
Chapter 7
Additional Topics

This chapter contains a collection of miscellaneous topics. Section 7.1 pertains to M.
Dehn’s algorithmic problems for finitely generated nilpotent groups. In Section 7.2,
we prove that finitely generated nilpotent groups are Hopfian. Section 7.3 contains
useful facts about groups of upper unitriangular matrices over a commutative ring
with unity R: In Section 7.4, we study certain groups of automorphisms that are
themselves nilpotent. In particular, we prove that if G is a nilpotent group of class
c; then the group of those automorphisms of G that induce the identity on the
abelianization of G is nilpotent of class c � 1: Section 7.5 ends the chapter with
an overview of the Frattini subgroup ˚.G/ and Fitting subgroup Fit.G/ of a group
G: Among other results, we prove that if G is a finite group, then ˚.G/ is nilpotent,
Fit.G=˚.G// D Fit.G/=˚.G/, and ˚.G/ E Fit.G/:

7.1 Decision Problems

In 1911, M. Dehn raised three decision problems about finitely presented groups.
In what follows, let G be a group given by a finite presentation G D hX j Ri : An
arbitrary (not necessarily reduced) word in the generators X is termed an X-word.
We now state the problems.

The Word Problem: Is there an algorithm which determines whether or not an
X-word is the identity in G?

The Conjugacy Problem: Is there an algorithm which determines whether or not
any pair of X-words g and h of G are conjugate in G? In other words, does an
X-word k exist in G such that g D k�1hk in G?

The Isomorphism Problem: Let H be another finitely presented group with
presentation

H D hY j Si :
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270 7 Additional Topics

Is there an algorithm which determines whether or not G and H are isomorphic?

If the answer to any such problem is “yes,” then we say that the problem is
solvable. In this section, we prove that the word problem and the conjugacy problem
for finitely generated nilpotent groups are solvable. In fact, we prove the more
general result that every finitely presented residually finite group has a solvable
word problem.

The isomorphism problem was solved in the positive by Grunewald and Segal
[4]. This is by far the most complicated of all of the decision problems for finitely
generated nilpotent groups. The algorithms associated with it are quite lengthy and
take up about 30 pages in the cited paper.

7.1.1 The Word Problem

We present the solution of the word problem given in [1] which uses residual
finiteness. We begin with a key theorem.

Theorem 7.1 (J. C. C. McKinsey) Every finitely presented residually finite group
has a solvable word problem.

Proof Let G be a finitely presented residually finite group and assume that G is
given by an explicit finite presentation. Let w be a given word in the generators. We
begin by describing two separate effective procedures.

• The first procedure simply enumerates all consequences of the defining relators.
If w appears in this enumeration, then the procedure stops.

• The second procedure begins by enumerating all finite groups, say by con-
structing their multiplication tables. For each finite group F; the procedure
then constructs the (finitely many) homomorphisms � from G to F: This is
done by assigning an element of F to each generator of G; then checking that
each defining relator of G maps to the identity element in F: For each such
homomorphism �; the procedure then computes �.w/ in F: If there exists a finite
group F and a homomorphism � W G ! F such that �.w/ ¤ 1 in F; then the
procedure stops.

Now, if w D 1 in G; then w will turn up as a consequence of the defining relators
and the first procedure will stop. On the other hand, if w ¤ 1; then the residual
finiteness of G guarantees that w … N for some N C G with F D G=N finite. Thus,
the image of w in F will be a nonidentity element and the second procedure will
stop. We conclude that if the first procedure stops, then w D 1 in G; whereas if the
second one stops, then w ¤ 1 in G: ut

Polycyclic groups are always finitely presentable. This is an immediate result of
the next theorem due to P. Hall.

Theorem 7.2 If G is a group with N E G; and both N and G=N are finitely
presented, then G is finitely presented.
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Proof Let 1G=N denote the identity element of G=N: Suppose that

N D ˝
x1; : : : ; xn

ˇ̌
r1.x1; : : : ; xn/ D 1; : : : ; rm.x1; : : : ; xn/ D 1

˛

and

G=N D ˝
g1N; : : : ; glN

ˇ̌
s1.g1N; : : : ; glN/D 1G=N ; : : : ; sk.g1N; : : : ; glN/D 1G=N

˛
:

Clearly,

G D gp.x1; : : : ; xn; g1; : : : ; gl/;

and thus G is finitely generated. The relations in these generators are given by

ri.x1; : : : ; xn/ D 1 .i D 1; : : : ; m/;

sj.g1; : : : ; gl/ D tj.x1; : : : ; xn/ .j D 1; : : : ; k/;

gjxig
�1
j D uij.x1; : : : ; xn/ .i D 1; : : : ; n and j D 1; : : : ; l/; and

g�1
j xigj D vij.x1; : : : ; xn/ .i D 1; : : : ; n and j D 1; : : : ; l/:

Define G to be the group presented by generators x1; : : : ; xn; g1; : : : ; gl and subject
to the above relations in these generators. We claim that G Š G:

By Von Dyck’s Lemma (see 2.2.1 in [11]), there exists a surjective homomor-
phism ' W G ! G determined by

xi 7! xi and gj 7! gj .i D 1; : : : ; n and j D 1; : : : ; l/:

Let K D ker ': We need to show that K D 1: Put N D gp.x1; : : : ; xn/ < G:
The restriction of ' to N determines an isomorphism with N because all of the
relations in the elements xi are consequences of the relations ri.x1; : : : ; xn/ D 1 for
i D 1; : : : ; m: Consequently, K \ N D 1: Since

gjxigj
�1 2 N and gj

�1xigj 2 N

for i D 1; : : : ; n and j D 1; : : : ; l; we have that N C G: Furthermore, ' induces
an injective map

' W G=N ! G=N such that giN 7! giN

because '
�

N
� D N: Now, all relations in the elements giN are consequences of the

relations

sj.g1N; : : : ; glN/ D 1G=N .j D 1; : : : ; k/:
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Hence, ' is an isomorphism and thus has trivial kernel. However, ker ' D KN=N:
And so, K � N: Since K \ N D 1; we conclude that K D 1: ut
Corollary 7.1 Every polycyclic group is finitely presentable.

By Theorems 4.4 and 7.1, together with Corollaries 5.21 and 7.1, we now have:

Theorem 7.3 Polycyclic groups have solvable word problem. In particular, finitely
generated nilpotent groups have solvable word problem.

7.1.2 The Conjugacy Problem

In order to prove that the conjugacy problem for finitely generated nilpotent groups
is solvable, we need a theorem of N. Blackburn [2].

Definition 7.1 A group G is called conjugacy separable if, whenever two elements
g and h of G are conjugate, then the images of g and h in every finite homomorphic
image of G are conjugate.

Theorem 7.4 (N. Blackburn) Every finitely generated nilpotent group is conjugacy
separable.

We introduce some notation: if u and v are conjugate elements of a group, then
we write u � v; otherwise, we write u œ v:

Proof The proof, which is adopted from [1], is done by induction on the Hirsch
length r of G: If r D 0; then G is finite and the result is immediate.

Suppose that r > 0 and assume the theorem is true for every finitely generated
nilpotent group of Hirsch length less than r: Let g and h be elements of G such that
gN � hN for every N C G with G=N finite. We claim that g � h: Assume on the
contrary, that g œ h: Since r > 0; G must be infinite. By Lemma 2.27, there exists
of an element a 2 Z.G/ of infinite order. Let

Hi D gp
�

aiŠ
�

.i D 1; 2; : : :/:

By Theorem 4.7, the Hirsch length of each G=Hi is r � 1: Suppose that gHi œ hHi

for some i: By induction and the Third Isomorphism Theorem, there exists a normal
subgroup Ni=Hi of G=Hi such that

.G=Hi/ = .Ni=Hi/ Š G=Ni

is finite and the images of g and h under the natural homomorphism G ! G=Ni are
not conjugate in G=Ni: As this contradicts our earlier assumption that the images of
g and h are conjugate in every finite quotient of G; it must be the case that gHi � hHi

for all i 2 N: In particular, gH1 � hH1 in G=H1: Since H1 D gp.a/; we can find a
nonzero integer m and an element k 2 G such that hk D gam: It immediately follows
that for all i 2 N;
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gHi � gamHi:

Thus, for each i 2 N; we can find di 2 G and si 2 Z such that

gdi D gam
�

aiŠ
�si

: (7.1)

Put L D gp.d1; d2; : : : ; g; a/ � G: Since a 2 Z.G/; it is clear that a 2 Z.L/:
Moreover, it follows from (7.1) that

Œdi; g� 2 gp.a/

for all i 2 N: Since gp.a/ � Z.L/; we apply the commutator calculus to conclude
that Œx; g� 2 gp.a/ for all x 2 L: As a result, we obtain a homomorphism

' W L ! gp.a/ defined by '.x/ D Œx; g�:

It follows immediately that L=ker ' is cyclic. Hence, there exists b 2 L such that

L D gp.ker '; b/: (7.2)

We henceforth assume, on replacing b by b�1 if necessary, that

Œb; g� D a˛ .˛ � 0/: (7.3)

We now argue that ˛ cannot be zero. If it were the case that ˛ D 0; then Œb; g� D
1: Since ker ' D CL.g/; this would imply that g 2 Z.L/: Thus, by (7.1),

1 D am
�

aiŠ
�si

for all i 2 N: Since a has infinite order, it must be that m C iŠsi D 0 for all i 2 N:

This is impossible since m ¤ 0 and the sequence fiŠ j i 2 Ng is strictly increasing.
We conclude that ˛ > 0 in (7.3).

Next, we find all of the conjugates of g in L: By (7.2), such a conjugate has the
form gxbn

; where x 2 ker ' and n 2 Z: Since Œg; b� 2 Z.L/ and ker ' D CL.g/; it
must be the case that

gxbn D gbn D g Œg; bn� D gŒg; b�n D ga�n˛:

It follows that the conjugates of g in L are:

g; ga˙˛; ga˙2˛; : : : : (7.4)

Since g and gam are not conjugate in G; they cannot be conjugate in L: Thus, ˛ does
not divide m: However, (7.1) yields
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gd˛ D gam
�

a˛Š
�s˛

because ˛ > 0: This means that gam
�
a˛Š
�

is one of the conjugates listed in (7.4),
so m C s˛˛Š D �˛ for some integer �: Hence, ˛ divides m; a contradiction. This
completes the proof. ut
Corollary 7.2 The conjugacy problem for finitely generated nilpotent groups is
solvable.

Proof Let G be a finitely generated nilpotent group. We can assume that G is given
by an explicit finite presentation in light of Theorem 4.4 and Corollary 7.1. Let g
and h be words in the generators of G: As we did in the proof of Theorem 7.1, we
describe two separate procedures.

• The first procedure begins by enumerating the consequences of the finitely many
relators. If there exists a word k in the generators of G such that h�1gk appears in
this enumeration, then the procedure stops.

• As before, the second procedure begins by listing all finite groups (up to
isomorphism) by means of their multiplication tables. For every finite group F;
we compute (the finitely many) homomorphisms from G to F: Once again, this is
done by assigning an element of F to each generator of G and then verifying
that the defining relators are mapped to 1. Finally, for every homomorphism
' W G ! F; we compute '.g/ and '.h/ in F: If there exists a finite group F
and a homomorphism ' W G ! F in which '.g/ and '.h/ are not conjugate, then
the procedure stops.

Now, if g and h are conjugate in G; then there is a word k in the generators of G
such that h�1gk D 1 in G: Hence, the word h�1gk is a consequence of the defining
relations and the first procedure will stop.

Next, assume that g and h are not conjugate in G: By Theorem 7.4, there exists
a finite group F and a homomorphism ' W G ! F such that '.g/ and '.h/ are not
conjugate in F; so the second procedure stops.

Therefore, if the first procedure stops, g and h are conjugate in GI whereas if the
second procedure stops, then g and h are not conjugate in G: This completes the
solution to the conjugacy problem. ut

7.2 The Hopfian Property

In the 1930s, H. Hopf asked whether a finitely generated group could be isomorphic
to a proper quotient of itself. Groups which are not isomorphic to proper quotients
of themselves are known as Hopfian. In this section, we prove that every finitely
generated nilpotent group is Hopfian. An example of a non-Hopfian group will be
presented as well.
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Definition 7.2 A group G is Hopfian if G=N Š G for some N E G implies that
N D 1: Equivalently, every epimorphism of G is an isomorphism of G:

Recall that a group G satisfies Max if all of its subgroups are finitely generated
(see Definition 2.14). By Theorem 2.16, G satisfies Max if and only if every
ascending series of subgroups stabilizes.

Proposition 7.1 If G satisfies Max, then G is Hopfian.

Proof The proof is done by contradiction. Suppose that G satisfies Max and assume
that there is an epimorphism ˚ W G ! G with nontrivial kernel. For j � 1; set

˚ıj D ˚ ı � � � ı ˚„ ƒ‚ …
j

:

Clearly, ˚ıj W G ! G is an epimorphism for each j � 1: Let Kj D ker
�
˚ıj

�
.

Observe that ˚ıj
�
Kj
� D 1 and ˚ıj

�
KjC1

� D ker ˚: We claim that

K1 < K2 < � � �

is an infinite properly ascending chain of subgroups of G: Indeed, since ker ˚ is
nontrivial, there exists kjC1 2 KjC1 such that

1 ¤ ˚ıj
�
kjC1

� 2 ker ˚:

Thus, kjC1 … Kj: This contradicts the fact that G satisfies Max. Therefore, the
kernel of ˚ must be trivial and thus ˚ is a monomorphism. Consequently, ˚ is
an isomorphism. And so, G is Hopfian. ut
Corollary 7.3 Every finitely generated nilpotent group is Hopfian.

Proof Finitely generated nilpotent groups satisfy Max by Theorem 2.18. Apply
Proposition 7.1. ut
Remark 7.1 More generally, A. I. Mal’cev proved that every finitely generated
residually finite group is Hopfian.

An example of a non-Hopfian group is the Baumslag-Solitar group BS.2; 3/;
where

BS.2; 3/ D
D
a; b

ˇ̌
ˇ b�1a2b D a3

E
:

Consider the map

� W BS.2; 3/ ! BS.2; 3/ induced by a 7! a2 and b 7! b:

The fact that � is indeed a well-defined homomorphism follows from Von Dyck’s
Lemma (see 2.2.1 in [11]). Furthermore, b is clearly in the image of �; and a 2 im �

since
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�
�

a�1b�1ab
�

D �
�

a�1��
�

b�1��
�

a
�
�
�

b
�

D a�2b�1a2b D a�2a3 D a:

Thus, � is an epimorphism. We claim that � has a nontrivial kernel. First, observe

that the element
h
b�1ab; a

i
can be written as such:

h
b�1ab; a

i
D
�

b�1ab
��1

a�1b�1aba

D b�1a�1ba�1b�1aba:

Hence,
h
b�1ab; a

i
¤ 1 by Britton’s Lemma (see Chapter IV in [9]). The element

h
b�1ab; a

i
belongs to the kernel of � because

�
�h

b�1ab; a
i�

D
h
�
�

b�1ab
�
; �.a/

i

D
h
b�1a2b; a

i
D
h
a3; a

i
D 1:

Since � is an epimorphism of BS.2; 3/ onto itself,

BS.2; 3/=ker � Š BS.2; 3/

by the First Isomorphism Theorem; that is, BS.2; 3/ is isomorphic to a proper
quotient of itself.

7.3 The (Upper) Unitriangular Groups

In this section, R will always be a commutative ring with unity. An important
collection of nilpotent groups are the (upper) unitriangular groups of degree n over
R, denoted by UTn.R/: These groups were first encountered in Example 2.17 of
Section 1.3. The purpose of this section is to acquaint the reader with some of their
fundamental properties.

Recall from Example 2.17 that if S is the set of n�n upper triangular matrix over
R whose main diagonal entries are all 0; then

UTn.R/ D fIn C M j M 2 Sg

is a nilpotent group of class less than n: For any 1 � m � n; let UTm
n .R/ be the

normal subgroup of UTn.R/ consisting of those matrices whose m�1 superdiagonals
have 0’s in their entries. For example,
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UT24 .R/ D

8
ˆ̂<

ˆ̂:

0

B
B
@

1 0 r s
0 1 0 t
0 0 1 0

0 0 0 1

1

C
C
A

ˇ̌
ˇ
ˇ̌ r; s; t 2 R

9
>>=

>>;
and UT34 .R/ D

8
ˆ̂<

ˆ̂:

0

B
B
@

1 0 0 r
0 1 0 0

0 0 1 0

0 0 0 1

1

C
C
A

ˇ̌
ˇ
ˇ̌ r 2 R

9
>>=

>>;
:

In particular, UT1n .R/ D UTn.R/ and UTn
n .R/ D In: Note that we have the inclusions

UTn.R/ > UT2n .R/ > � � � > UTn�1
n .R/ > In:

Many of the properties of UTn.R/ can be derived using certain matrices called
transvections. Let Eij denote the n � n matrix with 1 in the .i; j/ entry and 0’s
elsewhere. It is easy to see that

Eij � Ekl D
(

Eil if j D k;

0 otherwise:
(7.5)

Let r 2 R; and set

ti; j.r/ D In C rEij .1 � i; j � n and i ¤ j/:

If r ¤ 0; then ti; j.r/ is called a transvection. We abbreviate ti; j.1/ D ti; j:

Lemma 7.1 Let r; s 2 R; and assume that i ¤ j and k ¤ l: Then

(i) ti; j.r/ � ti; j.s/ D ti; j.r C s/:

(ii)
�

ti; j.r/
��1 D ti; j.�r/:

(iii)
�
ti; j.r/; tk; l.s/

� D

8
ˆ̂<

ˆ̂:

ti; l.rs/ if j D k; i ¤ l;

tk; j.�rs/ if j ¤ k; i D l;

In if j ¤ k; i ¤ l:
In case R D Z; we also have

(iv) ti; j.r/ D ti; j.1/
r D tr

i; j:

Proof Observe that

ti; j.r/ � ti; j.s/ D �
In C rEij

��
In C sEij

�

D In C .r C s/Eij C rsE2ij

D In C .r C s/Eij

D ti; j.r C s/:

This proves (i). In particular,

ti; j.r/ � ti; j.�r/ D ti; j.r C .�r// D In:
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This gives (ii). To obtain (iii), we use the fact that

�
ti; j.r/; tk; l.s/

� D ti; j.�r/ � tk; l.�s/ � ti; j.r/ � tk; l.�s/

D �
In � rEij

��
In � sEkl

��
In C rEij

��
In C sEkl

�

by (ii). For instance, if j D k but i ¤ l; then a straightforward computation, together
with (7.5), give

�
ti; j.r/; tk; l.s/

� D In C rsEil D ti; l.rs/:

The rest of (iii) follows similarly.
We prove (iv). The result is immediate for r D 0 since ti; j.0/ D In: Let r > 0:

Using (i), we obtain

ti; j.r/ D ti; j

 
rX

nD1
1

!

D
rY

nD1
ti; j.1/ D tr

i; j: (7.6)

If r < 0; then (7.6), together with (ii), give

ti; j.r/ D �
ti; j.�r/

��1 D tr
i; j

since �r > 0: ut
Next, we find a convenient collection of transvections which generate UTm

n .R/:
First, we make a simple observation. Let A D .akl/ be an n � n matrix with entries
in R; so that

A D
X

1�k; l�n

aklEkl:

For i ¤ j; we have

Ati; j.r/ D A
�
In C rEij

� D A C rAEij

D A C r

 
X

1�k; l�n

aklEkl

!

Eij

D A C r
nX

kD1
akiEkj

by (7.5). Thus, the product Ati; j.r/ is the matrix obtained by adding r times the ith
column of A to the jth column of A:

Theorem 7.5 The set of transvections
˚
ti; j.r/ j j�i � m; r 2 R

�
generates UTm

n .R/:
If R D Z; then the set

˚
ti; j j j � i � m

�
generates UTm

n .Z/:
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Proof Suppose that A D �
aij
� 2 UTm

n .R/: By the observation above, A can be
reduced to the identity matrix by post-multiplying A by a suitable sequence of
transvections. More specifically,

A
�
t1; mC1.�a1; mC1/ � � � t1; n.�a1; n/

��
t2; mC2.�a2; mC2/ � � � t2; n.�a2; n/

�

� � � tn�m; n.�an�m; n/ D In:

After taking inverses of both sides and applying Lemma 7.1 (ii), the matrix A equals
the product of transvections

tn�m; n.an�m; n/ � � � �t2; n.a2; n/ � � � t2; mC2.a2; mC2/
��

t1; n.a1; n/ � � � t1; mC1.a1; mC1/
�
:

Thus,
˚
ti; j.r/

ˇ̌
j � i � m; r 2 R

�
is a generating set for UTm

n .R/: The case R D Z

follows immediately from Lemma 7.1 (iv). ut
Setting m D 1 in Theorem 7.5 and applying Lemma 7.1 give:

Corollary 7.4 The set ftk�1; k.r/ j 2 � k � n; r 2 Rg generates UTn.R/; and the
set ftk�1; k j 2 � k � ng generates UTn.Z/:

Observe that the set ftk�1; k.r/ j 2 � k � n; r 2 Rg; together with the identities
in Lemma 7.1, give a presentation for UTn.R/:

The lower and upper central series of UTn.R/ coincide. This is the point of the
following theorem.

Theorem 7.6 The series

UTn.R/ > UT2n .R/ > � � � > UTn�1
n .R/ > 1 (7.7)

is both the lower and the upper central series for UTn.R/: Hence,

• The nilpotency class of UTn.R/ is exactly n � 1;
• UTi

n.R/ D �iUTn.R/ D �n�iUTn.R/ for i D 1; 2; : : : ; n and
• UTj

n.R/=UTjC1
n .R/ is abelian for j D 1; 2; : : : ; n � 1:

Proof Put UTn.R/ D U and UTi
n.R/ D Ui for i D 1; 2; : : : ; n: We claim that

ŒUi; U� D UiC1 for each i D 1; 2; : : : ; n � 1:
1. Let Œg; h� 2 ŒUm; U�;where g 2 Um and h 2 U: By Theorem 7.5 and Lemma 7.1,

g is a product of transvections of the form ti; j.r/ with j � i � m, r 2 R; and h
is a product of transvections of the form tk; l.s/ with l � k � 1 and s 2 R: We
prove the claim by induction on the number of transvections occurring in g and
h combined.

• For the basis of induction, assume that g D ti; j.r/ and h D tk; l.s/: Suppose
that j D k but i ¤ l: By Lemma 7.1 (iii),

Œg; h� D ti; l.rs/:
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Since in this case l � i D .j � i/C .l � k/ � m C 1; we have Œg; h� 2 UmC1:
The other cases are handled in a similar way.

• Suppose that g D ti; j.r/Ng and h D tk; l.s/; where Ng 2 Um: By Lemma 1.4 (v),

Œg; h� D �
ti; j.r/Ng; tk; l.s/

� D �
ti; j.r/; tk; l.s/

�Ng�Ng; tk; l.s/
�
:

Now,
�Ng; tk; l.s/

� 2 UmC1 and
�
ti; j.r/; tk; l.s/

� 2 UmC1 by induction. Hence,

�
ti; j.r/; tk; l.s/

�Ng 2 UmC1;

and thus Œg; h� 2 UmC1:
• Suppose that g D ti; j.r/Ng and h D tk; l.s/Nh; where Ng 2 Um and Nh 2 U: By

Lemma 1.4 (vi),

Œg; h� D �
ti; j.r/Ng; tk; l.s/Nh

� D �
ti; j.r/Ng; Nh��ti; j.r/Ng; tk; l.s/

�Nh
:

Since
�
ti; j.r/Ng; Nh� 2 UmC1 by induction and

�
ti; j.r/Ng; tk; l.s/

� 2 UmC1 by the
previous case, we have Œg; h� 2 UmC1:

Therefore, ŒUm; U� � UmC1:
2. In order to establish the reverse inclusion UmC1 � ŒUm; U�; it suffices to show

that ŒUm; U� contains every transvection ti; j.r/ with j � i � m C 1 and r 2 R:
Consider the transvections ti; iCm.r/ 2 Um and tiCm; j D tiCm; j.1/ 2 U: By
Lemma 7.1 (iii),

ti; j.r/ D �
ti; iCm.r/; tiCm; j

� 2 ŒUm; U�:

Thus, UmC1 � ŒUm; U�:

This proves the claim that ŒUi; U� D UiC1 for i D 1; : : : ; n � 1: Therefore,
�iU D Ui; and thus (7.7) is the lower central series for UTn.R/: In order to prove
that (7.7) is the upper central series for UTn.R/; one can use induction on n � i to
show that �n�iUTn.R/ D �iUTn.R/: We omit the details. ut

One can easily find a set of generators for the factor groups of (7.7) by using
Theorem 7.5.

Theorem 7.7 For m D 1; 2; : : : ; n � 1; each factor group UTm
n .R/=UTmC1

n .R/
is generated, modulo UTmC1

n .R/; by the set fti; mCi.r/ j 1 � i � n � m; r 2 Rg:
If R D Z; then UTm

n .Z/=UTmC1
n .Z/ is generated, modulo UTmC1

n .Z/; by the set
fti; mCi j 1 � i � n � mg:

We show next that UTn.Z/ is torsion-free. In fact, we prove this for any ring
whose characteristic is zero.

Theorem 7.8 If R has characteristic zero, then UTn.R/ is torsion-free. In particu-
lar, UTn.Z/ is torsion-free.
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Proof By Theorem 7.6, the center of UTn.R/ equals the subgroup UTn�1
n .R/

consisting of those matrices with an arbitrary entry of R in the uppermost right
corner and 0’s elsewhere. It follows that Z.UTn.R// is isomorphic to the additive
group of R: Since R has characteristic zero, Z.UTn.R// is torsion-free. The result
follows from Corollary 2.21. ut
Remark 7.2 If the characteristic of R is different than zero, then UTn.R/ need not
be torsion-free. For example, let R be the polynomial ring in one variable over a
finite field of characteristic a prime p and let 2 � k � n: By Corollary 7.4, a typical
generator for UTn.R/ is a transvection of the form tk�1; k.r/; where r 2 R: Since R
has characteristic p; we apply Lemma 7.1 (i) repeatedly to obtain

.tk�1; k.r//
p D tk�1; k.rp/ D I:

Thus, every generator of UTn.R/ is a torsion element.

There is a natural Mal’cev basis for UTn.Z/: By Corollary 7.4 and Theo-
rem 7.8, UTn.Z/ is finitely generated and torsion-free. Each of the factor groups
UTm

n .Z/=UTmC1
n .Z/ is torsion-free and finitely generated, modulo UTmC1

n .Z/; by
transvections of the form ti; mCi; where 1 � i � n � m: This follows directly from
Corollary 2.20 and Theorem 7.7. Taking this into consideration, we have:

Lemma 7.2 The set of transvections

˚
t1; 2; t2; 3; : : : ; tn�1; n; t1; 3; t2; 4; : : : ; tn�2; n; : : : ; t1; n

�

is a Mal’cev basis for UTn.Z/:

7.4 Nilpotent Groups of Automorphisms

In this section, we prove that certain subgroups of the automorphism group of a
given group are nilpotent. We begin by defining the holomorph of a group.

Let G be a group and define the set

eG D f'g j ' 2 Aut.G/; g 2 Gg:

We can regard eG as the Cartesian product Aut.G/ � G: This set becomes a group
under the operation

�
'g
��
'0g0� D ''0g'0g0;

where g'
0 D '0.g/ 2 G: Thus, we have a semi-direct product of G by Aut.G/: This

group is called the holomorph of G; written as Hol.G/:
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7.4.1 The Stability Group

Definition 7.3 Let G be any group and let

G D G0 � G1 � � � � � Gr D 1 (7.8)

be a series of subgroups of G: The stability group of G relative to the series (7.8) is
the group A of all automorphisms ' of G such that

'
�
xGi

� D xGi for every i D 0; : : : ; r � 1 and x 2 GiC1: (7.9)

The group A and the automorphism ' 2 A are said to stabilize the series (7.8).

Putting x D 1 in (7.9) shows that each Gi is invariant under ': In [7], L. Kalužnin
proved that the stability group of a group is always solvable of “solvability length”
at most m: If the series happens to be a normal series, then the stability group is, in
fact, nilpotent.

Theorem 7.9 Let

G D G0 � G1 � � � � � Gr D 1 (7.10)

be a normal series of a group G: If A is the stability group of G relative to (7.10),
then A and ŒG; A� are nilpotent of class less than r: Here, ŒG; A� is viewed as a
subgroup of Hol.G/:

In this situation, the stability group acts nilpotently on G according to Defini-
tion 6.5. The proof relies on a property of commutator subgroups.

Theorem 7.10 Let H and K be subgroups of a group G and suppose that

H D H0 � H1 � � � �

is a descending series of normal subgroups of H such that ŒHi; K� � HiC1 for each
integer i � 0: Put K D K1; and for j > 1; define

Kj D fx 2 K j ŒHi; x� � HiCj for all i � 0g:

Then
�
Kj; Kl

� � KjCl for all j; l � 1; and
�
Hi; �jK

� � HiCj for all i � 0 and j � 1:

Proof We show first that
�
Kj; Kl

� � KjCl: By definition,
�
Hi; Kj

� � HiCj and�
HiCj; Kl

� � HiCjCl: Hence,

�
Hi; Kj; Kl

� � �
HiCj; Kl

� � HiCjCl

by Proposition 1.1 (iii). Likewise,

�
Kl; Hi; Kj

� D �
Hi; Kl; Kj

� � HiCjCl
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by Proposition 1.1 (i) and (iii). By hypothesis, HiCjCl is normal in H: Moreover, for
x 2 K;

x�1HiCjClx D HiCjCl
�
HiCjCl; x

�
:

Since
�
HiCjCl; x

� � HiCjClC1; we conclude that

x�1HiCjClx � HiCjCl:

This shows that HiCjCl is normal in the subgroup of G generated by H and K: Thus,

�
Kj; Kl; Hi

� D �
Hi;

�
Kj; Kl

�� � HiCjCl

by Proposition 1.1 (i) and Lemma 2.18. Therefore, by definition,
�
Kj; Kl

� � KjCl:

In particular,
�
Kj; K

� � KjC1: Hence, �jK � Kj and thus

�
Hi; �jK

� � �
Hi; Kj

� � HiCj

by Proposition 1.1 (iii). This completes the proof. ut
Remark 7.3 Note that Theorem 2.14 (i) can be obtained from Theorem 7.10 by
setting Hi D �iC1G and K D G:

We now prove Theorem 7.9. To begin with, we assert that ŒGi; A� � GiC1 for
i D 0; 1; : : : ; r � 1: If x 2 Gi and ˛ 2 A; then

Œx; ˛� D x�1˛�1x˛ D x�1x˛ 2 GiC1

since ˛ induces the identity on Gi=GiC1: Put Hi D Gi (i D 0; 1; : : : ; r) and K D A
in Theorem 7.10 and regard all of these as subgroups of the Hol.G/: Then

ŒG; �rA� D ŒG0; �rA� � Gr D 1;

and thus ŒG; �rA� D 1: Now, let ˛ 2 �rA and x 2 G: Then Œx; ˛� D x�1x˛ D 1;

which shows that ˛ D 1: Consequently, �rA D 1 and A is nilpotent of class less
than r as asserted.

Next, we prove that ŒG; A� is nilpotent of class less than r: Since Gi E G for
i D 0; 1; : : : ; r; we have ŒGi; G� � Gi: Hence,

ŒGi�1; G; A� � ŒGi�1; A� � Gi:

Furthermore,

ŒA; Gi�1; G� D ŒGi�1; A; G� � ŒGi; G� � Gi
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by Proposition 1.1 (i). By assumption, x˛ 2 Gi for x 2 Gi and ˛ 2 A: Thus, Gi is
normal in the subgroup of Hol.G/ generated by A and G: Therefore,

ŒG; A; Gi�1� D ŒGi�1; ŒG; A�� � Gi

by Proposition 1.1 (i). By letting K D ŒG; A� and Gi D Hi in Theorem 7.10, we
have

ŒG1; �r�1ŒG; A�� � Gr D 1:

However, ŒG; A� D ŒG0; A� � G1: Therefore,

ŒŒG; A�; �r�1ŒG; A�� D 1;

and thus �rŒG; A� D 1: This completes the proof of Theorem 7.9.

Remark 7.4 By repeating what was done in Example 6.1 with a free R-module of
finite rank over a ring with unity, one can conclude from Theorem 7.9 that UTn.R/
is a nilpotent group of class less than n: This was established in Chapter 1 using a
different method (see Example 2.17).

The next theorem is a more general result due to P. Hall [5].

Theorem 7.11 The stability group A relative to any series of subgroups of length
m � 1 of a group G is nilpotent of class at most m.m � 1/=2:

We begin by proving Theorem 7.12, from which Theorem 7.11 will follow.
Regard both Aut.G/ and G as subgroups of Hol.G/ and note that the stability
group A relative to the series (7.8) also becomes a subgroup of Hol.G/: Thus, A
is characterized by the property

ŒGi�1; A� � Gi .i D 1; � � � ; m/

since ˛.g/ D g˛ D ˛�1g˛ in Hol.G/ for every ˛ 2 Aut.G/: We have already
encountered this property in the proof of Theorem 7.9.

Theorem 7.12 Let H and K be two subgroups of a group G: If

ŒH; K; � � � ; K„ ƒ‚ …
m

� D 1

for some m 2 N; then Œ�nC1K; H� D 1; where n D m.m � 1/=2:
To obtain Theorem 7.11 from Theorem 7.12, observe that ŒGi�1; A� � Gi implies

that

ŒG; A; � � � ; A„ ƒ‚ …
m

� � ŒG1; A; � � � ; A„ ƒ‚ …
m�1

� � � � � � ŒGm�1; A� � Gm D 1;
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so that

ŒG; A; � � � ; A„ ƒ‚ …
m

� D 1:

Theorem 7.12 now implies that Œ�nC1A; G� D 1; where n D m.m � 1/=2: However,
this means that ˛.g/ D g˛ D g for every ˛ 2 �nC1A and g 2 G: Therefore, �nC1A
contains only the identity isomorphism and thus A is nilpotent of class at most n.

The proof of Theorem 7.12 relies on the next lemma.

Lemma 7.3 Let H; K; and L be subgroups of a group G such that G D gp.H; K/:
If ŒH; K; L� D 1; then ŒL; H; K� D ŒK; L; H� E G:

Proof Let C be the centralizer of ŒH; K� in G:By Corollary 1.4, ŒH; K� E gp.H; K/
and thus ŒH; K� E G by assumption. Since L � C by hypothesis, a direct
computation shows that ŒL; H� � C:

Let x 2 H; y 2 K; and t 2 ŒL; H�: Set z D �
x; y�1�: Then t 2 C and z 2 ŒH; K�;

so that t and z commute. Since yx D zy; Lemma 1.4 (vi) gives

�
t; yx

� D �
t; zy

� D �
t; y

��
t; z
�y D �

t; y
�
:

This means that ŒL; H; Kx� D ŒL; H; K�: Since ŒL; H� E gp.L; H/ by Corollary 1.4
and x 2 H; we also have ŒL; H� D ŒL; H�x: Hence,

ŒL; H; K�x D ŒŒL; H�x; Kx� D ŒL; H; Kx� D ŒL; H; K�;

which means that H normalizes ŒL; H; K�: Since ŒL; H; K� E gp.ŒL; H�; K/ by
Corollary 1.4, K also normalizes ŒL; H; K�: Therefore, ŒL; H; K� is normal in G:

By Proposition 1.1 (i), ŒK; H; L� D ŒH; K; L� D 1: Thus, we interchange the
roles of H and K and conclude that ŒL; K; H� D ŒK; L; H� is also normal in G: It
follows that ŒH; K; L� D 1 and both ŒL; H; K� and ŒK; L; H� are normal in G: By
Lemma 2.18, the subgroups ŒL; H; K� and ŒK; L; H� are contained in one another.
The result now follows. ut

We now prove Theorem 7.12 by induction on m: If m D 1; then ŒH; K� D 1 and
n D 0: Thus, ŒK; H� D ŒH; K� D 1 by Proposition 1.1 (i). This gives the basis of
induction.

Let m > 1; and put n D m.m � 1/=2: Let H1 D ŒH; K�; and notice that

ŒH1; K; � � � ; K„ ƒ‚ …
m�1

� D 1

since, by hypothesis, ŒH; K; � � � ; K„ ƒ‚ …
m

� D 1: Given that ŒH1; K; � � � ; K„ ƒ‚ …
m�1

� D 1; we

may assume inductively that

Œ�lC1K; H1� D 1;
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where l D .m � 1/.m � 2/=2: A direct calculation shows that l D n � m C 1; where
n D m.m � 1/=2: Let r � l C 1; and observe that

Œ�rK;H1� � Œ�lC1K; H1� D 1:

By Proposition 1.1 (i),

ŒH; K; �rK� D ŒH1; �rK� D Œ�rK; H1� D 1:

By Lemma 7.3 and Proposition 1.1 (i),

Œ�rK; H; K� D ŒK; �rK; H� D Œ�rK; K; H� D Œ�rC1K; H�

for r > l: Hence,

Œ�lC1K;H;K; � � � ;K„ ƒ‚ …
m�1

� D Œ�lC2K;H;K; � � � ;K„ ƒ‚ …
m�2

� D � � � D Œ�nK;H;K� D Œ�nC1K;H�:

Since �lC1K � K; it follows from Proposition 1.1 (i) and (iii) that

Œ�lC1K; H� � ŒK; H� D ŒH; K�:

Thus,

Œ�nC1K; H� D Œ�lC1K; H; K; � � � ; K„ ƒ‚ …
m�1

� � ŒH; K; � � � ; K„ ƒ‚ …
m

�:

However, ŒH; K; � � � ; K„ ƒ‚ …
m

� D 1: This completes the proof of Theorem 7.12.

7.4.2 The IA-Group of a Nilpotent Group

If G is a nilpotent group of class c; then we conclude from Corollary 1.1 and
Lemma 2.12 that Inn.G/ is nilpotent of class c�1:We turn our attention to a certain
nilpotent subgroup of Aut.G/ that contains Inn.G/ and whose class is also c � 1:

The material that appears in this section is based on [6] and Section 1.2 of [13].

Definition 7.4 An IA-automorphism of a group G is an automorphism of G that
induces the identity on the abelianization of G:

Thus, ˛ is an IA-automorphism of G if and only if ˛ belongs to the kernel of the
natural homomorphism

Aut.G/ ! Aut .G=�2G/ :
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It is easy to show that the set of all IA-automorphisms of G is a subgroup of Aut.G/:
This subgroup is called the IA-group of G and is denoted by IA.G/: Hence,

IA.G/ D f˛ 2 Aut.G/ j g�1˛.g/ 2 �2G for all g 2 Gg:

Clearly, IA.G/ D 1 whenever G is abelian. Furthermore, IA.G/ contains Inn.G/:
For if 'h 2 Inn.G/; then

'h.g/ D gh D gŒg; h�

for every g 2 G: Since Œg; h� 2 �2G; 'h 2 IA.G/:
Our ultimate goal in this section is to prove that the IA-group of a finitely

generated torsion-free nilpotent group of class c is finitely generated torsion-free
nilpotent of class c � 1: This is essentially a result due to P. Hall [6]. We begin by
proving a lemma which is the main ingredient in establishing that the IA-group of a
nilpotent group of class c is nilpotent of class c � 1:
Lemma 7.4 Let H and K be subgroups of a group G such that ŒH; K� � �2H: Then�
�iH; �jK

� � �iCjH for all i; j 2 N:

Proof We do “double induction.” Let j D 1: We prove that Œ�iH; K� � �iC1H
by induction on i: If i D 1; then the result holds by hypothesis. Assume that
Œ�i�1H; K� � �iH for i > 1: By the induction hypothesis and Proposition 1.1 (iii),

Œ�i�1H; K; H� � Œ�iH; H� D �iC1H:

Furthermore,

ŒK; H; �i�1H� � Œ�2H; �i�1H� � �iC1H

by hypothesis, Proposition 1.1 (i) and (iii), and Theorem 2.14 (i). Using
Lemma 2.18, we have

Œ�iH; K� D ŒH; �i�1H; K� � �iC1H:

The basis of induction for j now follows.
The induction hypothesis for j is

�
�iH; �j�1K

� � �iCj�1H for all i: By
Proposition 1.1 (i),

�
�iH; �jK

� D �
�iH;

�
K; �j�1K

�� D �
K; �j�1K; �iH

�
:

By Proposition 1.1 (iii) and the induction hypothesis on j; we have

�
�iH; K; �j�1K

� � �
�iC1H; �j�1K

� � �iCjH
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and

�
�j�1K; �iH; K

� � �
�iCj�1H; K

� � �iCjH:

Invoking Lemma 2.18 once again, we conclude that
�
�iH; �jK

� � �iCjH: ut
Theorem 7.13 For all j 2 N and any group G; the elements of �jIA.G/ induce the
identity on each �iG=�iCjG: If G is nilpotent of class c; then IA.G/ is nilpotent of
class c � 1:

In particular, IA.G/ is abelian when G is nilpotent of class 2:

Proof To prove the first assertion, notice that if we choose x 2 G and  2 IA.G/;
then

Œx;  � D x�1x 2 �2G

in Hol.G/: Hence, ŒG; IA.G/� � �2G; and by Lemma 7.4,

�
�iG; �jIA.G/

� � �iCjG:

This means that the elements of �jIA.G/ induce the identity on �iG=�iCjG as
asserted.

Next, suppose that G is nilpotent of class c: We claim that IA.G/ is nilpotent
of class c � 1: Let ˛ 2 �cIA.G/: By the previous result, ˛ induces the identity
on �1G=�cC1G: Since �1G=�cC1G Š G; ˛ is the identity automorphism and thus
�cIA.G/ D 1: By Corollary 2.3, IA.G/ is nilpotent of class less than c: However,

IA.G/ � Inn.G/ Š G=Z.G/;

and G=Z.G/ is of class c � 1 by Lemma 2.12. Thus, IA.G/ is of class c � 1: ut
Remark 7.5

(i) Theorem 7.13 implies that if G is a nilpotent group, then IA.G/ is the stability
group of G relative to its lower central series.

(ii) While Theorem 7.11 already implies that IA.G/ is nilpotent whenever G is
nilpotent, Theorem 7.13 guarantees that the class of IA.G/ is exactly one less
than the class of G:

If G is a torsion-free nilpotent group, then so is G=Z.G/ by Corollary 2.22. Thus,
Inn.G/ is also torsion-free nilpotent. The fact that every inner automorphism is an
IA-automorphism suggests that IA.G/ may be torsion-free as well. This is indeed
the case.

Lemma 7.5 If G is a torsion-free nilpotent group, then IA.G/ is torsion-free.

First, we prove an auxiliary result. Let � cG denote the isolator of �cG in G:
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Lemma 7.6 If G is a torsion-free nilpotent group of class c; then � cG is a central
subgroup of G and G=� cG is torsion-free.

Proof We first prove that � cG is central in G: If g 2 � cG; then there exists m 2 N

such that gm 2 �cG: Since G is of class c; �cG � Z.G/; and thus gm 2 Z.G/: By
Theorem 2.7 and Lemma 5.15, g 2 Z.G/ as desired. To establish that G=� cG is
torsion-free, observe that �.G=�cG/ D � cG=�cG and thus

G=� cG Š .G=�cG/=�.G=�cG/

by the Third Isomorphism Theorem. The result immediately follows from Corol-
lary 2.15. ut

We now prove Lemma 7.5 by induction on the class c of G: If c D 2; then IA.G/
is abelian by Theorem 7.13. Let ' 2 IA.G/ and x 2 G: Then '.x/ D xd; where
d 2 �2G: Suppose that 'm D 1; where m > 0: Since G is of class 2; ' acts as the
identity on �2G by Theorem 7.13. Thus,

'm.x/ D xdm D x;

and consequently, dm D 1: Since �2G is torsion-free, d D 1: This completes the
basis of induction.

Assume that the IA-group of a torsion-free nilpotent group of class less than c
is always torsion-free. By Lemma 7.6, G=� cG is torsion-free nilpotent and clearly
of class less than c: The induction hypothesis gives that IA.G=� cG/ is torsion-free.
To prove that IA.G/ is torsion-free, let ' 2 IA.G/ and assume that 'm D 1 where
m > 0: For g 2 G, let Œg� denote the equivalence class of g in G=� cG: Consider the
natural homomorphism

  W IA.G/ ! IA
�
G=� cG

�
defined by ¦ 7! b¦; where b¦.Œg�/ D Œ¦.g/�:

Since 'm is the identity and IA
�
G=� cG

�
is torsion-free,b' is the identity on G=� cG:

Let x 2 G and write '.x/ D xd; where d 2 �2G: Then

b'.Œx�/ D Œ'.x/� D Œxd� D Œx�:

Hence, d 2 � cG: Since G is of class c; ' acts trivially on �cG by Theorem 7.13. We
claim that ' also acts trivially on � cG: To see this, let y 2 � cG: There exists m 2 N

such that ym 2 �cG: Moreover, there exists y1 2 �2G such that '.y/ D yy1: Hence,

ym D '.ym/ D '.y/m D .yy1/
m D ymym

1

since y is central by Lemma 7.6. And so, ym
1 D 1: Since G is torsion-free, y1 D 1;

and thus ' acts trivially on � cG as claimed. This, together with '.x/ D xd and
'm D 1, gives
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'm.x/ D xdm D x:

Therefore, dm D 1; and consequently, d D 1: This completes the proof of
Lemma 7.5.

Lemma 7.7 If G is a finitely generated nilpotent group, then IA.G/ is finitely
generated.

Proof The proof is done by induction on the class c of G. If c D 2; then IA.G/ is
abelian by Theorem 7.13. Since G is finitely generated, so is �2G by Theorem 2.18.
A typical member of a generating set for IA.G/ can be constructed as follows:
let X be a finite set of generators for G and Y a finite set of generators for �2G:
For every x 2 X and y 2 Y; construct the IA-automorphism that sends x to xy
and each remaining generator of G to itself. It is clear that the set of all such
IA-automorphisms generates IA.G/: Since X and Y are finite, IA.G/ is finitely
generated.

Assume that the IA-group of any finitely generated nilpotent group of class less
than c is finitely generated. Consider the natural homomorphism

  W IA.G/ ! IA.G=�cG/ defined by ¦ 7! b¦; where b¦.Œg�/ D Œ¦.g/�

and Œg� now denotes the equivalence class of g in G=�cG: The kernel of   is the
subgroup

Ic D
n
˛ 2 IA.G/

ˇ̌
ˇ g�1˛.g/ 2 �cG for all g 2 G

o

of IA.G/; and it is finitely generated. This can be established by an analogous
construction as before, where Y is taken to be a finite generating set for �cG: By
the induction hypothesis, IA

�
G=�cG

�
is finitely generated. Thus, the image of  ;

being a subgroup of a finitely generated nilpotent group, is also finitely generated
by Theorem 2.18, as well as isomorphic to IA.G/=Ic: Since IA.G/ is an extension of
a finitely generated group by another, it must be finitely generated. ut

Theorem 7.13, together with Lemmas 7.5 and 7.7, gives:

Theorem 7.14 If G is a finitely generated torsion-free nilpotent group of class c;
then IA.G/ is finitely generated, torsion-free nilpotent of class c � 1:

Using basic sequences and the commutator calculus, M. Zyman [13] has shown
that if G is a finitely generated nilpotent group such that �2G is abelian, then
IA.Gp/ Š �

IA.G/
�

p; where p is any prime and Gp and
�
IA.G/

�
p denote the p-

localizations of G and IA.G/ respectively. A group G for which �2G is abelian is
termed metabelian.
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7.5 The Frattini and Fitting Subgroups

Two subgroups which provide useful information about the structure of a group are
the Frattini and Fitting subgroups. In this section, we give a brief overview of the
properties of these subgroups and describe their connection to nilpotent groups.

7.5.1 The Frattini Subgroup

Definition 7.5 Let G be any group. The Frattini subgroup of G; denoted by ˚.G/;
is the intersection of all of the maximal subgroups of G:

By convention, ˚.G/ D G if G has no maximal subgroups. Thus, ˚.Q/ D Q

and ˚
�
Zp1

� D Zp1 : Clearly, the Frattini subgroup of a group is characteristic
since every group automorphism maps maximal subgroups to maximal subgroups.

Example 7.1 We give the Frattini subgroup of certain groups.

1. For each prime p; the subgroup gp.p/ of Z is maximal. Thus, ˚.Z/ D f0g:
2. If p is a prime and G D gp.g/ is a cyclic group of order p2; then ˚.G/ D gp.gp/:

3. ˚.S3/ D feg: To see this, notice that the distinct subgroups

H D gp..1 2// and K D gp..1 2 3//

of S3 each have prime index in S3: Thus, H and K are maximal subgroups.
Therefore, ˚.S3/ is a subgroup of H \ K D feg:

4. This example appears in [8]. Let p be a prime and let Uip be the subgroup of
UTn.Z/ consisting of all matrices A D .aij/ whose superdiagonal entries ai; iC1
are contained in

˝
p
˛

for i D 1; 2; : : : ; n � 1: Then Uip is maximal in UTn.Z/:

Since the intersection of all Uip lies in UT2n .Z/; we have ˚.UTn.Z// � UT2n .Z/:

Another way to define the Frattini subgroup of a group is in terms of its set of
non-generators.

Definition 7.6 Let G be a group. An element g 2 G is called a non-generator of G
if G D gp.g; X/ implies that G D gp.X/ whenever X 	 G:

Thus, the set of non-generators of a group are precisely the elements that can be
excluded from any generating set.

Theorem 7.15 (G. Frattini) If G is any group, then ˚.G/ is the set of all non-
generating elements of G:

The proof uses the next lemma.

Lemma 7.8 Let G be any group and suppose that H < G with g 2 G X H: There
exists a subgroup K < G which is maximal in G with respect to the properties
H � K and g … K:
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Proof Let R D fJ < G j H � J and g … Jg: Clearly, R ¤ ; since H 2 R:
Furthermore, R is partially ordered by inclusion and the union of any chain in R is
again in R. By Zorn’s lemma, R has a maximal element. ut

We now prove Theorem 7.15. Let g 2 ˚.G/: We prove by contradiction that g is
a non-generating element. Assume that there exists X 	 G such that G D gp.g; X/;
but G ¤ gp.X/: Clearly, g … gp.X/: By Lemma 7.8, there exists a subgroup M of
G which is maximal in G with respect to the properties gp.X/ � M and g … M: If
M < H � G for some H; then g 2 H: Consequently, H D G: Hence, M is maximal
in G: This implies that g 2 ˚.G/ � M; which is a contradiction.

Conversely, let g be a non-generator of G: We prove by contradiction that g 2
˚.G/: Suppose on the contrary, that g … ˚.G/: There exists a maximal subgroup
M of G for which g … M: Hence, M ¤ gp.g; M/; and thus G D gp.g; M/ by
the maximality of M in G: Since g is a non-generator of G; we have G D M; a
contradiction. This completes the proof of Theorem 7.15.

The next two corollaries are immediate.

Corollary 7.5 If G is a finitely generated group and G D H˚.G/ for some H � G;
then G D H:

Corollary 7.6 If G is any group and ˚.G/ is finitely generated, then the only
subgroup H of G such that G D H˚.G/ is H D G:

Lemma 7.9 Let G be any group and suppose that H is a finitely generated subgroup
of G: If N C G and N � ˚.H/; then N � ˚.G/:

Proof Assume on the contrary, that N is not a subgroup of ˚.G/: There exists a
maximal subgroup M of G that does not contain N as a subgroup and thus, satisfies
G D MN: Hence,

H D H \ G D H \ .MN/ D .H \ M/N:

Since N � ˚.H/; we have H D .H \ M/˚.H/: By Corollary 7.5, H D H \ M; and
thus H � M: However, H contains N: And so, N � M; a contradiction. ut
Corollary 7.7 If G is any group and H is a finitely generated normal subgroup of
G; then ˚.H/ � ˚.G/:

Proof By Lemma 1.8, ˚.H/ E G because ˚.H/ is characteristic in H and H E G:
Put N D ˚.H/ in Lemma 7.9. ut

The next two lemmas deal with the Frattini subgroup of a direct product. We give
the proofs which appear in [3].

Lemma 7.10 If G D H � K; then ˚.G/ � ˚.H/ � ˚.K/:
Proof If M is a maximal subgroup of H; then M � K is a maximal subgroup of
H � K: Hence, ˚.G/ � ˚.H/ � K: Similarly, ˚.G/ � H � ˚.K/: Therefore,

˚.G/ � .˚.H/ � K/ \ .H � ˚.K// D ˚.H/ � ˚.K/;
as desired. ut
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Lemma 7.11 If G is a finitely generated group where G D H � K for some
subgroups H and K of G; then ˚.G/ D ˚.H/ � ˚.K/:
Proof Clearly, H and K are finitely generated and normal in G since G is finitely
generated and G D H � K: Thus, ˚.H/ � ˚.G/ and ˚.K/ � ˚.G/ by
Corollary 7.7. It follows that ˚.G/ � ˚.H/ � ˚.K/: Lemma 7.10 takes care of
the reverse inclusion. ut
Lemma 7.12 Let G be any group and N � G: If N � ˚.G/; then N is normal in G
and ˚.G=N/ D ˚.G/=N:

Proof Since ˚.G/ is characteristic in G and N � ˚.G/; N must be normal in G:
Furthermore, N � ˚.G/ implies that N is contained in every maximal subgroup
of G: If gN 2 ˚.G=N/; then gN 2 M=N for every maximal subgroup M=N in
G=N: Thus, for each maximal subgroup M in G; there exists hm 2 M such that
gN D hmNI that is, gh�1

m 2 N: It follows that gN 2 ˚.G/=N: We reverse the above
steps to conclude that ˚.G/=N � ˚.G=N/: ut
Theorem 7.16 Let G be a finite group. If H is a normal subgroup of G containing
˚.G/ and H=˚.G/ is nilpotent, then H is nilpotent.

In particular, if G is finite and G=˚.G/ is nilpotent, then G is nilpotent.

Proof In light of Theorem 2.13, it is enough to prove that the Sylow subgroups
of H are normal. Let P be a Sylow p-subgroup of H: Since ˚.G/ is contained in
H by hypothesis, ˚.G/ E H: By Lemma 2.16 (ii), P˚.G/=˚.G/ is a Sylow p-
subgroup of H=˚.G/: Since H=˚.G/ is nilpotent, its Sylow p-subgroups are normal
by Theorem 2.13. Thus, P˚.G/=˚.G/ E H=˚.G/: Furthermore, P˚.G/=˚.G/ is
characteristic in H=˚.G/: This is due to the fact that normal Sylow p-subgroups
are unique by Corollary 2.8 and every automorphism maps a subgroup of a given
order into a subgroup of the same order. Since H=˚.G/ E G=˚.G/; it follows that
P˚.G/=˚.G/ E G=˚.G/; and thus P˚.G/ E G:

Now, P is a Sylow p-subgroup of P˚.G/ because it is a Sylow p-subgroup of H:
Since P˚.G/ E G; Lemma 2.17 gives NG.P/P˚.G/ D G: However, P � NG.P/;
and thus NG.P/˚.G/ D G: By Theorem 7.15, NG.P/ D G: Therefore, P E G; and
consequently, P E H: ut

Setting H D ˚.G/ in Theorem 7.16 gives:

Corollary 7.8 (G. Frattini) If G is a finite group, then ˚.G/ is nilpotent.

Remark 7.6 If G is infinite, then˚.G/ need not be nilpotent. Consider, for instance,
the wreath product G D Zp1 o Zp1 : By Remark 2.8, G is an infinite non-nilpotent
group. Since G has no maximal subgroups, it coincides with its Frattini subgroup as
we noted after Definition 7.5. Thus, ˚.G/ is not nilpotent.

Theorem 7.17 (W. Gaschütz) If G is a finite group, then �2G \ Z.G/ � ˚.G/:

Proof It is enough to prove that �2G \ Z.G/ is contained in each maximal subgroup
of G: If M is a maximal subgroup of G; then either Z.G/ � M or G D MZ.G/: If
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it is the case that Z.G/ � M; then it is clear that �2G \ Z.G/ � M: If, on the other
hand, G D MZ.G/; then M E G and G=M is abelian. By Lemma 1.6, �2G � M:
Hence, �2G \ Z.G/ � M: ut

We now turn our attention to the Frattini subgroup of nilpotent groups. We prove
an important result which states that the commutator subgroup of a nilpotent group
G is a set of non-generating elements of G:

Theorem 7.18 (K. A. Hirsch) Let G be a nilpotent group. If H � G and H�2G D
G; then H D G:

Proof The proof is done by induction on the class c of G: If c D 1; then �2G D 1

and the result is immediate.
Suppose that the result holds for all nilpotent groups of class less than c; and

consider the natural homomorphism   W G ! G=�cG: By Lemma 2.8, G=�cG is
nilpotent of class c � 1: If H�2G D G; then  .H/ .�2G/ D  .G/ holds in G=�cG:
By Lemma 2.5,  .�2G/ D �2 .G/: Thus,  .H/ D  .G/ D G=�c.G/ by induction;
that is, H�cG D G: Using the commutator calculus and the fact that �cG � Z.G/;
we have

�2G D ŒH�cG; H�cG�

D ŒH; H�ŒH; �cG�Œ�cG; H�Œ�cG; �cG�

D ŒH; H� D �2H:

Therefore, �2G D �2H � H; and thus H D G: ut
Corollary 7.9 If G is a nilpotent group, then �2G � ˚.G/.

Proof This is immediate from Theorems 7.15 and 7.18. ut
Remark 7.7 By Theorem 7.6, �2UTn.Z/ D UT2n .Z/: Thus, ˚.UTn.Z// D UT2n .Z/
by Example 7.1 and Corollary 7.9.

Corollary 7.10 Let G be a nilpotent group and X � G: If   W G ! Ab.G/ is the
natural homomorphism, then G D gp.X/ if and only if Ab.G/ D gp. .X//:

Proof Suppose that Ab.G/ D gp. .X//; and let H D gp.X/: Then G D H�2G; and
thus G D H D gp.X/ by Theorem 7.18. The converse is obvious. ut
Corollary 7.11 Let G and H be nilpotent groups. If ' W G ! H is a homomor-
phism, then ' is surjective if and only if ' W Ab.G/ ! Ab.H/ is surjective.

Proof Assume that ' is surjective and let h 2 H: There exists an element g�2G in
Ab.G/ such that

'.g�2G/ D '.g/�2H D h�2H:

Hence, h 2 '.G/�2H; and thus H D '.G/�2H: By Theorem 7.18, H D '.G/: The
converse is clear. ut
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For finite groups, the converse of Corollary 7.9 holds.

Theorem 7.19 (H. Wielandt) If G is a finite group and �2G � ˚.G/; then G is
nilpotent.

Proof If �2G � ˚.G/; then �2G � M for every maximal subgroup M of G: By
Lemma 1.6, each M is normal in G: Thus, G is nilpotent by Theorem 2.13. ut

For any prime p; the quotient of a finite p-group by its Frattini subgroup has a nice
structure. It is always abelian and each of its elements has order p: This motivates
the next definition.

Definition 7.7 Let p be a prime. A group G is called an elementary abelian p-group
if it is abelian and every element of G has order p:

Clearly, every finite elementary abelian p-group is isomorphic to a direct product
of n copies of Zp for some n < 1: Moreover, the Frattini subgroup of such a group
is always trivial.

Lemma 7.13 If G is a finite elementary abelian p-group, then ˚.G/ D 1:

Proof Suppose that G is a direct product of n copies of Zp: The subgroup

Gi D ˚
.g1; : : : ; gi�1; 1; giC1; : : : ; gn/

ˇ̌
gj 2 Zp

�

is maximal in G; and \n
iD1Gi D 1: Hence, ˚.G/ � 1: ut

Lemma 7.14 If G is a finite p-group and H � G; then ˚.G/ � H if and only if
H E G and G=H is an elementary abelian p-group.

Proof Suppose that H E G and G=H is an elementary abelian p-group. Then
˚.G=H/ D H by Lemma 7.13. Thus, ˚.G/ � H by Lemma 7.12.

Conversely, suppose that ˚.G/ � H: By Corollary 7.9, �2G � ˚.G/: Thus,
H E G and G=H is abelian by Lemma 1.6. Suppose that g 2 G; and let M be
any maximal proper subgroup of G: By Theorems 2.3 and 2.13 (iv), M C G:
Furthermore, .gM/p D M because jG=Mj D p: Hence, gp 2 M; and thus gp

lies in all maximal proper subgroups of G: Therefore, gp 2 ˚.G/ and G=H is an
elementary abelian p-group since ˚.G/ � H: ut

Setting H D ˚.G/ in Lemma 7.14 proves our earlier remark:

Lemma 7.15 If G is a finite p-group, then G=˚.G/ is an elementary abelian p-
group.

Lemma 7.16 If G is a finite p-group, then

˚.G/ D Gp�2G D gp.ap; Œb; c� j a; b; c 2 G/:

Hence, N D ˚.G/ is the smallest normal subgroup of a finite p-group G such
that G=N is an elementary abelian p-group.
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Proof Since G is a finite p-group, G=˚.G/ is elementary abelian by Lemma 7.15.
It follows from this and Lemma 1.6 (ii) that gp 2 ˚.G/ for all g 2 G; and �2G �
˚.G/: Therefore, Gp�2G � ˚.G/:

We establish the reverse inclusion. By Lemma 1.6 (i), G=Gp�2G is abelian. Since
Gp � Gp�2G; the factor group G=Gp�2G is a finite elementary abelian p-group. By
the previous observation, Gp�2G � ˚.G/: Thus,

˚.G=Gp�2G/ D ˚.G/=Gp�2G D Gp�2G

by Lemmas 7.12 and 7.13. And so, Gp�2G � ˚.G/: ut
By Lemma 7.15, the quotient G=˚.G/ can be viewed as a vector space over Fp;

the finite field containing p elements. Furthermore, any set of group generators for
G=˚.G/ is also a spanning set of G=˚.G/ as a vector space over Fp:

Theorem 7.20 (Burnside’s Basis Theorem) Let G be a finite p-group. Consider
G D G=˚.G/ to be a vector space over Fp; and suppose that ŒG W ˚.G/� D pd:

(i) The dimension of G over Fp is d:
(ii) If G D gp.g1; : : : ; gk/; then k � d: More generally, G D gp.g1; : : : ; gk/ if

and only if G D spanfg1˚.G/; : : : ; gk˚.G/g:
(iii) G can be generated by exactly d elements. Furthermore, the set fg1; : : : ; gdg

generates G if and only if the set fg1˚.G/; : : : ; gd˚.G/g is a basis for G
over Fp:

Proof

(i) The dimension of a vector space over Fp is d if and only if it contains precisely
pd elements.

(ii) Since G D gp.g1; : : : ; gk/; the vectors g1˚.G/; : : : ; gk˚.G/ span G: By (i),
the dimension of G over Fp is d: And so, k � d:

If G D spanfg1˚.G/; : : : ; gk˚.G/g; then G D gp.g1; : : : ; gk; ˚.G//: By
Theorem 7.15, G D gp.g1; : : : ; gk/:

(iii) If G D gp.g1; : : : ; gd/; then G is spanned by g1˚.G/; : : : ; gd˚.G/ by
(ii). Since G=˚.G/ has dimension d by (i), the vectors g1˚.G/; : : : ; gd˚.G/
are linearly independent. Thus, fg1˚.G/; : : : ; gd˚.G/g is a basis for G: The
converse follows from (ii). ut

Lemma 7.17 If G is a finite nilpotent group, then G=˚.G/ is a direct product of
elementary abelian p-groups.

Proof Let Pi denote the Sylow pi-subgroup of G for i D 1; : : : ; k: Since G is finite
and nilpotent, G Š P1 � � � � � Pk by Theorem 2.13. Thus,

G

˚.G/
Š P1 � � � � � Pk

˚.P1 � � � � � Pk/
D P1
˚.P1/

� � � � � Pk

˚.Pk/
;

where the last equality follows from Lemma 7.11. Since each Pi is a finite pi-group,
each factor group Pi=˚.Pi/ is an elementary abelian pi-group by Lemma 7.15. ut
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7.5.2 The Fitting Subgroup

Definition 7.8 The Fitting subgroup of a group G; denoted by Fit.G/; is the
subgroup of G generated by all of the normal nilpotent subgroups of G:

Clearly, Fit.G/ is a characteristic subgroup of G; and thus Fit.G/ E G:

Lemma 7.18 If G is a finite group, then Fit.G/ is the nilpotent radical of G:

Proof The result follows at once from Theorem 2.11. ut
Remark 7.8 If G is an infinite group, then Fit.G/ is not necessarily nilpotent. For
example, choose any prime p; and let A be a countably infinite elementary abelian
p-group. One can show that the group G D Zp o A is not nilpotent and G D Fit.G/:
See pp. 3–4 in [10] for details.

Lemma 7.19 If G is a nontrivial finite group, then the centralizer of Fit.G/ in G
contains every minimal normal subgroup of G:

Proof Set F D Fit.G/; and let N be a minimal normal subgroup of G: There are
two cases to consider.

• If N is not a subgroup of F; then F \ N D 1 because F \ N is a proper subgroup
of N and F \ N E G: By Theorem 1.4, ŒF; N� D 1: And so, N � CG.F/:

• If N � F; then there is a minimal normal subgroup M of F with M � N: By The-
orem 2.29 and Lemma 7.18, we have M � Z.F/: Hence, Z.F/\ N ¤ 1: However,
Z.F/EG; and thus Z.F/\ N EG. Consequently, Z.F/\ N D N because N is a
minimal normal subgroup of G: Therefore, N � Z.F/� CG.F/: ut
Another description of Fit.G/ for a finite group G is in terms of its chief factors.

Theorem 7.21 If G is a finite group, then Fit.G/ is the intersection of the
centralizers of the chief factors of G:

Proof We adopt the proof from [12]. Set F D Fit.G/; and let

1 D G0 � G1 � � � � � Gn D G

be a chief series of G: Set

I D
n�1\

iD0
CG.GiC1=Gi/:

(The notation used above can be found in Definition 5.6.) It is clear that I E G:
Furthermore, ŒGiC1; I� � Gi for each i D 0; 1; : : : ; n � 1: Consequently, I is
nilpotent and thus, I � F:

To show that F � I; we prove that F � CG.GiC1=Gi/ for each i D 0; 1; : : : ; n �1:
Consider the factor group FGi=Gi � G=Gi: Clearly, FGi=Gi is normal in G=Gi

and F \ Gi E F: By the Second Isomorphism Theorem, FGi=Gi Š F=.F \ Gi/:
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Since F is nilpotent by Lemma 7.18, FGi=Gi is a normal nilpotent subgroup of
G=Gi by Corollary 2.5. Hence, FGi=Gi � Fit.G=Gi/: Now, GiC1=Gi is a minimal
normal subgroup of G=Gi by Lemma 2.23. According to Lemma 7.19, it follows
that Fit.G=Gi/ must centralize GiC1=Gi: This means that

FGi=Gi � CG=Gi.GiC1=Gi/;

or equivalently, F � CG.GiC1=Gi/: ut
We record a couple of properties of the Fitting subgroup of a finite group.

Proposition 7.2 Let G be a finite group.

(i) If H E G; then H \ Fit.G/ D Fit.H/:
(ii) If K � Z.G/; then Fit.G=K/ D Fit.G/=K:

Proof

(i) By Lemma 1.8, Fit.H/ is a normal subgroup of G because it is characteristic
in H: Since Fit.H/ is also nilpotent by Lemma 7.18, Fit.H/ � H \ Fit.G/:
Furthermore, H \ Fit.G/ E H because Fit.G/ E G: Since H \ Fit.G/ is
nilpotent, we have H \ Fit.G/ E Fit.H/: Hence, H \ Fit.G/ D Fit.H/:

(ii) Set M=K D Fit.G=K/: We claim that M D Fit.G/: By Lemma 7.18, M=K
is nilpotent. Thus, M is nilpotent by Theorem 2.6 because K is central in M:
Moreover, M E G since M=K is characteristic, hence normal, in G=K: Thus,
M � Fit.G/: Now, since Fit.G/ is nilpotent and K � Fit.G/; it must be the case
that Fit.G/=K is nilpotent. Since Fit.G/=K is normal in G=K; we have

Fit.G/=K � Fit.G=K/ D M=K:

Consequently, Fit.G/ � M; and thus M D Fit.G/: ut
There are natural connections between the Fitting and Frattini subgroups. We

state two of them in our last theorem.

Theorem 7.22 (W. Gaschütz) If G is a finite group, then ˚.G/ E Fit.G/ and
Fit.G=˚.G// D Fit.G/=˚.G/:

Proof The fact that ˚.G/ E Fit.G/ is immediate from Corollary 7.8. We prove
the second assertion. Clearly, Fit.G/=˚.G/ � Fit.G=˚.G// since Fit.G/=˚.G/ is a
normal nilpotent subgroup of G=˚.G/: Suppose that H=˚.G/ is a normal nilpotent
subgroup of G=˚.G/: Then H is a normal nilpotent subgroup of G by Theorem 7.16.
Consequently, H � Fit.G/; and thus Fit.G=˚.G// � Fit.G/=˚.G/: Therefore,
Fit.G=˚.G// D Fit.G/=˚.G/: ut
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