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Abstract. We propose a novel method for the verification of informa-
tion flow security in component-based systems. The method is (a) modu-
lar w.r.t. services and components, i.e., overall security is proved to follow
from the security of the individual services provided by the components,
and (b) modular w.r.t. attackers, i.e., verified security properties can be
re-used to demonstrate security w.r.t. different kinds of attacks.

In a first step, user-provided security specifications for individual
services are verified using program analysis techniques. In a second
step, first-order formulas are generated expressing that component non-
interference follows from service-level properties and in a third step that
global system security follows from component non-interference. These
first-order proof obligations are discharged with a first-order theorem
prover. The overall approach is independent of the programming lan-
guage used to implement the components. We provide a soundness proof
for our method and highlight its advantages, especially in the context of
evolving systems.

As a proof of concept and to demonstrate the usability of our method,
we present a case study, where we verify the security of a system imple-
mented in Java against two types of attackers. We apply the program
verification system KeY and the program analysis tool Joana for ana-
lyzing individual services; modularity of our approach allows us to use
them in parallel.

1 Introduction

Information flow (IF) security is a program property ensuring that certain infor-
mation given as input to a system can only be observed by users of the system
who are explicitly allowed to do so (and not by other users). Formal analysis
of IF security requires specification of (a) which users shall be able to observe
which information and (b) what outputs users can access and read. In practice,
there is often more than one type of user – which we consider to be potential
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attackers – each requiring a specification and analysis. Component-based sys-
tems, in particular, are designed for re-use and, thus, are deployed in different
environments where new user types have to be considered.

Overview of our method. We propose a novel method for the modular ver-
ification of IF security properties in component-based systems. Our method
uses very expressive IF specifications, where information about arbitrary parts
or combinations of input parameters can be declared to be secret as well as
information about what service calls other users have initiated. The restricted
programming paradigm used for component-based systems provides convenient
compositionality properties, that we can use to verify non-interference properties
in a modular way.

The first step of our proposed method is the specification (and verification)
of service-local IF properties, which are independent of the user/attacker model.
These service-local properties are modular and re-usable. We can apply tools
with different precision and scalability properties for verification of each service-
local specification, which allows us to improve scalability while maintaining pre-
cision of verification. Service-local specifications remain valid when other ser-
vices are changed or new services are added. In the second step, we generate a
system-wide specification from the service-local properties and verify that the
service-local properties imply the system-wide IF properties. This is done by
proving validity of a formula in first-order predicate logic, which is constructed
from the specifications in a uniform way. In a third step, we show that the
system-wide IF specification implies the required domain-motivated IF property
w.r.t. particular user/attacker models.

Our method is tool-independent and allows the combination of different pro-
gram analysis techniques – to be used in the first step. The second and the third
step do not need program analysis but only a first-order theorem prover.

Proof of concept. As a proof of concept, we apply our method to component-
based systems implemented in Java, using the program verification tool KeY and
the program analysis tool Joana for verification of service-local IF properties
(first step). Further, we use the (Java-independent part of) KeY to prove validity
of first-order formulas (second and third step). As an example, we specified and
verified IF security of a web shop system consisting of several components w.r.t.
two different types of attackers.

Related work. Non-Interference as a program property has its origins in
the notion of strong dependency by Cohen [7] and the first definition of non-
interference by Goguen and Meseguer [10]. The work in this paper is based on
a line of work on non-interference for distributed interactive systems (which
components can be considered to be) [6,12,25,26]. Work in [28] allows more
expressive specifications than our framework, but does not provide composition-
ality results. Other recent work [2,21,22] discusses compositionality of concurrent
threads with a shared state, which however is not present in components.

Approaches for analysis of event-based non-interference notions often use
type systems and are limited to toy languages or abstract specification languages
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(e.g., [20,26,27]). Analysis for batch programs based on type systems (e.g., [3]) is
typically limited to syntactical information, and therefore has limited precision.
Dependent types [24,32] include semantic knowledge into the analysis and use
SMT solvers as back ends. JiF [5,23] extends Java with security type systems,
which allows analysis of security properties in Java programs at compile time.
We assume type-based analysis can be used as an additional technique for the
first step of our method.

We use the Joana tool, for program analysis in this work. Other slicing
tools for Java include Wala [15], Pidgin [16] and Indus [33]. Both Wala and
Pidgin employ program dependency graphs and especially Pidgin could be a
viable alternative in the context of this work, while Indus does not a provide
pre-computed PDG, which we require here.

Work on tool combinations for IF analysis includes the RIFL language [9],
a specification language for IF policies in programs. It is supported by several
tools. However, in contrast to our work, RIFL does not provide a formal seman-
tics for the specifications and does not support secrecy of messages. Küsters
et al. propose the hybrid approach [18] for the verification of IF properties with
declassification in batch programs. Their approach, however, relies on making
provably ineffective changes to the program and is limited to the combination
of two tools. SHRIFT [19] combines dynamic analysis on the operating system
layer and static IF analysis to track information flows through multiple layers
of abstraction efficiently and precisely. We limit the presentation here to static
analysis tools, while in general, our method would allow dynamic analysis.

Paper outline. Next, we define the formal framework (Sect. 2), i.e., notions of
service and component, and non-interference for components and services. Then,
in Sect. 3, we introduce our concept of service-local specifications (first step).
We show in Sect. 4 how they can be used to generate and verify system-wide
properties (second step). And, in Sect. 5, we describe how domain-motivated
IF specifications can be derived from system properties (third step). We discuss
the proof of concept and the web shop example in Sect. 6. Finally, we conclude.

2 Formal Framework

We present the formalization of components, services, and composition of com-
ponents, and we formally define non-interference in component-based systems.
This formal framework, which we use as a basis for our method, is mainly taken
from [12], where also proofs for the theorems can be found.

2.1 Components and Services

Components have a (private) state σ, which is a mapping from a set V of variables
to a set V of values. A component’s functionality is implemented by services,
which are sequential, terminating, deterministic programs.

For each service serv, a dedicated initial channel Ini(serv) and a termina-
tion channel Fin(serv) is contained in the system’s set C of channels. If the



Modular Verification of Information Flow Security 303

environment wants to call serv, it sends a message m ∈ M, where M ⊆ C×V
n,

on the initial channel Ini(serv) ∈ C and parameter values from V to the com-
ponent. Then, the component executes the service starting in its current state
and returns a message on Fin(serv) on completion. While a component exe-
cutes a service, all other service calls to that component are postponed, making
the execution of a component a non-reentrant, sequential composition of service
executions.

During execution, a service may call other services serv′ by sending a message
on channel Ini(serv′). After the call, the service waits for the termination of
serv′, making communication synchronous.

This computational model for component-based systems is rather restrictive.
It is, nevertheless, consistent with practically used frameworks for implemen-
tation of component-based systems. We discuss, for example, how our model
applies to the Java Enterprise Edition in Sect. 6. Also, assemblies as used in the
.net framework have similar properties. And even relational databases can be
considered components according to our definition.

Fig. 1. Shop component as running example (see Example 1)

Example 1. As a running example, we use the simple Shop component shown in
Fig. 1. The service buy receives a product id, adds it to the list prods of products
in the cart, and increases the variable sum by the product’s price. Service pay
uses the service trans provided by the environment to perform payment with
credit card number ccnr, the given pin and the sum of prices stored in the state.
Service print prints the receipt with the paid sum, the products and last bit of
the credit card used for paying, if payment was successful.

For messages on a channel α with parameter v, we write α?v (input message),
α!v (output message), or α.v (direction irrelevant). The sets of all input messages
and all output messages are denoted by I and O, respectively. The empty trace
of messages is denoted by 〈〉, and� is the concatenation operation for traces.

Two components c and d are composed by synchronizing messages on services
required by c and provided by d and vice versa. In the trace of the composition,
messages resulting from communication between c and d can be observed by the
environment as outputs.
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2.2 Non-interference

Intuitively, a component is non-interferent, i.e., it has no unwanted information
flows, if an environment (or an attacker) observing the public (low) output of a
component cannot distinguish between inputs which only differ on (high) secrets.
In the following, to distinguish between public (low) and secret (high) inputs
and outputs, we use an equivalence relation ∼ ⊆ M × M. Messages which are
equivalent w.r.t. ∼ must not be distinguishable by the environment, i.e., it is a
secret which of two equivalent messages has been sent. This flexible formalization
allows a very precise specification of what-declassification (see [29]).

Example 2. Continuing from Example 1, the relation ∼ may be defined for the
Shop component by: Ini(pay)?(ccnr, pin) ∼ Ini(pay)?(ccnr′, pin′) iff ccnr%2 =
ccnr′%2, stating that the last bit of the information stored in parameter ccnr
is low, while parameter pin is considered to contain high information. The def-
inition Fin(pay)!r ∼ Fin(pay)!r′ iff r = r′ expresses the return value of pay to
be low.

Apart from communicated values, the mere existence of communication can
contain information. All results provided in the remainder also hold in the case
when the specification of high message existence is possible.1

Equivalence of messages raises a natural notion of equivalence of message
traces, for which we overload ∼: Two traces t and t′ are equivalent if their
projection on the equivalence classes of messages implied by ∼ are equal. Then,
non-interference for components can be defined as follows:

Definition 1 (Component non-interference). A component c is non-inter-
ferent w.r.t. an equivalent relation ∼ on messages if, for all message traces that
can be produced by c in some environment, an equivalent trace is produced by c
in any environment supplying equivalent inputs.

In [12], environments are formalized as functions providing for each obser-
vation of a component’s behavior some input for the component. We omit here
this more formal consideration of non-interference and refer to the original work.
We do need, however, the following compositionality result:

Theorem 1 (Non-interference compositionality). If components c and d
are non-interferent w.r.t. ∼, then the composition of c and d is non-interferent
w.r.t. ∼.

We want to verify non-interference of components in a modular way, i.e., by
first analyzing individual services. Thus, we need to ensure that one service does
not break the non-interference of another service. We must check that no service
returns a high value stored in the state by another service. For that purpose,
we use an equivalence relation ≈ ⊆ S × S over states to define the low part of a
state: Two states are equivalent w.r.t. ≈ iff they only differ on the secret (high)
part of the state. Now, we can define non-interference for services as follows:
1 We omit discussion of high messages here, and refer to [13].
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Definition 2 (Service non-interference). A service serv is non-interferent
with respect to ∼ and ≈ iff, for all pre-states σ1, σ2, all post-states σ′

1, σ
′
2, and

all traces t1, t2 such that serv started in σi terminates in σ′
i by communicating

trace ti, the following holds:

1. If σ1 ≈ σ2 and t1 and t2 have equivalent input messages, then σ′
1 ≈ σ′

2.
2. If σ1 ≈ σ2 and t′1, t

′
2 are prefixes of t1, t2 with equivalent inputs, then there

exist longer prefixes t′1� t′′1 of t1 and t′2� t′′2 of t2 such that t′1� t′′1 ∼ t′2� t′′2 .

Condition 1 ensures that the service, when started in equivalent pre-states
and provided with equivalent inputs, terminates in equivalent post states, i.e.,
no high information is written to the low part of the state. Condition 2 ensures
that all outputs created by the service are equivalent if the pre-states and all
inputs previously provided to the service are equivalent, i.e., no high information
is sent as output to the environment.

Non-interference for services as defined above is termination-insensitive.
While generally this is a weak non-interference property, that is not relevant
here, since we assume every service to terminate. Components, on the other
hand, never terminate: After termination of a service, the component continues
to offer all its services to the environment.

The following theorem states that non-interference for components can be
verified by first proving non-interference for services.

Theorem 2 (Compositionality of Services). A component c is non-
interferent w.r.t. ∼ (Definition 1) if there exists an equivalence relation ≈ on
states such that all services provided by c are non-interferent w.r.t. ∼ and ≈
(Definition 2).

Note that Theorem 2 requires all services to be non-interferent w.r.t. the same
relations (∼,≈). Moreover, Theorem 1 requires components to be non-interferent
w.r.t. the same relation ∼ to derive non-interference of their composition. In the
following sections we describe a method for generating appropriate system-global
relations from service-local relations.

3 Service-Local Non-interference Specification

In the first step of our method, we specify and verify information-flow (resp.
non-interference) at the level of individual services. We do this in a modular way
such that verified properties of services imply properties of the overall system.
Modularity is essential as it is very tedious to find and formalize system-wide
IF properties for a realistic system and, moreover, properties change whenever
a system is modified or deployed in a new context.

As a concept for modular service-local specification, we introduce dependency
clusters. Whether a dependency cluster is valid, i.e. whether the specification it
represents is satisfied by a service, only depends on the service’s implementa-
tion and not on the environment or other services. Moreover, existence of some
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information flow does not depend on the system-wide attacker model (but only
whether the flow is harmful). We will use dependency clusters as building blocks
for system-wide specifications in the second step of our method.

Intuitively, a dependency cluster is a set of message parameters and state
variables (resp. more complex expressions) whose values in the post-state of
the service only depends on their values in the pre-state. Thus, if the cluster
is used to specify which information is public (low), then the service is indeed
non-interferent.

Fig. 2. Two dependency cluster (dashed and dotted arrows) of the service buy. The
arrows illustrate dependencies between the state, parameters and the return value.

Example 3. In the Shop component shown in Fig. 1, the return value of ser-
vice buy depends (only) on the value of parameter prodId and on the pre-state
value of prods (the dashed arrows in Fig. 2 illustrate these dependencies). Thus
the return value, prodId, and prods form a valid dependency cluster. A second
cluster is formed by the parameter price and the state variable sum (dotted
arrows).

As described in the previous section, we use equivalence relations on messages
and states to formalize which information is considered public (low). Thus, more
formally, a dependency cluster is a pair (∼,≈); it is valid for some service if that
service is non-interferent w.r.t. (∼,≈):

Definition 3 (Dependency cluster). A pair (∼,≈) of equivalence relations
is a dependency cluster for a service serv if serv is non-interferent w.r.t. (∼,≈).

For example, the universal relations, defined by m1 ∼ m2 ⇔ true and σ1 ≈
σ2 ⇔ true, form a trivial dependency cluster for all services. This cluster defines
all inputs, outputs and the entire post-state to contain high information (nothing
is low). At the other extreme, the dependency cluster defined by m1 ∼ m2 ⇔
m1 = m2 and σ1 ≈ σ2 ⇔ σ1 = σ2 is also valid for all services. It declares all
inputs, outputs and the entire state to only contain low information. In practice,
of course, one needs to find clusters that are valid without being trivial.

Several dependency clusters for the same service serv are compositional in
the sense that their intersection is again a dependency cluster serv (the formal
proof, together with all proofs for this paper, can be found in [13]):

Theorem 3 (Compositionality of dependency clusters). Let (∼1,≈1)
and (∼2,≈2) be dependency clusters for a service serv. Then the composition
(∼1,≈1) + (∼2,≈2) := (∼1 ∩ ∼2,≈1 ∩ ≈2) is a dependency cluster for serv.
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Intuitively, intersecting relations has the effect that equivalence classes
become smaller and, thus, more information is considered low. Interestingly,
according to Theorem 3, a composition of dependency clusters considers more
outputs to be low, i.e., allows less flows than the individual clusters. At the
same time, the composition is less restrictive than a mere conjunctive combina-
tion of the two individual clusters: Assume, for example, that one dependency
cluster allows only flows from state variable a to itself (i.e. if σpre(a) = σ′

pre(a)
then σpost(a) = σ′

post(a)), and the other allows only flows b to itself (i.e. if
σpre(b) = σ′

pre(b) then σpost(b) = σ′
post(b)). Their intersection (i.e. if σpre(a) =

σ′
pre(a) ∧ σpre(b) = σ′

pre(b) then σpost(a) = σ′
post(a) ∧ σpost(b) = σ′

post(b)) addi-
tionally allows flows from a to b and vice versa, for example the program a = a+b.

As a formalism for defining dependency clusters and, thus, for specifying
information flow properties, we introduce the following notation: Each depen-
dency cluster is given as a pair (LowIO ,LowState) of lists, specifying ∼ resp. ≈.
The elements of LowIO are of the form c.e, where c is an initial or termina-
tion channel and e is an expressions over the parameters or the return values of
the service. Two messages on channel c are equivalent iff, for all c.e ∈ LowIO ,
e evaluates to the same value for the two messages. Similarly, the elements of
LowState are expressions over the state variables. Two states are equivalent, if
the expressions evaluate to the same values in both states. Intuitively, the two
lists LowIO and LowState describe what information is to be considered low.
Thus, state variables, parameters, and channels not mentioned in the lists are
secret (high).

The above notation can be used to define dependency clusters for services but
also to specify global information-flow properties for components and systems.

Example 4. A component-global information-flow specification for the Shop
example (Fig. 1) may be given by:

LowIO1 = 〈Ini(buy).(prodId , price), Fin(buy).(r), Fin(print).(r),
Ini(pay).(ccnr%2), Fin(pay).(r), Fin(trans).(r)〉

LowState1 = 〈prods, sum, check, payId〉
We use declassification for the credit card number expressing that (only) the

last bit of the contained information is low. We can apply similar expressions for
state variables.

The first dependency cluster in Fig. 2 (dashed line) may be defined by
LowIO2 = 〈Ini(buy).(prodId), Fin(buy).(r)〉 and LowState2 = 〈prods〉, and the
second dependency cluster (dotted line) by LowIO3 = 〈Ini(buy).(price)〉 and
LowState3 = 〈sum〉.

The expressiveness of the list notion depends on the expressions allowed
to occur in the lists. We do not define a particular language here but assume
computability of the expressions. In practice, the concrete language will depend
on the tools for verification of dependency clusters. Heavy-weight methods like
theorem provers can deal with more expressive languages while light-weight tools
like PDG- or type-based systems may support a limited subset.
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Using the list notion, the composition of dependency clusters (see Theorem 3)
can be constructed by concatenating the respective lists.

Example 5. The composition of the two dependency clusters from Exam-
ple 4 can be written as LowIO4 = 〈Ini(buy).(prodId, price), Fin(buy).(r)〉 and
LowState4 = 〈prods, sum〉.

According to Theorem 3, it is sufficient to show for two specifications inde-
pendently that they are dependency clusters in order to gain a composed, poten-
tially more complicated, specification. Ideally, one uses an analysis method to
identify simple dependency clusters which describe information flows inherent to
the implementation of a service. More complicated clusters, which are necessary
to compare information flow to a security policy, can then be constructed by
composing these simple dependency clusters, which may be verified separately
by different tools. This makes dependency clusters convenient building blocks
for complex information flow specifications for services.

Since we allow declassification to be used in our specifications there are infi-
nitely many potential dependency clusters for each service. The first step of
the method proposed in this work is identifying useful dependency clusters for
each service. In Sect. 6, we show two concrete approaches for identification. The
first approach is to manually specify dependency clusters and verify them using
a program verification tool. This is especially useful for declassification, when
analysis with high precision is required for analysis. In the second approach, we
use an automatic, less precise program analysis tool which directly creates a set
of all dependency clusters it can find.

4 Dependency Clusters and Components

In the second step of our method, we compose dependency clusters of all ser-
vices and thus gain component- and system-wide non-interference specifications.
While dependency clusters for the same service are compositional, dependency
clusters for different services are not, hence we have to show that composed
dependency cluster of different services are consistent.

Since dependency clusters are service-local specifications, each dependency
cluster will most likely mention at most the part of the state relevant for the
service and the messages sent and received by the service. Consider, for example,
the service buy in Fig. 1: We have defined several dependency clusters for buy;
but, none of these clusters mentions the variable check .

An approach in program analysis to deal with irrelevant parts of states is
framing [17]. Framing uses an abstract description of an upper bound of rele-
vant variables for a particular service and of the other services it requires. An
assignable set describes the variables that a service may at most change. Indi-
rectly, this specifies that the value (and security level) of all variables not in the
set remains unchanged. A set F ⊆ V is an assignable set for a service serv iff,
for all executions of serv , v �∈ F implies σ(v) = σ′(v) (σ, σ′ are the pre- and
post-state).
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Similar to the assignable sets, a callable set is a list of services which can
at most be called by a service. C ⊆ S is a callable set for service serv if all
traces produced by execution of serv at most contain messages on initial and
termination channels of the services in C.

Example 6. In the Shop component, an assignable set for buy is {sum, prods}.
And {} is an assignable set for print . The empty set is a callable set for both
buy and print . A callable set for pay is {trans}.

We can use known dependency clusters, assignable, and callable sets for some
service serv to check if serv is non-interferent w.r.t. a component-global specifi-
cation as follows:

Theorem 4. Let C be a callable set for service serv and F an assignable set
for serv. A pair (∼g,≈g) is a dependency cluster for serv if there is a depen-
dency cluster (∼serv,≈serv) for serv such that, for all messages m,m′ and states
σ, σ′, σp, σ

′
p,

if m ∼g m′ then m ∼serv m′, and if σ ≈g σ′ then σ ≈serv σ′ (1)
if m ∼serv m′ and m ∈ C then m ∼g m′ (2)
if σ ≈g σ′ and σp ≈serv σ′

p then anon (σ,F, σp) ≈g anon (σ′,F, σ′
p) (3)

where anon(σ, V, σ′) yields a state σanon such that σanon(v) evaluates to σ′(v) if
v ∈ V and to σ(v) otherwise.

Condition (1) states that input messages that are equivalent w.r.t. the
component-global relation must also be equivalent w.r.t. the service-local rela-
tion, and that if two states are equivalent w.r.t. the global state relation, then
they must also be equivalent w.r.t. the service-local relation. Indirectly, this
ensures that, if all other services provided by a component ensure equivalence
w.r.t. the global equivalence relation for their post state, then serv is guaran-
teed to be executed in pre-states which are equivalent w.r.t. the service-local
specification.

In Condition (2), we use m ∈ C as abbreviation for m being an initial or
terminating message for a service in C. The condition guarantees that all output
messages of a service are equivalent globally if they are service-locally equivalent
and the messages can actually be communicated during execution of the service.
In a similar fashion, Condition (3) guarantees that the parts of the post-states,
which are actually changed by the service, are changed such that they are also
equivalent w.r.t. the component-global state-equivalence relation.

Note that the condition to be checked according to Theorem 4 can be for-
malized in first-order predicate logic, if all expressions in the list notion are
first-order. (Which we assume to be sufficiently expressive in practice)

Example 7. Reconsidering Example 4, we can use Theorem 4 to show that
LowIO1,LowState1 is a dependency cluster for the service buy , since the service-
local specification LowIO4,LowState4 is a dependency cluster for buy , as we have
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seen in the previous section, the expressions mentioning prods and sum are iden-
tical and check and payId are not in the assignable set. A similar argument holds
for the events and the callable set.

It is not necessary to analyze the actual implementation of buy if the service-
local specification, the assignable set, and the callable set are given.

The second step of our method creates the global non-interference specifica-
tions for a system. We consider identification of assignable and callable sets an
orthogonal problem to the framework presented here and assume a useful (i.e.,
small) assignable set and callable set for each service to be given. (In our proof
of concept, we automatically generated them with Joana.) Further, we assume
a set of dependency clusters {(∼ij1,≈ij1), . . . , (∼ijk,≈ijk)} for each service sj
provided by component ci in the system has been specified and verified in the
first step of our method. We create a system-global equivalence relation over
messages by intersecting all equivalence relations in the set: ∼sys =

⋂
i,j,k ∼ijk.

We also create a component-global equivalence relation over states for each com-
ponent: ≈i =

⋂
j,k ∼ijk. For each service sj provided by component ci we prove

the first-order formula gained from Theorem 4 with ∼g = ∼sys, ≈g = ≈i, and
∼serv =

⋂
k ∼ijk, ≈serv =

⋂
k ≈ijk.

The constructed formula is first-order. While each of the formulas is, as we
can expect, rather large for a realistic system, big parts trivially evaluate to
true or false because the callable and assignable sets are typically very small
compared to the overall system.

Theorem 4 makes dependency clusters very useful for evolving components,
since the need for actual program analysis is minimized.

Example 8. Assume that the Shop component from Fig. 1 is re-used in a new
context where, due to a changed use case, it is required that the last four digits
of the credit card number are low (instead of the last bit). To realize this, the
implementation of service pay is changed: Line 2 is replaced by “if (check)
payId=ccnr-(ccnr/10000)*10000;”. Since the code has changed, the depen-
dency clusters for pay have to be re-verified. But the dependency clusters for
all other services can be re-used without program analysis when the first order
proof for step 2 is repeated.

In a second case of evolution, we assume that context remains the same and
the implementation is optimized without changing the functionality. Line 2 is
now replaced by “if (check) payId = ccnr%10000;”. Again, since the code
has changed, the dependency clusters for pay have to be verified, but since
the service’s behavior is not changed, no new dependency clusters have to be
identified and proofs from step two of our method are still valid.

5 Weakening Specifications

In the third and last step of our method, we show that the system-wide non-
interference specification gained from step two implies security of the system
against an attacker. The specifications we gain by analyzing dependencies in
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services do not necessarily match a security policy provided by a domain expert
for the system under analysis. While the first two steps of our method provide
us with a specification reflecting the actual behavior of the program, the speci-
fication from a domain expert is the result of a threat analysis for a system and
its context.

In particular, the equivalence relation over messages we gain from the first
two steps in our method may be stricter than necessary. We can relax the relation
without harm by accepting low input where high input is expected, and we can
allow the environment to treat low output of the component as high output.

Definition 4 (Specification weakening). An equivalence relation ∼w is a
weakening of ∼ iff

– for m1,m2 ∈ I: m1 ∼w m2 implies m1 ∼ m2,
– for m1,m2 ∈ O: m1 ∼ m2 implies m1 ∼w m2

Example 9. Consider the simple Shop component from Fig. 1 with the changes
discussed in Example 8 in the previous section. When it is deployed, the domain
expert may provide a specification expressing that the cashier may know the last
five digits of the credit card number. The specification we gained from bottom-
up program analysis, however, provides a stricter specification allowing at most
the last four digits to be visible to the cashier. In this case, we can nevertheless
use our bottom-up specification as an argument for security as the environment-
specific IF-property is a weakening of the bottom-up specification.

Theorem 5. Let serv be a service that is non-interferent w.r.t. (∼,≈) and ∼w

a weakening of ∼. Then serv is non-interferent w.r.t. (∼w,≈).

Theorem 5 can easily be extended to components. If all services are non-
interferent w.r.t. (∼,≈), they also are non-interferent w.r.t. (∼w,≈) and there-
fore the component is non-interferent w.r.t. (∼w,≈) according to Theorem 2.
This implies, for example, that the evolved Shop component from Example 8 is
secure in the new environment from Example 9, although the required and the
verified IF properties differ.

The third and last step of our method consists of showing that the secu-
rity policy provided by the domain expert, which represents the actual security
requirement, is a weakening of the system-global equivalence relation ∼g from
the second step. Note that the proof obligation implied by Theorem 5 again can
be shown using first-order logic and does not require program verification.

On first sight Theorem 5 seems to be a technicality. However, the theo-
rem serves as an important connection between bottom-up specifications, which
our method provides, and top-down specifications, gained from context- and
attacker-motivated analysis. It frees the systems engineer from finding non-
interference specifications for already implemented components which exactly fit
the domain-driven idea of secrecy. Thus it serves as a glue which allows flexibil-
ity when bringing together domain expertise and context-independent program
analysis.
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6 Proof of Concept: Verifying JavaEE Implementations

We outline in this section the instantiation of our formal framework for
component-based systems (Sect. 2) for a large subset of components implemented
in the Java Enterprise Edition (JavaEE) [8], a framework for implementing
Component-based Systems in Java. For a full discussion, including all sources
and proofs the interested reader is referred to [13].

As a case study, we implemented a simple web-shop consisting of five compo-
nents. We use the tools KeY and Joana for verification and analysis of security
of the case study against two attackers.

Verification of Dependency Clusters for Services. KeY is a theorem
prover designed for the verification of properties in Java programs against spec-
ifications formalized in the Java Modeling Language (JML) or Java Dynamic
Logic (JavaDL). The KeY system was previously used for verification of non-
interference properties in Java batch programs without events [4,30,31]. For a
full account of KeY and JavaDL, we refer to [1].

We extend JavaDL by events as part of the domain of the logic. We use a
static ghost variable, i.e., a specification-only variable, to record the history of
events passed during execution of a service. We formalize the general assumptions
ensured by the application container according to JavaEE, e.g. no shared heap
between components, as method contracts. We formalize proof obligations from
the first step of our method and equivalence relations directly in JavaDL.

Automatically Deriving Service Dependency Clusters. To automati-
cally derive dependency clusters, we use program dependency graphs (PDGs),
a language-independent graph-representation of the dependencies between the
statements and expressions of a program. We use the state-of-the-art information
flow analysis tool Joana [11,14] to build and use PDGs for our purposes.

PDGs guarantee sequential non-interference [34] in the sense that a node n
cannot influence a node n′ if n cannot reach n′ in the PDG. Hence, in order to
obtain a dependency cluster, it suffices to perform reachability analysis on the
PDG. We applied Joana to all services in our proof of concept and extracted the
majority of all used dependency clusters automatically. Then, we automatically
formalized the extracted dependency clusters as JavaDL predicates uniformly to
the dependency clusters verified with KeY.

Checking Component-Global Dependency Clusters. In the second step,
we re-use formalizations of the equivalence relations from the first step of our
method to compose service-local to component-global dependency cluster, for-
malize Theorem 4 directly in JavaDL and use KeY for the proof. Finally, we
used KeY to verify in the third step for each attacker that the attacker-related
information-flow specification is a weakening of the specification from step 2,
again directly encoded in JavaDL.

Evaluation. We identified 480 dependency clusters in the components of the
web shop program with Joana automatically and manually specified and verified
21 dependency clusters with KeY, for which Joana was not sufficiently precise.
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Verification for the first attacker took about six days, while the main bottlenecks
were specification and verification of functional support specifications, as well as
manual interaction during verification of proof obligations in steps two and three
of our method. Verification for the second attacker only took about one day, since
we could make heavy re-use of the specifications for the first attacker.

As a result, we find that KeY is not optimized for proof obligations gained
during step 2 and 3 of our method and we assume a high degree of automation
if better suited tools are used for this task, for example SMT solvers. Further,
we observed that re-using support specifications and dependency clusters for the
second attacker made the proof process considerably easier and faster.

7 Conclusion

We introduced dependency clusters as a novel specification approach for infor-
mation flows caused by a single service in a component-based system. Each spec-
ification is independent from other services in the system and the context, which
makes dependency cluster very modular and highly re-usable building blocks for
system specifications. Further, we introduced a novel method for constructing
system-wide security specifications, where verification of dependency clusters at
service-level is the only step requiring program analysis. Proof obligations in the
second and third step are first-order formulas, which ensure consistency of the
constructed specification w.r.t. an attacker-motivated specification.

For each step, we provide a soundness proof. Moreover, in a proof of concept,
we show that our method can be instantiated for JavaEE programs and, for
example, is usable for a small but realistic system. For verification of dependency
clusters we used the KeY tool and Joana, and verified the proof obligations
for step two and three with KeY, re-using dependency cluster formalizations
from the first step. The proof of concept especially showed the re-usability of
dependency clusters for different types of attackers.

As future work, we plan to implement native JavaEE support for the KeY
tool, a specification language for dependency clusters in JML, as well as proof
management within the tool. It would also be very interesting if other program
analysis methods could be extended to support our notion of non-interference
and if some steps in our method could be further automatized.
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