-4). It was understood around the turn of the

millennium that PAR-mediated platelet activation by thrombin—in particular via

PAR-1 in human—is a central feature of hemostasis [25, 26]. Interestingly, PAR-1

can be activated by 100-fold lower concentrations of thrombin than PAR-4 and is

hence considered a more sensitive—albeit weaker—mediator of platelet activation

[27, 28]. PAR-1 signaling via Ca2+ and CalDAG-GEFI is transient and unable to

induce sustained GPIIb/IIIa activation unless amplified by the ADP feedback via

the Gi-coupled P2Y12 receptor and PKC activation in the parallel pathway.

4.2.4 Antithrombotic Strategies

Figure 4.1 also lists antiplatelet strategies to prevent arterial thrombosis. The

primary indication for platelet inhibitors is (prevention of) atherothrombosis in

coronary, cerebral, or peripheral arterial disease. Only acetylsalicylic acid (ASA) is

also recommended for patients with deep vein thrombosis or pulmonary embolism,

who have discontinued anticoagulation and would otherwise not receive any further

antithrombotic treatment for secondary prevention (class IIb recommendation)

[29]. Approved antiplatelet drugs are the cyclooxygenase inhibitor ASA, the phos-

phodiesterase inhibitor cilostazol, the serotonin receptor antagonist sarpogrelate

(approved in Asia), ADP receptor antagonists (ticlopidine, clopidogrel, ticagrelor,

prasugrel, and cangrelor), the thrombin receptor antagonist vorapaxar, and GPIIb/

IIIa inhibitors (eptifibatide, tirofiban, and abciximab).
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4.3 Platelets Promote Venous Thrombosis

The phase III clinical trials WARFASA and ASPIRE revealed a net clinical benefit

of ASA for patients with venous thromboembolism after discontinuation of plas-

matic anticoagulation [30, 31]. Platelet inhibition effectively prevented recurrent

venous thromboembolism. This illustrates how important platelets are for thrombus

formation in veins. Disturbed venous blood flow activates the endothelium, and in a

cooperative effort, endothelial cells, platelets, monocytes, and neutrophils interact

with tissue factors, VWF, Factor XII, and neutrophil extracellular traps (NETs) to

initiate and promote thrombus formation [32]. Platelets interact with VWF and

leukocytes via the key adhesion receptor GPIbα, a component of the GPIb/V/IX

complex [33, 34]. This supports leukocyte recruitment and stimulates NET forma-

tion by neutrophils. In addition, after endothelial injury, ADP-dependent platelet

activation similar to arterial thrombosis is also required for thrombus formation in

veins [35].

4.4 Platelets Mediate Immunothrombosis

A hypothetical physiological form of thrombosis has been described recently and

termed “immunothrombosis” [36]. Immunothrombosis supports the innate immune

response against pathogens in microvessels (Fig. 4.2). Pathogens are recognized,

compartmentalized, and trapped inside intact vessels to prevent pathogen spreading

and invasion. Ultimately, pathogens are killed within immunothrombi. An adaptive

immune response and immune memory are also facilitated by immunothrombosis

and platelets transport pathogens to remote lymphoid organs.

4.5 Platelets Release Soluble Factors in Thrombosis
and Inflammation

Platelets have a number of prothrombotic and inflammatory features ranging from

secretable factors to stably or variably expressed surface receptors (summarized in

Table 4.1). Rapid secretion of a wide array of mediators following exocytosis of α
granules, dense granules, and lysosomes upon activation is a unique feature of

platelets. This enables an almost instantaneous response to stimuli in the affected

vasculature. Of note, platelets not only contain preformed secretable factors but are

also capable of newly synthesizing mediators such as interleukin (IL)-1β following
signal-dependent splicing of pre-mRNA [37].
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4.5.1 a-granule Factors

α-granules are the most abundant granules in platelets and contain a variety of

hemostatic and inflammatory mediators, including a number of adhesive proteins

[38]. Platelet aggregation and (micro-)thrombus formation during

immunothrombosis are promoted by fibrinogen, VWF, fibronectin, and vitronectin

and serve not only as thrombus matrix [32, 39, 40] but also as immobilizing matrix

for pathogen capture (reviewed in [38, 41, 42]). This limits pathogen growth and

multiplication in the vasculature and facilitates exposure of these captured

pathogens to neutralizing leukocytes. Although this pathophysiologic sequence

has not been deciphered directly in mechanistic studies, observations in septic

patients (and mice) suggest that platelet aggregation is not only a complication

(in disseminated intravascular coagulation—DIC) but rather a feature of primary

host defense [43].

Platelet factor 4 (PF4, CXCL4) and the β-thromboglobulin neutrophil-activating

protein 2 (NAP2, CXCL7) regulate neutrophil and monocyte functions and promote

their recruitment [44]. PF4 furthermore suppresses neutrophil apoptosis, which was

demonstrated in a platelet depletion study of murine limb ischemia [45].

Several α-granule-derived chemokines have been studied extensively, especially

in atherogenesis, and are considered important messengers of immune functions

(reviewed in [46]). Chemokine functions include chemotaxis and modulation of

different leukocyte functions. Platelets are able to take up immunoglobulins from

plasma to store them in α-granules and to release this cargo on-site following

inflammatory stimulation (reviewed in [41, 47]).

4.5.2 Dense Granule Factors

Dense granules store serotonin, calcium, magnesium, ATP, and ADP (whether they

also contain histamine is controversial [48, 49]) and secrete these factors upon

activation (reviewed in [16, 48]). At the site of acute inflammation, platelets release

serotonin at micromolar concentrations, boosting the recruitment of neutrophils

into the inflamed tissue (e.g., during murine pneumonia, peritonitis, and skin

wounds) [50]. In mice, this translates into improved sepsis outcome when platelet

serotonin stores were depleted. The observation that antidepressants inhibiting the

uptake of serotonin modulate the release of several cytokines suggests that platelet

serotonin may also be important in human inflammation (reviewed in [51]). In fact,

numerous immunomodulatory functions of peripheral serotonin have been

characterized, including differential effects on chemokine/cytokine secretion by

immune cells. Serotonin is one of several soluble factors of platelet

immunomodulation [50, 52–73].
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4.5.3 Lysosomes

Lysosomes release glycosidases, proteases, and bactericidal enzymes such as

β-glucuronidase, elastase, and collagenase (reviewed in [74]). The lysosome

releasate facilitates pathogen clearance and breakdown of extracellular matrix,

but studies are rare and clinical implications have not been addressed

systematically.

4.5.4 Defensins

Other secretable factors are not associated with any of the known granules. They are

derived from cytoplasmic stores, are newly synthesized proteins, or are components

of a yet unknown type of granule. β-defensin is an example of granule-independent

mediators with anti-bactericidal activity [75] and belongs to the group of antimi-

crobial peptides. Human platelets express β-defensins 1, 2, and 3 [75–77]. Platelets
release β-defensin 1 from cytoplasm in response to S. aureus α-toxin to induce

neutrophil extracellular trap (NET) formation and limit bacterial growth [75].

4.6 Platelets Express Immune Receptors

Different immune receptors operate on the platelet surface (and in some cases

intracellularly) (reviewed in [78]). Toll-like receptors (TLRs) recognize pathogen-

and danger-associated molecular patterns (DAMPs and PAMPS, respectively)

(reviewed in [79]), complement receptors mediate complement activation at sites

of platelet accumulation [80], and Fc receptors recognizing immunoglobulins (FcR,

notably the Fcγ receptor FcγRIIA, but also Fcα and Fcε receptors) provide a link to
the adaptive immune system [81, 82]. In a murine model of Arthus reaction,

platelets facilitate the immune complex-induced recruitment of neutrophils in

microvessels [83]. P-selectin on activated platelets appears to participate in com-

plement activation, and platelet-associated

immune complexes mediate autoimmune diseases such as immune thrombocy-

topenia or systemic lupus erythematosus [81, 84]. C-type lectin-like receptor

2 (CLEC-2) is involved in the regulation of vascular integrity in acute inflammation

[85, 86].

4.6.1 CD40/CD40 Ligand

CD40 and CD40L are not only expressed by platelets but also by endothelial cells,

smooth muscle cells, and several leukocyte subtypes [87–98] (reviewed in [88–90,

92, 95]). Their surface expression levels are differentially regulated by the degree of

cell activation. The inflammatory CD40/CD40L axis mediates a variety of cell–cell

interactions. CD40/CD40L-mediated interactions have been well characterized in
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atherosclerosis but seem to be also involved in many other immune reactions.

Platelets release CD40L and RANTES upon stimulation with IgG complexes

without showing signs of general activation [99]. Platelet CD40L triggers inflam-

matory activation of endothelium: it induces upregulation of E-selectin, ICAM-1,

and VCAM-1 and provokes chemokine secretion by endothelial cells [100].

4.6.2 Toll-like Receptors

Platelets express functional TLRs and respond to ligand binding and activation

[101–103] (reviewed in [104]). TLR2 and TLR4 and the predominately intracellu-

lar TLR9 [105] are the most extensively studied platelet TLRs [105–108]. Platelets

also contain the adapter molecules MYD88 and TRIF required for specific down-

stream signaling [109, 110]. The TLR2/1-specific agonist Pam3CSK4 has been

utilized by different groups to stimulate platelets. It induces a dose-dependent

response involving different intracellular signaling pathways, which may be part

of defense mechanisms against gram-positive bacteria [111, 112]. Stimulation of

platelet TLR4 has been linked to NET formation and subsequent capture of gram-

negative bacteria in the bloodstream [113]. Platelet TLR7 binds viral RNA

triggering PNC formation in mice, improving the animals’ survival [114]. Platelet

TLR9 recognizes viral and bacterial DNA and promotes platelet reactivity

[105, 115]. Finally, TLR9 mediates protection from atherosclerosis in mice by

suppressing the influx of CD4+ T cells into plaques [116]. Platelet TLRs are an

interesting target for future therapeutic studies because pharmacological manipula-

tion is uncomplicated.

4.7 Membrane Receptor Shedding in Inflammation

4.7.1 Soluble CD40 Ligand

Platelets are an important source of soluble CD40 ligand (sCD40L) (reviewed in

[88, 89]). Platelet-derived sCD40L induces reactive oxygen species (ROS) production,

neutrophil adhesion receptor upregulation, macrophage activation, and cytotoxic T-cell

and B-cell stimulation (reviewed in [42]). CD40L can also be carried by platelet

microparticles, regulating antigen-specific IgG production (reviewed in [42, 88]).

Whether platelet-derived sCD40L is accessible to pharmacological intervention

remains to be shown.

4.7.2 TACE

TNFα converting enzyme (TACE, ADAM17) is a sheddase expressed not only by

neutrophils (where it regulates shedding of L-selectin and pro-TNFα) but also by

platelets [117, 118]. Numerous signals can activate TACE, including atherosclerotic
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plaque components [119, 120]. Although specific immune functions of platelet

surface TACE have not yet been deciphered, it is intriguing to note that oxidative

stress and serotonin receptor activation induce GPIbα and GPV shedding by TACE

[117, 121–124].

4.8 Acute Inflammation

4.8.1 Infections

Thrombocytopenia is a common feature of severe bacterial or viral infection and a

marker of poor outcome (reviewed in [125]). This clinical observation suggests that

platelets actively participate in the struggle against pathogens. Interestingly,

recovery is often associated with reactive thrombocytosis [126]. Platelet consump-

tion during DIC is well known but does not explain these frequent findings in milder

clinical courses. Direct antimicrobial activity of platelets has been discovered in

animal models of infectious diseases. In murine malaria, platelets eradicate intra-

erythrocytic parasites (improving survival of the host), an effect that could be

reproduced in ex vivo models with human blood cells [127]. When platelet binding

to hepatic Kupffer cells via GPIbα was imaged in intravital microscopy of mice,

challenging these mice with bacteria resulted in firm platelet immobilization via

GPIIb and encapsulating of bacteria [128].

Human data supporting a role of platelets in immune defense are rare. Patients

with chronic thrombocytopenia or patients with GPIb deficiency in Bernard–Soulier

syndrome are not known to suffer from immune defects. Of note however, a recent

tragic case report suggested an association between GPIIb/IIIa deficiency in

Glanzmann thrombasthenia and HIV susceptibility [129].

4.8.2 Sepsis

In human sepsis, the number of circulating platelet–neutrophil complexes (PNCs)

and platelet–monocyte complexes (PMCs) increases dramatically [43], correlating

with the severity of multi-organ failure [130]. A differential release of growth

factors from platelets was observed in septic patients [131]. The hemostatic

functions were attenuated in relation to the severity of sepsis, but the release of

VEGF was enhanced. Moreover, the transcriptome is altered in platelets from septic

patients, facilitating differential release of proteins such as tissue factor

[132]. Microthrombotic complications are provoked by disseminated platelet

activation and platelet–leukocyte interactions [42, 43, 133].
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4.8.3 Autoimmune Disease

Immune complex formation and complement activation by platelets were found in

patients with immune thrombocytopenia and systemic lupus erythematosus

(reviewed in [84]). Platelets release serotonin into acutely inflamed joints in murine

rheumatoid arthritis, increasing synovial permeability [73]. Both mechanisms may

represent attractive targets for therapeutic intervention.

4.8.4 Asthma

Platelet activation and granule secretion enhance bronchoconstriction and bronchial

obstruction during airway inflammation and asthmatic attacks in mice and humans

[134–138]. ATP and serotonin are released from dense granules sustaining these

attacks [52, 139]. Bronchoalveolar lavage fluid after segmental allergen challenge

of asthmatic patients contains high levels of platelet-derived serotonin, which

enhances leukocyte infiltration, Th2-priming capacity of dendritic cells, and ulti-

mately all cardinal features of allergic airway inflammation [52].

4.8.5 Ischemia/Reperfusion Injury

Ischemia/reperfusion (IR) injury contributes to the final infarct size in myocardial

infarction. PNC infiltration correlates with myocardial reperfusion damage [140]

and PMCs form rapidly after myocardial infarction in animal studies (reviewed in

[42]). It has been suggested that the P2Y12 inhibitor ticagrelor may limit IR injury

[141, 142]. IR injury of the liver is also mediated by platelet–neutrophil interactions

in mice [143], and liver regeneration depends on platelet-derived serotonin

[144]. Whether specific antiplatelet intervention could limit IR injury in patients

with myocardial infarction remains to be shown. This is of particular interest,

because although reperfusion is often rapidly ensured by percutaneous coronary

intervention, the subsequent inflammatory sequelae still dictate the final extent of

the myocardial scar.

4.9 Chronic Inflammation

4.9.1 Metabolic Syndrome

Data from the Framingham heart study suggest that inflammatory platelet activation

correlates with obesity and cardiovascular risk [145, 146]. Inflammatory gene

transcripts derived from isolated platelets such as tumor necrosis factor (TNF),

TLR2, and TLR4 were associated with increased body mass index [146]. Platelets

therefore likely promote the inflammatory phenotype of metabolic syndrome (but

direct data are not yet conclusive) [147].

4 Platelets as Regulators of Thrombosis and Inflammation 69



4.9.2 Atherosclerosis

Platelets not only drive the atherothrombotic occlusion of a coronary artery in acute

myocardial infarction, but they also mediate the chronic progression of vessel wall

inflammation in atherosclerosis [148–150] (reviewed in [148, 149]). The various

aspects ranging from cytokine release to monocyte recruitment have been examined

in several in-depth animal studies and complemented by human ex vivo data

(reviewed in [151]).

4.10 Conclusion

Platelets regulate thrombosis and inflammation using a unique set of different tools

summarized in Table 4.1. The adhesion receptors GPIbα and GPIIb for example are

not only required for initiation and growth of stable thrombi, but they also interact

with leukocytes during host defense. In the microcirculation, immunothrombosis is

a complex interplay of platelets, endothelial cells, and leukocytes with plasma

proteins to promote pathogen capture, neutralization, and adaptive immune

responses. These mechanisms are not yet completely understood but may enable

future therapeutic interventions.
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Diversity of Inflammatory Cells in Vascular
Degenerative Disease 5
Ingo Hilgendorf and Filip K. Swirski

Abstract

A variety of leukocytes reside and function in the vascular wall in health and

disease. Although inflammatory cells are meant to protect from diseases and

injuries in general, in the context of atherosclerosis, chronic inflammation

mounted by some cell types is actually harmfull. This chapter reviews the

multifaceted contribution of inflammatory cells to vascular degenerative disease.
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Atherosclerosis is the most common form of vascular degenerative diseases and

shares many mechanistic cues with other pathologies such as aortic aneurysm,

vasculitis, and restenosis. For this reason, and because atherosclerosis is the
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underlying pathology of the leading causes of death worldwide, we will mainly

focus on atherosclerosis in this article.

The term atherosclerosis derives from the Greek. “Athera” means gruel and

describes the yellowish flaky lipid core of plaques, and “scleros” means hard and

describes the dense fibrous cap and calcifications. Atherosclerotic plaques contain

varying ratios of macrophage foam cells and other leukocytes, extracellular lipid

depositions and debris, smooth muscle cells, and collagen fibers that determine

their stability. Early lesions, fatty streaks, contain layers of macrophage foam cells

and lipid droplet-filled smooth muscle cells in the intima and are found in the aortas

of nearly all humans aged 15–35 years [1]. The processes that drive their progres-

sion into advanced and rupture-prone lesions with clinical relevance are not fully

understood but involve traditional cardiovascular risk factors such as hypertension,

smoking, diabetes, hypercholesterolemia, and familial disposition. These

conditions result in vessel wall inflammation [2]. Shear stress, radicals, and

glycated mediators activate circulating leukocytes and the endothelium, increasing

its permeability and expression of adhesion molecules and chemokines that mediate

leukocyte infiltration. Low-density lipoprotein particles are trapped in the

subintimal space binding to proteoglycans and lipoprotein lipase which renders

them more susceptible to chemical modification by reactive oxygen species. These

modifications may occur in the circulation as well. Modified lipoproteins further

stimulate the endothelium and vascular smooth muscle cells and therefore need to

be cleared by macrophages in the nascent plaque. As stimuli persist, their capacity

for clearing lipids and cell debris is overwhelmed, resulting in plaque progression

and persistence of inflammation. Elevated serum levels of C-reactive protein (CRP)

report on the dwelling inflammation in patients at risk for coronary heart disease

and recurrent cardiovascular events.

In the following, we will discuss the many cell types that contribute to the

inflammatory process underlying atherosclerosis and other vascular degenerative

diseases.

5.1 Monocytes

Monocytes are a heterogenous population of leukocytes that are produced in the

bone marrow and spleen and give rise to macrophages and dendritic cells under

certain conditions. In the mouse, two subsets are distinguished by their level of

Ly6C (Gr-1) expression. Ly6Chigh monocytes constitute the majority of monocytes

found in the bone marrow attesting to their relative immature nature. In fact,

common monocyte progenitors, the most committed proliferating precursor of

monocytes [3]), also express high levels of Ly6C. Ly6Chigh monocytes express

the chemokine receptor CCR2 and are mobilized from the bone marrow via CCL2

(monocyte chemoattractant protein-1, MCP-1). Ly6Chigh monocytes give rise to the

Ly6Clow subset in the blood and bone marrow [4, 5]. The generation of Ly6Clow

monocytes depends on the nuclear orphan receptor Nr4a1 (Nur77) and was

suggested to occur independent of the Ly6Chigh subset as well [6].
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Hypercholesterolemia drives medullary and extramedullary myelopoiesis in

atherosclerotic mice leading to Ly6Chigh monocytosis [7]. Insufficient cholesterol

efflux from stem cell progenitors via ABC transporters results in the overexpression

of GM-CSF and IL3 receptors rendering them more susceptible to myeloid growth

factor stimulation and proliferation [8, 9].

The murine Ly6Chigh monocyte subset corresponds to classical CD14high CD16–

and intermediate CD14high CD16+ monocytes in humans while Ly6Clow monocytes

resemble nonclassical CD14dim CD16high monocytes. Elevated numbers in classical

and intermediate monocytes indicate an increased risk for first and recurrent

cardiovascular events and associate with adverse cardiac remodeling after

myocardial infarction [10].

Ly6Chigh monocytes preferentially infiltrate sites of vascular inflammation

where they may undergo differentiation into macrophages or inflammatory den-

dritic cells. They may also exit via lymph vessels for MHCII-dependent antigen

presentation or die locally.

Deficiency or inhibition of the CCR2/CCL2 interaction limits the number of

Ly6Chigh monocytes in circulation and their invasion into inflamed tissues and

results in protection from early atherosclerosis, aortic aneurysm, and neointima

formation [11, 12]. Many other chemokine receptors, e.g., CCR1, CCR5, CCR6,

CXCR2, and CX3CR1, are also involved in monocyte recruitment to plaque lesions

[13, 14].

Ly6Clow monocytes patrol the vasculature and scavenge microparticles. When

endothelial cells are damaged, Ly6Clow monocytes sense danger signals via TLR7

and attract neutrophils to eliminate the damaged endothelial cell (Carlin. Cell.

2013). Nur77 deficiency and lack of Ly6Clow monocytes aggravate atherogenesis

and impair cardiac remodeling after myocardial infarction in some experimental

models. These effects may partly result from the absence of Ly6Clow monocytes but

also from Nur77 limiting Ly6Chigh monocyte and macrophage inflammation and

recruitment [5, 15, 16].

5.2 Macrophages

Macrophages reside in all tissues and function as phagocytes and antigen-presenting

cells. For many decades, macrophages were thought to derive exclusively from

monocytes. However, nowadays we realize that macrophages are among the first

immune cells to seed tissues during embryogenesis at a time point when bone

marrow hematopoiesis has not even begun. Microglia are unique in that they seem

to solely derive from yolk sac macrophages in the steady state. Most other tissues

harbor macrophages that mainly derive from fetal liver monocytes except the small

intestine. The healthy aorta contains macrophages primarily in the adventitia. A

recent study revealed that both yolk sac macrophages and fetal liver monocytes seed

the aorta before birth. Within the first two weeks after birth, monocytes from the

bone marrow contribute to the adventitial macrophage mix. Thereafter, adventitial

macrophages sustain into adulthood through proliferation with minimal contribution
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from the blood [17]. During atherogenesis, however, Ly6Chigh monocytes infiltrate

the intima and differentiate into lesional macrophages. It is currently unknown

whether adventitial macrophages contribute to the intimal macrophage pool. Limit-

ing macrophage accumulation protects from atherosclerosis, vascular aneurysm,

and neointima formation [18–20].Macrophages are equippedwith a set of scavenger

receptors that allow for the receptor-mediated uptake of modified lipoproteins and

apoptotic bodies in addition to macropinocytosis. Cholesterol loading of

macrophages in vitro inhibits cholesterol biosynthesis leading to the accumulation

of desmosterol that activates liver X receptor transcription factors, drives cholesterol

efflux, and inhibits pro-inflammatory NFκB pathways. Pro-inflammatory

arachidonic acid derivatives activate 12/15-lipoxygenase and lipoxin production in

macrophages initiating a negative feedback loop that limits inflammation and

promotes its resolution [21]. When cholesterol is packed in modified lipoproteins,

however, uptake via scavenger receptors and toll-like receptor co-signaling limits

cholesterol efflux and rather stimulates inflammation. Cholesterol is esterified intra-

cellularly and stored in lipid droplets. If the capacities for cholesterol esterification,

storage, or efflux are overwhelmed, free cholesterol can crystallize resulting in

inflammasome activation and IL1β secretion [22, 23]. Free cholesterol can also

integrate into the endoplasmic reticulum (ER) membrane and interfere with the

protein folding machinery which leads to an ER stress response and, if unmet, to

apoptosis [24, 25]. Macrophages adopt different phenotypes in response to external

stimuli. The original classification into IFNγ-stimulated M1 and IL-4- and IL-10-

stimulatedM2macrophages has meanwhile been expanded byMhem,Mox, andM4

macrophages with different inflammatory and phagocytic properties. Even human

plaques contain macrophages that share some features of these subsets although

there is considerable phenotypic overlap and plasticity [26].

If foam cells are largely pro-inflammatory in the context of atherosclerosis,

would not their cell death be beneficial? By deleting pro-apoptotic bcl2 in

macrophages of ApoE–/– mice, macrophages survived longer and accumulated in

higher numbers in early atherosclerotic lesions. Paradoxically, with disease

progression, less macrophages were found in those lesions where macrophages

survived longer [27]. This finding underscores the importance of clearing apoptotic

cells, a process called efferocytosis. When apoptotic cells are not cleared by

macrophages, they undergo secondary necrosis and propagate inflammation and

lesion progression [28].

Net macrophage accumulation in plaque lesions is a function of monocyte entry

and differentiation, macrophage proliferation, apoptosis, and egress. In the nascent

plaque, the majority of macrophages directly derive from infiltrating Ly6Chigh

monocytes. With disease progression, however, macrophages renew primarily

through local proliferation of macrophages in the plaque [29]. Transdifferentiation

of vascular smooth muscle cells into macrophages [30, 31] was proposed as yet

another monocyte independent source of lesional macrophages besides a minor

contribution from aortic progenitor cells [32, 33]. For a long time it has been known

that smooth muscle cells in atherosclerotic lesions accumulate lipid droplets like

macrophage foam cells. Now, two different tamoxifen-inducible Cre-reporter mice
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were used to track the fate of vascular smooth muscle cells in atherosclerosis

[30, 31]. Cells of smooth muscle cell origin were found in intimal lesions that

expressed the macrophage marker galectin-3 (Mac 2). By flow cytometry, they also

expressed the integrin CD11b but mostly not the leukocyte marker PTPRC. It is

therefore fair to conclude that some vascular smooth muscle cells obtain some

features of macrophages in atherosclerotic lesions. Taken together, macrophages

remain the prototypical proatherogenic culprits in atherogenesis with clinically

relevant correlations between lesional macrophage content and plaque inflamma-

tion and stability [34]. At the same time, given their plasticity, they may serve as the

ideal candidate for immunomodulation and induction of plaque regression.

5.3 Neutrophils

Neutrophils are often the first immune cells to infiltrate sites of inflammation.

Although they are found in low numbers in atherosclerotic lesions, they still

function importantly in disease onset. Antibody-mediated neutrophil depletion

reduced early lesion formation but not plaque progression in ApoE–/– mice

[35]. Neutrophils are recruited to plaque lesions via CCR1, CCR2, CCR5, and

CXCR2. When entering the intima, neutrophils secrete cathelicidins (e.g., CRAMP

in mice) which are transported to the endothelium and attract Ly6Chigh monocytes.

Consequently, CRAMP deficiency reduced the macrophage burden in atheroscle-

rotic lesions [36]. In the context of neointima formation, however, neutrophil-

derived CRAMP was rather protective by promoting reendothelialization [37],

while myeloperoxidase (MPO) aggravated both atherosclerosis and neointima

formation [38]. Neutrophil-derived lipocalin may aid in matrix metallopeptidase-

9 activation [39]. Depleting neutrophils are protected from experimental aortic

aneurysm formation [40]. When neutrophils die, they may release chromatin fibers

containing histones and intracellular proteins forming so-called neutrophil extra-

cellular traps (NET). NETs induce apoptosis in endothelial cells, promote thrombus

formation, and stimulate dendritic cells and macrophages [41, 42]. Cholesterol

crystals trigger NETosis in atherosclerotic plaques with NETs stimulating pro-IL1β
expression in plaque macrophages. Their cholesterol crystals stimulate the NLRP3

inflammasome resulting in caspase-1 activation and secretion of cleaved IL1β
[43]. Neutrophils propagate atherogenesis on multiple levels, and in humans

neutrophilia associates with increased risk for first and recurrent cardiovascular

events [44].

5.4 Mast Cells

Mast cells are tissue-resident inflammatory cells containing basophilic granules filled

with proteases, histamine, growth factors, chemokines, and cytokines [45]. They are

found in the aortic adventitia and in plaque lesions in humans and mice [46–

48]. Chymase and tryptase secretions catalyze the activation of matrix metalloproteases
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and cathepsins by vascular cells and may trigger their apoptosis. Heparin binds LDL

promoting macrophage foam cell formation, and histamine increases perivascular

leakage [49]. Mast cells may be activated by toll-like, IgE, and complement receptors.

LDLR–/– mice deficient in mast cells develop smaller lesions. Adoptive transfer studies

revealed that mast cell-derived IL-6 and IFNγ but not TNFα promoted atherogenesis

partly by extracellular matrix degradation [48]. Similarly, mast cells promote aortic

aneurysm formation [50–52]. Therapeutically, the mast cell stabilizer cromolyn

reduced the development of atherosclerosis in the brachiocephalic artery of ApoE–/–

mice [47].

5.5 Dendritic Cells

Dendritic cells (DCs) are a heterogenous group of antigen-presenting cells best

suited to prime an adaptive T cell response. DC precursors distinct from

monocytes give rise to plasmacytoid DC and classical DCs. Classical DCs are

MHCIIhigh CD11chigh Zbtb46+ and can be divided into a Flt3-dependent CD8α+/
CD103+ and a CD11b+ subset. Monocytes may supplement the CD11b+ DC

population in an M-CSF-dependent manner [53] underscoring the difficulty of

distinguishing DC and macrophages in sites of inflammation. Functionally DCs

are more efficient stimulators of T cell proliferation but less phagocytic compared

to macrophages [53]. The healthy aorta contains cDC both in the adventitia and

the intima at sites prone to develop atherosclerosis where cDC accumulate lipids

in the nascent plaque [54]. In advanced disease stages, tertiary lymphoid organs

form in the adventitia that contains DCs, B cells, and T cells [55]. Flt3 deficiency

results in the loss of CD103+ DC in atherosclerotic aortas sparing M-CSF-depen-

dent monocyte-derived CD11b+ DC. This leads to a reduction in protective

regulatory T cells (Treg) and increased atherosclerosis [53]. In addition, a

CCL17-producing subset of CD11b+ DC was shown to suppress Treg differentia-

tion and promote atherosclerosis [56]. Plasmacytoid DCs (pDCs) circulate through

blood, enter into tissues, and produce type I interferons. LDLR–/– mice devoid of

pDC develop reduced atherosclerosis. Mechanistically, pDCs induce the produc-

tion of IFNγ+ CD4+ T cells directed against ApoB100 [57]. Antibody-mediated

depletion of pDCs in atherosclerotic mice yielded conflicting results [58, 59].

Typically DCs migrate from tissues to lymphoid organs to present antigens to

naive T cells. It is unclear whether this kind of trafficking is functionally important

to the development and progression of atherosclerosis or whether circulating

antigens are primarily taken up by DCs residing in lymphoid organs. Similarly,

the site where T cell priming occurs in atherosclerosis, lymphoid organs, and/or

plaque lesions is a matter of debate [60]. Both DCs isolated from lymphoid organs

of atherosclerotic mice and DCs inside atherosclerotic lesions were shown to

stimulate CD4 T cell proliferation and production of the type I T helper cell

(TH1) cytokines IFNγ and TNFα [61, 62]. Notably, activated CD44high CD62Llow

T cells interact with antigen-presenting cells in the plaque more efficiently and

produce more cytokines [62]. The stimulation and polarization of T cells require
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additional external cues that determine the inflammatory phenotype of the antigen-

presenting DC. Deletion of the toll-like receptor adaptor Myd88 in CD11c+ cells

resulted in the pronounced loss of protective regulatory T cells over CD4+ effector

cells and aggravated atherosclerosis [63]. B cell-derived GM-CSF promotes the

generation of IL-12-secreting DCs that stimulate the production of IFNγ+ T cells in

a model of atherosclerosis [64], whereas TGFβ suppresses the production of IL-12

and TNFα by DCs limiting the expansion of effector T cells [65]. The concept that

DCs instruct both protective and atherogenic T cell responses fuels the idea of

vaccinating against atherosclerosis. The transfer of bone marrow-derived DCs

treated with anti-inflammatory IL-10 and pulsed with ApoB100 into atherosclerotic

LDLR–/– mice transgenic for human ApoB100 limited the number of IFNγ+ TH1

cells, increased the number of regulatory T cells, and reduced atherosclerosis

[66]. Even direct vaccination with modified LDL plus adjuvant protects from

atherogenesis [37]. Besides, DCs have been implicated in limiting experimental

hypercholesterolemia although the underlying mechanism remains speculative

[67]. DC may participate in lipoprotein clearance directly or alter the inflammatory

status that in turn influences lipid metabolism.

5.6 T Cells

Several subsets of T cells infiltrate atherosclerotic lesions depending on CCR5,

CXCR3, CXCR6, and L-selectin [68]. CD4+ T helper cells are up to ten times

more frequent in lesions than cytotoxic CD8+ cells. Most of them produce the type

I cytokine IFNγ and recognize, for example, epitopes of oxidized but also native

LDL [69–71] and of heat shock proteins in mice and men [72, 73]. Transfer of CD4+

T cells sensitized against modified LDL into lymphocyte-deficient ApoE–/– mice

accelerated atherosclerosis [74], while CD4 deficiency reduced atherogenesis in

another study [75]. Deficiencies in IFNγ, IFNγ-receptor, and the TH1transcription

factor T-bet protected mice from atherosclerosis and confirmed the proatherogenic

role of the dominating type I helper cell population [76–78]. Other major T helper

cell populations include TH2 and TH17 cells that are identified by their prototypic

cytokine and transcription factor profiles.

While IL-12 and IL-18 drive TH1 cell differentiation, IL-4 and IL-6 promote the

generation of GATA3+ TH2 cells that produce IL-4, IL-5, IL-10, and IL-13. IL-6

and TGFβ in concert activate the transcription factor RORγT in activated T cells

and drive TH17 cell differentiation [79]. Controversies exist with regard to the

respective roles of TH2 and TH17 cells in atherosclerosis most likely due to opposing

cytokine effects and modes of cytokine silencing. IL-4 deficiency, for example, are

protected from early atherosclerosis in some but not all studies, suggesting a neutral

or weakly proatherogenic role of TH2 cells [80–82]. On the other hand, deficiencies

in IL-5 and IL-13, cytokines likewise produced by TH2 cells, aggravated plaque

formation in mice [83, 84]. Mechanistically, IL-5 was shown to promote protective

natural IgM production by B1a cells [83]. Antibody blockade as well as genetic

deletion of IL17A and its receptor in mouse models of atherosclerosis yielded
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conflicting results. One study reported accelerated unstable early plaque formation

in ApoE–/– IL17A–/– mice [85], while another demonstrated reduced atherosclerosis

in both ApoE–/– IL17A–/– and ApoE–/– IL17RA–/– mice [86]. Supplementation of

IL17A attenuated atherogenesis in ApoE–/– mice [87] but increased it in LDLR–/–

mice [88]. Evaluating the role of T cell subsets by targeting cytokines systemically

or by bone marrow transplantation is further complicated by the fact that none of

the abovementioned cytokines is exclusively produced by T cells.

CD4+ regulatory T cells (T reg) are naturally occurring suppressive cells that

mature in the thymus and escape negative selection against self-antigens, or that are

induced by dendritic cells and TGFβ stimulation. Both regulatory and inducible T

reg express the transcription factor Foxp3 and function via secretion of anti-

inflammatory cytokines IL-10 and TGFβ, inhibition of antigen presentation and

co-stimulation, and suppression of IL-2-dependent T effector cell proliferation

[89, 90]. T reg depletion with anti-CD25 antibodies, diphtheria toxin in transgenic

mice, and vaccination against Foxp3 unequivocally increased atherosclerosis, while

adoptive transfer of T reg protected from atherosclerosis and aneurysm formation

[91–94].

The role of cytotoxic CD8+ T cells in atherosclerosis is less well understood.

Anti-CD8-mediated cell depletion in ApoE–/– mice attenuated lesion formation,

while CD8+ T cell transfer to lymphocyte-deficient ApoE–/– mice increased athero-

sclerosis. Mechanistically granzyme B, perforin, and TNFα promoted vascular cell

apoptosis and inflammation, respectively. IFNγ seemed dispensable in this study

but relevant in another one in LDLR–/– mice where it stimulated monocytosis

[95, 96]. Regulatory CD8þ CD25+ T cells attenuate atherosclerosis [97]. Other

lymphocytes include natural killer (NK) cells, NKT cells, and innate lymphocytes

also engage in atherosclerosis [98].

5.7 B Cells

B cells are unique immune cells in that they produce antibodies, but they also

function through cytokine, chemokine, growth factor secretion, and antigen presen-

tation. Historically they were regarded as atheroprotective. Splenectomy of ApoE–/–

mice aggravated atherosclerotic lesion formation, while adoptive transfer of B cells

rescued the phenotype [99]. B cell-deficient LDLR–/– mice developed larger lesions

[100]. It was therefore surprising to learn that anti-CD20-mediated B cell depletion

is protected from atherosclerosis in mice [101]. Depletion predominantly affected

IgG-producing B2 cells and spared B1 cells that produce natural IgM and inhibited

TH1 cell proliferation while expanding TH17 cells. Also, BAFF receptor deficiency

resulted in the selective loss of B2 over B1 cells and attenuated atherosclerosis

[102, 103]. B1 cells are the first to arise during fetal development and seed serosal

membranes and the spleen. B2 cells derive from and are continuously replaced by

bone marrow precursors divide into different subsets including follicular and mar-

ginal zone B cells and produce different classes of antigen-specific

immunoglobulins (Ig). Antibodies directed against modified lipoproteins modulate
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atherogenesis. Deficiency in activating FcγRI and FcγRIII protected against athero-
sclerosis [104], while deficiency in inhibitory FcγRIIb aggravated atherosclerosis

[105]. Natural IgM are secreted by B1a and B1b cells and are thought to protect from

atherosclerosis by scavenging modified lipoproteins thus attenuating vascular cell

inflammation [106, 107].

In atherosclerosis, the number of GM-CSF producing innate response activator

(IRA) B cells expanded in lymphoid organs and promoted the generation of IL-12

producing DC that in turn mounted an antigen-specific TH1 response and increased

lesion formation [64].

IRA B cells may also stimulate myelopoiesis in ApoE–/– mice [108], and B2

cells aid in monocyte mobilization from the bone marrow during myocardial

infarction [109]. Regulatory B cells are a heterogenous group of cells that suppress

inflammation primarily by secreting IL10. B cell-restricted IL-10 deficiency had no

effect on atherosclerosis [110]. On the other hand, transfer of B cells isolated from

subiliac and para-aortic lymph nodes but not from the spleen of atherosclerotic

ApoE–/– mice is protected from carotid artery plaque formation after perivascular

collar injury [111]. Protection partially depended on B cell-derived IL-10

suggesting that site-specific education and cell composition (CD21high CD23high

CD24high subset) may be important. In fact, B cells in and around the adventitia

may protect from atherosclerosis and abdominal aneurysm formation [112, 113]. B

cell homing to the aorta depends on inhibitor of differentiation-3 (Id3), CCR6, and

L-selectin, and loss of Id3 aggravates atherosclerosis in mice [112, 114, 115]. Mech-

anistically confounding, however, Id3 deficiency also influences VCAM1

expression in vascular smooth muscle cells and B1a cell homeostasis with protec-

tive IgM production [115, 116]. Adventitial B cells in concert with T cells and DC

form artery tertiary lymphoid organs (TLO) in advanced atherosclerosis instructed

by vascular smooth muscle cells (VSMC) and immune cells [55]. Lymphotoxin β
stimulates the production of the lymphorganogenic chemokines CXCL13 and

CCL21 by VSMC, and VSMC-specific deletion of the lymphotoxin β receptor

corrupted ATLO formation and accelerated atherosclerosis in ApoE–/– mice

[117]. These data are the first to indicate that ATLO form in advanced disease

stages to dampen inflammation and plaque progression.

In conclusion, multiple innate and adaptive immune cells engage in vascular

degenerative disease. Disease progression results from an immunologic imbalance

that favors pro-inflammatory over anti-inflammatory responses. Innovative

therapies directed against inflammation in cardiovascular disease are currently

evaluated in clinics and may hopefully improve morbidity and mortality in the

future [118].
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5.8 Translational Perspective

Experimental studies and clinical research suggested that inflammation propagates

atherosclerosis and its complications. Recent clinical trials identified inflammation as

a potent therapeutic target. Colchicine disrupts microtubule formation, thereby

interfering with the assembly of the inflammasome and migration of inflammatory

cells. Low-dose colchicine prevented cardiovascular events in patients with stable

coronary artery disease [119]. Following myocardial infarction, at least one-third of

patients may carry a residual inflammatory risk based on an elevated hsCRP [120].

In CANTOS, this high-risk patient population was protected from future cardiovas-

cular events by Canakinumab, an IL-1ß blocking antibody [121]. Immunomodulation

may represent a novel therapeutic strategy in vascular disease.
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Platelet Inhibition as a Therapeutic
Approach in Intravascular Intervention 6
Ingo Ahrens and Hector Bueno

Abstract

Platelets are the primary mediators of vascular haemostasis. They express

numerous adhesion receptors on their surface enabling a direct interaction with

the endothelial cells of the blood vessel wall and the underlying extracellular

matrix. In addition they interact with leucocytes and fulfil functions of innate

immunity. Furthermore they contain a plethora of stored proteins in intracellular

granula, including cytokines, which are released upon activation. Platelets

undergo a rapid and extreme change of their surface membrane once they are

activated. Platelet activation can occur via soluble platelet activators

(e.g. thrombin and ADP) or by direct interaction of platelet adhesion receptors

with components of the vessel wall.

Besides naturally occurring platelet activators, medical devices used for

intravascular interventions do represent surfaces that may directly or indirectly

lead to platelet activation and subsequent platelet aggregation ultimately causing

intravascular thrombosis and thereby clinical adverse events. For many decades,

aspirin was the mainstay of platelet inhibition. Within the last two decades, a

rapidly evolving era of extensive research on platelets and atherothrombosis

led to the clinical development of several novel antiplatelet agents that
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successfully entered daily clinical practice in intravascular interventions. In

addition to aspirin, currently clinically approved antiplatelet agents used in

intravascular interventions target the platelet P2Y12 receptor, the platelet

PAR1 receptor and the platelet fibrinogen receptor (GPIIb/IIIa).
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6.1 Platelets in ACS

Platelets are anucleate discoid cells with a lifespan of approximately 10 days.

Their predominant purpose is vascular haemostasis (e.g. sealing of damaged

vessel walls, thereby preventing blood loss). However, beside their haemostatic

functions, platelets are also important mediators and effector cells of innate

immunity and do express several functionally active receptors of the innate

immune system [1, 2].

Atherosclerosis is a chronic inflammatory disease of the vessel wall [3] and

platelets are critically involved in the initiation of this process [4]. The acute

coronary syndrome (ACS), a clinical sequelae of coronary atherosclerosis, is

characterized by ischaemic symptoms caused by total or subtotal occlusion of a

coronary artery [5]. Upon rupture or superficial erosion of a coronary artery plaque,

circulating platelets adhere and become activated, subsequently recruiting further

circulating platelets from the bloodstream and cross-linking them via fibrinogen, a

process known as platelet aggregation [6]. This local platelet aggregation at the site

of the ruptured atherosclerotic plaque ultimately leads to local thrombus formation

and total or subtotal vessel closure of the coronary artery. The activation of the

platelet fibrinogen receptor GPIIb/IIIa is a prerequisite of this process and also an

established therapeutic target [7]. Novel therapeutic strategies in preclinical devel-

opment aim at targeting only the activated GPIIb/IIIa receptor, thereby allowing a

targeted therapy at the site of the forming thrombus with a lower systemic bleeding

risk [8, 9].
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6.2 Platelets as Therapeutic Targets

The clinical development of the concept of dual antiplatelet therapy (DAPT)

established percutaneous coronary artery interventions (PCI) with the deployment

of stents as the standard therapy in patients with ACS and cardiac ischaemia. The

discovery of the platelet P2Y12 receptor and the development of drugs that allow

the selective blockade of this receptor were the prerequisites for the establishment

of DAPT [6, 10]. Newer concepts of platelet inhibition include the blockade of the

protease-activated receptor 1 (PAR1), the platelet thrombin receptor (Fig. 6.1).

Vorapaxar is the first drug with clinical approval targeting PAR1, thereby

expanding the possible combinations of aspirin in DAPT and also enabling a triple

antiplatelet therapy. However, the concept of the more the platelet inhibition the

better the outcome in patients with coronary artery disease and ACS has come to an

end as currently available antiplatelet drugs ultimately lead to increased risk of

major bleeding once they are used beyond the concept of DAPT [11–13].

Among currently clinically approved and orally available antiplatelet agents are

aspirin; the P2Y12 receptor antagonists ticlopidine, clopidogrel, prasugrel and

ticagrelor; and the PAR1 receptor antagonist vorapaxar. In addition there are the

parenteral GPIIb/IIIa antagonists abciximab, eptifibatide and tirofiban, which are

used in patients with ACS undergoing PCI [7] but more and more restricted to

patients with high intracoronary thrombus burden and bail-out situations, which is
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Fig. 6.1 Platelet receptor and antiplatelet agents with clinical approval. Modified with permission

from Ahrens I. et al. Curr Opin Investig Drugs. 2009 Sep;10(9):902–11
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very likely due to the clinical availability and potency of third-generation P2Y12

receptor antagonists (prasugrel and ticagrelor) [14–16]. Recently, cangrelor an

intravenous P2Y12 receptor antagonist has also gained clinical approval (Fig. 6.1).

6.3 Platelet Inhibition in ACS State of the Art

Aspirin was and still is the antiplatelet agent of choice that should be administered

immediately (if no contraindication) in patients with ACS. Despite appealing novel

therapeutic strategies that exclude aspirin in the intermediate and long-term treat-

ment of patients with ACS who also require oral anticoagulation due to atrial

fibrillation [17], there is currently no pharmacological evidence supporting the

concept that inhibition of thromboxane A2 synthesis in platelets may be substituted

by P2Y12 receptor inhibition + addition of either a PAR1 receptor antagonist or a

low-dose non-vitamin K antagonist oral anticoagulant [18, 19].

Current guidelines recommend oral or intravenous administration of aspirin at a

dosage of 150–300 mg in patients presenting with ACS [20–22]. In addition

patients should be treated with a P2Y12 receptor antagonist. Clopidogrel and

ticagrelor are recommended regardless of the treatment strategy (interventional or

noninterventional) based on the data of the CURE (clopidogrel) and the PLATO

(ticagrelor) studies [23, 24]. Prasugrel is not recommended if patients are treated

without PCI due to the lack of additional clinical benefit compared to clopidogrel

observed in NSTEMI patients with conservative treatment in the TRILOGY ACS

and ACCOAST clinical trials [25, 26]. However, if patients are treated with PCI, as

recommended by current guidelines, third-generation P2Y12 receptor antagonists

(ticagrelor and prasugrel) should be preferred over clopidogrel due to significantly

lower on-treatment platelet reactivity that translated into better clinical outcome in

the prasugrel (TRITON-TIMI 38) and ticagrelor (PLATO) clinical trials

[23, 27]. Patients who cannot receive orally available P2Y12 inhibitors at the

time of PCI may be treated with intravenous cangrelor [21].

In the acute phase of an ACS in patients undergoing PCI, there is currently only

one more state-of-the-art option to extend platelet inhibition beyond aspirin and

P2Y12 receptor inhibition (DAPT), and this option is the inhibition of the platelet

fibrinogen receptor GPIIb/IIIa (Fig. 6.1). GPIIb/IIIa inhibitors should only be

administered in patients with ACS undergoing PCI but not in conservatively treated

patients. However, the general use of a GPIIb/IIIa inhibitor in ACS patients

undergoing PCI is not recommended unless intracoronary thrombus burden is

high, the patient is presenting with persistent ST-elevation in the ECG or throm-

botic complications occur [21, 22]. Although current guidelines do not distinguish

between irreversible (abciximab) and reversible (eptifibatide, tirofiban) GPIIb/IIIa

inhibitors, it could be useful to consider short-acting and reversible GPIIb/IIIa

inhibitors in patients that may require procedures with a high bleeding risk in the

immediate period following PCI for an ACS [7].
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6.4 Platelet Inhibition in Peripheral Interventions

Patients with peripheral artery disease (PAD) have an increased risk for myocardial

infarction and stroke. Unlike in patients with coronary artery disease, the role of

antiplatelet therapy is less well examined. The hypothesis that aspirin therapy is

effective in all patients with PAD has been rejected after the results of the Aspirin

for Asymptomatic Atherosclerosis Trial were published. This trial investigated

3350 patients living in central Scotland with PAD but free from clinical cardiovas-

cular disease and randomized them to either aspirin 100 mg QD or placebo. The

mean follow-up was 8.2 years. There was no difference in the primary endpoint of

fatal or nonfatal coronary events, stroke or revascularization [28].

In contrast to asymptomatic patients with PAD, there is some evidence

supporting single antiplatelet therapy in patients with symptomatic PAD and

patients with prior revascularization [29–31]. The AHA guidelines currently have

a class I (level of evidence A) recommendation for the use of antiplatelet

monotherapy in these patients [32, 33]. Despite a lack of evidence and guideline

recommendations, dual antiplatelet therapy (DAPT) is widely used after peripheral

interventions and with variable durations from 1 to 6 months, which largely

depends on the results of smaller trials examining a special device, stent or drug-

eluting balloon in peripheral interventions [34]. The optimal duration of DAPT

following peripheral interventions is currently examined in 400 patients enrolling in

the Antiplatelet Strategy for Peripheral Arterial Interventions for Revascularization

of Lower Extremities trial (clinicaltrials.gov, NCT02217501, accessed

02 February 2016).

6.5 Platelet Inhibition in Transcatheter Valvular Interventions

Transcatheter aortic valve implantation (TAVI) is by far the fastest-growing proce-

dure in interventional cardiology worldwide. Antiplatelet therapy is a cornerstone

of the prevention of thromboembolic complications following TAVI. However,

despite common perception, there is a variety of recommendations regarding the

intensity (mono vs. dual antiplatelet therapy) and duration of antiplatelet therapy

following TAVI. In addition the availability of different valve systems that are

either balloon expandable, self-expandable or without a metal frame may require a

differential use of antiplatelet therapy based on the assumed time frame that is

necessary for endothelialization of the implanted aortic valve and the expected

blood flow velocities in the aortic bulb, more specific in the space between the side

wall of the implanted valve and the aortic wall.

Current recommendations for antiplatelet therapy range from a general recommen-

dation for dual antiplatelet therapy (DAPT) without specified duration [35] (European

Society for Cardiology) to a recommendation of 1–3 months [36] (Canadian

Cardiovascular Society) and 3–6 months of DAPT, respectively [37] (American

College of Cardiology and Society for Cardiovascular Angiography and Interventions).

In general there appears to be a widespread adoption of the concept of dual antiplatelet
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therapy in TAVI at least for a month, while 3 months of DAPT have been reported as

the preferred strategy in the majority of TAVI centres in the Netherlands [38]. The

currently running ARTE trial (NCT01559298) will help to clarify whether low-dose

aspirin or aspirin and clopidogrel (DAPT) given for at least 6 months post TAVI are the

preferred strategy in balloon-expandable valves in 155 patients undergoing TAVI. The

strategy of aspirin monotherapy versus aspirin plus clopidogrel for 3 months post TAVI

will also be assessed in cohort A of the POPular-TAVI study, a multicentre trial

currently recruiting patients in the Netherlands (NCT02247128).

More recently, computed tomography angiography routinely obtained in

patients before and after TAVI revealed a phenomenon that is currently perceived

as possible subclinical leaflet thrombosis in implanted transcatheter valves which

appears to be reversible with oral anticoagulation [39, 40]. Therefore in addition to

the current debate on the intensity and duration of antiplatelet therapy, the novel

concept of oral anticoagulation in TAVI patients that do not have an indication of

OAC for other purposes does raise even more questions on the optimal

antithrombotic therapy in TAVI. At least two randomized trials with rivaroxaban

and apixaban compared to single or dual antiplatelet therapy are currently under

way to address this issue. In the ATLANTIS trial, patients with no indication for

oral anticoagulation will be randomized to either antiplatelet therapy (single or

dual) or apixaban 5 mg bid post TAVI. The GALILEO trial will assess rivaroxaban

10 mg qd and aspirin for 3 months followed by rivaroxaban 10 mg qd thereafter

compared to DAPT for 3 months followed by aspirin therapy thereafter in patients

after successful TAVI [41].

6.6 ESC/ACCA Guidelines on Platelet Inhibition in ACS

STEMI—In patients with STEMI, ESC guidelines and the current ACCA consen-

sus document recommend to initiate antiplatelet therapy with aspirin in the initial

treatment setting (including prehospital treatment and before patients are trans-

ferred to a cath lab for primary PCI) [22, 42]. In addition oral platelet P2Y12

inhibitors may be administered although evidence for a clinical benefit with

pretreatment (out of hospital or before coronary anatomy is known) remains limited

[42]. The third-generation P2Y12 inhibitors prasugrel and ticagrelor should be

preferred over clopidogrel if there is no contraindication for their preferred use [22].

In high-risk patients with STEMI and low bleeding risk at the same time, the use

of upstream GPIIb/IIIa inhibitors may be considered; however the level of recom-

mendation is low (level of recommendation IIb, B) [22, 42]. Recommendations on

pre- and periprocedural antiplatelet therapy in patients with ACS scheduled to

undergo percutaneous intravascular coronary intervention (PCI) are summarized

in Table 6.1.

NSTE-ACS—In patients with NSTE-ACS, current ESC guidelines and the

current ACCA consensus document recommend to initiate antiplatelet therapy

with aspirin in the initial treatment setting (including prehospital treatment)

[22, 42]. However, there is also a lack of clinical evidence guiding physicians in
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the best possible timing of aspirin administration in the treatment of NSTE-ACS

[42]. The recommendations on the additional administration of P2Y12 inihibitors

on top of initial aspirin treatment are more differentiated in patients with NSTE-

ACS compared to patients with STEMI. Although currently a matter of scientific

debate, pretreatment with clopidogrel and ticagrelor is recommended regardless of

conservative or early invasive treatment strategies, but prasugrel pretreatment is

discouraged and should be left to patients with known coronary anatomy (meaning

oral administration during or directly after PCI) [21, 42]. In addition, the current

ESC guidelines do already contain a recommendation for the use of the

periprocedural use of the intravenous P2Y12 inhibitor cangrelor in patients who

have not yet received an oral P2Y12 inhibitor [21]. This is especially of interest in

Table 6.1 ESC/ACCA recommendations for platelet inhibition patients with STEMI

ESC/ACCA recommendations for platelet inhibition patients with STEMI Class Level

Aspirin

Aspirin either intravenously or orally is recommended in all patients I B

P2Y12 inhibitors

Oral prasugrel and ticagrelor are recommended in addition to aspirin if no

contraindication exists

I B

Oral clopidogrel is recommended preferably when prasugrel and ticagrelor are

either not available or contraindicated

I C

GPIIb/IIIa inhibitors

GPIIb/IIIa inhibitors should be considered for bail-out therapy if there is

angiographic evidence of massive thrombus, slow or no reflow or a thrombotic

complication

IIa C

Upstream use of a GPIIb/IIIa inhibitor (vs. in-lab use) may be considered in

high-risk patients undergoing transfer for primary PCI

IIb B

ESC/ACCA recommendations for platelet inhibition patients with NSTE-ACS Class Level

Aspirin

Aspirin is recommended for all patients without contraindication as an initial

oral or intravenous loading dose of 150–300 mg

I A

P2Y12 inhibitors

Oral P2Y12 inhibitors are recommended in addition to aspirin unless there are

contraindications such as excessive bleeding risk

I A

Oral prasugrel and ticagrelor should be preferred if no contraindication;

otherwise clopidogrel is recommended for patients who cannot receive

prasugrel or ticagrelor

I B

Intravenous cangrelor may be considered for PCI in patients who have not

received any other P2Y12 inhibitor previously

IIb A

Oral prasugrel should not be administered prior to PCI in patients in whom

coronary anatomy is not known

III B

GPIIb/IIIa inhibitors

GPIIb/IIIa inhibitors should be considered for bail-out situations and

thrombotic complications in patients undergoing PCI

IIa C

Modified from [21, 22, 42]
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unconscious patients or patients with known or anticipated delayed intestinal

absorption of orally administered P2Y12 antagonists.

In contrast to patients with STEMI, in patients with NSTE-ACS and unknown

coronary anatomy, it is strongly discouraged to administer GPIIb/IIIa inhibitors

(level of recommendation III, A). However, GPIIb/IIIa inhibitors may be used in

patients with known coronary anatomy, especially in bail-out scenarios or

periprocedural thrombotic complications (level of recommendation IIa, C)

[21]. Recommendations on pre- and periprocedural antiplatelet therapy in patients

with ACS scheduled to undergo percutaneous intravascular coronary intervention

(PCI) are summarized in Table 6.1.
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Diabetes, Thrombosis, and Cardiovascular
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Abstract

Patients with diabetes are at an increased cardiovascular risk, and alterations of

the coagulation system are pivotal in this context and reduce responsiveness to

certain anticoagulants. Following plaque rupture, platelets are the first to be

activated stabilizing the developing clot. In diabetes, hyperglycemia, oxidative

stress, and endothelial dysfunction contribute to platelet dysfunction resulting in

procoagulant hyperreactivity. Adherence of platelets is followed by the forma-

tion of a cross-linked fibrin clot. Subjects with diabetes exhibit a tight and

rigid clot structure which is due to upregulation of coagulation factors and

prolongation of clot lysis. Metabolic alterations and upregulation of inflamma-

tory processes in diabetes are thought to be the main underlying causes. More

recently, other factors such as erythrocytes, microparticles, and neutrophil

extracellular traps have emerged as new players in this context directly

influencing both platelet function and coagulation. This chapter provides an

overview concerning the changes that lead to alterations of coagulation in

diabetes.
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7.1 Diabetes and Cardiovascular Risk

The increasing prevalence of obesity and diabetes mellitus type 2 over the last

two decades is one of the major healthcare problems in Western societies.

Patients with diabetes exhibit an increased propensity to develop macrovascular

complications such as myocardial infarction (MI) and stroke, leading to an

increased risk for cardiovascular death. Early analyses from the Framingham

cohort pointed to this association by showing a two- to threefold increased risk

for atherosclerotic complications. In 1998, Haffner and colleagues published a

7-year follow-up of 1373 nondiabetic and 1059 diabetic patients showing that the

incidence of myocardial infarction in subjects with diabetes was similar to the MI

incidence in nondiabetic subjects after their first myocardial infarction, suggesting

that diabetes may be a coronary heart disease equivalent. Interestingly, once

patients with diabetes have experienced a myocardial infarction, there is an

exponential increase in their risk for future events, and the study reveals similar

results for stroke and cardiovascular death. Overall, the 7-year risk of patients

with diabetes in this population was 22% to develop a myocardial infarction

[1]. Studies in other populations confirmed this increased risk for patients with

diabetes albeit some of the study suggested that the risk was not directly compa-

rable to the risk of nondiabetic subjects post-myocardial infarction. Mechanistic

data from a prospective registry analysis including patients with diabetes who

underwent coronary intravascular ultrasound virtual histology (IVUS-VH) support

the epidemiological results: subjects with a long duration of diabetes exhibited a

higher overall plaque burden as well as a higher proportion of thin-cap

fibroatheroma (TCFA) compared to individuals with a shorter duration of diabe-

tes. However, the very early studies cited above enrolled patients with diabetes

prior to the results of large cardiovascular outcome studies with statins and ACE

inhibitors, raising the question whether current state-of-the-art therapy including

these drugs influences the overall CV risk in diabetes. More recent data published

from the European Prospective Investigation into Cancer and Nutrition (EPIC), a

population-based cohort study from the UK, demonstrated that patients with

diabetes exhibit an eightfold increased risk for cardiovascular mortality compared

with patients with an HbA1c of less than 5%. Interestingly, this study revealed for

the first time that HbA1c values ranging from 5% to >7% were associated with

an increased risk for cardiovascular events and that even HbA1c levels in the

upper range of the norm are associated with cardiovascular complications. These

data were confirmed in a meta-analysis including more than 500,000 participants,
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suggesting that the presence of diabetes approximately doubles the risk for

coronary artery disease, ischemic stroke, as well as death due to other vascular

causes even after adjustment for potential confounders such as age, smoking,

BMI, and blood pressure [2]. A very recent analysis from the Emerging Risk

Factors Collaboration confirms a 1.9-fold risk for cardiovascular death in patients

with diabetes and a 3.7-fold increased risk in patients with diabetes and MI

compared to nondiabetic subjects. This translates into a significant loss of life

years: compared to a subject without diabetes, the presence of diabetes without

vascular disease in a 60-year-old patient leads to a loss of 6 years of life and a

loss of 12 years in diabetic patients with a history of myocardial infarction.

Overall, medical progress and improved patient care have led to a reduction of

the incidence of myocardial infarction and stroke over the last 10–20 years, but

the burden for diabetes-related cardiovascular complications remains high. Inter-

estingly, many epidemiological studies revealed over the last decades that not

only diabetes itself but also impaired fasting glucose (IFG) as well as impaired

glucose tolerance (IGT) are also associated with an increased CV risk, suggesting

that a prediabetic state also favors the development of vascular disease with its

potentially deleterious sequelae.

Various factors contribute to the increased cardiovascular risk of patients with

diabetes: among them are the associated risk factors like hypertension, dyslipidemia,

obesity, as well as hypoglycemia itself. Moreover, altered vascular function, athero-

sclerotic manifestations in various vascular beds, as well as microvascular changes

are only some of the pathophysiological mechanisms that are of importance in this

context. In addition, subclinical inflammation as well as changes in platelet function

and hypercoagulability seems to be crucially involved in the development of

myocardial infarction.

7.2 Thrombosis in Diabetes

Alterations of the coagulation system in patients with diabetes are pivotal and

contribute to the elevated cardiovascular risk and reduced responsiveness to certain

anticoagulants. These variations include changes in platelet function, the coagula-

tion system, altered erythrocyte function, as well as the frequency and composition

of microparticles and neutrophil extracellular traps (NETs) (see Fig. 7.1). In the

following section, the individual components of thrombosis in diabetes will be

discussed in detail.

7.3 Platelets

Platelets are the first to respond following plaque rupture and exposure of thrombotic

components to the blood. Platelet adhesion is followed by activation, further recruit-

ment of platelets, and aggregation, thereby stabilizing the developing clot [3]. In

diabetes, platelet function is disturbed leading to changes such as a more frequent
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response to subthreshold stimuli, an increased turnover, and accelerated thrombopoesis

of hyperreactive platelets [4]. In particular, hyperglycemia, oxidative stress, and endo-

thelial dysfunction are involved and will be described in more detail.

7.3.1 Hyperglycemia

Elevated blood glucose is known to impact platelet function by different

mechanisms. Acute short-term hyperglycemia results in an increased activation of

platelets exposed to high shear stress and an increased sensibility to agonists due to

impairment of the Ca homeostasis, less NO production, activation of PKC, and

augmented superoxide formation [5]. Platelets are known to retain an active insulin

receptor [6] whereby insulin can regulate ADP- and thrombin-induced platelet

functions. Following receptor binding, insulin activates the insulin-receptor sub-

strate-1 (IRS-1) through tyrosine phosphorylation, which initiates association with

Giα subunit. This results in the inhibition of Giα activity and impaired suppression of

cyclic adenosine monophosphate (cAMP), thereby inhibiting P2Y12 signaling lead-

ing to reduced platelet activity [7]. Short-term alterations in glucose metabolism,

like hyperglycemia and hyperinsulinemia for 24 h, can downregulate insulin signal-

ing [8]. In addition to acute mechanism, chronic alteration of glucose levels also

impairs platelet function. In diabetes, platelets are less responsive to insulin

Fig. 7.1 Alterations of the coagulation in diabetes. In diabetes, several aspects of blood coagula-

tion are altered. Platelet function is disturbed leading to changes such as a more frequent response

to subthreshold stimuli, an increased turnover, and accelerated thrombopoiesis of hyperreactive

platelets. Fibrin clots are more compact with impaired fibrinolysis. Furthermore, heavily

glycosylated erythrocytes impact coagulation as well as increased neutrophil extracellular trap

(NET) formation and microparticles do
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contributing to increased adhesion, aggregation, and procoagulant activity [9]. Fur-

thermore, platelet hyperreactivity in diabetes is associated with increased platelet

production of thromboxane and tightly regulated by glucose control [10]. Calcium

mobilization is augmented with an increase of intracellular Ca2+ resulting in

enhanced platelet activation and aggregation [11]. Animal studies suggest that the

downregulation of calsequestrin (CSQ), a Ca2+ storage protein, and insufficiency of

the Na+/Ca2+ exchange may play a role in this context [12].

Hyperglycemia further results in glycation of platelet membrane proteins which

potentially causes changes in protein structure, thereby enhancing surface expres-

sion of P-selectin and GP receptors rendering platelets more prone to activation

[13]. Studies examining the effect of glycemic control on platelet reactivity yielded

conflicting data. Besides glycation of platelet membrane proteins, hyperglycemia

can result in glycation of low-density lipoproteins (LDL), which are able to

contribute to platelet dysfunction by increasing their intracellular Ca2+ concentra-

tion and NO production and decreasing the platelet membrane Na+/K+-adenosine

triphosphatase activity [14]. Further to these posttranslational modifications,

alterations of the lipid profile [increased LDL, triglycerides, and decreased high-

density lipoproteins (HDL)] may affect platelet function by interacting with the

intracellular system and decreasing membrane fluidity [5].

7.3.2 Oxidative Stress

Oxidative stress also modulates platelet function. Hyperglycemia directly induces

reactive oxygen production (ROS) via glucose metabolism and auto-oxidation and

indirectly due to the formation of advanced glycation end products (AGEs) and their

receptor binding. ROS activate endothelial cell signaling including protein kinase C

and nuclear factor-κB, thereby inducing the production of pro-inflammatory and

prothrombotic molecules [15]. In addition, ROS lead to the formation of

8-iso-prostaglandin F2α, a nonenzymatic oxidation product of circulating LDL and

arachidonic acid, which induces vasoconstriction and platelet hyperreactivity [16].

7.3.3 Endothelial Dysfunction

Endothelial cells are an important source for mediators regulating vasoconstriction

(e.g., angiotensin II, thromboxane) and vasodilatation (e.g., NO, prostacyclin), thus

impacting among others thrombotic processes. In diabetes, endothelial homeostasis

is impaired with a reduction in vasodilatation [17]. Hyperglycemia induces endo-

thelial dysfunction by activation of protein kinase C, increased activity of the polyol

pathway, nonenzymatic glycation, and oxidative stress. Together this results in an

elevated expression of pro-inflammatory cytokines and platelet adhesion molecules

[18]. Moreover, platelets from patients with diabetes seem to have a direct effect on

endothelial cells. A recent study in rats suggests that platelets from diabetic animals
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impair NO production via Akt/endothelial NO synthase signaling pathway and

increase thromboxane synthesis [19].

7.4 Fibrin Networks

A compact fibrin clot structure and impaired fibrinolysis are associated with more

severe cardiovascular disease [20]. Subjects with diabetes exhibit a prothrombotic

clot structure characterized by small pores and resistance to fibrinolysis due to

several mechanisms.

7.4.1 Hypercoagulability

Tissue factor (TF) is the key initiator of the coagulation cascade and produced by

several cell types including endothelial cells, vascular smooth muscle cells, monocytes/

macrophages, and platelets. Under basal conditions, TF expression is very low [21] but

can be upregulated following stimulation with cytokines (e.g., TNFα, IL-1β) [22, 23] or
mediators including thrombin, oxLDL, or histamine [24–26]. The major source of

vascular TF expression is monocytes, while the role of platelets in this context is still a

matter of debate. As some studies did not detect TF on activated platelets [27, 28],

others demonstrated functionally active TF [29–31]. In obesity, a common feature of

diabetes, adipose tissue functions as a site of TF production [32]. In diabetes,

TF-procoagulatory activity, assessed by cell-bound and microparticle-associated TF

obtained from whole blood, is elevated [33] and plasma TF activity correlates with

fasting insulin, glucose, as well as free fatty acids [34]. In clamp studies, hyperglycemia

leads to increased TF levels [35] even in healthy individuals [36]. In normal platelets,

insulin inhibits TF synthesis; however, this inhibition is lost in diabetes resulting in a

1.6-fold higher tissue factor expression [37]. In addition, both ROS and AGEs are able

to elevate TF level [21, 38].

TF binds and activates factor VII (FVII) leading to activation of the

prothrombinase complex (FXa, FVa, and Ca2+). Originally in 1986, the Northwick

Park Heart study described an association between high levels of FVII coagulant

activity and an elevated risk for ischemic heart disease [39]. Since then, this

association was a matter of debate with studies supporting the original data [40]

and others yielded opposite results [41–43]. Nevertheless, elevated levels of FVII

are associated with insulin resistance [44] and factor VII coagulant activity (FVII:c)

is elevated in metabolic syndrome [45]. In first-degree relatives of patients with

diabetes, FVII:c levels are increased and cluster with risk factors for insulin

resistance [46]. However, in one study including patients with diabetes and age-

and obesity-matched controls, FVII:c and FVII antigen levels were lower in diabe-

tes compared to healthy controls [47]. These data suggest that FVII may be more

related to the metabolic syndrome and obesity than to diabetes [45].

A different way to activate factor X and the prothrombinase complex is via the

contact activation pathway which requires the clotting factors XII, XI, IX, and VIII.
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Already in 1982, Patrassi et al. found increased plasma levels of FXII and FXI in

patients with diabetes [48]. This was confirmed more recently in a small cohort

showing an increase of FXII, FXI, and FVIII in patients with diabetes [49]. In the

circulation, FVIII is stabilized by von Willebrand factor (VWF), thereby increasing

the half-life of FVIII. The expression of VWF is regulated by several agonists

including thrombin and complement components [50]. Elevated levels of VWF and

FVIII are independently associated with the presence of diabetes [51, 52] but not

with cardiovascular disease [53].

By activation of the prothrombinase complex, prothrombin is converted to throm-

bin. This causes the activation of fibrinogen by cleaving fibrinopeptides A and B

leading to polymerization and the formation of a fibrin clot. Fibrinogen is synthesized

by the liver and is a heterodimer composed of three pairs of nonidentical polypeptide

chains (Aα, Bβ, and γ) [54]. Elevated fibrinogen levels determine clot structure and are

associated with an increased cardiovascular risk [20, 55–57]. In diabetes, fibrinogen

plasma levels are elevated due to a variety of reasons. The low-grade inflammation in

diabetes with elevation of, e.g., interleukin 6, interleukin 1, and tumor necrosis factor α
induces the production of acute phase proteins including fibrinogen [58]. Independent

of diabetes, a number of polymorphisms have been associated with increased fibrino-

gen levels [59]. Posttranslational modification such as glycation of fibrinogen further

results in alterations of fibrin function with formation of a tight and rigid fibrin clot

[60, 61], which is associated with an increased risk for myocardial infarction

[20]. Improvement of glycemic control has been shown to improve these alterations

of clot structure [62].

While forming the clot, FXIII is required for stabilization by cross-linking fibrin

and incorporation of antifibrinolytic proteins, thereby protecting us from bleeding.

FXIII is a tetrameric pro-transglutaminase that consists of two A- and B-subunits.

The B-subunit serves as carrier protein for the active A-unit, which is exposed after

stimulation by thrombin. Besides its protective effect, a role for FXIII in cardiovas-

cular disease has been suggested since the FXIII-A Val34Leu polymorphism

protects from myocardial infarction [63, 64]. In addition, a more recent study

demonstrated unfavorable changes of clot structure, including thinner fibers and

smaller pores in the presence of FXIII [65]. In diabetes, FXIII levels are increased

with no difference in cross-linking abilities. The B-subunit correlates with features

of the metabolic syndrome; the A-unit does not. This differential association can be

explained by the diverse production site. While the A-unit is produced by

hematopoietic cells, the B-subunit is synthesized by the liver [66].

7.4.2 Hypofibrinolysis

Fibrinolysis is important for homeostasis of coagulation. Following activation by

tissue plasminogen activator (tpA) or urokinase, plasminogen is converted to

plasmin which cleaves fibrin into its degradation products. In diabetes, fibrinolysis

is prolonged. Glycation of fibrin(ogen) enhances resistance to fibrinolysis [50] and

hyperinsulinemia has been shown to inhibit fibrinolysis irrespective of glucose
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levels [35]. Plasminogen activator inhibitor 1 (PAI-1) is the main inhibitor of

fibrinolysis in diabetes [67]. PAI-1 rapidly forms inactive complexes with tpA

and urokinase to prevent plasmin generation. In diabetes, PAI-1 levels are

upregulated and associated with an increased cardiovascular risk [68]. In addition

to PAI-1, more recent studies demonstrated complement C3 to be a substrate for

factor XIII resulting in cross-linking of C3 to fibrin during clot formation

[69, 70]. The high-affinity binding of C3 to fibrin(ogen) leads to a prothrombotic

clot structure and prolongation of clot lysis in vitro with pronounced effects in

diabetes [71–73].

7.5 Erythrocytes

Besides platelets and fibrinogen, in vivo clots contain red blood cells. In addition to

their traditional role for oxygen transport, recent studies suggest an impact of

erythrocytes on coagulation. They induce platelet aggregation and degranulation

due to the release of ADP and ATP under low oxygen saturation, low pH, or

mechanical deformation [74, 75]. Furthermore, they contribute to the activation

of the coagulation cascade by losing their phospholipid asymmetry and serve as a

procoagulant surface [75]. In addition, the incorporation of red blood cells

influences clot structure leading to thicker fibrin fibers and alters the mechanical

properties of the clot [76, 77]. In diabetes, the erythrocyte membrane becomes rigid

and non-deformable due to a decrease of the cholesterol to phospholipid ratio of the

cells [77]. Furthermore, several membrane proteins are heavily glycosylated com-

pared with nondiabetic erythrocyte membranes [78], leading to a significant

decrease in cell deformability. This elevates blood viscosity resulting in an

increased shear stress on endothelial cells [79]. In addition, in diabetes electron

microscopy studies revealed changes in erythrocyte morphology with elongated

cells forming extended projections twisting around fibrin fibers [80].

7.6 Microparticles

Various studies demonstrated a role for microparticles (MPs) in coagulation.

Following activation or apoptosis, MPs are released from membranes of various

cell types including platelets, endothelial cells, red blood cells, and leukocytes.

Depending on their origin, they vary in size (0.2–1 μm) and membrane composition

including phospholipids and proteins. MPs can be detected in the circulation of

healthy individuals and are elevated in diabetes mellitus [81]. MPs are directly able

to modulate nitric oxide production from endothelial cells and induce cytokine

release and prostacyclin production as well as adherence of monocytes to the

endothelium [82]. The two major procoagulants found on the surface of MPs are

phosphatidylserine and TF [83], thereby contributing to a prothrombotic state.

Furthermore, MPs can harbor and transport microRNA, thereby impacting protein

expression of target cells [84, 85].
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7.7 Neutrophil Extracellular Traps

Neutrophil extracellular traps (NETs) are weblike structures of DNA released upon

activation of neutrophils. NETs can exhibit procoagulatory properties including

induction of platelet adhesion, aggregation, and fibrin deposition on their surface.

Activated inflammatory cells such as neutrophils can further secrete histones,

cationic proteins that are associated with DNA, thereby contributing to the forma-

tion of NETs. In this context, histones have been shown to promote platelet

aggregation and thrombin formation through platelet-dependent mechanisms

including platelet toll-like receptor (TLR)2 and TLR4 [86]. The impact of NET

formation in cardiovascular disease was shown more recently in a study in acute

ST-elevation myocardial infarction, demonstrating that the interaction of thrombin-

activated platelets with polymorphonuclear neutrophils at the site of plaque rupture

results in local NET formation and delivery of active TF [87]. In diabetes, isolated

neutrophils from type 1 and type 2 diabetic humans and mice are primed to produce

NETs [88]. Accordingly, ex vitro experiments demonstrated an increased release of

NETs in a high glucose setting [89, 90].

7.8 Conclusion

Patients with diabetes mellitus are at an increased cardiovascular risk with

alterations of the blood being of critical importance. Platelet dysfunction, clot

structure, and prolongation of fibrinolysis result in an enhanced prothrombotic

milieu which is associated with an increased cardiovascular risk. More recent

studies revealed a role for erythrocytes, microparticles, and neutrophil extracellular

traps in this context. More studies are necessary to investigate the interactions

between those components to discover additional potential pharmacological

targets. This is of importance to develop new treatment strategies for those high-

risk patients. Overall, alterations of the coagulation should be taken into account

when evaluating the cardiovascular risk of patients with diabetes mellitus.

Compliance with Ethical Standards

Conflict of Interest: Katharina Schuett and Nikolaus Marx declares that they have

no conflict of interest.

Ethical Approval: This article does not contain any studies with human

participants or animals performed by any of the authors.

7 Diabetes, Thrombosis, and Cardiovascular Risks 119



References

1. Haffner SM, Lehto S, R€onnemaa T, Py€orälä K, Laakso M. Mortality from coronary heart
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Microparticles: Surrogate Markers
and Promoters of Cardiovascular Diseases 8
Martin Moser and Philipp Diehl

Abstract

Microparticles are small cell vesicles which are released from several different

cells e.g. during cell activation and cellular stress and that can be quantified using

flow cytometry. Several studies have found that circulating microparticles can be

used as biomarkers indicating the state of activation of the corresponding maternal

cells. However, there is strong evidence that besides their diagnostic value

mircoparticles furthermore function as circulating vectors transferring biological

information from the cells they initially were released to distinct target cells.

This chapter aims to briefly summarize the role of microparticles in cardio-

vascular diseases such as coronary heart diseases, arterial hypertension, or

atherosclerosis.
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8.1 Biology of Microparticles

8.1.1 Introduction

Microparticles (MP) are small cell vesicles that can be released by many different

cells, such as blood cells and vascular cells but also tumor cells during multiple

stress conditions [1]. The main stimulus leading to MP release is cell activation, but

it is quite likely that several other stimuli induce MP release, too [2]. Microparticles

contain cytoplasm, RNA molecules, as well as surface receptors of their parental

cells [1]. Thus, they can be associated by their specific surface receptors with the

cell type they initially were released from [3].

MP were first described in plasma by Wolf et al. over 50 years ago [4]. In the

initial microparticle studies, it was suggested that they are a kind of cellular debris

without any known pathophysiologic function. However, further studies found that

they do have strong pro-inflammatory and procoagulatory effects in circulation and

are elevated in conditions of strong platelet activation and systemic inflammation

[5, 6]. Within the last two decades, the numbers of publications investigating

microparticles in different diseases have continuously grown and microparticles

have turned into the focus of cardiovascular research [7].

This chapter aims to review current literature of microparticles in cardiovascular

disease. Due to the overwhelming number of published microparticle studies, only

few of them are discussed here.

8.1.2 MP as Circulating Biological Vectors

The main stimulus leading to microparticle release is cellular stress and cell

activation. Thus, microparticles are elevated in multiple pathophysiologic

conditions that are associated with platelet, leukocyte, and endothelial cell activa-

tion, such as thrombosis, acute systemic inflammation, or endothelial cell dysfunc-

tion [6, 8, 9]. Due to the fact that platelets are the most abundant cell type in

circulation, platelet microparticles (PMP) have the highest concentration of all

microparticle types in the blood.

The stimuli that lead to MP shedding are quite complex and only partially under-

stood. However, there is evidence that MP release starts with a Ca2+ influx into the

maternal cell causing a deactivation of the enzymeflippase, which is responsible for the

asymmetric distribution of phosphatidylserine (PS) in the lipid bilayer of the cell, and

an activation of calpain, which is a Ca2+-dependent proteolytic enzyme. As a result, the

cell releases cellular blebs with an outer membrane rich of phosphatidylserine (PS),

which is a typical characteristic of microparticles [2]. Phosphatidylserine is a phospho-

lipid with a negative charge that on the one hand interacts with the plasmatic coagula-

tion system causing strong procoagulatory effects and on the other hand allows

detection of microparticles using annexin V in flow cytometry [10].

As discussed below, microparticles can be used as surrogate markers for blood cell

activation in several diseases [7]. However, it has become evident that microparticles
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are furthermore circulating biological vectors. Once released from their maternal cells

into circulation, microparticles can be purified from blood for gene expression analy-

sis, binding assays, or proteomic studies [11, 12]. We and others have found that

microparticles have the ability to bind and fuse with distinct to target cells

[1, 11]. There is evidence that the adhesion of circulating microparticles to their

destination cells is at least to some extent receptor mediated and thus specific. Jy

et al. investigated the binding behavior of endothelial microparticles to leukocyte

subpopulations in vitro [13]. They found that EMP bind to monocytes and activated

those. Blockage of CD54 reduced binding of EMP to leukocytes by approximately

80%. This impressive study shows that the effect of microparticles to their target cells

can be therapeutically inhibited by specific antibodies. That microparticles affect the

phenotype of specific target cells was also found by Barry and colleagues [14]. They

showed that microparticles released from platelets increase adhesion of monocytes to

endothelial cells in a dose-dependent manner thus giving new evidence for the

pro-inflammatory potency of platelet microparticles. That microparticles affect the

phenotype of their target cells was further confirmed by Sabatier et al. [15]. They

incubated endothelial microparticles with monocytotic cells and found that they were

transformed into a procoagulatory state. This interaction between EMP and

monocytotic cells was inhibited by blocking intercellular adhesion molecule

1 (ICAM-19 on EMP and β2 on target cells).
In conclusion, microparticles are biological, circulating vectors that can bind and

fuse with distinct target cells influencing their phenotype far away from the location of

their initial release. First studieswere able to show that the interaction ofmicroparticles

to their target cells can be inhibited by specific receptor blockage. However, future

studies will need to address the question whether the effect of microparticles on disease

progressions can be inhibited by blocking MP surface receptors.

8.2 Microparticles in Cardiovascular Disease

Vascular inflammation is a strong promoter of several cardiovascular diseases, such

as atherosclerosis, myocarditis, valve disease, heart failure, and pulmonary hyper-

tension [16–20]. As microparticles are surrogate markers for vascular inflamma-

tion, increased levels of different microparticle types have been described in several

cardiovascular diseases [7]. The aim of the following sections is to summarize the

role of microparticles as surrogate markers in atherosclerosis, myocardial infarc-

tion, heart failure, arterial hypertension, and after cardiopulmonary resuscitation.

8.2.1 Atherosclerosis

Activated platelets and leukocytes as well as inflamed endothelial cells play a major

role in the etiology of atherosclerosis [21]. Therefore, several studies have investigated

whether atherosclerosis can be predicted by circulating microparticles released from

platelets, leukocytes, and endothelial cells. Chironi et al. suggested that circulating

microparticles might be increased in patients without clinical signs for atherosclerosis
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but with early atherosclerotic lesions [22]. They measured different types of

microparticles in 216 patients without cardiovascular diseases and found that the

amount of circulating CD11a+ leukocyte microparticles correlated well with the extent

of subclinical atherosclerosis as detected with ultrasound of the carotid arteries, the

abdominal aorta, and femoral arteries. This data suggests that leukocyte microparticles

might be potential surrogate markers detecting subclinical stages of atherosclerosis.

Numbers of activated platelets are increased in patients with atherosclerosis

[23]. Zeiger et al. investigated if increased platelet activation is associated with

enhanced levels of platelet microparticles in patients with peripheral artery disease

(PAD) [24]. Measuring platelet microparticles in 50 healthy subjects and 50 PAD

patients, they found increased PMP in patients with peripheral artery disease. However,

this study was not designed to correlate microparticle numbers with the severity of

PAD. This question was addressed by Tan and colleagues who presumed that

microparticles released from activated platelets (CD61+, CD42b+) might be increased

in PAD patients and furthermore correlate with the extent of peripheral artery disease,

too [25].Measuring circulating plateletmicroparticles in 30 healthy controls, 36 patients

with moderate PAD, and 23 patients with severe peripheral artery disease, they found

that PMP are generally increased in patients with PAD and furthermore correlate with

the disease severity. However, future studies need to assess whether increased levels of

circulating microparticles are the underlying cause or the effect of atherosclerosis.

Ischemic stroke is one of the most feared complications of patients with progres-

sive atherosclerosis and carotid artery stenosis [26]. Many patients with ischemic

stroke did not know in advance that they suffer from atherosclerotic stenosis with

vulnerable plaque of their carotid arteries. It is therefore of great clinical interest to

establish diagnostic tests that allow differentiation of patients with stable carotid

plaque from those with unstable plaque and a high risk for ischemic stroke consecu-

tively. Sarlon-Bartoli et al. investigated in 42 patients with >70% carotid artery

stenosis before and after thrombendarterectomy if CD11b+/CD66b+ leukocyte

microparticles predict carotid plaque instability [27]. They found that numbers of

leukocyte-derived microparticles in blood samples of patients with unstable carotid

artery stenosis were significantly higher than those of blood samples of patients with

stable carotid artery stenosis. Hence, numbers of circulating CD11b+/CD66b+

microparticles in patients with high-grade carotid artery stenosis might help in the

future to distinguish between those that benefit from thrombendarterectomy versus

those that can be treated medically.

Acute occlusion of a cerebral artery results in cerebral ischemia and hypoxia

distal to the vessel occlusion leading to endothelial injury and ischemic stroke.

Simak and colleagues hypothesized that this endothelial injury after acute cerebral

vessel occlusion results in increased levels of circulating endothelial microparticles

[28]. To confirm this hypothesis, they measured several EMP phenotypes in

20 patients with mild stroke and compared data with 21 patients suffering from

moderate to severe ischemic stroke. It was found that circulating EMP were

significantly increased in patients with moderate to severe stroke in comparison

to mild ischemic stroke. Furthermore, EMP correlated with the brain lesion volume

as assessed with MRI. Thus, circulating endothelial microparticles may be useful

predictors for the size of cerebral injury in patients with ischemic stroke.
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8.2.2 Coronary Artery Disease and Acute Coronary Syndrome

After it had been found that circulating microparticles are surrogate markers for

atherosclerosis, strong effort was undertaken to investigate whether blood MP also

can be used to diagnose coronary artery disease [29]. One of the early studies in

which microparticles were assessed in CAD patients was performed by Koga et al.,

in which CD144+ endothelial microparticles were found in patients with diabetes

mellitus and coronary artery disease [30]. These data were confirmed by Werner

and colleagues having found that CD31+/annexin V+ microparticles correlate with

endothelial cell dysfunction in patients with coronary artery disease [31].

After it had been shown that different phenotypes of microparticles can be detected

in the blood of patients with stable coronary artery diseases, Sinning et al. aimed to

assess whether microparticles also predict clinical outcomes of CAD patients. They

measured circulating CD31+/annexin V+microparticles in patients with stable coronary

artery disease and performed a follow-up for major adverse cardiovascular and cerebral

events (MACCE)-free survival approximately 6 years later [32]. It was found that

patients with initially increased levels for CD31+/annexin V+ microparticles suffered

significantly more often from MACCE, indicating that this endothelial microparticle

subtype can be used as a diagnostic marker predicting the outcome of patients with

stable coronary artery disease.

From a clinical perspective, it is most important not only to detect CAD but to

assess the risk for acute coronary syndromes (ACS) in patients with coronary artery

diseases. Therefore, several studies have tried to correlate numbers and types of

microparticles with the vulnerability of atherosclerotic plaques and with the risk for

acute coronary syndrome respectively. Bernal-Mizrachi et al. hypothesized that

endothelial activation of coronary artery disease might be reflected by circulating

endothelial cells [33]. They therefore measured circulating endothelial microparticles

as defined by the surface markers CD31+ and CD51+ in patients with different stages

of coronary artery diseases. It was found that both types of endothelial microparticles

were higher in patients with CAD than in control patients indicating increased

endothelial cell activation in CAD. However, most interestingly CD31+

microparticles discriminated patients with stable angina pectoris from those with an

acute coronary syndrome. In the same line of argumentation, Min et al. investigated

numbers of microparticles in stable CAD patients and correlated them with the extent

of necrotic cores as assessed by virtual histology intravascular ultrasound (VH-IVUS)

[34]. They found that circulating microparticles correlated well with a high content of

necrotic cores, suggesting that circulating microparticles might be surrogate markers

for vulnerability of atherosclerotic plaques.

As the underlying mechanism of a myocardial infarction is most often a

prothrombotic condition with platelet clot formation, vessel occlusion, and down-

stream located ischemia, platelet function is enhanced in patients with acute

myocardial infarction [35]. Taking into account that microparticles are surrogate

markers for cell activation and increased in patients with coronary artery diseases, it

was not particularly surprising that procoagulant microparticles are elevated in

patients with myocardial infarction, too [36, 37]. It can be suggested that besides
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their role as diagnostics markers, microparticles released during acute myocardial

infarction have pathophysiological effects on the circulatory system. Boulanger

et al. quantified microparticles in AMI patients and found that they impair the

endothelial NO pathway in endothelial cells of rat aortic rings and therefore might

contribute to the vasomotor dysfunction that often can be observed in patients with

acute myocardial infarction [38]. However, future studies will need to investigate

whether a therapeutic inhibition of MP release is associated with a better clinical

outcome of patients with acute myocardial infarction.

8.2.3 Chronic Heart Failure

Chronic heart failure (CHF) is characterized by a reduced ventricular pump func-

tion and is one of the leading causes of cardiovascular death worldwide. Recent data

indicate that HF is associated with an impairment of the vascular/endothelial

system causing an increased mortality risk [39–41]. Hence, there is a need for

circulating biomarker that quantifies this endothelial dysfunction in heart failure

patients noninvasively.

Hypothesizing that endothelial microparticles might reflect the endothelial dys-

function in patients with heart failure, Nozaki et al. measured CD144+ EMP in

169 HF patients [42]. They found that HF patients with high EMP levels more often

developed cardiovascular events than those with less circulating EMP. Addition-

ally, EMP predicted future cardiovascular complications in this patient group.

Berezin and colleagues assessed whether different blood parameters predict the

clinical outcome in HF patients [43]. They were able to show that regardless of age,

gender, and comorbidities, the measurement of NT-pro-BNP, galectin-3, hs-CRP,

osteoprotegerin, CD31+/annexin V+ EMP, and EMP/CD14+CD309+ MPC ratio

predicts the survival of patients with chronic heart failure. However, it still remains

unclear whether these microparticles are a consequence of CHF or if they actively

influence the disease progression.

8.2.4 Microparticles in Arterial Hypertension

First described by the Framingham Study, arterial hypertension is one of the risk

factors that promotes cardiovascular diseases such as atherosclerosis [44]. Several

studies have shown in the past that arterial hypertension causes endothelial inflam-

mation leading to enhanced monocyte recruitment to sites of inflammation with

consecutive atherosclerotic plaque formation [45, 46]. In order to allow early

detection and thus treatment of endothelial dysfunction in patients who have not

developed clinical signs of atherosclerosis yet, easy detectable surrogate markers

are needed. As activated, inflamed endothelial cells release microparticles in

circulation, Preston and colleagues hypothesized that patients with arterial hyper-

tension might have different patterns of circulating microparticles than normoten-

sive controls [47]. Therefore, they measured levels of CD31+/CD42� endothelial

130 M. Moser and P. Diehl



microparticles and CD41+ platelet microparticles in patients with untreated severe

arterial hypertension (n ¼ 24), mild arterial hypertension (n ¼ 19), and normoten-

sive controls. They found that endothelial and platelet microparticles were signifi-

cantly increased in patients with severe arterial hypertension. Furthermore,

endothelial microparticles correlated with the systolic and diastolic blood pressures.

Due to their results, Breston et al. suggest that EMP and PMP might be markers as

well as mediators of endothelial and platelet activation in arterial hypertension and

might presumably promote hypertensive target organ injury.

One of the most common end-organ damages caused by arterial hypertension is

hypertensive nephropathy with impaired kidney function consecutively. Hsu et al.

presumed that endothelial microparticles are involved in impaired renal function in

patients with arterial hypertension [48]. Therefore, they measured EMP and endo-

thelial progenitor cells (EPC) in 100 patients with arterial hypertension and a

glomerular filtration rate of �30 mL min�1/1.73 m2. They found that the ratio of

EMP to EPC was associated with a subsequent decline of the glomerular filtration

rate in hypertensive patients. These data underline the importance of endothelial

cell dysfunction as quantified by EMP in patients with arterial hypertension.

However, as the investigated study population is comparably small, well-powered

studies need to confirm their results.

8.2.5 Resuscitation

Acute myocardial infarction can lead to cardiac arrest with the need for cardiopul-

monary resuscitation (CPR) [49]. Patients after successful CPR often develop

postcardiac arrest syndromes with symptoms of a severe systemic inflammation

and endothelial dysfunction [50, 51]. Hypothesizing that this inflammatory response

might be associated with enhanced levels of circulating microparticles, Fink et al.

investigated the abundance of microparticles in patients after cardiopulmonary

resuscitation and found highly increased numbers of microparticles of various

origins in CPR patients versus controls [9]. Furthermore, microparticles of patients

after resuscitation induced endothelial dysfunction and apoptosis ex vivo and thus

might contribute to systemic vascular dysfunction as often found after CPR

[10]. Interestingly, selenium treatment reduced ICAM-1- and VCAM-1-related

monocyte adhesion induced by plasma microparticles of patients after cardiopul-

monary resuscitation [52]. Hence, selenium might impair the pro-inflammatory

effects of circulating microparticles on leukocytes and endothelial cells.

8.2.6 Conclusion

Microparticles are surrogate markers for several cardiovascular diseases that are

associated with pro-inflammation and procoagulation. However, due to a lack of

standardized assays for microparticle detection, results from different MP studies

are hard to compare with each other. Besides their function as surrogate markers,
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microparticles are circulating biovectors transferring cytoplasm, RNA, lipids, and

proteins from their maternal cells to the destination cells. Thereby, microparticles

can actively change the phenotype and function of cells far away from the location

the microparticles were released. First studies have shown that the interaction

between microparticles and their target cells are receptor specific and can be

inhibited by antibody treatments. However, larger studies are needed showing

that decreased interaction between microparticles and their target cells affects

disease progression.
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Mechanisms of Platelet Activation
in Diabetes Mellitus 9
Florian Willecke, Prabhakara R. Nagareddy, and Andrew J. Murphy

Abstract

Diabetes mellitus is a multifactorial disease that substanially increases the risk

for cardiovascular disease. Increased platelet activation has been indentified as a

major factor contributing to increased CVD risk in diabetes by enhancing

platelet adhesion and aggregation. The exact contribution of factors such as

insulin resistance, hyperglycemia, inflammation, and hyperlipidemia is still

under investigation. Here, we review these factors and how they contribute to

platelet hyperreactivity in patients with diabetes mellitus and highlight possible

pharmacological interventions.
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9.1 Introduction

9.1.1 Diabetes Mellitus and Cardiovascular Risk

A seemingly relentless increase in the incidence of diabetes finds us in the midst of

a global diabetes epidemic. More than 382 million people are currently affected

worldwide, and this number is expected to rise to 592 million by 2035 [1]. Once a

disease of Western countries, diabetes has now become an epidemic of developing

countries: 80% of people with diabetes live in low- and middle-income countries

[1]. Consequently, diabetes-associated micro- and macrovascular complications are

rising: Diabetes is a major risk factor for cardiovascular disease (CVD), and CVD is

the most common cause of death in people with diabetes mellitus (DM). Although

rates of death attributable to CVD have declined in people without diabetes [2], the

burden of CVD in those with diabetes remains high, and implementation of

preventive strategies is frequently not adequate [3–5]. The substantially increased

risk for CVD of patients with diabetes was first highlighted by the landmark study

of Haffner et al. who demonstrated that diabetic patients without prior CVD have

the same rate of myocardial infarction as nondiabetic subjects who had a previous

event [6]. In addition, the presence of CVD in subjects with diabetes increases the

rate of all-cause death nearly threefold and the rate of cardiovascular death nearly

fivefold compared to nondiabetic subjects [7].

The majority of diabetic patients have evidence of underlying insulin resistance,

which is characterized by a reduction in sensitivity to the action of insulin preceding

the development of beta-cell failure and hyperglycemia, the latter being a hallmark of

diabetes. Unlike the diabetes-specific microvasculopathy, neuropathy, nephropathy,

and retinopathy, the macroangiopathic process in patients with diabetes represents an

accelerated but pathophysiological process similar to atherosclerosis in nondiabetic

subjects. What are the factors that contribute to this accelerating atherosclerosis in

diabetic subjects? Patients with DM not only have a greater atheromatous plaque

burden but also a thrombotic diathesis that is in part due to changes in the coagulation

system with elevated intravascular thrombin formation, increased levels of plasma

fibrinogen, and reduced fibrinolytic potential (see Chap. 7). At the same time,

however, platelets from subjects with diabetes display an increased capacity to

activate and aggregate after stimulation (platelet hyperreactivity). Besides its acute

role in the pathophysiology of myocardial infarction by thrombus formation, platelets

contribute to the progression of local vascular lesions by the release of oxidative,

constrictive, and mitogenic substances.

Diabetes is a multifactorial disease associated with biochemical factors such as

insulin resistance, inflammation, oxidative stress, hyperlipidemia, and hyperglycemia.

We aim to review these factors and how they contribute to platelet hyperreactivity in

patients with diabetes mellitus (Fig. 9.1).
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9.2 Platelet Activation

9.2.1 Diabetes Mellitus-Induced Thromboxane-Dependent
Platelet Activation, Aggregation, and Turnover

Activation and aggregation of platelets is one of the first steps following plaque

rupture. In diabetic subjects, platelets display enhanced adhesion, aggregation, and

activation [8, 9] as well as decreased platelet sensitivity to anti-aggregating agents

(e.g., nitric oxide (NO) and prostacyclin (PGI2)) [10]. After activation, platelets

activate prostaglandin synthesis leading to the production of thromboxane A2

(TXA2). TXA2 potentiates platelet aggregation and causes vasoconstriction. In dia-

betic subjects, platelets produce more TXA2 than platelets from healthy subjects in

response to various stimuli [11, 12]. The rate of TXA2 biosynthesis appears to reflect

the influence of coexisting disorders such as diabetes mellitus, hypercholesterolemia,

and hypertension on platelet biochemistry and function. For example, in an animal

model of streptozotocin-induced diabetes, enhanced platelet aggregation and TXA2

synthesis were detected within days of induction of diabetes before the onset of any

vascular disease [9]. It has been concluded that platelet activation reflects the influence

Platelet Hyperreactivity, 
Adhesion & Aggregation:

Atherogenesis and
Thrombus Formation

Insulin Resistance
↓PGI2/NO sensitivity

↑ ADP receptor sensitivity

Hyperglycemia
↑[Ca2+]i
↑TXA2

Inflammation
↑ CD40L, CD36, PAI-1, IL-6

PPARγ

Dyslipidemia
↑ApoE/VLDL interaction with Plt LDL receptor

↓ HDL ↓ cholesterol efflux

↑Platelet turnover
↑TXA2

↑ Microparticles
↑ tissue factor

AGEs

↑ROS
↑ Lipid peroxidation
↑F2 isoprostanes

↑RAGE 
EC dysfunction

Fig. 9.1 Simplified scheme of pathways involved in platelet hyperreactivity in diabetes mellitus:

hyperglycemia and insulin resistance drive platelet activation and thrombus formation through

mechanism involving inflammation, dyslipidemia, platelet turnover, ROS production, and

increased microparticles. Refer to text for details and abbreviations
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of metabolic and hemodynamic disturbances on platelet biochemistry and function

rather than a consequence of attendant atherosclerotic lesions [14]. Platelets from

subjects with diabetes are less sensitive to inhibition of the synthesis and action of

TXA2 [13]; however, TXA2 synthesis does not necessarily correlate with platelet

aggregation in diabetic subjects [14]. This suggests that enhanced platelet aggregation

is multifactorial.

Meta-analyses with combined data from over 140 randomized trials show that

antiplatelet therapy reduces the risk of vascular events [15]. However, this strategy is

far less effective in diabetic subjects [16, 17]. A potential explanation is that platelet

turnover is thought to be accelerated in diabetic patients as shown by the increase of

mean platelet volume (MPV) in diabetic versus nondiabetic patients [18]. MPV is an

indicator of the average size and activity of platelets. Larger platelets are generally

younger, reticulated platelets, which are more reactive and produce more

prothrombotic factors such as TXA2 [18]. As reticulated platelets carry mRNA, they

have the ability to resynthesize enzymes such as cyclooxygenases (COX), rendering

some antiplatelet drugs ineffective [19, 20]. The mechanisms contributing to increased

reticulated platelets in diabetes are unknown; however, their role in vascular disease is

likely significant, not only in thrombosis but also in atherogenesis [21, 22]. MPV

independently correlates with the severity of diabetes [23], but robust correlations are

not always seen with fasting blood glucose and duration of diabetes, suggesting that the

increase in MPV may be not due to the diabetic state alone. Interestingly, significantly

elevated platelet counts in people with diabetes do indeed correlate with CVD

[24]. Additionally, it has been shown that the increase of MPV in the late phase of

myocardial infarction is an independent predictor for recurrent myocardial infarction

[25] and that coronary heart disease is associated with MPV in T2DM patients

[26, 27]. Following activation, platelets and endothelial cells—among other cell

types—release microparticles (MPs). MPs represent a heterogeneous population of

vesicles with a diameter of 100–1000 nm that are released by budding of the plasma

membrane and express antigens specific of their parental cells. Elevated circulatingMP

levels are found in various diseases, including acute coronary syndrome, peripheral

artery disease, systemic inflammation, and diabetes. In type 2 diabetes mellitus

(T2DM), patients circulating MPs are larger than in healthy subjects and mostly

originate from MPs of platelet origin [28]. This increase of MPs is independent of

the obesity status [29]. Circulating MPs carry abundant procoagulant tissue factor,

thereby likely contributing to thrombus formation at sites of vascular injury [28].

Platelet activation causes changes in the expression of surface glycoproteins

(GP), which act as receptors for platelet agonists and for adhesive proteins involved

in platelet aggregation. Following platelet activation, P-selectin translocates from

the membrane of α-granules to the plasma membrane and the GPIIb/IIIa complex

on platelets exposes a fibrinogen binding site, thereby facilitating platelet aggrega-

tion through platelet–fibrin and platelet–platelet binding [30]. Platelets of diabetic

patients show higher expression of surface receptors (e.g., GPIIb/IIIa) and activa-

tion markers (e.g., P-selectin and PCAM-1), thereby facilitating increased binding

of von Willebrand factor in diabetic patients [31].
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9.2.2 Causes of Platelet Activation

9.2.2.1 Insulin Resistance
About 90% of all DM patients have T2DM, characterized by reduced tissue

sensitivity to insulin. Initially, pancreatic β-cells compensate insulin resistance by

increasing insulin production. However, in the long term, pancreatic β-cells
undergo apoptosis leading to a reduction in β-cells. Hence, the hyperinsulinemia

characteristic of early stages of T2DM progressively gives way to relative and

absolute insulin deficiency [32]. Insulin regulates platelet function via insulin

receptors found on human platelets [33]. Binding of insulin to the insulin receptor

leads to activation of the insulin receptor substrate 1 (IRS-1) through tyrosine

phosphorylation and its association with the Giα subunit. This results in the inhibi-

tion of Giα activity and impaired suppression of cyclic adenosine monophosphate

(cAMP), thus inhibiting downstream signaling of the adenosine diphosphate recep-

tor P2Y12 and reducing platelet activity in vitro [34, 35]. Furthermore, it has been

shown in vivo that insulin inhibits platelet interaction with collagen and attenuates

the platelet aggregation effect of agonists in healthy individuals [36]. Moreover,

insulin increases the surface expression of PGI2 receptors, thereby increasing

sensitivity to the anti-aggregating activity of PGI2 [30]. PGI2 and NO are produced

by the intact endothelium and retard platelet activation by increasing intraplatelet

concentrations of cAMP. In patients with T2DM, platelets lose their responsiveness

to insulin leading to increased adhesion, aggregation, and procoagulant activity

[37]. Others have reported decreased platelet insulin receptor number and affinity in

subjects with T2DM, suggesting that reduced insulin sensitivity may account for

platelet hyperactivity in T2DM [38]. With insulin resistance, platelets display

reduced sensitivity to NO, further enhancing platelet reactivity [39]. Restoration

of insulin sensitivity restores platelet sensitivity to NO and PGI2 [40].

9.2.2.2 Hyperglycemia
Hyperglycemia, resulting from defects in insulin secretion, insulin action, or both,

is the diagnostic hallmark finding in diabetes mellitus and plays a significant role in

the development of DM-associated CVD and the prothrombotic state [41]. The

detrimental effects of glucose already occur with glycemic levels below the thresh-

old for the diagnosis of diabetes. Acute hyperglycemia increases platelet reactivity

and markers of platelet activation such as soluble P-selectin. Hyperglycemia leads

to increased intracellular Ca2+ levels [42] and causes in vivo activation of calcium-

sensitive protein kinase C, a mediator for pro-aggregatory platelet agonists [43].

It has been suggested that hyperglycemic spikes may trigger ischemic cardio-

vascular complications in diabetes mellitus [44]. Improved glycemic control

reduces platelet reactivity in T2DM following percutaneous coronary intervention

(PCI) [45]. This is of clinical relevance for patients with T2DM and an acute

coronary event: intensive glucose-lowering treatment in diabetic patients signifi-

cantly reduced mortality in acute MI [46]. In addition, in diabetic patients

undergoing elective PCI, optimal glycemic control (HbA1c � 7%) was associated

with a lower rate of restenosis, cardiac rehospitalization, and recurrent angina
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[47]. However, more recent clinical studies (ACCORD and NICE-SUGAR) have

challenged intensive glucose regimens. Intensive glucose-lowering regimen versus

a standard regimen increased mortality in diabetic subjects likely due to an

increased rate of hypoglycemia [48, 49].

Increased plasma levels of glucose lead to nonenzymatic protein glycation yielding

a heterogeneous class of compounds, collectively termed advanced glycation end

products (AGEs) [50]. AGEs may contribute to the development and progression of

CVD in diabetes by acting via specific “receptors for AGE” (RAGE) or through other

mechanisms. AGEs elicit externalization of phosphatidylserine on platelet membranes

leading to activation of surface clotting factor and enhanced thrombogenic state.

[51]. The increased glycosylation of platelet membrane proteins in diabetes appears

to be related to reduced membrane fluidity [52], which modulates cell function,

possibly through alterations in receptor availability and increased sensitivity to agonists

[53]. Also, enhanced glycosylation of endothelial proteins quenches endothelial NO

production and contributes to reduced platelet inhibition [54].

Hyperglycemia induces mitochondrial dysfunction and endoplasmic reticulum

stress, thereby promoting reactive oxygen species (ROS) accumulation. ROS

enhance the interaction of sugars with proteins and increase the formation of

AGEs. In addition, ROS activates signaling molecules in endothelial cells, includ-

ing protein kinase C (PKC) and nuclear factor κB (NFκB) leading to enhanced

expression of pro-inflammatory and prothrombotic molecules [55]. In DM, produc-

tion of ROS and potent free radicals enhances platelet activation [56, 57]. Increased

ROS production can induce the formation of F2-isoprostanes, such as

8-iso-prostaglandin (PG)F2α, a nonenzymatic oxidation product of circulating

LDL and arachidonic acid [58]. In T2DM, enhanced production of 8-iso-PGF2α
correlates with the rate of TXA2 biosynthesis and improved metabolic control is

associated with a significant reduction in 8-iso-PGF2alpha and 11-dehydro-throm-

boxane B2 excretion [58].

9.2.2.3 Dyslipidemia
Dyslipidemia is one of the key risk factors for cardiovascular disease (CVD) in

DM. The characteristic features of diabetic dyslipidemia are high plasma triglycer-

ide concentration, reduced high-density lipoprotein cholesterol (HDL-C) concen-

tration, and increased concentration of small dense LDL particles. There is a

considerable body of evidence supporting an association between dyslipidemia, a

hypercoagulable state, and atherothrombosis. Familial hypertriglyceridemia shows

increased platelet activation in response to adenosine diphosphate (ADP) and

collagen, an effect that might be mediated by the interaction of ApoE on

triglyceride-rich VLDL particles with the platelet LDL receptor [59]. VLDL also

upregulates expression of the plasminogen activator inhibitor-1 gene and plasmin-

ogen activator inhibitor-1 antigen and activity, a process accompanied by platelet

aggregation and clot formation [60, 61]. Reconstituted high-density lipoprotein

(HDL) attenuates platelet aggregation in individuals with T2DM by promoting

cholesterol efflux [62]. In atherosclerotic mice, HDL infusion reduced platelet

counts by increasing cholesterol efflux in platelet-generating megakaryocytes
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[21]. As discussed above, glycation induces compositional and structural changes

in LDL-C, leading to impaired NO production and increased intraplatelet calcium

concentration further contributing to platelet hyperactivity [63]. Finally,

hypertriglyceridemia and insulin resistance are also features of polycystic ovary

syndrome (PCOS). Acute hypertriglyceridemia in patients with PCOS induces

platelet hyperactivity but is not attenuated by insulin, implying a more relevant

role of triglycerides for platelet activation at least in these patients with PCOS [64].

9.2.2.4 Inflammation
The common soil hypothesis, originally put forward by Stern, suggests that diabetes

and CVD are the same condition with common antecedents [65]. Factors like

hyperglycemia, insulin resistance, oxidative stress, and dyslipidemia strengthen

this association as discussed above. All of the above also trigger low-grade inflam-

mation which is now widely accepted to be one link between insulin resistance,

T2DM, and CVD [55, 66]. Inflammation is characterized by increased plasma

levels of cytokines, chemokines, and acute-phase proteins, such as C-reactive

protein (CRP), and all of these are increased in T2DM patients [67]. Leukocytes

induce platelet activation by platelet-activating factor (PAF), a potent phospholipid

activator, mediating molecular and cellular interactions between inflammation and

platelet activation [68].

CD40L is an inflammatory mediator derived from platelets and expands the

functional repertoire of platelets from players of hemostasis and thrombosis to

powerful amplifiers of inflammation by promoting the release of cytokines and

chemokines, cell activation, and cell–cell interactions [69]. Increased plasma levels

of CD40L have been described in both T1DM and T2DM [70] with more than 95%

of circulating CD40L deriving from platelets [71]. CD40L signaling increases

tissue factor expression [72] and stimulates resting platelets by binding to its

constitutively expressed receptor CD40, thereby eliciting prothrombotic and

pro-inflammatory responses. Release of CD40L in diabetic patients is likely

mediated by AGEs [73]. CD40L, in turn, increases platelet release of ROS through

activation of Akt and p38 MAP kinase signaling pathways [74]. Plasma CD40L

correlates with urinary thromboxane levels suggesting CD40L release during

TXA2-dependent platelet activation [75].

In obesity, which is associated with both diabetes and CVD, visceral adipose

tissue is a major source for inflammatory cytokines like monocyte chemotactic

protein (MCP-1), tumor necrosis factor (TNF)α, interleukin (IL)-6, plasminogen

activator inhibitor (PAI)-1 [67], and damage-associated molecular patterns

(DAMPs) such as S100A8/A9 [76]. The expression of DAMPs is elevated in

platelets of patients presenting with acute MI and could promote thrombosis

[77]. PAI-1 inhibits plasminogen activator and hence is an inhibitor of fibrinolysis,

the physiological process that degrades blood clots. The increased secretion of these

cytokines substantially drives fibrinogen production and induces a prothrombotic

setting [55].

CD36 belongs to the class of type B scavenger receptors and functions as a

multifunctional protein involved in the uptake of apoptotic cells, transport of lipids
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and fatty acids, adhesion, and modulation of inflammation, which are all affected

under conditions of CVD and diabetes [78]. There is abundant evidence linking

CD36 with diabetes, inflammation, and platelet activation: increased CD36 expres-

sion is believed to be a marker of macrophage activation and inflammation [79],

and hyperglycemia upregulates CD36 expression on the surface of monocytes in

T2DM patients [80]. CD36 is also abundantly expressed on platelets, and

interactions of platelet CD36 with oxLDL on monocytes result in increased platelet

activation and enhanced thrombus formation [81]. There is also evidence that a

specific CD36-dependent signaling pathway is required for platelet activation by

oxLDL [82]. Circulating soluble CD36 is associated with glucose metabolism and

interleukin-6 in patients with impaired glucose tolerance [83]. Finally, similar to

CD40, plasma CD36 levels correlate with the urinary excretion rate of thromboxane

and 8-iso-PGF2α, a sensitive marker of in vivo lipid peroxidation due to circulating

oxLDL levels [69]. 8-iso-PGF2α, in turn, may amplify the aggregation response to

subthreshold concentrations of platelet agonists [5]. In summary, CD36 plays an

important role in linking macrophage activation with platelet activation, particu-

larly in setting of increased oxidative stress and lipid peroxidation like DM.

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-

activated transcription factor important in lipid metabolism, diabetes, and inflam-

mation. Although PPARγ is considered to be a nuclear receptor, enucleate platelets
also highly express this receptor and both synthetic and natural PPARγ ligands

inhibit platelet activation and release of bioactive mediators. In particular, release

of soluble CD40 ligand (sCD40L) and TXA2 was inhibited by PPARγ ligands in

thrombin-activated platelets [84]. Other described effects included reduction of

platelet aggregation, suppression of thrombin-induced protein kinase C and beta

activation, decrease in plasma P-selectin and platelet P-selectin expression,

increase in NO production, and inhibition of tissue factor- and platelet-activating

factor-induced morphological changes in macrophages. These findings appeared in

parallel with reduction of the plasma concentrations of pro-inflammatory risk

markers [85].

9.3 Antiplatelet Treatment in Diabetes

Aspirin irreversibly inhibits COX-1, the key enzyme in the conversion of

arachidonic acid into TXA2, thereby limiting the platelet response to agonists

such as ADP and collagen. However, some patients’ platelets remain reactive to

agonist despite aspirin therapy increasing the risk for atherothrombotic events.

Although often termed “aspirin resistance,” a more appropriate term is high

on-treatment platelet reactivity (HTPR) as failure of aspirin to inhibit COX-1 is

quite rare (less than 5%) [86]. In contrast, HTPR is particularly prominent in DM

patients, with a prevalence of about 20% [87]. As discussed above, patients with

DM display platelet hyperactivity and are more sensitive to activation by agonists.

Although aspirin may effectively block COX-1, platelets of affected patients with

DM continue to manifest high on-treatment platelet reactivity (HTPR) that leads to
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elevated thrombotic risk [32]. What are possible determinants of HTPR in diabetes?

First, low-grade inflammation can induce extra-platelet generation of thromboxane

via COX-2 that is hardly sensitive to low-dose aspirin. Secondly, high platelet

turnover in diabetic patients may contribute to HTPR through enhanced reactivity

of younger platelets, increased COX-2 expression, and partial inhibition of COX-1.

Young, reticulated platelets provide RNA to resynthesize COX-1, thereby limiting

the effectiveness of aspirin. Third, an excess in F2-isoprostane production can

partly activate the thromboxane receptor in a COX-independent way [5]. Finally,

hyperglycemia may reduce sensitivity of platelets to aspirin by increased protein

glycation [88]. As aspirin has a short half-life, it has been advocated that multiple

dosing intervals rather than an increase in the once-daily dose may increase the

bioavailability of aspirin and enhance platelet inhibition especially in diabetic

patients [5, 89].

Similar to TXA2, ADP also induces platelet aggregation. The thienopyridine

clopidogrel limits platelet aggregation by irreversibly inhibiting the ADP receptor

P2Y12 on platelets. Dual platelet therapy consisting of aspirin and clopidogrel

effectively prevents recurrent cardiovascular events [90]. Polymorphisms in

genes encoding cytochrome P450 enzymes cause ineffective or even absent meta-

bolic activation of clopidogrel in some patients resulting in HTPR. Again this is

particularly eminent in DM patients. In the OPTIMUS trial, two-thirds of diabetic

patients were considered to have suboptimal response to aspirin and clopidogrel

likely due to HTPR. In patients with DM on clopidogrel therapy, HTPR was

associated with a fourfold increase in periprocedural myocardial infarction com-

pared to DM with normal adequately suppressed platelet reactivity [91]. An

increase of 75 mg clopidogrel to a daily dose of 150 mg induced platelet reactivity

suppression in poor responders [92]. Medical treatment of T2DM might further

interfere with HTPR by competition for metabolism by CYP2C9 cytochrome. For

instance, concomitant treatment with sulfonylureas might be associated with

decreased platelet inhibition by clopidogrel in T2DM patients on dual antiplatelet

therapy undergoing elective coronary stent implantation [93]. A proposed mecha-

nism is that platelets from diabetic patients have lower levels of cAMP compared

with nondiabetics due to insulin resistance [94]. Lower cAMP levels lead to

upregulated P2Y12 signaling, thereby decreasing platelet inhibition by P2Y12

antagonists. Increasing baseline platelet cAMP by phosphodiesterase-3 inhibitors

(e.g., cilostazol) has been shown to improve platelet response to P2Y12 inhibition in

DM patients, but this has not been implemented into clinical use due to safety

concerns [32]. Newer antiplatelet agents like prasugrel and ticagrelor have been

approved for patients undergoing percutaneous intervention in the past decade.

Both substances are unaffected by cytochrome polymorphisms, leading to more

consistent antiplatelet effects compared to clopidogrel. Subgroup analysis of

patients with DM from the PLATO (ticagrelor) and the TRITON-TIMI

38 (prasugrel) study showed a significant reduction of the primary end point

compared to DM patients treated with clopidogrel [95, 96].

According to the joint position statement of the American Diabetes Association

and American Heart Association, aspirin use for primary prevention should be
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prescribed to DM patients with a more than 10% risk for a fatal CVD within

10 years and can be considered in patients at intermediate (5–10%) risk. Standard

aspirin treatment is not recommended in DM patients with a 10-year CVD risk of

less than 5% [97]. The same guidelines, however, recommend the general therapy

of cardiovascular risk factors in all DM patients. These include the management of

high blood pressure, dyslipidemia, and hyperglycemia. In turn, as discussed above,

adequate management of these risk factors will also affect platelet reactivity and

aggregation. As shown in the UKPDS study, metformin reduced the risk for

ischemic heart disease compared to other hypoglycemic agents [98]. Possible

mechanisms include reduced levels of PAI-1 and fibrinogen and improved lysis

of clots with metformin treatment [99]. The recently published EMPA-REG study

has shown that the sodium/glucose cotransporter 2 (SGLT2) inhibitor empagliflozin

significantly decreases the rate of cardiovascular events in DM patients

[100]. SGLT2 inhibitors decrease the reabsorption of glucose in the kidney and

therefore lower blood sugar. The mechanisms for decreased cardiovascular events

in DM are currently under investigation, and there has been no study so far

investigating the effect of SGLT2 inhibitors in platelet function.

Some, if not all, of these agents also impact underlying low-grade inflammation,

thereby influencing platelet function. The pleiotropic effects of statins include anti-

inflammatory properties, characterized by a reduction of high sensitive CRP and a

decrease of inflammatory cells within the atherosclerotic plaque [101]. PPARγ
agonists decrease inflammatory molecules including CRP, TNFα, and IL-6, inde-

pendent of improving insulin sensitivity [102]. Finally, metformin has favorable

effects on some inflammatory markers such as CRP [103].

9.4 Conclusion

Diabetes is a multifactorial disease associated with biochemical factors such as insulin

resistance, inflammation, oxidative stress, hyperlipidemia, and hyperglycemia. The

detrimental metabolic state that accompanies diabetes is responsible for abnormal

platelet (and other cell) function, thereby contributing to accelerating CVD by

enhanced adhesion, activation, and aggregation. Consequently, treatment of those

risk factors by various agents in DM patients affects platelet function and limits

accelerated CVD. Deciphering pathways in platelets that are particularly activated in

diabetes might lead to novel treatment strategies.
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Platelet Chemokines in New Modes
of Action 10
Madhumita Chatterjee and Meinrad Gawaz

Abstract

Platelets are an enriched source of growth factors, pro- or anti-inflammatory

agents, and pro- or anti-angiogenic mediators which are differentially sorted and

readily available to be released from their granular repertoire upon receiving

adequate stimulus. Platelet-derived mediators either through an autocrine or

paracrine mode of action regulate systemic and vascular inflammation, immune

defence, also contribute to regenerative mechanisms. Lately, platelet-associated

chemokines have been ascribed rather unconventional roles in thrombo-

inflammation, lipid uptake, and antimicrobial defence. This chapter highlights

the impact of platelet-associated CXC chemokine ligands and their receptors in

modulating haemostasis-thrombosis and platelet life span, and in influencing

platelet-induced inflammatory or regenerative processes. We further highlight

the contribution of thrombocidins, which are platelet-derived modified chemo-

kines, in executing antimicrobial actions. The recently discovered multifaceted

aspects of platelet chemokines as emphasised in this chapter encourages further

experimental and clinical investigations in this expansive but still largely

uncharted area of research in platelet biology.
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10.1 Introduction

Platelets, the critical players in mediating haemostasis and thrombosis [1–3], have

emerged as significant cellular participants in immune and inflammatory response in

diverse pathophysiologies [4–7]. Upon activation, platelets might secrete a wide

arsenal of ready to be released stored mediators from their α-granules that regulate a
wide spectrum of responses [8–11]. Thus, platelets, being the initial and prime res-

ponders to vascular or tissue injury, are celebrated accomplice in vascular inflam-

mation, atheroprogression [1–3], and atherosclerosis [4–7]. Recent extensive

proteomic analysis of platelet α-granules has identified about 300 target molecular

species which include growth factors, chemokines, cytokines, adhesion molecules,

coagulation factors, fibrinolytic agents, angiogenic regulators, etc., with a wide

range of functional attributes [12]. Encompassing a battery of pro-/anti-inflamma-

tory and growth factors in their granular repertoire and being the most abundant

blood corpuscle, they are readily positioned to act instantaneously to pathophysio-

logical changes in the systemic or vascular environment and also contribute sub-

stantially to circulating levels of pro-/anti-inflammatory mediators to reach target

organs and tissues [9, 10]. Moreover, activated platelet-derived microparticles

enhance distal coagulation and inflammatory processes. CXCL4 (platelet factor

4 (PF4)) and CXCL7 are the most abundant of platelet-derived chemokines, closely

followed by CCL5 (regulated on activation, normal T-cell expressed and secreted

(RANTES)), macrophage migration inhibitory factor (MIF), CXCL12 (stromal cell-

derived factor 1 (SDF-1)), and CXCL5 (epithelial neutrophil-activating peptide

(ENA-78)) [4–7]. Evidential literature reporting the presence and functional signifi-

cance of platelet-derived factors show much variability in terms of their relative

expression detected by various means like proteomic, transcriptomic, and immuno-

logic approaches [4–6]. These factors are differentially sorted in the α-granules,
show preferential release upon receiving activating stimuli [14, 23], as presented in

Fig. 10.1, also vary considerably in their release kinetics and relative stability. Once

released, they mediate chemotaxis, proliferation, and differentiation of inflamma-

tory and progenitor cells, instigate pro- or anti-angiogenic response, promote or

retard thrombotic potential of platelets, and modulate their circulatory life span.

Such functions are executed through the active engagement of the cognate receptors

and a complex network of downstream signalling pathways. Platelets express

several chemokine receptors [3–6] such as CCR1, CCR3, CCR4, CXCR2,

CXCR4, CXCR6, CXCR7, and CX3CR1 [13–19], which render them susceptible

to both autocrine and paracrine modulation by factors like CCL3 (MIP-1), CCL5,

CCL7 (MCP-3), CCL17, CXCL1, CXCL5 (ENA-78), CXCL16 [15], CXCL8

(IL-8), CXCL12 [16, 17], and MIF [18, 19]. Therefore, these chemokines are desig-

nated as potential platelet agonists with diverse functional influence.

Platelet-derived chemokines are intricately associated with atherosclerotic pro-

gression or in directing the course and resolution of vascular inflammation. Platelets

adherent to the site of vascular damage not only serve as a substrate for subsequent

leukocyte interaction but secrete chemotactic factors, which drive infiltration of a

variety of inflammatory and regenerative cells. Activated platelet secreted chemo-

kine CXCL12 provides migratory signals that recruit CXCR4-expressing bone
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marrow (BM)-derived progenitors of smooth muscle progenitor cells (SPCs) and

endothelial progenitor cells (EPCs), monocytes, macrophages, thereby maintain the

balance between vascular regeneration as opposed to vascular inflammation and

remodelling [4–7]. Thus, platelets may promote neovascularisation or vessel regen-

eration, yet under pathological conditions also neointima formation [4]. Platelets

induce migration of CXCR2-expressing EPC to the sites of vascular injury by

releasing epithelial neutrophil-activating peptide-78 (ENA-78, CXCL5) and plate-

let basic protein (PBP, CXCL7). CXCL7 secreted upon platelet activation is

ultimately processed into neutrophil-activating peptide 2 by regulated proteolysis.

These chemokines might execute CXCR2-dependent homing to initiate vascular

remodelling [4, 6, 7]. Apart from circulating progenitor cells, platelets bear the

potential to attract a variety of leukocytes to exaggerate vascular inflammation.

During their transient interaction with injured or inflamed endothelial layer,

platelets can deposit chemokines onto endothelial cells and thereby promote

Activated
Platelet

PAR4

CXCL16

OxLDLSR

CXCL11

MIF

MIF

CXCL11

CXCL16

CXCL16

CXCL16 CXCL11

MIF

CXCL11

Collagen
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Thrombin

Thrombocidins

PAR1/PAR4

Microbicidal action

Fig. 10.1 Preferential release of platelet chemokines from the platelet granular repertoire.

Platelets store a battery of chemokines or chemokine-like cytokines in their α-granules, which
are differentially stored and released preferentially upon receiving distinct activating stimulus.

Thus, platelet activation through purinergic receptors P2Y1 and P2Y12 by ADP leads to the

release of CXCL11, SDF-1α/CXCL12, and CXCL16 in the external milieu, but not MIF. Throm-

bin receptor activation or collagen-induced GPVI activation leads to detectable release of MIF in

the platelet microenvironment along with SDF-1α/CXCL12 and CXCL11. Platelet activation

induced by OxLDL binding to the scavenger receptors on platelet surface leads to the release of

soluble CXCL16 and SDF-1α/CXCL12. Microbicidal thrombocidins TC-1 and TC-2 are truncated

chemokines released following thrombin stimulation, which might kill microbes in the

surrounding milieu
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subsequent monocyte recruitment [2–4]. Similarly, deposition of RANTES (CCL5)

onto the vessel wall during rolling in a platelet P-selectin-dependent manner

contributes to neointima formation. JAM-A and integrin αIIbβIII interactions also
facilitate the deposition of chemokines by activated platelets or platelet-derived

microparticles [2–4], thereby increase monocyte arrest and neointima formation

in vivo. Furthermore, infusion of activated platelets in transgenic hyperlipidemic

apoe�/�mice leads to the delivery of RANTES and PF4 (CXCL4) to the vessel wall

and substantiates atherosclerotic progression [4]. These attributes have established

platelet and platelet-derived chemokines as celebrate partners in the crime of

atherosclerotic disposition which has been extensively reviewed before. This chap-

ter highlights the recent research concerning the CXCL chemokines and CXCRs in

modulating haemostatic, thrombotic, and immune attributes of platelets.

10.2 The Privilege of Differential Storage and Preferential
Release

Platelet α-granules are enriched with α-chemokines like CXCL4, CXCL12,

CXCL16, and CXCL11 and also an extended range of β-chemokines, which include

CCL5 (RANTES), CXCL1 (GRO�α) [3–6], or cytokines like MIF with chemokine

properties [18–20]. They mediate assorted platelet moderated functions in the

pathophysiological processes of wound healing, inflammation [2, 3, 5],

atherothrombosis [1], atherosclerosis [2, 4–6], and angiogenesis [9–11]. Platelets

contain between 40 and 80 α-granules harbouring most of the platelet-derived

factors encapsulated within a membrane-bound space of 200–500 nm in diameter

[8]. Heterogeneity of internal contents divides the α-granules into distinct sub-

populations which are responsive to preferential agonist-induced activating stimuli

[9–11]. α-granules obtain their protein content predominantly during platelet bio-

genesis as they are synthesised in the precursor megakaryocytes; they might also

accumulate through active endocytic process of mature circulating platelets [8, 21,

22, 24]. Granule constituents are not homogenously or indiscriminately packed into

α-granules during platelet biogenesis. α-granules develop from budding vesicles in

the Golgi complex within the megakaryocytes and subsequently mature into multi-

vesicular bodies, which can also interact with the endocytic vesicles. Multivesicular

bodies are abundant in the immature megakaryocytes, which are thought to be

common precursors to both α- and dense granules, and gradually decline with cell

maturation. Multivesicular bodies containing numerous small vesicles encapsulated

in a membranous sac seem to provide a common sorting compartment for both α-
and dense granules, and to segregate functionally opposing proteins (e.g., VEGF-

endostatin) into distinct classes of α-granules. So far two types of multivesicular

bodies have been identified in megakaryocytes. Type I multivesicular bodies

contain only internal vesicles, and type II contain both internal vesicles and an

electron-dense matrix [13]. Intricate molecular mechanisms which help these multi-

vesicular bodies to develop into distinct units remain vague, but heterogeneity of

the internal membranes possibly plays a decisive role. During the process of mega-

karyopoiesis, the precursor megakaryocytes remodel their cytoplasm into long
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pro-platelet extensions, which serve as a portal for the transport and delivery of

α-granules into nascent platelets that mature at the pro-platelet tips where a micro-

tubule coil is formed [25]. Segregation of proteins into distinct classes of α-granules
occurs before pro-platelet production initiates. The microtubule bundles in the shaft

serve as the tracks on which distinct subpopulations of α-granules are sent to the

maturing platelet buds, in a bidirectional traffic along the pro-platelet extensions.

α-granule movement along pro-platelets has been observed in live cells by loading

megakaryocytes with labelled fibrinogen, which is actively taken up and packaged

into the α-granules. The filling process occurs sequentially as α-granules are

translocated in a single file to the maturing platelet buds. The objective and

elegance of this transport process lie in the ability to disperse the cargo throughout

the pro-platelet extensions as well as to mix the various granules/organelles within

the pro-platelet [26]. This process forms the basis of segregation of proteins into

distinct subpopulations of α-granules [8, 21, 22, 24–26].
Some of the major characteristic angiogenic regulators have been shown to be

segregated into different subsets of α-granules [8–11]. Pro-angiogenic VEGF,

bFGF, and anti-angiogenic endostatin, thrombospondin-1 [9], show distinct local-

isation into different α-granule subpopulations which facilitate their differential

secretion in response to pro-angiogenic stimulus acting through PAR1 and anti-

angiogenic incentive acting through PAR4, respectively [9]. For chemokines like

CXCL12 and PF4, the granular or spatial segregation is not absolute, but shows a

considerable degree of sorting into different subpopulations of α-granules. RANTES
and PF4, which are capable of heterophilic interaction, share spatial co-localisation

in the same subset of α-granules [10]. Intracellular CXCL12 [10], MIF [19], and

CXCL11 localisation under resting state exhibit random distribution across the

cytoplasm and peripherise into a distinct ring-like pattern upon activation, prior to

their milieu release or surface binding. Platelets release CXCL12 in response to

activation through ADP receptor (P2Y12), glycoprotein VI (GPVI), and PAR1

ligation, whereas PAR4 activation drives the release of CXCL12 to a lesser extent

[10]. The release of CXCL12 from activated platelets (>100 pg/ml) is comparable to

other pro-angiogenic release, e.g. VEGF, also triggered by PAR1 ligation

[10]. PAR1- and PAR4-driven selective secretory activity involve different signal-

ling intermediates. PAR1-driven CXCL12 release appears to be dependent on Src

and the PKC-PI3K-Akt pathway, while PAR4-driven CXCL12 release (lower than

PAR1) seems to be mediated through MEK and p38MAPK [10]. Atherogenic sti-

mulus like OxLDL also prompts CXCL12 release [18]. Thus, both PAR1 and PAR4

initiate the milieu release of CXCL12 and PF4, but the pro-angiogenic and

pro-inflammatory release of CXCL12 is preferentially carried out through PAR1,

GPVI, and purinergic activation, whereas anti-angiogenic PF4 release is largely

instigated through PAR4 stimulation [10]. Such secretory preference not only differs

in the trigger of release but also the relative degree and ease or kinetics of the release

response from platelets. Interestingly, comparative release kinetics and relative

stability influence the accumulation of CXCL12 and CXCL4 in activated platelet

supernatant, which differs considerably [18, 20]. CXCL4 concentrations remain

optimal through 12 h of stimulation, whereas CXCL12 concentrations decline sub-

sequently over 2-h time intervals and are eventually completely abolished, possibly
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due to proteolytic degradation by circulating neutrophil elastase, cathepsin G,

cathepsin K, matrix metalloproteinase-2/matrix metalloproteinase-9, carboxy-

peptidase N, and/or re-internalisation along with receptors [10, 18, 20]. Moreover,

cell surface-associated peptidase like CD26 on CD34+ cells might also potentially

degrade platelet-derived CXCL12 and thereby influence its chemotactic efficacy. A

considerably stronger stimulus is required to drive detectable milieu release as

compared to surface exposure [10]. About 50–75% of platelets become positive

for CXCL12 surface expression following activation with different agonists [10, 16,

23]. The relative ease of release depends on both the type and strength of the

stimulus [10].

MIF, on the other hand, shows a granular pattern of distribution both in platelets

and K562 megakaryocytes and is therefore expected to be sorted in the α-granules
like other chemokines and growth factors. But it does not share co-localisation with

other α-granule constituents like CXCL4 and angiogenic VEGF; although MIF is

established as a known pro-angiogenic factor [18]. MIF is typically secreted by the

nonclassical secretory pathway independent of ER-Golgi network. MIF is released

upon TNF-α stimulation of leukocytes; however, such inflammatory stimulus fails

to trigger MIF release from activated platelets. CXCL12 and MIF show difference

in the trigger and release kinetics. Both thrombogenic stimuli like thrombin and

collagen trigger MIF and CXCL12 release from activated platelets, while primarily

atherogenic stimuli like ADP (0.5–10 μM) [18, 20] and oxidised-LDL promote

CXCL12 but not MIF secretion to a detectable extent in the activated platelet

supernatant [18, 20]. Release of MIF following thrombin- and collagen-induced

GPVI stimulation follows a dose-dependent pattern. MIF release in the activated

platelet supernatant could be detected from thrombin-stimulated platelets (0.5–2 U/

ml) with a maximal release at 1 U/ml; whereas in a dose-dependent response to

0.1–100 μg/ml of collagen, the maximal release is observed at 10 μg/ml. Both

modes of stimulation cause release of 60% of the total MIF reserve in platelets

[18]. The magnitude of release differs significantly between MIF, CXCL12, and

CXCL4, achieving maximum concentrations of 100 ng/mL, 1300 pg/mL, and 6 μg/
mL, respectively. Detectable MIF release exhibits a delayed mode of execution as

compared to that of CXCL12 or CXCL4 and takes about 2 h, whereas CXCL12

release occurs within minutes of thrombin activation. MIF concentration gradually

builds up in thrombin-activated platelet supernatant, reaching a peak after 8 h of

thrombin and between 4 and 8 h of collagen stimulation, and is plateaued, whereas

CXCL12 concentration decreases and is ultimately exhausted, possibly due to

degradation [18, 20]. This ensures a distinct spatial distribution of the two chemo-

kines to execute differential functional aspects through the receptors they share,

CXCR4 and CXCR7; alternatively, they could evidently complement each other.

Heterogeneity of the α-granules is observed not only for secretory granular com-

ponents but also adhesion molecules like fibrinogen and vWF, which are sorted into

distinct subsets of α-granules. While glass activation of platelets induces fibrinogen

release, vWF-containing α-granules are retained [8]. Therefore, by virtue of segre-

gated storage and differential release reaction, platelets may specifically deposit

high concentrations of active molecules in a regulated and localised fashion to

meet physiological demands. The segregated packaging of the angiogenic or
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inflammatory regulators into pharmacologically and morphologically distinct

populations of α-granules offers the possibility that platelets may promote the

differential release of a distinct class of α-granules, while retarding the release of

functionally antagonistic factors as and when required [8–11, 21, 22]. This is of

significant relevance in pharmaceutical approach for novel drug designing, which

might preferentially stimulate or retard the exocytosis of a specific class of α-granule
component, thereby manipulate platelets and platelet-derived factors for therapeutic

benefit.

10.3 Differential Receptor Trafficking Influences the Targets
to Hit

Chemokines and their cognate receptors bridge the execution of haemostasis, throm-

bosis to vascular inflammation, and repair/regeneration. Presence of functional che-

mokine receptors- CCR1, CCR3, CCR4, CXCR2, CXCR6, CXCR4, and CXCR7 has

been demonstrated at transcript, protein levels and on the surface of human and

murine platelets (Table 10.1). Of these, CCR1, CCR3, CCR4, and CXCR6 exhibit

strong signals at transcript levels, whereas CXCR1, CXCR4, and CXCR7 are detect-

able to a lesser extent. CCR1, CCR4, CXCR4, CXCR7, and CXCR6 are detected at

protein levels in extents comparable to other cells. Surface expression analysis shows

the significant abundance of CXCR4, CXCR6, and CXCR7, but relatively low

positivity for CCR1, CCR3, and CXCR2, whereas CXCR1, CXCR3, and CCR5

are apparently absent from the platelet surface. Most of these experimental evidence

comes from resting human platelets and therefore have to be re-evaluated following

platelet activation and in the presence or absence of their respective ligands in the

surrounding microenvironment. For example, the surface expression of chemokine

receptors like CXCR4 and CXCR7 exhibits a unique dynamism in the presence or

absence of their ligands CXCL11 [19], CXCL12 [17], and MIF [19], which in turn

influences their relative availability on platelet surface, thereby their frequency of

participation in chemokine-mediated effector functions.

Although CXCR4 and CXCR7 are constitutively expressed in human and

murine platelet at transcript and protein levels, the relative surface expression of

CXCR4 appears to be much higher than that of CXCR7 at resting state [17]. Pres-

ence of ligands like CXCL12 [17], CXCL11, and MIF [19] brings about a dynamic

alteration in CXCR4/CXCR7 surface expression as CXCR4 is internalised in the

presence of CXCL12 and MIF, while CXCR7 is preferentially translocated to the

surface in response to CXCL12 but not CXCL11 and MIF [19]. CXCL11 binds

exclusively to CXCR7 in the absence of CXCR3 and internalises the receptor

[19]. While CXCR2 is relatively low and CD74 being absent, MIF can ligate to

CD44, CXCR4, and CXCR7 [19] on the platelet surface, (Fig. 10.2) but does not

influence the availability of CXCR7 [19]. CXCL12-induced CXCR4 internalisation

precedes CXCR7 surface exposure [17]. CXCL12-induced bidirectional trafficking

of CXCR4 and CXCR7 is a coupled process as it is counteracted by CXCR4

blocking or antagonism offered by AMD3100. CXCL12-/CXCR4-triggered

CXCR7 externalisation is executed through the downstream signalling
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Table 10.1 Platelet-derived chemokines and their cognate receptors on platelets modulate

functional response

Platelet-

derived

chemokines

Counter

receptors

Detection

in

platelets

Detection of

receptors

Functional

relevance References

CXCL8 (IL-8) CXCR1 Human Weakly at

transcript

levels,

surface

expression

undetectable

Effect on platelet

unknown,

modulates

megakaryocyte

proliferation,

differentiation,

ploidy in myeloid

metaplasia with

myelofibrosis

[13, 14,

23]

CXCL8,

CXCL1

(GRO-α),
CXCL5

(ENA-78),

CXCL7

(NAP-2), MIF

CXCR2 Human Surface

expression

by flow

cytometry

CXCL8 modulates

megakaryocyte

proliferation,

differentiation,

ploidy in myeloid

metaplasia with

myelofibrosis. MIF

effect through

CXCR2 ligation in

platelets unknown

[13, 14,

23]

CXCL12,

MIF

CXCR4 Human,

murine

Transcript,

protein,

surface

expression

Receptor

internalisation,

activation,

aggregation,

thrombus

formation, adhesion

to immobilised

collagen-

fibrinogen,

migration for

CXCL12, receptor

internalisation for

MIF

[16–19,

23]

CXCL16 CXCR6 Human,

murine

Transcript,

protein,

surface

expression

Degranulation,

integrin activation,

adhesion to

endothelium

in vitro and in vivo

[15, 23]

CXCL11,

CXCL12,

MIF

CXCR7 Human,

murine

Transcript,

protein,

surface

expression

Receptor

externalisation for

CXCL12, receptor

internalisation for

CXCL11 and

survival

[16–19,

23]

(continued)
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intermediates like Erk1/2 and the PPIase activity of intracellular molecular chaper-

one cyclophilin A (CyPA), which is abolished in the presence of CyPA-PPIase

inhibitor NIM811 and is absent in Cypa�/�murine platelets. CXCR7 ubiquitination

is an essential prerequisite for cell surface delivery. In the presence of CXCL12,

ubiquitin association of CXCR7 is dynamically upregulated, involving Erk1/2,

CyPA-PPIase, and E1-ligase activity. Therefore, pharmacological inhibitors of

MEK1/2 like U0126 or CyPA-PPIase inhibitor NIM811 and E1-ligase inhibitor

PYR-41 significantly reduce CXCL12-driven CXCR7 ubiquitination and subse-

quent receptor externalisation [17]. CyPA mediates ubiquitination of viral proteins

to control influenza virus replication [27] or uncontrolled viral replication among

Table 10.1 (continued)

Platelet-

derived

chemokines

Counter

receptors

Detection

in

platelets

Detection of

receptors

Functional

relevance References

CCL-3

(MIP-1α),
CCL5

(RANTES),

CCL-7

(MCP-1)

CCR1 Human Transcript,

protein,

surface

expression

RANTES

noncompetitively

inhibits stimulator

effects of CXCL12,

synergistic

inhibitory effect

with PGE1

[13, 14,

23]

CCL5, CCL7 CCR3 Human,

murine

Transcript,

protein,

surface

expression

RANTES

noncompetitively

inhibits stimulator

effects of CXCL12,

synergistic

inhibitory effect

with PGE1

[13, 14,

23]

CCL17

(TARC),

CCL22

(MDC)

CCR4 Human Transcript,

protein,

surface,

expression

Platelet activation,

aggregation,

synergistic effect

with low

concentrations of

ADP, thrombin,

adhesion to

immobilised

collagen-

fibrinogen, shape

change-formation

of blebs for CCL22

[13, 14,

23]

CXCL4 (PF4) GAG Synergistic effect

on platelet

activation-

aggregation with

subthreshold

concentrations of

ADP, arachidonic

acid, thrombin

[13, 14,

23]
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myocarditis models in Cypa�/� mice [28]. CyPA being involved in CXCR7 ubi-

quitination and subsequent surface translocation, this phenomenon is absent in

Cypa�/� mice. Although the exact nature and class of the ubiquitinating enzyme

still remains to be clarified, intracellular vesicular transport appears to be involved

in the externalisation process since brefeldin A and rapamycin both inhibit

CXCL12-induced surface externalisation of CXCR7 [17]. Ubiquitination of

CXCR4 [29] and of the β2-adrenergic receptor (β2AR) regulates their lysosomal

sorting and degradation [30]. On the contrary, PAR1 which is constitutively ubi-

quitinated, undergoes de-ubiquitination following activation and is internalised

[31]. However, chemokine-induced receptor trafficking in platelets is still a

CXCR7

CXCR7CXCR4

Pro-survival

CXCR4 
Internalization 

Erk1/2

CyP
A

CXCR7

E1 
Ligase

CXCR7

Erk1/2

CXCR4mAb
AMD3100

CXCR7mAb

U0126

U0126

NIM811 PYR-41

Brefeldin A,
Rapamycin

Ub

CXCR7 
Externalization 

Fig. 10.2 Differential bidirectional receptor trafficking in response to SDF-1α/CXCL12. Sche-
matic representation demonstrating SDF-1α-/CXCL12-induced internalisation of CXCR4 leads to
the downstream activation of Erk1/2 and its subsequent interaction with the intracellular molecular

chaperone CyPA. CyPA-PPIase activity is involved in enhancing CXCR7 ubiquitination through

the enzymatic activity of E1 ligase. Blocking of CXCR4, or CXCR4 antagonism by AMD3100

inhibits the CXCL12-mediated externalisation of CXCR7, which suggests that CXCR4

internalisation is coupled to CXCR7 externalisation. CXCR7 surface translocation is also inhibited

in the presence of MEK1/2 inhibitor U0126 and CyPA-PPIase activity inhibitor NIM811. There-

after, ubiquitinated CXCR7 is translocated to the platelet surface through vesicular transport. This

phenomenon is counteracted by the E1-ligase inhibitor PYR-41, and vesicular transport inhibitors

brefeldin A and rapamycin. Thus, presence of SDF-1α/CXCL12 in the immediate microenviron-

ment enhances the surface availability of CXCR7 on platelet surface. SDF-1α/CXCL12 subse-

quently ligates CXCR7 and exerts a prosurvival effect on platelet whereby it rescues platelet from

undergoing apoptosis through the participation of the Erk1/2 pathway. SDF-1α/CXCL12 executed
prosurvival effects are counteracted by blocking CXCR7 on the platelet surface and inhibitor of

the Erk1/2 pathway
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comparatively new idea and warrants further investigations in targeted patho-

physiologies where platelet responsiveness and their inflammatory potential are

altered. Moreover, CXCL12 executed effects on receptor trafficking can be

influenced by the presence of other chemokines or cytokines in the immediate

microenvironment and might be influenced by the relative binding affinities of

the chemokines towards their cognate receptors. CXCL12 binds to CXCR4 on

the platelet surface with approximately 2000 sites/platelet and an affinity of

24 nmol/L [32]. MIF, another CXCR4 ligand, might compete with CXCL12 for

binding surface and influence CXCR4 internalisation (Fig. 10.3), but it does not

externalise CXCR7 in platelets unlike CXCL12 [32]. This ligand-specific discrep-

ancy is attributed to the absence of CD74 (which acts as a co-receptor for

MIF-CXCR4 axis) on platelets and, therefore, lack of Erk1/2 activation down-

stream of CXCR4 ligation by MIF, required for mediating CXCR7 externalisation

[19]. CXCL11, a CXCR3 and CXCR7 ligand, does not affect the CXCL12-induced

CXCR4 internalisation, However, it internalises CXCR7 upon ligation and there-

fore counteracts CXCL12-induced CXCR7 externalisation [19]. Under inflamma-

tory circumstances or at the site of CXCL12-/MIF-enriched atherosclerotic plaques,

this dynamic receptor trafficking could influence the relative CXCR4-CXCR7

availability with major functional implications.

Expression of SDF-1, CXCR4, and CXCR7 in platelets has been investigated in

patients with acute coronary syndrome (ACS) and stable coronary artery disease

(CAD). In a clinical cohort which enrolled 215 patients with symptomatic CAD,

platelet CXCR7 surface expression was found to correlate significantly with that of

CXCL12 and elevated in ACS patients as compared to stable CAD. Elevated

platelet-CXCR7 levels have been found to be associated with functional recovery

(improved LVEF%) during an intra-hospital stay of 5 days and a 3-month follow-up

period [33]. By contrast, surface expression of CXCR4 was comparable between

ACS and CAD patients at baseline evaluation. However, the prognostic signifi-

cance of platelet CXCR4 surface expression has been revealed in a 12-month

follow-up among patients with symptomatic CAD. Baseline CXCR4 levels are

significantly lower in patients subsequently falling to all-cause death and/or MI;

moreover, both baseline surface expression of CXCR4 and CXCR7 are signifi-

cantly associated with all-cause mortality in patients with symptomatic CAD

[34]. Therefore, it might be speculated that platelet-CXCR7 contributes to short-

term myocardial repair mechanism in ACS patients, while platelet-CXCR4 might

rather influence long-term outcome in the chronic phase of cardiovascular disease

[32, 33]. These clinical observations encourage further thorough mechanistic

understanding of the CXCL12/CXCR4/CXCR7 axis. Whether platelet surface

expression of CXCR4-CXCR7 shares similar association with other relevant che-

mokine ligands in the context of CAD remains to be elucidated.
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Fig. 10.3 Uncharacteristic functional effects of chemokines on platelets. Chemokines (CXCL12,

CXCL11, CXCL16) and chemokine-like cytokines (MIF) exert a profound functional impact on

platelets beside their chemotactic potential. CXCL12 through CXCR4 ligation substantiates

platelet activation, aggregation, and thrombotic potential. CXCL12 antagonises adenylate cyclase

activity and counteracts PGI2 analogue-induced cAMP levels. CXCL12 released from collagen-

GPVI-activated platelets prompts ATP release from the dense granules and TxA2 production,

which promotes aggregation and thrombus formation through CXCR4. CXCL12 through CXCR7

ligation rescues platelets from undergoing apoptosis following activation. CXCL11 and MIF also

exert a prosurvival effect mediated through CXCR7 ligation and downstream activation of the

PI3K-Akt pathway culminating in phosphorylation-mediated inactivation of the pro-apoptotic

protein BAD. MIF, like CXCL12, ligates CXCR4 on platelets and induces receptor internalisation,

the functional consequences of which are still undefined. Platelets derived from cd44�/� mice

show exaggerated activation and apoptotic potential when stimulated with thrombin- and

collagen-related peptide. MIF can also bind to CD44 on platelets; however, the co-receptor

remains to be defined. The membrane-associated form of CXCL16 on platelets functions as a

scavenger receptor SR-PSOX for phosphatidylserine exposed on the apoptotic cells and OxLDL,

facilitate OxLDL binding to the platelet surface. Platelets express the receptor for CXCL16,

i.e. CXCR6 whereby platelets are sequestered from circulation by CXCL16-expressing endothe-

lial cells at atherosclerotic sites. The soluble form of CXCL16 acts through CXCR6 on the platelet

surface and the downstream PI3K-Akt pathway to promote degranulation, cytoskeletal

reorganisation and shape change, αIIbβIII-integrin activation, and adhesion to the endothelial

layer in vitro and to the injured carotid artery of mice in vivo
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10.4 Chemokines in Autocrine and Paracrine Mode of Action:
Effects on Platelet Function and Survival

Platelets as forerunners to the site of vascular or tissue injury, adhere to the intact or

injured endothelium, or the exposed sub-endothelial matrix, and release a variety of

pro-inflammatory and mitogenic mediators that modulate diverse (patho)physio-

logical actions [1–5, 35]. Platelet-endothelium interaction takes place in the macro-

and microcirculation of the inflamed tissue, and during reperfusion of ischaemic

organs. Platelets can intercede the interaction between endothelium and inflamma-

tory cells like monocytes, neutrophils, and lymphocytes; also progenitor cells,

either directly or through released mediators like chemokines. These mediators

maintain the physiological balance between regeneration repair and inflammation

or its resolution. On the other hand, chemokines from an autocrine or paracrine

source can modulate platelet functions. MCP-1, MIP-1, RANTES, TARC, MDC,

and CXCL12 activate platelets to generate Ca2+ signals, aggregation, degranula-

tion, thrombus formation [13, 14, 17, 23, 35, 36]. The interplay between inflamma-

tory mediators and platelets is a bidirectional process which has been extensively

reviewed before. In this chapter, we highlight the latest addition to this expanding

list of chemokines or cytokines which can serve as platelet agonists and thereby

govern thrombo-inflammatory functions.

10.5 Stromal Cell-Derived Factor-1a/CXCL12 Acts as a
Pro-thrombotic Platelet Agonist

Platelets inherit CXCL12 transcript and protein from their precursor megakaryo-

cytes [32]. However, experimental evidences accumulated over the years have

established the potential of platelets for de novo protein synthesis, and several

transcripts have been identified in platelet polysomes. Resting platelets do not

exhibit the presence of mature mRNAs for CXCL12; but following activation

with thrombin, the maturation process of CXCL12 pre-mRNA is triggered, subse-

quently leading to translation [37]. A bimodal effect of thrombin stimulation is

observed on the presence of CXCL12 protein in activated platelets. Initially, a

decrease in CXCL12 immune reactivity is observed in thrombin-activated platelet

lysates during the first 30 min of incubation, which is subsequently restored

following a prolonged 16-h culture of platelets attributed to de novo protein syn-

thesis. Interestingly, such activation-induced synthesis also shows a selective res-

ponse as thrombin stimulation triggers de novo synthesis of CXCL12 but not that of

angiostatin [37]. Once synthesised, CXCL12 is stored in the α-granules in a ready to
be delivered form, upon receiving adequate stimuli. Other vascular cytokines and

chemokines, which promote or retard the release of CXCL12 from platelets, are of

grave importance in this context. Soluble Kit-ligand, thrombopoietin, erythro-

poietin, and GM-CSF induce CXCL12 release from platelets, thereby enhance neo-

vascularisation through mobilisation of the CXCR4+VEGFR+ haemangiocytes

166 M. Chatterjee and M. Gawaz



in vivo. Whether they affect maturation of the CXCL12 pre-mRNA and its subse-

quent translation is not known [32, 35].

Derived from an autocrine or pro-inflammatory paracrine source, CXCL12 can

influence platelet functions. The CXCL12/CXCR4 axis induces megakaryocyte pro-

genitor cell migration, and significantly enhances adhesion of mature bone marrow

megakaryocyte to the endothelium. CXCL12 shows a bimodal effect on the expres-

sion of surface antigens on the early and late megakaryocytes. It upregulates the

earlymegakaryocytic antigen CD41, but later, (days 12–16) induces downregulation

of the late megakaryocytic antigen CD42b, which consequentially decreases the

number of mature megakaryocytes in cultures supplemented with CXCL12

[16]. Moreover, CXCL12 positively influences the transendothelial migration of

mature polyploid megakaryocytes, which might influence pro-platelet formation

and finally fragmentation into platelet-like particles [16]. Mature platelets also

exhibit transmigration through the endothelial layer towards CXCL12, which

triggers platelet activation and phosphorylation of Wiskott-Aldrich syndrome pro-

tein. This response is inhibited by the CXCR4 antagonist AMD3100, pertussis toxin,

PI3K inhibitor LY294002 or wortmannin, suggesting the involvement of CXCR4-

Gαi-PI3K pathway; also following disruption of actin polymerisation with

cytochalasin B, suggesting cytoskeletal re-organisation under the influence of

CXCL12 [32, 38]. Platelets preferentially accumulate at areas with high CXCL12

under flow conditions and respond to high shear stress by cellular polarisation,

cytoskeletal reorganisation, and flow-directed migration [32, 38, 39]. Following

CXCL12-assisted initial adhesion, a certain percentage of adherent platelets dem-

onstrate migratory activity under high shear stress (1500 s�1), associated with

the intracellular redistribution of focal adhesion kinase to areas of dynamic focal

adhesion contacts. Therefore, mechanotransduction of shear stress in platelets might

facilitate platelet extravasation into inflamed tissue like atherosclerotic plaques

where CXCL12 is predominant. CXCL12 does induce morphological changes

leading to the formation of blebs [35] and enhance adhesion to collagen type IV

and fibrinogen under arterial flow conditions [35].

Although considered a weak platelet agonist [40, 41], CXCL12 enhances platelet

activation through Gαi-coupled CXCR4 but not CXCR7. Moreover, CXCL12 acts

as a strong antagonist of adenylate cyclase activity in platelets and counteracts PGI2
analogue-induced cAMP levels [36]. CXCL12-induced platelet aggregation is

affected by purinergic ADP receptor antagonists, which suggests that CXCL12 pri-

marily activates platelets through lowering of cAMP levels and further sub-

stantiates it by granular release and PLC activation, subsequently leading to full

aggregation [36]. CXCL12 at lower concentrations instigates the primary phase of

aggregation response, but at increased concentrations triggers both primary and

secondary response. Complete inhibition of CXCL12-CXCR4-induced aggregation

by wortmannin and LY29004 strongly suggests PI3 kinase involvement in the ini-

tial primary phase of aggregation; whereas inhibition of the secondary wave by

genistein and aspirin suggests engagement of downstream tyrosine kinases, pro-

stanoids, to achieve maximal irreversible aggregation and granule secretion.

CXCL12 as a co-stimulatory molecule further enhances aggregation induced by a
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subthreshold concentration of ADP and thrombin under arterial and lower shear

conditions [16, 31, 35]. Moreover, CXCL12 synergistically and selectively

enhances the aggregatory response of serotonin (5HT) but not epinephrine

[16, 23, 35, 36]. CXCL12 fails to activate washed platelets; presumably, it requires

the presence of plasma components like epinephrine and serotonin or a synergistic

effect from TxA2 or ADP released in the PRP preparations to instigate a biphasic

aggregation response. Similarly, CXCL12 does not mobilise intracellular calcium

in washed platelet preparations, but triggers TXB2 and CXCL4 release in PRP

preparations under stirring conditions. Although CXCL12 does not alter P-selectin

exposure, αIIbβIII activation under non-stirring conditions, exposure of platelets to

CXCL12 in the presence of subthreshold ADP concentrations and under low shear

drives P-selectin exposure. CXCL12 does not induce serotonin secretion from the

dense granules either alone or in combination with low ADP concentrations

[16, 23], but instigates ATP release from dense granules [16, 23, 35, 36, 40,

41]. CXCL12 released from activated platelets following collagen-GPVI stimula-

tion exerts its autocrine effect through CXCR4 to prompt ATP release from the

dense granules and TxA2 production, which promotes aggregation and thrombus

formation under dynamic flow conditions [36]. Moreover, platelet-derived

chemokines are capable of heterophilic interactions exerting a synergistic or

antagonising effect on each other. Heterodimerisation of CXCL12 with CXCL4

and CXCL7 have been reported [16, 23, 42, 43]. For instance, although RANTES

neither induces platelet adhesion nor aggregation by itself, it noncompetitively

reduces the stimulating effect of CXCL12 on platelet aggregation in PRP, and

adhesion to endothelial monolayers under venous flow conditions. On the other

hand, pretreatment of PRP with subthreshold concentrations of CXCL12 synergis-

tically potentiates the aggregatory response from subthreshold concentrations of

MDC and TARC [42, 43].

Platelet-derived CXCL12 mediates both pro-inflammatory and regenerative

functions. Secreted from activated or adherent platelets, it triggers the migration

and differentiation of CD34+ progenitor cells into endothelial progenitor cells,

thereby promote vascular regeneration [44, 45]; but it can also mediate monocyte

migration and their differentiation into macrophages and foam cells, perpetuating

vascular inflammation [46]. Activated platelets in circulation, or adherent platelets

provide chemotactic cues like CXCL12 in mobilising PCs from the bone marrow or

circulation to vascular lesions to form neointimal ECs and SMCs. Adherent plate-

lets substantially induce chemotactic migration of murine embryonic endothelial

progenitor cells, i.e. eEPCs (T17b cells) in vitro [47]. Furthermore, fibrin-activated

platelets, support the chemotaxis of human CD34+ PCs in vitro [44]. Platelet

thrombi as a rich source of CXCL12 recruit CD34+c-Kit+Sca-1+Lin-1�

(KSL-BMPCs) in vivo, which subsequently differentiate into neointimal cells,

and contribute to vascular remodelling [16, 44–47]. Among inflammatory cells,

CXCR4 and CXCR7 on monocytes preferentially respond to platelet-derived

CXCL12. Whereas CXCR4 appears to the primary receptor responsive to the

chemotactic cues of platelet-derived CXCL12, both CXCR4 and specifically

CXCR7 appear to be significant for firm adhesion to collagen-adherent platelet
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layer, support monocyte-mediated platelet phagocytosis, and prompt subsequent

thrombus resolution. Prosurvival effects of platelet-derived CXCL12 on monocytes

is primarily mediated through CXCR7, whereas both CXCR4 and CXCR7 are

involved in monocyte to macrophage and foam cell differentiation in a co-culture

set-up with platelets [48]. Platelet surface expression of CXCL12 is enhanced in

patients with CAD and associates with disease severity, as it is particularly elevated

in patients with ST-elevation myocardial infarction [49, 50]. On the other hand,

enhanced platelet CXCL12 surface expression correlates with the circulating num-

ber of CD34+ progenitor cells, reduced infarct size, and improved functional

recovery after acute myocardial infarction in ACS patients [49–54]. Moreover,

circulating CXCL12 levels might also influence the dynamic surface availability of

CXCR4-CXCR7 on platelets [17]. CXCL12 enhances CXCR7 receptor availability

and upon subsequent CXCR7 ligation executes survival response, rescuing platelets

from activation-induced apoptosis (Fig. 10.2). The physiological consequence of

the anti-apoptotic recovery of platelets under the influence of CXCL12 remains to

be investigated.

10.6 Macrophage Migration Inhibitory Factor (MIF) Functions
as an Inflammatory but Antithrombotic Prosurvival Agent

The pleiotropic inflammatory chemokine like cytokine MIF contributes to athero-

sclerotic plaque development [55, 56], the expression of which is elevated and is

associated with lesion formation and course of disease progression [18, 20]. Thera-

peutic potential of MIF is exemplified by the fact that peripheral MIF depletion in

Apoe�/� mice reduces the pro-inflammatory response associated with athero-

progression [56]. In the context of CAD, it has been demonstrated that plasma levels

of MIF are significantly elevated in patients with ACS as compared to symptomatic

CAD, it is further associated with systemic inflammatory markers CRP, IL-6, and

correlates with troponin release [57]. Both human and murine platelets are an

appreciable source of MIF, which is detected at both transcript and protein levels

[18]. Human platelets harbour 0.3fg or 15, 220 copies of MIF per platelet, whereas

murine platelets have 0.0006fg or 30 copies of MIF per cell [18]. MIF transcripts are

more abundant in human platelets than those of CXCL12, but considerably less than

CCL5. Moreover, differentiated K562 cells, which exhibit megakaryocyte-like

characteristics, also show expression of MIF at protein and transcript levels [18],

suggesting the possibility that MIF in circulating mature platelet could well be

derived from the precursor megakaryocytes like other chemokines/cytokines. How-

ever, an extracellular signal initiated post-transcriptional or translation process in the

mature platelets cannot be ruled out. Once released, MIF can engage in autocrine or

paracrine modes of action. MIF does not alter platelet activation, induce degranul-

ation, P-selectin surface exposure, or prompt release of prototype chemokines

like CXCL4 or CXCL12, either alone or in combination with other agonists [18–

20]. MIF does not modulate aggregation either alone or that elicited by low and high

concentrations of ADP and TxA2 analogue, or affect spreading of platelets over
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fibrinogen coated surface [20]. MIF, unlike CXCL12, is unable to mobilise intracel-

lular calcium pools in TxA2 receptor agonist U46619 pre-sensitised platelets; how-

ever, both CXCL12 and MIF significantly block/desensitise increase in calcium in

response to ADP [20]. Furthermore, thromboelastography with MIF-treated whole

blood when monitored in the presence of tissue plasminogen activator, which

destabilises clots by promoting fibrin degradation, reveals that MIF after 24 h exhibits

a delayed dose-dependent anti-fibrinolytic effect [20]. Thus, CXCL12 and MIF

although sharing receptors, show distinct modes of actions or effects on platelet

functionality, possibly executed through distinct intracellular signalling cascades.

However, both platelet-derived CXCL12 and MIF share pro-inflammatory attributes

in stimulating monocyte chemotaxis [20, 48]. Presence of a neutralising anti-MIF

antibody leads to a significant reduction in the chemotactic response induced by

activated platelet supernatant obtained from thrombin-activated platelets following

8 h of stimulation, ensuringmaximal and predominant MIF release [20]. Supernatants

from activated platelets following 15 min of thrombin stimulation predominantly

contains CXCL12 and induce monocyte migration. The significance of platelet-

derived MIF is emphasised in experimentation with mif�/� mice. The chemotactic

potential of the activated platelet supernatant derived from mif�/� mice is drastically

reduced as compared to their wild-type counterparts [20]. Moreover, endothelial cell

monolayers incubated with conditioned supernatants from platelets stimulated with

thrombin for 8 h show significantly enhanced monocyte adhesion, further substanti-

ating the potential of MIF as a pro-inflammatory mediator from platelets [20].

Autocrine or paracrine platelet functions are influenced by their activation status,

survival vs apoptotic potential in circulation, since apoptotic platelets have reduced

functional capacities. CXCL11, CXCL12, and MIF as survival factors, rescue

platelets from activation, and BH3-mimetic-induced apoptosis, also prolong sur-

vival of circulating platelets through CXCR7 engagement. Enhanced availability of

CXCR7 following CXCL12 exposure further perpetuates these survival benefits.

Pharmacological inhibition of the Erk1/2 pathway (U0126) and CyPA-PPIase

activity (NIM811) uncouples the dynamic trafficking of CXCR4-CXCR7 from

the resultant anti-apoptotic effect of CXCL12, as mediated through CXCR7 [17]

(Fig. 10.2). The CXCL11-CXCR7-/MIF-CXCR7-triggered anti-apoptotic effect is

mediated through the PI3K-Akt pathway which culminates in the phosphorylation

and thereby inactivation of the pro-apoptotic effector BAD [19] (Fig. 10.3). There-

fore, the anti-apoptotic benefits of MIF and CXCL11 are lacking in Akt�/� murine

platelets [19]. Administration of MIF to mice in vivo also enhances the relative

longevity of circulatory platelets, an effect lacking in Akt�/�mice [19]. The relative
functional potential of these aged platelets in circulation remains to be verified as

compared to newly liberated platelets in circulation. But enhanced platelet survival

might substantiate their regenerative mechanisms required for sustained repair

processes.

As a consequence of CXCR7 ligation by MIF, there is an attenuation of

pro-thrombotic phosphatidylserine exposure on the platelet surface, whereby

MIF-CXCR7 also exerts an antithrombotic effect in vitro and checks thrombus
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build-up following arterial injury among mice in vivo, as deciphered by prolonged

time to occlusion of the FeCl3-injured vessel [19]. Sincemif�/�mice also respond to

the antithrombotic effects of MIF during thrombus formation assay ex vivo, it

appears that MIF from an external paracrine source could supplement for the lack

of intracellular platelet reserve [19]. Recently, the expression of another potential

receptor for MIF, CD44, has been demonstrated in platelets. Although the

co-receptor for CD44 on platelets remains to ascertained, and it is still not clear

whetherMIF executed effects on platelet function and survival involve CD44, subtle

functional differences have been demonstrated in platelets derived from cd44�/�

and cd44+/+mice. cd44�/� and cd44+/+ platelets are comparable in terms of relative

P-selectin surface expression, αIIbβIII integrin activation, Orai1 protein abundance,

[Ca2+]i, apoptotic potential, denoted by caspase-3 activity, and phosphatidylserine

exposure under resting condition [58]. However, thrombin- and collagen-related

peptide-induced degranulation, αIIbβIII integrin activation, intracellular calcium

mobilisation, caspase-3 activity, phosphatidylserine exposure, and Orai1 surface

abundance appear to be more pronounced in cd44�/� than in cd44+/+ platelets.

Moreover, platelet adhesion to fibronectin and ex vivo thrombus formation under

high arterial shear rates is significantly augmented in cd44�/� mice [58]. These

observations point towards a possibility whereby CD44 might act as a negative

regulator to keep platelet activation and thrombotic events in check. These effects

might be mediated throughMIF in co-operation with as of undefined binding partner

of CD44 on the platelet surface (Fig. 10.3). Thus, current experimental evidence

points towards a functional preference in executing the haemostatic and thrombotic

attributes of platelets through CXCR4 (by CXCL12) whereas support platelet

survival through CXCR7 (by CXCL12, MIF, CXCL11) (Fig. 10.3). This could

provide promising therapeutic alternatives for patients undergoing antiplatelet ther-

apy against cardiovascular syndromes. Agents that check thrombotic potential

without compromising the haemostatic and regenerative capacity of platelets are

wanted, and factors acting through CXCR7 could emerge as potential candidates.

10.7 Chemokines Influencing Inflammatory Potential: The
Significance of CXCL16 as a Scavenger Receptor,
Chemokine, and Adhesion Molecule

The multifaceted chemokine CXCL16 is a significant pathogenic mediator in

inflammatory conditions associated with rheumatoid arthritis, glomerulonephritis,

or cancer [15, 59, 60]. The transmembrane form of CXCL16 serves as a scavenger

receptor which binds to phosphatidylserine exposed on apoptotic cells and thereby

clears cellular debris; additionally, it also binds to oxidised lipoprotein (OxLDL)

and acts as a scavenger receptor [15, 59, 60]. Therefore, the membrane-associated

form of CXCL16 is also designated as SR-PSOX. CXCL16 belongs to a specific

class G of scavenger receptor due to its structural dissimilarities with the other

scavenger receptors. Platelets express CXCL16 as both transcript and protein.

Resting platelets show constitutive surface expression of CXCL16, which is further

10 Platelet Chemokines in New Modes of Action 171



enhanced upon platelet activation with conventional agonists like ADP, TRAP, and

also in the presence of OxLDL [59] (Fig. 10.1). Moreover, membrane-associated

CXCL16 further perpetuates binding of labelled OxLDL to the surface of TRAP-

activated platelets, which is significantly abrogated in the presence of an antibody

targeting CXCL16 [59]. CXCL16 surface expression on platelets is significantly

elevated among ASC patients as compared to stable angina pectoris (SAP). More-

over, platelet-CXCL16 surface expression shows a positive correlation with plasma

C-reactive protein and baseline creatinine kinase, which denotes myocardial infarc-

tion [59]. CXCL16 is enhanced in inflammatory cardiomyopathy and turned out as

an independent predictor of death in patients with HF undergoing endomyocardial

biopsy [61]. Whether the elevated surface expression of CXCL16 contributes to

lipid load in circulatory platelets and predisposes to atherothrombotic or athero-

sclerotic progression remains to be ascertained. Nevertheless, since platelet

membrane-associated form of CXCL16 influences lipid binding to activated plate-

let surface (Fig. 10.3), it appears to be a strong possibility. CXCL16/SR-PSOX also

acts as a scavenger receptor for phosphatidylserine on dying cells. Glucose-

depleted erythrocytes, while undergoing suicidal death or eryptosis, externalise

phosphatidylserine on their surface. Eryptotic erythrocytes adhere to endothelial

cells and platelets involving phosphatidylserine at the erythrocyte surface and

CXCL16 as well as CD36 at the endothelial cell membrane or on platelets immobi-

lised to a collagen-coated surface under dynamic arterial flow conditions

[62]. Adherence of erythrocytes to platelets is interfered with by coating of erythro-

cytic phosphatidylserine with annexin V or by blocking platelet phosphatidylserine

receptors CXCL16/SR-PSOX and CD36 with respective antibodies. Such an asso-

ciation between platelets and erythrocyte might facilitate thrombo-occlusive

events [62].

Platelets also release detectable amounts of CXCL16 following PAR1 activation

by TRAP (Fig. 10.1) and therefore could be considered as an enriched source of

CXCL16 in plasma among ACS patients [59]. Plasma level of soluble CXCL16

serves as a peripheral biomarker in ACS and is associated with long-term motility

[59]. However, circulatory levels of CXCL16 and plasma OxLDL do not show

a correlation in rheumatoid arthritis patients [59]. Further, in vitro experimentations

in liquid phase demonstrate that the soluble form of the chemokine fails to bind to

or scavenge OxLDL [60]. Soluble CXCL16, which chiefly functions as a chemo-

kine for inflammatory cells and is generated following proteolytic cleavage of the

chemokine domain by disintegrin-like metalloproteinase ADAM10, executes its

chemotactic potential on CXCR6-/BONZO-expressing cells [60]. Platelets express

CXCR6 as transcript, protein, also on their surface, which mediates CXCL16-

driven effects [15]. CXCL16 can induce degranulation, cytoskeletal reorganisation

and shape change, αIIbβIII-integrin activation, and adhesion to endothelial layer

under arterial flow conditions in vitro and to the injured carotid artery of mice

in vivo. CXCL16 enhances the aggregatory response to subthreshold concentration

of ADP and further potentiates aggregation induced by fibrinogen. CXCL16 effects

mediated through CXCR6 engagement lead to downstream activation of the PI3K-

Akt pathway (Fig. 10.3) and are therefore significantly abrogated in CXCR6�/� and
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Akt�/� mice, and following pharmacological inhibition of the PI3K-Akt pathway

[15]. Moreover, CXCL16-triggered degranulation, integrin-αIIbβIII activation, and
adhesion to the vascular wall are diminished in the presence of ADP-degrading

apyrase or purinergic P2Y1 and P2Y12 receptor antagonists MRS2179 and cangrelor

(AR-C69931MX), suggesting a feedback loop mediated through ADP. CXCL16

immobilised or microsphere bound, resembling a membrane-tethered version of the

chemokine, enhances intracellular calcium mobilisation and subsequent integrin

activation, degranulation, and aggregation responses of platelets to ADP. There-

fore, CXCL16 both as a soluble mediator [15] and membrane-bound form can

modulate the activation status and haemostatic attributes of platelets through

CXCR6 ligation. Platelet-derived CXCL16 might also act a chemotactic substance

for inflammatory cells like monocytes and granulocytes.

CXCL16 in its membrane-associated form can mediate adhesion to CXCR6-

expressing cells [60]. Thus, CXCL16 through interaction with CXCR6 mediates

platelet adhesion to the vessel wall (Fig. 10.3) along with vWF. CXCL16 is widely

expressed at vascular sites predisposed to atherosclerosis and therefore detected in

the human carotid atherosclerotic lesions from complex carotid endarterectomy

specimens. Moreover, high level of CXCL16 expression is observed in the endo-

thelium and in close proximity to mural thrombus enriched in vWF and platelet

GPIbα [60]. On the other hand, the presence of platelet-derived GPIbα is limited to

CXCL16-enriched regions, suggesting a platelet-endothelial association and

subsequent platelet activation, driving thrombotic events [60]. CXCL16 sequesters

circulating platelets through CXCR6 engagement (Fig. 10.3) in stimulated human

radial arteries and supports vWF-mediated platelet associations to CXCL16-vWF-

immobilised surfaces, which might bear pro-inflammatory consequences and lead

to atheroprogression. Taken together, CXCL16 with its multifaceted character is

poised to serve as a scavenger receptor and enhance lipid turnover in platelets; in its

solubilised form exert a stimulatory effect on their haemostatic and thrombotic

aspects, and also mediate inflammatory associations with endothelium and erythro-

cytes to contribute substantially to atheroprogressive complications.

10.8 Platelet Chemokines in Antimicrobial Action: The
Thrombocidins

Continually expansive research in platelet biology has stretched the horizons

beyond thrombosis and haemostasis [63], to the active participation of platelets as

regulatory or effector immune cells [64–68]. Platelet-associated immune compe-

tencies range from sensing pathogenic intrusion or (non-)pathogenic inflammation

[64–68] to direct microbicidal action [69] and also to interaction with innate and

adaptive immune cells [68]. Platelets can migrate towards bacterial chemoattractant

like N-f-MetLeuPhe, express Fc and complement receptors on their surface [68],

facilitate complement fixation on microbes [70, 71], generate microbicidal free

radicals or peptides [63], release cytokines and chemokines that trigger the

adaptive immune wing, and potentiate the antimicrobial mechanisms of leukocytes.
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Platelets can interact directly with microorganisms and thereby contribute to their

clearance from the bloodstream and also participate in antibody-dependent cell

cytotoxicity against microbial pathogens [72]. A number of antibacterial peptides

have been characterised from the α-granules of platelets which exert direct anti-

microbial activity; these are variously known as platelet microbicidal proteins

(PMPs) and kinocidins [69, 73]. Kinocidins are essentially C-terminal truncated

variants of the platelet-derived chemokines CXCL7, CXCL4, and CCL5 showing a
broad spectrum of antimicrobial action against both Gram-positive and Gram-

negative species like Staphylococcus aureus and Escherichia coli [69, 73]. Gener-
ally, these antimicrobial effector proteins arise from five genetically distinct

lineages: PF4 and variants, PBP and its proteolytic derivatives CTAP-3 and

NAP-2, RANTES, Tb-4, and fibrinopeptides. Such kinocidins can also be desig-

nated according to their chemokine nomenclature. Therefore, PF4, platelet basic

protein (PBP), CTAP-3, and NAP-2 with CXC-chemokine motifs are referred to as

α-kinocidins, whereas CC-chemokine motif containing RANTES is a β-kinocidin
[69, 73]. Particularly those microbicidal peptides or bactericidins derived from

thrombin-activated platelets are termed thrombocidins, i.e. thrombocyte microbici-
dal proteins (Fig. 10.1). Antibacterial proteins released from thrombin-activated

platelets have been found to be effective against viridans streptococci from cardiac

vegetations in the experimental infective endocarditis (IE) [73, 74] model in

rabbits. Viridans streptococci with low susceptibility to these proteins remain persi-

stent in vegetations, whereas susceptible bacteria are rapidly eliminated

[73, 74]. Similarly, strains of Staphylococcus aureus and Candida albicans which
are insusceptible to rabbit platelet microbicidal proteins (PMPs) cause more severe

experimental IE than PMP-susceptible strains [73, 74]. Furthermore, thrombocyto-

penic rabbits or rabbits treated with neutralising antibodies against platelet bacteri-

cidal proteins are more susceptible to streptococcal IE than control rabbits.

Moreover essentially being chemokines, these peptides might further strengthen

host defence by facilitating infiltration of immune effector cells (e.g. T cells) to the

site of infection [73, 74].

Thrombocidin (TC)-1 and TC-2, the cationic antibacterial peptides purified from

platelet granules when characterised using mass spectrometry and N-terminal

sequencing, were found to be variants of the CXC chemokines neutrophil-

activating peptide-2 and connective tissue-activating peptide-3, respectively, dif-

fering from these chemokines by a C-terminal truncation of two amino acids. In

fact, platelet-derived microbicidal proteins can be further processed extracellularly

following their release from the activated platelets [73]. Thrombin (a serine prote-

ase) which is abundant at the site of infection, besides platelet-derived proteases,

and proteases that are activated in response to tissue injury, inflammation

(e.g. plasmin), or phagocyte derived (e.g. cathepsin G) proteases, may process

native PMPs and kinocidins, generating multiple antimicrobial peptide subspecies.

Truncation and charge redistribution are crucial for their antimicrobial potential as

the C-terminal part of TCs is involved in the ‘cidal’ mechanism. The C-termini of

all CXC chemokines extend as α-helix, which like other antibacterial α-helical
cecropins might insert into the bacterial membrane, thereby killing them [73]. The
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N-termini of TC-1 and native NAP-2 are identical. Since TC-1 is directly isolated

from platelet granules along with the native untruncated form, some cathepsin

G-like protease activity is predicted to be present inside the granules [69, 73]. More-

over, as TC-1 and TC-2 are C-terminal truncated versions of NAP-2 and CTAP-3,

respectively, the platelet granules are likely to contain carboxypeptidase activity

[69]. Both TCs are effective against Gram-positive Bacillus subtilis, Staphylo-
coccus aureus, Gram-negative Escherichia coli, and Lactococcus lactis and fungi-

cidal for Cryptococcus neoformans. Furthermore, the native and unfolded TC-1

exert antimicrobial actions in different ways. Reduction in the charge of the TC-1-

positive patch reduces antibacterial activity and almost abolishes antifungal activity

against Candida albicans. Conversely, increasing the positive patch results in a

two- to threefold increased activity against Staphylococcus aureus, Escherichia
coli, and Bacillus subtilis, but does not affect activity against C. albicans [73]. The
N-terminal part of TC-1 retains similar antimicrobial activity as the intact TC-1.

The positive patch is essential for the activity of folded TC-1. Unfolded TC-1

retains its antimicrobial activity despite the absence of a positive patch [75]. The

antibacterial activity of unfolded TC-1 is predictably exerted by a linear peptide

stretch in the N-terminal part. Although TCs interact with bacterial membrane, they

do not dissipate the bacterial membrane potential Δψ as seen in the case of L. lactis
or liposomes composed of E. coli lipids. Therefore, their target for microbicidal

action might be located intracellularly [75, 76]. Moreover, an interspecies differ-

ence in the mode of action also needs to be taken into account. Human TC-1 is

highly and TC-2 is moderately effective against the fungus C. neoformans, whereas
neither TC is effective against Candida species. However, preparations from

rabbit platelets containing PMPs are more active against Candida species than

against C. neoformans, indicating that the antimicrobial spectra of the human

TCs and rabbit PMPs are different [69, 73–76].

Circulating platelets can be viewed as quiescent vigils, which sense danger or

pathogen-associated molecular patterns indicative of vascular, systemic, or tissue

infection and duly respond by delivering anti-infective molecules and wound-

healing mediators [77, 78]. Thus, timely delivery of the PMPs/thrombocidins and

their efficacy rely on the detection of warning signals by platelets and the prompt

processing and release of these molecules to serve in immune defence. PMPs and

kinocidins are not only released from platelets upon exposure to infection-relevant

stimuli, such as thrombin, but also stimuli from microbial origin such as S. aureus
α-toxin or those from viridans group streptococci, S. aureus, and C. albicans.
S. aureus at a ratio of 10:1 or greater with platelets induces platelet activation,

degranulation of ADP/ATP, and an aggregatory response which results in the

release of staphylocidal levels of PMPs and kinocidins, sensitive to the presence

of inhibitors like apyrase (ADP degradation), suramin (a general P2 receptor

antagonist), pyridoxal 5-phosphonucleotide derivative (P2X1 antagonist), and can-

grelor (P2Y12 antagonist). This indicates that following initial activation, an

ADP-mediated activation of P2X1/P2Y12 receptors on adjacent platelets perpe-

tuates the response and amplifies the release of PMPs and kinocidins from succes-

sively activated platelets [78]. Future research in this direction would uncover novel

10 Platelet Chemokines in New Modes of Action 175



modes of trigger, new platelet-derived microbicidal chemokines, and their mecha-

nistic strategy of microbicidal effects in infections which frequently feature plate-

lets at the site of action.

10.9 Future Perspectives

Platelets as the most abundant circulating blood corpuscle and by virtue of their

functional versatility and a plethora of inflammatory mediators, can potentially

influence several pathophysiological attributes of the vasculature, beyond their con-

ventional role in haemostasis and thrombosis. Consequentially, anti-platelet thera-

peutics directed against platelet aggregation (e.g. aspirin, prasugrel) and in

the prevention of arterial or venous thrombosis might also affect the inflammatory,

regenerative, and immune attributes of these cells as mediated through platelet-

derived chemokines. Therefore, selective targeting of platelet-derived molecules to

control or resolve inflammation, retard angiogenesis, and promote regenerative

mechanisms would be the ideal therapeutic strategy to treat cardiovascular, inflam-

matory, and infectious diseases. As most platelet-associated chemokines exhibit

subtle synergistic effects along with conventional agonist on the haemostatic func-

tions of platelets, they appear to be promising candidates for such targeted thera-

peutic approaches without increasing the risk of bleeding.
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PI3K-Dependent Platelet Signaling
in Vascular Inflammation
and Atherothrombosis

11

Oliver Borst, Florian Lang, and Patrick Münzer

Abstract

Platelets are anucleated blood cells responsible for hemostasis and thrombosis

after vascular injury. Upon activation, platelets adhere to subendothelial

structures like collagen or von Willebrand factor (vWF). Activated platelets

execute a dramatic shape change through cytoskeletal reorganization, and the

integrin αIIbβ3 is converted into a high-affinity state so that there is platelet

aggregation and thrombus formation. Besides their critical role in arterial

thrombosis, platelets are of central importance in inflammatory processes and

immunity. By exhibiting a wide variety of immunodulatory receptors and

signaling molecules, platelets seem to be a physiological break point between

innate/adaptive immunity and hemostasis. Platelet actions in hemostasis and

inflammation are mediated by receptors on the platelet surface and intracellular

signaling pathways and molecules. A crucial element in the activation-

dependent platelet signaling is the phosphoinositide 3-kinase (PI3K) and its

downstream targets. This chapter aims to summarize the most important PI3K-

dependent signaling pathways and molecules in platelets.
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11.1 Introduction

Platelets are small anucleated blood cells which develop through fragmentation of

the cytoplasm of precursor megakaryocytes [1]. By executing adhesion, aggrega-

tion, and subsequent thrombus formation at sites of vascular injury, platelets are a

prerequisite for the primary hemostasis. In detail, after vascular injury platelets

adhere to the corrupted endothelium via interaction with subendothelial collagen

and vWF. Integrin αIIbβ3 gets activated and the content of platelet α- and dense

granules is secreted with subsequent platelet aggregation and cell recruitment.

Platelet activation at sites of injured vasculature is followed by thrombus formation

and blood clotting so that the vascular integrity is kept intact and the blood loss is

minimized. Simultaneously, platelet activation can also lead to thrombo-occlusive

disorders like myocardial infarction and ischemic stroke [2]. Moreover, platelets

participate in a wide variety of inflammatory processes like hepatitis [3], encepha-

lomyelitis [4], myocarditis [5], and especially in vascular inflammation underlying

atherogenesis [6]. Pathophysiological atherothrombotic events commonly occur at

sites of atherosclerotic lesion where platelets form a serious thrombotic occlusion

after a plaque rupture [7].

Besides their involvement in atherothrombosis, platelets represent a physiologi-

cal break point between immunity and hemostasis [8]. Platelets and leukocytes

probably evolutionarily developed from one common precursor cell which simul-

taneously served hemostatic and immune function in invertebrates, birds, and fish

[9, 10]. Thus, platelets retained several immune cell-specific properties and signal-

ing mechanisms as well as immunmodulatory molecules. Along those lines,

platelets store, present, and release a broad spectrum of pro- and anti-inflammatory

molecules, thereby modulating inflammatory processes. Most of them belong to the

chemokine family like chemokine C-X-C motif ligand 16 (CXCL16) [11–13],

chemokine C-C motif ligand 5 (CCL5), and regulated on activation, normal T

cell expressed and secreted (RANTES), respectively [14]. Furthermore, platelets

store and release the chemokine C-X-C motif ligand 12 (CXCL12) or rather the

stromal cell-derived factor 1 (SDF-1) [15–18] which mainly act as chemotactic

factors. Some of them belong to the cytokine family like interleukin 1β (Il-1β) [19],
transforming growth factor β (TGF-β) [10], and the macrophage migration inhibi-

tory factor (MIF) [20]. Other platelet proteins mediate cytokine-related actions like

high-mobility group protein B1 (HMGB1) [21]. Cyclophilins depict a further class

of immunodulatory enzymes in platelets. So, for example, platelets contain

cyclophilin A [22], are activated by extracellular cyclophilin A in vitro and in vivo
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[23], and thus contribute to a wide variety of cardiovascular diseases like atheroscle-

rosis, myocardial infarction and myocarditis [24].

Following contact with several inflammatory stimuli, platelets degranulate

and efficiently adhere to extracellular matrix at sites of inflamed endothelium

[4]. The adhesion is accomplished by special adhesion molecules like cluster of

differentiation 40 ligand (CD40L) [25] or the membrane-bound scavenger recep-

tor that binds phosphatidylserines and oxidized lipoprotein (SR-PSOX). Interest-

ingly, this SR-PSOX is the membrane-bound form of the CXCL16 as this

chemokine exists in a soluble and surface-bound form and can support the

adhesion of cells to the endothelium [13, 26]. SR-PSOX is expressed in athero-

sclerotic lesions of apolipoprotein E-deficient mice pointing to a link between

lipid metabolism, immune activity, and platelet activation in the atherosclerotic

lesion [27]. By releasing pro- and anti-inflammatory mediators after activation

stimuli, platelets accelerate inflammatory processes and atherothrombotic events

[11]. This tremendous platelet activation machinery and granule release is

thereby mediated via several distinct platelet surface receptors and intracellular

signaling pathways.

In platelets and leukocytes, chemokines and cytokines largely signal via

G-protein coupled receptors (GPCR). But due to the vast diversity of

immunmodulatory molecules, there are several other surface receptors and signal-

ing pathways which are involved in platelet activation [8]. In general, platelet

signaling and activation is triggered by orchestration of several agonists using

different specific surface receptors. On the one hand, collagen, collagen-related

peptide (CRP), and the snake venom convulxin bind to glycoprotein VI/FcRγ
(GPVI/FcRγ) complex [28], while on the other hand, thrombin, adenosine diphos-

phate (ADP), or thromboxane A2 (TxA2) in particular binds to G-protein coupled

receptors. Thereby, thrombin recognizes protease-activated receptors (PAR)

whereas ADP signals via purinergic receptors. After receptor activation, several

distinct signaling molecules or pathways and mechanisms in platelets are activated.

Although there are several completely different specific surface receptors and

intracellular molecules as well as kinases, all signaling pathways in platelets

converge more or less in the intracellular increase of the cytoplasmic calcium

which represents the major hallmark of platelet activation [29]. In doing so, the

intracellular calcium increase is responsible for the successive platelet activation,

degranulation, integrin αIIbβ3 outside-in signaling, and procoagulant activity. Less

is known about the exact platelet activation by immunodulatory chemokines. But

as shown in Figs. 11.1 and 11.2, one key molecule in platelet activation and

procoagulant activity after consecutive receptor initiation as well as in inflamma-

tion is the phosphoinositide 3-kinase (PI3K). Several PI3K downstream targets

and subsequent PI3K-signaling actions play a pivotal role in platelet-dependent

hemostasis and thrombosis. This chapter focuses on the PI3K-dependent

platelet signaling and its role in chemokine-mediated vascular inflammation and

atherothrombosis.
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Fig. 11.1 PI3K-dependent signaling in platelets. Activation of ITAM (GPVI/FcRγ) and

G-protein coupled receptors (GPCR) lead to phospholipase C (PLC)β/γ and PI3K activation.

Subsequently, PLC increases the cytosolic calcium concentration by triggering of intracellular

calcium release and subsequent stim1 and Orai1 activation. PI3K stimulates PDK1 leading to

activation (sgk1 and PKB/Akt) or inhibition (GSK3β) of downstream targets. Finally, both

signaling pathways cross talk and support platelet activation by regulating degranulation, integrin

activation, adhesion, aggregation, and thrombus formation

Fig. 11.2 Chemokine-mediated platelet signaling. Immunmodulatory molecules bind to specific

platelet surface receptors with subsequent activation of the phosphoinositide 3-kinase (PI3K) and

downstream effectors PKB/Akt and sgk1
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11.2 Phosphoinositide 3-Kinase (PI3K)

The lipid kinase family of the phosphoinositide 3-kinase (PI3K) consists of numer-

ous isoforms which are subdivided into class I, II, and III. Class I PI3K generates

phosphoinositide-(3,4,5)P3 (PIP3) by phosphorylation of the membrane compound

phosphoinositide-(4,5)P2 (PIP2) [30]. Both phosphoinositides (PI) serve in several

cell models as second messengers and modulators of signaling events. Jackson and

colleagues showed in 2005 that especially class I PI3K plays a role in platelet

integrin αIIbβ3 activation and thrombosis [30]. The class I PI3Ks are further divided

into α, β, δ, and γ subtypes. Platelets express all class I subtypes whereby the δ
subtype shows the lowest expression level and the β subtype plays a pivotal role in
the regulation of platelets [31]. Less is known about the role of class II and III PI3K

in platelet function [32].

Different class I subtypes in platelets discriminate between diverse extracellular

signals and receptors. For instance, class I PI3K subtypes in platelets can act in

varying compositions downstream of G-protein coupled receptors (GPCR) and

receptor-tyrosine kinase (RTK) or immunoreceptor tyrosine-based activation

motif (ITAM) signaling receptors, respectively. The β subtype for example is

mainly involved in platelet activation after collagen, thrombin, ADP, and TxA2

stimulation, while PI3Kγ only mediates purinergic ADP signaling. PI3Kβ and

PI3Kγ signaling is required for platelet ADP receptor function in dynamic throm-

bus stabilization [33]. Nevertheless, there is also evidence that particularly the β and
γ isoforms have nonredundant roles in glycoprotein VI-induced platelet signaling

and thrombus formation [34]. Moreover, PI3Kβ is the mediator in integrin αIIbβ3
activation and outside-in signaling [31]. Additionally, the β and γ subtypes of class I
PI3K are also able to mediate and influence a broad range of downstream effectors.

In platelets, the most important PI3K-dependent downstream targets are so-called

AGC kinases as these kinases execute various important platelet actions as

summarized in Fig. 11.1.

11.2.1 Downstream Effectors of PI3K

11.2.1.1 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1)
The main downstream target of PI3K-generated phosphoinositide-(3,4,5)P3 is the

ubiquitously expressed 3-phosphoinositide-dependent protein kinase-1 (PDK1).

This 63 kDa kinase was first described in 1997 when Alessi and coworkers showed

a phosphoinositide-(3,4,5)P3-dependent kinase in a cell culture approach [35]. As

all AGC kinases, PDK1 presents a Ser/Thr kinase activity.

Although PDK1 is a master kinase in a wide variety of cellular processes, to date

less is known about the exact role of 3-phosphoinositide-dependent protein kinase-

1 in platelet activation. In 2013, it was shown that platelet-specific PDK1 deficiency

impairs activation and thrombus formation in mice after platelet-dependent GPCR

stimulation with thrombin, ADP, and thromboxane A2 [36]. Moreover, PDK1 was

shown to play a pivotal role in physiological platelet function downstream of
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glycoprotein VI (GPVI)- and GPCR-mediated activation as in human platelets

treated with the specific PDK1 inhibitor BX795, Par4 and collagen-dependent

aggregation and clot retraction was significantly blunted [37].

PDK1 is a crucial player in cell migration and chemotaxis as its kinase activity

regulates several cytoskeletal dynamics. In endothelial cells [38], T-lymphocytes

[39], neutrophils [40], and cancer cells [41], PDK1 is described as mediator of cell

migration events in the context of an inflamed microenvironment. Furthermore, it

was shown that the chemokine SDF-1α/CXCL12 could influence PDK1 gene

expression directly [42]. Interestingly, a few years ago two single nucleotide

polymorphisms (SNPs) within the PDK1 gene region were associated with an

increased cancer risk [43] showing the relevance for PDK1 in inflammatory

diseases.

In platelets, there are two distinct targets of the 3-phosphoinositide-dependent

protein kinase-1, namely, the protein kinase B/Akt [11] and the serum- and

glucocorticoid-inducible kinase 1 (sgk1) [44].

11.2.1.2 Protein Kinase B (PKB)/Akt
One of the most important downstream targets of the 3-phosphoinositide-dependent

protein kinase-1 in platelets is the protein kinase B (PKB) or Akt, respectively. In

platelets and other cell types, PDK1 phosphorylates the PKB/Akt at Thr308 in vitro

and in vivo [35]. There are the three isoforms Akt1, Akt2, and Akt3 which have to

some extent overlapping functions [45]. In platelets, mainly the isoforms Akt1 and

Akt2 are expressed [46]. In murine platelets, Akt1 signals downstream of GPVI

receptor and GPCR as in Akt1-deficient mice, the platelet response to both collagen

and thrombin is impaired [47]. In contrast, in Akt2-deficient mice only the GPCR

stimulation by thrombin and thromboxane A2 is impaired, whereas the platelet

response to ADP and collagen seems to be almost unaffected [48]. A current study

also indicates a role of the Akt3 isoform in platelets as Akt3-deficient mice showed

significantly reduced activation-dependent integrin αIIbβ3 outside-in signaling and

aggregation as well as impaired in vivo thrombus formation in a FeCl3-induced

approach [49].

In platelets there is accumulating evidence that the PI3K/Akt signaling pathway

plays a central role in chemokine-mediated platelet activation and secretion. The

CXCL16 chemokine, a newly discovered marker of coronary atherosclerosis,

induces platelet activation and adhesion via an Akt1/Akt2-dependent signaling. In

platelets from appropriate knockout mice there is a significantly decreased platelet

activation and adhesion after CXCL16 stimulation [11]. In addition, the macro-

phage migration inhibitory factor (MIF) limits activation-dependent apoptosis in

platelets via an Akt-dependent mechanism [20], whereas the Par1-driven SDF-1α
secretion in platelets is similarly Akt/PKB sensitive [15]. Especially the platelet-

derived MIF chemokine was recently described as a principal supporter of inflam-

matory cardiovascular diseases like artherosclerosis by acting in a paracrine/auto-

crine manner as clotting modulator, platelet activator, and chemotactic recruiter of

monocytes [50]. The peptidyl-prolyl-cis/trans isomerase Cyclophilin A (CypA)

occurs in platelets as cytoplasmic and extracellular immunmodulatory protein.
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Both fractions are described in various cardiovascular inflammatory processes such

as atherosclerosis [51], inflammatory cardiomyopathies [52] and myocardial ische-

mia [53]. Notably especially the extracellular CypA cytokine modulates platelet

activation, adhesion and thrombus formation via a CD147 (cluster of differentiation

147)/PI3K/Akt signaling axis [23], while the intracellular CypA fraction is mainly

effective through calcium signaling independently of PI3K/Akt [22].

Beyond the mediation of chemokine and cytokine stimulation, Akt also

influences several downstream effectors in platelets, thus contributing to

atherothrombosis and inflammation. For instance, the NO synthase isoforms in

platelets and endothelial cells are regulated in an Akt-dependent manner [54]

resulting in an altered platelet granule exocytosis [55]. Above all, in platelets Akt

mediates cyclic adenosine monophosphate (cAMP) levels and actions by affecting

cAMP-dependent phosphodiesterase (PDE3A) after thrombin and ADP stimulation

[56]. One of the further well-known downstream targets of Akt/PKB in platelets is

the glycogen synthase kinase 3 [57].

11.2.1.3 Glycogen Synthase Kinase 3 b (GSK3b)
The glycogen synthase kinase 3 β (GSK3β) is a ubiquitously expressed Serine/

Threonine kinase regulating several cellular events. In platelets, the β isoform is the

predominant isoform, whereas the α isoform seems to play only an ancillary role in

platelet function [57]. GSK3β is a negative regulator of platelet activation

incorporating the GPCR as well as the ITAM-mediated stimulation as inhibition

of GSK3β leads to enhanced platelet activation [57, 58]. Usually, the constitutive

active GSK3β is regulated by phosphorylation at Ser9 which leads to a decreased

GSK3β activity and therefore to hyperreactive platelets. The Ser9 phosphorylation

in platelets is mainly Akt/PKB dependent [57]. Impaired GSK3β also leads to

increased integrin αIIbβ3 activation and platelet granule secretion after thrombin

stimulation [59]. Particularly, thrombus formation and stability at high shear rates is

mediated by specific GSK3β platelet events [60], thus promoting the progression of

atherothrombotic events. Recently, it was shown that the glycogen synthase kinase

3 β is connected with chemokine and cytokine signaling in inflammation as well as

in Toll-like receptor (TLR) [61] and CCL5/RANTES-dependent signaling

[62]. Both events are known mechanisms in platelet activation. In cardiac stem/

progenitor cells, GSK3β generates the SDF-1/CXCL12-mediated cell migration

and quiescence [63, 64]. These findings are of interest as platelets could also be

stimulated by all of the mentioned chemokines and signaling pathways [65].

11.2.1.4 Serum- and Glucocorticoid-Inducible Kinase 1 (SGK1)
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a further member of

the AGC kinase family downstream of the 3-phosphoinositide-dependent protein

kinase-1 (PDK1) signaling. Phosphorylation of Thr256 and Ser422 in the activation

loop of SGK1 is executed by PDK1 directly [66] or via an mTOR complex

[67]. Recently, it has been shown that the serum- and glucocorticoid-inducible

kinase 1 is strongly expressed in platelets and megakaryocytes and plays a pivotal

role in platelet activation upon stimulation with thrombin and collagen-related
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peptide [44, 68]. SGK1 has originally been cloned as a gene sensitive to

glucocorticoids but was later shown to be regulated by a variety of hormones and

growth factors such as insulin-like growth factor 1 (IGF-1) and TGF-β, oxidative
stress, and ischemia, all factors elevating platelet activity [69]. In platelets, SGK1 is

mainly effective by upregulating the expression of the pore-forming Ca2+ channel

subunit Orai1 [44] facilitating activation-dependent increase of platelet cytosolic

Ca2+ activity accomplished by store-operated calcium entry (SOCE) [70]. An

increase of SGK1 expression and activity in platelets may thus lead to increased

platelet SOCE and aggregability linked to pathological thrombus formation. Hyper-

glycemia or diabetes mellitus as well as metabolic syndrome are strong activators

of SGK1 and associated with platelet hyperresponsiveness and atherothrombotic

complications, such as myocardial infarction or ischemic stroke [71, 72]. In line

with these findings, patients with acute myocardial infarction showed a significantly

enhanced platelet Orai1 surface expression [73]. According to platelet proteome

analysis in SGK1-deficient platelets, SGK1 regulates further proteins involved in

platelet activation and arterial thrombus formation by modulating platelet dense

granule secretion, such as the small GTPase Rab27b [68]. A recent study identified

a common gain-of-function SGK1 gene variant to be associated with ischemic

stroke [74]. Beside its important role in platelet activation, SGK1 signaling also

plays a central role in vascular inflammation and atherogenesis in an ApoE-

deficient mouse model by participating in the regulation of monocyte/macrophage

migration and matrix metalloproteinase 9 (MMP-9) transcription via the modula-

tion of transcription factor nuclear factor-κB [75].

11.2.2 PI3K-Dependent Ca2+ Signaling

The activation-dependent increase of the intracellular calcium concentration is a

prerequisite for physiological and pathophysiological platelet function as well as

thrombus formation and hemostasis. For this reason, the intracellular calcium

concentration and influx is regulated precisely in platelets [29]. A major mechanism

in platelet calcium signaling is the so-called store-operated calcium entry (SOCE)

mediated by the STIM1 and Orai1 coupling machinery [70].

After release of calcium from intracellular stores, the stromal interacting mole-

cule 1 (STIM1) undergoes a conformational change, clusters, and builds, together

with the Orai1 protein in the plasma membrane, the so-called calcium release-

activated Ca2+ channel (CRAC) with subsequent extracellular calcium influx

[44]. A R93W point mutation in the Orai1 gene leads to a significant impaired

calcium influx in murine platelets with ultimately decreased platelet function

[76]. Orai1 and STIM1 expression is regulated in megakaryocytes in a PI3K/

SGK1-dependent manner by regulating NF-κB gene expression, major deter-

minants of platelet calcium signaling and platelet function [44, 77]. Along those

lines, PI3K inhibitors completely abolish the thrombin-dependent upregulation of

Orai1 surface expression and the following calcium influx/release [73, 78] pointing

to a significant contribution of PI3K to platelet calcium signaling. Beside its role in

188 O. Borst et al.



atherothrombosis and hemostasis, store-operated Ca2+ entry accomplished by

STIM1 and Orai1 participates in diverse further functions including immunity

and cancer [79, 80].

A further calcium signaling mechanism in platelets is mediated by the activation

and regulation of phospholipases (Fig. 11.1). After platelet GPVI and GPCR

stimulation by collagen and thrombin, phospholipase C (PLC) is activated. Platelets

mainly express the isoforms PLCβ and PLCγ [29]. The GPVI signaling acts via

activation and recruitment of the phospholipase Cγ [81], thereby controlling throm-

bus formation induced by collagen and tissue factor in vitro and in vivo [82]. The

PLCγ isoform constitutes a link between PI3K-dependent and independent calcium

signaling in platelets as the PI3K-generated phosphoinositide-(3,4,5)P3 recruits the

PLCγ to the plasma membrane and fosters PLCγ activation. This becomes impor-

tant as collagen-related peptide regulates the PLCγ2 in human platelets via a PI3K-

dependent mechanism [83]. After PI3K inhibition by LY294002 and wortmannin,

the PLCγ activation is markedly decreased in platelets [32]. The PLCγ2 also acts in
platelets downstream of the integrin αIIbβ3 outside-in signaling by influencing

cytoskeletal rearrangement and thus platelet spreading [84]. After fibrinogen stim-

ulation of the integrin αIIbβ3, the PLCγ2 also contributes to physiological clot

retraction as in PLCγ2-deficient mouse platelets there are significantly impaired

clot retractions after thrombus formation [85]. The negative regulatory role of the

PLCγ2 isoform in platelet function is illustrated by the platelet hyperreactivity

and prothrombotic phenotype of mice carrying a gain-of-function mutation in

PLCγ2 [86].

The Gq-protein coupled receptors for thrombin, ADP, and TxA2 signal by

activating the PLCβ isoform [87]. Nevertheless, activation of both isoforms leads

to the generation of cytosolic second messengers. After PLC activation, inositol

1,4,5 trisphosphate (IP3) and diacylglycerol (DAG) are formed in platelets. Once

generated, IP3 binds to its appropriate inositol 1,4,5 trisphosphate receptors (IP3R)

in the membrane of intracellular calcium stores. By binding to its appropriate

receptors, IP3 causes the release of calcium with subsequent store depletion and

stim1 clustering. The second PLC-generated second messenger DAG binds to

protein kinase C, thus strengthening the kinase activity. Furthermore, DAG locates

the protein kinase C to plasma membrane where the signaling machinery takes

place.

11.3 Protein kinase C (PKC)

The protein kinase C (PKC) is a further popular Serine/Threonine kinase in platelet

function. Platelets primarily express highly the classical isoforms α and β as well as
the novel isoforms δ and θ [88]. By using different knockout mouse models and

PKC inhibitors, Gilio et al. showed that the different PKC isoforms play distinct

roles in platelet function and thrombus formation after collagen exposition.

According to this study, the collagen-dependent α-granule secretion and thrombus

formation is mediated by the conventional PKCα and β isoforms. In addition, the
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novel PKCθ isoform negatively regulates thrombus formation at shear stress

[88]. This is consistent with previous findings where the PKC isoforms balance

the pro-aggregatory and procoagulant functions of thrombi as well as thrombin

generation and platelet degranulation in a calcium-dependent manner [89]

suggesting a role of platelet PKC isoforms in inflammatory atherothrombotic

events. These findings are consistent with the fact that the α and β isoforms need

DAG and calcium for activation, whereas the δ and θ isoforms only need the DAG

as activating factor of kinase activity. The protein kinase C in platelets also operates

after stimulation of the G protein-coupled receptors as in a pharmacological

approach it was shown that Ca2+/SFKs/PI3K and PKC represent two alternative

signaling pathways mediating G(q)-dependent platelet activation [90]. On the

contrary, activation of the protease-activated receptor 1 (PAR-1) seems to mediate

negatively calcium signaling in platelets as inhibition of PKC after Gq activation

leads to increased calcium influx indicating a role of calcium concentration in

determination of platelet activation and atherothrombosis [91]. A dual role of the

PKC in platelet activation was also shown in 2011 when it was indicated that

PKC-dependent mechanisms regulate platelet dense granule secretion after

collagen-related peptide (CRP) and thrombin stimulation [92]. GSK3β activa-

tion is also controlled by a PKCα-dependent phosphorylation and PKB/Akt and

PLC/PKCα play a dual role in inhibition of GSK3β after thrombin-dependent

platelet stimulation and thrombus formation [59]. The strictly regulated cross talk

between the PI3K and PLC signaling is thus pivotal for the regulation of platelet

function and thrombus formation under shear stress, atherothrombosis, hemostasis

and inflammation.

11.4 Inflammatory Ligands Triggering Platelet PI3K Signaling

Platelet-derived chemokines and immunmodulatory molecules assume a role in

inflammatory cardiovascular diseases, whereby chemokine-dependent platelet acti-

vation is strictly PI3K dependent (Fig. 11.2). There are strong clinical studies that

link platelet-derived inflammatory molecules with cardiovascular diseases, thus

opening novel therapeutic opportunities [93].

Platelet-derived chemokine CXCL16 acts as a pro-inflammatory chemokine

which is highly expressed in atherosclerotic lesions [94] and acute coronary syn-

drome (ACS) [13]. Particularly in ACS, CXCL16 expression is associated with

long-term mortality [95]. CXCL16/CXCR6 signaling mainly acts through a PI3K/

Akt-dependent pathway in prostate cancer cells [96]. Furthermore, CXCL16 fosters

platelet activation by influencing degranulation, thus enhancing autocrine platelet

activation and thrombus formation similarly in a PI3K/Akt-dependent manner

[11]. Along those lines, the CXCL16 chemokine could be linked to inflammatory

cardiomyopathies and heart failure. Therefore, CXCL16 could serve as novel

biomarker and predictor of mortality in these diseases [12].

Chemokine C-X3-C motif ligand 1 (CX3CL1/fractalkine) is a further chemokine

which could represent a link between platelet activation and inflammatory signaling
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in atherothrombosis. The CX3CL1 chemokine shows close structural similarities

with CXCL16 [96]. CX3CL1 thus influences platelet activation and adhesion

[97]. More recent studies show a significant contribution of CX3CL1 to cardiovas-

cular diseases or atherothrombotic events by influencing platelet and monocyte

function [98]. CX3CL1 aggravates platelet activation at the vulnerable plaque thus

fostering the progression of atherosclerosis [99] and promotes platelet activation

and vascular dysfunction in congestive heart failure [100].

A further well-understood chemokine in platelet physiology is the so-called

stromal cell-derived factor 1 (SDF-1) or CXCL12 [65]. Abi-Younes and colleagues

were able to identify the SDF-1 as a new highly potent platelet agonist that is

expressed in atherosclerotic plaques. They also showed that SDF-1 stimulated

platelets signals via a PI3K-dependent pathway as after wortmannin and

LY294002 treatment there was a significantly decreased SDF-1-dependent platelet

aggregation [101]. C-X-C chemokines are described as novel autocrine platelet

activators [102]. Platelet-derived SDF-1 regulates monocyte function, survival, and

differentiation into macrophages and foam cell, thus contributing to the progression

of atherosclerosis and other atherothrombotic disorders [103]. For instance, the

platelet-derived SDF-1 level is significantly increased in patients with acute coro-

nary syndrome (ACS) [17]. Furthermore, SDF-1 is connected to the inflammation

process of myocarditis as the endomyocardial expression of SDF-1 could predict

mortality and outcome of patients with suspected myocarditis [18].

The macrophage migration inhibitory factor (MIF) is released by platelets, thus

influencing the monocyte migration in vascular inflammation [104]. MIF evokes an

antiapoptotic effect in platelets, thus sustaining platelet life span in the circulation

of mice. The effect is dependent on PI3K/Akt signaling [20]. In coronary artery

disease, the MIF and the appropriate inhibitor Gremlin-1 influences the progression

of these diseases [105], while CypA affects myocardial fibrosis after coxsackievirus

B3-induced myocarditis [52].

11.5 Conclusions

Platelet degranulation, integrin αIIbβ3 activation, and procoagulant events after

stimulation of platelet surface receptors lead to primary hemostasis minimizing

blood loss or pathologic thrombus formation resulting in acute vascular occlusion.

Basic mechanisms in platelet activation include phosphoinositide 3-kinase (PI3K)-

dependent signaling pathways. As platelets store and release (in an activation-

dependent manner) a vast array of immunmodulatory molecules, the platelet-

specific PI3K-dependent pathways have the ability to affect inflammatory

atherothrombotic events like atherosclerosis, inflammatory cardiomyopathies, and

heart failure. As described above, a broad range of chemokines activate and

modulate platelet function and activation, thus mediating inflammatory actions in

cardiovascular diseases [106]. Thereby, chemokines and cytokines modulate platelet

function in combination with weak platelet agonists like ADP [107] or independently

of co-stimulation and preactivation, respectively [97]. Thus, platelet-dependent PI3K
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signaling events after physiological (Fig. 11.1) or immunodulatory (Fig. 11.2) stimu-

lation can influence atherothrombosis and inflammation. PI3 kinase-dependent sig-

naling may thus become an attractive target for pharmacological treatment of

inflammatory cardiovascular diseases and atherothrombotic events.
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Linking Pathologies: Cyclophilins
in Inflammation and Thrombosis 12
David Heinzmann, Andreas E. May, and Peter Seizer

Abstract

Apart from their intracellular function as chaperones in protein folding,

cyclophilins have been found to play important roles in the pathogenesis of

thrombosis as well as inflammation. With liberation of cyclophilin A (CyPA)

into the extracellular space (eCyPA), it acts as a danger-associated molecular

pattern. Following interaction with its primary extracellular receptor CD147,

eCyPA facilitates platelet activation with subsequent adhesion to the endothe-

lium, degranulation as well as shape change. Furthermore, the eCyPA–CD147

interaction induces leucocyte adhesion and has strong chemotactic effects on

leucocytes. In this chapter, we review the effects of cyclophilins in the context of

thrombo-inflammation and give insight into current pharmacological strategies

targeting cyclophilins.
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12.1 Introduction

Amongst other intracellular chaperones, cyclophilins (CyPs) are of considerable

interest. Due to their peptidyl-prolyl cis/trans isomerase (PPIase) activity, which

catalyses isomerization of peptidyl-prolyl bonds at proline residues, cyclophilins

are regarded as important intracellular players for the proper folding of newly

synthesized peptides as well as restoring the three-dimensional shape of damaged

proteins in the intracellular matrix [1].

While being strongly conserved amongst most species, there are many subtypes

of CyPs, which are not well characterized. In recent years, cyclophilin A (CyPA)

has emerged as a pathophysiologically important factor, which contributes to many,

especially clinically important mechanisms of various kinds.

As the intracellular target of cyclosporin A (CsA), it has paved the road for

modern organ transplantation by inhibiting the rejection of the donor organ. This is

mainly achieved by the CsA-CyPA complex inhibiting the NFAT-dependent

activation of T-cells [2]. Lately, CyPA has been found to be of great significance

as a pro-inflammatory signal, once it reaches the extracellular space (Figs. 12.1 and

12.2).

Cyclophilin B (CyPB), the second cyclophilin to be discovered, shares a great

part of its sequence with CyPA. Histological studies have shown that CyPB is

mostly located in the nucleus [3]. Due to its differences in the C-terminal domain, it

is also found in the ER, from which it can be secreted easily. Here, it is part of the

complex protein folding of secreted proteins facilitated by the calnexin cycle [4].

eCyPA

leukocytes

platelets

endothelium

endothelial
damageROS, LPS

CD147

degranula�on shape change

adhesion

Fig. 12.1 Cyclophilin A as a mediator in thrombo-inflammation. Release of cyclophilin A

(CyPA) into the extracellular space (eCyPA) by various stimuli, including reactive oxygen species

(ROS), lipopolysaccharides (LPS) and disruption of cellular integrity, facilitates various pro-

inflammatory and prothrombotic events. Via the primary receptor CD147 (extracellular matrix

metalloproteinase inducer, EMMPRIN), eCyPA induces platelet adhesion to the endothelium,

shape change as well as degranulation of platelets. The eCyPA–CD147 interaction furthermore

induces leucocyte recruitment to the vessel wall as well as chemotaxis
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In the context of inflammation and thrombosis, so far CyPA and CyPB have been

the most interesting topics of research amongst the known CyPs. Especially CyPA

has been found to be an important pro-inflammatory signal in various pathophysio-

logical conditions.

12.2 Cyclophilins as Danger-Associated Molecular Patterns

The basic idea of danger-associated molecular patterns, alerting the immune system

of tissue damage by externalized intracellular molecules, was established by

Matzinger in 1994 [5]. Through the presence in the extracellular space, these

molecules can interact as a first response with different effector cells of the immune

system in order to concert an appropriate response to the occurring danger and

initiate restoration processes of the affected tissue once the inflammation is

slowing down.

While intracellular CyPA is an important housekeeping gene, its extracellular

functions are of great importance for many stress-related responses.

There have been several reports about the release mechanisms of CyPA from the

cytoplasm to the extracellular space. Amongst others, release by disruption of the

membrane, necrosis and directed secretion in response to various pro-inflammatory

stimuli, such as reactive oxygen species (ROS), hypoxia, lipopolysaccharides and

others, have been found [6]. With roughly 0.3% of the protein mass of lymphocytes,

foam cells

eCyPA
leukocyte recruitment platelet activation

MMP expression
cytokines

Scavenger receptors
LDL-uptake

endothelium

Fig. 12.2 Extracellular cyclophilin A plays a pivotal role in the pathogenesis of atherosclerosis.

The role of extracellular cyclophilin A (eCyPA) in atherosclerosis is closely associated with the

interaction with CD147. eCyPA has been found to be of great significance for the regulation of

MT-1-MMP, MMP-9 and M-CSF during the development of foam cells from CD34+ progenitor

cells. Induction of matrix metalloproteinases (MMPs) through eCyPA is considered to be a driver

of increased vulnerability in the plaque, leading to rupture and subsequent thrombosis by activa-

tion of platelets and coagulation factors. In earlier stages of atherosclerosis, eCyPA furthermore

facilitates uptake of low-density lipoprotein (LDL) into the vascular wall. Experimental data

suggest that CyPA deficiency leads to a reduced recruitment of leucocytes into the lesions

12 Linking Pathologies: Cyclophilins in Inflammation and Thrombosis 201



CyPA is abundantly expressed and therefore has a great intracellular pool that can

be set free instantaneously [7]. Elevated CyPA levels have been shown in many

diseases, such as vascular inflammation, rheumatoid arthritis, myocarditis or sepsis

[8–11].

In contrast to CyPA, CyPB is secreted on a larger scale. Especially in human

milk, large amounts of CyPB can be found [12]. Furthermore, in HeLa cells, CyPB

can be rapidly secreted into the medium in response to treatment with CsA, which

has also been reported for CyPA. This is facilitated through a classical secretory

pathway by forming CyPB-CsA complexes [13]. Basal secretion of CyPB has been

also shown for keratinocytes and chondrocytes [14, 15].

Physiological stimuli such as oxidative stress by ROS can initiate secretion of

CyPB by vascular smooth muscle cells, indicating specific extracellular functions

in modulation of stress defence [16].

Several mechanisms have been elucidated that give insights on how externalized

CyPs connect inflammatory responses in various settings.

12.2.1 Extracellular Cyclophilins as Inflammatory Mediators

When released into the extracellular space, CyPA interacts with a broad range of

inflammatory cells and orchestrates a pro-inflammatory response with migration

and activation of leucocytes as a key feature (Fig. 12.1). Many of these effects seem

to be facilitated through the interaction of CyPA with the extracellular domain of

extracellular matrix metalloproteinase inducer (EMMPRIN, CD147, basigin).

CD147 is considered to be the primary receptor molecule for extracellular CyPA

signalling. Belonging to the immunoglobulin superfamily, it is expressed on many

cell types, including leucocytes and platelets.

While the mechanisms of interaction are still poorly understood, recent studies

favour the idea that the PPIase activity of CyPA is crucial to induce downstream

signalling by cis/trans isomerization of prolyl bonds in the extracellular domain of

CD147 [17, 18]. Downstream, CyPA-CD147 interaction can lead to activation of

p38 MAPK, ERK1/2, NF-κB and JNK and increased Ca2+ influx [6]. To add to the

complexity, the CyPA-CD147 interaction seems to be dependent on the presence of

heparans in the outer membrane of the target cell. It therefore seems plausible that

CyPA doesn’t primarily bind to CD147, but signalling via CD147 could rather

depend on a primary interaction of basic residues located at the C-terminus of

CyPA with heparans [19, 20].

Especially on CD4þ leucocytes, studies have shown that activated cells show a

higher expression of CD147 on their surface than resting cells. In this context,

migration towards extracellular CyPA was increased and was not dependent on the

presence of cell surface heparans [21].

Endothelial cells were shown to increase the expression VCAM-1 and E-selectin

via stimulation of ERK1/2, JNK and p38 in response to extracellular CyPA,

therefore promoting the adhesion and invasion of leucocytes into the inflammatory

milieu [22].
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CD147 can further facilitate the recruitment of leucocytes by inducing rolling

and adhesion on the endothelial surface. Studies have shown that CD147 binds to

E-selectin expressed on the surface of endothelial cells and plays a major role in the

selectin-mediated invasion into the inflammatory milieu [23].

Migration of leucocytes towards an increasing concentration of extracellular

CyPA has been shown in various assays and for many subtypes. Furthermore,

inhibition of CD147 and selective inhibition of extracellular but not intracellular

CyPA have been shown to ameliorate these effects, underlining the importance of

CD147 for extracellular CyPA signalling [18, 24].

Synergistic augmentation of leucocyte recruitment has been shown for many

combinations of chemokines. Simultaneous administration of CXCL2 and extra-

cellular CyPA showed an increased CXCR2 receptor internalization, intracellular

calcium mobilization and actin polymerization in neutrophils in vitro [25].

Amongst the variety of cellular responses, CyPA-induced matrix

metalloproteinase (MMP) induction is an important pathophysiological mechanism

in many diseases. Ranging from atherosclerosis to rheumatoid arthritis, MMPs are

vital for the invasion and swarming of leucocytes, as well as for degradation and

reorganization of extracellular matrix [26, 27]. Especially in tissues with a low cell

turnover, such as the heart, the expression of MMPs correlates with an increased

percentage of fibrosis, as regeneration is inherently low [28].

Furthermore, CyPA-CD147 interaction, as well as increased expression of

MMPs, has been shown to be of great significance in cancer biology. CyPA has

been shown to be overexpressed in many cancer types, interfering with apoptosis,

proliferation and metastasis [29].

Like CyPA, signalling of extracellular CyPB is largely dependent on interaction

with CD147. Similarly to extracellular CyPA, CyPB has been shown to be involved

with the recruitment of leucocytes by inducing chemotaxis and adhesion, especially

of CD4+ CD45RO+ T-cells [30–32].

Yet, there are also some interesting differences in the resulting responses. While

extracellular CyPA has been shown to stimulate the expression of numerous

cytokines, CyPB not only fails to induce them, but macrophages pretreated with

CyPB prior to administration of LPS showed reduced expression of

pro-inflammatory mediators [33].

12.3 Cyclophilins in Platelet Function

In platelets, being of central interest in many cardiovascular diseases, CyPA plays a

pivotal role for activation of platelets and induction of thrombosis in vivo.

Intracellular CyPA has been shown to be a central Ca2+ modulator in platelets.

Intracellular Ca2+ mobilization is a crucial step in the activation of platelets, leading

to the release of prothrombotic substances and change of shape and expression of

surface molecules. In mice, CyPA deficiency reduces the release of Ca2+ from

intracellular stores. Furthermore, the recruitment of Ca2+ from the extracellular

space to the cytoplasm is reduced as well [34]. Inhibition of intracellular CyPA in
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platelets using CsA reduces the Ca2+ reuptake by SERCA2b, by inhibiting the

formation of a SERCA2b/CyPA complex [35].

Further studies showed that extracellular CyPA has a significant impact on

platelet function as well. In vivo, thrombus formation can be reduced significantly

by selectively inhibiting extracellular CyPA. Furthermore, addition of extracellular

CyPA to CyPA-deficient platelets enhances thrombus formation in vivo. Especially

aggregation, as well as degranulation and therefore expression of P-selectin, SDF-1,

active αIIbβ3, CD41a, CD49b and CD29 (α2β1 integrin) on the surface of the

platelet, can be mediated by paracrine CyPA signalling. These effects could also

be seen in platelets from CyPA-deficient mice treated with recombinant CyPA.

Most of these effects seem to depend on signalling of extracellular CyPA through

CD147, as blocking of CD147 abrogates these effects [36].

Interestingly, extracellular CyPB binds to the surface of platelets as well. Studies

have shown that addition of CyPB to platelets induces no aggregation or degranu-

lation of any kind. This was also true when platelets were pretreated with low doses

of known activators, such as thrombin or ADP. When platelets treated with CyPB

were tested for adhesion to collagen, a marked increase was noted, which was

diminished by addition of CsA. Further experiments also showed an increase of

intracellular free calcium when treated with CyPB [37].

12.4 Mechanisms and Intervention: Cyclophilins and Potential
Therapeutic Approaches

Being a universally expressed intracellular protein involved in fundamental cellular

functions, CyPA is part of many pathophysiological processes. Amongst these are

pathologies that are very commonly seen and account for a vast number of patients

seen in daily practice of physicians worldwide.

CsA is the prototypical inhibitor of cyclophilins. With its strong affinity and its

ability to penetrate the cell, it is able to inhibit the PPIase activity of CyPA within

the cell and the extracellular space. Inhibition of intracellular CyPA by CsA greatly

reduces the activation of T lymphocytes and is therefore successfully used as an

immunosuppressive drug in clinical practice since decades. Intracellular CsA forms

a complex with CyPA, which inhibits the NFAT-dependent activation of T-cells via

inhibition of calcineurin [38]. Several derivatives of CsA have been synthesized,

differing in their affinity to CyPA, ability to suppress T-cell activation and other

properties. The most recent development being CsA derivatives, which cannot

penetrate the cell membrane and therefore offer the opportunity to selectively

inhibit extracellular cyclophilins, leaving intracellular mechanisms largely

intact [39].

Following, we will show examples of recent applications of this new pharmaco-

logical concept.

For MM218 and MM284, CsA derivatives that cannot penetrate the cell mem-

brane, in vivo experiments have shown that administration reduces inflammatory

response. MM218 was able to drastically reduce inflammation, including
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recruitment of antigen-specific CD4þ T-cells, in a murine model of allergic lung

inflammation [40].

For MM284 studies have shown that administration diminishes inflammation

and infiltration of T-cells and macrophages in a model of troponin I-induced

autoimmune myocarditis in mice. Furthermore, treatment with MM284 signifi-

cantly reduced myocardial collagen deposition and expression of MMP-9, being

one of the most pro-fibrotic collagenases in the myocardium [24].

Having a distinct inflammatory component, atherosclerosis is a major cause for

cardiovascular events. The role of CyPA in atherosclerosis has been studied inten-

sively. The interaction of extracellular CyPA with CD147 has been found to be of

great significance for the regulation of MT-1-MMP, MMP-9 and M-CSF during the

development of foam cells from CD34þ progenitor cells [26] (Fig. 12.2). MMPs are

considered to be drivers of increased vulnerability in the plaque, leading to rupture

and subsequent thrombosis by activation of platelets and coagulation factors. In

earlier stages of atherosclerosis, CyPA has been shown to be of importance for the

uptake of low-density lipoprotein into the vascular wall by a mechanistically still

unclear regulation of the expression of scavenger receptors. CyPA-deficient ApoE�/�

mice showed a markedly reduced burden of atherosclerosis, reduced VCAM-1

expression and apoptosis while on a high-cholesterol diet. Furthermore, CyPA

deficiency led to a reduced recruitment of leucocytes into the lesions [41].

However, recent studies surprisingly showed that pharmacological inhibition of

cyclophilins via MM284 increased the burden of atherosclerosis in the aorta.

Despite decreasing TNFα levels in the plasma, application of the inhibitor showed

no effect on the abundance of different inflammatory cell types; the expression

levels of IL-6, IL-10 or MCP-1; or the plasma lipoprotein profile [42].

12.5 Prospective Thoughts

In this very brief overview of the functions and mechanisms of cyclophilins in the

context of inflammation and thrombosis, we show that this topic is yet to be

discovered as a new therapeutic field, which could be applicable for many diseases

with an inflammatory component.

Current studies show conclusively that the inhibition of extracellular CyPA can

modulate inflammatory responses in various models of inflammation. From the

recruitment of leucocytes and platelets to the expression of pro-fibrotic signals, the

CyPA/CyPB-CD147 interaction plays an important role in the complex

interactions, which lead to inflammation and its termination.

New pharmacological approaches to selectively decrease the amount of active

CyPs in the extracellular space have shown promising results in various settings.

With tools to differentiate between extracellular and intracellular functions of

CyPs, we have the opportunity to inhibit cyclophilin function leaving T-cell

activation intact. There are still many challenges ahead to develop the compounds

we use to date into a safe application in humans. But with promising results at hand

already, now groups are working on overcoming the pharmacological hurdles for
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clinical testing. The coming years will show whether this approach will be effective

and safe enough.
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Platelets and Innate Immunity
in Atherosclerosis 13
Johannes Patzelt and Harald F. Langer

Abstract

Platelets are classically considered initiators of hemostasis and—in pathol-

ogy—intravascular thrombosis causing diseases such as myocardial infarction

or stroke. However, platelets are also mediators of innate immunity, secrete

inflammatory proteins, mediate leukocyte recruitment, and contribute to tissue

remodeling. Inflammation and innate immunity have common intersection

points with the hemostatic system at various levels. With the complement

system being part of the innate immune system, this chapter focuses on the

role of platelets and the complement system in the context of atherosclerosis.
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13.1 Introduction

Beyond their classical role in hemostasis, platelets do also have important functions

in microbial defense. The persistence of microbes in platelet thrombi in septic

thrombotic diseases such as endocarditis brings up the importance of the interaction

of immunity and hemostasis. Besides cellular components such as leukocytes,

macrophages, and dendritic cells, the complement system is an integral part of

our innate immune system. Atherosclerosis is recognized as an inflammatory

disease [1], and accumulating evidence shows that platelets and the complement

system do not only have intersections in microbial defense but also in atheroscle-

rotic disease. With atherosclerosis still being the leading cause of death in the

Western world, a closer review of the contributions of platelets and the complement

system in its genesis is warranted. After injury, platelets cover and close an

endothelial wound, and the contact of platelets with the subendothelial matrix

triggers their activation and subsequent thrombus formation [2]. Platelet contact

with the subendothelial structures of the vascular wall is also an important patho-

physiologic principle in early atherosclerotic plaque formation [3]. Additionally, it

has been shown that platelets interact with intact endothelium, too, and recruit

leukocytes even before an atherosclerotic plaque has formed [4]. The complement

system, besides having important protective functions in immune defense, can be a

driving force in chronic inflammatory disease [5].

13.2 The Complement System and Atherosclerosis

Many cellular and molecular mediators of the immune system have been identified

to modulate the development of atherosclerosis. Complement being part of the

innate immune system encompasses a broad range of immune-modulatory effects,

including the opsonization of microbial intruders with C1a or mannose-binding

lectin (MBL), followed by activation products of the complement cascade C2–C4

(with the opsonins C3b and C4b). Mast cell degranulation is induced by the soluble

anaphylatoxins C3a and C5a and inflammatory cells are attracted [6]. The lysis of

target cells is mediated by the membrane attack complex (MAC), which is formed

by the components C5b–C9. In addition to immune defense, the complement

system influences central homeostatic and pathophysiological processes in tissue

remodeling and the removal of immune complexes, apoptotic cells, and cellular

debris [7]. It is well recognized that the classical pathway with C1q, C2, and C4 is

associated with the homeostatic control of such immune complexes, as the defi-

ciency of these components predisposes to diseases characterized by an impaired

clearance of cellular debris, for example, in systemic lupus erythematosus (SLE)

[8]. Interestingly, cellular debris also accumulates in atherosclerotic plaques.

Jonsson et al. identified a significant association between genetic C2 deficiency

and atherosclerosis with increased rates of myocardial infarctions and stroke in a

cohort of 40 patients [9]. C4 deficiency is a disease with premature atherosclerotic

peripheral vascular lesions. A significant part of those patients exhibits circulating
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immune complexes, which correlate with atherosclerotic lesions [10]. An SNP of

the complement receptor C1qRp (CD 93) affects the risk for coronary artery disease

as demonstrated in a genome-wide analysis in a cohort with familial hypercholes-

terolemia [11]. Similarly, polymorphisms with decreased levels of mannose-

binding lectin (MBL) are associated with an elevated incidence of coronary heart

disease and increased carotid plaque formation [12–14].

The generation of anaphylatoxins in the wake of complement activation

promotes inflammation. Elevated levels of the anaphylatoxin C5a have been

measured in patients with advanced atherosclerosis and were predictive for major

cardiovascular events independently of known risk markers such as C reactive

protein (CRP) or fibrinogen [15].

Complement factors are accumulating in atherosclerotic plaques [16, 17]. Under

physiological conditions, activated complement components are quickly cleared

from the circulation. In cholesterol-fed rabbits, however, activated complement and

the MAC were identified within early stages of plaque formation even before the

arrival of inflammatory cells and the formation of fatty streaks [18]. Subsequent

studies could confirm this finding by demonstrating the presence of the terminal

complement complex C5b-9 in human atherosclerotic arteries [19–21].

Two sources for those complement components have been identified: They may

derive from blood circulation [22, 23] or they may be produced locally within the

plaque as is indicated by the presence of mRNA for several complement

components (C1r, C1s, C4, C7, and C8) [23, 24]. Indeed, the power of local

complement production in immune processes being the causing factor of disease

has been documented by various studies [25–28]. As a matter of fact, there are

differences in complement activation between superficial and deeper lavers of the

atherosclerotic plaque. While, in the luminal layer, there are signs of classical and

alternative but not terminal complement activation (consistent with the presence of

complement regulators C4bp and fH) [29, 30], terminal complement complex

deposition associated with smooth muscle cells, cell debris, and extracellular lipids

is noted in deeper layers of the plaque [29, 30]. In the necrotic core of advanced

atherosclerotic lesions, C1q and the receptor for its globular domain (gC1a-R) are

found [31]. Furthermore, C3b can be detected as well, and there is a higher

concentration in ruptured compared to intact plaques in the same patients

[17]. Accumulation of C5a in lipid-rich inflammatory lesions containing exposed

cholesterol and necrotic cell debris compared to stable plaques containing collagen

and elastin is another sign of increased complement activation within ruptured

plaques [32]. These observations are supported by epidemiological data showing

increased C5a levels in patients with increased cardiovascular risk independently of

nonspecific inflammatory markers [15]. While elevated plasmatic C4 levels are

associated with severe atherosclerosis [33], no causality can be derived from mere

detection of complement and we do not know whether it has a protective or

deleterious role for atherosclerosis. Actually, there are studies suggesting protective

effects of complement, while others find pro-atherosclerotic effects. Data from the

1970s show that C6 deficiency protects cholesterol-fed rabbits from atherosclerosis

[34]. Similarly, inhibition of C5a or its receptor C5aR1 (CD88) reduces
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atherosclerotic lesions in murine models [35, 36]. However, C1q deficiency has

been associated with significantly larger lesions in atherosclerotic low-density

lipoprotein receptor-deficient (LDLR�/�) mice compared to C1q-sufficient

controls [37, 38]. This observation could be explained by the fact that C1q binds

apoptotic or necrotic cells in plaques directly or indirectly via IgM, thereby

promoting classical pathway deposition of C3 activation products and, in conse-

quence, their removal by macrophages. Indeed, C3 deficiency enhances abdominal

and thoracic aortic lesions in atherosclerotic LDLR�/� mice compared to

C3-sufficient controls [39]. This finding is supported by the fact that mice lacking

ApoE and LDLR exhibit a strong increase of aortic lesion load (+84%) when C3 is

absent too [40]. Considering the ambiguous results for the role of complement

activation in atherogenesis, several clinical trials assessed the efficacy of targeting

complement in coronary artery disease (CAD). Treatment with an anti-C5 antibody

(Pexelizumab) resulted in significantly reduced mortality in patients with

ST-elevation myocardial infarction (STEMI) [41]. Complement inhibition in

patients undergoing coronary artery bypass graft surgery led to reduced morbidity

and mortality [42].

In conclusion, the function of complement in the development of atherosclerosis

is not completely understood and unanswered questions will have to be addressed in

future basic and clinical studies.

13.3 Platelets and Atherosclerosis

Platelets play a key role in the late thrombotic complications associated with

atherosclerosis and are, thus, an important target for the development of diagnostic

and therapeutic tools. Moreover, platelets can also interact with intact endothelium

even before an atherosclerotic plaque has formed and thereforemay play a role in the

genesis of atherosclerosis [43]. Indeed, platelets adhere to intact endothelium via the

von Willebrand factor receptor GPIbα and the fibrinogen receptor GPIIbIIIa before a

plaque has formed in atherosclerotic apolipoprotein E-deficient (ApoE�/�) mice

[4, 43, 44]. However, atherosclerosis may also emerge in the absence of GPIIbIIIa as is

known from studies with patients whose platelets lack functional GPIIbIIIa
(Glanzmann thrombasthenia). 4 out of 7 of those patients showed atherosclerotic

plaques as revealed by ultrasound imaging of the carotid bifurcation [45]. Bringing

those findings together, platelet–vessel wall interactions via GPIIbIIIa seem to con-

tribute to but do not seem to be a prerequisite in the genesis of atherosclerosis and

may be functionally substituted by other platelet receptors. Deficiency of GPIbα
shows no protection from atherosclerotic plaque formation in mice [46]. On the

other hand, platelet depletion with a GPIbα-specific antibody in ApoE�/� mice

leads to reduced leukocyte accumulation in the arterial intima and attenuated

atherosclerotic plaque formation. Importantly, this indicates that adhering platelets

form a focal point for the immune cell-driven inflammation that is central to

atherosclerosis [4]. Platelets are able to interact with P-selectin expressed on intact

endothelium via GPIbα and PSGL-1. This initial rolling of platelets on endothelium
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is followed by β3 integrin-mediated firm adhesion of platelets to the vessel wall

[43]. For the initiation of atherosclerosis, these aforementioned steps are considered

crucial. Various inflammatory receptors are expressed on the platelets’ surface

including the fractalkine receptor (CX3CR1), which induces P-selectin expression

on platelets after binding to fractalkine (CX3CL1) expressed on inflamed endothe-

lial cells [47]. Platelet P-selectin exposure driven by arterial shear forces in turn

initiates local accumulation of leukocytes [47] (Fig. 13.1). P-selectin seems to have a

central role in atherogenesis, which is corroborated by the positive correlation of

intima-media thickness with levels of platelet P-selectin [49]. Both platelet and

endothelial P-selectin contributed to lesion formation in a mouse model of athero-

sclerosis that was based on the adoptive transfer of P-selectin positive or negative

platelets [50].

It is unclear whether platelet adhesion to the intima causes direct damage to the

endothelium. However, several studies found how platelets contribute to vascular

inflammation via their interaction with leukocytes [51–56]. In ApoE-deficient mice,

atherosclerosis was exacerbated by activated platelets mediating the recruitment of
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Fig. 13.1 (adapted from Patzelt et al.) [48]. Upper part: Model of platelet interaction with the

damaged vessel wall: exposure of subendothelial matrix after endothelial injury leads to platelet

tethering, activation, and accumulation to provide sealing of the endothelial wound. Lower part:
Model of platelet interaction with the endothelium. Platelets interact with the endothelium via

adhesion receptors such as GPIbα and PSGL-1 promoting rolling and subsequent firm adhesion via

β3 integrins. Interaction with endothelial bound chemokines such as Cx3CL1 (fractalkine) or

CCL5 (Rantes) results in P-selectin-mediated recruitment of leukocytes to the vessel wall and

subsequent transmigration. For interaction with both the subendothelial matrix and the endothe-

lium, major adhesion receptors expressed on platelets are listed
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leukocytes [57, 58]. The deposition of inflammatory platelet mediators on endothe-

lial cells was facilitated by the formation of platelet–leukocyte aggregates (PLA)

[44, 52]. Moreover, platelet activation increased the number of circulating PLAs

[59, 60]. Several receptor/ligand pairs have been identified that potentially support

platelet–leukocyte cross talk, including integrins or members of the JAM family of

proteins [57, 58, 61]. A list of platelet surface receptors with potential relevance for

atherosclerosis is given in Table 13.1. Additionally, platelets may also influence

vascular inflammation via release of factors from their granules [72]. For example,

the release of the chemokines CCL5 or CXCL4 contributes to atherosclerosis in a

P-selectin-dependent manner [73]. Fatty acids play a major role in the genesis of

atherosclerosis. Importantly, platelets can bind oxidized LDL—playing a key role

in atherogenesis—and interaction with lipoproteins can change platelet function

[74, 75]. Not surprisingly, platelets of hypercholesterolemic patients show

enhanced activity in vivo and hyperaggregability in vitro [76, 77].

Together, on the one hand, platelet activation seems to exert pro-atherosclerotic

effects; on the other hand, it can also provide effects of atheromodulation and

tissue/vascular remodeling.

13.4 Platelets and the Complement System

Platelets as well as the complement system are associated with atherogenesis and its

late complications. Considering this, a closer review of their interactions is

warranted. In platelet isolates, a wide variety of complement factors and receptor

can be detected [78]. A potentially self-reinforcing cycle with complement

activating platelets and, in turn, (thrombin) activated platelets initiating the

Table 13.1 Receptor, corresponding ligand, and interaction relevant for vascular inflammation

Receptor Ligand Interaction with

α2β1 Collagen Damaged vessel wall [62]

α5β1, α6β1 Fibrinogen, vWF Vessel wall [63]

Subendothelial extracellular matrix Damaged vessel wall [64]

Collagen Damaged vessel wall [62]

αvβ3 Vitronectin Endothelial cells [65]

CX3CR1 CX3CL1 Endothelial cells [47]

GPIbα Mac 1 Leukocytes [65]

P-Selectin Endothelial cells [4]

GPIIb-IIIa (αIIbβ3) Mac 1 Leukocytes [66]

GPVI Collagen Damaged vessel wall [67]

ICAM-2 LFA-1 Leukocytes [68]

JAM-A JAM-A Vessel wall [69]

JAM-C MAC-1 Dendritic cells [53]

P-Selectin PSGL-1 Leukocytes [70]

PSGL-1 P-Selectin Endothelial cells [71]
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complement cascade has been described [79]. Platelets express CR4 (a receptor for

iC3b), although its function remains elusive, so far [80]. Besides this C3-fragment

receptor, platelets also express the C1q receptors gC1qR/p33 and cC1qR that were

shown to mediate platelet activation and aggregation [81–83]. The anaphylatoxins

C3a and C5a are generated further downstream in the complement cascade.

Receptors for those are also found on platelets. In vitro, C3a and its derivative

C3a-des-Arg mediate platelet aggregation and activation [84, 85]. Recently, we

found that in patients with CAD the expression of these anaphylatoxin receptors

(C3aR and C5aR) and the expression of activation markers such as P-selectin are

correlated [86].

Platelets actively counteract complement deposition onto their surface, because

of their propensity to become activated by the complement cascade. In fact,

platelets bind and express many complement control proteins (CCPs) [87]. Absence

or dysfunction of such CCPs is associated with platelet malfunction and activation-

induced thrombocytopenia [87]. In line with this notion, in atypical hemolytic

uremic syndrome (aHUS) excessive complement activation on platelets leads to

thrombocytopenia and prothrombotic complications, which is caused by

deficiencies or mutations in CCPs (frequently factor H) [88]. Moreover, in parox-

ysmal nocturnal hemoglobinuria (PNH) platelets are affected by overwhelming

complement activation. In this disease, effective anchoring of CCPs decay-

accelerating factor (DAF, CD55) and protectin (DC59) on the platelet surface is

prevented by a mutation in the phosphatidylinositol glycan A (PIGA) [89]. Both

conditions can nowadays be treated with Eculizumab, a humanized version of the

anti-C5 antibody h5G1.1, first described in 1996. The mAb Eculizumab prevents

the cleavage of C5-C5b by binding directly to C5 and, thus, blocks the formation of

the membrane damaging MAC [90].

Interaction between platelets and the complement system can also occur via

proteins that are not classically seen as complement receptors such as P-selectin

[91] or GPIbα [92]. P-selectin was observed to bind C3b and mediate generation of

C3a as well as MAC formation [91]. Platelet activation is enhanced by MAC

formation causing a prothrombotic state in aHUS and PNH [93]. Studies with

bacterial infection in mice revealed that upon systemic infection, C3b-opsonized

bacteria form complexes with platelets in the bloodstream. Such complexes are

built in the presence of the alpha chain of GPIbα on the platelet surface, indicating

that GPIb interacts directly or indirectly with activated complement C3 [92]. These

molecules may synergize in physiological hemostatic processes as suggested by the

fact that both C3- and GPIb-deficient mice show prolonged bleeding times [94, 95].

13.5 Conclusions

Various experimental and clinical studies indicate that the complement system and

platelets modulate the genesis of atherosclerosis and are able to modulate each

other’s function.
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The heterogeneous results highlight the complexity of pathological mechanisms

underlying atherosclerosis and the contribution of platelet activation, complement

activation, and their cross talk for this disease. Thus, there is a clear need for further

intensified clinical and experimental studies to characterize the interaction of

platelets and the complement system in the context of atherosclerosis.

Compliance with Ethical Standards

Conflict of Interest: Johannes Patzelt and Harald F. Langer declares that they have
no conflict of interest.

Ethical Approval: This article does not contain any studies with human

participants or animals performed by any of the authors.

References

1. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.

2. Kuijper PH, Gallardo Torres HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ. Platelet

and fibrin deposition at the damaged vessel wall: cooperative substrates for neutrophil adhesion

under flow conditions. Blood. 1997;89:166–75.

3. Langer HF, Bigalke B, Seizer P, Stellos K, Fateh-Moghadam S, Gawaz M. Interaction of

platelets and inflammatory endothelium in the development and progression of coronary artery

disease. Semin Thromb Hemost. 2010;36:131–8.

4. Massberg S, Brand K, Gruner S, Page S, Muller E, Muller I, Bergmeier W, Richter T,

Lorenz M, Konrad I, Nieswandt B, Gawaz M. A critical role of platelet adhesion in the

initiation of atherosclerotic lesion formation. J Exp Med. 2002;196:887–96.

5. Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344:1058–66.

6. Verschoor A, Carroll MC. Complement and its receptors in infection. In: Kaufmann SHE,

Medzhitov R, Gordon S, editors. The innate immune response to infection. Washington, DC:

American Society for Microbiology Press; 2004.

7. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune

surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

8. Aggarwal R, Sestak AL, D’Sousa A, Dillon SP, Namjou B, Scofield RH. Complete comple-

ment deficiency in a large cohort of familial systemic lupus erythematosus. Lupus.

2010;19:52–7.

9. Jonsson G, Truedsson L, Sturfelt G, Oxelius VA, Braconier JH, Sjoholm AG. Hereditary c2

deficiency in sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic

disease. Medicine. 2005;84:23–34.

10. Nityanand S, Truedsson L, Mustafa A, Bergmark C, Lefvert AK. Circulating immune

complexes and complement c4 null alleles in patients in patients operated on for premature

atherosclerotic peripheral vascular disease. J Clin Immunol. 1999;19:406–13.

11. van der Net JB, Oosterveer DM, Versmissen J, Defesche JC, Yazdanpanah M, Aouizerat BE,

Steyerberg EW, Malloy MJ, Pullinger CR, Kastelein JJ, Kane JP, Sijbrands EJ. Replication

study of 10 genetic polymorphisms associated with coronary heart disease in a specific high-

risk population with familial hypercholesterolemia. Eur Heart J. 2008;29:2195–201.

12. Madsen HO, Videm V, Svejgaard A, Svennevig JL, Garred P. Association of mannose-

binding-lectin deficiency with severe atherosclerosis. Lancet. 1998;352:959–60.

216 J. Patzelt and H.F. Langer



13. Hegele RA, Ban MR, Anderson CM, Spence JD. Infection-susceptibility alleles of mannose-

binding lectin are associated with increased carotid plaque area. J Invest Med.

2000;48:198–202.

14. Best LG, Davidson M, North KE, MacCluer JW, Zhang Y, Lee ET, Howard BV, DeCroo S,

Ferrell RE. Prospective analysis of mannose-binding lectin genotypes and coronary artery

disease in american indians: the strong heart study. Circulation. 2004;109:471–5.

15. Speidl WS, Exner M, Amighi J, Kastl SP, Zorn G, Maurer G, Wagner O, Huber K, Minar E,

Wojta J, Schillinger M. Complement component c5a predicts future cardiovascular events in

patients with advanced atherosclerosis. Eur Heart J. 2005;26:2294–9.

16. Speidl WS, Kastl SP, Huber K, Wojta J. Complement in atherosclerosis: friend or foe? J Thromb

Haemost. 2011;9:428–40.

17. Laine P, Pentikainen MO, Wurzner R, Penttila A, Paavonen T, Meri S, Kovanen PT. Evidence

for complement activation in ruptured coronary plaques in acute myocardial infarction. Am J

Cardiol. 2002;90:404–8.

18. Seifert PS, Hugo F, Hansson GK, Bhakdi S. Prelesional complement activation in experimen-

tal atherosclerosis. Terminal c5b-9 complement deposition coincides with cholesterol accu-

mulation in the aortic intima of hypercholesterolemic rabbits. Lab Invest. 1989;60:747–54.

19. Vlaicu R, Niculescu F, Rus HG, Cristea A. Immunohistochemical localization of the terminal

c5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis. 1985;57:163–77.

20. Niculescu F, Rus HG, Vlaicu R. Immunohistochemical localization of c5b-9, s-protein, c3d

and apolipoprotein b in human arterial tissues with atherosclerosis. Atherosclerosis.

1987;65:1–11.

21. Torzewski M, Klouche M, Hock J, Messner M, Dorweiler B, Torzewski J, Gabbert HE,

Bhakdi S. Immunohistochemical demonstration of enzymatically modified human ldl and its

colocalization with the terminal complement complex in the early atherosclerotic lesion.

Arterioscler Thromb Vasc Biol. 1998;18:369–78.

22. Vlaicu R, Rus HG, Niculescu F, Cristea A. Quantitative determinations of immunoglobulins

and complement components in human aortic atherosclerotic wall. Med Interne.

1985;23:29–35.

23. Niculescu F, Rus H. The role of complement activation in atherosclerosis. Immunol Res.

2004;30:73–80.

24. Yasojima K, Schwab C, McGeer EG, McGeer PL. Complement components, but not comple-

ment inhibitors, are upregulated in atherosclerotic plaques. Arterioscler Thromb Vasc Biol.

2001;21:1214–9.

25. Verschoor A, Brockman MA, Knipe DM, Carroll MC. Cutting edge: myeloid complement c3

enhances the humoral response to peripheral viral infection. J Immunol. 2001;167:2446–51.

26. Verschoor A, Brockman MA, Gadjeva M, Knipe DM, Carroll MC. Myeloid c3 determines

induction of humoral responses to peripheral herpes simplex virus infection. J Immunol.

2003;171:5363–71.

27. Gadjeva M, Verschoor A, Brockman MA, Jezak H, Shen LM, Knipe DM, Carroll MC.

Macrophage-derived complement component c4 can restore humoral immunity in

c4-deficient mice. J Immunol. 2002;169:5489–95.

28. Li K, Sacks SH, Zhou W. The relative importance of local and systemic complement

production in ischaemia, transplantation and other pathologies. Mol Immunol.

2007;44:3866–74.

29. Oksjoki R, Jarva H, Kovanen PT, Laine P, Meri S, Pentikainen MO. Association between

complement factor h and proteoglycans in early human coronary atherosclerotic lesions:

implications for local regulation of complement activation. Arterioscler Thromb Vasc Biol.

2003;23:630–6.

30. Oksjoki R, Kovanen PT, Mayranpaa MI, Laine P, Blom AM, Meri S, Pentikainen

MO. Complement regulation in human atherosclerotic coronary lesions. Immunohistochemi-

cal evidence that c4b-binding protein negatively regulates the classical complement pathway,

and that c5b-9 is formed via the alternative complement pathway. Atherosclerosis.

2007;192:40–8.

13 Platelets and Innate Immunity in Atherosclerosis 217



31. Peerschke EI, Minta JO, Zhou SZ, Bini A, Gotlieb A, Colman RW, Ghebrehiwet B. Expression

of gc1q-r/p33 and its major ligands in human atherosclerotic lesions. Mol Immunol.

2004;41:759–66.

32. Speidl WS, Kastl SP, Hutter R, Katsaros KM, Kaun C, Bauriedel G, Maurer G, Huber K,

Badimon JJ, Wojta J. The complement component c5a is present in human coronary lesions

in vivo and induces the expression of mmp-1 and mmp-9 in human macrophages in vitro.

FASEB J. 2011;25:35–44.

33. Muscari A, Bozzoli C, Gerratana C, Zaca F, Rovinetti C, Zauli D, La Placa M, Puddu

P. Association of serum iga and c4 with severe atherosclerosis. Atherosclerosis. 1988;74:179–86.

34. Geertinger P, Sorensen H. Complement as a factor in arteriosclerosis. Acta Pathol Microbiol

Scand A Pathol. 1970;78:284–8.

35. Shagdarsuren E, Bidzhekov K, Mause SF, Simsekyilmaz S, Polakowski T, Hawlisch H,

Gessner JE, Zernecke A, Weber C. C5a receptor targeting in neointima formation after arterial

injury in atherosclerosis-prone mice. Circulation. 2010;122:1026–36.

36. Manthey HD, Thomas AC, Shiels IA, Zernecke A, Woodruff TM, Rolfe B, Taylor

SM. Complement c5a inhibition reduces atherosclerosis in apoe-/- mice. FASEB

J. 2011;25:2447–55.

37. Bhatia VK, Yun S, Leung V, Grimsditch DC, Benson GM, Botto MB, Boyle JJ, Haskard

DO. Complement c1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient

mice. Am J Pathol. 2007;170:416–26.

38. Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin m is

required for protection against atherosclerosis in low-density lipoprotein receptor-deficient

mice. Circulation. 2009;120:417–26.

39. Buono C, Come CE, Witztum JL, Maguire GF, Connelly PW, Carroll M, Lichtman

AH. Influence of c3 deficiency on atherosclerosis. Circulation. 2002;105:3025–31.

40. Persson L, Boren J, Robertson AK, Wallenius V, Hansson GK, Pekna M. Lack of complement

factor c3, but not factor b, increases hyperlipidemia and atherosclerosis in apolipoprotein e-/-

low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vascu Biol. 2004;24:1062–7.

41. Granger CB, Mahaffey KW, Weaver WD, Theroux P, Hochman JS, Filloon TG, Rollins S,

Todaro TG, Nicolau JC, Ruzyllo W, Armstrong PW, Investigators C. Pexelizumab, an anti-c5

complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in

acute myocardial infarction: the complement inhibition in myocardial infarction treated with

angioplasty (comma) trial. Circulation. 2003;108:1184–90.

42. Testa L, Meco M, Cirri S, Bedogni F. Pexelizumab and survival in cardiac surgery. HSR Proc

Intensive Care Cardiovasc Anesth. 2011;3:23–4.

43. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest.

2005;115:3378–84.

44. Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley

K. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipopro-

tein e. Nat Med. 2003;9:61–7.

45. Shpilberg O, Rabi I, Schiller K, Walden R, Harats D, Tyrrell KS, Coller B, Seligsohn U. Patients

with glanzmann thrombasthenia lacking platelet glycoprotein alpha(iib)beta(3) (gpiib/iiia) and

alpha(v)beta(3) receptors are not protected from atherosclerosis. Circulation. 2002;105:1044–8.

46. Strassel C, Hechler B, Bull A, Gachet C, Lanza F. Studies of mice lacking the gpib-v-ix

complex question the role of this receptor in atherosclerosis. J Thromb Haemost.

2009;7:1935–8.

47. Schulz C, Schafer A, Stolla M, Kerstan S, Lorenz M, von Bruhl ML, Schiemann M,

Bauersachs J, Gloe T, Busch DH, Gawaz M, Massberg S. Chemokine fractalkine mediates

leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role

for p-selectin expressed on activated platelets. Circulation. 2007;116:764–73.

48. Patzelt J, Verschoor A, Langer HF. Platelets and the complement cascade in atherosclerosis.

Front Physiol. 2015;6:49.

218 J. Patzelt and H.F. Langer



49. Koyama H, Maeno T, Fukumoto S, Shoji T, Yamane T, Yokoyama H, Emoto M, Shoji T,

Tahara H, Inaba M, Hino M, Shioi A, Miki T, Nishizawa Y. Platelet p-selectin expression is

associated with atherosclerotic wall thickness in carotid artery in humans. Circulation.

2003;108:524–9.

50. Burger PC, Wagner DD. Platelet p-selectin facilitates atherosclerotic lesion development.

Blood. 2003;101:2661–6.

51. Santoso S, Sachs UJ, Kroll H, Linder M, Ruf A, Preissner KT, Chavakis T. The junctional

adhesion molecule 3 (jam-3) on human platelets is a counterreceptor for the leukocyte integrin

mac-1. J Exp Med. 2002;196:679–91.

52. Schober A, Manka D, von Hundelshausen P, Huo Y, Hanrath P, Sarembock IJ, Ley K, Weber

C. Deposition of platelet rantes triggering monocyte recruitment requires p-selectin and is

involved in neointima formation after arterial injury. Circulation. 2002;106:1523–9.

53. Langer HF, Daub K, Braun G, Schonberger T, May AE, Schaller M, Stein GM, Stellos K,

Bueltmann A, Siegel-Axel D, Wendel HP, Aebert H, Roecken M, Seizer P, Santoso S,

Wesselborg S, Brossart P, Gawaz M. Platelets recruit human dendritic cells via mac-1/jam-c

interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol.

2007;27:1463–70.

54. Langer HF, Choi EY, Zhou H, Schleicher R, Chung KJ, Tang Z, Gobel K, Bdeir K,

Chatzigeorgiou A, Wong C, Bhatia S, Kruhlak MJ, Rose JW, Burns JB, Hill KE, Qu H,

Zhang Y, Lehrmann E, Becker KG,WangY, SimonDI, Nieswandt B, Lambris JD, Li X,Meuth

SG, Kubes P, Chavakis T. Platelets contribute to the pathogenesis of experimental autoimmune

encephalomyelitis. Circ Res. 2012;110:1202–10.

55. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the

leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.

56. Langer HF, Chavakis T. Leukocyte-endothelial interactions in inflammation. J Cell Mol Med.

2009;13:1211–20.

57. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111:5271–81.

58. von Hundelshausen P, Koenen RR, Weber C. Platelet-mediated enhancement of leukocyte

adhesion. Microcirculation. 2009;16:84–96.

59. van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among

monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases.

J Leukoc Biol. 2009;85:195–204.

60. Totani L, Evangelista V. Platelet-leukocyte interactions in cardiovascular disease and beyond.

Arterioscler Thromb Vasc Biol. 2010;30:2357–61.

61. von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and

cardiovascular disease. Circ Res. 2007;100:27–40.

62. Inoue O, Suzuki-Inoue K, Dean WL, Frampton J, Watson SP. Integrin alpha2beta1 mediates

outside-in regulation of platelet spreading on collagen through activation of src kinases and

plcgamma2. J Cell Biol. 2003;160:769–80.

63. Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells:

Evidence for a gpiibiiia-dependent bridging mechanism and novel roles for endothelial

intercellular adhesion molecule 1 (icam-1), alphavbeta3 integrin, and gpibalpha. J Exp Med.

1998;187:329–39.

64. Gruner S, Prostredna M, Schulte V, Krieg T, Eckes B, Brakebusch C, Nieswandt B. Multiple

integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial

injury in vivo. Blood. 2003;102:4021–7.

65. Gawaz M, Neumann FJ, Dickfeld T, Reininger A, Adelsberger H, Gebhardt A, Schomig

A. Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of

endothelial cells: Implications for reperfusion in acute myocardial infarction. Circulation.

1997;96:1809–18.

66. Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in

flow is mediated by interaction of mac-1 with fibrinogen bound to alphaiibbeta3 and stimulated

by platelet-activating factor. J Clin Invest. 1997;100:2085–93.

13 Platelets and Innate Immunity in Atherosclerosis 219



67. Massberg S, Gawaz M, Gruner S, Schulte V, Konrad I, Zohlnhofer D, Heinzmann U,

Nieswandt B. A crucial role of glycoprotein vi for platelet recruitment to the injured arterial

wall in vivo. J Exp Med. 2003;197:41–9.

68. Weber KS, Alon R, Klickstein LB. Sialylation of icam-2 on platelets impairs adhesion of

leukocytes via lfa-1 and dc-sign. Inflammation. 2004;28:177–88.

69. Karshovska E, Zhao Z, Blanchet X, Schmitt MM, Bidzhekov K, Soehnlein O, von

Hundelshausen P, Mattheij NJ, Cosemans JM, Megens RT, Koeppel TA, Schober A, Hackeng

TM, Weber C, Koenen RR. Hyperreactivity of junctional adhesion molecule a-deficient

platelets accelerates atherosclerosis in hyperlipidemic mice. Circ Res. 2015;116:587–99.

70. Dole VS, Bergmeier W, Patten IS, Hirahashi J, Mayadas TN, Wagner DD. Psgl-1 regulates

platelet p-selectin-mediated endothelial activation and shedding of p-selectin from activated

platelets. Thromb Haemost. 2007;98:806–12.

71. Frenette PS, Denis CV, Weiss L, Jurk K, Subbarao S, Kehrel B, Hartwig JH, Vestweber D,

Wagner DD. P-selectin glycoprotein ligand 1 (psgl-1) is expressed on platelets and can

mediate platelet-endothelial interactions in vivo. J Exp Med. 2000;191:1413–22.

72. Langer HF, Gawaz M. Platelet-vessel wall interactions in atherosclerotic disease. Thromb

Haemost. 2008;99:480–6.

73. von Hundelshausen P, Schmitt MM. Platelets and their chemokines in atherosclerosis-clinical

applications. Front Physiol. 2014;5:294.

74. Siegel-Axel D, Daub K, Seizer P, Lindemann S, Gawaz M. Platelet lipoprotein interplay:

trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res. 2008;78:8–17.

75. Stellos K, Sauter R, Fahrleitner M, Grimm J, Stakos D, Emschermann F, Panagiota V,

Gnerlich S, Perk A, Schonberger T, Bigalke B, Langer HF, Gawaz M. Binding of oxidized

low-density lipoprotein on circulating platelets is increased in patients with acute coronary

syndromes and induces platelet adhesion to vascular wall in vivo—brief report. Arterioscler

Thromb Vasc Biol. 2012;32:2017–20.

76. Cipollone F, Mezzetti A, Porreca E, Di Febbo C, Nutini M, Fazia M, Falco A, Cuccurullo F,

Davi G. Association between enhanced soluble cd40l and prothrombotic state in hypercholes-

terolemia: Effects of statin therapy. Circulation. 2002;106:399–402.

77. Ferroni P, Basili S, Santilli F, Davi G. Low-density lipoprotein-lowering medication and

platelet function. Pathophysiol Haemost Thromb. 2006;35:346–54.

78. Hamad OA, Nilsson PH, Wouters D, Lambris JD, Ekdahl KN, Nilsson B. Complement

component c3 binds to activated normal platelets without preceding proteolytic activation

and promotes binding to complement receptor 1. J Immunol. 2010;184:2686–92.

79. Hamad OA, Ekdahl KN, Nilsson PH, Andersson J, Magotti P, Lambris JD, Nilsson

B. Complement activation triggered by chondroitin sulfate released by thrombin receptor-

activated platelets. J Thromb Haemost. 2008;6:1413–21.

80. Vik DP, Fearon DT. Cellular distribution of complement receptor type 4 (cr4): Expression on

human platelets. J Immunol. 1987;138:254–8.

81. Wautier JL, Souchon H, Reid KB, Peltier AP, Caen JP. Studies on the mode of reaction of the

first component of complement with platelets: Interaction between the collagen-like portion of

c1q and platelets. Immunochemistry. 1977;14:763–6.

82. Peerschke EI, Ghebrehiwet B. C1q augments platelet activation in response to aggregated

ig. J Immunol. 1997;159:5594–8.

83. Peerschke EI, Ghebrehiwet B. Human blood platelet gc1qr/p33. Immunol Rev.

2001;180:56–64.

84. Polley MJ, Nachman RL. Human platelet activation by c3a and c3a des-arg. J Exp Med.

1983;158:603–15.

85. Martel C, Cointe S, Maurice P, Matar S, Ghitescu M, Theroux P, Bonnefoy A. Requirements

for membrane attack complex formation and anaphylatoxins binding to collagen-activated

platelets. PloS One. 2011;6:e18812.

220 J. Patzelt and H.F. Langer



86. Patzelt J, Mueller KA, Breuning S, Karathanos A, Schleicher R, Seizer P, Gawaz M, Langer

HF, Geisler T. Expression of anaphylatoxin receptors on platelets in patients with coronary

heart disease. Atherosclerosis. 2014;238:289–95.

87. Langer H, Verschoor A. Crosstalk between platelets and the complement system in immune

protection and disease. Thromb Haemost. 2013;110:910–9.

88. Stahl AL, Vaziri-Sani F, Heinen S, Kristoffersson AC, Gydell KH, Raafat R, Gutierrez A,

Beringer O, Zipfel PF, Karpman D. Factor h dysfunction in patients with atypical hemolytic

uremic syndrome contributes to complement deposition on platelets and their activation.

Blood. 2008;111:5307–15.

89. Nicholson-Weller A, Burge J, Fearon DT, Weller PF, Austen KF. Isolation of a human

erythrocyte membrane glycoprotein with decay-accelerating activity for c3 convertases of

the complement system. J Immunol. 1982;129:184–9.

90. Thomas TC, Rollins SA, Rother RP, Giannoni MA, Hartman SL, Elliott EA, Nye SH, Matis

LA, Squinto SP, Evans MJ. Inhibition of complement activity by humanized anti-c5 antibody

and single-chain fv. Mol Immunol. 1996;33:1389–401.

91. Del Conde I, Cruz MA, Zhang H, Lopez JA, Afshar-Kharghan V. Platelet activation leads to

activation and propagation of the complement system. J Exp Med. 2005;201:871–9.

92. Verschoor A, Neuenhahn M, Navarini AA, Graef P, Plaumann A, Seidlmeier A, Nieswandt B,

Massberg S, Zinkernagel RM, Hengartner H, Busch DH. A platelet-mediated system for

shuttling blood-borne bacteria to cd8alpha+ dendritic cells depends on glycoprotein gpib

and complement c3. Nat Immunol. 2011;12:1194–201.

93. Sims PJ, Wiedmer T. The response of human platelets to activated components of the

complement system. Immunol Today. 1991;12:338–42.

94. Strassel C, Nonne C, Eckly A, David T, Leon C, Freund M, Cazenave JP, Gachet C, Lanza

F. Decreased thrombotic tendency in mouse models of the bernard-soulier syndrome.

Arterioscler Thromb Vasc Biol. 2007;27:241–7.

95. Gushiken FC, Han H, Li J, Rumbaut RE, Afshar-Kharghan V. Abnormal platelet function in

c3-deficient mice. J Thromb Haemost. 2009;7:865–70.

13 Platelets and Innate Immunity in Atherosclerosis 221



Platelets and HMGB1 in Sterile
and Non-sterile Inflammation 14
Sebastian Vogel and Meinrad Gawaz

Abstract

Platelets play a critical role in hemostasis, thrombosis, wound healing, and

inflammation. We have recently shown that the damage-associated molecular

pattern molecule (DAMP) high-mobility group box 1 (HMGB1) derived from

platelets plays a critical role in mediating thrombosis and inflammation. The

specific role of platelet-derived HMGB1 in various platelet-relevant disease

states and events and the underlying pathophysiological triggers are still poorly

understood. Here, we give an overview of HMGB1 and platelets in the context of

sterile and non-sterile inflammation, with a focus on ischemia/reperfusion injury

and dengue virus infection.
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14.1 Introduction

Platelets are cellular fragments that accumulate at sites of vascular and tissue lesions

and control hemostasis, thrombosis, wound healing, and inflammation [1–7].

Beyond their role as cellular mediators of hemostasis, platelets act as sentinel innate
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immune cells that exert a unique link between coagulation and immune responses.

High-mobility group box 1 (HMGB1) is a highly conserved DNA-binding protein,

which is abundant in the nucleus of almost all mammalian cells and acts as a

damage-associated molecular pattern (DAMP) molecule when present in the extra-

cellular space [8–11]. Although lacking a nucleus, platelets also contain HMGB1

[5, 6, 12]. The research field around HMGB1 derived from platelets has recently

experienced an unprecedented renaissance. However, the role of platelet-derived

HMGB1 in mediating platelet-relevant diseases is still poorly understood. In innate

immune cells, secretion and sensing of HMGB1 involves Toll-like receptor

4 (TLR4) and the NOD-like receptor NLRP3. The NLRP3 inflammasome is a key

inflammatory process not only employed by innate immune cells [13] but also

platelets [14]. We will summarize important findings on platelet-derived HMGB1

and sterile and non-sterile inflammation and will highlight ischemia/reperfusion

(I/R) injury and dengue virus infection as two highly relevant disease states.

14.2 Platelets and HMGB1

The lifespan of platelets is 7–10 days and a platelet diameter is one third of the

diameter of an erythrocyte. Platelets originate from hematopoietic progenitor cells,

which develop to megakaryocytes, which in turn undergo the process of fragmen-

tation [15]. Besides their function as mediators of primary hemostasis, platelets

have been shown to exert multiple other effects at the intersection between throm-

bosis, inflammation, and wound healing [1, 2, 5, 6]. Upon endothelial disruption,

platelets are recruited at sites of injury and interact with various extracellular matrix

proteins in vessel walls, which propagate platelet activation, aggregation, and

thrombosis [16]. This process is tightly regulated by cytokines and chemokines

released from dying cells or stressed immune cells [2, 4]. Moreover, platelets

themselves also release a whole range of cytokines and chemokines and thereby

control recruitment and adhesion of immune cells and regenerative progenitor cells

at sites of vascular and tissue injury [5, 6, 17–19]. HMGB1 is a DAMP when

released by dying cells or actively secreted by stressed immune cells and promotes

inflammation [9–11, 20]. HMGB1 activates pattern recognition receptors, including

Toll-like receptors (TLRs) and the receptor of advanced glycation end products

(RAGE), a transmembrane multiligand receptor of the immunoglobulin superfam-

ily [21, 22]. HMGB1 plays a critical role in regulating inflammation and tissue

repair in the setting of both sterile and infectious damage [20]. Elevated HMGB1

plasma levels are associated with abnormal coagulation, sepsis, acute pancreatitis,

myocardial infarction, cancer, and other disease states [23–28]. Platelets contain

significant amounts of HMGB1 as well [12]. We and others have recently shown

that platelet-derived HMGB1 is critically involved in thrombus formation [5], the

regulation of cellular tropisms [6], and formation of neutrophil extracellular traps

(NETs) [5, 29]. Neutrophil-platelet interactions are discussed further in a separate

paragraph.
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14.3 Platelet Interactions with Neutrophils

Platelets have been recognized to induce the formation of NETs [30–32]. NETosis is

a distinct type of cell death that results in the release of neutrophil nuclear DNA,

which forms web-like structures with granular proteins, i.e., NETs [33]. NETs have

been shown to exert antimicrobial activity during infections [31, 33]. Moreover,

NETs play a critical role in innate immunity and microvascular thrombus formation

during sterile inflammation, such as small-vessel vasculitis [34], transfusion-related

acute lung injury [30], trauma/hemorrhagic shock [5], and diseases associated with

cancer, such as pancreatic cancer [35] and the occurrence of liver metastases [36]. In

coronary thrombi, it has been shown recently that activated platelets co-localize with

neutrophils and induce NET formation mediated by platelet-derived HMGB1 and

induction of neutrophil autophagy [29]. NETs promote thrombosis [37], and the

activation of the canonical MAP kinase pathway (Raf/MEK/ERK) appears to be

critical during NETosis [30]. Further studies are needed to understand the signifi-

cance of platelet-induced NETosis in platelet-relevant diseases and contribution of

platelet-derived HMGB1 and other DAMPs to the regulation of this process.

Release of mitochondria and mitochondrial DNA from activated platelets is

another critical determinant in neutrophil-mediated inflammation and potentially

in cardiovascular disease states [38]. Similar to NETs, the presence of platelet-

derived mitochondrial DNA in the extracellular matrix may regulate sterile and

non-sterile inflammation. It has been shown that the catapult-like release of mito-

chondrial DNA by eosinophils is crucial for maintaining the intestinal barrier

function after inflammation-associated epithelial cell damage [39]. It is tempting

to speculate if the release of mitochondrial DNA by platelets is involved in host

defense as well. Controversial data has been reported on the influence of HMGB1 in

mitochondrial quality control [40, 41]. We are currently investigating the effect of

platelet-derived HMGB1 and other DAMPs on mitochondrial metabolism and

DNA in platelets and contribution to inflammation and host defense.
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14.4 Ischemia/Reperfusion Injury

I/R injury typically leads to sterile inflammation, and platelets and platelet-derived

DAMPs have been shown to play a critical role during I/R damage [4, 7, 8, 20,

42]. In a murine model of experimental I/R damage of the myocardium, HMGB1

serum levels were elevated 30 min after induction of infarction, and administration

of recombinant HMGB1 worsened I/R damage, indicating a critical role of

circulating HMGB1 [42]. Increased HMGB1 serum levels were also reported in

patients with acute myocardial infarction, which were associated with adverse

clinical outcomes including pump failure, cardiac rupture, and in-hospital deaths

[43]. Conflicting results exist regarding the effect of HMGB1 on the damaged

myocardium, as detrimental as well as salutary effects have been reported

[42, 44, 45]. In a rat model of experimental I/R damage of the myocardium, the

administration of a neutralizing anti-HMGB1 antibody significantly worsened the

infarction [45]. Moreover, administration of recombinant HMGB1 into the myo-

cardium during experimental myocardial infarction upregulated tissue healing

through the activation of c-kit positive cells to form new myocytes [44]. During

hepatic I/R injury, however, inhibition of HMGB1 activity with a neutralizing

antibody significantly decreased liver damage [46]. Platelets mediate thrombus

formation during I/R damage [47]. The role of platelet-derived HMGB1 and

other DAMPs in I/R damage is currently under investigation.

14.5 Dengue Virus Infection

Dengue virus is a positive-stranded RNA virus that infects more than 50 million

individuals per year and typically causes hemorrhage and coagulopathy, which may

result in a life-threatening syndrome associated with increased vascular permeabil-

ity, hypovolemia, hypotension, and hemorrhagic shock [48–50]. The major patho-

physiological events are (1) consumption of platelets in coagulopathy process,

(2) complement system activation, and (3) increased peripheral sequestration of

platelets. IgM isotype anti-platelet antibodies typically develop in dengue patients,

and these antibodies contribute to platelet destruction and thus thrombocytopenia.

In a mouse model of dengue infection, it has been shown that anti-dengue virus

nonstructural protein 1 antibodies increased platelet phagocytosis by macrophages,

which provides further evidence of antibody-mediated thrombocytopenia during

infection [51]. Moreover, it has been reported recently that platelets directly bind

dengue virus and replicated the positive sense single-stranded RNA genome of the

virus, producing more infectious virus [52]. Hottz et al. further investigated the role

of platelets during dengue virus infection and identified activation of the NLRP3

inflammasome in platelets as a critical event of platelet-mediated increase in

vascular permeability [14]. The group demonstrated that dengue induced NLRP3/

caspase-1-dependent secretion of IL-1beta and shedding of IL-1beta-containing

platelet microparticles, which correlated with clinical signs of increased vascular

permeability in dengue patients. Synthesis of pro-IL1beta in platelets and shedding
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in its mature form in membrane microvesicles have been shown 15 years ago

[19]. The NLRP3 inflammasome is a critical inflammatory process not only

employed by innate immune cells [13] but also platelets [14], making platelet-

derived NLRP3 a potential target in treating dengue and possibly other infectious

diseases associated with abnormal coagulation. Indeed, knockout mice lacking

inflammasome components NLRP3 and caspase-1 exhibited markedly decreased

pathological alterations in a “two-hit” model of secondary dengue virus infection

[53]. Moreover, various other pattern recognition receptors including TLR2 and

TLR4 have been shown to play a critical role in dengue [54, 55]. A potential role of

platelet-derived HMGB1 in dengue has not been reported yet.

14.6 Conclusion

Platelet-derived HMGB1 may signal via pattern recognition receptors, including

membrane-bound Toll-like receptors and cytosolic NOD-like receptors. We have

recently identified platelet-derived HMGB1 as a critical mediator of thrombosis and

NET formation [5]. Further studies are needed to investigate the role of platelet-

derived HMGB1 in other diseases associated with sterile and non-sterile inflamma-

tion and identify the underlying molecular mechanisms.
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Abstract

The cyclic nucleotide cGMP is a key intracellular signaling molecule in

mammals. It mediates many effects of nitric oxide (NO) including the regulation

of vascular tone and platelet activity. Pharmacological and genetic studies have

indicated that the NO-cGMP pathway could be an attractive target for

antithrombotic drugs. Here, we summarize the biochemistry and (patho-)

physiology of cGMP signaling in platelets. These cells generate and degrade

cGMP by the NO-activated soluble guanylate cyclase and several phospho-

diesterases (PDE2, PDE3, and PDE5), respectively. An increase of the cGMP

concentration activates cGMP-dependent protein kinase type I (cGKI), which

phosphorylates several platelet proteins. Among the cGKI substrates are small

G-proteins (e.g., Rap1B), regulators of G-protein signaling (e.g., RGS18) and

intracellular Ca2+ release (e.g., IRAG), and actin-binding proteins (e.g., VASP).

According to the prevalent view, cGKI-dependent substrate phosphorylation

limits platelet activation and thrombus formation through the inhibition of

intracellular Ca2+ release, integrin activation, cytoskeletal remodeling, and

granule secretion. Interestingly, several studies suggest that cGMP also pro-

motes specific aspects of platelet activation. We discuss these seemingly contra-

dictory findings and propose a new model of cGMP-regulated hemostasis that

leads to optimal platelet activation in response to vascular injury. This model

integrates both platelet stimulation and inhibition by dynamic shear stress-

regulated cGMP signals that are generated during different phases of thrombus

formation under flow in vivo.
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15.1 Introduction

Platelets are key players in hemostasis and thrombosis [1–4]. After vascular injury,

platelets rapidly adhere to the subendothelial matrix exposed at the site of injury

and become activated. Initially, platelets adhere to vonWillebrand factor (vWF) via

the glycoprotein Ib/IX/V (GPIb/IX/V) complex and to collagen via GPVI. This

results in platelet activation and transformation of integrin αIIbβ3 (fibrinogen recep-
tor, also called GPIIb/IIIa) and integrin α2β1 (collagen receptor), which firmly bind

to their respective extracellular matrix ligands. Then, platelets spread and form a

surface for the recruitment of additional platelets via fibrinogen bridges between

αIIbβ3 receptors leading to platelet aggregation and formation of a hemostatic plug

that stops bleeding. Arterial thrombosis is primarily an exaggerated hemostatic

response at the site of vascular injury. Thrombosis plays a causative role in

myocardial infarction, and antithrombotic therapy takes center stage in the man-

agement of acute coronary syndromes. To avoid vessel occlusion, thrombus growth

is limited by two endogenous inhibitors supplied by the endothelium, prostacyclin,

and nitric oxide (NO). Prostacycylin and NO increase the levels of cAMP and

cGMP in platelets, respectively. Here, we focus on the biochemistry, pharmacol-

ogy, and (patho-)physiological role of the NO-cGMP signaling cascade in platelets.

We will also discuss recent developments and controversies in this field, in partic-

ular whether an increase in platelet cGMP inhibits and/or promotes hemostasis and

thrombosis.

NO is generated from L-arginine by NO synthases (NOS). There are three

known NOS enzymes encoded by distinct genes: the neuronal NOS (nNOS or

NOS1), the inducible NOS (iNOS or NOS2), and the endothelial NOS (eNOS or

NOS3) [5]. nNOS and eNOS are constitutively expressed in various tissues and

both enzymes are activated by Ca2+/calmodulin. In contrast, expression of iNOS

is inducible and the enzyme is constitutively active. Its expression is induced in

several cell types including macrophages, vascular smooth muscle cells (VSMCs),

and endothelial cells after exposure to lipopolysaccharide (LPS) or cytokines.

eNOS is the major enzyme responsible for NO production in the vascular endothe-

lium. NO generated in endothelial cells rapidly diffuses across cell membranes into
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VSMCs, where it activates the NO receptor, soluble guanylate cyclase (sGC). sGC

produces cyclic guanosine monophosphate (cGMP) in VSMCs resulting in vasodi-

lation. Endothelium-derived NO also diffuses into the vessel lumen, where it

interacts with several blood cell types including platelets.

cGMP was isolated from rat urine in the 1960s [6]. Later, it was found that

cGMP mediates many effects of NO in platelets and other cell types. cGMP is

formed by guanylate cyclases via cyclization of guanosine triphosphate (GTP)

(Fig. 15.1). The NO-activated sGC is mainly located in the cytosol [7, 8], while

Fig. 15.1 Basic principles of cGMP signaling. NO is synthesized by a NOS in cell A (e.g., Ca2+-

activated eNOS in an endothelial cell, or iNOS, whose expression is induced by LPS/cytokines, in

a macrophage) and diffuses across cell membranes to a nearby target cell B (e.g., a VSMC or

platelet). NO binds to the Fe2+ of the heme group of sGC and induces the generation of a global

cGMP pool (black balls) in the cytosol. Binding of natriuretic peptides to pGCs triggers the

formation of local cGMP microdomains at the plasma membrane. cGMP exerts its functions via

several effector proteins, mainly cGKs, PDEs, and CNG channels. Removal of cGMP is accom-

plished via hydrolysis to 50-GMP by PDEs (e.g., PDE5) and via excretion by transporters in the

plasma membrane including members of the MRP family (e.g., MRP4). cGMP can also modulate

cAMP levels through stimulation or inhibition of cAMP-degrading PDEs (e.g., PDE2 or PDE3,

respectively). NO can also undergo oxidation and react with thiols of cysteine side chains leading

to S-nitrosylation of proteins. The major elements of cGMP signaling in platelets are NO, sGC

(predominantly the α1β1 isoform), cGKI (predominantly the cGKIβ isoform), and PDEs (predomi-

nantly PDE2, PDE3, and PDE5). Note that pGCs have not been detected in platelets. cGKs, cGMP-

dependent protein kinases; CNG channels, cyclic nucleotide-gated cation channels; LPS,
lipopolysaccharide; MRP, multidrug resistance protein; NOS, nitric oxide synthase; PDEs,

phosphodiesterases; pGC, particulate guanylate cyclase; sGC, soluble guanylate cyclase
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particulate guanylate cyclases (pGCs) are transmembrane receptors activated by

peptides such as atrial, brain, and C-type natriuretic peptide (ANP, BNP, and CNP,

respectively) [9, 10]. Accumulating evidence suggests that cGMP produced by

different guanylate cyclases has different functional outcomes, even in the same

cell, thus indicating the existence of subcellular cGMP signaling compartments

[11, 12]. One of the simplest models predicts that the NO-sGC system generates

global cGMP signals in the cytosol, whereas the natriuretic peptide-pGC system

produces localized cGMP microdomains at the plasma membrane (Fig. 15.1). In

order to terminate cGMP signaling, cGMP is efficiently removed, either by degra-

dation into 50-GMP by phosphodiesterases (PDEs) or by excretion via nucleotide

transporters present in the plasma membrane [13, 14]. The mechanisms for cGMP

removal are also important to shape and maintain cGMP compartments. According

to the current view, distinct PDEs selectively regulate either plasma membrane or

cytosolic cGMP pools. cGMP elicits its functional effects via binding to cGMP

receptor proteins. It activates cyclic nucleotide-gated (CNG) cation channels and

cGMP-dependent protein kinases (cGKs) [12, 15, 16]. The cGK type I (cGKI) is the

principal cGMP effector in platelets. cGMP can also activate or inhibit PDEs that

hydrolyze cAMP. For instance, cGMP inhibition of the cAMP-hydrolyzing PDE3

leads to an increase of the intracellular cAMP concentration, thereby providing a

mechanism for cross talk between cGMP and cAMP signaling (Fig. 15.1).

As a widely distributed second messenger, cGMP controls many physiological

functions ranging from smooth muscle relaxation and platelet activation to neuronal

plasticity and sensory axon bifurcation [12, 17]. The importance of cGMP signaling

for health and disease has also driven the development of cGMP-elevating drugs

used in the clinic, particularly for the treatment of cardiovascular diseases. Organic

nitrates release NO resulting in increased cGMP levels in VSMCs and vasodilation,

thereby alleviating chest pain associated with coronary heart disease. Sildenafil

(Viagra®), an inhibitor of the cGMP-specific PDE5, is used for the treatment of

erectile dysfunction and pulmonary hypertension. Recently, the sGC stimulator

riociguat has been approved for the treatment of two forms of life-threatening

pulmonary hypertension. Interestingly, the physiological relevance and therapeutic

potential of platelet NO-cGMP signaling for the regulation of platelet activity,

hemostasis, and thrombosis is still elusive.

15.2 Shaping cGMP Signals in Platelets

15.2.1 Generation of cGMP

The intracellular cGMP concentration is determined by the balance of its synthesis

and removal. To date, pGCs have not been detected in platelets. However, platelets

do express sGC, the only definitive receptor for NO. Thus, cGMP synthesis in

platelets is exclusively triggered by NO-activated sGC. sGC is a heterodimer

consisting of two homologous subunits: an α-subunit of 73–82 kDa and a heme-

binding β-subunit of �70 kDa [8, 18, 19]. For each subunit, two isoforms have
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been identified (α1 and α2, β1 and β2), but the β2 isoform, which is preferentially

expressed in kidney, does not form functional heterodimers [20]. The α1β1
heterodimer is expressed in platelets, VSMCs, and many other cell types, while

expression of the α2β1 isoform is more restricted and most abundant in brain, lung,

and placenta [21–24]. The catalytic activity of sGC requires both an α- and a β-subunit.
Each subunit consists of four distinct regions that are conserved among eukaryotes.

The β1-subunit contains an N-terminal heme-binding domain, a Per/Arnt/Sim

(PAS) domain, a putative amphipathic helix/coiled-coil, and a C-terminal catalytic

domain. The α1-subunit shares 30% sequence identity with the β1-subunit and has a
similar structural organization, except that its N-terminus does not bind heme and is

of unknown function. The heme-binding domain of the β1-subunit is also termed

H-NOX (heme nitric oxide/oxygen) domain based on its ligand binding properties,

which are conserved among similar proteins found in prokaryotes and eukaryotes

[8, 25]. NO binds to the Fe2+ of the heme moiety forming a NO-Fe2+-His complex

and converting sGC into an active enzyme with over 200-fold increase in activity

compared to the basal state [26]. A reduced Fe2+-bound heme is essential for the

activation of sGC by NO. Oxidation of the heme Fe2+ to Fe3+ strongly attenuates the

enzyme’s sensitivity to NO [27, 28]. The commonly used sGC inhibitor ODQ

(1H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one) oxidizes the sGC heme Fe2+ to Fe3+

resulting in irreversible desensitization of sGC to NO [27].

Platelets predominantly express the α1β1 isoform of sGC [29]. In line with this

expression profile, platelets of sGC α2-subunit knockout mice showed no functional

difference compared to wild-type platelets [29]. However, genetic inactivation of

the β1-subunit resulted in impaired inhibition of platelet aggregation by NO and

decreased tail bleeding times in whole body knockout animals [30, 31]. Consistent

with the results from sGC β1-deficient mice, mouse mutants expressing heme-

deficient NO-unresponsive sGC also exhibited loss of NO-mediated platelet inhibi-

tion and shorter tail bleeding times than wild-type littermates [32]. These results

indicated an inhibitory role of the NO-cGMP pathway in hemostasis and thrombo-

sis. How sGC activity is regulated in intact platelets under native conditions during

platelet activation and thrombus formation is not well understood. Besides the

dramatic stimulation of sGC by NO, it is likely that sGC activity is also affected

by alternative mechanisms. Interestingly, elevation of platelet cGMP has been

detected after exposure of platelets to platelet-activating agonists including vWF,

collagen, and thrombin [33–35]. Binding of vWF to platelet GPIb leads to phos-

phorylation of the sGC β1-subunit and cGMP generation in an NO-independent

manner [34]. It has also been suggested that several proteins including CCTη [36],

Hsp70 [37], PSD95 [38], LGN [39], and PDI [40] are able to interact with sGC and,

thereby, modulate cGMP synthesis in intact cells.

15.2.2 Removal of cGMP

Cyclic nucleotide PDEs catalyze the hydrolysis of one of the phosphoester bonds of

cAMP or cGMP, producing inactive 50-AMP or 50-GMP, respectively. There are
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21 genes known to encode PDEs, and they are grouped into 11 gene families

based on their amino acid sequence, regulatory properties, and catalytic

characteristics. PDE 4, 7, and 8 are highly specific for cAMP, while PDE 5, 6,

and 9 are highly specific for cGMP, and the remaining five families (PDE 1, 2,

3, 10, and 11) hydrolyze both cGMP and cAMP, although with different affinities

and efficiencies [13].

Platelets express three cGMP-hydrolyzing PDEs: PDE2, PDE3, and PDE5

[41, 42]. PDE2 is a cGMP-activated cGMP/cAMP PDE. Binding of cGMP to an

allosteric site of PDE2 promotes the hydrolysis of both cGMP and cAMP. In

contrast, PDE3 is a “cGMP-inhibited” cGMP/cAMP PDE. In fact, PDE3 has

similar affinities for cGMP and cAMP, but the reaction rate for cGMP is only

�10% of that for cAMP. Thus, cGMP exerts competitive inhibition of cAMP

hydrolysis and PDE3 is usually referred to as “cGMP-inhibited” PDE. The

cGMP-specific PDE5 is abundantly expressed in platelets [43]. By binding to an

allosteric site, cGMP increases the catalytic activity of the enzyme and, thus,

promotes its own degradation [44]. Activation of PDE5 by cGMP is further

augmented via phosphorylation of a specific serine residue (Ser92 or Ser102 of

bovine or human PDE5, respectively) by cGKI [45].

Intracellular cGMP can also be removed through cGMP efflux. Several cGMP

transporters located in the plasma membrane have been identified including

members of the multidrug resistance protein (MRP) family such as MRP4/5/

8 [46]. MRP4-mediated removal of cGMP in VSMCs contributes to the control

of muscle tonus to an extent similar to PDE5-mediated cGMP degradation

[47]. Efflux of cGMP from activated human platelets was reported more than

20 years ago [48]. While MRP5 and MRP8 were not detected in platelets [49],

MRP4 is highly abundant in dense granules and also at lower levels in the plasma

membrane of human platelets [50]. MRP4-mediated cGMP efflux reduces the

inhibitory effects of cGMP in human platelets [50, 51], but the relative importance

of this process in comparison to cGMP removal via PDEs remains to be established.

15.3 cGMP Effector Mechanisms in Platelets

cGKs are central mediators of cGMP signaling [12]. They belong to the AGC

subfamily of serine/threonine protein kinases and are activated by cGMP

concentrations in the range of �0.1–1 μM [52, 53]. Mammals have two cGK

genes, prkg1 and prkg2, encoding cGKI and cGK type II, respectively. In the

cardiovascular system, cGKI is more commonly expressed than cGK type II, in

particular in VSMCs, cardiomyocytes, and platelets. The prkg1 gene encodes two

cGKI isoforms, termed cGKIα and cGKIβ, which differ in their N-terminal

domains (�100 amino acids). Human platelets only express cGKIβ, whereas both
cGKIβ and a small amount of cGKIα were detected in mouse platelets [54, 55]. In

an ischemia-induced thrombosis model, cGKI-deficient mouse platelets showed

increased adhesion and aggregation compared to wild-type platelets indicating an

inhibitory role of cGKI-mediated signaling in platelets [56]. cGKI substrates such
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as vasodilator-stimulated phosphoprotein (VASP) and inositol-1,4,5-trisphosphate

(IP3) receptor-associated cGMP kinase substrate (IRAG) are also abundantly

expressed in platelets. Consistent with the analysis of cGKI mouse mutants, mice

deficient in VASP or IRAG showed impaired NO/cGMP-dependent inhibition of

platelet aggregation in vivo [55, 57]. Taken together, the data from genetic manip-

ulation of sGC, cGKI, and cGKI substrates have clearly established the importance

of the NO-sGC-cGMP-cGKI pathway for platelet inhibition in vivo. What are the

molecular mechanisms of cGMP inhibition of platelet activity? Many studies have

shown that activation of NO-cGMP signaling interferes with several key events

during platelet aggregation under in vitro conditions including Ca2+ release from

intracellular stores, granule secretion, and activation of small G-proteins and

integrins.

Ca2+ plays a central role in platelet aggregation by promoting platelet adhe-

sion, granule release, soluble agonist-induced platelet activation, cytoskeleton

reorganization, and integrin activation [2]. Soluble platelet agonists that activate

Gαq-coupled receptors (ADP, thrombin, thromboxane A2) as well as collagen induce

activation of phospholipase C, which generates IP3. IP3 binds to and activates the IP3
receptor, a Ca2+ channel in the endoplasmic reticulum membrane mediating Ca2+

release from intracellular Ca2+ stores followed by store-operated Ca2+ entry from the

extracellular space [58, 59]. Sustained cytosolic Ca2+ elevation is required for both

platelet aggregation and blood coagulation. Platelets provide a suitable surface for the

assembly of coagulation protein complexes by expressing phosphatidylserine. The

exteriorization of phosphatidylserine is mediated by the Ca2+-dependent regulation of

a phospholipid scramblase called TMEM16F. Phosphatidylserine exposure

accelerates thrombin formation via the coagulation cascade, through which fibrino-

gen is converted into fibrin, thereby stabilizing the thrombus [4]. It is well known that

activation of cGKI suppresses agonist-induced intracellular Ca2+ release in VSMCs

[60–62], at least in part, by forming a complex containing cGKIβ, its substrate IRAG,
and the IP3 receptor type I (IP3RI) [63, 64]. A similar mechanism is also active in

platelets. It has been shown that cGKI phosphorylates IRAG in intact platelets and

that thrombin-induced Ca2+ release was attenuated by NO or cGMP in wild-type

platelets but not in IRAG-deficient platelets [55]. Thus, the interaction of cGKI-

phosphorylated IRAG and the IP3RI appears to suppress IP3-induced Ca2+ release

from the endoplasmic reticulum of platelets.

Following platelet activation, platelets undergo a dramatic shape change

mediated by cytoskeletal remodeling and accompanied by the release of platelet

granule contents. The release of soluble agonists such as thromboxane A2 and ADP

is crucial for irreversible platelet activation at the site of vascular injury. These

agonists activate specific G protein-coupled receptors and act in an autocrine

or paracrine manner to enhance platelet activation and thrombus formation

[4]. The platelet cytoskeleton binds and positions specific signaling molecules. In

particular, reorganization of the actin cytoskeleton promotes the formation of active

integrin signaling complexes. An increase in cGMP also affects the cytoskeleton

through cGKI-mediated phosphorylation of cytoskeleton-associated proteins. The

actin-binding protein VASP is a major cGKI substrate in platelets [65]. cGKI
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phosphorylates VASP at Ser157 and Ser239. VASP participates in actin fiber

formation and VASP phosphorylation affects its own intracellular localization

[66]. Phosphorylation of VASP at Ser157 correlates with inhibition of the fibrino-

gen receptor integrin αIIbβ3 [67]. VASP-deficient platelets show enhanced binding

of integrin αIIbβ3 to fibrinogen revealing an inhibitory function of VASP in integrin

activation [68, 69]. Deletion of VASP in mice also leads to enhanced adhesion of

platelets to the vascular wall in an ischemia-induced thrombosis model [57]. These

findings suggest that cGMP inhibits platelet aggregation, at least in part, via cGKI-

mediated VASP phosphorylation and interference with cytoskeletal remodeling,

which is normally associated with platelet activation. However, the exact functional

role of VASP phosphorylation at Ser157 and/or Ser239 in hemostasis and throm-

bosis in vivo is unknown.

In addition to IRAG and VASP, several other cGKI substrates have been

identified that might contribute to the inhibitory actions of cGMP in platelets

[70, 71]. Many of these proteins represent G-proteins or modulators of G-protein

activity known to control platelet activation via their effects on integrins, intracel-

lular Ca2+ release, and the cytoskeleton. For instance, the small G-protein Rap1B is

involved in the activation of integrin αIIbβ3 [72]. Inhibition of integrin αIIbβ3 by

NO/cGMP in human platelets is, in part, attributed to cGKI-mediated phosphoryla-

tion of Rap1B [73] or Rap1GAP2 [74], a GTPase-activating protein for Rap1B.

Moreover, cGKI has been shown to phosphorylate regulator of G-protein signaling

18 (RGS18) [75]. RGS18 is a GTPase-activating protein for the Gαq-subunits of
heterotrimeric G-proteins that interact with G protein-coupled receptors at the

platelet plasma membrane. Phosphorylation of RGS18 by cGKI potentiates

RGS18 function and, consequently, attenuates Gαq signaling leading to reduced

receptor-mediated Ca2+ release from intracellular stores triggered by platelet

agonists like thrombin [75]. Recently, two novel cGKI substrates in platelets have

been identified, ARHGAP17, a GTPase-activating protein, and ARHGEF6, a

guanine nucleotide exchange factor, which regulate the activity of the small

G-protein Rac1 [76]. Phosphorylation of ARHGAP17 and ARHGEF6 by cGKI

induces a rearrangement of their associated protein complexes, resulting in a

reduced level of active Rac1, a key player in cytoskeletal remodeling and platelet

activation [77].

In addition to cGMP, cAMP is another important cyclic nucleotide messenger

playing an inhibitory role in platelet activation [71]. cGMP and cAMP activate

cGMP- and cAMP-dependent protein kinases, respectively, and most of the

abovementioned cGKI substrate proteins can also be phosphorylated by cAMP-

dependent protein kinase. Thus, it appears that in many cases cGMP and cAMP

signals converge at the level of downstream mechanisms. There are also other types

of interplay between cGMP and cAMP signaling in platelets. Perhaps the most

significant cGMP-cAMP cross talk is mediated through the stimulatory or inhibi-

tory effect of cGMP on cAMP hydrolysis by PDE2 or PDE3, respectively. A rise in

the intracellular cGMP concentration can decrease the cAMP level via cGMP-

activated PDE2, and it can increase the cAMP level via cGMP-inhibited PDE3

[41, 78]. Thus, cGMP might affect platelet activity not only via activation of cGKI

238 L. Wen et al.



but also via modulation of cAMP signaling (Fig. 15.1). This mode of cGMP-cAMP

cross talk has been best studied in cardiomyocytes, where it might contribute to

the spatiotemporal control of cyclic nucleotide signaling compartments and

cardiac (patho-)physiology [79]. Indeed, cGMP-mediated inhibition of PDE3 has

also been implicated in elevation of cAMP levels and activation of cAMP-

dependent protein kinase in human platelets, which could mediate at least some

aspects of NO-induced platelet inhibition [80, 81]. Another study has described a

compartment-specific signaling complex in human platelets containing PDE5,

cGKIβ, and the IP3RI and proposed a model in which cGKI selectively activates

PDE5 within a defined microdomain allowing spatial and temporal control of

cGMP signaling in platelets [82]. However, the in vivo relevance of cGMP-

cAMP cross talk and compartmentalized cyclic nucleotide signaling in platelets

remains to be established.

15.4 Relevance of cGMP in Hemostasis, Thrombosis,
and Antithrombotic Therapy

The biochemical, genetic, and pharmacological studies described above demon-

strate that platelets express a robust NO-sGC-cGMP-cGKI pathway and that acti-

vation of this signaling cascade results in platelet inhibition. It is widely accepted

that a cGMP increase works as a brake to limit thrombosis. Several clinically used

antiplatelet drugs elevate cGMP and/or cAMP levels. For instance, dipyridamole

and cilostazol inhibit cyclic nucleotide PDEs. Moreover, recent evidence indicates

that activation of the NO-cGMP axis contributes to the antithrombotic effects

of certain β-blockers like nebivolol [83] as well as to the action of P2Y12 receptor

blockers that are commonly used in antiplatelet therapy (e.g., clopidogrel,

prasugrel, ticagrelor) [84]. On the other hand, disabling the cGMP brake is

predicted to promote platelet activation and aggregation. Indeed, a recent report

suggests that hyperlipidemia and oxidized low-density lipoprotein promote platelet

hyperactivity by inducing reactive oxygen species that desensitize cGKI-mediated

platelet inhibition [85].

It is important to note that most of our knowledge about cGMP signaling in

platelets has been derived from in vitro analysis of wild-type and mutant platelets

isolated from mice and humans, for instance, by biochemical or aggregometry

assays. In vitro experiments with isolated platelets do probably not completely

mimic the in vivo situation, in particular with regard to platelet interactions with

immobilized substrates, other cell-types, blood flow, and shear forces that influence

platelet activity under in vivo conditions [3, 4, 86]. Moreover, the interpretation of

experimental results is often complicated by technical and biological issues. (1) The

selectivity and efficacy of several cGMP analogs commonly used to study cGMP

signaling in platelets is questionable [87–89]. (2) NO, especially if used at high

concentrations, can also exert cGMP-independent effects [90], for instance, via

protein S-nitrosylation [91]. (3) Conventional methods for detection of cGMP (e.g.,

RIA or ELISA) are performed with platelet extracts. These cGMP assays have low
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temporal resolution and lack spatial resolution. They are not able to monitor

dynamic cGMP signals in real time in living platelets during activation and

aggregation. The transferability of cGMP levels determined in platelet extracts to

cGMP signaling in living platelets appears limited if one considers that platelet

cGMP is very rapidly degraded by PDEs [43] and that changes of the cGMP

concentration in subcellular compartments might remain undetected when cGMP

levels are determined in cell extracts [82]. Moreover, it has been noted that some

commercially available ELISA kits for cGMP can give false-positive results

[92]. (4) Last but not least, the interpretation of experiments with gene-targeted

mice or with platelets isolated from these mice might be complicated due to

additional, probably unknown, phenotypes of the mutant mice. For instance,

cGKI-deficient mice show significantly elevated IL-6 serum levels [93]. The high

IL-6 concentration is not due to dysfunctional cGMP signaling in platelets and leads

to thrombocytosis [94]. The high platelet count and potential alterations of platelet

functions secondary to the high IL-6 levels might lead to thrombosis and bleeding

phenotypes in global cGKI knockout mice that are not caused by a lack of cGMP-

cGKI signaling in platelets. Furthermore, it should be considered that vascular

endothelial-generated NO and the smooth muscle sGC-cGMP-cGKI pathway is

important in vasodilation. Thus, the whole body deficiency of sGC or cGKI may

cause vasoconstriction and consequently reduce bleeding time. To specifically

address the role of cGMP signaling proteins in platelets, it is recommended to

analyze platelet-specific knockout mice.

To date, several studies have investigated platelet cGMP signaling by using

in vivo models of hemostasis and thrombosis. One study applied intravital micros-

copy in mice after intestinal ischemia/reperfusion injury and found that platelet cGKI

but not endothelial or smooth muscle cGKI is required to prevent intravascular

adhesion and aggregation of platelets after ischemia in vivo [56]. Surprisingly,

another study reported that cGKI-deficient platelets showed impaired activation in

response to vWF and low-dose thrombin and that global cGKI knockout mice had

prolonged tail bleeding times [33]. A follow-up study of the same group reported that

aggregation of sGC-deficient platelets was reduced at low concentrations of collagen

and thrombin, and tail bleeding times and thrombus formation were increased in

platelet-specific sGC knockout mice [35]. These findings indicated a stimulatory role

for the sGC-cGMP-cGKI pathway in platelet activation and provoked an ongoing

controversy about cGMP’s function(s) in platelets [95–98]. It is well known that

platelet cGMP levels increase in response to various platelet agonists (e.g., vWF,

collagen, thrombin, ADP) [33–35, 99, 100]. Unfortunately, the functional effect of

agonist-induced cGMP elevation was not always investigated in these studies, thus

leaving the question open whether the cGMP increase associated with a specific

agonist leads to platelet activation or inhibition. In general, the cGMP level reached

during the initial phase of agonist-induced platelet activation appears to be much

(�tenfold) smaller than the cGMP concentration reached during NO-induced platelet

inhibition. Mechanistic details as to how platelet agonists increase cGMP and how

cGMP might promote the platelet activation process are not well understood. It is a

matter of debate whether platelet agonists activate a platelet NOS to produce NO or
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whether platelet sGC is activated in an NOS/NO-independent manner [92]. A recent

study indicated that platelets produce NO during adhesion to immobilized collagen in

flowing blood under high shear rates, but under these conditions NO production

limited rather than promoted further platelet deposition [101]. Other work indicated

that vWF stimulates cGMP production in platelets independent of NOS and NO via

Src kinase-mediated Tyr192 phosphorylation and activation of sGC [34]. It was

suggested that the increase in cGMP upon stimulation of GPIb by vWF activates

cGKI, which in turn leads to the stimulation of mitogen-activated protein kinases

(MAPKs) and activation of the platelet integrin αIIbβ3 [102]. However, other studies
could not confirm a stimulatory role of the cGMP-cGKI-MAPK axis in platelet

activation by thrombin or low-dose collagen [103, 104].

Interestingly, an increasing number of publications describe a stimulatory role of

cGMP in platelet activation elicited by ligands of pattern recognition receptors such

as TLR4 and NOD2. These receptors play a key role in innate immunity [105] and

might provide a bridge between infection/inflammation and thrombotic events.

Bacteria-derived LPS stimulates platelet aggregation and thrombus formation

via binding to TLR4 on the platelet surface. TLR4-induced intracellular signaling

in platelets required the adaptor protein MyD88 and was associated with elevated

cGMP and cGKI activity, which may initiate platelet activation [106]. Very

recently, it was shown that the damage-associated molecular pattern molecule

HMGB1 is a critical mediator of thrombosis, whose effects are transmitted via

TLR4/MyD88-dependent recruitment of sGC toward the platelet plasma mem-

brane, followed by cGMP synthesis and activation of cGKI [107]. Another study

found that platelets also express the pattern recognition receptor NOD2 and that

activation of platelet NOD2 by bacteria-derived muramyl dipeptide elicits an

increase of cGMP-cGKI signaling associated with enhanced platelet activation

and thrombosis [108]. In sum, these studies support the notion that activation of

the cGMP-cGKI pathway via certain upstream triggers can have a stimulatory

effect on platelets, which may be critical for abnormal platelet activation and

aggregation in response to bacterial infection and inflammation.

The pathophysiological relevance of platelet cGMP signaling in humans is

supported by recent human genetic analysis. One study identified the segregation

of heterozygous mutations in two genes functionally related to NO-cGMP signaling

in an extended myocardial infarction family [109]. The mutated genes encode the

sGC α1-subunit and the CCTη chaperone, which stabilizes sGC. Platelets from

digenic mutation carriers contained less sGC protein and displayed reduced

NO-induced cGMP formation, and sGC α1-deficient mice showed accelerated

thrombosis in the microcirculation after local trauma [109]. These findings indicate

that dysfunctional NO-cGMP signaling increases the risk of myocardial infarction,

perhaps through increased thrombus formation. Unfortunately, the platelet function

of mutated carriers was not analyzed in this study. Therefore, it is not clear whether

variants in sGC α1 and CCTη promote myocardial infarction through platelet

activation or other mechanisms. Another report described an autosomal-recessive

syndrome resulting in severe moyamoya (a cerebrovascular condition leading to

stroke) and early-onset achalasia (a rare disease characterized by aperistalsis of the
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esophagus) that is associated with homozygous mutations in the sGC α1 gene

[110]. Mutated carriers had a complete loss of sGC protein in their platelets.

Interestingly, loss of platelet sGC led to a defect in platelet activation, strongly

suggesting that sGC-cGMP signaling has a stimulatory role in human platelets

[110]. Two recent large-scale genome-wide association studies identified a com-

mon variant on chromosome four overlapping with the sGC α1 gene, and this

variant showed a significant association with coronary artery disease and myo-

cardial infarction [111, 112]. Thus, human genetic studies provide substantial

evidence for a causal involvement of sGC and cGMP signaling in the pathogenesis

of atherothrombotic diseases. cGMP-elevating drugs, such as the PDE5 inhibitor

sildenafil or the sGC stimulator riociguat, are increasingly recognized as a treat-

ment option for cardiovascular and cardiopulmonary disorders. However, it is not

clear whether an increase of cGMP in platelets specifically would have beneficial

and/or detrimental effects on these diseases.

Taken together, the in vitro and in vivo data discussed above strongly suggest a

biphasic role of cGMP signaling in both platelet activation and inhibition. We

speculate that biphasic cGMP signaling in platelets is indeed highly relevant for an

optimal hemostatic platelet response in vivo and can be best explained when we

consider the dynamics of platelet cGMP signals and thrombus formation under

flow. It is now widely recognized that blood flow and the resulting shear forces are

key factors affecting platelet aggregation [113, 114]. Shear rates in arteries and

arterioles are in the range of 300–800 s�1 and 500–1600 s�1, respectively, whereas

those in veins are about ten times lower at 20–200 s�1 [115]. During thrombus

formation, there is a dramatic increase of shear rates, which can surge above

10,000 s�1 in stenotic arteries [116]. It has long been known that shear stress

activates eNOS in endothelial cells increasing NO production [117] and that

shear stress-induced NO can diffuse into the vessel lumen and stimulate cGMP

synthesis in platelets [118]. Thus, it is likely that endothelial NO release and platelet

cGMP signals are modulated by the changing shear forces during thrombus

formation.

Based on these assumptions and the myriad of data published in the field, we

propose a new model that integrates seemingly contradictory findings as well as

cGMP compartmentation and blood flow to describe dynamic platelet cGMP

signaling during hemostasis and thrombosis in vivo (Fig. 15.2). In this model, a

small/compartmentalized increase of platelet cGMP during the initial phase of

platelet activation promotes platelet aggregation at the site of injury and is then

followed by a stronger cGMP signal that inhibits further recruitment of platelets and

limits thrombus growth. How is the spatiotemporal dynamics of platelet cGMP

signals regulated, and how can an increase of cGMP both stimulate and block

platelet aggregation? To provide answers to these questions, our model incorporates

two important features: (1) adjustment of the intraplatelet cGMP concentration by

shear-dependent NO release from the endothelium and (2) generation of different

cGMP pools during early and late stages of platelet aggregation. In the initial phase

of platelet adhesion and activation, shear stress and endothelial NO production at

the site of injury are relatively low (Fig. 15.2, left). In response to adhesive ligands
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Fig. 15.2 A model for autoregulated hemostasis and thrombosis by dynamic flow-dependent

cGMP signaling. The regulation of platelet activity by cGMP (black balls) is flow dependent.

An important factor that adjusts the intraplatelet cGMP concentration is endothelial NO

release, which is augmented with increasing shear stress during thrombus growth. The

increasing shear stress exerted by blood flow during thrombosis is indicated by horizontal
arrows in the vessel lumen. In the early phase of platelet activation, a mild cGMP increase is

stimulatory (left). At this stage, shear stress and NO production at the site of injury are low. In

response to adhesive ligands such as vWF and collagen, sGC is weakly activated via a not

well-defined mechanism, perhaps via intraplatelet NOS/NO, resulting in a relatively small

and/or compartmentalized cGMP increase at the platelet plasma membrane. This early cGMP

signal promotes platelet adhesion via activation of integrin αIIbβ3 signaling, perhaps via cGKI

and MAPKs. However, in later stages of platelet aggregation and thrombus growth, strong

inhibitory cGMP signals are generated (mid and right). Flow-induced shear rates and endo-

thelial NO production increase with thrombus growth. The high local NO concentration

results in strong stimulation of sGC activity in aggregated and freshly recruited platelets.

The high cGMP concentration in these platelets strongly activates cGKI, which

phosphorylates multiple substrates resulting in inhibition of intracellular Ca2+ release,

G-protein signaling, and cytoskeletal remodeling, so that further recruitment of platelets and

overgrowth of hemostatic thrombi is prevented. With decreasing thrombus size, the shear

forces acting on the endothelium and the production of cGMP decline, and the intraplatelet

cGMP concentration drops due to hydrolysis mainly by PDE5 (not shown). Thus, the shear

stress dependency of the sGC-cGMP-cGKI pathway could provide a mechanism for a biphasic

role of cGMP, whereby weak/compartmentalized cGMP signals stimulate initial platelet
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such as vWF and collagen, sGC is weakly activated via a not well-defined mecha-

nism resulting in the formation of a membrane-associated cGMP microdomain.

This local cGMP pool stimulates integrin activation and, thereby, promotes platelet

activation and aggregation. A localized cGMP compartment is also consistent with

the fact that the cGMP elevation measured in cell extracts after agonist stimulation

of platelets is relatively mild. With thrombus growth, the adjacent endothelium is

exposed to increasing shear stress (Fig. 15.2, mid and right). Thus, high amounts of

NO are released from the endothelium resulting in strong activation of sGC and

cGMP production in aggregated and newly recruited platelets. This generates a

second, global cGMP pool in the platelet cytoplasm that overrides the local

stimulatory cGMP pool and prevents further platelet aggregation via the classi-

cal inhibitory cGMP pathway. Mechanistically, both cGMP pools could act via

activation of cGKI and modulation of the intracellular Ca2+ concentration, the local

stimulatory cGMP pool by augmenting Ca2+ influx, and the global inhibitory cGMP

pool by suppressing Ca2+ release from the endoplasmic reticulum [119]. Taken

together, our model proposes that the cGMP signaling system acts as both a gas

pedal and a brake that are autoregulated via blood flow/shear stress to achieve

optimal platelet activation during the hemostatic response after vascular injury.

15.5 Concluding Remarks

During the last decades, tremendous progress has been made in elucidating the

functions of cGMP signaling in platelets. Biochemical, pharmacological, and genetic

studies have clearly established an inhibitory role of the canonical NO-sGC-cGMP-

cGKI pathway in platelet aggregation, mainly by inhibiting intracellular Ca2+ release

and cytoskeletal remodeling. However, accumulating evidence indicates that cGMP

can also promote initial platelet activation. The mechanism of this stimulatory action

of cGMP is less well understood than inhibitory cGMP signaling. These contradic-

tory findings combined with the fact that many of the previous studies were

performed under in vitro conditions, which probably do not completely mimic the

in vivo situation, make it difficult to conclude whether an increase in platelet cGMP

has beneficial and/or detrimental effects on hemostasis and thrombosis in vivo. Major

questions in platelet cGMP signaling remain to be answered, for instance:

• Can platelets produce NO?

• Does NO also exhibit cGMP-independent effects on platelet activity?

• Does cGMP also exhibit cGKI-independent effects on platelet activity?

Fig. 15.2 (continued) activation at the site of vascular injury followed by stronger cGMP signals

that limit an exaggerated hemostatic response and occlusive thrombosis. As such, the cGMP

signaling system could serve as both a gas pedal and a brake that are autoregulated via blood flow/

shear stress to achieve optimal platelet activation during the hemostatic response after vascular

injury
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• How exactly does cGMP signaling interact with other signaling pathways to

control platelet functions? For instance, what is the role of cGMP-cAMP cross

talk? What are the in vivo substrates of cGKI?

• In addition to cGMP hydrolysis via PDEs, how important is cGMP efflux via

cyclic nucleotide transporters in shaping cGMP signals in platelets?

• Do platelets have subcellular cGMP signaling compartments? If so, are they

functionally relevant?

• How does cGMP promote initial platelet activation? How is sGC activated in

response to platelet agonists and is the resulting cGMP production

compartmentalized, for instance, at the plasma membrane? How does the

cGMP increase promote integrin activation and platelet aggregation?

• Are cardiovascular diseases associated with dysfunctional cGMP signaling in

platelets? Can we treat these disorders by targeting platelets with cGMP-

elevating drugs?

To improve our understanding of cGMP’s function in hemostasis and thrombo-

sis, it is important to study cGMP signaling in platelets under in vivo conditions, in

the context of platelet interactions with the vessel wall and blood flow. We propose

a new model of cGMP-regulated hemostasis that integrates both platelet stimulation

and inhibition by dynamic shear stress-regulated cGMP signals during different

phases of thrombus formation under flow in vivo (Fig. 15.2). In this model, rapidly

changing and compartmentalized cGMP signals are crucial for the appropriate

functioning of platelets under native conditions. This hypothesis has to be tested

in the future. However, the spatiotemporal dynamics of cGMP signals in living

platelets cannot be monitored with conventional cell-destructive cGMP assays such

as RIA and ELISA. In recent years, cGMP sensor proteins have been developed for

the visualization of cGMP signals in real time in living cells [120, 121]. Transgenic

mice expressing such a cGMP biosensor are available [122, 123] and should allow

for the imaging of dynamic cGMP signals in platelets under flow conditions. The

spatiotemporal cGMP profile within platelets can then be correlated with changes in

platelet behavior during platelet aggregation in vitro or even during thrombus

formation in vivo. The study of cGMP in hemostasis and thrombosis should benefit

from these technical advances.

What is the therapeutic potential of cGMP-elevating drugs for the treatment of

thrombotic conditions? An inherent weakness with all currently used antiplatelet

agents is their deleterious impact on hemostasis, with the most potent

antithrombotic drugs typically conferring the greatest bleeding risk [4]. Optimal

platelet activation in response to vascular injury in the context of hemostasis means

preventing circulating platelets from activating needlessly, allowing them to

respond quickly when necessary and limiting platelet activation to avoid excessive

platelet accumulation and thrombus growth [124]. Dynamic flow-regulated

NO-cGMP signaling might indeed provide a self-regulating gas and brake for

optimal platelet activation. As such, pharmacological stimulation of platelet

cGMP signaling, perhaps with innovative compounds that selectively trigger inhib-

itory cGMP signals in a growing thrombus without affecting stimulatory cGMP
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signals during initial formation of the hemostatic plug, is an interesting strategy

for antithrombotic therapy with a lower risk of bleeding. Indeed, novel

sGC-stimulating drugs have been shown to reduce thrombus formation in animal

models [125].
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Abstract

Ischemic stroke is the third most common cause of disability worldwide. Since

ischemic stroke results from an occlusion of a brain-supplying artery, rapid

recanalization either by intravenous thrombolysis or by endovascular

thrombectomy is the primary clinical objective. Following restoration of blood

flow, reperfusion injury often occurs encompassing a large number of detrimen-

tal biochemical processes. Based on animal models of stroke, tethering of

platelets on endothelial cells is mediated by the glycoprotein (GP) Ib–V–IX

receptor complex on the surface of platelets. This complex facilitates the binding

of von Willebrand factor (vWF) to the damaged sub-endothelium and thus the

first critical step in platelet adhesion. Further glycoprotein receptors, i.e., glyco-

protein (PG) VI, and GPIIb/IIIa are also involved in aggregation and adhesion of

platelets. Aggregates of adherent, activated platelets express adhesive

molecules, namely, P-selectin, which binds to P-selectin glycoprotein ligand-1

(PSGL-1), the main receptor for P-selectin on leukocytes. Adherence of

leukocytes and the subsequent release of pro-inflammatory factors are particular

mechanisms that show how platelets induce inflammatory processes. Platelets

are also connected in further ways to cellular and humoral components of the
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immune system, such as T cells, macrophages, and the complement system. This

has led us to develop the term “thrombo-inflammation.” Both thrombotic and

inflammatory mechanisms are highly intertwined in the pathophysiology of

ischemic stroke. Thrombus formation and inflammation are therefore promising

targets for the development of novel therapeutic strategies. The growing insights

into thrombo-inflammation after cerebral ischemia might provide a platform for

further exploration of the critical interface between inflammation and thrombo-

sis after ischemic stroke. These interesting findings in the field of cerebral

thrombo-inflammation should encourage stroke researchers to seek further

treatments that target the reduction of thrombo-inflammation in stroke and

other cardiovascular diseases.
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16.1 Introduction

Estimates from the Global Burden of Disease Study (2010) ranked stroke as the

second most common cause of death [1] and the third most common cause of

disability-adjusted life years worldwide [2]. Approximately 15–30% of patients

with recurrent stroke become permanently disabled, often requiring institutionalized

care [3]. Therefore, understanding safe and effective ways to prevent ischemic

stroke from occurring (or recurring) is crucial. There are many causes for ischemic

stroke; thromboembolism causes about 30% of all stroke cases [4]. Thus, current

treatments for the prevention of secondary stroke are frequently based on platelet

inhibitors, namely, aspirin and clopidogrel. These drugs attenuate platelet activation

and aggregation. Prospective, randomized studies have demonstrated that the use of

platelet inhibitors is associated with a reduced incidence of secondary stroke

[2]. Aspirin inhibits cyclooxygenase-1 (COX-1)-induced production of thrombox-

ane A2 and ismost often used for the prevention of recurrent stroke. In patients with a

history of a cerebrovascular ischemic event, aspirin reduced the risk of a subsequent

stroke by 15–18% compared with placebo [5]. Regarding its efficacy, its low cost,

and an acceptable side-effect profile, aspirin is recommended for the prevention of

ischemic stroke in patients with a history of ischemic cerebrovascular events
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[6]. When analyzed by intention-to-treat analysis encompassing more than 19,000

patients, the annual risk of combined vascular events in patients treated with

clopidogrel was lower compared to patients receiving aspirin (5.32% vs. 5.83%,

respectively; relative risk reduction of 8.7% in favor of clopidogrel, p ¼ 0.043)

[7]. The combination of clopidogrel with aspirin for stroke prevention has been

investigated in theManagement of Atherothrombosis withClopidogrel inHigh-Risk
Patients with Recent Transient Ischemic Attacks or Ischemic Stroke (MATCH) trial,

which yielded no additional clinical benefit in patients receiving the combined

treatment [8] (for more details concerning the study design, see Table 16.1). A

subanalysis of the Clopidogrel for High Atherothrombotic Risk and Ischemic Stabi-
lization, Management, and Avoidance (CHARISMA) trial suggested that early

addition of clopidogrel to aspirin in patients with transient ischemic attack (TIA)

and ischemic stroke of arterial origin may be more effective and may provide

acceptable safety levels compared with aspirin alone [9]. Findings of a recently

published trial, the Clopidogrel in High-risk Patients with Acute Nondisabling
Cerebrovascular Events (CHANCE) study, revealed that the combination of aspirin

and clopidogrel given for 21 days, followed by clopidogrel alone up to Day 90, was

more effective than aspirin alone in preventing recurrent strokes in Chinese patients

who had had a minor stroke or TIA [10]. The effect of a dual antiplatelet therapy to

prevent vascular events in patients with atrial fibrillation has been investigated in the

Atrial Fibrillation Clopidogrel Trial With Irbesartan for Prevention of Vascular
Events (ACTIVE) program, in which two randomized controlled trials were

designed to test the efficacy of clopidogrel plus aspirin versus oral anticoagulant

therapy (ACTIVE W) [11] and the effect of clopidogrel plus aspirin versus aspirin

alone in patients with contraindications to oral anticoagulants or in patients unwill-

ing to take oral anticoagulants (ACTIVE A) [12]. The former trial showed that

anticoagulant therapy remains the superior choice for preventing vascular events

such as stroke and systemic embolus in patients with atrial fibrillation [11]. In the

ACTIVEA trial, a reduction in major vascular events, particularly stroke, was found

compared with the control arm of the study, whereas the incidence of major

bleedings increased [12]. Thus, the antithrombotic properties of these agents play

an important role in reducing the risk of recurrent stroke. By reducing platelet

activation, these agents probably not only prevent thrombosis but in addition

decrease the interactions of platelets with leukocytes and endothelial cells and

thus influence inflammatory mechanisms [13]. The interplay between platelets,

leukocytes, and inflammatory factors is particularly relevant in stroke pathogenesis

and contributes to the development of plaques and arterial stenosis [14]. In this

chapter, we will discuss potential interactions between platelets, endothelial cells,

leukocytes, and other factors of the immune system, such as thrombo-inflammation,

and their influence on inflammatory and thrombotic processes during the course of

an ischemic stroke.
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16.2 Mechanisms of Platelet Activation in Acute Ischemic
Stroke

After vessel wall injury (e.g., due to ischemia or rupture of an atherosclerotic

plaque), platelets readily adhere to the damaged endothelium in a stepwise process

[15] (for an overview, see Fig. 16.1). Within this process, tethering of platelets is

the first event of platelet activation [15]. At this stage, platelet adhesion is not firm,

and tethering is still completely reversible. Tethering of platelets on endothelial

cells is mediated by the glycoprotein (GP) Ib–V–IX receptor complex, which is

expressed on the surface of platelets [16]. The GPIb–V–IX receptor complex

initiates the first critical step in platelet adhesion by facilitating the binding of

von Willebrand factor (vWF) to the damaged sub-endothelium. This protein

originates from the Weibel–Palade bodies of endothelial cells or the α-granules of
platelets [17]. vWF bears different binding domains; the A1-binding domain binds

to the glycoprotein Ibα (GPIbα), the major subunit of the GPIb–V–IX receptor

complex [16]. Blockade of the vWF-binding domain on GPIbα using the monoclo-

nal GPIbα antibody (p0p/B) in wild-type mice abolished platelet tethering and

adhesion to the injured endothelial cells after mechanically induced arterial throm-

bosis [18]. The significance of GPIbα in platelet adhesion was also characterized in

transgenic mice, in which the extracellular domain of GPIbα has been replaced by

the α-subunit of the human interleukin (IL)-4 receptor. This study demonstrated

that platelet adhesion to the exposed extracellular matrix is completely inhibited in

arterioles of IL-4Rα/GPIbα-transgenic mice [19]. Additionally, the interaction of

GPIbα with the A1 domain of vWF is important in the context of strong hydrody-

namic forces [19]—that is, binding of GPIbα to the A1 domain decelerates the fast-

flowing platelets at high shear stress. The interaction of vWF and its platelet

receptor GPIbα is also crucial in brain infarct evolution. Complete blockade of

the vWF-binding domain of GPIbα using Fab fragments of the antibody p0p/B

resulted in significantly smaller infarct volumes in a murine stroke model [20]. This

effect was still observed when the blocking antibodies were administered 1 h after

transient occlusion of the middle cerebral artery (tMCAo) of mice [20]. It is of note

that blocking the GPIbα receptors did not result in an increased risk of developing

intracerebral hemorrhage (ICH). The aforementioned findings were also supported

by another study showing that vWF�/� mice undergoing tMCAo had significantly

smaller infarct volumes 1 day after the induction of stroke [21]. Recently, an

analysis of a national (US) discharge register showed that the prevalence of

cardiovascular events (including ischemic cerebrovascular disease) in patients

with a vWF deficiency (VWD) was 15% lower than in non-VWD patients, when

adjusted for vascular risk factors [22]. This finding might further underline that

VWD is protective against cardiovascular diseases.

Another membrane glycoprotein receptor is glycoprotein VI (GPVI), which

plays a crucial role in the collagen-induced activation and aggregation of platelets

[23]. GPVI has been detected exclusively on the surface of platelets and

megakaryocytes [24]. GPVI fosters the procoagulant activation of platelets and

thrombin in response to fibrillar and non-fibrillar collagens by inducing binding
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sites of integrin α2β1 for collagen [25]. Platelets in which GPVI has been depleted

by in vivo administration of antibodies against the receptor do not respond to

collagen [24]. Furthermore, deficiency of GPVI in mice resulted in abnormal

phosphatidylserine exposure after stimulation with thrombin [26]. Recently,

another mechanism of GPVI-mediated platelet adhesion has been described by

Bültmann and co-workers, which investigated the interaction of GPVI and fibro-

nectin. In flow chamber experiments, platelet adhesion to fibronectin was signifi-

cantly inhibited by GPVI-Fc and the anti-GPVI antibody, indicating an interplay

between GPVI and fibronectin regarding platelet adhesion [27]. GPVI is also linked

to another component of platelets, the glycoprotein vitronectin. Recombinant

GPVI-Fc has been shown to bind to activated endothelium, mainly via vitronectin,

which in turn has been shown to prevent platelet/endothelial interactions

[28]. GPVI is also a receptor for laminin, which supports platelet adhesion via

binding to integrin α6β1 [29]. The aforementioned studies suggest that the role of

GPVI in thrombus formation is not only the consequence of its interaction with

collagen. Whether GPVI binds to other adhesive molecules is not known and

remains to be investigated. Interestingly, GPVI is also involved in cerebral infarct

growth. After tMCAo, depletion of GPVI with the JAQ1 antibody [20] or blocking

of collagen-binding domains using revacept, a recombinant soluble dimeric GPVI-

Fc [30], significantly decreased infarct size. There is some evidence that GPVI is

also a promising biomarker for acute ischemic stroke in humans. Patients with TIA

�

Fig. 16.1 (continued) charged surfaces interact with and activate FXII, the initiator protease of

the intrinsic coagulation pathway. As well as triggering thrombus via fibrin generation, FXIIa also

promotes the activation of the contact–kinin system: FXIIa cleaves PPK to form the active serine

protease PK, which in turn cleavages HMWK to release the inflammatory peptide hormone

BK. Binding of BK to its endothelial receptor initiates signaling cascades that induce (1) endothe-

lial cell damage, leading to vascular edema, and (2) the expression of pro-inflammatory cytokines

that induce glial activation, inflammation, and, finally, neuronal cell death. Simultaneously,

circulating leukocytes (T cells, neutrophils) become activated by the ischemic insult, resulting

in a sterile inflammatory reaction involving the upregulation of chemoattractants, chemokines,

and adhesion molecules both on endothelial cells and immune cells. After recruitment (via

P-selectin/PSGL-1) and stable tethering (via ICAM-1/LFA-1 and VCAM-1/VLA-4) to the vas-

culature, T lymphocytes interact with activated platelets via CD40/CD40L to form a solid

thrombus. Neutrophils also contribute to thrombus formation as they (1) interact with platelets

(via MAC-1/GP1bα and P-selectin/PSGL-1), (2) participate in fibrin cross-linkage (via MAC-1/

fibrin interaction), and (3) trigger thrombin activation by inducing the extrinsic TF/FVIIa path-

way. The successive infiltration of immune cells into the brain parenchyma triggers further tissue

inflammation and liberation of ROS, cytokines, and proteases and consequently induces neuronal

cell damage. ADAMTS13 A disintegrin-like and metalloprotease with thrombospondin type I

repeats-13, BK Bradykinin, B1R Bradykinin receptor B1, B2R Bradykinin receptor B2, FVII/FXI/
FXII(a) (Activated) coagulation factor VII/XI/XII, GP Glycoprotein, HMWK High-molecular-

weight kininogen, ICAM-1 Intercellular adhesion molecule-1, LFA-1 Lymphocyte function-

associated antigen-1,MAC-1Macrophage-1 antigen, PECAM-1 Platelet endothelial cell adhesion
molecule, PK Plasma kallikrein, PPK plasma prekallikrein, PSGL-1 P-selectin glycoprotein

ligand-1, ROS Reactive oxygen species, TF Tissue factor, VCAM-1 Vascular cell adhesion

molecule-1, VLA-4 Leukocyte very late antigen-4, vWF/UL-vWF von Willebrand factor/ultra-

large vWF. Reprinted with kind permission of AHA Journals
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and ischemic stroke showed significantly elevated levels of GPVI expression on

platelets on admission compared to patients without cerebrovascular events

[31]. On the other hand, patients with stroke had significantly decreased plasma

levels of soluble GPVI compared to patients without cerebrovascular events [32].

Another platelet receptor, GPIIb/IIIa, is also involved in platelet adhesion

[33]. Platelet activation induces the expression of GPIIb/IIIa, the most abundant

receptor on the surface of platelets. After activation of platelets, the GPIIb/IIIa

receptor shifts from an inactive state to an active ligand-binding conformation.

Activated GPIIb/IIIa mediates further platelet aggregation by binding to its primary

ligands fibrinogen and the C1 domain of vWF, thereby cross-linking activated

platelets and stabilizing the growing platelet formation. GPIIb/IIIa is involved in

infarct evolution, as shown in several animal experiments, in which partial block-

ade of GPIIb/IIIa receptors resulted in a reduction of infarct size up to 70% [34–36].

Interestingly, when GPIIb/IIIa receptors are partially blocked either in “healthy”

[20] or in aged and comorbid mice [37] using (Fab)2 fragments of the mouse GPIIb/

IIIa-blocking monoclonal antibody, no neuroprotective effect has been observed

regarding infarct evolution [20, 37]; however, this study revealed an increased rate

of ICH, which is in accordance with a phase III trial investigating the GPIIb/IIIa

antagonist abciximab in patients with ischemic stroke [38]. This trial was stopped

prematurely due to an increased rate of symptomatic or fatal ICH [38]. The

unfavorable risk/benefit ratio of GPIIb/IIIa antagonists in the setting of ischemic

stroke might be explained by their narrow therapeutic window.

In contrast, GPIIb�/�ApoE�/� mice revealed a smaller infarct size 1 day after

tMCAO compared to wild-type mice [39]. These findings corroborate a dual role of

GPIIb/IIIa antagonists: At peak concentrations, these agents act as platelet

antagonists and thus cause bleedings. However, at lower concentrations, they

might act as partial platelet agonists, which results in platelet activation and

thrombus formation [40]. The pro-inflammatory nature of subtherapeutic levels of

GPIIb/IIIa receptor inhibitors might also be an important factor regarding the

adverse events of these agents. Abciximab has been shown to increase the expres-

sion of P-selectin in response to adenosine diphosphate, finally resulting in the

formation of platelet–leukocyte aggregates [41]. On the other hand, inhibition of

GPIIb/IIIa receptors seems to affect inflammatory processes in a positive way

[42]. Treatment with abciximab is accompanied by a reduction in the serum levels

of C-reactive protein (CRP), IL-6, and tumor necrosis factor-α (TNF-α) [42] after
coronary angioplasty. Finally, there might be direct toxic effects via apoptosis;

GPIIb/IIIa inhibitors (i.e., orbofiban and xemilofiban) have been shown to activate

procaspase-3 and cause dose-dependent apoptosis, especially under hypoxemic

conditions [43]. Thus, GPIb or GPVI receptor inhibitors have revealed

neuroprotective properties in experimental stroke models without showing an

increase in bleeding complications, whereas agents that target the GPIIb/IIIa

receptor showed no positive effect on stroke outcome and raised the incidence of

ICH and mortality [20].
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16.3 The Concept of Thrombo-inflammation in Acute Ischemic
Stroke

As outlined above, thrombus formation followed by occlusion of cerebral vessels is

one of the main mechanisms leading to cerebral ischemia. However, there is

growing evidence that—as well as thrombotic vessel occlusion—additional

mechanisms are involved in the development of stroke. This hypothesis is

corroborated by a recently published study of our group showing that the blockade

of the final common pathway of platelet aggregation with anti-GPIIb/IIIa F(ab)2
fragments has no positive effect on stroke size and functional outcome in a murine

stroke model, but it does increase the frequency of ICH and the rate of mortality

[20]. Additionally, animals that survived the treatment revealed infarct sizes that

were comparable to control animals [20]. Platelets are connected in many ways to

cellular and humoral components of the immune system, such as T cells,

macrophages, and the complement system. This has led us to develop the term

“thrombo-inflammation.” In this context, certain immune cells (e.g., T cells,

macrophages, and neutrophils), as well as platelets, play an important role.

Investigations of small vessels in the ischemic cerebral tissue have shown the

existence of aggregates of degranulated platelets, as well as leukocytes and fibrin

[44]. The presence of this thrombotic material results in the occlusion of small

cerebral vessels and thus contributes to the ischemia of cerebral tissue. This harmful

effect on cerebral tissue is additionally reinforced by the reopening of vessels,

finally resulting in reperfusion injury [45].

Initial interactions between platelets and leukocytes are mediated by P-selectin,

an adhesive molecule that is stored in α-granules of platelets. In response to

activating signals (e.g., oxidative stress), P-selectin is translocated to the surface

of platelets and binds to P-selectin glycoprotein ligand-1 (PSGL-1), the main

receptor for P-selectin on leukocytes [46]. In vitro studies have revealed that

leukocytes can “roll” on and firmly “adhere” to a layer of immobilized (adherent)

platelets [47]. The former results from the binding of PSGL-1 on leukocytes to

P-selectin on activated platelets (“rolling”), the latter from an interaction of macro-

phage antigen-1 (Mac-1) on leukocytes with GPIb and/or fibrinogen on platelets

(“adhesion”). An in vivo study corroborated these findings by revealing that

platelets modulate leukocyte recruitment via P-selectin in a mouse tMCAo model

[36]. Interactions between CD40 (on leukocytes) and the CD40 ligand (on platelets)

may also contribute to the adhesion response [48]. Binding of CD40 ligand to CD40

induces the expression of adhesion molecules, such as intercellular adhesion

molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and

E-selectin [48]. Regarding P-selectin, atherosclerotic lesions [49], as well as the

number of leukocytes present in atherosclerotic lesions [50], are less frequent in

P-selectin-deficient mice that lack apolipoprotein E. Interactions between platelets

and leukocytes might also play a crucial role in patients with stroke as soluble

P-selectin, surface P-selectin expression and/or platelet–leukocyte aggregates

circulating in the blood were increased in these patients compared to controls

[51]. These data from animal and human studies suggest that P-selectin, PSGL-1,
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and platelet–leukocyte aggregates modulate atherogenesis and may be important

biomarkers in identifying patients who are at increased risk for stroke.

Activated platelets also release regulated upon activation, normal T-cells
expressed and secreted (RANTES), which bind to the atherosclerotic endothelium

and form a chemoattractant surface for monocytes [52]. In addition, platelets are

involved in the generation of thromboxane A2, which promotes platelet and

endothelial activation, and platelet-activating factor (PAF), a factor for signaling

and adhesion of leukocytes to other cells [53]. Adherence of leukocytes and the

subsequent release of pro-inflammatory factors are particular mechanisms that

show how platelets induce inflammatory gene expression in target monocytes.

For example, monocytes that are adherent to P-selectin-bearing platelets synthesize

monocyte chemotactic protein-1 (MCP-1) and IL-8. MCP-1 and IL-8 are necessary

for leukocytes to migrate into subendothelial layers [53]. In addition, activated

platelets upregulate and induce monocytes to release COX-2 [54]. COX-2 is an

enzyme that is responsible for the synthesis of pro-inflammatory eicosanoids. There

is some evidence that the interaction of platelets with monocytes results in the

expression of IL-1β, IL-6, and TNF-α [54]. IL-1β and IL-6, in turn, play several

roles in inflammatory processes, e.g., activation of leukocytes and endothelial cells

and induction of pro-inflammatory mediators [55, 56]. Activated platelets also

increase the synthesis of matrix metalloproteinase-9 (MMP-9) in human monocytes

in the presence of collagen [57]. Some of the aforementioned pro-inflammatory

mediators are implicated in ischemic stroke. Patients with stroke have revealed a

higher expression of MCP-1, IL-8, and IL-1β [58]. In addition, patients with stroke,
in whom a high concentration of IL-6, TNF-α, or soluble VCAM-1 was detected,

were at a higher risk of recurrent ischemic stroke [59]. Increased blood

concentrations of MMP-9 and elevated urine concentrations of thromboxane A2,

an indicator of platelet cyclooxygenase activity, have also been observed in patients

with ischemic stroke [60]. Another study showed that leukocyte

activation—assessed by decreased L-selectin expression—is prolonged in patients

with stroke up to 3 months after the ischemic stroke [51]. These data suggest that

platelet–leukocyte interactions regulate atherothrombosis and concomitant inflam-

matory events.

In the early phase in particular, T cells have been shown to contribute critically

to stroke development: T cells were detectable in the postischemic brain as early as

24 h after reperfusion [61]. The adhesion of T cells to the activated endothelium and

subsequent brain invasion after cerebral ischemia is a key factor in the induction of

inflammatory cerebral damage. Invasion of T cells into cerebral parenchyma

depends on the interaction of the leukocyte very late antigen-4 (VLA-4) with

VCAM-1 on endothelial cells [62]. A recently published study revealed that

VLA-4 blockade by monoclonal antibodies improved outcome in a mouse model

of moderate stroke lesions by inhibiting cerebral leukocyte invasion and neurotoxic

cytokine production, which finally resulted in an equally potent reduction of infarct

volume and postischemic neuroinflammation [63]. However, a study by our group

showed that VLA-4 blockade with the anti-CD49d antibody failed to improve

stroke outcome irrespective of the model or the time point investigated [64]. A
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preclinical randomized controlled multicenter trial revealed that treatment with

CD49d-specific antibodies significantly attenuated both leukocyte invasion and

infarct volume after permanent distal occlusion of the middle cerebral artery, but

did not reduce lesion size or affect leukocyte invasion after transient proximal

occlusion of the middle cerebral artery, which induces large lesions [65]. Recently,

we showed that recombination activating gene (Rag1)-deficient mice, which lack

functional T cells, are largely resistant against ischemic neurodegeneration,

whereas T cell-mediated brain damage was detectable 24 h after the induction of

ischemic stroke [66]. There is also growing evidence that a T-cell subpopulation,

i.e., the regulatory T cells (Tregs), contributes to neurodegeneration by interacting

with cerebral endothelial cells via the lymphocyte function-associated antigen

(LFA-1)/ICAM-1 pathway and platelets [67].

Thus, it has been documented that the leukocytes most frequently infiltrating the

ischemic cerebral tissue include neutrophils, macrophages, and natural killer cells,

as well as T-cell subpopulations [68]. Such cells, as detected within the infarcted

and peri-infarcted areas of cerebral tissues, are involved in all stages of the ischemic

cascade [69].

16.4 Role of the Plasma Contact System in Acute Ischemic
Stroke

Thrombo-inflammation in stroke results in the interaction of platelets with

inflammatory components and is also related to the plasma contact system. The

plasma contact system encompasses five proteins that assemble when blood comes

into contact with negatively charged surfaces such as phosphatidylserine [70] or

inorganic polyphosphates [71]. The factors encompassing the plasma contact system

are the serine proteases factor XII (FXII), factor XI (FXI), plasma prekallikrein

(PPK), the nonenzymatic cofactor high-molecular-weight kininogen (HMWK), and

the serpin C1 esterase inhibitor [72]. Activation of the plasma contact system

triggers different pathways, such as the kallikrein–kinin system (KKS), the intrinsic

pathway of coagulation, the classical complement cascade, and the fibrinolytic

system. Recent studies have shown that the contact system plays a crucial part in

thrombus formation [73]. However, the plasma contact system is not only involved

in thrombus formation but also in inflammatory processes after cerebral ischemia,

when it is involved in promoting endothelial leakage through bradykinin (Fig. 16.1)

[74]. The contact–kinin system is initiated via activation of FXII: Activated platelets

release negatively charged polyphosphates, which results in the shift of FXII in its

activated form, FXIIa [71]. FXIIa initiates the intrinsic coagulation cascade via

activation of FXI and is involved in the cleavage of PPK to plasma kallikrein (PK).

In the next step, PK cleaves HMWK, which results in the release of bradykinin from

HMWK [72].

Regarding activation of the intrinsic coagulation cascade, we recently showed

that FXII is important in thrombus formation. Transgenic mice with a FXII defi-

ciency showed impaired thrombus formation by generating unstable thrombi [75]
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and developed significantly smaller ischemic infarcts without an increase in ICH

[76]. These findings are in line with another study by our group, revealing that

inhibition of FXII through a complex of recombinant human albumin and infestin-4

is highly protective in a murine model of ischemic stroke [77]. The underlying

mechanism of its neuroprotective efficacy has been investigated using high-field

magnetic resonance imaging (17.6T) in a murine stroke model. In FXII�/� mice

undergoing tMCAo, cortical cerebral blood flow (CBF) was restored by 36% within

24 h, whereas in wild-type mice, cortical CBF was further decreased by 30%

[78]. Thus, an enhanced cortical reperfusion in FXII�/�-mice might explain—at

least, in part—the aforementioned effect after ischemic stroke. This finding is

further corroborated by immunohistologic analyses, which revealed reduced fibrin

formation in the infarct area of FXII�/� mice compared to wild-type controls, and

indicates that FXII-dependent thrombin generation occurs to a considerable extent

during cerebral infarction [76]. As already mentioned, FXIIa is related to inflam-

matory processes via activation of KKS. The significance of KKS in experimental

stroke has been addressed using both a genetic and a pharmacologic approach to

inhibit PK [79]. PK-deficient mice subjected to tMCAo developed significantly

smaller brain infarcts and less severe neurologic deficits compared to controls

without an increase in infarct-associated hemorrhage [79]. In addition, less cerebral

inflammation was observed in PK-deficient mice subjected to tMCAo [79]. Similar

results were found in our study on mice with HMWK deficiency undergoing

tMCAo: These mice exhibited a reduction in thrombus formation, blood–brain

barrier damage, and cerebral inflammation [80]. Thus, the plasma contact system

seems to be a promising target for therapeutic intervention after ischemic stroke.

The relationship between ischemic stroke and FXII in humans remains uncer-

tain. The Risk of Arterial Thrombosis In Relation to Oral Contraceptives (RATIO)
study showed that elevated levels of the FXIIa–C1–INH complex were associated

with an increased risk of stroke [81]. In contrast, a case–control study of middle-

aged men in the Second Northwick Park Study (NPHS-II) revealed the

opposite—that is, lower levels of the FXIIa–C1–INH complex were a risk factor

for ischemic stroke [82]. The Atherosclerosis Risk In Communities (ARIC) study

did not identify any relationship between FXII levels and ischemic stroke

[83]. Both a report on published cases of FXII deficiency and thrombosis [84], as

well as a study on Swiss families with FXII deficiency [85], concluded that there

was no association between FXII deficiency and stroke. Thus, the possibility that

elevated FXII levels in humans represent a risk factor for ischemic stroke is, so far,

not confirmed.

16.5 Thrombo-inflammation: Evidence in Human Stroke
and Consecutive Therapeutic Options

Several drugs for the secondary prevention of ischemic stroke have been linked to a

reduction in thrombus formation but also to an attenuation of inflammation in

patients with stroke. Up to now, the vast majority of studies on secondary
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prevention of stroke in humans were mainly focused on thrombosis; studies

addressing anti-inflammatory properties of these drugs are sparse. A recently

published study [86] addressed this issue by investigating the efficacy of aspirin

(150 mg daily) on platelet-related inflammatory factors, namely, CD62P and

CD40L, in both patients with acute ischemic stroke and healthy volunteers.

Although the study yielded evidence for the hyperactivation of platelets in the

acute stage of cerebral ischemia, the platelet α-granule-derived inflammatory

mediators and monocyte–platelet aggregation were only reduced in healthy

individuals but not in patients with acute stroke after aspirin intake [86]. Addition-

ally, Chronos and co-workers found that aspirin did not inhibit adenosine diphos-

phate- or thrombin-induced platelet α-granule secretion [87]. Another study

revealed that aspirin treatment does not attenuate either resting P-selectin expres-

sion or the formation of leukocyte–platelet aggregates [88].

Clopidogrel, a second-generation thienopyridine, acts by binding to the platelet

P2Y12 receptor, which results in a reduction in the release of pro-inflammatory

mediators from platelet α-granules, such as soluble P-selectin and CD40L, and

therefore in attenuated interactions between platelets and leukocytes

[89]. Clopidogrel, in addition to aspirin, significantly decreases levels of TNF-α
and CRP compared to aspirin alone in patients with acute coronary syndrome,

whereas there are no data on this issue in patients with stroke.

In 2009, another P2Y12 receptor inhibitor, ticagrelor, was introduced as an

antiplatelet agent for acute coronary syndrome. In the Platelet Inhibition and Patient

Outcomes (PLATO) trial, this drug reduced the incidence of adverse cardiovascular

events compared to clopidogrel [90] and, unexpectedly, also reduced all-cause

mortality to a greater degree than would be expected from other trials of P2Y12

receptor inhibitors. In the aforementioned trial, patients with a prior history of stroke

or TIA had a relative risk reduction in the primary endpoint (i.e., composite of death

from vascular causes, myocardial infarction, or stroke) similar to those who did not

have a prior stroke. These findings might suggest that ticagrelor impacts immune

signaling differently compared to other P2Y12 inhibitors, such as clopidogrel [91],

which might be due to its effect on cellular uptake of adenosine by inhibiting the

equilibrative nucleoside transporter ENT1 [92]. Furthermore, these findings have

raised the question of whether ticagrelor might be used as a preventative treatment in

stroke, an issue that is addressed currently by the Acute Stroke or Transient Ischaemic

Attack Treated with Aspirin or Ticagrelor and Patient Outcomes (SOCRATES) trial

(https://clinicaltrials.gov/ct2/show/NCT01994720?term¼SOCRATES &rank¼2).

As mentioned above, the glycoprotein GPIIb/IIIa receptor is also involved in

platelet-mediated inflammatory processes [93], and thus GPIIb/IIIa receptor

inhibitors such as abciximab, eptifibatide, and tirofiban probably also attenuate

thrombo-inflammation [93]. However, a Cochrane meta-analysis [94]

encompassing the three cohorts of the Abciximab in Emergency Treatment of

Stroke Trial (AbESTT-II) and the Study of Efficacy of Tirofiban in Acute Ischaemic

Stroke (SETIS) showed that these drugs are associated with a significant risk of ICH
with no evidence of any reduction in death or neurologic symptoms in patients with

stroke. Although the exact mechanism of this hazard is unclear, the excess fatality
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rate might be attributed to the release of pro-thrombotic and pro-inflammatory

platelet CD40 ligands from suboptimal GPIIb/IIIa inhibition [95]. However, it is

of note that the aforementioned analysis is mainly (89%) based on abciximab. A

recently published study, the Safety of Tirofiban in acute Ischemic Stroke (SaTIS)
trial, showed that tirofiban did not result in more ICH compared to placebo but

reduced mortality over the long term. There was no difference in neurologic/

functional outcome between patients treated with tirofiban or with placebo [96].

Another therapeutic approach is targeting GPVI: In a Phase I study, revacept, a

fusion protein consisting of an extracellular portion of GPVI receptor of humans for

collagen (GPVI-Fc), efficiently inhibited collagen-induced platelet aggregation

ex vivo, with no alteration of primary hemostasis in 30 healthy donors [97].

However, in another study, GPVI-Fc had only limited antithrombotic effects in

an animal model, whereas the direct blockade of GPVI function was effective in

preventing occlusive thrombus formation [98]. Currently, there is a revacept phase

II trial, which aims to evaluate whether the incidence of microembolic signals can

be reduced in patients with symptomatic carotid artery stenosis receiving revacept

plus antiplatelet monotherapy (https://clinicaltrials.gov/ct2/show/NCT01645306?

term¼revacept&rank¼1).

Thrombin-induced platelet activation is the most potent pathway in platelet

aggregation [95]. Vorapaxar and atopaxar are two protease-activated receptor-1

(PAR-1) antagonists that selectively target thrombin-induced platelet activation.

PAR-1 is also known to be involved in inflammatory processes during thrombus

formation [99]. Vorapaxar was evaluated in two phase III trials—the Thrombin

Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome

(TRACER) [100] and the Thrombin Receptor Antagonist in Secondary Prevention

of Atherothrombotic Ischemic Events (TRA 2�P TIMI 50) trial [101]. However,

treatment of participants with prior ischemic stroke was terminated early in both

trials due to a high ICH rate. Additionally, a subanalysis showed that vorapaxar did

not reduce recurrent ischemic stroke among participants with prior ischemic stroke

[102]. This finding has been explained by the different mechanisms of stroke type:

In a cohort with a high prevalence of previous lacunar strokes, recurrent strokes

were overwhelmingly likely to have lacunar mechanisms, and lacunar ischemic

stroke may be less responsive to antiplatelet therapy [103].

Despite these rather sobering findings, there are some new promising studies on

immune-modulatory agents in acute stroke therapy, such as fingolimod. Fingolimod

is a sphingosine-1-phosphate (S1P) analog that attenuates the number of peripheral

lymphocytes by blocking the egress of these cells from lymphoid organs

[104]. Fingolimod has been clinically approved for the treatment of relapsing-

remitting multiple sclerosis [105]. Recently, Fu and co-workers reported that oral

fingolimod administered within 72 h of stroke onset was safe, limited secondary

tissue injury from baseline to 7 days, decreased microvascular permeability,

attenuated neurologic deficits, and promoted recovery [106]. Additionally, the

combination therapy of fingolimod and alteplase has been shown to attenuate

reperfusion injury and improve clinical outcomes in patients with stroke in a pilot

study [107]. Another immunomodulator that is under evaluation for acute stroke
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treatment is natalizumab, a humanized monoclonal antibody that belongs to the

selective adhesion molecule inhibitors. It binds to the α4-subunit of α4-integrins
and blocks binding to adhesion molecules (i.e., VCAM-1 and mucosal addressin

cell adhesion molecule-1), thereby attenuating inflammation [108]. A study on the

effect of natalizumab in the acute phase of stroke was completed in April 2015

(Effect of natalizumab on infarct volume in acute ischemic stroke (ACTION);

https://clinicaltrials.gov/ct2/show/NCT01955707?term¼infarct+volume&rank¼1)

and publication of the first analyses is expected soon.

16.6 Conclusions

Both thrombotic and inflammatory mechanisms are highly intertwined in the

pathophysiology of ischemic stroke. Thrombus formation and inflammation are

therefore promising targets for the development of novel therapeutic strategies. The

growing insights into thrombo-inflammation after cerebral ischemia might provide

a platform for further exploration of the critical interface between inflammation and

thrombosis after ischemic stroke. These interesting findings in the field of cerebral

thrombo-inflammation should encourage stroke researchers to seek further

treatments that target the reduction of thrombo-inflammation in stroke and other

cardiovascular diseases.
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WA, Morrissey JH, Renné T. Platelet polyphosphates are proinflammatory and procoagulant

mediators in vivo. Cell. 2009;139:1143–56.
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73. Nickel KF, Renné T. Crosstalk of the plasma contact system with bacteria. Thromb Res.

2012;130(Supplement 1):S78–83.

74. Albert-Weißenberger C, Sirén A-L, Kleinschnitz C. Ischemic stroke and traumatic brain

injury: the role of the kallikrein–kinin system. Prog Neurobiol. 2013;101–102:65–82.

16 Platelets and Stroke 271
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Abstract

Functional genome-wide association studies and pharmacogenomics of

antiplatelet therapy are of high clinical interest to explain the interindividual

variability of drug response. Here, we review recent progress in knowledge of

platelet genomics with focus on clinical implications. While there are numerous

genetic variants associated with platelet biology with focus on platelet-specific

phenotypes and cardiovascular outcome, the clinical evidence is missing so far.

However, platelet pharmacogenomics concentrating on antiplatelet drug metab-

olism and transport is already used in personalized medicine.
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17.1 Introduction

Traditionally, research in platelet genetics was focused on the investigation of the

inheritance of bleeding disorders. In recent years, advances and many technical

innovations including deep sequencing and functional genome-wide association

studies stimulated the field of platelet genomics. Thus this field of research aims to

elucidate in more broader and complex context the role of genomic mechanisms for

thrombotic and bleeding diseases but also to apply genetic profiles to cardiovascu-

lar risk assessment. Platelet mRNA expression significantly contributes to total

mRNA expression of the human genome up to one third. Since the armamentarium

of antiplatelet drugs constantly increased in the last decade, platelet

pharmacogenomics became of high clinical interest. This research area not only

comprises issues related to alteration of platelet proteins by genetic reasons but also

covers the genetic background of the absorption, disposition, metabolism, and

excretion of antiplatelet agents. A mandatory prerequisite for all these

investigations is the definition of the precise platelet phenotype which involves

platelet protein expression and function, quantitative or qualitative platelet

characteristics (e.g., platelet volume, platelet count, ratio of immature/reticulated

platelets), platelet-associated thrombotic events (e.g., stent thrombosis), and/or

bleeding events. This chapter will give an overview about the current knowledge

in platelet genomics with focus on clinical implications.

17.2 Genetic Background of Platelet Biology, Insights from
Association Studies

Platelets are critically involved in a number of signaling pathways. Although being

anucleate cells, platelet-related genetics is of important relevance. There is

innumerous pathophysiological and clinical evidence that platelets play a crucial

role in the development of occlusive thrombotic coronary artery disease, e.g., in the

setting of acute coronary syndromes (ACS) at the site of ruptured plaques [1] but
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also in promoting atherosclerosis and chronic vascular inflammation [2]. Therefore,

it seems likely that genetic variants of platelet proteins are associated with platelet-

mediated cardiovascular events including myocardial infarction (MI), stenotic

coronary artery disease (CAD), and ischemic stroke. The challenge of platelet

genetic association studies is to detect a quantitative trait locus. This relies on the

number of enrolled individuals and a low number of protein-protein interactions

associated with the phenotype. In contrast to other genetic risk markers, for

instance, in lipid research, the effect size of platelet polymorphic variants is quite

low lying in the range of an odds ratio up to 1.5, thereby requiring large patient

cohorts. Intermediate phenotypes have been suggested to be used in platelet gene

association studies as more suitable effect parameter to increase the statistical

power and to reduce sample size. There is a large variety of possible intermediate

phenotypes comprising platelet activation markers measured by flow cytometry

(i.e., activation of integrin alphaIIbbeta3), markers of platelet degranulation (e.g.,

P-selectin, platelet factor 4 release, adenosine triphosphate, serotonin), platelet

miRNA expression, platelet aggregation, mean platelet volume (MPV), and platelet

turnover (e.g., number of immature/reticulated platelets). Light transmission

aggregometry (LTA) turned out as a robust parameter. It possesses a large interin-

dividual variability and has a sufficient hereditary background [3–5].

Classical approaches to investigate geno-phenotype relationships are linkage

and association studies. Association studies aim to discover genetic variation

associated with a specific phenotype or outcome by analyzing population-based

cohorts. Linkage studies seek to identify genetic variants that differentiate the

phenotype among pedigrees. A challenge of association studies is the requirement

of a strong linkage disequilibrium (usual R > 0.8) between the allele of risk and the

genetic alteration such as single nucleotide polymorphisms (SNPs) or copy number

variation (CNV).

17.3 Platelet Genome-Wide Association Studies

Genome-wide association studies (GWAS) have demonstrated a high number of

single nucleotide polymorphisms (SNPs) associated with cardiovascular diseases.

GWAS evaluate the statistical association of genetic variants with a specified

disease or trait. This approach has been proved effective in exploring novel loci;

however the interpretation of GWAS findings faces several challenges in particular

in the field of platelet genomics. A large proportion of identified SNPs correspond

to noncoding regions of the genome, hindering assignment of a functional property

of the genetic variant. In addition, many genetic variants are linked with the

phenotype at any given genomic locus due to linkage disequilibrium (LD), making

it hard to determine the specific variant that causes the effect (causal variant). As

with any GWAS, it is essential to identify the target genes through which identified

variants influence traits or phenotypes. The first GWAS aimed to investigate
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genomic loci associated with platelet reactivity and covered 2.5� 106 SNPs related

to platelet aggregation response to ADP, collagen, and epinephrine. European

ancestry populations from two large cohorts (FHS, n ¼ 2753, and the GeneSTAR

cohort, n ¼ 1238) were included. Genetic variants at seven loci (GPVI, PEAR1,
SHH, ADRA2A, MRVI1, PIK3CG, JMJD1C) showed significant genome-wide

association (Table 17.1). Results were replicated in an independent cohort of

African origin (n ¼ 840) [5]. Of note, this genome-wide functional approach did

not confirm results of early classical candidate association studies including SNPs

associated with the human platelet antigen (HPA) complex comprising HPA-1

(ITGB3), HPA-2 (GP1BA), and HPA-3 (ITGA2B) [14, 15].
A number of other intermediate platelet phenotypes have been investigated by

genome-wide approaches. Thus, several GWAS and meta-analyses reported SNP

associations with the platelet count and the MPV [12, 13, 16, 17]. A consortium

analyzing 66,867 subjects reported GWAS data indicating (1) that loci encoding for

proteins are functionally responsible for megakaryocytopoiesis, platelet survival,

and thrombopoiesis (i.e., ITGA2B, GP1BA, and F2R), (2) that proteins encoding for
platelet membrane proteins are transcription factors (i.e.,NFE2,MEF2C, andMYB),
and (3) that cytoplasmatic proteins (CBL, PIK3CG, PTPN11, SH2B3, and TUBB1)
account for around 5% of the phenotypic variability in platelet count and around

10% in MPV [13]. In combination, the results of the GWAS by Johnson et al. and

those by the Bloodomics and HaemGen consortia together with large meta-analyses

suggest nine loci (ARHGEF3, CDKN2A, GPIBA, ITGA2B, JMJD1C, PEAR1,
PIK3CG, TAOK1, andWDR66) associated with platelet count/MPV [17] or platelet

function [5, 8] at a genome-wide significance threshold (Table 17.1). Of note, most

of these loci have an impact on platelet function. While about 30 loci have been

associated with the clinical manifestation of stroke orMI [18, 19], so far there is lack

of genome-wide approaches elucidating an association with arterial thrombosis.

Only two loci (CDKN2A at Chr9p.21 and SH2B3 at Chr12q23.3) related to

platelet count/MPV and platelet function and the occurrence of CAD and MI have

been discovered by GWAS approaches. Possible reasons for the mismatch of

platelet gene variants, their effects on platelet functional parameters, and

atherothrombotic events are manifold and might be explained by several reasons:

(1) platelet and CAD/MI loci have not yet been identified and/or are too rare to be

detected by recent genotyping approaches such as GWAS, (2) markers of platelet

function that have been previously used are weak surrogates and do not sufficiently

mirror the more complex platelet activation signaling pathways in vivo and in case

of thrombotic events, and (3) highly specific platelet-associated outcome definitions

are required (e.g., platelet-dependent thrombus formation) rather than atherogenic

events in general that are a consequence of underlying diverse pathophysiological

processes including chronic inflammation.
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17.4 MicroRNA

Human platelets express around 300 miRNAs. Besides their potential as

biomarkers, miRNAs have a role as regulators of interindividual variation in

platelet function via their effects on mRNA and protein levels. For some miRNAs

effects on platelet function have been described [20–22]. Analysis of platelet

microRNA-mRNA coexpression profiles and their effects on platelet phenotype

revealed identification of genes previously not being described to have a function in

platelets. Network analyses including integrated system biological approaches are

needed to better understand the complex regulatory mechanisms on the platelet

miRNA/mRNA level including demographic information like age and gender [23].

17.5 Platelet Pharmacogenetics/Pharmacogenomics

Pharmacogenetics or pharmacogenomics deal with underlying genetic mechanisms

to explain interindividual variability in drug response including adverse drug

reactions (ADR) [24, 25]. In recent years both terms pharmacogenetics and

pharmacogenomics are used synonymously covering the concept that drug response

is a more complex scenario. Based on novel omics technologies and big data

resources, the consideration of multiple genes (germline and somatic genome in

case of cancer studies) and gene-gene and gene-environment interactions offers a

high potential to identify better predictive biomarkers [26].

Platelet pharmacogenomics have become of particular interest in the emerging

era of personalized medicine. Antiplatelet agents are the most frequently prescribed

drugs worldwide and are being used for primary and secondary prevention in a

broad spectrum of cerebral, peripheral, and cardiovascular disease and thrombotic

disorders. Despite the development and utilization of newer antiplatelet agents in

the recent decade, there is still a substantial proportion of patients who develop

atherothrombotic and platelet-associated events ranging up to 10% per year

depending on individual risk profiles. Thus, platelet pharmacogenomics is an

attractive and promising research area to identify patients who might benefit from

more specific or intensified antiplatelet strategies by genetic prediction of drug

response and/or ADR (e.g., bleeding events). Antiplatelet drugs currently used in

clinical practice include cyclooxygenase (COX) inhibitors, P2Y12 ADP receptor

antagonists, glycoprotein IIb-IIIa inhibitors, and protease-activated receptor

1 (PAR1) antagonists. Table 17.2 provides a short overview about genetic variants

in candidate genes associated with clinical and/or pharmacological endpoints in

patients treated with the P2Y12 ADP receptor antagonists clopidogrel, prasugrel,

and ticagrelor. Data are derived from large-scale candidate association studies,

GWAS, and meta-analyses. Of note, the impact on interindividual variability of

drug response depends strongly on the specific in vitro and/or in vivo (patient)

setting, i.e., phenotypically characteristics are critical determinants in clinical trials.

Therefore replication studies and prospectively designed pharmacogenomic trials

are warranted before pharmacogenomic information could be implemented into
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Table 17.2 Variation in selected candidate genes and consequences on pharmacokinetic and/or

pharmacodynamic parameters related to antiplatelet drug therapy (modified according to [7])

Antiplatelet

drug Gene Genetic variant

Effects on pharmacokinetic

and/or pharmacodynamics

parameters References

Clopidogrel CYP2C19 rs4244285

(CYP2C19*2)
rs4986893

(CYP2C19*3)

Reduced active metabolite

levels, reduced inhibition of

platelet aggregation, and worse

cardiovascular outcome in

ACS/PCI patients

Case-

control

studies:

[27–34]

Meta-

analyses:

[35–44]

rs12248560

(CYP2C19*17)
Enhanced platelet aggregation

inhibition, increased bleeding

rates, controversial data on

outcome and effect sizes

[40, 41,

45–47]

PON1 rs662 Missing replication of effects

on clopidogrel metabolite

levels and clopidogrel-

dependent aggregation

inhibition by multiple trials

[48]

CES1 rs71647871 Association with increased

systemic exposure of

clopidogrel and its active

metabolite, enhanced inhibition

of platelet aggregation

[49, 50]

ABCB1/
MDR1

rs1045642

(3435C>T)

rs1128503

(1236C>T)

rs2032582

(2677G>T)

Patients (ACS/PCI) are at

increased risk for

cardiovascular events;

inconsistencies of findings

[28, 51]

Meta-
Analyses:
[52, 53]

Prasugrel CYP2C19 rs4244285

(CYP2C19*2)
rs12248560

(CYP2C19*17)

No association with prasugrel

response in multiple trials

Significant impact on platelet

reactivity index VASP in

ACS/PCI patients

[51, 54–

57]

PEAR1 rs3737224

rs822442

rs1214331

rs12566888

Extended platelet inhibition in

Chinese healthy volunteers

[58]

Ticagrelor SLCO1B1a rs113681054 Association with higher drug

levels of ticagrelor and its

active metabolite

No association with primary

clinical outcome parameters

(i.e., cardiovascular death,

myocardial infarction, stroke)

in ACS patients

[59]

UGT2B7 rs61361928

CYP3A4 rs62471956

rs56324128

aIn close LD with the functional SLCO1B1 rs4149056 variant (c.521T>C; SLCO1B1*5)
associated with statin-related myopathy [60, 61]
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clinical practice. Currently there are only limited examples based on robust data

from in vitro/in vivo studies that genetic variation may significantly alter drug

efficacy of antiplatelet therapy.

Clopidogrel a thienopyridine prodrug is extensively metabolized by several cyto-

chrome P450 enzymes (CYP2C19, CYP3A4, CYP2B6, CYP1A2, CYP2C9) for

which functional consequences related to genetic variation are very well established

[62]. The active cis 5-thiol clopidogrelmetabolite irreversibly binds to P2Y12 receptor,

thereby potently inhibiting platelet aggregation for the life span of platelets for about

10 days. Several in part prospective clinical studies provide abundant evidence that the

bioactivation of clopidogrel via CYP2C19 is strongly influenced by loss-of-function

variants (e.g., CYP2C19*2) resulting in lower plasma levels of the active metabolite

and subsequent pharmacodynamic consequences for selected cardiovascular risk

groups (Table 17.2). In particular the CYP2C19*2 (c.681G>A; rs4244285) allele

majorly interferes with clopidogrel-dependent platelet inhibition by altering the

mRNA reading frame and resulting in a truncated nonfunctional protein. However

rare variants (e.g.,CYP2C19*3 to *8) beyondCYP2C19*2 depending on the patient’s
ethnic background additionally result in missing or decreased CYP2C19 enzyme

activity with consequences on clopidogrel response. Of note the opposite effect of

an increased catalytic activity of the CYP2C19 enzyme in carriers of the gain-of-

function CYP2C19*17 allele (c.-806C>T; rs12248560) leading to an enhanced tran-

scriptionwas recently reported [63]. TheCYP2C19*17 allele has been associatedwith
clopidogrel extensive metabolism, thus resulting in enhanced clopidogrel-associated

platelet inhibition and reduced cardiovascular events but higher bleeding risk

[64]. The effect related to CYP2C19*17 and clopidogrel use, however, is inconsistent
between different studies. This may be explained by the limitation that mostly only an

isolated analysis of theCYP2C19*17 allele status without simultaneous consideration

of the loss-of-function variant CYP2C19*2 in each patient has been performed. This

assumption is supported by recent data suggesting that both alleles are genetically

linked through a highLD, the nonrandom association between various genetic variants

localized on the same chromosome in close proximity. Thus the adjustment of a

positive association of theCYP2C19*17 allelewith clinical outcome for the individual

CYP2C19*2 genotype seems to be crucial to avoid misinterpretation of CYP2C19
pharmacogenetics and clopidogrel response [45].

In 2013 the international Clinical Pharmacogenetics Implementation Consortium

(CPIC) published an update version summarizing currently existing evidence on

CYP2C19 genotype-directed clopidogrel treatment based on a systematic literature

and expert review [65]. Several prospective studies as well as large meta-analyses

support the evidence for an indication-specific CYP2C19 pharmacogenetic

approach of clopidogrel treatment demonstrating that predominantly ACS patients

receiving percutaneous coronary intervention (PCI) who are CYP2C19 poor

metabolizers (i.e., carrier of two loss-of-function alleles) are at a significantly

increased risk for major (recurrent) adverse cardiovascular events (e.g., stent throm-

bosis). In contrast CYP2C19 pharmacogenetics appears to be of limited impact

regarding to clopidogrel-treated patients without PCI or without coronary disease

or non-cardiovascular outcomes. Notably, the frequency distribution of subjects
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carrying at least oneCYP2C19*2 allele is up to 30% in Caucasians and Africans and

approximately 60% in Asians [62]. Combining genotyping results for the loss-of-

function alleles CYP2C19*2 and *3 and the gain-of-function CYP2C19*17 allele,

the CPIC guideline suggests four different CYP2C19 phenotypes that should be

considered in ACS/PCI patients to select appropriate prescribing of antiplatelet

agents: poor metabolizer (*2/*2, *2/*3, *3/*3), intermediate metabolizer (*1/*2,
*1/*3, *2/*17), extensive metabolizer (*1/*1), and ultrarapid metabolizer (*1/*17,
*17/*17) [65]. Alternate treatment options for ACS/PCI patients with a CYP2C19

poor metabolizer phenotype have been recommended such as prasugrel or

ticagrelor. Based on these facts, the FDA included already a boxed warning in the

clopidogrel label indicating that a minor benefit of clopidogrel response in ACS/PCI

patients with a CYP2C19 poor metabolizer phenotype could be expected.

Beyond CYP2C19 genetics other nongenetic confounders such as diabetes

mellitus, body mass index, and co-medication (e.g., selected proton pump

inhibitors or tricyclic antidepressants) contributing to residual platelet aggregation

and/or clopidogrel nonresponse may have clinical relevance [63]. However so far a

well-established algorithm like the warfarin-dosing algorithm [66] covering

clopidogrel-relevant genetic and nongenetic clinical factors [67] is missing to

guide a personalized treatment approach. Nevertheless a first proof-of-concept

(POC) trial elucidating prospectively point-of-care genetic testing for

CYP2C19*2 in PCI patients and subsequent genotype-guided antiplatelet therapy

demonstrated that none of the patients who carried the CYP2C19*2 allele receiving
prasugrel treatment showed high on-treatment platelet reactivity compared to 30%

of control patients carrying the CYP2C19*2 allele and were treated with

clopidogrel. This trial provided first evidence that POC genetic testing of

CYP2C19*2 can be implemented effectively into clinical practice [68]. These

data has been confirmed by a smaller study investigating CYP2C19*2 POC

genotyping in patients with ACS/PCI and dual antiplatelet therapy in the emer-

gency setting. Platelet inhibition in patients treated with prasugrel and ticagrelor

compared to clopidogrel was more pronounced in CYP2C19*2 carriers

demonstrating again that POC genotyping might be helpful for the identification

of clopidogrel poor responder [69]. It is remarkable to note that at the University of

Maryland Medical Center and the Baltimore Veterans Administration Medical

Center, a Personalized Anti-Platelet Pharmacogenetics Program has been already

implemented in clinical routine since 2013. To ensure a turnaround time of

approximately 5 h after blood sampling, a clinical decision support system is

used including interpretation of the genetic test result and respective prescribing

recommendations [70].

Independent from CYP2C19 other candidate genes have been considered to alter
clopidogrel pharmacokinetics and pharmacodynamics. While genetic variation of

the paroxonase-1 enzyme (PON-1, rs662 (192Q>R)), which is involved in

clopidogrel activation, could not be replicated in multiple clinical trials [48]

indicating no clinical relevance for clopidogrel responsiveness, the enzyme

carboxylesterase 1 (CES1) appears to be of particular interest. CES1 hydrolyses

both 2-oxo-clopidogrel, the methyl ester of clopidogrel, and the active metabolite
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5-thiol clopidogrel resulting in carboxylic acid derivatives which are pharmaco-

logically inactive. There is clear evidence that the CES1 variant c.428G>A

(rs71647871) strongly reducing the CES1 enzyme activity in vitro and in vivo

[71] is significantly associated with an increased systemic exposure of clopidogrel

and its active metabolite. This indicates an opposite direction compared with the

effects of CYP2C19 loss-of-function variants. Moreover the CES1 c.428G>A

variant was associated with an enhanced inhibition of platelet aggregation in

independent studies [49, 50]. Currently, there is no evidence that CES1
pharmacogenetics may impact on cardiovascular events in clopidogrel-treated

ACS/PCI patients, but larger trials are required since the allele frequency of the

CES1 c.428G>A variant is rather low (about 2 to 4% in Caucasians, 4% in African

Americans, 0% in Asians).

Although currently the impact of heritability on the interindividual variability

of response to the newer P2Y12 receptor inhibitors prasugrel or ticagrelor has not

been investigated in larger clinical trials, recent gene association studies suggest

some promising candidates (Table 17.2). For instance novel findings regarding the

probe-drug prasugrel suggest that two regions of the PEAR1 gene locus may

explain extended platelet inhibition in Han Chinese healthy volunteers

[58]. Regarding the active antiplatelet agent ticagrelor, recently a GWAS

approach of the clinical PLATO trial considering a discovery (n ¼ 1812) and

replication cohort (n ¼ 1941) provides the first evidence that genetic variation of

the membrane transporter SLCO1B1 as well as of the phase I and II drug

metabolizing enzymes CYP3A4 and UGT2B7, respectively, is significantly

associated with higher drug levels of the parent drug ticagrelor and its active

metabolite. However no association with primary clinical outcome parameters

(i.e., cardiovascular death, myocardial infarction, stroke) in ticagrelor-treated

patients has been observed [59].

17.6 Summary and Perspectives

Pharmacogenomics of antiplatelet drugs appears to be a promising area to elucidate

underlying mechanisms for the better understanding of the so far unexplained

interindividual variability of drug response. The challenge of such research

activities depends on several aspects. Very well-characterized clinical phenotypes

of study participants as well as comprehensive and standardized follow-up

approaches on drug response and/or on the development of ADR are required.

Confounding factors like disease status, co-medication, and environmental aspects

are critical and must be considered carefully. Particularly better definition and

implementation of platelet-specific endpoints and in vivo models to quantify

platelet-dependent thrombus formation and hemorrhage are needed. In this context

novel high-throughput technologies to systematically assess the patient’s pheno-

type in a standardized manner are mandatory like computer-based, direct interview

methods [72].
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GWAS approaches in platelet genomics have opened a door to assess an

individual risk and provide biomarkers for a personalized antiplatelet therapy.

However the majority of previously identified SNPs in platelet genetic association

studies are noncoding, and their functional relevance is so far poorly understood.

The effect sizes of any given platelet SNPs are mostly low, thus making it hard to

adequately determine the risk for disease and major cardiovascular-/platelet-driven

endpoints from the results of GWAS. Furthermore, rare variants have escaped

current GWAS approaches due to technical limitations of previous generation

genotyping arrays that have been designed to capture only common variants.

Novel genotyping platforms like next-generation sequencing approaches are now

capable to detect rare variants with larger effect sizes [24]. However, associations

between variants with low minor allele frequencies and a moderate effect size will

be still challenging and require global meta-analysis approaches performed in

large-scale pooled, well-phenotyped, and harmonized consortia cohorts. In this

context an initiative of the international clopidogrel consortium (http://www.

pharmgkb.org/page/icpc) has been started to establish large patient cohorts includ-

ing different ethnic backgrounds to identify novel genetic variants with rare allele

frequencies for better prediction of clopidogrel response. In addition to SNPs not

only located in coding but also in regulatory noncoding gene regions, other types of

sequence variation including inversions, aberrations, copy number variants, etc. as

well as epigenetic posttranslational modifications like DNA methylation and/or

miRNAs have been proposed to be risk-/disease- and drug response-modifying

factors. These approaches and the consideration of additional omics technologies

(e.g., pharmacometabolomics) will likely enable us to link the platelet genome with

platelet biology and atherothrombotic processes in the context of cardiovascular

disease and, by this, to personalize platelet-targeted therapy in the future.
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Schrezenmeir J, Schwartz SM, Siscovick DS, Sivananthan M, Sivapalaratnam S, Smith A,

Smith TB, Snoep JD, Soranzo N, Spertus JA, Stark K, Stirrups K, Stoll M, Tang WH,

Tennstedt S, Thorgeirsson G, Thorleifsson G, Tomaszewski M, Uitterlinden AG, van Rij

AM, Voight BF, Wareham NJ, Wells GA, Wichmann HE, Wild PS, Willenborg C, Witteman

JC, Wright BJ, Ye S, Zeller T, Ziegler A, Cambien F, Goodall AH, Cupples LA,

Quertermous T, März W, Hengstenberg C, Blankenberg S, Ouwehand WH, Hall AS,

Deloukas P, Thompson JR, Stefansson K, Roberts R, Thorsteinsdottir U, O’Donnell CJ,

McPherson R, Erdmann J, CARDIoGRAM Consortium, Samani NJ. Large-scale association

analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43

(4):333–8. https://doi.org/10.1038/ng.784

20. Sl N, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, Chen J, McKnight GS, López JA,
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JP. Clinical, angiographic, and genetic factors associated with early coronary stent thrombosis.

JAMA. 2011;306(16):1765–74.

35. Hulot JS, Collet JP, Silvain J, Pena A, Bellemain-Appaix A, Barthélémy O, Cayla G, Beygui F,
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46. Frére C, Cuisset T, Gaborit B, Alessi MC, Hulot JS. The CYP2C19*17 allele is associated with

better platelet response to clopidogrel in patients admitted for non-ST acute coronary syn-

drome. J Thromb Haemost. 2009;7(8):1409–11.

47. Li Y, Tang HL, Hu YF, Xie HG. The gain-of-function variant allele CYP2C19*17: a double-

edged sword between thrombosis and bleeding in clopidogrel-treated patients. J Thromb

Haemost. 2012;10(2):199–206.

48. Reny JL, Combescure C, Daali Y, Fontana P, PON1 Meta-Analysis Group. Influence of the

paraoxonase-1 Q192R genetic variant on clopidogrel responsiveness and recurrent cardiovascu-

lar events: a systematic review and meta-analysis. J Thromb Haemost. 2012 July;10(7):1242–51.

49. Tarkiainen EK, Holmberg MT, Tornio A, Neuvonen M, Neuvonen PJ, Backman JT, Niemi

M. Carboxylesterase 1 c.428G>A single nucleotide variation increases the antiplatelet effects

of clopidogrel by reducing its hydrolysis in humans. Clin Pharmacol Ther. 2015;97(6):650–8.

50. Lewis JP, Horenstein RB, Ryan K, O’Connell JR, Gibson Q, Mitchell BD, Tanner K, Chai S,

Bliden KP, Tantry US, Peer CJ, FiggWD, Spencer SD, Pacanowski MA, Gurbel PA, Shuldiner

AR. The functional G143E variant of carboxylesterase 1 is associated with increased

clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Geno-

mics. 2013;23(1):1–8.

51. Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T, Antman EM, Braunwald E,

Sabatine MS. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after

treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic

analysis. Lancet. 2010 Oct 16;376(9749):1312–9.

52. LuoM, Li J, Xu X, Sun X, ShengW. ABCB1 C3435T polymorphism and risk of adverse clinical

events in clopidogrel treated patients: a meta-analysis. Thromb Res. 2012;129(6):754–9.

53. Su J, Xu J, Li X, Zhang H, Hu J, Fang R, Chen X. ABCB1 C3435T polymorphism and

response to clopidogrel treatment in coronary artery disease (CAD) patients: a meta-analysis.

PLoS One. 2012;7(10):e46366.

54. Brandt JT, Close SL, Iturria SJ, Payne CD, Farid NA, Ernest CS 2nd, Lachno DR, Salazar D,

Winters KJ. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic

and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost. 2007

Dec;5(12):2429–36.

290 T. Geisler et al.



55. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM,

Macias WL, Braunwald E, Sabatine MS. Cytochrome P450 genetic polymorphisms and the

response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical

outcomes. Circulation. 2009 May 19;119(19):2553–60.

56. Franken CC, Kaiser AF, Krüger JC, Overbeck K, Mügge A, Neubauer H. Cytochrome P450

2B6 and 2C9 genotype polymorphism—a possible cause of prasugrel low responsiveness.

Thromb Haemost. 2013;110(1):131–40.

57. Cuisset T, Loosveld M, Morange PE, Quilici J, Moro PJ, Saut N, Gaborit B, Castelli C,

Beguin S, Grosdidier C, Fourcade L, Bonnet JL, Alessi MC. CYP2C19*2 and *17 alleles have

a significant impact on platelet response and bleeding risk in patients treated with prasugrel

after acute coronary syndrome. JACC Cardiovasc Interv. 2012;5(12):1280–7.

58. Xiang Q, Cui Y, Zhao X, Zhao N. Identification of PEAR1 SNPs and their influences on the

variation in prasugrel pharmacodynamics. Pharmacogenomics. 2013;14(10):1179–89.

59. Varenhorst C, Eriksson N, Johansson Å, Barratt BJ, Hagstr€om E, Åkerblom A, Syvänen AC,

Becker RC, James SK, Katus HA, Husted S, Steg PG, Siegbahn A, Voora D, Teng R, Storey

RF, Wallentin L, PLATO Investigators. Effect of genetic variations on ticagrelor plasma levels

and clinical outcomes. Eur Heart J. 2015;36(29):1901–12.

60. Moßhammer D, Schaeffeler E, Schwab M, M€orike K. Mechanisms and assessment of statin-

related muscular adverse effects. Br J Clin Pharmacol. 2014 Sep;78(3):454–66.

61. Nies AT, Niemi M, Burk O, Winter S, Zanger UM, Stieger B, Schwab M, Schaeffeler

E. Genetics is a major determinant of expression of the human hepatic uptake transporter

OATP1B1, but not of OATP1B3 and OATP2B1. Genome Med. 2013;5(1):1.

62. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene

expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138

(1):103–41.

63. Scott SA, Sangkuhl K, Shuldiner AR, Hulot JS, Thorn CF, Altman RB, Klein TE. PharmGKB

summary: very important pharmacogene information for cytochrome P450, family

2, subfamily C, polypeptide 19. Pharmacogenet Genomics. 2012;22(2):159–65.

64. Zabalza M, Subirana I, Sala J, Lluis-Ganella C, Lucas G, Tomás M, Masiá R, Marrugat J,
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