
Chapter 1
Commutator Calculus

In this chapter, we introduce the commutator calculus. This is one of the most
important tools for studying nilpotent groups. In Section 1.1, the center of a group
and other notions surrounding the concept of commutativity are defined. Several
results and examples involving central subgroups and central elements are given.
Section 1.2 contains the fundamental identities related to commutators of group
elements. By definition, the commutator of two elements g and h in a group G is the
element Œg; h� D g�1h�1gh: Clearly, Œg; h� D 1 whenever g and h commute. This
leads to a natural connection between central elements and trivial commutators. The
commutator identities allow us to develop properties of commutator subgroups. This
is the main focus of Section 1.3.

1.1 The Center of a Group

The commutator calculus is an essential tool which is used for working with
nilpotent groups. In this section, we collect various results on commutators which
will be used throughout the book. This material can be found in various places in
the literature (see [1–6]).

1.1.1 Conjugates and Central Elements

We begin by defining the conjugate of a group element.

Definition 1.1 Let g and h be elements of a group G: The conjugate of g by h;

denoted by gh; is the element h�1gh of G:
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2 1 Commutator Calculus

The conjugate of g�1 by h is written as g�h: Notice that

g�h D
�
g�1

�h
D h�1g�1h D

�
h�1gh

��1
D
�
gh
��1

:

Furthermore, if k 2 G; then

.gh/k D k�1ghk D .k�1gk/.k�1hk/ D gkhk

and

�
gh
�k

D
�
h�1gh

�k
D k�1h�1ghk D .hk/�1g.hk/ D ghk:

We summarize these in the next lemma.

Lemma 1.1 Suppose that g; h; and k are elements of any group. Then .gh/k D

gkhk;
�
g�1

�h
D
�
gh
��1

; and
�
gh
�k

D ghk:

The notion of conjugacy extends to subgroups in a natural way.

Definition 1.2 Two subgroups H and K of a group G are called conjugate if
g�1Hg D K for some g 2 G:

In particular, every normal subgroup of G is conjugate to itself.

Definition 1.3 Let G be a group. An element g 2 G is called central if it commutes
with every element of G: The set of all central elements of G is called the center of
G and is denoted by Z.G/: Thus,

Z.G/ D fg 2 G j gh D hg for all h 2 Gg

D fg 2 G j gh D g for all h 2 Gg:

It is easy to verify that Z.G/ is a normal abelian subgroup of G; and the conjugate
of a central element g 2 G by any element of G is just g itself.

If G and H are groups, then the (internal and external) direct product of G and H
will be written as G � H:

Lemma 1.2 If G1 and G2 are groups, then Z.G1 � G2/ D Z.G1/ � Z.G2/:

Proof Suppose that .g1; g2/ 2 Z.G1�G2/: Then .g1; g2/.x; y/ D .x; y/.g1; g2/ for
all .x; y/ 2 G1 � G2. This implies that .g1x; g2y/ D .xg1; yg2/; and thus g1x D xg1

and g2y D yg2: Hence, g1 2 Z.G1/ and g2 2 Z.G2/: Therefore, .g1; g2/ is contained
in Z.G1/ � Z.G2/: And so, Z.G1 � G2/ � Z.G1/ � Z.G2/: In a similar way, one can
show that Z.G1/ � Z.G2/ � Z.G1 � G2/: ut

Lemma 1.3 If G1 and G2 are any two groups, then

G1 � G2

Z.G1 � G2/
Š

G1

Z.G1/
�

G2

Z.G2/
:
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Proof The map from G1 � G2 to .G1=Z.G1// � .G2=Z.G2// defined by

.g1; g2/ 7! .g1Z.G/; g2Z.G//

is a surjective homomorphism whose kernel is Z.G1 � G2/: The result follows from
the First Isomorphism Theorem. ut

Let G and H be any two groups. The set of homomorphisms from G to H will
be denoted by Hom.G; H/, and the group of automorphisms of G by Aut.G/: The
kernel and image of ' 2 Hom.G; H/ are abbreviated as ker ' and im ' D '.G/

respectively. If G and H are isomorphic groups, then we write G Š H:

Let G be a group and h 2 G: Using Lemma 1.1, it is easy to show that the map

'h W G ! G defined by 'h.g/ D gh

is contained in Aut.G/:

Definition 1.4 The map 'h is called the conjugation map or inner automorphism
induced by h:

It is easy to see that the set of all inner automorphisms of G forms a group
under composition. This group is denoted by Inn.G/: There is a natural connection
between the center of a group and the inner automorphisms of the group.

Theorem 1.1 Let G be a group and h 2 G: The map

% W G ! Aut.G/ defined by %.h/ D 'h; where 'h.g/ D gh;

is a homomorphism with ker % D Z.G/ and im % D Inn.G/:

Proof The result follows from Lemma 1.1. ut

By Theorem 1.1 and the First Isomorphism Theorem, we have:

Corollary 1.1 If G is any group, then G=Z.G/ Š Inn.G/:

1.1.2 Examples Involving the Center

In the next few examples, we give the center of various groups.

Example 1.1 A group G is abelian if and only if Z.G/ D G:

Example 1.2 Let Sn be the symmetric group on the set S D f1; 2; : : : ; ng; and let
“e” denote the identity element of Sn: Clearly, S1 has trivial center because S1 D feg:

Furthermore, Z.S2/ D S2 since S2 is abelian.
We show that Z.Sn/ D feg for n > 2: Suppose, on the contrary, that Z.Sn/

is nontrivial. Let � 2 Z.Sn/ be a nonidentity element. There exist distinct elements
a; b 2 S such that �.a/ D b: Choose an element c 2 S different from a and b; and let
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� be the transposition .b c/: A direct calculation shows that .� ı�/.a/ ¤ .� ı�/.a/;

contradicting the assumption that � is in the center of Z.Sn/:

Example 1.3 Let An be the alternating group on the set S D f1; 2; : : : ; ng: This is
the subgroup of Sn consisting of all even permutations. Note that A1 D A2 D feg;

and A3 is cyclic since it has order 3: Thus, Z.An/ D An for n D 1; 2; and 3 according
to Example 1.1.

The center of A4 is trivial. The proof is similar to the one used in Example 1.2.
Assume that Z.An/ is nontrivial, and let � be a nonidentity element of Z.An/: There
exist distinct elements a; b 2 S such that �.a/ D b: Choose two elements c and d
in S different from a and b; and let � D .b c d/: It is easy to see that .� ı �/.a/ ¤

.� ı �/.a/; contradicting the assumption that the center is nontrivial.
Using the same argument as above, one can show that An has trivial center

whenever n � 5: We provide an alternative proof which uses the fact that An

is a simple group whenever n � 5: Since this is the case, either Z.An/ D feg

or Z.An/ D An: If it were true that Z.An/ D An; then An would be abelian by
Example 1.1. However, a quick calculation shows that

.1 2 3/.3 4 5/ ¤ .3 4 5/.1 2 3/:

Thus, An is non-abelian and Z.An/ ¤ An: We conclude that Z.An/ D feg for n � 5:

Example 1.4 Let Dn be the dihedral group of order 2n; the group of isometries of
the plane which preserve a regular n-gon. If y is a reflection across a line through a
vertex and x is the counterclockwise rotation by 2�=n radians, then the elements of
Dn are

1; x; x2; : : : ; xn�1; y; xy; x2y; : : : ; xn�1y;

and the equalities

xn D 1; y2 D 1; and xy D yx�1

hold in Dn:

Both D1 and D2 are abelian, so Z.D1/ D D1 and Z.D2/ D D2: We determine
Z.Dn/ when n � 3: Since xy D yx�1; we have

xry D yx�r .r 2 Z/: (1.1)

We claim that no element of the form xty for any t 2 f0; 1; : : : ; n � 1g

is central. Assume, on the contrary, that xty 2 Z.Dn/ for some such t: Then xty
commutes with x: Hence, x�1 .xty/ x D xty; and thus xt�1yx D xty: Applying (1.1)
to both sides of this equality yields yx1�tx D yx�t: After canceling the y’s, we get
x2�t D x�t: This means that x2 D 1; a contradiction. Therefore, xty … Z.Dn/ for any
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t 2 f0; 1; : : : ; n � 1g: Consequently, an element of Z.Dn/ must take the form xt for
some t 2 f0; 1; : : : ; n � 1g: Clearly, x0 D 1 2 Z.Dn/:

Suppose xt 2 Z.Dn/ for some t 2 f1; : : : ; n � 1g: By (1.1), we have

yxt D xty D yx�t:

Hence, xt D x�tI that is, x2t D 1: Since x has order n; it must be that n divides 2t:
Hence, there exists k 2 N such that 2t D nk: If k � 2; then 2t � 2n: This cannot
happen since 1 � t � n � 1: This means that k D 1; and thus 2t D n: Now, if n
is odd, then no such t exists. We conclude that Z.Dn/ is trivial when n is odd. If n
is even, then t D n

2
; and consequently, xn=2 2 Z.Dn/: Therefore, Z.Dn/ is the cyclic

group of order 2 generated by xn=2 when n is even.

Example 1.5 Let H be the group of 3 � 3 upper unitriangular matrices over Z with
the group operation being matrix multiplication. Thus,

H D

8
<

:

0

@
1 a12 a13

0 1 a23

0 0 1

1

A

ˇ̌
ˇ̌
ˇ

aij 2 Z

9
=

;
:

This group is called the Heisenberg group. The identity element in H is clearly the
3 � 3 identity matrix and will be denoted by I3: It is easy to show that

Z.H / D

8
<

:

0

@
1 0 c
0 1 0

0 0 1

1

A

ˇ
ˇ̌
ˇ̌ c 2 Z

9
=

;
:

1.1.3 Central Subgroups and the Centralizer

Definition 1.5 A subgroup H of a group G is called central if H � Z.G/:

Related to the center of a group is the centralizer of a subset of a group.

Definition 1.6 The centralizer of a nonempty subset X of a group G is

CG.X/ D fg 2 G j g�1xg D x for all x 2 Xg:

It is easy to verify that CG.X/ is a subgroup of G: If X D fxg; then we write
CG.x/ for the centralizer of x: Clearly,

CG.G/ D
\

x2G

CG.x/ D Z.G/:
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Notice that CG.x/ is just the stabilizer of x under the action of G on itself by
conjugation. The orbit of x under this action, called the conjugacy class of x; is the
set fg�1xg j g 2 Gg: When G is finite, we get the class equation of G W

jGj D jZ.G/j C
X

k

ŒG W CG.xk/�; (1.2)

where one xk is chosen from each conjugacy class containing at least two elements.
Here, jGj stands for the order of G and ŒG W H� is the index of a subgroup H in G:

These notations are standard and will be used throughout the book. We will also
write jgj for the order of an element g 2 G:

1.1.4 The Center of a p-Group

Definition 1.7 Let p be any prime. A group G is called a p-group if every element
of G has order a power of p:

Finite p-groups are the building blocks of finite groups. The next fact regarding
their central structure is important in the study of finite groups.

Theorem 1.2 If G is a nontrivial finite p-group for some prime p; then Z.G/ ¤ 1:

Proof Suppose that jGj D n: Consider the class equation (1.2) of G: If xk 2 G is
not central for some 1 � k � n; then CG.xk/ is a proper subgroup of G: Hence,
ŒG W CG.xk/� is a positive power of p: Consequently, each summand in the sum

X

k

ŒG W CG.xk/�

is divisible by p: Since p divides jGj by hypothesis, p also divides jZ.G/j: Therefore,
Z.G/ contains nontrivial elements. ut

Remark 1.1 It is important to emphasize that G must be finite in Theorem 1.2. An
infinite p-group does not necessarily have nontrivial center. This notion is discussed
in Remark 2.8.

1.2 The Commutator of Group Elements

One can determine whether or not two group elements commute by calculating their
commutator.

Definition 1.8 Let g and h be elements of a group G: The commutator of g and h;

written as Œg; h�; is

Œg; h� D g�1h�1gh D g�1gh:
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Clearly, g and h commute if and only if Œg; h� D 1: Thus, the center of G can
also be characterized as

Z.G/ D fg 2 G j Œg; h� D 1 for all h 2 Gg:

Definition 1.9 Let S D fg1; g2; : : : ; gng be a set of elements of a group G:

A simple commutator, or left-normed commutator, of weight n � 1 is defined
recursively as follows:

1. The simple commutators of weight 1 are the elements of S; written as gj D Œgj�:

2. The simple commutators of weight n > 1 are Œg1; : : : ; gn� D ŒŒg1; : : : ; gn�1�; gn�:

We collect some commutator identities which are of utmost importance.

Lemma 1.4 Let x; y; and z be elements of a group G:

(i) xy D yxŒx; y�:

(ii) xy D xŒx; y�:

(iii) Œx; y� D Œy; x��1:

(iv) Œx; y�z D Œxz; yz�:

(v) Œxy; z� D Œx; z�yŒy; z� D Œx; z�Œx; z; y�Œy; z�:
(vi) Œx; yz� D Œx; z�Œx; y�z D Œx; z�Œx; y�Œx; y; z�:

(vii)
h
x; y�1

i
D
�
Œx; y�y

�1
��1

:

(viii)
h
x�1; y

i
D
�
Œx; y�x

�1
��1

:

Proof

(i) xy D yx
�

x�1y�1xy
�

D yxŒx; y�:

(ii) xy D y�1xy D x
�

x�1y�1xy
�

D xŒx; y�:

(iii) Œx; y� D x�1y�1xy D
�

y�1x�1yx
��1

D Œy; x��1:

(iv) We have

Œx; y�z D z�1
�

x�1y�1xy
�

z

D
�

z�1x�1z
��

z�1y�1z
��

z�1xz
��

z�1yz
�

D
�

z�1xz
��1�

z�1yz
��1�

z�1xz
��

z�1yz
�

D Œxz; yz�:
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(v) Observe that

Œxy; z� D .xy/�1z�1xyz

D y�1x�1z�1xyz

D y�1
�

x�1z�1xz
�

y
�

y�1z�1yz
�

D y�1Œx; z�yŒy; z�

D Œx; z�yŒy; z�

D Œx; z�Œx; z; y�Œy; z� by (ii).

A similar computation gives (vi). By (vi), we have

1 D
h
x; yy�1

i
D
h
x; y�1

i
Œx; y�y

�1

: (1.3)

This establishes (vii), and (viii) follows from (v) in a similar way. ut

Lemma 1.5 (The Hall-Witt Identities) If x; y, and z are elements of a group,
then

h
x; y�1; z

iyh
y; z�1; x

izh
z; x�1; y

ix
D 1

and
h
x; y; zx

ih
z; x; yz

ih
y; z; xy

i
D 1:

Proof By Lemma 1.4 (iii), we have

h
x; y�1; z

iy
D y�1

hh
x; y�1

i
; z
i
y

D y�1
h
x; y�1

i�1

z�1
h
x; y�1

i
zy

D y�1
h
y�1; x

i
z�1
h
x; y�1

i
zy

D x�1y�1xz�1x�1yxy�1zy

D
�

xzx�1yx
��1

yxy�1zy:

Similarly,

h
y; z�1; x

iz
D
�

yxy�1zy
��1

zyz�1xz
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and

h
z; x�1; y

ix
D
�

zyz�1xz
��1

xzx�1yx:

It follows that
h
x; y�1; z

iyh
y; z�1; x

izh
z; x�1; y

ix
D 1: One can prove the other

identity in a similar way. ut

1.3 Commutator Subgroups

The notion of the commutator of elements of a group can be generalized to the
commutator of subsets of a group.

Definition 1.10 Let G be a group with subset S D fs1; s2; : : :g: The subgroup of
G generated by S; denoted by

gp.S/ D gp.s1; s2; : : :/;

is the smallest subgroup of G containing S: We call S a set of generators for gp.S/:

The subgroup gp.S/ of G can be obtained by taking the intersection of all
subgroups of G that contain S: A typical element of gp.S/ is of the form

s"1

i1
s"2

i2
� � � s"n

in
;

where sij 2 S and "j 2 f�1; 1g for 1 � j � n: If g 2 G; then gp.g/ is just the cyclic
subgroup of G generated by g: If S1; : : : ; Sn are subsets of G; then the subgroup
gp.S1

S
� � �
S

Sn/ is written as gp.S1; : : : ; Sn/:

Definition 1.11 Let X1 and X2 be nonempty subsets of a group G: The commutator
subgroup of X1 and X2 is defined as

ŒX1; X2� D gp .Œx1; x2� j x1 2 X1; x2 2 X2/ :

Thus, ŒX1; X2� is the subgroup of G generated by all commutators Œx1; x2�; where x1

varies over X1 and x2 varies over X2: In particular, ŒG; G� D G0 is the commutator
subgroup or derived subgroup of G:

Remark 1.2 The set of all commutators

S D fŒx1; x2� j x1 2 X1; x2 2 X2g

does not necessarily form a subgroup of G: For instance, Œx1; x2��1 may not be in S
for some Œx1; x2� 2 S:



10 1 Commutator Calculus

If X1 D X2 D G; then the inverse of every element of S is contained in S by
Lemma 1.4 (iii). However, it may be that S is not a subgroup of G because the
product of two or more commutators in S is not necessarily a commutator in S:

Consider, for example, the special linear group SL2.R/ whose elements are the
2 � 2 matrices with real entries and determinant 1 (the group operation is matrix
multiplication). Let I2 denote the 2 � 2 identity matrix, and set

A D

�
1 0

�1 1

�
and B D

�
1 1

0 1

�
:

A routine check shows that �I2 D .ABA/2;

A D

"�
1 0
4
3

1

�
;

�
1
2

0

0 2

�#

; and B D

"�
2 0

0 1
2

�
;

�
1 4

3

0 1

�#

:

Thus, �I2 is a product of commutators. However, �I2 is not the commutator of two
elements of SL2.R/: To see this, assume, on the contrary, that �I2 D ŒC; D� for
some C; D 2 SL2.R/: Rewriting this gives C�1DC D �D; and thus D and �D are
similar matrices. Since the trace of a square matrix equals the trace of any matrix
similar to it, D and �D have equal trace. Consequently, the trace of D equals 0: Since
the determinant of D equals 1; the characteristic polynomial of D is f .�/ D �2 C 1:

And so, D has eigenvalues ˙i: This means that D is similar to the matrix

�
0 1

�1 0

�
:

Without loss of generality, we may as well assume that D D

�
0 1

�1 0

�
: Suppose that

C D

�
a b
c d

�
: Since CD D �DC by assumption, a computation shows that d D �a

and c D b: Using the fact that C has determinant 1; it follows that �a2 � b2 D 1:

This contradicts the fact that a; b 2 R:

Definition 1.11 can be generalized. If fX1; X2; : : :g is a collection of nonempty
subsets of G; then

ŒX1; : : : ; Xn� D ŒŒX1; : : : ; Xn�1� ; Xn� ;

where n � 2: Note that ŒX1; : : : ; Xn� contains all simple commutators of the form
Œx1; : : : ; xn�; where x1 2 X1; : : : ; xn 2 Xn: Thus,

ŒX1; : : : ; Xn� � gp.Œx1; : : : ; xn� j x1 2 X1; : : : ; xn 2 Xn/:

However, ŒX1; : : : ; Xn� may not equal gp.Œx1; : : : ; xn� j x1 2 X1; : : : ; xn 2 Xn/ if
n � 3: For example (see [6]), consider the cyclic subgroups

H1 D gp. .1 2/ /; H2 D gp. .2 3/ /; and H3 D gp. .3 4/ /
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of the symmetric group S4: A routine check confirms that ŒH1; H2; H3� equals A4;

while gp.Œh1; h2; h3� j h1 2 H1; h2 2 H2; h3 2 H3/ equals gp. .1 3 4/ /: Thus,

ŒH1; H2; H3� ¤ gp.Œh1; h2; h3� j h1 2 H1; h2 2 H2; h3 2 H3/:

Lemma 1.6 Let G be any group.

(i) If H � G and ŒG; G� � H; then H E G and G=H is abelian. Thus, ŒG; G� E G
and G=ŒG; G� is abelian.

(ii) If N E G and G=N is abelian, then ŒG; G� E N:

Thus, the commutator subgroup of a group is the smallest normal subgroup
inducing an abelian quotient. The factor group Ab.G/ D G=ŒG; G� is called the
abelianization of G:

Proof

(i) Let g 2 G and h 2 H. By Lemma 1.4 (ii),

hg D g�1hg D hŒh; g� 2 H

because H contains ŒG; G�: Therefore, g�1Hg D H; and thus H is normal in G:

If g1H and g2H are elements of G=H; then

.g1H/.g2H/ D g1g2H D g2g1Œg1; g2�H D g2g1H D .g2H/.g1H/

by Lemma 1.4 (i). Therefore, G=H is abelian.
(ii) If gN; hN 2 G=N; then .gN/.hN/ D .hN/.gN/: Hence,

.gN/�1.hN/�1.gN/.hN/ D N:

We thus have g�1h�1gh D Œg; h� 2 N: It follows that ŒG; G� E N: ut

Lemma 1.6 allows one to conveniently calculate the derived subgroup. This is
illustrated in the next few examples.

Example 1.6 Any two elements of an abelian group G commute. Thus, ŒG; G� D 1:

Example 1.7 We compute the commutator subgroup of the alternating group An on
the set S D f1; 2; : : : ; ng: Clearly, ŒAn; An� D feg for n D 1; 2; 3 by Example 1.6.

We find the commutator subgroup of A4: It is well known that A4 contains a
unique nontrivial normal subgroup

K D fe; .1 2/.3 4/; .1 3/.2 4/; .1 4/.2 3/g;

which is an isomorphic copy of the Klein 4-group (see [1]). Since ŒA4 W K� D 3; the
quotient A4=K is abelian. Therefore, ŒA4; A4� E K; and thus ŒA4; A4� D K:
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Lastly, we consider the case when n � 5: In this case, An is simple. Thus, the
only normal subgroups of An are feg and An: Since An is not abelian, ŒAn; An� D An:

Example 1.8 We find the commutator subgroup of the symmetric group Sn on the
set S D f1; 2; : : : ; ng: By Example 1.6, ŒSn; Sn� D feg for n D 1; 2:

In order to find ŒSn; Sn� for n � 3; we use the fact that An is a normal subgroup
of index 2 in Sn; and thus Sn=An is an abelian group. First, we find ŒS3; S3�: Since
S3=A3 is abelian, we know that ŒS3; S3� E A3: Furthermore, each element of A3

can be written as a commutator of elements in S3 (this is obvious for the identity
permutation):

.1 2 3/ D Œ.2 3/; .1 3 2/� and .1 3 2/ D Œ.2 3/; .1 2 3/� :

Therefore, A3 is contained in ŒS3; S3�; and consequently, ŒS3; S3� D A3:

Next, we show that ŒS4; S4� D A4: Let .a b c/ be any 3-cycle for some distinct
elements a; b; c 2 S: This 3-cycle can be written as a commutator of elements in
S4 as

.a b c/ D Œ.a b/; .a c b/� :

It follows that A4 � ŒS4; S4� because A4 is generated by 3-cycles. Since S4=A4 is
abelian, ŒS4; S4� E A4: We conclude that ŒS4; S4� D A4:

Finally, consider the case when n � 5: Once again, ŒSn; Sn� E An because Sn=An

is abelian. Since the only nontrivial normal subgroup of Sn is An; it must be that
ŒSn; Sn� D An:

Example 1.9 We find the derived subgroup of the dihedral group Dn. Recall from
Example 1.6 that

Dn D f1; x; x2; : : : ; xn�1; y; xy; x2y; : : : ; xn�1yg;

where

xn D 1; y2 D 1; and xy D yx�1: (1.4)

It follows from the last equality in (1.4) that

xry D yx�r and xry D .xry/�1 .r 2 Z/: (1.5)

Now, it is clear that ŒD1; D1� D ŒD2; D2� D 1 by Example 1.6 because D1 and D2

are abelian. We claim that ŒDn; Dn� D gp
�
x2
�

for n � 3:

From this point on, suppose n � 3 and let r and s denote integers. Choose x2r 2

gp
�
x2
�

; and observe that this element can be written as a commutator as follows:

x2r D xry�1yxr D xry�1x�ry D Œx�r; y�;
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where the second equality is a consequence of (1.5). Thus, gp
�
x2
�

� ŒDn; Dn�:

To prove that ŒDn; Dn� � gp
�
x2
�

; we use (1.4) and (1.5). Suppose that Œa; b� 2

ŒDn; Dn�: There are four possible cases for a and b:

• If a D xr and b D xs; then Œxr; xs� D 1 2 gp
�
x2
�

:

• If a D xr and b D xsy; then

Œxr; xsy� D x�r .xsy/�1 xrxsy D x�ry�1x�sxrxsy

D x�ry�1xry D x�ry�1yx�r D x�2r 2 gp
�
x2
�

:

• Suppose a D xry and b D xs: Then

Œxry; xs� D Œxs; xry��1 2 gp
�
x2
�

by the previous case and Lemma 1.4 (iii).
• Suppose a D xry and b D xsy: Then

Œxry; xsy� D .xry/�1 .xsy/�1 xryxsy D xryxsyxryxsy

D xrx�syyxrx�syy D x2r�2s 2 gp
�
x2
�

:

It follows that ŒDn; Dn� � gp
�
x2
�

: And so, ŒDn; Dn� D gp
�
x2
�

for n � 3 as
claimed. In fact, ŒDn; Dn� D gp

�
x2
�

D gp .x/ whenever n � 3 is odd.

Example 1.10 We show that the derived subgroup of the Heisenberg group H
equals its center. By Example 1.5, the center of H is

Z.H / D

8
<

:

0

@
1 0 c
0 1 0

0 0 1

1

A

ˇ̌
ˇ
ˇ̌ c 2 Z

9
=

;
D gp

0

@

0

@
1 0 1

0 1 0

0 0 1

1

A

1

A : (1.6)

Let

a D

0

@
1 a1 a2

0 1 a3

0 0 1

1

A and b D

0

@
1 b1 b2

0 1 b3

0 0 1

1

A

be elements of H : A simple calculation shows that

Œa; b� D

0

@
1 0 a1b3 � b1a3

0 1 0

0 0 1

1

A :
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Hence, each commutator of elements of H is central, and thus ŒH ; H � � Z.H /:

In addition, the generator of Z.H / in (1.6) is a commutator of elements of H W

0

@
1 0 1

0 1 0

0 0 1

1

A D

2

4

0

@
1 1 0

0 1 0

0 0 1

1

A ;

0

@
1 0 0

0 1 1

0 0 1

1

A

3

5 :

It follows that ŒH ; H � D Z.H /:

1.3.1 Properties of Commutator Subgroups

We collect several properties of commutator subgroups.

Definition 1.12 Let G be any group, and let S be a nonempty subset of G: The
normalizer of S in G; denoted by NG.S/; is

NG.S/ D fg 2 G j gS D Sgg:

If H is a subgroup of G; then NG.H/ is the largest subgroup of G in which H is
normal. If K is another subgroup of G; then K normalizes H if K � NG.H/: Clearly,
NG.H/ D G if and only if H E G:

Theorem 1.3 Let G be a group and H � G: Then CG.H/ E NG.H/ and the factor
group NG.H/=CG.H/ is isomorphic to a subgroup of Aut.H/:

In particular, we obtain Corollary 1.1 when H D G:

Proof By Theorem 1.1, the map

% W G ! Aut.H/ defined by %.h/ D 'h; where 'h.g/ D gh;

is a homomorphism. Thus, %jNG.H/; the restriction of % to NG.H/; is a homomor-
phism. It is easy to verify that %jNG.H/ has kernel CG.H/: The result follows from
the First Isomorphism Theorem. ut

Proposition 1.1 Let G be any group with subgroups H and K:

(i) ŒH; K� D ŒK; H�:

(ii) ŒH; K� � H if and only if K normalizes H: In particular, ŒH; G� < H if and
only if H E G:

(iii) If H1 < G and K1 < G such that H1 � H and K1 � K; then ŒH1; K1� �

ŒH; K�:

We point out that (i) is valid for any two subsets H and K of G:
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Proof

(i) By Lemma 1.4 (iii),

ŒH; K� D gp .Œh; k� j h 2 H; k 2 K/

D gp
�
Œk; h��1 j h 2 H; k 2 K

�

D ŒK; H�:

(ii) If ŒH; K� � H; then Œh; k� 2 H for any h 2 H and k 2 K: This means that
k�1hk 2 H; and consequently, k�1Hk < H: Similarly, we have kHk�1 � H:

Therefore, k�1Hk D HI that is, k 2 NG.H/: Conversely, if k 2 NG.H/; then
Œh; k� 2 H for all h 2 H: A routine check confirms that ŒH; K� � H:

(iii) The proof is straightforward. ut

Definition 1.13 Let G be a group with H � G; and let A � Aut.G/:

(i) If '.h/ 2 H for every ' 2 A and h 2 H; then H is called A-invariant.
(ii) If H is Aut.G/-invariant, then H is called characteristic in G:

(iii) If every endomorphism of G restricts to an endomorphism of H; then H is fully
invariant.

Clearly, every fully invariant subgroup must be characteristic. Furthermore, every
characteristic subgroup is normal. We record this as a lemma.

Lemma 1.7 Let G be any group. If H is a characteristic subgroup of G; then
H E G:

Proof If H is a characteristic subgroup of G; then '.H/ D H for every ' 2 Aut.G/:

In particular, 'g.H/ D H; where g 2 G and 'g is the inner automorphism induced
by g: Thus, g�1Hg D H for every g 2 GI that is, H E G: ut

The next property of characteristic subgroups will be useful later.

Lemma 1.8 Let G be a group with subgroups H and K: If H is characteristic in K
and K C G; then H C G:

Proof Choose any element g 2 G: Since K C G; there is an endomorphism

'g W K ! K defined by 'g.x/ D xg:

It is easy to verify that 'g 2 Aut.K/: Since H is characteristic in K; 'g.H/ D H:

And so, g�1Hg D H: This is true for all g 2 G since g was arbitrarily chosen. ut

Proposition 1.2 Let G and H be groups, and let G1 and G2 be subgroups of G:

(i) If � 2 Hom.G; H/; then �.ŒG1; G2�/ D Œ�.G1/; �.G2/�:

(ii) Let A � Aut.G/: If G1 and G2 are A-invariant, then ŒG1; G2� is also A-invariant.
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Proof

(i) If g1j 2 G1; g2j 2 G2; and "j 2 f�1; 1g for 1 � j � k; then

�

0

@
kY

jD1

h
g1j ; g2j

i"j

1

A D

kY

jD1

�
�h

g1j ; g2j

i�"j

D

kY

jD1

�
�

g�1
1j

g�1
2j

g1j g2j

�"j

D

kY

jD1

h
�
�

g1j

��1

�
�

g2j

��1

�
�

g1j

�
�
�

g2j

�i"j

D

kY

jD1

h
�
�

g1j

�
; �
�

g2j

�i"j

:

(ii) We show that ' .ŒG1; G2�/ � ŒG1; G2� for any ' 2 A: Let

kY

jD1

h
g1j ; g2j

i"j

2 ŒG1; G2�

as above. Since G1 and G2 are A-invariant subgroups, a computation similar to
(i) gives

'

 
kY

jD1

h
g1j ; g2j

i"j

!

D

kY

jD1

h
'
�

g1j

�
; '
�

g2j

�i"j

2 ŒG1; G2�:

This completes the proof. ut

It follows from Proposition 1.2 (i) that the derived subgroup of any group is
always fully invariant.

Corollary 1.2 Let G be a group and N E G: If H � G and K � G; then

ŒHN=N; KN=N� D ŒH; K�N=N:

Proof If   W G ! G=N is the natural homomorphism, then  .H/ D HN=N and
 .K/ D KN=N: Apply Proposition 1.2 (i). ut

Lemma 1.9 Let G be a group, and suppose that N E G and H < G: Then
ŒH; G� � N if and only if HN=N � Z.G=N/:
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Proof Suppose that HN=N � Z.G=N/: If h 2 H; then .hN/.gN/ D .gN/.hN/ for
any g 2 G: This means that ŒhN; gN� D N: Since ŒhN; gN� D Œh; g�N; it follows
that Œh; g� 2 N: Consequently, every commutator of an element of H and an element
of G is contained in N: It follows that ŒH; G� is a subgroup of N:

Conversely, suppose that ŒH; G� � N and let hN 2 HN=N and gN 2 G=N: Since
ŒhN; gN� D Œh; g�N and Œh; g� 2 N by hypothesis, we have ŒhN; gN� D N: Thus,
hN 2 Z.G=N/: ut

Theorem 1.4 Let G be a group. If H and K are normal subgroups of G; then
ŒH; K� E G and ŒH; K� � H \ K: In particular, every element of H commutes
with every element of K whenever H \ K D 1:

Proof Suppose that g 2 G and
Qn

iD1Œhi; ki�
"i 2 ŒH; K�; where hi 2 H; ki 2 K; and

"i 2 f�1; 1g: By Lemmas 1.1 and 1.4 (iv),

�
Œh1; k1�"1 Œh2; k2�"2 � � � Œhn; kn�"n

�g
D
�
Œh1; k1�"1

�g�
Œh2; k2�"2

�g
� � �
�
Œhn; kn�"n

�g

D

�h
hg

1; kg
1

i"1
��h

hg
2; kg

2

i"2
�

� � �

�h
hg

n; kg
n

i"n
�

is contained in ŒH; K� since H and K are normal in G: Thus, ŒH; K� E G:

Furthermore,

nY

iD1

Œhi; ki�
"i D

nY

iD1

�
h�1

i

�
k�1

i hiki

��"i

2 H

and

nY

iD1

Œhi; ki�
"i D

nY

iD1

��
h�1

i k�1
i hi

�
ki

�"i

2 K:

Thus,
Qn

iD1Œhi; ki�
"i 2 H \ K; and therefore, ŒH; K� � H \ K: ut

An easy induction argument gives:

Corollary 1.3 If G1; : : : ; Gn are normal subgroups of a group G; then the
subgroup ŒG1; : : : ; Gn� is normal in G:

Lemma 1.10 If H; K, and L are normal subgroups of a group G; then

ŒHK; L� D ŒH; L�ŒK; L� and ŒH; KL� D ŒH; K�ŒH; L�:



18 1 Commutator Calculus

Proof The result follows from Lemma 1.4 (v) and (vi), together with
Theorem 1.4. ut

More generally, we have:

Lemma 1.11 If fG1; : : : ; Gn; H1; H2g is a set of normal subgroups of a group G;

then

(i) ŒG1; : : : ; Gn; H1H2� D

2Y

iD1

ŒG1; : : : ; Gn; Hi�I

(ii) ŒH1H2; G1; : : : ; Gn� D

2Y

iD1

ŒHi; G1; : : : ; Gn�I

(iii) ŒG1; : : : ; Gm�1; H1H2; GmC1; : : : ; Gn� D
2Y

iD1

ŒG1; : : : ; Gm�1; Hi; GmC1; : : : ; Gn� for 1 < m < n:

Proof

(i) Note that ŒG1; : : : ; Gn� E G by Corollary 1.3. The result follows from
Lemma 1.10.

(ii) Set n D 2: By Lemma 1.10,

ŒH1H2; G1; G2� D ŒŒH1H2; G1�; G2�

D ŒŒH1; G1�ŒH2; G1�; G2� :

Now, ŒH1; G1� and ŒH2; G1� are normal in G by Theorem 1.4. Another
application of Lemma 1.10 gives

ŒŒH1; G1�ŒH2; G1�; G2� D ŒH1; G1; G2�ŒH2; G1; G2�:

We iterate this procedure for any n to obtain the desired result.
(iii) Let C D ŒG1; : : : ; Gm�1�: By Corollary 1.3, Lemma 1.10, and (ii) above, we

have

ŒC; H1H2; GmC1; : : : ; Gn� D ŒŒC; H1H2�; GmC1; : : : ; Gn�

D ŒŒC; H1�ŒC; H2�; GmC1; : : : ; Gn�

D ŒŒC; H1�; GmC1; : : : ; Gn�ŒŒC; H2�; GmC1;

: : : ; Gn�

D ŒC; H1; GmC1; : : : ; Gn�ŒC; H2; GmC1; : : : ;

Gn�:

This completes the proof. ut
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The next two lemmas pertain to central commutator subgroups.

Lemma 1.12 (P. Hall) Let G be a group with subgroups H and K; and suppose
that ŒH; K� � Z.G/: For any a 2 H and b 2 K; the maps

'a W K ! Z.G/ defined by 'a.k/ D Œa; k�

and

'b W H ! Z.G/ defined by 'b.h/ D Œh; b�

are homomorphisms.

Proof Suppose that k1; k2 2 K: By Lemma 1.4 (vi),

Œa; k1k2� D Œa; k2�Œa; k1�k2 D Œa; k2�Œa; k1�:

Therefore, 'a is a homomorphism. In a similar way, one can show that 'b is a
homomorphism. ut

Lemma 1.13 Let G be any group. If Œg; h� 2 Z.G/ for some g; h 2 G and n 2 Z;

then

Œgn; h� D Œg; h�n D Œg; hn�:

Proof The result is obvious for n D 0 and n D 1; and Lemma 1.12 gives the result
when n � 2: Suppose that n < 0: Since Œg; h� is central, so is Œg; h��n: This, together
with Lemma 1.4 (viii), implies

Œgn; h� D
�
.g�n/�1; h

	
D
�
Œg�n; h�g

n
��1

D
�
.Œg; h��n/

gn
��1

D .Œg; h��n/
�1

D Œg; h�n :

In a similar way, one can show that Œg; hn� D Œg; h�n: ut

1.3.2 The Normal Closure

Let S and T be nonempty subsets of a group G: Denote by ST , the subgroup of G
generated by all conjugates of elements of S by elements of T W

ST D gp
�

t�1st
ˇ̌
ˇ s 2 S; t 2 T

�
:



20 1 Commutator Calculus

It is easy to see that if H � G; then SH is the smallest normal subgroup of gp.S; H/

containing S: We call SH the normal closure of S in gp.S; H/:

We record some fundamental properties on normal closures and commutator
subgroups.

Proposition 1.3 Let G be a group with H � G and ; ¤ S � G:

(i) SH D gp .S; ŒS; H�/ :

(ii) ŒS; H�H D ŒS; H�:

(iii) If H D gp.T/ for some ; ¤ T � G; then ŒS; H� D ŒS; T�H and ŒH; S� D

ŒT; S�H :

Proof

(i) Note first that S � SH because H � G. Moreover, any generator of ŒS; H� can
be written as Œs; h� D s�1sh with s 2 S and h 2 H: Thus, gp .S; ŒS; H�/ � SH :

It follows from Lemma 1.4 (ii) that SH � gp .S; ŒS; H�/ :

(ii) Since H � G; ŒS; H� � ŒS; H�H : We establish the reverse inclusion. By
definition and Lemma 1.1,

ŒS; H�H D gp
�

xh
ˇ̌
ˇ x 2 ŒS; H�; h 2 H

�

D gp
�
Œs; h1�h2

ˇ̌
ˇ s 2 S; h1 2 H; h2 2 H

�
:

By Lemma 1.4 (vi),

Œs; h1�h2 D Œs; h2��1Œs; h1h2�:

Consequently, Œs; h1�h2 2 ŒS; H�; and thus ŒS; H�H D ŒS; H�:

(iii) It is enough to prove that ŒS; H� D ŒS; T�H : First, observe that ŒS; T� � ŒS; H�

because T � H: This implies that ŒS; T�H � ŒS; H�H : By (ii), ŒS; T�H � ŒS; H�:

It suffices to show that Œs; h� 2 ŒS; T�H for any s 2 S and h 2 H: Since
H D gp.T/; we can write

h D t"1

1 t"2

2 � � � t"m
m

for ti 2 T and "i 2 f�1; 1g: The proof is done by induction on m: If m D 1

and "1 D 1; then Œs; t1� 2 ŒS; T�H : If m D 1 and "1 D �1, then
h
s; t�1

1

i
D

�
Œs; t1�t

�1
1

��1

is also contained in ŒS; T�H :

Assume that the result is true for m � 1: If m > 1; then Lemma 1.4 (vi),
together with induction, implies that

Œs; h� D
h
s; t"1

1 t"2

2 � � � t"m�1

m�1 t"m
m

i
D
h
s; t"m

m

ih
s; t"1

1 t"2

2 � � � t"m�1

m�1

it"m
m

is contained in ŒS; T�H : ut
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Corollary 1.4 If G is a group with H � G and K � G; then ŒH; K� E gp.H; K/:

Proof By Proposition 1.3 (ii), ŒH; K�K D ŒH; K� and ŒK; H�H D ŒK; H�: Hence,

ŒH; K�K D ŒH; K� D ŒH; K�H

by Proposition 1.1 (i). Consequently, both H and K normalize ŒH; K�: ut

The next two corollaries follow from Proposition 1.3 (iii).

Corollary 1.5 Let H and K be subgroups of a group G; and let S and T be nonempty
subsets of G: If H D gp.S/ and K D gp.T/; then ŒH; K� D

�
ŒS; T�H

�K
:

Corollary 1.6 If G is a group and H1; : : : ; Hn are normal subgroups of G; then

ŒH1; : : : ; Hn� D gp .Œh1; : : : ; hn� j hi 2 Hi for i D 1; : : : ; n/ :
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