
Participatory Verification of Railway
Infrastructure by Representing Regulations

in RailCNL

Bjørnar Luteberget1, John J. Camilleri2, Christian Johansen3(B),
and Gerardo Schneider2

1 RailComplete AS, Sandvika, Norway
bjlut@railcomplete.no

2 Department of Computer Science and Engineering,
Chalmers University of Technology and University of Gothenburg,

Gothenburg, Sweden
{john.j.camilleri,gerardo}@cse.gu.se

3 Department of Informatics, University of Oslo, Oslo, Norway
cristi@ifi.uio.no

Abstract. Designs of railway infrastructure (tracks, signalling and con-
trol systems, etc.) need to comply with comprehensive sets of regula-
tions describing safety requirements, engineering conventions, and design
heuristics. We have previously worked on automating the verification of
railway designs against such regulations, and integrated a verification
tool based on Datalog reasoning into the CAD tools of railway engi-
neers. This was used in a pilot project at Norconsult AS (formerly Ana-
con AS). In order to allow railway engineers with limited logic program-
ming experience to participate in the verification process, in this work we
introduce a controlled natural language, RailCNL, which is designed as a
middle ground between informal regulations and Datalog code. Phrases
in RailCNL correspond closely to those in the regulation texts, and can
be translated automatically into the input language of the verifier. We
demonstrate a prototype system which, upon detecting regulation vio-
lations, traces back from errors in the design through the CNL to the
marked-up original text, allowing domain experts to examine the cor-
rectness of each translation step and better identify sources of errors.
We also describe our design methodology, based on CNL best practices
and previous experience with creating verification front-end languages.

1 Introduction

Automated formal verification techniques have the potential to greatly increase
the efficiency of engineering. However, verification engines are not easy to take
up in industrial practice. Even if the verification process is fully automated,

Supported by the Norwegian Research Council project RailCons – Aut. Methods and
Tools for Ensuring Consistency of Railway Designs, and by the Swedish Research
Council grant nr. 2012-5746 – Reliable Multilingual Digital Communication:
Methods and Applications.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 87–103, 2017.
DOI: 10.1007/978-3-319-66197-1 6



88 B. Luteberget et al.

integrating the tools into the users’ workflow and formalizing properties and
models requires careful thinking and domain expertise. The gap between auto-
mated verification and domain expert users is often caused by the lack of user
involvement. The users are usually not experts in verification techniques, i.e.
they do not know how to write properties in the verifier’s language, nor how to
build models for the verifier, nor how to interpret the output of the verifier when
violated properties are found. In our case, the users are expert engineers from
the railway domain, designing railway infrastructure.

We want to allow the end users to participate in the verification process.
Firstly, the domain experts need to understand the verification properties that
the tool actually verifies, as well as the model of the system that the tool works
with. Secondly, we want to allow the users to actively participate in maintaining
the verification properties, i.e. to change and adjust them when needed1. Thirdly,
we want that the domain experts are able to create their own specifications and
feed these into the verification engine, e.g. define specific expert knowledge as
verification conditions.2

Involving the user in the design of a system is well-studied in the field of par-
ticipatory design [8,19]. We use the term participatory verification when talking
about methods for including the end user in the verification process. The goal
is to make automated verification techniques accessible to engineers with little
programming experience.

We have previously demonstrated [12,13] an efficient verification and trou-
bleshooting tool integrated into the CAD-based program used by railway plan-
ning engineers. This tool performs a lightweight type of verification which we
call static infrastructure verification, and the results are updated continuously
as the engineer is modifying the station (see Fig. 1). However, the Prolog-like
formal logical specification language that we used for describing railway rules
and regulations is not easy for inexperienced programmers to write. Ideally, rail-
way engineers should be able to read the logical specifications to ensure that
they correctly represent the engineering domain. Furthermore, engineers should
themselves be able to maintain and extend the rule base with limited support
from verification experts. When we evaluated with railway engineers from Rail-
COMPLETE AS3 our prototype, they raised yet another concern: how could
they trace the violation, which the tool displays graphically, back to the source
documents?

These observations have led us to develop a controlled natural language
(CNL), which we call RailCNL, meant to be used as an intermediate represen-
tation between natural language texts (i.e. the railway regulations) and Datalog
[20] logic programs. RailCNL aims to be human-friendly enough for our domain
experts to work with to overcome the above challenges, and thus getting them
involved in using and improving the automated verification tool. At the same

1 Authorities typically make small adjustments to regulations several times per year,
whereas engineering best practices can be revised at any time.

2 Such expert knowledge is often seen as proprietary valuable assets of the company.
3 http://railcomplete.no.

http://railcomplete.no


Participatory Verification of Railway Infrastructure 89

Fig. 1. CAD integrated verification engine, displaying errors and warnings after check-
ing the model extracted from the CAD design against railway regulations on-the-fly.

time, the language is a formal language which can be automatically translated
into Datalog.

In our collaboration with Norwegian railway engineers, we have focused
on regulations in Norwegian language4, but our general approach (Sect. 2) is
language-independent. In Sect. 3 we present RailCNL, a user-friendly verifica-
tion front-end language for static railway infrastructure analysis. This comes
with an automatic translation into Datalog (Sect. 3.3), and backwards tracing
integrated into the CAD program, where marked-up original regulation texts
are used together with the CNL text to explain regulatory violations found in
the model (Sect. 3.4). In Sect. 4 we extract a design methodology from our expe-
rience with RailCNL, and conclude in Sect. 5 by describing the coverage of the
defined CNL, and presenting related and future work.

2 Approach to Participatory Verification for Railway
Regulations

To promote participatory verification of infrastructure railway designs against
regulations, we design a CNL for expressing railway regulations and expert
knowledge, integrating it with our previously developed verification engine.
Figure 2 presents the overall workflow of using the railway CNL integrated
with the engineer’s CAD-based environment and our verification engine.
Static infrastructure verification requires:

1. Models: railway infrastructure plans, typically created by arranging the sta-
tion layout using CAD-based programs, e.g. extensions of Autodesk Auto-
CAD.

2. Properties: regulations and expert knowledge, extracted from regulatory and
best-practices documents.

4 The examples presented in this text are English translations of originally Norwegian
content.



90 B. Luteberget et al.

CNL editor
See Section 5

Properties, CNL
representation

(w/refs to marked-
up original text)

User creates
plans in CAD

program

Model, railML
representation
of infrastructure
See Section 1 Datalog

reasoner

Issues presentation
(warnings, errors)

See Fig. 1

Original text
(w/marked-up
sentences)

See Section 3.4

Side by side tracing through
CNL to original text.

See Fig. 6

Fig. 2. Verification process overview. Models come directly from the CAD program,
which engineers are already familiar with. Properties come from paraphrasing the reg-
ulations using CNL, which in turn are translated into Datalog. The reasoner outputs
issues (warnings and errors) which are presented to the user in the CAD program by
highlighting the objects involved in the violation. Issues are traced back to the original
text (i.e. the regulations) though identifiers on the marked-up sentences.

The formalization of these into Datalog is described in our previous work
[12] which allows efficient automatic reasoning. Describing verification properties
using logical rules in Datalog is not new (along with other logics like temporal [2]
or dynamic logics [3,5]), and we expected that the declarative style of Datalog
would make it easy for railway engineers to read and write such properties.
However, a pilot project with the RailCOMPLETE engineers showed that they
were not proficient enough in logic programming to understand our encodings.

To allow the engineers to participate in the verification process, we develop
the controlled natural language RailCNL for representing properties on a higher
level of abstraction, make them closer to the original text while still retaining
the possibility for automatic translation into Datalog. This approach has the
following advantages:

– RailCNL is domain-specific, i.e. tailored both to the types of logical state-
ments needed by the verification engine, and to the regulations terminol-
ogy. This allows concise and readable expressions, increasing naturalness and
maintainability.

– The language closely resembles natural language, and can be read by engi-
neers with the required domain knowledge without learning a programming
language.

– A separate textual explanation (such as comments used in programming)
is not needed for presenting violations textually, as the properties are now
directly readable as natural text. Comments could still be used, e.g. to clarify
edge cases or to clarify semantics, as is done in the original texts.



Participatory Verification of Railway Infrastructure 91

– Statements in RailCNL can be linked to statements in the original text, so
that reading them side by side reveals to domain experts whether the CNL
paraphrasing of the natural text is valid. If not, they can edit the CNL text.

3 RailCNL: A Front-End Language for Railway
Verification

A controlled natural languages (CNL) is a constructed language resembling a
natural language (such as English) but with added restrictions on its grammar
and vocabulary. The restrictions are typically aimed at reducing the ambiguity
and complexity of unrestricted natural language. A CNL may or may not also
be a formal language, depending on its intended use. Wyner et al. [22] give high-
level recommendations on how to design controlled natural languages ranging
from informal to formal, general to domain-specific, simple to complex. For a
recent survey of CNLs, see Kuhn [9].

Grammatical Framework (GF) is a programming language for multilingual
grammar applications [16]. A GF program defines a grammar consisting of an
abstract syntax and one or more concrete syntaxes. The project also features the
resource grammar library (RGL), which is a comprehensive linguistic model of
natural languages with a unified API for forming sentences, and implementations
of this API for 32 languages. The RGL encapsulates the linguistic complexity of
the underlying natural languages, making the effort needed to map an abstract
syntax into another natural language minimal, often reducing to simply provid-
ing the domain-specific vocabulary. This makes GF a valuable tool for building
CNLs (see [11] for details).

3.1 RailCNL Grammar

With RailCNL, we aim to cover the following content (also see Table 1 on p. 14):

1. Definitions of railway-domain terms from a set of basic terms given by the
object types present in the CAD program and the railML exchange format.

2. Regulations (from infrastructure manager technical regulations5) which give
obligations or recommendations on the design of the railway infrastructure.

3. Expert knowledge given in textual form apart from official regulations, used
to gather and formalize engineering practice.

An English version of RailCNL’s core grammar is presented in Fig. 3. The full
grammar is defined in GF (see [11]), which has some advantages over classical
BNF parsers: (i) separation of abstract syntax and concrete syntax; (ii) resource
grammar library for natural languages, allowing us to compose sentences in nat-
ural language while abstracting away from morphological details; (iii) modularity
and extensibility, which we need for evolving a domain-specific language along-
side its application; and (iv) tool support for managing text (editors, predictive
parsing, visualization).
5 Norwegian infrastructure manager Bane NOR’s regulations: https://trv.jbv.no/.

https://trv.jbv.no/


92 B. Luteberget et al.

Fig. 3. English version of RailCNL’s core grammar in BNF. Some linguistic complexity
such as subject-verb agreement is ignored here; the actual grammar is fully specified
as GF code, which is ideally suited for handling such cases.

3.2 RailCNL Modules and Examples

RailCNL has a modular design (see Fig. 4) where domain-specific constructs are
separated from generic ones. However, CNL modules are not always trivially
composable, and care must be taken to retain naturalness while avoiding ambi-
guity when increasing the complexity of the language. We give a summary of
such trade-offs in Sect. 4. We describe below the main modules and constructs
of RailCNL, with examples of CNL text and the corresponding abstract syntax
tree (AST) obtained from the GF parser (see [11] for more examples).



Participatory Verification of Railway Infrastructure 93

Top-level statement types:
assertions, restrictions

Generic ontology
language Graph language:

paths, distances Areas

Railway classes
and properties
based on railML

Railway layout
constraints

Generic

Domain-specific

Module
Dependency

Fig. 4. Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

Top-Level Statement Types. Most normative sentences in railway regula-
tions are classified into one of the following types, or their negation:

– Constraint: logical constraints on the railway infrastructure model. These
sentences can be used by the Datalog reasoner to infer new statements.

– Obligation: design requirements on the railway infrastructure. The CAD
model is checked for compliance, and violations are presented as errors to
the user.

– Recommendation: design heuristics for railway infrastructure. The CAD
model is checked for compliance, but violations are presented as warnings or
for information only, which can be dismissed from the view.

Generic Ontology Module. Statements about classes of objects and their
properties form a natural basis for knowledge representation. We allow arbitrary
string tokens to represent class names, property names and values, and compose
these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary
word. The reason for allowing this is to give the CNL the power to define new
words.

– Properties and values: can be arbitrary string tokens. These can be joined
by “and” or “or” both on the level of values and of properties.



94 B. Luteberget et al.

– Restrictions: Equality is a common case of restriction for which we simply
choose the wording “to be”. Other restriction types such as greater than, less
than, etc., are worded more verbosely. Example: A main signal should have
height which is greater than 1.5m and less than 5.0m.

– Relations: the basic ontology module contains multiplicity restrictions on
relations. In the layout module presented below, we will see how relations
are used when writing statements which are concerned with more than one
object simultaneously. Example: A distant signal should have one or more
associated signals.

Layout Module. For writing statements about the topology of the railway
track, e.g. about paths as illustrated in Fig. 5c, we use the following language
constructs:

– Goal object: modifies the Subject type defined in the ontology module
to add conditions which make sense in a railway graph search, such as the
object’s orientation (same direction or opposite direction) the search’s direc-
tion (forwards or backwards) or the termination properties of the search.

– Path condition: argument to the search constructors which specifies what
restrictions are placed on the paths from source to goal object.

– Path restrictions: the combination of the source object, goal object and
path conditions. Example: All paths from a station border to the first facing
switch must pass an entry signal. (See Fig. 5a)

– Distance restrictions: See Fig. 5b and Example 2.

Station
boundary

Entry
signal

Facing
switch

All paths

(a) Path restrictions are constructed from a sub-
ject, a goal, a quantifier and a condition.

200 m

Entry
signal

Facing
switch

(b) Distance restrictions are constructed from a
subject, a goal, and a value restriction.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defin-
ing a graph of railway tracks.

Tunnel

Bridge

(d) Area containment can refer to either a planar
region or an interval on a track.

Fig. 5. Conditions on railway geographical layout as supported by RailCNL.



Participatory Verification of Railway Infrastructure 95

Area Module. The area module modifies subjects to express whether they
are inside a planar area, such as station areas, tunnels or bridges, or belongs to
a linear segment of a track, such as being located in a curve or on an incline
(see Fig. 5d).

3.3 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, ASTs obtained by parsing CNL
phrases with the GF runtime are transformed into Datalog rules (a description
of how this is implemented can be found in Sect. 4.3). Each top-level constructor
in the CNL definition has a translation function into the Datalog AST.

Predicate Conventions. We employ the following predicate conventions:

– Class membership as classname(object).
– Object properties as propertyname(object , value).
– Relation between objects as relationname(object , otherobject).

Explicit Variables. The Subject of the sentences of the Ontology module
defines an arbitrary individual whose definition does not depend on other infor-
mation. To translate it, we create a new variable denoting the arbitrary individ-
ual. The subject makes the starting point for the translation, as other parts of
the sentence refer back to the subject.

Ontology Restrictions. For ontology restrictions, such as obligations (“must”)
and recommendations (“should”), the Datalog rule head contains a predicate
which captures any violations of the text. This is achieved by first defining the
restrictions themselves (r1 found in Example 3 below) and then declaring a
rule which uses the negation of these restrictions (!r1 found) in order to yield
a counter-example.



96 B. Luteberget et al.

Disjunctive Normal Form. As Datalog does not (necessarily) have an or
operator, nor negation over complex terms, these must be factored out into
separate rules and auxiliary predicates. This transformation can be performed
by considering the result of the translation of a sentence to be a set of rules
(such as the two definitions of r1 found in Example 3), and the result of the
partial translation (such as adding a class or property constraint to a rule) to
be a set of conjunctions which are prefixes of the final rules.

Vocabulary Matching. The Norwegian regulations are written in Norwegian
and use other terms for class names, properties and relations than the railML
representation does. After identifying the class names from the CNL, they will
be looked up in a Norwegian/railML dictionary. For example, Norwegian “aksel-
teller” is mapped into the railML class “trainDetector” with the “axlecounting”
property.

3.4 Tool Integration

Verification tool usually output a counter-example when the requirements are
violated by the model. It is often difficult to understand from the counter-
example which of the (possibly several) requirements have been violated, and
why. We use the notion of tracing to trace such errors from the verification out-
put all the way to the original text regulations. Figure 6 shows our prototype
tool (running as a plug-in for the AutoCAD program used by Norwegian railway
engineers) presenting a problem in the CAD view, and how it is traced back
through the Datalog code, the AST, and the CNL code, to the original regu-
lations text. We mark-up sentences of the original text with an identifier, and
create a separate document containing the formalized representation using Rail-
CNL, using the identifiers as references back into the original text (Fig. 7). When
the verification program finds a violation among the regulations, it outputs the
identifier of the rule which has been violated, enabling the tracing.



Participatory Verification of Railway Infrastructure 97

Fig. 6. Tracing of requirements backwards from CAD program through CNL to
markedup original texts. From a regulation violation presented as a warning or error,
the user can browse to the corresponding regulatory text, shown side by side with the
CNL text.

4 Design Methodology for a Verification Front-End
Language

Our methodology is based on CNL and GF best practices; in particular, Ranta
et al. [18] describe the construction of a CNL by creating an abstract syntax
corresponding to a semantic model, mapping it into natural language, and also
how to avoid or handle ambiguity in parsing and translating. In a later report,
Ranta et al. [17] give explicit best practices, such as: (i) using a modular struc-
ture separating generic and domain-specific parts of the grammar, (ii) letting
the AST model the semantics of the text, as opposed to the logic of the under-
lying formalism, and (iii) trade-offs in modelling language restrictions purely in
context-free grammar versus using dependent types. We expand on these best
practices in the context of creating intermediate languages for writing diverse
natural text in a form which is translatable into formal verification properties.

The main activities for defining a verification front-end language using
GF are:

1. Define an abstract syntax which is able to represent statements of relevant
texts. We suggest two sub-activities to help manage the difficulty and com-
plexity of modelling domain-specific, yet diverse and informally structured,
texts:



98 B. Luteberget et al.

(a) Logic-driven design where basic (often non-domain-specific) constructs
which are known from the verification logic are added in a “bottom-up”
fashion.

(b) Text-driven design where highly domain-specific constructs are added
to the language to model specific examples in original texts in a “top-
down” fashion.

2. Write a concrete syntax, mapping the abstract syntax into one or more
natural languages, using Grammatical Framework and its resource grammar
library.

3. Create a translation from the abstract syntax to the target logic formalism,
i.e. the verification properties expressed in the input language of the solver.

In practice, the above activities may have subtle cross-dependencies, for
example the need for reducing ambiguity by encoding more restrictions in the
types, the usage of restricted keywords, and the need for structure on larger
scales than a single sentence. Section 4.2 addresses each of these concerns.

Fig. 7. Excerpt of original text marked-up with sentence identifiers, and properties
represented in CNL with references to original text.

4.1 Abstract Syntax

Attempting to formally model a body of informal specifications in its entirety
may be neither feasible nor desirable, for a variety of reasons:

1. The text might have some amount of non-normative content intended only
to give readers a better understanding of the subject matter.

2. Parts of the normative content might not be suitable for modelling in the
target verification tool.

3. The available body of text might be large and complex, and covering all parts
of it could require diverse domain knowledge from various disciplines.

Therefore, starting from arbitrary sentences in the natural text and trying to
cover them with the CNL will often prove to be a daunting task. Our approach



Participatory Verification of Railway Infrastructure 99

to handling this difficulty is to split the process of designing the abstract syntax
into two parts.

We start with a logic-driven design, where we define basic concepts in a
bottom-up fashion, such as classifying the statement types (constraints, restric-
tions, etc.) and describing sets of objects based on their class and their properties.
Even when deciding on the basic logic of the language, it might still be wise to
abstract away from the details of the underlying verification logic.

Next follows a text-driven design phase, where we look for text samples that
can be captured in the CNL, and make adjustments and additions to the gram-
mar to cover them. This phase might eventually lead to finding new basic build-
ing blocks, such as adding the graph module to RailCNL for describing railway
layout, or adding relations to the ontology module. However, it is easy to get
carried away and construct a highly nested language which has too much free-
dom and therefore becomes difficult to parse. Until the need for more generality
is proven, each newly added construct is kept specific.

Alternating between the logic-driven and the text-driven phases can be useful
for handling complexity and discovering the middle ground between informal
specifications and verification logic. A consequence of this compromise is that
the language will seldom be able to cover the exact wordings used in the original
texts. We accept this consequence and aim instead to provide a user-friendly
comparison of original text and CNL text for traceability (see Sect. 3.4).

4.2 Concrete Syntax

The abstract syntax is mapped into a natural language using the GF resource
grammar library (RGL), which is well-covered in the GF documentation and
literature (e.g. [17,18]). Each category of the abstract syntax is mapped into a
linearization type, often a record data structure. For example, the Subject cate-
gory of RailCNL is assigned the complex noun (CN) record type, and Statement
is assigned to utterance (Utt).

A major motivation for formal CNLs is that they can be unambiguously
parsed as long as the language is restricted enough. Languages written using GF
are often restricted to a pre-compiled vocabulary, to be able to identify structure
and handle morphological variation. For our verification application, however,
we need users to be able to define new terms dynamically, e.g. class names,
and afterwards write statements using both built-in and user-defined terms.
But allowing arbitrary string tokens can introduce ambiguity, i.e. the parser
returning many parse trees for a single statement. We mitigate this problem
through several means:

Type-level Restrictions. The railway term “main signal” is the common way
to refer to a signal which is of type main. Instead of using a recursively defined
constructor for this term (e.g. Adjective : String -> Class -> Class), we
can restrict the number of adjectives to one or two. This restriction is encoded
in the type system by separating the adjective-prefixed class name from the
non-prefixed one:



100 B. Luteberget et al.

StringClassAdjective : String -> BaseClass -> Class

StringClassNoAdjective : BaseClass -> Class

Reserved Keywords. Using arbitrary names as building blocks of our lan-
guage resembles the use of identifiers as variables in programming languages.
Programming languages have restricted keywords which cannot be used as
variable names. Similarly, we use the GF parser callbacks system to remove
parses which contain function words (such as “which”, “has”, “is”, “must”,
“be”, etc.) as arbitrary names. These are very unlikely to be needed as class
or property names.

Weighted Constructors. The GF parser has support for probabilistic gram-
mars, which work by assigning weights (probabilities) to the constructors of
the abstract syntax. By assigning a low weight to any constructor which uses
the String category, we ensure that built-in syntax is always prioritized over
arbitrary tokens.

Syntactic Guides. As in programming languages, special symbols and punctu-
ation can be used as guides for the parser if we are willing to compromise on nat-
uralness. Alternatively, we can increase the verbosity of the syntax, to reduce
the likelihood of causing ambiguity when embedded in a longer statement.

4.3 Translation into the Target Logic Formalism

If the abstract syntax is made to faithfully model the logic of the verification
system, then the translation into the logic formalism can be made by imple-
menting another GF concrete syntax for the target language. However, target
logics are often too low-level to represent regulations directly. GF incorporates
dependent type features which could allow for a more concise representation of
this translation, but this practice has not yet matured to a state in which it can
be said to be a recommended practice (see [17]). For RailCNL we have instead
written a separate program (in C#, as it is a part of the verification CAD plugin)
which translates from the abstract syntax of the CNL into Datalog. Section 3.3
describes the main techniques used.

5 Evaluation and Conclusions

RailCNL formalizes, in a human-readable manner, relevant parts of the techni-
cal regulations and expert knowledge used in an on-the-fly verification engine
integrated within railway construction design software. This type of verification
is limited to static infrastructure analysis, leaving the more heavy-weight analy-
sis, e.g. the implementation of control systems or interlocking specifications, to
specialized analysis software such as the products of Prover AB (Sweden) or
Systerel (France).

RailCNL is our approach to participatory verification, where the end users (rail-
way engineers, in our case) get full access to the verification properties. This allows
them to actively participate in the verification by maintaining the rule base and
managing their own properties (often based on experience and best practice).



Participatory Verification of Railway Infrastructure 101

We have collaborated with railway engineers associated with RailCOM-
PLETE during the design of the language and the writing of the verification
properties. Their feedback on limitations in the coverage of the language and
suggestions for simplification will continue to drive the design forwards.

We surveyed the Norwegian railway regulations and counted how much of
the relevant regulations our basic RailCNL covers (see results in Table 1, and
[11] for methodology and examples). The survey is limited to parts of the reg-
ulations covering railway track and signalling, as these are the disciplines that
the RailCOMPLETE software development is currently focusing on.

RailCNL is implemented using the Grammatical Framework and its resource
grammar library (RGL). While we have used Norwegian for representing regula-
tions, RailCNL could be easily extended with other languages supported by the
RGL. This would allow the system to be used for other authorities’ regulations
written in other languages. As long as most of the abstract syntax is re-used,
the translation into Datalog should also be readily adaptable.

Table 1. Coverage evaluation for a subset of Norwegian regulations. Phrases of the
original text which could be classified as normative (i.e. applying some restriction on
design) were evaluated for relevance to static infrastructure verification. The coverage
is the percentage of relevant phrases expressible in RailCNL.

Eng. discipline Chapter title Phrases Normative Relevant Covered Coverage

Track Planning: general technical 140 74 74 70 95%

Track Planning: geometry 278 157 152 119 78%

Signalling Planning: detectors 144 106 35 21 60%

Signalling Planning: interlocking 376 265 130 81 62%

Total 938 602 391 291 74%

Related Work. Johannisson [7] describes a CNL targeting the Object Con-
straint Language (OCL) for use in reasoning about Java program correctness
in the KeY system [3]. The language features dynamic vocabulary based on
input UML diagrams where vocabulary updates are achieved by re-compiling
the grammar using the GF compiler when needed. Angelov et al. [1] present a
conflict detection framework where GF is used to map the contract language CL
[15] into a CNL. Statement modalities, such as obligation, permission and pro-
hibition, are applied to complex actions. The structure of the CNL is modelled
after the CL language. Camilleri et al. [4] take a CNL approach to manipu-
lating contract-oriented diagrams using a visual diagram editor, a CNL with
text editor support, and a spreadsheet representation as interfaces to a common
model, which can be translated into timed automata for reasoning about system
properties.

Other efforts to define domain specific languages for railway verification have
typically focused on the implementation of control systems, such as Vu et al.
[21], while also considering the verification to be an activity which is separate



102 B. Luteberget et al.

from design and implementation. James et al. [6] show how to integrate UML
modelling of the railway domain with graphical modelling and specification and
verification languages, also keeping the focus on verifying the control system
implementation of a fixed design.

Future Work. In working with railway engineers, we discovered language fea-
tures which could be added to increase the coverage of RailCNL:

1. A notion of scopes and exceptions, so that more complex conditional restric-
tions can be expressed more naturally.

2. Mathematical formulas as a sub-language.
3. Vague or soft requirements represented not for direct use in verification, but

for requiring manual checks at some points.

A formal CNL with well-chosen linearizations can be very natural, and often
perfectly readable for a non-programmer with the required domain knowledge.
However, writing in a formal CNL can potentially be as difficult as writing
in a programming language. A solution to this problem is the use of special-
purpose editors which guide the user towards structuring their text according to
the underlying formal grammar. Different approaches to CNL editors have been
explored (see e.g. [4,10,14]). We plan to investigate these further and integrate
one such editor for RailCNL in the RailCOMPLETE CAD environment, and
carry out a usability study on its efficacy.

We are continuing our collaboration with Norwegian railway engineers to
evaluate the usability of our prototype tools, increase the text coverage and
extend the language to handle other railway engineering disciplines such as cate-
nary lines and ground works.

Acknowledgements. We thank Martin Steffen and Aarne Ranta for numerous useful
interactions, and Claus Feyling (CEO of RailCOMPLETE AS) for allowing us to use
the time of his engineers for testing our results and other railway specific interactions.

References

1. Angelov, K., Camilleri, J.J., Schneider, G.: A framework for conflict analysis of nor-
mative texts written in controlled natural language. JLAP 82(5), 216–240 (2013).
doi:10.1016/j.jlap.2013.03.002

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-69061-0

4. Camilleri, J.J., Paganelli, G., Schneider, G.: A CNL for contract-oriented diagrams.
In: Davis, B., Kaljurand, K., Kuhn, T. (eds.) CNL 2014. LNCS (LNAI), vol. 8625,
pp. 135–146. Springer, Cham (2014). doi:10.1007/978-3-319-10223-8 13

5. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press, Cambridge (2000)

http://dx.doi.org/10.1016/j.jlap.2013.03.002
http://dx.doi.org/10.1007/978-3-540-69061-0
http://dx.doi.org/10.1007/978-3-319-10223-8_13


Participatory Verification of Railway Infrastructure 103

6. James, P., Roggenbach, M.: Encapsulating formal methods within domain specific
languages: a solution for verifying railway scheme plans. Math. Comput. Sci. 8(1),
11–38 (2014). doi:10.1007/s11786-014-0174-0

7. Johannisson, K.: Natural language specifications. In: Beckert et al. [3], pp. 317–333.
doi:10.1007/978-3-540-69061-0 7

8. Kensing, F., Blomberg, J.: Participatory design: issues and concerns. Comput. Sup-
port. Coop. Work (CSCW) 7(3), 167–185 (1998). doi:10.1023/A:1008689307411

9. Kuhn, T.: A survey and classification of controlled natural languages. Comput.
Linguist. 40(1), 121–170 (2014). doi:10.1162/COLI a 00168

10. Ljunglöf, P.: Editing syntax trees on the surface. In: NoDaLiDa 2011, pp. 138–145
(2011)

11. Luteberget, B., Camilleri, J.J., Johansen, C., Schneider, G.: Participatory Verifica-
tion of Railway Infrastructure Regulations using RailCNL (long version). Technical
report 465, University of Oslo (2017)

12. Luteberget, B., Johansen, C.: Efficient verification of railway infrastructure designs
against standard regulations. Formal Methods Syst. Des., 1–32 (2017). doi:10.1007/
s10703-017-0281-z

13. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking of rail-
way infrastructure designs. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS,
vol. 9681, pp. 491–507. Springer, Cham (2016). doi:10.1007/978-3-319-33693-0 31

14. Meza Moreno, M.S., Bringert, B.: Interactive multilingual web applications with
grammatical framework. In: Nordström, B., Ranta, A. (eds.) GoTAL 2008.
LNCS (LNAI), vol. 5221, pp. 336–347. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85287-2 32

15. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts. J.
Logic Algebr. Program. (JLAP) 81(4), 458–490 (2012). doi:10.1016/j.jlap.2012.03.
003

16. Ranta, A.: Grammatical framework. J. Funct. Program. 14(2), 145–189 (2004).
doi:10.1017/S0956796803004738

17. Ranta, A., Camilleri, J., Détrez, G., Enache, R., Hallgren, T.: Grammar tool
manual and best practices. Technical report, MOLTO Deliverable D2.3, MOLTO
Consortium, Göteborg (2012). http://www.molto-project.eu/biblio/deliverable/
grammar-tools-and-best-practices

18. Ranta, A., Enache, R., Détrez, G.: Controlled language for everyday use: the
MOLTO phrasebook. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS
(LNAI), vol. 7175, pp. 115–136. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31175-8 7

19. Sharp, H., Rogers, Y., Preece, J.: Interaction Design: Beyond Human-Computer
Interaction. Wiley, New York (2007)

20. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. CSPP, New
York (1988)

21. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway
interlocking systems. In: FORMS/FORMAT 2014, pp. 200–209. TU Braunschweig
(2014)

22. Wyner, A., et al.: On controlled natural languages: properties and prospects. In:
Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 281–289. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14418-9 17

http://dx.doi.org/10.1007/s11786-014-0174-0
http://dx.doi.org/10.1007/978-3-540-69061-0_7
http://dx.doi.org/10.1023/A:1008689307411
http://dx.doi.org/10.1162/COLI_a_00168
http://dx.doi.org/10.1007/s10703-017-0281-z
http://dx.doi.org/10.1007/s10703-017-0281-z
http://dx.doi.org/10.1007/978-3-319-33693-0_31
http://dx.doi.org/10.1007/978-3-540-85287-2_32
http://dx.doi.org/10.1007/978-3-540-85287-2_32
http://dx.doi.org/10.1016/j.jlap.2012.03.003
http://dx.doi.org/10.1016/j.jlap.2012.03.003
http://dx.doi.org/10.1017/S0956796803004738
http://www.molto-project.eu/biblio/deliverable/grammar-tools-and-best-practices
http://www.molto-project.eu/biblio/deliverable/grammar-tools-and-best-practices
http://dx.doi.org/10.1007/978-3-642-31175-8_7
http://dx.doi.org/10.1007/978-3-642-31175-8_7
http://dx.doi.org/10.1007/978-3-642-14418-9_17

	Participatory Verification of Railway Infrastructure by Representing Regulations in RailCNL
	1 Introduction
	2 Approach to Participatory Verification for Railway Regulations
	3 RailCNL: A Front-End Language for Railway Verification
	3.1 RailCNL Grammar
	3.2 RailCNL Modules and Examples
	3.3 Translating RailCNL into Datalog
	3.4 Tool Integration

	4 Design Methodology for a Verification Front-End Language
	4.1 Abstract Syntax
	4.2 Concrete Syntax
	4.3 Translation into the Target Logic Formalism

	5 Evaluation and Conclusions
	References




