
Alessandro Cimatti
Marjan Sirjani (Eds.)

15th International Conference, SEFM 2017
Trento, Italy, September 4–8, 2017
Proceedings

Software Engineering
and Formal MethodsLN

CS
 1

04
69

Fo
rm

al
 M

et
ho

ds

 123

Lecture Notes in Computer Science 10469

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7409

Alessandro Cimatti • Marjan Sirjani (Eds.)

Software Engineering
and Formal Methods
15th International Conference, SEFM 2017
Trento, Italy, September 4–8, 2017
Proceedings

123

Editors
Alessandro Cimatti
University of Trento
Trento
Italy

Marjan Sirjani
Mälardalen University
Västerås
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66196-4 ISBN 978-3-319-66197-1 (eBook)
DOI 10.1007/978-3-319-66197-1

Library of Congress Control Number: 2017949511

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
Chapter 18 was created within the capacity of an US governmental employment. US copyright protection
does not apply.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0001-5478-0987

Preface

This volume contains the papers presented at SEFM 2017, the 15th International
Conference on Software Engineering and Formal Methods, held on September 4–8 in
Trento, Italy. SEFM 2017 was organized and hosted by the Fondazione Bruno Kessler
(FBK), Trento, Italy.

The SEFM conference aims to bring together leading researchers and practitioners
from academia, industry and government, to advance the state of the art in formal
methods, to facilitate their uptake in the software industry, and to encourage their
integration within practical software engineering methods and tools. The topics of
interest for submission included the following aspects of software engineering and
formal methods:

– New frontiers in software architecture: self-adaptive, service-oriented, and cloud
computing systems; component-based, object-based, and multi-agent systems;
real-time, hybrid, and embedded systems; reconfigurable systems

– Software verification and testing: model checking and theorem proving; verification
and validation; probabilistic verification and synthesis; testing

– Software development methods: requirement analysis, modeling, specification, and
design; light-weight and scalable formal methods

– Application and technology transfer: case studies, best practices, and experience
reports; tool integration

– Security and safety: security and mobility; safety-critical, fault-tolerant, and secure
systems; software certification

– Design principles: domain-specific languages, type theory, abstraction, and
refinement

SEFM 2017 hosted six workshops:

– FAACS – Formal Approaches for Advanced Computing Systems
– MSE – Microservices: Science and Engineering
– POTENTIAL – Technology Transfer in Software Engineering and Formal Methods
– DataMod – From Data to Models and Back
– CoSim-CPS – Formal Co-Simulation of Cyber-Physical Systems
– FOCLASA – Foundations of Coordination Languages and Self-Adaptive Systems

SEFM 2017 solicited full research papers describing original research results, case
studies and tools, and short papers on new ideas and work-in-progress, describing new
approaches, techniques and/or tools that are not fully validated yet. We received 102
submissions (88 full and 14 short) from 36 different countries. Each submission was
reviewed by at least four Program Committee members. We accepted 22 regular
papers, with an acceptance rate of 25%. We also accepted 6 short papers on new ideas
and work-in-progress. The program also included three remarkable invited talks:

– Marsha Chechik, from the University of Toronto, Canada, presented “Software
Safety and Security, Assurance Cases and Model Management”.

– Jeff Kramer, from Imperial College London, UK, presented “The Challenge
of Change”.

– Alberto Sangiovanni-Vincentelli, from the University of California, Berkeley, USA,
presented “A Formal Contract-Based Design Methodology for Cyber-Physical
Systems”.

Our first words of thanks go to the Program Committee members and to the external
reviewers, who carried out thorough and careful reviews and enabled the assembly of
this high-quality work. We thank the authors for their submissions, and for their
collaboration in further improving their papers. A special word of thanks goes to our
invited speakers, Marsha Chechick, Jeff Kramer and Alberto Sangiovanni-Vincentelli,
for accepting our invitation and for their very stimulating contributions. We also thank
the workshop chairs, Antonio Cerone and Marco Roveri, and the organizers of the
workshops: Paolo Arcaini, Marina Mongiello, Elvinia Riccobene and Patrizia Scan-
durra (FAACS); Marcello M. Bersani, Antonio Bucchiarone, Luca Ferrucci, Manuel
Mazzara, Fabrizio Montesi and Nicola Dragoni (MSE); Roberto Confalonieri and
Andrea Janes (POTENTIAL); Paolo Milazzo, Vashti Galpin and Andre Teixeira
(DataMod); Cinzia Bernardeschi, Paolo Masci and Peter Gorm Larsen (CoSim-CPS);
Carlos Canal and Gwen Salaün (FOCLASA). Many thanks to Alberto Griggio (pub-
licity chair) and Gianni Zampedri (web master). A special word of thanks goes to
Annalisa Armani and to all the other members of the Ufficio Eventi of FBK, who
largely contributed to the success of this event. We also thank the developers and
maintainers of the EasyChair conference management system, which was of great help
in handling paper submission, reviewing, discussion, and the assembly of the pro-
ceedings. Finally, we are most grateful to Hossein Hojjat, who provided invaluable
help in the preparation of the conference proceedings.

July 2017 Alessandro Cimatti
Marjan Sirjani

VI Preface

Organization

Program Committee

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Farhad Arbab CWI and Leiden University, Netherlands
Luis Barbosa Universidade do Minho, Portugal
Antonia Bertolino ISTI-CNR, Italy
Dirk Beyer LMU Munich, Germany
Jonathan Bowen London South Bank University, UK
Mario Bravetti University of Bologna, Italy
Ana Cavalcanti University of York, UK
Alessandro Cimatti FBK, Italy
Paul Curzon Queen Mary University of London, UK
Hung Dang Van UET, Vietnam National University, Hanoi
Jim Davies University of Oxford, UK
Rocco De Nicola IMT - School for Advanced Studies Lucca, Italy
Patricia Derler National Instruments, USA
John Derrick Unversity of Sheffield, UK
Anke Dittmar University of Rostock, Germany
George Eleftherakis The University of Sheffield International Faculty,

CITY College, Greece
José Luiz Fiadeiro Royal Holloway, University of London, UK
Wan Fokkink Vrije Universiteit Amsterdam, Netherlands
Adrian Francalanza University of Malta, Malta
Hubert Garavel Inria Rhône-Alpes/CONVECS, France
Dimitra Giannakopoulou NASA Ames, USA
Stefania Gnesi ISTA-CNR, Italy
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Rob Hierons Brunel University London, UK
Hossein Hojjat Rochester Institute of Technology, USA
Michaela Huhn Ostfalia, Germany
Einar Broch Johnsen University of Oslo, Norway
Gabriel Juhas Slovak University of Technology, Bratislava, Slovakia
Jens Knoop TU Wien, Austria
Paddy Krishnan Oracle, Australia
Eva Kühn TU Wien, Austria
Kung-Kiu Lau The University of Manchester, UK
Sergio Mover University of Colorado Boulder, USA
Viet Yen Nguyen Hypefactors, Denmark
Fernando Orejas UPC, Barcellona, Spain

Corina Pasareanu CMU/NASA Ames Research Center, USA
Marinella Petrocchi IIT-CNR, Italy
Anna Philippou University of Cyprus, Cyprus
Sanjiva Prasad Indian Institute of Technology, India
Geguang Pu East China Normal University, China
Leila Ribeiro UFRGS, Federal University of Rio Grande do Sul, Brazil
Bernhard Rumpe RWTH Aachen University, Germany
Gwen Salaün Grenoble INP - Inria - LIG, France
Augusto Sampaio Federal University of Pernambuco, Brazil
Vesna Sesum-Cavic TU Wien, Austria
Marjan Sirjani Malardalen University, Sweden
Graeme Smith University of Queensland, Australia
Bernhard Steffen University of Dortmund, Germany
Markus Stumptner University of South Australia, Australia
Francesco Tiezzi Università di Camerino, Italy
Danny Weyns Linnaeus University, Sweden

Additional Reviewers

Achilleos, Antonis
Adam, Kai
Attard, Duncan
Åman Pohjola, Johannes
Banach, Richard
Barbon, Gianluca
Basile, Davide
Bertram, Vincent
Blanchette, Jasmin Christian
Bliudze, Simon
Bolognesi, Tommaso
Bride, Hadrien
Bubel, Richard
Butting, Arvid
Carvalho, Gustavo
Cassar, Ian
Chen, Yuting
Chimento, Jesus Mauricio
Colvin, Robert
Cooper, Gregory
Crass, Stefan
Cresci, Stefano
Dangl, Matthias
De Angelis, Francesco
Del Vigna, Fabio
Din, Crystal Chang

Dokter, Kasper
Dongol, Brijesh
Eikermann, Robert
Ertl, M. Anton
Fazzolari, Michela
Fedyukovich, Grigory
Fornari, Fabrizio
Friedberger, Karlheinz
Grech, Neville
Green, Ryan
Greifenberg, Timo
Grossmann, Georg
Guo, Jian
Howar, Falk
Inverso, Omar
Jebali, Fatma
K.R., Raghavendra
Kappé, Tobias
Kautz, Oliver
Kourtis, Georgios
Krall, Andreas
Kusmenko, Evgeny
Lang, Frédéric
Lazovik, Alexander
Lemberger, Thomas
Li, Jianwen

VIII Organization

Loreti, Michele
Lu, Yi
Luiz Leite Jr., Fabio
Madeira, Alexandre
Maggi, Alessandro
Margheri, Andrea
Marsso, Lina
Martins, Francisco
Matteucci, Ilaria
Mauro, Jacopo
Mavridou, Anastasia
Mayer, Wolfgang
Mazzanti, Franco
Messinger, Anita
Miao, Weikai
Morichetta, Andrea
Mota, Alexandre
Muzi, Chiara
Nelson, Tim
Olesen, Mads Chr.
Oliveira, Marcel Vinicius Medeiros
Owens, Scott
Ozeer, Umar
Pinisetty, Srinivas
Planer, Martin
Polini, Andrea
Proenca, Jose
Pun, Ka I
Puntigam, Franz
Pérez, Jorge A.
Qiang, Wang

Raco, Deni
Radschek, Sophie Therese
Razavi, Joseph
Re, Barbara
Riely, James
Robillard, Simon
Rossi, Lorenzo
Rossi, Matteo
Rüthing, Oliver
Saracino, Andrea
Saraiva, João
Schlatte, Rudolf
Schoepe, Daniel
Seceleanu, Cristina
Selway, Matt
Serwe, Wendelin
Tapia Tarifa, Silvia Lizeth
Tesei, Luca
Tognazzi, Stefano
Trivedi, Ashutosh
Tutu, Ionut
Vandin, Andrea
von Wenckstern, Michael
Vorobyov, Kostyantyn
Voß, Jan-Niklas
Weber, Jean-Francois
Wehrheim, Heike
Welch, James
Wendler, Philipp
Winter, Kirsten

Organization IX

Invited Talks

The Challenge of Change

Jeff Kramer

Department of Computing, Imperial College London, London, UK
j.kramer@imperial.ac.uk

Abstract. One of the grand challenges of our time is the provision of
self-managing adaptive systems. In the extreme, these are required to handle
unexpected and unplanned changes that occur at run-time. These unexpected
changes can be in any or all of the following: the environment in which the
system operates, the capabilities of the system, or in the requirements and goals
that the system should achieve. Although ad hoc techniques can be used for
specific circumstances, what we need are rigorous, comprehensive, and prag-
matic approaches to deal with the challenges that operational run-time change
presents. Formal models, appropriate for the aspects of concern, are essential to
support dynamic (semi-) automatic reasoning about change. Furthermore, these
models need to be available at runtime and should themselves be amenable to
modification. These models@runtime are needed for aspects such as domain
modelling and model revision, software configuration and reconfiguration,
requirements goals and goal revision and planning and plan revision. The
foundation necessary to support these models@runtime is a sound software
architecture. This talk will elaborate on this vision and propose a software
architecture to support run-time change and adaptation.

Software Safety and Security, Assurance Cases
and Model Management

Marsha Chechik

Department of Computer Science, University of Toronto,
Toronto, ON, M5S2E4, Canada
chechik@cs.toronto.edu

Abstract. From financial services platforms to social networks to vehicle con-
trol, software has come to mediate many activities of daily life. Governing
bodies and standards organizations have responded to this trend by creating
regulations and standards to address issues such as safety, security and privacy.
In this environment, the compliance of software development to standards and
regulations has emerged as a key requirement; yet, software compliance is a
costly and complex goal to achieve. For example, one estimate of the cost of
compliance in the US to the Sarbanes-Oxley Act (SOX) is $8B per year [1].
Regulatory compliance creates software development complexity in various
ways. An organization may have to comply with multiple standards due to
multiple jurisdictions or to address different aspects of the software, and these
may overlap and conflict with each other. Evidence of compliance must be
collected, managed and linked to an assurance case that contains the claims and
arguments for compliance. When software evolves, compliance must be reas-
sessed, which can delay the release of changes. Finally, maintaining families of
related software products (product lines) multiplies the effort even further.

Standards, development artifacts and compliance evidence can all be
expressed as models. The field of Model Management [2] has emerged to
address another software development complexity problem – the proliferation of
software models in model-driven software development [3]. Model management
focuses on a high-level view in which entire models and their relationships (i.e.,
mappings between models) can be manipulated using specialized operators to
achieve useful outcomes.

In this talk, we look at the connection between compliance and modeling to
reduce compliance complexity and cost, as well as to facilitate reuse and evo-
lution, with a special focus on automotive software development [4, 5].

Acknowledgements

Joint work with Sahar Kokaly, Rick Salay, Tom Maibaum, Mark Lawford, Alessio
DiSandro, Nick Fung.

References

1. Carney, W.J.: The costs of being public after sarbanes-oxley: the irony of going private.
Emory LJ 55, 141 (2006)

2. Bernstein, P.A.: Applying model management to classical meta data problems. In: Proceed-
ings of the CIDR 2003, vol. 2003, pp. 209–220 (2003)

3. Beydeda, S., Book, M., Gruhn, V., et al.: Model-Driven Software Development. vol. 15,
Springer, Heidelberg (2005)

4. Kokaly, S., Salay, R., Chechik, M., Lawford, M., Maibaum, T.: Safety case impact assess-
ment in automotive software systems: an improved model-based approach. In: Proceedings
of the SafeComp 2017 (2017)

5. Kokaly, S., Salay, R., Cassano, V., Maibaum, T., Chechik, M.: A model management
approach for assurance case reuse due to system evolution. In: Proceedings of the MoDELS
2016, pp.196–206 (2016)

Software Safety and Security, Assurance Cases and Model Management XV

A Formal Contract-Based Design Methodology
for CyberPhysical Systems

Alberto Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley
alberto@berkeley.edu

Abstract. In cyber-physical systems (CPS) computing, networking and control
(typically regarded as the “cyber” part of the system) are tightly intertwined with
mechanical, electrical, thermal, chemical or biological processes (the “physical”
part). The increasing sophistication and heterogeneity of these systems requires
radical changes in the way sense-and-control platforms are designed to regulate
them. In this presentation, I introduce a design methodology whereby
platform-based design is combined with assume-guarantee contracts to for-
malize the design process and enable realization of CPS architectures and
control software in a hierarchical and compositional manner.

Contents

Information Flow Tracking for Linux Handling Concurrent
System Calls and Shared Memory. 1

Laurent Georget, Mathieu Jaume, Guillaume Piolle, Frédéric Tronel,
and Valérie Viet Triem Tong

Focused Certification of an Industrial Compilation and Static
Verification Toolchain . 17

Zhi Zhang, Robby, John Hatcliff, Yannick Moy, and Pierre Courtieu

A Complete Generative Label Model for Lattice-Based
Access Control Models . 35

N.V. Narendra Kumar and R.K. Shyamasundar

From Model Checking to a Temporal Proof for Partial Models 54
Anna Bernasconi, Claudio Menghi, Paola Spoletini, Lenore D. Zuck,
and Carlo Ghezzi

Modeling and Reasoning on Requirements Evolution with Constrained
Goal Models. 70

Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini,
and John Mylopoulos

Participatory Verification of Railway Infrastructure by Representing
Regulations in RailCNL. 87

Bjørnar Luteberget, John J. Camilleri, Christian Johansen,
and Gerardo Schneider

An In-Depth Investigation of Interval Temporal Logic Model Checking
with Regular Expressions . 104

Laura Bozzelli, Alberto Molinari, Angelo Montanari, and Adriano Peron

PARTPW: From Partial Analysis Results to a Proof Witness 120
Marie-Christine Jakobs

Specification and Automated Verification of Dynamic Dataflow Networks . . . 136
Jonatan Wiik and Pontus Boström

Specification Clones: An Empirical Study of the Structure
of Event-B Specifications . 152

Marie Farrell, Rosemary Monahan, and James F. Power

http://dx.doi.org/10.1007/978-3-319-66197-1_1
http://dx.doi.org/10.1007/978-3-319-66197-1_1
http://dx.doi.org/10.1007/978-3-319-66197-1_2
http://dx.doi.org/10.1007/978-3-319-66197-1_2
http://dx.doi.org/10.1007/978-3-319-66197-1_3
http://dx.doi.org/10.1007/978-3-319-66197-1_3
http://dx.doi.org/10.1007/978-3-319-66197-1_4
http://dx.doi.org/10.1007/978-3-319-66197-1_5
http://dx.doi.org/10.1007/978-3-319-66197-1_5
http://dx.doi.org/10.1007/978-3-319-66197-1_6
http://dx.doi.org/10.1007/978-3-319-66197-1_6
http://dx.doi.org/10.1007/978-3-319-66197-1_7
http://dx.doi.org/10.1007/978-3-319-66197-1_7
http://dx.doi.org/10.1007/978-3-319-66197-1_8
http://dx.doi.org/10.1007/978-3-319-66197-1_8
http://dx.doi.org/10.1007/978-3-319-66197-1_9
http://dx.doi.org/10.1007/978-3-319-66197-1_10
http://dx.doi.org/10.1007/978-3-319-66197-1_10

User Studies of Principled Model Finder Output . 168
Natasha Danas, Tim Nelson, Lane Harrison, Shriram Krishnamurthi,
and Daniel J. Dougherty

Using Shared Memory Abstractions to Design Eager Sequentializations
for Weak Memory Models . 185

Ermenegildo Tomasco, Truc Lam Nguyen, Bernd Fischer,
Salvatore La Torre, and Gennaro Parlato

On Run-Time Enforcement of Authorization Constraints
in Security-Sensitive Workflows . 203

Daniel Ricardo dos Santos and Silvio Ranise

Trace Partitioning and Local Monitoring for Asynchronous Components 219
Duncan Paul Attard and Adrian Francalanza

Compositional Verification of Interlocking Systems for Large Stations. 236
Alessandro Fantechi, Anne E. Haxthausen, and Hugo D. Macedo

Formalizing Timing Diagram Requirements in Discrete Duration Calculus . . . 253
Raj Mohan Matteplackel, Paritosh K. Pandya, and Amol Wakankar

On Approximate Diagnosability of Metric Systems 269
Giordano Pola, Elena De Santis, and Maria Domenica Di Benedetto

A Hazard Analysis Method for Systematic Identification of Safety
Requirements for User Interface Software in Medical Devices 284

Paolo Masci, Yi Zhang, Paul Jones, and José C. Campos

Modular Verification of Information Flow Security
in Component-Based Systems. 300

Simon Greiner, Martin Mohr, and Bernhard Beckert

IJIT: An API for Boolean Program Analysis
with Just-in-Time Translation . 316

Peizun Liu and Thomas Wahl

Specification and Semantic Analysis of Embedded Systems Requirements:
From Description Logic to Temporal Logic . 332

Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz

Computing Conditional Probabilities: Implementation and Evaluation 349
Steffen Märcker, Christel Baier, Joachim Klein, and Sascha Klüppelholz

Validating the Meta-Theory of Programming Languages (Short Paper). 367
Guglielmo Fachini and Alberto Momigliano

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-66197-1_11
http://dx.doi.org/10.1007/978-3-319-66197-1_12
http://dx.doi.org/10.1007/978-3-319-66197-1_12
http://dx.doi.org/10.1007/978-3-319-66197-1_13
http://dx.doi.org/10.1007/978-3-319-66197-1_13
http://dx.doi.org/10.1007/978-3-319-66197-1_14
http://dx.doi.org/10.1007/978-3-319-66197-1_15
http://dx.doi.org/10.1007/978-3-319-66197-1_16
http://dx.doi.org/10.1007/978-3-319-66197-1_17
http://dx.doi.org/10.1007/978-3-319-66197-1_18
http://dx.doi.org/10.1007/978-3-319-66197-1_18
http://dx.doi.org/10.1007/978-3-319-66197-1_19
http://dx.doi.org/10.1007/978-3-319-66197-1_19
http://dx.doi.org/10.1007/978-3-319-66197-1_20
http://dx.doi.org/10.1007/978-3-319-66197-1_20
http://dx.doi.org/10.1007/978-3-319-66197-1_21
http://dx.doi.org/10.1007/978-3-319-66197-1_21
http://dx.doi.org/10.1007/978-3-319-66197-1_22
http://dx.doi.org/10.1007/978-3-319-66197-1_23

Towards Inverse Uncertainty Quantification in Software
Development (Short Paper). 375

Matteo Camilli, Angelo Gargantini, Patrizia Scandurra,
and Carlo Bellettini

Interpolation-Based Learning as a Mean to Speed-Up Bounded
Model Checking (Short Paper) . 382

Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo Pasini,
and Danilo Vendraminetto

Towards Automated Deployment of Self-adaptive Applications on Hybrid
Clouds (Short Paper) . 388

Lom Messan Hillah, Rodrigo Assad, Antonia Bertolino,
Marcio Delamaro, Fabio De Rosa, Vinicius Garcia, Francesca Lonetti,
Ariele-Paolo Maesano, Libero Maesano, Eda Marchetti,
Breno Miranda, Auri Vincenzi, and Juliano Iyoda

A Diagnosis Framework for Critical Systems Verification (Short Paper). 394
Vincent Leildé, Vincent Ribaud, Ciprian Teodorov,
and Philippe Dhaussy

Design of Embedded Systems with Complex Task Dependencies
and Shared Resource Interference (Short Paper) . 401

Fotios Gioulekas, Peter Poplavko, Rany Kahil, Panagiotis Katsaros,
Marius Bozga, Saddek Bensalem, and Pedro Palomo

Author Index . 409

Contents XIX

http://dx.doi.org/10.1007/978-3-319-66197-1_24
http://dx.doi.org/10.1007/978-3-319-66197-1_24
http://dx.doi.org/10.1007/978-3-319-66197-1_25
http://dx.doi.org/10.1007/978-3-319-66197-1_25
http://dx.doi.org/10.1007/978-3-319-66197-1_26
http://dx.doi.org/10.1007/978-3-319-66197-1_26
http://dx.doi.org/10.1007/978-3-319-66197-1_27
http://dx.doi.org/10.1007/978-3-319-66197-1_28
http://dx.doi.org/10.1007/978-3-319-66197-1_28

Information Flow Tracking for Linux Handling
Concurrent System Calls and Shared Memory

Laurent Georget1(B), Mathieu Jaume2, Guillaume Piolle1, Frédéric Tronel1,
and Valérie Viet Triem Tong1

1 EPC CIDRE CentraleSupelec/Inria/CNRS/Université de Rennes 1, Rennes, France
laurent.georget@irisa.fr

2 Sorbonne Universités, UPMC, CNRS, LIP6 UMR 7606, Paris, France

Abstract. Information flow control can be used at the Operating Sys-
tem level to enforce restrictions on the diffusion of security-sensitive data.
In Linux, information flow trackers are often implemented as Linux Secu-
rity Modules. They can fail to monitor some indirect flows when flows
occur concurrently and affect the same containers of information. Fur-
thermore, they are not able to monitor the flows due to file mappings
in memory and shared memory between processes. We first present two
attacks to evade state-of-the-art LSM-based trackers. We then describe
an approach, formally proved with Coq [12] to perform information flow
tracking able to cope with concurrency and in-memory flows. We demon-
strate its implementability and usefulness in Rfblare, a race condition-
free version of the flow tracking done by KBlare [4].

Keywords: Information flow tracking · Linux · LSM

1 Introduction

Information Flow Control (IFC) at the Operating System (OS) scale is a security
mechanism preventing leaks or improper manipulation of information stored in
the system. At the OS level, flows are the actions of the processes causing the
copy of data from a container of information to another. Containers are OS-
level abstractions such as processes, files, message queues, network sockets, etc.
The security status of each container is given by a security label, called a taint,
initially set by a security officer. The taint of a container encodes the history of
the flows that have altered its content. Consider the situation presented here:

file � cp † copy
of file wc -l • /dev/stdout

� �† �† � † •

The process cp copies a file, that the process wc reads to output the number of
lines in it. file is originally tainted with �, cp with †, wc with •. IFC maintains
the knowledge of past flows in the system through taint propagation. When a
flow occurs, the taint of the destination is updated with the taint of the source,
in order to record the flow in the system. Assuming flows are performed from
c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 1–16, 2017.
DOI: 10.1007/978-3-319-66197-1_1

2 L. Georget et al.

left to right in the example, we see that the taint from the file is propagated
to cp and then to the copy and wc, and eventually to /dev/stdout. The focus
of this article is on three IFC systems developed for the generic Linux kernel:
KBlare [4], Laminar [9,11], and the Android Linux kernel: Weir [8].

The implementations of Laminar, KBlare, and Weir are based on the Linux
Security Modules (LSM) framework. This framework provides (1) extra security
fields in Linux’s internal data structures and (2) a set of callbacks, called LSM
hooks, positioned in the code of system calls. Security mechanisms can register
functions on these hooks to be executed just before security-sensitive operations
are made, to enforce security decisions. The crucial property we expect from
these systems is that they are able to correctly track all flows in the system. If
malware could escape them, the confidentiality and integrity of user data would
no longer be guaranteed.

However, the LSM framework has been conceived primarily for access control,
and not for IFC [14] so it is not obvious that it is also appropriate for this
purpose. In a previous work [3], we have developed an approach to verify that
LSM hooks were available in each system call generating an information flow, so
that an information flow tracker could monitor all of them. This is a necessary
condition to implement a correct information flow tracker. This approach led to
the identification of some shortcomings in the placement of LSM hooks and the
addition of a few hooks. This necessary condition is nevertheless not a sufficient
one. Indeed, detecting each individual direct flow is not equivalent to detecting
all flows. Flows occurring concurrently in the system and involving a common
information container may cause indirect flows (i.e. compositions of individually
detected flows) to be undetected. This is because the sequence 〈detection of the
flow by the tracker (a function registered in a LSM hook); actual occurrence of
the flow (another function called later in the same system call)〉 is not atomic,
and thus taint propagation is subject to race conditions.

Information flow trackers also have to cope with the existence of contin-
uous flows, which are started by one system call and stopped by another. A
typical example of these flows is caused by shared memory segments. When a
process shares a memory segment with another one, they can freely communi-
cate through it. No system call is required for a process to read and write its
own memory, and thus, the trackers cannot see these individual flows. Therefore,
they have to make the overapproximation that the flow is occurring “continu-
ously” between the system call setting the shared memory up and the system
call shutting it down. Even if a security mechanism could tolerate missing some
flows, the hassle of handling race conditions is justified by the existence of these
continuous flows, which cannot be monitored otherwise. Comments in the source
code of Blare and Laminar stress the importance of the issue and the lack of
a straightforward solution. In this article, we propose a solution to handle con-
currency between system calls as well as continuous flows. To the best of our
knowledge, our approach is the first to propose a provably correct way to do so.

We propose three contributions in this article, described in Sects. 2, 3 and 4.
The paper is organized as follows.

Information Flow Tracking for Linux Handling Concurrent System Calls 3

In Sect. 2, we detail two ways of evading Laminar, KBlare, and Weir by
exploiting a race condition between a read and a write operations and by exploit-
ing indirect continuous flows between files mapped in memory.

In Sect. 3, we describe formally the mechanism of taint propagation common
to the three tools as well as the concrete flows of information between containers.
We describe how considering flows as operations spanning over some time instead
of atomic ones allow us to propose a new way of propagating taints that takes
into account all possible flows in the system. We prove two properties on our
result: (1) the overapproximation of flows we compute is sound, no flow can
be missed; (2) the overapproximation is the smallest one in our model, i.e. any
smaller overapproximation would be unsound because there would exist a way to
perform an indirect flow missed by the algorithm. We have proved the correctness
of our algorithm in our model with the Coq proof assistant [12].

In Sect. 4, we describe Rfblare, a new taint propagation mechanism for
KBlare, implementing our solution from the previous point. We show that it
correctly handles the attacks developed in the first point and encurs little over-
head. This work describes precisely how the LSM framework can be modified
to allow the implementation of correct flow tracking, independently from any
particular semantics for the labels or any flow policy model.

We revise related works in Sect. 5 and conclude in Sect. 6. Due to space
limitations, we give in this article an overview of our main results. Our complete
implementation, tests, as well as the proofs of our formal results are available
online on the project’s website: https://blare-ids.org/rfblare.

2 Evading Existing Information Flow Trackers

2.1 Exploiting a Race Condition to Copy a File Without Its Taint

KBlare, Laminar and Weir use the file_permission LSM hook when a process
reads from or writes to a file to perform the taint propagation. There is a risk
of race conditions even on uniprocessor systems because the process is allowed
to sleep and yield the CPU between the time the LSM hook is triggered and the
time the function that actually performs the flow is called. This can be exploited
to copy a file without its taint. Consider this example:

source � sender † pipe receiver • desti-
nation

�2 �†3 1 •4

The dashed lines represent the observations of flows by the tracker (made in the
order given by the numbering for the sake of this example) and the plain lines
the actual flows in the system (done from left to right). The content from the
source file is propagated to the destination via processes sender and receiver and
the pipe. Nevertheless, since receiver has started reading from the pipe before
sender has written to it, the taint is not propagated properly.

This attack works reliably and effectively on KBlare as a simple one-liner:
mkfifo pipe; cat < pipe > destination& cat < source > pipe. On Weir,

https://blare-ids.org/rfblare

4 L. Georget et al.

it is more difficult because processes benefit from a stricter isolation by default.
To perform the attack, we have developed two toy applications. One offers a text
box in which the user can write a message. When clicking on a send button, the
process allocates a new security tag from the Weir tag manager and then copy
this message to a pipe whose name is known by both applications. The other
application has a text area and a receive button. Clicking on the latter copies
the message from the pipe to the text area. We install both applications with
the same user id so that they can share a folder, and we create the pipe inside.
We observe that if the user clicks on send before clicking on receive, the logs
from Weir show that the taint is correctly propagated to the receiver. However,
clicking on receive first triggers the race condition. The apparent result is the
same (the text appears in the receiver ’s text area) but the logs show that the
taint from the sender only reaches the pipe and not the receiver.

On Laminar, this attack is not possible because the developers put the entire
system call in a critical section to prevent race conditions between concurrent
reads and writes. However, this solution is not entirely satisfactory. First of all,
it incurs sacrificing parallelism on very common system calls from the family of
read and write. Reading a file from a high-latency filesystem (e.g. a network-
backed filesystem) might block all other reads and writes for a long time. Sec-
ondly, many existing applications rely on the semantics that reading from an
empty pipe blocks until it is written to. This is not possible if operations cannot
interleave. Laminar does not care about this since it mandates that all pipes are
open in non-blocking mode to avoid a covert channel but KBlare and Weir are
committed not to require any porting of existing applications.

2.2 Making a Flow in Memory

Ordinarily, to read from and write to a file, a process uses system calls from the
read and write family but this is not the only way. There exists a system call,
mmap, which can make a file (or better said, the pages of cache memory buffering
the file’s content) appear as part of the process’s memory space. When a file
is mapped in its memory, a process can read from it and write to it (provided
that the mapping has the read–write permissions) without system calls, by usual
memory manipulations. Another system call, munmap, unmaps a file. The same
mechanism is used to share memory segments between processes. If two processes
map the same file, usually a temporary anonymous file, in a read–write public
way, they can communicate and collaborate on the same data.

Weir does not handle mappings. Laminar has an interesting comment in
its source code stating: “XXX: Should do something about mmaped files.” [10,
security/difc.c, l. 944] which suggests that the problem is known to the devel-
opers and considered important enough but is not trivially solvable. KBlare sup-
ports propagating taints between the file and the memory space of the process
when the former is mapped. It also claims to handle shared memory segments by
maintaining a list of attached shared memory segments for each process. When
propagating taints from or to this process, the shared memory segments par-
ticipate in the propagation [4]. The implementation is incomplete however and

Information Flow Tracking for Linux Handling Concurrent System Calls 5

even the design is somewhat flawed. If processes A and B share memory, as well
as processes B and C, we must consider that processes A and C share memory,
although they do so indirectly. KBlare fails to handle that “transitivity”.

We can reuse the attack from the previous section by replacing the read-
ing by sender from source by a read-only mapping, the writing by receiver to
destination by a read-write mapping and finally, the pipe by a shared memory
segment between receiver and sender. We could not test it on KBlare, Laminar
and Weir directly because of the lack of implementation on these platforms but
a toy implementation of KBlare’s described propagation [4] shows the problem:
depending on the order in which the mappings and the shared memory are set
up, taints are not propagated from source to destination in all cases, although
the content from source is copied to destination.

These two attacks show that the trackers’ observations are inconsistent with
the actual flows altering the containers. A sound tracker needs at least to com-
pute an overapproximation of the actual flows. To solve this problem, we propose
in the following section a formal model of the propagation done by the trackers,
what a perfect propagation would be and a way to compute a correct overap-
proximation of this perfect propagation in practice.

3 A New Algorithm for Taint Propagation

We propose a formal model of information flows between containers as well as a
formal description of taint propagation in order to describe the shortcomings of
current trackers and prove the correctness of our taint propagation.

3.1 Tags, Information Flows and Executions

A container is anything in the system that can carry data (usually originating
from a user). Files, network sockets, pipes are examples of containers. We write
C for the set of containers of information. Contrarily to most approaches, we do
not consider processes or threads as containers of information per se. Instead,
we consider that the memory space of each process is a container (i.e. a flow
from/to a process is a flow from/to its memory). This distinction is useful since
in Linux systems, it is possible to create distinct processes sharing their entire
memory space, and thus the data they store and produce.

To record the origin of the information stored in any container, a tracker
attaches a security label, also called a taint, to all of them. In our model, a
taint is a set of tags. In the example above, we have chosen the set {�, †, •} as
tags whereas actual implementations generally use a predefined range of integers.
Without loss of generality, we consider that each container c ∈ C is initially asso-
ciated to a unique tag written tc. Intuitively, a tag represents a primary source
of information in the system. Let T = �c∈C{tc} be the set of all tags. During
the lifetime of the system, as information gets exchanged between containers,
the tracker’s task is to reflect these changes in the set of tags associated to the
containers. This is the taint propagation.

6 L. Georget et al.

Definition 1 (Configuration, Taint). A configuration θ : C → ℘(T) maps
each container to its set of tags. θ(c) = {tc1 , . . . , tcn} is called the taint of c and
indicates that c contains information originating from containers c1, . . . , cn.

We write Θ for the set of configurations and θinit for the initial configuration
such that ∀c ∈ C θinit(c) = {tc}. A configuration is an abstraction of the state
of the containers, it represents an overapproximation of the sources of informa-
tion contributing to the current content of a container. This state evolves upon
occurrence of specific events relative to information flows. An information flow
is the copy of (a portion of) the content of a container, called the source of
the flow, into another, called the destination. We consider that an information
flow is not an atomic operation. Instead, we consider that a flow is successively
enabled, executed and disabled. The execution of the flow (i.e. the copy of infor-
mation) may happen only after it is enabled, and before it is disabled. It may
happen once, several times, or even not at all. Several different flows from a
container c1 to a container c2 may occur during the lifetime of the system, and
may even overlap. In order to distinguish them, we introduce the set F of flow
identifiers (typically, we choose F = IN so that each flow is uniquely identified
by a ever-increasing counter).

Definition 2 (Event). Let c1, c2 ∈ C and f ∈ F . We define the relation c1 →f

c2 which is to be understood as a flow called f from c1 to c2. An event e ∈ E is
either a pair (f, (c1, c2)) where c1

enable−−−−→f c2 or c1
disable−−−−→f c2, or a pair (f, (c1, c2))

where c1
exec−−−→f c2. We call the first set O and the second one X . These relations

have the following intuitive meaning:

c1
enable−−−−→f c2 means that the flow named f from c1 to c2 is enabled

c1
exec−−−→f c2 means that the flow named f from c1 to c2 is executed

c1
disable−−−−→f c2 means that the flow named f from c1 to c2 is disabled

In other words, O contains the events enabling and disabling flows whereas X
contains the events corresponding to actual flow executions.

We write E ⊆ E+ for the set of executions, defined as non-empty sequences
of events. We write e[i] for the i-th event of an execution e ∈ E, lg(e) the length
of e and e[:n] (resp. e[n:]) the prefix (e[1], . . . , e[n]) of length n of e (resp. the
suffix (e[n], . . . , e[lg(e)]) of length lg(e) − n + 1 of e). Executions in E satisfy
two conditions of causality: a flow is always enabled before being executed or
disabled, and cannot be executed after it is disabled:

∀i e[i] = c1
disable−−−−→f c2 ∨ e[i] = c1

exec−−−→f c2 ⇒ (1)(
∃j < i e[j] = c1

enable−−−−→f c2 ∧
(
∀k j < k < i ⇒ (e[k] = c1

disable−−−−→f c2)
))

We suppose that only events in O are observable by the tracker and that it
cannot react on events in X . This models the fact that a tracker cannot perform
taint propagation all the time during the execution of a system call but only when

Information Flow Tracking for Linux Handling Concurrent System Calls 7

the execution reaches a LSM hook. We write O the set of observable executions,
containing only events in O, and X the set of concrete executions, containing only
events in X . Observable executions are the sequences of events observed by the
tracker whereas concrete executions describe the executions of flows, i.e. how the
content of containers actually changes over time. Given e ∈ E, we write eO ∈ O
(resp. eX ∈ X) the observable execution (resp. the concrete execution) obtained
by removing the unobservable events (resp. the observable events) from e. We
define a compatibility relation between observable and concrete executions.

Definition 3 (Compatibility). An observable execution ω is compatible with
a concrete execution x iff they are projections from an execution in E. Formally,
∀x ∈ X ∀ω ∈ O, we write ω � x iff ∃e ∈ E (ω = eO ∧ x = eX).

Example 1. We consider the first attack presented in Sect. 2 and illustrate it
on the figure below. We abbreviate the name of the containers in the rest of
this article: src is the source, se the sender, p the pipe, r the receiver and d the
destination. The x column represents the concrete execution of flows between the
containers of information. The ω column is the sequence of enabling and disabling
events seen by the tracker. These two executions are compatible because there
exists an execution e which is a linearization of both, respecting the causality
conditions expressed by (1).

p enable−−−−→f1 r e[1] ω[1] —
src enable−−−−→f2 se e[2] ω[2] —
src exec−−−→f2 se e[3] — x[1]
src disable−−−−→f2 se e[4] ω[3] —
se enable−−−−→f3 p e[5] ω[4] —
se exec−−−→f3 p e[6] — x[2]
p exec−−−→f1 r e[7] — x[3]
p disable−−−−→f1 r e[8] ω[5] —
se disable−−−−→f3 p e[9] ω[6] —
r enable−−−−→f4 d e[10] ω[7] —
r exec−−−→f4 d e[11] — x[4]
r disable−−−−→f4 d e[12] ω[8] —

pipe →
receiver

f1 source →
senderf2

sender →
pipe

f3

receiver →
destination

f4

3.2 Flow-Based Interpretations of Executions

A tracker is said to be sound if it does not miss any flow. However, a given
observable execution can correspond to several concrete executions, when several
flows are enabled at the same time. Thus, a tracker cannot track flows with an
absolute precision. Thus, a sound tracker can only provide an overapproximation
of the taints considering the flows generated by all the compatible concrete
executions. Actually, in the example, due to the synchronous nature of the pipe,
there is only one possible execution order between the reading and the writing
because reading from the pipe blocks until some content has been written to it.

8 L. Georget et al.

We chose a pipe because it makes triggering the race condition trivial but we
could replace the pipe by a regular file in the example, in which case the order
of execution would not be constrained.

Ideal Tag Propagation. We define a transition relation ↪−→⊆ Θ × X × Θ
describing how the information flows influence the content of containers.1

∀θ, θ′ ∈ Θ ∀c1
exec−−−→f c2 ∈ X θ

c1
exec−−−→f c2

↪−−−−−−−→ θ′ ↔ θ′ = θ[c2 ← θ(c2) ∪ θ(c1)]

For x ∈ X we write θ0
x[:n]

↪−−−→ θn when θ0
x[1]

↪−−→ θ1
x[2]

↪−−→ · · · θn−1

x[n]
↪−−→ θn. This

relation is the way an ideal tracker would propagate tags if it could observe the
execution of the flows themselves instead of the enabling and disabling events.
Table 1a details the tag propagation represented by this relation according to
the concrete execution x from Example 1.

Tag Propagation by LSM-based Trackers. Formally, the computation done
by LSM-based trackers such as Laminar, KBlare, and Weir can be described by
a transition relation −⇁⊆ Θ × O × Θ defined as follows:

θ
c1

enable−−−−→f c2−−−−−−−−−⇁ θ[c2 ← θ(c2) ∪ θ(c1)] θ
c1

disable−−−−→f c2−−−−−−−−−⇁ θ

Considering again Example 1, Table 1b describes the computation done from ω.
This taint propagation is not sound: it can miss indirect flows. For example, in
the concrete execution x compatible with ω, there is an indirect flow from source
to destination (tsrc = � ∈ θ(d) = {td = �, tr = �, tp = �, tse = �, tsrc = �} in
the computation made by ↪−→), but this is not the case in the computation made
by −⇁.

This model describes straightforwardly “floating labels” systems such as Blare
and Weir, in which a flow automatically updates the label of the destination
container with the label of the source to show the dissemination of the tagged
data. It also describes correctly, although this is less intuitive, the behavior of
systems such as Laminar in which labels must be changed explicitly by the
process. In both cases, the race condition is the same and has the same effect. In
Blare and Weir, the flow occurs but the label of the destination is not updated
accordingly. If this flow is illegal, then the violation of the security policy is not
detected. In Laminar, even if the flow is illegal, which means that the destination
label does not dominate the source one, no alert is raised and it occurs anyway.
In our model, the labels only represent the knowledge the tracking system has
about past flows in the system, and is not tied to any specific policy semantics.

1 f [x ← a] is the function such that f [x ← a](y) =

{
a if x = y

f(y) otherwise.

Information Flow Tracking for Linux Handling Concurrent System Calls 9

Computation of the Smallest Correct Overapproximation. Given an
observable execution ω, we define Enabledω ⊆ C ×C as the set of flows that have
been enabled during ω and not disabled (yet) at the end of ω. Enabled∗

ω stands
for the reflexive and transitive closure of relation Enabledω.

(c1, c2) ∈ Enabledω ⇔ ∃i ω[i] = c1
enable−−−−→f c2 ∧ ∀j > i ω[j] = c1

disable−−−−→f c2

An overapproximation, written Flowsω ⊆ C × C, of flows that can be generated
by some concrete execution compatible with a given observable execution ω ∈ O
can be computed as follows.2

Flowsω =
{
Enabled∗

ω if lg(ω) = 1
Flowsω[:k] � Enabled∗

ω if lg(ω) = k + 1

For example, if the flow (A,B) has happened in the past, and the flow (B,C)
gets enabled, then the composition (A,C) is a new flow in the system. This
would not be the case if the flow (B,C) were anterior to (A,B). Considering
Example 1, Table 1c illustrates how Flowsω is computed. As we can see, Flowsω is
not necessarily a transitive relation. Proposition 1 below ensures the soundness of
the tag propagation mechanism, as illustrated in Table 1d. Proposition 2 ensures
that it is impossible to compute a better overapproximation in our model.

Proposition 1 (Soundness). Flows generated by a concrete execution com-
patible with an observable execution ω belong to Flowsω.

∀e ∈ E ∀θ ∈ Θ θinit
eX

↪−→ θ ⇒ ∀c ∈ C θ(c) ⊆
⋃

(c′,c)∈FlowseO

θinit(c′)

Proof (Sketch). By induction on lg(e). It suffices to show that if a concrete execu-
tion exists, then, by the causality conditions, there necessarily exists a sequence
of observable events that have enabled the flows executed in the concrete execu-
tion. Flowsω contains these flows by construction.

Proposition 2 (Smallest overapproximation/Completeness). All flows
in Flowsω are generated by at least one concrete execution compatible with the
observable execution ω.

∀ω ∈ O ∀c, c′ ∈ C
(c, c′) ∈ Flowsω ⇒ ∃x ∈ X

(
ω � x ∧ ∀θ ∈ Θ θinit

x
↪−→ θ ⇒ θinit(c) ⊆ θ(c′)

)

Proof (Sketch). By induction on lg(ω). Suppose that (c, c′) ∈ Flowsω[:n] is the
flow (c = c1, c2), (c2, c3), . . . , (cm−1, cm = c′). Then by definition, there exists
i ≤ m such that (c1, ci) ∈ Flowsω[:n−1] and (ci, cm) ∈ Enabled∗

ω[:n]. By the
induction hypothesis, there exists x � ω[:n − 1] which propagates tags from c1
to ci. Concatenating x with the executions of the flows (ci, ci+1), . . . , (cm−1, cm)
(which are enabled and not disabled yet in ω[:n]) in this order yields a concrete
execution x′ � ω[:n] propagating tags from c = c1 to cm = c′ via ci.

2 Given two relations R1 ⊆ E × F and R2 ⊆ F × G, the relation R1 � R2 ⊆ E × G is
defined by (x, y) ∈ R1 �R2 iff there exists z ∈ F such that (x, z) ∈ R1 and (z, y) ∈ R2.

10 L. Georget et al.

Table 1. Flow-based interpretations of executions. For the sake of legibility, we note:
tsrc = �, tse = �, tp = �, tr = �, td = �

Information Flow Tracking for Linux Handling Concurrent System Calls 11

4 Implementation and Experiments

We have implemented our taint propagation algorithm as Rfblare, the race-free
KBlare, into the version 4.7 of the vanilla Linux kernel. We have not contributed
to the policy enforcement part of KBlare and do not discuss it here. Rfblare
covers the flows listed in Table 2. Consistently with the formal description of
our algorithm, we use one LSM hook as an enabling event and another one as a
disabling event for each flow. We have leveraged the expertise from our previous
work on LSM [3] to map our model onto the LSM framework. Some flows cannot
possibly enter in a race condition with others and require no disabling hook. For
example, the execve system call is used to run a new program, causing a flow
from the executable file to the memory of the process. However, this flow cannot
race with any flow to the file, because it is forbidden both to write into a file
being executed and to execute a file being written to. In the case of fork, no
race condition occurs with the new process since it has not started yet, and race
conditions with the parent process are irrelevant since the mm_dup_security
hook is actually called after the copy of the parent process’s memory is finished
(i.e. after the flow has taken place). mq_timedsend and msgsnd are in the same
situation. When a message is to be sent to a message queue, it is first copied to a
buffer in the kernel, then checked by the LSM module before it can be registered
to the queue. This order of actions prevents the calling process from tampering
with the message being checked. Since the kernel already avoids the data race
condition on the message, using our algorithm would be redundant.

We have added two LSM hooks as disabling events: syscall_before_return
for discrete flows and ptrace_unlink for process_vm_readv (discrete flow) and
ptrace (continuous flow). ptrace lets one process attach to another and monitor
its execution. It is used by debuggers. We consider it a continuous flow because
it opens many ways for the tracer process to exchange data with the tracee, in
overt or covert ways. We have placed the syscall_before_return hook before
the normal return of the system calls generating the flows. The case of mmap and
mprotect is special. We need not track the unmapping of files because the ker-
nel already does so. More precisely, for any file, we can query the kernel for the
list of processes’ memory spaces it is mapped into, and for any memory space,
we can similarly know which files are mapped into. Therefore, when computing
the taint propagation for a flow to a file or a memory space, we use this knowl-
edge maintained by the kernel to take into account the continuous flow caused
by the mapping. We still need the enabling hooks nonetheless to perform the
taint propagation between the file and the memory space as soon as the file is
mapped. If the mapping is read-only, the flow is from the file to the memory
space, otherwise, it is bidirectional. mprotect can be used to change a read-only
mapping to a read-write one, so we need to monitor it.

We have tested the attacks presented in Sect. 2. In the case of the Stealthily
Copying a File, the sequence of events is of course still the same but Rfblare
reacts correctly to it. The flow from the pipe to the receiver is enabled when the
receiver goes through the file_permission hook. The flow remains enabled as the
process is blocked for the pipe to be written to. On the sender side, the flow from

12 L. Georget et al.

Table 2. Flows monitored by Rfblare

the source file to the sender is enabled (the source’s tags are propagated to the
sender), and then disabled immediately after. Then, when the sender process
writes to the pipe, the flow from the sender to the pipe is enabled and the tags
from the sender (which includes tags from the source file) are propagated to the
pipe. Since the flow from the pipe to the receiver is still enabled, the tags are
also propagated to the receiver. Finally, when the receiver restarts, the actual
reading is performed, the flow from the pipe to the receiver is disabled and the
read system call finishes. The receiver then writes to the destination file, and thus
propagates its taint to it. The content of the destination file is correctly reflected
by its taint, despite the flows involving the pipe having occurred in the reverse
order with respect to the corresponding passages through the file_permission

Information Flow Tracking for Linux Handling Concurrent System Calls 13

Table 3. Linux compilation micro-benchmark results. Times are given as an average
over thirty runs, with the 95% confidence interval. Ratios are the fraction of each
system time over the reference system time and the 0-tags system time, respectively.

Number of tags User time (s) System time (s) and ratios Elapsed time (s)

(Reference) 1180 ± 10.8 82.95 ± 0.75 1.000 0.981 170.8 ± 1.7
0 1174 ± 8.4 84.56 ± 0.46 1.019 1.000 170.1 ± 1.3

400 1175 ± 10.3 84.66 ± 0.55 1.021 1.001 170.8 ± 1.5
800 1175 ± 10.6 84.82 ± 0.57 1.022 1.003 170.1 ± 1.5

1200 1173 ± 10.2 84.90 ± 0.58 1.023 1.004 170.9 ± 1.5
1600 1169 ± 10.2 86.43 ± 1.43 1.042 1.022 171.3 ± 1.8
2000 1168 ± 9.5 86.92 ± 1.58 1.048 1.027 170.6 ± 1.8

hook. For the second attack with memory-mapped files and shared memories,
we have used a similar setup. The sender and the receiver map respectively the
source and destination file, and the pipe is replaced by a shared memory segment.
We observe again the correct behavior: whichever mapping is done last (either
one of the file, or the shared memory), the tags of the source file are propagated
to all containers linked by the enabled continuous flows.

Measuring the overhead caused by Rfblare is critical to ensure its practicality.
Our testcase is a compilation of the Linux kernel, version 4.7, on a machine with
Rfblare. We place a unique tag on a varying number of source files to study the
impact of the number of tags to propagate on the performance on the kernel. We
believe compilation to be an appropriate benchmark because it is reproducible
reliably and involves numerous flows to and from files as well as the spawning
of numerous processes. Furthermore, it is relatively easy to verify the correct
propagation because we put a unique tag on each source file and we can check
by other means what files are supposed to participate to the compilation of
each intermediary and final output of the compiler. Our results are presented in
Table 3. We measure the time taken by the compilation depending on the number
of tagged source files. As a reference, we have taken the time on a similar system
without Rfblare. Tests are run thirty times each, on a virtual machine with 16Gb
of RAM, and 8 × 3.2Ghz CPUs. The user time is the cumulated time spent
by all threads outside the kernel. Logically, it shows no significant variation.
The system time is the cumulated time spent in the kernel doing system calls,
including taint propagation. Overall, on the Rfblare-equipped system, there is
an increase of about 2 to 5% of the system time. This is small, especially if
we consider the wall clock time spent during the compilation (column “elapsed
time”) which shows no significant variation.

5 Related Work

IFC has been an active topic of research and prototyping for a long time. It can
be applied in programming languages or at the OS level, we only discuss the

14 L. Georget et al.

latter case here. Along with the various implementations, formal descriptions
have been proposed, following the seminal work of Denning [2]. Denning showed
that information flow policies could be described as lattices of security labels.
This works helped reasoning about the respective expressiveness and objectives
of the different kinds of policies. However, Denning only describes access control
policies. The difference between access control and information flow control is
explicited by Jaume et al. [5]: IFC bases its security decisions based on the history
of flows in the system (maintained with taint propagation) whereas access control
does not maintain this knowledge. The practical consequence is that thanks to
this knowledge, IFC allows more policies while maintaining the guarantee that
no illegal flow can occur. For example, it is possible to let a process read a secret
file or communicate with an unauthorized process, but not both. Access control
can either allow both (which is a security hazard) or deny both (which is overly
restrictive). However, despite the extensive literature on the models of labels
(for example: [13,15]) and on the properties enforceable with IFC, like non-
interference [6], there is little formal work on taint propagation itself. However,
implementing IFC in Linux systems raises practical difficulties, mainly due to
concurrency and arcane corner cases in both the design and the implementation
of the Linux kernel. Flume [7] is an IFC system implemented as an execution
monitor in userspace, able to track the flows done by an individual process. It
uses a LSM module to propagate taints to and from files. This is different from
our solution, implemented entirely in-kernel which tracks flows in the entire
system. Flowx [1] is a LSM module enforcing non-interference in an entire Linux
system. Its implementation covers all IPCs present in Linux systems, including
shared memory. However, it does not perform IFC according to our definition
but rather access control since it does not maintain a knowledge of the flows
in the system. Instead, it dynamically instantiates copies of existing containers
of information with appropriate labels of security, each time an illegal access
is asked for. We have already discussed the case of KBlare [4], Laminar [11]
and Weir [8], which have a similar design. The main differences are the target
(Android for Weir, all Linux systems for Laminar and KBlare), the model of
label (inherited from Flume [7] for Laminar and Weir, radically different for
KBlare) and the use of floating labels (KBlare and Weir) versus explicit changes
(Laminar). They claim to cover a different range of overt and covert channels of
information, Laminar putting a special focus on covert channels while KBlare
disregarding them completely.

6 Conclusion

Information flow trackers are powerful tools to maintain a history of how data
is disseminated and used in an operating system. This knowledge is necessary to
enforce strong information flow policies or analyze malware activity. In Linux,
most trackers are implemented using the Linux Security Modules framework,
which provides hooks trackers can use to monitor the system calls making infor-
mation flow. However, being able to monitor individual flows is not a guarantee

Information Flow Tracking for Linux Handling Concurrent System Calls 15

of being able to correctly trace them all. We have shown that information flows
generated by concurrent system calls can cause trackers to miss indirect infor-
mation flows because of race conditions. To handle this issue, we have modeled
information trackers as being able to monitor not the execution of flows them-
selves, but rather the events that enable and disable the flow. With this model
as a basis, we have designed and proved an algorithm to compute the small-
est overapproximation of the flow tracking in a given execution, considering all
sequences of flow executions compatible with the events observable in this execu-
tion. The solution we propose has the very practical consequence that it makes
possible to track continuous flows, including continuous flows caused by memory
mappings and shared memory segments, which were not fully handled before.
We have implemented our approach in Rfblare, available at https://blare-ids.
org/rfblare.

References

1. Cristiá, M., Mata, P.E.: Runtime enforcement of noninterference by duplicating
processes and their memories. In: Workshop de Seguridad Informática WSEGI,
vol. 2009 (2009)

2. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

3. Georget, L., Jaume, M., Piolle, G., Tronel, F., Viet Triem Tong, V.: Verifying the
reliability of operating system-level information flow control systems in Linux. In:
FormaliSE: FME Workshop on Formal Methods in Software Engineering. IEEE,
Buenos Aires, May 2017

4. Hauser, C.: Détection d’intrusion dans les systémes distribués par propagation de
teinte au niveau noyau. Ph.D. thesis, University of Rennes 1, France., June 2013

5. Jaume, M., Andriatsimandefitra, R., Tong, V.V.T., Mé, L.: Secure states versus
secure executions. In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS, vol. 8303, pp.
148–162. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45204-8_11

6. Krohn, M., Tromer, E.: Noninterference for a practical DIFC-based operating sys-
tem. In: IEEE Symposium on Security and Privacy, pp. 61–76. IEEE Computer
Society, Washington, DC (2009)

7. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,
R.: Information flow control for standard OS abstractions. In: ACM SIGOPS Sym-
posium on Operating Systems Principles, pp. 321–334. ACM, Stevenson, October
2007

8. Nadkarni, A., Andow, B., Enck, W., Jha, S.: Practical DIFC enforcement on
Android. In: 25th USENIX Security Symposium, USENIX Security 2016, pp. 1119–
1136. USENIX Association, Austin, August 2016

9. Porter, D.E., Bond, M.D., Roy, I., Mckinley, K.S., Witchel, E.: Practical fine-
grained information flow control using laminar. ACM Trans. Program. Lang. Syst.
37(1), 1–51 (2014)

10. Roy, I., Porter, D.: Laminar, August 2014. https://sourceforge.net/p/jikesrvm/
research-archive/26

11. Roy, I., Porter, D.E., Bond, M.D., McKinley, K.S., Witchel, E.: Laminar: practi-
cal fine-grained decentralized information flow control. In: Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 63–74. ACM, Dublin, June 2009

https://blare-ids.org/rfblare
https://blare-ids.org/rfblare
http://dx.doi.org/10.1007/978-3-642-45204-8_11
https://sourceforge.net/p/jikesrvm/research-archive/26
https://sourceforge.net/p/jikesrvm/research-archive/26

16 L. Georget et al.

12. The Coq Development Team: The Coq Proof Assistant Reference Manual. Tech-
nical report, Inria, December 2016

13. VanDeBogart, S., Efstathopoulos, P., Kohler, E., Krohn, M., Frey, C., Ziegler, D.,
Kaashoek, F., Morris, R., Maziéres, D.: Labels and event processes in the asbestos
operating system. ACM Trans. Comput. Syst. 25(4), December 2007. Article No.
11. https://dl.acm.org/citation.cfm?id=1314302

14. Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux secu-
rity modules: general security support for the Linux kernel. In: USENIX Security
Symposium, pp. 17–31. USENIX Association, San Francisco (2002)

15. Zimmermann, J., Mé, L., Bidan, C.: Experimenting with a policy-based HIDS
based on an information flow control model. In: Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC), December 2003

https://dl.acm.org/citation.cfm?id=1314302

Focused Certification of an Industrial
Compilation and Static Verification Toolchain

Zhi Zhang1(B), Robby1, John Hatcliff1, Yannick Moy2,
and Pierre Courtieu3

1 Kansas State University, Manhattan, Kansas, USA
{zhangzhi,robby,hatcliff}@ksu.edu

2 AdaCore, Paris, France
moy@adacore.com

3 Conservatoire National des Arts et Métiers, Paris, France
pierre.courtieu@cnam.fr

Abstract. SPARK 2014 is a subset of the Ada 2012 programming lan-
guage that is supported by the GNAT compilation toolchain and mul-
tiple open source static analysis and verification tools. These tools can
be used to verify that a SPARK 2014 program does not raise language-
defined run-time exceptions and that it complies with formal specifi-
cations expressed as subprogram contracts. The results of analyses at
source code level are valid for the final executable only if it can be shown
that compilation/verification tools comply with a common deterministic
programming language semantics.

In this paper, we present: (a) a mechanized formal semantics for
a large subset of SPARK 2014, (b) an architecture for creating certi-
fied/certifying analysis and verification tools for SPARK, and (c) tools
and mechanized proofs that instantiate that architecture to demon-
strate that SPARK-relevant Ada run-time checks inserted by the GNAT
compiler are correct; this includes mechanized proofs of correctness for
abstract interpretation-based static analyses that are used to certify cor-
rectness of GNAT run-time check optimizations.

A by-product of this work is a substantial amount of open source
infrastructure that others in academia and industry can use to develop
mechanized semantics, and mechanically verified correctness proofs for
analyzers/verifiers for realistic programming languages.

1 Introduction

SPARK is a subset of the Ada programming language targeted at safety- and
security-critical applications. It builds on the strengths of Ada for creating highly
reliable and long-lived software. SPARK restrictions ensure that the behavior
of a SPARK program is unambiguously defined and simple enough that for-
mal verification tools can automatically check the conformance of a program

This material is based upon work supported by the US Air Force Office of Scientific
Research (AFOSR) under contract FA9550-09-1-0138.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 17–34, 2017.
DOI: 10.1007/978-3-319-66197-1 2

18 Z. Zhang et al.

to its software-contract-based specification. The SPARK language and toolset
for formal verification have been applied over many years to on-board aircraft
systems, control systems, cryptographic systems, and rail systems [1,15]. The lat-
est version – SPARK 2014 [12], builds on the new specification features added
in Ada 2012 [2]. One consequence of the new specification foundation is that
SPARK contracts are no longer phrased in Ada comments understood only by
the SPARK tools, but the formal specifications are phrased in Ada 2012 meta-
data constructs that can be understood by a much wider class of tools (including
the GNAT compiler) and they have an execution semantics. The definition of
the SPARK 2014 language subset is motivated by the simplicity and feasibility
of formal analysis and the need for an unambiguous semantics.

Static analysis tools are available that provide flow analysis, symbolic exe-
cution and proof of SPARK programs. The industrial tool GNATprove1 co-
developed by Altran and AdaCore performs flow analysis to check correct access
to data in the program (correct access to global variables as specified in data
and information flow contracts and correct access to initialized data) and uses
deductive methods to demonstrate that the program is free from run-time errors
and that the specified contracts are correctly implemented. The academic tool
Bakar Kiasan [3] developed by Kansas State University allows executing symbol-
ically a SPARK program with or without contracts, to detect possible run-time
errors and contract violations, and in some cases also prove that no such errors
can occur.

Motivations: A major reason for using SPARK for developing critical software
is the ability to prove statically that no language specified run-time errors, such
as arithmetic overflow, buffer overflow and division-by-zero, can occur.2 Besides
the additional confidence in the software that this result brings, it can be used
in some certification domains to lower the verification effort in some other areas
like testing. For example, the most recent version DO-178C of the avionics cer-
tification standard allow using both tests or proofs as acceptable verification
methods [13]. It is also commonly used as an argument to justify the suppres-
sion of run-time checks in the final executable, typically for increasing execution
speed.

The absence of run-time errors can be guaranteed only relative to the cor-
rectness of the compiler and analyzers used. Although correctness is not proved
for tools used in practice on typical industrial projects, there is a special process
known as tool qualification in safety-critical industry which aims at giving suf-
ficient confidence that the tools behave correctly [9].

A critical element for the qualification of both the GNAT compiler (the most
widely used Ada compiler) and the GNATprove analyzer, both developed by
AdaCore, is that they correctly interpret the semantics of SPARK with respect

1 http://www.adacore.com/sparkpro.
2 Language-specified run-time errors that are relevant for all programs in the lan-

guage can be contrasted with application-specific run-time errors that correspond to
violations of a program’s application-specific requirements. Our work addresses the
former notion.

http://www.adacore.com/sparkpro

Focused Certification of an Industrial Compilation 19

to the placement of run-time checks. The compiler works by producing first a
semantically analyzed abstract syntax tree (AST) of the program, decorated
with flags that indicate positions in the AST where run-time checks should
be inserted. This AST is then expanded into a lower level representation with
explicit run-time checking code. The input of GNATprove is based on the same
AST used for compilation (using the same compilation front-end), decorated
with the same flags that, in this case, indicate where absence of a particular
run-time error should be proved. Because the compiler and the analyzer share
the code that inserts decorations in the AST, this code is much less likely to
miss checks, and some effort has been invested in optimizing out useless checks.

Hence, the compiler and analyzers all share the AST produced by the front-
end, with decorations indicating where run-time checks should be inserted.
However, we have discovered various situations where decorations were miss-
ing, which ultimately led to a correction of the GNAT front-end. The last such
occasion was the implementation of a Tetris game in SPARK for a demo at a
customer gathering3: after proving that the program was free of run-time errors,
the first test on the actual board stopped unexpectedly due to a range check
failing during execution. There was indeed a possible check failure in the code
(later corrected) on a new attribute recently introduced in SPARK, which was
not detected during proof because the corresponding decoration was not set by
GNAT.

Thus, it is of critical importance to be able to guarantee that all check deco-
rations are set on the AST produced by the front-end, as defined in SPARK 2014
language reference semantics. That is, instead of assuming that GNAT correctly
decorates AST with the required run-time checks, this paper presents our work
to ensure that is indeed the case.

Contributions: To address the issues described above, and to enable a long-
term research program investigating the use of mechanized semantics and proofs
for SPARK 20144, we have developed multiple proof infrastructure components
in the Coq proof assistant. We have created certified5 SPARK run-time check
generators with a small trust-base footprint that can be used to substantiate the
correctness of the industrial SPARK 2014 toolchain. Our contributions include:

– The formalization of the language (dynamic/evaluation) semantics for a core
subset of the SPARK 2014 language using the Coq proof assistant [20]
(Sect. 2.1). The core language subset includes scalar subtypes and derived
types, array types, record types, procedure calls, and locally defined
subprograms; a large class of programs can be desugared to this core sub-
set, thus, enabling evaluations on realistic SPARK systems to some extent.

3 http://blog.adacore.com/tetris-in-spark-on-arm-cortex-m4.
4 By “mechanized”, we mean the construction of formal definitions (of semantics,

translations, analysis, etc.) and formal proofs of associated properties in a proof
assistant that enables correctness to be checked automatically by the proof assistant.

5 Certified here means that there are formal mathematical artifacts (such as machine-
checked proofs) that serve as rigorous evidence that an implementation is consistent
with its specification [5].

http://blog.adacore.com/tetris-in-spark-on-arm-cortex-m4

20 Z. Zhang et al.

The formal semantics specification represents our trust-base (along with Coq,
which itself has been highly-regarded as a proof system that has a smaller
trust-base compared to others); the specification is trustable because, for
example, it has been manually inspected by leading experts in SPARK/Ada
both in industry and academia. Hence, it can be considered as the reference
SPARK 2014 formal semantics.

– An implementation of a certified run-time check generator for the core lan-
guage (Sect. 2.2); that is, the implementation is proved to be consistent with
the reference semantics with respect to the class of errors that can arise in the
language subset (such as overflow checks, range checks, array index checks and
division by zero checks). The consistency guarantees that if language-defined
run-time checks generated by the certified implementation do not fail, a pro-
gram cannot “go wrong” according to the SPARK formal semantics. The
generated checks by the implementation represents the baseline as the most
conservative run-time check set (i.e., a larger set is unnecessary and could
even be problematic).

– An implementation of a certified run-time check optimizer (Sect. 2.3). The
optimization is needed because the GNAT frontend employs various optimiza-
tions to reduce the set of run-time checks that it generates for run-time effi-
ciency sake. The certified optimizer uses an abstract interpretation-based [7]
interval analysis; it generates a smaller set of run-time checks compared to
the ones produced by the GNAT frontend, while still being consistent.

– An implementation of a conformance checker as a back-end of the GNAT
front-end (including, e.g., a SPARK program translator to fully resolved
SPARK ASTs in Coq) that automates evaluations of the GNAT frontend
against the certified run-time check generators (Sect. 2.4). This essentially
turns the industrial GNAT frontend into a certifying6 tool with respect to
introduction of run-time error check decorations. This increases the confi-
dence in the GNAT compiler back-end that embeds run-time assertion check-
ing when it emits machine code for testing, as well as in the GNATprove
verifier that uses the run-time check decorations to determine what verifica-
tion conditions to generate.

– The evaluation of the GNAT front-end against both the certified run-time
check generators (Sect. 2.4). We evaluated that: (1) the set of run-time check
decorations inserted by the GNAT front-end is in fact a subset of the deco-
rations generated by the unoptimized run-time check generator, while (2) it
is a superset of the decorations generated by the optimized run-time check
generator. In addition to confirming the correctness of the GNAT front-end
run-time check decoration generator, the evaluation exposed some subtle dif-
ferences in the run-time checks generated by the GNAT frontend, as well as
exposing further optimizations that can be done by the frontend while still
preserving its correctness property.

6 Certifying here means that the tool generates evidence testifying that it is in fact
consistent with its specification for a particular use of the tool.

Focused Certification of an Industrial Compilation 21

While our research work includes making an industrial impact on SPARK
run-time error checking, the significant investments reflected in our contribu-
tions (e.g., over 25,000 lines of Coq proofs and reusable AST, translations, and
semantics infrastructure), enable much broader research and engineering. All of
the Coq artifacts and associated tools created in this work are publicly avail-
able under an EPL open source license7. The formalized SPARK semantics and
certified run-time check generators can be leveraged to develop certified/certify-
ing program analyzers (e.g., a contract verifier) and translators (e.g., a SPARK
to CompCert [19] intermediate representation translator to benefit from Com-
pCert’s certified translation toolchain down to machine-code level). In general,
our approach of using both unoptimized and optimized certified run-time check
generators to turn an untrusted (industrial) implementation into a certifying tool
can be adopted to other programming languages/development tools for critical
systems that ensure absence of run-time errors.

2 Technical Approach

Figure 1 gives an architectural overview of our approach; the subsequent sub-
sections describe each of the components. Due to space constraints, we only
highlight some limited language features sufficient to illustrate our approach
(see the publicly available artifacts for the complete definitions).

Fig. 1. Architectural overview

7 http://santoslab.org/pub/TR/SAnToS-TR2016-03-11/.

http://santoslab.org/pub/TR/SAnToS-TR2016-03-11/

22 Z. Zhang et al.

2.1 Core SPARK 2014 Mechanized Semantics

As stated previously, one main component of our approach is a formal language
reference semantics of core SPARK 2014 mechanized using Coq [20]; Coq allows
for specifying, implementing, and proving programming language related prop-
erties. We chose Coq due to the fact that it has a relatively small core which has
been vetted by many experts in the programming language community (small
trust-base).

The core language includes features typically found in imperative languages
such as arrays, records, and procedure calls, as well as SPARK-specific struc-
tures, such as nested procedures and subtypes. One major difference between
SPARK and other programming languages (e.g., C) is that verification for
absence of run-time errors is required by the semantics of the language itself.
Thus, the constraints associated with the required run-time checks are specified
within the operational semantics rules for the language; that is, as the rules
are used to “evaluate” the program, the semantics of the run-time checks are
enforced at appropriate points in the program, and the evaluation will terminate
with a run-time error message as soon as one of its run-time checks fails.

The formalization includes: (a) a SPARK AST representation (symbols and
types are fully resolved), and (b) a rule-based “big step” operational semantics
for SPARK (including state/value representations, expression evaluation, and
statement execution).

SPARK AST Representation: SPARK ASTs are represented using inductive type
definitions in Coq, where each constructor takes as an argument a number used
to uniquely identify and reference the particular AST node being constructed.
The AST numbers are useful as keys for symbol tables, type tables, and map-
pings from source code line/column positions. The following is an excerpt of the
inductive definition for expressions
Inductive exp: Type := | BinOp: astnum→ binOp→ exp→ exp→ exp | ...

where BinOp is the constructor for binary expressions that takes as arguments
a unique AST number astnum, a symbol for the particular operator being used
(e.g., Add, Sub, Mul, etc..), and the expressions for the left and right arguments
to the operator. The last exp is the resulting type of the constructor (i.e., the
constructor is building an exp).

SPARK supports range constrained integer types that are useful as array
index types; that is, the range constraints are used to determine in-bounds/out-
of-bounds array operations (instead of using a special .length field such as in
Java). Range constrained types can be declared by either a subtype declaration
(e.g., subtype T10 is Integer range 1 .. 10), a derived type definition
(e.g., type U10 is new Integer range 1 .. 10), or an integer type defini-
tion (e.g., type W10 is range 1 .. 10); they semantically differ in that the
last two introduce a new type, while the first one does not; the differences have
to be taken into account in the formalization. This illustrates the non-trivial
number of language features that one has to cover when formalizing a real

Focused Certification of an Industrial Compilation 23

programming language that can be directly leveraged for developing high-
integrity industrial tools.

State/Value: Due to the semantics enforcing the run-time checks, evaluating
either an expression or a statement may produce an error state when the run-
time check fails (otherwise a value or a state is produced, respectively). The
following definition defines a generic return type Ret:
Inductive Ret (A: Type): Type := | OK: A→ Ret A | RTE: errorType→ Ret A.

Type parameter A is either the value/state type, and errorType is the run-time
error state type (e.g., division by zero, overflow, out of range).

Expression Semantics: The mechanized big-step operational semantics defini-
tion consists of an inductively defined type with constructors corresponding to
the individual “rules” of the semantics. Intuitively, each constructor takes as
arguments: (a) Coq objects representing operational semantics derivations cor-
responding to evaluation of expression/statement sub-components, and (b) Coq
objects representing derivations establishing that some necessary “side condi-
tions” hold. Each expression rule relates a symbol table, the current state, and
the expression to be evaluated, to a return value. The expression rules are com-
plicated by the fact that sub-expression evaluation can produce an error state,
as follows.
Inductive evalExp: symTab→ state→ exp→ Ret value→ Prop :=
| EvalBinOpE1_RTE: ∀ st s e1 msg n op e2, (* e1 returns error *)

evalExp st s e1 (RTE msg)→ evalExp st s (BinOp n op e1 e2) (RTE msg)
| EvalBinOpE2_RTE: ∀ st s e1 v1 e2 msg n op, (* e2 returns error *)

evalExp st s e1 (OK v1)→ evalExp st s e2 (RTE msg)→
evalExp st s (BinOp n op e1 e2) (RTE msg)

| EvalBinOp: ∀ st s e1 v1 e2 v2 op v n, (* no error from e1 & e2 *)
evalExp st s e1 (OK v1)→ evalExp st s e2 (OK v2)→ evalBinOp op v1 v2 v→

evalExp st s (BinOp n op e1 e2) v
...
Inductive evalBinOp: binOp→ value→ value→ Ret value→Prop :=
| CheckBinops: ∀ op v1 v2 v v’, (* binop results in overflow *)

op = Add ∨ op = Sub ∨ op = Mul→ Denotational.binOp op v1 v2 = Some (Int v)→
overflowCheck v v’→ evalBinOp op v1 v2 v’

| CheckDivRTE: ∀ v1 v2, (* check for div by zero *)
divCheck v1 v2 (RTE DivByZero)→ evalBinOp Div (Int v1) (Int v2) (RTE DivByZero)

| CheckDiv: ∀ v1 v2 v v’, (* no div by zero, check result overflow *)
divCheck v1 v2 (OK (Int v))→ overflowCheck v v’→
evalBinOp Div (Int v1) (Int v2) v’ ...

EvalBinOpE1 RTE specifies the evaluation of a binary expression (e1 op e2)
where the evaluation of e1 produces an error state (similarly, EvalBinOpE2 RTE
for when e2 fails). EvalBinOp specifies the situation where evaluations of both
e1 and e2 produce operand values, which are then evaluated using evalBinOp;
evalBinOp incorporates various run-time checks such as division by zero and
overflow/underflow by using divCheck and overflowCheck; divCheck pro-
duces a value if the second operand is non-zero (otherwise, it produces the error
state RTE DivByZero), and overflowCheck produces a value if the given value
fits within the (platform) integer type value range (otherwise, it produces RTE
Overflow). Run-time checks for other language features such as array indexing
are specified in the same spirit as the above.

24 Z. Zhang et al.

Statement Semantics: Range checks are enforced during statement executions of,
for example, assignments and procedure calls. We describe the intuition behind
statement semantic rules using examples instead of verbosely listing the Coq
specifications.

For an assignment, a range check is enforced for its right hand side expression
if the left hand side expression’s type is a range constrained type. For example,
subtype MyInt is Integer range 1 .. 10; X: MyInt; ...; X := X + 1;

That is, X is a variable of type MyInt, which is defined as a subtype of Integer
ranging from 1 to 10. The assignment increments X by 1, as follows. First, X + 1
is evaluated; if it returns a value (instead of an error state), the value is checked
against the range of MyInt before updating X.

For a procedure call, range checks are required for both input arguments and
output parameters if the types of input parameters and output arguments are
range constrained types because input arguments are assigned to the procedure
input parameters, and output parameters are assigned to the output arguments.

In general, there are three categories of run-time checks in the core SPARK
subset: (1) overflow (including underflow) run-time checks (for integer arithmetic
operations), (2) division by zero run-time checks (for modulus and division oper-
ations), and (3) range run-time checks (for integer variable assignments, array
assignments, array accesses, and procedure calls).

Evaluation: We designed the semantics rules including the specification of run-
time checks by referring to the SPARK [21] and Ada [17] reference manuals.
The rules were subsequently inspected and refined by various experts including
SPARK/Ada designers and developers. We then proved that our SPARK mech-
anized semantics enjoys a form of type safety (Sect. 2.3), which guarantees, to
some extent, its internal consistency.

2.2 Certified Run-Time Check Generator

Given a SPARK program, the GNAT compiler front-end builds the program
fully-resolved (symbol/type) AST decorated with flags that indicate the posi-
tion and nature of the run-time checks to be performed. When down-stream
tools process the ASTs, they interpret/transform the decorations. For example,
a later phase of the GNAT compiler replaces each decoration with an assertion
AST representing code that implements the corresponding run-time check. In
contrast, the Why3 [22]-based GNATprove verification tool uses the decorations
to generate verification conditions. Both tools assume that the run-time check
decorations inserted by the GNAT compiler front-end are correct.

To formally capture the notion of decorating ASTs with run-time check infor-
mation, we implemented in Coq a run-time check decoration generator (RT-GEN
in Fig. 1) whose consistency with the mechanized SPARK reference semantics
was established via a Coq proof. Hence, the correctness of RT-GEN is certified.
To achieve this, a different set of operational semantic rules is needed (called
EVAL-RT) – one that “evaluates” an AST with run-time check decorations and
only enforces the checking semantics where a decoration occurs. Then, one can

Focused Certification of an Industrial Compilation 25

prove that, for any program and for any program initial state, EVAL-RT supplied
with run-time check decorations generated by RT-GEN produces exactly the same
state as EVAL (i.e., the SPARK reference semantics).

EVAL-RT: is a modified EVAL that accepts AST-RT where run-time check dec-
orations are represented as tree attributes. For example, AST-RT expression is
defined as follows.
Inductive expRT: Type :=
| BinOpRT: astnum→ binOp→ expRT→ expRT→ interiorChecks→ exteriorChecks→ expRT
...

The difference from AST is that two additional fields interior/exterior
Checks are introduced; interiorChecks are intended for run-time checks
associated with the binary operator (e.g., addition requires overflowCheck),
while exteriorChecks are checks associated with expression’s context (e.g.,
if the expression is used for array indexing, then it should be range-checked
against the array size). Once AST-RT is defined, one can then define EVAL-RT

that accepts AST-RT and enforces the explicitly listed run-time checks (e.g., in
interiorChecks and exteriorChecks), as illustrated below.
Inductive evalExpRT: symTabRT→ state→ expRT→ Ret value→ Prop :=
| EvalBinOpRT: ∀ st s e1 v1 e2 v2 ins op v n exs,

evalExpRT st s e1 (OK v1)→ evalExpRT st s e2 (OK v2)→ (* no error on e1, e2 *)
evalBinOpRTS ins op v1 v2 v→ (* process RT checks *)
evalExpRT st s (BinOpRT n op e1 e2 ins exs) v

...

evalBinOpRTS iterates over the run-time check decorations to enforce the
interior- Checks for a binary expression. The binary operation is performed
if none of the run-time checks produces an error state; otherwise, it returns the
error state. (Note that enforcement of exteriorChecks is not presented above
as it involves arrays, which is not presented due to space constraint.)

RT-GEN: translates AST to AST-RT. In developing RT-GEN, we first speci-
fied its behavior declaratively as a Coq inductively defined relation (e.g.,
toExpRT below) between AST to AST-RT (with the symbol table as an aux-
iliary component). Then, we implemented the translation as a Coq function
(e.g., toExpRTImpl).
Inductive toExpRT: symTab→ exp→ expRT→ Prop :=
| ToBinOpO: ∀ st op e1 e1RT e2 e2RT n, (* insert overflow checks on op result *)

op = Add ∨ op = Sub ∨ op = Mul → toExpRT st e1 e1RT → toExpRT st e2 e2RT →
toExpRT st (BinOp n op e1 e2) (BinOpRT n op e1RT e2RT [OverflowCheck] nil)

| ToBinOpDO: ∀ st e1 e1RT e2 e2RT n, (* Div: div by 0 + overflow *)
toExpRT st e1 e1RT → toExpRT st e2 e2RT →
toExpRT st (BinOp n Div e1 e2)

(BinOpRT n Div e1RT e2RT [DivCheck, OverflowCheck] nil)
...
Function toExpRTImpl(st:symTab)(e:exp): expRT :=...

As can be observed, ToBinOpO specifies that RT-GEN should generate (inte-
rior) Overf- lowCheck for addition, subtraction, or multiplication, and both
DivCheck and Overfl- owCheck for division; toExpRT is implemented by
toExpRTImpl using Coq’s programming language features (like ML’s) which is
extractable to OCaml to produce an executable.

26 Z. Zhang et al.

Evaluation: To certify RT-GEN, we proved that its specification is consistent
(sound and complete) with respect to the SPARK mechanized semantics. For
example, for expressions, we proved the following consistency lemma:
Lemma toExpRTConsistent: ∀ e eRT st stRT s v,

toExpRT st e eRT→toSymTabRT st stRT→(evalExpRT stRT s eRT v ↔ evalExp st s e v).

where toSymTabRT transforms symTab to symTabRT, which, among other
things, maps procedure names to their AST-RT. We then proved that the RT-

GEN implementation is consistent with respect to its specification, for example:
Lemma toExpRTImplConsistent: ∀ e eRT st, toExpRTImpl st e = eRT ↔ toExpRT st e eRT.

Therefore, the implementation is transitively consistent with respect to the
SPARK semantics (by transitivity of implication →/↔).

2.3 Certified Run-Time Check Optimizer

While RT-GEN generates a sufficient set of run-time checks, some of them may
not be necessary. In fact, the GNAT front-end uses optimization techniques to
reduce the set of run-time checks that it generates; in practice, we expect the set
generated by GNAT to be a subset of the RT-GEN generated set (we confirmed
through experiments that this is indeed the case in Sect. 2.4). The question is
then whether GNAT’s optimizations are (certifiably) sound. Our approach to
answer this is to have a certified optimizer (RT-OPT) that reduces the run-time
checks generated by RT-GEN. It is widely known that, in general, an optimizer
cannot actually ever be optimal (due to the halting problem). Thus, the best we
can hope for is to have RT-OPT reduce to the same (or even better, i.e., smaller)
set as GNAT’s (a smaller set implies that GNAT can be improved further);
Sect. 2.4 confirms that this is indeed the case through validation.

RT-OPT: transforms AST-RT to another AST-RT by removing some run-time
checks whose corresponding verification conditions (VCs) can be discharged;
RT-OPT discharges the VCs by employing a (certified) abstract interpretation [7]
analysis with interval numeric domain (Sect. 2.4 shows that RT-OPT is on par or
better than GNAT’s runtime-check optimizations). Similar to RT-GEN, we first
specified RT-OPT as inductively defined relation and then implemented it as a
function. For expressions, RT-OPT produces AST-RT along with the expression’s
interval domain (if any) as follows:
Inductive optExp: symTabRT→ expRT→ (expRT * interval)→ Prop = ...
Function optExpImpl(st:symTabRT) (e:expRT): option(expRT * interval) = ...

where optExp is typeset in Fig. 2 for readability. One invariant of RT-

OPT is that integer expression optimization should produce an interval that
fits within the compilation target platform-specific two’s complement inte-
ger range, which makes up the default interval [INTMIN , INTMAX]. Γ holds
the abstract interpretation context such as symbol table, etc. For nota-
tional convenience, interiorChecks and exteriorChecks are not explic-
itly shown; EraseOverflowCheck and EraseDivCheck remove overflow and division
interiorChecks, respectively.

Focused Certification of an Industrial Compilation 27

Fig. 2. RT-OPT specification for expression (excerpts)

The Int1 rule in Fig. 2 optimizes away the overflow check in the case of an
integer literal AST-RT n where n is within the platform’s integer range; a single-
value interval [n, n] is returned along with the optimized AST-RT (i.e., the tight
single-value interval allows for concrete interpretation). On the other hand, Int2

specifies the case where the overflow check is kept whenever n is outside the
range, thus, the default interval is returned (in this case, an error message can
be generated to notify the developer). Add1 and Add2 first try to optimize the two
operands and compute the expression interval bounds (i.e., [u, v]). Add1 specifies
the case where the bounds are within the platform’s integer range, hence, the
overflow check associated the binary operation can be safely removed; otherwise,
Add2 specifies that run-time checks are preserved, and the resulting interval is
the platform’s integer range.

For division, four cases (Div1-4) specify the different situations where division
by zero and/or operation overflow (i.e., when dividing INTMIN by −1) could
occur; in all the cases, the resulting interval is specified by divInterval that does
case analysis on the positivity/negativity of the interval operands. For example,

28 Z. Zhang et al.

(5) specifies the case where both of the operand intervals [v1, w1] and [v2, w2] are
positive (i.e., the low bounds v1 and v2 are positive); in this case, the resulting
interval is [v1/w2, w1/v2] where its low bound v1/w2 is computed by dividing
the smallest value of the first operand’s interval with the largest value of the
second operand’s interval, and its high bound w1/v2 is computed by dividing
the largest value of the first operand’s interval with the smallest value of the
second operand’s interval. The divInterval specification illustrates a slice of the
RT-OPT’s complexity for computing tight intervals in order to optimize away
many run-time checks; rest assured however that they are proven to be correct
in Coq.

Lastly, the VarInt rule specifies that an integer variable reference’s interval is
its integer type range intersected by the platform’s integer range (i.e., leveraging
the RT-OPT invariant that all computed integer values are always checked for
overflows).

Well-Typed State: VarInt assumes that it can use the variable’s integer type range
for the variable reference’s interval. This holds if all values in the state are well-
typed. To discharge this assumption, we first specified the meaning for a state
to be well-typed:
Inductive wellTypedState: symTabRT→ state→ Prop:=
| WellTypedState: ∀ stRT s,

(∀ x v, fetch x s = Some v→ ∃ t, lookup stRT x = Some t ∧ wellTypedValue t v)→
wellTypedState stRT s.

then proved that EVAL-RT specification (hence, by virtue of consistency transi-
tivity, EVAL specification) preserve state well-typed-ness, for example, for EVAL-

RT statement semantics that may incur state changes, we proved the following
preservation lemma:
Lemma wellTypedStatePreservation: ∀ s s’ stmt stRT,

wellTypedState stRT s→ evalStmtRT stRT s stmt s’→ wellTypedState stRT s’.

Evaluation: To certify RT-OPT, we proceeded similarly to RT-GEN certification
(albeit much more complex to prove); that is, we proved that RT-OPT specifica-
tion is consistent with respect to the RT-GEN specification described in Sect. 2.2,
and that RT-OPT implementation is consistent with respect to its specifica-
tion. Therefore, the implementation is transitively consistent with respect to
the SPARK mechanized semantics.

2.4 Certifying GNAT RT Check Generator

Now that we have RT-GEN and RT-OPT, we can implement a conformance checker
that can establish that, for a SPARK 2014 program p, the run-time check decora-
tion insertion of the GNAT front-end for p conforms to the mechanized SPARK
2014 reference semantics. Specifically, for program p, the GNAT front-end gen-
erates a fully resolved AST with run-time check decorations, and we developed
a tool called Jago that takes the GNAT AST and produces: (1) a Coq object of
type AST (ast), where the GNAT run-time decorations are erased, and (2) a Coq
object of type AST-RT (ast-rt-gnat), where the GNAT run-time decorations are

Focused Certification of an Industrial Compilation 29

preserved (Jago also applies some program transformations to desugar language
constructs that lie outside of the language subset to fall within the language sub-
set). Then, applying RT-GEN on ast produces ast-rt-gen, and applying RT-OPT on
ast-rt-gen produces ast-rt-opt, both of which are of type AST-RT.

To automate the actual AST conformance check, we implemented a tool in
Coq – ⊆, that given two objects of type AST-RT, it determines whether the set
of run-time checks in the first object is a subset of the second’s. Thus, GNAT
run-time decoration insertion on program p is conformant to the SPARK 2014
reference semantics if ast-rt-opt ⊆ ast-rt-gnat ⊆ ast-rt-gen. This toolchain essen-
tially turns the GNAT front-end into a certifying run-time check decoration
generator; that is, for a given program p, it generates evidence of “conformity
to SPARK 2014 reference semantics for p’s run-time check decorations” that is
automatically machine-checked by certified tools.

Note that this does not guarantee that the actual binary run-time check
assertion code for p subsequently generated by the GNAT compiler back-end
is correct; it simply means that decorations indicating what assertions should
be produced is correct. This, alone has significant value because, for example,
it goes a long way toward establishing the correspondence between GNAT and
GNATprove’s (as well as any other SPARK backend tools’) treatment of run-time
checks. Moreover, since there are only three categories of run-time checks relevant
for this language subset, since each of these categories can be represented by a
simple code pattern involving a few numerical comparisons, since the pattern
itself can be easily inspected and tested, and since the generation of binary code
for the pattern is reasonable straightforward and can also be easily tested, one
might argue that establishing the correctness of the decorations is one of the
most important steps in establishing trust in the overall end-to-end production
of the executable run-time checks.

3 Evaluation: Certifying GNAT

We evaluated GNAT according to the methodology described in Sect. 2.4 on a
collection of programs. Table 1 presents the experiment data for various program
units (packages/procedures) from the test programs. The first two SPARK pro-
grams come from the Ada Conformity Assessment Test Suite (ACATS) [16] that
all Ada compilers must pass. SPARKSkein is an implementation of the Skein
hash algorithm in SPARK, which was proved free of run-time errors [4]. Tetris
is the motivating example described in Sect. 1, which is implemented partly
in SPARK and partly in Ada (we only checked the SPARK part). All other
examples are representative code from AdaCore, Altran and our own designed
benchmark covering the core language subset. For each unit, LoC gives the line
number of code. Base, GNAT and Opt give the number of run-time checks in
ast-rt-gen, ast-rt-gnat and ast-rt-opt respectively, and Diff represents the number
of run-time checks in GNAT that differs from the ones in Opt. Dash (“–”)
means “none”; a negative number −n in Diff means that Opt removes n more
run-time checks than GNAT; and, a positive number +m means Opt has m

30 Z. Zhang et al.

Table 1. Experiment data (excerpts)

Unit LoC Base GNAT Opt Diff

D O R T D O R T D O R T D O R T

ACATS c53007a 143 – 16 – 16 – 14 – 14 – 14 – 14 – – – –

ACATS c55c02b 74 – 2 5 7 – 2 – 2 – 2 – 2 – – – –

array record package 54 1 11 2 14 1 11 2 14 1 11 2 14 – – – –

array subtype index 12 – 1 1 2 – 1 – 1 – 1 1 2 – – +1 +1

arrayrecord 43 1 9 2 12 1 9 – 10 1 9 – 10 – – – –

assign subtype var 10 – 1 1 2 – 1 – 1 – 1 1 2 – – +1 +1

binary search 40 1 6 12 19 1 – 4 5 – – 4 4 −1 – – −1

bounded in out 17 – 1 4 5 – – 3 3 – – 4 4 – – +1 +1

dependence test suite 01 164 – 2 – 2 – 2 – 2 – 2 – 2 – – – –

dependence test suite 02 249 – 15 – 15 – 15 – 15 – 15 – 15 – – – –

division by non zero 12 1 2 1 4 1 – – 1 – – – – −1 – – −1

faultintegrator 25 – 2 – 2 – 2 – 2 – 2 – 2 – – – –

gcd 18 1 3 – 4 1 3 – 4 1 3 – 4 – – – –

linear div 21 – 3 – 3 – 3 – 3 – 3 – 3 – – – –

modulus 24 1 2 3 6 1 1 – 2 – 1 – 1 −1 – – −1

odd 14 1 2 – 3 1 1 – 2 – 1 – 1 −1 – – −1

p simple call 36 – 5 – 5 – 5 – 5 – 5 – 5 – – – –

prime 21 1 2 – 3 1 2 – 3 1 2 – 3 – – – –

quantifiertest 14 – 1 2 3 – 1 – 1 – 1 – 1 – – – –

SPARKSkein 646 7 94 246 347 7 58 29 94 – 52 25 77 −7 −6 −4 −17

sort 43 – 5 6 11 – 5 6 11 – 5 6 11 – – – –

Tetris 373 – 29 58 87 – – 25 25 – – 25 25 – – – –

the stack 42 – 4 6 10 – – 6 6 – – 6 6 – – – –

the stack praxis 35 – 2 4 6 – – 4 4 – – 4 4 – – – –

two way sort 49 – 4 17 21 – – 4 4 – – 4 4 – – – –

more number of run-time checks than GNAT “somehow”. Sub-column D gives
the number of division by zero run-time checks; O and R give the number of
overflow run-time checks and range run-time checks; and, T is the total num-
ber of run-time checks (i.e., D+O+R). RT-GEN and RT-OPT run fast (within
seconds) and the data are omitted here due to space constraints.

As can be observed from Table 1, the GNAT frontend is a solid tool for
run-time check generation/verification as most of its generated run-time checks
match the certified RT-OPT. This is reasonable because our formalization cap-
tures the most commonly used run-time checks in SPARK and GNAT is quite
mature after many years of effort to improve it, as well as the effort to improve
the GNATprove toolchain by AdaCore and Altran (which drives some of the
improvements in GNAT). However, RT-OPT edges out GNAT in some cases,
especially for SPARKSkein. One reason is that GNAT does not take any
advanced optimizations, for the division/modulus binary operator, it does not
optimize even with constant; for example, GNAT generates division by zero
check for the expression (R + 1) mod 3 while RT-OPT optimized it away. For
SPARKSkein, consider a procedure call Inject Key(R * 2), (for procedure
declaration Inject Key(X: in U32)), R is a variable of type U32, and U32 is
a subtype of Integer with range 0..INT MAX; an overflow check for R * 2 is

Focused Certification of an Industrial Compilation 31

enough to guarantee the absence of both overflow and range error, while GNAT
keeps both overflow check and range check for such cases. There are other cases
showing that RT-OPT is better than GNAT’s optimizations.

In our initial evaluation (shown in the experiment table), GNAT produces
fewer run-time checks than RT-OPT; these inconsistencies turned out to be
benign because they are due to differences in how GNAT (vs RT-OPT) reports
the need for checks and in how it assumes down-stream translation will interpret
decorations for run-time checks. Once observed, the inconsistencies are rectified
by slightly modifying ⊆ to match GNAT’s conventions, thus, resulting in a fully
automatic approach to justify correctness of GNAT run-time check decorations.
For completeness sake, we document the inconsistencies that we found (and
fixed) here. In procedure array subtype index, there is an assignment A(0):=0,
where the index type of A is a subtype of integer with range 1..10; thus, access-
ing A with the index 0 is out of its required range, so it will cause a range error.
GNAT gives a compile time warning as specified in Ada reference manual with-
out generating a range check; on the other hand, RT-OPT keeps this check (a
similar issue exists for assign subtype var). Another difference is due to a single
run-time check decoration in the GNAT AST that can lead downstream transla-
tion steps to introduce run-time checking code that implements multiple checks,
e.g., a single GNAT run-time check AST decoration for an argument (both in
and out) is interpreted as giving rise to code for two checks for both passing in
argument and passing out return value.

Lessons Learned: The fact that RT-OPT is better in some cases illustrates that,
despite its maturity, GNAT can still be improved further, e.g., by adopting
the optimization specified and implemented in RT-OPT; that is, the RT-OPT

specification can be used as a reference for implementing further optimizations in
GNAT, and once implemented, they can then be checked for conformance against
the RT-OPT implementation. Furthermore, in the case where new optimizations
are added to GNAT that goes beyond RT-OPT as presented here, those new
optimizations can be added to RT-OPT in order to: (a) mechanically verify that
they are correct, and (b) further keep GNAT as a certifying run-time check
generator.

Our research work demonstrates the feasibility of engineering an approach
and corresponding tools with mechanized correctness proofs that leverage recent
advancements and maturity of various formal method techniques and tools to
make a direct impact in significantly increasing confidence in industrial tools; in
our case, the industrial tools are used to develop critical systems that require
the utmost level of integrity, thus, warranting such effort. From a business per-
spective, we believe it is desirable as it adds to the value proposition – the
trustworthiness of GNAT compiler and associated SPARK 2014 is increased.
Furthermore, we believe that the approach can eventually help in tool qualifica-
tion processes typically done in certifications and regulatory reviews associated
with standards (e.g., DO-178C in avionics) that increasingly recognize the value
of formal methods and an official tool qualification process.

32 Z. Zhang et al.

Threats To Internal Validity: Our approach is predicated on the assumption
that practitioners are willing to trust the approach’s trust-base, which includes
Coq and the SPARK formal language semantics presented in Sect. 2.1. In addi-
tion, our current implementation uses: (a) the parser, symbol resolver, and type
checker of GNAT itself, and (b) Jago to build program representations in Coq;
both are not certified tools. Ideally, a certified frontend can be developed to
address this issue; this certified frontend is orthogonal and out of the scope of
the work presented here, and they can be addressed in the future. Moreover, the
⊆ tool that compares AST-RT objects is manually inspected instead of certified
(it is small – 172 LoC, and its functionality is very simple); regardless, it should
be considered as part of the trust-base at this point of time.

Threats To External Validity: One must also consider the extent to which the
results presented for the given test suite would extend to SPARK 2014 programs
in general. For this objective, program size and execution time are not really
issues – the cost of insertion of run-time checks is in general linear in the number
of AST nodes. The interval analysis needed for optimization does add some
additional complexity, but not enough to significantly impact performance. On
the other hand, a principle concern is that our test suite provides appropriate
coverage of all the different types of run-time checks specified in the SPARK
2014 language reference manual. In addition, our language subset needs to be
expanded to eventually cover the full programming language (in fact, this work
represents our third iteration based on the initial work [6]).

4 Related Work

The idea of a certifying approach that generates evidence that can be machine-
checked goes back to proof-carrying code (PCC) [14] for memory safety. Since
then, recent advancements and maturity in interactive theorem proving has
enabled one to implement certified systems directly inside a theorem prover
with what widely acknowledged as a relatively small trust-base footprint. One
prominent work is the CompCert project [11], which demonstrates that one
can now feasibly develop a certified optimizing compiler in Coq that guarantees
the machine code it produces is behaviorally equivalent to its C source code.
To provide such guarantee, it starts with formalizing a large subset of the C
programming language – Clight [18], which is then used for proving program
behavior preservation throughout its compilation pipeline. The main difference
to our semantics work is that SPARK requires run-time checks as part of its
semantics, which complicated our formalization effort (as described in Sect. 2.1).

In contrast to CompCert where the certified compiler is developed in Coq,
the GNAT compiler is not developed in Coq. In fact, there are often a number
of goals driving the development of language tools – performance, scalability,
reusability, maintainability, etc. Many, if not most, of these often conflict with
the goal of verifiability (and thus “mechanized” verifiability). In addition, it is
hard to imagine verifying tools with a lot of legacy software (such as GNAT).
Thus, there are strong forces against developing a certified language tool, and

Focused Certification of an Industrial Compilation 33

in situations like these creating a certifying tool can be an appropriate strategy
when high-assurance is needed.

Some advantages of the certifying approach are that: (1) it can be adopted
by existing/untrusted (high-performing) tools, and (2) it is much easier and a lot
less costly to develop. One main advantage of the certified approach is that its
correctness evidence (proof) is for all uses (runs) of the tool, while the certifying
one is specific to a particular use; this specificity is sufficient and in line with
typical tool qualification processes where tools are qualified for the particular
use on the software being regulatorily certified for standard compliance [9].

The closest work on run-time checks to ours is Verasco [10] – a certified
run-time check analyzer for C, whose design was inspired by Astrée [8]. RT-

OPT employs a simpler abstract numerical domain compared to Verasco; thus,
it can potentially discharge more verification conditions associated with run-
time checks. This presents opportunities for RT-OPT future improvements. On
the other hand, the soundness of Verasco was proven, but not its complete-
ness. Because SPARK (unlike C) includes implicit run-time checks that must be
accounted for in the semantics, completeness guarantees that all run-time checks
are as prescribed by (traceable to) the reference semantics.

5 Conclusions and Future Work

In this paper, we have illustrated how the formal semantics of SPARK can
be used in a mechanized proof infrastructure to check that ASTs produced by
the GNAT compiler frontend having correctly incorporated decorations for run-
time checks. This included developing an optimizer with mechanized proofs of
correctness that achieves run-time check placement optimizations equal to or
better than GNAT. The effectiveness of the approach was demonstrated using
programs from AdaCore test suites.

Our next step is to build a mechanically proved translation from SPARK into
CompCert’s Clight, which would then provide a verified compiler for SPARK
2014 to the target languages supported by CompCert. In addition, the Jago
translator also enables one to develop in Coq an integrated verification environ-
ment that includes the ability to use Coq to mechanically verify that a SPARK
program conforms to its formally specified contracts. In situations where very
high confidence is needed, this type of infrastructure could be used directly by
verification engineers, or it could enable existing automated tools like Kiasan [3]
or GNATprove [13] to emit Coq proofs establishing that their verification results
for a particular program are correct.

References

1. Barnes, J.: SPARK: The Proven Approach to High Integrity Software. Altran
Praxis (2012)

2. Barnes, J.: Ada 2012 Rationale - The Language, The Standard Libraries, Lecture
Notes in Computer Science, vol. 8338. Springer, Heidelberg (2013)

34 Z. Zhang et al.

3. Belt, J., Hatcliff, J., Robby, Chalin, P., Hardin, D., Deng, X.: Bakar kiasan: flexible
contract checking for critical systems using symbolic execution. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
58–72. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 6

4. Chapman, R., Botcazou, E., Wallenburg, A.: SPARKSkein: a formal and fast refer-
ence implementation of skein. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS,
vol. 7021, pp. 16–27. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25032-3 2

5. Chlipala, A.: Certified Programming with Dependent Types - A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

6. Courtieu, P., Aponte, M., Crolard, T., Zhang, Z., Robby, Belt, J., Hatcliff, J.,
Guitton, J., Jennings, T.: Towards the formalization of SPARK 2014 semantics
with explicit run-time checks using coq. In: HILT, pp. 21–22 (2013)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

8. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The astreé analyzer. In: ESOP, pp. 21–30 (2005)

9. Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., Jones, P.L.: Certifiably safe
software-dependent systems: challenges and directions. In: FOSE, pp. 182–200
(2014)

10. Jourdan, J., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified C
static analyzer. In: POPL, pp. 247–259 (2015)

11. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

12. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press, Cambridge (2015)

13. Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or formal verifi-
cation: DO-178C alternatives and industrial experience. IEEE Software, pp. 50–56
(2013)

14. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119 (1997)
15. O’Neill, I.: SPARK - a language and tool-set for high-integrity software develop-

ment. In: Industrial Use of Formal Methods: Formal Verification. Wiley (2012)
16. Ada conformity assessment test suite (ACATS). http://www.ada-auth.org/acats.

html
17. Ada reference manual. http://www.ada-auth.org/standards/ada12.html
18. Clight. http://compcert.inria.fr/doc/html/Clight.html
19. Compcert-c. http://compcert.inria.fr/compcert-C.html
20. The Coq proof assistant. http://coq.inria.fr
21. SPARK 2014 reference manual. http://docs.adacore.com/spark2014-docs/html/

lrm/
22. Why3 - where programs meet provers. http://why3.lri.fr/

http://dx.doi.org/10.1007/978-3-642-20398-5_6
http://dx.doi.org/10.1007/978-3-642-25032-3_2
http://www.ada-auth.org/acats.html
http://www.ada-auth.org/acats.html
http://www.ada-auth.org/standards/ada12.html
http://compcert.inria.fr/doc/html/Clight.html
http://compcert.inria.fr/compcert-C.html
http://coq.inria.fr
http://docs.adacore.com/spark2014-docs/html/lrm/
http://docs.adacore.com/spark2014-docs/html/lrm/
http://why3.lri.fr/

A Complete Generative Label Model
for Lattice-Based Access Control Models

N.V. Narendra Kumar and R.K. Shyamasundar(B)

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay, Mumbai 400076, India

naren.nelabhotla@gmail.com, shyamasundar@gmail.com

Abstract. Lattice-based access control models (LBAC) initiated by
Bell-LaPadula (BLP)/Biba models, and consolidated by Denning have
played a vital role in building secure systems via Information Flow Con-
trol (IFC). IFC systems typically label data and track labels, while allow-
ing users to exercise appropriate access privileges. This is defined through
a finite set of security classes over a lattice. Recently, IFC has also been
playing a crucial role in formally establishing the security of operat-
ing systems/programs. Towards such a goal, researchers often use asser-
tions to keep track of the flow of information from one subject/object
to another object/subject. Specifying and realizing these assertions will
be greatly benefitted, if the underlying labels of objects/subjects can
be interpreted in terms of access permissions/rights of subjects/objects
as well as subjects/objects that have influenced them; these would lead
to automatic generation of proof obligations/assertions. Thus, if one can
arrive at a label model for LBAC that satisfies properties like (i) intuitive
and expressive labels, (ii) completeness w.r.t. Denning’s lattice model,
and (iii) efficient computations on labels, then building/certifying secure
systems using LBAC will be greatly benefitted.

In this paper, we arrive at such a semantic generative model (that
tracks readers/writers of objects/subjects) for the Denning’s lattice
model, and establish a strong correspondence between syntactic label
policies and semantically labelled policies. Such a correspondence leads
to the derivation of the recently proposed Readers-Writers Flow Model
(RWFM). It may be noted that RWFM [11] also deals with declassifi-
cation rules which is not discussed here as it is not relevant here. The
relationship, further establishes that the RWFM label model provides
an application-independent concrete generative label model that is sound
and complete wrt Denning’s Model. We define the semantics of informa-
tion flow in this label model, and argue that reading and writing induce
possibly different pre-orders on the set of subjects. Hence, the subject
relations become explicit, making it possible to derive relations from
the labels. We further define a notion of information dominance on sub-
jects and show that the notion of principal hierarchy can be naturally
defined that is consistent with the IFC model; this perhaps overcomes
the adverse impact on the flow policy that is often experienced during the
classical approach of defining the hierarchy orthogonally. This enables us

N.V. Narendra Kumar — Currently at IDRBT, Hyderabad 500057, India.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 35–53, 2017.
DOI: 10.1007/978-3-319-66197-1 3

36 N.V.N. Kumar and R.K. Shyamasundar

to realize Role-Based Access Control (RBAC) structurally and enforce
information flow security. Further, we demonstrate how the underlying
label model succinctly subsumes various lattice-based control models like
BLP, Biba, RBAC, Chinese wall model, etc.

Keywords: MAC · DAC · LBAC · RBAC · Chinese wall

1 Introduction

The ability to control the release and propagation of information lies at the
heart of systems security. Standard access control models [2,6–8] control the
release of information but do not provide the means for controlling its subsequent
propagation. Lattice model of secure information flow proposed by Denning [5]
provides support for controlling information propagation by assigning security
levels to objects and subjects, and allowing information flow from a level to a
higher or equal level only.

The lattice model is a simple policy that is compositional, which makes it pos-
sible to specify and verify end-to-end security guarantees. The lattice model of
secure information flow together with DAC succinctly captures well known secu-
rity models like the Bell-LaPadula model for secrecy/confidentiality [1], Biba’s
model for integrity [9], the Chinese-Wall security policy [3] etc.

The main objective of this paper is to first derive a semantic label model that
has the following characteristics (i) expressive and intuitive labels, (ii) complete
with respect to Denning’s lattice model, and (iii) efficient label computations.
Using such a label model, we then derive the recently proposed RWFMmodel
[11,14] and thus establish the expressivity of the label structure of RWFM.
Having established a strong correspondence between the Denning’s lattice flow
model and RWFM, we show how security (confidentiality/integrity) policies in
multi-level secure (MLS) systems could be specified naturally in such a label
structure. Further, we capture various prominent security models such as Bell-
LaPadula model for secrecy/confidentiality [1], Biba’s model for integrity [9], the
Chinese-Wall security policy [3] etc., succinctly in the RWFMmodel. Further-
more, we arrive at the notion of information dominance in RWFM and through
such a notion, we relate the model with RBAC and show how information flow
control can also be established in RBAC through RWFMmodels. The crux of
novelty of our work lies in the derivation of a generative concrete label model
through which information flows in systems can be analyzed in an application
independent manner.

Rest of the paper is organized as follows: Sect. 2 provides an overview of
the Denning’s lattice model, and a description of an algorithm for extracting
semantic labels from Denning’s model is presented in Sect. 3. Derivation of the
basic RWFM, its transitions and its characteristic properties are presented in
Sect. 4. Section 5 shows how to encode common security policies in RWFM.
This is followed by a comparison of RWFMwith RBAC in Sect. 6 followed by
conclusions in Sect. 7.

A Complete Generative Label Model 37

2 Overview of Denning’s Lattice Model

In this section, we introduce Denning’s lattice model [5] of secure information
flow, which is derived from security classes and is justified by the semantics of
information flow. The salient feature of this model is that it encompasses several
well known models like the Bell-LaPadula model for secrecy/confidentiality [1],
Biba’s integrity model [9], the Chinese-wall security policy [3] etc.

Denning’s information flow model (DFM) is defined by the 5-tuple DFM =
(S,O, SC,�,⊕), where (i) S is a set of subjects/principals (active agents respon-
sible for information flow), (ii) O is a set of objects (information containers), (iii)
SC is a set of security classes, (iv) � is a binary relation on the security classes
that specifies permissible information flows. sc1 � sc2 means that information
in security class sc1 is permitted to flow into security class sc2, and (v) ⊕ is the
class-combining binary operator (associative and commutative) that specifies, for
any pair of operand classes, the class in which the result of any binary function
on values from the operand classes belongs.

Example 1: An example of security classes in DFM could be SC = {l1, l2},
with l1 < l2 as the ordering. This means that information at security class l1 is
allowed to flow to security class l2, but not vice-versa.

A pictorial representation of this lattice along with more example lattices is
given in Fig. 1.

Fig. 1. Hasse diagrams of some example information flow lattices

The pictorial representations are to be interpreted as follows: if there is an
upward path from class l to l′, then information is allowed to flow from class l
to l′. For example, in SC1, information is allowed to flow from class l1 to l2 but
not vice-versa. Similarly, in SC2, information is allowed to flow from l2 to l4 but
not to l1 or l3. In SC3, information is allowed to flow from l3 to l4, l7 and l8 but
to no others. �

Subjects (S) and objects (O) are bound to security classes (SC) (either sta-
tically or dynamically depending on the application) by a labelling function,
λ : S ∪ O → SC, that defines the information-flow policy. Note that, when a
subject s reads an object o, information flows from o to s and this is permissible

38 N.V.N. Kumar and R.K. Shyamasundar

only if λ(o) � λ(s). Similarly, when a subject s writes to an object o, information
flows from s to o and this is permissible only if λ(s) � λ(o).

Example 2: Consider the security lattice SC1 given in Example 1. Let S =
{s1, s2} and O = {o1, o2}.

An example information-flow policy is given by λ1(s1) = λ1(o1) = l1 and
λ1(s2) = λ1(o2) = l2. According to λ1, s1 can read o1, because λ1(o1) � λ1(s1)
is satisfied by λ1. Similarly, it is easy to verify that λ1 permits s1 to write o1
and o2 (because λ1(s1) = l1 � λ1(o2) = l2) but not read o2; and s2 can read and
write o2 and can read but not write to o1.

Another information-flow policy could be defined by λ2(o1) = l1 and λ2(s1) =
λ2(s2) = λ2(o2) = l2. If policy λ2 is enforced, then both s1 and s2 are allowed
to read and write o2 and read but not write to o1. �

A system enforcing Denning’s flow model DFM is secure iff execution of any
sequence of operations of the system cannot give rise to a flow that violates the
permissible information flow relation. Further, the natural conditions required
of information flow force the structure (SC,�) to be a lattice with ⊕ as the least
upper bound operator.

3 Recasting Denning’s Model via Semantic Labels

In this section, we recast the Denning’s label model and formally arrive at a new
label structure that explicitly captures the readers and writers of information.
Such a label system makes the semantics of labels explicit and immediately
provides an intuition for its position in the lattice of information-flow policy.
Further, the recasting enables us to provide a comparison of expressive power of
systems from the pure static labelling to the dynamic labelling.

Recasting is done in two steps: (step i) makes the labels explicit, and (step
ii) incorporates the semantics of flow into labels.

STEP (i): Making the labels explicit
Consider Denning’s flow model DFM = (S,O, SC,�,⊕). Unfortunately, from
an application designer’s perspective the labels in DFM do not provide any
intuition about the flow policy. Our objective is to make the labels more intuitive
while not losing the generality of the model.

Consider an element sc ∈ SC. From the perspective of sc, the only flows
possible as per DFM are the following:

– for an element sc′ ∈ SC such that sc � sc′ information is allowed to flow
from sc to sc′.
Define sc↑ � {sc′ ∈ SC | sc � sc′}.

– for an element sc′ ∈ SC such that sc′ � sc information is allowed to flow
from sc′ to sc.
Define sc↓ � {sc′ ∈ SC | sc′ � sc}.

A Complete Generative Label Model 39

sc↑ denotes all the possible information flows out of sc, while sc↓ denotes all
the possible information flows in to sc, and these are the only permissible flows as
per DFM . Thus, the tuple (sc↑, sc↓) captures the essence of sc for the purpose of
studying information flows and also uniquely identifies sc. The idea is to replace
the security class sc with (sc↑, sc↓), thereby making the semantics/meaning of
the label very explicit without the loss of generality. This transformation of
DFM results in the flow model DFM ′ = (S,O, SC ′,�′,⊕′), where:

– SC ′ = 2SC × 2SC ; let (A1, B1), (A2, B2) ∈ SC ′. Then
– (A1, B1) �′ (A2, B2) iff ((A1 ⊇ A2) ∧ (B1 ⊆ B2))
– (A1, B1) ⊕′ (A2, B2) = (A1 ∩ A2, B1 ∪ B2)

The following proposition establishes a very useful connection between the
original model and its transformation.

Proposition 1: Given Denning’s flow model DFM = (S,O, SC,�,⊕), and two
elements sc1 and sc2 of SC, the following holds:

1. sc1 ∈ sc↑
1 and sc1 ∈ sc↓

1,
2. sc1 ∈ sc↑

2 if and only if sc2 ∈ sc↓
1,

3. sc1 ∈ sc↑
2 if and only if sc↑

1 ⊆ sc↑
2, and

4. sc1 ∈ sc↓
2 if and only if sc↓

1 ⊆ sc↓
2.

Proof of the above proposition is a simple consequence of the reflexivity and
transitivity of �. Figure 2 provides the intuition. Interpretation of Fig. 2 is as
follows:

Fig. 2. Intuitive account of the connection between a flow model and its translation.

– Part (1) depicts a lattice point sc1 together with its outward flows (sc↑
1 -

horizontal shaded portion above) and inward flows (sc↓
1 - vertical shaded

portion below). Further it also depicts the fact that the two shaded regions
intersect exactly at the point sc1.

– Part (2) depicts a lattice point sc1 and its inward flows (sc↓
1 - vertical shaded

portion below), and a lattice point sc2 and its outward flows (sc↑
2 - horizontal

shaded portion above). From the figure it is easy to observe that sc1 is in the
outward flows of sc2 if and only if sc2 is in the inward flows of sc1.

40 N.V.N. Kumar and R.K. Shyamasundar

– Part (3) depicts two lattice points sc1 and sc2 and their outward flows, and
readily presents the following intuition: sc1 is in the outward flow of sc2 if
and only if all the outward flows possible from sc1 are also possible from sc2.

– Part (4) depicts two lattice points sc1 and sc2 and their inward flows, and
readily presents the following intuition: sc1 is in the inward flow of sc2 if and
only if all the inward flows possible to sc1 are also possible to sc2.

From Proposition 1, it is easy to verify that the flow models DFM and
DFM ′ are equivalent, in the sense that information flow from a class to another
class is permitted in DFM if and only if the flow is permitted between the
corresponding classes in DFM ′. This is formalized as:

Theorem 1: Given a Denning’s flow model DFM = (S,O, SC,�,⊕), let
DFM ′ = (S,O, SC ′,�′,⊕′) where SC ′ = 2SC × 2SC , (A1, B1) �′ (A2, B2) �
((A1 ⊇ A2) ∧ (B1 ⊆ B2)), and (A1, B1) ⊕′ (A2, B2) � (A1 ∩ A2, B1 ∪ B2). The
function f : SC → SC ′ defined by f(sc) = (sc↑, sc↓) is such that for any two
elements sc1 and sc2 of SC,

sc1 � sc2 if and only if f(sc1) �′ f(sc2).

Proof:
(Only-if)
1. sc1 � sc2 (given)
⇒ 2. sc2 ∈ sc↑

1 (from 1, definition of ↑)
⇒ 3. sc↑

2 ⊆ sc↑
1 (from 2, Proposition 1.3)

⇒ 4. sc1 ∈ sc↓
2 (from 1, definition of ↓)

⇒ 5. sc↓
1 ⊆ sc↓

2 (from 4, Proposition 1.3)
⇒ 6. (sc↑

1 ⊇ sc↑
2) ∧ (sc↓

1 ⊆ sc↓
2). (from 3,5)

⇒ 7. (sc↑
1, sc

↓
1) �′ (sc↑

2, sc
↓
2). (from 6, def. of �′)

⇒ 8. f(sc1) �′ f(sc2). (from 7, definition of f)

(If)
1. f(sc1) �′ f(sc2) (given)
⇒ 2. (sc↑

1, sc
↓
1) �′ (sc↑

2, sc
↓
2). (from 1, definition of f)

⇒ 3. (sc↑
1 ⊇ sc↑

2) ∧ (sc↓
1 ⊆ sc↓

2). (from 2, definition of �′)
⇒ 4. (sc↑

1 ⊇ sc↑
2) (from 3)

⇒ 5. sc2 ∈ sc↑
2 (Proposition 1.3)

⇒ 6. sc2 ∈ sc↑
1 (from 4,5)

⇒ 7. sc1 � sc2 (from 6, definition of ↑)
where, ⇒ denotes logical implication.

STEP (ii): Incorporating the semantics of flow into labels
Next step is to note that information actually flows only because of the actions
of subjects (active entities in the information system). Further, note that from
the perspective of information flow, actions could be classified into three types:

A Complete Generative Label Model 41

Type 1: actions that cause information flow from the subject performing the
action to the other entity,

Type 2: actions that cause information flow to the subject performing the action
from the other entity, and

Type 3: actions that cause no information flow.

Information-flow control defines rules for controlling the first two types of
actions. Note that the above interpretation, captures only the flow-relevant
aspects of actions of the underlying system and not their specific semantics,
thus still retaining generality.

Let λ : S ∪ O → SC be a flow policy on DFM . For a subject s ∈ S and a
class sc ∈ SC, if λ(s) ∈ sc↑, then, only a Type 2 action of s on an entity at class
sc will cause information to flow from sc to s. Similarly, for a subject s ∈ S and
a class sc ∈ SC, if λ(s) ∈ sc↓, then, only a Type 1 action of s on an entity at
class sc will cause information to flow from s to sc.

Because of their similarity with familiar operations, we refer to Type 1 actions
as WRITE actions and Type 2 actions as READ actions. With these ideas the
readers and writers of a security class sc are defined below.

Definition 1 [Readers and Writers]: Given a Denning’s flow model DFM =
(S,O, SC,�,⊕) together with a policy λ : S ∪ O → SC, we define the readers,
denoted scR, and writers, denoted scW , of a security class sc ∈ SC as:

– scR � {s ∈ S | λ(s) ∈ sc↑},
– scW � {s ∈ S | λ(s) ∈ sc↓}.

scR denotes the set of those subjects whose actions could result in information
flow out of sc, and scW denotes the set of those subjects whose actions could
result in information flow in to sc. These are the only ways information may
flow.

The idea is to replace sc↑ with scR, and sc↓ with scW in DFM ′. This trans-
formation of DFM ′ results in the flow model DFM ′′ = (S,O, SC ′′,�′′,⊕′′),
where:

– SC ′′ = 2S × 2S

– �′′ is the same as �′

– ⊕′′ is the same as ⊕′

Define the policy λ′′ : S ∪ O → SC ′′ as λ′′(e) � (λ(e)R, λ(e)W), where
e denotes an entity (subject or object) of the information system. We abuse
notion by writing eR to mean λ(e)R and eW to mean λ(e)W for an entity e.

The following proposition establishes a very useful connection between the
original model and its transformation.

Proposition 2: Given a Denning’s flow model DFM = (S,O, SC,�,⊕)
together with a policy λ : S ∪ O → SC, and two subjects s1 and s2 in S,
and an entity e ∈ S ∪ O, the following holds:

42 N.V.N. Kumar and R.K. Shyamasundar

1. s1 ∈ sR
1 and s1 ∈ sW

1 ,
2. s1 ∈ sR

2 if and only if s2 ∈ sW
1 ,

3. s1 ∈ eR if and only if sR
1 ⊆ eR, and

4. s1 ∈ eW if and only if sW
1 ⊆ eW .

Proof of the above proposition is a simple consequence of the definition of the
transformation procedure and is omitted for brevity. The intuitions presented in
Fig. 2 continue to hold with the following change: instead of collecting the lattice
points in a cone, collect the subjects that are mapped (by flow policy) to a lattice
point in the cone.

Once again, from Proposition 2, it is easy to see that DFM with policy λ and
DFM ′′ with policy λ′′ are equivalent, in the sense that an action is permitted
by DFM with λ if and only if the action is permitted by DFM ′′ with λ′′. The
property is formally stated below.

Theorem 2: Given a Denning’s flow model DFM = (S,O, SC,�,⊕) together
with a policy λ : S ∪ O → SC, let DFM ′′ = (S,O, SC ′′,�′′,⊕′′) where SC ′′ =
2S × 2S , (A1, B1) �′′ (A2, B2) � ((A1 ⊇ A2) ∧ (B1 ⊆ B2)), and (A1, B1) ⊕′′

(A2, B2) � (A1 ∩ A2, B1 ∪ B2), and λ′′ : S ∪ O → SC ′′ be such that λ′′(e) �
(λ(e)R, λ(e)W), for e ∈ S ∪ O. For any subject s ∈ S and entity e ∈ S ∪ O,

1. λ(s) � λ(e) if and only if λ′′(s) �′′ λ′′(e), and
2. λ(e) � λ(s) if and only if λ′′(e) �′′ λ′′(s).

The proof of the above theorem is very similar to the proof of Theorem 1 and
is omitted for brevity. The above theorem is to be understood in the following
way: a Type 1 (WRITE) action by s on e is permitted by DFM with λ only if
λ(s) � λ(e), which by the above theorem implies λ′′(s) �′′ λ′′(e) which in turn
implies that the action is permitted by DFM ′′ with λ′′, and vice versa. Similar
reasoning applies for Type 2 (READ) actions due to item 2 in the theorem above.
In summary, Theorem 2 asserts that any flow causing operation is authorized by
DFM with λ if and only if it is authorized by DFM ′′ with λ′′.

Note that in DFM ′′ security classes are defined only in terms of the active
entities of the system being modelled. Further, security classes in DFM ′′ bring
out the semantics of the flow model very explicitly and intuitively. The recasting
procedure is summarized in Fig. 3.

3.1 Illustration of the Recasting Procedure Through Examples

In the new label system, we use R(e) and W (e) to denote the first (Readers) and
second (Writers) components of the label assigned to an entity e respectively.
The output produced by the recasting algorithm in Fig. 4 is referred to as the
readers-writers policy.

Example 3: Consider the policy λ1 given in Example 2. λ1(s1) = λ1(o1) = l1
and λ1(s2) = λ1(o2) = l2. s1 ∈ R(o1) because λ1(o1) � λ1(s1) reduces to l1 � l1
which is true. s2 ∈ R(o1) because λ1(o1) � λ1(s2) reduces to l1 � l2 which

A Complete Generative Label Model 43

Fig. 3. Algorithm for recasting the Denning’s flow policy

is also true. Therefore R(o1) = {s1, s2}. Similarly, we can derive the following
labels on objects: R(o2) = {s2}, W (o1) = {s1} and W (o2) = {s1, s2}. The labels
for subjects are as below: R(s1) = {s1, s2}, R(s2) = {s2}, W (s1) = {s1} and
W (s2) = {s1, s2}.

The original and the inferred policies are depicted in Fig. 4; for simplicity
only that portion of the derived lattice is shown where an entity in the system
gets mapped.

Example 4: Let us consider a policy defined on the lattice SC2 of Fig. 1. Let
S = {s1, s2}, O = {o1, o2}, and λ3(s1) = l1, λ3(s2) = l4, λ3(o1) = l2 and
λ3(o2) = l3.

In this case, the labelling comes out to be R(o1) = R(o2) = {s2}, W (o1) =
W (o2) = {s1}, R(s1) = S, W (s1) = {s1}, W (s2) = S, and R(s2) = {s2}.

The original and the inferred policies are depicted in Fig. 5. Note that in
Fig. 5 only that portion of the derived lattice where an entity in the system gets
mapped is given for simplicity.

At a first glance, the inferred policy in Fig. 5 may seem to be incorrect
because, it looks possible that information may flow from o1 to o2 in the derived
policy as they are assigned the same lattice point, whereas in the original policy
they are assigned incomparable lattice points thus preventing any information
flows between them. However, note that for information to flow, subjects need to
perform actions. The label assigned to o1 and o2 is such that s2 who is capable
of reading the objects cannot write to them, and s1 who is capable of writing to
them is unable to read them. This is what prevents any information flow between
o1 and o2 in our policy.

Note that, in Example 3, the number of useful points in the inferred readers-
writers lattice is the same as the original lattice. However, in Example 4, the
number of useful points in the lattice resulting from the translation is fewer
than the original one.

Examples 3 and 4 clearly illustrate that readers-writers policies are simpler to
understand in comparison to policies that are based on syntactic lattices, as the
label explicitly provides the influencers of the information as well as the subjects
that need access to it.

44 N.V.N. Kumar and R.K. Shyamasundar

Fig. 4. Denning’s policy and its readers-writers policy inferred in Example 3

Fig. 5. Denning’s policy and its readers-writers policy inferred in Example 4

4 Recasting Readers/Writers Explicitly in Labels

Motivated by the recasting procedure presented in the previous section, we derive
a new label structure that explicitly captures the readers and writers of infor-
mation in a consistent manner.

Basic readers-writers labels, called BRW (Basic Readers and Writers) labels
for short, are defined below:

Definition 2 [Basic RW Labels]: A BRW label, denoted by (R,W), is a tuple
of set of subjects in an information system, i.e., R ⊆ S, and W ⊆ S, where S is
the set of subjects in the system.

In the BRW label (R,W), R denotes the set of principals who are authorized
to read this information, and W denotes the set of principals who have influenced
this information.

Note: Information may flow between labels only when readers decrease and
influencers increase. This is formalized in the definition of permissible flows
below.

Definition 3 [Permissible Flows in Basic RW Labels]: Given any two BRW
labels (R1,W1) and (R2,W2), information is permitted to flow from (R1,W1) to
(R2,W2), denoted by (R1,W1) �B (R2,W2) only if R1 ⊇ R2 and W1 ⊆ W2.

A Complete Generative Label Model 45

Next, we define the label combining operators: least-upper bound (join) and
greatest-lower bound (meet). Intuitively, join defines the least security class to
which information from both the input classes is permitted to flow, and meet
defines the highest security class from which information is permitted to flow
into both the input classes.

Intuitively, when information readable by subjects in R1 is combined with
information readable by subjects in R2, the resulting information can only be
read by subjects in both R1 and R2. Similarly, when information influenced by
subjects in W1 is combined with information influenced by subjects in W2, the
resulting information has been influenced by subjects in both W1 and W2.

Similarly, when information readable by subjects in R1 is allowed to flow
into information readable by subjects in R2 and into information readable by
subjects in R3, then it must be the case that every subject in R2 and R3 is
also in R1. When information influenced by subjects in W1 is allowed to flow
into information influenced by subjects in W2 and into information influenced
by subjects in W3, then it must be the case that every subject in W1 is also in
W2 and W3.

The above intuitions are formalized below.

Definition 4 [Join and Meet of Basic RW Labels]: Let (R1,W1) and (R2,W2)
be any two BRW labels. Their join (⊕B) and meet (⊗B) are defined as

(R1,W1) ⊕B (R2,W2) = (R1 ∩ R2,W1 ∪ W2)
(R1,W1) ⊗B (R2,W2) = (R1 ∪ R2,W1 ∩ W2).

Definitions 2, 3 and 4 immediately give us the following result:

Theorem 3 [Soundness of Basic RW Labels]: The set of all BRW labels SCB =
2S × 2S , together with the ordering �B , join (⊕B) and meet (⊗B) forms a
bounded lattice with minimum element ⊥B = (S, ∅) and maximum element
�B = (∅, S).

Proof: The proof is trivial and follows by observing that it is a product of two
power-set lattices, the first one (readers lattice) ordered by reverse inclusion and
the second (writers lattice) by inclusion.

Theorem 3 establishes that the basic readers-writers labels satisfy the con-
ditions required by Denning’s formulation, and hence, can be used for studying
information flow properties.

Combining the above results leads us to the definition of basic readers-writers
flow model (B-RWFM) described in the next subsection.

4.1 Basic Readers Writers Flow Model (B-RWFM)

Here, we define the B-RWFM model.

Definition 5 [B-RWFM]: Basic readers-writers flow model B-RWFM is
defined as the eight tuple (S,O, SCB ,�B ,⊕B ,⊗B ,�B ,⊥B), where

46 N.V.N. Kumar and R.K. Shyamasundar

S and O are the set of subjects and objects in the information system,
SCB = 2S × 2S is the set of labels,
�B= (⊇,⊆) is the permissible flows ordering,
⊕B = (∩,∪) and ⊗B = (∪,∩) are the join and meet operators respectively, and
�B = (∅, S) and ⊥B = (S, ∅) are respectively the maximum and minimum
elements in the lattice.

The first component of the security class in a B-RWFM is to be interpreted
as the set of readers, and the second component as the set of influencers. Note
that B-RWFM is fully defined in terms of S, the set of subjects in the information
system.

A flow model together with a labelling function defines the access policy. Let
λ : S∪O → SCB be a labelling function. For simplicity, we use Rλ(e) and Wλ(e)
to denote the first and second components of the labels assigned to an entity
e ∈ S ∪ O. Further, the subscript λ is omitted when it is clear from the context.
Access rules in the B-RWFM model are defined below.

Definition 6 [Access Rules in B-RWFM]: Given a B-RWFM, and functions
R and W describing a labelling,

– a subject s is allowed to read an object o if R(o) ⊇ R(s), W (o) ⊆ W (s), and
– a subject s is allowed to write an object o if R(s) ⊇ R(o) and W (s) ⊆ W (o).

4.2 Characteristic Properties of B-RWFM

In this section, we establish some very useful properties of the basic readers-
writers flow model, starting with the completeness result.

Theorem 4 [Completeness of B-RWFM]: Given a Denning’s flow model
DFM = (S,O, SC,⊕,�) and a policy λ : S ∪ O → SC, there exists a labelling,
λB : S ∪ O → SCB, in the basic readers-writers flow model that enforces the
same policy i.e.,

(i) s is permitted to read o by Denning’s policy if and only if it is permitted by
the basic readers-writers policy.

(ii) s is permitted to write o by Denning’s policy if and only if it is permitted
by the basic readers-writers policy.

Proof: The proof is constructive. Note that the recasting algorithm presented in
Fig. 3 actually produces a B-RWFM and a policy. Further, the policy satisfies
Theorem 2, which immediately gives us the desired result.

In any IFC model one looks for capturing “dominance” of certain operations
in the model so that either verification or compliance of the operations with
respect to policies can be validated. Towards such a goal, we shall discuss the
characteristic properties of the model in the following.

Proposition 3: Let DFM with λ be a Denning’s flow policy, and let R and W
denote the corresponding labelling in B-RWFM. For any subject s, the following
holds: s ∈ R(s) and s ∈ W (s).

A Complete Generative Label Model 47

Proposition 4: Let DFM with λ be a Denning’s flow policy, and let R and W
denote the corresponding labelling in B-RWFM. For any subject s and object
o, the following holds:

(i) R(o) ⊇ R(s) ⇒ W (o) ⊆ W (s)
(ii) W (s) ⊆ W (o) ⇒ R(s) ⊇ R(o)

where ⇒ denotes logical implication.

Proof is an easy consequence of the construction and is omitted for brevity.
Definition 6 says that, a subject s can be allowed to read an object o if

R(o) ⊇ R(s), and W (o) ⊆ W (s) are satisfied. Proposition 4 simplifies this check
to R(o) ⊇ R(s). Similar argument holds for writing.

We argued that intuitively R(o) and W (o) capture the set of subjects allowed
to read and write o respectively. This is formalized in the proposition below.

Proposition 5: Let DFM with λ be a Denning’s flow policy, and let R and W
denote the corresponding labelling in B-RWFM. For any subject s and object
o, the following holds:

(i) s ∈ R(o) if and only if R(o) ⊇ R(s)
(ii) s ∈ W (o) if and only if W (s) ⊆ W (o)

where ⇒ denotes logical implication.

Proposition 5 further simplifies the access check to s ∈ R(o) for s to read o,
and s ∈ W (o) for s to write o. Thus, the model provides for intuitive specifications
and also simplifies the algorithm for making access decisions.

Information Dominance of Subjects
B-RWFM also makes the relations between the subjects in the system explicit.
This is formalized below.

Proposition 6: Let DFM with λ be a Denning’s flow policy, and let R and W
denote the corresponding labelling in B-RWFM. For any two subjects s1 and
s2, the following holds:

(i) s1 ∈ R(s2) if and only if R(s1) ⊆ R(s2).
(ii) s1 ∈ W (s2) if and only if W (s1) ⊆ W (s2).

Definition 7 [Read Dominance]: Given subjects s1 and s2, we say that s1 “read
dominates” s2, written s2 �R s1, if s1 ∈ R(s2).

Definition 8 [Write Dominance]: Given subjects s1 and s2, we say that s1
“write dominates” s2, written s2 �W s1, if s1 ∈ W (s2).

Definition 9 [Information Dominance]: Given subjects s1 and s2, we say that
s1 “information dominates” s2, written s2 �I s1, if s2 �R s1 and s1 �W s2.

Theorem 5 The dominance relations �R, �W and �I on subjects are reflexive
and transitive (pre-order).

48 N.V.N. Kumar and R.K. Shyamasundar

The above theorem says that the labelling R and W imposes an ordering on
the set of subjects of the system. Commonly used notion of principal hierarchy
is formulated in terms of �R and �W as follows.

Definition 10 [Principal Hierarchy]: Given subjects s1 and s2, we say that s1
“dominates” s2 in the principal hierarchy, written s2 � s1, if s2 �R s1 and
s2 �W s1.

Note: Considering the fact that information flows in opposite directions for
reading and writing, we advocate that in the context of IFC, information dom-
inance provides a better notion of “superiority” than the classical notion of
principal hierarchy. Further, Proposition 6 provides an efficient and intuitive
way to compute this relation in B-RWFM. Note that, our notion of information
dominance is implicit in the labels and is derived from the underlying flow policy
and hence consistent, as opposed to an orthogonally defined principal hierarchy
which adversely impacts the flow policy.

5 Encoding Common Security Policies in RWFM

In this section, we demonstrate the expressive power of RWFM by encoding
many common security policies in the spectrum of information sharing. At one
extreme, we have the total isolation policy which does not permit any sharing,
and at the other extreme we have the unrestricted-access policy which permits
unconditional sharing.

Total Isolation
Given an information system with n subjects S = {s1, s2, . . . , sn}, the total
isolation policy is encoded by restricting labels to be of the form Li = ({si}, {si})
for 1 � i � n. Note that information labelled Li is accessible only to the subject
si, and is unrelated to all other labels Lj , i �= j, and hence this labelling correctly
captures the total isolation policy.

Denning, MLS, Bell-LaPadula and Biba
We have already demonstrated in Fig. 3 (cf. Sect. 3) how a Denning’s lattice
policy is encoded in RWFM. Note that multi-level security policy (MLS), the
Bell-LaPadula policy for confidentiality, and the Biba policy for integrity are
special cases of Denning’s lattice and hence are automatically captured in RWFM.

Chinese-Wall policy
Although the Chinese-Wall policy [3] is also subsumed by the Denning’s lattice,
it has certain features that make its modelling tricky. In the following, we show
how the same can be effectively specified and enforced in RWFM. For simplicity,
we assume absence of any sanitized information.

Let C1, C2, . . . , Ck denote the k conflict of interest classes, and |Ci| = ni.
The data sets in class Ci are denoted by Dij for 1 � j � ni. Without loss of
generality, we assume that the principal dij denotes the company whose data set
is Dij . D = {dij}1�i�k,1�j�ni

denotes the set of all the companies.

A Complete Generative Label Model 49

P = {X ⊆ (
C1 ∪ C2 ∪ · · · ∪ Ck

) | ∀1 � i � k, |X ∩ Ci| � 1} denotes the set of
all the permissible combinations of data sets on which users may work without
violating the conflicts of interest. Note that this definition is similar in spirit to
the structure of labels derived by Sandhu [17] for capturing the Chinese Wall
policy.

Let E denote the set of all the employees of the consulting firm that sets
up the Chinese Wall. S = E ∪ D denotes the set of all the subjects, and O =
{Dij}1�i�k,1�j�ni

denotes the set of initial objects in the information system.
Function A : S → P defines an allocation of the users to work on various data
sets, such that A(dij) = {Dij} i.e., a company can access only its data set.

We define the RWFM labels, λ : S ∪ O → 2S × 2S , on initial objects as
follows:

λ(Dij) =
({s ∈ S|Dij ∈ A(s)}, {dij}

)

The label tells us that dij is a permissible reader and also the only influencer of
the data set Dij . Further, all those employees that have been assigned to work
on Dij are permissible readers.

Properties of the labelling:

– No two data sets in the same conflict class, have a common reader i.e. for
j1 �= j2, we have R(Dij1) ∩ R(Dij2) = ∅. Proof by contradiction: Assume
there is a common reader, say s, then Dij1 ∈ A(s) and Dij2 ∈ A(s), i.e.
|A(s) ∩ Ci| > 1 which contradicts the definition of P . This fact together with
the characteristic properties of RWFM labels guarantee Theorems 1 and 2
of [3].

– Information can never flow from one data set to another. This is a simple
consequence of the fact that RWFM requires W1 ⊆ W2 for information
to flow, which is satisfied only when the two data elements are from the
same data set in which case W1 = W2. For data from different data sets
W1 ∩ W2 = ∅. This accounts for Theorem 3 of [3].

6 Where does RWFM stand in relation to RBAC

RBAC [7] is a very expressive and a policy neutral access control framework, that
can be configured to denote either DAC or MAC policies [16]. RBAC is designed
considering practical requirements, and has gained wide spread adoption for
denoting DAC in commercial organizations due to ease of policy mapping and
management. The concept of session in RBAC relates to the notion of subject
in traditional systems, and supports the principle of least privilege [7].

Due to the significance of IFC for security, and the necessity of controlling
both access and information flow for security of practical systems, researchers
have tried to closely understand the relation between RBAC and information
flow requirements. Two broad research directions pursued have been:

1. On one hand, approaches to configure RBAC to enforce a given Lattice Based
Access Control (LBAC) [18] denoting information flow/multi-level security
forms of MAC policy have been proposed [19].

50 N.V.N. Kumar and R.K. Shyamasundar

2. On another hand, information flows caused by an RBAC configuration have
been studied; it was noted that due to permission inheritance implied by the
semantics of role hierarchy, an RBAC configuration may lead to unwanted
information flows [4]. Techniques for detection [15] and resolution [20] of infor-
mation flow conflicts in RBAC configurations have been explored.

In the following, we argue the simplicity of specifying and enforcing LBAC
policies in RWFM in comparison to RBAC, and demonstrate RWFM enforce-
ment of the information flows implied by an RBAC configuration.

Completeness of RWFM with respect to Denning’s lattice model [5] and
the examples presented earlier in the paper clearly highlight the simplicity of
RWFM for specifying and enforcing LBAC policies. Although the generality and
expressive power of RBAC enables the specification and enforcement of LBAC,
the results are quite nonintuitive with many constraints and disjoint lattices for
reading and writing. Further, unlike RWFM, RBAC does not permit the creation
of new objects because of its inability to compute and automatically assign a
security label. It is to be further noted that it has been shown in the information-
flow literature that allowing users to selectively activate and deactivate labels in
a session lead to covert channels of information-flow.

Consider the following RBAC configuration: users = {A,B}, roles =
{R1, R2}, objects = {f1, f2}, role hierarchy RH = R2 > R1, user assignment
UA = {(A,R2), (B,R1)}, permission assignment (PA),

PA = {(R1, (f1, r)), (R1, (f1, w)), (R2, (f2, r)), (R2, (f2, w))}.

The above policy can be interpreted as follows: f1 can be read and written by
both A and B since R2 is superior to R1, while f2 can be read and written by
A only. This RBAC configuration is pictorially presented in Fig. 6(a).

Interpreting the above policy from the perspective of information-flow,
we get the following security classes for f1 and f2. Security class of f1 =
({A,B}, {A,B}), and security class of f2 = ({A}, {A}). These two points are
incomparable in the lattice of security classes, and therefore no flow of infor-
mation is allowed between them. Adding the points ({A,B}, {A}) (GLB of the
security classes of f1 and f2) and ({A}, {A,B}) (LUB of the security classes of
f1 and f2) completes the lattice. The lattice induced is pictorially presented in
Fig. 6(b).

Fig. 6. An RBAC configuration and the lattice induced by it

A Complete Generative Label Model 51

It is easy to note that under the RBAC enforcement, A can cause information
to flow from f1 to f2 and vice versa, thus violating the information flow policy.
However, under the RWFM enforcement, A will not be allowed to write f2 after
he has accessed f1 because A’s writers would now consist of both A and B, and
B is not permitted to influence f2. Similarly, under the RWFM enforcement,
A will not be allowed to write f1 after he has accessed f2 because A’s readers
become A, and writing to f1 allows B also to access this information which is not
permitted. In the case of RWFM enforcement, the label of the subject succinctly
keeps track of the actions of the user, and there is no need/option for users to
explicitly choose roles to be activated and deactivated in a session.

For the above RBAC configuration, (i) both RBAC enforcement and
RWFM enforcement allow B to perform any action from [(f1, r) + (f1, w)]∗,
and (ii) while RBAC enforcement allows A to perform any action from
[(f1, r) + (f1, w) + (f2, r) + (f2, w)]∗, RWFM allows only a strict subset of it
[(f1, w) + (f2, w)]∗.

[
[(f1, r) + (f1, w)]∗ + [(f2, r) + (f2, w)]∗

]
.[(f1, r) + (f2, r)]∗.

7 Conclusions

In this paper, we have arrived at a semantic generative label model for the
Denning’s lattice model, and established a strong correspondence between syn-
tactic label policies and semantically labelled policies. Using such a correspon-
dence we have derived the basic RWFMmodel and shown that the RWFM label
model provides an application independent concrete generative label model that
is sound and complete with respect to Denning’s Model. We have demonstrated
that reading and writing induce possibly different pre-orders on the set of sub-
jects of the information system and hence, the subject relations become explicit,
making it possible to derive the relations from the labels. In fact, such an infor-
mation can be exploited formally to arrive at correctness of protocols [12]. We
further define a notion of information dominance on subjects and show that the
notion of principal hierarchy can be naturally defined that is consistent with
the IFC model rather than the approach of defining the hierarchy orthogonally
that could lead to adverse impact on the flow policy. This enables us to realize
RBAC syntactically and also enforce information flow security on RBAC. We
demonstrate how the underlying label model succinctly defines various lattice-
based access control models like BLP, Biba, Chinese wall model etc. Further-
more, the label model provides a specification of confidentiality and integrity
policies (labels) in an integrated way for multi-level security (MLS) rather than
the classical approach of taking cross product that could lead to consideration
of non-compliable policies. This is very beneficial in MLS, as evidenced in our
demonstration of the realization of Chinese wall model via RWFM; additionally,
the properties remain invariant both on objects and subjects (or consultants in
the context of Chinese wall model) even while they make a transition without the
need of additional access control; that is, the RWFM model transitions preserve
the properties without additional control.

As the labels are intuitive and capture semantic information, we have found
it useful in formally proving the correctness of protocols [12,13]. Further, the

52 N.V.N. Kumar and R.K. Shyamasundar

underlying dynamic labelling has been extremely useful in our ongoing effort in
certifying programs in Python and Java. It must be pointed out that the full
RWFMmodel has the capability to do declassifications in a robust manner; these
aspects as well comparison of the RWFMlabel model with other label models
will be reported elsewhere.

Acknowledgement. The work was done as part of Information Security Research
and Development Centre (ISRDC) at IIT Bombay, funded by MEITY, Government of
India.

References

1. Bell, D., La Padula, L.: Secure computer systems: Unified exposition and
multics interpretation. In: Technical Report ESD-TR-75-306, MTR-2997, MITRE,
Bedford, Mass (1975)

2. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: IEEE SP
1996, pp. 164–173. IEEE Computer Society (1996)

3. Brewer, D., Nash, M.: The Chinese wall security policy. In: 1989 Proceedings of
the IEEE Symposium on Security and Privacy, pp. 206–214, May 1989

4. Crampton, J.: On permissions, inheritance and role hierarchies. In: Proceedings of
the 10th ACM Conference on Computer and Communications Security, CCS, pp.
85–92 (2003)

5. Denning, D.: A lattice model of secure informatiom flow. Commun. ACM 19(5),
236–243 (1976)

6. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: RFC
2693: SPKI certificate theory. IETF RFC Publication, September 1999

7. Ferraiolo, D., Kuhn, R.: Role-based access controls. In: 15th NIST-NCSC National
Computer Security Conference, pp. 554–563 (1992)

8. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
mun. ACM 19(8), 461–471 (1976)

9. Biba, K.: Integrity considerations for secure computer systems. In: Technical
Report ESD-TR-76-372, MITRE, Bedford, Mass (1976)

10. Krishnan, P., Krishna, P.R., Parida, L. (eds.): Distributed Computing and Internet
Technology. Lecture Notes in Computer Science, vol. 10109. Springer, Heidelberg
(2017). doi:10.1007/978-3-319-50472-8

11. Kumar, N.V.N., Shyamasundar, R.K.: Realizing purpose-based privacy policies
succinctly via information-flow labels. In: 2014 IEEE Fourth International Confer-
ence on Big Data and Cloud Computing, BDCloud 2014, Sydney, Australia, 3–5
December 2014, pp. 753–760. IEEE Computer Society (2014). https://doi.org/10.
1109/BDCloud.2014.89

12. Kumar, N.V.N., Shyamasundar, R.K.: Analyzing protocol security through
information-flow control. In: Krishnan et al. [10], pp. 159–171. https://doi.org/
10.1007/978-3-319-50472-8 13

13. Kumar, N.V.N., Shyamasundar, R.K.: Dynamic labelling to enforce conformance
of cross domain security/privacy policies. In: Krishnan et al. [10], pp. 183–195.
https://doi.org/10.1007/978-3-319-50472-8 15

14. Kumar, N.V.N., Shyamasundar, R.: Decentralized information flow securing
method and system for multilevel security and privacy domains, 29 November
2016. https://www.google.co.in/patents/US9507929, US Patent 9,507,929

http://dx.doi.org/10.1007/978-3-319-50472-8
https://doi.org/10.1109/BDCloud.2014.89
https://doi.org/10.1109/BDCloud.2014.89
https://doi.org/10.1007/978-3-319-50472-8_13
https://doi.org/10.1007/978-3-319-50472-8_13
https://doi.org/10.1007/978-3-319-50472-8_15
https://www.google.co.in/patents/US9507929

A Complete Generative Label Model 53

15. Nyanchama, M., Osborn, S.L.: The role graph model and conflict of interest. ACM
Trans. Inf. Syst. Secur. 2(1), 3–33 (1999)

16. Osborn, S., Sandhu, R., Munawer, Q.: Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Trans. Inf. Syst.
Secur. 3(2), 85–106 (2000). http://doi.acm.org/10.1145/354876.354878

17. Sandhu, R.S.: Lattice-based enforcement of Chinese walls. Comput. Secur. 11(8),
753–763 (1992)

18. Sandhu, R.S.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
19. Sandhu, R.S.: Role hierarchies and constraints for lattice-based access controls. In:

Bertino, E., Kurth, H., Martella, G., Montolivo, E. (eds.) ESORICS 1996. LNCS,
vol. 1146, pp. 65–79. Springer, Heidelberg (1996). doi:10.1007/3-540-61770-1 28

20. Tuval, N., Gudes, E.: Resolving information flow conflicts in RBAC systems. In:
Damiani, E., Liu, P. (eds.) DBSec 2006. LNCS, vol. 4127, pp. 148–162. Springer,
Heidelberg (2006). doi:10.1007/11805588 11

http://doi.acm.org/10.1145/354876.354878
http://dx.doi.org/10.1007/3-540-61770-1_28
http://dx.doi.org/10.1007/11805588_11

From Model Checking to a Temporal Proof
for Partial Models

Anna Bernasconi1(B), Claudio Menghi2,3(B), Paola Spoletini4,
Lenore D. Zuck5, and Carlo Ghezzi1

1 DEIB - Politecnico di Milano, Milan, Italy
{anna.bernasconi,carlo.ghezzi}@polimi.it

2 Chalmers University of Technology, Gothenburg, Sweden
3 University of Gothenburg, Gothenburg, Sweden

claudio.menghi@gu.se
4 Kennesaw State University, Marietta, Georgia

pspoleti@kennesaw.edu
5 University of Illinois at Chicago, Chicago, USA

lenore@cs.uic.edu

Abstract. Three-valued model checking has been proposed to support
verification when some portions of the model are unspecified. Given a for-
mal property, the model checker returns true if the property is satisfied,
false and a violating behavior if it is not, maybe and a possibly violat-
ing behavior if it is possibly satisfied, i.e., its satisfaction may depend on
how the unspecified parts are refined. Model checking, however, does not
explain the reasons why a property holds, or possibly holds. Theorem
proving can instead do it by providing a formal proof that explains why
a property holds, or possibly holds in a system. Integration of theorem
proving with model checking has only been studied for classical two-
valued logic – hence, for fully specified models. This paper proposes a
unified approach that enriches three-valued model checking with theorem
proving to generate proofs which explain why true and maybe results are
returned.

1 Introduction

Multi-valued model checking techniques, such as [5–7,15,19], have been proposed
to support the verification of models that are partial, i.e., their state space is not
fully specified. Three-valued model checking is a multi-valued model checking
technique that extends classical two-valued model checking by possibly return-
ing an additional maybe value. More precisely, it returns true if the property
definitely holds, false if it definitely does not hold, maybe otherwise.

In the classical context of two-valued model checking, although a sample
violating behavior (a counterexample) is normally returned when the property
is violated, no equally useful insight is provided if the property holds. In practice,
it would be useful to receive a formal explanation of the reason why the system
satisfies the property. To achieve this goal, the model checking framework can

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 54–69, 2017.
DOI: 10.1007/978-3-319-66197-1 4

From Model Checking to a Temporal Proof for Partial Models 55

be equipped with a theorem prover that formally justifies why model checking
has failed in the search of a counterexample. Theorem proving algorithms have
been developed for fully specified models [21,22], but no known similar approach
deals with partial models.

The ability to deal with partial models has a strong practical motivation.
Software development often proceeds in an iterative and incremental fashion.
Designers may start by providing an initial, high-level version of the model,
which is iteratively narrowed down as design progresses and uncertainties are
removed. Whenever the result of verification is true or maybe, the proof can
guide the designer throughout the refinement process, and confirm the correct-
ness of the design choices already performed. In some cases, the proof may even
implicitly suggest that actually the property does not capture the intended cor-
rectness condition, and it should be modified. For this reason, the integration
of theorem proving techniques and multi-valued model checking can guide the
designer towards the development of a correct model.

This paper proposes THRIVE, a THRee valued Integrated Verification
framEwork for partial models. THRIVE enriches model checking for partial mod-
els with theorem proving. Theorem proving is used when a true or a maybe value
is returned by the model checker to justify why the verified system definitely or
possibly satisfies the property of interest. In addition to the general framework,
we present a specific instance of THRIVE useful for applications, which con-
siders models described as Partial Kripke Structures (PKSs) [5] and properties
expressed as Linear Temporal Logic (LTL) [23] formulae. The instance is based
on the three-valued LTL semantics [5]. To successfully integrate model checking
and theorem proving we customize the theorem proving framework (based on
deductive verification) proposed in [22] to support PKSs and LTL formulae.

We consider the applicability of THRIVE w.r.t. three-valued [5] and thor-
ough [6] LTL semantics. We also discuss its applicability in the case of self-
minimizing [11] LTL formulae, which are known to represent a practically rel-
evant subset of LTL formulae [2]. We evaluate the benefits of the framework
on an example by simulating the design of a medical software critical compo-
nent [3]. A discussion on the use of THRIVE in real world scenarios concludes
the evaluation.

Running example. We consider a simple grade crossing semaphore. We
assume that the designer has identified three simple properties: (1) Red lights
up infinitely often – formalized as φ1 = red. (2) Green lights up infinitely
often – formalized as φ2 = green. (3) When the light is red, it will always be

s0

g = ⊥
r = �

s1

g = �
r = ⊥

s2

g =?
r =?

Fig. 1. System model M

56 A. Bernasconi et al.

green – formalized as φ3 = (red→ green). Note that φ3 is deliberately wrong
and will be used later to discuss the application of THRIVE.

Starting from this specification, a designer might initially propose the partially
specified model of the semaphore shown in Fig. 1. Each state is associated with the
values of the propositions g and r (denoting green and red) holding in that state,
which specify whether the green and the red lights are on or off. For example,
in state s0 the red light is on (r = �) while the green is off (g = ⊥). Instead,
s2 is a state to which the semaphore may be brought, for instance by a manual
command. The designer still has to choose whether, in this state, the green and
red lights should be on or off. This is indicated by associating the value ? to the
propositions g and r. The designer might refine the model by setting g and r to
either � or ⊥ in s2.

Related work. Three-valued [5,6,12,13,17] and multi-valued [7,15] model
checking supports verification of partial models. Different model checking tech-
niques have been developed depending on the modeling formalisms. For example,
several papers focus on Partial Kripke Structures (e.g., [5–7,13,15]), others on
Modal Transition Systems (e.g., [12,17]). However, to the best of our knowledge,
none of these techniques has been combined with theorem proving.

Theorem proving applies a set of techniques to try to establish the validity of
a given formula (see [18]). Some of these techniques (e.g., [20–22,24,25]) exploit
the state space generated by the model checker to explain why a property holds.
However, to the best of our knowledge, none of these approaches has been applied
in a multi-valued context.

Organization. Sect. 2 contains background notations and algorithms. Section 3
describes THRIVE. Section 4 presents an instance of THRIVE, that consid-
ers PKSs and LTL formulae. Section 5 evaluates the approach on an example.
Section 6 discusses the applicability of THRIVE in real world cases. Section 7
concludes the paper.

2 Background

Checking complete models. Given a Kripke Structure M (KS), the model
checking procedure verifies whether a Linear Temporal Logic (LTL) formula φ
holds or does not hold in M . The procedure works in three steps: (1) generation
of a Büchi automaton (BA) A¬φ from the LTL formula ¬φ; (2) generation of
the product G = M ⊗ A¬φ; (3) emptiness check of G.

Checking partial models. Partial Kripke Structures [5] (PKSs) extend KSs
by allowing a proposition in a given state to be labelled with ? to represent
an unknown value. A PKS M is a tuple 〈S,R, S0, AP,L〉, where: S is a set of
states; R ⊆ S × S is a left-total transition relation on S; S0 is a set of initial
states; AP is a set of atomic propositions; L : S × AP → {�, ?,⊥} is a function
that, for each state in S, associates a truth value in the set {�, ?,⊥} to every
atomic proposition in AP . The model of the grade crossing semaphore presented
in Fig. 1 is an example of a PKS.

From Model Checking to a Temporal Proof for Partial Models 57

A completion of a PKS M is a KS M ′ that completes M by assigning values
to the unknown propositions. The set C(M) contains all the completions of M .

Two kinds of LTL semantics (three valued and thorough) exist for PKSs.
Three-valued LTL semantics [(M,π) |= φ] associates to a model M , a path

π of M , and a formula φ, a truth value in the set {⊥, ?,�}. This semantics
specifies that a formula φ definitely holds in a PKS M if it is true for all possible
values of the unknown propositions in M . Likewise, it is definitely violated if it
is false despite the unknown values. According to three-valued semantics [13],
given a PKS M = 〈S,R, S0, AP,L〉, a path π = s0, s1, . . ., and a formula φ, we
inductively define that π satisfies φ in the model M as follows:

[(M,π) |= p] = L(s0, p)
[(M,π) |= ¬φ] = comp([(M,π) |= φ])
[(M,π) |= φ1 ∧ φ2] = min([(M,π) |= φ1], [(M,π) |= φ2])

[(M,π) |= φ] = [(M,π1) |= φ]

[(M,π) |= φ1 U φ2] = max
j≥0

(min({[(M,πi) |= φ1]|i < j} ∪ {[(M,πj) |= φ2]}))

where the notation πi indicates the sub-path si, si+1 . . . of π.
Negation is defined by the function comp (complement), which maps � to

⊥, ⊥ to �, and ? to ?. The conjunction (disjunction) is defined as the minimum
(maximum) of its arguments, following the order ⊥ < ? < �. These functions
are extended to sets considering min(∅) = � and max(∅) = ⊥.

Given a PKS M = 〈S,R, S0, AP,L〉, satisfaction of formula φ in a state s is
defined as [(M, s) |= φ] = min({[(M,π) |= φ] | π0 = s}). A PKS M definitely
satisfies a property φ ([M |= φ] = �) iff for all initial states s0 ∈ S0 of M ,
[(M, s0) |= φ] = �. A PKS M does not satisfy the property φ ([M |= φ] = ⊥)
iff there exists an initial state s0 ∈ S0 of M such that [(M, s0) |= φ] = ⊥. A
PKS possibly satisfies φ otherwise.

Three-valued semantics does not behave always in accordance with the nat-
ural intuition [6]: there are cases in which φ possibly holds for a PKS but all its
completions actually satisfy (or do not satisfy) φ. For this reason, an alternative
semantics, called thorough LTL semantics [6] has been proposed. According to it,
a formula is possibly satisfied only if there exist two completions M1,M2 ∈ C(M),
such that φ is definitely satisfied in one and violated in the other. Thorough
semantics defines satisfaction of an LTL formula φ by a PKS M as follows:

[M |= φ]t =

⎧
⎪⎨

⎪⎩

� if M ′ |= φ for all M ′ ∈ C(M)
⊥ if M ′ |= φ for all M ′ ∈ C(M)
? otherwise

Given a PKS and an LTL formula φ, it has been proved [13] that (1) [M |=
φ] = � ⇒ [M |= φ]t = �; (2) [M |= φ] = ⊥ ⇒ [M |= φ]t = ⊥. That is, a
formula which is true (false) under the three-valued semantics is also true (false)
under the thorough semantics.

58 A. Bernasconi et al.

s0

g = �
r = ⊥
g = ⊥
r = �

s1

g = ⊥
r = �
g = �
r = ⊥

s2

g =?
r =?
g =?
r =?

Fig. 2. The PKS of the crossing
semaphore.

q0

η(q0) = ¬g
μ(q0) = g

q1

η(q1) = ¬g ∧ ¬g
μ(q1) = g ∨ g

true

g

g

Fig. 3. The BA associated with φ2.

There exists a subset of LTL formulae, known in the literature as self-
minimizing [11], such that the two semantics coincide. Formally, given a model
M and a self-minimizing LTL property φ, then [M |= φ] = [M |= φ]t. It
has been observed that most practically useful LTL formulae belong to this
subset [11].

We present a model checking algorithm for PKSs and LTL formulae based
on three-valued semantics. This procedure considers a version of M , called
complement-closed [6], in which for every proposition p ∈ AP , there exists a
new proposition p, called complement-closed proposition, such that L(s, p) =
comp(L(s, p)), for all s ∈ S. For example, the complement-closed version of the
PKS of the semaphore example is presented in Fig. 2.

The model checking procedure for a PKS M is based on an optimistic
and pessimistic approximation of M ’s complement-closure. The optimistic (pes-
simistic) approximation function Lopt (Lpes) associates the value � (⊥) to each
atomic proposition of the complement-closure of M with value ?. Given a PKS
M = 〈S,R, S0, L〉, we have Mpes = 〈S,R, S0, Lpes〉 for the pessimistic case, and
Mopt = 〈S,R, S0, Lopt〉 for the optimistic one.

The three-valued model checking algorithm assumes that property φ is rewrit-
ten using complement-closed propositions. The procedure works in two steps.
First, the formula is expressed such that negations only appear in front of atomic
propositions. Second, each negated proposition is substituted by the correspond-
ing complemented proposition. Let φ be an LTL formula obtained using the pro-
cedure just discussed, M = 〈S,R, S0, L〉 a PKS with s ∈ S, and Mpes and Mopt

the corresponding pessimistic and optimistic cases. Then, [6]1 has defined:

[(M, s) |= φ] =

⎧
⎪⎨

⎪⎩

� if (Mpes, s) |= φ

⊥ if (Mopt, s) |= φ

? otherwise

This technique exploits two runs of the classical two-valued model checking
performed on a pessimistic and an optimistic completion of M .

Deductive verification. Given a complete KS M and an LTL property φ that
is satisfied by M , the deductive verification framework produces a proof which
1 In [6] the procedure is presented for PML but is valid also for LTL (see [6,11,13]).

From Model Checking to a Temporal Proof for Partial Models 59

explains why M |= φ [22] considering the product G = M ⊗ E¬φ where E¬φ

is a Generalized Büchi Automaton (GBA [10]) obtained by ¬φ. The approach
is based on three considerations. (1) Every state q ∈ Q of E¬φ is associated
with an LTL formula η(q) such that, for every accepting run σ = q0, q1, ... of G,
σi |= η(qi). The formula η(q) is computed during the procedure that converts
the LTL formula ¬φ into E¬φ [10]. For instance, the state q1 of the automaton
presented in Fig. 3 is associated with the formula η(q1) = ¬g ∧ ¬g; (2) Each
state 〈s, q〉 which was not created during the computation of M⊗E¬φ, is such that
s does not satisfy η(q), i.e., s |= μ(q). Each of these states, called failed state,
causes a failure in the search of a counterexample and ensures the satisfaction
of φ in the corresponding state of the system; (3) Given a state 〈s, q〉 of the
automaton M ⊗ E¬φ, the property η(q) associated with the state q of E¬φ is not
satisfied in s. Indeed, if η(q) was satisfied, a counterexample would have been
found. Thus, the negation μ(q) of η(q) holds in s.

In the rest of this paper we will use the notation s1, s2 . . . sn |= φ to indicate
that the states s1, s2 . . . sn of a KS satisfy an LTL property φ.

The deductive verification framework enriches the product M ⊗ E¬φ by con-
sidering also failed states as part of it. Since in each failed state 〈t, p〉 the search
of a counterexample has failed, we can write the failure axiom t |= μ(p). A set of
deductive rules is applied to produce the proof. (1) Successors rule. Given a state
〈s, q〉 of the product, if for each of its successors 〈si, qj〉 the state si of M satisfies
the formula μ(qj), then also s satisfies μ(q). Intuitively, the rule is based on two
observations. First, each successor 〈si, qj〉 of 〈s, q〉 does not cause a violation of
φ, i.e., it ensures that si |= μ(qj). Second, by moving from 〈s, q〉 to 〈si, qj〉 the
system does not violate the property of interest, since no counterexample was
found. Thus, it must be that s satisfies μ(q). (2)Induction rule. It is a general-
ization of the successors rule applied on strongly connected components (SCCs).
Given a strongly connected component X , let us identify with Exit(X) the set of
all states 〈si, qj〉 that do not belong to X and have an incoming transition from
a source state in X . If every state 〈si, qj〉 ∈ Exit(X) is such that si |= μ(qj), we
can conclude that, for every state 〈s, q〉 ∈ X , s |= μ(q) holds. Intuitively, since
all the “successors” of X (the states in Exit(X)) ensure the property satisfaction
and the states in X do not violate the property of interest (no counterexample
has been found in the product), it must be that each state s satisfies the corre-
sponding property μ(q). (3)Conjunction rule. It connects conclusions made on
a given state making temporal logic interferences. The formulae computed for a
given state are and-combined.

These rules are applied considering the partial ordering relation ≺ between
SCCs. The relation X ≺ X ′ holds if there exists a transition from some state
in X to some state in X ′. If X ≺ X ′, before considering the component X , it is
necessary to compute the proof of X ′.

3 THRIVE

An overview of THRIVE is presented in Fig. 4. THRIVE takes as inputs a partial
model M and a property φ and produces one of the outputs shown by the

60 A. Bernasconi et al.

grey filled shapes. The outputs are generated by integrating a model checker for
partial models and a theorem prover.

The model checker for partial models verifies whether the property φ of inter-
est is definitely satisfied (�), possibly satisfied (?) or not satisfied (⊥) by the
current partial model. If the property is not satisfied (3©), there exist some
behaviors which definitively violate the property of interest and do not depend
on the unspecified parts of the model. The model checker returns one such behav-
ior, i.e., a definitive counterexample. Whenever a property is definitely satisfied,
its satisfaction does not depend on the unspecified parts, i.e., on how the incom-
plete parts are later refined. Finally, if the property is possibly satisfied (5©),
the model checker returns a possible counterexample, i.e., a possible violating
behavior that the model can exhibit.

The theorem proving framework is executed when a � or ? value is returned
by the model checker and computes a proof which specifies why the property
φ is definitely (possibly) satisfied by M . When a property is definitely satisfied
(6©), THRIVE returns a proof that specifies why the search of a definitive and
a possible counterexample has failed. Instead, whenever a property is possibly
satisfied (4©), besides providing a possible counterexample, THRIVE returns a
proof that specifies why a definitive counterexample has not been found.

Property

Definitive
counter-example

Proof

Possible
counter-example

Proof

Three-valued
Model Checker

?

Theorem
Prover

Theorem
ProverModel M

INPUT
OUTPUT

TRIGGER

THRIVE

1

2

3

4

5

6

?

Fig. 4. The THRIVE framework.

4 Using THRIVE with PKS and LTL

This section describes the instance of THRIVE proposed in this paper, using
PKSs and and LTL. We first show how we modified the theorem prover frame-
work presented in Sect. 2 to support PKSs and how it is integrated with the
three-valued model checker. We further analyze the case of thorough semantics,
which is more appealing in practice, and discuss to what extent and how the
framework can be used in such a case.

From Model Checking to a Temporal Proof for Partial Models 61

4.1 Adapting the Theorem Prover

The deductive verification framework presented in [22] exploits the product
between a state labeled transition system and a GBA E¬φ obtained by ¬φ to
generate the proof. To enable the algorithm to work on KSs and BAs, we describe
how to associate LTL formulae with each state of the BA and how to identify
failed states of the product automaton.

Identification of the formulae that hold in the states of the BA. We
assume that the degeneralization procedure [8], that converts the GBA E¬φ into
an equivalent BA A¬φ behaves as follows: when a new state q of A¬φ is created
from a state q′ of E¬φ, the formulae η(q′) and μ(q′) are also associated to q.

Identification of failed states. Following the procedure mentioned in Sect. 2,
the product automaton M ⊗A¬φ between the KS M and the BA A¬φ is modified
to also generate failed states. Specifically, the product is computed using the
rules 1 and 2.

s → t ∧ q
L(t)−−−→ p

〈s, q〉 → 〈t, p〉 (1)

s → t ∧ q ��L(t)−−−→ p

〈s, q〉 ��� 〈t, p〉 (2)

Rule 1 is the classical rule used to compute the product automaton. It spec-
ifies that the state of the product 〈s, q〉 moves to 〈t, p〉 only if the transition

q
L(t)−−−→ p that moves the BA from q to p has the same label of the state t of M .

Rule 2 specifies how to compute failed states. It states that the failed state 〈t, p〉
is generated in the product when a transition that moves the BA A¬φ from q to
p is labelled differently with respect to the state t reached by the model M when

the transition s → t is fired. This is indicated using the notation q ��L(t)−−−→ p. For
this reason, the transition 〈s, q〉 ��� 〈t, p〉 from 〈s, q〉 to 〈t, p〉 is dashed. Let us
consider the product presented in Fig. 5 computed from the KS Mopt obtained
from the PKS in Fig. 2 and the BA of Fig. 3. The transition 〈s0, q0〉 to 〈s1, q1〉
of the product presented in Fig. 5 is dashed, since the proposition g is false in
s1, while the labeling of the transition from q0 to q1 requires g to be true for the
transition to be performed.

The set F(M ⊗ A¬φ) of the failed states contains the states 〈t, p〉 obtained
by applying rule 2. Note that, as stated in Sect. 2, each failed state 〈s, q〉 is such
that s |= μ(q). For example, the state 〈s1, q1〉 of the product presented in Fig. 5
is a failed state. Indeed, s1 satisfies the property μ(q1) = g ∨ g associated
with the state q1.

Theorem 1. The deductive verification procedure is correct.

Proof. We show that the states identified as failed correspond to the ones that
would be identified using [22]. In [22], a state 〈t, p〉 is failed if the propositional

62 A. Bernasconi et al.

〈s0, q0〉

〈s0, q1〉

〈s1, q0〉

〈s1, q1〉

〈s2, q0〉

〈s2, q1〉

Step 3

Step 1 Step 1Step 2

Fig. 5. Product Iopt = Mopt ⊗ A¬φ2

〈s0, q0〉

〈s0, q1〉

〈s1, q0〉 〈s2, q0〉

〈s2, q1〉

Fig. 6. Product Ipes = Mpes ⊗ A¬φ2

assignment of t does not satisfy the conditions specified in the state p. It is
well known [8,10], that a GBA E¬φ associated with φ is such that (1) all the
transitions (q, α, p) ∈ Δ that reach a state p of the GBA have the same label α
and that (2) a transition (q, α, p) ∈ Δ is in the GBA if and only if α satisfies the
conjunction of the negated and non negated propositions that hold in the state
p. By construction, the latter of these properties also holds in the BA obtained
from the GBA by applying the degeneralization procedure [8]. Thus, since all the
transitions that reach p are labelled with α, a transition 〈s, q〉 ���′ 〈t, p〉 is added
to the product automaton if and only if the propositional assignment of t does
not satisfy the propositional assignment specified in the state p. Furthermore,
BAs acceptance condition is a special case of fairness condition used in [22].
Thus, the proposed deductive verification procedure is a special case of [22],
with regard to acceptance.

4.2 Integrating the Model Checker and the Theorem Prover

Figure 7 presents an instance of THRIVE obtained as an integration of a model
checker for PKSs and LTL based on three-valued semantics and the theorem
prover presented in Sect. 4.1. The circled numbers in Fig. 7 indicate how this
specific instance is plugged into THRIVE in Fig. 4.

The three-valued model checker presented in Sect. 2 is used by THRIVE to
check the satisfaction of the property of interest. Specifically, it runs twice a
classical two-valued model checker, considering first the optimistic approxima-
tion Mopt, then the pessimistic approximation Mpes of the PKS M . When Mopt

is evaluated, if a counterexample is found, this is returned as output of THRIVE.
Otherwise, THRIVE verifies Mpes. If the property is satisfied, it means that no
violating nor possibly violating behaviors have been identified. Thus, THRIVE
executes the theorem prover that produces a proof that explains why no coun-
terexample has been found in the pessimistic approximation. Otherwise, the
property is possibly satisfied. In this case, THRIVE returns the possible coun-
terexample and runs the theorem prover on Mopt to compute a proof that spec-
ifies why a definitive counterexample has not be found.

Example. Properties φ1, φ2 and φ3 of the crossing semaphore example are
satisfied, possibly satisfied and not satisfied by the model M of Fig. 2.

From Model Checking to a Temporal Proof for Partial Models 63

Theorem
Prover

Theorem
Prover

THRIVE for PKS and LTL

Mopt

Mpes

Two-Valued
Model Checker

Two-Valued
Model Checker

1

2

3

5

6

Three-Valued model checker
Definitive
counter-example

Proof

Possible
counter-example

Proof
?

Property

Model M

INPUT
OUTPUT

TRIGGER

4

Fig. 7. THRIVE for PKS and LTL.

Property φ2. The products between the optimistic and pessimistic approxima-
tion of the model M and the BA automaton A¬φ2 are presented in Figs. 5 and 6.
THRIVE explores Ipes and returns the possible counterexample (s0, s2)ω. Specif-
ically, by looping an infinite number of times on states s0 and s2 the green light
is never turned on. Since the property φ2 is possibly satisfied, the search of a
definitive counterexample in the product automaton Iopt (Fig. 5) fails. THRIVE
uses the product automaton Iopt to compute a proof (Table 1) that explains the
motivation. The states that are analyzed in different steps are circled in Fig. 5
through different grey frames. (Step1). THRIVE analyzes the failed states. Given
a failed state 〈s, q〉 , since in this state the search for a counterexample fails, the
formula associated with the state q of A¬φ2 holds in s. For example, since the
state 〈s1, q1〉 of Iopt is a failed state, the formula green∨ green (valid
in q1) is satisfied by the model state s1. This formula is effectively true in s1
since the green light is on. (Step2). Since all the successors of 〈s0, q1〉 satisfy
green∨ green, it is possible to deduce that this property is also satisfied in s0.
(Step3). The induction rule is applied considering the strongly connected compo-
nent {〈s0, q0〉, 〈s1, q0〉, 〈s2, q0〉} and allows concluding that s0 satisfies the prop-
erty green. (Step4). THRIVE applies the conjunction rule to s0. Since s0
satisfies both green and green∨ green, it is possibly to deduce that
s0 satisfies the property φ2. This provides an interesting insight to the designer:
if she/he turns the green light on in s2 the property becomes satisfied. The proof
clearly states why.

Property φ3. THRIVE returns the counterexample (s0, s1)ω. The counterex-
ample specifies that by looping an infinite number of times on states s0 and s1
the green light is not permanently on after the red.

Property φ1. THRIVE produces a proof that highlights how and why a definite
counterexample is not found in the graph. First, it identifies the states 〈s0, q1〉
and 〈s2, q1〉 as failed. The conclusions found on these states are propagated to
the state 〈s1, q1〉. All the successors of the SCC formed by the product states
related to the property state q0 are analyzed. Finally, conclusions are drawn also
on this SCC. The proof is omitted for space reasons.

64 A. Bernasconi et al.

Table 1. Proof that φ2 is not violated.

4.3 Thorough Semantics and THRIVE

As stated in Sect. 2, three-valued semantics does not always behave in accordance
with the natural intuition [6]. When φ possibly holds in M , it is desirable that
there exist two completions M ′ and M ′′ of M such that M ′ satisfies φ and
M ′′ violates φ. This property is not ensured by the three-valued semantics, and
is the motivation that leads to introduce thorough LTL semantics. Hereafter,
we discuss how the adoption of thorough semantics would affect the use of the
THRIVE framework.

Given a PKS M and a property φ, THRIVE produces the following outputs:

Property is satisfied. THRIVE works correctly. A property φ that evaluates to �
under three-valued semantics is also satisfied under thorough semantics. Thus,
the verification result is correct. Also the proof is correct since it shows that any
completion of M satisfies φ.

Property is not satisfied. THRIVE works correctly. When the model checker
returns a ⊥ value, the counterexample shows a behavior that violates φ. A
property φ that is not satisfied considering the three-valued semantics, is also
not satisfied considering the thorough semantics. Thus, the counterexample is
correct and proves the existence of a completion of M that violates φ.

Property is possibly satisfied. THRIVE does not work correctly for all LTL prop-
erties. When the three-valued model checker returns ? the property is possibly
satisfied considering the three-valued semantics but no conclusion can be drawn
based on thorough semantics. Indeed, there are cases in which a ? is returned, but
all the completions of the model either satisfy or do not satisfy φ. The computed
counterexample and proof can be spurious under the thorough semantics.

Example. The results obtained for φ1 and φ3 of the crossing semaphore example
are correct both considering the three-valued and the thorough semantics. Since
φ1 is satisfied, the proof is a correct proof that justifies why all the completions
of the model presented in Fig. 1 satisfy φ1. The counterexample returned for φ3

From Model Checking to a Temporal Proof for Partial Models 65

is correct, i.e., all the completions of the model presented in Fig. 1 exhibit the
behavior returned as a counterexample.

Self-minimizing LTL formulae. Self-minimizing LTL formulae are a subset
of LTL formulae that present an interesting property: three-valued and thor-
ough semantics are equivalent, i.e., if φ is self-minimizing, then [(M, s) |= φ] =
[(M, s) |= φ]t. Therefore, the three-valued model checking framework presented
in Sect. 2 produces a result that is correct also considering the thorough seman-
tics. For this reason, whenever the three-valued model checker returns ?, the
proof and the possible counterexample produced by THRIVE are also correct
under the thorough semantics. In [11], the authors propose a first grammar for
this LTL subset. The grammar does not capture entirely this set. However, it
can be used to generate formulae that are self-minimizing by construction, or to
check whether a formula is self-minimizing (sufficient condition). Furthermore,
the authors argue that the set of self-minimizing LTL formulae contains most
property patterns of practical interest, such as absence, universality, existence,
response and response chain [9]. For these reasons it is possible in practice to
use the version of THRIVE of Fig. 7 also considering the thorough semantics.

Example. Property φ2 is a special instance of LTL response pattern which,
according to [11], is self-minimizing. Thus, the possible counterexample and the
proof returned by THRIVE are correct.

5 Preliminary Evaluation

This section tries to answer the following research question: how effective is
THRIVE w.r.t. incremental development?

To provide an initial answer, we simulated the design of a critical software
system. The system, described in [3], is used by optometrists and ophtalmolo-
gists to test visual problems and certify a certain level of stereoacuity. The test
requires patients to pass levels with increasing difficulties, in which they have
to recognize images. Each time the patient is able to recognize an image the
system shifts to a higher level and a more difficult image is shown. When the
patient fails, the level is decreased. The test ends in one of these cases: 1. when
the patient fails the image recognition and she/he did not pass an easier level; 2.
when the top level is reached; 3. if the doctor interrupts the test. The complete
model and the obtained results can be found in [4].

Experimental setup. We modelled the system in [3] as a PKS. For simplicity
we considered only two levels. We used the atomic propositions fl, sl, test, edb,
cert and uncert to specify that the patient is in the first or in the second level
of the test, the test is under execution, a mistake has been made by the patient,
the patient has been certified and the patient is not certified, respectively. If at
some point the doctor quits the test, the patient is not certified. If the patient
fails the first level, the patient is not certified. If he/she passes the first level,
the second level is entered. If the patient also passes the second level he/she is
certified at the second level. Otherwise, we assume that the designer is uncertain

66 A. Bernasconi et al.

on the level in which the component should certify/not-certify the patient (this
is formalized by setting fl =?, sl =?).

We designed a set of properties that the system has to satisfy. Prop-
erty ψ1 = (¬cert)W (¬sl) states that a patient is not at the second level
before he/she is certified (see [1]). Note that, as observed in the following, this
property is wrong. Property ψ2 = (test → (cert∨ uncert)) specifies that
every test must be followed by a certification or a non-certification. Property
ψ3 = (edb → (cert∨ fl)) states that if an error has been made by the patient
(edb), she/he cannot be uncertified and be at the second level (¬fl). Indeed, a
mistake prevents a patient from increasing the assessed level. Note that these
properties are obtained from well-known property patterns [9].

Results. Property ψ1. THRIVE returns the value ⊥ and returns a definitive
counterexample showing that there exists a case in which a patient is assessed
at the second level but has not been certified yet. Indeed, the property is wrong;
the desired property should have been expressed as ¬(cert∧ fl)W(¬sl), meaning
that a patient is not at the second level before he/she is certified at the first level.

Property ψ2. THRIVE returns the value �, since the property of interest is
satisfied. The proof shows that a test is always followed by a cert or uncert.

Property ψ3. THRIVE returns the value ? and a possible counterexample
obtained by assigning ⊥ to the proposition fl. THRIVE considers the optimistic
approximation to produce a proof that no definitive counterexample can be
found. The obtained proof is correct since a simple grammar check shows that
ψ3 is self-minimizing. The proof shows why, by assigning � to the unknown
proposition fl, the property of interest is satisfied.

The feedback produced by THRIVE for properties ψ1, ψ2 and ψ3 successfully
helps in understanding whether a property of interest is satisfied, possibly satis-
fied or violated. When the property is satisfied/possibly satisfied, understanding
the reason why this is true supports self-confidence.

6 Using THRIVE in Real Cases

This section elaborates on the applicability of THRIVE in real cases.

Three-valued vs thorough semantics. The generalized model checking algo-
rithm [6] (which levies a performance penalty) could be used to check a property
under the thorough semantics. In [16], the authors analyze how the general-
ized model checking really helps. Whenever the model is built using predicate
abstraction [14], the thorough check does not provide additional precision. It is
also argued that in many practically interesting cases, the thorough semantics
is not more precise than the three-valued one. For these reasons, THRIVE can
be correctly applied in most of the real world cases.

Temporal patterns of self-minimization. In [2], the authors consider popular syn-
tactic specification patterns, documented at a community-led pattern repository,
and check whether formulae compliant with these patterns are self-minimizing.

From Model Checking to a Temporal Proof for Partial Models 67

They show that many such patterns are self-minimizing and the ones that are
not can be transformed with linear blowup into a self-minimizing LTL formula.
Thus, in most practical cases, the designer will consider a formula that is self-
minimizing. A syntactic check can be used to prove self-minimization before
running THRIVE.

Checking whether an LTL formula is self-minimizing. Checking whether an LTL
formula is self-minimizing is expensive, since it requires to compute an automa-
ton that is exponential in |φ| [11]. However, if φ satisfies some constraints (suf-
ficient conditions) then it is self-minimizing. For example, if it is in its nega-
tion normal form and no proposition occurs in mixed polarity, then φ is self-
minimizing. These checks can be implemented in THRIVE.

Scalability. Three-valued model checking is as expensive as classical model check-
ing [5], which is commonly used to analyze real world problems [26]. Deductive
verification has been employed successfully in the verification of digital hardware
and software systems [24]. Since THRIVE simply combines multi-valued model
checking and theorem proving, its scalability improves as the performance of the
employed model checking and deductive verification frameworks enhances.

7 Conclusions and Future Work

This work presented THRIVE, a theoretical framework for a correct integra-
tion of existing multi-valued model checkers and theorem provers. Whenever
the property of interest is definitely satisfied, or possibly satisfied, THRIVE
provides information regarding why a certain result is returned by the model
checker. The proof gives intuition on what is working correctly in the current
design and insights for the next development rounds. We instantiate THRIVE
considering a PKS, to express the model of the system, and LTL, to specify the
property of interest. We show that the instantiation is feasible and sound, and
requires changing the model checking algorithm to accomodate the execution of
the theorem prover. THRIVE has been evaluated considering a safety critical
example [3], which showed the effectiveness of the approach. We also discussed
the applicability of the approach in real world cases.

As future work, we aim to implement THRIVE by integrating existing model
checkers and theorem provers. This will allow us to provide further evidence of
the impact of THRIVE in continuous system development and to analyze the
challenges of realistic systems. We would like to introduce possible extensions
of the currently considered formalisms: other forms of partial systems models
and other multi-valued logic options for the properties. Finally, we also wish to
investigate thoroughly how the proofs can be written in the most understandable
and useful form for the designer.

Acknowledgments. Research partly supported from the EU H2020 Research and
Innovation Programme under GA No. 731869 (Co4Robots).

68 A. Bernasconi et al.

References

1. Alavi, H., Avrunin, G., Corbett, J., Dillon, L., Dwyer, M., Pasareanu, C.: Spec patt-
erns (2017). http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml

2. Antonik, A., Huth, M.: Efficient patterns for model checking partial state spaces
in CTL ∩ LTL. Electron. Notes Theor. Comput. Sci. 158, 41–57 (2006)

3. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Formal
validation and verification of a medical software critical component. In: Formal
Methods and Models for Codesign, pp. 80–89. IEEE (2015)

4. Bernasconi, A., Menghi, C., Spoletini, P., Zuck, L., Ghezzi, C.: From model check-
ing to a temporal proof for partial models: preliminary example (2017). arXiv
preprint arXiv:1706.02701

5. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). doi:10.1007/3-540-48683-6 25

6. Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state
spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182.
Springer, Heidelberg (2000). doi:10.1007/3-540-44618-4 14

7. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
281–293. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27836-8 26

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of the Second Workshop on Formal Meth-
ods in Software Practice, pp. 7–15. ACM (1998)

10. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) Protocol
Specification, Testing and Verification, pp. 3–18. Springer, Boston (1996). doi:10.
1007/978-0-387-34892-6 1

11. Godefroid, P., Huth, M.: Model checking vs. generalized model checking: semantic
minimizations for temporal logics. In: Logic in Computer Science, pp. 158–167.
IEEE Computer Society (2005)

12. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking
using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR
2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001). doi:10.1007/
3-540-44685-0 29

13. Godefroid, P., Piterman, N.: LTL generalized model checking revisited. Int. J.
Softw. Tools Technol. Transfer 13(6), 571–584 (2011)

14. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). doi:10.
1007/3-540-63166-6 10

15. Gurfinkel, A., Chechik, M.: Multi-valued model checking via classical model check-
ing. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 266–
280. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45187-7 18

16. Gurfinkel, A., Chechik, M.: How thorough is thorough enough? In: Borrione, D.,
Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 65–80. Springer, Heidelberg
(2005). doi:10.1007/11560548 8

17. Larsen, K.G., Thomsen, B.: A modal process logic. In: Logic in Computer Science,
pp. 203–210. IEEE (1988)

http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml
http://arxiv.org/abs/1706.02701
http://dx.doi.org/10.1007/3-540-48683-6_25
http://dx.doi.org/10.1007/3-540-44618-4_14
http://dx.doi.org/10.1007/978-3-540-27836-8_26
http://dx.doi.org/10.1007/978-0-387-34892-6_1
http://dx.doi.org/10.1007/978-0-387-34892-6_1
http://dx.doi.org/10.1007/3-540-44685-0_29
http://dx.doi.org/10.1007/3-540-44685-0_29
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-540-45187-7_18
http://dx.doi.org/10.1007/11560548_8

From Model Checking to a Temporal Proof for Partial Models 69

18. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, New York (1992)

19. Menghi, C., Spoletini, P., Ghezzi, C.: Dealing with incompleteness in automata-
based model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A.
(eds.) FM 2016. LNCS, vol. 9995, pp. 531–550. Springer, Cham (2016). doi:10.
1007/978-3-319-48989-6 32

20. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001). doi:10.
1007/3-540-44585-4 2

21. Peled, D., Pnueli, A., Zuck, L.: From falsification to verification. In: Hariharan,
R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 292–304.
Springer, Heidelberg (2001). doi:10.1007/3-540-45294-X 25

22. Peled, D., Zuck, L.: From model checking to a temporal proof. In: Dwyer, M. (ed.)
SPIN 2001. LNCS, vol. 2057, pp. 1–14. Springer, Heidelberg (2001). doi:10.1007/
3-540-45139-0 1

23. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
pp. 46–57. IEEE (1977)

24. Rajan, S., Shankar, N., Srivas, M.K.: An integration of model checking with auto-
mated proof checking. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 84–97.
Springer, Heidelberg (1995). doi:10.1007/3-540-60045-0 42

25. Tan, L., Cleaveland, R.: Evidence-based model checking. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 455–470. Springer, Heidelberg (2002).
doi:10.1007/3-540-45657-0 37

26. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: prac-
tice and experience. ACM Comput. Surv. 41(4) (2009)

http://dx.doi.org/10.1007/978-3-319-48989-6_32
http://dx.doi.org/10.1007/978-3-319-48989-6_32
http://dx.doi.org/10.1007/3-540-44585-4_2
http://dx.doi.org/10.1007/3-540-44585-4_2
http://dx.doi.org/10.1007/3-540-45294-X_25
http://dx.doi.org/10.1007/3-540-45139-0_1
http://dx.doi.org/10.1007/3-540-45139-0_1
http://dx.doi.org/10.1007/3-540-60045-0_42
http://dx.doi.org/10.1007/3-540-45657-0_37

Modeling and Reasoning on Requirements
Evolution with Constrained Goal Models

Chi Mai Nguyen, Roberto Sebastiani(B), Paolo Giorgini, and John Mylopoulos

DISI, University of Trento, Trento, Italy
roberto.sebastiani@unitn.it

Abstract. We are interested in supporting software evolution caused by
changing requirements and/or changes in the operational environment of
a software system. For example, users of a system may want new func-
tionality or performance enhancements to cope with growing user popu-
lation (changing requirements). Alternatively, vendors of a system may
want to minimize costs in implementing requirements changes (evolution
requirements). We propose to use Constrained Goal Models (CGMs)
to represent the requirements of a system, and capture requirements
changes in terms of incremental operations on a goal model. Evolution
requirements are then represented as optimization goals that minimize
implementation costs or customer value. We then exploit reasoning tech-
niques to derive optimal new specifications for an evolving software sys-
tem. CGMs offer an expressive language for modelling goals that comes
with scalable solvers that solve hybrid constraint and optimization prob-
lems using a combination of Satisfiability Modulo Theories (SMT) and
Optimization Modulo Theories (OMT) techniques. We evaluate our pro-
posal by modeling and reasoning with a goal model for a standard exem-
plar used in Requirement Engineering.

1 Introduction

We have come to live in a world where the only constant is change. Changes
need to be accommodated by any system that lives and operates in that world,
biological and/or engineered. For software systems, this is a well-known problem
referred to as software evolution. There has been much work and interest on
this problem since Lehman’s seminal proposal for laws of software evolution [4].
However, the problem of effectively supporting software evolution through suit-
able concepts, tools and techniques is still largely open. And software evolution
still accounts for more than 50% of total costs in a software system’s lifecycle.

We are interested in supporting software evolution caused by changing
requirements and/or environmental conditions. Specifically, we are interested
in models that capture such changes, also in reasoning techniques that derive
optimal new specifications for a system whose requirements and/or environment
have changed. Moreover, we are interested in discovering new classes of evolu-
tion requirements, in the spirit of [10] who proposed such a class for adaptive
software systems. We propose to model requirements changes through changes
c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 70–86, 2017.
DOI: 10.1007/978-3-319-66197-1 5

Modeling and Reasoning on Requirements Evolution 71

to a goal model, and evolution requirements as optimization goals, such as
“Minimize costs while implementing new functionality”. Our research baseline
consists of an expressive framework for modelling and reasoning with goals
called Constrained Goal Models (hereafter CGMs) [5]. The CGM framework
is founded on and draws much of its power from Satisfiability Modulo Theories
(SMT) and Optimization Modulo Theories (OMT) solving techniques [1,8].

The contributions of this paper include a proposal for modelling changing
requirements in terms of changes to a CGM model, but also the identification of
a new class of evolution requirements, expressed as optimization goals in CGM.
In addition, we show how to support reasoning with changed goal models and
evolution requirements in order to derive optimal solutions.

The rest of the paper is structured as follows: Sect. 2 introduces the notion
of CGM through a working example; Sect. 3 introduces the notion of evolution
requirements and requirements evolution through our working example; Sect. 4
formalizes the problem of automatically handling CGM evolutions and evolution
requirements for CGMs; Sect. 5 provides a brief overview of our tool implement-
ing the presented approach; in Sect. 6 we draw some conclusions.

Some of the ideas described here were discussed at conceptual level in a
non-technical short paper at Conceptual Modeling conference, ER’2016 [6]. A
longer and more detailed version of this paper, which includes also a related
work section, is available [7].

2 Background: Constrained Goal Models

SMT (LRA) and (LRA). Satisfiability Modulo the Theory of Linear Rational
Arithmetic (SMT (LRA)) [1] is the problem of deciding the satisfiability of arbi-
trary formulas on atomic propositions and constraints in linear arithmetic over the
rationals. Optimization Modulo the Theory of Linear Rational Arithmetic (OMT
(LRA)) [8] extends SMT(LRA) by searching solutions which optimize some LRA
objective(s). Efficient OMT(LRA) solvers like OptiMathSAT [9] allow for han-
dling formulas with thousands of Boolean and rational variables [5,8].

A Working Example. We recall from [5] the main ideas of Constrained
Goal Models (CGM’s) and the main functionalities of our CGM-Tool through a
meeting scheduling example (Fig. 1), a standard exemplar used in Requirements
Engineering [3,11].

Notationally, round-corner rectangles (e.g., ScheduleMeeting) are root goals,
representing stakeholder requirements; ovals (e.g. CollectTimetables) are inter-
mediate goals; hexagons (e.g. CharacteriseMeeting) are tasks, i.e. non-root leaf
goals; rectangles (e.g., ParticipantsUseSystemCalendar) are domain assumptions.
We call elements both goals and domain assumptions. Labeled bullets at
the merging point of the edges connecting a group of source elements to a
target element are refinements (e.g., (GoodParticipation,MinimalConflict) R20−−→
GoodQualitySchedule), while the Ris denote their labels. The label of a refine-
ment can be omitted when there is no need to refer to it explicitly.

72 C.M. Nguyen et al.

Intuitively, requirements represent desired states of affairs we want the
system-to-be to achieve (either mandatorily or possibly); they are progres-
sively refined into intermediate goals, until the process produces actionable goals
(tasks) that need no further decomposition and can be executed; domain assump-
tions are propositions about the domain that need to hold for a goal refinement
to work. Refinements are used to represent the alternatives of how to achieve an
element; a refinement of an element is a conjunction of the sub-elements that
are necessary to achieve it.

Suppose we want to capture and analyze requirements for a software
system that schedules meetings (see [3,11]). The main objective of the
CGM in Fig. 1 is to achieve the requirement ScheduleMeeting, which is
mandatory. ScheduleMeeting has only one candidate refinement R1, consist-
ing in five sub-goals: CharacteriseMeeting, CollectTimetables, FindASuitableRoom,
ChooseSchedule, and ManageMeeting. Since R1 is the only refinement of the
requirement, all these sub-goals must be satisfied in order to satisfy it. There
may be more than one way to refine an element; e.g., CollectTimetables is further
refined either by R10 into the single goal ByPerson or by R2 into the single goal
BySystem. The subgoals are further refined until they reach the level of domain
assumptions and tasks.

Some requirements can be “nice-to-have”, like LowCost, MinimalEffort,
FastSchedule, and GoodQualitySchedule (in blue in Fig. 1). They are requirements
that we would like to fulfill with our solution, provided they do not conflict with
other requirements. To this extent, in order to analyze interactively the possi-
ble different realizations, one can interactively mark [or unmark] requirements
as satisfied, thus making them mandatory (if unmarked, they are nice-to-have
ones). Similarly, one can interactively mark/unmark (effortful) tasks as denied,
or mark/unmark some domain assumption as satisfied or denied. More generally,
one can mark as satisfied or denied every goal or domain assumption. We call
these marks user assertions. Notice that CGMs can represent both functional
requirements (e.g. ScheduleMeeting) and quality requirements (e.g. LowCost).

In a CGM, elements and refinements are enriched by user-defined constraints,
which can be expressed either graphically as relation edges or textually as
Boolean or SMT(LRA) formulas. We have three kinds of relation edges. Con-
tribution edges “Ei

++−−→ Ej” between elements (in green in Fig. 1), like
“ScheduleAutomatically

++−−→ MinimalConflicts”, mean that if the source ele-
ment Ei is satisfied, then also the target element Ej must be satisfied (but
not vice versa). Conflict edges “Ei

−−←→ Ej” between elements (in red), like
“ConfirmOccurrence

−−←→ CancelMeeting”, mean that Ei and Ej cannot be both
satisfied. Refinement bindings “Ri←→Rj” between two refinements (in purple),
like “R2←→R7”, are used to state that, if the target elements Ei and Ej of the
two refinements Ri and Rj , respectively, are both satisfied, then Ei is refined by
Ri if and only if Ej is refined by Rj . Intuitively, this means that the two refine-
ments are bound, as if they were two different instances of the same choice.

It is possible to enrich CGMs with logic formulas, representing arbitrary
logic constraints on elements and refinements. For example, to require that, as

Modeling and Reasoning on Requirements Evolution 73

F
ig
.
1
.
A

C
G

M
M

1
,
w

it
h

a
re

a
li
za

ti
o
n
µ
1

m
in

im
iz

in
g

le
x
ic

o
g
ra

p
h
ic

a
ll
y
:
th

e
d
iff

er
en

ce
P
en
al
ty

-R
ew

ar
d
,
w
or
kT

im
e,

a
n
d
co
st

.
(C

o
lo

r
fi
g
u
re

o
n
li
n
e)

74 C.M. Nguyen et al.

a prerequisite for FastSchedule, ScheduleManually and CallParticipants cannot be
both satisfied, one can add the constraint “FastSchedule → ¬(ScheduleManually∧
CallParticipants)”.

In addition to Boolean constraints, it is also possible to use numerical vari-
ables to express different numerical attributes of elements (such as cost, work-
time, space, fuel, etc.) and constraints over them. For example, in Fig. 1 we asso-
ciate to UsePartnerInstitutions and UseHotelsAndConventionCenters a cost value
of 80AC and 200AC respectively, and we associate “(cost < 100AC)” as a prerequisite
constraint for the nice-to-have requirement LowCost. Implicitly, this means that
no realization involving UseHotelsAndConventionCenters can realize this require-
ment.

We suppose now that ScheduleMeeting is asserted as satisfied (i.e. it is
mandatory) and that no other element is asserted. Then the CGM in Fig. 1
has more than 20 possible realizations. The sub-graph which is highlighted in
yellow describes one of them. Intuitively, a realization of a CGM under given
user assertions (if any) represents one of the alternative ways of refining the
mandatory requirements (plus possibly some of the nice-to-have ones) in com-
pliance with the user assertions and user-defined constraints. It is a sub-graph
of the CGM including a set of satisfied elements and refinements: it includes all
mandatory requirements, and [resp. does not include] all elements satisfied [resp.
denied] in the user assertions; for each non-leaf element included, at least one of
its refinement is included; for each refinement included, all its target elements
are included; finally, a realization complies with all relation edges and with all
constraints.

In general, a CGM under given user assertions has many possible realiza-
tions. To distinguish among them, stakeholders may want to express preferences
on the requirements to achieve, on the tasks to accomplish, and on elements
and refinements to choose. The CGM-Tool provides various methods to express
preferences:

– attribute rewards and penalties to nice-to-have requirements and tasks respec-
tively, so that to maximize the former and minimize the latter; (E.g., satisfy-
ing LowCost gives a reward = 100, whilst satisfying CharacteriseMeeting gives
a penalty = 15.)

– introduce numerical attributes, constraints and objectives; (E.g., the numerical
attribute Cost not only can be used to set prerequisite constraints for require-
ments, like “(Cost < 100AC)” for LowCost, but also can be set as objectives to
minimize.)

– introduce a list of binary preference relations “�” between ele-
ments or refinements (E.g., one can set the preferences BySystem �
ByPerson, UseLocalRoom � UsePartnerInstitutions and UseLocalRoom �
UseHotelsAndConventionCenters.).

The CGM-Tool provides many automated-reasoning functionalities on CGMs [5].

Search/enumerate realizations. One can automatically check the realizability of a
CGM – or to enumerate one or more of its possible realizations – under a group

Modeling and Reasoning on Requirements Evolution 75

of user assertions and of user-defined constraints; (When a CGM is found un-
realizable under a group of user assertions and of user-defined constraints, it
highlights the subparts of the CGM and the subset of assertions causing the
problem.)

Search/enumerate minimum-penalty/maximum reward realizations. One can
assert rewards to the desired requirements and set penalties of tasks, then
the tool finds automatically the optimal realization(s).

Search/enumerate optimal realizations wrt. pre-defined/user-defined objectives.
One can define objective functions obj1, ..., objk over goals, refinements and
their numerical attributes; then the tool finds automatically realizations opti-
mizing them.

Search/enumerate optimal realizations wrt. binary preferences. Once the list of
binary preference is set, the tool finds automatically realizations maximizing
the number of fulfilled preferences.

The above functionalities can be combined in various ways. For instance, the
realization of Fig. 1 is the one returned by CGMtool when asked to minimize
lexicographically, in order, the difference Penalty-Reward, workTime, and cost.1

They have been implemented by encoding the CGM and the objectives into an
SMT(LRA) formula and a set of LRA objectives, which is fed to the OMT
tool OptiMathSAT [9]. We refer the reader to [5] for a much more detailed
description of CGMs and their automated reasoning functionalities.

3 Requirements Evolution and Evolution Requirements

Here we show how a CGM can evolve, and how we can handle such evolution.

3.1 Requirements Evolution

Constrained goal models may evolve in time: goals, requirements and assump-
tions can be added, removed, or simply modified; Boolean and SMT constraints
may be added, removed, or modified as well; assumptions which were assumed
true can be assumed false, or vice versa.

Some modifications strengthen the CGMs, in the sense that they reduce the
set of candidate realizations. For instance, dropping one of the refinements of an
element (if at least one is left) reduces the alternatives in realizations; adding
source elements to a refinement makes it harder to satisfy; adding Boolean or
SMT constraints, or making some such constraint strictly stronger, restricts the
set of candidate solutions; changing the value of an assumption from true to false
may drop some alternative solutions. Vice versa, some modifications weaken the
CGMs, augmenting the set of candidate realizations: for instance, adding one of
refinement to an element, dropping source elements to a refinement, dropping

1 A solution optimizes lexicographically an ordered list of objectives 〈obj1, obj2, ...〉 if
it makes obj1 optimum and, if more than one such solution exists, it makes also obj2
optimum, ..., etc.

76 C.M. Nguyen et al.

Boolean or SMT constraints, or making some such constraint strictly weaker,
changing the value of an assumption from false to true. In general, however,
since in a CGM the goal and/or decomposition graph is a DAG and not a
tree, and the and/or decomposition is augmented with relational edges and con-
straints, modifications may produce combinations of the above effects, possibly
propagating unexpected side effects which are sometimes hard to predict.

We consider the CGM of a Schedule Meeting described in Fig. 1 (namely,
M1) as our starting model, and we assume that for some reasons it has been
modified into the CGM of Fig. 2 (namely, M2). M2 differs from M1 for the
following modifications:

(a) two new tasks, SetSystemCalendar and ParticipantsFillSystemCalendar, are
added to the sub-goal sources of the refinement R13;

(b) a new source task RegisterMeetingRoom is added to R17, and the binding
between R16 and R17 is removed; the refinement R18 of the goal BookRoom
and its source task CancelLessImportantMeeting are removed;

(c) the alternative refinements R8 and R9 of ManageMeeting are also modified:
two new internal goals ByUser and ByAgent are added and become the single
source of the two refinements R8 and R9 respectively, and the two tasks
ConfirmOccurrence and CancelMeeting become respectively the sources of
two new refinements R21 and R22, which are the alternative refinements of
the goal ByUser; the new goal ByAgent is refined by the new refinement R23

with source task SendDecision.

3.2 Evolution Requirements

We consider the generic scenario in which a previous version of a CGM M1 with
an available realization μ1 is modified into a new CGM M2.

As a consequence of modifying a CGM M1 into a new version M2, μ1 typi-
cally is no more a valid realization of M2.2 E.g., we notice that μ1 in Fig. 2 does
not represent a valid realization of M2: not all source tasks of R13 are satisfied,
BookRoom has no satisfied refinement, and the new goal ByUser and refinement
R21 are not satisfied. It is thus necessary to produce a new realization μ2 for M2.

In general, when one has a sequence M1,M2, ...,Mi, ... of CGMs and must
produce a corresponding sequence μ1, μ2, ..., μi, ... of realizations, it is necessary
to decide some criteria by which the realizations μi evolve in terms of the evolu-
tion of the CGMs Mi. We call these criteria, evolution requirements. We describe
some possible criteria.

Recomputing Realizations. One possible evolution requirement is that of
always having the “best” realization μi for each Mi, according to some objective

2 More precisely, rather than “µ1”, here we should say “the restriction of µ1 to the
elements and variables which are still in M2.” We will keep this distinction implicit
in the rest of the paper.

Modeling and Reasoning on Requirements Evolution 77

F
ig
.
2
.
T

h
e

n
ov

el
C

G
M

M
2
,
w

it
h

th
e

p
re

v
io

u
s

re
a
li
za

ti
o
n
µ
1

h
ig

h
li
g
h
te

d
fo

r
co

m
p
a
ri

so
n
.
(N

o
ti

ce
th

a
t
µ
1

is
n
o

m
o
re

a
va

li
d

re
a
li
za

ti
o
n

fo
r

M
2
.)

78 C.M. Nguyen et al.

(or lexicographic combination of objectives). Let M1, M2, and μ1 be as above.
One possible choice for the user is to compute a new optimal realization μ2

from scratch, using the same criteria used in computing μ1 from M1. In general,
however, it may be the case that the new realization μ2 is very different from
μ1, which may displease the stakeholders.

We consider now the realization μ1 of the CGM M1 highlighted in Fig. 1
and the modified model M2 of Fig. 2. If we run CGM-Tool over M2 with the
same optimization criteria as for μ1 – i.e., minimize lexicographically, in order,
the difference Penalty-Reward, workTime, and cost – we obtain a novel realiza-
tion μlex

2 depicted in Fig. 3. The new realization μlex
2 satisfies all the require-

ments (both “nice to have” and mandatory) except MinimalEffort. It includes
the following tasks: CharateriseMeeting, EmailParticipants, GetRoomSuggestions,
UseAvailableRoom, RegisterMeetingRoom, ScheduleManually, ConfirmOccurrence,
GoodParticipation, and MinimalConflicts, and it requires one domain assumption:
LocalRoomAvailable. This realization was found automatically by our CGM-Tool
in 0.059 s on an Apple MacBook Air laptop.

Fig. 3. New CGM M2, with realization µlex
2 which minimizes lexicographically: the

difference Penalty-Reward, workTime, and cost.

Unfortunately, μlex
2 turns out to be extremely different from μ1.

This is due to the fact that the novel tasks SetSystemCalendar and
ParticipantsFillSystemCalendar raise significantly the penalty for R13 and thus for
R2; hence, in terms of the Penalty-Reward objective, it is now better to choose
R10 and R6 instead of R2 and R7, even though this forces ByPerson to be satis-
fied, which is incompatible with CollectionEffort, so that MinimalEffort is no more
achieved. Overall, for μ2 we have Penalty − Reward = −65, workTime = 4 h and
cost = 0AC.

In many contexts, in particular if μ1 is well-established or is already imple-
mented, one may want to find a realization μ2 of the modified CGM M2 which

Modeling and Reasoning on Requirements Evolution 79

is as similar as possible to the previous realization M1. The suitable notion
of “similarity”, however, may depend on stakeholder’s needs. In what follows,
we discuss two notions of “similarity” from [2], familiarity and change effort,
adapting and extending them to CGMs.

Maximizing Familiarity. In our approach, in its simplest form, the familiarity
of μ2 wrt. μ1 is given by the number of elements of interest which are common to
M1 and M2 and which either are in both μ1 and μ2 or are out of both of them;
this can be augmented also by the number of new elements in M2 of interest (e.g.,
tasks) which are denied. In a more sophisticate form, the contribution of each
element of interest can be weighted by some numerical value (e.g., Penalty, cost,
WorkTime,...). This is formalized in Sect. 4, and a functionality for maximizing
familiarity is implemented in CGM-Tool.

For example, if we ask CGM-Tool to find a realization which maximizes our
notion of familiarity (see Sect. 4), we obtain the novel realization μfam

2 depicted
in Fig. 4. μfam

2 satisfies all the requirements (both “nice to have” and mandatory
ones), and includes the following tasks: CharacteriseMeeitng, SetSystemCalendar,
ParticipantsFillSystemCalendar, CollectFromSystemCalendar, GetRoomSuggestions,
UseAvailableRoom, RegisterMeetingRoom, ScheduleAutomatically, Confirm
Occurrence, GoodParticipation, MinimalConflicts, CollectionEffort, and MatchingEf-
fort; μfam

2 also requires two domain assumptions: ParticipantsUseSystemCalendar
and LocalRoomAvailable.

Notice that all the tasks which are satisfied in μ1 are satisfied also in
μfam
2 , and only the intermediate goal ByUser, the refinement R21 and the

four tasks SetSystemCalendar, ParticipantsFillSystemCalendar, UseAvailableRoom,
and RegisterMeetingRoom are added to μfam

2 , three of which are newly-added
tasks. Thus, on common elements, μfam

2 and μ1 differ only on the task

Fig. 4. New CGM M2, with realization µfam
2 with maximizes the familiarity wrt. µ1.

80 C.M. Nguyen et al.

UseAvailableRoom, which must be mandatorily be satisfied to complete the real-
ization. Overall, wrt. μlex

2 , we pay familiarity with some loss in the “quality” of
the realization, since for μfam

2 we have Penalty−Reward = −50, workTime = 3.5 h
and cost = 0AC. This realization was found automatically by our CGM-Tool in
0.067 s on an Apple MacBook Air laptop.

Minimizing Change Effort. In our approach, in its simplest form, the change
effort of μ2 wrt. μ1 is given by the number of newly-satisfied tasks, i.e., the
amount of the new tasks which are satisfied in μ2 plus that of common tasks
which were not satisfied in μ1 but are satisfied in μ2. In a more sophisticate form,
the contribution of each task of interest can be weighted by some numerical value
(e.g., Penalty, cost, WorkTime,...). Intuitively, since satisfying a task requires
effort, this value considers the extra effort required to implement μ2. (Notice
that tasks which pass from satisfied to denied do not reduce the effort, because
we assume they have been implemented anyway.) This is formalized in Sect. 4,
and a functionality for minimizing change effort is implemented in CGM-Tool.

For example, if we ask CGM-Tool to find a realization which minimizes the
number of newly-satisfied tasks, we obtain the realization μeff

2 depicted in Fig. 5.
The realization satisfies all the requirements (both “nice to have” and manda-
tory), and includes the following tasks: CharacteriseMeeitng, SetSystemCalendar,
ParticipantsFillSystemCalendar, CollectFromSystemCalendar, UsePartnerInstitu-
tions, ScheduleAutomatically, ConfirmOccurrence, GoodParticipation, MinimalCon-
flicts, CollectionEffort, and MatchingEffort; μeff

2 also requires one domain assumption
ParticipantsUse SystemCalendar.

Notice that, in order to minimize the number of new tasks needed to be
achieved, in μeff

2 , FindASuitableRoom is refined by R3 instead of R5. In fact, in
order to achieve R5, we would need to satisfy two extra tasks (UseAvailableRoom
and RegisterMeetingRoom) wrt. μ1, whilst for satisfying R3 we only need

Fig. 5.New CGM M2, with realization µeff
2 with minimimizes the change effort wrt. µ1.

Modeling and Reasoning on Requirements Evolution 81

to satisfy one task (UsePartnerInstitutions). Besides, two newly added tasks
SetSystemCalendar and ParticipantsFillSystemCalendar are also included in μeff

2 .
Thus the total effort of evolving from μ1 to μeff

2 is to implement three new tasks.
Overall, for μeff

2 we have Penalty − Reward = −50, workTime = 3.5 h and
cost = 80AC. This realization was found automatically by our CGM-Tool in 0.085 s
on an Apple MacBook Air laptop.

Combining Familiarity or Change Effort with Other Objectives. In our
approach, familiarity and change effort are numerical objectives like others, and as
such they can be combined lexicographically with other objectives, so that stake-
holders can decide which objectives to prioritize.

4 Automated Reasoning with Evolution Requirements

CGMs and Realizations We first recall some formal definitions from [5].
A Constrained Goal Model (CGM) is a tuple M def= 〈B,N ,D, Ψ〉, s.t.

– B def= G ∪ R ∪ A is a set of atomic propositions, where G def= {G1, ..., GN}, R def=
{R1, ..., RK}, A def= {A1, ..., AM} are respectively sets of goal, refinement and
domain-assumption labels. We denote with E the set of element labels: E def=
G ∪ A;

– N is a set of numerical variables in the rationals;
– D is an and-or directed acyclic graph of elements in E (or nodes) and refinements

in R (and nodes);
– Ψ is a SMT(LRA) formula on B and N , representing the conjunction of all

relation edges, user-defined constraints and assertions.

The structure of a CGM is an and-or directed acyclic graph (DAG) of elements,
as nodes, and refinements, as (grouped) edges, which are labeled by atomic
propositions and can be augmented with arbitrary constraints in form of graph-
ical relations and Boolean or SMT(LRA) formulas – typically conjunctions of
smaller global and local constraints – on the element and refinement labels and
on the numerical variables. Notice that each non-leaf element E is implicitly or-
decomposed into the set of its incoming refinements {Ri} def= RefinementsOf(E)
(i.e., E ↔ (

∨
i Ri)) and that each refinement R is and-decomposed into the set of

its source elements {Ej} (i.e., R ↔ (
∧

j Ej)). Intuitively, a CGM describes a (pos-
sibly complex) combination of alternative ways of realizing a set of requirements
in terms of a set of tasks, under certain domain assumptions.

Let M def= 〈B,N ,D, Ψ〉 be a CGM. A realization μ of M is an assignment of
truth values to B and of rational values to N (aka, a LRA-interpretation) which:

(a) for each non-leaf element E, μ satisfies
(
E ↔ (

∨
Ri∈RefinementsOf(E) Ri)

)
– i.e.,

E is part of a realization μ if and only if one of its refinements is in μ;
(b) for each refinement

(
E1, . . . , En

) R−→ E, μ satisfies ((
∧n

i=1 Ei) ↔ R) – i.e., R
is part of μ iff and only if all of its sub-elements Ei are in μ;

82 C.M. Nguyen et al.

(c) μ satisfies Ψ – i.e., the elements and refinements occurring in μ, and the values
assigned by μ to the numerical attributes, comply with all the relation edges,
the user-defined constraints and user assertions in Ψ .

We say that an element E or refinement R is satisfied [resp. denied] in μ if it is
assigned to
 [resp. ⊥] by μ. μ is represented graphically as the sub-graph of M
where all the denied element and refinement nodes are eliminated. We say that M,
including user assertions, is realizable if it has at least one realization, unrealizable
otherwise.

As described in [5], a CGM M is encoded into a SMT(LRA) formula ΨM,
and the user preferences into numerical objective functions {obj1, ..., objk}, which
are fed to the OMT solver OptiMathSAT, which returns optimal solutions
wrt. {obj1, ..., objk}, which are then converted back by CGM-tool into optimal
realizations.

Evolution Requirements. Here we formalize the notions described in Sect. 3.2.
Let M1

def= 〈B1,N1,D1, Ψ1〉 be the original model, μ1 be some realization of M1

and M2
def= 〈B2,N2,D2, Ψ2〉 be a new version of M1. We look for a novel realization

μ2 for M2.
Stakeholders can select a subset of the elements, called elements of interest,

on which to focus, which can be requirements, tasks, domain assumptions, and
intermediate goals. (When not specified otherwise, we will assume by default that
all elements are of interest.) Let E∗ ⊆ E1 ∪ E2 be the subset of the elements of
interest, and let E∗

1
def= E∗ ∩ E1 and E∗

2
def= E∗ ∩ E2 be the respective subsets of M1

and M2. We define E∗
common

def= {Ei ∈ E∗
2 ∩ E∗

1 } as the set of elements of interest
occurring in both M1 and M2, and E∗

new
def= {Ei ∈ E∗

2 \ E∗
1 } as the set of new

elements of interest in M2.

Familiarity. In its simplest form, the cost of familiarity can be defined as follows:

FamiliarityCost(μ2|μ1)
def= | {Ei ∈ E∗

common | μ2(Ei) �= μ1(Ei)} | (1)
+ | {Ei ∈ E∗

new | μ2(Ei) =
} |, (2)

where | S | denotes the number of elements of a set S. FamiliarityCost(μ2|μ1) is the
sum of two components:

(1) the number of common elements of interest (e.g., tasks) which were in μ1 and
are no more in μ2, plus the number of these which were not in μ1 and now are
in μ2,

(2) the number of new elements of interest which are in μ2.

Modeling and Reasoning on Requirements Evolution 83

In a more sophisticate form, each element of interest Ei can be given some rational
weight value wi

3, so that the cost of familiarity can be defined as follows:

WeightFamiliarityCost(μ2|μ1)
def=

∑

Ei∈E∗
common

wi · Int(μ2(Ei) �= μ1(Ei)) (3)

+
∑

Ei∈E∗
new

wi · Int(μ2(Ei) =
), (4)

where Int() converts true and false into the values 1 and 0 respectively.
Both forms are implemented in CGM-Tool. (Notice that (1) and (2), or

even (3) and (4), can also be set as distinct objectives in CGM-Tool.) Con-
sequently, a realization μ2 maximizing familiarity is produced by invoking the
OMT solver on the formula ΨM2 and the objective FamiliarityCost(μ2|μ1) or
WeightFamiliarityCost(μ2|μ1) to minimize.

Change effort. We restrict the elements of interest to tasks only. In its simplest
form, the change effort can be defined as follows:

ChangeEffort(μ2|μ1)
def= | {Ti ∈ E∗

common | μ2(Ti)=
, and μ1(Ti) = ⊥} | (5)
+ | {Ti ∈ E∗

new | μ2(Ti) =
} | . (6)

ChangeEffort(μ2|μ1) is the sum of two components:

(5) is the number of common tasks which were not in μ1 and which are now in μ2,
(6) is the number of new tasks which are in μ2.

As above, in a more sophisticate form, each task of interest Ti can be given some
rational weight value wi, so that the change effort can be defined as follows:

WeightChangeEffort(μ2|μ1)
def=

∑

Ti∈E∗
common

wi · Int(μ2(Ti) =
) · Int(μ1(Ti) = ⊥)

+
∑

Ti∈E∗
new

wi · Int(μ2(Ti) =
).

Both forms are implemented in CGM-Tool. Consequently, a novel realization μ2

minimizing change effort is produced by invoking the OMT solver on the formula
ΨM2 and the objective ChangeEffort(μ2|μ1) or WeightChangeEffort(μ2|μ1).

Notice an important difference between (1) and (5), even if the former is
restricted to tasks only: a task which is satisfied in μ1 and is no more in μ2 worsens
the familiarity of μ2 wrt. μ1 (1), but it does not affect its change effort (5), because
it does not require implementing one more task.

Comparison wrt. Previous Approaches. Importantly, Ernst et al. [2] pro-
posed two similar notion of familiarity and change effort for (un-)constrained goal
graphs:
3 Like Penalty, Cost and WorkTime in Fig. 1.

84 C.M. Nguyen et al.

familiarity : maximize (the cardinality of) the set of tasks used in the previous
solution;

change effort : (i) minimize (the cardinality of) the set of new tasks in the novel
realization – or, alternatively, (ii) minimize also the number of tasks.

We notice remarkable differences of our approach wrt. the one in [2].
First, our notion of familiarity presents the following novelties:

(i) it uses all kinds of elements, on stakeholders’ demand, rather than only tasks;
(ii) it is (optionally) enriched also with (2);
(iii) (1) is sensitive also to tasks which were in the previous realization and which

are not in the novel one, since we believe that also these elements affect famil-
iarity.

Also, in our approach both familiarity and change effort allow for adding weights
to tasks/elements, and to combine familiarity and change-effort objectives lexico-
graphically with other user-defined objectives.

Second, unlike with [2], in which the optimization procedure is hardwired, we
rely on logical encodings of novel objectives into OMT(LRA) objectives, using
OptiMathSAT as workhorse reasoning engine. Therefore, new objectives require
implementing no new reasoning procedure, only new OMT(LRA) encodings. For
instance, we could easily implement also the notion of familiarity of [2] by ask-
ing OptiMathSAT to minimize the objective: | {Ti ∈ E∗

common | μ2(Ti) =
⊥, and μ1(Ti) =
} |.

Third, our approach deals with CGMs, which are very expressive formalisms,
are enriched by Boolean and numerical constraints, and are supported by a tool
(CGM-Tool) with efficient search functionalities for optimum realizations. These
functionalities, which are enabled by state-of-the-art SMT and OMT technologies
[8,9], scale very well, up to thousands of elements, as shown in the empirical eval-
uation of [5]. In this paper we further enrich these functionalities so that to deal
also with evolving CGMs and evolution requirements.

Fourth, unlike with [2], where realizations are intrinsically supposed to be min-
imal, in our approach minimality is an objective stakeholders can set and obtain
as a byproduct of minimum solutions, but it is not mandatory. This fact is rele-
vant when dealing with familiarity evolution requirements, because objective (1)
can conflict with minimality, because it may force the presence of tasks from the
previous solution which have become redundant in the new model. Thus, some-
times CGM-tool may return a non-minimal model if the stakeholder prioritizes
familiarity above all other objectives.

5 Implementation

CGM-Tool provides support for modeling and reasoning on CGMs [5]. Technically,
CGM-Tool is a standalone application written in Java and its core is based on

Modeling and Reasoning on Requirements Evolution 85

Eclipse RCP engine. Under the hood, it encodes CGMs and invokes the
OptiMathSAT4 OMT solver [9] to support reasoning on CGMs. It is freely
distributed for multiple platforms5. Currently CGM-Tool supports the function-
alities in [5]:

Specification of projects: CGMs are created within the scope of project con-
tainers. A project contains a set of CGMs that can be used to generate reasoning
sessions with OptiMathSAT (i.e., scenarios);

Diagrammatic modeling: the tool enables the creation of CGMs as diagrams;
it provides real-time check for refinement cycles and reports invalid links;

Consistency/well-formedness check: CGM-Tool provides the ability to run
consistency analysis and well-formedness checks on the CGMs;

Automated Reasoning: CGM-Tool provides the automated reasoning func-
tionalities mentioned in Sect. 2, and described in detail in [5].

With this work, we have enhanced CGM-Tool with the following functionalities:

EvolutionRequirementsModelling andAutomatedReasoning: by means
of scenarios, stakeholders can generate evolution sessions, which allows for (i)
defining the first model and finding the first optimal realization, (ii) modify-
ing the model to obtain the new models, and (iii) generating automatically the
“similar” realization (as discussed in Sect. 3.2).

As a proof of concept, we have performed various attempts on variants of the
CGM of Sect. 3. The automated generation of the realizations always required neg-
ligible amounts of CPU time, like those reported in Sect. 3.2.

6 Conclusions

We have proposed to model changing requirements in terms of changes to CGMs.
Moreover, we have introduced a new class of requirements (evolution require-
ments) that impose constraints on allowable evolutions, such asminimizing (imple-
mentation) effort or maximizing (user) familiarity. We have demonstrated how to
model such requirements in terms of CGMs and how to reason with them in order
to find optimal evolutions.

Our future plans for this work include further evaluation with larger case stud-
ies, as well as further exploration for new kinds of evolution requirements that can
guide software evolution.

4 http://optimathsat.disi.unitn.it.
5 http://www.cgm-tool.eu/.

http://optimathsat.disi.unitn.it
http://www.cgm-tool.eu/

86 C.M. Nguyen et al.

References

1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2009). Chap. 26

2. Ernst, N.A., Borgida, A., Mylopoulos, J., Jureta, I.J.: Agile requirements evolution
via paraconsistent reasoning. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza,
S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 382–397. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31095-9 25

3. Feather, M.S., Fickas, S., Finkelsteiin, A., Lamsweerde, A.V.: Requirements and
specification exemplars. Automated Software Engineering 4(4), 419–438 (1997)

4. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE
68(9), 1060–1076 (1980)

5. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-objective reason-
ing with constrained goal models. Requir. Eng. J., 1–37 (2016)

6. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Requirements evolution
and evolution requirements with constrained goal models. In: Comyn-Wattiau, I.,
Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974,
pp. 544–552. Springer, Cham (2016). doi:10.1007/978-3-319-46397-1 42

7. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Modeling and reasoning
on requirements evolution with constrained goal models (2017). Extended version
of this paper. http://disi.unitn.it/rseba/papers/sefm17 extended.pdf

8. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Log. 16(2), 12:1–12:43 (2015)

9. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454.
Springer, Cham (2015). doi:10.1007/978-3-319-21690-4 27

10. Souza, V.E.S.: Requirements-based software system adaptation. Ph.D. thesis, Uni-
versity of Trento (2012)

11. van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-directed elaboration of
requirements for a meeting scheduler: problems and lessons learned. In: Proceed-
ings of the RE 1995 - 2nd International Symposium on Requirements Engineering,
pp. 194–203. IEEE (1995)

http://dx.doi.org/10.1007/978-3-642-31095-9_25
http://dx.doi.org/10.1007/978-3-319-46397-1_42
http://disi.unitn.it/rseba/papers/sefm17_extended.pdf
http://dx.doi.org/10.1007/978-3-319-21690-4_27

Participatory Verification of Railway
Infrastructure by Representing Regulations

in RailCNL

Bjørnar Luteberget1, John J. Camilleri2, Christian Johansen3(B),
and Gerardo Schneider2

1 RailComplete AS, Sandvika, Norway
bjlut@railcomplete.no

2 Department of Computer Science and Engineering,
Chalmers University of Technology and University of Gothenburg,

Gothenburg, Sweden
{john.j.camilleri,gerardo}@cse.gu.se

3 Department of Informatics, University of Oslo, Oslo, Norway
cristi@ifi.uio.no

Abstract. Designs of railway infrastructure (tracks, signalling and con-
trol systems, etc.) need to comply with comprehensive sets of regula-
tions describing safety requirements, engineering conventions, and design
heuristics. We have previously worked on automating the verification of
railway designs against such regulations, and integrated a verification
tool based on Datalog reasoning into the CAD tools of railway engi-
neers. This was used in a pilot project at Norconsult AS (formerly Ana-
con AS). In order to allow railway engineers with limited logic program-
ming experience to participate in the verification process, in this work we
introduce a controlled natural language, RailCNL, which is designed as a
middle ground between informal regulations and Datalog code. Phrases
in RailCNL correspond closely to those in the regulation texts, and can
be translated automatically into the input language of the verifier. We
demonstrate a prototype system which, upon detecting regulation vio-
lations, traces back from errors in the design through the CNL to the
marked-up original text, allowing domain experts to examine the cor-
rectness of each translation step and better identify sources of errors.
We also describe our design methodology, based on CNL best practices
and previous experience with creating verification front-end languages.

1 Introduction

Automated formal verification techniques have the potential to greatly increase
the efficiency of engineering. However, verification engines are not easy to take
up in industrial practice. Even if the verification process is fully automated,

Supported by the Norwegian Research Council project RailCons – Aut. Methods and
Tools for Ensuring Consistency of Railway Designs, and by the Swedish Research
Council grant nr. 2012-5746 – Reliable Multilingual Digital Communication:
Methods and Applications.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 87–103, 2017.
DOI: 10.1007/978-3-319-66197-1 6

88 B. Luteberget et al.

integrating the tools into the users’ workflow and formalizing properties and
models requires careful thinking and domain expertise. The gap between auto-
mated verification and domain expert users is often caused by the lack of user
involvement. The users are usually not experts in verification techniques, i.e.
they do not know how to write properties in the verifier’s language, nor how to
build models for the verifier, nor how to interpret the output of the verifier when
violated properties are found. In our case, the users are expert engineers from
the railway domain, designing railway infrastructure.

We want to allow the end users to participate in the verification process.
Firstly, the domain experts need to understand the verification properties that
the tool actually verifies, as well as the model of the system that the tool works
with. Secondly, we want to allow the users to actively participate in maintaining
the verification properties, i.e. to change and adjust them when needed1. Thirdly,
we want that the domain experts are able to create their own specifications and
feed these into the verification engine, e.g. define specific expert knowledge as
verification conditions.2

Involving the user in the design of a system is well-studied in the field of par-
ticipatory design [8,19]. We use the term participatory verification when talking
about methods for including the end user in the verification process. The goal
is to make automated verification techniques accessible to engineers with little
programming experience.

We have previously demonstrated [12,13] an efficient verification and trou-
bleshooting tool integrated into the CAD-based program used by railway plan-
ning engineers. This tool performs a lightweight type of verification which we
call static infrastructure verification, and the results are updated continuously
as the engineer is modifying the station (see Fig. 1). However, the Prolog-like
formal logical specification language that we used for describing railway rules
and regulations is not easy for inexperienced programmers to write. Ideally, rail-
way engineers should be able to read the logical specifications to ensure that
they correctly represent the engineering domain. Furthermore, engineers should
themselves be able to maintain and extend the rule base with limited support
from verification experts. When we evaluated with railway engineers from Rail-
COMPLETE AS3 our prototype, they raised yet another concern: how could
they trace the violation, which the tool displays graphically, back to the source
documents?

These observations have led us to develop a controlled natural language
(CNL), which we call RailCNL, meant to be used as an intermediate represen-
tation between natural language texts (i.e. the railway regulations) and Datalog
[20] logic programs. RailCNL aims to be human-friendly enough for our domain
experts to work with to overcome the above challenges, and thus getting them
involved in using and improving the automated verification tool. At the same

1 Authorities typically make small adjustments to regulations several times per year,
whereas engineering best practices can be revised at any time.

2 Such expert knowledge is often seen as proprietary valuable assets of the company.
3 http://railcomplete.no.

http://railcomplete.no

Participatory Verification of Railway Infrastructure 89

Fig. 1. CAD integrated verification engine, displaying errors and warnings after check-
ing the model extracted from the CAD design against railway regulations on-the-fly.

time, the language is a formal language which can be automatically translated
into Datalog.

In our collaboration with Norwegian railway engineers, we have focused
on regulations in Norwegian language4, but our general approach (Sect. 2) is
language-independent. In Sect. 3 we present RailCNL, a user-friendly verifica-
tion front-end language for static railway infrastructure analysis. This comes
with an automatic translation into Datalog (Sect. 3.3), and backwards tracing
integrated into the CAD program, where marked-up original regulation texts
are used together with the CNL text to explain regulatory violations found in
the model (Sect. 3.4). In Sect. 4 we extract a design methodology from our expe-
rience with RailCNL, and conclude in Sect. 5 by describing the coverage of the
defined CNL, and presenting related and future work.

2 Approach to Participatory Verification for Railway
Regulations

To promote participatory verification of infrastructure railway designs against
regulations, we design a CNL for expressing railway regulations and expert
knowledge, integrating it with our previously developed verification engine.
Figure 2 presents the overall workflow of using the railway CNL integrated
with the engineer’s CAD-based environment and our verification engine.
Static infrastructure verification requires:

1. Models: railway infrastructure plans, typically created by arranging the sta-
tion layout using CAD-based programs, e.g. extensions of Autodesk Auto-
CAD.

2. Properties: regulations and expert knowledge, extracted from regulatory and
best-practices documents.

4 The examples presented in this text are English translations of originally Norwegian
content.

90 B. Luteberget et al.

CNL editor
See Section 5

Properties, CNL
representation

(w/refs to marked-
up original text)

User creates
plans in CAD

program

Model, railML
representation
of infrastructure
See Section 1 Datalog

reasoner

Issues presentation
(warnings, errors)

See Fig. 1

Original text
(w/marked-up
sentences)

See Section 3.4

Side by side tracing through
CNL to original text.

See Fig. 6

Fig. 2. Verification process overview. Models come directly from the CAD program,
which engineers are already familiar with. Properties come from paraphrasing the reg-
ulations using CNL, which in turn are translated into Datalog. The reasoner outputs
issues (warnings and errors) which are presented to the user in the CAD program by
highlighting the objects involved in the violation. Issues are traced back to the original
text (i.e. the regulations) though identifiers on the marked-up sentences.

The formalization of these into Datalog is described in our previous work
[12] which allows efficient automatic reasoning. Describing verification properties
using logical rules in Datalog is not new (along with other logics like temporal [2]
or dynamic logics [3,5]), and we expected that the declarative style of Datalog
would make it easy for railway engineers to read and write such properties.
However, a pilot project with the RailCOMPLETE engineers showed that they
were not proficient enough in logic programming to understand our encodings.

To allow the engineers to participate in the verification process, we develop
the controlled natural language RailCNL for representing properties on a higher
level of abstraction, make them closer to the original text while still retaining
the possibility for automatic translation into Datalog. This approach has the
following advantages:

– RailCNL is domain-specific, i.e. tailored both to the types of logical state-
ments needed by the verification engine, and to the regulations terminol-
ogy. This allows concise and readable expressions, increasing naturalness and
maintainability.

– The language closely resembles natural language, and can be read by engi-
neers with the required domain knowledge without learning a programming
language.

– A separate textual explanation (such as comments used in programming)
is not needed for presenting violations textually, as the properties are now
directly readable as natural text. Comments could still be used, e.g. to clarify
edge cases or to clarify semantics, as is done in the original texts.

Participatory Verification of Railway Infrastructure 91

– Statements in RailCNL can be linked to statements in the original text, so
that reading them side by side reveals to domain experts whether the CNL
paraphrasing of the natural text is valid. If not, they can edit the CNL text.

3 RailCNL: A Front-End Language for Railway
Verification

A controlled natural languages (CNL) is a constructed language resembling a
natural language (such as English) but with added restrictions on its grammar
and vocabulary. The restrictions are typically aimed at reducing the ambiguity
and complexity of unrestricted natural language. A CNL may or may not also
be a formal language, depending on its intended use. Wyner et al. [22] give high-
level recommendations on how to design controlled natural languages ranging
from informal to formal, general to domain-specific, simple to complex. For a
recent survey of CNLs, see Kuhn [9].

Grammatical Framework (GF) is a programming language for multilingual
grammar applications [16]. A GF program defines a grammar consisting of an
abstract syntax and one or more concrete syntaxes. The project also features the
resource grammar library (RGL), which is a comprehensive linguistic model of
natural languages with a unified API for forming sentences, and implementations
of this API for 32 languages. The RGL encapsulates the linguistic complexity of
the underlying natural languages, making the effort needed to map an abstract
syntax into another natural language minimal, often reducing to simply provid-
ing the domain-specific vocabulary. This makes GF a valuable tool for building
CNLs (see [11] for details).

3.1 RailCNL Grammar

With RailCNL, we aim to cover the following content (also see Table 1 on p. 14):

1. Definitions of railway-domain terms from a set of basic terms given by the
object types present in the CAD program and the railML exchange format.

2. Regulations (from infrastructure manager technical regulations5) which give
obligations or recommendations on the design of the railway infrastructure.

3. Expert knowledge given in textual form apart from official regulations, used
to gather and formalize engineering practice.

An English version of RailCNL’s core grammar is presented in Fig. 3. The full
grammar is defined in GF (see [11]), which has some advantages over classical
BNF parsers: (i) separation of abstract syntax and concrete syntax; (ii) resource
grammar library for natural languages, allowing us to compose sentences in nat-
ural language while abstracting away from morphological details; (iii) modularity
and extensibility, which we need for evolving a domain-specific language along-
side its application; and (iv) tool support for managing text (editors, predictive
parsing, visualization).
5 Norwegian infrastructure manager Bane NOR’s regulations: https://trv.jbv.no/.

https://trv.jbv.no/

92 B. Luteberget et al.

Fig. 3. English version of RailCNL’s core grammar in BNF. Some linguistic complexity
such as subject-verb agreement is ignored here; the actual grammar is fully specified
as GF code, which is ideally suited for handling such cases.

3.2 RailCNL Modules and Examples

RailCNL has a modular design (see Fig. 4) where domain-specific constructs are
separated from generic ones. However, CNL modules are not always trivially
composable, and care must be taken to retain naturalness while avoiding ambi-
guity when increasing the complexity of the language. We give a summary of
such trade-offs in Sect. 4. We describe below the main modules and constructs
of RailCNL, with examples of CNL text and the corresponding abstract syntax
tree (AST) obtained from the GF parser (see [11] for more examples).

Participatory Verification of Railway Infrastructure 93

Top-level statement types:
assertions, restrictions

Generic ontology
language Graph language:

paths, distances Areas

Railway classes
and properties
based on railML

Railway layout
constraints

Generic

Domain-specific

Module
Dependency

Fig. 4. Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

Top-Level Statement Types. Most normative sentences in railway regula-
tions are classified into one of the following types, or their negation:

– Constraint: logical constraints on the railway infrastructure model. These
sentences can be used by the Datalog reasoner to infer new statements.

– Obligation: design requirements on the railway infrastructure. The CAD
model is checked for compliance, and violations are presented as errors to
the user.

– Recommendation: design heuristics for railway infrastructure. The CAD
model is checked for compliance, but violations are presented as warnings or
for information only, which can be dismissed from the view.

Generic Ontology Module. Statements about classes of objects and their
properties form a natural basis for knowledge representation. We allow arbitrary
string tokens to represent class names, property names and values, and compose
these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary
word. The reason for allowing this is to give the CNL the power to define new
words.

– Properties and values: can be arbitrary string tokens. These can be joined
by “and” or “or” both on the level of values and of properties.

94 B. Luteberget et al.

– Restrictions: Equality is a common case of restriction for which we simply
choose the wording “to be”. Other restriction types such as greater than, less
than, etc., are worded more verbosely. Example: A main signal should have
height which is greater than 1.5m and less than 5.0m.

– Relations: the basic ontology module contains multiplicity restrictions on
relations. In the layout module presented below, we will see how relations
are used when writing statements which are concerned with more than one
object simultaneously. Example: A distant signal should have one or more
associated signals.

Layout Module. For writing statements about the topology of the railway
track, e.g. about paths as illustrated in Fig. 5c, we use the following language
constructs:

– Goal object: modifies the Subject type defined in the ontology module
to add conditions which make sense in a railway graph search, such as the
object’s orientation (same direction or opposite direction) the search’s direc-
tion (forwards or backwards) or the termination properties of the search.

– Path condition: argument to the search constructors which specifies what
restrictions are placed on the paths from source to goal object.

– Path restrictions: the combination of the source object, goal object and
path conditions. Example: All paths from a station border to the first facing
switch must pass an entry signal. (See Fig. 5a)

– Distance restrictions: See Fig. 5b and Example 2.

Station
boundary

Entry
signal

Facing
switch

All paths

(a) Path restrictions are constructed from a sub-
ject, a goal, a quantifier and a condition.

200 m

Entry
signal

Facing
switch

(b) Distance restrictions are constructed from a
subject, a goal, and a value restriction.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defin-
ing a graph of railway tracks.

Tunnel

Bridge

(d) Area containment can refer to either a planar
region or an interval on a track.

Fig. 5. Conditions on railway geographical layout as supported by RailCNL.

Participatory Verification of Railway Infrastructure 95

Area Module. The area module modifies subjects to express whether they
are inside a planar area, such as station areas, tunnels or bridges, or belongs to
a linear segment of a track, such as being located in a curve or on an incline
(see Fig. 5d).

3.3 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, ASTs obtained by parsing CNL
phrases with the GF runtime are transformed into Datalog rules (a description
of how this is implemented can be found in Sect. 4.3). Each top-level constructor
in the CNL definition has a translation function into the Datalog AST.

Predicate Conventions. We employ the following predicate conventions:

– Class membership as classname(object).
– Object properties as propertyname(object , value).
– Relation between objects as relationname(object , otherobject).

Explicit Variables. The Subject of the sentences of the Ontology module
defines an arbitrary individual whose definition does not depend on other infor-
mation. To translate it, we create a new variable denoting the arbitrary individ-
ual. The subject makes the starting point for the translation, as other parts of
the sentence refer back to the subject.

Ontology Restrictions. For ontology restrictions, such as obligations (“must”)
and recommendations (“should”), the Datalog rule head contains a predicate
which captures any violations of the text. This is achieved by first defining the
restrictions themselves (r1 found in Example 3 below) and then declaring a
rule which uses the negation of these restrictions (!r1 found) in order to yield
a counter-example.

96 B. Luteberget et al.

Disjunctive Normal Form. As Datalog does not (necessarily) have an or
operator, nor negation over complex terms, these must be factored out into
separate rules and auxiliary predicates. This transformation can be performed
by considering the result of the translation of a sentence to be a set of rules
(such as the two definitions of r1 found in Example 3), and the result of the
partial translation (such as adding a class or property constraint to a rule) to
be a set of conjunctions which are prefixes of the final rules.

Vocabulary Matching. The Norwegian regulations are written in Norwegian
and use other terms for class names, properties and relations than the railML
representation does. After identifying the class names from the CNL, they will
be looked up in a Norwegian/railML dictionary. For example, Norwegian “aksel-
teller” is mapped into the railML class “trainDetector” with the “axlecounting”
property.

3.4 Tool Integration

Verification tool usually output a counter-example when the requirements are
violated by the model. It is often difficult to understand from the counter-
example which of the (possibly several) requirements have been violated, and
why. We use the notion of tracing to trace such errors from the verification out-
put all the way to the original text regulations. Figure 6 shows our prototype
tool (running as a plug-in for the AutoCAD program used by Norwegian railway
engineers) presenting a problem in the CAD view, and how it is traced back
through the Datalog code, the AST, and the CNL code, to the original regu-
lations text. We mark-up sentences of the original text with an identifier, and
create a separate document containing the formalized representation using Rail-
CNL, using the identifiers as references back into the original text (Fig. 7). When
the verification program finds a violation among the regulations, it outputs the
identifier of the rule which has been violated, enabling the tracing.

Participatory Verification of Railway Infrastructure 97

Fig. 6. Tracing of requirements backwards from CAD program through CNL to
markedup original texts. From a regulation violation presented as a warning or error,
the user can browse to the corresponding regulatory text, shown side by side with the
CNL text.

4 Design Methodology for a Verification Front-End
Language

Our methodology is based on CNL and GF best practices; in particular, Ranta
et al. [18] describe the construction of a CNL by creating an abstract syntax
corresponding to a semantic model, mapping it into natural language, and also
how to avoid or handle ambiguity in parsing and translating. In a later report,
Ranta et al. [17] give explicit best practices, such as: (i) using a modular struc-
ture separating generic and domain-specific parts of the grammar, (ii) letting
the AST model the semantics of the text, as opposed to the logic of the under-
lying formalism, and (iii) trade-offs in modelling language restrictions purely in
context-free grammar versus using dependent types. We expand on these best
practices in the context of creating intermediate languages for writing diverse
natural text in a form which is translatable into formal verification properties.

The main activities for defining a verification front-end language using
GF are:

1. Define an abstract syntax which is able to represent statements of relevant
texts. We suggest two sub-activities to help manage the difficulty and com-
plexity of modelling domain-specific, yet diverse and informally structured,
texts:

98 B. Luteberget et al.

(a) Logic-driven design where basic (often non-domain-specific) constructs
which are known from the verification logic are added in a “bottom-up”
fashion.

(b) Text-driven design where highly domain-specific constructs are added
to the language to model specific examples in original texts in a “top-
down” fashion.

2. Write a concrete syntax, mapping the abstract syntax into one or more
natural languages, using Grammatical Framework and its resource grammar
library.

3. Create a translation from the abstract syntax to the target logic formalism,
i.e. the verification properties expressed in the input language of the solver.

In practice, the above activities may have subtle cross-dependencies, for
example the need for reducing ambiguity by encoding more restrictions in the
types, the usage of restricted keywords, and the need for structure on larger
scales than a single sentence. Section 4.2 addresses each of these concerns.

Fig. 7. Excerpt of original text marked-up with sentence identifiers, and properties
represented in CNL with references to original text.

4.1 Abstract Syntax

Attempting to formally model a body of informal specifications in its entirety
may be neither feasible nor desirable, for a variety of reasons:

1. The text might have some amount of non-normative content intended only
to give readers a better understanding of the subject matter.

2. Parts of the normative content might not be suitable for modelling in the
target verification tool.

3. The available body of text might be large and complex, and covering all parts
of it could require diverse domain knowledge from various disciplines.

Therefore, starting from arbitrary sentences in the natural text and trying to
cover them with the CNL will often prove to be a daunting task. Our approach

Participatory Verification of Railway Infrastructure 99

to handling this difficulty is to split the process of designing the abstract syntax
into two parts.

We start with a logic-driven design, where we define basic concepts in a
bottom-up fashion, such as classifying the statement types (constraints, restric-
tions, etc.) and describing sets of objects based on their class and their properties.
Even when deciding on the basic logic of the language, it might still be wise to
abstract away from the details of the underlying verification logic.

Next follows a text-driven design phase, where we look for text samples that
can be captured in the CNL, and make adjustments and additions to the gram-
mar to cover them. This phase might eventually lead to finding new basic build-
ing blocks, such as adding the graph module to RailCNL for describing railway
layout, or adding relations to the ontology module. However, it is easy to get
carried away and construct a highly nested language which has too much free-
dom and therefore becomes difficult to parse. Until the need for more generality
is proven, each newly added construct is kept specific.

Alternating between the logic-driven and the text-driven phases can be useful
for handling complexity and discovering the middle ground between informal
specifications and verification logic. A consequence of this compromise is that
the language will seldom be able to cover the exact wordings used in the original
texts. We accept this consequence and aim instead to provide a user-friendly
comparison of original text and CNL text for traceability (see Sect. 3.4).

4.2 Concrete Syntax

The abstract syntax is mapped into a natural language using the GF resource
grammar library (RGL), which is well-covered in the GF documentation and
literature (e.g. [17,18]). Each category of the abstract syntax is mapped into a
linearization type, often a record data structure. For example, the Subject cate-
gory of RailCNL is assigned the complex noun (CN) record type, and Statement
is assigned to utterance (Utt).

A major motivation for formal CNLs is that they can be unambiguously
parsed as long as the language is restricted enough. Languages written using GF
are often restricted to a pre-compiled vocabulary, to be able to identify structure
and handle morphological variation. For our verification application, however,
we need users to be able to define new terms dynamically, e.g. class names,
and afterwards write statements using both built-in and user-defined terms.
But allowing arbitrary string tokens can introduce ambiguity, i.e. the parser
returning many parse trees for a single statement. We mitigate this problem
through several means:

Type-level Restrictions. The railway term “main signal” is the common way
to refer to a signal which is of type main. Instead of using a recursively defined
constructor for this term (e.g. Adjective : String -> Class -> Class), we
can restrict the number of adjectives to one or two. This restriction is encoded
in the type system by separating the adjective-prefixed class name from the
non-prefixed one:

100 B. Luteberget et al.

StringClassAdjective : String -> BaseClass -> Class

StringClassNoAdjective : BaseClass -> Class

Reserved Keywords. Using arbitrary names as building blocks of our lan-
guage resembles the use of identifiers as variables in programming languages.
Programming languages have restricted keywords which cannot be used as
variable names. Similarly, we use the GF parser callbacks system to remove
parses which contain function words (such as “which”, “has”, “is”, “must”,
“be”, etc.) as arbitrary names. These are very unlikely to be needed as class
or property names.

Weighted Constructors. The GF parser has support for probabilistic gram-
mars, which work by assigning weights (probabilities) to the constructors of
the abstract syntax. By assigning a low weight to any constructor which uses
the String category, we ensure that built-in syntax is always prioritized over
arbitrary tokens.

Syntactic Guides. As in programming languages, special symbols and punctu-
ation can be used as guides for the parser if we are willing to compromise on nat-
uralness. Alternatively, we can increase the verbosity of the syntax, to reduce
the likelihood of causing ambiguity when embedded in a longer statement.

4.3 Translation into the Target Logic Formalism

If the abstract syntax is made to faithfully model the logic of the verification
system, then the translation into the logic formalism can be made by imple-
menting another GF concrete syntax for the target language. However, target
logics are often too low-level to represent regulations directly. GF incorporates
dependent type features which could allow for a more concise representation of
this translation, but this practice has not yet matured to a state in which it can
be said to be a recommended practice (see [17]). For RailCNL we have instead
written a separate program (in C#, as it is a part of the verification CAD plugin)
which translates from the abstract syntax of the CNL into Datalog. Section 3.3
describes the main techniques used.

5 Evaluation and Conclusions

RailCNL formalizes, in a human-readable manner, relevant parts of the techni-
cal regulations and expert knowledge used in an on-the-fly verification engine
integrated within railway construction design software. This type of verification
is limited to static infrastructure analysis, leaving the more heavy-weight analy-
sis, e.g. the implementation of control systems or interlocking specifications, to
specialized analysis software such as the products of Prover AB (Sweden) or
Systerel (France).

RailCNL is our approach to participatory verification, where the end users (rail-
way engineers, in our case) get full access to the verification properties. This allows
them to actively participate in the verification by maintaining the rule base and
managing their own properties (often based on experience and best practice).

Participatory Verification of Railway Infrastructure 101

We have collaborated with railway engineers associated with RailCOM-
PLETE during the design of the language and the writing of the verification
properties. Their feedback on limitations in the coverage of the language and
suggestions for simplification will continue to drive the design forwards.

We surveyed the Norwegian railway regulations and counted how much of
the relevant regulations our basic RailCNL covers (see results in Table 1, and
[11] for methodology and examples). The survey is limited to parts of the reg-
ulations covering railway track and signalling, as these are the disciplines that
the RailCOMPLETE software development is currently focusing on.

RailCNL is implemented using the Grammatical Framework and its resource
grammar library (RGL). While we have used Norwegian for representing regula-
tions, RailCNL could be easily extended with other languages supported by the
RGL. This would allow the system to be used for other authorities’ regulations
written in other languages. As long as most of the abstract syntax is re-used,
the translation into Datalog should also be readily adaptable.

Table 1. Coverage evaluation for a subset of Norwegian regulations. Phrases of the
original text which could be classified as normative (i.e. applying some restriction on
design) were evaluated for relevance to static infrastructure verification. The coverage
is the percentage of relevant phrases expressible in RailCNL.

Eng. discipline Chapter title Phrases Normative Relevant Covered Coverage

Track Planning: general technical 140 74 74 70 95%

Track Planning: geometry 278 157 152 119 78%

Signalling Planning: detectors 144 106 35 21 60%

Signalling Planning: interlocking 376 265 130 81 62%

Total 938 602 391 291 74%

Related Work. Johannisson [7] describes a CNL targeting the Object Con-
straint Language (OCL) for use in reasoning about Java program correctness
in the KeY system [3]. The language features dynamic vocabulary based on
input UML diagrams where vocabulary updates are achieved by re-compiling
the grammar using the GF compiler when needed. Angelov et al. [1] present a
conflict detection framework where GF is used to map the contract language CL
[15] into a CNL. Statement modalities, such as obligation, permission and pro-
hibition, are applied to complex actions. The structure of the CNL is modelled
after the CL language. Camilleri et al. [4] take a CNL approach to manipu-
lating contract-oriented diagrams using a visual diagram editor, a CNL with
text editor support, and a spreadsheet representation as interfaces to a common
model, which can be translated into timed automata for reasoning about system
properties.

Other efforts to define domain specific languages for railway verification have
typically focused on the implementation of control systems, such as Vu et al.
[21], while also considering the verification to be an activity which is separate

102 B. Luteberget et al.

from design and implementation. James et al. [6] show how to integrate UML
modelling of the railway domain with graphical modelling and specification and
verification languages, also keeping the focus on verifying the control system
implementation of a fixed design.

Future Work. In working with railway engineers, we discovered language fea-
tures which could be added to increase the coverage of RailCNL:

1. A notion of scopes and exceptions, so that more complex conditional restric-
tions can be expressed more naturally.

2. Mathematical formulas as a sub-language.
3. Vague or soft requirements represented not for direct use in verification, but

for requiring manual checks at some points.

A formal CNL with well-chosen linearizations can be very natural, and often
perfectly readable for a non-programmer with the required domain knowledge.
However, writing in a formal CNL can potentially be as difficult as writing
in a programming language. A solution to this problem is the use of special-
purpose editors which guide the user towards structuring their text according to
the underlying formal grammar. Different approaches to CNL editors have been
explored (see e.g. [4,10,14]). We plan to investigate these further and integrate
one such editor for RailCNL in the RailCOMPLETE CAD environment, and
carry out a usability study on its efficacy.

We are continuing our collaboration with Norwegian railway engineers to
evaluate the usability of our prototype tools, increase the text coverage and
extend the language to handle other railway engineering disciplines such as cate-
nary lines and ground works.

Acknowledgements. We thank Martin Steffen and Aarne Ranta for numerous useful
interactions, and Claus Feyling (CEO of RailCOMPLETE AS) for allowing us to use
the time of his engineers for testing our results and other railway specific interactions.

References

1. Angelov, K., Camilleri, J.J., Schneider, G.: A framework for conflict analysis of nor-
mative texts written in controlled natural language. JLAP 82(5), 216–240 (2013).
doi:10.1016/j.jlap.2013.03.002

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-69061-0

4. Camilleri, J.J., Paganelli, G., Schneider, G.: A CNL for contract-oriented diagrams.
In: Davis, B., Kaljurand, K., Kuhn, T. (eds.) CNL 2014. LNCS (LNAI), vol. 8625,
pp. 135–146. Springer, Cham (2014). doi:10.1007/978-3-319-10223-8 13

5. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press, Cambridge (2000)

http://dx.doi.org/10.1016/j.jlap.2013.03.002
http://dx.doi.org/10.1007/978-3-540-69061-0
http://dx.doi.org/10.1007/978-3-319-10223-8_13

Participatory Verification of Railway Infrastructure 103

6. James, P., Roggenbach, M.: Encapsulating formal methods within domain specific
languages: a solution for verifying railway scheme plans. Math. Comput. Sci. 8(1),
11–38 (2014). doi:10.1007/s11786-014-0174-0

7. Johannisson, K.: Natural language specifications. In: Beckert et al. [3], pp. 317–333.
doi:10.1007/978-3-540-69061-0 7

8. Kensing, F., Blomberg, J.: Participatory design: issues and concerns. Comput. Sup-
port. Coop. Work (CSCW) 7(3), 167–185 (1998). doi:10.1023/A:1008689307411

9. Kuhn, T.: A survey and classification of controlled natural languages. Comput.
Linguist. 40(1), 121–170 (2014). doi:10.1162/COLI a 00168

10. Ljunglöf, P.: Editing syntax trees on the surface. In: NoDaLiDa 2011, pp. 138–145
(2011)

11. Luteberget, B., Camilleri, J.J., Johansen, C., Schneider, G.: Participatory Verifica-
tion of Railway Infrastructure Regulations using RailCNL (long version). Technical
report 465, University of Oslo (2017)

12. Luteberget, B., Johansen, C.: Efficient verification of railway infrastructure designs
against standard regulations. Formal Methods Syst. Des., 1–32 (2017). doi:10.1007/
s10703-017-0281-z

13. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking of rail-
way infrastructure designs. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS,
vol. 9681, pp. 491–507. Springer, Cham (2016). doi:10.1007/978-3-319-33693-0 31

14. Meza Moreno, M.S., Bringert, B.: Interactive multilingual web applications with
grammatical framework. In: Nordström, B., Ranta, A. (eds.) GoTAL 2008.
LNCS (LNAI), vol. 5221, pp. 336–347. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85287-2 32

15. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts. J.
Logic Algebr. Program. (JLAP) 81(4), 458–490 (2012). doi:10.1016/j.jlap.2012.03.
003

16. Ranta, A.: Grammatical framework. J. Funct. Program. 14(2), 145–189 (2004).
doi:10.1017/S0956796803004738

17. Ranta, A., Camilleri, J., Détrez, G., Enache, R., Hallgren, T.: Grammar tool
manual and best practices. Technical report, MOLTO Deliverable D2.3, MOLTO
Consortium, Göteborg (2012). http://www.molto-project.eu/biblio/deliverable/
grammar-tools-and-best-practices

18. Ranta, A., Enache, R., Détrez, G.: Controlled language for everyday use: the
MOLTO phrasebook. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS
(LNAI), vol. 7175, pp. 115–136. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31175-8 7

19. Sharp, H., Rogers, Y., Preece, J.: Interaction Design: Beyond Human-Computer
Interaction. Wiley, New York (2007)

20. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. CSPP, New
York (1988)

21. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway
interlocking systems. In: FORMS/FORMAT 2014, pp. 200–209. TU Braunschweig
(2014)

22. Wyner, A., et al.: On controlled natural languages: properties and prospects. In:
Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 281–289. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14418-9 17

http://dx.doi.org/10.1007/s11786-014-0174-0
http://dx.doi.org/10.1007/978-3-540-69061-0_7
http://dx.doi.org/10.1023/A:1008689307411
http://dx.doi.org/10.1162/COLI_a_00168
http://dx.doi.org/10.1007/s10703-017-0281-z
http://dx.doi.org/10.1007/s10703-017-0281-z
http://dx.doi.org/10.1007/978-3-319-33693-0_31
http://dx.doi.org/10.1007/978-3-540-85287-2_32
http://dx.doi.org/10.1007/978-3-540-85287-2_32
http://dx.doi.org/10.1016/j.jlap.2012.03.003
http://dx.doi.org/10.1016/j.jlap.2012.03.003
http://dx.doi.org/10.1017/S0956796803004738
http://www.molto-project.eu/biblio/deliverable/grammar-tools-and-best-practices
http://www.molto-project.eu/biblio/deliverable/grammar-tools-and-best-practices
http://dx.doi.org/10.1007/978-3-642-31175-8_7
http://dx.doi.org/10.1007/978-3-642-31175-8_7
http://dx.doi.org/10.1007/978-3-642-14418-9_17

An In-Depth Investigation of Interval Temporal
Logic Model Checking with Regular Expressions

Laura Bozzelli1, Alberto Molinari2, Angelo Montanari2(B), and Adriano Peron1

1 University of Napoli “Federico II”, Napoli, Italy
2 University of Udine, Udine, Italy

molinari.alberto@gmail.com, angelo.montanari@uniud.it

Abstract. In the last years, the model checking (MC) problem for inter-
val temporal logic (ITL) has received an increasing attention as a viable
alternative to the traditional (point-based) temporal logic MC, which
can be recovered as a special case. Most results have been obtained by
imposing suitable restrictions on interval labeling. In this paper, we over-
come such limitations by using regular expressions to define the behavior
of proposition letters over intervals in terms of the component states. We
first prove that MC for Halpern and Shoham’s ITL (HS), extended with
regular expressions, is decidable. Then, we show that formulas of a large
class of HS fragments, namely, all fragments featuring (a subset of) HS
modalities for Allen’s relations meets, met-by, starts, and started-by, can
be model checked in polynomial working space (MC for all these frag-
ments turns out to be PSPACE-complete).

1 Introduction

Model checking (MC) is commonly recognized as one of the most effective tech-
niques in automatic system verification. It has also been successfully used in
databases, e.g., active databases, database-backed web applications, and NoSQL
databases, and artificial intelligence, e.g., planning, configuration systems, and
multi-agent systems. MC allows one to automatically check whether a model of
a given system satisfies a desired property to ensure that it meets the expected
behaviour. A good balancing of expressiveness and complexity in the choice of
the computational model and the specification formalism is a key factor for the
actual exploitation of MC. Systems are usually modeled as finite-state transi-
tion graphs (Kripke structures), while properties are commonly expressed by
formulas of point-based temporal logics, such as LTL, CTL, and CTL∗. Various
improvements to the computational model and/or the specification language
have been proposed in the literature. As for the former, we mention MC for
pushdown systems [7], that feature an infinite state space, and for the latter, the
extensions of LTL with promptness [9].

In this paper, we focus on MC with interval temporal logic (ITL) as the speci-
fication language. ITL allows one to deal with relevant temporal properties, such
as actions with duration, accomplishments, and temporal aggregations, which
are inherently “interval-based” and cannot be properly expressed by point-based
temporal logics. In the last years, ITL MC has received an increasing attention
c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 104–119, 2017.
DOI: 10.1007/978-3-319-66197-1 7

An In-Depth Investigation of Interval Temporal Logic Model Checking 105

as a viable alternative to the traditional (point-based) temporal logic MC [18],
which can be recovered as a special case [4]. ITLs feature intervals, instead of
points, as their primitive temporal entities [8,19,21], and they have been fruit-
fully applied in various areas of computer science, including formal verification,
computational linguistics, planning, and multi-agent systems [10,11,19]. Among
ITLs, the landmark is Halpern and Shoham’s modal logic of time intervals HS [8].
It features one modality for each of the 13 ordering relations between pairs of
intervals (the so-called Allen’s relations [1]), apart from equality. Its satisfiability
problem is undecidable over all relevant classes of linear orders [8], and most of
its fragments are undecidable as well [6,13]. Some meaningful exceptions are the
logic of temporal neighbourhood AA and the logic of sub-intervals D.

The MC problem for HS and its fragments consists in the verification of the
correctness of the behaviour of a given system with respect to some relevant
interval properties. To make it effective, we need to collect information about
states into computation stretches: we interpret each finite computation path as
an interval, and we define its labelling on the basis of the labelling of the states
that compose it. Most results have been obtained by imposing suitable restric-
tions on interval labeling: either a proposition letter can be constrained to hold
over an interval iff it holds over each component state (homogeneity assump-
tion [20]), or interval labeling can be defined in terms of interval endpoints.

In [14], Molinari et al. deal with MC for full HS over finite Kripke struc-
tures, under the homogeneity assumption, according to a state-based seman-
tics that allows branching in the past and in the future. They introduce the
fundamental elements of the problem and prove its non-elementary decidabil-
ity and PSPACE-hardness. Since then, the attention was also brought to the
fragments of HS, which, similarly to what happens with satisfiability, are often
computationally much better [3,5,14–17]. The MC problem for some HS frag-
ments, extended with epistemic operators, has been investigated by Lomuscio
and Michaliszyn in [10,11]. Their semantic assumptions differ from those of [14],
making it difficult to compare the two approaches. Formulas are interpreted over
the unwinding of the Kripke structure (computation-tree-based semantics [4]),
and interval labeling takes into account only the endpoints of intervals. The
decidability status of MC for full epistemic HS is still unknown. In [12], Lomuscio
and Michaliszyn propose to use regular expressions to define the labeling of
proposition letters over intervals in terms of the component states. They prove
the decidability of MC with regular expressions for some restricted fragments of
epistemic HS, giving rough upper bounds to its computational complexity.

In this paper, we prove that MC for full HS with regular expressions is decid-
able (Sect. 4) and that its complexity, when restricted to system models—that
is, if we assume the formula to be constant length—is P. Then, by exploiting
a small-model theorem (Sect. 5), in Sect. 6, we show that formulas of a large
class of HS fragments, i.e., those featuring (any subset of) HS modalities for the
Allen’s relations meets, met-by, started-by, and starts (AABB), can be checked
in polynomial working space (MC for all these is PSPACE-complete).

Due to lack of space, some proofs are omitted: they can be found in [2].

106 L. Bozzelli et al.

2 Preliminaries

We first introduce notation and background knowledge, and then the logic HS.
Let N be the set of natural numbers. For all i, j ∈ N, we denote by [i, j],

with i ≤ j, the set of naturals h such that i ≤ h ≤ j. Let Σ be an alphabet,
w be a non-empty finite word over Σ, and ε be the empty word. We denote by
|w| the length of w. For all 1 ≤ i ≤ j ≤ |w|, w(i) denotes the i-th letter of
w (i is called a w-position), while w(i, j) denotes the finite subword of w given
by w(i) · · · w(j). Let |w| = n. We define fst(w) = w(1) and lst(w) = w(n).
Pref(w) = {w(1, i) | 1 ≤ i ≤ n − 1} and Suff(w) = {w(i, n) | 2 ≤ i ≤ n} are
the sets of all proper prefixes and suffixes of w, respectively. For i ∈ [1, n], wi is
a shorthand for w(1, i). The concatenation of two words w and w′ is denoted as
usual by w · w′. Moreover, if lst(w) = fst(w′), w � w′ represents w(1, n − 1) · w′.

For all h, n ≥ 0, let Tower(h, n) denote a tower of exponentials of height h
and argument n: Tower(0, n) = n and Tower(h + 1, n) = 2Tower(h,n). Moreover,
let h-EXPTIME denote the class of languages decided by deterministic Turing
machines whose number of computation steps is bounded by functions of n in
O(Tower(h, nc)), for some constant c ≥ 1. Note that 0-EXPTIME is P.

2.1 Kripke Structures, Regular Expressions, and Finite Automata

Finite state systems are modelled as finite Kripke structures. Let AP be a finite
set of proposition letters, which represent predicates over the states of the system.

Definition 1 (Kripke structure). A Kripke structure is a tuple K = (AP , S,
R, μ, s0), where S is a set of states, R ⊆ S × S is a left-total transition relation,
μ : S �→ 2AP is a total labelling function assigning to each state s the set of
proposition letters that hold over it, and s0 ∈ S is the initial state. For s ∈ S, the
set R(s) of successors of s is the non-empty set of states s′ such that (s, s′) ∈ R.
We say that K is finite if S is finite.

Let K = (AP , S,R, μ, s0) be a Kripke structure. A trace of K is a non-empty
finite word ρ over S such that (ρ(i), ρ(i + 1)) ∈ R for i ∈ [1, |ρ| − 1]. A trace is
initial if it starts from s0. We denote by TrcK the infinite set of traces of K . A
trace ρ induces the finite word μ(ρ) over 2AP given by μ(ρ(1)) . . . μ(ρ(n)), with
n = |ρ|. We call μ(ρ) the labeling sequence induced by ρ.

Let us now introduce the class of regular expressions over finite words. Since
we are interested in expressing requirements over the labeling sequences induced
by the traces of Kripke structures, here we consider proposition-based regular
expressions (RE), where atomic expressions are propositional formulas over AP
instead of letters over an alphabet. Formally, the set of RE r over AP is defined
as r:: = ε | φ | r ∪ r | r · r | r∗ where φ is a propositional formula over AP . The
length |r| of an RE r is the number of subexpressions of r. An RE r denotes a
language L(r) of finite words over 2AP defined as: (i) L(ε) = {ε} and L(φ) =
{A ∈ 2AP | A satisfies φ}; (ii) L(r1∪r2) = L(r1)∪L(r2), L(r1 ·r2) = L(r1)·L(r2),
and L(r∗) = (L(r))∗. By well-known results, the class of RE over AP captures
the class of regular languages of finite words over 2AP .

An In-Depth Investigation of Interval Temporal Logic Model Checking 107

A non-deterministic finite automaton (NFA) is a tuple A = (Σ,Q,Q0, δ, F),
where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is the set of
initial states, δ : Q × Σ �→ 2Q is the transition function, and F ⊆ Q is the
set of accepting states. Given a finite word w over Σ, with |w| = n, and two
states q, q′ ∈ Q, a run (or computation) of A from q to q′ over w is a finite
sequence of states q1, . . . , qn+1 such that q1 = q, qn+1 = q′, and for all i ∈ [1, n],
qi+1 ∈ δ(qi, w(i)). The language L(A) accepted by A consists of the finite words
w over Σ such that there is a run from some initial state to some accepting state
over w. A deterministic finite automaton (DFA) is an NFA D = (Σ,Q,Q0, δ, F)
such that Q0 is a singleton and for all (q, c) ∈ Q × Σ, δ(q, c) is a singleton.

Remark 2. By well-known results, given an RE r over AP , one can construct, in
a compositional way, an NFA Ar over 2AP , whose number of states is at most 2|r|,
such that L(Ar) = L(r). We call Ar the canonical NFA associated with r. Note
that the number of edges of Ar may be exponential in |AP | (edges are labelled
by assignments A ∈ 2AP satisfying propositional formulas φ of r); however, we
can avoid storing edges, as they can be recovered in polynomial time from r.

2.2 The Interval Temporal Logic HS

An interval algebra to reason about intervals and their relative order was pro-
posed by Allen in [1], while a systematic logical study of interval representa-
tion and reasoning was done a few years later by Halpern and Shoham, who
introduced the interval temporal logic HS featuring one modality for each Allen
relation, but equality [8]. Table 1 depicts 6 of the 13 Allen’s relations, together
with the corresponding HS (existential) modalities. The other 7 relations are the
6 inverse relations (the inverse R of a binary relation R is such that bR a iff aR b)
and equality. Moreover, if 〈X〉 is the modality for R , 〈X〉 is the modality for R .

Table 1. Allen’s relations and corresponding HS modalities.

Let Pu be a finite set of uninterpreted interval properties. The HS language
over Pu consists of proposition letters from Pu, the Boolean connectives ¬ and
∧, and a temporal modality for each of the (non trivial) Allen’s relations, i.e.,
〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, and 〈O〉. HS formulas are
defined by the grammar ψ:: = pu | ¬ψ | ψ ∧ψ | 〈X〉ψ | 〈X〉ψ, where pu ∈ Pu and
X ∈ {A,L,B,E,D,O}. We will also use the standard connectives (disjunction ∨

108 L. Bozzelli et al.

and implication →). Moreover, for any modality X, the dual universal modalities
[X]ψ and [X]ψ are defined as ¬〈X〉¬ψ and ¬〈X〉¬ψ, respectively. Given any
subset of Allen’s relations {X1, . . . , Xn}, we denote by X1 · · ·Xn the HS fragment
that features existential (and universal) modalities for X1, . . . , Xn only. W.l.o.g.,
we assume the non-strict semantics of HS, which admits intervals consisting of
a single point1. Under such an assumption, all HS modalities can be expressed
in terms of modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [21]. HS can thus be viewed as a
multi-modal logic with 4 primitive modalities. However, since later we will focus
on the HS fragments AAEE and AABB—which respectively do not feature 〈B〉,
〈B〉 and 〈E〉, 〈E〉—we add both 〈A〉 and 〈A〉 to the considered set of modalities.

In [14], the authors investigate the MC problem over finite Kripke structures
K for HS formulas where intervals correspond to the traces of K . The approach
followed there is subject to two restrictions: (i) the set Pu of HS-proposition let-
ters and the set AP of proposition letters for the Kripke structure coincide, and
(ii) a proposition letter holds over an interval iff it holds over all its sub-intervals
(homogeneity assumption). Here, we adopt a more general and expressive app-
roach according to which an abstract interval proposition letter pu ∈ Pu denotes
a regular language of finite words over 2AP , that is, every pu is a (proposition-
based) regular expression over AP . Thus, hereafter, an HS formula over AP is
an HS formula whose interval proposition letters (or atomic formulas) are RE r
over AP . Given a Kripke structure K = (AP , S,R, μ, s0), a trace ρ of K , and an
HS formula ϕ over AP , the satisfaction relation K , ρ |= ϕ is inductively defined
as follows (we omit the standard clauses for Boolean connectives):

– K , ρ |= r iff μ(ρ) ∈ L(r) for each RE r over AP ,
– K , ρ |= 〈B〉ϕ iff there exists ρ′ ∈ Pref(ρ) such that K , ρ′ |= ϕ,
– K , ρ |= 〈E〉ϕ iff there exists ρ′ ∈ Suff(ρ) such that K , ρ′ |= ϕ,
– K , ρ |= 〈B〉ϕ iff K , ρ′ |= ϕ for some trace ρ′ such that ρ ∈ Pref(ρ′),
– K , ρ |= 〈E〉ϕ iff K , ρ′ |= ϕ for some trace ρ′ such that ρ ∈ Suff(ρ′).

K is a model of ϕ, denoted as K |= ϕ, if for all initial traces ρ of K , it holds
that K , ρ |= ϕ. The MC problem for HS is the problem of checking, for a finite
Kripke structure K and an HS formula ϕ, whether or not K |= ϕ. The problem
is not trivially decidable since the set TrcK of traces of K is infinite.

3 The General Picture

Here we give a short account of research on MC for HS and its fragments, and
we enlighten the original contributions of the present paper (see Table 2).

Let us consider first the MC problem for HS and its fragments, under
the homogeneity assumption, according to a state-based semantics [4]. In [14],
Molinari et al. provide a MC algorithm for (full) HS, with a non-elementary
complexity, that, given a finite Kripke structure K and a bound k on the nesting
depth of 〈E〉 and 〈B〉 modalities in the input HS formula, exploits a finite and

1 All the results we prove in the paper hold for the strict semantics as well.

An In-Depth Investigation of Interval Temporal Logic Model Checking 109

Table 2. Complexity of MC for HS and its fragments (†local MC).

Homogeneity Regular expressions Endpoints + KC

Full HS, BE non-elem.
EXPSPACE-hard

non-elem.
EXPSPACE-hard

BE+KC†: PSPACE
BE†: P

AABBE,AAEBE EXPSPACE
PSPACE-hard

non-elem.
PSPACE-hard

AABE PSPACE-complete non-elem.
PSPACE-hard

AABB,BB,B,
AAEE,EE,E

PSPACE-complete PSPACE-complete AB+KC: non-elem.

AAB,AAE,AB,AE PNP-complete PSPACE-complete

AA,AB,AE,A,A PNP[O(log2 n)]

PNP[O(logn)]-hard

PSPACE-complete

Prop,B,E co-NP-complete PSPACE-complete

satisfiability-equivalent representation for the infinite set TrcK , that accounts
for K and k. EXPSPACE-hardness of BE, and thus of full HS, has been shown
in [3]. An EXPSPACE MC algorithm for the fragments AABBE and AAEBE has
been devised in [16]. A number of well-behaved HS fragments, whose MC prob-
lem has a computational complexity markedly lower than that of full HS, have
been identified in [3,5,15,17], where MC has been proved to be (i) PSPACE-
complete for AABE, AABB, AAEE, B, and E, (ii) PNP-complete for AB, AAB,
AE, and AAE, (iii) in between PNP[O(log n)] and PNP[O(log2 n)] for AA, A, A, AB,
and AE, and (iv) co−NP-complete for B, E, and Prop (the pure propositional
fragment).

In [10,11], Lomuscio and Michaliszyn investigate MC for some HS fragments
extended with the epistemic modalities K and C, according to a computation-
tree-based semantics [4], under the assumption that interval labeling is defined
by interval endpoints only. They prove that local MC for BE+KC is PSPACE-
complete (it is in P for BE), and they give a non-elementary upper bound to
the complexity of MC for AB+KC. Later, in [12], they propose an alternative
definition of interval labeling for the two fragments, which associates a regular
expression over the set of states of the Kripke structure with each proposition
letter, that leads to a significant increase in expressiveness, at no extra compu-
tational cost. Nothing is said about MC for full HS (with or without K, C).

In this paper, we define interval labeling via regular expressions in a way that
can be shown to be equivalent to that of [12]. We first show that MC for (full)
HS with regular expressions and state-based semantics is decidable. Then, we
prove that relaxing the homogeneity assumption via regular expressions comes
at no cost for AABB, AAEE, BB, EE, B, and E, that remain in PSPACE, while
AAB and AAE and their fragments increase their complexity to PSPACE. Since
the computation-tree-based semantics and the state-based one behave exactly
in the same way when restricted to HS fragments featuring present and future

110 L. Bozzelli et al.

modalities only2, from the PSPACE-completeness of AABB, it immediately
follows the PSPACE membership of AB with regular expressions, devoid of
epistemic operators (in fact, the non-elementary complexity of MC for AB in [12]
can be hardly ascribed to the addition of epistemic operators). The definitions
of interval labeling given in [10,11,14] can be recovered as special cases of the
present one as follows. To force homogeneity, all regular expressions in the for-
mula have to be of the form p·p∗, for p ∈ AP , while interval labeling based on end-
points is captured by regular expressions of the form

⋃
(i,j)∈I(qi ·∗ ·qj)∪

⋃
i∈I′ qi,

for some suitable I ⊆ {1, . . . , |S|}2, I ′ ⊆ {1, . . . , |S|}, where qi ∈ AP is a letter
labeling the state si ∈ S of K only.

4 MC for Full HS

In this section, we give an automata-theoretic solution to the MC problem for
full HS. Given a finite Kripke structure K and an HS formula ϕ over AP , we
compositionally construct an NFA over the set of states of K accepting the set of
traces ρ of K such that K , ρ |= ϕ. The size of the resulting NFA is nonelementary,
but it is just linear in the size of K . To ensure that the non-elementary blow-up
does not depend on the size of K , we introduce a special subclass of NFAs, that
we call K -NFA. Let K = (AP , S,R, μ, s0) be a Kripke structure over AP .

Definition 3. A K -NFA is an NFA A = (S,Q,Q0, δ, F) over S satisfying: (i) the
set Q of states is of the form M×S (M is called the main component or the set of
main states); (ii) Q0 ∩F = ∅, i.e., the empty word ε is not accepted; (iii) for all
(q, s) ∈ M ×S and s′ ∈ S, δ((q, s), s′) = ∅ if s′ �= s, and δ((q, s), s) ⊆ M ×R(s).

Note that a K -NFA A accepts only traces of K . Moreover, for all words
ρ ∈ S+, if there is a run of A over ρ, then ρ is a trace of K .

Proposition 4. Let A be an NFA over 2AP with n states. One can construct in
polynomial time a K -NFA AK with at most n + 1 main states accepting the set
of traces ρ of K such that μ(ρ) ∈ L(A).

Proof. Let A = (2AP , Q,Q0, δ, F). By using an additional state, we can assume
ε /∈ L(A) (i.e., Q0 ∩ F = ∅). Then, AK = (S,Q × S,Q0 × S, δ′, F × S), where
for all (q, s) ∈ Q × S and s′ ∈ S, δ′((q, s), s′) = ∅ if s′ �= s, and δ′((q, s), s) =
δ(q, μ(s)) × R(s). Since R(s) �= ∅ for all s ∈ S, the thesis follows. ��

We now extend the semantics of the HS modalities 〈B〉, 〈B〉, 〈E〉, 〈E〉 over
K to languages L of finite words over S. Given any such language L over S, let
〈B〉K (L), 〈E〉K (L), 〈B〉K (L), 〈E〉K (L) be the languages of traces of K defined as:

– 〈B〉K (L) = {ρ ∈ TrcK | ∃ ρ′ ∈ L ∩ S+ and ρ′′ ∈ S+ such that ρ = ρ′ · ρ′′},
– 〈B〉K (L) = {ρ ∈ TrcK | ∃ ρ′ ∈ S+ such that ρ · ρ′ ∈ L ∩ TrcK },

2 As shown in [4], this is not the case in general: the computation-tree-based semantics
of [10–12] is subsumed by the state-based one of [14] and follow-up papers.

An In-Depth Investigation of Interval Temporal Logic Model Checking 111

– 〈E〉K (L) = {ρ ∈ TrcK | ∃ ρ′′ ∈ L ∩ S+ and ρ′ ∈ S+ such that ρ = ρ′ · ρ′′},
– 〈E〉K (L) = {ρ ∈ TrcK | ∃ ρ′ ∈ S+ such that ρ′ · ρ ∈ L ∩ TrcK }.

The compositional translation of HS formulas into a K -NFA is based on the
following two propositions. First, we show that K -NFAs are closed under the
above language operations.

Proposition 5. Given a K -NFA A with n main states, one can construct
in polynomial time K -NFAs with n + 1 main states accepting the languages
〈B〉K (L(A)), 〈E〉K (L(A)), 〈B〉K (L(A)), and 〈E〉K (L(A)), respectively.

Proof. Let A = (S,M × S,Q0, δ, F) be the given K -NFA, where M is the set of
main states. We omit the constructions for 〈E〉K (L(A)) and 〈E〉K (L(A)) (which
are symmetric to those for 〈B〉K (L(A)) and 〈B〉K (L(A)), respectively): see [2].

Construction for the language 〈B〉K (L(A)). Let us consider the NFA A〈B〉 over
S given by A〈B〉 = (S, (M ∪ {qacc}) × S,Q0, δ

′, {qacc} × S), where qacc /∈ M is a
fresh main state, and for all (q, s) ∈ (M ∪{qacc})×S and s′ ∈ S, δ′((q, s), s′) = ∅,
if s′ �= s, and δ′((q, s), s) is defined as follows:

δ′((q, s), s) =

⎧
⎨

⎩

δ((q, s), s) if (q, s) ∈ (M × S) \ F
δ((q, s), s) ∪ ({qacc} × R(s)) if (q, s) ∈ F
{qacc} × R(s) if q = qacc.

Given an input word ρ, from an initial state (q0, s) of A, the automaton A〈B〉
simulates the behavior of A from (q0, s) over ρ, but when A is in an accepting
state (qf , s) and the current input symbol is s, A〈B〉 can additionally choose to
move to a state in {qacc} × R(s), which is accepting for A〈B〉. From such states,
A〈B〉 accepts iff the remaining portion of the input is a trace of K . Formally, by
construction, since A is a K -NFA, A〈B〉 is a K -NFA as well. Moreover, a word ρ
over S is accepted by A〈B〉 iff ρ is a trace of K having some proper prefix ρ′ in
L(A) (note that ρ′ �= ε since A is a K -NFA). Hence, L(A〈B〉) = 〈B〉K (L(A)).

Construction for the language 〈B〉K (L(A)). Let us consider the NFA A〈B〉 over
S given by A〈B〉 = (S, (M ∪ {q′

0}) × S, {q′
0} × S, δ′, F ′), where q′

0 /∈ M is a fresh
main state and δ′ and F ′ are defined as follows: (i) for all (q, s) ∈ (M ∪{q′

0})×S
and s′ ∈ S, δ′((q, s), s′) = ∅ if s′ �= s, and δ′((q, s), s) is defined as follows:

δ′((q, s), s) =

⎧
⎨

⎩

⋃

(q0,s)∈Q0

δ((q0, s), s) if q = q′
0

δ((q, s), s) otherwise.

(ii) The set F ′ of accepting states is the set of states (q, s) of A such that there
is a run of A from (q, s) to some state in F over some non-empty word. It easily
follows by construction that A〈B〉 is a K -NFA and L(A〈B〉) = 〈B〉K (L(A)). ��

We now show that K -NFAs are closed under Boolean operations.

Proposition 6. Given two K -NFAs A and A ′ with n and n′ main states, respec-
tively, one can construct:

112 L. Bozzelli et al.

– in time O(n + n′) a K -NFA with n + n′ main states accepting L(A) ∪ L(A ′);
– in time 2O(n) a K -NFA with 2n+1 + 1 main states accepting TrcK \ L(A).

Proof. We omit the construction for union, as it is a natural generalization of the
one for NFAs, and focus on complementation. Let A = (S,M × S,Q0, δ, F). Let
n be the number of main states of A. First, we need a preliminary construction.
Let us consider the NFA A ′′ = (S, (M ∪ {qacc}) × S,Q0, δ

′′, {qacc} × S), where
qacc /∈ M is a fresh main state, and for all (q, s) ∈ (M ∪ {qacc}) × S and s′ ∈ s,
δ′′((q, s), s′) = ∅ if s′ �= s, and

δ′′((q, s), s) =

⎧
⎨

⎩

δ((q, s), s) ∪ ({qacc} × S) if q ∈ M and δ((q, s), s) ∩ F �= ∅
δ((q, s), s) if q ∈ M and δ((q, s), s) ∩ F = ∅
∅ if q = qacc.

Note that A ′′ is not a K -NFA. However, L(A ′′) = L(A).
Next we show that it is possible to construct in time 2O(n) a weak K -NFA Ac

with 2n+1 main states accepting (TrcK \L(A ′′))∪{ε}, where a weak K -NFA is a K -
NFA but the requirement that the empty word ε is not accepted is relaxed. Thus,
since a weak K -NFA can be easily converted into an equivalent K -NFA by using an
additional main state and L(A ′′) = L(A), the result follows. Let M̃ = M ∪{qacc}.
Then, the weak K -NFA Ac is given by Ac = (S, 2M̃ × S,Q0,c, δc, Fc), where Q0,c,
Fc, and δc are defined as follows: (i) Q0,c = {(P, s) ∈ 2M × S | P = {q ∈ M |
(q, s) ∈ Q0}}; (ii) Fc = {(P, s) ∈ 2M × S}; (iii) for all (P, s) ∈ 2M̃ × S and
s′ ∈ S, δc((P, s), s′) = ∅ if s′ �= s, and δc((P, s), s) is given by

⋃

s′∈R(s)

{
({q′ ∈ M̃ | (q′, s′) ∈

⋃

p∈P

δ′′(p, s)}, s′)
}

.

By construction, Ac is a weak K -NFA. Hence Ac does not accept words in
S+ \ TrcK . Moreover, by construction, Q0,c ⊆ F , thus ε ∈ L(Ac). Finally it is
easy to prove that ρ ∈ L(A ′′) if and only if ρ /∈ L(Ac). See [2]. ��

Let ϕ be an HS formula. We can convert ϕ into an equivalent formula, called
existential form of ϕ, that makes use of negations, disjunctions, and the exis-
tential modalities 〈B〉, 〈B〉, 〈E〉, 〈E〉, only. For all h ≥ 1, HSh denotes the
syntactical HS fragment consisting only of formulas ϕ such that the nesting
depth of negation in the existential form of ϕ is at most h. Moreover ¬HSh is
the set of formulas ϕ such that ¬ϕ ∈ HSh. Given an HS formula ϕ, checking
whether K �|= ϕ reduces to checking the existence of an initial trace ρ of K such
that K , ρ |= ¬ϕ.

Theorem 7. There is a constant c such that, given a finite Kripke structure K
and an HS formula ϕ, one can construct a K -NFA with O(|K | · Tower(h, |ϕ|c))
states accepting the set of traces ρ of K s.t. K , ρ |= ϕ, where h is the nesting
depth of negation in the existential form of ϕ. For all h ≥ 0, the MC problem
for ¬HSh is in h-EXPTIME and, for a constant-length formula, it is in P.

An In-Depth Investigation of Interval Temporal Logic Model Checking 113

5 Exponential Small-Model for AABB and AAEE

Here we show an exponential small-model property for the fragments AABB and
AAEE, that is, if a trace ρ of a finite Kripke structure K satisfies a formula ϕ
of AABB or AAEE, then there exists a trace π, whose length is exponential in
the sizes of ϕ and K , starting from and leading to the same states as ρ, that
satisfies ϕ. We focus on AABB (being the case for AAEE symmetric). Let K =
(AP , S,R, μ, s0) be a finite Kripke structure. We start by introducing the notion
of trace induced by a trace ρ which is obtained by contracting ρ, concatenating
some subtraces of ρ (provided that the resulting sequence is another trace of K).

Definition 8. Let ρ ∈ TrcK be a trace with |ρ| = n. A trace induced by ρ is
a trace π ∈ TrcK such that there exists an increasing sequence of ρ-positions
i1 < . . . < ik, with i1 = 1, ik = n, and π = ρ(i1) · · · ρ(ik). Moreover, we say that
the π-position j and the ρ-position ij are corresponding.

Note that if π is induced by ρ, then fst(π) = fst(ρ), lst(π) = lst(ρ), and
|π| ≤ |ρ|.

Given a DFA D = (Σ,Q, q0, δ, F), we denote by D(w) (resp., Dq(w)) the state
reached by the computation of D from q0 (resp., q ∈ Q) over the word w ∈ Σ∗.

We now consider well-formedness of induced traces w.r.t. a set of DFAs: a
well formed trace π induced by ρ preserves the states of the computations of the
DFAs reached by reading prefixes of ρ and π bounded by corresponding positions.

Definition 9. Let K = (AP , S,R, μ, s0) be a finite Kripke structure, ρ ∈ TrcK
be a trace, and Ds = (2AP , Qs, qs

0, δ
s, F s) with s = 1, . . . , k, be DFAs. A trace

π ∈ TrcK induced by ρ is (q1�1 , . . . , q
k
�k

)-well-formed w.r.t. ρ, with qs
�s

∈ Qs for
all s = 1, . . . , k, if and only if for all π-positions j, with corresponding ρ-positions
ij, and all s = 1, . . . , k, it holds that Ds

qs
�s

(μ(πj)) = Ds
qs

�s
(μ(ρij)).

For qs
�s

∈Qs, s = 1, . . . , k, the (q1�1 ,. . .,q
k
�k

)-well-formedness relation is transitive.
Now it is possible to show that a trace whose length exceeds a suitable

exponential threshold, induces a shorter, well-formed trace. Such a contraction
pattern represents a “basic step” in a contraction process which allows us to
prove the exponential small-model property for AABB. Let us consider an AABB
formula ϕ and let r1, . . . , rk be the RE’s over AP in ϕ. Let D1, . . . ,Dk be the DFAs
such that L(Dt) = L(rt), for t = 1, . . . , k, where |Qt| ≤ 22|rt| (see Remark 2). We
denote Q1 × . . . × Qk by Q(ϕ), and D1, . . . ,Dk by D(ϕ).

Proposition 10. Let K = (AP , S,R, μ, s0) be a finite Kripke structure, ϕ be
an AABB formula with RE’s r1, . . . , rk over AP , ρ ∈ TrcK be a trace, and
(q1, . . . , qk) ∈ Q(ϕ). There exists a trace π ∈ TrcK , which is (q1, . . . , qk)-well-
formed w.r.t. ρ, such that |π| ≤ |S| · 22

∑k
�=1 |r�|. (Proof in [2].)

The next step is to determine some conditions for contracting traces while
preserving the equivalence w.r.t. the satisfiability of a considered AABB formula.
Hereafter we restrict ourselves to formulas in negation normal form (NNF),

114 L. Bozzelli et al.

where negation is applied only to atomic formulas (regular expressions). Any
formula in AABB can be converted (in linear time) into an equivalent one in
NNF, having at most double length (by using De Morgan’s laws and duality of HS
modalities). For a trace ρ and a formula ϕ of AABB in NNF, we fix some special ρ-
positions, called witness positions, each one corresponding to the minimal prefix
of ρ which satisfies a formula ψ occurring in ϕ as a subformula of the form
〈B〉ψ (provided that 〈B〉ψ is satisfied by ρ). When a contraction is performed
in between a pair of consecutive witness positions (thus no witness position is
ever removed), we get a trace induced by ρ equivalent w.r.t. satisfiability of ϕ.

Definition 11 (Witness positions). Let ρ be a trace of K and ϕ be a formula
of AABB. Let us denote by B(ϕ, ρ) the set of subformulas 〈B〉ψ of ϕ such that
K , ρ |= 〈B〉ψ. The set Wt(ϕ, ρ) of witness positions of ρ for ϕ is the minimal
set of ρ-positions satisfying the following constraint: for each 〈B〉ψ ∈ B(ϕ, ρ),
the smallest ρ-position i < |ρ| such that K , ρi |= ψ belongs to Wt(ϕ, ρ).

Theorem 12 (Exponential small-model for AABB). Let K =(AP ,S,R,μ,s0),
σ, ρ ∈ TrcK , and ϕ be an AABB formula in NNF, with RE’s r1, . . . , ru over AP ,
such that K , σ � ρ |= ϕ. Then, there is π ∈ TrcK , induced by ρ, such that
K , σ � π |= ϕ and |π| ≤ |S| · (|ϕ| + 1) · 22

∑u
�=1 |r�|. (Proof in [2].)

Theorem 12 holds in particular if |σ| = 1, and thus σ � ρ = ρ and σ � π = π.
In this case, if K , ρ |= ϕ, then K , π |= ϕ, where π is induced by ρ and |π| ≤
|S|·(|ϕ|+1)·22

∑u
�=1 |r�|. The more general assertion is needed for technical reasons.

We will exploit the small-model for AABB and AAEE to prove the PSPACE-
completeness of the MC problem for the two symmetrical fragments. First, we
will provide a PSPACE MC algorithm for BB (resp., EE); then, we will show
that the meets and met-by modalities A and A can be suitably encoded by using
regular expressions, thus they do not increase the complexity of BB (resp., EE).

6 PSPACE-Completeness of MC for AABB

To start with, we describe a PSPACE MC algorithm for BB formulas. W.l.o.g.,
we assume that the processed formulas do not contain occurrences of the
universal modalities [B] and [B]. Moreover, for a formula ψ, we denote by
Subf〈B〉(ψ) = {ϕ | 〈B〉ϕis a subformula of ψ}; Φ represents the overall formula
to be checked, while the parametric formula ψ ranges over its subformulas. Due
to the result of the previous section, the algorithm can consider only traces
having length bounded by the exponential small-model property. Note that an
algorithm required to work in polynomial space cannot explicitly store the DFAs
for the regular expressions occurring in Φ (their states are exponentially many in
the length of the associated regular expressions). For this reason, while checking
a formula against a trace, the algorithm just stores the current states of the
computations of the DFAs associated with the regular expressions in Φ, from the
respective initial states (in the following such states are denoted—with a little
abuse of notation—again by D(Φ), and called the “current configuration” of the

An In-Depth Investigation of Interval Temporal Logic Model Checking 115

Algorithm 1. Check(K , ψ, s,G,D(Φ))
1: if ψ = r then � r is a regular expression
2: If the current state of the DFA for r in advance(D(Φ), μ(s)) is final return �
3: else return ⊥
4: else if ψ = ¬ψ′ (resp., ψ = ψ1 ∧ ψ2) then
5: Call Check recursively on ψ′ (ψ1, ψ2) and apply ¬ (∧) to the returned result(s)
6: else if ψ = 〈B〉ψ′ then
7: If ψ′ ∈ G then return � else return ⊥
8: else if ψ = 〈B〉ψ′ then
9: for each b ∈ {1, . . . , |S| · (2|ψ′| + 1) · 22

∑u
�=1 |r�| − 1}

and each (G′,D(Φ)′, s′) ∈ Conf(K , ψ) do� r1, . . . , ru are the reg. expr. of ψ′

10: if Reach(K , ψ′, (G,D(Φ), s), (G′,D(Φ)′, s′), b) and Check(K , ψ′, s′, G′,D(Φ)′) then
11: return �
12: return ⊥

DFAs) and calculates on-the-fly the successor states in the DFAs, once they have
read some state of K used to extend the considered trace (this can be done by
exploiting a succinct encoding of the NFAs for the reg.expr. of Φ, see Remark 2).

A call to the recursive procedure Check(K ,ψ,s,G,D(Φ)) (Algorithm 1) checks
the satisfiability of a subformula ψ of Φ w.r.t. any trace ρ fulfilling the following
conditions: (1) G ⊆ Subf〈B〉(ψ) is the set of formulas that hold true on at least a
prefix of ρ; (2) after reading μ(ρ(1, |ρ|−1)) the current configuration of the DFAs
for the regular expressions of Φ is D(Φ); (3) the last state of ρ is s. Intuitively,
since the algorithm cannot store the already checked portion of a trace (whose
length could be exponential), the relevant information is summarized in a triple
(G,D(Φ), s). Hereafter the set of all possible summarizing triples (G,D(Φ), s),
where G ⊆ Subf〈B〉(ψ), D(Φ) is any current configuration of the DFAs for the
regular expressions of Φ, and s is a state of K , is denoted by Conf(K , ψ).

Let us consider in detail the body of the procedure. First advance(D(Φ),μ(s)),
invoked at line 2, updates the current configuration of the DFAs after reading
the symbol μ(s). If ψ is a regular expression r (lines 1–3), we just check whether
the (computation of the) DFA associated with r is in a final state (i.e., the sum-
marized trace is accepted). Boolean connectives are easily dealt with recursively
(lines 4–5). If ψ has the form 〈B〉ψ′ (lines 6–7), then ψ′ has to hold over a proper
prefix of the summarized trace, namely, ψ′ must belong to G.

The only involved case is ψ = 〈B〉ψ′ (lines 8–12): we have to unravel the
Kripke structure K to find an extension ρ′ of ρ, summarized by the triple
(G′,D(Φ)′, s′), satisfying ψ′. The idea is checking whether or not there exists a
summarized trace (G′,D(Φ)′, s′), suitably extending (G,D(Φ), s), namely, such
that: (1) D(Φ)′ and s′ are synchronously reachable from D(Φ) and s, resp.; (2)
G′ ⊇ G contains all the formulas of Subf〈B〉(ψ′) satisfied by some prefixes of the
extension; (3) the extension (G′,D(Φ)′, s′) satisfies ψ′. In order to check point
(1), i.e., synchronous reachability, we can exploit the exponential small-model
property and consider only the unravelling of K starting from s having depth at
most |S| ·(2|ψ′|+1) ·22

∑u
�=1 |r�|−1.3 The check of (1) and (2) is performed by the

procedure Reach (Algorithm 2), which accepts as input two summarized traces

3 The factor 2 in front of |ψ′| is needed as the small-model requires a formula in NNF.

116 L. Bozzelli et al.

Algorithm 2. Reach(K , ψ, (G1,D(Φ)1, s1), (G2,D(Φ)2, s2), b)

1: if b = 1 then
2: return Compatible(K , ψ, (G1,D(Φ)1, s1), (G2,D(Φ)2, s2))
3: else � b ≥ 2
4: b′ ←
b/2�
5: for each (G3,D(Φ)3, s3) ∈ Conf(K , ψ) do
6: if Reach(K , ψ, (G1,D(Φ)1, s1), (G3,D(Φ)3, s3), b

′) and Reach(K , ψ, (G3,D(Φ)3, s3), (G2,D(Φ)2, s2), b − b′) then
7: return �
8: return ⊥

Algorithm 3. Compatible(K ,ψ,(G1,D(Φ)1,s1),(G2,D(Φ)2,s2))

1: if (s1, s2)∈R and advance(D(Φ)1, μ(s1)) = D(Φ)2 and G1 ⊆G2 then
2: for each ϕ ∈ (G2 \ G1) do
3: G ← G1 ∩ Subf〈B〉(ϕ)
4: if Check(K , ϕ, s1, G,D(Φ)1) = ⊥ then
5: return ⊥
6: for each ϕ ∈ (Subf〈B〉(ψ) \ G2) do
7: G ← G1 ∩ Subf〈B〉(ϕ)
8: if Check(K , ϕ, s1, G,D(Φ)1) = � then
9: return ⊥

10: return �
11: else
12: return ⊥

and a bound b on the depth of the unravelling of K . The proposed reachability
algorithm is reminiscent of the binary reachability of Savitch’s theorem.

Reach proceeds recursively (lines 3–8) by halving at each step the value b of
the length bound, until it gets called over two states s1 and s2 which are adjacent
in a trace. At each halving step, an intermediate summarizing triple is generated
to be associated with the split point. At the base of recursion (for b = 1, lines
1–2), the auxiliary procedure Compatible (Algorithm 3) is invoked. At line 1,
Compatible checks whether there is an edge between s1 and s2 ((s1, s2) ∈ R),
and if, at the considered step, the current configuration of the DFAs D(Φ)1 is
transformed into the configuration D(Φ)2 (i.e., s2 and D(Φ)2 are synchronously
reachable from s1 and D(Φ)1). At lines 2–9, Compatible checks that each for-
mula ϕ in (G2 \ G1), where G2 ⊇ G1, is satisfied by a trace summarized by
(G1,D(Φ)1, s1) (lines 2–5). Intuitively, (G1,D(Φ)1, s1) summarizes the maximal
prefix of (G2,D(Φ)2, s2), and thus a subformula satisfied by a prefix of a trace
summarized by (G2,D(Φ)2, s2) either belongs to G1 or it is satisfied by the trace
summarized by (G1,D(Φ)1, s1). Moreover, (lines 6–9) Compatible checks that
G2 is maximal (i.e., no subformula that must be in G2 has been forgot).

Note that by exploiting this binary reachability technique, the recursion
depth of Reach is logarithmic in the length of the trace to be visited, hence it can
use only polynomial space. Theorem 13 establishes the soundness of Check.

Theorem 13. Let Φ be a BB formula, ψ be a subformula of Φ, and ρ ∈ TrcK be
a trace with s = lst(ρ). Let G be the subset of formulas in Subf〈B〉(ψ) that hold
on some proper prefix of ρ. Let D(Φ) be the current configuration of the DFAs

An In-Depth Investigation of Interval Temporal Logic Model Checking 117

Algorithm 4. CheckAux(K , Φ)
1: create(D(Φ)0)� Creates the (succinct) NFAs and the initial states of the DFAs for

all the regular expressions in Φ
2: If Check(K , ¬Φ, s0, ∅,D(Φ)0) or Check(K , 〈B〉¬Φ, s0, ∅,D(Φ)0) then return ⊥
3: else return �

associated with the regular expressions in Φ after reading μ(ρ(1, |ρ| − 1)). Then
Check(K , ψ, s,G,D(Φ)) = ⇐⇒ K , ρ |= ψ. (Proof in [2].)

Finally, the main MC procedure for BB is Algorithm 4: CheckAux(K , Φ) starts
by constructing the NFAs and the initial states of the DFAs for the regular
expressions of Φ. Then CheckAux invokes the procedure Check two times: the
first to check the special case of the trace s0 (i.e., the initial state of K only),
and the second for all right-extensions of s0 (i.e., initial traces with length ≥ 2).

Theorem 14. Let K = (AP , S,R, μ, s0) be a finite Kripke structure, and Φ be a
BB formula. Then CheckAux(K , Φ) returns iff K |= Φ. (Proof in [2].)

Corollary 15. The MC problem for BB on Kripke structures is in PSPACE.

Proof. CheckAux decides the problem using polynomial work space as: (i) the
number of simultaneously active recursive calls of Check is O(|Φ|) (depend-
ing on the depth of Φ); (ii) for any call of Check the used space (in bits) is
O

(
|Φ|+ |S|+∑u

�=1 |r�|+log(|S| · |Φ| · 22
∑u

�=1 |r�|)(1) +(|Φ| + |S| +
∑u

�=1 |r�|)(2) ·
log(|S| · |Φ| · 22

∑u
�=1 |r�|)(3)

)
where r1, . . . , ru are the reg. expr. of Φ, and S the

states of K : (1) O(log(|S| · |Φ| · 22
∑u

�=1 |r�|)) bits are used for the bound b on
the trace length, (3) for each subformula 〈B〉ψ′ of Φ at most O(log(|S| · |Φ| ·
22
∑u

�=1 |r�|)) calls of Reach may be simultaneously active (the recursion depth of
Reach is logarithmic in b), (2) each Reach call uses O(|Φ|+|S|+∑u

�=1|r�|) bits ��
Finally, since a Kripke structure can be unravelled against the direction of

its edges, and any language L is regular iff LRev = {w(|w|) · · · w(1) | w ∈ L} is,
the algorithm can be easily modified to deal with the symmetrical fragment EE.

Let us now focus on AABB. CheckAux can be used iteratively as a basic engine
to check formulas Φ of AABB: at each iteration, we select an occurrence of a
subformula of Φ, either of the form 〈A〉ψ or 〈A〉ψ, without internal occurrences
of 〈A〉 and 〈A〉. For such an occurrence, say 〈A〉ψ (〈A〉ψ is symmetric), we
compute the set S〈A〉ψ of states of K s.t., for any ρ ∈ TrcK , K , ρ |= 〈A〉ψ iff
lst(ρ) ∈ S〈A〉ψ. To this aim we run CheckAux(K ,¬ψ) using each s ∈ S as the
initial state (in place of s0): we have s ∈ S〈A〉ψ iff the procedure returns ⊥. Then
we replace 〈A〉ψ in Φ with a fresh reg. expr. r〈A〉ψ := ∗ ·(⋃

s′∈S〈A〉ψ
qs′

)
—where

qs′ is an auxiliary letter labeling s′ ∈ S only—obtaining a formula Φ′. If Φ′ is in
BB the conversion is completed, otherwise we proceed with another iteration.

Finally, the pure propositional fragment Prop can be proved PSPACE-hard
by a reduction from the PSPACE-complete universality problem for regular
expressions: such lower bound immediately propagates to all other HS fragments.

118 L. Bozzelli et al.

Theorem 16. The MC problem for formulas of any (proper or improper) sub-
fragment of AABB (and AAEE) on finite Kripke structures isPSPACE-complete.

7 Conclusions

In this paper, we have investigated the MC problem for HS and two large frag-
ments of it, AABB and AAEE, defining interval labelling via regular expres-
sions. The approach, stemming from [12], generalizes both the one of [14] (which
assumes the homogeneity principle) and of [10,11] (where labeling is endpoint-
based). MC turns out to be non-elementarily decidable and EXPSPACE-hard
for full HS (the hardness follows from that of BE under homogeneity [3]), and
PSPACE-complete for AABB, AAEE, and all their sub-fragments. Future work
will focus on the fragments AABBE, AAEBE, and AABE, which have been proved
to be in EXPSPACE (the first two) and PSPACE-complete (the third one)
under homogeneity [15,16], as well as on the problem of determining the exact
complexity of MC for full HS. In addition, we will study the MC problem for HS
over visibly pushdown systems, in order to deal with infinite state systems.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

2. Bozzelli, L., Molinari, A., Montanari, A., Peron, A.: An in-depth investigation of
ITL MC with regular expressions. Technical report 2, University of Udine, Italy
(2017). https://www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/2.2017/

3. Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P.: Interval temporal logic
model checking: the border between good and bad HS fragments. In: Olivetti, N.,
Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 389–405. Springer,
Cham (2016). doi:10.1007/978-3-319-40229-1 27

4. Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P.: Interval vs. point
temporal logic model checking: an expressiveness comparison. In: FSTTCS (2016)

5. Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P.: MC the logic of
Allen’s relations meets and started-by is PNP-C. In: GandALF, pp. 76–90 (2016)

6. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The
dark side of interval temporal logic: marking the undecidability border. Ann. Math.
Artif. Intell. 71(1–3), 41–83 (2014)

7. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). doi:10.1007/
10722167 20

8. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM
38(4), 935–962 (1991)

9. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal
Methods Syst. Des. 34(2), 83–103 (2009)

10. Lomuscio, A., Michaliszyn, J.: An epistemic HS logic. In: IJCAI, pp. 1010–1016
(2013)

https://www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/2.2017/
http://dx.doi.org/10.1007/978-3-319-40229-1_27
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/10722167_20

An In-Depth Investigation of Interval Temporal Logic Model Checking 119

11. Lomuscio, A., Michaliszyn, J.: Decidability of model checking multi-agent systems
against a class of EHS specifications. In: ECAI, pp. 543–548 (2014)

12. Lomuscio, A., Michaliszyn, J.: Model checking multi-agent systems against epis-
temic HS specifications with regular expressions. In: KR, pp. 298–308 (2016)

13. Marcinkowski, J., Michaliszyn, J.: The undecidability of the logic of subintervals.
Fundamenta Informaticae 131(2), 217–240 (2014)

14. Molinari, A., Montanari, A., Murano, A., Perelli, G., Peron, A.: Checking interval
properties of computations. Acta Informatica 53, 587–619 (2016)

15. Molinari, A., Montanari, A., Peron, A.: Complexity of ITL model checking: some
well-behaved fragments of the interval logic HS. In: TIME, pp. 90–100 (2015)

16. Molinari, A., Montanari, A., Peron, A.: A model checking procedure for interval
temporal logics based on track representatives. In: CSL, pp. 193–210 (2015)

17. Molinari, A., Montanari, A., Peron, A., Sala, P.: Model checking well-behaved
fragments of HS: the (Almost) final picture. In: KR, pp. 473–483 (2016)

18. Montanari, A.: Interval temporal logics model checking. In: TIME, p. 2 (2016)
19. Moszkowski, B.: Reasoning about digital circuits. Ph.D. thesis, Stanford (1983)
20. Roeper, P.: Intervals and tenses. J. Philos. Log. 9, 451–469 (1980)
21. Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre

Dame J. Formal Log. 31(4), 529–547 (1990)

PARTPW: From Partial Analysis Results
to a Proof Witness

Marie-Christine Jakobs(B)

Paderborn University, Paderborn, Germany
marie.christine.jakobs@upb.de

Abstract. Today, verification tools do not only output yes or no, but
also provide correctness arguments or counterexamples. While counterex-
amples help to fix bugs, correctness arguments are used to increase the
trust in program correctness, e.g., in Proof-Carrying Code (PCC). Cor-
rectness arguments are well-studied for single analyses, but not when a
set of analyses together verifies a program, each of the analyses check-
ing only a particular part. Such a set of partial, complementary analyses
is often used when a single analysis would fail or is inefficient on some
program parts.

We propose PARTPW, a technique which allows us to automati-
cally construct a proof witness (correctness argument) from the analysis
results obtained by a set of partial, complementary analyses. The con-
structed proof witnesses are proven to be valid correctness arguments
and in our experiments we use them seamlessly and efficiently in exist-
ing PCC approaches.

1 Introduction

Nowadays, verification tools do not simply output yes (property fulfilled) or no
(property violated). Most of them provide a counterexample, when the analysis
fails. Additionally, several tools output a correctness argument after a successful
verification. Given in a verifier independent format, a correctness argument can
be checked by a different verifier to increase the trust in the tool’s answer yes.
Furthermore, Proof-Carrying Code (PCC) [19] employs correctness arguments
to efficiently convince a program executor of the correctness of a program.

A standard approach to build a correctness argument is to start from a
representation of the explored state space. For example, PCC approaches like
[8,14–16,21,22] construct their correctness arguments from abstract reachabil-
ity graphs (ARGs), a representation of the explored state space, which is built
anyway by many abstract interpretation [9] based tools. However, these PCC
approaches typically assume that a single analysis verified the program.

Unfortunately, single analyses do not always succeed, especially when they
are restricted to standard abstract domains. For example, consider the program
bonus on the left of Fig. 1, which computes a bonus salary of an employee.
Predicate abstraction, e.g., [5], can show that executions taking the if-branch
do not violate the assertion. Yet, predicate abstraction fails to prove the rest
c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 120–135, 2017.
DOI: 10.1007/978-3-319-66197-1 8

PARTPW: From Partial Analysis Results to a Proof Witness 121

�0

�1

�2

�6 �3

�4

�5

�7

�8�err

¬

¬

¬

Fig. 1. Example program bonus and its control-flow automaton

because it is often restricted to linear integer arithmetic. In contrast, an explicit
analysis [18], which tracks concrete variable values, can verify the else-branch,
but not the if-branch because it cannot encode the relation between the if- and
the while-condition. Also, a standard product analysis combining predicate and
explicit analysis is inefficient for program bonus. Tracking the concrete value for
variable bonus, which changes in each loop iteration, prohibits the analysis to
stop the loop exploration after a single iteration as the predicate analysis does.

To get an efficient analysis for program bonus, one must either adapt the
product analysis to refine and coarsen the components at the right places, apply a
different (non-standard) domain, or use a set of partial, complementary analyses,
where each analysis is responsible for a specific part of the program. Since non-
standard domains might not be supported by a verification tool and it is likely
tedious and difficult to adapt the product analysis properly, a set of partial,
complementary analyses is the best option. In our example, a predicate analysis
analyzes the if-branch and a value analysis the else-branch. Generally, partial,
complementary analyses with different strengths and weaknesses should be used.

Instead of a description of the complete state space, a successful verifica-
tion with a set of partial, complementary analyses results in a set of partial
descriptions that together cover the complete state space. To support correct-
ness arguments for partial, complementary analyses, one must thus either extend
the existing approaches or unify the incomplete state space descriptions into a
single complete one. While one could argue that the first solution offers the
advantage to build correctness arguments that are checkable in parallel, existing
PCC [15,16] approaches already support parallel validation of the correctness
argument. Moreover, the second approach reveals fewer business secrets of the
verification tool and allows a seamless integration into existing approaches. Thus,
it is much more comfortable.

So far, no approaches exist that describe how to unify partial state space
descriptions generated by a set of partial, complementary abstract interpreta-
tion based analyses. To overcome this problem, we propose PARTPW, a tech-
nique to systematically construct a proof witness, a special form of an ARG,

122 M.-C. Jakobs

from the partial ARGs, the incomplete state space descriptions generated by a
set of partial, complementary analyses. The constructed proof witness describes
a complete state space exploration and will look like an ARG built by a product
analysis that considers the product of all partial, complementary analyses. We
prove that the ARG generated from the partial ARGs is suitable to build cor-
rectness arguments, i.e., it already witnesses program safety. Furthermore, our
experiments, which rely on value, predicate, and octagon analyses for the partial
analyses, show that the generated ARG can seamlessly be used in existing PCC
approaches and its validation is in many cases more efficient than a validation
of the set of ARGs generated by the partial, complementary analyses.

2 Background

In this section, we introduce our notion of program safety and its analysis. We
start with the representation of a program. To simplify our presentation, we
assume that the properties of interest are encoded into the program using error
locations. While in theory one could model all safety properties as unreachabil-
ity of error locations [18], our implementation uses observer automata [1], which
allow us to directly specify type state (protocol) properties, invariants, etc. Fol-
lowing configurable software verification [3], the underlying concept of the tool
in which we integrated our approach, a program is modeled by a control-flow
automaton (CFA) P = (L,GCFA, l0, Lerr) consisting of a set L of locations,
modeling the program counter, a set GCFA ⊆ L×Ops×L1 of control-flow edges
defining the follow-up program counter and which operation to execute, an ini-
tial location l0 ∈ L describing the program entry, and a non-empty set Lerr ⊆ L
of error locations which are unsafe to reach.

The CFA for our example program bonus is shown in the right of Fig. 1. It
contains one location per program counter (the number in front of the state-
ments) plus the error location lerr. Assignments are directly translated into
control-flow edges. For if- and while-statements, there exist two edges, one
per possible outcome of the condition. Finally, the assertion is encoded by
two assume statements. When the assertion is valid (bonus > 0), control-flow
proceeds normally. Otherwise, the violation of the assertion leads to the error
location.

The semantics of a program P is described by a labeled transition system
T (P) = (C,→) with a set C of concrete states and a transition relation →⊆
C × GCFA × C. From now on, we write c

g→ c′ for (c, g, c′). For our approach,
we only require that each concrete state c ∈ C refers to a program location
c(pc) ∈ L. Thus, we are able to detect property violations. Standard text book
semantics like e.g. [20, pp. 54ff] fulfill this property.

Based on the labeled transition system, we derive the program execution paths,
denoted by pathsP . A program execution path c0

g1→ . . . cm−1
gm→ cm ∈ pathsP is a

1 We assume Ops to be the set of all operations a program may execute. In the
implementation we consider C statements.

PARTPW: From Partial Analysis Results to a Proof Witness 123

path in the labeled transition system starting in the initial program location, i.e.,
c0(pc) = l0 and ∀1 ≤ i ≤ m : ci−1

gi→ ci. This definition easily leads us to
the non-reachability of error locations, our notion of program safety. A program
P = (L,GCFA, l0, Lerr) is safe if no program execution path reaches an error
location, i.e., ∀c0

g1→ . . . cm−1
gm→ cm ∈ pathsP : cm(pc) /∈ Lerr.

To prove that a program is safe, we rely on an abstract exploration of
the reachable state space [9,18]. In principle, we could have used any abstract
interpretation alike formalism to specify the analyses. We decided to use the
configurable program analysis (CPA) formalism underlying the tool in which
we integrated our PARTPW technique. Next to the abstract domain and the
abstract semantics, a CPA defines when and how to combine information or
stop exploration of states. Thus, a CPA also configures the state space explo-
ration. Following Beyer et al. [3], a configurable program analysis is a four-tuple
A = (D,�,merge, stop) with

Abstract Domain D = (C, E , �·�) considering lattice E = (E,�,⊥,	,
) on
abstract states E with ��� = C, �⊥� = ∅, and ∀e, e′ ∈ E : �e� ∪ �e′� ⊆
�e 	 e′� ∧ �e 	 e′� ⊆ �e� ∩ �e′�,

Transfer Relation �⊆ E × GCFA × E defining the abstract semantics and
overapproximating the concrete behavior, i.e., ∀e ∈ E, g ∈ GCFA : {c′ | c ∈
�e� ∧ c

g→ c′} ⊆ ⋃

(e,g,e′)∈�
�e′�,

Merge Operator merge : E × E → E, a total function determining when
and how to combine abstract information and guaranteeing that no explored
information is lost, i.e., ∀e, e′ ∈ E : merge(e, e′) � e′,

Termination Check stop : E × 2E → B, a total boolean function checking
whether to stop the exploration of an abstract state. For soundness, the
exploration may only be stopped when an abstract states does not intro-
duce new information, i.e., ∀e ∈ E,S ⊆ E : stop(e, S) =⇒ �e� ⊆ ⋃

e′∈S

�e′�.

To get a sound combination of different analyses, which we use later, we also
require that an abstract state can be covered by a single abstract state, i.e.,
∀e ∈ E,S ⊆ S : stop(e, S) =⇒ ∃e′ ∈ S : stop(e, {e′}). Furthermore, to build
a proof witness from partial, complementary analyses the termination check
must detect coverage (1) by the top state and (2) by the same state, i.e.,
∀e ∈ E,S ⊆ E : e ∈ S ∨ � ∈ S =⇒ stop(e, S)2.

As done by the software analysis tool CPAchecker [4], in which we integrate
our approach, we assume that each of the (partial) analyses of a program records
its explored state space in form of an abstract reachability graph (ARG). Nodes in
the graph represent explored abstract states. Edges describe successor relations
and, thus, document how the state space is explored. The root node marks the
entry point of the state space exploration. Formally, an abstract reachability
graph is defined as follows.

2 The second requirement also eases the model of the explored state space.

124 M.-C. Jakobs

Definition 1. An abstract reachability graph RP
A

= (N,GARG, root) for a pro-
gram P = (L,GCFA, l0, Lerr) and CPA A consists of a set N ⊆ EA of nodes, a
set GARG ⊆ N × GCFA × N of edges, and a root node root ∈ N .

Figure 2 shows two ARGs. These two ARGs could have been obtained when
analyzing our example bonus with a complementary, partial value [6] and pred-
icate analysis [5]3. For the sake of readability, we labeled the ARG edges only
with the operations of the control-flow edges. Both ARGs start in the initial
program location and never reach an error location. The left ARG is the ARG
constructed by the value analysis that verified the else-branch and the right ARG
shows the ARG generated by the predicate analysis checking the if-branch.

Fig. 2. Partial ARGs obtained by the complementary partial value analysis and partial
predicate analysis on example program bonus

The definition of an ARG only fixes its syntactical structure, but ARGs in
which we are interested must also record a proper (partial) state space explo-
ration. Like programs, analyses must start at the program entry. Hence, the
root node must consider all concrete states looking at the initial program loca-
tion. Additionally, all program executions considered by the analysis must be
represented in the ARG. Remembering the inductive definition of program exe-
cutions and the overapproximation of transfer relations, abstract transfer suc-
cessors should be covered by ARG successors. However, in partial analyses that
did not finish their state space exploration abstract successors of some ARG
nodes may not be covered. For example, in the left ARG in Fig. 2 the successors

3 Note that in our example we use single block encoding and, thus, left out the abstrac-
tion location, which is identical to the abstract program location, and the path
formula which is always true.

PARTPW: From Partial Analysis Results to a Proof Witness 125

of (�4, tax : 0.19,bonus : 0) are unexplored. To ease our presentation, we assume
that a partial analysis always stops after a complete exploration of a state.
This leads us to the notion of partial soundness. All abstract successors of an
explored state (ARG node) are either covered by ARG successors or remain all
unexplored. Whenever no states remain unexplored, the analysis is not partial,
but complete, partial soundness reduces to soundness, i.e., all abstract successors
of a node must be covered by the node’s successors. So far, the requirements are
sufficient to guarantee a proper (partial) state space exploration. Since we plan
to use ARGs to assure program safety, additionally none of the explored abstract
states should consider an error location. Summing up, we get the following four
ARG properties.

Rootedness. The root covers the initial states, {c ∈ C | c(pc) = l0} ⊆ �root�A.
Partial soundness. Abstract successors along a control-flow edge are either

covered by ARG successors or not explored at all, ∀n ∈ N, g ∈ GCFA :
(n, g, e) ∈�A =⇒ (stopA(e, {n′ | (n, g, n′) ∈ GARG}) ∨ ¬∃(n, g, ·) ∈ GARG).

Soundness. ARG successors cover abstract successors, ∀n ∈ N, g ∈ GCFA :
(n, g, e) ∈�A =⇒ stopA(e, {n′ | (n, g, n′) ∈ GARG}).

Safety. Error locations are excluded4, {l | c ∈ �N�A ∧ c(pc) = l} ∩ Lerr = ∅.

Given these properties, we define when an ARG is suitable for witnessing pro-
gram safety. We require that a suitable ARG, which we call proof witness, records
the state space exploration of a complete and successful analysis of a program.

Definition 2. An ARG is a proof witness if it is rooted, sound, and safe.

Note that proof witnesses are a common starting point for certificate generation
in abstract interpretation based approaches [8,14–16,21,22]. The following the-
orem states that proof witnesses are indeed well-suited for certificate generation
because they already witness program safety.

Theorem 1. A proof witness ensures program safety.

Proof (Sketch). Let RP
A

= (N,GARG, root) be a proof witness with program
P = (L,GCFA, l0, Lerr) and c0

g1→ . . . cn−1
gm→ cm ∈ pathsP be an arbitrary

program execution. First, show by induction that ∀0 ≤ i ≤ m : ∃n ∈ N :
ci ∈ �n�A. By induction, there exists n ∈ N with cm ∈ �n�A. We conclude that
cm(pc) ∈ {l | c ∈ �N�A ∧ c(pc) = l}. Due to safety, cm(pc) /∈ Lerr.

In the end, we require a proof witness to apply existing certification techniques.
However, partial, complementary analyses, as used to verify our example pro-
gram bonus, do not generate ARGs which are proof witnesses. Each of these par-
tial analyses typically stops successor exploration of some explored states, e.g.,
because it is not mature enough, it is already too exhaustive for this program
part, it timed out, or another partial analysis already explored the corresponding
program’s concrete successors. While these ARGs are also rooted and safe, they
are only partially sound. From now on, we call such ARGs partial ARGs.
4 We lifted the concretization to sets of abstract states, i.e., ∀S ⊆ EA : �S�A =

⋃

e∈S

�e�A.

126 M.-C. Jakobs

Definition 3. An ARG is partial if it is rooted, partially sound, and safe.

In the following, we want to construct a proof witness from the partial ARGs
constructed by the partial, complementary analyses. A proof witness can only be
constructed from a set of partial ARGs when the corresponding partial analyses
together check program safety. The next section discusses which properties a set
of partial ARGs must provide to be suitable for proof witness construction.

3 When Do Partial ARGs Witness Program Safety?

Our goal is to build a proof witness from the ARGs that are constructed by a
set of partial, complementary analyses, after the set of partial, complementary
analyses together proved program safety. Thus, the successful verification must
be reflected by the constructed ARGs. Partial analyses may not finish their
exploration, but must not fail to prove safety. Hence, the constructed ARGs are
partial ARGs. Furthermore, to witness completeness of the verification, the set
of constructed, partial ARGs must capture all possible program execution paths.
Summing up, to construct a proof witness we require at least a set of partial
ARGs which capture all program execution paths.

The previous characterization of a set of ARGs loses the advantage of abstrac-
tion which makes it difficult to check. More importantly, it is improper for proof
witness construction. For example, assume that our example bonus resets the
income to zero when it is larger than 1000 before executing the current program
bonus. The ARG constructed by a partial value analysis of this modified pro-
gram is an ARG similar to the left ARG in Fig. 2, but the current root node is
preceded by some states of the form (�,�V). Since the if-branch in the modified
version of bonus is infeasible, a set only consisting of that ARG for the modi-
fied program captures all program execution paths. However, the value analysis
cannot detect the infeasibility and still computes a successor for the if-branch,
which is not further explored. Therefore, we think it is impossible to construct
a proper proof witness from that set without exchanging the abstract domain
considered during the analysis. Since we plan to build a proof witness that refers
to a product of the partial, complementary analyses, the characterization of a set
of ARGs must take those ARG paths into account that are not further explored.

The following definition formally introduces ARG paths and so called incom-
plete ARG paths which end in a node that is not fully explored. An ARG path is
simply a sequence of ARG nodes that are connected by edges s.t. the first node
is the root node. Since we are only interested in partial ARGs, we utilize their
partial soundness property and say that an ARG path is incomplete if it ends
in a node that has an abstract successor but no leaving ARG edges.

Definition 4. Let RP
A

= (N,GARG, root) be an abstract reachability graph for
program P = (L,GCFA, l0, Lerr). A sequence n0n1 . . . nm ∈ N+ is a path in the
ARG RP

A
if n0 = root and ∀1 ≤ i ≤ m∃(ni, ·, ni+1) ∈ GARG. An ARG path

n0n1 . . . nm is incomplete if ∃(nm, g, ·) ∈�A: g ∈ GCFA ∧ ¬∃(nm, g, ·) ∈ GARG.

PARTPW: From Partial Analysis Results to a Proof Witness 127

Incomplete ARG paths indicate that the analysis that generated the ARG may
missed program execution paths, namely those having a prefix that considers
the same sequence of CFA edges as an incomplete ARG path. To ensure that no
program behavior is missed, another ARG must take such program execution
paths into account. Avoiding to reason on the concrete level, the idea is to relate
ARG paths of different ARGs when they refer to the same sequence of control-
flow edges. To account for different maturity in infeasibility detection—another
analysis might never explore a related ARG path because it already detects that
a subpath of the incomplete path is infeasible—, we introduce the concept of a
related, syntactical subpath.

Definition 5. Let RP
A

= (N,GARG, root), RP
A′ = (N ′, G′

ARG, root′) be two
ARGs for program P = (L,GCFA, l0, Lerr) and p := n0n1 . . . nm and p′ :=
n′
0n

′
1 . . . n′

m′ be two paths in RP
A

and RP
A′ , respectively. ARG path p′ is a syn-

tactical subpath of ARG path p if m′ = 0 or a sequence of control-flow
edges g1g2 . . . gm′ ∈ G+

CFA exists s.t. ∀1 ≤ i ≤ m′ : (ni−1, gi, ni) ∈ GARG ∧
(n′

i−1, gi, n
′
i) ∈ G′

ARG.

The previous definition now let us relate paths in different ARGs. To ensure that
a set of partial, complementary analyses does not miss any program execution
paths, for incomplete paths there must exist related paths in other ARGs which
are not incomplete. We already discussed that sometimes only related subpaths
exist. Furthermore, it is not sufficient that for an incomplete path a single related
ARG path exists. A transfer relation may use more than one successor to cover
the concrete successors. Multiple related ARG (sub)paths might cover the exe-
cution paths considered by an incomplete path. Putting all together, we require
that for any incomplete ARG path p, there exists another ARG s.t. all ARG
paths p′ which are syntactical subpaths are not incomplete. Now, the properties
of partial ARGs and CPAs should ensure that a set of partial ARGs fulfilling
the previous requirement does not miss any program execution. We call a set of
partial ARGs fulfilling the previous requirement complete.

Definition 6. A set RP = {RP
A1

, . . . , RP
Ak

} of partial ARGs for program P is
complete if for any incomplete path p := n0n1 . . . nm of a partial ARG RP

Ai
∈ RP

there exists an ARG RP
Aj

∈ Rp s.t. all paths p′ := n′
0n

′
1 . . . n′

m′ of partial ARG
RP

Aj
that are syntactical subpaths of p are not incomplete.

A complete set of partial ARGs is e.g. computed by the software analysis
tool CPAchecker [4] when successfully applying conditional model checking
(CMC) [2]. To construct a proof witness from such a complete set of partial
ARGS, we need to be sure that this complete set of partial ARGs ensures pro-
gram safety. The following theorem states this property.

Theorem 2. A complete set of partial ARGs ensures program safety.

Proof (Sketch). Let RP = {RP
A1

, . . . , RP
Ak

} be a set of partial ARGs for pro-
gram P = (L,GCFA, l0, Lerr) and p := c0

g1→ . . . cn−1
gm→ cm ∈ pathsP be an

128 M.-C. Jakobs

arbitrary program execution. We need to show that cm(pc) /∈ Lerr. First, we
define for all 0 ≤ i ≤ m the set Ni := {ni | ∃RP

A
= (N,GARG, root) ∈ RP :

n0 . . . ni is an ARG path in RP
A

∧ ∀1 ≤ j ≤ i : (ni−1, gi, ni) ∈ GARG}. Now,
show by induction that for all 0 ≤ i ≤ m there exists a n ∈ Ni with ci ∈ �n�.
By induction, there exists n ∈ Nm with cm ∈ �n�. By definition, there exists a
partial ARG RP

A
= (N,GARG, root) ∈ RP with n ∈ N . Due to safety of RP

A
, we

conclude that cm(pc) /∈ Lerr.

4 Proof Witnesses from Complete Sets of Partial ARGs

Now, we describe our technique PARTPW and prove it sound. Given a complete
set of partial ARGs, we want to construct a proof witness. More concrete, the
proof witness should look like as if it was constructed by the product analysis
obtained when combining all partial analysis. We start with the definition of
the product CPA from a set of CPAs. In principle, it is a standard product
construction with a product abstract domain and a product transfer relation.
The merge is performed element-wise with the help of the respective component
CPAs and the termination check returns true if all component stop operators
agree that a state is covered by an already explored state.

Definition 7. Let A = {A1, . . . ,Ak} be a set of CPAs. The product CPA A× =
(E×,�×,merge×, stop×) from A is a CPA which consists of

– the product abstract domain D× = (C, E×, �·�) with product lattice E× =
(E×,�×,⊥×,	×,
×), element-wise defining �×,⊥×,	×,
×, and con-
cretization �(e1, . . . , ek)� =

⋂

1≤i≤k

�ei�Ai
,

– the product transfer relation �×, i.e., ((e1, . . . , ek), g, (e′
1, . . . , e

′
k)) �×⇐⇒

∀1 ≤ i ≤ k : (ei, g, e′
i) ∈�Ai

,
– merge×((e1, . . . , ek, e′

1, . . . , e
′
k) := (mergeA1

(e1, e′
1), . . . ,mergeAk

(ek, e′
k)), and

– stop×((e1, . . . , ek), S) := ∃(e′
1, . . . , e

′
k) ∈ S :

∧

1≤i≤k

stopAi
(ei, {e′

i}).

The previous definition describes the CPA considered by the derived proof wit-
ness. Next, we explain how to derive the proof witness from a complete set of
partial ARGs. The underlying idea of the construction is to combine related
ARG paths. However, we stop a combination as soon as one analysis detects
infeasibility of the path. Furthermore, during combination incomplete paths are
extended with a suffix of top states. Thus, the ARG constructed from a complete
set of ARGs starts in the product of the root nodes. The set of ARG nodes is
the union of all nodes reachable on combined related paths. The reachability is
defined inductively and takes the following two observations on partial ARGs
into account: (1) Partial soundness guarantees us that the final node nm of an
incomplete path n0 . . . nm has no ARG successors. (2) Safety implies that the
top state is no ARG node. Furthermore, an ARG edge labeled with control-flow
edge g is introduced between two nodes if in each partial ARG either a respective
ARG edge with label g exists or an incomplete path is extended (second case).

PARTPW: From Partial Analysis Results to a Proof Witness 129

Definition 8. Let RP = {RP
A1

, . . . , RP
Ak

} be a complete set of partial ARGs for
program P . An ARG from the complete set RP of partial ARGs is an ARG
RP

A× = (N,GARG, root) for program P and product CPA from {A1, . . . ,Ak} with

– root := root1 × · · · × rootk

– N :=
∞⋃

i=0

Ni, where

• N0 = {root} and
• Ni+1 = {(n′

1, . . . , n
′
k) ∈ N1 ∪ {�1} × · · · × Nk ∪ {�k} | ∃(n1, . . . , nk) ∈

Ni, g ∈ GCFA : ∀0 ≤ j ≤ k : ∃(nj , g, ·) ∈�j ∧((nj , g, n′
j) ∈ Gj

ARG ∨
¬∃(nj , g, ·) ∈ Gj

ARG ∧ n′
j = �j)}

– GARG := {((n1, . . . , nk), g, (n′
1, . . . , n

′
k)) ∈ N × GCFA × N |

∀1 ≤ j ≤ m : (nj , g, n′
j) ∈ Gj

ARG ∨ ¬∃(nj , g, ·) ∈ Gj
ARG ∧ n′

j = �j}
Figure 3 shows the ARG constructed from the two partial ARGs shown in

Fig. 2. Until the beginning of the if- and else-branch, the ARG combines the
states of the two partial ARGs. Since the if-branch of program bonus is only
explored by the predicate analysis, during the if-branch the ARG uses the top
state for the value analysis state. Similarly, the else-branch is only explored by
the value analysis and in the else-branch the ARG uses the top state for the
predicate analysis. We observe that the combined ARG never considers an error
state, its root node contains all states considering the initial program location �0,
and for every node the transfer successors are covered by the ARG successors.
Thus, the constructed ARG fulfills all properties of a proof witness.

Generally, our goal is to construct proof witnesses. By construction, an ARG
from the complete set RP of partial ARGs is an ARG for program P and the
product CPA. It remains to show the three properties of a proof witness. To
prove the safety property, the top state must not be part of the nodes of the
constructed ARG. The following lemma claims this property.

Fig. 3. Combination of the partial ARGs from Fig. 2, which were obtained by comple-
mentary partial value analysis and partial predicate analysis on program bonus

130 M.-C. Jakobs

Lemma 1. Let RP
A× = (N,GARG, root) be an ARG from a complete set of par-

tial ARGs {RP
A1

, . . . , RP
Ak

}. Then, �A× /∈ N .

Proof (Idea). Show by induction that ∀i ∈ N0 : ¬∃�A× = (�1, . . . ,�k) ∈ Ni.

Next, we prove that an ARG from a complete set of partial ARGs is a proof wit-
ness. To that end, we show that the constructed ARG fulfills the three proeprties
rootedness, soundness, and safety, which mainly follow from the construction of
the ARG, the properties of the partial ARGs, and the previous lemma.

Theorem 3. An ARG from a complete set of partial ARGs is a proof witness.

Proof. We need to prove rootedness, soundness, and safety.

Rootedness. By definition and rootedness of partial ARGs,

{c ∈ C | c(pc) = l0} =
⋂

1≤i≤k

{c ∈ C | c(pc) = l0} ⊆
⋂

1≤i≤k

�rooti�Ai
= �root�A×

Soundness. Let n = (n1, . . . , nk) ∈ N and g ∈ GCFA be arbitrary s.t.
there exists (n, g, ·) ∈�A× . Consider arbitrary (n, g, ns) ∈�A× and let ns =
(ns

1, . . . , n
s
k). We need to show stopA×(ns, {(n, g, n′) ∈ GARG}). By definition

of N , GARG, �A× , requirements on termination check, and partial sound-
ness, there exists (n, g, (nr

1, . . . , n
r
k)) ∈ GARG with nr

i = �i or stopAi
(ni, g, nr

i)
for all 1 ≤ i ≤ k. Since stopAi

detects coverage by the top state, for all
1 ≤ i ≤ k, we get stopAi

(ni, g, ni
r). From definition of stopA× , we conclude

stopA×(ns, {(n, g, n′) ∈ GARG}). Every ARG from a complete set of partial ARGs
is sound.

Safety. Due to Lemma 1 and definition of N , for every (n1, . . . , nk) ∈ N there
exists an index i ∈ {1, . . . , k} s.t. ni ∈ N i and �(n1, . . . , nk)�A× ⊆ �ni�Ai

. Thus,
�N�A× ⊆ ⋃

1≤i≤k

�N i�Ai
. Together with safety of the partial ARGs,

{l | c ∈ �N�A× ∧ c(pc) = l} ∩ Lerr ⊆ (
⋃

1≤i≤k

{l | c ∈ �N i�Ai
}) ∩ Lerr

=
⋃

1≤i≤k

({l | c ∈ �N i�Ai
} ∩ Lerr) =

⋃

1≤i≤k

∅ = ∅

So far, we discussed how to construct a proper correctness argument in form
of a proof witness from a complete set of partial ARGs. Next, we demonstrate
that such proof witness is useful in practice, especially to incorporate partial,
complementary analyses into PCC settings.

5 Experiments

In our experiments, we want to study whether it is beneficial in practice to use
such a generated proof witness. Therefore, we implemented the proof witness
generation in CPAchecker [4] and used it with three different PCC approaches

PARTPW: From Partial Analysis Results to a Proof Witness 131

already implemented in CPAchecker. We consider the ARG approach, which
is similar to the approach of Henzinger et al. [14] and checks the three conditions
on a proof witness. Furthermore, we use configurable program certification (CC)
[16] and its optimization (CC+) [15]. Additionally, we compare PCC with proof
witness generation against checking whether a certificate is a complete set of
partial ARGs. Our implementation of the latter check, named cR, validates that
the certificate consists of partial ARGs and uses the CMC condition to check
that an ARG of a subsequent analysis only excludes already checked paths.

In our experiments, we use CMC [2] to compute a complete set of partial
ARGs. We use six different combinations of analyses. All start with a value
analysis [6]. After a time limit expired5 or the value analysis gave up, the com-
bined analyses continue either with a predicate [5] or an octagon analysis [17].
The first four combinations use a value and predicate analyses. The value analysis
either always tracks all variable values or uses interpolation based refinement [6]
to determine which variables to track. The predicate analysis applies adjustable
block encoding (ABE) [5] with counterexample-guided abstraction refinement
and either abstracts only at loops (standard configuration) or at loops and all
locations where control-flow merges (assumed to be simpler for certificate vali-
dation). The remaining two combinations incorporate a value with an octagon
analysis. One combination always tracks all program variables. The other uses
interpolation based refinement to determine which variables to track in the value
and octagon analysis, respectively.

For our evaluation, we used a subset of the 2017th SV COMP6 category
ReachSafety. Each combination is evaluated on those programs for which (1)
the property is known to be true, (2) the combined analysis succeeded and (3)
was more efficient than each of the two analyses alone, i.e., in both cases the
combination was faster than the single analysis or the single analysis failed.
In total, we got 33 verification tasks. For 19 of them only the combination of
analyses is successful within a time limit of 15 min.

We run our experiments within BenchExec [7] on an Intel R© Xeon E3-1230
v5 @ 3.40 GHz and OpenJDK 64-Bit Server VM 1.8.0 121 restricting each task
to 5 of 33 GB. To re-execute our experiments, start the extension of BenchExec
bundled with CPAchecker7 with CMC+PCC.xml.

Table 1 shows the result of our experiments. For each task, it provides the
time and memory consumption of the verification, the time for generating the
proof witness, as well as the time and memory consumption of the validation of
the four certificates. Times are given in seconds and memory consumption, used
heap plus non-heap, in MB. Programs for which verification only succeeds for
the combined analyses are marked with an asterix. Additionally, for each task
we highlight the smallest time and memory consumption.

5 We reuse the time limits from the SV-COMP configurations, 10 s when no refinement
is used and 60 s in case of refinement.

6 https://sv-comp.sosy-lab.org/2017/.
7 https://svn.sosy-lab.org/software/cpachecker/trunk/ rv 24625.

https://sv-comp.sosy-lab.org/2017/
https://svn.sosy-lab.org/software/cpachecker/trunk/

132 M.-C. Jakobs

Table 1. For each of the verification tasks, execution time (s) and memory consumption
(MB) of the verification and the validation of each PCC approach plus the generation
time (s) of the proof witness

Program V M Gen VARG MARG VCC MCC VCC+ MCC+ VcR McR
Value analysis with refinement + predicate analysis (loops)

nested.i 67.15 1767 0.06 8.46 328 360.59 2720 357.03 3162 9.82 347

matrix.c 1.53 159 0.01 0.82 159 0.88 147 0.82 139 1.19 154

pals flood 49.13 1095 0.57 38.71 957 81.86 1258 79.29 1444 32.42 926

pals lcr 24.40 721 0.09 7.81 286 10.37 324 9.57 332 7.76 331

bonus* 0.82 159 0.01 0.16 146 0.12 141 0.18 156 0.60 156

Value analysis with refinement + predicate analysis (loops & join)

matrix.c 2.34 160 0.01 0.91 148 1.07 156 1.06 146 1.25 157

matrix.i 2.40 161 0.01 0.90 160 1.08 147 1.03 154 1.26 157

bonus* 0.81 158 0.01 0.18 158 0.16 158 0.17 149 0.59 150

Value analysis + predicate analysis (loops)

fabs* 1.59 161 0.08 0.57 156 0.44 158 0.41 161 1.33 162

nested.i 76.13 1470 0.06 8.77 328 431.31 2873 384.81 1775 9.98 337

pals START 5.24 293 0.10 9.15 394 9.93 400 9.80 415 8.23 437

pals lcr 28.30 944 0.06 8.34 332 9.27 500 9.13 458 8.00 339

bonus* 0.66 154 0.01 0.17 158 0.17 143 0.16 137 0.60 156

Value analysis + predicate analysis (loops & join)

filter2 112.37 954 0.02 31.83 606 50.62 990 57.48 1058 31.96 521

fabs* 1.40 149 0.06 0.55 150 0.47 159 0.33 152 1.20 161

matrix.c 5.48 161 0.01 0.96 149 1.01 149 0.91 157 1.29 155

matrix.i 5.36 162 0.01 0.98 152 1.11 160 0.99 160 1.24 157

bonus* 0.77 156 0.01 0.16 141 0.21 159 0.22 158 0.59 151

Value analysis + octagon analysis

soft float2* 1.10 159 0.07 0.42 159 0.27 159 0.12 158 1.15 161

soft float3* 1.23 161 0.06 0.46 160 0.23 159 0.17 157 1.32 160

soft float5* 1.27 159 0.11 0.34 159 0.28 160 0.16 158 1.32 160

rounding1* 1.18 162 0.06 0.45 161 0.16 156 0.13 159 1.33 161

float21* 1.22 149 0.06 0.44 151 0.34 153 0.14 160 1.21 158

Value analysis with refinement + octagon analysis with refinement

soft float2* 1.98 165 0.12 0.33 160 0.17 160 0.15 156 1.09 157

soft float3* 2.19 188 0.17 0.30 160 0.29 157 0.11 155 1.43 160

Prob16 l59 148.17 4007 8.71 44.89 2608 272.80 2073 11.10 695 153.86 4139

rounding1* 1.46 162 0.09 0.43 153 0.26 153 0.12 152 1.26 161

gr2006* 124.76 3525 0.11 0.68 161 0.75 161 0.28 158 5.22 342

floppy2* 14.72 1247 1.36 3.23 351 3.12 357 OOM 6.96 666

floppy* 7.99 440 0.55 1.52 165 1.57 161 227.14 4601 3.67 300

parport* 16.43 1159 0.67 4.13 315 4.12 315 5.29 320 6.59 422

toy* 73.90 4038 0.24 0.28 160 0.22 160 OOM 51.54 2456

PARTPW: From Partial Analysis Results to a Proof Witness 133

Looking at Table 1, we make the following observations. With less than 10%
of the verification time, proof witness generation impose little overhead. Consid-
ering the best time and memory, verification is faster in one case and requires
less memory in two additional cases. Although the best PCC approach for time
and memory consumption depends on the verification task, in all other cases, at
least one of the three PCC approaches is faster and requires less memory than
verification. Finally, the validation of the complete set of partial ARGs (cR)
rarely dominates all other PCC approaches, which use the generated proof wit-
ness. In most of the cases, it does not even dominate the ARG approach, which
validates the generated proof witness and is closest to the cR idea. In contrast,
the cR approach is often already dominated by the ARG approach. A similar
observation can be made for the sizes of the certificates, which we omitted due to
lack of space. Summing up, it is a good idea to combine our PARTPW technique
with a standard technique when constructing correctness arguments for partial,
complementary analyses.

6 Conclusion

After a successful verification with a set of partial, complementary analyses,
our technique PARTPW uses the incomplete state space explorations, in form of
partial ARGs, to build a proof witness which could have been constructed when
using a product of the partial analyses. The underlying idea of the proof witness
construction is to combine those paths in the different ARGs that are related.
We proved that the constructed proof witness attests program safety. Addition-
ally, our experiments show that PCC should be combined with proof witness
generation to get correctness arguments for partial, complementary analyses.

Related Work. Garavel et al. [12] describe a distributive explicit state space
construction of a LTS. After distributive construction, the transitions explored
by the different compute nodes are united. In contrast, we combine partial
abstract state spaces, which may consider different domains, w.r.t. same program
paths. Hamid and Shao [13] combine a program certified with the type system
XTAL with system code certified in the logic CAP to get a certified machine
package. To integrate the different proofs, the XTAL certificate is translated into
CAP. The open framework [11] generalizes the previous idea to arbitrary certifi-
cate specifications. An interpretation of the specification maps the specification
into the logic OCAP. Dong et al. [10] present a logic for intermediate represen-
tation with a built-in support for modular certification. It provides two rules to
integrate already certified modules in the certification of a program. While these
approaches consider logic proofs, we focus on state space descriptions.

Acknowledgements. This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Comput-
ing” (SFB 901). The experiments were run in the VerifierCloud hosted by Dirk Beyer
and his group.

134 M.-C. Jakobs

References

1. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The Blast
query language for software verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS,
vol. 3148, pp. 2–18. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27864-1 2

2. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: FSE, pp. 57:1–
57:11. ACM (2012). doi:10.1145/2393596.2393664

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73368-3 51

4. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 16

5. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: FMCAD, pp. 189–198. FMCAD Inc. (2010)

6. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793,
pp. 146–162. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37057-1 11

7. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Fis-
cher, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178. Springer,
Cham (2015). doi:10.1007/978-3-319-23404-5 12

8. Chaieb, A.: Proof-producing program analysis. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 287–301. Springer, Heidelberg
(2006). doi:10.1007/11921240 20

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977). doi:10.1145/512950.512973

10. Dong, Y., Wang, S., Zhang, L., Yang, P.: Modular certification of low-level interme-
diate representation programs. In: COMPSAC, pp. 563–570. IEEE (2009). doi:10.
1109/COMPSAC.2009.81

11. Feng, X., Ni, Z., Shao, Z., Guo, Y.: An open framework for foundational proof-
carrying code. In: TLDI, pp. 67–78. ACM (2007). doi:10.1145/1190315.1190325

12. Garavel, H., Mateescu, R., Smarandache, I.: Parallel state space construction for
model-checking. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 217–234.
Springer, Heidelberg (2001). doi:10.1007/3-540-45139-0 14

13. Hamid, N.A., Shao, Z.: Interfacing hoare logic and type systems for foundational
proof-carrying code. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds.) TPHOLs
2004. LNCS, vol. 3223, pp. 118–135. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30142-4 10

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model check-
ing. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772,
pp. 332–358. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39910-0 16

15. Jakobs, M.-C.: Speed up configurable certificate validation by certificate reduction
and partitioning. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276,
pp. 159–174. Springer, Cham (2015). doi:10.1007/978-3-319-22969-0 12

16. Jakobs, M.C., Wehrheim, H.: Certification for configurable program analysis. In:
SPIN, pp. 30–39. ACM (2014). doi:10.1145/2632362.2632372

http://dx.doi.org/10.1007/978-3-540-27864-1_2
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/11921240_20
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1109/COMPSAC.2009.81
http://dx.doi.org/10.1109/COMPSAC.2009.81
http://dx.doi.org/10.1145/1190315.1190325
http://dx.doi.org/10.1007/3-540-45139-0_14
http://dx.doi.org/10.1007/978-3-540-30142-4_10
http://dx.doi.org/10.1007/978-3-540-30142-4_10
http://dx.doi.org/10.1007/978-3-540-39910-0_16
http://dx.doi.org/10.1007/978-3-319-22969-0_12
http://dx.doi.org/10.1145/2632362.2632372

PARTPW: From Partial Analysis Results to a Proof Witness 135

17. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 52

18. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009). doi:10.1145/1592434.1592438

19. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119. ACM (1997). doi:10.
1145/263699.263712

20. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 1st edn.
Springer, Heidelberg (2005). Corr. 2. print. edn

21. Rose, E.: Lightweight bytecode verification. J. Autom. Reasoning 31(3), 303–334
(2003). doi:10.1023/B:JARS.0000021015.15794.82

22. Seo, S., Yang, H., Yi, K.: Automatic construction of hoare proofs from abstract
interpretation results. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 230–
245. Springer, Heidelberg (2003). doi:10.1007/978-3-540-40018-9 16

http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1145/1592434.1592438
http://dx.doi.org/10.1145/263699.263712
http://dx.doi.org/10.1145/263699.263712
http://dx.doi.org/10.1023/B:JARS.0000021015.15794.82
http://dx.doi.org/10.1007/978-3-540-40018-9_16

Specification and Automated Verification
of Dynamic Dataflow Networks

Jonatan Wiik(B) and Pontus Boström

Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
{jonatan.wiik,pontus.bostrom}@abo.fi

Abstract. Dataflow programming has received much recent attention
within the signal processing domain as an efficient paradigm for exploit-
ing parallelism. In dataflow programming, systems are modelled as a sta-
tic network of actors connected through asynchronous order-preserving
channels. In this paper we present an approach to contract-based spec-
ification and automated verification of dynamic dataflow networks. The
verification technique is based on encoding the dataflow networks and
contracts in the guarded command language Boogie.

1 Introduction

Modern software systems are increasingly concurrent, as the computing power of
modern CPUs is improved mainly by increasing the number of processor cores.
At the same time, modern computer platforms are also increasingly parallel,
distributed and heterogenous, often involving special processing units, such as
GPUs or DSPs for performing specific tasks efficiently. Writing software that
effectively exploit the capacity of such platforms is hard. The dataflow paradigm
has been proposed as a possible solution to this problem and has received a large
amount of attention within the signal processing domain.

A dataflow program consists of a static network of actors. Actors are state-
ful operators communicating exclusively via asynchronous unidirectional order-
preserving channels. Actors evolve concurrently and each actor can execute when
the required data is available on the incoming channels. As actors communicate
only over channels, computations can easily be mapped to processing units.

In this paper, we present a hierarchical and modular approach to contract-
based specification and automated verification of dataflow actors and networks
based on assume-guarantee reasoning. We present a novel contract notation for
actors and networks. The contracts state functional properties, which the actor
or network should adhere to. The goal of the approach is to ensure functional
correctness with respect to contracts for actors and networks as well as dead-
lock freedom for networks. We have also observed that our contracts could be
utilised in scheduling. Scheduling methods for dataflow networks, e.g. [4], are
based on finding an execution sequence that returns the communication channel

The work has been partially funded by the Academy of Finland through the projects
Merge (No. 286094) and ADVICeS (No. 266373).

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 136–151, 2017.
DOI: 10.1007/978-3-319-66197-1 9

Specification and Automated Verification of Dynamic Dataflow Networks 137

buffers to the same state. Our contracts explicitly express this state, as well as
preconditions on input data, which also could be useful for scheduling.

The verification technique is based on an encoding into the guarded command
language Boogie [2]. The Boogie verifier is tightly integrated with the Z3 [6] SMT
solver and can thus generate efficient verification conditions. Boogie has also been
used as a backend in verifiers for several popular programming languages. Our
approach could potentially be integrated in these verifiers to support verification
of dataflow actors in other popular languages.

The main contributions of this paper are the following: (1) A method to
specify the behaviour of networks based on the reaction of the network to indi-
vidual tokens. (2) An encoding of actors, networks and their specifications into a
guarded command language. (3) A method to automatically generate invariants
needed for verification of a common type of actors.

The work presented in this paper acts as a generalisation of previous work
[3] by the authors on verification of Simulink models. There, Simulink models
are translated to synchronous dataflow (SDF) [10,12] networks for verification.
SDF is a subset of the dataflow programs considered here. In dynamic dataflow,
as opposed to SDF, the number of tokens produced and/or consumed by an
actor can be dynamic and depend on the value of current as well as previously
consumed tokens. This significantly complicates the verification task.

The remainder of the paper is structured as follows: We introduce the con-
sidered dataflow actors and networks in Sect. 2 and then informally describe our
verification technique in Sect. 3. In Sect. 4 we describe the actor and assertion
languages. We then describe the encoding of assertions, actors and networks
into a guarded command language in Sect. 5. In Sect. 6 we describe our invariant
generation method. We then discuss soundness in Sect. 7 before presenting an
evaluation of the approach on a number of examples in Sect. 8. We then proceed
to related work and conclusions in Sects. 9 and 10.

2 Dataflow Actors and Networks

The dataflow programs considered in this paper consist of static hierarchical
networks of actors, which are connected via asynchronous unidirectional order-
preserving channels. An actor is a stateful operator consisting of a set of inports,
a set of outports, a set of state variables and a set of actions. An actor performs
computations by firing enabled actions. An action is enabled or disabled based
on the amount and value of input tokens, and the actor state. When an action
fires, it consumes tokens on the inports, updates the actor state, and produces
tokens on the outports. An action hence describes the reaction of the actor to
a sequence of input tokens. The amount of tokens consumed or produced on a
port is called rate. An actor that consumes and produces the same amount of
tokens each time it fires is considered to have static rate.

We use a language similar to the CAL actor language [7] to describe our
actors and networks. More precisely, our language is a subset of the RVC-CAL
[14] language, extended with some specification constructs. Some basic examples

138 J. Wiik and P. Boström

Fig. 1. Examples of two basic actors and a network formed from these actors.

are given in Fig. 1. The actor Add has two inports, x1 and x2, and one outport
y. The actor has one action with the pattern x1:[i], x2:[j] =⇒ y:[i+j],
which specifies that the action reads 1 token from each inport and outputs the
sum of the read tokens on the outport. The actor Delay in Fig. 1 delays the data
on its input channel with one token. The delay is implemented with a special
initialisation action, declared with keyword initialize, outputting an initial
token on the outport. Initialisation actions are only run once, when the actor is
initialised and are not allowed to consume input. In the example, the value of
the initial token is given as a parameter to the actor.

It is noteworthy that CAL allows non-determinism, as multiple actions can
be enabled on the same input. However, in this work we require that actors
and networks are deterministic. This is ensured by checking that firing rules are
mutually exclusive.

Instances of actors are connected to form networks. The graph in Fig. 1 illus-
trates a network computing the accumulated sum of its input. It consists of one
instance of Add and one instance of Delay. The goal of the work presented in this
paper is to specify actors and networks like those given in Fig. 1 and to verify
them using contracts. We verify functional correctness with respect to contracts
and deadlock freedom of networks. Note that, for instance, the network in Fig. 1
would deadlock without the initialisation action of the Delay actor.

3 Verification Technique

In this section we informally describe our specifications and our verification
technique. The channels of a dataflow network can be described as streams of
data. A channel c is then a stream 〈c0, c1, . . . 〉, where each ci is a data token.
Actors can then be considered as operators on streams. Our specifications are
contracts consisting of preconditions and postconditions for actors and networks.
Networks and actors are modularly verified to conform to their contracts.

3.1 Networks

We describe networks using a syntax which resembles the syntax used to describe
basic actors. This differs from RVC-CAL, which uses a graphical language to
describe networks. The languages are, however, semantically equivalent.

Specification and Automated Verification of Dynamic Dataflow Networks 139

Fig. 2. The source code with contract of a network for calculating the accumulated
sum of the input tokens.

Our network syntax includes an entities block, which declares the actor
instances in the network, and a structure block, which describes the intercon-
nection of the actor instances. For an example, consider the network SumNet
given in Fig. 2, which is the source code of the network illustrated in Fig. 1. The
entities block defines the actor instances add and del. In the structure block,
the channels interconnecting these actor instances are defined. For instance, the
port in1 of actor add is connected to the network inport in. The channels are
given labels a, b, c and d, which can be used to refer to the channels in specifica-
tions. The instances specified in the entities block can themselves be networks.
Hence, we allow nested networks.

In addition to the entities and structure blocks, a network has also sev-
eral specification constructs. The most central specification construct is the net-
work contract, which defines the relationship between input and output tokens
of the network. Contracts are similar to actor actions in that they describe the
reaction of the network to a finite amount of input tokens. However, contracts
are merely used for specification and have no impact on the behaviour.

Definition 1 (Network contract). A network contract:

contract x : n =⇒ y : m guard G requires P ensures Q end

specifies that, given n input tokens on port x conforming to G ∧ P , the network
outputs m tokens on port y that conforms to Q.

The difference between guards and preconditions is that a guard determines
if the contract is enabled on the input, while a precondition describes valid input.
Our verification technique is based on checking that the output streams of the
network are composed of finite windows where each window matches a contract.
We consider a window of size n for the input stream x, and size m for the output
stream y as specified in the contract. For an example, consider the contract of
our example SumNet. It specifies that given 1 input token on port in, it will
produce 1 output token on port out.

140 J. Wiik and P. Boström

Verifying a network entails checking that the execution of the network satis-
fies each of the network contracts. A contract as defined in Definition 1 describes
the response of the network to a finite input. To ensure that the network does not
buffer an infinite amount of tokens on any channel, we require that the amount
of tokens on channels between contract windows is fixed. If not explicitly stated
otherwise, channels are required to be empty. Essentially, this means that net-
works are checked to have a periodic behaviour, where the period is described
by the contracts.

It is not always desired or possible to have empty channels between contract
windows. The network SumNet, for instance, contains a loop and requires that
an initial extra token is produced to avoid deadlock. Executing the network for
a contract window will then always result in an unread token in this loop. This
can be specified in network invariants. Network invariants are declared using the
keyword invariant and are required to hold between contract windows. In the
SumNet example, the invariant tokens(b,1) specifies that the network should
leave 1 token on the channel b between contract windows. To ensure that other
channels are empty, an invariant tokens(c,0) is assumed to be defined implic-
itly for each channel c that is not mentioned explicitly. We have observed that
the conditions expressed in our contracts and invariants could be utilised also in
scheduling. Scheduling methods for dataflow networks are typically based on find-
ing execution sequences that return the channel buffers to the same state. Such a
state is expressed by our tokens construct and our contracts specifies an amount
of input tokens needed to return buffers to this state.

Network invariants are not required to hold inside contract windows. To track
data inside windows we use another type of invariants, which we call channel
invariants. The channel invariants, declared with keyword chinvariant, need
to be preserved by the execution of all actors in the network. For instance,
in SumNet, we have a channel invariant b[0] = 0, stating that the first token
produced on channel b has the value 0. We use indices to refer to stream tokens
in assertions. Hence, c[i] refers to the i:th token produced on c.

To write preconditions and postconditions, we want to refer to the tokens
produced and consumed during the considered window. This can be done using
the function •(c).
Definition 2 (Bullet). •(c) is the total number of tokens that had been con-
sumed on the channel c before the current contract window.

Based on the definition of •, it is possible to refer to the first token produced
on a channel c during the current window using c[•] and to the second token
produced using c[• + 1]. It is also possible to refer to the last token that was
consumed during the previous window using c[•−1]. The offset does not have to
be constant. We can also express that a property P holds for the 5 first tokens
produced during the action: ∀ int i · 0 ≤ i ∧ i < 5 ⇒ P (c[•+ i]). The argument
to • is left out above, as it is implicit when • is used in the position of an index.
Hence, c[•(c)] and c[•] are synonymous.

Consider again the network SumNet. The function • is used in
the precondition and postconditions. The precondition 0 ≤ in[•] states

Specification and Automated Verification of Dynamic Dataflow Networks 141

that the input is required to be non-negative. The postcondition
0 < •(out) ⇒ out[•] = out[•−1]+in[•] states that, for any window
where 0 < •(out), the output should be equal to the previous output plus the
current input. The postcondition out[0] = in[0] states that the first token
produced by the network should be equal to the first input consumed. Addition-
ally, there is also a postcondition stating that the output is always larger than
or equal to the input.

Our verification technique is based on an inductive proof. The base step of
the inductive proof is checking that the network initialisation establishes the
network invariants. The inductive step consists in considering an arbitrary con-
tract window and showing that channels will be returned to the same state, i.e.
that the network invariants are preserved. Our approach also guarantees dead-
lock freedom by ensuring that progress is made from the state described by the
network invariants when input specified by the network contract is received.

It should be noted that networks are in practice not executed atomically for a
contract window. This means that tokens for the next window can arrive before
the preceding window is completed. In Sect. 7 we argue that, despite this, it is
sound to verify networks for a contract window in isolation, given that actors
are continuous. Essentially, an actor is continuous if it is deterministic.

3.2 Actors

The actors given in Fig. 1 are simple rate-static actors without state and their
complete behaviour is described by the action patterns. However, actors can
have both state as well as dynamic rates. Consider for instance the actor Sum
in Fig. 3. This is a single actor implementing the functionality of the network
SumNet in Fig. 2. A state variable sum is used to store the accumulated sum. The
action body, starting with keyword do, updates the state variable.

For specification, the action of the actor in Fig. 2 has been annotated with
a precondition and a postcondition. The precondition requires the input token
to be greater than or equal to 0, while the postcondition requires the output,
i.e. the state variable sum, to be greater than or equal to the input. To prove
that the action satisfies the postcondition, we need to restrict the state variable
with an invariant. The invariant 0 ≤ sum allows the action to be verified. Actor
invariants are required to hold between action firings.

To prove on network level that interconnected actors are compatible, the
relationship between input and output of actors can be described using invari-
ants over input and output streams. These invariants can be locally proved and
used as assumptions on the network level. In the Sum example, the invariants
tot(y) = rd(x) and ∀ int j · every(y,j,1) ⇒ y[j] = y[j−1]+x[j]
describe the relationship between tokens on the input stream and the output
stream. The functions tot(x) and rd(x) give the total number of tokens pro-
duced and consumed on a stream x at the present moment, respectively. Hence,
the first invariant states that the number of tokens produced on stream y is equal
to the number of tokens consumed on stream x. In the second invariant, the data

142 J. Wiik and P. Boström

Fig. 3. The actor Sum is an actor with state. For the actor Split, the number of tokens
produced on each output port depends on the value of input tokens.

tokens of the input and output streams are referred to using indices. In the invari-
ant, the construct every(y,j,1) is a predicate equal to 1 ≤ j < tot(y). The
invariant hence states that every token produced on stream y with an index i
of 1 or larger is equal to the previous output plus the input token with index i.
The construct y[last] denotes the last token produced on the channel y.

Our verification technique can locally check actor invariants and then use
them as assumptions in place of channel invariants at the network level. This
is possible because every channel in a network has a unique actor reading and
a unique actor writing to it. This means that the number of tokens consumed
on an input stream x, rd(x), and the number of tokens produced on an output
stream y, tot(y), can be assumed to not change between actor firings. Note that
if an outport is connected to more than one inport, as is the case in Fig. 2, all the
connections are considered separate streams. On the other hand, the number of
tokens consumed on output streams and the number of tokens produced on input
streams is not known locally and cannot be used in assertions that are checked
locally. The verifier performs wellformedness checks on assertions to ensure this.

The actor Split in Fig. 3 outputs non-negative input tokens on the outport
pos and negative input tokens on the outport neg. When the number of token
consumed and/or produced is dependent on the value of input tokens, like in
the Split example, it becomes very hard to write invariants that can be locally
proved. For actors like this, it is often more feasible to provide the needed prop-
erties as channel invariants at the network level instead.

Note that invariants on streams like those described above are also needed
for the simple actors in Fig. 1. However, in these cases the verification tool can
automatically infer the invariants, as we describe in Sect. 6.

Specification and Automated Verification of Dynamic Dataflow Networks 143

Fig. 4. Grammar of the actor language.

4 Programming and Assertion Language

In this section we define precisely the language we consider in this paper. The
considered language can be split into two parts: the actor language, which is used
to describe actors, networks and their interconnection, and the host language,
which is used to implement action bodies. The host language we consider is a
simple imperative programming language. We also define our assertion language,
which is used to express preconditions, postconditions and invariants.

Actor language. The grammar of the actor language is listed in Fig. 4. In the
grammar we use 〈 and 〉 for concrete parentheses in the language, to differenti-
ate them from the meta-parentheses used to describe the grammar. A program
consists of actor and network declarations. In the grammar, S is a statement, A
is an assertion, e is an expression, id is an identifier and n is a numeric literal.

Host language. The host language we consider in this paper is a simple imper-
ative programming language without references, which is straight-forward to
encode in a verifier. The statement grammar S of the language is given in Fig. 5.
Essentially, the language is a small subset of the RVC-CAL host language, con-
sisting of assignments, if statements and while loops. While loops are verified
using Hoare logic as in traditional program verification. The expression grammar
e is also summarised in Fig. 5. Here ⊕ is a binary operator. The host language
could easily be extended or substituted with another language which can be
encoded in a verifier.

Assertion language. The grammar of the assertion language A is given in Fig. 5.
The predicate tokens is only allowed as an independent assertion. The reason
is that the verifier needs to keep track of channels for which tokens has been
used; other channels, not mentioned in any tokens predicate, are required to be
empty between contract windows. Requiring that tokens is only used separately

144 J. Wiik and P. Boström

Fig. 5. Grammar of statements S, assertions A, and expressions e.

means that it will always be required to hold, as it cannot appear in conditions
like v ⇒ tokens(x, 1). The expressions e in assertions is equivalent to that of the
host language. However, a wellformed expression that is not part of an assertion
cannot contain the specification constructs •(c), rd(c), tot(c) etc. Although A
allows expressions of other types, any wellformed assertion is of Boolean type.

5 Encoding

In this section we present an overview of how the assertions, as well as the proof
rules for networks and actors, can be encoded in a guarded command language
similar to Boogie [2]. The Boogie verifier carries out the rest of the proof by
computing weakest preconditions of the generated code and proving them using
an SMT solver. The precise encodings are omitted here due to lack of space, but
are provided in a technical report [16].

5.1 Assertions

Our encoding is based on tracking the content of network channels. We do this
via a number of global map variables:

I : ch → int R : ch → int C : ch → int M : (ch〈β〉, int) → β

The type of I, R and C is a map from channels to integers. I[c] gives the number
of tokens read on channel c when the network contract started executing. R[c]
tracks the total number of tokens read on channel c. C[c] tracks the number
of tokens that has been produced on c. M is a two-dimensional map of type
(ch〈β〉, int) → β. It is used to track the messages sent on channels. M[c, i] gives
the i:th message produced on channel c. Note that the type of M is polymorphic
and β is the datatype of the messages carried on the channel.

The assertion encoding, denoted with � – �, of the most significant constructs
of our assertion language is given in Fig. 6. The functions •(c), rd(c) and tot(c)
correspond directly to I[c], R[c] and C[c], respectively. The standard logical
operators have direct correspondences in Boogie and are not listed here.

5.2 Basic Actors

For a basic actor A, we verify that (1) the output of each actor action T ∈
Aact fulfills its postcondition and (2) that each actor action preserves the actor
invariants Ainv. To do this we assume that Ainv hold when the execution of

Specification and Automated Verification of Dynamic Dataflow Networks 145

Fig. 6. Encoding of assertion constructs.

action T starts and that the input tokens satisfy the precondition Tpre. We also
assume that the action guard Tgrd is satisfied, as T would not fire if Tgrd is not
satisfied. The verification technique used is hence analogous to how methods are
verified in traditional program verification for object-oriented languages.

Additionally the actor initialisation is also shown to establish Ainv. This
verification is similar to normal actions, but we do not initially assume the
invariants. Instead we assume R[x] = 0 for each inport x, and C[y] = 0 for each
outport y and check that the output of the initialisation action I satisfies its
postcondition Ipost and establishes Ainv.

5.3 Networks

The goal of the network encoding is to check that the network behaves according
to one of its contracts. The verification method is based on checking an arbitrary
window for every contract. The verification relies on tracing data on channels
using invariants. Below N is a network, x ∈ Nip is an inport of N and y ∈ Nop

is an outport of N . Then Nnwi and Nchi are the network invariants and channel
invariants, respectively. Nsubi is the locally proven invariants of the sub-actors.
Nfrules is the firing rules of every sub-actor in the network. We further assume
that T is a network contract of N , having pattern x : n =⇒ y : m, guard Tgrd,
and precondition Tpre and postcondition Tpost.

– Initialisation We check that the network initialisation establishes Nnwi∪Nchi.
This is done by assuming that we start from a state with empty channel
histories. We then update the buffers according to the initialisation actions of
every sub-actor, assume Nsubi, and assert Nchi∪Nnwi. We also assert that no
sub-actor action is enabled from the state described by Nnwi, i.e. that each
f ∈ Nfrules is falsified. This ensures that the state described by Nnwi is stable
in the sense that N cannot make progress from this state without receiving
additional input.

– Compatibility We check that the interconnected sub-actors are compatible,
i.e. that the invariants imply the preconditions of each sub-actor, and that
executing any sub-actor preserves Nchi . The encoding is as follows for a sub-
actor A with action t with pattern xt : nt =⇒ yt : mt, guard tgrd, precondition
tpre and postconditon tpost: The invariants Nchi ∪ Nsubi are assumed. It is
then assumed that there are at least nt tokens on xt, nt ≤ C[xt] − R[xt].
The input tokens are then assigned to identifiers and the action guard tgrd
is assumed. We then assert tpre. After this we havoc (non-deterministically

146 J. Wiik and P. Boström

assign any type correct value) to the sub-actor state variables, assume tpost
and assign the tokens defined in the output pattern to yt. Finally we assume
the invariants Ainv of the sub-actor and assert Nchi.

– Network input We check that Nchi is preserved when a new input conforming
to Tgrd ∪ Tpre is received on port x. This is done by incrementing the value
of C[x]. As we consider a finite window, an assumption, C[x]−I[x] < n, that
the amount of input tokens received so far is less than that specified in the
action pattern is made.

– Network output We check that correct output is produced and that the net-
work is in a state conforming to Nnwi if the following conditions hold: (1) On
the input x, n tokens satisfying Tgrd ∪ Tpre has been received. (2) No sub-
actor can be fired, i.e., each f ∈ Nfrules is falsified. (3) All sub-actor actions
preserve Nchi , as checked in Compatibility. We assert that these assumptions
imply that m tokens satisfying Tpost has been produced on output y. We
then mark the output tokens as read by updating R[y]. The value of I is
then assigned the value of R. This models that the contract window is com-
plete. Finally, we assert Nchi ∪ Nnwi .

6 Invariant Generation

To decrease the number of invariants the user needs to provide, we aim to auto-
matically generate actor invariants when possible. This can be done for a com-
mon class of actors that can be classified as rate-static.

For example, consider the actor Add in Fig. 1. We want to find an invariant
expressing the relation between input tokens and output tokens for this actor.
The following invariants fulfill this for the actor Add:

tot(out) = rd(in1) ∧ tot(out) = rd(in2)

∀ int j · 0 ≤ j < tot(out) ⇒ out [j] = in1 [j] + in2 [j]

In this section we present a general method for generating invariants for all rate-
static actors. Essentially, we translate actions into assertions that can be used
as invariants. Consider a rate-static actor A with the following two actions:

initialize =⇒ y : [dr] end
action x : [in] =⇒ y : [em] guard g end

Here in is a sequence of n input variables and em and dr are sequences of m
respectively r functions. Hence A has an input rate n and an output rate m.
Additionally it produces r initial tokens. The initialize action is only run
once when the actor is initialised. We can now relate the number of tokens on
the inport to the number of tokens on the outport with the following invariant:

(n × tot(y)) = (m × rd(x)) + r (1)

Invariants relating the values of input tokens to the values of output tokens have
the following form:

∀ int j · R ∧ G ⇒ y[j] = F(k) (2)

Specification and Automated Verification of Dynamic Dataflow Networks 147

where

R = r ≤ j < tot(y) ∧ j % m = k F = ek(i0 	→ x[b(0)], . . . , in 	→ x[b(n)])
G = g(i0 	→ x[b(0)], . . . , in 	→ x[b(n)]) b(i) = (n/m)j + i− r

Here the notation x �→ y stands for substituting x with y in the expression. A
separate invariant is generated for each k ∈ 0..m − 1. It should be noted that
separate invariants are needed for each outport.

Invariants generated according to (1) and (2) can be checked locally, by check-
ing that the actor actions preserve the invariants. However, to verify networks
it is often also useful to state properties about the initial amount of tokens on
channels. For rate-static actors we can provide the following channel invariant
for the network where A is used:

(n × •(y)) = (m × •(x)) (3)

Using invariants in the form described by (1), (2) and (3), it is possible to
verify stateless rate-static actors, and networks of such actors, such as Add and
Delay in Fig. 1 with only a few user-provided invariants. Typically invariants are
then only needed to describe the state between contract windows. For actors with
state we have a restriction that state variables cannot be used in output patterns.
This can, however, be circumvented by considering the state as a feedback-loop
channel. Furthermore, invariants of the form in (1) and (3) can also be generated
for networks with static rate. Note also that generated invariants are correct by
construction. Hence, it is not necessary to check them during verification, but
they can be used as assumptions directly.

7 Soundness

In this section we briefly argue for the soundness of our approach. A more exten-
sive argument is presented in our technical report [16].

Our verification approach is based on an inductive argument. Given a net-
work invariant Nnwi, we show that Nnwi holds again after an arbitrary contract
window. The inductive base step consists in checking that Nnwi is established
by the network initialisation. Hence, we show that the network has a periodic
behaviour, where the period is described by the contract.

In the verification, we assume that the length of the network input is no
longer than described by the network contract. In practice this is, however, not
necessarily the case, as networks are not executed atomically for a contract
window. For the verification to be sound, it is then required that the behaviour
of the network cannot change in response to receiving additional input. More
formally, assume we have two input sequences x and x′, where x is a prefix of
x′, x x′. It is then required that the network output for x, N(x), is a prefix of
the network output for x′, i.e. x x′ ⇒ N(x) N(x′). This property is called
monotonicity and has been defined for Kahn Process Networks [9] along with a
stronger property called continuity. Lee and Parks [11] have shown that sufficient
conditions for Dataflow Process Networks, which is also what our networks are,

148 J. Wiik and P. Boström

to be continuous are that each actor is functional and that the firing rules are
sequential. Functional here means that the actor does not have side effects and
that the output tokens are a function of the input tokens consumed during that
firing. Sequential means that the firing rules can be tested in a predefined order
using only blocking reads. Essentially these restrictions mean that actors are
required to be deterministic. As we here allow actors with state they do not
appear to be functional. However, Lee and Parks [11] note that actor state is
just syntactic sugar for having feedback loops in the top-level network. The same
conditions hence apply also to actors with state. The condition that firing rules
are sequential is in our case ensured by requiring mutually exclusive firing rules.

8 Evaluation

We have implemented our verification approach in a prototype verification tool
and successfully verified a number of networks and actors, including both static
an dynamic behaviour. The verified networks include, e.g., implementations of
digital filters and a ZigBee transmitter. Many of the networks consisted mostly
of static actors for which our tool automatically generates invariants. In these
cases, most user-provided invariants were used to specify tokens on feedback
loops. The tool is written in Scala and is publicly available1 together with the
source code of the evaluated examples.

The results from evaluation of 7 different networks are summarised in Table 1.
The table lists the lines of code, the number of actor instances, the number of
invariants provided by the user as well as generated by the verifier, the number
of assertions in the resulting Boogie encoding, and the total number of lines of
code in the Boogie encoding.

In Table 1, SumNet is our running example listed in Fig. 2. The network
DataDependent is a network containing the data-dependent actor Split listed
in Fig. 3. The network Nested is a network nesting another network. The top-
level network nests the network SumNet and also contains the actor Sum given
in Fig. 3. The postconditions states that SumNet and Sum produces equivalent
output streams.

Table 1. Summary of evaluation

Name LOC Instances User invs. Gen. invs. Assertions Boogie LOC

SumNet 41 2 3 17 31 585

DataDependent 49 2 6 5 61 619

Nested 107 6 15 26 101 1,184

IIR 52 6 2 23 28 1,245

FIR 86 13 5 33 68 4,506

LMS 213 45 9 128 312 46,300

ZigBee 399 6 36 24 288 2,814

1 http://users.abo.fi/jonwiik/actortool/.

http://users.abo.fi/jonwiik/actortool/

Specification and Automated Verification of Dynamic Dataflow Networks 149

The networks IIR, FIR, LMS and ZigBee are based on networks available as
part of the Orcc2 compiler infrastructure for RVC-CAL programs. The networks
IIR, FIR and LMS describe digital filters and are essentially SDF networks, except
that some of the actors have state. In the IIR and FIR networks we check that
the produced output conforms to the difference equations describing the filters.
For the LMS filter, we only checked that the network produces one output token
for each input token and that the network is deadlock free.

The ZigBee network describes a ZigBee transmitter. It consists of 4 actors,
among which two actors have complex dynamic behaviour, where the number of
both consumed and produced tokens is data-dependent. Compared to the orig-
inal Orcc network, we transformed state variables on which firing rules depend
into feedback-loops. As the network uses many bitwise operations, we used bit-
vectors to represent integers. For verification, we encapsulated the dynamic
actors in separate networks. This enabled us to describe several firings of the
actor using one network contract, essentially making it appear as a static actor
on the network level above. We verified the network to be deadlock free and that
the correct number of output tokens is produced for a number of input lengths.

It can be observed in Table 1 that the number of assertions is in many cases
roughly proportional to the number of actor instances multiplied by the number
of user-provided invariants. This is expected as channel invariants are asserted for
each action of every sub-actor. Decomposing networks into hierarchies as well as
proving actor invariants locally instead of expressing them as channel invariants
at the network level decreases the number of assertions. The evaluated networks,
except LMS, were verified within 10 s on a modern laptop. The LMS network took
roughly 25 s to verify.

9 Related Work

Chalice [13] is a programming language and verifier for multi-threaded object-
based programs. Chalice also supports channels that can be verified to be dead-
lock free. There, permissions to receive and obligations to send messages on
channels are described in assertions. We have opted to not use this method here
since it is more complex than needed in our case. We do not need send obligations
as the number of tokens to be produced is given statically in actions.

Some automata-based approaches to static analysis of dataflow networks
exist. In [8] a method for modular analysis of Dataflow Process Networks based
on Interface Automata is presented. Interface Automata are associated with
processes to specify the interface behaviour and environmental assumptions.
Based on the automata they deduce properties such as deadlock freedom by
checking the consistency of components and interface automaton networks. An
extension to Interface Automata, named Counting Interface Automata, is pre-
sented in [15] and used for checking CAL actor compatibility. The method can
capture temporal and quantitative aspects of actor interfaces, as well as token

2 http://orcc.sourceforge.net/.

http://orcc.sourceforge.net/

150 J. Wiik and P. Boström

exchange rates. By composing automata they can prove behavioural type com-
patibility. However, neither of the approaches [8,15] consider properties given in
contracts.

Formal verification of synchronous languages such as Lustre has been studied
extensively. One recent approach by Champion et al. is CoCoSpec [5]. They
present a mode-aware contract language. This is similar to annotating a network
with several contracts in our approach. However, CoCoSpec, as well as other work
aimed at synchronous languages, do not consider asynchronous, dynamic actors.

There is a large amount of work, e.g. [1], on verification of asynchronous
object programs. Asynchronous objects are similar to our actors, but there are
several differences. We consider static networks of actors, while asynchronous
objects can be dynamically created. Restricting ourselves to static networks sim-
plifies reasoning and enables us to prove stronger properties fully automatically.

10 Conclusion

We have presented an approach to specification and automated verification of
dynamic dataflow networks. Our approach ensures functional correctness with
respect to contracts for actors and networks as well as deadlock freedom for
networks. The approach is based on checking networks for windows of finite
length described by contracts. We have implemented our approach in a prototype
tool and successfully verified a number of existing networks and actors.

There are several directions for future work. We plan to investigate more
extensively the utilisation of our contracts in the scheduling of dataflow networks,
e.g. by integrating them with the approach in [4]. We also plan to investigate
extension of our approach to consider networks where actors can be dynamically
created. However, we believe that our approach is a good first step towards fully
automated contract-based verification of dynamic dataflow actor networks.

References

1. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Sci. Comput. Program. 77(12), 1289–1309 (2012)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). doi:10.1007/11804192 17

3. Boström, P., Wiik, J.: Contract-based verification of discrete-time multi-rate
Simulink models. Softw. Syst. Modeling 15(4), 1141–1161 (2016)

4. Boutellier, J., Ersfolk, J., Lilius, J., Mattavelli, M., Roquier, G., Silvén, O.: Actor
merging for dataflow process networks. IEEE Trans. Signal Process. 63(10), 2496–
2508 (2015)

5. Champion, A., Gurfinkel, A., Kahsai, T., Tinelli, C.: CoCoSpec: a mode-aware
contract language for reactive systems. In: De Nicola, R., Kühn, E. (eds.)
SEFM 2016. LNCS, vol. 9763, pp. 347–366. Springer, Cham (2016). doi:10.1007/
978-3-319-41591-8 24

http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-319-41591-8_24
http://dx.doi.org/10.1007/978-3-319-41591-8_24

Specification and Automated Verification of Dynamic Dataflow Networks 151

6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

7. Eker, J., Janneck, J.W.: CAL language report. Technical report. ERL Technical
Memo UCB/ERL M03/48, University of California at Berkeley (2003)

8. Jin, Y., Esser, R., Lakos, C., Janneck, J.W.: Modular analysis of dataflow process
networks. In: Pezzè, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 184–199. Springer,
Heidelberg (2003). doi:10.1007/3-540-36578-8 14

9. Kahn, G.: The semantics of a simple language for parallel programming. In: Infor-
mation Processing 1974 (1974)

10. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

11. Lee, E.A., Parks, T.M.: Dataflow process networks. Proc. IEEE 83(5), 773–799
(1995)

12. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. 100(1), 24–35 (1987)

13. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00590-9 27

14. Mattavelli, M., Amer, I., Raulet, M.: The reconfigurable video coding standard.
IEEE Signal Process. Mag. 27(3), 159–167 (2010)

15. Wandeler, E., Janneck, J.W., Lee, E.A., Thiele, L.: Counting interface automata
and their application in static analysis of actor models. In: SEFM 2005. IEEE
(2005)

16. Wiik, J., Boström, P.: Specification and automated verification of dynamic dataflow
networks. Technical report 1170, TUCS (2016)

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-36578-8_14
http://dx.doi.org/10.1007/978-3-642-00590-9_27

Specification Clones: An Empirical Study
of the Structure of Event-B Specifications

Marie Farrell(B), Rosemary Monahan, and James F. Power

Department of Computer Science, Maynooth University, Maynooth, Ireland
mfarrell@cs.nuim.ie

Abstract. In this paper we present an empirical study of formal specifi-
cations written in the Event-B language. Our study is exploratory, since
it is the first study of its kind, and we formulate metrics for Event-
B specifications which quantify the diversity of such specifications in
practice. We pay particular attention to refinement as this is one of the
most notable features of Event-B. However, Event-B is less well-equipped
with other standardised modularisation constructs, and we investigate
the impact of this by detecting and analysing specification clones at dif-
ferent levels. We describe our algorithm used to identify clones at the
machine, context and event level, and present results from an analysis of
a large corpus of Event-B specifications. Our study contributes to fur-
thering research into the area of metrics and modularisation in Event-B.

1 Introduction and Motivation

The Event-B language is a state-based formal method for system-level modelling
and verification that combines set theoretic notation and event-driven modelling
[3]. Event-B is an industrial-strength tool and examples of its industrial use
include train systems, air-traffic control and medical devices. A long term goal
of model-driven software development has been to integrate such formalisms
with practical software engineering methods and tools. Since the introduction
of Event-B, a large number of examples and case studies have been conducted
using the formalism, yet there is very little data available on the typical size,
scope or structure of Event-B specifications.

In this paper we analyse Event-B specifications essentially as software
artefacts, and extend software engineering techniques to the Event-B language.
We have approached this empirically, by assembling a large corpus of Event-B
specifications and developing basic metrics to quantify their size and complexity.
Since refinement is a key feature of the Event-B approach, we seek to quantify
this aspect of Event-B specifications in particular, so we can understand how
such refinement is carried out in practice [11].

Apart from refinement, the modularisation constructs in Event-B are not
well-developed, and a number of alternatives have been proposed to address this.

M. Farrell—This project is funded by a Government of Ireland Postgraduate Grant
from the Irish Research Council.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 152–167, 2017.
DOI: 10.1007/978-3-319-66197-1 10

Specification Clones: An Empirical Study 153

As a contribution to the development of modularisation constructs for Event-B,
we conduct a study of clones in our corpus of Event-B specifications. Studies
of this kind already exist for software written in a variety of programming lan-
guages, but we believe this is the first time this topic has been addressed at the
specification level.

This paper is structured as follows. In Sect. 2 we describe the background and
motivation of our work. In Sect. 3 we summarise our exploratory analysis of the
corpus of Event-B projects that we have assembled. This allows us to quantify
metrics and provide some insight into the refinement process used by developers.
Section 4 describes the algorithm that we used to detect specification clones
throughout our corpus. In Sect. 5 we summarise the results of this clone detection
under the specific headings of context, machine and event clones. We also outline
potential ways of reducing the number of clones here. We identify threats to the
validity of this work in Sect. 6 and in Sect. 7 we outline our contributions and
potential for future work.

2 Background and Related Work

The primary objective of Event-B is to provide a basis for proving the safety
of a given specification. This is achieved in practice through the Rodin Plat-
form, an Eclipse-based IDE that is the de facto standard for Event-B [2]. Using
Rodin, developers can write and type-check Event-B specifications, and use both
automatic and interactive theorem proving to discharge proof obligations asso-
ciated with the specification. The Event-B language supports formal refinement
enabling the developer to start with a simple, abstract system and gradually add
complexity in a verifiable way by means of refinement steps [11].

Figure 1 gives an overview of the general structure of Event-B specifications.
Event-B models a system using two kinds of components: contexts and machines.
A context is used to model static data using sets, constants and axioms [2], as
shown in the leftmost column of Fig. 1. The central column of Fig. 1 shows the
general format of a machine definition, which models dynamic behaviour in terms
of a set of events. Machines can define the state variables and constrain them
using variants and invariants.

The rightmost column of Fig. 1 shows the general structure of an event. Here,
p is a set of event parameters, G(x, p) formalises a guard predicate over the set of
event parameters p and the machine variables x. W (x, p) is a witness predicate
and the action BA(x, p, x′) is a before-after predicate where x′ indicates the after

CONTEXT ctx
extends ctx0
SETS S
CONSTANTS c
AXIOMS

A(s,c)

MACHINE m refines m0
SEES ctx

VARIABLES x
INVARIANTS I(x)
VARIANT n(x)
EVENTS

INITIALISATION, e1, . . . ,en

Event ei =̂ status
any p
when G(x,p)
with W(x,p)
then BA(x,p,x’)

end

Fig. 1. The general structure of Event-B definitions of contexts, machines and events.

154 M. Farrell et al.

values of the machine variables x. Each event is paired with a status that can
be one of ordinary, convergent or anticipated. Events that are labelled as
convergent must strictly decrease the variant expression whereas those that are
labelled as anticipated must not increase the variant expression. Events that
have a status of ordinary do not need to obey any such properties.

There has been some work done on identifying suitable metrics for Event-B
developments using the Halstead model [12]. Their objectives were to deter-
mine the size of an Event-B specification, the difficulty in constructing it and
the effort required in designing and proving. Their case study was limited to
just one project with 7 machines, and it is not clear whether the Halstead met-
rics, dependent on applying formulae to operations and operands, are the most
appropriate way of characterising Event-B specifications in general.

2.1 Clones in Code and Specifications

The detection, analysis, management and tool evaluation corresponding to code
clones represents a growing research area in the field of software engineering [15].
The reuse strategy indicated by code cloning is often beneficial in that it pro-
motes the reuse of reliable code and can save time and effort in development.
It is often the case, however, that duplicated code is caused by limitations in
the programming paradigm’s modularisation mechanisms and thus signals that
improvements are required.

Roy et al. identify four different types of code clones [15], based on categoris-
ing the nature of the match between different pieces of code:

Type-1: identical code fragments that differ only in variations of white space
and comments.

Type-2: structurally/syntactically identical code fragments that differ only in
the names of identifiers, literals, types, layout and comments.

Type-3: a more liberal version of Type-2 clones which allow differences such as
additions, deletions or modifications of statements.

Type-4: code fragments that exhibit the same functional behaviour but are
implemented through very different syntactic structures.

In this paper we extend these definitions to detect clones between Event-B
machines, contexts and events. Some work on identifying clones at the specifi-
cation level has been done as part of the Aŕıs project which retrieves reusable
software artefacts using a graph matching approach [13]. However, this approach
was based on finding matches in Spec#/C# code, and does not provide any data
on the kind of clones found.

2.2 Modularisation of Event-B Specifications

There have been a number of suggested approaches to modularising Event-B
specifications. One of the original methods proposed two styles of decomposition,
based on the shared variable and shared event approaches [3]. Since then a variety

Specification Clones: An Empirical Study 155

of Rodin plugins have been developed to offer some degree of modularisation
for Event-B. We do not have space to discuss them all here, but have listed
the relevant plugins for Rodin in Table 1 along with a brief description of the
modularisation features they provide. Since these plugins can potentially reduce
the number of clones in Event-B specifications, we discuss them, where relevant,
in our clone analysis results in Sect. 5.

Table 1. This table summarises the Rodin plugins that we have identified as relevant
to our discussion in this paper.

Name Description Reference

Feature Composition Composition of Event-B machines and contexts
and aids the user in resolving conflicts

[8]

Generic Instantiation Instantiate and reuse generic developments within
other formal developments

[17]

Model Decomposition Decomposition of Event-B machines/contexts using
the shared variable and shared event styles

[18]

Pattern Reuse of existing Event-B models including
refinement steps within a development in order to
save the modelling and proving effort

[7]

Parallel Composition Composition of Event-B machines using the shared
event approach

[14]

Modularisation Allows the developer to construct modules and
prove modular developments

[9]

Renaming refactory Renames Event-B model elements so that the
changes are propagated through the relevant
machines, contexts and proof obligations

See footnotea

Theory Extension Extends the Event-B mathematical language
(potentially with new data types) and the Rodin
proving infrastructure

[5]

a http://wiki.event-b.org/index.php/Refactoring Framework

3 Analysing a Corpus of Event-B Specifications: Metrics
and Refinement

Since there has been no previous large scale study in this area, our focus will be
on conducting an exploratory data analysis to identify and quantify the main
characteristics of Event-B specifications.

In order to carry out this analysis we have assembled a corpus of Event-
B specifications. We have obtained the projects in this corpus from a number
of publicly-available Event-B resources, including the Event-B Wiki Page, the
DEPLOY website and the case study tracks at the ABZ conference (2014 and
2016). Some additional projects were obtained directly from the developers who
constructed them. In total we obtained 85 Event-B projects, ranging from smaller
textbook-style examples through to large-scale developments.

http://wiki.event-b.org/index.php/Refactoring_Framework

156 M. Farrell et al.

Table 2. Metrics for the projects
that fall into the “smaller” cate-
gory.

Table 3. Metrics for the projects
that fall into the “larger” cate-
gory. Outliers are indicated by an
asterisk∗.

Table 4. Summary statistics for
the whole data set, and for the
two “smaller” and “larger” subdi-
visions.

Specification Clones: An Empirical Study 157

All of the specifications in these 85 projects could be processed using the
Rodin platform, and were thus available as a set of XML files in a standardised
format. To analyse these projects we developed a suite of Python programs that
read in the files in Rodin format, calculated and reported metrics, and searched
for occurrences of clones at various levels.

3.1 Quantifying Specification Size

The most obvious measurable entities in an Event-B specification correspond
to the major syntactic categories. Just as the size of a software project might
be measured using code metrics such as number of classes, methods or lines-
of-code, we can get similar information from an Event-B specification in terms
of the number of contexts/machines, events and sentences. Specific to a formal
approach, we can also measure the number of proof obligations (automatically
and interactively proved). The metric values for the 85 projects in the corpus
are given in Tables 2 and 3.

In total, for all 85 projects in the corpus there are 359 contexts and 468
machines, which in turn contain 10828 events. One immediate difficulty in
analysing the corpus is the overall range of the specifications, from small,
textbook-style examples, through to major systems. We chose to divide the
corpus based on the number of sentences (axioms, invariants, variants, guards,
actions and witnesses) per project, since this was the metric closest to lines-of-
code, which might best reflect a simple measure of size for a project. Thus the
rows of Tables 2 and 3 are ordered based on the total number of sentences in a
project. We note that this is a coarse-grained measure as sentences may vary in
complexity.

In order to be able to represent this information meaningfully and extract
useful information from it, we have split the corpus into two different data sets.
We investigated a variety of ways by which to carry out this split, including:

– using the examples from the Modeling in Event-B textbook [1] as models of
“smaller” projects, and regarding projects with more sentences than these as
“larger” projects.

– extracting the outliers using Tukey’s test (the median plus 1.5 times the
inter-quartile range); all such outliers were larger projects.

– using trimming [10], to identify a fixed proportion at the extreme ends of the
data set.

In practice, these three strategies resulted in almost the same set being iden-
tified, and we have used Tukey’s test to categorise the 16 projects in Table 3 as
“larger”. This also corresponds to the top 19% of the projects, and excludes all
but one of the textbook examples (the exception is the mechanical press con-
troller from Chap. 3). We refer to the 69 remaining projects listed in Table 2
as “smaller”. These projects all have 10 contexts or under and 10 machines or
under. Some of these are non-trivial projects, however and the number of sen-
tences ranges from just 29 up to 948. Thus we have further divided Table 2 into
quartiles based on the number of sentences.

158 M. Farrell et al.

Tables 2 and 3 demonstrate the diversity of Event-B developments and we
provide them so that future studies have a measure with which they can gauge
the comparative size of Event-B developments.

3.2 Metrics for Event-B Specifications

Figure 2 further illustrates the diversity in size between the projects, showing
the distributions of the sentences in the smaller and larger projects. These mea-
surements signal that one should be cautious when choosing a representative
Event-B specification as the structures vary so much. In particular, the Midas
project is a dramatic outlier of this data set on almost all metrics, as is shown
by the rightmost bar in Fig. 2, and thus should be considered quite distinctive
as an Event-B specification.

Table 4 summarises the ranges for each of the metrics, giving the minimum,
maximum, median and madn values for the whole data set and its two subdi-
visions. Due to the uneven distribution we use the median and madn as robust
measures in place of the mean and standard deviation. madn is the median of
the absolute deviations from the median, divided by z0.75 [10]. It is notable that
in most cases the madn is close to or exceeds the median, indicating a large
spread of values for each of the metrics.

We analysed all of the metrics in Tables 2 and 3 to check for inter-
relationships, using Spearman’s rank correlation coefficient. The most notable
very strong correlations (with p < 0.001 in all cases) were between the following
variables:

– the number of events and the number of sentences in the small data
set (ρ = 0.905), where the median number of sentences per event is 11
(madn = 4.4). However, in the larger project set, this correlation is weak
(ρ = 0.391). The larger projects contain a greater number of contexts, thus
adding sentences to the projects that are not sentences within events.

Number of Sentences in the Smaller Projects

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4

Number of Sentences in the Larger Projects

D
en

si
ty

0 5000 10000 20000 300000.
00

00
0

0.
00

01
5

0.
00

03
0

Fig. 2. Histograms showing the distribution of the numbers of sentences per project
for the smaller and larger data sets. Note that the vertical axes here are on different
scales.

Specification Clones: An Empirical Study 159

– the number of machines and the number of events in both the smaller
(ρ = 0.849) and larger (ρ = 0.904) project sets. The median number of events
per machine is 25 (madn = 9.8) in the larger set and 5 (madn = 2.7) in the
smaller.

There was also a (lower) strong correlation in the smaller projects between
the numbers of events/sentences and the number of automatic proofs.

The data in Tables 2 and 3 shows that the number of automatic proofs
required dramatically exceeds the number of interactive proofs in general. On
average, in the larger projects, 78.6% of the proofs were done automatically with
91.1% of the proofs automatic in the smaller projects. This is important for
automated verification, since it is a measure of the relative amount of theorem-
proving work imposed on the user, as compared to that done by the underlying
prover. It is notable that this percentage is much higher for smaller examples
than for the larger ones. This is most likely due to the increased complexity
in modelling large-scale systems. As Event-B continues to be used industrially,
this metric can be useful in measuring the degree to which automated theorem-
proving has increased in effectiveness.

3.3 Quantifying Refinements

Figure 3 contains a histogram with kernel distribution, showing the number of
refinement steps for each of the project sets. As can be seen, in the larger project
set the Midas project is again a dramatic outlier with 40 refinement steps. The
smaller project set does not contain any dramatic outliers, with approximately
50% of these projects containing only one refinement step.

In both the smaller and the larger project sets there is a very strong corre-
lation between the number of machines and the number of refinement steps in
a project (ρ = 0.989 and ρ = 0.993 respectively, p < 0.001). In most cases the
relationship is almost 1:1, showing that linear refinement chains are the most
common refinement strategy used. By default, a machine can refine at most one
other, so typically a machine will have one ‘parent’. These refinement chains
bear a striking similarity to the notion of refinement presented in the theory
of institutions which is typically a single, linear chain [16]. While the Feature
Composition plugin for Rodin allows the merging of machines in a refinement
step [8], this is clearly not the usual approach taken in these examples.

In Event-B, proof obligations are one indicator of the complexity of the sys-
tem being modelled. There is a specific set of proof obligations that are generated
through the refinement of events (guard strengthening and merging, action sim-
ulation, equality of a preserved variable, witness well-definedness and witness
feasibility). We list the number of these designated refinement proofs in the
rightmost column of Tables 2 and 3. These proofs are only generated for refined
events that are labelled as not extended. Events that are labelled as extended
generate no proof obligations that are designated for refinement as they are spe-
cific to superposition refinement. This is quite an efficient approach to refinement

160 M. Farrell et al.

Number of Refinement Steps in the Smaller Projects

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Refinement Steps in the Larger Projects

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Fig. 3. Histograms with kernel distribution describing the number of refinement steps
taken in both the smaller and larger project sets. Note that the vertical axes here are
on different scales.

as Rodin avoids the regeneration of these proofs [2], but is only applicable where
no data refinement has taken place.

There is a strong correlation between the number of refinement proofs and
the number of refinement steps in a project in the smaller project set (ρ = 0.786,
p < 0.001) resulting in the median ratio of 3 refinement proofs to 1 refinement
step. However, the correlation is not significant for the larger project set. We
found that developers of the larger projects often opted to avoid data refinement
and use event extending to streamline their developments. Based on the data in
Table 3 we can identify 5 out 16 projects that used this approach.

We had expected that there might be a correlation between the number of
refinements and the number of sentences, with machines increasing in size as
they became more concrete. However, this correlation is not strong even in the
smaller data set (ρ = 0.695, p < 0.001) and neither strong nor significant in the
larger, which, as mentioned earlier, are also influenced by the large number of
contexts.

4 Detecting Specification Clones

In this section we describe our strategy for applying the clone types discussed
in Sect. 2.1 to Event-B.

In all cases we will be comparing sentences from one specification with those
in another: this includes axioms in contexts, invariants and variants in machines,
and guards, witnesses and actions in events. There are a number of approaches to
matching in the literature, including metric, token, text and abstract syntax com-
parison [4]. Since our sentences are relatively small constructs, we have used these
as the smallest unit of matching. All sentences are tokenised to eliminate for-
matting and white-space, and we compare only sentences of the same kind (thus
axioms with axioms, etc.). We have discounted any machines/contexts/events
with 2 or less sentences in order to ensure that we are only collecting meaningful
clones.

Specification Clones: An Empirical Study 161

We carry out this matching at three levels: contexts, machines and events.
We base our search for clones on the clone types discussed in Sect. 2.1. In all
cases, (context, machine and event):

– Type-1 clones correspond to exact matches between the full sentence
sequences in each case: that is all sentences in one component must match all
those in the other.

– Type-2 clones are matches between the full sentence sequences, but where
variable names are anonymised, each variable name being replaced by a posi-
tional indicator.

– Type-3 clones are also matches between two sentence sequences (with variable
names anonymised or unanonymised), except that now we allow matches
between sub-sequences of the sentences. We calculate the percentage of type-
3 clone similarity using the maximum of the similarity calculated for both
the anonymised and unanonymised versions.

We do not explicitly search for type-4 clones (functional equivalence) in what
follows. From one perspective, all of our clones could be viewed as type-4, since
we are not really comparing code but specifications, and thus identifying a degree
of functional equivalence. However, a more robust search for type-4 clones would
require us to prove the equivalence of the corresponding generated proof obliga-
tions for machines, contexts and events, which we have not attempted. As such,
we omit type-4 clones from further discussion here as future work.

We have conducted an automated analysis of our corpus of projects by writing
a series of Python scripts that read in the Rodin files, represent the components as
an abstract syntax tree, and then perform comparisons at the context, machine
and event level. We analyse machines and events both with and without any
corresponding variants and invariants included, to distinguish between sentences
that are global and local (to events) in the machine. Variants are only included
with events that have a status of anticipated or convergent, since, unlike
ordinary events, these are required to not increase the variant expression [1].

Our analysis returns pairs corresponding to instances of cloning that have
occurred. We refer to these as clone pairs or clonings in what follows.

We have also identified the clones that occur the most frequently throughout
our corpus, at the level of machines, contexts and events. As there are no libraries
for Event-B specifications and since contexts typically supply custom data types,
we were interested to examine whether or not similar contexts have been used
in the Event-B projects across our corpus. Thus we also determine whether the
clones that we have discovered are inter -project (across different projects) or
intra-project (within the same project) clones.

5 Results of the Clone Analysis

In this section we summarise the results of our clone analysis through the entire
corpus. In what follows we regard the three clone types as mutually exclusive: by
type-2 we mean all those that are type-2 but not type-1, and by type-3 we mean

162 M. Farrell et al.

those that are type-3 but not type-1 or type-2. Table 5 summarises the results
of this analysis, providing counts for the number of clonings identified (type-1,
type-2 and type-3) and also the number of clones.

5.1 Context Clones

As can be seen in the first row of Table 5, our analysis found 40 clone pairs at
the context level in the corpus, consisting of 18 type-1 and 22 type-3 clone pairs.
We had expected this, since contexts resemble data types in a programming
language. The theory plugin offers a potential solution to this problem as it
provides a way of adding new data types to Rodin [5].

When we investigated the actual clones that were returned we found 22
context clones, of which 18 occurred on an inter project basis and 6 on an intra
project basis. There were 2 which occurred both as inter and intra project clones.
The fact that so many of them occurred between different projects supports our
claim that they are being re-used in a manner similar to libraries. The inter
project clonings occurred mostly between projects that shared a common app-
roach or between projects that were modelling the same kind of system. For
example, there were quite a few inter project clonings in the separate develop-
ments of a Hemodialysis Machine, the different versions of BepiColombo, and
the assortment of file systems being modelled (Flash FS, Flash FL and Tree FS).

Table 5. The occurrence of clone pairs and clones per type throughout the entire
corpus. Note that ‘(+VI)’ indicates that the variants (where appropriate) and invariants
have been included in the analysis.

Event-B component Clone Pairs Actual clones

Type-1 Type-2 Type-3 Total Total Occur.

Contexts 18 0 22 40 22 51

Machines 13 7 937 957 19 40

Machines (+VI) 9 7 943 959 13 28

Events 276 942 4781 5999 131 417

Events (+VI) 35 158 7229 7422 65 175

5.2 Machine Clones

In Event-B, a machine is generally reused by means of refinement and thus we did
not expect to find many type-1 clonings or inter project clones. As can be seen
in the second and third data rows of Table 5, we discovered a very small number
of type-1 and type-2 machine clonings. We did, however, manage to identify 937
type-3 clone pairs in the analysis without the variants and invariants included.

Since the type-3 clone pairs are identified in terms of their similarity,
expressed as percentages, we provide an illustration of the distribution of type-3

Specification Clones: An Empirical Study 163

clones in Fig. 4. The top two histograms in Fig. 4 show the data for machine-
level clone pairs, and the bottom two for event-level clone pairs. As expected,
the distributions for machine-level clones skew to the left, as most clones had a
low similarity percentage, indicating that there is some basic machine structure
being reused over and over again but the part that is being cloned does not con-
tain a large proportion of the sentences. Nonetheless, there is still a significant
number of clone pairs that have at lest 50% of their sentences matching.

In total we found 5 inter and 14 intra project full machine clones. This
reduced to 3 inter and 10 intra project clones when the variants and invariants
were included. Most of these were within the same project and therefore were
most likely caused by refinement chains. These numbers are quite small with
regards to the size of our corpus, thus we conclude that full machines typically
do not incur a huge amount of cloning.

5.3 Event Clones

Since events are the smallest unit of modularisation, we expected a higher level
of cloning to be found between pairs at this level. The fourth data row of Table 5
shows that we identified 276 type-1, 942 type-2 and 4781 type-3 clone pairs or
instances of event clonings in our corpus. As can be seen from the fifth data
row in Table 5, this number decreased for type-1 and type-2 when we included
the appropriate variants and invariants (35 and 158) respectively. The number of
type-3 clone pairs, however, increased quite dramatically to 7229. This is because
the inclusion of variants and invariants increased the size of many small events
past our threshold of 2 sentences, thus including events in the analysis that were
absent when these variants and invariants were not included.

There were 131 different event clones, of which 30 were inter and 126 were
intra project clones. Intra project clonings occurred 382 times and they occur
in the scenarios where one event is refined throughout a project and also where
there are event clonings within the same machine. We found 210 situations where
one event in a machine was a clone of another event in the same machine. This
accounts for approximately 1.9% of the total events in our corpus and 17.2% of
the total type-1 and type-2 event clone pairs. Inter project clonings occurred a
total of 37 times.

Based on this analysis, we conclude that there may be a relationship between
the number of intra event clones between different machines in the same project
and the level of refinement of that project. However, this needs to be examined
in more detail.

5.4 Discussion: Dealing with Clones

One way of addressing the large number of type-2 clones at the event level would
be through the provision of facilities for event re-use. This could be done either
through a renaming feature as a Rodin plugin, or by introducing parameterisation
constructs at the Event-B language level.

164 M. Farrell et al.

Fig. 4. Histograms describing the distribution of Type-3 clones across the entire corpus
of Event-B specifications. Note that we have omitted type-3 context clones as there were
relatively few of these.

The renaming refactory plugin could offer some assistance here as it renames
components of an Event-B model with the renamings propagating through to the
proof obligation level. However, it does not offer any way of instantiating copies
of events. The Pattern and the Generic Instantiation plugins are also relevant,
but these currently work only at the machine level, rather than the event level
[7,17].

If more sophisticated modularisation constructs were made available for
Event-B, they could potentially alter the development strategy taken by devel-
opers and turn what would have been type-3 clones into type-2 clones which
could be parametrised and then added to in future refinements. We have pro-
posed the theory of institutions as a mathematically sound framework to incor-
porate Event-B into and thus provide users of Event-B with access to an array of
generic and formalism independent modularisation constructs through the use of
specification building operators [6]. These specification building operators could
potentially provide a solution to these problems.

6 Threats to Validity

One feature of our work is the creation of a corpus of Event-B projects, and
our division of this set into smaller and larger projects. The selection poses a
threat to conclusion validity, since we are dealing with a heterogeneous group of

Specification Clones: An Empirical Study 165

projects, and there is a risk that the differences in metrics are due to other factors
not measured here, such as heterogeneity in terms of the domain of application,
e.g. railway, health-care, control systems, algorithms, etc.

Our analysis of the projects is conducted based on the metrics that we have
defined and measured. While these metrics corresponded to major syntactic
categories in Event-B and have clear analogies with similar constructs in pro-
gramming languages, there is a threat to construct validity here. In particular,
further studies would be required to establish the predictive value, if any, of
these metrics.

Similarly, in adapting the definition of code clones to Event-B we made a
number of decisions on what should be measured and the degree of matching
involved; altering these could yield different results. Our measurement of type-
3 clones was based on sentence sequences and the in-order anonymisation of
variables: a more general technique could produce more clone-pairs, at the cost
of a considerable increase in combinatorial matches.

Since our analysis was based on processing the XML files generated by Rodin,
we have a high degree of confidence that the measurements are accurate, and do
not pose a threat to the internal validity of our results. However, in three of the
Event-B projects (ch3 press, FindP G and FindP P2) the corresponding .bps
files, which hold information about the proofs, were empty. Thus these projects
have no automatic or interactive proofs recorded even though proof obligations
have been generated. We believe that these projects may have used an older
version of Rodin or a plugin that we do not have access to. One approach to
resolving this would be to remodel them using a current version of the software
with no extra plugins installed. We chose not to do this as we wished to remain
as impartial as possible with regards to the corpus that we collected.

In total, we have 85 Event-B projects in our corpus, but it is possible that
this is not a large enough sample size to study. This causes a threat to external
validity in terms of the generalisability of our results. We believe that assembling
and maintaining a measured corpus of Event-B programs is a worthwhile task
in this regard.

7 Summary and Future Work

Our work applies the existing software engineering approaches of calculating
metrics and detecting code clones to specifications written using the Event-B
formal method. This exploratory study is the first of its kind and has enabled
us to provide and analyse the metrics of a corpus of Event-B specifications. In
this way, we provide a benchmark against which other Event-B developments
can gauge their comparative size and complexity level.

During the evolution of the Event-B formalism from Classical-B, certain facil-
ities for the reuse of machine specifications disappeared such as the modularisa-
tion properties supplied by the keywords INCLUDES and USES which facilitated
the use of an existing machine in other developments [17]. It is evident not only
from experience with industrial projects [9] but also from the sheer abundance of

166 M. Farrell et al.

attempts to regain such modularity features for Event-B that there is an under-
lying requirement for it. Our empirical study supports this claim by evaluating
code clones at the specification level.

Future work includes the assessment of clone genealogies, particularly in the
context of refinement – i.e. how clones evolve throughout successive refinements.
This study would show us whether or not clones persist in the specification
after it has undergone a (series of) refinement step(s). We are also interested
in detecting non-typing invariant clones, this would allow us to analyse data
refinement clones using gluing invariants. We did not assess the size of the state
(number of variables per machine) in this study but we intend to address this
as future work. This will allow us to investigate whether or not the size of the
state is indicative of the complexity of the system being modelled.

Acknowledgements. We would like to thank the anonymous reviewers for their feed-
back and Ruth O’Connor for her work on a preliminary version of our clone detector
during her SPUR internship that was funded by Maynooth University.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010)

3. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to Event-B. Fundamenta Informaticae 77(1–2), 1–28
(2007)

4. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection
using abstract syntax trees. In: International Conference on Software Maintenance,
Maryland, USA, pp. 368–377 (1998)

5. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39698-4 5

6. Farrell, M., Monahan, R., Power, J.F.: Providing a semantics and modularisation
constructs for Event-B using institutions. In: International Workshop on Algebraic
Development Techniques, Gregynog, Wales (2016)

7. Fürst, A.: Design patterns in Event-B and their tool support. Master’s thesis,
Department of Computer Science, ETH Zürich, March 2009

8. Gondal, A., Poppleton, M., Snook, C.: Feature composition-towards product lines
of Event-B models. In: International Workshop on Model-Driven Product Line
Engineering, Twente, The Netherlands, pp. 18–25 (2009)

9. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting reuse in Event B development: modularisation approach.
In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ
2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11811-1 14

10. Kitchenham, B., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters, S.,
Gibbs, S., Pohthong, A.: Robust statistical methods for empirical software engi-
neering. Empir. Softw. Eng. 22(2), 579–630 (2017)

http://dx.doi.org/10.1007/978-3-642-39698-4_5
http://dx.doi.org/10.1007/978-3-642-11811-1_14
http://dx.doi.org/10.1007/978-3-642-11811-1_14

Specification Clones: An Empirical Study 167

11. Morgan, C., Robinson, K., Gardiner, P.: On the Refinement Calculus. Springer,
London (1988)

12. Olszewska, M., Sere, K.: Specification metrics for Event-B developments. In: Inter-
national Conference on Quality Engineering in Software Technology, Dresden, Ger-
many (2010)

13. Pitu, M., Grijincu, D., Li, P., Saleem, A., Monahan, R., O’Donoghue, D.P.: Aŕıs:
analogical reasoning for reuse of implementation & specification. In: International
Workshop on Artificial Intelligence for Formal Methods, Rennes, France, pp. 13–16
(2013)

14. Poppleton, M.: The composition of Event-B models. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 209–222. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87603-8 17

15. Roy, C.K., Zibran, M.F., Koschke, R.: The vision of software clone management:
past, present, and future. In: Software Maintenance, Reengineering and Reverse
Engineering, Antwerp, Belgium, pp. 18–33 (2014)

16. Sanella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer, Heidelberg (2012). doi:10.1007/978-3-642-17336-3

17. Silva, R., Butler, M.: Supporting reuse of Event-B developments through generic
instantiation. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol.
5885, pp. 466–484. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10373-5 24

18. Silva, R., Pascal, C., Hoang, T.S., Butler, M.: Decomposition tool for event-B.
Softw. Practice Exp. 41(2), 199–208 (2011)

http://dx.doi.org/10.1007/978-3-540-87603-8_17
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/978-3-642-10373-5_24

User Studies of Principled Model Finder Output

Natasha Danas1(B), Tim Nelson1(B), Lane Harrison2,
Shriram Krishnamurthi1, and Daniel J. Dougherty2

1 Brown University, Providence, USA
{ndanas,tn,sk}@cs.brown.edu

2 Worcester Polytechnic Institute, Worcester, USA
{lane,dd}@cs.wpi.edu

Abstract. Model-finders such as SAT-solvers are attractive for pro-
ducing concrete models, either as sample instances or as counterexam-
ples when properties fail. However, the generated model is arbitrary. To
address this, several research efforts have proposed principled forms of
output from model-finders. These include minimal and maximal models,
unsat cores, and proof-based provenance of facts.

While these methods enjoy elegant mathematical foundations, they
have not been subjected to rigorous evaluation on users to assess their
utility. This paper presents user studies of these three forms of output
performed on advanced students. We find that most of the output forms
fail to be effective, and in some cases even actively mislead users. To
make such studies feasible to run frequently and at scale, we also show
how we can pose such studies on the crowdsourcing site Mechanical Turk.

Keywords: Models · User studies · HCI · Minimization · Provenance ·
Unsat core

1 Introduction

Model-finding tools like SAT solvers have seen an explosive growth over the
past two decades. In addition to automation, speed, and a flexible input lan-
guage, they also produce concrete instances: either instances of the specification
(henceforth, “spec”), or counterexamples. Therefore, they are now used either
directly or indirectly to produce tools in numerous domains such as network-
ing [20,28,33], security [2], and software engineering [21,22]. In particular, the
concrete instances are valuable because they are accessible to users, such as
network operators, who are not usually schooled in formal methods.

The models that these tools produce are, however, arbitrary and reflect inter-
nal algorithmic details and sometimes also probabilities. That is, the output does
not follow any particular principle beyond satisfying the given spec. To counter
this, many authors have proposed principled forms of output following well-
defined mathematical properties, such as minimality [6,9,17,27,34]. Other prin-
cipled output forms, like provenance [26] and unsatisfiable (henceforth, “unsat”)
cores [36], augment output to aid in understanding.
c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 168–184, 2017.
DOI: 10.1007/978-3-319-66197-1 11

User Studies of Principled Model Finder Output 169

These output forms have elegant mathematical properties, making them espe-
cially attractive to researchers. However, there has not been any real investiga-
tion of whether they are actually effective for users. We therefore present the first
effort at evaluating these output forms. We find that they are often misleading to
users, with the very properties that make them mathematically attractive caus-
ing confusion. Though our efforts are preliminary, they point to a need for the
design of principled output forms to be done in conjunction with user studies:
merely appealing to elegant mathematical properties for output is insufficient.

Our studies are conducted on students (Sect. 3) and on workers on a crowd-
sourcing platform (Sect. 4). It would be valuable to also evaluate this work with
experts. Unfortunately, experts are difficult to assemble in numbers that yield
statistical significance.1 Nevertheless, as many model finders are integrated into
tools (such as those cited) for end-users, advanced students and technology pro-
fessionals are a reasonable proxy for (or even members of) these audiences.

Space precludes presenting the full details of our study specs; we provide full
versions at http://cs.brown.edu/research/plt/dl/model-exploration-studies/,
hereafter referred to as the “supplement.”

2 Principled Output Methods Being Evaluated

We first describe the formalisms that this paper evaluates. Our studies use
Alloy [16], a model-finder popular in the software-engineering community. Alloy
searches, up to a user-specified size bound, for models that satisfy an input
specification.

2.1 Minimality and Maximality

The choice of which models to present usually depends on the underlying solver
algorithms. Users might be shown any models so long as they all satisfy the
spec. Several authors (Sect. 5) have proposed the principle of minimization—an
intuitively appealing notion similar to filing bug reports with only minimal test
cases. In a minimal model-finder, users are shown minimal models (first). In this
context, minimality is defined in terms of set containment: a model M is said to
be smaller than another model M′ if M contains a subset of what M′ does. Note
that there may be more than one minimal model. E.g., there are two different
minimal models for the propositional formula p ∨ q. A “maximal” model finder
is the dual: it finds the largest models with respect to user-specified bounds on
model size.

1 We tried to conduct a study at the ABZ conference (which has exactly the expertise
we need), handing out well over a hundred brief surveys on paper and electronically
over several days. Sadly, we received only two responses.

http://cs.brown.edu/research/plt/dl/model-exploration-studies/

170 N. Danas et al.

2.2 UNSAT Cores

If the spec is unsatisfiable, no models can be found. A lack of models is often
not sufficiently informative. Thus, some model finders return a subset of the
spec that is itself unsatisfiable: an unsat core. This allows the user to focus on
(what is often) a small portion of the spec to localize faults and refine their
understanding. When a model search is actually a verification task, an unsat
core represents a portion of the spec that suffices to prove the desired property
up to the bounds specified. As Torlak, et al. [36] note, an unexpectedly small core
can point to problems with the original property or user-specified size bounds.

2.3 Provenance

Even if models are found, each shows only what is possible, i.e., an example of
what the spec permits. It gives no information about which model elements are
necessary rather than only present due to (possibly intentional) under-constraint.
Amalgam [26] is an extension of Alloy that fills this explanatory hole. For each
component of a model, Amalgam can identify when that component is necessi-
tated by other pieces of the model, along with identifying (as cores do) portions
of the spec that serve in the implication.

3 Evaluation with Student Subjects

Attracting student volunteers does not appear to be easy. In a previous year, we
had tried to run studies in relevant courses at both our institutions by offering
students various rewards for participation. However these yielded unusably low
participation rates, and it was difficult to judge the motivation of those students
who did participate. Therefore, instead of seeking volunteers, this study was
integrated directly into a course. This addressed our enrollment problem: out of
about 70 students in the class, over 60 students participated in our studies.

Our students are from an upper-level course entitled “Logic for Systems”
at Brown University. The course begins with property-based testing, leading to
writing and checking specifications in Alloy. Most students are in the second
half of their undergraduate education, having had numerous courses on pro-
gramming, basic theory, and other topics in computer science; many also have
summer internship experience in industry. A handful are graduate students (both
master’s and PhD). Many of the students will end up at elite companies within
a year or two. As a result, though most of the students have not yet graduated,
they have extensive computer science experience that is representative of many
of the skills and preparation of industrial developers.

The studies were conducted at the ends of course labs; students were allowed
to opt out of this part with no impact on their grade. The lab setting is useful
in two ways. First, students are motivated to do the material since it is part of
their course learning. (The course is not required, so students take it by choice
and out of interest.) Second, students are required to attend lab, and are thus

User Studies of Principled Model Finder Output 171

likely to stay to perform the study. Integrating the studies into the labs meant
we had certain constraints—such as the size of specifications, their placement in
the semester, the number of studies, etc.—that were unavoidable. Nevertheless,
we do not believe these overly limited our studies.

All the tools have been implemented and were presented as conservative
extensions to Alloy. Therefore, students did not need to switch tools, use a new
syntax, learn a new visualizer, etc. This eliminates many confounding variables
and makes comparisons easier.

3.1 Minimality and Maximality

In this study, we evaluated how counterexample minimization helps students
debug satisfiable specifications. By default, Alloy produces arbitrary models:
either as concrete instances or counterexamples to help users understand why
their assertion about the spec is invalid. As discussed in Sect. 2.1, minimal models
are a principled output where only facts necessary to satisfy the specification
are included (and maximality is the dual).

In lab, students first wrote a reference-counting scheme for garbage collec-
tion. Reference-counting is well-known to be sound (it never deallocates reach-
able memory), but it is incomplete (it can fail to deallocate unreachable mem-
ory) when the heap contains cyclic references. Teaching assistants checked that
students had completed this before proceeding to the study, in which students
explored counterexamples to completeness (models that contain a heap reference
cycle) and were asked to propose a constraint to make the algorithm complete—
in effect, by banning cycles. (The supplement provides an example spec.)

Study Design. We split the class into two experimental groups: 35 students saw
only minimal counterexamples while 25 saw only maximal ones (the imbalance
is an artifact of lab section sizes). We did not otherwise modify Alloy’s user
interface. The first minimal and maximal counterexamples are shown in Fig. 1.

We restricted students to constructing a constraint that fits the template
(all s:State | all m:HeapCell | ...). An ideal solution would use transi-
tive closure, which catches cycles of any size:

all s:State | all m:HeapCell | m not in m.^(s.references)

Results. Our first finding was both surprising and disappointing: in both the
minimal and maximal model groups, a significant proportion of participants
dropped out of the study, switching back to unprincipled output (i.e., regular
Alloy). We had 10 students drop out of the maximal group (leaving 15) and 28
students drop out of the minimal group (leaving 7). While we had no official
complaints submitted along with the study results, many students in the lab
expressed that the principled output frustrated them.

Out of the 7 remaining students in the minimal group, only 3 correctly
restricted all reference cycles. 3 students incorrectly restricted self-loops only.
The one other student proposed an incorrect and irrelevant edit. In retrospect

172 N. Danas et al.

Fig. 1. Maximal (top) and minimal (bottom) counterexamples to GC completeness.
Three states are shown from left to right. The transition from left to center updates
the current memory references. The transition from center to right applies the specified
reference-counting scheme.

this is perhaps unsurprising given the nature of models shown in minimal output,
which focus attention entirely on self-loops.

In principle, maximal models do not suffer from this same tunneling of vision.
Still, out of the 15 remaining maximal-group students, only 2 correctly restricted
all reference cycles. 5 students incorrectly restricted self-loops only. The 8 other
students proposed edits that were incorrect and irrelevant to reference cycles.
Surprisingly, a higher proportion of the maximal group neglected to restrict
reference cycles of any size. We discuss this and other issues in Sect. 3.4.

3.2 UNSAT Cores

In this study, we evaluated how helpful unsat cores are to students debugging
unsatisfiable specs. By default, Alloy provides unsat cores to help users under-
stand why their specification is unsatisfiable.

We presented participants with a playful, feline rendition of the “Connec-
tions of Kevin Bacon” game, where “Kitty Bacon’s” connections are defined as
the transitive closure of his friends. Figure 2 gives the specification in full; we
explain the colored highlights below. The first group of facts (lines 1–4) define cats
and how friendship works; in particular, line 3 states there is NoSelfFriendship
allowed. Lines 6–11 define Kitty Bacon and the bounded transitive closure oper-
ator ConnectionsOf[Cat]. Lines 13–17 show a comparison between the bounded
and unbounded notions of transitive closure. Lines 19–20 create the CoolCatClub,
with only the connections of Kitty Bacon as members. The remainder of the
specification defines the respective queries for generating cores and provenance

User Studies of Principled Model Finder Output 173

Fig. 2. Kitty Bacon spec with unsat core highlighting why Kitty Bacon is excluded
(Color figure online)

(used by Sect. 3.3); here the students ran the KittyBaconIsCool predicate and
found it was unsatisfiable—i.e., that Kitty Bacon could never be in the club.

The lab asked students to explain why the specification excluded Kitty Bacon
from the set. They were shown an unsat core (the red and pink highlights in
Fig. 2). We used Alloy’s core minimization and granularity settings to reduce
the core (i.e., the number of highlights) to its smallest size.

The core highlights the constraints responsible for unsatisfiability. The pred-
icate being run (KittyBaconIsCool) fails when Kitty Bacon is excluded from
the club, and the rest of the constraints together imply that he is never included.
The core highlights three fragments of the specification: forbidding self-friendship
(NoSelfFriendship), defining the connections of a cat (ConnectionsOf[Cat]),
and the definition of club membership (CoolCatClub). Forbidding self-friendship
means Kitty Bacon cannot be his own friend. Because he is not his own friend,
Kitty Bacon is excluded from his connections. Since club membership is defined
to be equivalent to the connections of Kitty Bacon, Kitty Bacon is never included
in the club.

Study Design. To evaluate whether the core helped students debug their spec,
we asked students to provide a free-form explanation of why Kitty Bacon was
not in the club, and choose the best fix from three candidate edits. The edits

174 N. Danas et al.

were based on the three fragments of the spec highlighted by the unsat core.
The correct specification fix is to update the definition of club membership
to be equivalent to the union of the connections of Kitty Bacon and Kitty
Bacon himself (fixing CoolCatClub). This avoids changing the semantics of other
predicates, which might have wider-ranging consequences. Two erroneous edits
were to allow self-friendship (which violates NoSelfFriendship), and to add
Kitty Bacon to his own connections, which invalidates the prior portion of the
lab (where ConnectionsOf[Cat] defined bounded transitive closure). Students
could optionally apply no edit if they did not know which one to choose.

Results. We split the pool of students between this study and the study
of provenance (Sect. 3.3). For both groups, we code2 the free-form explana-
tions to match them with the candidate edits related to NoSelfFriendship,
ConnectionsOf[Cat], and CoolCatClub. The 28 students could blame any com-
bination of those three3, but could choose at most one constraint to edit.

Table 1. Effects of unsat cores on debugging Kitty Bacon spec

Constraint # Student Blames # Student Edits Correct?

CoolCatClub 18 (64%) 22 (79%) Y

ConnectionsOf[Cat] 27 (96%) 0 (0%) N

NoSelfFriendship 14 (50%) 1 (4%) N

No edit N/A 5 (18%) N

Table 1 shows the results. Half of the students exposed to the unsat core
blamed disallowing self-friendship, but only one student applied the related
(erroneous) edit. This suggests extraneous constraints in the unsat core distract
students enough to widen their explanation, but not necessarily enough to cause
them to apply the wrong edit. However, we constrained students to make only
one change; had we permitted multiple edits, more students may have attempted
erroneous ones.

3.3 Provenance

In this study, we evaluated how provenance output helps students debug a sat-
isfiable spec (as opposed to debugging unsatisfiable specs aided by unsat cores).
As discussed in Sect. 2.3, provenance is an alternative principled output to unsat
cores, and highlights facts necessary to explain the presence or absence of certain
tuples in an output model.
2 Here, “coding” denotes classifying responses, not the colloquial term for program-

ming.
3 Only one author coded the free-form explanations into the 0–3 possible categories;

thus, no inter-coder-reliability is reported. This is reasonable because the objective
nature of having students give explanations along the different blame categories
suggests a low likelihood of inaccurate coding.

User Studies of Principled Model Finder Output 175

Study Design. We had the other 35 students do the same study as in Sect. 3.2,
except using provenances instead of unsat cores. The students looked at the first
model returned for the specification, then asked the tool why Kitty Bacon was
not in the Cool Cat Club. The tool produces two provenances. Both are subsets
of the unsat core in Fig. 2. One is the same as the unsat core, except it excludes
NoSelfFriendship. The other is the same as the previous provenance, except it
excludes ConnectionsOf[Cat].

Results. We code the student explanations in the same way. Again, the stu-
dents could blame any combination of those three spec fragments but could
only choose one edit. We expect the provenance students to blame and edit
NoSelfFriendship less, as it is not highlighted in either provenance.

Table 2. Effects of provenance on debugging the Kitty Bacon spec

Constraint # Student Blames # Student Edits Correct?

CoolCatClub 20 (57%) 23 (66%) Y

ConnectionsOf[Cat] 21 (60%) 6 (17%) N

NoSelfFriendship 9 (26%) 0 (0%) N

No edit N/A 6 (17%) N

Table 2 reports our results. As expected, not highlighting NoSelfFriendship
resulted in a only a quarter of students mentioning this constraint, and none
proposing to remove it. The students who still mentioned self-friendship most
likely fixated on the highlighted portions of the ConnectionsOf[Cat] definition
that removes KittyBacon from his connected group of friends. Almost a fifth of
students proposed an edit that invalidates the pedagogic portion of the lab (vio-
lating ConnectionsOf[Cat]). Considering that no student exposed to the unsat
core proposed this erroneous edit, this result was quite surprising. A possible
explanation for this surprise is discussed in Sect. 3.4.

3.4 Discussion

We hypothesize some causes for the effects that we have seen. These clearly
indicate areas for future study.

Misleading Visualization. Alloy’s model-visualization can impact understanding.
We see several ways in which this output might have caused more maximal-group
students to pick the erroneous edit; these suggest future studies. Figure 1 shows
the first maximal model that students saw. Even though this model contains
cycles of length 2 and 3, the immediacy and prominence of the 3 self-loops
draws the eye. This may have led students in the maximal-model group to jump
to the conclusion that self-loops (not cycles in general) were the problem to

176 N. Danas et al.

be fixed. Moreover, Alloy’s visualizer represents cycles of length 2 as a single,
double-headed arrow. It is easy to not notice that the line represents a pair
of (cycle-inducing) edges. In addition, the small arrowheads are easy to miss.
Furthermore, self-loops and 2-cycles are explicit, requiring only one visual object
to communicate. In contrast, cycles of size 3 and above are implicit ; users must
follow directed edges through multiple nodes to discover the cycle. This may
lead to a tendency to pick out shorter cycles and miss larger ones.

Table 3. Comparing unsat core and provenance on student edits

Constraint # Unsat Core Edits # Provenance Edits Correct?

CoolCatClub 22 (79%) 23 (66%) Y

ConnectionsOf[Cat] 0 (0%) 6 (17%) N

NoSelfFriendship 1 (4%) 0 (0%) N

No edit 5 (18%) 6 (17%) N

Unnecessary Information is Useful. The provenance output highlighted only the
constraints that, for a current model, lead to KittyBacon’s exclusion. In contrast,
the unsat core output highlighted constraints that together imply KittyBacon’s
exclusion for all models. We initially expected provenance to produce higher-
quality results since its output was more focused, but almost a fifth of the
students exposed to provenance proposed the incorrect ConnectionsOf[Cat]
edit—versus zero in the unsat core group (Table 3). This change invalidated
bounded transitive closure from the pedagogic portion of the lab. It appears
that in directing the students’ attention to the extraneous NoSelfFriendship
constraint, unsat core output helped them realize the erroneous edit would inval-
idate the constraint. Thus, we suspect that the “unnecessary” highlight made the
students think about the problem more globally, leading to a higher-quality fix.

4 Evaluation with Crowd-Sourced Subjects

While working with classes gives us useful insights, it also imposes several con-
straints: we have to fit into the time the class can afford, we can run studies
only when the course runs, our population size is bounded by the number of
enrolled students, and so on. We would prefer larger samples to improve sta-
tistical power, and faster responses to efficiently refine our studies. In several
domains, crowdsourcing has proven very useful for this purpose.

We have been trying to evaluate principled output using Amazon’s Mechani-
cal Turk (MTurk), which provides a virtually limitless population of people who
will perform tasks for pay. MTurk happens to attract many technically savvy
survey workers [23]; indeed, many of them fit the demographic of users of tools
that employ model finders underneath.

User Studies of Principled Model Finder Output 177

We did not reuse the specs of Sect. 3 because we did not want to assume
knowledge of garbage collection, and the Kitty Bacon spec is very intricate,
making it difficult to develop concise and quick MTurk tasks. (Also, Herman
et al. [15] could be read as implying that it is unwise to too directly com-
pare formal and natural language specs, which we use on MTurk.) Instead, we
used two others: one based on an address book and the other on a grade book.
They are similar (but not isomorphic) in that they contain levels of indirection
(the address book has aliases; the grade book has role-based access), and have
constraints to prohibit erroneous configurations (“dead end” chains of address
redirections; students who can both enroll in and assist grading for a course).
Both are understandable to a lay person, and non-trivial while being small.

4.1 Design Decisions

Our MTurk task designs draw on research in both HCI and crowdsourcing.
Ghoniem et al. [12] show that graphs larger than twenty vertices are bet-

ter represented as a matrix. We therefore avoided showing Alloy graphs. This
decision was compounded by Ottley et al.’s work on multiple simultaneous rep-
resentations for Bayesian reasoning tasks [30], which found the lone textual rep-
resentation had most impact and, maybe even more counter-intuitively, present-
ing two representations at once drastically decreases performance. They also
suggest presenting the problem and feedback model in a similar language, so
users can easily make connections between the two. This inspired the match-
ing syntax between the spec and model in our framework. Simons [35] remarks
on participants’ difficulty observing changes across sequential images. We there-
fore switched from multi-page, dynamically changing layouts to a single-page,
static layout. We italicized relations across the specification and model because
Wills [37] states that linked visualizations increase a user’s chances of cognitively
linking information. We used Munzner’s [25] work on designing user interfaces
as a general reference.

We were also inspired by the (rare) non-expert user interfaces for formal
methods tools. DeOrio and Bertacco [8] pose SAT problems to humans in a way
to optimize performance and engagement. Their use of shapes and highlighting
to present logic puzzles to users influenced many of our visualization choices.

Kittur, Chi, and Suh [18] report on the trade-offs of sample sizes, cost, and
quality on MTurk. We therefore collected meta-data in our prototypes to assess
common Turker misconceptions. We paid our respondents a living wage. We also
developed an informal adversarial model to filter out the remaining low quality
responses; the specific number of responses removed are in line with Kittur et
al.’s results on the rate of uninformative responses on MTurk.

Peer, Vosgerau, and Acquisti [31] investigate MTurk’s quality controls and
conclude that reputation and productivity do correlate with response quality.
Therefore, we restricted our studies to Mechanical Turkers with thousands of
completed tasks and high approval rates. Mason et al. [23] evaluate the differ-
ences in expert and crowdsourced populations, while also providing a blueprint

178 N. Danas et al.

on how to properly conduct studies on Mechanical Turk. Gould et al. [13] dis-
cuss the difficulty of keeping the attention of crowdsourced subjects, finding
that without intervention, crowd-workers reach inattention after about 5 min;
this influenced our prototypes and final design.

4.2 Training Crowd Workers in Formal Methods

Because we cannot expect workers to know a specific formal language,4 we sys-
tematically translate the specs to English, with a little smoothing of prose. (The
full Alloy and translated specs are provided in the supplement.) For instance,

fact { all a: Assignment | one a.associated } =⇒
“Each assignment is associated with exactly one class.”

We present the specs on MTurk as “logic puzzles”. This hopefully attracts a
more logic-minded audience, but we still want to make sure our workers under-
stand the idea of satisfying models. We therefore include a training phase—which
also serves as an assessment of the workers—before we present the actual study.
This is also important for weeding out people who don’t develop an understand-
ing of the task, people clicking at random (for pay), bots, etc.

We train workers on one of the two specs, and perform the study on the full
version of that spec. During training, we present the spec incrementally, adding
one constraint at a time. At each step, workers are shown a collection of models
and asked to classify them as satisfying or not. The non-satisfying models are not
generated at random, since they might be too easy to tell apart. Rather (on steps
after the first), we choose models that satisfied all but the last added constraint,
and therefore “look about right”. This forces workers to actually engage with
the spec. (The first task’s unsatisfying models are ones with type errors.)

Fig. 3. Classifying crowd workers by understanding

4 We did try to find Alloy users on MTurk. However, in twice the time it took to
complete the studies of this section, we received at most 8 valid responses.

User Studies of Principled Model Finder Output 179

At each step, we calculate the percentage of correct classifications. At the end,
we compute a weighted average of these percentages. The last step is weighted
at 50%, with each previous step halving the next step’s weight. This primarily
weights their grade by their final classification, but also considers their earlier
scores to invalidate workers who happened to guess correctly at the end. Based
on the histogram of answers shown in Fig. 3, we found it useful to consider
workers with a weighted average of 55% for address book and 70% for grade
book. Doing so eliminated 40% and 39% of workers respectively.

We allowed all workers to proceed with the study. However, in the results
presented in Sect. 4.3, we only show data from the 60% of workers who were
above threshold. We analyzed the results from all workers, and found that those
above threshold did perform significantly better than those below. Therefore,
including all workers would result in even weaker findings below.

On MTurk, we only studied unsat cores and provenance. We did not study
minimality because we presented only minimal models during the training phase.
We made this choice to keep the studies small, in keeping with advice for using
MTurk. Observe that Sect. 3.1 presents problems with minimality for debugging,
not learning. Nevertheless, studying the use of minimality for learning remains
an open question, and may require revisiting these studies.

Our MTurk studies trained 320 workers in total (192 above the threshold).
The average response time was less than a minute per constraint. At a “living
wage” of 15 cents a minute, grade book (with 9 constraints) would require less
than $1.50 to train each respondent. We collected final results in about 6 h
between two weekday mornings.

4.3 Effects of Unsat Cores and Provenance

After training, we present workers with the aforementioned erroneous configu-
rations that the spec explicitly forbids. We generate the unsat core and prove-
nance (shown in the supplement) for these situations similarly to the student
studies. Workers are asked to blame the constraint responsible for forbidding the
situation.

Table 4. Comparing proof output effects on crowd workers

Address book Grade book

Proof output type # Correct Proof output type # Correct

Unsat core 9/49 (18%) Unsat core 23/53 (43%)

Provenance 25/46 (54%) Provenance 32/44 (73%)

Table 4 shows our results. For both specs, the group of workers exposed to
provenance output blamed the truly responsible constraint more than those
shown the unsat core. We performed a Chi-square test with Yates’ continu-
ity correction on the difference between these two proof outputs. Blaming the

180 N. Danas et al.

proper constraint differed significantly by proof output for the address book spec
(χ2(1, N = 95) = 11.85, p < 0.001, φ = 0.375, the odds ratio is 0.28) and for
the grade book spec (χ2(1, N = 97) = 7.27, p < 0.01, φ = 0.295, the odds ratio
is 2.04). As shown by Cramer’s V(φ), the effect size for both specs is roughly
medium (0.3).

4.4 Discussion

It is interesting that provenance is useful for MTurk workers. However, we should
note three salient points. First, the specs are (intentionally) much simpler than
those given to students. Second, they are working with English translations;
these findings may not carry over to formal specs. Finally, these numbers only
show a relative improvement: they may say more about the difficulty with unsat
cores than about the utility of provenance.

To see the latter, we note that in address book, the provenance highlighted
only one constraint, yet 46% did not select it! In fact, fewer workers correctly
chose the single highlighted constraint of address book than between the two
in grade book. It is possible that the single highlight led workers to think they
were being “tricked” and made them choose a different constraint, though some
free-form responses indicate this is not the case: workers genuinely intended to
blame a different constraint.

In short, the studies on MTurk are very preliminary and raise many questions.
Nevertheless, we believe it is worth continuing to try crowdsourcing studies to
understand their limits. In particular, combining a training-and-evaluation phase
with an actual evaluation task seems worth considering in future designs. Also,
it may be possible, with much more time, to find several qualified Alloy users
on MTurk or other platforms.

5 Related Work

Principled Model Finding. Model finders, such as Alloy [16], that rely on
SAT/SMT solving techniques after converting specs into boolean logic are known
as “MACE-style” model finders [24]. Koshimura et al. [19] compute minimal
boolean models to solve job-scheduling problems; Aluminum [27] is a general-
purpose variant of Alloy that has a similar approach. Razor [34] is a stand-
alone minimal model finder that also enriches models with provenance for facts.
Janota [17] generates all minimal models to aid in interactive system configu-
ration. CPSA [9] produces minimal models specifically for the cryptographic-
protocol domain. Other approaches to minimal-model generation often rely on
tableaux [29] or hyper-resolution [5]. The semantics of non-monotonic reason-
ing [32] and database updates [10] use a more general definition of minimality.
Our work has focused on evaluating Aluminum’s definition of minimality; we
leave exploring variations for future work. In contrast to minimality, Fu and
Malik develop efficient algorithms for generating maximal models [11]. Cunha,
et al. [6] implement a target-oriented model finder that generates models based

User Studies of Principled Model Finder Output 181

on a user-defined target metric. While general approaches like Cunha’s have their
own mathematical benefits, we focus on minimality (and its opposite, maximal-
ity) as a first step in user evaluation.

User Evaluation of Formal Methods Tools. Much previous work in the intersec-
tion of formal methods and HCI (e.g., much of the work appearing at the Work-
shop on Formal Methods in Human Computer Interaction) centers on using
formal methods to improve user interfaces. These works are not significantly
related to ours as we focus on the opposite: improving formal tools via user-
centric evaluation.

We are not the first to use rigorous human-factors methods to evalu-
ate formal-methods tools. Aitken, et al. [1] perform a user study to validate
their hypothesis about the way experts use the HOL theorem prover. Beckert,
et al. [3,4] use focus groups to detect gaps between a theorem prover’s proof
state and a user’s internal model of the proof. Hentschel, Hähnle, and Bubel [14]
evaluate two different interfaces for a program verifier and find that less experi-
enced users performed significantly better using the interactive debugger inter-
face. These studies all evaluate theorem proving tools, rather than a model finder.
The two are fundamentally different, both in their user interfaces and in their
essential function: one focuses on finding proofs, the other on constructing con-
crete examples. These results are therefore not directly applicable to us.

D’Antoni et al. [7] contrast the effectiveness of different feedback styles in
an automata-theory tutoring program. Although their tool translates regular-
language logic to English, the translation is intrinsic to part of the interface
being evaluated. Our translation from Alloy to English (Sect. 4) was created
solely for user evaluation and is not a component of Alloy.

All of these works evaluate interfaces, whereas we investigate a semantic con-
cept: selecting which models to present. (In the case of D’Antoni et al., although
counterexamples feature in the feedback, the choice of which to present is not
studied.) Our work also targets a broader range of potential user backgrounds
via crowdsourcing in order to obtain larger sample sizes.

6 Conclusion

Though our efforts are preliminary, they point to a need for the design of princi-
pled output forms to be done in conjunction with user studies: merely appealing
to elegant mathematical properties for output is insufficient. We investigated
three forms of principled output and found that, in isolation, these properties
often harm user understanding. Our results suggest that minimality (and its
maximal dual) can at times be frustrating and misleading, while provenance
can lure users into a narrow, local perspective on their spec. While unsat cores
do widen the user’s vision, their full impact is not clear. User studies can help
identify these unforeseen effects.

While evaluating formal methods with crowd-workers requires more effort
in study design, our preliminary efforts show that it can be viable, especially

182 N. Danas et al.

when utilizing a “train-classify-evaluate” chain of activity. Crowd-sourced user
evaluations have economic, time, and sample size benefits, and hence nicely
complement more in-depth, in-person studies. Additionally, effort invested into
training crowd-workers may yield techniques that we can also use more broadly
to educate both students and laypeople in logic and formal methods.

Acknowledgment. This work is partially supported by the US National Science
Foundation.

References

1. Aitken, S., Gray, P., Melham, T., Thomas, M.: Interactive theorem proving: an
empirical study of user activity. J. Symb. Comput. 25(2), 263–284 (1998)

2. Akhawe, D., Barth, A., Lam, P., Mitchell, J., Song, D.: Towards a formal foundation
of web security. In: IEEE Computer Security Foundations Symposium (2010)

3. Beckert, B., Grebing, S., Böhl, F.: How to put usability into focus: using focus
groups to evaluate the usability of interactive theorem provers. In: Workshop on
User Interfaces for Theorem Provers (UITP) (2014)

4. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem
provers using focus groups. In: Workshop on Human Oriented Formal Methods
(HOFM) (2014)

5. Bry, F., Yahya, A.: Positive unit hyperresolution tableaux and their application to
minimal model generation. J. Autom. Reason. 25(1), 35–82 (2000)

6. Cunha, A., Macedo, N., Guimarães, T.: Target oriented relational model finding.
In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 17–31. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54804-8 2

7. D’Antoni, L., Kini, D., Alur, R., Gulwani, S., Viswanathan, M., Hartmann, B.:
How can automatic feedback help students construct automata? Trans. Comput.
Hum. Interact. 22(2), March 2015

8. DeOrio, A., Bertacco, V.: Human computing for EDA. In: Proceedings of the 46th
Annual Design Automation Conference, pp. 621–622 (2009)

9. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
523–537. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 41

10. Fagin, R., Ullman, J.D., Vardi, M.Y.: On the semantics of updates in databases.
In: Principles of Database Systems (PODS), pp. 352–365. ACM (1983)

11. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006).
doi:10.1007/11814948 25

12. Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of
graphs using node-link and matrix-based representations. In: Information Visual-
ization (INFOVIS) (2004)

13. Gould, S., Cox, A.L., Brumby, D.P.: Diminished control in crowdsourcing: an inves-
tigation of crowdworker multitasking behavior. Trans. Comput. Hum. Interact. 23,
19:1–19:29 (2016)

14. Hentschel, M., Hähnle, R., Bubel, R.: An empirical evaluation of two user inter-
faces of an interactive program verifier. In: International Conference on Automated
Software Engineering (2016)

http://dx.doi.org/10.1007/978-3-642-54804-8_2
http://dx.doi.org/10.1007/978-3-540-71209-1_41
http://dx.doi.org/10.1007/11814948_25

User Studies of Principled Model Finder Output 183

15. Herman, G.L., Kaczmarczyk, L.C., Loui, M.C., Zilles, C.B.: Proof by incomplete
enumeration and other logical misconceptions. In: International Computing Edu-
cation Research Workshop, ICER, pp. 59–70 (2008)

16. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

17. Janota, M.: SAT solving in interactive configuration. Ph.D. thesis, University
College Dublin (2010)

18. Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with Mechanical Turk.
In: Conference on Human Factors in Computing Systems (CHI) (2008)

19. Koshimura, M., Nabeshima, H., Fujita, H., Hasegawa, R.: Minimal model genera-
tion with respect to an atom set. In: First-Order Theorem Proving (FTP), p. 49
(2009)

20. Maldonado-Lopez, F.A., Chavarriaga, J., Donoso, Y.: Detecting network policy
conflicts using Alloy. In: International Conference on Abstract State Machines,
Alloy, B, and Z (2014)

21. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: class diagrams analysis using Alloy
revisited. In: Model Driven Engineering Languages and Systems (2011)

22. Maoz, S., Ringert, J.O., Rumpe, B.: CDDiff: semantic differencing for class dia-
grams. In: European Conference on Object Oriented Programming (2011)

23. Mason, W., Suri, S.: Conducting behavioral research on Amazon’s Mechanical
Turk. Behav. Res. Methods 44(1), 1–23 (2012)

24. McCune, W.: Mace4 reference manual and guide. arXiv preprint cs/0310055 (2003)
25. Munzner, T.: Visualization Analysis and Design. CRC Press (2014)
26. Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of “why”

and “why not”: enriching scenario exploration with provenance. In: Foundations
of Software Engineering (2017)

27. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: ICSE, pp. 232–241 (2013)

28. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: Large Installation System Administration Con-
ference (2010)

29. Niemelä, I.: A tableau calculus for minimal model reasoning. In: Miglioli, P.,
Moscato, U., Mundici, D., Ornaghi, M. (eds.) TABLEAUX 1996. LNCS, vol. 1071,
pp. 278–294. Springer, Heidelberg (1996). doi:10.1007/3-540-61208-4 18

30. Ottley, A., Peck, E.M., Harrison, L.T., Afergan, D., Ziemkiewicz, C., Taylor, H.A.,
Han, P.K., Chang, R.: Improving Bayesian reasoning: the effects of phrasing, visu-
alization, and spatial ability. Vis. Comput. Graph. 22(1), 529–538 (2016)

31. Peer, E., Vosgerau, J., Acquisti, A.: Reputation as a sufficient condition for data
quality on Amazon Mechanical Turk. Behav. Res. Methods 46(4), 1023–1031
(2014)

32. Robinson, A., Voronkov, A.: Handbook of Automated Reasoning, vol. 1. Elsevier,
Amsterdam (2001)

33. Ruchansky, N., Proserpio, D.: A (not) NICE way to verify the OpenFlow switch
specification: formal modelling of the OpenFlow switch using Alloy. ACM Comput.
Commun. Rev. 43(4), 527–528 (2013)

34. Saghafi, S., Danas, R., Dougherty, D.J.: Exploring theories with a model-finding
assistant. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp.
434–449. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 30

http://dx.doi.org/10.1007/3-540-61208-4_18
http://dx.doi.org/10.1007/978-3-319-21401-6_30

184 N. Danas et al.

35. Simons, D.J.: Current approaches to change blindness. Vis. Cogn. 7(1–3), 1–15
(2000)

36. Torlak, E., Chang, F.S.H., Jackson, D.: Finding minimal unsatisfiable cores of
declarative specifications. In: International Symposium on Formal Methods (FM)
(2008)

37. Wills, G.J.: Visual exploration of large structured datasets. In: Proceedings of New
Techniques and Trends in Statistics (NTTS), pp. 237–246 (1997)

Using Shared Memory Abstractions to Design
Eager Sequentializations for Weak

Memory Models

Ermenegildo Tomasco1, Truc Lam Nguyen1(B), Bernd Fischer2,
Salvatore La Torre3, and Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, Southampton, UK
tnl2g10@soton.ac.uk

2 Division of Computer Science, Stellenbosch University, Stellenbosch, South Africa
3 Dipartimento di Informatica, Università di Salerno,

Fisciano, Italy

Abstract. Sequentialization translates concurrent programs into equiv-
alent nondeterministic sequential programs so that the different concur-
rent schedules no longer need to be handled explicitly. However, existing
sequentializations assume sequential consistency, which modern hard-
ware architectures no longer guarantee. Here we describe a new app-
roach to embed weak memory models within eager sequentializations.
Our approach is based on the separation of intra-thread computations
from inter-thread communications by means of a shared memory abstrac-
tion (SMA). We give details of SMA implementations for the SC, TSO,
and PSO memory models that are based on the idea of individual mem-
ory unwindings. We use our approach to implement a new, efficient BMC-
based bug finding tool for multi-threaded C programs under SC, TSO,
or PSO based on these SMAs, and show experimentally that it is com-
petitive to existing tools.

1 Introduction

Developing correct concurrent programs is a complex and difficult task, due to
the large number of possible concurrent executions that must be considered.
Modern multi-core hardware architectures with weak memory models (WMMs)
have made this task even harder, because they introduce additional executions
that can lead to seemingly counter-intuitive results that confound the developers’
reasoning.

Testing remains the most widely used approach to finding bugs; however,
it is ineffective for bugs that manifest themselves only rarely and are difficult
to reproduce [20]. Such “Heisenbugs” are unfortunately more prevalent with
WMMs. Static verification approaches that handle individual executions explic-
itly face the same state space explosion as testing, even with optimizations that

Partially supported by EPSRC EP/M008991/1, and MIUR-FARB 2014-2016 grants.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 185–202, 2017.
DOI: 10.1007/978-3-319-66197-1 12

186 E. Tomasco et al.

eliminate redundant executions. We thus need approaches that can handle mul-
tiple concurrent executions symbolically.

However, building efficient symbolic verification tools for realistic program-
ming languages like C is hard and extending them for concurrency is harder yet.
Tools thus often fold the concurrency handling deep into their general verifi-
cation approaches (see [1,4,7,9,24,25]), focussing on a specific memory model,
typically sequential consistency (SC). This introduces a strong coupling between
the two aspects, which makes it hard to reuse existing tools and to generalize
solutions to other memory models.

Our goal is to improve on this without losing the efficiency of existing
approaches. For this, we separate the computation (i.e., individual threads) and
the communication (i.e., shared memory) concerns of concurrent programs as
follows. First, we replace all standard concurrency operations in multi-threaded
programs (such as shared memory reads, writes, and allocations, thread cre-
ation and termination), and synchronization operations (such as thread join and
mutex locking and unlocking) by abstract operations over an API called shared
memory abstraction (SMA). We then provide efficient SMA implementations
tailored for the targeted WMM and class of verification algorithms so that we
can reuse existing efficient originally designed for SC now for WMMs.

The notion of SMA was originally introduced in [22] where the focus was
on lazy sequentialization techniques, i.e., based on state-space search algorithms
exploring only reachable states. A main achievement of [22] is an efficient SMA
implementation based on temporal circular doubly-linked lists. The correctness
of such SMAs is only guaranteed when SMA operations are invoked in the pro-
gram execution order.

Here, we extend the SMA-based design from [22] to eager model-checking
algorithms (in the style of Lal/Reps sequentialization [17]). In eager approaches,
each thread is analysed in isolation thus avoiding the state-space explosion (cross
product of the thread-local states) in which lazy approaches may incur. However,
eager explorations guess variable valuations when a read operation matches a
value written by another thread that has not been explored yet, and maintain
auxiliary information to discard infeasible executions resulting from spurious
variable valuations. Eager exploration algorithms, implemented through sequen-
tialization, have led to mature symbolic bug-finding tools for SC concurrent C
programs (e.g., Smack [10], MU-CSeq [21]).

As our first contribution, we extend the API of the SMA from [22] to achieve
a deeper decoupling of the program computation and communication aspects
thus making it more suitable for general implementations. We see a program
as the composition (synchronized over the SMA API) of a thread control-flow
system and an SMA system. We then identify the semantic notions of thread-
wise equivalence and thread-asynchronous closure of transition systems as gen-
eral properties that allow us to state correctness of a class of methods. Namely,
we get that reachability is preserved if we replace in the composed system the
thread control-flow part for a thread-wise equivalent one (assuming the SMA part
is thread-asynchronous) or the SMA part for its thread-asynchronous closure.

Using Shared Memory Abstractions to Design Eager Sequentializations 187

This has two important consequences. First, we can extend existing concurrent
verification algorithms that do not reorder statements within each thread (such
as the eager ones) to different memory models simply by implementing the cor-
responding SMAs. Second, we get a degree of freedom in designing concurrent
verification algorithms, since in executions exploration we can rearrange the
order of the statements from different threads. This is implicitly exploited by
some algorithms from the literature (e.g., [15,17,21]) which can be recast in our
setting and thus extended to WMMs.

As our second contribution, we instantiate our general approach to achieve
an efficient BMC-based bug-finding tool. We give efficient SMA-implementations
for SC, total store ordering (TSO), and partial store ordering (PSO) that are
based on the idea of individual memory-location unwindings, where for each
variable we keep the (temporally ordered) sequence of all its writes occurring
in a computation. We then show through experiments that our prototype tool
compares well with existing tools.

2 Weak Memory Models

A shared memory is a sequence of memory locations of fixed size. The content
of each location can be read or written using an explicit memory operation. The
semantics of read and write operations depend upon the adopted memory model.
Besides SC, we also consider TSO and PSO, which are implemented in modern
computer architectures.

Sequential consistency (SC). SC is the “standard model”, where a write into the
shared memory is performed directly on the memory location. This has the effect
that the newly written value is instantaneously visible to all the other threads.

Total store ordering (TSO). The behaviour of the TSO memory model can be
described using a simplified architecture with explicit store buffers [18]. Each
thread t is equipped with a local store buffer that is used to cache the write
operations performed by t according to a FIFO policy. Updates to the shared
memory occur nondeterministically along the computation, by selecting a thread,
removing the oldest write operation from its store buffer, and then updating the
shared memory valuation accordingly. Before updating, the effect of a cached
write is visible only to the thread that has performed it. A read by t of a variable
y retrieves the value from the shared memory unless there is a cached write to
y pending in its store buffer; in that case, the value of the most recent write in
t’s store buffer is returned. A thread can also execute a fence-operation to block
its execution until its store buffer has been emptied.

Partial store ordering (PSO). The semantics of PSO is the same as for TSO
except that each thread is endowed with a store buffer for each shared memory
location.

188 E. Tomasco et al.

3 Multi-threaded Programs over Shared Memory
Abstractions

We consider multi-threaded programs with a standard C-like syntax includ-
ing pointer arithmetics and dynamic memory allocation. We further consider
POSIX-like threads with dynamic thread creation, thread join, and mutex lock-
ing and unlocking operations for thread synchronization; threads communicate
only via the shared memory. We also assume a fence statement that commits
all pending write operations of a thread into the shared memory; for TSO and
PSO this means it flushes all store buffers of a thread.

Shared Memory Abstractions. The semantics of multi-threaded programs
ultimately depends on the underlying memory model. In order to combine exist-
ing concurrent verification techniques with different memory models we define
a “concurrency interface” or shared memory abstraction (SMA) that abstracts
away the shared memory operations in the syntax of multi-threaded programs.
The intended meaning of the SMA’s functions is standard; note that most func-
tions carry the calling thread t as an extra argument to allow the SMA to update
its internal state. In detail, the SMA API is:

– init() initializes the SMA; this must be the first statement in the program;
– terminate(t) ends the execution of t; each thread must explicitly call it;
– error(t) flags an assertion failure in t; the computation ends in an error

state;
– address(v,t) returns the memory address of the shared variable v;
– malloc(n,t) allocates a continuous block of n memory locations and returns

the base address of the block;
– read(v,t) (resp. ind read(a,t)) returns the valuation of the shared variable

v (resp. memory location with address a) as seen by t;
– write(v,val,t) (resp. ind write(a,val,t)) sets the valuation of the shared

variable v (resp. memory location with address a) to the value val;
– fence(t) commits all pending write operations of t into the shared memory;
– lock(m,t) and unlock(m,t) are standard thread synchronization primitives

that acquire and release a mutex m for t; if m is currently acquired, the lock
operation is blocking for t, i.e., t is suspended until m is released and then
acquired;

– create(f,t) spawns a new thread that starts from function f, and returns
a fresh thread identifier for this thread;

– join(t’,t) pauses the execution of t until t’has terminated its execution.

Multi-threaded Programs as Composition of Transition Systems. The
formal semantics of multi-threaded programs is given by a transition system
that captures the program computations by interleaving the computations of
each thread. We exploit the separation between the control flow and the shared
memory aspects introduced with the notion of SMA, and give the semantics of

Using Shared Memory Abstractions to Design Eager Sequentializations 189

a multi-threaded program as the composition C|M of the control-flow transition
system C that captures the control flow of all threads and the SMA transition
system M that implements the behaviours of the SMA. This allows us to keep
the semantics of the sequential part and re-interpret it in different ways with
different WMMs; it also aligns nicely with different SMA implementations.

The two transition systems are synchronized over the alphabet ΣSMA which
contains the calls to the SMA API functions that do not return values, and the
calls augmented with a parameter denoting the returned value for the others. For
example, read(3,v,t) is the letter corresponding to a call read(v,t) that returns
value 3.

Control-flow transition system. The states of the control-flow transition system
C are the tuples of thread configurations. A thread configuration consists of a
program counter, an evaluation of the thread-local variables and a call stack. C
has a unique initial state that corresponds to the empty configuration (i.e., no
threads are active in the beginning).

The transitions correspond to the execution of any of the statements. Those
corresponding to invocations of API functions of SMA are labeled with the cor-
responding letter from ΣSMA. In particular, transitions from the initial state are
labeled with init() and enter a state with the starting configuration of the main
thread. No other transitions are labeled with init(). Transitions corresponding
to SMA functions that return a value are handled as thread-local assignments
with the returned values. On a thread creation the tuple of thread configura-
tions is augmented with the starting configuration of the newly created thread.
Similarly, the effect of a transition on terminate(t) is to delete the configura-
tion of the terminated thread and that of a transition on error(t) is to enter an
error state. Both these kinds of transition disallow further transitions of thread
t. The remaining transitions labeled with ΣSMA letters just update the program
counter. Transitions corresponding to all other (i.e., sequential) statements are
labeled with the empty word ε and update the configuration of the issuing thread
as usual.

Shared memory abstraction transition system. With Msc, Mtso and Mpso we
denote the canonical SMA transitions systems capturing respectively the seman-
tics of SC, TSO and PSO memory models as described in Sect. 2. We observe
that each of such systems has an initial state and a state for each possible con-
figuration of the corresponding memory model. In addition, the states of Mtso

and Mpso account also for the content of the thread store buffers.
Transitions update the memory configurations to capture the memory

model’s intended meaning. In particular, from the initial state there are only
outgoing transitions labeled with init() that take to any state with: just one
thread (which must be active), any number of shared locations (which must
all have the value of zero), and any number of mutexes (which must all be
unlocked). No other transition have this label. Msc has no fence-transitions.
Mtso and Mpso have instead such transitions on calls to fence by t and also
ε-transitions for store buffer updates. Further, in a transition on terminate(t),
the three transistion systems enter a state where the status of t is terminated.

190 E. Tomasco et al.

Similarly, on error(t), they enter an error state. From any of these two kinds of
states no other transitions corresponding to invocations of API functions from t
are allowed. The final states are error states and all states where all threads are
terminated.

4 Verification with Thread-Asynchronous SMAs

Splitting the design of a verification tool into an SMA implementation and a
search algorithm for program execution exploration gives a convenient way to
extend it to other memory models: one can just replace the SMA implementation.
However, obtaining scalable tools would still be an issue. In fact, for correctness,
a direct implementation of memory models would require to invoke memory
operations as they occur in a run. This may result into a bottleneck for summary
based analysis (e.g., BDD-based model checking) due to the state-space explosion
caused by the cross product of thread-local states, as well as for bounded model
checking where the code of all threads must be included at each possible context-
switch point, thus leading to large SAT/SMT formulas.

We thus propose a general framework where we assume the SMA implemen-
tation to be thread-asynchronous , i.e., insensitive to how the threads are inter-
leaved. This allows us to freely transform the threads as long as we stay within
the class of thread-wise equivalent programs, i.e., programs where the intra-thread
ordering of the statements remains the same. Transformations into thread-wise
equivalent programs has been already exploited in successful approaches from
the literature where program executions are rearranged such that each thread is
simulated in turn to completion [15,17,21].

For a thread t, we denote with Σt
SMA the maximal subset of ΣSMA containing

only letters that are issued by t. Clearly, for threads t and t′ with t �= t′, Σt
SMA

and Σt′
SMA are disjoint. For a thread t and a word α over ΣSMA, let α|t be the

projection of α onto Σt
SMA, i.e., the word obtained from α by deleting all the

letters that do not belong to Σt
SMA. If t1, . . . , th are all the threads that issue at

least a letter in α, we define π(α) as the map π(α)(ti) = α|ti for i ∈ [1, h].
A language L over ΣSMA is thread-asynchronous if for each α ∈ L and

for each α′ starting with init() s.t. π(α) = π(α′), also α′ ∈ L. The thread-
asynchronous closure of L, denoted by L#, is the smallest thread-asynchronous
language such that L ⊆ L#.

Let A1 and A2 be two transition systems over the alphabet ΣSMA. We say
that A1 and A2 are thread-wise equivalent if for each word α accepted by one of
them there is a word α′ that is accepted by the other one such that π(α) = π(α′).

A standard analysis for a multi-threaded program is to search for the reach-
ability of an error, often denoted by an error label or a false-assertion in the
program. In our setting, an error is captured by a transition over label error(t).
Since program executions are captured by accepting runs of corresponding tran-
sition systems, a program error is reachable if and only if a word containing label
error(t) is accepted. We say that an error is reachable in two transition systems

Using Shared Memory Abstractions to Design Eager Sequentializations 191

A1 and A2, if there are words αi ∈ L(Ai), with i = 1, 2, that contain a same
label error(t) such that π(α1) = π(α2).

We conclude this section with two theorems stating sufficient conditions
under which the reachability of error states is preserved. The first theorem states
that if the SMA system is thread-asynchronous, by transforming a program P1

into a program P2 such that the corresponding control-flow transitions systems
are thread-wise equivalent, an error is reachable in P1 if and only if it is reach-
able in P2. Intuitively, since the SMA transition system is thread-asynchronous,
we are guaranteed that the interaction of each thread with the SMA is indepen-
dent of how threads are interleaved: for any fixed run ρ, the values of the read
operations remain the same in all the possible interleavings of the projections of
ρ onto each thread. Thus, we get that reachability is preserved.

Theorem 1. Let Ci be a control-flow transition system for i = 1, 2 and M be
an SMA transition system. If C1 and C2 are thread-wise equivalent, and M is
thread-asynchronous, then an error is reachable in C1|M iff it is reachable in
C2|M.

Theorem 1 states a crucial property for our approach: we can implement
a thread-asynchronous SMA, and combine it with any transformation of the
program that rearranges the interleaving among threads and still get a correct
verification approach.

The second theorem shows that we can replace an SMA M1 with another
SMA M2 that captures its thread-asynchronous closure, and still preserve reach-
ability of errors. The interesting case of the proof is when a sequence α is accepted
by M2 but not by M1. In this case, since the returned values are visible in
ΣSMA letters and there must be a sequence α′ that is accepted by M1 such that
π(α) = π(α′), we get that the sequence of local states that are visited by any
thread of any program P are the same for both sequences α and α′. Therefore,
the following theorem holds.

Theorem 2. Let C be a control-flow transition system and Mi be an SMA tran-
sition system for i = 1, 2. If L(M2) = (L(M1))#, then an error is reachable in
C|M1 iff it is reachable in C|M2.

By the above theorems, we can show the correctness of WMM extensions of
correct verification methods that transform programs by keeping the ordering of
the operations within each thread, such as the methods from [15–17,21]. In fact,
we just need to provide an SMA that captures the thread-asynchronous closure
of the memory model.

5 Individual Memory-Location Unwindings

We now discuss an implementation of thread-asynchronous SMAs for SC, TSO
and PSO. The key notion is the individual memory-location unwinding (IMU),
a set containing exactly one sequence of writes for each shared memory location

192 E. Tomasco et al.

(location unwinding, LU for short) and such that the unique timestamps associ-
ated to each write determine a total order among all the writes of all the LUs
(where each timestamp denotes the time of occurrence of a write according to a
discrete-time global clock).

Precisely, an LU for a memory location v , denoted by v-LU, is a sequence of
triples (t , val , d) where t and val denote the thread identifier and the value of
the write and d > 0 is the associated timestamp. If Var is the set of location
names and μv a v-LU for each v ∈ Var , an IMU is a set {μv | v ∈ Var} such
that: (a) the tuples in each LU are ordered by increasing timestamps, and (b)
for each pair of different location names v1, v2 ∈ Var and for each (ti, val i, di) in
μvi

with i = 1, 2, then also d1 �= d2 (thus timestamps define a total order among
all the writes in the IMU).
IMU-based SMA for SC. A transition system Mimu

sc for an IMU-based imple-
mentation of SMA first guesses an IMU on the init()-transition and then executes
the operations. Namely, it keeps for each thread the current timestamp (i.e., the
timestamp of the last executed SMA operation) and for any input sequence α,
it ensures that:

– on write(v,val,t) (resp. ind write(a,val,t)), the next write in the v-LU (resp.
the LU identified by the address a) for thread t matches the value val; the
current timestamp of t is updated to the timestamp of the matched write in
the next state;

– on read(val,v,t) (resp. ind read(val,a,t)), there must be in the v-LU (resp. the
LU identified by the address a) a write with timestamp d that assigns value
val to v such that either d is the timestamp of the most recent (before t’s
current timestamp) write to v or d is between t’s current timestamp and
the timestamp of t’s next write; in the latter case t’s current timestamp is
updated to d in the next state;

– for each thread, the writes are matched by increasing timestamps.

In order to accept α, create(t,f,t’) must occur in α for each thread t with writes
guessed in the IMU and the writes in the IMU should be mapped 1-to-1 to the
writes in α.

The transition system Mimu
sc is thread-wise equivalent to Msc, and addition-

ally, it can execute all computations of Msc by advancing each involved thread
in any order. Moreover, due to the fact that all writes are guessed in advance,
the ordering in which we interleave the threads is irrelevant. We thus get the
following lemma.

Lemma 1. L(Mimu
sc) = (L(Msc))#.

IMU-based SMA for TSO and PSO. We augment the IMU by adding a second
timestamp for each write. In particular, we now make a distinction between the
time a write occurs (occurrence timestamp) and the time the shared memory
is updated with an occurred write (update timestamp). For correctness, we also
impose on the IMU that for each write the occurrence timestamp should not be
greater than the update timestamp.

Using Shared Memory Abstractions to Design Eager Sequentializations 193

For TSO, in order to ensure the FIFO policy of the store buffers, we addi-
tionally require that for each thread the occurrence and the update timestamps
must both order all the writes according to the program order. For PSO, instead
it is sufficient to require this only for the writes of a same location.

We will denote with Mimu
tso and Mimu

pso the IMU-based SMA transition sys-
tems corresponding to the TSO and PSO memory models, respectively. Mimu

tso

can be obtained from Mimu
sc with a few changes: on the init()-transition we now

guess the IMU with occurrence and update timestamps as observed above; in a
read of location v by a thread t the position of the matching write is the last
occurred write still in the store buffer of t (i.e., current timestamp of t is between
the occurrence timestamp and the update timestamp of the last write of v by
t), if any, and the last updated write of v, otherwise (this case works as the read
in Mimu

sc); the current timestamp of a thread t is also updated to the occur-
rence timestamp of a write when this is executed; a fence(t)-transition updates
the current timestamp to the largest update timestamp of the already occurred
writes performed by t. Obtaining Mimu

pso from Mimu
tso is straightforward: the only

difference is hidden in the properties that are required on the guessed IMU as
observed above.

By the above observations we can derive that Mimu
pso and Mimu

tso capture the
semantics of the corresponding memory models. Moreover, since all the writes are
guessed in advance, the ordering in which we interleave the threads is irrelevant.
Thus, we get:

Lemma 2. For m ∈ {tso, pso}, L(Mimu
m) = (L(Mm))#.

Verification by eager sequentialization and IMU. We recall that an eager sequen-
tialization, usually implemented through a code-to-code translation that results
into a nondeterministic sequential program, is designed such that each thread
is simulated in isolation against the shared memory. Thus, eager sequentializa-
tions naturally define control-flow transition systems that preserve the ordering
in which the statements of each thread are executed, and thus can be combined
with thread-asynchronous SMAs by preserving reachability. Here, we take the
control-flow transition system defined by the eager sequentialization from [21]
and combine it with Mimu

sc , Mimu
tso and Mimu

pso , thus obtaining new verification
methods under SC, TSO and PSO semantics. The correctness of such methods
is consequence of the above lemmas, and Theorems 1 and 2.

6 IMU-based SMA Implementations

In this section, we discuss concrete C-implementations of the SMA API from
Sect. 3 according to the semantics captured by Mimu

sc , Mimu
tso and Mimu

pso . We
will give some details of the implemented code. Note that our code is optimized
for an efficient analysis using BMC tools but implementations for other backends
are possible.

194 E. Tomasco et al.

IMU Implementation for SC. The implementation is parameterized over
several constants. N and U denote the number of locations with names (i.e., shared
scalar variables) and locations without names (i.e., heap locations accessed only
through memory addresses), respectively. W denotes the maximum number of
write operations for each of these V=N+U tracked memory locations, M and T
denote the maximum number of dynamic memory allocations and thread cre-
ations, respectively, that may happen during any execution of the input program.
Data structures and invariants. We use several scalar variables and arrays to
maintain the LUs and support the implementation of the SMA operations. We
sketch below the main ones that are relevant to the read and write operations;
others are used to model thread creation, join, and termination, and the dynamic
memory allocation. All are declared global such that they are visible and can be
modified in all the functions. For simplicity, we assume that all data is repre-
sented by unsigned integers.

The triples (t, val , d) of the LUs are maintained by three different arrays
thread, value and tstamp. For every location v ∈ [0, V-1] and i ∈ [0, W-1],
the triple at position i in the v-LU is stored in thread[v][i], value[v][i] and
tstamp[v][i]. We link the writes of a same thread in each LU by an additional
array th next write. All these arrays are nondeterministically assigned in the
function init and never changed in the program execution. init also ensures
that:

– timestamps are assigned in increasing order for each LU;
– no two writes in the IMU are assigned the same timestamp;
– for every location v ∈ [0, V-1], position i ∈ [0, W-1] and thread identifier

t ∈ [0, T-1], th next write[v][i][t] is the first position in the v-LU after i
that corresponds to a write by t, if any; otherwise, it is set to W, denoting
that no further writes of v by t are expected.

To keep track of the execution of each thread in the IMU, we use the arrays
th pos, last write and cur tstamp, and maintain the following invariants for
every location v ∈ [0, V-1] and thread identifier t ∈ [0, T-1]:

– th pos[v][t] stores the current position of thread t in the v-LU;
– last write[v] stores the position i ∈ [0, W-1] of the last executed write oper-

ation of location v in the v-LU;
– cur tstamp[t] stores the current timestamp of thread t during its simulation.

Verification stubs. We only discuss here the implementation of the API functions
read and write, which is given in Fig. 1. Both functions first check whether the
execution of the simulated thread has been stopped, and return immediately if
this is the case; note that in our simulation when calling read on a thread that
is indeed terminated the returned value is never used, so here any integer would
do (we use 0 in our implementation). For a read operation of thread t from
location v, we first jump forward into v-LU by invoking the auxiliary function
Jump and then return the value of v at this new position of v-LU. Jump (cf. Fig. 1)
works as follows. If the timestamp of the selected write is past the current thread

Using Shared Memory Abstractions to Design Eager Sequentializations 195

Fig. 1. Read, write, and jump functions.

timestamp, the latter is updated to this value, acknowledging the fact that the
corresponding write into the shared memory has occurred. The value of jump
is selected nondeterministically within a range of proper values. Namely, jump
should not pass the last legal write position for v and must be strictly less than
the position of the next write of v by the same thread t (that has not occurred
yet). Further, we require that the timestamp at position jump+1 is greater than
the current timestamp of t, as we must point to a write of v that is not superseded
by already occurred writes.

With the stated invariants we get that Jump identifies a position i in the
v-LU that is correct w.r.t. the v-LU (in the sense that it is not jumping over the
next write of v by t). However, note that the corresponding timestamp could be
still larger then the next write by t (for a different location) but we will catch
this while executing the next write of t, when the current timestamp of t will
be larger than the one of that write.

In a write operation, we first move forward to the position of the next write
by t in the v-LU and block the execution if the value to be written differs from
that stored in the v-LU. We also check that the timestamp associated with the
new v-LU position for t is greater than the current timestamp of t; if this is
not the case, we are then in the error case generated by a wrong update of the
thread timestamp in a read, and thus the execution is aborted. If all checks are
passed, we update the current position of thread t in the v-LU and the current
timestamp accordingly, thus maintaining the invariants.

IMU Implementation for TSO. We give this implementation incremen-
tally on that given for SC; the code of the functions read, fence and write
is illustrated in Fig. 2. We use: tstamp[v][i] to store the update timestamp and
btstamp[v][i] to store the occurrence timestamp of the write at position i in the
v-LU; ts lastW[t] to store the update timestamp of the write by thread t that
occurred last.

196 E. Tomasco et al.

For init, we guess the initial values for btstamp[v][i] and then impose that
btstamp[v][i] ≤ tstamp[v][i] must hold (i.e., the update of the shared memory
according to an occurred write may be delayed w.r.t. its occurrence time). Note
that here we slightly diverge from the transition system Mimu

tso described in
Sect. 5. In fact, since we do not require any other condition on the guessed update
timestamps, we can carry over an IMU with timestamps that may violate the
FIFO policy on the store buffers. We fix this by checking the proper ordering on
matching the writes (see below).

Fig. 2. Functions read, fence and write for TSO.

The fence-operation flushes the store buffer of the executing thread. We
thus need to synchronize the current thread timestamp with its last update
timestamp, i.e., if ts lastW[t] is larger than the timestamp of the last occurred
write by t, we set ts lastW[t] to cur tstamp[t]. Note that if this is not the
case then the local store buffer of t is certainly empty, since btstamp[v][i] ≤
tstamp[v][i].

The read-function first increases nondeterministically the current timestamp
of thread t such that it remains smaller than the occurrence timestamp of the
next write of v by t. Now, if at least a write of location v by t has occurred and
the last write of v by t is still in the thread buffer, then we return the value of
this write. Otherwise, a read from the shared memory is performed by invoking
the auxiliary function Read SC that is exactly the function read from Fig. 1.
Note that the update of the current thread timestamp by read can cause this
value to be larger than the update timestamp of the last write, which is correct.
To avoid that we wrongly move the time back, in fence we make the assignment
only when this is not the case.

The write-function first updates the current position in the v-LU of thread
t to the next write provided that: the time of occurrence of this write is larger
than the current thread timestamp, the value of the write matches the guessed
value for it and the update timestamp of the next write is larger than that of

Using Shared Memory Abstractions to Design Eager Sequentializations 197

the last occurred write (the last one ensures that the thread store buffers are
emptied according to a FIFO policy). Note that, in the case of a wrong guess
of the update timestamps in init, this condition would not hold and thus the
execution would abort. Before returning, the update timestamp of the last write
and the current timestamp of thread t are modified consistently.

IMU Implementation for PSO. We just need to slightly modify the imple-
mentation for TSO as follows. We use a new array max tsW instead of ts lastW
to keep for each thread t the maximum update timestamp among all the
occurred writes of t. Thus, we replace in write the update of ts lastW
with the assignment of max tsW[t] with (tstamp[v][jump] > max tsW[t]) ?
tstamp[v][jump] : max tsW[t].

We further modify function write by removing from the assume-statement
the conjunct tstamp[v][jump] > ts lastW[t] (see Fig. 2). We recall that this
conjunct was required in the TSO implementation to ensure the store-buffer
FIFO policy for each thread; in PSO, we only need to require this within each LU.

7 Experimental Evaluation

We implemented the approach of Sect. 6 in the IMU-CSeq tool1 that analyzes
C programs over the pthreads API. It uses modules from MU-CSeq [13,21] to
transform the original multi-threaded program into a sequential one (sequential-
ization), then links this against an IMU-based SMA implementation, and finally
verifies the resulting program with a BMC tool for sequential programs, in par-
ticular CBMC (v5.3). By varying the SMA implementation we thus obtain a tool
for verifying multi-threaded programs under SC, TSO, and PSO, respectively.
A hybrid tool combining IMU-CSeq and MU-CSeq [23] has won the gold medal
in the Concurrency-category of the TACAS Software Verification Competition
(SV-COMP16) [8]. We recall that MU-CSeq is based on the notion of memory
unwinding where all the program writes are kept in a single sequence.

The experiments below were run on a dedicated machine with a Xeon
E5-2650 v2 with 2.60 GHz and 132 GB RAM, running Linux 4.2.0-22-generic,
using one CPU. We set a 15 GB memory limit and a 900 s time limit. For each
tool and benchmark, we set the parameters to the minimum value to expose the
error. Verification wall-clock time is reported in seconds.

SC Benchmarks. We first evaluate IMU-CSeq on the Concurrency-
benchmarks SV-COMP16 under SC semantics. These cover the core features
of the C programming language and the basic concurrency mechanisms. Since
we use a BMC tool as a backend, we can only evaluate IMU-CSeq only on files
that have a reachable error location. We used the files from the sub-categories
shown in Table 1; each row shows the corresponding number of files and lines
of code.
1 http://users.ecs.soton.ac.uk/gp4/cseq/files/IMU-2017.zip.

http://users.ecs.soton.ac.uk/gp4/cseq/files/IMU-2017.zip

198 E. Tomasco et al.

Table 1. Performance comparison among different tools for SC semantics on unsafe
instances from the SV-COMP16 Concurrency category.

Sub-category Files l.o.c. CBMC svc16 CIVL svc16 Lazy-CSeq svc16 MU-CSeq svc15 IMU-CSeq

Pass Fail Time Pass Fail Time Pass Fail Time Pass Fail Time Pass Fail Time

pthread 15 2301 14 1 84.23 15 0 33.31 15 0 48.58 15 0 5.42 15 0 4.88

pthread-atomic 2 156 2 0 0.59 2 0 17.5 2 0 1.39 2 0 1.4 2 0 3.15

pthread-ext 8 616 7 1 154 8 0 13.12 8 0 11.23 8 0 5.45 8 0 4.88

pthread-lit 2 73 2 0 0.3 2 0 10.33 2 0 0.56 2 0 2.55 2 0 0.88

ldv-races 8 616 3 5 66.96 3 0 14.5 8 0 1.73 - - - 8 0 1.61

Table 1 shows the results for the SV-COMP16 versions of CBMC [5],
CIVL [26], Lazy-CSeq [13,14], the SV-COMP15 version of MU-CSeq [21], 2 and
of IMU-CSeq on these benchmarks. We indicate with pass the number of cor-
rectly found bugs, with fail the number of unsuccessful analyses including tool
crashes, memory limit hits, and timeouts, and with time the average time in sec-
onds to find the bug. The results clearly show that our approach is competitive
with existing tools; in particular, the IMU-based SMA-implementation improves
over MU-CSeq.

WMM Benchmarks. We then compared IMU-CSeq against three tools with
built-in support for WMM, LazySMA [22], CBMC [12], and Nidhugg [1] a bug-
finding tool that combines stateless model checking with dynamic partial order
reduction.

Simple benchmarks. Table 2 shows the results over a set of (relatively simple)
benchmarks collected from the CBMC, Poet, and Nidhugg tools, and the SV-
COMP benchmark suite. The unwind parameter was used by all the three tools
considered in the comparison, while W, U, and M are used only by IMU-CSeq, as
detailed in Sect. 6. The parameter bitwidth gives the size of integers (in bits)
used in the sequential analysis.

The first block contains results for some classical mutual exclusions algo-
rithms. The implementations are correct under SC but not under TSO and PSO
(as indicated by an entry in the column ‘bug?’). All tools find the errors, but
because of the problems’ small size, Nidhugg outperforms IMU-CSeq, LazySMA
and CBMC on these programs.

The second block contains safe and unsafe versions of one of the fibonacci-
benchmarks, where two worker threads concurrently increase two shared coun-
ters, and a main thread checks whether any of the counters can reach a defined
value. A full exploration of the thread interleavings is required to identify the
error (or show its absence) in this program and techniques such as partial-order
reduction do not apply. Here, IMU-CSeq has substantially a slight edge over
both CBMC and LazySMA, while Nidhugg is substantially slower than the
other three.

2 Note that the SV-COMP16 version of MU-CSeq is a hybrid tool that already uses
IMU for the shown sub-categories. We thus use the SV-COMP15 version here.

Using Shared Memory Abstractions to Design Eager Sequentializations 199

Table 2. Analysis runtime under TSO/PSO

The next block contains benchmarks derived from industrial code. pgsql
is a well-known SQL bug [4]; it is correct under SC and TSO but not under
PSO. parker models a semaphore-like synchronization class that breaks under
TSO [1], and stack unsafe which was taken from SV-COMP [8]. All tools report
the expected results; the performance differences between Nidhugg and CBMC
are small, while IMU-CSeq’s and LazySMA’s performance could be improved
(each implementation currently parses and unparses each file nearly 20 times).

The fourth block shows the average results for 5803 WMM litmus tests with
297 K lines of code. For TSO, both our tool, LazySMA and CBMC successfully
identified the 277 test cases containing a reachable error, while Nidhugg failed
to find one of them. For PSO, CBMC claims that there are 971 unsafe instances
while Nidhugg, LazySMA and IMU-CSeq find only 968 unsafe ones (we suspect
an error in CBMC). Here, symbolic methods are faster, and Nidhugg has two
timeouts.

Complex benchmark. Safestack [11] is a lock-free stack implementation designed
for WMM. It is written in C++ but we manually translated it into C, providing
simulation functions for the C++11 atomic functions, and analyzed this version.
It contains a rare bug that is hard to find with automatic bug-finding techniques
already under SC (including random testing, Nidhugg, CIVL [26], and other
approaches based on BMC) [20]. The only tool we are aware of that can auto-
matically find a genuine counter-example is Lazy-CSeq [13], which requires a
minimum of 3 loop unwindings and 4 rounds of computation and more than 7 h
to expose a bug. As shown in the last block of Table 2, both Nidhugg and CBMC
failed to find the bug, while IMU-CSeq required approx. 3.5 min and 1.5 GB of
memory to find it under TSO, and approx. 17 min and 1.8 GB of memory under
PSO, and is faster than LazySMA in finding these bugs.

200 E. Tomasco et al.

8 Related Work, Conclusions, and Future Work

Related Work. The BMC approach from [5] allows to handle different mem-
ory models by adding a conjunct to the formula. The verification algorithm in
[3] works on a generic relaxed memory model that can be refined into actual
memory models by adding constraints. Our work differs from these both in the
scope and the techniques. In particular, we work at the level of source code with
code-to-code transformations and give a general approach that allows to com-
bine different verification algorithms with different implementations of memory
models, not just a specific algorithm. The development of the two parts can be
done independently as long as Theorems 1 and 2 hold.

Another important aspect of our approach is to identify a class of imple-
mentations of memory models that allows for a full rearrangement of the thread
interleavings in the analysis. As already observed, this is a feature that has
been already exploited in verifying concurrent programs [17,21] also with WMM
semantics [7].

The axiomatic framework from [6] is introduced to capture the semantics of
memory models. Our framework instead aims at a scalable verification approach
that encapsulates all differences between the models within the SMA implemen-
tation such that the designs of the verification algorithm and of the memory
model simulation can be developed independently.

The notion of IMU exactly captures the coherence relation that is often used
in the description of memory models (see [2,6]). In our setting, we achieve the
reordering of the statements that are observed in the relaxed memory models by
guessing the timestamps and then checking their consistency with the expected
behaviours.

The reachability analysis used in our algorithm [21] is bounded on the number
of writes which is orthogonal to bounding the number of context-switches [19].

Conclusions. We have described and evaluated a new verification approach for
concurrent programs over different memory models. Our main design goal was
to break the coupling between computation (i.e., individual threads) and com-
munication (i.e., shared memory) concerns of multi-threaded programs, with-
out losing the efficiency of existing approaches. We have introduced shared
memory abstractions, which capture the standard concurrency operations in
multi-threaded programs. We have then shown that reachability is preserved if
we exchange a program by a thread-wise equivalent one (assuming the SMA
is thread-asynchronous) or an SMA for its thread-asynchronous closure. This
allows us to generalize existing concurrent verification approaches to different
memory models simply by implementing the corresponding different SMAs. We
have described efficient SMA implementations for SC, TSO, and PSO based
on the idea of individual memory-location unwindings, which have allowed us
to instantiate our approach into an efficient eager-sequentialization-based BMC
bug-finding tool. Our experiments show that the resulting prototype tool com-
pares well with existing ones.

Using Shared Memory Abstractions to Design Eager Sequentializations 201

Future Work. We plan to extend our approach to other memory models such
as POWER. POWER relaxes PSO (and thus TSO) in two key aspects (see [2]):
(i) the propagation of a write in the shared memory by a thread can be asynchro-
nous, i.e., each thread can see the write at a different time; (ii) the order of execu-
tion of the statements of a thread can be rearranged liberally (w.r.t. the program
order) provided that the dependency relations such as data-flow, address, control
and isync are respected. The asynchronous write propagation can be easily cap-
tured in the IMU by allowing for each write a different timestamp per thread. To
capture the dependency relations, a more substantial addition may be required
instead. However, on the basis of preliminary empirical experiments, we have evi-
dences that our approach have a potential to scale well to more relaxed memory
models. We leave this for future investigations.

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 28

2. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: Context-bounded analysis for
POWER. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
56–74. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54580-5 4

3. Abe, T., Maeda, T.: A general model checking framework for various memory
consistency models. In: IEEE PDP, pp. 332–341 (2014)

4. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 28

5. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: CAV, pp. 141–157 (2013)

6. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

7. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 9

8. Beyer, D.: Reliable and reproducible competition results with BenchExec and wit-
nesses (Report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 55

9. Bouajjani, A., Calin, G., Derevenetc, E., Meyer, R.: Lazy TSO reachability. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 267–282. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46675-9 18

10. Carter, M., He, S., Whitaker, J., Rakamaric, Z., Emmi, M.: SMACK software
verification toolchain. In: ICSE, pp. 589–592 (2016)

11. Chen, G., Jin, H., Zou, D., Zhou, B.B., Liang, Z., Zheng, W., Shi, X.: Safestack:
automatically patching stack-based buffer overflow vulnerabilities. IEEE Trans.
Dependable Sec. Comput. 10(6), 368–379 (2013)

http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-54580-5_4
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-22110-1_9
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-46675-9_18

202 E. Tomasco et al.

12. Horn, A., Kroening, D.: On partial order semantics for SAT/SMT-based sym-
bolic encodings of weak memory concurrency. In: Graf, S., Viswanathan, M. (eds.)
FORTE 2015. LNCS, vol. 9039, pp. 19–34. Springer, Cham (2015). doi:10.1007/
978-3-319-19195-9 2

13. Inverso, O., Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy-cseq: a
context-bounded model checking tool for multi-threaded c-programs. In: ASE, pp.
807–812 (2015)

14. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Cham (2014).
doi:10.1007/978-3-319-08867-9 39

15. La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concur-
rent programs using linear interfaces. In: CAV, pp. 629–644 (2010)

16. La Torre, S., Madhusudan, P., Parlato, G.: Sequentializing Parameterized Pro-
grams. In: FIT, pp. 34–47 (2012)

17. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods Syst. Des. 35(1), 73–97 (2009)

18. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 391–407. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 27

19. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31980-1 7

20. Thomson, P., Donaldson, A.F., Betts, A.: Concurrency testing using schedule
bounding: an empirical study. In: PPopp, pp. 15–28 (2014)

21. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying con-
current programs by memory unwinding. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 551–565. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 52

22. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy
sequentialization for TSO and PSO via shared memory abstractions. In: FMCAD,
pp. 193–200 (2016)

23. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-
CSeq 0.4: individual memory location unwindings. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 938–941. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49674-9 65

24. Wehrheim, H., Travkin, O.: TSO to SC via symbolic execution. In: Piterman, N.
(ed.) HVC 2015. LNCS, vol. 9434, pp. 104–119. Springer, Cham (2015). doi:10.
1007/978-3-319-26287-1 7

25. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed
memory models. In: PLDI, pp. 250–259 (2015)

26. Zheng, M., Rogers, M.S., Luo, Z., Dwyer, M.B., Siegel, S.F.: CIVL: formal verifi-
cation of parallel programs. In: ASE, pp. 830–835 (2015)

http://dx.doi.org/10.1007/978-3-319-19195-9_2
http://dx.doi.org/10.1007/978-3-319-19195-9_2
http://dx.doi.org/10.1007/978-3-319-08867-9_39
http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-540-31980-1_7
http://dx.doi.org/10.1007/978-3-662-46681-0_52
http://dx.doi.org/10.1007/978-3-662-46681-0_52
http://dx.doi.org/10.1007/978-3-662-49674-9_65
http://dx.doi.org/10.1007/978-3-319-26287-1_7
http://dx.doi.org/10.1007/978-3-319-26287-1_7

On Run-Time Enforcement of Authorization
Constraints in Security-Sensitive Workflows

Daniel Ricardo dos Santos(B) and Silvio Ranise

Fondazione Bruno Kessler (FBK), Trento, Italy
dossantos@fbk.edu

Abstract. In previous work, we showed how to use an SMT-based
model checker to synthesize run-time enforcement mechanisms for busi-
ness processes augmented with access control policies and authorization
constraints, such as Separation of Duties. The synthesized enforcement
mechanisms are able to guarantee both termination and compliance to
security requirements, i.e. solving the run-time version of the Workflow
Satisfiability Problem (WSP). No systematic approach to specify the
various constraints considered in the WSP literature has been provided.
In this paper, we first propose a classification of these constraints and
then show how to encode them in the declarative input language of the
SMT-based model checker used for synthesis. This shows the flexibility of
the SMT approach to solve the run-time version of the WSP in presence
of different authorization constraints.

1 Introduction

A security-sensitive business process (BP) is a structured collection of tasks,
defining a workflow, equipped with an authorization policy defining which users
are entitled to execute which tasks, and authorization constraints such as Sep-
aration or Binding of Duties (SoD or BoD) defining that certain tasks must
be executed by different users, or the same user, respectively. The authoriza-
tion policy and constraints are crucial to comply with regulations and prevent
frauds. It is, however, of utmost importance to ensure that business continuity
is not endangered, i.e. it must be possible to complete the BP while satisfy-
ing the authorization policy and constraints. Finding the best possible trade-off
between security and business continuity for BPs is called the Workflow Satisfi-
ability Problem (WSP) [4,6,7,16].

There are business rules, regulations, and policies that either cannot be
encoded or are very difficult to encode by using simple SoD/BoD constraints [15].
Some examples are: requiring that a user executes only a certain number of tasks
or requiring that users from different (or the same) departments execute a set of
tasks. Even more complex policies involving conflicts of interest [26], confiden-
tiality [5], and integrity [8] require data-based constraints. These practical needs
have motivated the definition of different types of authorization constraints. In
the literature, a variety of authorization constraints have been considered but no

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 203–218, 2017.
DOI: 10.1007/978-3-319-66197-1 13

204 D.R. dos Santos and S. Ranise

systematic classification has been given. Additionally, the proposed approaches
to solve the WSP only support certain classes of authorization constraints.

Related work. The seminal work of Bertino et al. [6] described the specification
and enforcement of authorization constraints in workflow management systems,
presenting constraints as clauses in a logic program and an exponential algorithm
for assigning users and roles to tasks without violating them, but considering only
linear workflows. Tan et al. [29] defined a model for constrained workflow systems
that includes constraints such as cardinality, SoD and BoD. They specified a
workflow as a partial order on the set of tasks; and a constrained workflow
authorization schema, associating roles to tasks. Crampton [14] extended these
ideas by defining Type 1 constraints, and developing an algorithm to determine
whether there exists an assignment of users to tasks that satisfies the constraints.

Wang and Li. [31] proposed a role-and-relation based access control model to
describe the relationships between users and specify complex authorization con-
straints. The authors reduced the WSP to SAT, showed that it is NP-complete
in authorization systems supporting simple constraints and that it is fixed-
parameter tractable (FPT) with only BoD and SoD.

Crampton et al. [17] showed that the WSP remains FPT with counting and
equivalence constraints. Later [16], they used logical combinations of constraints
to support conditional workflows and Type 3 constraints by splitting one instance
of the problem into several instances. Cohen et al. [11] solved the WSP using
techniques for the Constraint Satisfaction Problem, which allowed the authors to
devise a general algorithm that works for several families of constraints. Cohen
et al. [12] demonstrated the practicality of the previously designed algorithm by
adapting it to the class of user-independent counting constraints and showing
its superiority when compared with the classical SAT reduction of the problem.
Crampton et al. [15] showed that the WSP remains FPT for class-independent
constraints and provided an algorithm to solve it. Crampton et al. [18] used
model checking on an NP-complete fragment of LTL to synthesize and validate
plans for security-sensitive workflows and argued that this approach is more
robust, uniform, and expressive than previous formalizations.

Li and Wang introduced the Separation of Duties Algebra (SoDA) [25] to
express and formalize policies based on users’ attributes and the number of users
executing tasks. The policies are enforced by low-level mechanisms such as static
and dynamic SoD in RBAC [27]. Basin et al. [3] generalized SoDA’s semantics
to workflow traces and refined it for control-flow and role-based authorizations,
implementing a SoD enforcement monitor for workflow engines. Later [4], the
same authors used Hoare’s Communicating Sequential Processes (CSP) to model
workflows in two levels: control-flow and task execution, allowing them to synthe-
size monitors that enforce at run-time obstruction-free, or satisfying, workflow
executions.

This work. Our previous approaches to solve the WSP [7,13,21] use an SMT-
based model checker to synthesize run-time enforcement mechanisms for business
processes augmented with access control policies and SoD/BoD constraints. We
focused on these constraints because those works were developed in collaboration

On Run-Time Enforcement of Authorization Constraints 205

with SAP. SAP was mainly interested in SoD/BoD because these constraints are
the most widely used by their customers. In this paper, we show how to extend
our previous encoding of authorization constraints to handle a large number of
constraints that we have encountered in the literature and classified. After pro-
viding the background concepts on the WSP (Sect. 2), we propose the first clas-
sification of authorization constraints (Sect. 3). Then, show how to encode them
in the declarative input language of an SMT-based model checker (Sect. 4.3)
that is used in a tool called Cerberus (Sect. 4.2), which is capable of solving
the run-time version of the WSP. The tool has been integrated in an industrial
framework for workflow management of SAP (Sect. 4.1). We finish by drawing
some conclusions and discussing related and future work (Sect. 5).

2 Background

Let T be a finite set of tasks and U a finite set of users. A scenario is a finite
sequence of pairs of the form (t, u), written as t(u), where t ∈ T and u ∈ U . The
intuitive meaning of a scenario η = t1(u1), . . . , tn(un) is that task ti is executed
before task tj for 1 ≤ i < j ≤ n and that task tk is executed by user uk for
k = 1, . . . , n. A workflow W (T,U) is a set of scenarios. There are various ways
to specify security-sensitive workflows. For instance, [17] introduces the notion
of “constrained workflow authorization schema,” [4] uses CSP, and many works
use (extensions of) Petri nets. We adopt the last approach, as it is one of the
standard ways to formalize the semantics of workflows specified in BPMN [20].
We illustrate the specification of a security-sensitive workflow in (a variant of)
BPMN using an example.

Example 1. The left side of Fig. 1 shows a simple Loan Origination Process, with
fours tasks: Request Loan (t1), Evaluate External Credit Rating (t2), Evaluate
Internal Credit Rating (t3), and Approve Loan (t4). Task t1 has to be executed
first, followed by t2 and t3 (in any order), followed by t4, so the behaviors
t1, t2, t3, t4 and t1, t3, t2, t4 are allowed, whereas, e.g., t1, t4, t3, t2 is not (where
t1, . . . , tn represents a sequence of n tasks executed in order, i.e. ti+i is executed
after ti). Now imagine that t3 is only executed for loans of more than 10k Euro,
then behavior t1, t2, t4 becomes allowed, but only for some instances (those where
the data object “loan amount” is less than 10k). If the organization running
this workflow adopts the authorization policy shown at the center of the Figure
and the SoD constraints between t2 and t3 and between t3 and t4 (shown as
dashed lines labeled by �= in the Figure), then any behavior containing, e.g.,
t2(a) and t3(a) is not allowed (where t(u) means that user u executes task t).

The right side of Fig. 1 shows the extended Petri net that can be automati-
cally derived from the BPMN on the left side and that represents its semantics
(see, e.g., [7,20]). Tasks are modeled as transitions or events (the boxes in the
Figure) whereas places (the circles in the Figure) encode their enabling condi-
tions. At the beginning, there will be just one token in place p0 which enables
the execution of transition t1. This corresponds to the execution constraint that

206 D.R. dos Santos and S. Ranise

task t1 must be performed before all the others. The execution of t1 removes the
token in p0 and puts a token in p1 and another in p2; this enables the execution
of t2 and t3. Indeed, this corresponds to the causality constraint that t2 and t3
can be executed in any order after t1 and before t4. The executions of t2 and t3
remove the tokens in p1 and p2 and put a token in p3 and one in p4, which, in
turn, enables the execution of t4. This removes the token in p3 and p4 and puts
a token in p5, which enables no more transitions. This corresponds to the fact
that t4 is the last task to be executed. ��

Fig. 1. Loan origination process in BPMN (left) and as a Petri net (right)

Among the scenarios in a workflow, we are interested in those that describe
successfully terminating executions in which users execute tasks satisfying the
authorization constraints and the authorization policy. Since the notion of suc-
cessful termination depends on the definition of the workflow (e.g., in case of a
conditional choice, we will have two acceptable execution sequences according
to the Boolean value of the condition), in the following we focus only on the
authorization policy and the authorization constraints while assuming that all
the scenarios in the workflow characterize successfully terminating behaviors.

Given a workflow W (T,U), an authorization relation TA is a sub-set of U×T .
Intuitively, (u, t) ∈ TA means that u is authorized to execute task t. We say that
a scenario η of a workflow W (T,U) is authorized according to TA iff (u, t) is in
TA for each t(u) in η. An authorization constraint over a workflow W (T,U) can
be seen as a pair (T ′, Θ), where T ′ ⊆ T is called the scope of c and Θ is a set of
functions θ : T ′ → U [15]. The functions in Θ specify the assignments of tasks to
users that satisfy the constraint. Instead of enumerating every function θ ∈ Θ,
it is common to define Θ implicitly by using a specification device. A catalog of
such devices is presented in Sect. 3 below. Let C be a (finite) set of authorization
constraints, a scenario η satisfies C iff η satisfies c, for each c in C. A scenario η of
a workflow W (T,U) is eligible according to a set C of authorization constraints
iff η satisfies C.

The problems raised by the conflicting goals of business compliance and busi-
ness continuity are further complicated by the interplay between control-flow,
data-flow, and authorization. Notice that a common practice in the analysis of
workflow satisfiability is to abstract away from parts of a workflow specification.
No work besides [7] takes into account the data-flow (some completely disre-
gard it, e.g., [15], and some model it with non-deterministic decisions, e.g., [4]).

On Run-Time Enforcement of Authorization Constraints 207

It is also common to limit the allowed control-flow constructs and supported
authorization constraints. There are different versions of the WSP and one main
distinction is whether the order of execution of the tasks is taken into account.
Crampton [16] defines a plan π : T 	→ U and a schedule as a tuple (t1, . . . , tk)
such that {t1, . . . , tk} = T and tj �≤ ti for each 1 ≤ i < j ≤ k. The unordered
WSP admits as solution a valid plan π, whereas the ordered version admits as
solution a plan π with a schedule σ, i.e. the plan must respect the ordering of
tasks defined by the control-flow. The two versions of the WSP are only equiv-
alent for well-formed workflows [16], i.e. workflows where for all tasks ti and tj
that can be executed in any order, (ti, tj , ρ) ∈ C iff (tj , ti, ρ̃) ∈ C (where ρ̃ is
defined as {(u, u′) ∈ U × U : (u′, u) ∈ ρ}). We define the (Ordered) WSP as
follows.

Definition 1 ((Ordered) Workflow Satisfiability Problem (WSP)).
Given a workflow W (T,U), an authorization relation TA, and a set C of autho-
rization constraints, return (if possible) a scenario η which is authorized accord-
ing to TA and eligible according to C.

3 A Catalog of Authorization Constraints

Several classes of authorization constraints for workflows have been identified in
the literature. They can all be used, with some ingenuity, to define the functions
θ ∈ Θ, so they can be recast in the form (T ′, Θ) shown above [11].

Counting constraints are of the form (tl, tr, T ′), where 1 ≤ tl ≤ tr ≤ k. A
plan satisfies a counting constraint if a user performs either no tasks in T ′ or
between tl and tr tasks. One example of counting constraint is (1, 2, {t1, t2, t3}),
which is satisfied if a user u1 executes 0, 1 or 2 tasks among those in {t1, t2, t3}.

Entailment constraints are of the form (T1, T2, ρ), where T1∪T2 = T ′ and ρ ⊆
U ×U . A plan satisfies an entailment constraint iff there exist t1 ∈ T1 and t2 ∈ T2

such that (π(t1), π(t2)) ∈ ρ. Entailment constraints can be further subdivided
in three types. In Type 1 constraints, both sets T1 and T2 are singletons. In
Type 2 constraints, at least one of the sets must be a singleton, whereas in Type
3 there are no restrictions on the cardinality of sets. Examples of Type 1, 2,
and 3 constraints are ({t1}, {t2}, �=), ({t1, t2}, {t3}, �=), and ({t1, t2}, {t3, t4}, �=),
respectively. The first constraint is satisfied if a user u1 executes t1 and u2
executes t2 (because u1 �= u2). The second and third constraints are satisfied if
u1 executes t1 and u2 executes t3. Those are examples of SoD constraints, BoD
constraints can be similarly defined by using = instead of �=. A special class
of Type 1 constraints are equivalence-based constraints, of the form (t1, t2,∼),
where ∼ is an equivalence relation on U . A plan satisfies this kind of constraint
if the user who executes t1 and the user who executes t2 belong to the same
equivalence class, e.g., same role (or to different classes for �∼ constraints).

User-independent constraints c are those where given a plan π that satisfies
c and any permutation φ : U → U , the plan π′ = φ(π(s)) also satisfies c [11].

208 D.R. dos Santos and S. Ranise

I.e. user-independent constraints are those whose satisfaction does not depend
on the individual identities of users. The SoD constraints presented so far are
user-independent, whereas a constraint requiring a specific user to perform at
least one task in a set is not user-independent [12].

Class-independent constraints are those whose satisfaction depends only on
the equivalence classes that users belong to [15]. Formally, let c be a constraint,
∼ be an equivalence relation on U , U∼ be the set of equivalence classes induced
by ∼, and u∼ ∈ U∼ be the equivalence class containing u. Then, for any plan
π, we can define a function π∼ : T → U∼ as π∼(t) = (π(t))∼. Finally, c is
class-independent for ∼ if for any function θ, θ∼ ∈ Θ implies θ ∈ Θ, and for
any permutation φ : U∼ → U∼, θ∼ ∈ Θ∼ implies φ ◦ θ∼ ∈ Θ∼ [15]. One exam-
ple of class-independent constraint is ({t1}, {t2},∼), where the classes induced
by ∼ corresponds to departments of a company. This constraint is satisfied if
u(t1) ∼ u(t2), i.e. the user executing t1 and the user executing t2 are in the
same department. Indeed, every equivalence constraint (t1, t2,∼) (or (t1, t2, �∼))
is class-independent and every user-independent constraint is class-independent
with respect to the identity relation [15].

3.1 Classification of Constraints

It is not easy to classify authorization constraints in terms of expressive-
ness, partly because there are many different frameworks to express them. For
instance, entailment constraints of Type 3 clearly include those of Types 1 and
2, but counting constraints can also be used to express some forms of SoD [33],
so entailment and counting constraints are not disjoint (i.e. in some cases, it
is possible to express the same set of behaviors using a counting constraint or
an entailment one). Also, clearly user-independent and class-independent con-
straints subsume parts of the other classes, but it is not clear which parts.

Figure 2 shows an attempt to systematically classify some classes of autho-
rization constraints for workflow systems presented in the literature.

The Figure shows the sets Ent . of entailment constraints (the subsets of con-
straints of Types 1, 2, and 3 are not shown to keep the Figure readable), Count .
of counting constraints, Eq . of equivalence constraints, CI of class-independent

Fig. 2. Relations between constraint classes

On Run-Time Enforcement of Authorization Constraints 209

constraints and UI of user-independent constraints. Naturally, Eq . ⊂ Ent . and
CI . ⊂ Ent ., since an equivalence relation is an instance of a binary relation. The
facts UI ⊂ CI and Eq . ⊂ CI were shown by Crampton et al. [15].

The Figure also shows the following intersections: I1 = Ent . ∩ Count ., I2 =
Eq . ∩ Count ., I3 = Eq . ∩ UI , I4 = Count . ∩ UI , I5 = Count . ∩ CI . We can
show that these intersections are non-empty by using SoD and BoD constraints
as examples. I1 and I2 are non-empty because SoD and BoD can be specified
using entailment: (t1, t2, �=) and (t1, 2,=), respectively; counting: (1, 1, {t1, t2})
and (2, 2, {t1, t2}), respectively; or equivalence, since = is an equivalence relation.
I3, I4, and I5 are non-empty because both constraints are user-independent [12],
which also makes them class-independent [15].

To the best of our knowledge, there has never been a comparison between
the expressive power of other frameworks, e.g., SoDA and the constraint classes
defined by Crampton et al.

3.2 Data-Based Constraints

In business processes, authorization policies and constraints are usually specified
and enforced based on the tasks. But policies and constraints can also be defined
based on data objects. This allows increased expressiveness (policies such as
Chinese Wall [9] cannot be expressed solely on the tasks), as well as simplified
specification (at design-time) and enforcement (at run-time), since some policies
may require many more task-based constraints than data-based ones. Below,
we motivate some well-known classes of data-based policies from the security
literature.

Data authorization refers to a user’s permission to access a data object in a
workflow. An example of the need for data authorization on top of task autho-
rization is to manage conflict of interests (CoI) in contract tender evaluations [2].
In this example, if a user is authorized to perform task Evaluate Tender, but they
work for one of the companies proposing a tender, they should not be authorized
to evaluate the tender of their own company. To perform this task, users should
have permission not only to execute the task, but also to access the tender data.

Chinese Wall is used to prevent the CoI that arises when a user has access to
the data of two competing organizations. To avoid this kind of conflict, the data
is separated into sets representing the classes of conflict and when a user has
access to the data of one of the elements of the set, they cannot access the data
of the other elements. More examples of CoI policies can be found in [26].

Need to know and privacy constraints can be used to block, for instance, the
access to two or more data objects that, taken together, can reveal information
that a single object cannot (e.g., a relation of names of patients and time they
came in with a relation of medical procedures and time they were performed can
be used to identify patients). Need to know means that a user should only know
the minimum amount of information required to complete a task. One example
is that to approve a loan, financial data is required, but not personal data, so the

210 D.R. dos Santos and S. Ranise

user who approves the loan should not know the personal data of the applicant.
In this example a constraint could be defined between the data objects personal
data and financial data, so that any user will only have access to one of them.

Other confidentiality [5] and integrity [8] policies can be modeled with data
authorization and data constraints, but they require a separation between read
access and write access. In the low-water-mark integrity policy [8], for instance,
users and data objects have integrity levels (l[·]) and whenever a user reads a
data object, his/her integrity level is updated (l[s] ← l[s] ∧ l[o], where ∧ stands
for the glb between integrity levels), whereas writing is permitted if l[o] ≤ l[s].

4 Encoding Constraints in Cerberus

We have implemented an approach to solve the WSP by synthesizing run-time
monitors for security-sensitive workflows in a tool called Cerberus [13]. Below,
we first present a high-level overview of the tool and its integration in an indus-
trial environment. Instead of providing full details, we focus on those aspects
that are relevant to model the authorization constraints considered in Sect. 3
and show the termination of monitor synthesis.

4.1 Overview of Cerberus

A reference architecture for Workflow Management (WFM) systems is composed
of the five blue elements shown in Fig. 3. Workflow Modeling is a user interface
for a Process Designer to create workflow models in a modeling language, e.g.,
BPMN. Models are stored in a Workflow Model Repository, while the Workflow
Engine interprets the models and directs the execution to Invoked Applications,
in the case of system and script tasks, or to a Graphical User Interface (GUI),
in the case of user tasks, which are performed by Process Participants.

On top of the WFM components, we add the Cerberus components shown
in red in Fig. 3. The Monitor Synthesizer is responsible for interpreting the
workflow model and translating it into a transition system format accepted by a
Symbolic Model Checker (SMC) capable of computing a reachability graph whose
paths are all possible executions of the workflow. To solve the WSP, a monitor
needs to look to the current state, the past execution history and possible future
executions to check if there is any possibility to finish the process. Therefore,
we need to be able to pre-compute all possible executions. Notice that pre-
computing a reachability graph in the presence of data values is infeasible, but,
as already mentioned, abstracting away run-time data is standard practice for
approaches solving the WSP. Note that only the workflow model (representing
the execution constraints) extended with authorization constraints is input to
the monitor synthesis. This allows the synthesized monitor to support different
authorization policies at run-time. The reachability graph is translated into a
language such as Datalog or SQL and stored in the Monitor Repository. The
Monitor itself sits between the GUI and the workflow engine and grants or

On Run-Time Enforcement of Authorization Constraints 211

Fig. 3. The architecture of Cerberus and its interface with a WFM system (Color
figure online)

denies user requests to execute tasks (users only access tasks through the GUI
and automatic tasks are not part of the authorization policy or constraints).

Cerberus is implemented on top of the SAP HANA Operational Intelli-
gence platform (OpInt)1, which offers a BPMN modeling and enactment environ-
ment to synthesize, store, combine, and retrieve run-time monitors for security-
sensitive workflows therein modeled and enacted. HANA Studio is the IDE that
acts as the Workflow Modeling component, while the HANA Repository imple-
ments both the Workflow Model Repository and the Monitor repository. We
added the constraint specification and monitor synthesis capabilities in the IDE
and used mcmt [23] as the SMC (we explain this choice below). The Moni-
tor Synthesizer is written in Python (core algorithms) and JavaScript (IDE and
repository integration). The monitors are output in SQL as a view that is queried
by the execution engine. The result of this query is used to grant or deny a user’s
request to execute a task. The OpInt Workflow Engine translates BPMN models
to executable JavaScript and SQL code that manage and perform the tasks in
the workflows. The invoked applications are handled by SQL procedure calls and
the GUI for user tasks is integrated in a web task management dashboard.

The termination of the various modules in Cerberus is obvious, except
for the SMC. Thus, below, we discuss under which hypotheses termination is
guaranteed for this module.

4.2 Run-Time Monitor Synthesis

The Monitor Synthesizer—by invoking the SMC—solves the WSP by synthe-
sizing run-time monitors capable of ensuring that all executions terminate and
authorization constraints in a workflow are satisfied using the approach described
in [7]. Here, for lack of space, we focus on the SMC and we discuss the assump-
tions under which it is guaranteed to terminate.

1 https://help.sap.com/hana-opint.

https://help.sap.com/hana-opint

212 D.R. dos Santos and S. Ranise

The SMC takes as input a symbolic transition system S whose executions
correspond to those of the security-sensitive workflow. S is automatically derived
from the (extended) Petri net defining the semantics of a BPMN specification
by using standard techniques (see, e.g., [7,28]). The symbolic transitions derived
in this way have the following form:

t(z) : enCF ∧ enAuth → actCF ||actAuth (1)

where t(z) identifies a transition t executed by a user identified by the variable z;
enCF and enAuth are enabling conditions (on the control-flow and authorization,
respectively); actCF and actAuth are the effects of the execution of the transition
and || represents a parallel update of variables. The variable z occurs in the
enabling condition enAuth and, possibly, in some of the updates in actAuth .

Example 2. To illustrate, recall Fig. 1 and observe that the fact that there is at
most one token per place is an invariant of the Petri net. This allows us to sym-
bolically represent the net as follows: we introduce a Boolean variable per place
(named as the places in Fig. 1) together with a Boolean variable representing the
fact that a task has already been executed (denoted by dt and if assigned to true
implies that task t has been executed). So, for instance, the enabling condition
for the execution constraint on task t1 can be expressed as p0 ∧ ¬dt1 meaning
that the token is in place p0 and transition t1 has not yet been executed. The
effect of executing transition t1 is to assign F (alse) to p0 and T (rue) to p1, p2
and dt1; in symbols, we write p0, p1, p2, dt1 := F, T, T, T . The other transitions
are modeled similarly.

Table 1. Workflow as symbolic transition system

event enabled action

CF Auth CF Auth

t1(u) p0 ∧ ¬dt1 at1(u) p0, p1, p2, dt1 := F, T, T, T ht1(u) := T

t2(u) p1 ∧ ¬dt2 at2(u) ∧ ¬ht3(u) p1, p3, dt2 := F, T, T ht2(u) := T

t3(u) p2 ∧ ¬dt3 at3(u) ∧ ¬ht2(u) p2, p4, dt3 := F, T, T ht3(u) := T

t4(u) p3 ∧ p4 ∧ ¬dt4 at4(u) ∧ ¬ht3(u) p3, p4, p5, dt4 := F, F, T, T ht4(u) := T

Besides the constraints on the execution of tasks, The Petri net in Fig. 1
shows also the same authorization constraints of the BPMN model. These are
obtained by taking into consideration both the access control policy P granting
or denying users the right to execute tasks and the SoD constraints between
pairs of tasks. To formalize these, we introduce two functions at and ht from
users to Boolean, for each task t, which are such that at(u) is true iff u has the
right to execute t according to the policy P and ht(u) is true iff u has executed
task t. Notice that at is a function that behaves as an abstract interface to
the policy P whereas ht is a function that evolves over time and keeps track

On Run-Time Enforcement of Authorization Constraints 213

of which users have executed which tasks. For instance, the enabling condition
for the authorization constraint on task t1 is simply at1(u), i.e. it is required
that the user u has the right to execute t1, and the effect of its execution is to
record that u has executed t1, i.e. ht1(u) := T (notice that this assignment leaves
unchanged the value returned by ht1 for any user u′ distinct from u). As another
example, let us consider the enabling condition for the authorization constraint
on t2: besides requiring that u has the right to execute t2 (i.e. at2(u)), we also
need to require the SoD constraints with t3 (i.e. ¬ht3(u)). The authorization
constraints on the other tasks are modeled in a similar way.

Table 1 shows the formalization of all transitions in the extended Petri net of
Fig. 1. The first column reports the name of the transition together with the fact
that it is dependent on the user u taking the responsibility of its execution. The
second column shows the enabling condition divided in two parts: CF, pertaining
to the execution constraints, and Auth, to the authorization constraints. The
third and last column list the effects of the execution of the transition again
divided in two parts: CF, for the workflow, and Auth, for the authorization.

The set of final states can be specified by the following formula:

¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4 ∧ p5 ∧ dt1 ∧ dt2 ∧ dt3 ∧ dt4

saying that there is just one token in p5 and that all tasks have been executed.
The set of initial states can be specified, dually, by the formula:

p0 ∧
∧

i=1,...,5

¬pi ∧
∧

i=1,...,4

¬dti ∧ ∀u.(¬ht1(u) ∧ ¬ht2(u) ∧ ¬ht3(u) ∧ ¬ht4(u))

saying that there is just one token in p0, no task has been executed yet, and no
user has executed any task. ��

After building the symbolic transitions and the formulae defining the sets
of initial and final states, the SMC computes a symbolic representation of the
set of states that are (backward) reachable from the set of final states. In other
words, the WSP is reduced to a reachability problem under the assumption
that no transition can be enabled infinitely often without being executed. This
assumption (called strong fairness in the literature) is considered reasonable in
the context of workflow management [30] since decisions to execute tasks are
under the responsibility of applications or humans.

To compute the fix-point, mcmt (an SMT-based model checker) computes
a directed graph RG = (N,λ,E), called reachability graph, whose edges in E
are labeled by task-user pairs in which users are symbolically represented by
variables and whose nodes in N are labeled—according to the labeling function
λ—by a formula of first-order logic. We omit the details of the construction of the
full reachability graph and point the interested reader to [7]. Here, it is enough
to say that it is built in two steps: a fix-point procedure and a post-processing.
The resulting graph is such that its paths describe all possible executions of a
transition system that terminate and satisfy the authorization constraints. While
the termination of the post-processing step is guaranteed by adopting a suitable

214 D.R. dos Santos and S. Ranise

semantics for loops, namely the one based on “release-point semantics” of [10]
which requires to consider only the user who executed the last iteration of the
loop, forgetting all the others), the termination of the fix-point computation for
transition systems with a finite but unbounded number of users is non-obvious.

By using mcmt as the SMC, we get the following two advantages. First,
mcmt is capable of introducing on-demand new (existential) variables to symbol-
ically represent enough users to satisfy authorization constraints without bound-
ing their number a priori. Second, the following theorem is an easy consequence
of the results in [22]. Preliminary, generalizing the observations in Example 2,
we assume that the formulae describing the transitions as well as the initial and
final sets of states are built out of a set V of state predicates (whose values evolve
over time) of arity 0 for the places (p0, p1, . . .) and transitions (dt1, dt2, . . .) and
of arity 1 for tracking the history of which user has executed a certain task
(ht1, ht2, . . .); the set H ⊂ A contains only the history variables ht1, . . . We
also permit that the static predicates (whose values stay constant over time)
of arity 1 from a given finite set A may also occur in such formulae and con-
stitute the interfaces to the authorization policy. Below, a quantifier-free (exis-
tentially or universally quantified) formula built out of the predicates in a set
X ∈ {H,V,A, V ∪ A} is termed X-quantifier-free (existentially or universally
quantified, respectively) formula.

Theorem 1. mcmt terminates when computing the reachability graph of a sym-
bolic transition system in which transitions are of the form (1) where enCF is a
V -quantifier-free formula, enAuth is a A-quantifier-free formulae, the final for-
mula is a V -quantifier-free formula, and the initial formula is a conjunction of
a V -quantifier-free formula with a H-universally quantified formula.

Below, we show how Theorem 1 can help showing the termination of SMC
on several classes of authorization constraints in Sect. 3.

4.3 Encoding Constraints

We illustrate the main ideas of our symbolic encoding by considering the SoD
constraint between t3 and t4 in Fig. 1. The constraint can be specified as an
additional condition that must hold in every state of the executions of the Loan
Origination Process (LOP): ∀w.¬(ht3(w) ∧ ht4(w)) or, equivalently,

∀w.(¬ht3(w) ∨ ¬ht4(w)) . (2)

To enforce that (2) is satisfied in every state of every possible execution of
the LOP, we can conjoin it with the enabling condition enAuth of each transition
in S. For instance, transition t4 becomes

t4(z) : enCF ∧ at1(z) ∧ ∀w.(¬ht3(w) ∨ ¬ht4(w)) → actCF ||ht4(z) := T

where enCF and actCF abbreviate the symbolic representations of the enabling
condition and effect, of the control-flow. We can eliminate the universal quantifier

On Run-Time Enforcement of Authorization Constraints 215

by instantiating w with z by using the results in [1], i.e. it is sufficient to consider
the following transition:

t4(z) : enCF ∧ at1(z) ∧ (¬ht3(z) ∨ ¬ht4(z)) → actCF ||ht4(z) := T . (3)

Notice that (3) can be further simplified to

t4(z) : enCF ∧ at1(z) ∧ ¬ht3(z) → actCF ||ht4(z) := T .

since if t4 has not yet been executed, then ¬ht4(z) must hold (indeed, the last
formula is equivalent to that in the last line of Table 1).

Theorem 2. Let T be the set of transitions of the form

t(z) : enCF ∧ at(z) ∧ ∀w.¬ht′(w) → actCF ||actAuth (4)

for ht′ in H and T be the set of transitions obtained by instantiating w with z.
Under the same assumptions of Theorem 1, the set of possible executions of T
and T are the same.

This result significantly broadens the scope of applicability of Theorem 1,
thereby enabling Cerberus to cover a large variety of authorization constraints
used in security-sensitive workflows.

Interestingly, similar results can be derived for entailment constraints of the
form (T1, T2, ρ) for T1 and T2 sub-sets of the set of tasks and ρ a binary relation
over the set of users and for counting constraints (tl, tr, T ′) for 1 ≤ tl ≤ tr
and T ′ sub-set of the set of tasks. We omit the details, for lack of space, and
just explain how such constraints can be expressed as logical expressions to be
conjoined to the enabling condition enAuth in (1). The first type of constraints
can be expressed by the formula

∀z1, z2.
∨

t1∈T1

∨

t2∈T2

ht1(z1) ∧ ht2(z2) ⇒ ρ(z1, z2)

with ρ a relation that can be specified by sentences that are universally quantified
formulae and built out of predicate symbols with equality (no function symbols
are allowed). The second type of constraints can be expressed by the formula

∀UT ′ .

(
∧

t′∈T ′
ht′(ut′) ⇒ AtMost(UT ′ , tr) ∧ AtLeast(UT ′ , tl)

)

where UT ′ = {ut′ |t′ ∈ T ′}, AtMost(UT ′ , tr) abbreviates the disjunction of all
formulae of the form ∀UT ′ .

∨
x�=y∈UT ′ x �= y for UT ′ ⊆ UT ′ of cardinality tr

and AtLeast(UT ′ , tl) abbreviates the conjunction of all formulae of the form
∃UT ′ .

∧
x�=y∈UT ′ x �= y for UT ′ ⊆ UT ′ of cardinality tl.

It is also possible to express the data-based authorization constraints of
Sect. 3.2 by using logical expressions to define the at’s in A, even including con-
straints that are history-dependent in a way similar to the ht’s in H. We omit the

216 D.R. dos Santos and S. Ranise

details, but emphasize that since the expressions needed to express these poli-
cies are quantifier-free, Theorem 1 applies straightforwardly. Thus, Cerberus is
able to synthesize monitors for security-sensitive workflows containing also these
constraints.

We conclude by observing that Cerberus is capable of synthesizing monitors
for security-sensitive workflows containing a mixture of the classes of constraints
considered above.

5 Conclusion

We have motivated and presented a classification of authorization constraints in
security-sensitive workflows, showed how to encode them in the declarative input
language of an SMT-based model checker, and described applications of this
approach. This work shows the flexibility of the SMT approach to solve the run-
time version of the WSP in the presence of different authorization constraints.

Future work. Instance-spanning constraints [24] restrict what users can do
across several instances of the same workflow (inter-instance), across several
instances of different workflows (inter-process), or across workflows in different
organizations (inter-organization). The most usual case is inter-instance autho-
rization constraints, which have been studied in, e.g., [32]. Since we adopt the
approach of having one monitor for each instance, support for inter-instance
constraints would require a global synchronization of the states of each moni-
tor, possibly using a global execution history. A possibility would be to design
a central entity to which selected parts of the state of each monitor are commu-
nicated so that it can take the right decision to avoid that some inter-instance
constraint is violated. Indeed, each monitor should ask the decision of the cen-
tral entity before taking a decision. Although the design of this central entity
may be challenging, we could take inspiration from cache-coherence protocols
(see, e.g., [19]).

References

1. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal guards,
relativization of quantifiers, and failure models in model checking modulo theories.
JSAT 8, 29–61 (2012)

2. Alhaqbani, B., Adams, M., Fidge, C.J., ter Hofstede, A.H.M.: Privacy-aware work-
flow management. In: Proceedings of BPM, pp. 111–128. Springer, Heidelberg
(2013)

3. Basin, D., Burri, S.J., Karjoth, G.: Dynamic enforcement of abstract separation of
duty constraints. TISSEC 15(3), 13:1–13:30 (2012)

4. Basin, D., Burri, S.J., Karjoth, G.: Obstruction-free authorization enforcement:
Aligning security and business objectives. JCS 22(5), 661–698 (2014)

5. Bell, D.: The bell-lapadula model. JCS 4(2), 3 (1996)
6. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authoriza-

tion constraints in workflow management systems. TISSEC 2(1), 65–104 (1999)

On Run-Time Enforcement of Authorization Constraints 217

7. Bertolissi, C., dos Santos, D.R., Ranise, S.: Automated synthesis of run-time mon-
itors to enforce authorization policies in business processes. In: Proceedings of
ASIACCS. ACM (2015)

8. Biba, K.: Integrity considerations for secure computer systems. Technical report,
DTIC Document (1977)

9. Brewer, D., Nash, M.J.: The Chinese wall security policy. In: Proceedings of S&P.
IEEE (1989)

10. Burri, S.J, Karjoth, G.: Flexible scoping of authorization constraints on business
processes with loops and parallelism. In: Proceedings of BPMW. Springer (2012)

11. Cohen, D., Crampton, J., Gagarin, A., Gutin, G., Jones, M.: Iterative plan con-
struction for the workflow satisfiability problem. JAIR 51, 555–577 (2014)

12. Cohen, D., Crampton, J., Gagarin, A., Gutin, G., Jones, M.: Algorithms for
the workflow satisfiability problem engineered for counting constraints. J. Comb.
Optim. 32(1), 3–24 (2016)

13. Compagna, L., dos Santos, D.R., Ponta, S.E., Ranise, S.: Cerberus: Automated
synthesis of enforcement mechanisms for security-sensitive business processes. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 567–572.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 36

14. Crampton, J.: A reference monitor for workflow systems with constrained task
execution. In: Proceedings of SACMAT. ACM (2005)

15. Crampton, J., Gagarin, A., Gutin, G., Jones, M., Wahlström, M.: On the workflow
satisfiability problem with class-independent constraints for hierarchical organiza-
tions. TOPS 19(3), 81–829 (2016)

16. Crampton, J., Gutin, G.: Constraint expressions and workflow satisfiability. In:
Proceedings of SACMAT. ACM (2013)

17. Crampton, J., Gutin, G., Yeo, A.: On the parameterized complexity and kernel-
ization of the workflow satisfiability problem. TISSEC 16(1), 4 (2013)

18. Crampton, J., Huth, M., Kuo, J.: Authorized workflow schemas: deciding realiz-
ability through LTL(F) model checking. STTT 16(1), 31–48 (2014)

19. Delzanno, G.: Automatic verification of parameterized cache coherence protocols.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68.
Springer, Heidelberg (2000). doi:10.1007/10722167 8

20. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Soft. Tech. 50(12), 1281–1294 (2008)

21. dos Santos, D.R., Ranise, S., Ponta, S.E.: Modular synthesis of enforcement mech-
anisms for the workflow satisfiability problem: scalability and reusability. In: Pro-
ceedings of SACMAT. ACM (2016)

22. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. LMCS 6(4) (2010)

23. Ghilardi, S., Ranise, S.: MCMT: A model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14203-1 3

24. Leitner, M., Mangler, J., Rinderle-Ma, S.: Definition and enactment of instance-
spanning process constraints. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.)
WISE 2012. LNCS, vol. 7651, pp. 652–658. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-35063-4 49

25. Li, N., Wang, Q.: Beyond separation of duty: An algebra for specifying high-level
security policies. J. ACM 55(3), 121–1246 (2008)

26. Nassr, N., Steegmans, E.: Mitigating conflicts of interest by authorization policies.
In: Proceedings of SIN. ACM (2015)

http://dx.doi.org/10.1007/978-3-662-49674-9_36
http://dx.doi.org/10.1007/10722167_8
http://dx.doi.org/10.1007/978-3-642-14203-1_3
http://dx.doi.org/10.1007/978-3-642-35063-4_49
http://dx.doi.org/10.1007/978-3-642-35063-4_49

218 D.R. dos Santos and S. Ranise

27. Sandhu, R., Coyne, E., Feinstein, H., Youmann, C.: Role-based access control mod-
els. IEEE Comput. 2(29), 38–47 (1996)

28. Sankaranarayanan, S., Sipma, H., Manna, Z.: Petri net analysis using invariant
generation. In: Verification: Theory and Practice. Springer (2003)

29. Tan, K., Crampton, J., Gunter, C.A.: The consistency of task-based authorization
constraints in workflow. In Proceedings of CSF. IEEE (2004)

30. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects Comp. 23(3), 333–363 (2011)

31. Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems.
TISSEC 13(4), 401–4035 (2010)

32. Warner, J., Atluri, V.: Inter-instance authorization constraints for secure workflow
management. In: Proceedings of SACMAT (2006). ACM

33. Wolter, C., Schaad, A., Meinel, C.: Task-based entailment constraints for basic
workflow patterns. ACM, In Proc. of SACMAT (2008)

Trace Partitioning and Local Monitoring
for Asynchronous Components

Duncan Paul Attard(B) and Adrian Francalanza(B)

CS, ICT, University of Malta, Msida, Malta
{duncan.attard.01,adrian.francalanza}@um.edu.mt

Abstract. We propose an instrumentation technique for monitoring
asynchronous component systems that departs from the traditional run-
time verification set-up assuming a single execution trace. The technique
generates partitioned traces that better reflect the interleaved execution
of the asynchronous components under scrutiny, and lends itself well to
local monitoring. We provide argumentation for the qualitative benefits
of our approach, demonstrate its implementability for actor-based sys-
tems, and justify claims related to the applicability and efficiency gains
via an empirical evaluation over a third party component-based system.

1 Introduction

Few systems are constructed in monolithic fashion these days. Rather, a consid-
erable number are architected as asynchronous components [2,10,22] that exe-
cute independently to one another without recourse to a global clock or shared
state; in place of the latter, components interact with one another via well-
defined interfaces and non-blocking messaging [20]. Such software organisations
encourage code reuse, ease incremental updates, naturally quarantine faults and
engender graceful degradation, thus improving time-to-market.

At the same time, component-based systems pose new challenges for ensur-
ing correctness. Their sheer size, dynamic structure, use of third party compo-
nents, and inherent concurrent execution, complicate the use of traditional pre-
deployment verification techniques, at times rendering them ineffective. Runtime
Verification (RV) [14,24] is a lightweight post-deployment verification technique
that circumvents a number of these obstacles, making it an appealing compro-
mise when ascertaining software correctness. It uses monitors that incrementally
analyse the behaviour of the running system (exhibited as a sequence of trace
events) up to the current execution point, in order to determine whether a cor-
rectness specification is satisfied or violated.

Recent work [4,8,15,16,28] studies the application of online RV to general
specification properties describing the branching structure of the system under
scrutiny. This is of particular relevance to concurrent (component) systems with
multiple executions. Since RV is not as expressive as exhaustive pre-deployment

This work was partly supported by the project “TheoFoMon: Theoretical Founda-
tions for Monitorability” (nr. 163406-051) of the Icelandic Research Fund.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 219–235, 2017.
DOI: 10.1007/978-3-319-66197-1 14

220 D.P. Attard and A. Francalanza

techniques such as Model Checking, this body of work is concerned with identify-
ing monitorable (i.e., can be verified at runtime) subsets of properties. But even
for monitorable properties, the analytical power of the ensuing monitor analysis
is still at the mercy of the trace the system decides to exhibit at runtime.

Example 1. Consider the logging system, Sys, consisting of two independently-
executing components, F and N. Component F handles file logging operations,
and is permitted actions open (o), close (c) and write (w), whereas component N
manages network logging activities through send (s) and receive (r) messages.
Additionally, both components may signal file or network-related problems by
issuing error (e) actions. A possible correctness property is one that “forbids Sys
from sending messages at start-up”. When Sys exhibits the trace s.o.w.r, the
monitor can detect a violation of this property. However, for a different execution
interleaving (e.g. one producing the witness trace o.s.w.r where s is not the
first event) the typical RV analysis would not be able to detect the fact that the
system is capable of performing the initial action s. �

In component architectures, there are instances where additional traces can
be inferred from an observed trace; whenever these inferred traces are relevant to
the correctness specification of interest, they help mitigate the aforementioned
lack of precision of the technique. In the case of Example 1, we know that (i) the
system consists of two components F and N whose execution can be arbitrarily
interleaved, (ii) the trace events o,c and w can be uniquely attributed to F,
whereas s and r can be accredited to N. A monitor can use this extra system
information to permute the order of events in a witness trace. For example, from
trace o.s.w.r, event o (generated by F) can be permuted with s (generated by
N) to obtain the trace s.o.w.r which is also a valid trace that can be generated
by the system and, crucially, provides evidence that Sys violates the property
stated in Example 1. Inferring traces may also increase RV’s expressive power.
For instance, the property

At start-up,Sys can neither send messages nor can it open files (1)

is shown not to be monitorable in the setting of [15,16]: to detect a violation,
it requires at least two witness execution traces, one showing that action s can
be performed at start-up, another showing that o can be performed at start-up.
Monitorability in traditional RV settings typically assumes one execution trace.
For the case of F and N, from trace o.s.w.r, a monitor can infer the second
trace s.o.w.r and together these can be used to determine the violation verdict.

Despite the benefits discussed above, trace inference for component-based
systems induces additional runtime overheads and may require unbounded buffer
space to record past trace events. Both aspects afflict the feasibility of the RV
analysis, which often requires overheads to be kept to a minimum.

Contributions and synopsis. This paper argues that the aforementioned
problems stem from the fact that traditional RV set-ups treat component-based
systems as one monolithic block, artificially recording executions as one univer-
sal trace. Instead, we study instrumentation techniques that generate multiple

Trace Partitioning and Local Monitoring for Asynchronous Components 221

Fig. 1. Local monitors attached to independently executing components.

traces, whereby events are partitioned to better reflect the asynchronous compo-
nent structure of the system under scrutiny. As depicted in Fig. 1a, our proposed
instrumentation technique would report the runtime execution of F and N as
the partitioned traces o.w and s.r. These may be seen as a more compact rep-
resentation of a number of universal traces in a traditional RV set-up, denoting
both traces o.s.w.r and s.o.w.r mentioned earlier, but also other potentially
relevant traces such as o.s.r.w and s.r.o.w.

Partitioned traces are better suited to monitor decentralisation. For instance,
Property 1 could be evaluated using two submonitors as in Fig. 1a, one analysing
whether F starts by issuing event o, and another that checks if N produces s;
these would then alert one another accordingly when independent detections
are made. In the case of the property from Example 1, partitioning also allows
us to localise monitoring to the subsystem of interest, as shown in Fig. 1b: this
lowers runtime overheads since the local monitor needs to process less events to
reach its verdict. Apart from making a case for partitioned traces and localised
monitors, our contributions are:

– A unifying account of the types of runtime monitoring approaches that can
be applied to generic instantiations of component-based systems, discussing
the advantages enjoyed by local monitoring in this setting in Sect. 3;

– An investigation of the implementability of local monitoring in Sect. 4;
– A case study for a third-party component-based system validating our pro-

posed technique from a performance standpoint in Sect. 5.

We conclude by discussing future and related work in Sect. 6.

2 Monitors and Specification

Runtime monitors are typically synthesised from property specifications
expressed in a high-level formalism or logic. These specifications finitely and
unambiguously describe the behaviour of interest for the system under scrutiny.

Monitor verdicts are definite non-retractable judgements reached after
analysing a finite prefix of the system execution trace, and correspond to prop-
erty satisfactions or violations from which the monitor is synthesised. The mon-
itor may also reach an inconclusive verdict whenever the trace exhibited by

222 D.P. Attard and A. Francalanza

Fig. 2. The syntax and semantics of sHML.

the system does not yield the necessary information for it to reach a definitive
judgement.

Following [15,16], this paper uses the safety fragment of the branching-time
logic μHML [1,23], called sHML (Safety HML), which has been shown to be
monitorable and maximally expressive w.r.t. the constraints of runtime mon-
itoring. The sHML syntax, given in Fig. 2, assumes a countable set of logical
variables X,Y ∈ LVar, allowing formulae to recursively express largest fixpoints
using the construct maxX.ϕ; this binds free instances of the variable X in ϕ. In
addition to the standard constructs of truth, tt, falsehood, ff, and conjunction,
ϕ ∧ φ, the logic includes a necessity modality construct, [e]ϕ, where the term
e can contain event patterns consisting of free variables that are matched and
bound dynamically at runtime to specific system events α that carry data.

As in [15,16], the semantics of sHML, defined for closed formulae (i.e., with-
out free variables) is interpreted over Labelled Transition Systems (LTSs) —
graphs modelling the branching behaviour of systems (see Fig. 3 for examples).
Formally, a LTS is comprised of the triple 〈Sys,Act,−→〉, consisting of a set
of system states p, q ∈ Sys, a set of actions μ ∈ Act containing a distinguished
silent action τ (used to represent unobservable actions) and visible actions α
ranging over Act \ {τ}, and finally, a ternary transition relation between states
labelled by actions, p

μ−→q. We use p=⇒q to denote p(τ−→)∗q, whereas p
α=⇒q is

written in lieu of p =⇒ · α−→· =⇒ q. Formula tt is satisfied by all system states,
whereas ff is satisfied by none. Conjunctions bear the standard set-theoretic
meaning of intersection. Necessity formulae [e]ϕ state that for all system exe-
cutions producing event α (possibly none), pattern e must match α, yielding a
set of bindings σ, and the subsequent system state must then satisfy ϕσ (i.e., ϕ
substituted with the bindings in σ). The recursive formula maxX.ϕ is defined as
the union of all the post-fixpoint solutions S ⊆ Sys of ϕ; see [1,23] for details.
A system state p satisfies formula ϕ whenever p ∈ �ϕ�; conversely, it violates
ϕ whenever p /∈ �ϕ�. In [15,16], the authors show that any sHML formula is
monitorable for violations exclusively (i.e., the monitor for ϕ can reach a rejec-
tion verdict whenever p /∈ �ϕ�). We note in passing that the full logic μHML
contains other logical operators, such as disjunctions, ϕ ∨ φ, with the expected

Trace Partitioning and Local Monitoring for Asynchronous Components 223

Fig. 3. Two LTSs depicting different behaviours of the file logging component in Sys.

interpretation; [15,16] show that disjunctions such as ϕ ∨ φ are not monitorable
for violations, even when the subformulae ϕ and φ are. Consult [15,16] for more
details.

Example 2. Figure 3 depicts the LTSs of two possible implementations for com-
ponent F from Example 1. The first one, rooted at state p1, satisfies property
ϕ1 below: informally ϕ1 describes implementations where, after opening (o) a
logfile and performing an arbitrary number of writes (w), do not write to it once
closed (c).

ϕ1 = [o]
(
maxX.([w]X ∧ [c][w]ff)

)

Interested readers can indeed check that p1 ∈ �ϕ1�. The second implementation,
rooted at q1, describes non-deterministic behaviour once the logfile is closed,
whereby it can either reach the inert state q3 or state q5, which allows fur-
ther write operations. Although q1 /∈ �ϕ1�, the synthesised monitor for ϕ1 of
[15,16] depends on the runtime trace exhibited to determine the violation, where:
(i) it reaches the violation verdict whenever q1 produces a trace of the form
o.w∗.c.w+, (ii) reaches an inconclusive verdict (and stops) if it sees the trace e,
and (iii) continues monitoring for future events for traces of the form o.w∗.c. �

Example 3. The property stated in Example 1 is expressed as [s]ff in sHML,
whereas Property 1 from Sect. 1 is expressed as [o]ff ∨ [s]ff in the full logic
μHML; in [15,16] this is shown to be non-monitorable. �

3 The Approach

Standard RV set-ups consist of the system under scrutiny, the instrumentation
extracting and reporting the execution trace, and the monitor analysing this
trace. As shown in Fig. 4a, execution events are typically collected as a single
universal trace that describes the running system in its entirety. We propose
an alternative instrumentation approach for asynchronous components whereby
the individual execution of the constituent components is reported separately as
partitioned traces, as depicted in Figs. 4c and d.

A partitioned trace gives an exclusive localised view for a subset of the system
under scrutiny, delineated by the underlying system structure. Partitioned traces
may be analysed individually, whenever this local view suffices, or in conjunction

224 D.P. Attard and A. Francalanza

Fig. 4. Four architectural set-ups characterising component-based runtime monitoring.

with other partitioned traces to form a combined trace. Note that in asynchro-
nous settings, the merging of all the partitioned traces does not yield a unique
combined trace, but rather a set of possible combined traces. Trace partitioning
is advantageous whenever the correctness of a system comprised of asynchro-
nous components is considered from a global view. First off, it does not taint the
monitors’s view of the system behaviour by reporting artificial orderings, which
in turn impinge on the monitor’s analytical precision (e.g. monitoring for [s]ff
from Example 1). Instead, since the aggregation of partitioned traces (efficiently)
encode a set of combined (universal) traces, our proposed instrumentation pro-
vides additional information about the system’s behaviour. This leads to more
expressive RV set-ups in terms of the properties that can be monitored for at
runtime (e.g. [o]ff∨[s]ff from Property 1 can be monitored in set-ups like Figs. 4c
and d but not in classic set-ups like Fig. 4a); see Sect. 1 for discussion.

Second, trace partitioning yields other benefits in the form of local moni-
toring. Particularly, it permits the specification of local properties that describe
the behaviour of a subset of components. Local monitors synthesised from these
properties need only analyse events from single trace partitions in order to reach
a verdict relating to the local property being considered. Note that local monitors
may also execute w.r.t. a universal trace.

Example 4. Property [s]ff from Example 1 can be seen as a local property
describing the behaviour of component N. In fact, a local monitor can be syn-
thesised from [s]ff accordingly; this, in turn, is able to reach a rejection verdict
just by analysing the partitioned trace for N. Property ϕ1 from Example 2 can

Trace Partitioning and Local Monitoring for Asynchronous Components 225

also be seen as a local property that describes the behaviour of component F
from Example 1. �

Executing a local monitor on a universal trace, as shown in Fig. 4b may still
lead to detections in cases where the component interleaving prioritises the events
of interest (e.g. the universal trace s.r.o.w permits a violation detection for the
local property [s]ff), but extraneous events may affect precision, as discussed
in Sect. 1. In practice, one may be able to regain degrees of precision via trace
filtering at the monitor level, where conceptually, this equates to converting a
local property into a global one that accounts for the events of other components.

Example 5. The precision of monitoring for the local property [s]ff over a univer-
sal trace in Example 1 can be enhanced by converting it into the global property
maxX.([o]X ∧ [w]X ∧ [c]X ∧ [s]ff) that handles extraneous events from F, and
reverting to the monitoring set-up of Fig. 4a from that of Fig. 4b. By contrast,
monitoring for [s]ff on the partitioned trace of N as in Fig. 4d does not require
any trace filtering, lowering runtime overheads. Note that the constructed global
property maxX.([o]X ∧ [w]X ∧ [c]X ∧ [s]ff) evaluated over a universal trace still
does not attain the precision of [s]ff monitored locally, due to the common event
e that may be generated by either of components F or N. Since one cannot infer
its provenance at the level of a universal trace, e cannot be filtered out and,
correspondingly, an “ignore e” subformula [e]X cannot be added as another
conjunction to the global property maxX.([o]X ∧ [w]X ∧ [c]X ∧ [s]ff) without
compromising correctness. Contrastingly, in Fig. 4d, event e is automatically
suppressed when exhibited by F, but considered when exhibited by N. �

The benefits of local monitoring over partitioned traces are enjoyed when
global properties can be reformulated in terms of local properties. Whenever
global properties cannot be fully localised due to dependencies across the various
components, these can still be synthesised in a decentralised fashion to exploit
the underlying partitioned trace instrumentation set-up. We illustrate this next.

Example 6. Consider the global sHML formula [o]ff ∧ [s]ff stating that, “on
start-up, the system can never produce an open event, nor can it produce a send
event”. For the set-up in Fig. 1, the property is violated whenever F produces
event o or N produces event s. Accordingly, [o]ff ∧ [s]ff can be reformulated as
two local properties, [o]ff and [s]ff, that are runtime verified by two independent
local monitors analysing the respective partitioned trace of interest, as in Fig. 4d,
and flagging as soon either one detects a violation from its local trace.

Moreover, recall the formula [o]ff ∨ [s]ff from Example 3. Although it cannot
be synthesised in terms of local monitors (that reach verdicts by exclusively
analysing their own trace partition), one can still runtime verify the formula
in a decentralised fashion using monitors that individually analyse subformulae
[o]ff and [s]ff, and communicate with each other once a detection is made by
both. Decentralised monitors can collaboratively reach a violation verdict only
when separate local detections have been made by participating monitors and
are shared with others. This arrangement constitutes an instance of Fig. 4c. �

226 D.P. Attard and A. Francalanza

A general approach to localising monitoring over partitioned traces begets
further advantages. Decomposing global properties into smaller local subproper-
ties improves the maintainability of specification scripts, since the latter tend to
be less complex and more lightweight to instrument. In an effort to increase pre-
cision, global properties may be reformulated to account for the potential inter-
leaving due to the underlying asynchronous structure (e.g. changing [o]ff ∨ [s]ff
into [o][s]ff ∧ [s][o]ff); this however tends to complicate specifications.

Property decomposition also makes scripts extensible, since changes in exist-
ing correctness requirements do not necessitate substantial refactoring of global
formulae, but merely amendments that are administered to specific local formu-
lae; adding new components into the system carries similar benefits. Segregated
monitors over partitioned traces as in Fig. 4d are better equipped to handle fail-
ures which, in component systems, typically affect only a component subset. For
instance in Example 6, the failure of component F does not prevent the monitor
at N from making its detections; this renders the whole set-up fault-tolerant. By
constrast, global monitoring relies on a central trace processing model that can
be crippled by the smallest of partial system failures.

Fig. 5. Local monitoring for interacting components using partitioned traces.

Component interaction synchronises the involved parties, and this interac-
tion is often recorded in the respective traces as an event and its dual (e.g. a
write event in one partitioned trace and a corresponding written event in the
other). This establishes a partial ordering on events across partitioned traces.
For instance, Fig. 5a depicts components Ci and Cj generating event sequences
ei
1, ē, e

i
2 and ej

1, e, e
j
2 resp., where event e is the dual of ē. In a combined trace of

these partitioned traces, events ei
1 and ej

1 may occur in any order relative to one
another; the same applies to events ei

2 and ej
2. However, event ei

1 must always
precede ej

2, and similarly ej
1 must always precede ei

2, where the synchronising
events ē and e act as a delimiter for the possible permutations.

In a partitioned trace set-up, the problem of monitoring for properties that
span over multiple communicating components can be circumvented by choosing
to treat the interacting components as one component subset generating a single

Trace Partitioning and Local Monitoring for Asynchronous Components 227

partitioned trace for the respective components. This then allows them to be
locally monitored, as shown in Fig. 5a with Monϕ(Ci,Cj) monitoring for the local
property concerning these components. Alternatively, individual monitors can
also be attached to Ci and Cj as shown in Fig. 5b, though these must then
communicate between themselves in order to determine the relative ordering of
the events exhibited by each component in relation to ē and e. In the sequel, we
favour arrangement Fig. 5a since this leads to local monitoring of Fig. 4d.

4 The Implementability of Local Monitoring

We demonstrate the implementability of our local monitoring approach by con-
sidering actors in Erlang [3,9] which constitute an instance of asynchronous
component systems. Erlang is a general-purpose, concurrent programming lan-
guage where actors are concurrent units of decomposition that do not share
any mutable memory. They interact with one another via asynchronous mes-
sages and change their internal state based on the messages received. Actors
are implemented as lightweight processes that are identified via unique process
IDs (PIDs). Every actor owns a message queue, called a mailbox, to which mes-
sages are sent in a non-blocking fashion; subsequently, these messages can be
selectively consumed by the recipient actor at any stage.

Our implementation conveniently utilises the tracing mechanism proffered
by the Erlang Virtual Machine (EVM) to obtain local trace events. Tracing via
the EVM [9] makes it possible to observe actor behaviour without modifying
the system through commonly used instrumentation techniques such as Aspect-
Oriented Programming (AOP). It can be selectively applied to specific groups of
actors simultaneously, enabling one to independently target different subparts of
the system and attain partitioned traces as described in Sect. 3. A traced actor
generates event messages describing the nature of the trace events (e.g. function
calls, message sends and receives, etc.). These trace messages are directed by the
EVM to the mailbox of a specifically designated tracer actor. Tracing serves as
the basis for a number of utilities, including Erlang’s text-based tracing facility
dbg [3], and the third-party monitoring tool Recon [18].

The set-up in Fig. 4d can be naturally phrased in terms of Erlang actors.
In our tool implementation, actors are used to represent both the system com-
ponents C1, . . . ,Cn and their associated monitors MonϕC1 , . . . ,MonϕCn

: trace
event collection is handled by the EVM as explained above, where the role of
tracers is assumed by monitor actors. Our tool also handles dynamic reconfigu-
ration of component systems by adjusting the local monitoring set-up of Fig. 4d
accordingly. In fact, actor systems typically are not static, since actors may
terminate and new actors may be spawned. Our implementation can either ter-
minate or dynamically assign new local monitors to the spawned actors, thereby
scaling the monitoring organisation accordingly. A rudimentary implementation
of this monitoring mechanism can give rise to race-conditions. Specifically, sys-
tem (actor) components that require monitoring may spawn and forge ahead

228 D.P. Attard and A. Francalanza

executing before their associated monitors have been properly attached, poten-
tially leading to a loss of trace events. To avoid this, the tool opts for a synchro-
nous monitor instantiation procedure that pauses the components that require
monitoring until their associated monitors have been created and started cor-
rectly. Synchronisation takes place via instrumented source code instructions
inside the monitored components which communicate with a special coordinat-
ing actor that manages the initialisation sequence of components and their cor-
responding monitor actors. We have integrated our implementation within the
detectEr tool [4] which synthesises monitors from property descriptions expressed
as sHML formulae.

We conjecture that such an implementation arrangement does not favour any
particular language or property specification formalism, nor is it tied to the unit
of decomposition employed by the host language’s programming paradigm. In
the absence of a tracing mechanism such as that offered by Erlang, one can resort
to instrumentation techniques including intermediate code-level (e.g. AspectJ) or
proxy-based (e.g. Spring AOP) weaving [25].

5 Experimental Evaluation

Local monitoring over partitioned traces induces lower performance overheads.
We substantiate this claim through a series of empirical experiments performed
over an Erlang third-party component-based software called Ranch [19]. Ranch
is a socket acceptor pool for TCP protocols that can be used to build custom
network applications (e.g. the Cowboy HTTP web server [19] uses Ranch to
manage its client connections). Our evaluation permits us to: (i) explore the
applicability of local monitoring by identifying cases where it can be used (non-
artificially) to monitor third-party software, and also (ii) investigate whether it
can be feasibly applied to real-world scenarios.

5.1 Monitoring for the Ranch Connection Protocol

Performance tests on Ranch were conducted using a number of sHML prop-
erties designed to push the application to its limits, the better to assess how
local monitoring behaves under usages typical of production environments. The
properties target various aspects of Ranch, and focus mainly on communication
exchanges, i.e., sends and receives (denoted by ! and ?), that take place between
different components inside Ranch.

For instance, the following recursive local property describes behaviour for
a fragment of the Ranch connection protocol used by acceptor components and
the connections supervisor, from the acceptor’s point of view:

maxX.
(

[ConnsSup ! {ranch conns sup, start protocol, Acpt, Sock}] 3

([Acpt stp killed]ff ∧ [Acpt ? ConnsSup]X 5)
)

(2)

Trace Partitioning and Local Monitoring for Asynchronous Components 229

Fig. 6. The Ranch connection protocol used to handle incoming client connections.

In this protocol (see Fig. 6), acceptors wait on a port for incoming connec-
tions. When a connection is established 2 , the acceptor exchanges its newly
acquired client socket information with the connections supervisor pid r 3 .
Consequently, a protocol handler is spawned by the connections supervisor so
that ownership of the client socket is transferred to the handler 4 , permitting
it to engage in direct communication with the client from that point onwards
6 . Upon successful creation of the protocol handler, the connections supervi-
sor acknowledges back to the acceptor 5 . Figure 6 shows a Ranch configuration
consisting of n acceptors with its first acceptor with PID pid 1 servicing a new
client connection.

Property 2 employs pattern matching as explained in Sect. 2 to dynami-
cally bind the formula variables to the process and socket identifiers. Concretely,
the pattern [ConnsSup ! {ranch conns sup,start protocol, Acpt, Sock}]
matches the client socket information sent by acceptor pid 1 (encoded as
the Erlang tuple {ranch conns sup, start protocol, pid 1, s num}) to the
supervisor pid r, binding the pattern variables ConnsSup, Acpt and Sock
to the respective values pid r, pid 1 and s num 3 . Following this, the
acceptor may either crash, thus matching the second necessity subformula
[pid 1 stp killed]ff violating Property 2, or receive an acknowledgement mes-
sage from the connections supervisor, matching the third necessity subformula
[pid 1 ? pid r] 5 .

5.2 Experiment Set-Up and Design

Our evaluation focusses on global properties that can be cleanly decomposed
into a set of local properties which can be verified against a partitioned trace.
Each experiment was conducted as a series of performance benchmarks where
local properties were monitored over individually executing components, and the
results were in turn compared against those yielded by monitoring the original
global property over the entire system. Global properties were monitored using
the detectEr tool developed in [4], whereas their decomposed local constituents

230 D.P. Attard and A. Francalanza

were handled by the tool extension reported in Sect. 4. These two set-ups cor-
respond to Fig. 4a and d resp. Performance was judged on: (i) the system’s
memory consumption in MB, (ii) its CPU usage, given as a percentage, and
(iii) the system response time in milliseconds. Each experiment is presented in
Fig. 7, plotting the results of the performance parameter (e.g. CPU utilisation)
under consideration (y-axis) against the local and global monitoring benchmarks
(x-axis). We also include the unmonitored system measurements as a baseline.

Data Collection and Precautions. An experiment refers to a set of ten per-
formance benchmarks, each performed by load testing individual system config-
urations (e.g. the system with local monitors, etc.) using a series of concurrent
requests, commencing at 200 and progressing up to 2000 in steps of 200 (i.e.,
200, 400, . . . , 2000). Results for repetitions of sets of ten experiments were aver-
aged to obtain the plots shown in Fig. 7. A number of precautions were taken to
ensure the accuracy and repeatability of our results: (i) ten repeated readings for
each experiment were taken, after calculating the coefficient of variation (i.e.,
σ
x̄ × 100) for different sets of experiment repetitions (e.g. five, ten, fifteen, etc.)
showed negligible variability between the data sets obtained with ten repetitions
and above, (ii) optimisations such as garbage collection were switched off so
that the readings obtained clearly underscore the differences between local and
global monitoring, (iii) performance spikes in the initial set of data points due
to the lazy start up of the internal VM infrastructure were eliminated by issuing
a series of warm-up requests before the actual benchmarks tests were performed.

5.3 Results and Analysis

Figure 7 shows the experiment results for monitors synthesised from formulae
such as Property 2 using two Ranch configurations: one with a hundred acceptors,
and one with four. All experiments were conducted on a 3.1 GHz Intel Core i7
processor with 16 GB of memory.

Realistic Ranch configuration. We first applied local monitoring to the rec-
ommended Ranch set-up configured with one hundred acceptors [19]. The plots
for the unmonitored and locally monitored Ranch set-up in Fig. 7a show that the
memory and CPU-related overheads induced by local monitoring are reasonably
low and exhibit an analogous rate of change to those of the unmonitored system.
This suggests that the resource consumption overheads due to local monitoring
follow those of the unmonitored system, and in such cases, one would be able
to forecast the extra system resource requirements that would be introduced by
local monitoring. Response times measure the observable impact of monitoring
on the behaviour of the system; the plot in Fig. 7a shows that the performance
impact of local monitoring is imperceptible for the benchmarks considered. Note
that for all three parameters, evaluating global monitoring on this Ranch set-up
was not possible because it consistently led to resource exhaustion.

Other configurations. Our attempts at evaluating global monitoring on Ranch
configured with one hundred acceptors were stymied by the high amount of over-
heads. To investigate which settings would permit us to test global monitoring

Trace Partitioning and Local Monitoring for Asynchronous Components 231

Fig. 7. Memory, CPU and response time benchmarks for two Ranch configurations.

suitably, we used various Ranch configurations with different numbers of accep-
tors. These trials revealed that only Ranch configurations having less than five
acceptors could be reliably benchmarked without crashing. Figure 7b shows the
memory, CPU and response time plots for Ranch with four acceptors (in log
scale). Whereas the overheads induced by global monitoring are infeasibly higher
than the baseline, those resulting from local monitoring are decidedly closer to
the measurements obtained for the unmonitored system. Specifically, in Fig. 7b
we achieved an average memory overhead of 4.54% and an average CPU overhead
of 14.22%. The response time plot in Fig. 7b additionally displays the percentage

232 D.P. Attard and A. Francalanza

of request failures, where each value represents the ratio of failed requests that
resulted when the benchmarked system was unable to cope with the number
of concurrent requests due to errors such as TCP connection refusals, timeouts
and broken pipes. Global monitoring degrades response behaviour both quan-
titatively (response times) and qualitatively (failed responses), whereas local
monitoring induces negligible overheads without provoking any failed requests.

6 Conclusion

We have presented a novel monitoring technique for asynchronous components
that generates partitioned traces reflecting the interleaved execution of the con-
stituent components under scrutiny. We argued how this yields benefits on many
fronts. In particular, we demonstrated that the proposed instrumentation set-
up lends itself better to local monitoring. Our approach is, in part, inspired by
distributed monitoring settings where partitioned traces come about naturally
due to physical constraints such as the absence of global clocks. In our case,
however, we have the added benefit of controlling the trace partitioning level,
coalescing tracing for tightly coupled components so as to attain local monitoring
(see discussion for Fig. 5a) — this cannot be achieved for physically distributed
components such as those in [26]. Local monitoring is used in a variety of appli-
cation domains such as session types [7,21], where monitors are attached to
individual channel endpoints. To our knowledge, the overhead gains of such a
set-up, as opposed to a global approach, have never been validated for these
domains and we expect our results to be applicable. As future work, we plan to
extend our study to distributed settings and investigate aspects such as trace
reconstructions that increase RV’s precision and expressivity.

Related Work. There are various RV approaches for asynchronous components
where trace events are collected globally and monitors analyse system behaviour
as a single universal trace [4,17]. Even though these monitors decentralise their
analysis via concurrent submonitors, the correctness of the system in question is
still perceived globally, and thus they classify as the set-up depicted in Fig. 4a.

Parameteric Trace Slicing (PTS) [5,11] is a monitoring technique whereby
a universal trace is projected into subtraces called trace slices, based on para-
metric specifications, i.e., properties that are specified in terms of parametrised
symbolic events whose parameters are bound to values from concrete events in
the universal trace. Slicing is mainly concerned with filtering events from a uni-
versal trace so as to obtain local monitors as in Fig. 4b. PTS differs from our
work in these respects: (i) projection is not partitioning since an event may
be assigned to multiple subtraces (i.e., their local monitors may overlap w.r.t.
events), (ii) subtraces are described at the specification level whereas partition-
ing works at the instrumentation level, (iii) parametric specifications typically
describe replicated component behaviour sharing a common structure, whereas
we are able to partition non-replicated components, (iv) since PTS works on a
universal trace, events that cannot always be attributed to a unique component
(e.g. event e in F and N of Examples 1 and 5) cannot be filtered as selectively.

Trace Partitioning and Local Monitoring for Asynchronous Components 233

ELarva [13] can be seen as an instance of PTS applied to asynchronous compo-
nents. It also targets Erlang actors and is implemented using the EVM’s native
tracing mechanism as in Sect. 4. However, ELarva relies on a universal trace, and
through an application-level routing mechanism, multiplexes events from the
trace to monitors attached to different components. The parametric properties
specified per spawned actor facilitate dynamic monitor creation, but the cen-
tralised trace processing mechanism induces unnecessary bottlenecks that may
hamper gains obtained from monitor parallelism. We are unaware of any PTS
used for branching-time specifications of asynchronous components.

The closest work to ours is [6,12] where global LTL formulae are monitored
locally over partitioned traces. The authors propose and evaluate a decentralised
approach that decomposes a given global LTL specification into smaller subprop-
erties that analyse separate trace partitions and communicate amongst them-
selves to handle subformula dependencies accordingly, as depicted in Fig. 4c.
They also show that local monitoring yields lower monitoring overheads. The
work differs from ours w.r.t. the following aspects: (i) they consider synchronous
systems, governed by a global clock that yields a unique combined trace from the
respective partitioned traces; asynchronous settings are richer and typically yield
multiple combined traces, (ii) the logic considered describes execution traces
whereas we consider a logic describing properties over programs; we show how
the multiple combined traces inferred in asynchronous settings can be exploited
to increase the monitor’s precision and monitorability of such properties, (iii)
they require a complete partitioning of trace events in order to automate for-
mula decentralisation, whereas we allow components to share trace events (e.g.
components F and N from Example 1 can both exhibit event e), (iv) the evalua-
tion in [6,12] focusses on decentralised communicating monitors that still regard
correctness from a global perspective (analogous to [o]ff ∨ [s]ff from Example 6);
our evaluation rather concentrates on properties that can be cleanly decomposed
into local ones that fully capitalise on trace partitioning, (v) their tool assumes
a fixed number of components that remains constant throughout execution as
opposed to ours, which can handle dynamic partitioning as well.

Partitioned traces are also used for monitoring shared-state concurrency pro-
grams such as [27], where decentralised monitors attached to different executing
threads collect and analyse events locally and actively collaborate in order to
build a combined representation of the present system state. The data exchange
between monitors takes place when shared variables are accessed (for reading
or writing) by the executing threads; this can be seen as an instance of the
set-up depicted in Fig. 4c. By contrast, our work concentrates on studying local
monitors over such partitioned traces, as discussed in Fig. 4d. In particular, we
assess the performance impact of local monitoring, whereas performance issues
are not a focus of [27]. Instead they study the detection and prediction of partic-
ular types of safety properties. As in earlier work by the same authors [26], the
investigation is conducted in terms of a linear-time epistemic logic that describes
execution traces, whereas we consider a logic describing the branching program

234 D.P. Attard and A. Francalanza

behaviour as a computation graph, which gives us scope for inferring other parts
of the computation graph from the path observed at runtime.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, New York (2007)

2. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-
tation. J. Funct. Program. 7, 1–72 (1997)

3. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

4. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In:
Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 473–481. Springer,
Cham (2016). doi:10.1007/978-3-319-46982-9 31

5. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32759-9 9

6. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32759-9 10

7. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. In: Beyer, D., Boreale, M. (eds.) FMOOD-
S/FORTE -2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38592-6 5

8. Cassar, I., Francalanza, A.: On implementing a monitor-oriented program-
ming framework for actor systems. In: Ábrahám, E., Huisman, M. (eds.) IFM
2016. LNCS, vol. 9681, pp. 176–192. Springer, Cham (2016). doi:10.1007/
978-3-319-33693-0 12

9. Cesarini, F., Thompson, S.: Erlang Programming. O’Reilly Media, Sebastopol
(2009)

10. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media,
Sebastopol (2004)

11. Chen, F., Rosu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Hei-
delberg (2009). doi:10.1007/978-3-642-00768-2 23

12. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol.
8734, pp. 140–155. Springer, Cham (2014). doi:10.1007/978-3-319-11164-3 12

13. Colombo, C., Francalanza, A., Gatt, R.: Elarva: a monitoring tool for erlang. In:
Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 370–374. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29860-8 29

14. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at run-
time? STTT 14(3), 349–382 (2012)

15. Francalanza, A., Aceto, L., Ingolfsdottir, A.: On verifying hennessy-milner logic
with recursion at runtime. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 71–86. Springer, Cham (2015). doi:10.1007/978-3-319-23820-3 5

16. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner Logic with Recursion. Formal Methods Syst. Des., 1–30 (2017)

http://dx.doi.org/10.1007/978-3-319-46982-9_31
http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://dx.doi.org/10.1007/978-3-319-33693-0_12
http://dx.doi.org/10.1007/978-3-319-33693-0_12
http://dx.doi.org/10.1007/978-3-642-00768-2_23
http://dx.doi.org/10.1007/978-3-319-11164-3_12
http://dx.doi.org/10.1007/978-3-642-29860-8_29
http://dx.doi.org/10.1007/978-3-319-23820-3_5

Trace Partitioning and Local Monitoring for Asynchronous Components 235

17. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
Formal Methods Syst. Des. 46(3), 226–261 (2015)

18. Hebert, F.: Recon. http://ferd.github.io/recon. Accessed 13 Mar 2017
19. Hoguin, L.: 99s. http://ninenines.eu. Accessed 13 Mar 2017
20. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley Professional, Boston (2003)
21. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for higher-

order session types. In: POPL, pp. 582–594. ACM (2016)
22. Josuttis, N.M.: SOA in Practice: The Art of Distributed System Design: Theory

in Practice. O’Reilly Media, Sebastopol (2007)
23. Larsen, K.G.: Proof systems for satisfiability in hennessy-milner logic with recur-

sion. Theor. Comput. Sci. 72(2&3), 265–288 (1990)
24. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.

Program. 78(5), 293–303 (2009)
25. Safonov, V.O.: Using Aspect-Oriented Programming for Trustworthy Software

Development. Wiley-Interscience, Hoboken (2008)
26. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of

safety in distributed systems. In: ICSE, pp. 418–427 (2004)
27. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Decentralized runtime analysis of mul-

tithreaded applications. In: IPPS (2006)
28. Vella, A., Francalanza, A.: Preliminary results towards contract monitorability. In:

PrePost@IFM. EPTCS, vol. 208, pp. 54–63 (2016)

http://ferd.github.io/recon
http://ninenines.eu

Compositional Verification of Interlocking
Systems for Large Stations

Alessandro Fantechi1,2(B), Anne E. Haxthausen1, and Hugo D. Macedo1,3

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
aeha@dtu.dk

2 DINFO, University of Florence, Firenze, Italy
alessandro.fantechi@unifi.it

3 Department of Engineering, Aarhus University, Aarhus, Denmark
hdm@eng.au.dk

Abstract. Railway interlocking systems are responsible to grant exclu-
sive access to a route, that is a sequence of track elements, through a
station or a network. Formal verification that basic safety rules regard-
ing exclusive access to routes are satisfied by an implementation is still a
challenge for networks of large size due to the exponential computation
time and resources needed.

Some recent attempts to address this challenge adopt a composi-
tional approach, targeted to track layouts that are easily decomposable
into sub-networks such that a route is almost fully contained in a sub-
network: in this way granting the access to a route is essentially a decision
local to the sub-network, and the interfaces with the rest of the network
easily abstract away less interesting details related to the external world.

Following up on previous work, where we defined a compositional
verification method that started considering routes that overlap between
sub-networks in interlocking systems governing a multi-station line, we
attack the verification of large networks, which are typically those in
main stations of major cities, and where routes are very intertwined and
can hardly be separated into sub-networks that are independent at some
degree. At this regard, we study how the division of a complex network
into sub-networks, using stub elements to abstract all the routes that are
common between sub-networks, may still guarantee compositionality of
verification of safety properties.

Keywords: Railway interlocking · Compositional verification · Model
checking

1 Introduction

Railway interlocking systems are those systems that are responsible to grant to
a train the exclusive access to a route: a route is a sequence of track elements

A. Fantechi and H.D. Macedo—The authors’ research conducted at DTU Compute
was funded by Villum Fonden and by the RobustRailS project granted by Innovation
Fund Denmark, respectively.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 236–252, 2017.
DOI: 10.1007/978-3-319-66197-1 15

Compositional Verification of Interlocking Systems for Large Stations 237

that are exclusively assigned for the movement of a train through a station or a
network. Granting of a route to a train occurs after a reservation request only if
the track elements that form the route are not occupied by other trains, and if
no conflicting route (that is, no other route that shares track elements with it)
has been reserved by another train.

Errors in granting to a train the access to a route can obviously have
catastrophic consequences; interlocking systems are therefore ranked as safety-
critical systems, and this demands for high standards in the development of the
software controlling interlocking systems. The standard CENELEC 50128 [2]
labels such software with the highest safety integrity level (SIL4), and highly
recommends the usage of formal methods and formal verification in its develop-
ment process.

However, full formal verification of interlocking systems demands heavy if
not infeasible computational resources for the phenomenon known as the state
explosion problem, that is, the exponential growth of the state space with the
number of elements in the controlled track layout. The most recent research
in model checking and in applying model checking to the domain of railways
[3–6,10,20,21] has developed techniques allowing the verification of models of
the interlocking systems controlling quite large and complex networks. For exam-
ple, abstraction techniques can be applied at the domain modelling level before
the model checking is performed [10]. Other very efficient techniques applied
to real world railway interlocking systems are bounded model checking [7] and
k-induction [20].

However, formal verification that basic safety rules regarding exclusive access
to routes are satisfied by an implementation is still a challenge for networks of
very large size, due to the exponential computation time and resources needed.

Some recent attempts to address this challenge adopt a compositional app-
roach, targeted to track layouts that are easily decomposable into sub-networks
such that a route is almost fully contained in a sub-network: in this way grant-
ing the access to a route is essentially a decision local to the sub-network, and
the interfaces with the rest of the network easily abstract away less interesting
details related to the external world. This is the case of [11], where a station
layout is divided into two symmetric components that can be separately verified
using an assume-guarantee reasoning, and of our previous work [12,13], where
we were able to divide a multi-station line into almost independent components
by performing cuts in between the stations.

In this paper we extend our previous work [12,13] to provide a new, more
complex, way of dividing large networks, such as those typically found in main
stations of major cities, where routes are very intertwined and can hardly be
separated into sub-networks that are independent. First, in Sect. 2, we give a
short introduction to the RobustRails verification tools we are using. Next, in
Sect. 3, we elaborate more on the idea of compositional verification and relate
our new work to some past, related work. Then, in Sects. 4 and 5 we describe
our compositional method with the new cut and make some experiments using
it both for a smaller station and a large, real-world station. Finally, in Sect. 6,
some conclusions are drawn.

238 A. Fantechi et al.

2 Interlocking Systems and Their Verification

In this section we briefly introduce the main notions of interlocking systems: we
actually use the terminology and the assumptions of the new Danish ETCS Level
2 resignalling program, and we refer to [13,19] for a more detailed introduction.

In this context, the specification of a given route-based interlocking system
consists of two main components: (1) a railway network, and (2) a corresponding
interlocking table.

A railway network consists of a number of track and track-side elements of
different types1: linear sections, points, and marker boards. A linear section is
a section with up to two neighbours: one in the up end, and one in the down
end. For simplicity, in the examples and figures in the rest of this article, the
up (down) direction is assumed to be the left-to-right (right-to-left) direction.
A point can have up to three neighbours: one at the stem, one at the plus end,
and one at the minus end. The stem and plus ends form the straight (main)
path, and the stem and minus ends form the branching (siding) path. A point
can be switched between two positions: PLUS and MINUS, selecting the main or
siding paths, respectively. Linear sections and points are collectively called (train
detection) sections, as they are provided with train detection equipment used
by the interlocking system to detect the presence of trains. Along each linear
section, up to two marker boards (one for each direction) can be installed. A
marker board can only be seen in one direction and is used as reference location
(for the start and end of routes) for trains going in that direction. There are no
physical signals in ETCS Level 2, but interlocking systems have a virtual signal
associated with each marker board. Train drivers do not visually see the aspect
of virtual signals (OPEN or CLOSED), that is instead communicated to the
onboard computer via a radio network. For simplicity, the terms virtual signal,
signal, and marker board are used interchangeably throughout this paper.

A route is a path from a source signal to a destination signal in the given
railway network. A route is called an elementary route if there are no signals
that are located between its source signal and its destination signal, and that are
intended for the same direction as the route. In railway signalling terminology,
setting a route denotes the process of allocating the resources – i.e., sections,
points, and signals – for the route, and then locking it exclusively for only one
train when the resources are allocated.

An interlocking table specifies the elementary routes in the given railway
network and the conditions for setting these routes. A route is defined by the
following attributes:

– src(r) – the source signal of r,
– dst(r) – the destination signal of r,
– path(r) – the list of sections constituting r’s path from src(r) to dst(r),
– points(r) – the required position of the points along the route r
– signals(r) – the required settings of signals
– conflicts(r) – a set of conflicting routes which must not be set while r is set.
1 Here we only show types that are relevant for the work presented in this article.

Compositional Verification of Interlocking Systems for Large Stations 239

Examples of network layouts and related interlocking tables are deferred to
Sect. 4.

Typical safety properties required of an interlocking system are that it always
ensures the following safety conditions:

1. No collisions: Two trains must never occupy the same track section at the
same time.

2. No derailments: A point must not be switched, while being occupied by a
train.

All required safety properties are expressed as generic conditions leading to
specific conditions for each specific case of a network. Notice that considering
such typical safety properties, a route defines the maximal subset of elements
whose status affects the safety property, that is, no element outside a route, or,
at most, two conflicting routes, can affect a safety property for that route(s).2

The RobustRailS verification method [17–20] is a combination of formal
methods and a domain-specific language (DSL) to express network diagrams
and interlocking tables. A tool is provided by the RobustRailS environment to
transform the DSL description into inputs to the model checker, that is, (i) a
behavioural model of the interlocking system and its environment, and (ii) the
required safety properties given as linear temporal logic formulae.

The RobustRailS tools can be used to verify the design of an interlocking
system in the following steps:

1. A DSL specification of the configuration data (a network layout and its cor-
responding interlocking table) is constructed in the following order:
(a) first the network layout,
(b) and then the interlocking table (this is either done manually or generated

automatically from the network layout).
2. The static checker verifies whether the configuration data is statically well-

formed according to the static semantics [19] of the DSL.
3. The generators instantiate a generic behavioural model and generic safety

properties with the well-formed configuration data to generate the model
input of the model checker and the safety properties.

4. The generated model instance is then checked against the generated proper-
ties by the bounded model checker performing a k-induction proof.

The static checking in step (2) is intended to catch errors in the network layout
and interlocking table, while the model checking in step (4) is intended to catch
safety violations in the control algorithm of the instantiated model.

The tool chain associated with the method has been implemented using the
RT-tester framework [14,16].

2 The subset is sometimes extended with overlaps (buffer zones at the end of paths),
and points or signals needed for flank protection, since this is sometimes required
to protect tracks occupied by a train from another train not succeeding to brake in
due space. We do not consider these extra protections in this paper, and we refer to
[15,19] for details and for their modelling.

240 A. Fantechi et al.

3 Compositionality

Interlocking systems typically exhibit a high degree of locality : if we consider
a typical safety property desired for an interlocking system, e.g. that the same
track element shall not be reserved by more than one train at a time, it is likely
that this property is not influenced by a train moving on a distant, or parallel,
track element. Locality of a safety property can be exploited for verification
purposes, so limiting the state space on which to verify it. This principle has been
exploited in [22] to define domain-oriented optimisation of the variable ordering
in a BDD-based verification. Locality can be used also for slicing, as suggested in
[1,3,8,9]: the idea is to consider only the portion of the model that has influence
on the property to be verified, by a topological selection of interested track
elements (therefore closely related to the cone of influence of the property): this
allows for a much more efficient verification of the single property, but comes
at the price of repeating the slicing and the verification for every property, and
of separately checking that verifying slices does actually imply the satisfaction
of desired properties for the whole system. Nevertheless, it appears that when
automated, this process can offer significant time and memory savings.

Compositional verification of interlocking systems also exploits locality: the
network layout is divided into two or more sub-networks, so that the separate
verification of safety properties on the sub-networks can be used to prove safety
properties on the whole network, with a significant advantage in terms of time
and memory; moreover, the verification can be run once on the conjunction
of all safety properties. Adopting a compositional approach actually needs a
proof that the separate verification guarantees the safety properties for the whole
network, and this proof depends on the type of division (from now on, cut) that
is envisaged.

Indeed, in Fig. 1 the dotted light green lines show three different cases of cuts
of a network into two small networks:

(a) A line connecting several stations is divided into sub-networks, each includ-
ing a station; this case has been studied in our previous work [12,13]. We
can see that the cut concerns a single track element, that behaves as source
and destination of routes from/to one of the stations (A1u-L1u, A2u-L1u,
L1d-A1d, L1d-A2d from/to station A, B1d-L1d, B2d-L1d, B3d-L1d, L1u-
B1u, L1u-B2u, L1u-B3u from/to station B). Notice that all these routes are
almost fully contained in one of the sub-networks: in this way granting the
access to a route is essentially a decision local to the sub-network, apart
from the single interface track element that is included in both routes of
the sub-networks. This allows to consider, in the separate verification, the
shared element as an abstraction of all the routes of the Station A when
verifying properties related to Station B, and vice versa.

(b) This is the case of a (possibly almost) symmetrical station, that is divided
into two halves, as studied in [11]: the verification of one half takes into
account assume/guarantee conditions at the interface with the other half.
The verification effort is hence repeated for the two halves, with the extra

Compositional Verification of Interlocking Systems for Large Stations 241

Fig. 1. Three example cuts. (Color figure online)

effort of proving that assume/guarantee conditions do hold at the interface:
locality allows such conditions to be rather simple so that they do not add
much time to the verification. Again, a route is almost fully contained in one
of the two sub-network, and the shared track elements act as an abstraction
of the routes of the other sub-network, although there are several shared
elements (e.g. routes L1u-P3u and L2u-P3u have a single track element
shared with routes L1d-P3d and L2d-P3d).3

(c) A more complex case is that of a (terminus) station where more lines (in
this case, two double-track lines) converge from one side (in this case from
the left side) to the station. The layout has to include paths allowing to go
from any input track to any (or almost any) platform, through a sequence
of points that in the figure goes from high tracks to low tracks, and vice
versa. Notice that it is not possible to operate a cut like the ones of the

3 For simplicity we consider here and in the following only the shortest path routes.

242 A. Fantechi et al.

previous cases, since conflicting routes (in the layout in the figure only the
markerboards in the up direction are reported) share more than one track
element.

The dotted light green line shows a kind of cut, that we will call from now
on horizontal cut to distinguish it from the previous cases, that looses the
property that routes are almost fully contained in a sub-network. In the
figure, e.g., routes L1u-P4u, L2u-P4u, L1u-P3u, L2u-P3u, from the high sub-
network to the low sub-network share elements with all the routes having
as destination P3u, P4u or P5u. This means that the kind of abstraction
used in the previous cases can no longer be applied: in a sense, the layouts
of cases (a) and (b) exhibit a natural place where to apply the cut, so that
there are almost no interactions among the two parts, while the cut points
in (c) are chosen quite arbitrarily, just in order to reasonably decompose the
network, but impacting on the middle elements of several routes.

The horizontal cut is the subject of the present paper, where we can show
that a simple form of cut still allows for compositional verification. The research
we are conducting aims in the end to come up with a subdivision process that
exploits the characteristics of the network to provide a set of sub-networks,
obtained with the most appropriate kind of cut, to be verified separately, so that
safety of the whole layout can be deduced by the separate safety verification of
the sub-network.

4 Horizontal Cut

In this section we explain how our compositional approach is done in three steps:

1. decomposition of the network into sub-networks using the horizontal cut,
2. decomposition of the interlocking table for the network by generation of inter-

locking tables for the sub-networks, and
3. safety verification for the sub-networks (from step 1) and their associated

interlocking tables (from step 2).

Below, we also discuss and analyse the contents of the decomposed interlock-
ing tables achieved in step 2 and examine the soundness of the approach. The
explanations are done for an example network called ThreeTracksStation, but
can easily be generalised to any network.

4.1 Decomposition of the Network

Figure 2 shows first the layout of the ThreeTracksStation network. In this exam-
ple we cut this network into two sub-networks by making a horizontal cut (the
light green line) at the link between T9 and T10. To each of the two sub-networks
(above and below the cut, respectively), two consecutive linear sections (which
taken together form a stub) are added on the other side of the cut, in order to

Compositional Verification of Interlocking Systems for Large Stations 243

Fig. 2. Layouts of the ThreeTracksStation network and its sub-networks. (Color figure
online)

abstract the whole other sub-network. The new sections have proper marker-
boards in order to satisfy network conditions about the positioning of marker-
boards at borders. The two resulting networks, called High and Low4, are shown
in Fig. 2.

4.2 Decomposition of the Interlocking Table

In the second step, after having decomposed the network into the two
sub-networks High and Low, the interlocking tables associated with these
sub-networks are generated with the RobustRailS tool. The interlocking tables
generated for the full network and for the two sub-networks are shown in Table 1.

4 We reserve the words up and down for the train travel directions.

244 A. Fantechi et al.

T
a
b
le

1
.
T

h
e

in
te

rl
o
ck

in
g

ta
b
le

s
fo

r
th

e
T

h
re

eT
ra

ck
sS

ta
ti

o
n
,
H

ig
h

a
n
d

L
ow

n
et

w
o
rk

o
f
F
ig

.2
.

T
h
re
eT

ra
ck
sS
ta
ti
o
n

id
s
r
c

d
s
t

p
a
th

p
o
in

ts
s
ig

n
a
ls

c
o
n
fl
ic

ts
r1

E
1

E
1
9

T
4
;T

7
;T

1
3
;T

1
1
;T

1
6

T
7
:p

;T
1
1
:p

E
2
6
;E

8
r1

2
;r
1
3
;r
1
b
is
;r
1
0
;r
5
;r
1
1
;r
5
b
is
;r
9
;r
1
4

r1
1

E
1

E
1
7

T
4
;T

7
;T

8
;T

1
0
;T

1
2
;T

1
5

T
1
0
:p

;T
7
:m

;T
8
:m

;T
1
2
:p

E
2
4
;E

8
r1

b
is
;r
5
;r
1
2
;r
4
;r
5
b
is
;r
1
0
;r
9
;r
3
;r
6
;r
8
;r
1
4
;r
1
3
;r
1

r1
b
is

E
1

E
1
9

T
4
;T

7
;T

8
;T

1
0
;T

1
2
;T

1
1
;T

1
6

T
1
0
:p

;T
7
:m

;T
8
:m

;T
1
1
:m

;T
1
2
:m

E
2
6
;E

8
r8

;r
6
;r
1
3
;r
9
;r
3
;r
1
0
;r
5
;r
5
b
is
;r
1
4
;r
4
;r
1
2
;r
1
1
;r
1

r2
E
2
2

E
1
2

T
1
4
;T

9
;T

6
T
9
:p

E
1
5
;E

5
r4

;r
7
;r
1
2
;r
9
;r
8

r3
E
2
4

E
1
0

T
1
5
;T

1
2
;T

1
0
;T

8
;T

5
T
1
0
:p

;T
8
:p

;T
1
2
:p

E
1
7
;E

3
r6

;r
8
;r
4
;r
9
;r
1
0
;r
1
3
;r
1
4
;r
5
b
is
;r
1
2
;r
1
b
is
;r
1
1

r1
4

E
2
4

E
8

T
1
5
;T

1
2
;T

1
0
;T

8
;T

7
;T

4
T
1
0
:p

;T
7
:m

;T
8
:m

;T
1
2
:p

E
1
;E

1
7

r4
;r
8
;r
1
3
;r
5
b
is
;r
1
0
;r
6
;r
9
;r
5
;r
1
2
;r
3
;r
1
b
is
;r
1
;r
1
1

r4
E
2
4

E
1
2

T
1
5
;T

1
2
;T

1
0
;T

9
;T

6
T
1
0
:m

;T
9
:m

;T
1
2
:p

E
1
7
;E

5
r6

;r
7
;r
1
0
;r
5
b
is
;r
1
3
;r
8
;r
1
2
;r
9
;r
2
;r
1
4
;r
3
;r
1
1
;r
1
b
is

r5
E
2
6

E
8

T
1
6
;T

1
1
;T

1
3
;T

7
;T

4
T
7
:p

;T
1
1
:p

E
1
;E

1
9

r1
0
;r
9
;r
1
2
;r
1
3
;r
5
b
is
;r
1
1
;r
1
;r
1
b
is
;r
1
4

r1
3

E
2
6

E
1
0

T
1
6
;T

1
1
;T

1
2
;T

1
0
;T

8
;T

5
T
1
0
:p

;T
8
:p

;T
1
1
:m

;T
1
2
:m

E
1
9
;E

3
r1

0
;r
5
b
is
;r
8
;r
9
;r
1
2
;r
6
;r
1
4
;r
1
;r
1
b
is
;r
3
;r
4
;r
5
;r
1
1

r5
b
is

E
2
6

E
8

T
1
6
;T

1
1
;T

1
2
;T

1
0
;T

8
;T

7
;T

4
T
1
0
:p

;T
7
:m

;T
8
:m

;T
1
1
:m

;T
1
2
:m

E
1
;E

1
9

r6
;r
8
;r
1
0
;r
1
2
;r
9
;r
1
4
;r
1
1
;r
1
3
;r
4
;r
3
;r
1
b
is
;r
1
;r
5

r1
2

E
2
6

E
1
2

T
1
6
;T

1
1
;T

1
2
;T

1
0
;T

9
;T

6
T
1
0
:m

;T
9
:m

;T
1
1
:m

;T
1
2
:m

E
1
9
;E

5
r8

;r
1
0
;r
7
;r
6
;r
9
;r
1
;r
1
1
;r
5
;r
2
;r
5
b
is
;r
1
3
;r
4
;r
1
4
;r
3
;r
1
b
is

r6
E
3

E
1
7

T
5
;T

8
;T

1
0
;T

1
2
;T

1
5

T
1
0
:p

;T
8
:p

;T
1
2
:p

E
1
0
;E

2
4

r8
;r
9
;r
1
0
;r
3
;r
5
b
is
;r
4
;r
1
b
is
;r
1
4
;r
1
2
;r
1
1
;r
1
3

r1
0

E
3

E
1
9

T
5
;T

8
;T

1
0
;T

1
2
;T

1
1
;T

1
6

T
1
0
:p

;T
8
:p

;T
1
1
:m

;T
1
2
:m

E
1
0
;E

2
6

r9
;r
8
;r
5
;r
1
3
;r
1
4
;r
6
;r
3
;r
5
b
is
;r
1
2
;r
1
;r
4
;r
1
1
;r
1
b
is

r7
E
5

E
1
5

T
6
;T

9
;T

1
4

T
9
:p

E
1
2
;E

2
2

r8
;r
9
;r
2
;r
4
;r
1
2

r8
E
5

E
1
7

T
6
;T

9
;T

1
0
;T

1
2
;T

1
5

T
1
0
:m

;T
9
:m

;T
1
2
:p

E
1
2
;E

2
4

r9
;r
1
4
;r
6
;r
7
;r
3
;r
5
b
is
;r
1
b
is
;r
1
2
;r
1
3
;r
4
;r
2
;r
1
1
;r
1
0

r9
E
5

E
1
9

T
6
;T

9
;T

1
0
;T

1
2
;T

1
1
;T

1
6

T
1
0
:m

;T
9
:m

;T
1
1
:m

;T
1
2
:m

E
1
2
;E

2
6

r5
;r
6
;r
3
;r
8
;r
7
;r
1
b
is
;r
1
1
;r
1
3
;r
1
0
;r
1
4
;r
2
;r
5
b
is
;r
1
;r
4
;r
1
2

H
ig
h

id
s
r
c

d
s
t

p
a
th

p
o
in

ts
s
ig

n
a
ls

c
o
n
fl
ic

ts
r1

E
1

E
1
9

T
4
;T

7
;T

1
3
;T

1
1
;T

1
6

T
7
:p

;T
1
1
:p

E
2
6
;E

8
r1

3
;r
1
0
;r
5
;r
1
b
is
;r
1
1
;r
2
6
6
2
;r
5
b
is
;r
6
1
1
9
;r
1
4

r1
1

E
1

E
1
7

T
4
;T

7
;T

8
;T

1
0
;T

1
2
;T

1
5

T
7
:m

;T
1
2
:p

;T
8
:m

;T
1
0
:p

E
2
4
;E

8
r1

b
is
;r
6
1
1
7
;r
3
;r
1
0
;r
1
4
;r
6
;r
1
3
;r
2
4
6
2
;r
2
6
6
2
;r
5
b
is
;r
6
1
1
9
;r
5
;r
1

r1
b
is

E
1

E
1
9

T
4
;T

7
;T

8
;T

1
0
;T

1
2
;T

1
1
;T

1
6

T
7
:m

;T
1
2
:m

;T
8
:m

;T
1
0
:p

;T
1
1
:m

E
2
6
;E

8
r1

0
;r
1
4
;r
6
1
1
7
;r
5
;r
3
;r
6
1
1
9
;r
1
3
;r
5
b
is
;r
2
4
6
2
;r
2
6
6
2
;r
6
;r
1
1
;r
1

r3
E
2
4

E
1
0

T
1
5
;T

1
2
;T

1
0
;T

8
;T

5
T
1
2
:p

;T
8
:p

;T
1
0
:p

E
1
7
;E

3
r2

4
6
2
;r
6
1
1
7
;r
1
4
;r
1
0
;r
2
6
6
2
;r
1
3
;r
6
;r
6
1
1
9
;r
5
b
is
;r
1
1
;r
1
b
is

r1
4

E
2
4

E
8

T
1
5
;T

1
2
;T

1
0
;T

8
;T

7
;T

4
T
7
:m

;T
1
2
:p

;T
8
:m

;T
1
0
:p

E
1
;E

1
7

r1
0
;r
2
4
6
2
;r
2
6
6
2
;r
6
1
1
7
;r
5
b
is
;r
6
1
1
9
;r
6
;r
1
3
;r
5
;r
3
;r
1
b
is
;r
1
1
;r
1

r2
4
6
2

E
2
4

E
6
2

T
1
5
;T

1
2
;T

1
0
;T

6
2

T
1
2
:p

;T
1
0
:m

E
1
7
;E

6
1

r6
1
1
7
;r
5
b
is
;r
1
0
;r
6
;r
6
1
1
9
;r
2
6
6
2
;r
1
3
;r
3
;r
1
4
;r
1
b
is
;r
1
1

r5
E
2
6

E
8

T
1
6
;T

1
1
;T

1
3
;T

7
;T

4
T
7
:p

;T
1
1
:p

E
1
;E

1
9

r6
1
1
9
;r
1
3
;r
5
b
is
;r
1
0
;r
2
6
6
2
;r
1
b
is
;r
1
;r
1
4
;r
1
1

r1
3

E
2
6

E
1
0

T
1
6
;T

1
1
;T

1
2
;T

1
0
;T

8
;T

5
T
1
2
:m

;T
8
:p

;T
1
0
:p

;T
1
1
:m

E
1
9
;E

3
r2

6
6
2
;r
6
1
1
9
;r
6
;r
6
1
1
7
;r
5
b
is
;r
1
0
;r
1
;r
5
;r
3
;r
1
1
;r
1
b
is
;r
2
4
6
2
;r
1
4

r5
b
is

E
2
6

E
8

T
1
6
;T

1
1
;T

1
2
;T

1
0
;T

8
;T

7
;T

4
T
7
:m

;T
1
2
:m

;T
8
:m

;T
1
0
:p

;T
1
1
:m

E
1
;E

1
9

r6
;r
1
0
;r
6
1
1
7
;r
2
6
6
2
;r
6
1
1
9
;r
5
;r
2
4
6
2
;r
1
4
;r
1
3
;r
1
b
is
;r
3
;r
1
1
;r
1

r2
6
6
2

E
2
6

E
6
2

T
1
6
;T

1
1
;T

1
2
;T

1
0
;T

6
2

T
1
2
:m

;T
1
0
:m

;T
1
1
:m

E
1
9
;E

6
1

r6
;r
1
0
;r
6
1
1
9
;r
6
1
1
7
;r
1
3
;r
1
4
;r
3
;r
1
b
is
;r
2
4
6
2
;r
1
1
;r
5
b
is
;r
1
;r
5

r6
E
3

E
1
7

T
5
;T

8
;T

1
0
;T

1
2
;T

1
5

T
1
2
:p

;T
8
:p

;T
1
0
:p

E
1
0
;E

2
4

r6
1
1
9
;r
1
0
;r
6
1
1
7
;r
2
6
6
2
;r
5
b
is
;r
1
3
;r
2
4
6
2
;r
3
;r
1
1
;r
1
4
;r
1
b
is

r1
0

E
3

E
1
9

T
5
;T

8
;T

1
0
;T

1
2
;T

1
1
;T

1
6

T
1
2
:m

;T
8
:p

;T
1
0
:p

;T
1
1
:m

E
1
0
;E

2
6

r6
1
1
7
;r
6
1
1
9
;r
1
4
;r
1
b
is
;r
6
;r
2
4
6
2
;r
2
6
6
2
;r
3
;r
1
1
;r
5
b
is
;r
1
;r
1
3
;r
5

r6
1
1
7

E
6
1

E
1
7

T
6
2
;T

1
0
;T

1
2
;T

1
5

T
1
2
:p

;T
1
0
:m

E
2
4
;E

6
2

r6
1
1
9
;r
3
;r
1
1
;r
2
4
6
2
;r
1
0
;r
1
4
;r
1
3
;r
1
b
is
;r
6
;r
5
b
is
;r
2
6
6
2

r6
1
1
9

E
6
1

E
1
9

T
6
2
;T

1
0
;T

1
2
;T

1
1
;T

1
6

T
1
2
:m

;T
1
0
:m

;T
1
1
:m

E
2
6
;E

6
2

r5
;r
6
;r
1
3
;r
2
6
6
2
;r
6
1
1
7
;r
1
4
;r
1
0
;r
2
4
6
2
;r
1
b
is
;r
3
;r
1
1
;r
5
b
is
;r
1

L
o
w

id
s
r
c

d
s
t

p
a
th

p
o
in

ts
s
ig

n
a
ls

c
o
n
fl
ic

ts
r2

E
2
2

E
1
2

T
1
4
;T

9
;T

6
T
9
:p

E
1
5
;E

5
r7

;r
5
5
1
;r
5
2
1
2

r7
E
5

E
1
5

T
6
;T

9
;T

1
4

T
9
:p

E
1
2
;E

2
2

r5
5
1
;r
5
2
1
2
;r
2

r5
5
1

E
5

E
5
1

T
6
;T

9
;T

5
1

T
9
:m

E
1
2
;E

5
2

r5
2
1
2
;r
7
;r
2

r5
2
1
2

E
5
2

E
1
2

T
5
1
;T

9
;T

6
T
9
:m

E
5
;E

5
1

r7
;r
5
5
1
;r
2

Compositional Verification of Interlocking Systems for Large Stations 245

Fig. 3. Up routes of the ThreeTracksStation network (alternative route r1bis is not
shown)

Abstraction of Routes. We will now describe the relationship between the
routes in the interlocking table for the ThreeTracksStation Network and the
routes in the interlocking tables for the High and Low sub-networks. Figure 3
shows the routes of ThreeTracksStation: actually, for readability, it shows only
up routes, that is, routes that have as source and destination signals in the up
direction. These routes are shown in different colour and dotting to distinguish
those that are fully contained in one of the two sub-networks, and hence are
maintained substantially unchanged in either High (e.g. route r1) or in Low
(e.g. route r2), and those that go through the cut, that need to be substituted
(abstracted) by (often fewer) routes both in High and Low: Fig. 4 shows for
example how route r551 in Low abstracts both r8 and r9 in ThreeTracksStation).

Fig. 4. Abstraction of routes

In general, the set Routes(N) of routes of a network N (in our case
ThreeTracksStation) is partitioned in three disjoint sets: RH,RL, Th, which are
respectively fully contained in Low, in High and passing through the cut. The cut
defines two abstraction functions γH : Th → RH ′ and γL : Th → RL′ that pro-
duce the sets of abstract routes for the High and Low networks respectively. The

246 A. Fantechi et al.

Fig. 5. Relation between the routes of the network and the sub-networks.

Fig. 6. Decomposition of networks and interlocking tables. The RouteGen arrows rep-
resent the interlocking table generator.

abstraction functions are total and surjective. The routes of the sub-networks
are given by (see Fig. 5):

Routes(Low) = RL ∪ RL′ and Routes(High) = RH ∪ RH ′.

Decomposition Relations. Figure 6 illustrates the decomposition of networks
and tables. Following the upper “CUT” arrow (representing the horizontal cut
operation), the network is decomposed into two sub-networks for which interlock-
ing tables are then generated. These tables provide a decomposition (following
the lower “CUT” arrow) of the interlocking table that one would generate from
the full network when not using the compositional approach.

The following rules define the relationship between the two sub-networks
and the full network, as well the relationship between their associated interlock-
ing tables. Rule 1 defines how the sub-networks are created, rules 2–3 and 4–5

Compositional Verification of Interlocking Systems for Large Stations 247

define the route abstractions into sets RL’ and RH’, and rules 6–10 define the
path, required point and signal settings, and route conflicts of the routes in the
decomposed interlocking tables, in terms of the corresponding data in the full
interlocking table. The rules are instantiated for the ThreeTracksStation exam-
ple. The different sets of elements have as a suffix the name of the sub-network
to which they belong: no suffix means the set belongs to the full network.

1. LinearsLow ∪ LinearsHigh = Linears, LinearsLow ∩ LinearsHigh = ∅
PointsLow ∪ PointsHigh = Points, PointsLow ∩ PointsHigh = ∅
SignalsLow ∪ SignalsHigh = Signals, SignalsLow ∩ SignalsHigh = ∅

The sub-networks Low and High are actually built, respectively, over the
sets of elements:

(LinearsLow ∪ {T51, T52}, PointsLow, SignalsLow ∪ {E51, E52})
(LinearsHigh ∪ {T61, T62}, PointsHigh, SignalsHigh ∪ {E61, E62})

2. all the up routes in the ThreeTracksStation starting from s ∈ SignalsLow

that incur in the cut (that is, in the path have the pair T9,T10, in our case)
are abstracted in the Low sub-network by a route going from s to the stub
signal E51;

3. all the down routes in the ThreeTracksStation arriving to s ∈ SignalsLow

that incur in the cut (that is, in the path have the pair T10,T9) are
abstracted in the Low sub-network by a route going from the stub signal
E52 to s;

4. all the down routes in the ThreeTracksStation starting from s ∈ SignalsHigh

that incur in the cut (that is, in the path have the pair T10,T9) are
abstracted in the High sub-network by a route going from s to the stub
signal E62;

5. all the up routes in the ThreeTracksStation arriving to s ∈ SignalsHigh that
incur in the cut (that is, in the path have the pair T9,T10) are abstracted
in the High sub-network by a route going from the stub signal E61 to s;

6. the path of the abstract routes contains only the elements to (from) the cut,
plus the added stub elements as destination (source); the path of the other
routes is unchanged.

7. the points of the abstract routes include only the points on the path to
(from) the cut; the points of the other routes are unchanged.

8. each abstract route in the Low (High) sub-network abstracting a route r
in the full network, keeps as its signals that signal of r that was placed in
Low (High), while the signal placed on the opposite side of the cut in High
(Low) is replaced by the stub signal contrary to the direction of the route.
The signals of the other routes are unchanged, except the cases where a
signal is placed on the opposite side of the cut, in which case it is replaced
by the stub signal in opposite direction of the route.

9. the conflicts of an abstract route r ∈ RL′ (RH ′) in the Low (High) sub-
network are given by:

(a) all the maintained routes of Low (High) that are in conflict in
ThreeTracksStation with any of the routes abstracted by r;

248 A. Fantechi et al.

(b) all the abstract routes of Low (High) that abstract routes in
ThreeTracksStation in conflict with any of the routes abstracted by r;

10. the conflicts of a route r ∈ RL (RH) in the Low (High) sub-network pre-
served in the cut are given by:

(a) all the maintained routes of Low (High) that are in conflict in
ThreeTracksStation with r;

(b) all the abstract routes of Low (High) that abstract routes in
ThreeTracksStation that are in conflict with r;

These rules can be easily generalised to the “horizontal” cut of any network,
including the special case of a network where the cut is on up routes that go
from the high part to the low part.

4.3 Safety Verification

In the third step, after having generated the interlocking tables, the safety verifi-
cation is performed for the sub-networks and their associated interlocking tables,
using the RobustRailS verification tools.5

Table 2 shows metrics, for the separate verification of the Low, the High and
the ThreeTracksStation networks, respectively. Furthermore, the row “Low +
High” shows metrics for the combined compositional verification: the execution
time is the sum of the execution times of Low and High, and the memory usage
is the maximum of the memory usages of Low and High. Time is measured in
seconds and memory in MB. As expected, the results show that the composi-
tional approach is advantageous both in terms of the time and memory usage.

Table 2. Verification metrics for the ThreeTracksStation case study.

Linears Points Signals Routes log10(|S|) Time Memory

Low 6 1 6 4 30.50 3.37 93.8

High 11 5 10 12 77.11 187.26 528.1

Low + High 190.63 528.1

ThreeTracksStation 13 6 12 14 91.31 292.68 698.3

4.4 Soundness of the Approach

The soundness of the compositional approach amounts to the following theorem.

Theorem 1. Given a Network N and its sub-networks H and L obtained by a
horizontal cut, if H and L are separately verified to satisfy safety, then N satisfies
safety too.
5 The verifications were performed on a machine with an Intel(R) Xeon(R) CPU E5-

2667 0 @ 2.90GHz, 64GB RAM, CentOS 6.6, Linux 2.6.32-504.8.1.el6.x86 64 kernel.

Compositional Verification of Interlocking Systems for Large Stations 249

The above considerations on abstracted routes are the ground on which to base
a proof. A formal proof can be made in a similar way to the proof presented in
[13]: safety properties are expressed as universal quantifications over the sets of
linear/point sections, hence, assuming safety is proved for each section of both
sub-networks, we need to prove safety for each section in the original network.
This can be done by case analysis for three cases: for sections only involved in
routes in RL, sections only involved in routes in RH, and sections involved by
through routes in Th. The first two cases immediately follows from the assump-
tion. In the third case, the state of some sections (say, in Low) is actually related
to the state of the stub added to the Low sub-network, that abstracts the state
of sections of High that belong to routes in Th in the full network. We then
reason by contradiction, assuming that the state of some of the latter sections
violates a safety property for the full network, while their abstraction in the stub
of Low does not violate any property in Low. We show that such sections violate
safety for High as well, contradicting the initial hypothesis that safety is proved
for the High network.

5 A More Complex Example

The next example (called Fismn) is inspired by the layout of the main station of
Florence in Italy, and actually refers to a portion roughly of the size of a quarter
of the entire station. The layout shown in Fig. 7 has been recovered from Google
Maps, so there is no actual relation between this layout and any implemented real
interlocking system. Nevertheless, this layout realistically represents a feature
that can be found in many large stations, that is a route that traverses all the
other routes for connecting the lower incoming track to the upper exiting track.
In the real Florence station, the next portion of the layout at the right of this
includes the reverse traversing route.

Table 3. Verication metrics for the Fismn case study.

Linears Points Signals Routes log10(|S|) Time Memory

Low 28 13 26 56 243.04 12895.35 12176.6

High 25 10 24 66 239.07 8052.92 9517.9

Low + High 20948.27 12176.6

Fismn 49 23 46 124 472.93 51770.64 42483.7

For the Fismn network, we applied the compositional verification approach.
In Fig. 7 the dotted green horizontal line represents the operated cut, between
the T30 and T31 points. Note that this cut lies on the low-to-high traversing
path. Also in this case the compositional verification is advantageous for the time
and memory requirements (see Table 3). Notice that the memory consumption

250 A. Fantechi et al.

Fig. 7. The Fismn example layout. (Color figure online)

of the Fismn network is actually close to the memory limits (64 GB) so it can
be predicted that a bit larger model cannot be treated unless the compositional
approach is adopted.

6 Conclusions

We have presented a compositional approach to the problem of model checking
interlocking systems of large railway stations. The approach builds up over pre-
vious work, by proposing a more general way of decomposing a station layout,
that has successfully been applied to a large portion of a real world station.
The approach achieves significant improvements in verification time and mem-
ory usage, taking into account that the aim of the proposed decomposition is to
be able to keep time and memory resources needed for the verification within
feasible limits. In fact the idea is to apply multiple cuts, in order to chop a large
network in tractable chunks, each to be verified separately. This is the main
direction of future work, which will need generalising the decomposition process
and automating it by means of a tool supporting the network cutting process.
In parallel to this effort to provide an automatic verification method for large
networks, some other investigation is still needed, e.g. investigating how coun-
terexamples of a safety verification of the sub-networks carry over to counter
examples of the full network, or extending the approach to deal with peculiar
interlocking safety functions, such as flank protection, or overlap, that have not
yet been considered for the horizontal cut.

Compositional Verification of Interlocking Systems for Large Stations 251

Acknowledgement. The authors would like to express their gratitude to Jan Peleska
and Linh Hong Vu with whom Anne Haxthausen developed the RobustRailS verifica-
tion method and tools used in the presented work.

References

1. Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M.: Validation process for
railway interlocking systems. Sci. Comput. Program. 128, 2–21 (2016)

2. CENELEC European Committee for Electrotechnical Standardization. EN
50128:2011 - Railway applications - Communications, signalling and processing
systems - Software for railway control and protection systems (2011)

3. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp.
107–115. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14261-1 11

4. Hvid Hansen, H., Ketema, J., Luttik, B., Mousavi, M.R., Pol, J., Santos, O.M.:
Automated verification of executable UML models. In: Aichernig, B.K., Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 225–250. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 12

5. Haxthausen, A.E., Bliguet, M., Kjær, A.A.: Modelling and verification of relay
interlocking systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop
2008. LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12566-9 8

6. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Aspects Comput. 23(2), 191–
219 (2011)

7. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 205–220. Springer, Cham (2014). doi:10.1007/978-3-319-05032-4 16

8. James, P., Möller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Tre-
harne, H.: Decomposing scheme plans to manage verification complexity. In:
FORMS/FORMAT 2014–10th Symposium on Formal Methods for Automation
and Safety in Railway and Automotive Systems, pp. 210–220. Institute for Traffic
Safety and Automation Engineering, Technische Universität Braunschweig (2014)

9. James, P., Lawrence, A., Moller, F., Roggenbach, M., Seisenberger, M., Setzer,
A., Kanso, K., Chadwick, S.: Verification of solid state interlocking programs. In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253–268. Springer,
Cham (2014). doi:10.1007/978-3-319-05032-4 19

10. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
Techniques for modelling and verifying railway interlockings. Int. J. Softw. Tools
Technol. Transf. 16(6), 685–711 (2014)

11. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway inter-
locking - compositional approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer,
Cham (2016). doi:10.1007/978-3-319-33951-1 10

12. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional verification of multi-
station interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 279–293. Springer, Cham (2016). doi:10.1007/978-3-319-47169-3 20

http://dx.doi.org/10.1007/978-3-642-14261-1_11
http://dx.doi.org/10.1007/978-3-642-25271-6_12
http://dx.doi.org/10.1007/978-3-642-12566-9_8
http://dx.doi.org/10.1007/978-3-642-12566-9_8
http://dx.doi.org/10.1007/978-3-319-05032-4_16
http://dx.doi.org/10.1007/978-3-319-05032-4_19
http://dx.doi.org/10.1007/978-3-319-33951-1_10
http://dx.doi.org/10.1007/978-3-319-47169-3_20

252 A. Fantechi et al.

13. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of
interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M.,
Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham
(2017). doi:10.1007/978-3-319-57288-8 11

14. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) 8th Workshop on Model-Based
Testing, Rome, Italy, vol. 111, pp. 3–28. Electronic Proceedings in Theoretical
Computer Science, Open Publishing Association (2013)

15. Theeg, G., Vlasenko, S.V., Anders, E.: Railway Signalling & Interlocking: Interna-
tional Compendium. Eurailpress, Germany (2009)

16. Verified Systems International GmbH. RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual (2013). http://www.verified.de

17. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway
interlocking systems. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2014–
10th Symposium on Formal Methods for Automation and Safety in Railway and
Automotive Systems, pp. 200–209. Institute for Traffic Safety and Automation
Engineering, Technische Universität Braunschweig (2014)

18. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of inter-
locking systems featuring sequential release. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Cham (2015). doi:10.1007/
978-3-319-17581-2 15

19. Vu, L.H.: Formal development and verification of railway control systems - in the
context of ERTMS/ETCS level 2. Ph.D. thesis, Technical University of Denmark,
DTU Compute (2015)

20. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of inter-
locking systems featuring sequential release. Sci. Comput. Program. 133(Part 2),
91–115 (2017). doi:10.1016/j.scico.2016.05.010

21. Winter, K.: Symbolic model checking for interlocking systems. In: Flammini, F.
(ed.) Railway Safety, Reliability, and Security: Technologies and Systems Engineer-
ing. IGI Global (2012)

22. Winter, K.: Optimising ordering strategies for symbolic model checking of railway
interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp.
246–260. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34032-1 24

http://dx.doi.org/10.1007/978-3-319-57288-8_11
http://www.verified.de
http://dx.doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1016/j.scico.2016.05.010
http://dx.doi.org/10.1007/978-3-642-34032-1_24

Formalizing Timing Diagram Requirements
in Discrete Duration Calculus

Raj Mohan Matteplackel1, Paritosh K. Pandya1(B), and Amol Wakankar2

1 Tata Institute of Fundamental Research, Mumbai 400005, India
{raj.matteplackel,pandya}@tifr.res.in

2 Bhabha Atomic Research Centre, Mumbai, India
amolk@barc.gov.in

Abstract. Several temporal logics have been proposed to formalise tim-
ing diagram requirements over hardware and embedded controllers. How-
ever, succintness and visual structure of a timing diagram are not ade-
quately captured by their formulae [6]. Interval temporal logic QDDC
is a highly succint and visual notation for specifying patterns of behav-
iours [15]. In this paper, we propose a practically useful notation called
SeCeNL which enhances the quantifier and negation free fragment of
QDDC with features of nominals and limited liveness. We show that for
SeCeNL, the satisfiability and model checking problems have elemen-
tary complexity as compared to the non-elementary complexity for the
full logic QDDC. Next we show that timing diagrams can be naturally,
compositionally and succintly formalized in SeCeNL as compared with
PSL-Sugar and MTL. We give a linear time translation from timing dia-
grams to SeCeNL. As our second main result, we propose a linear time
translation of SeCeNL into QDDC. This allows QDDC tools such as
DCVALID [15,16] and DCSynth [17] to be used for checking consistency
of timing diagram requirements as well as for automatic synthesis of
property monitors and controllers. We give an example of a minepump
controller to illustrate our tools.

1 Introduction

A timing diagram is a collection of binary signals and a set of timing constraints
on them. It is a widely used visual formalism in the realm of digital hardware
design, communication protocol specification and embedded controller specifica-
tion. The advantages of timing diagrams in hardware design are twofold, one,
since designers can visualize waveforms of signals they are easy to comprehend
and two, they are very convenient for specifying ordering and timing constraints
between events (see Figs. 1 and 2).

There have been numerous attempts at formalizing timing diagram con-
straints in the framework of temporal logics such as the timing diagram logic
[9], with LTL formulas [6], and as synchronous regular timing diagrams [3].
Moreover, there are industry standard property specification languages such as
PSL-Sugar and OVA for associating temporal assertions to hardware designs [8].

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 253–268, 2017.
DOI: 10.1007/978-3-319-66197-1 16

254 R.M. Matteplackel et al.

The main motivation for these attempts was to exploit automatic verification
techniques that these formalisms support for validation and automatic circuit
synthesis. However, commenting on their success, Fisler et al. state that the less
than satisfactory adoption of formal methods in timing diagram domain can
be partly attributed to the gulf that exists between graphical timing diagrams
and textual temporal logic – expressing various timing dependencies that can
exist among signals that can be illustrated so naturally in timing diagrams is
rather tedious in temporal logics [6]. As a result, hardware designers use tim-
ing diagrams informally without any well defined semantics which make them
unamenable to automatic design verification techniques.

In this paper, we take a fresh look at formalizing timing diagram requirements
with emphasis on the following three features of the formalism that we propose
here.

Firstly, we propose the use of an interval temporal logic QDDC to spec-
ify patterns of behaviours. QDDC is a highly succinct and visual notation for
specifying regular patterns of behaviours [12,15,16]. We identify a quantifier
and negation-free subset SeCe (for Semi extended Chop expressions) of QDDC
which is sufficient for formalizing timing diagram patterns. It includes general-
ized regular expression like syntax with counting constructs. Constraints imposed
by timing diagrams are straightforwardly and compactly stated in this logic.
For example, the timing diagram in Fig. 1 stating that P transits from 0 to
1 somewhere in interval u to u + 3 cycles is captured by the SeCe formula
[¬P]^<u>^(slen = 3 && [¬P]^[[P]])^[[P]]. The main advantage of SeCe
is that it has elementary satisfiability as compared to the non-elementary satis-
fiability of general QDDC.

Fig. 1. Timing diagram with a marked position u and a timing constraint.

Secondly, it is very typical for timing diagrams to have partial ordering and
synchronization constraints between distinct events (see Fig. 2). Emphasizing
this aspect, formalisms such as two dimensional regular expressions [10] have
been proposed for timing diagrams. We find that synchronization in timing dia-
gram may even extend across waveforms. In order to handle such synchroniza-
tion, we extend our logic SeCe with nominals from hybrid temporal logics [11].
Nominals are temporal variables which “freeze” the positions of occurrences of
events. They naturally allow synchronization across formulae.

Thirdly, we enhance the timing diagram specifications (as well as the logic
SeCe) with limited liveness operators. While timing diagrams visually spec-
ify patterns of occurrence of signals, they do not make precise the modalities
of occurrences of such patterns. We explicitly introduce modalities such as
(a) initially, a specified pattern must occur, or that (b) every occurrence of
pattern1 is necessarily and immediately followed by an occurrence of pattern2, or

Formalizing Timing Diagram Requirements in Discrete Duration Calculus 255

that (c) occurrence of a specified pattern is forbidden anywhere within a behav-
iour. In this, we are inspired by Allen’s Interval Algebra relations [1] as well as the
LSC operators of Harel for message sequence charts [7]. We confine ourselves to
limited liveness properties where good things are achieved within specified bounds.
For example, in specifying a modulo 6 counter, we can say that the counter will
stabilize before completion of first 15 cycles. Astute readers will notice that, tech-
nically, our limited liveness operators only give rise to “safety” properties (in the
sense of Alpern and Schneider [2]). However, from a designer’s perspective they
do achieve the practical goal of forcing good things to happen.

Putting all these together, we define a logic SeCeNL which includes quantifier
and negation-free fragment of QDDC together with limited liveness operators
as well as nominals. The formal syntax and semantics of SeCeNL formulas is
given in Sect. 2.3. We claim that SeCeNL provides a natural and convenient
formalism for encoding timing diagram requirements. Substantiating this, we
formulate a translation of timing diagrams into SeCeNL formulae in Sect. 3.
(A textual syntax is used for timing diagrams. The textual syntax is inspired
by the tool WaveDrom [5], which is also used for graphical rendering of our
textual timing diagram specifications.) The translation to SeCeNL is succinct,
in fact, linear time computable in the size of the timing diagram. Moreover,
the translation is compositional, i.e. it translates each element of the timing
diagram as a sub-formula and overall specification is just the conjunction of
such constraints. Hence, the translation preserves the structure of the diagram.

With several examples of timing diagrams, we compare its SeCeNL formula
with the formulae in logics such as PSL-Sugar and MTL. Logic PSL-Sugar is
syntactically a superset of MTL which in turn is a superset of LTL. PSL-Sugar
extends LTL with SERE (regular expressions with intersection) and counting
which are similar to our SeCe. In spite of this similarity, we show some nat-
ural examples where SeCeNL formula is at least one exponent more succinct as
compared to PSL-Sugar. This is essentially due to the use of nominals.

As the second main contribution of this paper, we consider formal verification
and controller synthesis from SeCeNL specifications. In Sect. 3.1, we formulate a
reduction from a SeCeNL formula to an equivalent QDDC formula. This allows
QDDC tools to be used for SeCeNL. It may be noted that, though expressively
no more powerful than QDDC, the logic SeCeNL is considerably more efficient
for satisfiability and model checking. We find that these problems have elemen-
tary complexity as compared with full QDDC which exhibits non-elementary
complexity. Also, the presence of limited liveness and nominals makes it more
convenient as compared to QDDC for practical use.

By implementing the above reductions, we have constructed a Python based
translator which converts a requirement, consisting of a Boolean combination
of timing diagram specifications (augmented with limited liveness) and SeCeNL
formulae, into an equivalent QDDC formula. In this sense, we handle heteroge-
nous specification. We can analyze the resulting formula using the QDDC tools
DCVALID [15,16] as well as DCSynth [17] for model checking and controller
synthesis, respectively. We illustrate the use of our tools by a case study of a

256 R.M. Matteplackel et al.

minepump controller in Sect. 4. Readers may note that we specify rather rich
quantitative requirements not commonly considered, and our tools are able to
automatically synthesize monitors and controllers for such specifications.

2 Logic QDDC

Let Σ be a finite non empty set of propositional variables. A word σ over Σ is
a finite sequence of the form P0 · · · Pn where Pi ⊆ Σ for each i ∈ {0, . . . , n}. Let
len(σ) = n + 1, dom(σ) = {0, . . . , n} and ∀i ∈ dom(σ) : σ(i) = Pi.

The syntax of a propositional formula over Σ is given by:

ϕ := 0 | 1 | p ∈ Σ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ,

and operators such as ⇒ and ⇔ are defined as usual. Let ΩΣ be the set of all
propositional formulas over Σ.

Let σ = P0 · · · Pn be a word and ϕ ∈ ΩΣ . Then, for an i ∈ dom(σ) the
satisfaction relation σ, i |= ϕ is defined inductively as expected: σ, i |= 1; σ, i |=
p iff p ∈ σ(i); σ, i |= ¬p iff σ, i 	|= p, and the satisfaction relation for the rest of
the Boolean combinations defined in a natural way.

The syntax of a QDDC formula over Σ is given by:

D := 〈ϕ〉 | [ϕ] | [[ϕ]] | D ^ D | ¬D | D ∨ D | D ∧ D | D∗ |
∃p. D slen �� c | scount ϕ �� c

where ϕ ∈ ΩΣ , p ∈ Σ, c ∈ N and ��∈ {<,≤,=,≥, >}.
An interval over a word σ is of the form [b, e] where b, e ∈ dom(σ) and b ≤ e.

An interval [b1, e1] is a sub interval of [b, e] if b ≤ b1 and e1 ≤ e. Let Intv(σ) be
the set of all intervals over σ.

Let σ be a word over Σ and let [b, e] ∈ Intv(σ) be an interval. Then the
satisfaction relation of a QDDC formula D over Σ, written σ, [b, e] |= D, is
defined inductively as follows:

σ, [b, e] |= 〈ϕ〉 iff σ, b |= ϕ,
σ, [b, e] |= [ϕ] iff ∀b ≤ i < e : σ, i |= ϕ,
σ, [b, e] |= [[ϕ]] iff ∀b ≤ i ≤ e : σ, i |= ϕ,
σ, [b, e] |= ¬D iff σ, [b, e] 	|= D,
σ, [b, e] |= D1 ∨ D2 iff σ, [b, e] |= D1 or σ, [b, e] |= D2,
σ, [b, e] |= D1 ∧ D2 iff σ, [b, e] |= D1 and σ, [b, e] |= D2,
σ, [b, e] |= D1^D2 iff ∃b ≤ i ≤ e : σ, [b, i] |= D1 and σ, [i, e] |= D2.

Operator D∗ denotes iterated chop operator. Thus, σ, [b, e] |= D∗ iff b = e or
there exist n > 0, m0 ≤ m1 . . . ≤ mn with m0 = b,mn = e and σ, [mi,mi+1] |=
D for all 0 ≤ i < n. Operator ∃p. D denotes existential quantification1 over a
temporal variable p, where p ∈ Σ. We call word σ′ a p-variant of a word σ if
1 Hence the logic is called QDDC which abbreviates Quantified Discrete Duration

Calculus.

Formalizing Timing Diagram Requirements in Discrete Duration Calculus 257

∀i ∈ dom(σ),∀q 	= p : σ′(i)(q) = σ(i)(q). Then σ, [b, e] |= ∃p. D ⇔ σ′, [b, e] |= D
for some p-variant σ′ of σ. We define σ |= D iff σ, [0, len(σ)] |= D.

Entities slen, and scount are called terms in QDDC. The term slen gives the
length of the interval in which it is measured, whereas scount ϕ with ϕ ∈ ΩΣ

counts the number of positions in the interval under consideration where ϕ holds.
Formally, for ϕ ∈ ΩΣ we have slen(σ, [b, e]) = e − b, and scount(σ, ϕ, [b, e]) =
∑i=e

i=b

{
1, if σ, i |= ϕ,
0, otherwise.

}

.

We also use the following derived constructs: pt = 〈1〉, and ext = [1], and
{{ϕ}} = 〈ϕ〉^slen = 1. Also, ♦D = true ^D^true and �D = ¬♦¬D. Finally,
∀p.D = ¬∃p.¬D. Moreover, �prefD = ¬((¬D)^true). Hence, �D states
that D holds for all subintervals where as �prefD states that D holds for all
prefix intervals. Size of a formula is the number of operators and propositions
appearing in it, except that all integer constants are in binary and hence constant
c contributes size log2(c).

Theorem 1 [16]. For every QDDC formula D over Σ we can construct a DFA
A(D) over alphabet 2Σ such L(D) = L(A(D)). The size of A(D) is non elemen-
tary in the size of D in the worst case.

2.1 Chop Expressions: Ce and SeCe

Definition 1. The logic Semi extended Chop expressions (SeCe) is a syntac-
tic subset of QDDC in which the operators ∃p. D, ∀p. D and negation ¬ are
not allowed. The logic Chop expressions (Ce) is a sublogic of SeCe in which
conjunction ∧ is not allowed.

Lemma 1. For any chop expression D of size n we can effectively construct a
language equivalent DFA A of size Ω(22

n

).

Proof. We observe that for any chop expression D we can construct a language
equivalent NFA which is at most exponential in size of D including the constants
appearing in it (for a detailed proof see [4] wherein a similar result has been
proved). But this implies there exists a DFA of size 22

n

which accepts exactly
the set of words σ such that σ |= D.

Corollary 1. For any SeCe D of size n we can effectively construct a language
equivalent DFA A of size Ω(22

2n

).

Proof. Proof follows from the definition of SeCe, Lemma 1 and from the fact
that the size of the product of DFA’s can be atmost exponential in the size of
individual DFA’s.

258 R.M. Matteplackel et al.

2.2 DCVALID and DCSynth

The reduction from a QDDC formula to its formula automaton has been imple-
mented into the tool DCVALID [15,16]. The formula automaton it generates is
total, deterministic and minimal automaton for the formula. DCVALID can also
translate the formula automaton into Lustre/SCADE, Esterel, SMV and Ver-
ilog observer modules. By connecting this observer module to run synchronously
with a system we can reduce model checking of QDDC property to reachability
checking in the observer augmented system. See [15,16] for details. A further use
of formula automata can be seen in the tool called DCSynth [17] which synthe-
sizes synchronous dataflow controller in SCADE/NuSMV/Verilog from QDDC
specification.

2.3 Logic SeCeNL: Syntax and Semantics

We can now introduce our logic SeCeNL which builds upon SeCe (semi extended
chop expressions) by augmenting them with nominals and limited liveness
operators.

Syntax: The syntax of SeCeNL atomic formula is as follows. Let D, D1, D2 and
D3 range over SeCe formulae and let Θ, Θ1, Θ2 and Θ3 range over subset of
propositional variables occurring in SeCe formula. The notation D : Θ, called a
nominated formula, denotes that Θ is the set of variables used as nominals in
the formula D.

init(D2 : Θ2 / D3 : Θ3) | anti(D : Θ) | pref(D : Θ) |
implies(D1 : Θ1 � D2 : Θ2) | follows(D1 : Θ1 � D2 : Θ2/D3 : Θ3) |
triggers(D1 : Θ1 � D2 : Θ2/D3 : Θ3)

We also assume that Θ2 ∩ Θ3 ⊆ Θ1, and for follows(D1 : Θ1 � D2 : Θ2/D3 :
Θ3), the sets Θ1, Θ2, Θ3 are mutually disjoint. An SeCeNL formula is a Boolean
combination of atomic SeCeNL formulae of the form above. As a convention,
D : {} is abbreviated as D when the set of nominals Θ is empty.

Limited Liveness Operators: Given an word σ and a position i ∈ dom(σ),
we state that σ, i |= D iff σ[0, i] |= D. Thus, the interpretation is that the past
of the position i in execution satisfies D. We say σ′ ≤prefix σ if σ′ is a prefix of
σ, and σ′ <prefix σ if σ′ is a proper prefix of σ.

We first explain the semantics of limited liveness operators assuming that no
nominals are used in the specification, i.e. Θ, Θ1, Θ2 and Θ3 are all empty. A set
S ⊆ Σ∗ is prefix closed if σ ∈ S then ∀σ′ : σ′ ≤prefix σ ⇒ σ′ ∈ S. We observe
that each atomic liveness formula denotes a prefix closed subset of (2Σ)+.

Formalizing Timing Diagram Requirements in Discrete Duration Calculus 259

– L(pref(D)) = {σ | ∀σ′ ≤prefix σ : σ′ |= D}. Operator pref(D) denotes that
D holds invariantly throughout the execution.

– L(init(D2/D3)) = {σ | ∀j : σ, [0, j] |= D3 ⇒ ∃i ≤ j : σ, [0, i] |= D2}. Operator
init(D2/D3) basically states that if j is the first position which satisfies D3

in the execution then there exists an i ≤ j such that i satisfies D2. Thus,
initially D2 holds before D3 unless the execution (is too short and hence)
does not satisfy D3 anywhere.

– L(anti(D)) = {σ | ∀i, j : σ, [i, j] 	|= D}. Operator anti(D) states that there
is no observation sub interval of the execution which satisfies D.

– L(implies(D1 � D2)) = {σ | ∀i, j : (σ, [i, j] |= D1 ⇒ σ, [i, j] |= D2)}.
Operator implies(D1 � D2) states all observation intervals which satisfy
D1 will also satisfy D2.

– L(follows(D1 � D2/D3)) = {σ | ∀i, j : (σ, [i, j] |= D1 ⇒
(∀k : σ, [j, k] |= Ξ(D3) ⇒ ∃l ≤ k : σ, [j, l] |= D2))}.

Operator follows(D1 � D2/D3) states that if any observation interval [i, j]
satisfies D1 and there is a following shortest interval [j, k] which satisfies D3

then there exists a prefix interval of [j, k] which satisfies D2.
– L(triggers(D1 � D2/D3)) = {σ | ∀i, j : (σ, [i, j] |= D1 ⇒

(∀k : σ, [i, k] |= Ξ(D3) ⇒ ∃l ≤ k : σ, [i, l] |= D2))}.
Operator triggers(D1 � D2/D3) states that if any observation interval [i, j]
satisfies D1 and if [i, k] is the shortest interval which satisfies D3 then D2

holds for a prefix interval of [i, k].

Based on this semantics, we can translate an atomic SeCeNL formula ζ with-
out nominals into equivalent QDDC formula ℵ(ζ) as follows. Reader may like
to recall the �D and �prefD operators of QDDC. Additionally, for a QDDC
formula D let Ξ(D) = D ∧ ¬(D^ext), which says that if σ, [b, e] |= Ξ(D) then
σ, [b, e] |= D and there exists no proper prefix interval [b, e1], (i.e. [b, e1] ∈ Intv(σ)
and b ≤ e1 < e) such that σ, [b, e1] |= D. The translation is as follows.

1. ℵ(pref(D))
def≡ �pref D.

2. ℵ(init(D2/D3))
def≡ �pref (Ξ(D3) ⇒ D2^true).

3. ℵ(anti(D))
def≡ ¬(true ^D^true).

4. ℵ(implies(D1 � D2))
def≡ �(D1 ⇒ D2).

5. ℵ(follows(D1 � D2/D3))
def≡ �(¬(D1^(Ξ(D3) ∧ ¬(D2^true)))).

6. ℵ(triggers(D1 � D2/D3))
def≡ �(D1^true ⇒ (Ξ(D3) ⇒ D2^true))

∧

�(D1 ⇒ �pref (Ξ(D3) ⇒ D2^true)).

Lemma 2. For any ζ ∈ SeCeNL, if ζ does not use nominals then σ ∈ L(ζ) iff
σ ∈ L(ℵ(ζ)).

The proof follows from examination of the semantics of ζ and the definition of
ℵ(ζ). We omit the details.

260 R.M. Matteplackel et al.

Nominals: Consider a nominated formula D : Θ where D is a SeCe formula over
propositional variables Σ∪Θ. As we shall see later, the propositional variables in
Θ are treated as “place holders” - variables which are meant to be true exactly
at one point - and we call them nominals following [11].

Given an interval [b, e] ∈ Intv(N) we define a nominal valuation over [b, e]
to be a map ν : Θ → {i | b ≤ i ≤ e}. It assigns a unique position within [b, e]
to each nominal variable. We can then straightforwardly define σ, [b, e] |=ν D by
constructing a word σν over Σ ∪ Θ such that ∀p ∈ Σ : p ∈ σν(i) ⇔ p ∈ σ(i)
and ∀u ∈ Θ : u ∈ σν(i) ⇔ ν(u) = i. Then σν , [b, e] |= D ⇔ σ, [b, e] |=ν D.
We state that ν1 over Θ1 and ν2 over Θ2 are consistent if ν1(u) = ν2(u) for all
u ∈ Θ1 ∩ Θ2. We denote this by ν1 ‖ ν2.

Now we consider formulae where nominals are used and shared between dif-
ferent parts D1, D2 and D3 of an atomic formula such as implies(D1 : Θ1 �
D2 : Θ2).

Example 1 (lags). Let D1 : {u, v} be the formula (<u> ^ [[P]] &&
((slen = n)^ <v> ^ true) which holds for an interval where P is
true throughout the interval and v marks the n + 1 position from u denot-
ing the start of the interval. Let D2 : {v} be the formula true ^ <v> ^ [[Q]].
Then, implies(D1 : {u, v} � D2 : {v}) states that for all observation intervals
[i, j] and all nominal valuations ν over [i, j] if σ, [i, j] |=ν D1 then σ, [i, j] |=ν D2.
This formula is given by live timing diagram2 in Fig. 4.

Semantics of SeCeNL: In the following vi denotes nominal valuation over θi.

– L(pref(D1 : Θ1)) = {σ | ∀σ′ ≤prefix σ : ∃ν1. σ′ |=ν1 D1}.
– L(init(D2 : Θ2 / D3 : Θ3)) = {σ | ∀j∀ν3 : σ, [0, j] |=ν3 D3 ⇒ ∃k ≤ j∃ν2 :

σ, [0, k] |=ν2 D2}.
– L(anti(D1 : Θ1)) = {σ | ∀i, j∀ν1 : σ, [i, j] 	|=ν1 D1}.
– L(implies(D1 : Θ1 � D2 : Θ2)) = {σ | ∀i, j∀ν1 : (σ, [i, j] |=ν1 D1 ⇒ ∃ν2 :

ν1 ‖ ν2 ∧ σ, [i, j] |=ν2 D2)}.
– L(follows(D1 : Θ1 � D2 : Θ2/D3 : Θ3)) =

{σ | ∀i, j∀ν1 : (σ, [i, j] |=ν1 D1 ⇒ (∀k∀ν3 ‖ ν1 : σ, [j, k] |=ν3 Ξ(D3) ⇒ ∃l ≤
k∃ν2 : ν2 ‖ ν1 ∧ σ, [j, l] |=ν2 D2))}.

– L(triggers(D1 : Θ1 � D2 : Θ2/D3 : Θ3)) =
{σ | ∀i, j∀ν1 : (σ, [i, j] |=ν1 D1 ⇒ (∀k∀ν3 ‖ ν1 : σ, [i, k] |=ν3 Ξ(D3) ⇒

∃l ≤ k∃ν2 : ν2 ‖ ν1 ∧ σ, [i, l] |= D2))}.

Based on the above semantics, we now formulate a QDDC formula equivalent
to a SeCeNL formula. We will make essential use of quantification ∃p.D We
first define relativized quantifiers to restrict variables in Θ to singletons. Given

Θ = {u1, . . . , un} let singleton(Θ)
def≡ (scount u1 = 1 ∧ · · · ∧ scount un = 1)

which states that in current interval each nominal occurs exactly once. Then,

∀1
Θ : D

def≡ ∀Θ. (singleton(Θ) ⇒ D) and ∃1
Θ : D

def≡ ∃Θ. (singleton(Θ) ∧ D).

2 The illustration was made with WaveDrom and due to its limitation on naming
nominals we were forced to rename the nominals u and v in Q as a and b respectively.

Formalizing Timing Diagram Requirements in Discrete Duration Calculus 261

SeCeNL to QDDC : We now define the translation ℵ from SeCeNL to QDDC.

1. ℵ(pref(D1 : Θ1))
def≡ �pref (∃1

Θ1
: D1)).

2. ℵ(init(D2 : Θ2 / D3 : Θ3))
def≡ �pref (∀1

Θ3
: (D3 ⇒ ((∃1

Θ2
: D2)^true))).

3. ℵ(anti(D1 : Θ1))
def≡ ¬(true ^(∃1

Θ1
: D1)^true).

4. ℵ(implies(D1 : Θ1 � D2 : Θ2))
def≡ �(∀1

Θ1
: (D1 ⇒ (∃1

Θ2−Θ1
: D2))).

5. ℵ(follows(D1 : Θ1 � D2 : Θ2/D3 : Θ3))
def≡

�(¬((∃1
Θ1

: D1)^(Ξ(∃1
Θ3

: D3) ∧ ¬((∃1
Θ2

: D2)^true)))).

6. ℵ(triggers(D1 : Θ1 � D2 : Θ2/D3 : Θ3))
def≡

�(∀1
Θ1

: ((D1 ∧ singeton(Θ1))^true ⇒ (Ξ(∀1
Θ3−Θ1

: D3) ⇒
((∃1

Θ2−Θ1
: D2)^true))))

∧

�(∀1
Θ1

: (D1 ⇒ �pref (Ξ(∀1
Θ3−Θ1

: D3) ⇒ ((∃1
Θ2−Θ1

: D2)^true))))

Theorem 2. For any word σ over Σ and any ζ ∈ SeCeNL we have that σ ∈
L(ζ) iff σ ∈ L(ℵ(ζ)). Moreover, the translation ℵ(ζ) can be computed in time
linear in the size of ζ.

The proof follows from the semantics of ζ and the definition of ℵ(ζ).

Lemma 3. Let ζ = implies(D1 : Θ1 � D2 : Θ2) and let |A(Di)| = mi for
i ∈ {1, 2}. Then there exists a DFA A(ζ) of size at most 22

m1m2 for ζ.

Proof. The formula ζ can be written in terms of a negation and two existential
quantifiers. Note that each application of existential quantifier will result in an
NFA and each time we determinize we get a DFA which is at most exponential
in the size of NFA. Since that both A(D1) and A(D2) are DFA’s to start with,
this implies we can construct a DFA A(ζ) of size at most 22

m1m2 for ζ.

In an similar way we can show that the size of formula automata for other
SeCeNL atomic formulae are also elementary.

Lemma 4. For any ζ ∈ SeCeNL the size of the automaton A(ζ) for ζ is ele-
mentary in the size of ζ.

3 Formalizing Timing Diagrams

In this section we give a formal semantics to timing diagrams and formula trans-
lation from timing diagrams to SeCeNL. We first give a textual syntax for timing
diagrams which is derived from the timing diagram format of WaveDrom [5,18].

The symbols in a waveform come from Λ = {0, 1, 2, x, 0|, 1|, 2|, x|} and Θ, an
atomic set of nominals. Let Γ = Θ ∪ Λ. The syntax of a waveform over Γ is
given by the grammar:

π := λ | u : π | π1π2,

262 R.M. Matteplackel et al.

where u ∈ Θ and λ ∈ Λ. We call the elements in Θ the nominals. As we shall
see later, when we convert a waveform to a SeCeNL formula the nominals that
appear in the formula are exactly the nominals in the waveform and hence the
name. Let Wf be the set of all waveforms over Γ .

An example of a waveform is 01a:2x011xb:x2|220c:00 with Θ = {a,b,c}. Intu-
itively, in a waveform 0 denotes low, 1 high, 2 and x don’t cares (there is a subtle
difference between 2 and x though) and “|” the stuttering operator.

Let Σ be a set of propositional variables. A timing diagram over Σ is a tuple
〈W, Σ,C,Θ〉 where W = {Wp ∈ Wf | p ∈ Σ} and C ⊂ Θ × Θ × Intv(N) a set
of timing constraints.

Figure 2 shows an example timing diagram T = 〈{Wp,Wq}, {(a, b, [10 : 10]),
(a, d, [1 : 8]), (c, d, [20 : 30])}, {a, b, c, d, e, f}〉 along with its rendering in Wave-
Drom. As in the case with SeCeNL formulas, nominals act as place holders in tim-
ing diagrams which can be shared among multiple waveforms. For example, in the
figure Wp and Wq share the nominals a and c. As a result a timing constraint in one
timing diagram can implicitly induce a timing constraint in the other. For instance,
even though there is no direct timing constraint between a and c in Wp the con-
straints between a and d, and d and c together impose one on them.

Fig. 2. Timing diagram T and its WaveDrom rendering.

Let T = 〈W, Σ,C,Θ〉, W = {Wp ∈ Wf | p ∈ Σ}, be a timing diagram. Let
ν : Θ → [b, e] be a nominal valuation. Let σ : [0, n] → 2Σ be a word over Σ and
for all p ∈ Σ let σp : [0, n] → {0, 1} given by σp(i) = 1 iff p ∈ σ(i). Then the
satisfaction relation σp over a waveform W under the valuation ν is defined as
follows.

σp, [b, e] |=ν 0 iff e = b + 1 and σp(b) = 0,
σp, [b, e] |=ν 1 iff e = b + 1 and σp(b) = 1,
σp, [b, e] |=ν λ iff e = b + 1 and λ ∈ {2, x},
σp, [b, e] |=ν 0| iff ∀b ≤ i < e : σp(i) = 0,
σp, [b, e] |=ν 1| iff ∀b ≤ i < e : σp(i) = 1,
σp, [b, e] |=ν 2| iff ∀b ≤ i < e : σp(i) ∈ {0, 1},
σp, [b, e] |=ν x| iff ∀b ≤ i < e : σp(i) = 1 or ∀b ≤ i < e : σp(i) = 0,

σp, [b, e] |=ν u : W iff ν(u) = b and σp, [b, e] |=ν W,
σp, [b, e] |=ν V W iff ∃b ≤ i < e : σp, [b, i] |=ν1 V and σp, [i, e] |=ν2 W,

and ν1||ν and ν2||ν.

Formalizing Timing Diagram Requirements in Discrete Duration Calculus 263

We say ν |= C iff ∀(a, b, 〈l, r〉) ∈ C : ν(b) − ν(a) ∈ 〈l, r〉. We define σ, [b, e] |=ν

〈W, Σ,C,Θ〉 iff ∀p ∈ Σ : σp, [b, e] |=ν Wp and ν |= C.

3.1 Waveform to SeCeNL Translation

We translate a waveform Wp to SeCeNL as follows: every 0 occurring in P is
translated to {{¬ P}}, 1 to {{P}}, 2 and x to slen = 1, 0| to pt∨[¬ P], 1| to
pt∨[P], 2| to true, and x| to pt∨[P]∨[¬ P]. A nominal u that is appearing in Wp

is translated to <u>. For instance, the waveform Wp = 01a:2x011xb:x2|220c:00
in T of Fig. 2 will be translated to SeCeNL formula as below.

({{¬ P}}ˆ{{P}}ˆ<a>ˆ(slen = 1)ˆ(slen = 1)ˆ{{¬ P}}ˆ{{P}}ˆ{{P}}ˆ(slen = 1)ˆˆ
(slen = 1)ˆtrueˆ(slen = 1)ˆ(slen = 1) ˆ{{¬ P}}ˆ<c>ˆ{{¬ P}}ˆ{{¬ P}}).

We denote the translated SeCeNL formula by ξ(T,Wp). Similarly we can trans-
late Wq to get the formula ξ(T,Wq). The timing constraints in C is roughly
translated to the SeCeNL formula ξ(T,C) as follows.

((trueˆ<a>ˆ((slen ≥ 1) ∧ (slen ≤ 8))ˆ<d>ˆtrue) ∧
(trueˆ<d>ˆ((slen ≥ 20) ∧ (slen ≤ 30))ˆ<c>ˆtrue) ∧

(trueˆ<a>ˆ(slen = 10)ˆˆtrue)).

We define ξ(T) = ξ(T,Wp) ∧ ξ(T,Wq) ∧ ξ(T,C). For a timing diagram T =
〈W, Σ,C,Θ〉, W = {Wp | p ∈ Σ} we define ξ(T) =

∧
p∈Σ ξ(T,Wp)

∧ ∧ξ(T,C).

Theorem 3. Let T be a timing diagram. Then, for all σ ∈ Σ∗, for all [b, e] ∈
Intv(σ) and for all nominal valuation ν over [b, e], σ, [b, e] |=ν T iff σ, [b, e] |=ν

ξ(T) : Θ. Also, the translation ξ(T) : Θ is linear in the size of T .

Proof. Proof is not difficult and is by induction on the length of the waveform.

Due above theorem we can now use timing diagrams in place of nominated
formulas with liveness operators. We call such timing diagrams live timing dia-
grams. For an example of a live timing diagram see Fig. 4.

3.2 Comparision with Other Temporal Logics

In previous section, Theorem 3 showed that timing diagrams can be translated
to equivalent SeCeNL formulas with only linear blowup in size. In this section we
compare our logic SeCeNL with other relevant logics in the literature viz, LTL,
discrete time MTL, and PSL-Sugar. Of these, PSL-Sugar is the most expressive
and discrete time MTL and LTL are its syntactic subset. We show by examples
that SeCeNL formulae are more succint (smaller in size) than PSL-Sugar and
we believe that they capture the diagrams more directly. The full version of this
paper [13] gives several more examples.

264 R.M. Matteplackel et al.

Fig. 3. Example 1.

Example (Ordered Stack). Let us now consider the timing diagram in Fig. 3
adapted from [6]. Rise and fall of successive signals a, b and c follow a stack
discipline. The language described by it is given by the SeCeNL formula:

([¬a] ˆ<ua> ˆ [a] ˆ <va> ˆ [¬a]) ∧ ([¬b] ˆ<ub> ˆ [b] ˆ <vb> ˆ [¬b]) ∧
([¬c] ˆ<uc> ˆ [c] ˆ <vc> ˆ [¬c]) ∧
(extˆ <ua> ˆ ext ˆ <ub> ˆ true) ∧ (trueˆ <ub> ˆ ext ˆ <uc> ˆ true) ∧
(trueˆ <vc> ˆ ext ˆ <vb> ˆ true) ∧ (trueˆ <vb> ˆ ext ˆ <va> ˆ true).

Note that first three conjuncts exactly correspond to the three waveforms. The
next four conjuncts correspond to the four arrows (ordering constraints) between
the waveforms. In general, if n signals are stacked, its SeCeNL specification has
size O(n).

An equivalent MTL (or LTL) formula is given by:

[¬a ∧ ¬b ∧ ¬c] UU [a ∧ ¬b ∧ ¬c] UU [a ∧ b ∧ ¬c] UU [a ∧ b ∧ c] UU
[a ∧ b ∧ ¬c] UU [a ∧ ¬b ∧ ¬c] UU [¬a ∧ ¬b ∧ ¬c]

where a UU b is the derived modality a ∧ X(aUb). For a stack of n signals, the
size of the MTL formula is O(n2). Above formula is also a PSL-Sugar formula.
We attempt to specify the pattern as a PSL-Sugar regular expression as follows:

((¬a ∧ ¬b ∧ ¬c;)[+]; (a ∧ ¬b & ¬c;)[+]; (a ∧ b ∧ ¬c;)[+]; (a ∧ b ∧ c;)[+];
(a ∧ b ∧ ¬c;)[+]; (a ∧ ¬b ∧ ¬c;)[+]; (¬a ∧ ¬b ∧ ¬c;)[+].

For a stack of n signals, the size of the PSL-Sugar SERE expression is O(n2).
We believe that there is no formula of size O(n) in PSL-Sugar which can express
the above property. Compare this with size O(n) formula of SeCeNL.

Example (Unordered Stack). In ordered stack signal a turns on first and turns off
last followed by signals b, c in that order. We consider a variation of the ordered
stack example above where signals turn on and off in first-on-last-off order but
there is no restriction on which signal becomes high first. This can be compactly
specified in SeCeNL as follows.

([¬a] ˆ<ua> ˆ [a] ˆ <va> ˆ [¬a]) ∧ ([¬b] ˆ<ub> ˆ [b] ˆ <vb> ˆ [¬b]) ∧
([¬c] ˆ<uc> ˆ [c] ˆ <vc> ˆ [¬c]) ∧

(ext ˆ <u1> ˆ ext ˆ <u2> ˆ ext ˆ <u3> ˆext
ˆ <v3> ˆ ext ˆ <v2> ˆ ext ˆ <v1> ˆ ext) ∧

Bijection(ua, ub, uc, va, vb, vc, u1, u2, u3, v1, v2, v3)

Formalizing Timing Diagram Requirements in Discrete Duration Calculus 265

where formula Bijection below states that there is one to one correspon-
dence between positions marked by ua, ub, uc, va, vb, vc and positions marked
by u1, u2, u3, v1, v2, v3. Moreover, if ua maps to say u3 than va must map to v3
and so on.

[[(u1 ∨ u2 ∨ u3) ⇔ (ua ∨ ub ∨ uc)]] ∧ [[
∧

1≤i,j≤3,i �=j ¬(ui ∧ uj)]]
[[(v1 ∨ v2 ∨ v3) ⇔ (va ∨ vb ∨ vc)]] ∧ [[

∧
1≤i,j≤3,i �=j ¬(vi ∧ vj)]]∧

1≤i≤3,j∈a,b,c (true ˆ <ui ∧ uj> ˆ true ⇔ true ˆ <vi ∧ vj> ˆ true).

Note that, in general, if n signals are stacked, then the above SeCeNL specifica-
tion has size O(n2).

Now we discuss encoding of unordered stack in PSL-Sugar. In absence of
nominals, it is difficult to state the above behaviour succinctly in logics PSL-
Sugar even using its SERE regular expressions. Each order of occurrence of
signals has to be enumerated as a disjunction where each disjunct is as in the
example ordered stack (where the order was a, b, c). As there are n! orders pos-
sible between n signals, the size of the PSL-Sugar formula is also O(n!). We
believe that there is no polynomially sized formula in PSL-Sugar encoding this
property. This shows that SeCeNL is exponentially more succint as compared to
PSL-Sugar.

In general, presence of nominals distinguishes SeCeNL from logics like PSL-
Sugar. In formalizing behaviour of hardware circuits it has been proposed that
regular expressions are not enough and operators such as pipelining have been
introduced [6]. These are a form of synchronization and they can be easily
expressed using nominals. (See [14].)

4 Case Study: Minepump Specification

We first specify some useful generic timing diagram properties.

– lags(P,Q, n): it is defined by Fig. 4. It specifies that in any observation inter-
val if P holds continuously for n + 1 cycles and persists then Q holds from
(n + 1)th cycle onwards and persists till P persists.

– tracks(P,Q, n): defined by Fig. 5. In any observation interval if P becomes
true then Q sustains as long as P sustains or upto n cycles whichever is
shorter.

– sep(P, n): Fig. 6 defines this property. Any interval which begins with a falling
edge of P and ends with next rising edge of P then the length of the interval
should be at least n cycles.

– ubound(P, n): Fig. 7 defines this property. In any observation interval P can
be continuously true for at most n cycles.

Note that we have presented these formulae diagrammatically. The textual ver-
sion of these live timing diagrams can be found in the full version [13].

We now state the minepump problem. Imagine a minepump which keeps the
water level in a mine under control. The pump is driven by a controller which

266 R.M. Matteplackel et al.

Fig. 4. lags(P,Q, n). Fig. 5. tracks(P,Q, n).

Fig. 6. sep(P, n). Fig. 7. ubound(P, n).

can switch it on and off. Mines are prone to highly flammable methane leakage
trapped underground. So as a safety measure if a methane leakage is detected
the controller is not allowed to keep the pump on.

The controller has two input sensors - HH2O which becomes 1 when water
level is high, and HCH4 which is 1 when there is a methane leakage. It can
generate two output signals - ALARM which is set to 1 to sound/persist the
alarm, and PUMPON which is set to 1 to keep the pump on. The objective of
the controller is to safely operate the pump and the alarm in such a way that
the water level is never dangerous, indicated by the indicator variable DH2O,
whenever certain assumptions hold. We have the following assumptions on the
mine and the pump.

– Sensor reliability assumption: pref([[DH2O ⇒ HH2O]]) . If HH2O is false
then so is DH2O.

– Water seepage assumptions: tracks(HH2O,DH2O, κ1). The minimum no. of
cycles for water level to become dangerous once it becomes high is κ1.

– Pump capacity assumption: lags(PUMPON,¬HH2O, κ2). If pump is kept on
for at least κ2 + 1 cycles then water level will not be high after κ2 cycles.

– Methane release assumptions: sep(HCH4, κ3) and ubound(HCH4, κ4). The
minimum separation between the two leaks of methane is κ3 cycles and the
methane leak cannot persist for more than κ4 cycles.

– Initial condition assumption: init(<¬HH2O> ∧ <¬HCH4>, slen = 0). Ini-
tially neither the water level is high nor there is a methane leakage.

Let the conjunction of these SeCeNL formulas be denoted as MINEASSUME. The
commitments are:

– Alarm control: lags(HH2O,ALARM, κ5) and lags(HCH4,ALARM, κ6) and
lags(¬HH2O ∧ ¬HCH4,¬ALARM, κ7). If the water level is high then alarm
will be high after κ5 cycles and if there is a methane leakage then alarm will
be high after κ6 cycles. If neither the water level is dangerous nor there is a
methane leakage then alarm should be off after κ7 cycle.

Formalizing Timing Diagram Requirements in Discrete Duration Calculus 267

– Safety condition: pref([[¬DH2O ∧ (HCH4⇒¬PUMPON)]]) . The water level
should never become dangerous and whenever there is a methane leakage
pump should be off.

Let the conjunction of these commitments be denoted as MINECOMMIT. Then, the
requirement over the minepump controller is given by the formula MINEASSUME ⇒
MINECOMMIT. Note that the requirement consists of a mixture of timing diagram
constraints (such as pump capacity assumption above) as well as SeCeNL for-
mulas (such as safety condition above). Hence the specification is heterogenous.

The tool DCSynth can automatically synthesize a controller for the values,
say κ1 = 10, κ2 = 2, κ3 = 14, κ4 = 2, and κ5 = κ6 = κ7 = 1. For these values,
in under 1s it outputs a SCADE/SMV controller with 140 states meeting the
specification. If the constants are such that specification is not realizable the
tool outputs an explanation. More case studies can be found in the full version
of the paper [13].

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Comm. ACM 26(11),
832–843 (1983)

2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

3. Amla, N., Emerson, E.A., Kurshan, R.P., Namjoshi, K.S.: Model checking synchro-
nous timing diagrams. In: FMCAD 2000, pp. 283–298 (2000)

4. Babu, A., Pandya, P.K.: Chop expressions and discrete duration calculus. In: Mod-
ern Applications of Automata Theory, pp. 229–256 (2012)

5. Chapyzhenka, A., Probell, J.: Wavedrom: rendering beautiful waveforms from plain
text. Synopsys User Group (2016). http://wavedrom.com/images/SNUG2016
WaveDrom.pdf

6. Chockler, H., Fisler, K.: Temporal modalities for concisely capturing timing dia-
grams. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp.
176–190. Springer, Heidelberg (2005). doi:10.1007/11560548 15

7. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Form.
Methods Syst. Des. 19(1), 45–80 (2001)

8. Eisner, C., Fisman, D.: Temporal logic made practical. In: Handbook of
Model Checking. Springer (2016, expected). http://www.cis.upenn.edu/∼fisman/
documents/EF HBMC14.pdf

9. Fisler, K.: Timing diagrams: formalization and algorithmic verification. J. Logic
Lang. Inform. 8(3), 323–361 (1999)

10. Fisler, K.: Two-dimensional regular expressions for compositional bus protocols.
In: FMCAD 2007, pp. 154–157 (2007)

11. Franceschet, M., de Rijke, M., Schlingloff, B.: Hybrid logics on linear structures:
expressivity and complexity. In: TIME-ICTL 2003, pp. 166–173 (2003)

12. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor.
Comp. Sci. 331(2–3), 397–428 (2005)

13. Matteplackel, R.M., Pandya, P.K., Wakankar, A.: Formalizing timing diagram
requirements in discrete duration calulus. CoRR abs/1705.04510 (2017)

http://wavedrom.com/images/SNUG2016_WaveDrom.pdf
http://wavedrom.com/images/SNUG2016_WaveDrom.pdf
http://dx.doi.org/10.1007/11560548_15
http://www.cis.upenn.edu/~fisman/documents/EF_HBMC14.pdf
http://www.cis.upenn.edu/~fisman/documents/EF_HBMC14.pdf

268 R.M. Matteplackel et al.

14. Pandya, P.K., Ramakrishna, Y.S., Shyamasundar, R.K.: A compositional semantics
of esterel in duration calculus. In: AMAST 1995 (1995)

15. Pandya, P.K.: Specifying and deciding quantified discrete-time duration calculus
formulae using DCVALID. In: RTTOOLS 2001, Affiliated with CONCUR (2001)

16. Pandya, P.K.: Model checking CTL*[DC]. In: Margaria, T., Yi, W. (eds.) TACAS
2001. LNCS, vol. 2031, pp. 559–573. Springer, Heidelberg (2001). doi:10.1007/
3-540-45319-9 38

17. Wakankar, A., Pandya, P.K., Matteplackel, R.M.: DCSynth: guided reactive syn-
thesis with soft requirements and performance measurement. CoRR (2017)

18. WaveDrom: Wavedrom user manual (2016). http://wavedrom.com/tutorial.html

http://dx.doi.org/10.1007/3-540-45319-9_38
http://dx.doi.org/10.1007/3-540-45319-9_38
http://wavedrom.com/tutorial.html

On Approximate Diagnosability
of Metric Systems

Giordano Pola(B), Elena De Santis, and Maria Domenica Di Benedetto

Center of Excellence DEWS, University of L’Aquila,
Via G. Gronchi, 67100 L’Aquila, Italy

giordano.pola@univaq.it

Abstract. The increasing complexity in nowadays engineered systems
requires great attention to safety hazards and occurrence of faults, which
must be readily detected to possibly restore nominal behavior of the sys-
tem. The notion of diagnosability plays a key role in this regard, since
it corresponds to the possibility of detecting within a finite delay if a
fault, or in general a hazardous situation, did occur. In this paper the
notion of approximate diagnosability is introduced and characterized for
the general class of metric systems, that are typically used in the research
community working on hybrid systems to study complex heterogeneous
processes in cyber–physical systems. The notion of approximate diagnos-
ability proposed captures the possibility of detecting faults on the basis
of measurements corrupted by errors, always introduced by non-ideal
sensors in a real environment. A characterization of approximate diag-
nosability in a set membership framework is provided and the computa-
tional complexity of the proposed algorithms analyzed. Then, relations
are established between approximate diagnosability of a given metric
system and approximate diagnosability of a system that approximately
simulates the given one. Application of the proposed results to the study
of approximate diagnosability for nonlinear systems, presenting an infi-
nite number of states and of inputs, is finally discussed.

1 Introduction

Nowadays engineered systems are becoming more and more complex and there-
fore detection of safety hazards and faults is of primary importance to possibly
restore nominal behavior of the systems. In this regard the notion of diagnosabil-
ity, corresponding to the possibility of detecting faults within finite delays, plays
a key role. Diagnosability has been extensively studied both for Discrete–Event
Systems (DES) and continuous control systems. For DES, after the seminal work
[21], several results have been achieved, see e.g. [8,20,22,24,27–29] and the ref-
erences therein, and the recent survey [31]; see also [10], proposing a unifying
framework for the study of observability and diagnosability of DES. For fault–
tolerant control of continuous systems, an early review paper was presented in
[23]; reconfigurable fault–tolerant control systems are reviewed in [13,15,32] and
some results on fault–tolerant control for nonlinear systems in [5]; see also the

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 269–283, 2017.
DOI: 10.1007/978-3-319-66197-1 17

270 G. Pola et al.

recent survey [11]. Extensions to hybrid systems, featuring both discrete and
continuous dynamics, have been also explored, see e.g. [3,4,9,16,26]. Apart from
differences in the class of systems considered and in the way faults are modeled,
to the best of our knowledge, the existing papers, except for [6,7,14], either
assume that the state variables are available, or assume the exact knowledge of
output variables. This is rather limiting in concrete applications where state vari-
ables cannot be directly measured, or output variables are measured by sensors
that introduce measurement errors. The papers [6,14] investigate diagnosability
for quantized systems and model faults as additional inputs to the system: [14]
considers continuous–time nonlinear systems and detection is achieved in a sto-
chastic setting, while [6] considers discrete–time linear systems where faults are
detected provided that they belong to an appropriate class of functions.

In our recent paper [7] we introduced and investigated the notion of approx-
imate diagnosability for nonlinear systems with unknown inputs and quantized
output measurements. Given an accuracy ρ ≥ 0 and a set of faulty states
F , approximate diagnosability corresponds to the possibility of distinguishing,
within a finite time delay Δ, state trajectories that have reached the set of faulty
states F from state trajectories that have not reached the set F+Bρ(0), obtained
by adding to F a closed ball Bρ(0) centered at the origin and with radius ρ. This
ambiguity around the set F represented by the set Bρ(0), reflects uncertainties
introduced by measurement errors.

In this paper we extend the results reported in [7] from nonlinear systems
to the general class of metric systems. Metric systems are typically used in the
hybrid systems research community as a unifying mathematical paradigm to
properly describe complex heterogeneous processes in cyber–physical systems,
which include continuous dynamics, modeling physical processes, and discrete
dynamics, modeling software and hardware, see e.g. [25]. We first propose a gen-
eral definition of approximate diagnosability for metric systems and provide a
characterization of this notion in a set membership framework, by extending the
algorithms in [10] from exact diagnosability of DES to approximate diagnosabil-
ity of metric systems; computational complexity of the proposed algorithms is
also discussed. We then establish the relation between approximate diagnosabil-
ity of a given metric system and approximate diagnosability of a system that
approximately simulates the given one. As illustrated at the end of the paper,
this relation allows, for example, the analysis of approximate diagnosability of
systems presenting an infinite number of states and inputs, provided that finite
abstractions of such systems are available.

The paper is organized as follows. Section 2 introduces notation and pre-
liminary definitions. Section 3 introduces metric systems. Section 4 introduces
the notion of approximate diagnosability and provides a characterization of this
notion. Section 5 establishes the relation between approximate simulation and
approximate diagnosability. Section 6 proposes an application to nonlinear sys-
tems. Section 7 offers some concluding remarks.

On Approximate Diagnosability of Metric Systems 271

2 Notation and Preliminary Definitions

The symbols N, Z, R, R
+ and R

+
0 denote the set of nonnegative integer, integer,

real, positive real, and nonnegative real numbers, respectively. The symbol 0n

denotes the origin in R
n. Given a, b ∈ Z, we denote [a; b] = [a, b]∩ Z. For a finite

set X, the symbol card(X) denotes the cardinality of X. Given a pair of sets X
and Y and a relation R ⊆ X × Y , the symbol R−1 denotes the inverse relation
of R, i.e. R−1 = {(y, x) ∈ Y × X : (x, y) ∈ R}. Given X ′ ⊆ X and Y ′ ⊆ Y , we
denote R(X ′) = {y ∈ Y |∃x ∈ X ′ s.t. (x, y) ∈ R} and R−1(Y ′) = {x ∈ X|∃y ∈
Y ′ s.t. (x, y) ∈ R}. Given a function f : X → Y and X ′ ⊆ X the symbol f(X ′)
denotes the image of X ′ through f , i.e. f(X ′) = {y ∈ Y |∃x ∈ X ′ s.t. y = f(x)}.
A continuous function γ : R

+
0 → R

+
0 , is said to belong to class K if it is strictly

increasing and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r) → ∞
as r → ∞. Given a vector x ∈ R

n we denote by ‖x‖ the infinity norm of x. Given
a ∈ R and X ⊆ R

n, the symbol aX denotes the set {y ∈ R
n|∃x ∈ X s.t. y = ax}.

3 Metric Systems

In this paper we use the mathematical paradigm of metric systems as a unify-
ing framework to describe complex heterogeneous processes in Cyber–Physical
Systems (CPS). We start with the definition of system:

Definition 1 [25]. A system is a tuple

S = (X,X0, U, � , Y,H),

consisting of

– a set of states X,
– a set of initial states X0 ⊆ X,
– a set of inputs U ,
– a transition relation � ⊆ X × U × X,
– a set of outputs Y ,
– an output function H : X → Y .

Sets X, U and Y in the definition above do not need to be finite; this is
an important aspect of the definition of system since it allows describing finite
systems, typically modeling e.g. the cyber part of CPS, but also systems with
infinite set of states, typically modeling e.g. the physical part of CPS.

We follow standard practice and denote a transition (x, u, x′) ∈ � of S

by x
u� x′. The evolution of systems is captured by the notions of state and

output runs. Given a sequence of transitions of S

x(0)
u(0)� x(1)

u(1)� ...
u(l−1)� x(l) (1)

with x(0) ∈ X0, the sequences

x(·) : x(0)x(1) ... x(l),
y(·) : H(x(0))H(x(1)) ...H(x(l)), (2)

272 G. Pola et al.

are called a state run and an output run of S, respectively. System S is said to
be:

– countable, if X and U are countable sets;
– symbolic, if X and U are finite sets;
– deterministic, if for any x ∈ X and u ∈ U there exists at most one transition

x
u� x+ and nondeterministic, otherwise.

We can now give the following

Definition 2. A system S = (X,X0, U, � , Y,H) is metric if the set X is
equipped with a metric d, i.e. a function d : X × X → R, satisfying for all
x, x′, x′′ ∈ X:

– d(x, x′) ≥ 0;
– d(x, x′) = 0 if and only if x = x′;
– d(x, x′) = d(x′, x);
– d(x, x′) ≤ d(x, x′′) + d(x′′, x′).

4 Approximate Diagnosability

In this section we introduce and characterize the notion of approximate diag-
nosability for metric systems. We make the following

Assumption 1. The inputs u of metric system S are not available to an exter-
nal observer.

The assumption above corresponds to the analysis of approximate diagnos-
ability from the point of view of an external observer that cannot have access
to the inputs of the system S. However, all definitions and results that will be
derived can be applied to the case where inputs of S are available.

We can now present the following

Definition 3 (Approximate diagnosability of metric systems). Consider a met-
ric system S = (X,X0, U, � , Y,H) with metric d, and denote by Bρ(x) the
closed ball induced by metric d centered at x ∈ X and with radius ρ ∈ R

+
0 , i.e.

Bρ(x) = {x′ ∈ X|d(x, x′) ≤ ρ}.

Given X ′ ⊆ X, denote by Bρ(X ′) the set
⋃

x′∈X′
Bρ(x′).

Consider a set F ⊆ X of faulty states of S with

F ∩ X0 = ∅.

On Approximate Diagnosability of Metric Systems 273

Given a desired accuracy ρ ∈ R
+
0 , system S is (ρ,F)–diagnosable if there exists

a finite delay Δ ∈ N, such that for any pair of state runs xf , xs of S for which
there exists t ∈ N such that

xf (t) ∈ F , and
xf (t′) /∈ F , ∀ t′ ∈ [0; t − 1] , and
xs(t′′) /∈ Bρ(F), ∀ t′′ ∈ [0; t + Δ] ,

the corresponding output runs yf , ys are such that

yf (t′) �= ys(t′),

for some t′ ∈ [0; t + Δ].

By definition, approximate diagnosability corresponds to the possibility of
distinguishing within a finite delay Δ, state runs that have reached the set of
faulty states F from state runs that have not reached the set Bρ(F). This ambi-
guity around the set F reflects uncertainties introduced by measurement errors
in concrete applications. The definition above extends the notion of (exact) diag-
nosability given in [10] for DES, to metric systems. In particular, when ρ = 0,
the definition above coincides with the one given in [10], when rewritten for DES.
We now proceed with a further step and provide a set membership framework
to check approximate diagnosability of metric systems that are assumed in the
rest of this section to be symbolic.

Given a metric symbolic system

S = (X,X0, U, � , Y,H), (3)

let Post(x) = {x′ ∈ X| ∃ x
u� x′}. For a set X ′ ⊆ X, let Post(X ′) =⋃

x∈X′ Post(x). For the sake of simplicity, we assume in the rest of this section
that

Assumption 2. System (3) is nonblocking, i.e. Post(x) �= ∅, ∀x ∈ X.

The assumption above can be removed at the expense of a heavier notation.
Given the system S in (3) and a set of faulty states F ⊆ X, define the sets

Π = {(x, x′) ∈ X × X : H(x) = H(x′)} ,
Θ = {(x, x′) ∈ X × X : x = x′} ⊆ Π.

By definition, sets Π and Θ are symmetric, i.e. (x, x′) ∈ Π if and only if (x′, x) ∈
Π and, (x, x′) ∈ Θ if and only if (x′, x) ∈ Θ. We recall the following.

Definition 4. Two state runs of system S in (3) are indistinguishable if their
corresponding output runs coincide.

For a set X ′ ⊆ X the symbol X ′ denotes the complement of X ′ in X. The
following sets will be useful in characterizing approximate diagnosability:

274 G. Pola et al.

– I∗, the set of all pairs (x, x′) ∈ Π reachable from X0 with two indistinguishable
state runs;

– Λ∗
ρ, the set of all pairs (x, x′) ∈ Π, with x ∈ F and x′ ∈ Bρ(F) (or vice-

versa x ∈ Bρ(F) and x′ ∈ F) for which there exist two indistinguishable
infinite state runs starting from x and x′, respectively, such that the latter is
contained in Bρ(F) (or vice-versa the former is contained in Bρ(F)).

Set I∗ can be computed by using the following recursion:

I1 = (X0 × X0) ∩ Π,
Ik+1 = {(x, x′) ∈ (Post(z) × Post(z′)) ∩ Π, (z, z′) ∈ Ik} ∪ Ik, k ∈ N.

(4)

Lemma 1

(i) The least fixed point of recursion (4) exists, is unique and is equal to I∗.
(ii) Recursion (4) reaches the fixed point I∗ in at most card(X)2 steps.

Set Λ∗
ρ can be computed by using the following recursion:

Ψ1 =
(
X × Bρ(F)

)
∩ I∗,

Ψk+1 = {(x, x′) ∈ Ψk : (Post(x) × Post(x′)) ∩ Ψk �= ∅} , k ∈ N.
(5)

The following result holds where, for a set Ψ ⊆ X×X, the symbol Ψ− denotes
the minimal symmetric subset of X × X containing Ψ .

Lemma 2. Consider recursion (5). Then:

(i) If Ψk �= ∅, ∀k ∈ N, then the maximal fixed point Ψ∗ of recursion (5),
contained in X×Bρ(Ω), is nonempty and unique. Otherwise, ∃k < card(X)2

such that Ψk = ∅ and Ψ∗ = ∅;
(ii) If Ψ∗ �= ∅, recursion (5) reaches this maximal fixed point in at most

card(X)2 steps;

(iii) Λ∗
ρ =

(
Ψ∗ ∩

(
F × Bρ(Ω)

))−
.

Finally, given the system S in (3), define the metric symbolic system

S̃ = (X,X0, U, ∼
� , Y,H),

where x
u

∼
� x′ if and only if x

u� x′ and x /∈ F . Let Ĩ∗ be the set of pairs of

states reachable from X0 with two indistinguishable state runs, computed for S̃.
The set Ĩ∗ ∩ Λ∗

ρ is the set of pairs (x, x′), where only one of the two states x or
x′ belongs to F , which are the ending states of a pair of indistinguishable state
runs of the system S̃, with initial state in X0, such that one of these state runs
never reaches the set F , and (x, x′) are the initial states of a pair of arbitrarily
long indistinguishable state runs of the system S, such that one of them never
reaches Bρ(F). Then, by definition of S̃, we can state the following:

On Approximate Diagnosability of Metric Systems 275

Theorem 1. System S in (3) is (ρ,F)–diagnosable if and only if Ĩ∗ ∩ Λ∗
ρ = ∅.

We conclude this section by establishing computational complexity bounds to
check (ρ,F)–diagnosability of metric symbolic systems:

Proposition 1. Space and time complexities in computing Ĩ∗ ∩ Λ∗
ρ are respec-

tively, O
(
card(X)2

)
and O

(
card(X)5

)
.

The bounds above coincide with the ones derived in [10] to check (exact)
diagnosability of DES. The proofs of Lemmas 1, 2, Theorem 1 and Proposition 1
are similar to the corresponding results given in [10] for (exact) diagnosability
of DES. They are omitted here for lack of space.

5 Approximate Simulation and Diagnosability

In this section we establish the relation between approximate diagnosability and
approximate simulation. We start by introducing the following:

Definition 5. Consider a pair of metric systems

Si = (Xi,X0,i, Ui,
i
� , Yi,Hi), i = 1, 2, (6)

with X1 and X2 subsets of some metric set X equipped with metric d, and let
ε ∈ R

+
0 be a given accuracy. Consider a relation

R ⊆ X1 × X2, (7)

satisfying the following conditions:

(i) ∀x1 ∈ X0,1 ∃x2 ∈ X0,2 such that (x1, x2) ∈ R;
(ii) d(x1, x2) ≤ ε, ∀(x1, x2) ∈ R;
(iii) H1(x1) = H2(x2), ∀(x1, x2) ∈ R.

Relation R is an ε-approximate simulation relation from S1 to S2 if it enjoys
conditions (i)–(iii) and the following one:

(iv) ∀(x1, x2) ∈ R if x1
u1

1
� x′

1 then there exists x2
u2

2
� x′

2 with (x′
1, x

′
2) ∈ R.

System S1 is ε-simulated by S2, denoted S1 �ε S2, if there exists an ε-
approximate simulation relation from S1 to S2.

Relation R in (7) is an ε-approximate bisimulation relation between S1 and
S2 if

– R is an ε-approximate simulation relation from S1 to S2, and
– R−1 is an ε-approximate simulation relation from S2 to S1.

Systems S1 and S2 are ε-bisimilar, denoted S1
∼=ε S2, if there exists an ε-

approximate bisimulation relation between S1 and S2.

276 G. Pola et al.

Remark 1. The definition above extends the classical definition of bisimulation
equivalence of [17,18] for concurrent processes, to the class of metric systems in
the sense of Definition 2; when condition (ii) is removed, it becomes an adapta-
tion to systems of the one given in [17,18] for concurrent processes. It slightly
differs from the one given in [12] where it is assumed that sets Y1 = Y2 are metric
spaces with metric d, and conditions (ii) and (iii) are replaced by

d(H1(x1),H2(x2)) ≤ ε,∀(x1, x2) ∈ R.

We can now state the following result.

Theorem 2. Consider a pair of metric systems Si = (Xi,X0,i, Ui,
i
� ,

Yi,Hi), i = 1, 2, with X1 and X2 subsets of some metric set X equipped with
metric d and suppose that S1 �ε S2. Consider a set F1 ⊆ X1 of faulty states for
S1 and define the set F2 = Bε(F1) ∩ X2 of faulty states for system S2. If S2 is
(ρ2,F2)–diagnosable for some accuracy ρ2 ∈ R

+ then, S1 is (ρ1,F1)–diagnosable
for all ρ1 ≥ ρ2 + 2ε.

Before giving the proof we point out that since S1 �ε S2, set F2 is nonempty.

Proof. Let R be an ε–approximate simulation from S1 to S2 which exists because
S1 �ε S2. By contradiction, suppose that S1 is not (ρ1,F1)–diagnosable, with
some ρ1 ≥ ρ2 + 2ε. Then, for any Δ ∈ N there exists a state run

xf (0)xf (1) . . .

of S1 with output run
yf (0) yf (1) . . . (8)

such that for some t > 0
(
xf (t) ∈ F1

) ∧ (
xf (t) /∈ F1,∀t ∈ [0; t − 1]

)
, (9)

and a state run
xs(0)xs(1) . . .

of S1 with output run
ys(0) ys(1) . . . (10)

such that
xs(t) /∈ Bρ1(F1),∀t ∈ [0; t + Δ], (11)

and
yf (t) = ys(t),∀t ∈ [0; t]. (12)

Since S1 �ε S2, by (9) there exists a state run

ξf (0) ξf (1) . . . (13)

of S2 and some t′ ∈ [0; t] such that
(
ξf (t′) ∈ R(F1)

) ∧ (
(t = 0) ∨ (ξf (t) /∈ R(F1),∀t ∈ [0; t′ − 1])

)
(14)

On Approximate Diagnosability of Metric Systems 277

with output run
ηf (0) ηf (1) . . .

coinciding with the corresponding output run (8) of S1, i.e.

ηf (t) = yf (t),∀t ∈ [0; t]. (15)

Since by definition of R, see condition (ii) of Definition 5,

R(F1) ⊆ Bε(F1) ∩ X2,

and, since Bε(F1)∩X2 = F2 by definition of F2, condition (14) implies for some
t′′ ∈ [0; t′]

(
ξf (t′′) ∈ F2

) ∧ (
(t′ = 0) ∨ (ξf (t) /∈ F2,∀t ∈ [0; t′′ − 1])

)
. (16)

Since S1 �ε S2, by (11) there exists a state run

ξs(0) ξs(1) . . . (17)

of S2 with output run

ηs(0) ηs(1) . . .

coinciding with the corresponding output run (10) of S1, i.e.

ηs(t) = ys(t),∀t ∈ [0; t], (18)

and such that

ξs(t) /∈ R(Bρ1(F1)),∀t ∈ [0; t + Δ],

implying
ξs(t) /∈ Bρ1−ε(F1),∀t ∈ [0; t + Δ]. (19)

Since by assumption, ρ1 − 2ε ≥ ρ2 we get

Bρ1−ε(F1) = Bρ1−2ε(Bε(F1)) ⊇ Bρ2(Bε(F1))

and hence, condition (19) implies

ξs(t) /∈ Bρ2(Bε(F1)),∀t ∈ [0; t + Δ]

from which,

ξs(t) /∈ Bρ2(Bε(F1) ∩ X2) = Bρ2(F2),∀t ∈ [0; t + Δ]. (20)

Conditions (12), (15) and (18) imply

ηf (t) = ηs(t),∀t ∈ [0; t′]. (21)

Hence, there exists a pair of state runs (13) and (17) of S2 such that for any
Δ ∈ N conditions (16), (20) and (21) hold, i.e., the output runs corresponding
to the state runs (13) and (17) coincide, and ξf terminates in a faulty state
while ξs does not. We then conclude that S2 is not (ρ2,F2)–diagnosable and a
contradiction holds.

278 G. Pola et al.

The result above is important because it allows checking approximate diag-
nosability of a metric system S1 on the basis of approximate diagnosability of a
metric system S2 for which S1 �ε S2. Implications of this fact on the analysis
of approximate diagnosability for nonlinear systems are discussed in the next
section.

6 Application to Diagnosability of Nonlinear Systems

The class of nonlinear systems we consider in this section is described by

Σ :

⎧
⎨

⎩

x(t + 1) = f(x(t), u(t)),
y(t) =

[
Ip 0

]
x(t),

x(0) ∈ X0, x(t) ∈ R
n, u(t) ∈ U, y(t) ∈ R

p, t ∈ N,
(22)

where:

– x(t), u(t) and y(t) denote, respectively, the state, the input and the output,
at time t ∈ N;

– R
n is the state space;

– X0 ⊆ R
n is the set of initial states;

– U ⊆ R
m is the input set;

– R
p is the output space with p < n;

– f : R
n × R

m → R
n is the vector field;

– Ip is the identity matrix in R
p.

We assume that X0 is compact, U is compact and contains the origin 0m

and, f is continuous in its arguments and satisfies f(0n, 0m) = 0n. We denote
by U the collection of input functions from N to U . From (22), we are assuming
that the output variables of Σ are a selection of the state variables. The general
case of nonlinear output functions can be considered at the expense of a heavier
notation, as done in our recent work [19]. Moreover, this assumption holds in
many concrete applications.

In the sequel we make the following

Assumption 3. Inputs u(.) ∈ U of Σ are not available to an external observer
and output y(t) of Σ at time t ∈ N is only available through its quantization
[y(t)]pη, where η ∈ R

+ is the quantization parameter.

In the sequel we will reinterpret the results reported in [7] concerning approx-
imate diagnosability of the nonlinear system Σ in the general framework of
approximate diagnosability of metric systems. To this purpose we start by pro-
viding a representation of Σ in terms of metric systems.

Definition 6. Given Σ, define the system

S(Σ) = (X,X0, U, � ,Xm, Y,H),

On Approximate Diagnosability of Metric Systems 279

where

– X = R
n;

– X0 = X0;
– U coincides with the set U in (22);
– x

u� x+, if x+ = f(x, u);
– Y = R

p;
– H(x) =

[
Ip 0

]
x, for all x ∈ X.

System S(Σ) is metric because X = R
n can be equipped with a metric d; in

the sequel we choose

d(x, x′) = ‖x − x′‖, x, x′ ∈ R
n. (23)

Metric system S(Σ) is deterministic and preserves many important properties
of Σ such as, for example, reachability properties. Moreover, the following result
holds.

Proposition 2. Nonlinear system Σ is (ρ,F)–diagnosable as in Definition 2 of
[7] if and only if metric system S(Σ) is (ρ,F)–diagnosable as in Definition 3.

Proof. Straightforward consequence of Definition 2 in [7] and of Definition 3.

By the result above, in the sequel we refer without ambiguity to approxi-
mate diagnosability of Σ and of S(Σ) with the understanding that approximate
diagnosability of Σ is given in the sense of Definition 2 in [7], while approximate
diagnosability of S(Σ) is given in the sense of Definition 3.

The result above allows using the abstract framework of metric systems to
study approximate diagnosability of Σ. However, algorithms proposed in Sect. 4
cannot be applied to S(Σ) because S(Σ) has an infinite number of states and
an infinite number of inputs, and hence, it is not symbolic. For this reason, we
provide hereafter an approximation of S(Σ) that is symbolic.

Given θ ∈ R
+ and x ∈ R

n, we denote

Bn
[−θ,θ[(x) = {y ∈ R

n|y(i) ∈ [−θ + x(i), θ + x(i)[, i ∈ [1;n]} .

where here x(i) and y(i) denote the i-th element of vectors x and y, respectively.
Note that for any θ ∈ R

+, the collection of Bn
[−θ,θ[(x) with x ranging in 2θ Z

n

is a partition of R
n. We now define the quantization function. Given a positive

n ∈ N and a quantization parameter θ ∈ R
+, the quantizer in R

n with accuracy
θ is a function

[·]nθ : R
n → 2θZ

n,

associating to any x ∈ R
n the unique vector [x]nθ ∈ 2θZ

n such that x ∈
Bn
[−θ,θ[([x]nθ). Definition of [·]nθ naturally extends to sets X ⊆ R

n when [X]nθ
is interpreted as the image of X through function [·]nθ .

We can now give the following

280 G. Pola et al.

Definition 7. Given Σ, a state and output quantization parameter η ∈ R
+ and

an input quantization parameter μ ∈ R
+, define the system

Sη,μ(Σ) = (Xη,μ,Xη,μ,0, Uη,μ,
η,μ
� , Yη,μ,Hη,μ),

where:

– Xη,μ = [Rn]nη ;
– Xη,μ,0 = [X0]nη ;
– Uη,μ = [U]mμ ;

– ξ
v

η,μ
� ξ+, if ξ+ = [f(ξ, v)]nη ;

– Yη,μ = [Rp]pη;
– Hη,μ(ξ) =

[
Ip 0

]
ξ, for all ξ ∈ Xη,μ.

The basic idea in the construction above is to replace each state x in Σ by its
quantized value ξ = [x]nη and each input u ∈ U by its quantized value v = [u]mμ in
Sη,μ(Σ). Accordingly, the evolution of system Σ with initial state x and input v

to state x+ = f(ξ, v), is captured by the transition ξ
v

η
� ξ+ in system Sη,μ(Σ),

where ξ and ξ+ are the quantized values of x and x+, respectively, i.e., ξ = [x]nη
and ξ+ = [x+]nη . System Sη,μ(Σ) is metric; in the sequel we use the metric d
in (23); this choice is allowed because Xη,μ ⊂ X. Moreover, by definition of the
transition relation

η,μ
� , system Sη,μ(Σ) is deterministic. By definition of Xη,μ

and Uη,μ, system Sη,μ(Σ) is countable. We now consider the following

Assumption 4. Given the nonlinear system Σ, there exists a locally Lipschitz
function

V : R
n × R

n → R
+
0 ,

which satisfies the following inequalities for some K∞ functions α, α, λ and K
function σ:

(i) α(‖x − x′‖) ≤ V (x, x′) ≤ α(‖x − x′‖), for any x, x′ ∈ R
n;

(ii) V (f(x, u), f(x′, u′))−V (x, x′) ≤ −λ(V (x, x′))+σ(‖u − u′‖), for any x, x′ ∈
R

n and any u, u′ ∈ U .

The function V is called an incremental input–to–state stable (δ–ISS) Lyapunov
function [1,2] for Σ. Assumption 4 has been shown in [2] to be a sufficient
condition for Σ to fulfill the δ–ISS property [1,2].

We now recall two results from our previous work [7], which are instrumental
for the subsequent developments.

Proposition 3 [7]. If the nonlinear system Σ satisfies Assumption 4, then the
metric system Sη,μ(Σ) is symbolic.

On Approximate Diagnosability of Metric Systems 281

Proposition 4 [7]. Suppose that Assumption 4 holds and let L be a Lipschitz
constant of function V in R

n × R
n. Then, for any desired accuracy ε ∈ R

+ and
for any quantization parameters η, μ ∈ R

+ satisfying the following inequalities

Lη + σ(μ) ≤ (λ ◦ α)(ε),
α(η) ≤ α(ε), (24)

systems S(Σ) and Sη,μ(Σ) are ε–bisimilar.

We now have all the ingredients to establish connections between approxi-
mate diagnosability of Sη,μ(Σ) and approximate diagnosability of Σ. Given a
set F ⊆ R

n of faulty states for Σ and an accuracy ε ∈ R
+, consider the sets

Fε = Bε (F) ∩ [Rn]nη ,

F ′
ε = {x ∈ F : Bε(x) ⊆ F} ∩ [Rn]nη .

Corollary 1. Consider the nonlinear system Σ as in (22) satisfying Assump-
tion 4 and a set F ⊆ R

n. Consider a triplet ε, η, μ ∈ R
+ of parameters satisfying

(24). The following statements hold:

(i) If Sη,μ (Σ) is (kη,Fε)–diagnosable, for some k ∈ N, then Σ is (ρ,F)–
diagnosable, for any ρ > 2ε + kη.

(ii) Suppose that set F is with interior and parameter ε ∈ R
+ is such that1

F ′
ε �= ∅. If Σ is (ρ,F)–diagnosable, for some ρ ∈ R

+
0 , then Sη,μ (Σ) is

(k′η,F ′
ε)–diagnosable, for any integer k′ > min{h ∈ N : (ρ + 2ε) ≤ hη}.

Proof. Direct application of Theorem 2 and Propositions 2 and 4.

The statement of the corollary above coincides with Theorem 1 of [7]. Here
a very simple proof is derived based on the use of metric systems. This result is
important because it allows checking approximate diagnosability of Σ presenting
an infinite number of states and inputs, for which there are no tools available
in the current literature, by checking approximate diagnosability of Sη,μ(Σ)
that is symbolic so that the algorithms presented in Sect. 4 can be applied.
In particular, while statement (i) in the result above is useful to check if Σ is
(ρ,F)–diagnosable, statement (ii) can be used in its logical negation form as a
tool to check if Σ is not (ρ,F)–diagnosable.

Remark 2. In this section we assumed the existence of a δ–ISS Lyapunov func-
tion V for the nonlinear system Σ, see Assumption 4. Under this assumption, by
Proposition 4, metric system Sη,μ(Σ) approximates metric system S(Σ) in the
sense of approximate bisimulation for any desired accuracy. Since Theorem2,
that is employed in Corollary 1, only requires the existence of an approximate
simulation between the metric systems involved, one can in fact construct a
symbolic metric system that is an approximate simulation, and not an approx-
imate bisimulation, of the original nonlinear system. To this purpose, one can
use the symbolic models proposed in [30] that are in approximate (and alternat-
ing) simulation with the original system and only require the mild assumption
of incremental forward completeness of the nonlinear system.
1 Since F is with interior there always exists ε ∈ R

+ satisfying F ′
ε �= ∅.

282 G. Pola et al.

7 Conclusions

In this paper, we proposed a new notion of diagnosability, called approximate
diagnosability, for the general class of metric systems. We first provided a char-
acterization of approximate diagnosability for metric symbolic systems and ana-
lyzed the computational complexity of the proposed algorithms. We then estab-
lished the relation between approximate diagnosability and approximate sim-
ulation. Application of the proposed results to approximate diagnosability of
nonlinear systems was finally illustrated and discussed.

Acknowledgments. We would like to thank our Master student Andreu Llabrés for
fruitful discussions on the topic of the present paper.

References

1. Angeli, D.: A Lyapunov approach to incremental stability properties. IEEE Trans.
Autom. Control 47(3), 410–421 (2002)

2. Bayer, B., Burger, M., Allgower, F.: Discrete-time incremental ISS: a framework for
robust NMPS. In: European Control Conference, Zurick, Switzerland, pp. 2068–
2073, July 2013

3. Bayoudh, M., Travé-Massuyes, L., Olive, X.: Hybrid systems diagnosability by
abstracting faulty continuous dynamics. In: Proceedings of the 17th International
Principles Diagnosis Workshop, pp. 9–15 (2006)

4. Bayoudh, M., Travé-Massuyes, L., Olive, X.: Hybrid systems diagnosis by cou-
pling continuous and discrete event techniques. In: Proceedings of the IFAC World
Congress, pp. 7265–7270 (2008)

5. Benosman,M.: A survey of some recent results on nonlinear fault tolerant control.
Math. Probl. Eng. 2010 (2010)

6. De Persis, C.: Detecting faults from encoded information. In: Proceedings of the
42nd IEEE Conference on Decision and Control, pp. 947–952 (2013)

7. De Santis, E., Pola, G., Di Benedetto, M.D.: On approximate diagnosability of
nonlinear systems (2017). arXiv:1704.02138 [math.OC]

8. Debouk, R., Malik, R., Brandin, B.: A modular architecture for diagnosis of discrete
event systems. In: Proceedings of the 41th Conference on Decision and Control,
Las Vegas, Nevada, USA, pp. 417–422, December 2002

9. Deng, Y., D’Innocenzo, A., Di Benedetto, M.D., Di Gennaro, S., Julius, A.A.: Ver-
ification of hybrid automata diagnosability with measurement uncertainty. IEEE
Trans. Autom. Control 61, 982–993 (2016)

10. De Santis, E., Di Benedetto, M.D.: Observability and diagnosability of finite
state systems: a unifying framework. Automatica 81, 115–122 (2017, to appear).
arXiv:1608.03195 [math.OC]

11. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant
techniques-part I: fault diagnosis with model-based and signal-based approaches.
IEEE Trans. Industr. Electron. 62, 3757–3767 (2015)

12. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Autom. Control 52(5), 782–798 (2007)

13. Jiang, J.: Fault-tolerant control systems - an introductory overview. Acta Autom.
Sinica 31, 161–174 (2005)

http://arxiv.org/abs/1704.02138
http://arxiv.org/abs/1608.03195

On Approximate Diagnosability of Metric Systems 283

14. Lunze, J.: Diagnosis of quantized systems based on a timed discrete-event model.
IEEE Trans. Man Cybern. Part A Syst. Hum. 30, 322–335 (2000)

15. Lunze, J., Richter, J.: Reconfigurable fault-tolerant control: a tutorial introduction.
Eur. J. Control 144, 359–386 (2008)

16. Di Benedetto, M.D., Di Gennaro, S., D’Innocenzo, A.: Verification of hybrid
automata diagnosability by abstraction. IEEE Trans. Autom. Control 56, 2050–
2061 (2011)

17. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

18. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). doi:10.
1007/BFb0017309

19. Pola, G., Di Benedetto, M.D.: Approximate supervisory control of nonlinear sys-
tems with outputs. In: Proceedings of the 56th IEEE Conference on Decision and
Control (2017, to appear)

20. Ricker, S.L., van Schuppen, J.H.: Decentralized failure diagnosis with asynchro-
nous communication between diagnosers. In: Proceedings of the European Control
Conference, Porto, Portugal (2001)

21. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–
1575 (1995)

22. Schmidt, K.W.: Verification of modular diagnosability with local specifications for
discrete-event systems. IEEE Trans. Syst. Man Cybern. 43(5), 1130–1140 (2013)

23. Stengel, R.: Intelligent failure-tolerant control. IEEE Control Syst. Mag. 11, 14–23
(1991)

24. Su, R., Wonham, W.M.: Global and local consistencies in distributed fault diag-
nosis for discrete-event systems. IEEE Trans. Autom. Control 50(12), 1923–1935
(2005)

25. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, Dordrecht (2009)

26. Tripakis, S.: Fault diagnosis for timed automata. In: Damm, W., Olderog, E.-R.
(eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 205–221. Springer, Heidelberg (2002).
doi:10.1007/3-540-45739-9 14

27. Wang, W., Girard, A.R., Lafortune, S., Lin, F.: On codiagnosability and coobserv-
ability with dynamic observations. IEEE Trans. Autom. Control 56(7), 1551–1566
(2011)

28. Wang, W., Lafortune, S., Girard, A.R., Lin, F.: Optimal sensor activation for
diagnosing discrete event systems. Automatica 46, 1165–1175 (2010)

29. Zad, S.H., Kwong, R.H., Wonham, W.M.: Fault diagnosis in discrete-event systems:
framework and model reduction. IEEE Trans. Autom. Control 48(7), 51–65 (2003)

30. Zamani, M., Mazo, M., Pola, G., Tabuada, P.: Symbolic models for nonlinear con-
trol systems without stability assumptions. IEEE Trans. Autom. Control 57(7),
1804–1809 (2012)

31. Zaytoon, J., Lafortune, S.: Overview of fault diagnosis methods for discrete event
systems. Annu. Rev. Control 37(2), 308–320 (2013)

32. Zhang, Y., Jiang, J.: Bibliographical review and reconfigurable fault-tolerant con-
trol systems. Annu. Rev. Control 32, 229–252 (2008)

http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1007/3-540-45739-9_14

A Hazard Analysis Method for Systematic
Identification of Safety Requirements for User

Interface Software in Medical Devices

Paolo Masci1(B), Yi Zhang2, Paul Jones2, and José C. Campos1

1 INESC TEC, Universidade Do Minho, Braga, Portugal
{paolo.masci,jose.c.campos}@inesctec.pt

2 US Food and Drug Administration, Silver Spring, USA
{yi.zhang2,paul.jones}@fda.hhs.gov

Abstract. Formal methods technologies have the potential to verify
the usability and safety of user interface (UI) software design in medical
devices, enabling significant reductions in use errors and consequential
safety incidents with such devices. This however depends on comprehen-
sive and verifiable safety requirements to leverage these techniques for
detecting and preventing flaws in UI software that can induce use errors.
This paper presents a hazard analysis method that extends Leveson’s
System Theoretic Process Analysis (STPA) with a comprehensive set of
causal factor categories, so as to provide developers with clear guide-
lines for systematic identification of use-related hazards associated with
medical devices, their causes embedded in UI software design, and safety
requirements for mitigating such hazards. The method is evaluated with
a case study on the Gantry-2 radiation therapy system, which demon-
strates that (1) as compared to standard STPA, our method allowed us
to identify more UI software design issues likely to cause use-related haz-
ards; and (2) the identified UI software design issues facilitated the defini-
tion of precise, verifiable safety requirements for UI software, which could
be readily formalized in verification tools such as Prototype Verification
System (PVS).

Keywords: Requirements identification/formalization · User interface
software · Medical devices

1 Introduction

Use errors with medical devices are a leading cause of device incidents reported
in the healthcare domain (e.g., see [1,15]). Errors in user interface (UI) soft-
ware in medical devices, including design flaws and implementation mistakes,
can disrupt expected device-user interaction and induce use errors. For exam-
ple, a diabetes management mobile app was recalled in the U.S. because its UI
software could erroneously reset the recommended insulin bolus dosage when
the user changes the smartphone’s orientation, which might cause the user to
inadvertently command and receive unsafe insulin therapies [9].
c© Springer International Publishing AG (outside the US) 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 284–299, 2017.
DOI: 10.1007/978-3-319-66197-1 18

A Hazard Analysis Method for Systematic Identification 285

It is thus crucial to the safety of medical devices to systematically assess
their UI software design and ensure that design issues likely inducing use errors
are appropriately addressed. Formal methods have the potential to enable such
rigorous assessment. For example, our previous research shows that theorem
proving can be used to detect latent flaws in data entry software [19]. In fact, the
formal methods community has devoted substantial effort on methods and tools
for analyzing various aspects of UI software design, including user tasks [3,26],
cognitive errors [28,29], and general usability principles [4,6,10,25]. But little
attention has been given to tools and methods that can support systematic
identification and definition of use-related safety requirements for UI software
design, even though the availability of such safety requirements has great impact
to the applicability and effectiveness of formal methods in assessing UI software.

Current industrial practices rely on hazard analysis techniques to explore
safety hazards associated with a system and formulate requirements to miti-
gate the identified hazards. However, existing hazard analysis techniques do not
provide specialized assistance in analyzing UI software design. For example, Pre-
liminary Hazard Analysis [5] and Root Cause Analysis [13] merely rely on group
brainstorming to explore use hazards and their causes in safety-critical systems.
Other more systematic methods such as Fault Tree Analysis [16], FMEA [30],
and their variants focus on component failures or deviations in physical parame-
ters (as in HAZOP [14]), rather than use hazards and their causes in UI software
design. Whilst some variants of HAZOP can be used to analyze use errors (e.g.,
see [7,12]), their focus is mainly on assessing compatibility with given user tasks.

Leveson’s System Theoretic Process Analysis (STPA) [17] is a relatively new
hazard analysis method that can be utilized to identify use-related hazards in
control systems, and system design issues contributing to these hazards. This
method, however, offers limited guidance on formulating hypotheses on what
aspects of UI software design could affect the usability and safety of a system
under analysis. STPA requires developers to exercise their experience and exper-
tise to find answers to the key question: What UI software design features could
induce the user to operate or interact with a system unsafely?

In this paper, we extend the standard STPA analysis to provide developers
with clear guidelines in finding the answer to this key question. This is done by
extending standard STPA with a set of casual factor categories, which are tai-
lored to guide developers in systematically examining UI software design against
common use-related safety concerns and widely-accepted design principles. We
also refine the standard STPA analysis process such that developers can uti-
lize the casual factor categories to identify UI software design issues and define
corresponding safety requirements for realistic medical device systems.

Contribution. This paper makes the following contributions: (i) a novel method
that augments STPA to enable a more detailed analysis of UI software in medical
devices in terms of safety and usability; (ii) a case study on an experimental
medical device demonstrating the applicability and benefits of our method; and
(iii) formalization in PVS [24] of natural language safety requirements produced
in the case study, which results in the definition of a safety reference model [20]

286 P. Masci et al.

that encapsulates the semantics of the requirements against which UI software
design must be verified.

2 Background on STPA

STPA focuses on early identification of safety hazards in control systems and
their causes in system design. It considers the system under analysis as a control
model, which in its simplest form includes a control loop with an automated
controller and a controlled process. The standard STPA process is carried out
in three steps (see the left-hand side of Fig. 1):

Fig. 1. Enhanced STPA process.

Step 1: Identify system boundaries and unsafe control actions. In this
step, developers identify all system elements that could impact, directly or indi-
rectly, system safety. Potential hazards associated with the system are explored
in the form of unsafe control actions (UCAs) performed by system elements. To
identify use-related hazards, a human operator model can be introduced to the
system’s control model to capture hypotheses about the operator’s knowledge
and understanding of how the system works. STPA guides developers to explore
four types of UCAs potentially performed by system elements, including the
human operator:

– A control action required for safety is not provided or not followed (e.g., an
emergency stop button is not pressed when necessary).

– An unsafe control action is provided that leads to a hazard (e.g., the delivery
of a therapy with an excessive dose of radiation).

A Hazard Analysis Method for Systematic Identification 287

– A potentially safe control action is provided at the wrong time or in the wrong
order (e.g., a button for stopping the delivery of radiation is pressed too late).

– A potentially safe control action is stopped too soon or applied for too long
(e.g., a button for decreasing the volume of an alarm is pressed for too long
and, as a result, the alarm gets disabled).

Step 2: Identification of causal factors. At this step, developers examine the
system’s design to identify issues (also called causal factors) enabling UCAs. For
UCAs from the human operator, STPA recommends to explore three categories
of causal factors:

– Feedback: feedback provided to the operator is inadequate, missing, or
delayed. An example is that the system does not provide an alarm on its
UI to inform the operator of abnormal system conditions.

– Mental Model: the operator’s perception or understanding of how the sys-
tem works is inconsistent, incomplete, or incorrect. For example, using a non-
standard color/symbol to display an alarm on the UI can be easily misunder-
stood by the operator.

– External Information: wrong or missing inputs or external information.
This category explores issues related to information communicated to the
operator by elements outside the control model. For example, a procedure
described in the user manual is wrong, or a prescription used by the operator
to setup the therapy contains incorrect information.

Step 3: Define safety requirements and constraints. Developers define
testable safety requirements or constraints to address the identified casual fac-
tors, and in turn prevent or mitigate UCAs.

3 Enhanced STPA Analysis

We enhanced the standard STPA analysis with the aim of providing developers
with additional guidance in systematic identification of UI software issues that
likely induce human operators to perform UCAs. The enhancement is realized
by refining the standard STPA causal factor categories with 16 new categories
that are specialized for identifying UI software issues in medical devices.

3.1 New Causal Factor Categories

The new casual factor categories are derived from usability heuristics [23] and
UI design guidelines defined in medical device usability standards (ANSI/AAMI
HE75 and ISO 62366-1). For each category, we present a mnemonic name, a
definition, and a rationale explaining its relevance to device usability and safety.

288 P. Masci et al.

Categories Refining STPA Feedback

– F1: Consistency of feedback. Feedback for control actions or events that
are conceptually similar is not provided using the same modalities (e.g., visual,
auditory, haptic) or the same UI elements. Rationale: Inconsistent feedback
leads to confusion and incorrect user actions.

– F2: Complexity of feedback: Feedback for frequent actions or important
events (e.g., system failure or patient-related emergencies) requires observing
and understanding multiple information resources. Rationale: In clinical set-
tings, operators may become distracted by other tasks or interrupted during
device use. Because of this, they could fail to monitor and analyze feedback
from multiple information resources.

– F3: Availability of feedback: Feedback reporting important information
(e.g., therapy parameters) or events (e.g., change of device modes) is erro-
neous, not visible, partially visible, or is visible at the wrong time or for a
too short period of time. Rationale: Operators could lose situation awareness
during critical operations if relevant information is not reported on the UI.

– F4: Salience of feedback: Feedback reporting important information or
events is not prominent or easy to locate on the UI, or secondary informa-
tion/events are erroneously more prominent than critical information/events.
Rationale: Feedback on the UI should promote selective attention on informa-
tion that is important for correct decision-making.

Categories Refining STPA Mental Model

– M1: Reversibility of control actions: Functions for reversing the effect of
control actions are not available. Rationale: UI functions such as undo, stop,
cancel, resume should be available to the operator to recover from errors.

– M2: Responsiveness to control actions: The effect of critical control
actions is not reported to the operator in a timely manner. Rationale: If
feedback for control actions is delayed, users could fail to realize whether the
control actions on the UI have been successfully recognized by the system.

– M3: Consistency of controls: The same UI controls produce different
effects in conceptually similar situations, or UI controls that are conceptually
similar require different interaction styles. Rationale: Consistent UI controls
facilitate the formation of accurate and complete mental models of how to
interact with the system.

– M4: Complexity of controls: Frequently used or critical UI controls require
unreasonably complex manipulation or unreasonably long sequence of user
actions. Rationale: Users could fail to perform common or critical actions/-
tasks if too much time or effort is necessary to complete such actions/tasks
with the available UI functions.

– M5: Predictability of controls: The UI does not provide means to help the
user anticipate the effects or the consequences of control actions. Rationale:
Predictable UI controls facilitate the formation of an accurate and complete
mental model of how to interact with the system.

A Hazard Analysis Method for Systematic Identification 289

– M6: Forgiveness for erroneous control actions: Safety interlocks are
not available to prevent accidental activation of critical controls or block-
/mitigate foreseeable use errors. Rationale: Lack of built-in safeguards for
known/common use errors (e.g., manipulation errors due to variability in
human performance or lack of attention) could lead to catastrophic failures.

– M7: Availability of controls: Control widgets necessary for safe operation
are partially available or not available on the UI, or they are available at the
wrong time or for a too short period of time. Rationale: UI functions should
be provided to allow operators to perform necessary control actions.

– M8: Affordance of controls: The visual appearance (shape, label, etc.),
relative position, and behavior of UI controls are not consistent with stereo-
typical knowledge about their function. Rationale: Design features of UI wid-
gets should promote correct understanding of the action-effect relation of the
UI function associated with the widget.

– M9: Consistency with clinical workflows: Workflows supported by the
UI software are not consistent with best or actual clinical practice. Rationale:
The UI software design should support and enhance existing clinical workflows
rather than disrupting them.

Categories Refining STPA External Information

– E1: Availability of user manuals: Information necessary to understand
device feedback or operate the device are not available in the user manual.
Rational: User manuals should support the formation of a complete and cor-
rect mental model of UI software functions.

– E2: Consistency with user manuals: Workflows described in the user
manual are not consistent with the behavior of the device. Rationale: The
software development process should produce user manuals that are correct
with respect to the UI software functions.

– E3: Complexity of user manuals: Critical information in the user manual
is mixed with non-critical information. Rationale: Critical information (e.g.,
recovery procedures) should be readily accessible in the user manual.

3.2 Process for Using the New Categories

Our method refines the standard STPA process to utilize the new casual factor
categories in analyzing specific system designs. As illustrated in Fig. 1, Step 2
of the standard STPA process is decomposed into two sub-steps: Sub-step 2.1
identifies UI elements (displays, controls, etc.) used to perform critical control
actions; and Sub-step 2.2 instantiates the new casual factor categories for each
identified UI element to explore issues that could induce such UCAs.

Step 3 of the standard STPA process is also decomposed into two sub-steps.
Sub-step 3.1 defines a set of natural language safety requirements to address the
identified UI software issues. In their simplest form, safety requirements can be
formulated as the logical negation of the corresponding design issue. For exam-
ple, consider the design issue “Changing the smartphone orientation resets the

290 P. Masci et al.

recommended insulin bolus dosage”. This issue would have been detected using
category affordance of controls—stereotypical knowledge associates smartphone
orientation changes with view mode changes (landscape/portrait). A safety
requirements can therefore be defined as: “Changing the smartphone orienta-
tion shall not reset/change the recommended insulin bolus dosage”.

Natural language requirements are formalized in Sub-step 3.2, where the
method presented in [20] can be adopted for such formalization. The formaliza-
tion method in [20] identifies key notions and relations in the textual descrip-
tion, and then provides an interpretation to operationalize these notions and
relations for a specific design. This process further clarifies the correspondence
between requirements and UI software functionalities, and creates a safety ref-
erence model. Demonstrating equivalence between a UI software design and the
safety reference model constitutes evidence that the UI design complies with
given requirements.

4 Case Study: The Gantry-2 System

We have evaluated the applicability and potential benefit of our method on
the Gantry-2 system, an experimental radiation therapy device for advanced
cancer treatment. A team of researchers have applied the standard STPA to
analyze the UI design of the Gantry-2 system, based on its preliminary design
document [2]. We evaluated the UI software design in the Gantry-2 system and
compared our results with [2]. To ensure fair comparison, our study was based
on the same set of preliminary design documents, and the same control model
and system boundaries, as those considered in [2]. Our study results (illustrated
below) demonstrate that our method can help to identify not only all design
issues reported in [2] but also new critical UI software issues that were not
identified using the standard STPA.

Description of the system. The Gantry-2 system is a radiation therapy device
for treatment of tumors attached to mobile organs (e.g., lungs). These tumors
require continuous scanning of the patient to ensure correct delivery of radiation
to the tumor cells. The operator is responsible for setting up the system for
the patient, starting the treatment, monitoring the patient and the device state.
These operations are carried out using controls and displays on the Gantry-2
consoles. The specific treatment plan for the patient is loaded by the operator
before starting the treatment. The treatment planning software uses the treat-
ment plan to configure automated controllers that will manage the delivery of
radiation to the patient. Feedback loops necessary to monitor the patient status
and the overall treatment delivery process are realized through beamline sen-
sors and cameras installed in the facility. Full details of STPA control models
representing the Gantry-2 system can be found in [2].

Analysis results using the new categories. Due to space limit, we only
discuss the analysis of the following UCA: “Treatment start command is acti-
vated even when there is no patient to be treated”. Identifying UI software issues
inducing other UCAs can be carried out similarly.

A Hazard Analysis Method for Systematic Identification 291

For this UCA, our analysis identified seven critical issues that were not
reported in [2]. To help readers better understand the identified issues and in
turn the benefits of our method, we present each of these issues as: a descrip-
tion of the issue, UI elements, and causal factors categories used to identify
the issue; a scenario describing hazardous situations where the issue potentially
induces the operator to perform the UCA under analysis; and safety require-
ments for addressing the issue. Note that the decision of whether it is worth
implementing a given safety requirement in the final system depends on the level
of risk addressed by the requirement, which can be estimated using standard risk
matrices.

– Issue 1: UI software does not provide feedback when patient is not ready.
• UI elements: Display.
• Causal factor: Availability of feedback.
• Scenario: Operator erroneously starts the treatment because the alert

indicating patient not ready is not available on the UI.
• Requirement R1. “Patient not ready” alerts shall be displayed on the

UI.
– Issue 2: UI software displays patient not ready alerts on the main operator

console but not on the remote console.
• UI elements: Display on the main and remote consoles.
• Causal factors: Consistency of feedback/Availability of feedback.
• Scenario: Operator erroneously starts the treatment because inconsistent

alerts on two consoles cause incorrect understanding of the patient readi-
ness status.

• Requirement R2. “Patient not ready” alerts shall be displayed at all
consoles.

– Issue 3: UI software fails to display patient not ready alerts in certain system
modes when it should.
• UI elements: Display.
• Causal factor: Availability of feedback.
• Scenario: Operator erroneously starts the treatment because the alert

“Patient not ready” is not displayed in the “Experimental Mode” (e.g.,
the patient readiness status is always set as “Ready” in this system mode,
which incorrectly disables the alert).

• Requirement R3. “Patient not ready” alerts shall be displayed when the
patient is not ready, regardless of the system’s operation mode.

– Issue 4: UI software fails to block the operator’s accidental press on the start
command (e.g., during system maintenance).
• UI elements: Start command.
• Causal factor: Forgiveness for erroneous control actions.
• Scenario: Operator erroneously starts the treatment because the UI soft-

ware fails to block the operator’s accidental press of the start command
when the patient is not ready.

• Requirement R4. UI software shall not accept a start treatment com-
mand when the patient readiness status is not ready.

292 P. Masci et al.

– Issue 5: If the treatment activation sequence is interrupted (e.g., due to power
loss), UI software always resumes the sequence from where it was interrupted,
and does not provide the operator means to stop/abort/restart the treatment
activation sequence.
• UI elements: UI commands involved in the treatment activation sequence.
• Causal factor: Reversibility of control actions.
• Scenario: Operator erroneously starts the treatment because the treat-

ment activation sequence cannot be canceled.
• Requirement R5. A control to cancel the treatment activation sequence

shall be available on all user interface screens.
– Issue 6: UI software fails to provide timely feedback when the operator

presses the start command, which causes the user to press the command
multiple times and each press is registered as a legitimate command to deliver
the treatment.
• UI elements: Start command; Displays providing feedback to operator.
• Causal factor: Responsiveness to control actions.
• Scenario: Operator erroneously starts the treatment multiple times

because the system seems to be not responsive to the first start treat-
ment command. Unbeknownst to the operator, the system registers all
start commands and delivers the treatment multiple times, even when
the patient is not ready.

• Requirement R6. When a control action is performed by the operator,
the UI should respond within x seconds to indicate whether the action has
been recognized.

– Issue 7: A system feature for automatic detection of patient readiness status
is disabled when the system is powered on by the operator, and UI software
forces the operator to navigate through multiple menus to enable it.
• UI elements: Widgets for navigating menus and enabling/disabling detec-

tion of patient readiness status.
• Causal factor: Complexity of controls.
• Scenario: Operator erroneously starts the treatment when the patient is

not ready because they fail to, or choose not to, enable the automatic
patient detection feature.

• Requirement R7. Safety interlocks such as the automatic patient readi-
ness detection shall always be enabled when the system is initialized.

• Requirement R8. The status (enabled/disabled) of safety interlocks
shall always be visible on the UI.

5 Formalization of Safety Requirements in PVS

Safety requirements R1–R8 are testable in the sense that they prescribe specific
properties/design features that the UI software needs to satisfy to ensure safe
device-user interaction. Here we demonstrate how to formalize these require-
ments in the higher order specification language of PVS [24]. The formalization
assumes a PVS model structured using the following general pattern [11,19,25]:

A Hazard Analysis Method for Systematic Identification 293

– The system state is a record of state attributes, each characterized by a unique
name and a type. A special attribute mode identifies the current mode of
operation of the system.

– The system behavior is defined in terms of actions initiated either by the
operator or by an automated process. For example, action start models the
operator’s press on the start command.

– Additional aspects of the system such user manuals, workflows, and context
of use are modeled using state attributes and system behaviors that capture
facts about information resources (see [21,22]).

PVS syntax. A system is modeled as a theory and a set of logic expressions
describing the system behavior. Requirements are expressed as theorems, which
can be proved using the PVS theorem prover. PVS supports basic datatypes
commonly seen in programming languages. New datatypes (e.g., record or enum
types) can be defined using the keyword TYPE. The IMPORTING keyword allows
to import definitions from other PVS theories. Functions are in the form of f(x:
T1): T2, where f is the function name, x is an argument of type T1, and T2 is
the function return type. Arrays are defined as [A -> B], where A is the array
index type, and B is the datatype of the array elements.

5.1 Gantry-2 Model in PVS

The specification fragment in Listing 1.1 presents a PVS model of the Gantry-2
system. Its characteristics are defined at a level of abstraction compatible with
the safety requirements discussed in Sect. 4. The model has been proved to satisfy
all given safety requirements. Thus, it is also called a safety reference model, as it
encapsulates the semantics of the safety requirements. A systematic comparison
against the functionalities of the reference model can be used as a basis to verify
a final UI software implementation [20].

1 gantry2: THEORY BEGIN IMPORTING gantry2_types

2 Console: TYPE = { main , remote }

3 Modes: TYPE = { off , on, ready , radiation , post }

4 UI: TYPE = [# viz: [Attr -> bool],

5 feedback: [Act -> bool],

6 alerts: [Alert -> bool] #]

7 Controller: TYPE = [# patient: PatientStatus ,

8 interlock: bool , mode: Modes #]

9 State: TYPE = [# console: [Console -> UI],

10 controller: Controller #]

11 %-- actions

12 per_stop(st:State): bool = (controller(st)‘mode /= off)

13 stop(c:Console)(st:(per_stop)): State =

14 LET st = action_registered(stop ,c)(st)

15 IN st WITH [controller := controller(st)

16 WITH [mode := ready]]

17 %-- ... additional definitions of actions omitted

18 END gantry2

Listing 1.1. Fragment of the PVS model of the Gantry-2 system.

294 P. Masci et al.

The PVS model in Listing 1.1 defines a record type State (lines 9–10) to track
the system’s operational status, which includes two state attributes for modeling
relevant characteristics of the main and remote consoles and the beamline con-
troller. Lines 4–6 in Listing 1.1 model UI consoles using three state attributes.
Specifically, attribute viz indicates the visibility of a state attribute on the con-
sole. For example, viz(mode) = true means that state attribute mode is visible
on the console. Attribute feedback indicates whether feedback is presented on
the console for a given command. For example, feedback(start) = true indi-
cates that feedback is presented for the start command. Lastly, attribute alerts
indicates whether an alert is displayed on the console. This abstract representa-
tion of UI consoles is sufficient for the verification of safety requirements defined
in Sect. 4. Similarly, the controller of the Gantry-2 system is represented using
three state attributes (lines 7–8 in Listing 1.1): patient, which indicates the
patient readiness status; interlock, which indicates whether a safety interlock
is enabled to prevent erroneous treatment activation when the patient is not
ready; and mode, which indicates the current operation mode of the controller.

The following user actions are defined in the PVS model: start, for starting
a treatment; stop, for stopping a treatment; on, for powering on the system;
and off, for shutting down the system. An automatic action tick models the
advance of time in the system. Further, function init captures the initialization
of the system. Lines 13–16 in Listing 1.1 demonstrate how user action stop is
formally specified. Specifications for other actions can be defined similarly, but
are excluded from Listing 1.1 for brevity. The specification of action stop takes
two parameters: c of type Console indicates to which UI console stop is applied;
and st indicates the controller’s current mode. Note that subtype (per stop)
applied to st indicates that stop can only be applied to system states where
the controller’s operation mode is not off ((per stop) is a shorthand for pred-
icate { st: State | per stop(st) }). The LET-IN construct at lines 14–16
first registers the stop action (line 14), and then returns a new system state
with the controller’s operation mode set to ready.

5.2 Formalization of the Requirements

Formalization of R1–R3. Safety requirements R1–R3 can be conveniently
aggregated into a single requirement “Patient not ready” alerts shall be presented
on both the operator console and remote consoles in all operation modes, which
can be formalized as the PVS theorem patient alerts th below.

1 patient_alerts_th: THEOREM

2 FORALL (pre , post: State , c: Console):

3 %-- induction base

4 (init?(pre) IMPLIES pt_status_visible ?(on(c)(pre))) AND

5 %-- induction step

6 ((pt_status_visible ?(pre) AND trans(pre , post))

7 IMPLIES pt_status_visible ?(post))

A Hazard Analysis Method for Systematic Identification 295

Theorem patient alerts th checks if every possible system state satisfies that
the patient readiness status is actually visible, when it should be, on the display
of both UI consoles. Predicate pt status visible, as elaborated below, holds
true if the patient readiness status is visible (i.e., viz(patient) is true) on the
display of both consoles when the patient is not ready and the system is on.

1 pt_status_visible ?(st: State): bool =

2 (controller(st)‘mode /= off AND

3 controller(st)‘patient = NOT_READY) IMPLIES

4 (st‘console(main)‘viz(patient) AND

5 st‘console(remote)‘viz(patient))

Note that theorem patient alerts th uses structural induction to define all
possible system states satisfying a property p, i.e., p should be satisfied at the
system’s initial state (induction base); then, if p holds for system state pre,
it must hold for any successor state post reachable from pre as the result of
executing system actions, as specified by trans(pre, post) (induction step).

Formalization of R4. Safety requirement R4 prohibits the start of treatment
when the patient is not ready. Theorem patient not ready th listed below for-
malizes this requirement, asserting that user action start shall not be permitted
(i.e., per start(st) returns false) when the patient status is NOT READY.

1 patient_not_ready_th: THEOREM FORALL (st: State):

2 controller(st)‘patient = NOT_READY IMPLIES

3 NOT per_start(st)

Formalization of R5. This requirement allows the operator to cancel the
treatment activation sequence. Its formalization, as listed below as theorem
cancel activation th, asserts that the command is always available when the
device is turned on (controller(st)‘mode /= off), and the system shall go
back to mode ‘ready’ as result of pressing button stop.

1 cancel_activation_th: THEOREM

2 FORALL (st: State , c: Console):

3 controller(st)‘mode /= off IMPLIES

4 controller(stop(c)(st))‘mode = ready

Formalization of R6. This requirement mandates timely feedback after the
operator performs a control action. Theorem acknowledge start th listed
below formalizes this requirement for user action start. It is defined based
on attribute feedback(start), which is true when feedback is presented on the
UI. The attribute is checked immediately after registering user action start.
This formalization is sufficient for the demonstrative purposes of this paper. An
additional condition is also included to ensure that feedback is not displayed
persistently (in this case after one tick) on the console after pressing start.
Formalizing R6 for other user actions can be done similarly.

296 P. Masci et al.

1 acknowledge_start_th: THEOREM

2 FORALL (pre , post: State , c: Console):

3 (per_start(pre) AND post = start(c)(pre)) IMPLIES

4 (console(post)(c)‘feedback(start) AND

5 NOT console(tick(post))(c)‘feedback(start))

Formalization of R7. Theorem interlocks active th formalizes safety
requirement R7, which ensures that interlock is true (i.e., safety interlocks
are enabled) after the system is powered on (modeled by action on).

1 interlocks_active_th: THEOREM FORALL (st: State):

2 init?(st) AND per_on(st) IMPLIES

3 (FORALL (c: Console): controller(on(c)(st))‘interlock)

Formalization of R8. Formalization of safety requirement R8 involves defining
a predicate interlock visible? that checks whether the status of interlocks
(attribute interlock) is visible on both UI consoles. Structural induction can
then be used to build a theorem, like that used in formalization of R1–R3, to
assert that interlock visible? holds true for all reachable system states.

1 interlock_visible ?(st: State): bool =

2 controller(st)‘mode /= off IMPLIES

3 (FORALL (c: Console): st‘console(c)‘viz(interlock))

We have proved that the PVS model in Listing 1.1 satisfies all PVS theorems
discussed in this section. The proof was carried out using the predefined PVS
proof strategy grind, which performs automatic instantiation, rewriting, and
expansion of definitions. The full PVS theory and proof can be downloaded
from https://goo.gl/7ftTlv.

6 Related Work

STPA extensions dedicated to improving the analysis of use hazards were pro-
posed in [31]. These extensions refine the human controller model in standard
STPA using concepts from applied psychology: a detection/interpretation com-
ponent is introduced to capture the operator’s ability of observing and under-
standing feedback correctly and in a timely manner; and an action identification
component is included to model the operator’s ability to identify actions suit-
able to manipulate controls provided on the UI. Whereas this refined model
enables developers to identify human cognitive errors that lead to UCAs (e.g.,
the operator performs an unsafe action because of incorrect interpretation of
system feedback), it does not help to explore design issues in the UI software
that likely induce such human cognitive errors.

Leveson has introduced an STPA extension designed to validate the assump-
tions made by developers when defining a control model for the system under
analysis [18]. The validation is done using indicators suitable for measuring

https://goo.gl/7ftTlv

A Hazard Analysis Method for Systematic Identification 297

changes made by developers during the definition of the system’s control model.
This extension is orthogonal to our method in that it improves the fidelity of
control models necessary for the STPA analysis of a system.

Dokas et al. [8] extended the STPA control model to facilitate the analysis
of catastrophic failures. The intuition is that detecting early warning signs of
catastrophic failures and studying how they propagate in the control model
can help improve the overall safety of the system. This extension is suitable
to identify management-level causes of use hazards in complex socio-technical
systems, rather than UI software design issues.

Procter and Hatcliff used standard STPA to analyze interoperable medical
devices and identify safety requirements for mitigating design issues in these
systems [27]. They enriched STPA with additional guidelines to support the
identification of UCAs and their casual factors in interoperable medical systems,
and created AADL extensions for documenting the analysis results and subse-
quently defined safety requirements. Their focus is on interoperability issues,
rather UI software design issues.

7 Conclusion

We have presented an enhanced STPA analysis method to support (i) systematic
identification of UI software design issues that could induce use errors with
medical devices, and (ii) definition of safety requirements to address such design
issues. The benefits of our method has been demonstrated in a case study on
an experimental medical system. Our method facilitated the identification of
subtle UI software design issues that are difficult to detect with the standard
STPA. It also helped us to define testable safety requirements that can be readily
formalized to address the identified issues. This might potentially improve the
applicability of formal methods in evaluating UI software design in safety-critical
systems such as medical devices. Future research includes investigating ways to
mechanize the instantiation of the casual factor categories to a specific design,
and detailed pragmatic guidelines for formalizing safety requirements identified
by our method.

Acknowledgments. Sandy Weininger (FDA), Scott Thiel (Navigant Consulting,
Inc.), Michelle Jump (Stryker), Stefania Gnesi (ISTI/CNR) and the CHI+MED team
(www.chi-med.ac.uk) provided useful feedback and inputs. Paolo Masci’s work is sup-
ported by the North Portugal Regional Operational Programme (NORTE 2020) under
the PORTUGAL 2020 Partnership Agreement, and by the European Regional Devel-
opment Fund (ERDF) within Project “NORTE-01-0145-FEDER-000016”.

References

1. Association for the Advancement of Medical Instrumentation: Infusing patients
safely: Priority issues from the AAMI/FDA Infusion Device Summit. AAMI (2010)

2. Blandine, A.: System Theoretic Hazard Analysis applied to the risk review of
complex systems. Ph.D. thesis, MIT (2012)

www.chi-med.ac.uk

298 P. Masci et al.

3. Bolton, M.L., Bass, E.J.: A method for the formal verification of human-
interactive systems. In: Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, vol. 53(12), pp. 764–768. Sage Publications (2009). doi:10.1177/
154193120905301201

4. Bowen, J., Reeves, S.: A simplified Z semantics for presentation interaction models.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 148–
162. Springer, Cham (2014). doi:10.1007/978-3-319-06410-9 11

5. Ericson, C.: Hazard Analysis Techniques for System Safety. Wiley, New York
(2015). doi:10.1002/0471739421.ch1

6. Campos, J.C., Harrison, M.D.: Interaction engineering using the IVY tool. In:
EICS 2009, pp. 35–44. ACM (2009). doi:10.1145/1570433.1570442

7. Chudleigh, M., Clare, J.N.: The benefits of SUSI: Safety analysis of user system
interaction. In: Górski, J. (ed.) SAFECOMP 1993, pp. 123–132. Springer, London
(1993). doi:10.1007/978-1-4471-2061-2 13

8. Dokas, I., Feehan, J., Imran, S.: EWaSAP: an early warning sign identification
approach based on a systemic hazard analysis. Saf. Sci. 58, 11–26 (2013). doi:10.
1016/j.ssci.2013.03.013

9. Food and Drug Administration (FDA): Class 2 Device Recall ACCUCHEK Con-
nect Diabetes Management App (2015). https://www.accessdata.fda.gov/scripts/
cdrh/cfdocs/cfRES/res.cfm?id=134687

10. Harrison, M.D., Campos, J.C., Masci, P.: Reusing models and properties in the
analysis of similar interactive devices. Innov. Syst. Softw. Eng. 11(2), 95–111
(2015). doi:10.1007/s11334-013-0201-3

11. Harrison, M.D., Masci, P., Campos, J.C., Curzon, P.: Demonstrating that medical
devices satisfy user related safety requirements. In: Huhn, M., Williams, L. (eds.)
Software Engineering in Health Care: 4th International Symposium, FHIES 2014,
and 6th International Workshop, SEHC 2014, Washington, DC, USA, July 17–
18, 2014, Revised Selected Papers, pp. 113–128. Springer International Publishing,
Cham (2017). doi:10.1007/978-3-319-63194-3 8. ISBN: 978-3-319-63194-3

12. Hussey, A.: HAZOP analysis of formal models of safety-critical interactive systems.
In: Koornneef, F., Meulen, M. (eds.) SAFECOMP 2000. LNCS, vol. 1943, pp. 371–
381. Springer, Heidelberg (2000). doi:10.1007/3-540-40891-6 32

13. Ishikawa, K., Lu, D.J.: What is Total Quality Control? The Japanese Way. Prentice
Hall Business Classics, Prentice-Hall, Englewood Cliffs (1985)

14. Kletz, T.A.: Hazop and hazan: identifying and assessing process industry hazards.
Disaster Prev. Manage. Int. J. 10(1), 30–31 (2001). doi:10.1108/dpm.2001.10.1.30.4

15. Leape, L.L., Berwick, D.M.: Five years after to err is human: what have we learned?
JAMA 293(19) (2005). doi:10.1001/jama.293.19.2384

16. Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.: Fault tree analysis, methods, and
applications: a review. IEEE Trans. Reliab. 34(3), 194–203 (1985). doi:10.1109/
TR.1985.5222114

17. Leveson, N.: Engineering a Safer World. MIT Press, Cambridge (2011)
18. Leveson, N.: A systems approach to risk management through leading safety indi-

cators. Reliab. Eng. Syst. Saf. 136, 17–34 (2015). doi:10.1016/j.ress.2014.10.008
19. Masci, P., Zhang, Y., Jones, P., Curzon, P., Thimbleby, H.: Formal verification of

medical device user interfaces using PVS. In: Gnesi, S., Rensink, A. (eds.) FASE
2014. LNCS, vol. 8411, pp. 200–214. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54804-8 14

http://dx.doi.org/10.1177/154193120905301201
http://dx.doi.org/10.1177/154193120905301201
http://dx.doi.org/10.1007/978-3-319-06410-9_11
http://dx.doi.org/10.1002/0471739421.ch1
http://dx.doi.org/10.1145/1570433.1570442
http://dx.doi.org/10.1007/978-1-4471-2061-2_13
http://dx.doi.org/10.1016/j.ssci.2013.03.013
http://dx.doi.org/10.1016/j.ssci.2013.03.013
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?id=134687
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?id=134687
http://dx.doi.org/10.1007/s11334-013-0201-3
http://dx.doi.org/10.1007/978-3-319-63194-3_8
http://dx.doi.org/10.1007/3-540-40891-6_32
http://dx.doi.org/10.1108/dpm.2001.10.1.30.4
http://dx.doi.org/10.1001/jama.293.19.2384
http://dx.doi.org/10.1109/TR.1985.5222114
http://dx.doi.org/10.1109/TR.1985.5222114
http://dx.doi.org/10.1016/j.ress.2014.10.008
http://dx.doi.org/10.1007/978-3-642-54804-8_14
http://dx.doi.org/10.1007/978-3-642-54804-8_14

A Hazard Analysis Method for Systematic Identification 299

20. Masci, P., Ayoub, A., Curzon, P., Harrison, M.D., Lee, I., Thimbleby, H.: Verifi-
cation of interactive software for medical devices: PCA infusion pumps and FDA
Regulation as an example. In: EICS 2013, pp. 81–90. ACM (2013). doi:10.1145/
2494603.2480302

21. Masci, P., Curzon, P., Furniss, D., Blandford, A.: Using PVS to support the analysis
of distributed cognition systems. Innov. Syst. Softw. Eng. 11(2), 113–130 (2015).
doi:10.1007/s11334-013-0202-2

22. Masci, P., Furniss, D., Curzon, P., Harrison, M.D., Blandford, A.: Supporting field
investigators with PVS: a case study in the healthcare domain. In: Avgeriou, P.
(ed.) SERENE 2012. LNCS, vol. 7527, pp. 150–164. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33176-3 11

23. Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1993).
doi:10.1016/B978-0-08-052029-2.50001-2

24. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). doi:10.1007/3-540-55602-8 217

25. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A., Gimblett, A., Li, Y., Curzon,
P., Thimbleby, H.: The benefits of formalising design guidelines: a case study on
the predictability of drug infusion pumps. Innov. Syst. Softw. Eng. 11(2), 73–93
(2015). doi:10.1007/s11334-013-0200-4

26. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: a diagrammatic nota-
tion for specifying task models. In: Howard, S., Hammond, J., Lindgaard, G. (eds.)
Human-Computer Interaction INTERACT ’97. ITIFIP, pp. 362–369. Springer,
Boston, MA (1997). doi:10.1007/978-0-387-35175-9 58

27. Procter, S., Hatcliff, J.: An architecturally-integrated, systems-based hazard analy-
sis for medical applications. In: MEMOCODE 2014, pp. 124–133. IEEE (2014).
doi:10.1109/MEMCOD.2014.6961850

28. Rukšėnas, R., Curzon, P., Back, J., Blandford, A.: Formal modelling of cognitive
interpretation. In: Doherty, G., Blandford, A. (eds.) DSV-IS 2006. LNCS, vol. 4323,
pp. 123–136. Springer, Heidelberg (2007). doi:10.1007/978-3-540-69554-7 10

29. Rushby, J.: Using model checking to help discover mode confusions and other
automation surprises. Reliab. Eng. Syst. Saf. 75(2), 167–177 (2002). doi:10.1016/
S0951-8320(01)00092-8

30. Stamatis, D.: Failure Mode And Effect Analysis. ASQ Quality Press, Milwaukee
(2003)

31. Thornberry, C.: Extending the human-controller methodology in systems-theoretic
process analysis (STPA). Ph.D. thesis, MIT (2014)

http://dx.doi.org/10.1145/2494603.2480302
http://dx.doi.org/10.1145/2494603.2480302
http://dx.doi.org/10.1007/s11334-013-0202-2
http://dx.doi.org/10.1007/978-3-642-33176-3_11
http://dx.doi.org/10.1016/B978-0-08-052029-2.50001-2
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/s11334-013-0200-4
http://dx.doi.org/10.1007/978-0-387-35175-9_58
http://dx.doi.org/10.1109/MEMCOD.2014.6961850
http://dx.doi.org/10.1007/978-3-540-69554-7_10
http://dx.doi.org/10.1016/S0951-8320(01)00092-8
http://dx.doi.org/10.1016/S0951-8320(01)00092-8

Modular Verification of Information Flow
Security in Component-Based Systems

Simon Greiner(B), Martin Mohr, and Bernhard Beckert

Department of Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
{Simon.Greiner,Martin.Mohr,beckert}@kit.edu

Abstract. We propose a novel method for the verification of informa-
tion flow security in component-based systems. The method is (a) modu-
lar w.r.t. services and components, i.e., overall security is proved to follow
from the security of the individual services provided by the components,
and (b) modular w.r.t. attackers, i.e., verified security properties can be
re-used to demonstrate security w.r.t. different kinds of attacks.

In a first step, user-provided security specifications for individual
services are verified using program analysis techniques. In a second
step, first-order formulas are generated expressing that component non-
interference follows from service-level properties and in a third step that
global system security follows from component non-interference. These
first-order proof obligations are discharged with a first-order theorem
prover. The overall approach is independent of the programming lan-
guage used to implement the components. We provide a soundness proof
for our method and highlight its advantages, especially in the context of
evolving systems.

As a proof of concept and to demonstrate the usability of our method,
we present a case study, where we verify the security of a system imple-
mented in Java against two types of attackers. We apply the program
verification system KeY and the program analysis tool Joana for ana-
lyzing individual services; modularity of our approach allows us to use
them in parallel.

1 Introduction

Information flow (IF) security is a program property ensuring that certain infor-
mation given as input to a system can only be observed by users of the system
who are explicitly allowed to do so (and not by other users). Formal analysis
of IF security requires specification of (a) which users shall be able to observe
which information and (b) what outputs users can access and read. In practice,
there is often more than one type of user – which we consider to be potential

This work was supported by the German Ministry for Education and Research within
the framework of the project KASTEL IoE in the Competence Center for Applied
Security Technology (KASTEL) and by the german research foundation in the scope
of the priority program “Reliably Secure Software Systems” (grants Sn11/12-1/2/3).

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 300–315, 2017.
DOI: 10.1007/978-3-319-66197-1 19

Modular Verification of Information Flow Security 301

attackers – each requiring a specification and analysis. Component-based sys-
tems, in particular, are designed for re-use and, thus, are deployed in different
environments where new user types have to be considered.

Overview of our method. We propose a novel method for the modular ver-
ification of IF security properties in component-based systems. Our method
uses very expressive IF specifications, where information about arbitrary parts
or combinations of input parameters can be declared to be secret as well as
information about what service calls other users have initiated. The restricted
programming paradigm used for component-based systems provides convenient
compositionality properties, that we can use to verify non-interference properties
in a modular way.

The first step of our proposed method is the specification (and verification)
of service-local IF properties, which are independent of the user/attacker model.
These service-local properties are modular and re-usable. We can apply tools
with different precision and scalability properties for verification of each service-
local specification, which allows us to improve scalability while maintaining pre-
cision of verification. Service-local specifications remain valid when other ser-
vices are changed or new services are added. In the second step, we generate a
system-wide specification from the service-local properties and verify that the
service-local properties imply the system-wide IF properties. This is done by
proving validity of a formula in first-order predicate logic, which is constructed
from the specifications in a uniform way. In a third step, we show that the
system-wide IF specification implies the required domain-motivated IF property
w.r.t. particular user/attacker models.

Our method is tool-independent and allows the combination of different pro-
gram analysis techniques – to be used in the first step. The second and the third
step do not need program analysis but only a first-order theorem prover.

Proof of concept. As a proof of concept, we apply our method to component-
based systems implemented in Java, using the program verification tool KeY and
the program analysis tool Joana for verification of service-local IF properties
(first step). Further, we use the (Java-independent part of) KeY to prove validity
of first-order formulas (second and third step). As an example, we specified and
verified IF security of a web shop system consisting of several components w.r.t.
two different types of attackers.

Related work. Non-Interference as a program property has its origins in
the notion of strong dependency by Cohen [7] and the first definition of non-
interference by Goguen and Meseguer [10]. The work in this paper is based on
a line of work on non-interference for distributed interactive systems (which
components can be considered to be) [6,12,25,26]. Work in [28] allows more
expressive specifications than our framework, but does not provide composition-
ality results. Other recent work [2,21,22] discusses compositionality of concurrent
threads with a shared state, which however is not present in components.

Approaches for analysis of event-based non-interference notions often use
type systems and are limited to toy languages or abstract specification languages

302 S. Greiner et al.

(e.g., [20,26,27]). Analysis for batch programs based on type systems (e.g., [3]) is
typically limited to syntactical information, and therefore has limited precision.
Dependent types [24,32] include semantic knowledge into the analysis and use
SMT solvers as back ends. JiF [5,23] extends Java with security type systems,
which allows analysis of security properties in Java programs at compile time.
We assume type-based analysis can be used as an additional technique for the
first step of our method.

We use the Joana tool, for program analysis in this work. Other slicing
tools for Java include Wala [15], Pidgin [16] and Indus [33]. Both Wala and
Pidgin employ program dependency graphs and especially Pidgin could be a
viable alternative in the context of this work, while Indus does not a provide
pre-computed PDG, which we require here.

Work on tool combinations for IF analysis includes the RIFL language [9],
a specification language for IF policies in programs. It is supported by several
tools. However, in contrast to our work, RIFL does not provide a formal seman-
tics for the specifications and does not support secrecy of messages. Küsters
et al. propose the hybrid approach [18] for the verification of IF properties with
declassification in batch programs. Their approach, however, relies on making
provably ineffective changes to the program and is limited to the combination
of two tools. SHRIFT [19] combines dynamic analysis on the operating system
layer and static IF analysis to track information flows through multiple layers
of abstraction efficiently and precisely. We limit the presentation here to static
analysis tools, while in general, our method would allow dynamic analysis.

Paper outline. Next, we define the formal framework (Sect. 2), i.e., notions of
service and component, and non-interference for components and services. Then,
in Sect. 3, we introduce our concept of service-local specifications (first step).
We show in Sect. 4 how they can be used to generate and verify system-wide
properties (second step). And, in Sect. 5, we describe how domain-motivated
IF specifications can be derived from system properties (third step). We discuss
the proof of concept and the web shop example in Sect. 6. Finally, we conclude.

2 Formal Framework

We present the formalization of components, services, and composition of com-
ponents, and we formally define non-interference in component-based systems.
This formal framework, which we use as a basis for our method, is mainly taken
from [12], where also proofs for the theorems can be found.

2.1 Components and Services

Components have a (private) state σ, which is a mapping from a set V of variables
to a set V of values. A component’s functionality is implemented by services,
which are sequential, terminating, deterministic programs.

For each service serv, a dedicated initial channel Ini(serv) and a termina-
tion channel Fin(serv) is contained in the system’s set C of channels. If the

Modular Verification of Information Flow Security 303

environment wants to call serv, it sends a message m ∈ M, where M ⊆ C×V
n,

on the initial channel Ini(serv) ∈ C and parameter values from V to the com-
ponent. Then, the component executes the service starting in its current state
and returns a message on Fin(serv) on completion. While a component exe-
cutes a service, all other service calls to that component are postponed, making
the execution of a component a non-reentrant, sequential composition of service
executions.

During execution, a service may call other services serv′ by sending a message
on channel Ini(serv′). After the call, the service waits for the termination of
serv′, making communication synchronous.

This computational model for component-based systems is rather restrictive.
It is, nevertheless, consistent with practically used frameworks for implemen-
tation of component-based systems. We discuss, for example, how our model
applies to the Java Enterprise Edition in Sect. 6. Also, assemblies as used in the
.net framework have similar properties. And even relational databases can be
considered components according to our definition.

Fig. 1. Shop component as running example (see Example 1)

Example 1. As a running example, we use the simple Shop component shown in
Fig. 1. The service buy receives a product id, adds it to the list prods of products
in the cart, and increases the variable sum by the product’s price. Service pay
uses the service trans provided by the environment to perform payment with
credit card number ccnr, the given pin and the sum of prices stored in the state.
Service print prints the receipt with the paid sum, the products and last bit of
the credit card used for paying, if payment was successful.

For messages on a channel α with parameter v, we write α?v (input message),
α!v (output message), or α.v (direction irrelevant). The sets of all input messages
and all output messages are denoted by I and O, respectively. The empty trace
of messages is denoted by 〈〉, and� is the concatenation operation for traces.

Two components c and d are composed by synchronizing messages on services
required by c and provided by d and vice versa. In the trace of the composition,
messages resulting from communication between c and d can be observed by the
environment as outputs.

304 S. Greiner et al.

2.2 Non-interference

Intuitively, a component is non-interferent, i.e., it has no unwanted information
flows, if an environment (or an attacker) observing the public (low) output of a
component cannot distinguish between inputs which only differ on (high) secrets.
In the following, to distinguish between public (low) and secret (high) inputs
and outputs, we use an equivalence relation ∼ ⊆ M × M. Messages which are
equivalent w.r.t. ∼ must not be distinguishable by the environment, i.e., it is a
secret which of two equivalent messages has been sent. This flexible formalization
allows a very precise specification of what-declassification (see [29]).

Example 2. Continuing from Example 1, the relation ∼ may be defined for the
Shop component by: Ini(pay)?(ccnr, pin) ∼ Ini(pay)?(ccnr′, pin′) iff ccnr%2 =
ccnr′%2, stating that the last bit of the information stored in parameter ccnr
is low, while parameter pin is considered to contain high information. The def-
inition Fin(pay)!r ∼ Fin(pay)!r′ iff r = r′ expresses the return value of pay to
be low.

Apart from communicated values, the mere existence of communication can
contain information. All results provided in the remainder also hold in the case
when the specification of high message existence is possible.1

Equivalence of messages raises a natural notion of equivalence of message
traces, for which we overload ∼: Two traces t and t′ are equivalent if their
projection on the equivalence classes of messages implied by ∼ are equal. Then,
non-interference for components can be defined as follows:

Definition 1 (Component non-interference). A component c is non-inter-
ferent w.r.t. an equivalent relation ∼ on messages if, for all message traces that
can be produced by c in some environment, an equivalent trace is produced by c
in any environment supplying equivalent inputs.

In [12], environments are formalized as functions providing for each obser-
vation of a component’s behavior some input for the component. We omit here
this more formal consideration of non-interference and refer to the original work.
We do need, however, the following compositionality result:

Theorem 1 (Non-interference compositionality). If components c and d
are non-interferent w.r.t. ∼, then the composition of c and d is non-interferent
w.r.t. ∼.

We want to verify non-interference of components in a modular way, i.e., by
first analyzing individual services. Thus, we need to ensure that one service does
not break the non-interference of another service. We must check that no service
returns a high value stored in the state by another service. For that purpose,
we use an equivalence relation ≈ ⊆ S × S over states to define the low part of a
state: Two states are equivalent w.r.t. ≈ iff they only differ on the secret (high)
part of the state. Now, we can define non-interference for services as follows:
1 We omit discussion of high messages here, and refer to [13].

Modular Verification of Information Flow Security 305

Definition 2 (Service non-interference). A service serv is non-interferent
with respect to ∼ and ≈ iff, for all pre-states σ1, σ2, all post-states σ′

1, σ
′
2, and

all traces t1, t2 such that serv started in σi terminates in σ′
i by communicating

trace ti, the following holds:

1. If σ1 ≈ σ2 and t1 and t2 have equivalent input messages, then σ′
1 ≈ σ′

2.
2. If σ1 ≈ σ2 and t′1, t

′
2 are prefixes of t1, t2 with equivalent inputs, then there

exist longer prefixes t′1� t′′1 of t1 and t′2� t′′2 of t2 such that t′1� t′′1 ∼ t′2� t′′2 .

Condition 1 ensures that the service, when started in equivalent pre-states
and provided with equivalent inputs, terminates in equivalent post states, i.e.,
no high information is written to the low part of the state. Condition 2 ensures
that all outputs created by the service are equivalent if the pre-states and all
inputs previously provided to the service are equivalent, i.e., no high information
is sent as output to the environment.

Non-interference for services as defined above is termination-insensitive.
While generally this is a weak non-interference property, that is not relevant
here, since we assume every service to terminate. Components, on the other
hand, never terminate: After termination of a service, the component continues
to offer all its services to the environment.

The following theorem states that non-interference for components can be
verified by first proving non-interference for services.

Theorem 2 (Compositionality of Services). A component c is non-
interferent w.r.t. ∼ (Definition 1) if there exists an equivalence relation ≈ on
states such that all services provided by c are non-interferent w.r.t. ∼ and ≈
(Definition 2).

Note that Theorem 2 requires all services to be non-interferent w.r.t. the same
relations (∼,≈). Moreover, Theorem 1 requires components to be non-interferent
w.r.t. the same relation ∼ to derive non-interference of their composition. In the
following sections we describe a method for generating appropriate system-global
relations from service-local relations.

3 Service-Local Non-interference Specification

In the first step of our method, we specify and verify information-flow (resp.
non-interference) at the level of individual services. We do this in a modular way
such that verified properties of services imply properties of the overall system.
Modularity is essential as it is very tedious to find and formalize system-wide
IF properties for a realistic system and, moreover, properties change whenever
a system is modified or deployed in a new context.

As a concept for modular service-local specification, we introduce dependency
clusters. Whether a dependency cluster is valid, i.e. whether the specification it
represents is satisfied by a service, only depends on the service’s implementa-
tion and not on the environment or other services. Moreover, existence of some

306 S. Greiner et al.

information flow does not depend on the system-wide attacker model (but only
whether the flow is harmful). We will use dependency clusters as building blocks
for system-wide specifications in the second step of our method.

Intuitively, a dependency cluster is a set of message parameters and state
variables (resp. more complex expressions) whose values in the post-state of
the service only depends on their values in the pre-state. Thus, if the cluster
is used to specify which information is public (low), then the service is indeed
non-interferent.

Fig. 2. Two dependency cluster (dashed and dotted arrows) of the service buy. The
arrows illustrate dependencies between the state, parameters and the return value.

Example 3. In the Shop component shown in Fig. 1, the return value of ser-
vice buy depends (only) on the value of parameter prodId and on the pre-state
value of prods (the dashed arrows in Fig. 2 illustrate these dependencies). Thus
the return value, prodId, and prods form a valid dependency cluster. A second
cluster is formed by the parameter price and the state variable sum (dotted
arrows).

As described in the previous section, we use equivalence relations on messages
and states to formalize which information is considered public (low). Thus, more
formally, a dependency cluster is a pair (∼,≈); it is valid for some service if that
service is non-interferent w.r.t. (∼,≈):

Definition 3 (Dependency cluster). A pair (∼,≈) of equivalence relations
is a dependency cluster for a service serv if serv is non-interferent w.r.t. (∼,≈).

For example, the universal relations, defined by m1 ∼ m2 ⇔ true and σ1 ≈
σ2 ⇔ true, form a trivial dependency cluster for all services. This cluster defines
all inputs, outputs and the entire post-state to contain high information (nothing
is low). At the other extreme, the dependency cluster defined by m1 ∼ m2 ⇔
m1 = m2 and σ1 ≈ σ2 ⇔ σ1 = σ2 is also valid for all services. It declares all
inputs, outputs and the entire state to only contain low information. In practice,
of course, one needs to find clusters that are valid without being trivial.

Several dependency clusters for the same service serv are compositional in
the sense that their intersection is again a dependency cluster serv (the formal
proof, together with all proofs for this paper, can be found in [13]):

Theorem 3 (Compositionality of dependency clusters). Let (∼1,≈1)
and (∼2,≈2) be dependency clusters for a service serv. Then the composition
(∼1,≈1) + (∼2,≈2) := (∼1 ∩ ∼2,≈1 ∩ ≈2) is a dependency cluster for serv.

Modular Verification of Information Flow Security 307

Intuitively, intersecting relations has the effect that equivalence classes
become smaller and, thus, more information is considered low. Interestingly,
according to Theorem 3, a composition of dependency clusters considers more
outputs to be low, i.e., allows less flows than the individual clusters. At the
same time, the composition is less restrictive than a mere conjunctive combina-
tion of the two individual clusters: Assume, for example, that one dependency
cluster allows only flows from state variable a to itself (i.e. if σpre(a) = σ′

pre(a)
then σpost(a) = σ′

post(a)), and the other allows only flows b to itself (i.e. if
σpre(b) = σ′

pre(b) then σpost(b) = σ′
post(b)). Their intersection (i.e. if σpre(a) =

σ′
pre(a) ∧ σpre(b) = σ′

pre(b) then σpost(a) = σ′
post(a) ∧ σpost(b) = σ′

post(b)) addi-
tionally allows flows from a to b and vice versa, for example the program a = a+b.

As a formalism for defining dependency clusters and, thus, for specifying
information flow properties, we introduce the following notation: Each depen-
dency cluster is given as a pair (LowIO ,LowState) of lists, specifying ∼ resp. ≈.
The elements of LowIO are of the form c.e, where c is an initial or termina-
tion channel and e is an expressions over the parameters or the return values of
the service. Two messages on channel c are equivalent iff, for all c.e ∈ LowIO ,
e evaluates to the same value for the two messages. Similarly, the elements of
LowState are expressions over the state variables. Two states are equivalent, if
the expressions evaluate to the same values in both states. Intuitively, the two
lists LowIO and LowState describe what information is to be considered low.
Thus, state variables, parameters, and channels not mentioned in the lists are
secret (high).

The above notation can be used to define dependency clusters for services but
also to specify global information-flow properties for components and systems.

Example 4. A component-global information-flow specification for the Shop
example (Fig. 1) may be given by:

LowIO1 = 〈Ini(buy).(prodId , price), Fin(buy).(r), Fin(print).(r),
Ini(pay).(ccnr%2), Fin(pay).(r), Fin(trans).(r)〉

LowState1 = 〈prods, sum, check, payId〉
We use declassification for the credit card number expressing that (only) the

last bit of the contained information is low. We can apply similar expressions for
state variables.

The first dependency cluster in Fig. 2 (dashed line) may be defined by
LowIO2 = 〈Ini(buy).(prodId), Fin(buy).(r)〉 and LowState2 = 〈prods〉, and the
second dependency cluster (dotted line) by LowIO3 = 〈Ini(buy).(price)〉 and
LowState3 = 〈sum〉.

The expressiveness of the list notion depends on the expressions allowed
to occur in the lists. We do not define a particular language here but assume
computability of the expressions. In practice, the concrete language will depend
on the tools for verification of dependency clusters. Heavy-weight methods like
theorem provers can deal with more expressive languages while light-weight tools
like PDG- or type-based systems may support a limited subset.

308 S. Greiner et al.

Using the list notion, the composition of dependency clusters (see Theorem 3)
can be constructed by concatenating the respective lists.

Example 5. The composition of the two dependency clusters from Exam-
ple 4 can be written as LowIO4 = 〈Ini(buy).(prodId, price), Fin(buy).(r)〉 and
LowState4 = 〈prods, sum〉.

According to Theorem 3, it is sufficient to show for two specifications inde-
pendently that they are dependency clusters in order to gain a composed, poten-
tially more complicated, specification. Ideally, one uses an analysis method to
identify simple dependency clusters which describe information flows inherent to
the implementation of a service. More complicated clusters, which are necessary
to compare information flow to a security policy, can then be constructed by
composing these simple dependency clusters, which may be verified separately
by different tools. This makes dependency clusters convenient building blocks
for complex information flow specifications for services.

Since we allow declassification to be used in our specifications there are infi-
nitely many potential dependency clusters for each service. The first step of
the method proposed in this work is identifying useful dependency clusters for
each service. In Sect. 6, we show two concrete approaches for identification. The
first approach is to manually specify dependency clusters and verify them using
a program verification tool. This is especially useful for declassification, when
analysis with high precision is required for analysis. In the second approach, we
use an automatic, less precise program analysis tool which directly creates a set
of all dependency clusters it can find.

4 Dependency Clusters and Components

In the second step of our method, we compose dependency clusters of all ser-
vices and thus gain component- and system-wide non-interference specifications.
While dependency clusters for the same service are compositional, dependency
clusters for different services are not, hence we have to show that composed
dependency cluster of different services are consistent.

Since dependency clusters are service-local specifications, each dependency
cluster will most likely mention at most the part of the state relevant for the
service and the messages sent and received by the service. Consider, for example,
the service buy in Fig. 1: We have defined several dependency clusters for buy;
but, none of these clusters mentions the variable check .

An approach in program analysis to deal with irrelevant parts of states is
framing [17]. Framing uses an abstract description of an upper bound of rele-
vant variables for a particular service and of the other services it requires. An
assignable set describes the variables that a service may at most change. Indi-
rectly, this specifies that the value (and security level) of all variables not in the
set remains unchanged. A set F ⊆ V is an assignable set for a service serv iff,
for all executions of serv , v �∈ F implies σ(v) = σ′(v) (σ, σ′ are the pre- and
post-state).

Modular Verification of Information Flow Security 309

Similar to the assignable sets, a callable set is a list of services which can
at most be called by a service. C ⊆ S is a callable set for service serv if all
traces produced by execution of serv at most contain messages on initial and
termination channels of the services in C.

Example 6. In the Shop component, an assignable set for buy is {sum, prods}.
And {} is an assignable set for print . The empty set is a callable set for both
buy and print . A callable set for pay is {trans}.

We can use known dependency clusters, assignable, and callable sets for some
service serv to check if serv is non-interferent w.r.t. a component-global specifi-
cation as follows:

Theorem 4. Let C be a callable set for service serv and F an assignable set
for serv. A pair (∼g,≈g) is a dependency cluster for serv if there is a depen-
dency cluster (∼serv,≈serv) for serv such that, for all messages m,m′ and states
σ, σ′, σp, σ

′
p,

if m ∼g m′ then m ∼serv m′, and if σ ≈g σ′ then σ ≈serv σ′ (1)
if m ∼serv m′ and m ∈ C then m ∼g m′ (2)
if σ ≈g σ′ and σp ≈serv σ′

p then anon (σ,F, σp) ≈g anon (σ′,F, σ′
p) (3)

where anon(σ, V, σ′) yields a state σanon such that σanon(v) evaluates to σ′(v) if
v ∈ V and to σ(v) otherwise.

Condition (1) states that input messages that are equivalent w.r.t. the
component-global relation must also be equivalent w.r.t. the service-local rela-
tion, and that if two states are equivalent w.r.t. the global state relation, then
they must also be equivalent w.r.t. the service-local relation. Indirectly, this
ensures that, if all other services provided by a component ensure equivalence
w.r.t. the global equivalence relation for their post state, then serv is guaran-
teed to be executed in pre-states which are equivalent w.r.t. the service-local
specification.

In Condition (2), we use m ∈ C as abbreviation for m being an initial or
terminating message for a service in C. The condition guarantees that all output
messages of a service are equivalent globally if they are service-locally equivalent
and the messages can actually be communicated during execution of the service.
In a similar fashion, Condition (3) guarantees that the parts of the post-states,
which are actually changed by the service, are changed such that they are also
equivalent w.r.t. the component-global state-equivalence relation.

Note that the condition to be checked according to Theorem 4 can be for-
malized in first-order predicate logic, if all expressions in the list notion are
first-order. (Which we assume to be sufficiently expressive in practice)

Example 7. Reconsidering Example 4, we can use Theorem 4 to show that
LowIO1,LowState1 is a dependency cluster for the service buy , since the service-
local specification LowIO4,LowState4 is a dependency cluster for buy , as we have

310 S. Greiner et al.

seen in the previous section, the expressions mentioning prods and sum are iden-
tical and check and payId are not in the assignable set. A similar argument holds
for the events and the callable set.

It is not necessary to analyze the actual implementation of buy if the service-
local specification, the assignable set, and the callable set are given.

The second step of our method creates the global non-interference specifica-
tions for a system. We consider identification of assignable and callable sets an
orthogonal problem to the framework presented here and assume a useful (i.e.,
small) assignable set and callable set for each service to be given. (In our proof
of concept, we automatically generated them with Joana.) Further, we assume
a set of dependency clusters {(∼ij1,≈ij1), . . . , (∼ijk,≈ijk)} for each service sj
provided by component ci in the system has been specified and verified in the
first step of our method. We create a system-global equivalence relation over
messages by intersecting all equivalence relations in the set: ∼sys =

⋂
i,j,k ∼ijk.

We also create a component-global equivalence relation over states for each com-
ponent: ≈i =

⋂
j,k ∼ijk. For each service sj provided by component ci we prove

the first-order formula gained from Theorem 4 with ∼g = ∼sys, ≈g = ≈i, and
∼serv =

⋂
k ∼ijk, ≈serv =

⋂
k ≈ijk.

The constructed formula is first-order. While each of the formulas is, as we
can expect, rather large for a realistic system, big parts trivially evaluate to
true or false because the callable and assignable sets are typically very small
compared to the overall system.

Theorem 4 makes dependency clusters very useful for evolving components,
since the need for actual program analysis is minimized.

Example 8. Assume that the Shop component from Fig. 1 is re-used in a new
context where, due to a changed use case, it is required that the last four digits
of the credit card number are low (instead of the last bit). To realize this, the
implementation of service pay is changed: Line 2 is replaced by “if (check)
payId=ccnr-(ccnr/10000)*10000;”. Since the code has changed, the depen-
dency clusters for pay have to be re-verified. But the dependency clusters for
all other services can be re-used without program analysis when the first order
proof for step 2 is repeated.

In a second case of evolution, we assume that context remains the same and
the implementation is optimized without changing the functionality. Line 2 is
now replaced by “if (check) payId = ccnr%10000;”. Again, since the code
has changed, the dependency clusters for pay have to be verified, but since
the service’s behavior is not changed, no new dependency clusters have to be
identified and proofs from step two of our method are still valid.

5 Weakening Specifications

In the third and last step of our method, we show that the system-wide non-
interference specification gained from step two implies security of the system
against an attacker. The specifications we gain by analyzing dependencies in

Modular Verification of Information Flow Security 311

services do not necessarily match a security policy provided by a domain expert
for the system under analysis. While the first two steps of our method provide
us with a specification reflecting the actual behavior of the program, the speci-
fication from a domain expert is the result of a threat analysis for a system and
its context.

In particular, the equivalence relation over messages we gain from the first
two steps in our method may be stricter than necessary. We can relax the relation
without harm by accepting low input where high input is expected, and we can
allow the environment to treat low output of the component as high output.

Definition 4 (Specification weakening). An equivalence relation ∼w is a
weakening of ∼ iff

– for m1,m2 ∈ I: m1 ∼w m2 implies m1 ∼ m2,
– for m1,m2 ∈ O: m1 ∼ m2 implies m1 ∼w m2

Example 9. Consider the simple Shop component from Fig. 1 with the changes
discussed in Example 8 in the previous section. When it is deployed, the domain
expert may provide a specification expressing that the cashier may know the last
five digits of the credit card number. The specification we gained from bottom-
up program analysis, however, provides a stricter specification allowing at most
the last four digits to be visible to the cashier. In this case, we can nevertheless
use our bottom-up specification as an argument for security as the environment-
specific IF-property is a weakening of the bottom-up specification.

Theorem 5. Let serv be a service that is non-interferent w.r.t. (∼,≈) and ∼w

a weakening of ∼. Then serv is non-interferent w.r.t. (∼w,≈).

Theorem 5 can easily be extended to components. If all services are non-
interferent w.r.t. (∼,≈), they also are non-interferent w.r.t. (∼w,≈) and there-
fore the component is non-interferent w.r.t. (∼w,≈) according to Theorem 2.
This implies, for example, that the evolved Shop component from Example 8 is
secure in the new environment from Example 9, although the required and the
verified IF properties differ.

The third and last step of our method consists of showing that the secu-
rity policy provided by the domain expert, which represents the actual security
requirement, is a weakening of the system-global equivalence relation ∼g from
the second step. Note that the proof obligation implied by Theorem 5 again can
be shown using first-order logic and does not require program verification.

On first sight Theorem 5 seems to be a technicality. However, the theo-
rem serves as an important connection between bottom-up specifications, which
our method provides, and top-down specifications, gained from context- and
attacker-motivated analysis. It frees the systems engineer from finding non-
interference specifications for already implemented components which exactly fit
the domain-driven idea of secrecy. Thus it serves as a glue which allows flexibil-
ity when bringing together domain expertise and context-independent program
analysis.

312 S. Greiner et al.

6 Proof of Concept: Verifying JavaEE Implementations

We outline in this section the instantiation of our formal framework for
component-based systems (Sect. 2) for a large subset of components implemented
in the Java Enterprise Edition (JavaEE) [8], a framework for implementing
Component-based Systems in Java. For a full discussion, including all sources
and proofs the interested reader is referred to [13].

As a case study, we implemented a simple web-shop consisting of five compo-
nents. We use the tools KeY and Joana for verification and analysis of security
of the case study against two attackers.

Verification of Dependency Clusters for Services. KeY is a theorem
prover designed for the verification of properties in Java programs against spec-
ifications formalized in the Java Modeling Language (JML) or Java Dynamic
Logic (JavaDL). The KeY system was previously used for verification of non-
interference properties in Java batch programs without events [4,30,31]. For a
full account of KeY and JavaDL, we refer to [1].

We extend JavaDL by events as part of the domain of the logic. We use a
static ghost variable, i.e., a specification-only variable, to record the history of
events passed during execution of a service. We formalize the general assumptions
ensured by the application container according to JavaEE, e.g. no shared heap
between components, as method contracts. We formalize proof obligations from
the first step of our method and equivalence relations directly in JavaDL.

Automatically Deriving Service Dependency Clusters. To automati-
cally derive dependency clusters, we use program dependency graphs (PDGs),
a language-independent graph-representation of the dependencies between the
statements and expressions of a program. We use the state-of-the-art information
flow analysis tool Joana [11,14] to build and use PDGs for our purposes.

PDGs guarantee sequential non-interference [34] in the sense that a node n
cannot influence a node n′ if n cannot reach n′ in the PDG. Hence, in order to
obtain a dependency cluster, it suffices to perform reachability analysis on the
PDG. We applied Joana to all services in our proof of concept and extracted the
majority of all used dependency clusters automatically. Then, we automatically
formalized the extracted dependency clusters as JavaDL predicates uniformly to
the dependency clusters verified with KeY.

Checking Component-Global Dependency Clusters. In the second step,
we re-use formalizations of the equivalence relations from the first step of our
method to compose service-local to component-global dependency cluster, for-
malize Theorem 4 directly in JavaDL and use KeY for the proof. Finally, we
used KeY to verify in the third step for each attacker that the attacker-related
information-flow specification is a weakening of the specification from step 2,
again directly encoded in JavaDL.

Evaluation. We identified 480 dependency clusters in the components of the
web shop program with Joana automatically and manually specified and verified
21 dependency clusters with KeY, for which Joana was not sufficiently precise.

Modular Verification of Information Flow Security 313

Verification for the first attacker took about six days, while the main bottlenecks
were specification and verification of functional support specifications, as well as
manual interaction during verification of proof obligations in steps two and three
of our method. Verification for the second attacker only took about one day, since
we could make heavy re-use of the specifications for the first attacker.

As a result, we find that KeY is not optimized for proof obligations gained
during step 2 and 3 of our method and we assume a high degree of automation
if better suited tools are used for this task, for example SMT solvers. Further,
we observed that re-using support specifications and dependency clusters for the
second attacker made the proof process considerably easier and faster.

7 Conclusion

We introduced dependency clusters as a novel specification approach for infor-
mation flows caused by a single service in a component-based system. Each spec-
ification is independent from other services in the system and the context, which
makes dependency cluster very modular and highly re-usable building blocks for
system specifications. Further, we introduced a novel method for constructing
system-wide security specifications, where verification of dependency clusters at
service-level is the only step requiring program analysis. Proof obligations in the
second and third step are first-order formulas, which ensure consistency of the
constructed specification w.r.t. an attacker-motivated specification.

For each step, we provide a soundness proof. Moreover, in a proof of concept,
we show that our method can be instantiated for JavaEE programs and, for
example, is usable for a small but realistic system. For verification of dependency
clusters we used the KeY tool and Joana, and verified the proof obligations
for step two and three with KeY, re-using dependency cluster formalizations
from the first step. The proof of concept especially showed the re-usability of
dependency clusters for different types of attackers.

As future work, we plan to implement native JavaEE support for the KeY
tool, a specification language for dependency clusters in JML, as well as proof
management within the tool. It would also be very interesting if other program
analysis methods could be extended to support our notion of non-interference
and if some steps in our method could be further automatized.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Verification - The KeY Book: From Theory to Prac-
tice. Springer, Heidelberg (2016)

2. Askarov, A., Chong, S., Mantel, H.: Hybrid monitors for concurrent noninter-
ference. In: IEEE 28th Computer Security Foundations Symposium, CSF 2015,
Verona, Italy, 13–17 July 2015

3. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference Java
bytecode verifier. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–140.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6 10

http://dx.doi.org/10.1007/978-3-540-71316-6_10

314 S. Greiner et al.

4. Beckert, B., Bruns, D., Klebanov, V., Scheben, C., Schmitt, P.H., Ulbrich, M.:
Information flow in object-oriented software. In: Gupta, G., Peña, R. (eds.) LOP-
STR 2013. LNCS, vol. 8901, pp. 19–37. Springer, Heidelberg (2013). doi:10.1007/
978-3-319-14125-1 2

5. Chong, S., Vikram, K., Myers, A.C., et al.: SIF: Enforcing confidentiality and
integrity in web applications. In: USENIX Security, vol. 7 (2007)

6. Clark, D., Hunt, S.: Non-interference for deterministic interactive programs. In:
Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp.
50–66. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01465-9 4

7. Cohen, E.: Information transmission in computational systems. SIGOPS Oper.
Syst. Rev. 11, 133–139 (1977)

8. EJB 3.1 Expert Group: JSR 318: Enterprise JavaBeans, Version 3.1. Sun Microsys-
tems (2009). https://jcp.org/en/jsr/detail?id=366. Accessed 31 Aug 2016

9. Ereth, S., Mantel, H., Perner, M.: Towards a common specification language for
information-flow security in RS3 and beyond: RIFL 1.0 - the language. Technical
Report TUD-CS-2014-0115, TU Darmstadt (2014)

10. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Secu-
rity and Privacy (1982)

11. Graf, J., Hecker, M., Mohr, M.: Using Joana for information flow control in Java
programs - a practical guide. In: ATPS, February 2013

12. Greiner, S., Grahl, D.: Non-interference with what-declassification in component-
based systems. In: CSF (2016)

13. Greiner, S., Mohr, M., Beckert, B.: Modular verification of information flow security
in component-based systems - proofs and proof of concept (2017)

14. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8, 399–422 (2009)

15. IBM Research: T.J. Watson Library for Analysis (WALA). http://wala.sf.net
16. Johnson, A., Waye, L., Moore, S., Chong, S.: Exploring and enforcing security

guarantees via program dependence graphs. In: PLDI, June 2015
17. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing with-

out restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS,
vol. 4085, pp. 268–283. Springer, Heidelberg (2006). doi:10.1007/11813040 19

18. Küsters, R., Truderung, T., Beckert, B., Bruns, D., Kirsten, M., Mohr, M.: A
hybrid approach for proving noninterference of Java programs. In: CSF, July 2015

19. Lovat, E., Fromm, A., Mohr, M., Pretschner, A.: SHRIFT system-wide hybrid
information flow tracking. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT,
vol. 455, pp. 371–385. Springer, Cham (2015). doi:10.1007/978-3-319-18467-8 25

20. Mantel, H.: Possibilistic definitions of security – an assembly kit. In: CSFW (2000)
21. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for composi-

tional noninterference. In: CSF (2011)
22. Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification

and refinement of concurrent value-dependent noninterference. In: CSF (2016)
23. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: Proceed-

ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (1999)

24. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access
control policies with dependent types. In: IEEE Security and Privacy, May 2011

25. O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interactive
programs. In: CSFW, Jul 2006

http://dx.doi.org/10.1007/978-3-319-14125-1_2
http://dx.doi.org/10.1007/978-3-319-14125-1_2
http://dx.doi.org/10.1007/978-3-642-01465-9_4
https://jcp.org/en/jsr/detail?id=366
http://wala.sf.net
http://dx.doi.org/10.1007/11813040_19
http://dx.doi.org/10.1007/978-3-319-18467-8_25

Modular Verification of Information Flow Security 315

26. Rafnsson, W., Hedin, D., Sabelfeld, A.: Securing interactive programs. In: CSF
(2012)

27. Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed pro-
grams. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp.
376–394. Springer, Heidelberg (2002). doi:10.1007/3-540-45789-5 27

28. Sabelfeld, A., Sands, D.: A PER model of secure information flow in sequential
programs. Higher-Order Symbolic Comput. 14, 59–91 (2001)

29. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17, 517–548 (2009)

30. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java
programs without approximations. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 232–249. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-31762-0 15

31. Scheben, C., Schmitt, P.H.: Efficient self-composition for weakest precondition cal-
culi. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
579–594. Springer, Cham (2014). doi:10.1007/978-3-319-06410-9 39

32. Sheldon, M.A., Gifford, D.K.: Static dependent types for first class modules. In:
Proceedings of the 1990 ACM Conference on LISP and Functional Programming.
ACM (1990)

33. Ranganath, V.-P., et al.: Indus. http://indus.projects.cs.ksu.edu/. Last visited on
01 Feb 2017

34. Wasserrab, D., Lohner, D.: Proving information flow noninterference by reusing a
machine-checked correctness proof for slicing. In: VERIFY (2010)

http://dx.doi.org/10.1007/3-540-45789-5_27
http://dx.doi.org/10.1007/978-3-642-31762-0_15
http://dx.doi.org/10.1007/978-3-642-31762-0_15
http://dx.doi.org/10.1007/978-3-319-06410-9_39
http://indus.projects.cs.ksu.edu/

IJIT: An API for Boolean Program Analysis
with Just-in-Time Translation

Peizun Liu(B) and Thomas Wahl

Northeastern University, Boston, USA
lpzun@ccs.neu.edu

Abstract. Exploration algorithms for explicit-state transition systems
are a core back-end technology in program verification. They can be
applied to programs by generating the transition system on the fly, avoid-
ing an expensive up-front translation. An on-the-fly strategy requires
significant modifications to the implementation, into a form that stores
states directly as valuations of program variables. Performed manually on
a per-algorithm basis, such modifications are laborious and error-prone.

In this paper we present the Ijit Application Programming Interface
(API), which allows users to automatically transform a given transition
system exploration algorithm to one that operates on Boolean programs.
The API converts system states temporarily to program states just in
time for expansion via image computations, forward or backward. Using
our API, we have effortlessly extended various non-trivial (e.g. infinite-
state) model checking algorithms to operate on multi-threaded Boolean
programs. We demonstrate the ease of use of the API, and present a case
study on the impact of the just-in-time translation on these algorithms.

1 Introduction

Boolean programs [4], a finite-data abstraction of general-purpose software
obtained by predicate abstraction [13], have proved to be an intermediate nota-
tion very useful for verification that factors out the data complexity from pro-
grams. State exploration algorithms, however, are typically designed to operate
on forms of transition systems. To apply these algorithms to Boolean programs,
one can in principle translate the input program into a transition system, before
starting the exploration. This input translation incurs, however, a blow-up that
is exponential in the number of program variables.

This classic problem in program verification has led to sophisticated algo-
rithms that translate the program into a transition system on the fly, as the
state space is explored. This idea was pioneered for model checking algorithms
by the Spin tool [14]. In general, to convert an exploration algorithm into an
on-the-fly version, the state representation data structure needs to be changed
everywhere in the implementation to a tuple over program variable valuations.
Consequently, operations on the state representation, notably image computa-
tions, need to be re-implemented as well, to reflect the program semantics.

This work is supported by NSF grant no. 1253331.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 316–331, 2017.
DOI: 10.1007/978-3-319-66197-1 20

IJIT: An API for Boolean Program Analysis with Just-in-Time Translation 317

Such an algorithm re-implementation avoids the exponential program-to-
transition-system translation, but comes with its own cost: due to its low-level
nature, it is laborious and error-prone, especially for sophisticated algorithms.
In the rest of this paper we describe a way to automatically construct on-
the-fly program state explorers from implementations operating on transition
systems. We leave the system state data structure intact (hence no algorithm
re-implementation), and pass the Boolean program as input (hence no input
program translation). Our strategy is then as follows: whenever predecessor or
successor images need to be computed, the current system state is converted
temporarily and just in time for the image computation into a Boolean program
state. The image is then computed using the program execution semantics, e.g.
via pre- or post-conditions. The resulting image states are converted back to, and
stored as, system states. This process is repeated for each image computation.

This simple strategy has one crucial advantage: it requires very little change
on a per-algorithm basis: once we have provided image operations for Boolean
programs (a one-time effort), all we need to do is replace the calls to image
functions in the original implementation by new functions that take a system
state and (i) convert it to a Boolean program state, (ii) apply the image, and (iii)
convert the result back. These steps can be encapsulated into a single operation.

Being largely independent of the underlying algorithm, this strategy can be
automated. To this end, we present an Application Programming Interface (API)
that provides conversion functions between system and Boolean program states.
It further offers implementations of common image operations on Boolean pro-
grams, including standard pre- and post-images, as well as more complex image
operations for infinite-state system exploration. Our API permits users to trans-
form a wide range of transition system exploration algorithms into Boolean pro-
gram versions automatically—with little effort and a high degree of reliability—,
including sophisticated reachability and coverability algorithms for infinite-state
systems such as Petri nets.

For an experimental case study, we have implemented several exploration
algorithms in three versions: (a) one that uses the naive input translate option,
(b) one that implements the manual algorithm re-implement option, and
(c) one that uses our API to perform just-in-time translation. The compar-
ison (c) against (b) demonstrates that the repeated state representation con-
version is not harmful: using our API we achieve almost the same efficiency as
the gold standard of re-implementation by hand. The comparison (c) against
(a) demonstrates that the just-in-time version is vastly more efficient than the
version employing up-front input translation.

2 Boolean Programs and Thread-Transition Systems

Our API allows exploration algorithms that operate on transition systems-
derived from Boolean programs (BP) [4] to be applied directly to such programs,

318 P. Liu and T. Wahl

circumventing the blow-up incurred by the input translation. In this section we
formalize the language of (possibly threaded) BPs and the transition system
model of thread transition systems. The latter serve as the input language of
exploration algorithms that we later wish to apply directly to BPs.

2.1 Boolean Programs

Boolean programs typically arise from predicate abstractions of application code
in system-level languages. All variables are of type bool. Control flow constructs
are optimized for synthesizability and therefore include “spaghetti statements”
like skip and goto. An overview of the syntax of BPs is given in Fig. 1. A pro-
gram consists of a declaration of global Boolean variables, followed by a list
of functions. A function consists of a declaration of local Boolean variables,
followed by a list of labeled statements.

We illustrate the intuition behind individual statements of BPs. Among the
sequential statements (seqstmt), skip advances the program counter (pc); goto
labellist nondeterministically chooses one of the given labels as the next pc;
assume terminates executions that do not satisfy the given expression. State-
ment := assigns, in parallel, each value in the given exprlist to the respective
variable in the same-length varlist, but terminates the execution if the result
does not satisfy the constrain expression, if any. Statement assert indicates
assertions for verification and otherwise acts like skip. The meaning of func-
tion calls (possibly recursive) and return statements is standard and omitted. In
all cases, expr is a Boolean expression over global and local program variables,
the constants 0 and 1, and the choice symbol �; the latter nondeterministically
evaluates to 0 or 1.

In the presence of multiple threads, the global variables are shared (both
read and write) between the threads. The executing thread is called active, the
others passive. All sequential statements have asynchronous semantics, i.e. they
change the local variables of only the active thread. The other statements in
Fig. 1 intuitively behave as follows:

prog ::= decl varlist; func∗

stmt ::= seqstmt
| start thread label
| end thread
| atomic { [stmt;]∗ }
| wait
| signal
| broadcast

func ::= void name (varlist) begin
decl varlist;
[label : stmt;]∗

end

seqstmt ::= skip
| goto labellist
| assume (expr)
| varlist := exprlist [constrain expr]
| assert (expr)

Fig. 1. Boolean program syntax (partial)

IJIT: An API for Boolean Program Analysis with Just-in-Time Translation 319

start thread label (i) advances the program counter of the executing thread,
and (ii) creates a new thread whose local variables are copied from the exe-
cuting thread and whose pc is given by label ;

end thread terminates the executing thread;
atomic {stmt∗} denotes atomic execution: a thread executing inside an atomic

section cannot be preempted;
wait blocks the execution of a thread (see next);
signal advances the pc of the executing thread and nondeterministically wakes

up one thread blocked at a wait statement, if any, i.e. it advances its pc;
broadcast advances the pc of the executing thread and wakes up all threads

currently blocked at a wait.

Wait and release via signal or broadcast are powerful synchronization
mechanisms, allowing many threads to change state at the same time. None
of the above six statements change global variables; only start thread and
end thread change the number of threads. Fig. 2 (left) shows an example of
a BP with an assertion. A precise small-step operational semantics for multi-
threaded BPs is given in App. A of [20].

2.2 From Boolean Programs to Thread Transition Systems

Transition systems are the input formalism for many exploration algorithms,
such as breadth-first search for reachability analysis, or the Karp-Miller algo-
rithm for deciding coverability in infinite-state systems [16]. To apply these to
BPs (and thus connect them, via predicate abstraction, to software verification),
the programs are typically translated into transition systems.

Let Boolean program B be defined over sets of global and local variables VG

and VL, respectively, and let {1..pcmax} be the set of program locations.1 We
translate B into a finite-state thread transition system (TTS) M = (S,R), over
the state space S = {0, 1}|VG| × {1..pcmax} × {0, 1}|VL| and edges R.

Individual BP statements are translated into edges, as follows. A given state
s ∈ S determines a (single-threaded) program state sB of B in a straightforward
way: s encodes a valuation of all global variables (the {0, 1}|VG| part, the global
state), a program counter, and a valuation of all local variables (the {0, 1}|VL|

part, the local state). Executing B on sB has several effects: first, it generally
changes both the global variables, and the local variables of the active thread
(including the pc). These changes result in a new state t ∈ S again in a straight-
forward way, defining an edge (s, t) ∈ R.

Second, thread creation and termination, as well as signals and broadcasts,
typically have “side effects” that alter the thread count, or local variables of
passive threads. To capture such effects in the (single-thread) data structure M ,
each edge comes with a type. It is then left to the exploration algorithm, which
has access to the current system state, to fully implement transition semantics.
As an example, Fig. 2 shows a BP and a translation into a TTS. Symbol �

1 We write {l..r} compactly for {n ∈ N : l ≤ n ≤ r}.

320 P. Liu and T. Wahl

�

g

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

Fig. 2. A Boolean program (left) and a possible translation into a TTS (right). Global
variable valuation (g1, g2) is encoded as state g = 2 × g2 + g1 ∈ {0..3}. Similarly,
local variable valuation (pc, l) is encoded as state � = 10 × l + pc ∈ {0..19}. With
this encoding, the four initial program states are shown as �, the two assertion failure
states (satisfying pc = 9 ∧ g2 = l = 1) as ⊗.

marks edge (0, 1) � (0, 3) as a thread creation edge. The semantics of thread
creation (App. A of [20]) prescribes that the active (creating) thread moves on
(to pc = 2); this is reflected by an ordinary edge (0, 1) → (0, 2) in the TTS.
The created thread needs a start location, which is the pc value of the BP state
(g1, g2, pc, l) = (0, 0, 3, 0) encoded by the target TTS state (0, 3) of the edge.
Other than above two types of edges shown in Fig. 2, there is one more type,
denoted by �, used in the TTS to characterize broadcasts.

The problem with such a translation from B to M is of course the potential
blow-up: the nominal state space S of M is exponential in the number of global
and local variables. This problem has long been known and has led to sophis-
ticated on-the-fly temporal-logic model checkers such as Spin [14], but also to
ad-hoc re-implementations of specific exploration algorithms [7,19]. In the rest
of this paper we describe an API that automates the construction of on-the-fly
program state explorers.

3 BP Analysis with JIT Translation: Overview

We target exploration algorithms, i.e. algorithms that operate on a transition sys-
tem representation of the given program and involve image computations: given a
system state, they repeatedly compute some notion of successors or predecessors
of the state. Figure 3 (left; ignore the boxes for now) shows a schematic version
of such algorithms. Input is a transition system M and some target state set T ,
such as a bad system state whose discovery would indicate a reachable error in
the system. The algorithm maintains a worklist W of states to be explored, typ-
ically initialized to the initial or bad states of the system, depending on whether
the search proceeds forward or backward. It also maintains a set X of explored
states, initially empty. The exploration proceeds by extracting an unexplored
state w from W and iterating through the set of states w′ in w’s image, com-
puted by image. If w′ is new, we test whether it belongs to the target states T .

IJIT: An API for Boolean Program Analysis with Just-in-Time Translation 321

Fig. 3. State exploration over a transition system (left) and a Boolean program (right).
Lines 5 and 6 test whether w′ has not been explored and w′ is a target state, respec-
tively. In a concrete algorithm these tests may involve more than set membership.

If so, we report the success of the search. The search terminates when no more
unexplored states exist (in W).

Now suppose the transition system M is actually a translation of a Boolean
program B, which we want to explore directly, using the same algorithm scheme.
One way to achieve that is to change the data structure that Scheme 1 relies on:
instead of storing states to be explored as states of M , we store them as Boolean
program states, one entry per program variable. Images are then computed by
“executing” B in accordance with B’s execution model.

However, like with any data structure change in any non-trivial program,
the required effort is significant: all of T , W , X must be changed, and therefore
virtually every line in a program that implements Scheme 1. Re-implementing
image to operate on a Boolean program B is also involved. The whole change
process is not only error-prone; it also creates an entirely new implementation
that needs to be maintained independently of the one operating on M .

An alternative to this strategy is shown in Scheme 2 on the right, which is
almost identical to that on the left. States are stored as transition system states
of M as before, but the input is now the Boolean program B. Since M is no longer
available, we cannot apply M ’s transition relation to compute images. However,
since there is a one-to-one correspondence between states of B and of M , we
can compute images by converting, using function f , to B’s state representation
just in time for the image computation, and reverting the resulting image states
back to the system state format of M (Line 4). Note that f−1 needs to operate
on (and return) sets of states.

Operation imageB computes images of an intermediate program state p :=
f(w). Its implementation depends on the kind of image computation performed
by the algorithm: For standard forward exploration, it can be computed by execut-
ing, from p, the statement of B pointed to by the pc encoded in p. For a backward
exploration algorithm, imageB is more complicated: we need to identify statements

322 P. Liu and T. Wahl

leading to the current pc via B’s control flow graph, and then symbolically execute
such statements backwards, e.g. via weakest preconditions [19].

The API presented in this paper supplies an implementation of the B ↔ M
conversion functions (f, f−1) and of various common image operations applied
to (multi-threaded) Boolean program states, including backward statement exe-
cution for backward search algorithms. In many cases, all the user needs to do
is to replace the image operation in their algorithm, as shown in Fig. 3 (boxes).

A minor runtime cost of using an algorithm according to Scheme 2 is that
the repeated conversion will take some time. This time is linear in the number
of Boolean program variables (and the number of threads of the current system
state, if multi-threaded). The state conversion in either direction is a simple
operation that can be highly optimized. We will demonstrate in Sect. 5 that
the benefit of avoiding the explicit construction of M often far outweighs the
conversion overhead.

We end this section by discussing desirable characteristics of algorithms that
will benefit from using our API. We target exploration (search, model checking)
algorithms for state transition systems (e.g. TTS) of Boolean programs. The term
“exploration” here refers to the reliance of such algorithms on the computation
of standard pre- and postimages of (sets of) states. The transition systems must
relate to the Boolean programs in a way that there is a one-to-one correspondence
between program states and system states. In particular, the systems cannot be
(lossy) abstractions of the Boolean programs; otherwise, a system state may not
map to a unique program state, or vice versa.

4 The IJIT Application Programming Interface

In this section we sketch usage and design of our API, named Ijit: Interface for
Just-In-Time translation. A detailed tutorial and documentation can be found
in [18].

4.1 API Usage

We use a fictitious procedure explore to illustrate the use of our API; see Fig. 4
(left). The procedure explores the state space of some transition system given as
a TTS. It begins by reading the TTS into a data structure called R (Line 5) and
extracts from R sets of initial and final states, respectively (Lines 7 and 8). The
procedure then enters some kind of loop to explore the state space represented
by R, perhaps until no more unexplored states are available (this is immaterial
for our API). Crucial is that the loop body will invoke an image operation on
a state tau (Line 12), likely at least once in each iteration. We assume R is
nondeterministic, so that the call returns a set of states, Tau.

Figure 4 (right) highlights (in gray) the changes the programmer needs to
make to have procedure explore operate on a Boolean program; we call the
resulting procedure explore jit. We explain these changes in the following.

IJIT: An API for Boolean Program Analysis with Just-in-Time Translation 323

Fig. 4. An example illustrating the usage of Ijit. Left: a fictitious state space explo-
ration procedure. Right: the just-in-time version obtained using Ijit. Line numbers in
the middle; highlighted code shows places that have changed from the original version.

• Instead of reading a TTS, we now read a Boolean program as input (Line 5).
This is done using a parser supplied by Ijit. Procedure parse has two argu-
ments: the name of input file, and the parser’s direction mode: POST will
cause the parser to generate code for subsequent forward-directed analysis
(via postimages). Mode PREV does the analogous for backward analysis; a
mode of BOTH will generate code for both. The parser also offers functionality
to return sets I and F of initial and final program states, extracted from the
initial variable declarations and assertions in the BP, respectively.

• The conversion between different state representation formats, explained
below, is done via methods of a class converter. The user needs to instantiate
this class before any conversion methods of the API can be called (Line 6).

• Conversion between state representation formats happens in several places:
to convert the initial and final Boolean program state sets into TTS state sets
(Lines 7 and 8), and in the image computations. If the algorithm implemented
by procedure explore operates on TTS as defined in Sect. 2, the JIT version
of the procedure can be implemented using conversion functions supplied by
the API (Line 12): the current (unexplored) TTS state tau is converted into a
BP state, followed by a Boolean program image computation using the given
direction mode, followed by a back-conversion into a set of TTS states.
If the API’s conversion functions cannot be used, users must supply their own
functions. To reduce the programming burden, the API provides an inheri-
tance interface that allows defining conversion functions via specialization.
Users are free to define stand-alone conversions.

4.2 API Design

API Ijit is implemented in C++. A schematic overview is shown in Fig. 5.

Parser. The main purpose of the parser is to process the input BP and populate
the data structures to be used in image computations. These include the pro-
gram’s control flow graph, and pre- and postcondition expressions for pre- and

324 P. Liu and T. Wahl

User Applications

ConverterParser Interface Image Engine Interface

Forward-based
Parser

Backward-based
Parser

Preimage
Engine

Postimage
Engine

All SAT SolverCFG WP I&FCFG SP I&F

Preprocessor

Fig. 5. Schematic overview of Ijit. The preprocessor part is usually called only once.
CFG: control flow graph; SP/WP: strongest postcondition/weakest precondition; I/F:
the set of initial/final states

postimage computations, respectively. The parser also extracts initial and final
state information, the latter by collecting all states violating any of assertions
in the Boolean program.

Converter. The converter provides an adapter between system states and pro-
gram states. In our design, the converter is an abstract C++ class with default
implementations of conversion functions. If desired or necessary, users can either
inherit the abstract class and override the default implementation, or write a
stand-alone converter from scratch.

Image Engine. At the core of our API are the engines to compute the preimage
or postimage of a given Boolean program state. These routines make use of the
control flow graph obtained by the parser, especially for preimages, in order to
determine the set of statements that can lead to the current pc. Once the state-
ment to be executed forward or backward has been determined, the statement’s
semantics determines the effect on the program data. The semantics is given as a
set of first-order predicates expressing strongest post- or weakest preconditions.
To perform image computations, the engine instantiates these formulas with the
current-state valuations of the program variables. It then invokes an All-SAT
solver to obtain the pre- or postimages as satisfiable assignments.

All-SAT Solver. The All-SAT solver used in image computations is not based
upon a state-of-the-art SAT solver, which would require CNF conversion. Instead
we found it to be more efficient to simply build a custom SAT solver that enumer-
ates solutions. Note that input formulas to the solver formalize Boolean program
statements and thus tend to be very short.

IJIT: An API for Boolean Program Analysis with Just-in-Time Translation 325

5 Case Study: Performance Benefits of IJIT

We evaluate the benefit of our API on a number of diverse benchmark algorithms.
All are designed to operate on thread-transition systems (TTS) for either a fixed
or an unbounded number of threads; we wish to apply them to multi-threaded
Boolean programs directly. For each algorithm, we compare the performance of
three versions: (i) the TTS version, which is the original version, but prefixed by
an input translation from BPs into TTS; (ii) the BP version, which is a manual
and optimized re-implementation where the internal state data structure has
been changed to BP states; and finally (iii) the JIT version, which employs our
API. We expect a performance ranking of the form

BPversion < JITversion � TTSversion

where “<” (“�”) means “(much) faster”. In particular, the hand-crafted BP
version makes repeated conversion between state representations unnecessary
and can therefore be considered the gold standard for efficiency. We hope the
automated JIT version of the algorithm to perform nearly as well.

5.1 Benchmark Algorithms

We sketch the purpose and basic concepts of four diverse algorithms used in our
case study; more details are provided in App. B of [20]. The algorithms cover
the spectrum of finite- and infinite-state searches, and of forward and backward
explorations.

Cutoff Detection via Finite-State Search (Ecut) [15]. Ecut implements
dynamic cutoff detection for parameterized thread transition systems. A cutoff
point is a number n0 of threads that are sufficient to reach all reachable thread
states. The core procedure of Ecut is a (multi-threaded but) finite-state search,
BFS style. The TTS version of Ecut can be transformed into the JIT version
without any programming beyond the few changes discussed in Sect. 4.

Karp-Miller Procedure [16]. We experiment with two variants of this classic
procedure; both are in use in unbounded-thread program verification:

(1) Km decides the reachability of a specific target state t: it stops when a state
covering t has been encountered;

(2) Akm (“All-Km”) builds the complete coverability tree, i.e. it runsKmuntil
a fixpoint is reached.

WQOS Backward Search (BWS) [1,2]. This technique is a sound and com-
plete algorithm to decide coverability for well quasi-ordered systems (WQOS),
a broad family of transition systems that subsumes replicated Boolean programs,
Petri nets, VASS, and many more. Note that BWS is a backward exploration.
In contrast, the previous three algorithms explore forward.

326 P. Liu and T. Wahl

5.2 Case Study

Experimental Setup. We compare the impact of our API on the efficiency
of the four algorithms described in Sect. 5.1. For each algorithm A ∈
{Ecut,Km,Akm,Bws}, we compare three different versions: (1) the TTS ver-
sion — named A(tts); (2) the jit version obtained using our API — named
A(jit); and (3) the hand-implemented Boolean program version — named
version A (bp).

We perform the comparison using a collection of Boolean programs obtained
via predicate abstraction from 30 concurrent C programs. The C programs are
detailed in Table 1. We use SatAbs [8] to construct the BPs from these programs.
The BPs are also concurrent; threads execute the same Boolean procedure. In
most cases, the same C source program generates several BPs (since SatAbs
goes through several abstract-verify-refine iterations). In the end we obtained
155 BPs for the 30 C programs. For the TTS version of each algorithm, we use
SatAbs to generate the TTS from the Boolean program (option --build-tts;
this is where the input format explosion inevitably happens).

For each benchmark, we consider verification of a safety property, speci-
fied via an assertion that is pushed, during predicate abstraction, from C to
the Boolean program. All experiments are performed on a 2.3 GHz Intel Xeon
machine with 64 GB memory, running 64-bit Linux. The timeout is set to
30 min; the memory limit to 4 GB. All benchmarks and implementations are
available at [18].

Table 1. Benchmark statistics: GV /LV /LOC = # of global/local C program vari-
ables/lines of code; |VG|/|VL|/|PC |/Its. = # of global/local Boolean variables/program
counters/CEGAR iterations; |G|/|L|/|R| = # of global/local states/transitions in TTS;
Safe? = ✓: program safe; | · | represents the median of the feature across different
BP/TTS resulting from the same C program. Note that often |G| > 2|VG|, due to
auxiliary states used by SatAbs in the BP → TTS translation

IJIT: An API for Boolean Program Analysis with Just-in-Time Translation 327

100 101 102 103

100

101

102

103

T
O

TO

Ecut(jit) (sec.)

E
c
u
t
(t

t
s)

(s
e
c
.)

100 101 102 103

100

101

102

103

T
O

TO

Ecut(jit) (sec.)

E
c
u
t
(b

p
)
(s
e
c
.)

20 40 60 80 100 120 140 155

101

102

103

MO

Benchmark

M
e
m
o
ry

U
sa

g
e
(M

B
.)

Ecut(tts)

Ecut(jit)

Ecut(bp)

100 101 102 103

100

101

102

103

T
O

TO

Km(jit) (sec.)

K
m
(t

t
s)

(s
e
c
.)

100 101 102 103

100

101

102

103

T
O

TO

Km(jit) (sec.)

K
m
(b

p
)
(s
e
c
.)

20 40 60 80 100 120 140 155

101

102

MO

Benchmark

M
e
m
o
ry

U
sa

g
e
(M

B
.)

Km(tts)

Km(jit)

Km(bp)

100 101 102 103

100

101

102

103

T
O

TO

Akm(jit) (sec.)

A
k
m
(t

t
s)

(s
e
c
.)

100 101 102 103

100

101

102

103

T
O

TO

Akm(jit) (sec.)

A
k
m
(b

p
)
(s
e
c
.)

20 40 60 80 100 120 140 155

101

102

MO

Benchmark

M
e
m
o
ry

U
sa

g
e
(M

B
.)

Akm(tts)

Akm(jit)

Akm(bp)

100 101 102 103

100

101

102

103

T
O

TO

Bws(jit) (sec.)

B
w
s(
t
t
s)

(s
e
c
.)

100 101 102 103

100

101

102

103

T
O

TO

Bws(jit) (sec.)

B
w
s(
b
p
)
(s
e
c
.)

20 40 60 80 100 120 140 155

101

102

103

MO

Benchmark

M
e
m
o
ry

U
sa

g
e
(M

B
.)

Bws(tts)

Bws(jit)

Bws(bp)

Fig. 6. Performance impact of our API (TO: timeout, MO: memory out). For
A ∈ {Ecut,Km,Akm,Bws}: � runtime comparison: left column: A(tts) against
A(jit); center: A(bp) against A(jit). Each dot = execution time on one example.
Square in the lower left corner of each chart: runtime of less than 1 second for both
algorithms, hence unreliable. � memory usage comparison: right column: com-
paring memory usage across the three different versions. The plots are sorted by the
memory usage of the TTS version of A. The shadowed areas show the difference. (Color
figure online)

328 P. Liu and T. Wahl

Results. The results of our case study are shown in Fig. 6. The first column
shows, for the four algorithms, the runtime comparison of the jit version (lower
right in each chart) against the original TTS version of the algorithm (upper
left). The log-scale charts clearly demonstrate the performance advantage —
sometimes several orders of magnitude – of not pre-translating the input BP
into a potentially large TTS. In many cases, runs that timed out in the TTS
version can now be completed within the 30mins limit. We point out that, while
the conversion time BP → TTS is included in the runtime for the TTS version,
it is not even to blame for the weaker TTS version performance: the conversion
usually takes a few seconds. What makes the TTS version slow is the relatively
large input TTS to the TTS-based algorithm.

The second column shows the runtime comparison of the jit version (lower
right in each chart) against the hand-implemented bp version of the algorithm
(upper left). Here the expectation is the opposite: we would like to get as close to
the diagonal as possible. This is achieved in all four cases to a satisfactory degree.
For the backward search algorithm, the comparison is more favorable for jit than
for the two KM-based algorithms, with a performance nearly indistinguishable
from that of the bp version. This can be attributed to the fact that Bws overall
takes more time than the forward search implemented in Km, since backward
exploration faces more nondeterminism and in general visits a larger number of
configurations. The relative overhead of state representation conversion is thus
smaller.

The third column shows that the memory consumption of the jit and bp
versions of each algorithm are very similar, and both are vastly below that of
the tts version. This reflects in part the fact that the tts version needs to store
the (relatively large) generated TTS in memory. More relevant, however, is the
fact that the TTS contains many redundant (since unreachable) transitions —
their absence is the very advantage of on-the-fly exploration techniques. Such
redundant transitions translate into a large number of redundant configurations
explored by the TTS version of the algorithm.

6 Related Work

Promoted by the success of predicate-abstraction based tools such as Slam [6]
and SatAbs [8], Boolean programs are widely used in verification. Accordingly,
extensive research has been done on their analysis, leading to a series of effi-
cient algorithms, e.g., recursive state machines [3], and the symbolic verifiers
Bebop [5], Moped [11,12], Boppo [9], and Getafix [17]. Most of the above
approaches use BDDs as symbolic representation, which do not lend themselves
to an efficient on-the-fly model construction.

In contrast, explicit-state model checking techniques often construct the state
space of the program they are exploring on the fly. A prominent tool that
pioneered this strategy is the explicit-state model checker Spin [14]. Another
notable explicit-state on-the-fly model checker is Java PathFinder [21], which
takes JavaTM bytecode and analyses all possible paths through the program,
checking for deadlocks, assertion violations, etc.

IJIT: An API for Boolean Program Analysis with Just-in-Time Translation 329

Solutions addressing the translation blow-up in connection with (more com-
plex) unbounded-thread verification techniques are rare. While these techniques
have been applied to program analysis, the application is typically preceded by an
up-front translation of the program into an explicit transition system [10,15]. For
Boolean programs generated via predicate abstraction, this only works for small
local state spaces, for example when the number of predicates is small. When
going through several iterations of the predicate abstraction CEGAR loop, in
contrast, the number of Boolean program variables quickly becomes large.

On-the-fly techniques for unbounded-thread algorithms applied to Boolean
programs are given in tools by Basler et al. [7], and by Liu et al. [19]. Both are re-
implementations of the algorithms they are targeting, which is the Karp-Miller
procedure for VASS in the former case, and the backward search algorithm for
broadcast Petri nets in the latter. Both demonstrate the benefits of exploring
BPs directly, but they do not come for free: the re-implementation is low-level
work involving tricky data structure changes, affecting the very foundation of
the implementation. In fact, the Karp-Miller implementation in [7] generated
runtime errors on some of our benchmarks, so we excluded it from our case
study.

7 Summary

The problem of the blow-up between programs and transition systems that
describe the programs’ semantics and are often used in exploration algorithms is
well known. Translating a program into an explicit transition system undermines
the practical runtime performance of these algorithms, and thus diminishes their
value. This problem has been addressed in an ad-hoc way, by re-implementing
these algorithms into ones operating on programs. This process is painful and
prone to programming errors, to which we attribute the fact the input translation
cost is often grudgingly accepted.

In this paper we have introduced an API that largely automates the required
transformations. In the best case, programmers mostly need to add calls to an
API-provided convert method to (usually few) places in the code where images
are computed. In the worst case, programmers have to supply this conversion
method. We have demonstrated the huge impact of the use of the API on various
algorithms that rely on an up-front BP → TTS translation. We have also com-
pared the performance of the jit version to the version re-implemented by hand
that operates entirely on Boolean programs, and found nearly no performance
difference to this gold-standard implementation.

We have presented our API with dedicated support for algorithms that oper-
ate on Boolean programs and thread-transition systems, due to their popular-
ity in, and significance for, software verification. Given proper state represen-
tation conversion functions, we believe our API to be able to bridge the gap
between other types of modeling languages, such as Boolean programs and Petri
nets. We leave implementing, and experimenting with, such extensions for the
future. Extending the API to support algorithms like partial order reduction

330 P. Liu and T. Wahl

that need to perform a nonstandard image computation is another promising
research direction and we leave it for the future work too.

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bull. Symbolic
Logic 16(4), 457–515 (2010)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321 (1996)

3. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4),
786–818 (2005)

4. Ball, T., Rajamani, S.: Boolean programs: a model and process for software analy-
sis. Technical report MSR-TR-2000-14, Microsoft Research (2000)

5. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000). doi:10.1007/10722468 7

6. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL, pp. 1–3 (2002)

7. Basler, G., Hague, M., Kroening, D., Ong, C.-H.L., Wahl, T., Zhao, H.: Boom: tak-
ing boolean program model checking one step further. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 145–149. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12002-2 11

8. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based pred-
icate abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31980-1 40

9. Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous
boolean programs. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 75–90.
Springer, Heidelberg (2005). doi:10.1007/11537328 9

10. Delzanno, G., Raskin, J.-F., Begin, L.: Towards the automated verification of multi-
threaded Java programs. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 173–187. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0 13

11. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). doi:10.1007/
10722167 20

12. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001). doi:10.1007/3-540-44585-4 30

13. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). doi:10.
1007/3-540-63166-6 10

14. Holzmann, G.J.: The model checker Spin. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

15. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized con-
current programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol.
6174, pp. 645–659. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 55

http://dx.doi.org/10.1007/10722468_7
http://dx.doi.org/10.1007/978-3-642-12002-2_11
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1007/11537328_9
http://dx.doi.org/10.1007/3-540-46002-0_13
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/3-540-44585-4_30
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-642-14295-6_55

IJIT: An API for Boolean Program Analysis with Just-in-Time Translation 331

16. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

17. La Torre, S., Parthasarathy, M., Parlato, G.: Analyzing recursive programs using
a fixed-point calculus. In: PLDI, pp. 211–222 (2009)

18. Liu, P.: http://www.ccs.neu.edu/home/lpzun/ijit/
19. Liu, P., Wahl, T.: Infinite-state backward exploration of Boolean broadcast pro-

grams. In: FMCAD, pp. 155–162 (2014)
20. Liu, P., Wahl, T.: IJIT: an API for Boolean program analysis with just-in-time

translation (extended technical report) (2017). CoRR arXiv.org/abs/1706.03167
21. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.

Autom. Softw. Eng. 10(2), 203–232 (2003)

http://www.ccs.neu.edu/home/lpzun/ijit/
http://arxiv.org/abs/org/abs/1706.03167

Specification and Semantic Analysis
of Embedded Systems Requirements: From

Description Logic to Temporal Logic

Nesredin Mahmud1(B), Cristina Seceleanu1, and Oscar Ljungkrantz2

1 Mälardalen University, Väster̊as, Sweden
{nesredin.mahmud,cristina.seceleanu}@mdh.se

2 Volvo Group Trucks Technology, Gothenburg, Sweden
oscar.ljungkrantz@volvo.com

Abstract. Due to the increasing complexity of embedded systems, early
detection of software/hardware errors has become desirable. In this con-
text, effective yet flexible specification methods that support rigorous
analysis of embedded systems requirements are needed. Current specifi-
cation methods such as pattern-based, boilerplates normally lack meta-
models for extensibility and flexibility. In contrast, formal specification
languages, like temporal logic, Z, etc., enable rigorous analysis, how-
ever, they usually are too mathematical and difficult to comprehend by
average software engineers. In this paper, we propose a specification rep-
resentation of requirements, which considers thematic roles and domain
knowledge, enabling deep semantic analysis. The specification is com-
plemented by our constrained natural language specification framework,
ReSA, which acts as the interface to the representation. The represen-
tation that we propose is encoded in description logic, which is a decid-
able and computationally-tractable ontology language. By employing the
ontology reasoner, Hermit, we check for consistency and completeness of
requirements. Moreover, we propose an automatic transformation of the
ontology-based specifications into Timed Computation Tree Logic for-
mulas, to be used further in model checking embedded systems.

Keywords: Requirements specification · Requirements analysis ·
Embedded systems · Ontology · Description logic · Timed computation
tree logic · Event-based semantics · Thematic roles

1 Introduction

The difficulty of specifying embedded systems requirements has increased due to
the high degree of system complexity, and the dependability expected from the
solutions, especially for safety-critical systems [1]. Consequently, the develop-
ment of embedded systems demands stricter approaches of requirements spec-
ification and analysis. However, effective specification methods and tools that
meet industrial needs, e.g., engineer friendliness, flexibility, fine-grained analy-
sis etc., are lacking. If we consider the automotive industry as the domain of
c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 332–348, 2017.
DOI: 10.1007/978-3-319-66197-1 21

Specification and Semantic Analysis of Embedded Systems Requirements 333

focus, current experience tells us that: (i) first, most requirements specifica-
tion documents are expressed in natural language, therefore it is not uncommon
to find inconsistent, ambiguous, vague and imprecise specifications, (ii) second,
even if engineers use semi-formal specification methods, such as requirements
boilerplates [2] or property specification patters [3,4], as a solution to the afore-
mentioned problems, such methods have fixed sets of templates that frequently
limit specification expressiveness, as well as rigid syntactic structures that pre-
vent using different yet equivalent sentences in specification, and (iii) last but not
least, the requirements specification methods, as mentioned earlier, do not sup-
port computational semantic analysis [5] as used in linguistics, hence rendering
the requirements analysis shallow.

Current solutions to the requirements specification and analysis problem
involve one or more of the following techniques: domain knowledge, semantics
analysis, natural language processing (NLP), logic-based reasoning, conceptual
modeling in object-oriented development, property specification patterns, etc.
NLP techniques and domain ontologies are used to ease the manual selection of
boilerplates [6,7], which is error prone and demanding. However, the approach
suffers from inaccurate translations and the lack of a robust meta model that
supports scalability and prevents inconsistent definitions of boilerplates. The
scalability issue is also shared in property specification patterns [3,4], which
define limited sets of patterns that allow the specification of functional and tim-
ing requirements of embedded systems. A linguistic approach that uses domain
ontology to specify and analyze requirements has already been proposed previ-
ously [8]. However, the proposed semantic relations and the thesaurus are very
limited, consequently only shallow semantic representations are possible, which
limits their application on real-world problems.

To address the above deficiencies and needs, in this paper, we propose a flex-
ible yet rigorous specification of embedded systems requirements. In our previ-
ous work [9,10], we have introduced a requirements specification language called
ReSA, which is a constrained natural language tailored to describing embedded
systems requirements. In this paper, we combine semantic analysis with domain
ontology for the semantic representation of ReSA requirements specifications
(in brief, ReSA specifications). The semantic analysis enables the consideration
of lexical semantics and semantic relations within the analysis of requirements,
hence enabling fine-grained analysis. The semantic representation employs an
event-based approach [11] in conjunction with thematic roles [12]. The ontology is
encoded in description logic (DL) [13], which is a decidable and computationally-
tractable part of firs-order logic. Consequently, description logic is a viable solu-
tion for the core reasoning of requirements specifications, such as consistency,
completeness and entailment. The ontology is also used to automatically generate
temporal computation-tree-logic (TCTL) properties from ReSA specifications.
The ontology is developed using OWL [14] and the Protégé tool. Our approach
is demonstrated on a set of requirements of the Adjustable Speed Limiter (ASL)
automotive use case, which is an operational and safety-critical automotive sys-
tem used in Volvo tracks. ASL limits vehicle speed to not exceed a predefined
speed, set by the driver.

334 N. Mahmud et al.

The rest of the paper is organized as follows. In Sect. 2, we give a brief
overview of ReSA, DL, and TCTL. In Sect. 3, we show the semantic repre-
sentation of ReSA specifications using the event-based approach. We define the
equivalence axioms that increase the flexibility of ReSA specifications, in Sect. 4,
followed by the proposed approach of analyzing ReSA specifications, in Sect. 5.
In Sect. 6, we compare our contributions to related work. Finally, we conclude
the paper and outline possible future work in Sect. 7.

2 Preliminaries

In this section, we briefly overview our requirements specification language,
ReSA, and its underlying semantic-encoding language, DL. Furthermore, we
briefly describe the timed computation tree logic TCTL.

2.1 ReSA

In our previous work [9], we have proposed the requirements specification lan-
guage ReSA, which closely renders the syntax and semantics of natural lan-
guage, and allows users to express requirements in a constrained manner. The
language targets the embedded systems domain, hence uses concepts such as
System, Para{meter}, Device, Mode, State, Event, etc. [9]. Further, the language
has axioms that guide the specification process, improve the readability, and
reduce ambiguity. The concepts and the specification axioms are maintained
in a system-level ontology. The ontology is employed for type checking during
the specification process in the ReSA Editor [10]. Examples of requirements
expressed in ReSA are shown in structured (1-a), tagged (1-b), and plain (1-c)
formats, respectively.
(1) (a) If “activation button”:inDevice is pressed

then
ASL:system shall limit “vehicle speed”:para within 500ms

endif

(b) If “activation button”:inDevice is pressed, ASL:system shall limit “vehicle
speed”:para within 500ms.

(c) If activation button is pressed, ASL shall limit vehicle speed within 500ms.

Valid strings of the language include requirements boilerplates, which are
sentential forms with dynamic (variable) syntactic elements. In example (1),
the boilerplates that are instantiated to construct the requirement are show in
Table 1 (the variable elements are enclosed within angle brackets).

At this stage, the language lacks a semantic representation that defines the
lexical semantics (semantic roles, quantification, etc.), and semantic relations
(synonyms, antonyms, hyponyms and hypernyms, etc.), which are crucial not
just to detect non-trivial specification errors, such as inconsistency and incom-
pleteness, but also to discover implicit knowledge of the specifications from
explicitly-stated requirements, hence providing better insight into the specifi-
cations. In this paper, we give semantics to ReSA in description logic, which
enables such functionality.

Specification and Semantic Analysis of Embedded Systems Requirements 335

Table 1. Boilerplates applied in Example (1)

Boilerplate Type

〈InDevice〉 is 〈Action〉 Proposition

〈System〉 shall 〈Action〉 〈Parameter〉 Simple

... within 〈Time〉 Prepositional Phrase

if 〈Antecedent〉 then 〈Consequent〉 endif Conditional

Table 2. DL constructors

Constructor Usage Semantics

� (Union) C � D CI ∪ DI

� (Intersection) C � D CI ∩ DI

∃ (Existential Qunat.) ∃R.C {x|∃y(x, y) ∈ RI → y ∈ CI}
∀ (Value Restriction) ∀R.C {x|∀y(x, y) ∈ RI → y ∈ CI}
o (Role Composition) R o S {(x, z) ∈ ΔI × ΔI |∃(x, y) ∈ RI ∧ ∃(y, z) ∈ SI}
 (Concept Inclusion) C D CI ⊆ DI

 (Role Inclusion) R S SI ⊆ RI

≡ (Equivalence) C ≡ D CI = DI

: (Assertion) x:C aI ∈ CI

(x,y):R (xI , yI) ∈ RI

.
= (Definition) C

.
=D CI = DI

2.2 Description Logic

Description Logic (DL) [13] is a language for knowledge representation, and it
is mainly used in fields such as artificial intelligence [15], semantic web [14] and
biomedical informatics [16]. DL is designed to contain decidable fragments of
first-order logic, for which efficient reasoners exist, e.g., FACT++, HermiT [17].

A DL knowledge base, K = (T,A), contains terminological assertions (a.k.a.
TBox, T) and instances (or facts) assertions (a.k.a. ABox, A), and it is built
recursively from concepts (unary predicates), roles (binary predicates) and
instances (constants) via Constructors. DL is inspired by set theory; conse-
quently, the interpretation I of the knowledge-base K is a tuple (ΔI , F I), where:
ΔI is the domain, F I is an interpretation function over the domain, which relates
a concept A to a set AI ⊆ ΔI , and a role R to a binary set RI ⊆ ΔI × ΔI .
The knowledge base is consistent if I � K(or � T∧ � A) [13]. Table 2 shows the
constructors used in this paper, where: (C, D, � (everything), ⊥ (nothing) are
concepts, and R, S are roles).

Besides storing the semantically-consistent specifications, the ontology can
be seen as a knowledge base that other systems can use. In this paper, we show
how we generate time-bounded response formulas, in TCTL, from the ontology.

336 N. Mahmud et al.

2.3 Timed Computation Tree Logic

Timed Computation Tree Logic (TCTL) [18], the timed extension of CTL, is
used in this paper as the notation that encodes formalized properties, after the
transformation from their ontology-based representation. A well-formed TCTL
property is inductively generated based on a production rule (1) that uses a
minimal set of operators: {true,¬,∨, AU,EU}, as follows:

φ := true | p | ¬p | φ | φ ∨ φ | E[φU��tφ] | A[φU�tφ], (1)

where: p ranges over a set of atomic formulas, A and E are the universal and
existential path quantifiers, respectively, U (Until) is a temporal operator, and ��
represents one of the relational operators: {=, <,≤}. Equivalently, the operators
� and ♦ are defined as ¬E[trueU¬φ] and A[trueUφ], respectively.

In this paper, we use the following (T)CTL property types (p, q are state
properties):

– Invariance: A� p - The specification evaluates to true if (and only if) every
reachable state satisfies p. In this property, A is the universal path quantifier,
whereas � is the path-specific temporal operator.

– Time-bounded Response: A� (p ⇒ A♦≤t q). This property asserts that, for all
paths, it is always the case that once p holds, q eventually holds within t time
units (♦≤t is the “eventually within t” operator).

3 Defining ReSA Semantics in DL

In this section, we describe our framework for semantic analysis, the semantic
representation approach and the domain ontology that captures the representa-
tions as a knowledge-base system.

3.1 Semantic Analysis Framework

In the context of requirements specification, industrial tools need to support
detection and correction of specification errors at both syntactic and semantic
levels. Figure 1 illustrates our proposed framework for specifying and analyzing
ReSA requirements, using a semantic analysis that takes advantage of open
source lexical resources and ontology1.

The semantic analysis process is described briefly as follows: (i) requirements
are specified and syntactically validated in ReSA, (ii) during the parsing of the
specifications, the semantic analyzer determines the semantics of each specifica-
tion, by consulting the VerbNet,schuler2005verbnet,palmer2009semlink and the
WordNet [21] lexical resources through Application Program Interfaces (API),
as explained in Sect. 3. VerbNet is a popular open source lexical resource of
verbs, which provides verbs semantics, whereas WordNet provides conceptual
1 The Oval, Rectangular, and Cylindrical shapes represent artifacts, computing func-

tions, and knowledge base, respectively.

Specification and Semantic Analysis of Embedded Systems Requirements 337

ReSA
Specifica ons

Parser

Parse Tree

Seman c
Analyzer

RO ontology

VerbNet

WordNet

Reasoner
(Hermit)

Fig. 1. Semantic analysis framework

semantics and lexical relations of words, e.g., antonyms, synonyms, etc., (iii) the
Semantic Analyzer asserts the domain types and semantic roles of the lexical ele-
ments, and the logical forms of the specifications, into the ontology, also known
as ReSA Ontology (RO). Each logical form captures the semantic structure of a
sentence as opposed to the surface (syntax) of a sentence, and (iv) RO is checked
for consistency, completeness and entailment via an ontology reasoner such as
Hermit [17].

3.2 Semantic Representation via the Event-Based Approach

The semantics of each specification is computed compositionally from the pred-
icates (i.e., the main verbs), and operators (i.e., the prepositions and conjunc-
tives), via an event-based semantics approach [22,23]. In this approach, an event
E denotes an occurrence, state or condition. It is expressed using a clause, an
adjunct or a statement. The arguments of a predicate or an operator are mapped
to an existentially-quantified event, through thematic roles [12], which define the
semantic roles of arguments with respect to the predicate. In Table 3, we briefly
define the commonly used thematic roles, of which some are used in this paper.

To illustrate the event-based approach and thematic roles, let us consider a
simple ReSA specification (2-a). The predicate is Limit(args.) and its arguments
are ASL and vehicle speed. The argument ASL has an agent role in the predicate,
which enables the vehicle speed argument to undergo a state change. Hence,
the latter argument has a patient (theme) role. The thematic roles are applied
in the event-based semantic representation. Considering the same example, the
theme of the specification is about Limiting, hence the event Limiting(e) (or
E(e) & Action(e, limit)). The arguments ASL and vehicle speed are related to the
event through the Agent and Patient thematic roles, respectively, as shown in
(2-b). Further, the thematic roles are restricted to the domain concepts in order
to effectively represent the semantics of the specification using semantic selection
[24], e.g., Agent(e,ASL) & System(ASL).
(2) (a) ASL:system shall limit “vehicle speed”:para.

(b) ∃e.[Limiting(e) & Agent(e, ASL) & Patient(e, “vehicle speed”) &
System(ASL) & Para(“vehicle speed”)]

338 N. Mahmud et al.

Table 3. The Definition of thematic roles. For a comprehensive definition, refer to
the VerbNet lexical resource [19]. The word/phrase that each role is referring to, is
underlined.

Thematic role Description

Agent/Cause initiates and carries out an action, and exists independently of the
action, e.g., If the driver presses the ASL button, ...

Patient undergoes state changes, and exists independently of the action,
e.g., ASL limits vehicle speed.

Theme similar to Patient, but doesn’t undergo state changes, e.g., ASL
sends notification to the driver.

Destination a physical entity which indicates the end-point of an action, and
exists independently of the action, e.g., ASL sends notification

to the driver.

Instrument used by an agent to cause an action, e.g., If the driver presses

the ASL button, ...

Experiencer a patient that perceives the change of state, e.g., if ASL detects a

malfunction, ...

Stimulus causes an event to occur, e.g., if ASL detects a malfunction,

...

The benefits of our semantic representation are threefold: (i) first, event-
based representations are suitable to automate while delivering deep and complex
semantic representations through nesting; (ii) second, voice alternations, using
active/passive forms, can be represented with almost similar semantic represen-
tations, allowing flexibility; and (iii) third, our domain concepts are well-defined
in advance, hence the concepts are applied on the thematic roles effectively to
restrict the selection of arguments, thereby discarding semantically not sound
statements, such as the driver is activated.

The main challenge of applying thematic roles is the lack of a standard def-
inition. Some thematic roles have inconsistent definitions across the relevant
literature. In order to mitigate this problem, we opt to apply thematic roles
from the VerbNet semantic resource, which defines around 23 thematic roles
and over 5200 verb classes [19].

3.3 The ReSA Ontology

The ReSA Ontology (RO) is an upgrade to our previously defined system-level
ontology [9] with semantic representations, based on the event-based and the-
matic roles. Further, RO introduces complex concepts such as Entity, Attribute,
User, which categorize the embedded systems concepts based on semantic simi-
larities. In this ontology, we also introduce equivalence and definition axioms that
realize the flexibility of ReSA, to provide engineers with the choice of equivalent
words and phrases, equivalent operators such as prepositions and conjunctives,

Specification and Semantic Analysis of Embedded Systems Requirements 339

and sentence alterations (passive and active statements). The ontology can be
downloaded from Bitbucket2.

The RO ontology consists of the TBox and the ABox DL parts. The
TBox contains assertions of logical forms, thematic restrictions, classifications of
domain concepts and statements. The TBox classification assertions are created
once and maintained by ontology experts with domain knowledge. The TBox is
also populated with logical forms that conform to various statement types dur-
ing parsing of the requirements specifications. The logical form can be captured
through simple and complex event structures as shown in the next section. The
TBox assertions are the meta-language of the ABox, which users employ during
specification. In contrast, the ABox contains assertions of concrete instantiations
of concepts and roles.

Thematic Role Restrictions. The thematic role restrictions in the TBox
detect implausible requirements specifications, such as “a user is activated”
(∃e.[Patient(e, x) & User(x) &...

]
). The given example implies that the user has

a Patient role, which is considered an illegal assertion since a user cannot change
the state upon receiving an action according to our interpretation. In order to
apply the restrictions, first, we generalize the domain concepts into complex
concepts (Entity, Attribute and User) based on semantic similarity (3). Next,
through expert knowledge and analysis of corpus data, we apply the restrictions
following the classification, as shown in (4). The restrictions are defined over the
range of roles, so that the roles map to the appropriate concepts, for instance
the range of the Patient role is restricted to Entity and Attribute concepts only.
(3) /* Classification assertions */

System Entity, Device Entity

Para Attribute, State Attribute, Mode Attribute

(4) /* Thematic Roles Restrictions */
� ∀ Patient.(Entity � Attribute)

� ∀ Agent.(User � Entity)

� ∀ Instrument.(InDevice)

3.4 Semantics of Clauses and Statements in ReSA

The restricted thematic roles are binary predicates that relate verb and opera-
tor arguments to their corresponding events, E. Events can be expressed using
a clause (Eclause), time phrase (Etime), simple (Esimple) and complex statements.
Further, a simple statement can be timed (Etsimple), and a complex statement can
be compound complex (Eccomplex) or nested complex (Encomplex), as shown in (5).

(5)

[
Eclause,Etime,Esimple,Etsimple,Ecomplex,Eccomplex,Encomplex

]
 E

2 https://bitbucket.org/nasmdh/ro.

https://bitbucket.org/nasmdh/ro

340 N. Mahmud et al.

Clause Event Eclause . In ReSA, a clause is an atomic proposition (or a sim-
ple statement without an adjunct). It expresses an action (action clause), or
describes a state or condition (descriptive clause). The predicates of the action
clauses are transitive Etra (e.g., activate [object]), intransitive Eint (e.g., reboot),
or ditransitive Edit (e.g., send[object] to [indirect object]), whereas the descrip-
tive clauses usually assume copula verbs Ecop (e.g., is). In the following example,
we show how the semantics of a clause, specified in ReSA, is represented via the
clause event.
(6) ASL:system shall reboot /* valid ReSA clause */

(7) Event-based: ∃e.[Eint(e) & Theme(e, ASL) & Action(e, reboot) & System(ASL) &
IntV(reboot)

]
(8) (a) TBox: E � ∃Agent.System � ∃Action.IntV Eint

(b) ABox: e:Eint, (e, ASL):Agent, (e, reboot):Action, ASL:System, reboot:IntVerb

The thematic roles of the “reboot” argument, in (6), are fetched from the
VerbNet semantic resource, which are used in the semantic representation (7).
In TBox, we assert the logical form of the specification as shown in (8-a), which
states that the event is an element of top event E that is related to instances of
System and Intransitive Verb (IntVerb) through the Agent and Action thematic
roles, respectively, and it belongs to the clause event. In the ABox, we assert
the facts (8-b) that are the instances of the clause event, the predicate and its
arguments as stated in the specification.

Simple Event. This event type is expressed via a simple statement that makes
use of a single clause and an optional adjunct. A Timed-Simple event is a sim-
ple event extended with an adjunct that states timing information (or uses a
prepositional phrase of time). Its event structure is constructed from two events
as shown in Fig. 2(a). The timed-simple event e1 has an outer scope over the
adjunct event e2, which indicates the extension of e1 with e2, as well as a scope
ambiguity resolution, for quantified specifications [25]. The event structure is
constructed during parsing according to the input string matches. An example
of a timed-simple requirement, which corresponds to Fig. 2(a), is shown in (9),
with its representations in the event-based semantics and description logic.

Parsing

e3e1

Parsing

e2 e2

Parsing

e3e1e1

If

e2
(a) (b) (c)

Fig. 2. Event structures

Specification and Semantic Analysis of Embedded Systems Requirements 341

(9) Timed-Simple:
{
ASL:system shall limit “vehicle speed”:para

{
within 500ms.

}
e2

}
e1

Event-Based: ∃e1.[Etsimple(e1)&∃e2.[Etime(e2)&Value(e2,500ms)&Within(e1,e2)]]

TBox: E � ∃Value.Time � ∃Within.Etime Etsimple

Complex Event. In contrast to a simple event, a complex event is expressed via
a complex statement that uses subordinate conjunctives, e.g., if, when, etc. A
typical application of this event is in denoting conditionals. Its event structure
is similar to the timed-simple event, except in this case we use subordinate
conjunctives (10).

(10) Complex:
{ if “activation button”:inDevice is pressed,

{
“ASL”:system

shall be activated
}
.e2
}
e1

Event-
Based:

∃e1.[Ecomplex(e1)&...∃e2.[Esimple(e2)&...&If(e1,e2)
]]

TBox: E � ∃If.Esimple Ecomplex

A compound-complex contains statements that are connected using the
and/or conjunctives. Figure 2(a) and (c) show the event structure for compound-
complex and nested-complex events, respectively, and examples are shown for
each class of complex statements that capture their respective event structure
in (11) (12). Note: Curly brackets are used to simplify the reading.

(11)
Compound-
Complex:

{ if vehicle:entity is in running:mode and
{
“enabling button”: inDevice

is pressed
}
,
{
ASL:system shall be enabled.

}
e3

}
e2

}
e1

Event-
Based:

∃e1.[Eccomplex(e1) &...∃e2.[Esimple(e2) &... And(e1,e2)
]

&
∃e3.[Esimple(e3) &...If(e1,e3)

]]
TBox: E � ∃And.Esimple � ∃If.Esimple Eccompound

(12)
Nested-
complex:

{ After “ASL”:system is enabled;
{
if “activation button”:inDevice is

pressed,
{
“ASL”:system shall be activated.

}
e3

}
e2

}
e1

Event-
Based:

∃e1.[Ecomplex(e1) &...∃e2.[Esimple(e2) &... After(e1,e2) &
∃e3.[Esimple(e3) &...If(e2,e3)

]]
TBox: E � ∃After.Ecomplex ◦ If.Esimple Encomplex

4 Semantic Equivalence in ReSA

ReSA allows the specification of semantically equivalent statements via different
syntactic constructions, e.g., by changing the voice of a statement (or diathe-
sis). The advantage of having alternative ways of specifying requirements is that
engineers get the choice to select convenient syntactic constructs when express-
ing requirements, hence increasing the language’s usability in practice. However,

342 N. Mahmud et al.

the task of identifying semantically equivalent constructs is not trivial, as equiv-
alences exist not just at the statements level, but also at syntactic categories
level. Besides, a lot of flexibility could contribute to ambiguity and imprecise-
ness of specifications [26], therefore, we consider the trade offs carefully when
defining the equivalence axioms. In our context, we define semantic equivalence
as follows.

Definition 1 (Semantic equivalence). The constituents C1 and C2 of ReSA
specifications are semantically equivalent if and only if C1 and C2 belong to the
same syntactic categories, and C1 is substitutable for C2, and vice versa, in any
instances of their usage in requirements specification.

The notion of semantic equivalence exists at the concept, role and instance
levels of the ontology. Equivalent concepts have the same number of instances
in the domain, e.g., Parameter ≡ InParameter � OutParameter. Equivalent roles
relate the same domain-range concepts and denote the same properties, e.g.,
Greaterthan ≡ LessThanorEqTo−. Equivalent instances denote the same value
or entity. Since model elements are normally distinct, we consider the N/NPs
instances distinct (not equivalent) in the ontology; however, there exist equiva-
lent instances of verbs and description words. For the latter case, the WordNet
lexicon resource provides semantic and syntactic relations between lexicons, e.g.,
synonyms, antonyms, etc. We use the WordNet lexical database [21] and the
JWNL library [27] to automate the identification of synonyms and antonyms for
the verb and descriptive words of the ReSA syntactic categories.

Table 4 illustrates the various equivalence axioms that exist in RO. The
prepositions within and between are defined in terms of the Afterp and Beforep

roles, similarly the conjunctive between, in terms of the Beforesc role. The compar-
ison operators are defined in terms of the Lessthan and Equalto roles. Antonyms
and synonyms are defined in terms of the Ant and Syn roles, respectively.

Table 4. Equivalence axioms in ReSA ontology sc-subordinating conjunctive, p-
preposition

Subordinate Conj. Equiv. Synonymous

Beforesc ≡ After−cc (limit, restrict):Syn

Betweensc
.
= Beforesc◦ Beforesc (display, expose):Syn

Prepositions of Time Equiv. Antonyms

Betweenp
.
= ∃Afterp.Time � ∃Beforep.Time (enable, disable):Ant

∀Within.Time ≡ ∃ Afterp.{Now} � Beforep.Time (active, inactive):Ant

Comparison Equivalence

Greaterthan ≡ LessThanorEqTo−

∀LessThanorEqTo ≡ ∃Lessthan− � ∃ Equalto
GrThanorEqto≡Lessthan−

Specification and Semantic Analysis of Embedded Systems Requirements 343

5 Automated Analysis and Transformation to TCTL
Properties

So far, we have presented the semantic representation of ReSA specifications in
event-based semantics, encoded in DL. We have also discussed the contributions
of the thematic roles and the equivalence axioms for enabling flexible specifica-
tions. In this section, we present the various types of analysis of requirements
specifications that we can carry out on the RO ontology. Moreover, we show the
transformation of the ReSA specifications to TCTL properties, exemplified on
the time-bounded properties.

5.1 Consistency Checking

The ontology RO is consistent if there exists an interpretation (or a model) that
satisfies the TBox (T) and the ABox(A) assertions, that is, M |= ax, where:
ax ∈ T ∪ A. Inconsistency in the ontology can occur due to inconsistencies
at different levels of syntactic categories and statements. For instance, at the
lexical syntactic level, the quantifiers of model elements are unique, hence D�

(ASL:System & ASL:Parameter), that is, the stated facts are inconsistent.
At the clause level, if we consider Opposite(active,inactive), the fact that

clauses e1 and e2 (13) are contradictory is detected using the assertion in (14),
stating a contradictory clause that is related through a reflexive chains of roles.
(13) e1=“ASL is active” and e2=“ASL is inactive”

(14) � ∃ (Theme−◦ Att◦ Opposite ◦ Att−◦ Theme)

5.2 Completeness

The completeness of a requirements specification is checked indirectly from the
completeness of the ontology. The ontology is complete if every instance of the
syntactic categories has thematic roles (15), and every clause belongs to some
statement (16). In the completeness axioms, we assume that the ontology is not
empty, since an empty ontology would satisfy universally quantified axioms.
(15) NP � VP � ADJ ∃ThematicRole.E

(16) Clause ∃ThematicRole.E

5.3 Transformation to TCTL

In the ABox, RO maintains concrete representations of requirements specifica-
tions, and such representations can be transformed into different formal logics for
further analysis. In this paper, we show the transformation of specifications in the
ontology to their counterpart in TCTL, using the Specification Pattern System
(SPS) [4,28], which is a collection of recurring patterns of functional and timing
requirements. The patterns of SPS have formal semantics in various temporal
logics, including TCTL. The benefits of automatically generating (an optimal

344 N. Mahmud et al.

set of) TCTL properties are: (i) properties are not generated for inconsistent
specifications, and (ii) properties are not generated for entailed specifications.
Consequently, the effort of subsequent model checking is reduced by optimizing
the number of properties to be checked.

Algorithm 1 shows the generation of a time-bounded response formula in
TCTL. The input to the algorithm consists of sets of simple and complex events,
paired sets of If and Within roles, and paired sets of thematic roles. For event e
in the Complex set, we check if it is related with the If role. If it is, we extract
its thematic arguments and verbalize the arguments (construct equivalent ReSA
syntax), and store them into p. Besides, we get the successor of e, which is
represented by e1. By using e1, we get its arguments verbalized to q. Finally,
we get the successor of e1, which is represented by e2, and from the last event,
we get the time argument, t. The output is a time-bounded TCTL formula
A� (p ⇒ A♦≤t q), where p, q are clauses that are expressed in ReSA, and t is
a time bound. Other properties can be extracted similarly.

input : A ReSA specification〈Etsimple〉
output: Time-bounded Response

Formula

while e in Complex do
arg ←− getArguments(e);

p ←− verbalize(arg);

e1 = getEvent(e,If);

if e1 is found then
arg ←− getArguments(e1);

q ←− verbalize(arg);

e2 ←− getEvent(e1,Within);

if e2 is found then
arg ←− getArguments(e2);

t ←− verbalize(arg);

end

end
tctl boundedResponse[0, 1, ..i] ←−
A � (p ⇒ A ♦≤t q).

end
Algorithm 1: Extracts Time-bounded
Response from the ReSA Ontology, RO

Complex={e1, e2,...en};
TimedSimple={em, em+1,...

If={<e1,em>,..};
Within={<em,t1>,...};
Agent={<e1, ASL>,...};
Patient={<e2,vehicle

speed>};
...

6 Related Work

The related work discusses the automated support of requirements specification
and analysis that mainly uses natural language as initial input language. In
the literature, various specification and analysis methods are proposed, and the
methods usually employ techniques based on logic, semantic analysis, specifica-
tion patterns, Natural Language Processing (NLP), etc.

Axel et al. [29] propose a requirements specification method that relies on
a goal-oriented approach, where the authors use a requirement model (a.k.a.

Specification and Semantic Analysis of Embedded Systems Requirements 345

KAOS meta model) to capture the possible specification scenarios, and translate
the specifications into temporal logic for reasoning. Similarly, Zawgi et al. [30]
apply the Default logic to the underlying representation of constrained natural
language. However, the two approaches face scalability issues that require major
changes on the meta-modeling level, especially when new specification patterns
are discovered. In a similar logic-based approach, the Requirement Apprentice
(RA) [31] has a user-friendly requirements specification interface that makes use
of clitché library that documents the analysts’ experience, but also a general-
purpose deduction-based reasoning system (Cake). The reasoning service pro-
vides detection of contradiction and completeness in the specification. However,
the approach does not handle analysis that requires resolution of complex deduc-
tion problems. The approach is domain agnostic and too constraining to be
applied in industry.

Haruhiko et al. [8,32] propose a lightweight requirements analysis method,
based on ontology, where the ontology is a knowledge base for treasures and
inference rules. The authors also define metrics for measuring the quality of
the requirements specification, including inconsistency, completeness, correctness
and ambiguity. The approach lacks a well-founded formalism of the ontology lan-
guage. In contrast, we use Description logic, which is decidable and supported by
the popular Semantic Web language, OWL. In another study by Stephen et al.
[6,33], a boilerplate approach and domain-based ontology are applied in speci-
fying requirements of embedded systems. The tool prototype, DODT, supports
matching of requirements to existing boilerplates through the NLP technique,
and requires manual work for those requirements that do not match automati-
cally. The boilerplates use concepts with no deep semantic relations, which could
potentially lead to implausible boilerplates. In a similar approach, Michael et al.
[34] use ontology for semantic analysis of requirements that are first preprocessed
through semantic labeling techniques. In the labeling, lexical words and phrases
are assigned semantic roles such as Actor and Object, used for semantic analysis
purposes. However, the number of semantic relations is very limited. In contrast,
we use the VerbNet and WordNet lexical resources that contain substantial lex-
ical resources.

Template-based specification methods lack flexibility due to the limited set
of templates [3,4,6,7,9]. In our approach, we provide a relatively more flexible
requirements specification language, and an ontology that captures the semantics
of the specifications, providing reasoning support for checking consistency and
completeness of requirements.

7 Conclusions

Natural language is intuitive to use for requirements specification of embedded
systems. However, it can sometimes lead to inconsistent, vague, ambiguous and
imprecise specifications. In order to take advantage of the appeal of natural lan-
guage, but also reduce the aforementioned problems, template-based methods

346 N. Mahmud et al.

such as pattern-based systems and boilerplates are often employed in indus-
try, especially for safety-critical applications. However, these methods have lim-
ited sets of templates that restrict the engineers’ power of expressiveness. The
pattern-based templates abstract substantial content into propositional vari-
ables, and the boilerplates lack formal specifications and support for rigorous
analysis. In this paper, we have applied linguistic techniques to improve specifi-
cations and analysis. For this purpose, we have defined a semantic representation
to the requirements specification language ReSA, a constrained natural language
that is close to the syntax and semantics of English.

We have proposed an event-based semantic representation approach that
uses thematic roles and domain concepts from embedded systems, in order to
effectively represent the semantics of syntactic elements such that the represen-
tations are ready for deep analysis, that is, analysis at various levels of syntactic
categories, clauses and statements. The semantics is encoded in a Description-
logic-based ontology. We also show how to perform consistency checking and
completeness on the ontology. Finally, we have demonstrated the benefit of the
ontology by automatically generating optimal sets of property specifications in
Timed Computation Tree Logic, which can be further used for model checking
embedded systems formal descriptions. In the future, we plan to include tempo-
ral reasoning and the implementation of the ontology in the ReSA editor, and
validate the approach and its toolchain on large industrial systems.

References

1. Martins, L.E.G., Gorschek, T.: Requirements engineering for safety-critical sys-
tems: a systematic literature review. Inf. Softw. Technol. 75, 71–89 (2016)

2. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer, Heidelberg
(2010)

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference on
Software Engineering (IEEE Cat. No.99CB37002), pp. 411–420, May 1999

4. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: 27th International
Conference on Software Engineering (ICSE), pp. 372–381, May 2005

5. Jacobson, P., Semantics, C.: An Introduction to the Syntax/Semantics Interface.
Oxford University Press, Oxford (2014)

6. Farfeleder, S., Moser, T., Krall, A., Stlhane, T., Zojer, H., Panis, C.: DODT:
Increasing requirements formalism using domain ontologies for improved embed-
ded systems development. In: 14th IEEE International Symposium on Design and
Diagnostics of Electronic Circuits and Systems, pp. 271–274, April 2011

7. Arora, C., Sabetzadeh, M., Briand, L.C., Zimmer, F.: Requirement Boilerplates:
Transition from manually-enforced to automatically-verifiable natural language
patterns. In: 2014 IEEE 4th International Workshop on Requirements Patterns
(RePa), pp. 1–8, August 2014

8. Kaiya, H., Saeki, M.: Ontology based requirements analysis: Lightweight semantic
processing approach. In: Fifth International Conference on Quality Software (QSIC
2005), pp. 223–230, September 2005

Specification and Semantic Analysis of Embedded Systems Requirements 347

9. Mahmud, N., Seceleanu, C., Ljungkrantz, O.: ReSA: An ontology-based require-
ment specification language tailored to automotive systems. In: 10th IEEE Inter-
national Symposium on Industrial Embedded Systems (SIES), June 2015

10. Mahmud, N., Seceleanu, C., Ljungkrantz, O.: ReSA tool: Structured requirements
specification and SAT-based consistency-checking. In: Proceedings of 2016 Feder-
ated Conference on Computer Science and Information Systems (FedCSIS), Sep-
tember 2016

11. Davidson, D.: Essays on Actions and Events: Philosophical Essays. Clarendon
Press, Oxford (2001)

12. Parsons, T.: Thematic relations and arguments. Linguist. Inq. 26(4), 635–662
(1995)

13. The Description Logic Handbook: Theory, Implementation and Applications
14. Bechhofer, S.: OWL: Web ontology language. In: Ling, L., Özsu, T. (eds.) Ency-

clopedia of Database Systems, pp. 2008–2009. Springer, Heidelberg (2009)
15. Bhatt, M., Freksa, C.: Spatial computing for design an artificial intelligence

perspective. In: Studying Visual and Spatial Reasoning for Design Creativity,
pp. 109–127. Springer, Heidelberg (2015)

16. Rector, A., Rogers, J.: Ontological and practical issues in using a description logic
to represent medical concept systems: experience from GALEN. In: Barahona, P.,
Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS,
vol. 4126, pp. 197–231. Springer, Heidelberg (2006). doi:10.1007/11837787 9

17. Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In:
OWL: Experiences and Directions, vol. 432, p. 91 (2008)

18. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

19. Schuler, K.K.: VerbNet: A Broad-coverage, Comprehensive Verb Lexicon. Disser-
tations available from ProQuest. AAI3179808 (2005)

20. Palmer, M.: Semlink: Linking propbank, verbnet and framenet. In: Proceedings of
the Generative Lexicon Conference, Italy, pp. 9–15 (2009)

21. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11),
39–41 (1995)

22. Parsons, T.: Events in the Semantics of English, vol. 5. MIT Press, Cambridge
(1990)

23. Champollion, L.: The Interaction of compositional semantics and event semantics.
Linguist. Philos. 38(1), 31 (2015)

24. Ouhalla, J.: Functional Categories and Parametric Variation. Routledge, London
(2003)

25. Kurtzman, H.S., MacDonald, M.C.: Resolution of quantifier scope ambiguities.
Cognition 48(3), 243–279 (1993)

26. Ferreira, V.S., Dell, G.S.: Effect of ambiguity and lexical availability on syntactic
and lexical production. Cogn. Psychol. 40(4), 296–340 (2000)

27. Finlayson, M.A.: Java libraries for accessing the princeton wordnet: comparison
and evaluation. In: Proceedings of the 7th Global Wordnet Conference, Tartu,
Estonia (2014)

28. Post, A., Menzel, I., Hoenicke, J., Podelski, A.: Automotive behavioral require-
ments expressed in a specification pattern system: a case study at BOSCH. Require-
ments Eng. 17(1), 19–33 (2012)

29. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Programm. 20(1–2), 3–50 (1993)

http://dx.doi.org/10.1007/11837787_9

348 N. Mahmud et al.

30. Zowghi, D., Gervasi, V., McRae, A.: Using default reasoning to discover incon-
sistencies in natural language requirements. In: Proceedings Eighth Asia-Pacific
Software Engineering Conference, pp. 133–140, December 2001

31. Reubenstein, H.B., Waters, R.C.: The requirements apprentice: automated assis-
tance for requirements acquisition. IEEE Trans. Softw. Eng. 17(3), 226–240 (1991)

32. Kaiya, H., Saeki, M.: Using domain ontology as domain knowledge for requirements
elicitation. In: 14th IEEE International Requirements Engineering Conference (RE
2006), pp. 189–198, September 2006

33. Farfeleder, S., Moser, T., Krall, A., St̊alhane, T., Omoronyia, I., Zojer, H.:
Ontology-driven guidance for requirements elicitation. In: Antoniou, G., Grobelnik,
M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC
2011. LNCS, vol. 6644, pp. 212–226. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21064-8 15

34. Roth, M., Klein, E.: Parsing software requirements with an ontology-based seman-
tic role labeler. In: Language and Ontologies, p. 15 (2015)

http://dx.doi.org/10.1007/978-3-642-21064-8_15
http://dx.doi.org/10.1007/978-3-642-21064-8_15

Computing Conditional Probabilities:
Implementation and Evaluation

Steffen Märcker(B), Christel Baier, Joachim Klein, and Sascha Klüppelholz

Institute of Theoretical Computer Science,
Technische Universität Dresden, 01062 Dresden, Germany

steffen.maercker@tu-dresden.de

Abstract. Conditional probabilities and expectations are an important
concept in the quantitative analysis of stochastic systems, e.g., to analyze
the impact and cost of error handling mechanisms in rare failure scenar-
ios or for a utility-analysis assuming an exceptional shortage of resources.
This paper reports on the main features of an implementation of com-
putation schemes for conditional probabilities in discrete-time Markov
chains and Markov decision processes within the probabilistic model
checker Prism and a comparative experimental evaluation. Our imple-
mentation has full support for computing conditional probabilities where
both the objective and condition are given as linear temporal logic for-
mulas, as well as specialized algorithms for reachability and other simple
types of path properties. In the case of Markov chains we provide imple-
mentations for three alternative methods (quotient, scale and reset). We
support Prism’s explicit and (semi-)symbolic engines. Besides compar-
ative studies exploring the three dimensions (methods, engines, general
vs. special handling), we compare the performance of our implementa-
tion and the probabilistic model checker Storm that provides facilities
for conditional probabilities of reachability properties.

1 Introduction

Various methods and tools have been developed that support the analysis of
systems against reliability and performability requirements. In this paper, we
focus on the stochastic setting where finite-state Markovian models are used to
carry out the system analysis (see, e.g., [29,35,44]). In the past 25 years, vari-
ous algorithms to compute the probabilities for safety or liveness properties as
well as time- or cost-bounded properties specified in some temporal logic have
been proposed and implemented in tools. Most prominent is the probabilistic
model checker Prism [39]. Among others, it provides support for the analy-
sis of discrete- and continuous-time Markov chains as well as Markov decision
processes (MDPs) against state properties specified in probabilistic computa-
tion tree logic (PCTL) [13,16,28] or ω-regular path properties specified in linear

The authors are supported by the DFG through the collaborative research centre
HAEC (SFB 912) and the Excellence Initiative by the German Federal and State
Governments (cluster of excellence cfaed) and projects BA 1679/11-1 and 1679/12-1.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 349–366, 2017.
DOI: 10.1007/978-3-319-66197-1 22

350 S. Märcker et al.

temporal logic (LTL) [18,46]. The focus of Prism and other probabilistic model
checkers, such as MRMC [34], Storm [20], iscasMC [27] or Marcie [30], is
to provide facilities for the computation of probabilities for temporal path prop-
erties, and partly also expected accumulated costs. However, tool support for
conditional probabilities, i.e., the probability of an event ϕ given an event ψ
occurs, for temporal properties or conditional expected costs, i.e., the expected
costs given an event ψ occurs, in Markovian systems within probabilistic model
checkers is rare (see the discussion on related work). This is unfortunate as asser-
tions on conditional probabilities for temporal properties can provide important
insights in the reliability of systems or the cost-utility balance. For instance, con-
ditional probabilities and expectations allow to “zoom in” specific error scenarios
and to analyze the impact of undetected errors or the cost of repair mechanisms
in cases where an error is detected. Conditional probabilities can also serve to
formalize the tradeoff between cost and utility functions, e.g., in terms of the
conditional probability to achieve a sufficiently high utility level, assuming that a
scenario occurs where the available energy is bounded by some constant (see [7]).
For another example, forms of anonymity have been formalized by the require-
ment that the conditional probabilities for on observable o, given a secret s,
does not depend on s (see [2]). In the context of the verification of probabilistic
programs, conditional probabilities and expectations are used to formalize the
semantics of loops under the assumption that the loop terminates [14,17,32].

Contribution. We present an implementation of computation schemes for con-
ditional probabilities in Markov chains and MDPs, where both the objective and
condition are LTL formulas, within the probabilistic model checker Prism [39]
(Sect. 3).1 Our implementation realizes the algorithms of [10], which rely on
reductions to unconditional probabilities, and achieves a major speed-up over
[10]’s prototype implementation. It uses Prism’s infrastructure to translate LTL
formulas into deterministic finite or ω-automata and can be used with all of
Prism’s analysis engines, namely explicit, mtbdd, hybrid, and sparse.2 Besides
the automata-based approach for LTL objectives and conditions, our implemen-
tation also provides specialized treatment of certain simple formula patterns,
e.g., when the condition is a reachability property or an invariant. In the case of
Markov chains, our implementation also supports the computation of conditional
expected accumulated costs when the condition is an LTL formula.

The second contribution is a report on experiments that have been carried out
to evaluate the general feasibility of the algorithms for conditional probabilities
of LTL objectives and conditions as well as to compare different methods and

1 In the context of a conditional probability Pr(ϕ|ψ) we refer to ϕ as the objective
and to ψ as the condition.

2 Prism’s explicit engine uses sparse matrix representation for the system and car-
ries out all computation in an explicit manner, while the other three engines use
multi-terminal binary decision diagrams (MTBDDs) for the model construction.
The mtbdd engine is purely MTBDD-based. The hybrid engine uses an MTBDD-
representation for the system and an explicit probability vector [38], while the sparse
engine uses sparse matrices for the numerical computations.

Computing Conditional Probabilities: Implementation and Evaluation 351

engines (Sect. 4). For Markov chains, we compare the performance of three meth-
ods: the quotient method (which computes conditional probabilities according
to their definition), the scale method proposed in [10] (which transforms the
Markov chain into a new one by deleting and copying certain states and rescal-
ing the transition probabilities) and the reset method proposed in [10] for MDPs
(which “discards” paths that violate the condition by reset transitions return-
ing to the initial state). In the case of MDPs, we compare the running time
of the reset method for computing the maximal and minimal condition prob-
ability with the running time for computing the unconditional probability for
the conjunction of the objective and the condition. For both Markov chains and
MDPs, we also compare the running times of our implementation for each of
Prism’s engines as well as the general applicable automata-based approach and
the specialized treatment of formula patterns. Finally, we also compare the per-
formance of our implementation and that of the new probabilistic model checker
Storm, which provides support for reachability objectives and conditions using
its explicit engine (Sect. 5). An extended version including an appendix [41], our
implementation, all benchmark models and queries as well as the raw data from
the measurements are available online3.

Related Work. For Markov chains (and other purely stochastic models without
nondeterminism), the definition Pr(ϕ|ψ) = Pr(ϕ∧ψ)/Pr(ψ) of conditional proba-
bilities yields a direct reduction to the unconditional case, called quotient method.
Thus, all tools with facilities for computing probabilities of conjunctive proper-
ties in Markov chains provide an implicit way to compute conditional prob-
abilities. However, this method is not applicable for conditional expectations.
Moreover, tools that are restricted to branching-time logics such as PCTL or its
continuous-time analogue CSL [5,8] do not support conjunctive path properties.
This motivated the work by Gao et al. [24] on conditional probabilities for con-
ditions with nested time-bounded constraints in continuous-time Markov chains.
This technique has been implemented in the tool CCMC [23] and adapted in
[33] for the discrete-time setting. We are not aware of an implementation of the
algorithm proposed in [33]. In our previous work [10], we presented the scale
method (see. Sect. 2) and reported on a prototypical implemented in Prism’s
explicit engine. The scale method has also been implemented in Storm [20]
(and its parametric branch PROPhESY [19]) for cases where both the objec-
tive ϕ and the condition ψ are reachability properties. While Storm generally
supports both explicit and symbolic computations, the implementation for con-
ditional probabilities and expectations in Markov chains in Storm is limited to
the explicit engine using sparse data structures.

In the case of probabilistic models with nondeterminism such as MDPs, the
typical task for the system analysis is to carry out a worst- or best-case analysis
in terms of the maximal or minimal (unconditional or conditional) probability
that can be achieved when ranging over all possible resolutions of the nondeter-
minism (formalized by schedulers, see Sect. 2). [1,3] proposed a model-checking
algorithm for PCTL extended by constraints for conditional probabilities where
3 https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/SEFM17.

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/SEFM17

352 S. Märcker et al.

the objective and the condition are PCTL path formulas. [1,3]’s algorithm for
the case where both the objective and the condition are reachability proper-
ties has exponential-time complexity, while the reset method proposed in [10] is
polynomially time-bounded. Both the prototype reported in [10] and the tool
Storm [20] realize the reset method for maximal conditional probabilities in
MDPs only for reachability objectives and conditions and only non-symbolic,
whereas the new implementation presented in this paper covers Prism’s sym-
bolic engines, too. To the best of our knowledge, it is the first implementation
providing full support for computing maximal or minimal conditional probabil-
ities in MDPs for LTL objectives and LTL conditions.

2 Preliminaries

We provide an informal overview of the scale and reset methods of [10] underlying
our implementation. For the basic principles of Markov chains, Markov decision
processes and probabilistic model checking, we refer to [22,44] and Chap. 10 of
[9]. We suppose some familiarity with ω-automata (finite automata over infinite
words) and linear temporal logic (LTL). See, e.g., [9,25].

Markov decision processes (MDP) can be seen as a finite-state automata
model where each state has a nondeterministic choice between finitely many
actions. The effect of taking an action in a state is probabilistic and formalized
by a probabilistic distribution over the states. By supporting nondeterministic
and probabilistic choices, MDPs are a generic model with manyfold applica-
tions, e.g., in robotics, operations research and randomized distributed systems.
Probabilistic model checking can be used, e.g., to compute the maximal or min-
imal probability that an ω-regular path property ϕ holds in state s of an MDP
M, denoted Prmax

M,s(ϕ) resp. Prmin
M,s(ϕ). The extremum is taken over all resolu-

tions of the nondeterminism in the MDP, formalized as schedulers that select
for each finite path an action that is enabled in the last state of the path. Thus,
Prmax

M,s(ϕ) = maxσ Prσ
M,s(ϕ) resp. Prmin

M,s(ϕ) = minσ Prσ
M,s(ϕ) where σ ranges

over all schedulers and Prσ
M,s denotes the probability measure induced by sched-

uler σ and starting state s. (The maximum and minimum indeed exist.) Discrete-
time Markov chains (DTMCs) can be regarded as purely probabilistic MDPs,
i.e., each state has at most one enabled action. Thus, DTMCs have a unique
scheduler. Given a DTMC M, we write PrM,s(ϕ) as Prmax

M,s(ϕ) = Prmin
M,s(ϕ).

LTL formulas are built by atomic propositions for the states, the standard
Boolean operators (such as ∨ “or” and ∧ “and” and ¬ “negation”) and the unary
temporal modalities ♦ (“eventually”), � (“globally”), © (“next”) as well as the
binary temporal modality U (“until”), its dual R (“release”) and W (“weak
until”). All path properties that are expressible in LTL are ω-regular.

Maximal reachability probabilities Prmax
M,s(♦F) in MDPs are known to be

computable via iterative methods (value or policy iteration) or in polynomial-
time via linear programming techniques. To compute the maximal probabilities
for LTL formulas, one can use standard algorithms to translate the given LTL
formula ϕ into a deterministic ω-automaton A and then compute Prmax

M,s(ϕ) as

Computing Conditional Probabilities: Implementation and Evaluation 353

the maximal probability of a reachability property in the product-MDP M⊗ A.
Minimal probabilities for reachability properties or LTL formulas can be com-
puted in a similar way or using the fact that Prmin

M,s(ϕ) = 1 − Prmax
M,s(¬ϕ).

If M is a DTMC, the conditional probability of objective ϕ given that con-
dition ψ holds, starting from state s, is given by:

PrM,s(ϕ |ψ) def=
PrM,s(ϕ ∧ ψ)

PrM,s(ψ)
(*)

where we suppose that ϕ and ψ are LTL formulas (or, more generally, ω-regular
path properties) such that PrM,s(ψ) > 0.

Quotient Method. For DTMCs, (*) directly provides a computation scheme for
conditional probabilities via the computation of the unconditional probabilities
for the conjunction of the objective and condition and for the condition.

Scale Method. [10] presents an alternative method for the computation of the
conditional probabilities PrM,s(ϕ |ψ) in DTMCs, which relies on a reduction to
unconditional probabilities in a transformed DTMC Mψ. We sketch the ideas
for the case where ψ = ♦C is a reachability condition (“eventually some state in
C is reached”). In a first step, the probabilities xs = PrM,s(♦C) are computed
for all states s in M. Intuitively, the new DTMC Mψ simulates M using in
two modes: “before C” and “after C”. The structure of Mψ’s “before C” mode
is obtained from M by removing all states t with xt = 0 and re-scaling the
transition probabilities for the remaining states. More precisely, if xs > 0 and
s /∈ C then the transition probability from s to t in the “before C” mode of
Mψ is obtained by multiplying the transition probability from s to t in M with
xt/xs. If s ∈ C then Mψ switches to the “after C” mode where it behaves
exactly as M, i.e., the structure of Mψ’s “after C” mode is a copy of M.
Then, PrM,s(ϕ |♦C) = PrMψ,sb

(ϕ) for each measurable path property ϕ and
each state s with xs > 0 where sb means the copy of s in the “before C”
mode. The case where ψ is an arbitrary LTL formula is reducible to the case
of a reachability condition using a product construction with a deterministic
ω-automaton for ψ. As Mψ is independent of the objective, it can also be used
to compute conditional expected accumulated costs in M. It is also applicable
for continuous-time Markov chains and (time-abstract) LTL conditions.

Reset Method. The reset method has been proposed in [10] to compute max-
imal conditional probabilities for ω-regular objectives and conditions in MDPs
via a reduction to unconditional probabilities. It supposes a fixed initial state sinit

and relies on a transformation of M into an MDP N = Mϕ|ψ that depends on
both the objective and the condition. We first summarize the ideas of the reset
method when applied to a DTMC and then sketch the main steps for MDPs.

Let M be a DTMC. For reachability objectives and conditions, say ϕ = ♦F
and ψ = ♦C, where we suppose that C is reachable from the initial state sinit ,
the reset method first performs a reachability analysis to identify all states s
that cannot reach C, in which case PrM,s(ψ) = 0. It then discards the outgoing

354 S. Märcker et al.

transitions of all states s with PrM,s(ψ) = 0 and introduces a reset transition
from these states s to sinit with transition probability 1. If N is the resulting
DTMC then PrM,sinit

(ϕ |ψ) = PrN ,sinit
(ϕ). Thus, the reset method provides a

reduction of conditional probabilities to unconditional ones. The essential idea of
the switch from M to N is that via the reset transitions the probability mass of
all paths that do not satisfy the condition ψ are transferred to the initial state,
where it is distributed over all paths satisfying ψ.

Given an MDP M with a initial state sinit , we address the task to compute:

Prmax
M,sinit

(ϕ |ψ) def= max
σ

Prσ
M,sinit

(ϕ |ψ) = max
σ

Prσ
M,sinit

(ϕ ∧ ψ)
Prσ

M,sinit
(ψ)

for given LTL formulas ϕ and ψ. The maximum ranges over all schedulers σ with
Prσ

M,sinit
(ψ) > 0. If there is at least one scheduler where Prσ

M,sinit
(ψ) > 0 then

the maximum exists. Minimal conditional probabilities are defined analogously
and can be handled using Prmin

M,sinit
(ϕ |ψ) = 1 − Prmax

M,sinit
(¬ϕ |ψ). The quotient

and scale methods are not applicable for MDPs, as the task is to maximize the
quotient of the probabilities for ϕ ∧ ψ and ψ w.r.t. the same scheduler.

The reset method of [10] for computing Prmax
M,sinit

(ϕ |ψ), where ϕ = ♦F
and ψ = ♦C are reachability properties, works as follows. It first applies stan-
dard algorithms to check whether Prmax

M,sinit
(ψ) > 0, as otherwise the maximal

conditional probability is undefined. If so, M is transformed into a normal
form MDP M′ with Prmax

M,sinit
(ϕ |ψ) = Prmax

M′,sinit
(ϕ′ |ψ′) where ϕ′ = ♦F ′ and

ψ′ = ♦C ′ are reachability properties with F ′ ⊆ C ′ and where all states in C ′ are
traps, i.e., they do not have enabled actions. M′ contains a further trap state
fail and enjoys the property Prmax

M′,s(♦C ′) > 0 for all states s �= fail . Having
constructed M′, the reset method transforms M′ into another MDP N that
is obtained by adding new transitions, called reset transitions, from fail and
from all other states s in M′ with Prmin

M′,s(♦C ′) = 0 to sinit . The reset tran-
sitions have a special action name. For the states s in M′ with s �= fail and
Prmin

M′,fail(♦C ′) = 0, the reset transition is an additional nondeterministic alter-
native. Then, Prmax

M,sinit
(ϕ |ψ) = Prmax

N ,sinit
(♦F ′). The case where ϕ,ψ are ω-regular

properties is reducible to the base case where the condition and objective are
reachability properties using deterministic ω-automata for ϕ and ψ.

3 Implementation

The foundation of our new implementation is the development branch of Prism
4.3. We implemented the three methods (quotient, scale and reset) for DTMCs
as well as the reset method for DTMCs and MDPs where the objective and the
condition are given as LTL formulas. All methods can be employed using Prism’s
explicit, mtbdd, hybrid and sparse engine. We rely on Prism’s infrastructure for
generating deterministic finite or ω-automata from LTL formulas. To facilitate
a more direct and performant implementation of model transformations used in
the scale and the reset method, we developed a declarative framework based on
atomic operations like union of models and state space restriction.

Computing Conditional Probabilities: Implementation and Evaluation 355

Specialized Treatment of Formula Pattern. Besides the automata-based
approach of the scale method for DTMCs to treat LTL conditions, our imple-
mentation provides direct support for conditions of the form ♦A (reachability),
�A (invariance), ©A (next), AU B (until), AW B (weak until), and AR B
(release), where A and B are sets of states. The underlying algorithms rely on
the same concepts as the treatment of reachability conditions in the scale method
for Markov chains presented in [10]. In Sect. 4, we refer to these specialized treat-
ment of the scale method as scale.pattern.

Likewise, for the reset method in DTMCs or MDPs, our implementation
provides direct support to treat conditions and/or objectives that are reachabil-
ity, invariance, (weak) until, or release properties without translating them into
deterministic ω-automata. Altogether this yields the following four variants of
the reset method. The original method of [10] is denoted by reset.ltl-ltl and uses
automata for both the objective and the condition. We shall write reset.pattern-
ltl for the reset method that treats the objective directly (assuming the objective
is a reachability, invariance, (weak) until, or release property), while the condi-
tion is translated to an automaton. reset.ltl-pattern and reset.pattern-pattern
have analogous meanings.

Infrastructure Improvements. To increase the efficiency of Prism’s compu-
tation of unconditional probabilities, we addressed several weaknesses in Prism’s
explicit engine: (i) the replacement of quadratic-time with linear-time algorithms
used in a preprocessing step that identifies all states s where a reachability con-
dition holds with probability 1 under all or some schedulers; (ii) techniques to
restrict products of models and ω-automata to the product states reachable from
the initial states; (iii) the conversion of graph representations of DTMCs into
more compact sparse matrices enabling a faster algorithmic treatment.

4 Evaluation and Comparative Studies

4.1 Methodology

We carried out all measurements on a compute server4 and configured CUDD
(the package for manipulating (MT)BDDs used in Prism) and the JVM to
use up to 31 GB RAM each. As recommended in production environments, we
fixed the JVM heap size and set the integer cache to hold all boxed integers
from 0 to 30 · 106. All experiments timed out after 3600 s. Multiple runs using
Prism’s (semi-)symbolic engines yielded the same times and were only negligi-
bly effected by running them in parallel. However, the explicit engine showed
deviations, mainly due to JIT warmup effects. Hence, in order to obtain reli-
able measurements, we ran each property and model instance at least twice,
and refrained from running the explicit experiments in parallel. Generally, we
consider times ≤ 1 s below the precision of measurements and time differences
of a few seconds insignificant.
4 2 × Intel Xeon E5-2680 (Octa Core, Sandy Bridge) @ 2.70 GHz, 384 GB RAM; Turbo

Boost and Hyper Threading enabled; Debian GNU/Linux 8.3.

356 S. Märcker et al.

At the core of probabilistic model checking is the computation of reachability
probabilities. Prism’s default methods for this task are different variants of value
iteration. With the standard termination criterion, the value iteration may abort
prematurely and return incorrect results [26]. In [12], we developed a prototype
of the interval iteration proposed in [26] addressing this issue. However, it is not
yet integrated into the current implementation discussed in this paper, but spot
tests suggested that our benchmarks do not suffer from that issue.

4.2 Considered Models and Properties

Our experiments aim for an exhaustive examination of the implemented meth-
ods and patterns with respect to their performance in comparison to each
other. We use established models from the Prism benchmark suite [40] that
allow the formulation of meaningful conditional queries. We included three
DTMCs: the bounded retransmission protocol [31] (brp), the crowds protocol for
anonymity [45] (crowds) and the probabilistic contract signing protocol [21,43]
from Even, Goldreich & Lempel (egl), as well as two MDP models: the random-
ized consensus shared coin protocol [4,36] (consensus) and a model of CSMA/CA
from the IEEE standard 802.11 [37] (wlan). For each model, we combined various
temporal path formulas for the objective and condition to cover all the instantia-
tions of the implemented patterns. As we do not want to evaluate the translation
from LTL to automata we considered only LTL path formulas of medium com-
plexity that yielded automata with at most 16 states. Our selection includes all
models (brp, crowds, wlan) and conditional queries previously used for bench-
marking in [10,19]. In total, there are 190 runs required for each instance of a
DTMC and 79 runs for each MDP instance. Among the considered properties
are the following examples of interest that cannot be computed efficiently with-
out the transformation-based methods. In the case of the brp protocol one might
be interested in “the expected energy consumption of a successful transfer given
the transfer is indeed successful” which has a probability <1. For the consensus
protocol where multiple processes have to agree on a common date based on
coin-flipping, we ask for “the maximal probability that the processes eventually
disagree given a defective process always flips coin”.

4.3 Results

We present numbers for the explicit and the mtbdd engine in this section and
cover the hybrid and sparse engine in [41].

Methods. As the size of the state space and hence the runtimes grow expo-
nentially, we use log-scale for the charts. Figure 1 compares the scale method
against the quotient method in DTMCs. It incorporates the results from all
DTMC model instances and all properties. The quotient method serves as refer-
ence and is plotted on the diagonal. We compare against the minimal time over
all patterns of the scale method (scale.min(*)). For the majority of experiments,
the scale method is faster than the quotient method. The margin increases with

Computing Conditional Probabilities: Implementation and Evaluation 357

(a) explicit engine (b) mtbdd engine

Fig. 1. Runtimes of methods: scale vs quotient (DTMCs)

(a) explicit engine (b) mtbdd engine

Fig. 2. Runtimes of methods: reset vs scale (DTMCs)

(a) explicit engine (b) mtbdd engine

Fig. 3. Runtimes of methods: reset vs objective ∧ condition (MDPs)

358 S. Märcker et al.

the size of the model up to two orders of magnitude for the explicit engine. This
is mainly caused by the increasing costs of the quotient method to handle the
conjunction of the objective and condition. Besides a few more instances where
the quotient method is faster, using the mtbdd engine yields similar results. This
observation transfers to the (semi-)symbolic engines, see [41].

Pitted against the reset method in DTMCs, the scale method is faster in
almost all experiments. We plot the minimal times for the scale method against
the minimal times of the reset method as reference in Fig. 2. Often the differ-
ence is not more than one order of magnitude with some notable exceptions. On
the one hand, the cases where the reset method is beaten more strikingly are
caused by the more costly handling of queries featuring non-simple path prop-
erties as objective and condition. On the other hand, certain objectives require
three instead of two model-checking runs to compute the probabilities required
to construct the normal form MDP M′. However, the transformed model can be
very small, e.g., only 6 states and hence, the final computation step fast enough
to compensate for the expenses of the reset method. In very large realistic mod-
els this might be crucial to enable the computation of conditional probabilities
after all.

In the absence of alternative algorithms for conditional probabilities in
MDPs, we compare the reset method against the computation of the uncon-
ditional probability for the conjunction of the objective and condition. Figure 3
shows the results for the minimal time over all applicable patterns. The majority
of the measurements is relatively close to the reference times, i.e., less than an
order of magnitude faster or slower. This observation applies to all four engines
and yields evidence that computing conditional probabilities in MDPs can be
expected to be roughly as time-consuming as computing the unconditional prob-
ability of the conjunction of the objective and the condition. Furthermore, treat-
ing the general variant reset.ltl-ltl requires at most the amount of memory needed
to construct the product of the original model and the automata for the objective
and condition, respectively, and less if a specialized pattern applies.

(a) explicit engine (b) mtbdd engine

Fig. 4. Runtimes of patterns: scale.* vs scale.ltl (DTMCs) (Color figure online)

Computing Conditional Probabilities: Implementation and Evaluation 359

(a) explicit engine (b) mtbdd engine

Fig. 5. Runtime of patterns: reset.* vs reset.ltl-ltl (DTMCs & MDPs)

Patterns. Figure 4 compares the runtimes of the specialized treatment of pat-
terns scale.pattern against the general case using scale.ltl (patterns are depicted
in different colors). Dots below the diagonale depict runtimes that are better than
the general case which is on the diagonale. In general, the specialized methods
show significant superiority over the automata-based approach. For the explicit
engine (on the left), the special handling gains up to two and a half orders
of magnitude. The few exceptions in the lower left are caused by fluctuations
below the precision of measurements of about 1 s. Using the mtbdd engine (on
the right) the picture is not as clear, since most of the measurements are closer
to the general case. The reason for this is that in a purely symbolic approach,
the computation time of the probabilities for the scaling step becomes an even
more dominating factor. For the semi-symbolic engines hybrid and sparse this
effect is not that distinct, and therefore, the results for these engines are similar
to the explicit case, see [41]. Though, some cases perform considerably better
with an advantage of up to three orders of magnitude (lower right).

Figure 5 considers the specialized patterns of the reset methods for both,
DTMCs and MDPs. For all engines, the specialized patterns are clearly faster
than the most general pattern reset.ltl-ltl, in larger model instances even up to
3 orders of magnitude. In fact, all specialized methods, e.g., reset.ltl-pattern,
outperform the more general patterns, like reset.ltl-ltl, see [41] for details. There
are a few, though non-representative, exceptions, most notable using the mtbdd
engine. They issue from the wlan protocol and two properties having a certain
(simple) until path property as objective. The specialized patterns reset.pattern-
pattern and reset.pattern-ltl require the computation of minimal probabilities for
the set of states falsifying until objectives, whereas the other patterns don’t. As
a result, in that MDP this specific computation is more time-consuming than
building a product model from a simple automaton.

Engines and Model Sizes. The enhanced explicit engine showed decent per-
formance for model sizes up to a few million states, see, e.g., Sect. 5, Table 2.

360 S. Märcker et al.

Furthermore, it beats the performance of Prism’s symbolic engines in the pro-
tocols brp, crowds, and consensus. The protocols egl and wlan however proved
to be particularly suitable for symbolic treatment. Here, the symbolic engines
achieved runtimes of only a couple of seconds and we were able to scale our
experiments up to egl instances of 32 · 1012 states and wlan instances with 109

states. Table 1 provides an overview of the maximal model sizes that occurred
in our experiments (see [41] for similar statistics on the MTBDD size). It lists
the largest model instances where all queries have successfully been computed
and the minimal, maximal and mean size of all transformed models.

Table 1. Number of states

Model Original # Transformed: reset Transformed: scale

min mean max min mean max

DTMCs brp 113 · 103 5 25 · 103 119 · 103 12 · 103 106 · 103 223 · 103
crowds 189 · 106 6 5 · 106 16 · 106 11 · 106 86 · 106 189 · 106
egl 32 · 1012 6 332 · 103 2 · 106 62 · 106 18 · 1012 32 · 1012

MDPs consensus 17 · 106 1 · 106 6 · 106 20 · 106 n.a. n.a. n.a.

wlan 4 · 106 18 413 · 103 12 · 106 n.a. n.a. n.a.

Bad Convergence of Reset Method. The reset method’s core idea is to
redistribute the probability mass of paths not satisfying the condition ψ over
the paths satisfying it. This can impose problems in the application of approxi-
mation techniques like value iteration. If the model features a rather chain-like
topology, it might take a huge number of iteration steps to eventually reach con-
vergence. This phenomenon occurred in the brp protocol, even in a comparably
small instance with only about a hundred thousand states. For five properties
sharing the same globally condition, the transformation time is only a couple
of seconds but the time required to compute the reachability probability in the
transformed models is several hundred seconds [41]. However, the other models
of our benchmarks are not effected.

5 Comparison Prism vs Storm

In [19], Dehnert et al. report on an experimental evaluation of an early ver-
sion of their model checker Storm that was included in the PROPhESY tool
and our previous prototypical implementation [10] for Prism’s explicit engine.
For two benchmark models—brp and crowds—they were able to demonstrate a
significant performance advantage of the Storm implementation.

In this section, we provide a comparison of our new implementation with the
current, stand-alone release (Version 1.0) of Storm [19]. It supports the com-
putation of conditional probabilities in DTMCs and MDPs but only if both, the
objective and the condition, are reachability properties. For MDPs, only maximal
probabilities are supported. The computation is based on the algorithms of [10],

Computing Conditional Probabilities: Implementation and Evaluation 361

i.e., the scale method for DTMCs and the reset method for MDPs. Support is
limited to Storm’s explicit engine (named “sparse” in Storm).

Engines. We compare the performance of Prism’s and Storm’s explicit engines
and include our measurements for Prism’s symbolic engines as well. Addi-
tionally, we provide a comparison against our former prototypical implementa-
tion [10] (denoted by explicit’14), as well as a port of that prototype to Prism 4.3
and the enhanced infrastructure (explicit*). This will allow to distinguish per-
formance improvements due to the general enhancements and those related to
the enhanced methods for the computation of condition probabilities.

Solvers. Storm provides a multitude of implementations of solvers for sys-
tems of linear equations (SLE), partially relying on highly-efficient external
libraries. We provide a comparison (i) using the default solvers of both Prism
and Storm, as well as (ii) using the same solvers for both model checkers. This
allows to determine the impact of solvers on the performance. For default solvers,
Prism uses the Jacobi method in the symbolic engines and the Gauss-Seidel
method in the explicit engine in combination with value iteration in the case of
MDPs. For DTMCs, Storm defaults to the generalized minimal residual method
(GMRES) and preconditioning with incomplete LU decomposition (ILU). For
MDPs, Storm uses value iteration with the power method. For the comparison
using the same solvers for SLEs and linear programs (LP), we changed the set-
tings for Prism to use value iteration with the power method for MDPs, and for
Storm to use the Gauss-Seidel method for DTMCs.

Table 2. Sum of model-checking times, default solvers

Model Prism Storm

hybrid mtbdd sparse explicit explicit* explicit’14 explicit

DTMCs brp 349 s 18,413 s 334 s 45 s 44 s 3515 s 4 s

crowds 309 s 409 s 322 s 148 s 124 s 1933 s 55 s

egl 242 s 13 s 299 s 242 s 412 s 2117 s 74 s

MDPs consensus 319 s 2518 s 106 s 41 s 68 s 116 s 120 s

wlan 70 s 16 s 46 s 45 s 264 s 241 s 26 s

Results. We present an aggregated comparison, one for the default settings
(Table 2) and one with the same solvers (Table 3). Comprehensive tables can be
found in [41]. Comparing the performance of explicit’14 and explicit*, the signif-
icant impact of the infrastructure improvements is apparent. In our observation
this is mostly due to the computations of the state sets having probability 0
or 1 and the use of sparse data structures for DTMCs. Comparing explicit and
explicit*, we see a considerable performance improvement for some of the models
due the special handling of formula patterns and further enhancements in the
computation of conditional probabilities (see Sect. 3), especially in MDPs. The
new implementation employs additional graph analysis to reduce the size of the
transformed models which does not pay off in the crowds protocol.

362 S. Märcker et al.

Comparing Prism’s and Storm’s explicit engines using the default set-
tings (Table 2), we see that Storm has better performance for the considered
DTMC instances. Comparing this to Storm’s performance when forcing the
same solvers (Table 3), we can see that this advantage is due to the integration
of the highly optimized linear equation solvers in Storm. For the egl protocol,
Storm is still faster in this setting. But we suspect this is mainly due to the size
of the model, which causes PRISM to operate close to the memory limit. This
has a considerable performance impact caused by excessive garbage collection.

For MDPs, we achieve better performance using the explicit engine for the
consensus case study, while Storm achieves better performance in the wlan
protocol. Switching to the same solvers, i.e., value iteration using the power
method, only has an impact on the consensus results for Prism’s explicit engine.

Taking both scenarios into account, we conclude that efficient solution meth-
ods for SLEs and LPs are a dominating factor besides sophisticated methods for
the computation of conditional probabilities. Offering a variety of efficient solvers
the user can choose between, Storm excels in this respect [20]. This is illustrated
by the observation that Storm’s internal value iteration is much slower for cer-
tain protocols, e.g., wlan, than the default, external implementation. However,
the experiments also suggest that for the implementation of model-checking algo-
rithms, choosing Java must not be a disadvantage performance-wise. Further
optimized implementations can be expected to approach the performance of
implementations in the C programming language [15,42]. A comparison of the
build times of Prism and Storm is presented in [41]. Furthermore, experiments
on another computer resulted in surprisingly huge time differences, although the
general trend does not change, see [41].

Table 3. Sum of model-checking times, same solvers

Model Prism Storm

hybrid mtbdd sparse explicit explicit* explicit’14 explicit

DTMCs brp 349 s 18,413 s 334 s 45 s 44 s 3515 s 228 s

crowds 309 s 409 s 322 s 148 s 124 s 1933 s 192 s

egl 242 s 13 s 299 s 242 s 412 s 2117 s 89 s

MDPs consensus 310 s 2684 s 109 s 79 s 128 s 177 s 120 s

wlan 78 s 16 s 47 s 48 s 262 s 229 s 26 s

6 Conclusion

Despite the significance of conditional probabilities and the numerous tools
for computing unconditional probabilities for temporal properties in Markovian
models, tool support for conditional probabilities was very limited. To the best of
our knowledge, our implementation is the first that supports the computation of
conditional probabilities in Markovian models where the objective and the con-
dition are temporal properties specified as LTL formulas. We evaluated different

Computing Conditional Probabilities: Implementation and Evaluation 363

methods (quotient, scale and reset for DTMCs) and explicit and (semi-)symbolic
engines. The experiments indicate a superiority of the scale method over the
reset method, which again performs better than the naive quotient method in
most cases. Further performance improvements are obtained by using specialized
(automata-less) treatments of simple path properties rather than the generic
automata-based reduction to reachability properties. In many cases, the per-
formance of the reset method for maximal conditional probabilities in MDPs
was fairly in the same order as the computation of unconditional probabilities
for conjunctive events. As an overhead compared to the unconditional case is
unavoidable, this can be taken as evidence for the general feasibility of reason-
ing about extremal conditional probabilities for temporal properties in MDPs.

Our implementation allows to compute conditional expected accumulated
costs in Markov chains using the scale method. In future work we plan to
mature and integrate the prototypical implementation of the algorithm [11] for
the computation of maximal expected accumulated costs in MDPs. Other future
directions include the integration of our implementation in the public version of
Prism to ease links to other facilities, such as the interval iteration [12,26] or the
Hanoi framework [6] to provide support for the full class of ω-regular objectives
and conditions.

References

1. Andrés, M.: Quantitative analysis of information leakage in probabilistic and non-
deterministic systems. Ph.D. thesis, UB Nijmegen (2011)

2. Andrés, M.E., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hiding in
probabilistic concurrent systems. Theor. Comput. Sci. 412(28), 3072–3089 (2011)

3. Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and
nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 157–172. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 12

4. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. J. Algo-
rithms 11(3), 441–461 (1990)

5. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continous-time
Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

6. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křet́ınský, J., Müller, D.,
Parker, D., Strejček, J.: The Hanoi omega-automata format. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham
(2015). doi:10.1007/978-3-319-21690-4 31

7. Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilis-
tic model checking for energy-utility analysis. In: Breugel, F., Kashefi, E.,
Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash
Panangaden. LNCS, vol. 8464, pp. 96–123. Springer, Cham (2014). doi:10.1007/
978-3-319-06880-0 5

8. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

9. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

http://dx.doi.org/10.1007/978-3-540-78800-3_12
http://dx.doi.org/10.1007/978-3-540-78800-3_12
http://dx.doi.org/10.1007/978-3-319-21690-4_31
http://dx.doi.org/10.1007/978-3-319-06880-0_5
http://dx.doi.org/10.1007/978-3-319-06880-0_5

364 S. Märcker et al.

10. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional prob-
abilities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 43

11. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Maximizing the conditional
expected reward for reaching the goal. In: Legay, A., Margaria, T. (eds.) TACAS
2017. LNCS, vol. 10206, pp. 269–285. Springer, Heidelberg (2017). doi:10.1007/
978-3-662-54580-5 16

12. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). doi:10.1007/978-3-319-63387-9 8

13. Baier, C., Kwiatkowska, M.Z.: Model checking for a probabilistic branching time
logic with fairness. Distrib. Comput. 11(3), 125–155 (1998)

14. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilis-
tic invariants via Doop’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 43–61. Springer, Cham (2016). doi:10.1007/
978-3-319-41528-4 3

15. Besset, D.H.: Object-Oriented Implementation of Numerical Methods: An Intro-
duction with Java and Smalltalk. Morgan Kaufmann Publishers Inc., Burlington
(2000)

16. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). doi:10.1007/3-540-60692-0 70

17. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilis-
tic programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). doi:10.1007/
978-3-319-41528-4 1

18. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

19. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). doi:10.1007/978-3-319-21690-4 13

20. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). doi:10.1007/978-3-319-63390-9 31

21. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

22. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21455-4 3

23. Gao, Y., Hahn, E.M., Zhan, N., Zhang, L.: CCMC: a conditional CSL model
checker for continuous-time Markov chains. In: Hung, D., Ogawa, M. (eds.)
ATVA 2013. LNCS, vol. 8172, pp. 464–468. Springer, Cham (2013). doi:10.1007/
978-3-319-02444-8 36

24. Gao, Y., Xu, M., Zhan, N., Zhang, L.: Model checking conditional CSL for
continuous-time Markov chains. Inf. Process. Lett. 113(1–2), 44–50 (2013)

25. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). doi:10.1007/3-540-36387-4

http://dx.doi.org/10.1007/978-3-642-54862-8_43
http://dx.doi.org/10.1007/978-3-642-54862-8_43
http://dx.doi.org/10.1007/978-3-662-54580-5_16
http://dx.doi.org/10.1007/978-3-662-54580-5_16
http://dx.doi.org/10.1007/978-3-319-63387-9_8
http://dx.doi.org/10.1007/978-3-319-41528-4_3
http://dx.doi.org/10.1007/978-3-319-41528-4_3
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dx.doi.org/10.1007/978-3-319-41528-4_1
http://dx.doi.org/10.1007/978-3-319-41528-4_1
http://dx.doi.org/10.1007/978-3-319-21690-4_13
http://dx.doi.org/10.1007/978-3-319-63390-9_31
http://dx.doi.org/10.1007/978-3-642-21455-4_3
http://dx.doi.org/10.1007/978-3-642-21455-4_3
http://dx.doi.org/10.1007/978-3-319-02444-8_36
http://dx.doi.org/10.1007/978-3-319-02444-8_36
http://dx.doi.org/10.1007/3-540-36387-4

Computing Conditional Probabilities: Implementation and Evaluation 365

26. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value
iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol.
8762, pp. 125–137. Springer, Cham (2014). doi:10.1007/978-3-319-11439-2 10

27. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-
based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.)
FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). doi:10.1007/
978-3-319-06410-9 22

28. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6, 512–535 (1994)

29. Haverkort, B.R.: Performance of Computer Communication Systems: A Model-
Based Approach. Wiley, Hoboken (1998)

30. Heiner, M., Rohr, C., Schwarick, M.: MARCIE – model checking and reacha-
bility analysis done efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS
2013. LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38697-8 21

31. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link pro-
tocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp.
127–165. Springer, Heidelberg (1994). doi:10.1007/3-540-58085-9 75

32. Jansen, N., Kaminski, B.L., Katoen, J., Olmedo, F., Gretz, F., McIver, A.: Condi-
tioning in probabilistic programming. In: Mathematical Foundations of Program-
ming Semantics (MFPS), ENTCS, vol. 319, pp. 199–216 (2015)

33. Ji, M., Wu, D., Chen, Z.: Verification method of conditional probability based on
automaton. J. Netw. 8(6), 1329–1335 (2013)

34. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

35. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall,
Boca Raton (1995)

36. Kwiatkowska, M., Norman, G., Segala, R.: Automated verification of a randomized
distributed consensus protocol using cadence SMV and PRISM? In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 194–206. Springer,
Heidelberg (2001). doi:10.1007/3-540-44585-4 17

37. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of the
IEEE 802.11 wireless local area network protocol. In: Hermanns, H., Segala, R.
(eds.) PAPM-PROBMIV 2002. LNCS, vol. 2399, pp. 169–187. Springer, Heidelberg
(2002). doi:10.1007/3-540-45605-8 11

38. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transf. (STTT) 6(2),
128–142 (2004)

39. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 47

40. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
9th International Conference on Quantitative Evaluation of SysTems (QEST), pp.
203–204. IEEE Computer Society (2012)

41. Märcker, S., Baier, C., Klein, J., Klüppelholz, S.: Computing conditional proba-
bilities: implementation and evaluation (extended version) (2017). http://wwwtcs.
inf.tu-dresden.de/ALGI/PUB/SEFM17/

42. Nikishkov, G.P.: Programming Finite Elements in JavaTM, 1st edn. Springer, Lon-
don (2010)

http://dx.doi.org/10.1007/978-3-319-11439-2_10
http://dx.doi.org/10.1007/978-3-319-06410-9_22
http://dx.doi.org/10.1007/978-3-319-06410-9_22
http://dx.doi.org/10.1007/978-3-642-38697-8_21
http://dx.doi.org/10.1007/978-3-642-38697-8_21
http://dx.doi.org/10.1007/3-540-58085-9_75
http://dx.doi.org/10.1007/3-540-44585-4_17
http://dx.doi.org/10.1007/3-540-45605-8_11
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/SEFM17/
http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/SEFM17/

366 S. Märcker et al.

43. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. In: Abdal-
lah, A.E., Ryan, P., Schneider, S. (eds.) FASec 2002. LNCS, vol. 2629, pp. 81–96.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-40981-6 9

44. Puterman, M.L., Processes, M.D.: Discrete Stochastic Dynamic Programming.
Wiley, Hoboken (1994)

45. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. (TISSEC) 1(1), 66–92 (1998)

46. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: 26th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 327–338. IEEE Computer Society (1985)

http://dx.doi.org/10.1007/978-3-540-40981-6_9

Validating the Meta-Theory
of Programming Languages

(Short Paper)

Guglielmo Fachini1(B) and Alberto Momigliano2

1 INRIA Prosecco, Paris, France
guglielmo.fachini@inria.fr

2 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
momigliano@di.unimi.it

Abstract. We report on work in progress in building an environment
for the validation of the meta-theory of programming languages arti-
facts, for example the correctness of compiler translations; the basic idea
is to couple property-based testing with binders-aware functional pro-
gramming as the meta-language for specification and testing. Treating
binding signatures and related notions, such as new names generation,
α-equivalence and capture-avoiding substitution correctly and effectively
is crucial in the verification and validation of programming language
(meta)theory. We use Haskell as our meta-language, since it offers vari-
ous libraries for both random and exhaustive generation of tests, as well
as for binders. We validate our approach on benchmarks of mutations
presented in the literature and some examples of code “in the wild”. In
the former case, not only did we very quickly (re)discover all the planted
bugs, but we achieved that with very little configuration effort with com-
parison to the competition. In the second case we located several simple
bugs that had survived for years in publicly available (academic) code.
We believe that our approach adds to the increasing evidence of the use-
fulness of property-based testing for semantic engineering of program-
ming languages, in alternative or prior to full verification.

1 Introduction

Recent years have seen major advances in what we could call the meta-
correctness of programming, that is the (formal) verification of the trustwor-
thiness of the tools with which we write programs: from static analyzers to
compilers, including parsers, pretty-printers all the way down to run time sys-
tems, see projects such as CakeML (http://cakeml.org) and VST (http://vst.
cs.princeton.edu).

More specifically, we are (and in pretty good company too [8,11], to cite only
two projects such as Spoofax and PLT-Redex) interested in providing support

This is a short paper accepted in the new ideas and work-in-progress section of
SEFM 2017.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 367–374, 2017.
DOI: 10.1007/978-3-319-66197-1 23

http://cakeml.org
http://vst.cs.princeton.edu
http://vst.cs.princeton.edu

368 G. Fachini and A. Momigliano

to the “working semanticist” while designing and prototyping programming lan-
guages and related artifacts. To date, very few programming languages (PL) are
based on rigorous models, Standard ML being the shining example. On the other
corner, infamous is the case of PHP:

“There was never any intent to write a programming language (. . .) I have
absolutely no idea how to write a programming language, I just kept
adding the next logical step on the way”. (Rasmus Lerdorf, see http://itc.
conversationsnetwork.org/shows/detail58.html)

In the middle we find lengthy prose documents such as the Java Language
Specification, whose internal consistency is but a dream, as a very recent paper
shows [1]. The properties that PL artifacts should satisfy span from type sound-
ness as in the above case, to compiler correctness (e.g., projects as CompCert), to
more intensional guarantees related to security (SECOMP). Further, although
the average programmer is not likely to write her own programming language,
she may try her hands on a Domain Specific Language, and this design may
incorporate flaws that will trickle down and produce hard-to-find bugs in the
final product. In this sense “every programmer is a language designer at some
point” (Pierce, from the introduction to Software Foundations, available at www.
cis.upenn.edu/∼bcpierce/sf).

This is all good, but the formal verification of PL metatheory is still a very
labor-intensive task, even (or more so) with a proof-assistant, so much that
there are perhaps only a few dozen people in the world able and willing to carry
out such an endeavor. A lighter alternative is validation, in the form of property-
based testing (PBT) as pioneered by QuickCheck [6]: here, we try to refute, rather
than prove, the properties of the calculus underlying our software artifacts, via
random or exhaustive generation of test cases. For many classes of (typically)
shallow bugs, a tool that automatically finds counterexamples can be surpris-
ingly effective and can complement formal proof attempts by warning when the
property we wish to prove has easily-found counterexamples. The beauty of this
form of meta-theory model checking is that the properties that should hold are
already given by means of the theorems that the calculus under study is sup-
posed to satisfy. Of course, those need to be fine tuned for testing to be effective,
but we are free of the thorny issue of specification generation.

A particular dimension in validation in this domain is the handling of bind-
ing signatures, by which we mean the encoding of PL constructs sensitive to
naming and scoping: declarations, closures, α-equivalence of method/function
arguments, capture-avoiding substitutions, generation of fresh names, nonces,
etc. These are ubiquitous in the specification of high-level programming lan-
guages, surprisingly easy to get wrong, often callously ignored or so awkwardly
supported that they may constitute a unnecessary stumbling block for validation
and verification.

This paper describes work in progress in building an environment where one
can validate PL meta-theoretical properties with a combination of automated
testing tools and an appropriate treatment of binders. We use Haskell as our
meta-language, since it offers not only a very expressive type system, but various

http://itc.conversationsnetwork.org/shows/detail58.html
http://itc.conversationsnetwork.org/shows/detail58.html
www.cis.upenn.edu/~bcpierce/sf
www.cis.upenn.edu/~bcpierce/sf

Validating the Meta-Theory of Programming Languages 369

libraries for both random and exhaustive generation of tests [6,7,9] as well as
for binders [12]. The idea is to allow the user to specify her semantic model(s)
with a human-friendly notion of binders and validate them with a cascade of
testing tools with the least amount of configuration effort. This is contrast with
the competition where either the testing strategy is fixed [3,4] or binding issues
are totally ignored (or both) [8]. We validate our approach on benchmarks of
mutations presented in the literature and some examples of code “in the wild”. In
the former case, not only did we very quickly (re)discover all the planted bugs,
but we achieved that with very little configuration effort. In the second, case
we located several simple bugs that had survived for years in publicly available
(academic) code. As a side effect, we have gained some new insights about which
testing tool is better suited to the various domains and facets of PL meta-theory.

2 Binders-Aware Property-Based Testing

We offer a PBT environment integrating several Haskell libraries, composed, as
expected, with a thin layer of monadic code. There are several (non-orthogonal)
dimensions around which we can arrange test data generation in a PBT setting:

– random vs. exhaustive test generation;
– automatic vs. hand-written configuration of generators;
– For exhaustive enumeration, whether we define upper bounds for generation

in terms of size, that is, number of constructors in a term or depth — depth
of the tree representation (AST) of a constructor.

We assume that the reader is familiar with QuickCheck [6] (random enumera-
tion, hand-written generators, minimization of counterexamples (shrinking) left
to the user) and we briefly describe the others libraries we have integrated. Small-
Check [9] is essentially an exhaustive enumeration version of QuickCheck, where
the upper bound is defined as term depth. LazySmallCheck [9] is a variant of
SmallCheck that leverages Haskell’s laziness to get around the limits of Small-
Check’s brute enumeration of values: the idea is to use partially-defined expres-
sions (in logical terms, non-ground ones) to stand for the set of all their instanti-
ations; e.g. lazy evaluation will realize that a list such as (1 : 0 : undefined)
is not, say, ordered without generating any concrete list (1 : 0 : xs) for any
further instantiation of xs. Feat [7] is built on the concept of functional enumer-
ations, that is, efficiently computable bijections from natural numbers to values,
which are partitioned with respect to their size. This fact combined with spe-
cific implementation techniques (i.e. memoisation, memory sharing) allows the
enumeration process to be performed for a specific size or, more interestingly,
from an arbitrary index, without incurring in the cost of enumerating the pre-
ceding smaller values. All the above tools supports the automatic derivation of
generators out of the grammar rules of the language under study; however, it is
also possible to fine tune them manually, to a different degree in each tool, e.g.,
adjusting the weights of certain constructors.

370 G. Fachini and A. Momigliano

The next ingredient is how to best represent binders, a long standing issue in
the context of meta-theory verification. Using a naive named syntax is out of the
question, for its inadequacy and prone-ness to mistakes; one choice is the locally
nameless representation [2]: this couples the use of raw names for free variables
with de Bruijn indexes for bound variables; the latter are basically pointers
linking a bound variable to its binding site, thus collapsing all α-equivalent
terms into a unique canonical representation. E.g., Java 8 anonymous functions
(int x) -> x and (int y) -> y would both be mapped to the same AST
L(int, 1), for L a putative constructor for lambdas.

While this technique is handy and widespread, it is very hard to read for
humans and furthermore it needs to be re-implemented for every binding oper-
ator in every case study one wants to validate. Unbound [12] is a Haskell library
that provides a DSL for the nameless representation, while offering to the user a
named surface syntax. The library ensures that we cannot encode illegal values
(i.e. a bound variable without a surrounding binder) and at the same time it
implements useful operations such as capture-avoiding substitutions, fresh name
generations etc. Since Unbound sits on top of several other Haskell libraries, its
coexistence with PBT tools is not immediate.

3 Experiments

We validate our approach with two sets of experiments, the first showing that we
easily handle some of the benchmarks of mutations presented in the literature [8],
the second hunting for bugs “in the wild”. We give some details of the first case,
while we refer to the first author’s thesis for much more.

Functional programming with lists.This comes from the PLT-Redex bench-
mark suite http://docs.racket-lang.org/redex/benchmark.html and concerns the
type soundness of a prototypical λ-calculus with lists and related operations,
whose BNF includes the following:

Types σ ::= int | ilist | σ → σ′

Terms M ::= x | λx:σ. M | M1 M2 | c
Constants c ::= n | nil | cons | hd | tl | plus
Values V ::= c | λx:σ. M | cons V | cons V1 V2 | plus V

Given rules for typing (Γ � M : τ) and small step reduction (M � M ′), and
a judgment error identifying expressions that may produce run-time errors such
as taking the head of an empty list, the properties we wish to validate are:

M : τ ∧ M � M ′ =⇒ M ′ : τ (Preservation)

M : τ ∧ ¬(M is a value) ∧ ¬(M error) =⇒ ∃M ′.M � M ′ (Progress)

To give a feel of what using Unbound entails we report the encoding of Terms
in which Constant and Type are the data-types for the eponymous grammar
rules, whereas Bind comes from Unbound’s DSL, signaling that the constructor

http://docs.racket-lang.org/redex/benchmark.html

Validating the Meta-Theory of Programming Languages 371

Lam has a binding occurrence of a variable Name, which can be substituted for an
Exp; this provides for free α-equivalence of terms with binders and automatically
derives functions for substitutions, free names etc.

data Exp = Const Constant

| Var (Name Exp)

| Lam Type (Bind (Name Exp) Exp)

| App Exp Exp

For example, we encode the identity function on integers as
Lam TyInt (bind x) (Var x), where x = s2n"x", using a built-in that con-
verts strings to Unbound names; the above term is actually syntactic sugar for
the nameless one we saw in Sect. 2.

The benchmark introduces nine mutations to be spotted as a violation of
either or both properties. E.g., the first mutation introduces a bug in the typing
rule for application, matching the range of the function type to the type of the
argument (on the right, the correct rule):

Γ � M : σ → τ Γ � N : τ
Γ � M N : τ

T − APP − B1 Γ � M : σ → τ Γ � N : σ
Γ � M N : τ

T − APP − OK

We show in Table 1 some experimental results, taken on a machine with an
Intel Core 2 Duo CPU 2.4GHz and 4GB of RAM. The measurements are reported
in milliseconds and were collected by averaging the execution times of ten runs.
The cells marked with’✘’ indicate that no counterexamples have been produced
within the time limit, which we set to 300 s. Cl reports Redex’s classification
of the hardness of bugs (shallow, medium, unnatural); hw and au stand for the
hand-written and automatically derived generators, whereas F, SC, LSC and QC
are respectively Feat, SmallCheck, LazySmallCheck and QuickCheck.

Table 1. Performances on the functional programming with lists benchmark

Bug Cl F (au) F (hw) SC (au) SC (hw) LSC (hw) QC (hw)

B#1 (prog.) S 10.2 1.5 1.0 2.8 0.1 18.0

B#1 (pres.) S 35.4 61.1 ✘ ✘ 18007.7 341.4

B#2 (prog.) M 618.2 65.6 3960.7 13269.2 0.8 4010.8

B#3 (prog.) S 9.7 1.6 1.0 2.8 0.1 16.4

B#3 (pres.) S 10.8 9.4 7.2 68.7 2.7 7.3

B#4 (prog.) S ✘ ✘ ✘ ✘ 10.1 ✘

B#5 (pres.) S 37134.8 4191.7 ✘ ✘ 2.9 ✘

B#6 (prog.) M 36453.6 4158.8 ✘ ✘ 2.5 ✘

B#7 (prog.) S 124.1 445.7 4.7 3792.1 2.4 510.4

B#8 (pres.) U 2.8 9.5 ✘ 759.7 5.6 100.4

B#9 (pres.) S 35.5 58.6 ✘ ✘ 17297.1 243.2

372 G. Fachini and A. Momigliano

QuickCheck missed three bugs and, as usual, it required a hand-written gen-
erator whose development can be tricky, especially if one also wants shrinking.
SmallCheck was the worst of the five and it found its bugs only when invoked with
the exact specific depth of the bug, which of course is an unrealistic assumption.
Using partially defined AST seems to really help in quickly discarding a whole
classes of non-well typed terms; indeed, LazySmallCheck was the only tool that
was able to find all the bugs. Feat’s performances are encouraging, considering it
does not use laziness as LazySmallCheck does, which, as admitted in [9], may not
always be a successful strategy. Feat was able to find all but one counterexamples
in less than five seconds without incurring in the exponential explosion brought
by enumeration by depth. The hand-written generators performed better than
the automated ones, but only in two cases this would have been discernible by
the user. By construction Feat exhibits size-minimal counter-examples, while
(Lazy)SmallCheck produces depth-minimal ones. In this benchmark, however,
they essentially reported very similar terms.

Code “in the wild”. While it is reassuring to be able to find mutations listed
in the literature, the proof of the pudding is exercising code whose validity is
not known, save for having stood some unit testing. This also eliminates any
bias in the definition of hand-written generators, which can be skewed by the
foreknowledge of the existence of a bug. Of course, we are limited to testing
Haskell implementation of PL artifacts available on the net and we selected
some whose soundness properties were immediate. We adopted a feedback-loop
strategy by which we searched for bugs, corrected the spec and then restarted.
Once we reached what seemed like a fixed point, we collected coverage statis-
tics about the main functions and declared “victory”. We set the system to
use Feat first and it paid off immediately — the other strategies did not con-
tribute any further bug. Among several experiments, here we mention taking on
a Haskell porting (http://code.google.com/archive/p/tapl-haskell) of the code
coming with Pierce’s textbook “Types and Programming Languages”, in partic-
ular fullsimple, a model of the core of Standard ML. We found nine fairly shallow
bugs falsifying the progress property, which we do not have the space here to dis-
cuss. We impute them to lack of attention to the interaction of different language
features, such as type ascription, variant types, etc. However trivial, they had
survived some pretty extensive, at least for academic standards, unit testing.

4 Conclusions and Future Work

Although at an early stage of development, we believe our approach adds to
the increasing evidence of the usefulness of property-based testing for semantic
engineering of programming languages, in alternative or prior to full verification,
and should be added to the work flow of PL design and verification: spec’n’check
in this context is dirt simple, quick and effective in locating shallow but irritating
bugs; it also doubles as a compelling way to do regression testing.

The success of our approach can be attributed to two factors: first, the inte-
gration with a tool such as Unbound, which handles binders almost as easily as

http://code.google.com/archive/p/tapl-haskell

Validating the Meta-Theory of Programming Languages 373

we had named syntax; this without incurring in any significant run-time penal-
ties or, more importantly in this setting, false positives stemming from incorrect
implementation of basic notions such as substitutions etc. Secondly, the possi-
bility of leveraging different cascading testing strategies: in each benchmark, at
least one strategy was successful in catching the required bug. Contrary to com-
mon expectations, we found random testing to be in this domain labour intensive
without providing the ability to go “deep” in any meaningful way. Exhaustive
enumeration, by contrast, revealed to be an excellent choice: easy to use, pre-
dictable and reasonably effective in bug finding. Recent improvements [5] in the
generate-and-test approach for properties with hard to satisfy conditions will
make it scale even further.

We envision our testing environment to be the target of even more declara-
tive semantic engineering tools such as Ott [10], which offers the possibility of
specifying PL theory as high-level informal texts (grammars and proof rules in
ASCII) and then converting it to executable specs in a variety of proof assistants
— one strong point in common with us being the use of the locally name-
less style for binders. The framework would benefit from an extension with a
source language for specifying and automatically deriving custom generators. We
also plan to tackle bigger case studies, such as validating existing programming
languages directly implemented in Haskell: Idris (http://www.idris-lang.org/)
comes to mind, a functional programming language with dependent types for
whose implementation features several conjectured soundness properties ready
to be validated.

References

1. Amin, N., Tate, R.: Java and Scala’s type systems are unsound: the existential
crisis of null pointers. In: OOPSLA 2016, pp. 838–848 (2016)

2. Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49(3),
363–408 (2012)

3. Cheney, J., Momigliano, A.: αCheck: a mechanized metatheory model checker.
Theory Pract. Log. Program. 17(3), 311–352 (2017)

4. Cheney, J., Momigliano, A., Pessina, M.: Advances in property-based testing for
αProlog. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP 2016. LNCS, vol. 9762,
pp. 37–56. Springer, Cham (2016). doi:10.1007/978-3-319-41135-4 3

5. Claessen, K., Dureg̊ard, J., Pa�lka, M.H.: Generating constrained random data with
uniform distribution. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol.
8475, pp. 18–34. Springer, Cham (2014). doi:10.1007/978-3-319-07151-0 2

6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP 2000, pp. 268–279. ACM (2000)

7. Dureg̊ard, J., Jansson, P., Wang, M.: Feat: functional enumeration of algebraic
types. In: Voigtländer, J. (ed.) Haskell Workshop, pp. 61–72. ACM (2012)

8. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press, Cambridge (2009)

9. Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy SmallCheck: auto-
matic exhaustive testing for small values. In: Haskell Workshop, pp. 37–48 (2008)

http://www.idris-lang.org/
http://dx.doi.org/10.1007/978-3-319-41135-4_3
http://dx.doi.org/10.1007/978-3-319-07151-0_2

374 G. Fachini and A. Momigliano

10. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.:
Ott: effective tool support for the working semanticist. J. Funct. Program. 20(1),
71–122 (2010)

11. Visser, E., et al.: A language designer’s workbench: a one-stop-shop for implemen-
tation and verification of language designs. In: Onward! 2014, SPLASH 2014, pp.
95–111 (2014)

12. Weirich, S., Yorgey, B.A., Sheard, T.: Binders unbound. In: Chakravarty, M.M.T.,
Hu, Z., Danvy, O. (eds.) ICFP 2011, pp. 333–345. ACM (2011)

Towards Inverse Uncertainty Quantification
in Software Development

(Short Paper)

Matteo Camilli1(B), Angelo Gargantini2, Patrizia Scandurra2,
and Carlo Bellettini1

1 Department of Computer Science, Università degli Studi di Milano, Milan, Italy
{camilli,bellettini}@di.unimi.it

2 Department of Management, Information and Production Engineering (DIGIP),
Università degli Studi di Bergamo, Bergamo, Italy

{angelo.gargantini,patrizia.scandurra}@unibg.it

Abstract. With the purpose of delivering more robust systems, this
paper revisits the problem of Inverse Uncertainty Quantification that is
related to the discrepancy between the measured data at runtime (while
the system executes) and the formal specification (i.e., a mathematical
model) of the system under consideration, and the value calibration of
unknown parameters in the model. We foster an approach to quantify and
mitigate system uncertainty during the development cycle by combining
Bayesian reasoning and online Model-based testing.

1 Introduction

The problem of uncertainty quantification is recently gaining attention in the
software engineering community since it has a significant impact on the ability
of a software system to satisfy its objectives [1,2]. Preliminary works towards this
direction aim at establishing a common vocabulary and taxonomy of uncertainty
from the perspective of a software system (see works [2,3] to name a few).

Sources of uncertainty can occur either at requirements, design, or execu-
tion phase, and propagate throughout all phases [3]. At each of these phases,
uncertainty can be introduced into the system by the system itself (i.e., sys-
tem uncertainty) or its execution environment (i.e., environmental uncertainty).
Examples of sources of uncertainty include: parameter uncertainty (due to uncer-
tain input values given to the mathematical model), structural uncertainty
(due to approximations in the mathematical model), algorithmic uncertainty
(coming from numerical approximations per implementation of the computer
model), experimental uncertainty (due to the inherent variability of experimental
measurements), etc. From a different perspective uncertainty can be classified
taking into account the nature [2]. The nature concerns the uncertainty due to

This is a short paper accepted in the new ideas and work-in-progress section of
SEFM 2017.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 375–381, 2017.
DOI: 10.1007/978-3-319-66197-1 24

376 M. Camilli et al.

the lack of knowledge (i.e., epistemic) or because of inherent randomness of the
observed phenomenon (i.e., aleatory). Both kinds of uncertainties often come up
in practice, during the development of real world applications.

Uncertainty quantification, in this context, has two major problems: For-
ward Uncertainty Propagation (FUQ) and Inverse Uncertainty Quantification
(IUQ) [4]. The first problem focuses on studying the quantification of uncer-
tainties in system output(s) propagated from uncertain inputs. This is useful
in reliability engineering and to assess the complete probability distribution of
the outputs in order to calculate and optimize the utility function. The latter
one is essentially the inverse problem. Given some experimental measurements
of a system and some simulation outputs from its mathematical model, inverse
uncertainty quantification estimates the discrepancy between the measured data
at runtime and the mathematical model (i.e., bias correction) and estimates the
values of unknown parameters in the model if there are any (i.e., parameter
calibration). FUQ is easier and more studied [5], while IUQ is recently draw-
ing increasing attention in the engineering design community, since uncertainty
quantification of a model and its inference from the true system response(s) are
of great interest in designing robust systems.

In this paper, we revisit the IUQ problem in software development and pro-
pose an approach for quantifying system uncertainty [4] before the deployment
of a release build. We depart from the unrealistic assumption that the outputs
as well as specific properties are known for a given system before accounting for
evidence during the actual system’s execution. In fact, mathematical models are
often imperfect and measured data from a running system is subject to noise.
Therefore, it is of extreme importance to quantify and reduce the uncertainty
to determine how likely certain outcomes are if some aspects of the system are
not exactly known at design-time. To this purpose, we propose an exploration
methodology to quantify and mitigate uncertainty during system development
by combining Bayesian reasoning [6] and online Model-based testing (MBT) tech-
niques [7]. The intuition behind our envisioned approach is to leverage the capa-
bility of online MBT to explore the state space in a controlled way, while the
given system is up and running. At the same time, we gather information about
the uncertain aspects of the system to perform inference activity.

As specification formalisms, we adopt Markov models, such as Dis-
crete/Continuous Time Markov Chains (D/CTMCs) [8], that are a widely
accepted stochastic formalisms able to support modeling of randomly chang-
ing systems (or probabilistic systems), as well as quantitative verification of
requirements using probabilistic temporal logic (e.g., PCTL, or CSL) model
checking [9].

This paper is organized as follows. In Sect. 2, we introduce our approach
to IUQ based on Bayesian reasoning applied through online MBT. We discuss
related work in Sect. 3, and conclude and discuss challenges ahead in Sect. 4.

Towards Inverse Uncertainty Quantification in Software Development 377

2 Overview of the Approach

Our approach to IUQ aims at estimating the discrepancy between the measured
data ye at runtime and the model response ym(Θ) that depends on different
uncertain parameters Θ of the Markov model m. Starting from the approxi-
mation ym(Θ) � ye, we perform a sequence of observations in orderto infer a
probability distribution of Θ∗ describing the best knowledge of the true para-
meter values, such that ym(Θ∗) = ye.

The Bayesian methodology [6] provides a viable technique to incrementally
update our prior uncertain knowledge (hypothesis) on a given phenomenon by
observing its own behavior. The general formula is: p(Θ|ye) ∝ p(ye|Θ) · p(Θ),
where p(Θ) represents the set of prior distributions for parameter set Θ and
uses probability to express uncertainty about Θ before the data (i.e., the cur-
rent evidence) is observed, p(ye|Θ) is the likelihood function that expresses the
compatibility of the evidence with the given hypothesis, and p(Θ|ye) is the joint
posterior distribution of the parameters after taking both the prior and the evi-
dence into account. This formula basically links the degree of belief in the prior
knowledge before and after accounting for evidence.

The inherent uncertainty of the system is explicitly modelled by means of
Prior distributions of the parameters of interest of the Markov model. Obser-
vations to enable Bayesian reasoning are made at runtime during online MBT,
where test strategies are created dynamically as testing goes on, taking advantage
of the knowledge gained by exploring the model and by observing the evidence.
A high-level overview of our methodology is shown in Fig. 1. It relies on the
iteration of two different phases, which are described below.

software
product

Markov
model
(S, E)

Requirements
(R)

Model checker

MBT module

Running
program

Prior:
p()

Posterior:

p(|ye)

(ii) online MBT and IUQ

Fig. 1. IUQ methodology.

[observable action][quiescence]

Control Inference

Updating
rules

Uncertainty-
based sampling

History-based
sampling

[termination condition]

[else]

Posterior
summarization

Fig. 2. Online MBT activity diagram.

Design-time modeling and verification – This phase concerns the develop-
ment of the mathematical model of the system under development. The model
includes a formal representation of both the specification (S) and the environ-
ment (E). This separation is explicitly represented by disjointly partitioning the
state transitions into controllable and observable ones. This choice is motivated
by our problem domain of MBT. Thus, we follow the notation introduced in [7]

378 M. Camilli et al.

to distinguish between full controllable behavior from the tester (i.e., the envi-
ronment, such as user requests) and only observable behavior from the running
software system (i.e., the specification, such as inter-components interaction).
Markov models allow both the controllable and the observable behavior of sys-
tem under development to be described in probabilistic terms from different per-
spectives, such as the architecture of the application, the response time of the
components, or even the energy consumption (using for instance costs/rewards
model extensions [10]).

Design-time model checking serves as a means to verify the desired require-
ments against the model of the system that contains our assumptions.

Online MBT and IUQ – This phase concerns the validation of the system and
the inverse uncertainty quantification during testing activity. Figure 2 shows the
activity diagram of the main operations performed by our online MBT algorithm.
Besides the observation until termination paradigm [7], usually applied in MBT
and runtime verification, our approach relies on two additional steps: incremental
inference and test scenarios control based on the design-time uncertainty.

– Inference: Given the natural conjugate priors for the uncertain parameters
Θ of the Markov model, inference following the Bayesian approach reduces
to the application of incremental updating rules [6,8] for the posterior dis-
tributions based on the evidence that can be efficiently computed while the
system is observed (i.e., foreach occurring observable action) at runtime. As
an example, consider a video streaming web application, accessed from clients
through HTTP requests via mobile application. Different components (e.g.,
data manager, cache, payment system, etc.) interact to satisfy users requests
under different environmental conditions, such as workload (e.g., request
rate) or user profiles (e.g., unregistered/registered users). Typical design-
time uncertain parameters may include failure rates, and launch/response
time of different video streaming servers that can be expressed for instance
by means of independent Dirichlet and Gamma prior distributions describing
the hypothesis on the rates and the probability matrix of a CTMC model,
respectively [6,8].

– Control: This step provides control over test scenarios by selecting actions
during the test run based on the model uncertainty. In our application
example, a wait condition (for user requests) can be controlled for instance
by generating incoming requests at different rates, thus stressing the system
in different workload conditions. In particular, if the running system is in a
state of quiescence [11], the MBT algorithm chooses a legal controllable action
such that the probability of this choice in the current state is governed by
two weighted sampling methods.

The uncertainty-based sampling method is related to the likelihood of explor-
ing uncertain regions of the model, choosing different controllable actions from
the current state. It is grounded on the computation of the maximum likeli-
hood trajectories [12] connecting the current state to states containing uncertain
parameters of the Markov model.

Towards Inverse Uncertainty Quantification in Software Development 379

The history-based sampling method takes advantage of the knowledge
gained by exploring the model, thus allows the strategy to be configured based
on the test run history. In particular decrementing weights [7] can be adopted to
call particular controllable actions a specific number of times in the test runs, in
favor of unexplored regions.

Once termination has been reached, each uncertain parameter of interest can
be described by summarizing the posterior distribution (i.e., the summarization
activity) through the posterior mode and the highest posterior density (HPD)
intervals [8]. Thus, the uncertainty can be numerically quantified by evaluating
the discrepancy between the initial design-time parameter values and the mode
values after accounting for evidence.

Estimated parameter values represent the basis of new verification phases
and the prior knowledge for future evolutions of the software system.

3 Related Work

In the community of self-adaptive systems, there have been several efforts focus-
ing on studying the FUQ problem and on dealing with changing requirements
and unpredictable environment (see [2,3,13,14], to name a few), some by employ-
ing Markov models. Our approach revisits the IUQ problem and focus mainly
on the system uncertainty [4] in software development.

An interesting effort has been shown in [15]. It focuses primarily on design-
time verification aspects to assure quality-of-service (QoS) properties of systems
that exhibit stochastic behavior. The presented technique and toolchain aim at
establishing confidence intervals for the QoS properties of a software system
modeled as a Markov chain with uncertain transition probabilities.

Concerning testing techniques, a promising Active Learning query strategy
to black-box test generation has been proposed in [16]. It aims at overcoming the
problem of intractability in MBT and generating test cases which the inferred
model is “least certain” about. The usage of machine learning algorithms and
Bayesian reasoning represents an attractive approach to achieve reliable and effi-
cient software testing and program analysis [17]. Despite the inherent potential
of these methods, their employment in software testing and program analysis,
to tackle the IUQ problem, is still in its early stages.

4 Conclusion

We proposed an approach to quantify and mitigate system uncertainty during
system development life cycle, by combining Bayesian reasoning [6,18] and online
Model-based testing (MBT) [7]. The key idea is to explicitly model the inherent
uncertainty and provide a means to stress and observe the software product in
order to quantify the design-time uncertainty before the deployment of a release
build. In order to validate our current prototypal implementation, we are going
to conduct several experiments with case studies of different size and complexity.
Our experience in this context has been very positive. A great advantage of the

380 M. Camilli et al.

underlying probabilistic representation and our incremental update scheme of
the posterior knowledge is the robustness to unreliable/spurious observations
(difficult to achieve with non-probabilistic techniques).

There are also challenges to be faced. A very critical issue, for example, is that
stochastic techniques and Bayesian reasoning are computationally expensive,
thus often unsuitable for use at run-time. However, in our approach, expensive
probabilistic model checking is used only at design-time, while very efficient
incremental inference steps are carried out at run-time during testing activity.

References

1. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research, pp. 125–128
(2010)

2. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: Lemos,
R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive
Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-35813-5 9

3. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxonomy of uncertainty for dynam-
ically adaptive systems. In: Proceedings of the 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 99–
108 (2012)

4. Arendt, P.D., Apley, D.W., Chen, W.: Quantification of model uncertainty: cali-
bration, model discrepancy, and identifiability. J. Mech. Des. 134(10) (2012)

5. Lee, S.H., Chen, W.: A comparative study of uncertainty propagation methods for
black-box-type problems. Struct. Multi. Optim. 37(3), 239 (2008)

6. Berger, J.: Statistical Decision Theory and Bayesian Analysis, Springer Series in
Statistics. Springer, New York (1985)

7. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A.: Model-Based
Testing of Reactive Systems: Advanced Lectures (Lecture Notes in Computer Sci-
ence). Springer, New York (2005)

8. Insua, D., Ruggeri, F., Wiper, M.: Bayesian Analysis of Stochastic Process Models,
Wiley Series in Probability and Statistics. Wiley, Hoboken (2012)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

10. Kwiatkowska, M., Norman, G., Pacheco, A.: Model checking expected time and
expected reward formulae with random time bounds. Comput. Mathe. Appl. 51(2),
305–316 (2006)

11. Tretmans, J., Belinfante, A.: Automatic testing with formal methods. In: 7th Euro-
pean International Conference on Software Testing, Analysis & Review, pp. 8–12
(1999)

12. Perkins, T.J.: Maximum likelihood trajectories for continuous-time markov chains.
In: Proceedings of the 22nd International Conference on Neural Information
Processing Systems, pp. 1437–1445 (2009)

13. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: Proceedings
of the 5th ACM/SPEC International Conference on Performance Engineering, pp.
3–14 (2014)

http://dx.doi.org/10.1007/978-3-642-35813-5_9
http://dx.doi.org/10.1007/978-3-642-35813-5_9
http://dx.doi.org/10.1007/978-3-642-22110-1_47

Towards Inverse Uncertainty Quantification in Software Development 381

14. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In: 2009 IEEE 31st International Conference on Software
Engineering, pp. 111–121, May 2009

15. Calinescu, R., Ghezzi, C., Johnson, K., Pezzè, M., Rafiq, Y., Tamburrelli, G.: For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Trans. Reliab. 65(1), 107–125 (2016)

16. Walkinshaw, N., Fraser, G.: Uncertainty-driven black-box test data generation. In:
IEEE International Conference on Software Testing, Verification and Validation
(2017)

17. Namin, A.S., Sridharan, M.: Bayesian reasoning for software testing. In: Proceed-
ings of the FSE/SDP Workshop on Future of Software Engineering Research, pp.
349–354 (2010)

18. Bernardo, J., Smith, A.: Bayesian Theory, Wiley Series in Probability and Statis-
tics. Wiley, Hoboken (2006)

Interpolation-Based Learning as a Mean
to Speed-Up Bounded Model Checking

(Short Paper)

Gianpiero Cabodi, Paolo Camurati, Marco Palena(B), Paolo Pasini,
and Danilo Vendraminetto

Dipartimento di Automatica Ed Informatica, Politecnico di Torino, Turin, Italy
marco.palena@polito.it

Abstract. In this paper (This is a short paper accepted in the new ideas
and work-in-progress section of SEFM 2017.) we introduce a technique to
improve the efficiency of SAT calls in Bounded Model Checking (BMC)
problems. The proposed technique is based on exploiting interpolation-
based invariants as redundant constraints for BMC.

Previous research addressed the issue using over-approximated state
sets generated by BDD-based traversals. While a BDD engine could
be considered as an external tool, interpolants are directly related to
BMC problems, as they come from SAT-generated refutation proofs, so
their role as a SAT-based learning is potentially higher. Our work aims
at understanding whether and how interpolants could speed up BMC
checks, as they represent constraints on forward and backward reachable
states at given unrolling boundaries.

Being this work preliminary, we do not address a tight integration
between interpolant generation and exploitation. We thus clearly dis-
tinguish an interpolant generation (learning) phase and a subsequent
interpolant exploitation phase in a BMC run. We experimentally eval-
uate costs, benefits, as well as invariant selection options, on a set of
publicly available model checking problems.

1 Introduction

Bounded Model Checking (BMC) [2] is a state-of-the-art formal verification tech-
nology with widespread industry-level application in various domains. Though
the approach is incomplete, as it is just able to produce bounded proofs, it is
considered a successful debugging technique, due to its simple and scalable SAT-
based approach. Complete SAT-based verification approaches based on BMC
have been studied in order to address the completeness issue: inductive tech-
niques and Craig interpolation based model checking [5] are among the most
notable and successful ones. Recently, IC3 has emerged as an approach unre-
lated to BMC, as it does not require transition relation unfoldings.

This paper focuses on Craig interpolation as an operator able to provide a
form of redundant learning, derived from a BMC-like problem, to be exploited
c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 382–387, 2017.
DOI: 10.1007/978-3-319-66197-1 25

Interpolation-Based Learning as a Mean to Speed-Up Bounded Model 383

in order to speed-up subsequent BMC queries. So our target is to accelerate
SAT-based BMC with the help of ITP-based learning.

From a Model Checking perspective, Craig interpolation is an operator able
to compute over-approximated images. The approach can be viewed as an itera-
tive refinement of proof-based abstractions, to narrow down a proof to relevant
facts. Over-approximations of the reachable states are computed from refutation
proofs of unsatisfied BMC formulas.

The paper is organized as follows. Section 2 introduces some preliminary
concepts on notation, SAT techniques for verification, and reachability analysis.
Section 3 outlines our approach, in terms of strategies and top-level algorithm.
Section 4 presents our experimental results. Section 5 concludes the paper.

2 Background

2.1 Model, Notation and Property Definition

We address systems modelled by labelled state transition structures and repre-
sented implicitly by Boolean formulas. From our standpoint, a system M is a
triplet M = (S, S0, T), where S is a finite set of states, S0 ⊆ S is the set of initial
states, and T ⊆ S × S is a total transition relation. The system state space is
encoded through an indexed set of Boolean variables X = {x1, . . . , xn}, such
that a state s ∈ S corresponds to a valuation of the variables in X and a set of
states can be implicitly represented through a Boolean formula over X.

Given a system M , a state path of length k is a sequence of states π =
(s0, . . . , sk) such that T (si, si+1) is true for all 0 ≤ i < k. A state set R is said
to be reachable if there exists a path of any length connecting a state in S0 to
another state in R. An over-approximation R+ of a set of states R is any state
set including R : R ⊆ R+. Given a system M , we assume that p is an invariant
property to be verified over M .

2.2 Bounded Model Checking

Given a sequential system M and an invariant property p, SAT-based BMC [2]
is an iterative process to check the validity of p up to a given bound. To perform
this task, the system transition relation T is unrolled k times

T k(X0..k) =
∧k−1

i=0 T (Xi,Xi+1) (1)

to implicitly represent all state paths of length k. After that, BMC tools may
implement variants of SAT checks, such as:

bmck(X0..k) = S0(X0) ∧ T k(X0..k) ∧ ¬p(Xk)

looking for counterexamples of length k1, starting from set of the initial states S0.
1 For sake of simplicity we refer here to the so called exact bound BMC problem, that

look for counteraxamples of an exact length. Other forms of BMC problems exists,
checking for lengths ≤ k.

384 G. Cabodi et al.

SAT solvers generally operate on propositional formulas bmck specified in
Conjunctive Normal Form (CNF).

In [3] the authors propose a method to improve standard BMC using BDDs
representing over-approximations of reachable states. The overestimated reach-
able state sets are used to restrict the search space of a SAT-based BMC. Such
an information can thus be seen as an explicit constraint for the SAT solver.

2.3 Craig Interpolants

A Craig interpolant I for two Boolean formulas A, B is a formula such that:
(1) A ⇒ I,(2) I ∧ B ≡ ⊥, and (3) I is expressed over the shared alphabet of

A and B
We use Itp to denote the interpolation operation. An interpolant I =

Itp(A,B) can be derived, as an AND-OR circuit, from the refutation proof
of A ∧ B, as described in [5].

In the context of this work, we take into account interpolation sequences [6].
Given an inconsistent BMC problem bmckeb(X

0..k), an interpolation sequence for
bmckeb is a set of interpolants I = {I0, I1, . . . , Ik} such that: (1) I0 ≡ S0, (2) for
each 0 < j < k it holds that Ij ∧ T ⇒ Ij+1.

Such a sequence, for the purposes of this work, is obtained as by-product of
IGR [4] runs.

3 Combining SAT-based BMC and Interpolation

In this section we briefly overview our methodology that, in its present form, can
be viewed s a way to partition a verification task between an ITP and a SAT
engine, and as an optimization of a SAT-based BMC, by means of redundant
information learned in the form of interpolants.

We perform a preliminary effort with interpolation in order to determine an
ITP sequence to be used alongside BMC. Ideally, one would like to be able to
leverage interpolants generated from a concurrent model checking engine running
alongside BMC.

(a) S TR1 TR2
. . . TRn T

(b) S FR+
1 FR+

2
. . . FR+

n T

(c) TBR+
1

. . .BR+
n−1BR+

nS

Fig. 1. (a) Standard combinational unrolling for SAT-based BMC; (b) approximate
forward traversal from S to T; (c) approximate backward traversal from T to S.

Interpolation-Based Learning as a Mean to Speed-Up Bounded Model 385

Figure 1 shows the main flow of our methodology. Figure 1(a) shows a graph-
ical representation of standard SAT-based BMC. As introduced in Sect. 2, the
goal is to find a path of length k between the start state S and the target state
T on the CNF representation of the problem.

Our basic idea is to help the SAT solver with information coming from an
ITP-based model checking engine, in the shape of an interpolation sequence.
Those ITPs contain redundant information representing constraints on the input
space of each time frame in the combinational unrolling. More specifically, a
constraint for the i−th time frame is already (and implicitly) present in the
original formulation of the BMC problem, but it is represented in terms of all
variables in all time frames of the combinational unrolling. A state set provides
constraints as a function of local state variables of time frame i, thus the effect
is an expected enhanced ability to early detect invalid variable assignments at a
given time frame, in order to better guide the search for a satisfying solution.

Let us consided a BMC problem f bound k, bmckeb(X
0..k), and an interpola-

tion sequence of length h < k.
Considering an interpolant at bound i, it is possible to provide at the same

time an overapproximation for both the forward (from S to T) and backward
(from T to S) reachable state set. On the one hand, using notation FRj for states
reachable at time frame j, it is known that FRj → Ij holds (an interpolant is an
over-approximation of reachable states). On the other hand, one could see the
complement of an interpolant as an over-approximation of backward reachable
states. Let BRi represent states backward reachable from the target ¬p in i
steps. Given an interpolation sequence of bound k, then ¬Ij ← BRj holds, for
all j < h − i.

So for each time frame boundary one could use interpolants as extra con-
straints for both forward and backward reachability.

For a generic j time frame, we could consider a redundant forward constraint
FCj = Ij and a backward constraint BCj = ¬Ih−j . Forward and backward
constraints can be considered as a form of (redundant) learning inherited from
ITP problems. The expected benefit stems from the fact that ITPS are expressed
in terms of local state variables at given time frames.

Using forward and backward constraints at all time frames would result in
highly redundant formulas, where the expected overhead would overweight pos-
sible benefits for the SAT solver.

We thus need heuristics, and a thorough experimental work, in order to find
good cost-benefit trade-offs. In this preliminary work we empirically (by limited
experimentation) selected two forward constraints at timeframes h/2 and 2h/3,
and one backward constraint ¬Ih/2 applied at all even time frames j > k − h/2.

4 Experimental Results

Our prototype software package has been implemented on top of our verification
tool PdTRAV. Experiments were run on an Intel Core i7-3770, with 8 CPUs
running at 3.40 GHz, 16 GBytes of main memory DDR III 1333, and hosting a

386 G. Cabodi et al.

Ubuntu 12.04 LTS Linux distribution. All the experiment were run taking into
account a time limit and a memory limit of 1800 seconds and 8 GB respectively.

The benchmarks set considered was derived from a subset of past HWMCC
suites [1], focusing primarily on instances belonging to the deep bound track (as
considered hard to solve instances). The set includes hardware as well as soft-
ware verification problems. We focused on problems characterized by increasingly
expeisive BMC bounds. We thus discarded (as unmeaningful for the proposed
optimization) problems characterized by a single hard-to-solve bound following
a sequence of very easy-to-check bounds. We also omitted problems showing a
SAT cost linearly increasing with bounds.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

C
P

U
 T

im
e

[s
]

Instances

BMC
BMC_ITP

(a) Cumulative distribution of execution
times for the base technique (BMC) and
the proposed variation (BMC ITP) sam-
pled at deepest common bound.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

B
ou

nd

Instances

BMC
BMC_ITP

ITP

(b) Cumulative distribution of reached
bound for the base technique (BMC), the
proposed variation (BMC ITP) and depth
of provided interpolants (ITP).

Fig. 2. (a) Cumulative distribution of execution times for the base technique (BMC)
and the proposed variation (BMC ITP) sampled at deepest common bound. (b) cumu-
lative distribution of reached bound for the base technique (BMC), the proposed vari-
ation (BMC ITP) and depth of provided interpolants (ITP)

Figures 2a and b provide a summary of the experimental results, as a disper-
sion of cumulative execution times and reached bounds, respectively. Figure 2a
shows that the overall execution times of the proposed technique is significantly
lower w.r.t. to standard BMC. Figure 2b illustrates the gap, in terms of depth
reached, between the two techniques, as well as the depth for the provided inter-
polants. Though the gap between the two is rather limited, this is mainly related
to the high computational cost for each of the deep bounds in the selected (hard-
to-solve) instances. We deem a difference of few bounds is relevant in such a
scenario.

Due to the preliminary steps of our work, we also show in Fig. 3, as a motivat-
ing example, a more detailed representation of the run associated with 6s376r,
a benchmark where the proposed technique gets a relevant improvement also
in terms of BMC bound. The time vs. bound plot clearly shows the advantage
attained by the extra learning starting around bound 120.

Interpolation-Based Learning as a Mean to Speed-Up Bounded Model 387

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

C
P

U
 T

im
e

[s
]

Bound

BMC
BMC_ITP

Fig. 3. Bound-per-bound run comparison between the base technique (BMC) and the
proposed variation (BMC ITP) for 6s376r.

5 Conclusions

In this paper we proposed to leverage ITP-based learning to constrain the over-
all search space of a SAT solver engine during BMC runs. We develop specific
strategies to appropriately mix interpolation and SAT efforts. We showed exper-
imentally the potential of using ITP-based constraining to improve the perfor-
mance of standard bounded model checking approaches. Though the work is
clearly preliminary amd requiring more effort on heuristics, automation, tool
engineering, some promising data already come form the initial experimentation
done.

References

1. Biere, A., Jussila, T.: The Model Checking Competition Web Page. http://fmv.jku.
at/hwmcc

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999). doi:10.1007/3-540-49059-0 14

3. Cabodi, G., Nocco, S., Quer, S.: Improving SAT-based bounded model checking
by means of BDD-based approximate traversals. J. Universal Comput. Sci. (JUCS)
(2004). Special issue on SAT for Formal Verification and Testing

4. Cabodi, G., Palena, M., Pasini, P.: Interpolation with guided refinement: revisiting
incrementality in sat-based unbounded model checking, pp. 43–50. FMCAD 2014
(2014)

5. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45069-6 1

6. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: 2009
Formal Methods in Computer-Aided Design, pp. 1–8, November 2009

http://fmv.jku.at/hwmcc
http://fmv.jku.at/hwmcc
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-540-45069-6_1

Towards Automated Deployment
of Self-adaptive Applications on Hybrid Clouds

(Short Paper)

Lom Messan Hillah1,2(B), Rodrigo Assad3, Antonia Bertolino4,
Marcio Delamaro5, Fabio De Rosa6, Vinicius Garcia7, Francesca Lonetti4,

Ariele-Paolo Maesano6, Libero Maesano6, Eda Marchetti4, Breno Miranda7,
Auri Vincenzi8, and Juliano Iyoda7

1 Univ. Paris Nanterre, 92000 Nanterre, France
2 Sorbonne Universités, UPMC, CNRS, LIP6 UMR7606, 75005 Paris, France

lom-messan.hillah@lip6.fr
3 Ustore, Recife, Brazil

assad@usto.re
4 ISTI-CNR, 56124 Pisa, Italy

{antonia.bertolino,francesca.lonetti,eda.marchetti}@isti.cnr.it
5 Universidade de São Paulo, São Carlos, Brazil

delamaro@icmc.usp.br
6 Simple Engineering, 75011 Paris, France

{fabio.de-rosa,ariele.maesano,libero.maesano}@simple-eng.com
7 Universidade Federal de Pernambuco, Recife, Brazil

{vcg,bafm,jmi}@cin.ufpe.br
8 Universidade Federal de São Carlos, São Carlos, Brazil

auri@dc.ufscar.br

Abstract. Cloud computing promises high dynamism, flexibility, and
elasticity of applications at lower infrastructure costs. However, resource
management, portability, and interoperability remain a challenge for
cloud application users, since the current major cloud application
providers have not converged to a standard interface, and the deploy-
ment supporting tools are highly heterogeneous. Besides, by their very
nature, cloud applications bring serious traceability, security and privacy
issues. This position paper describes a research thread on an extensible
Domain Specific Language (DSL), a platform for the automated deploy-
ment, and a generic architecture of an ops application manager for self-
adaptive distributed applications on hybrid cloud infrastructures. The
idea is to overcome the cited limitations by empowering the cloud appli-
cations with self-configuration, self-healing, and self-protection capabili-
ties. Such autonomous governance can be achieved by letting cloud users
define their policies concerning security, data protection, dependability
and functional compliance behavior using the proposed DSL. Real world
trials in different application domains are discussed.

This is a short paper accepted in the new ideas and work-in-progress section of
SEFM 2017.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 388–393, 2017.
DOI: 10.1007/978-3-319-66197-1 26

Towards Automated Deployment of Self-adaptive Applications 389

1 Introduction

Cloud computing is used to provision the physical resources (servers, storage,
network) of the digital ecosystem, allowing a substantial optimization of the
operating costs. However, cloud computing is more than a cost-optimizing tech-
nology. It bears to users significant features - virtualization, job scheduling, and
programmability - allowing the sustainable implementation of robust scalability,
availability, and serviceability requirements on commodity hardware.

However, the most notable features of cloud computing, such as virtualiza-
tion, come at the price of increased security and data protection risks. Moving
to a virtualized environment does not free from the security risks already faced
in the physical environment, but rather introduces new ones, related to virtual
machine and network management, resource exhaustion, hypervisor vulnerabil-
ities, multi-tenancy handling, and cloud access control.

DevOps is an emerging paradigm of integration of the development process
within the production stage. To adopt DevOps effectively, cloud application
developers have yet to find solutions to tough problems: (i) how to design,
develop, deploy, and operate efficiently applications that fulfill, on one side, strin-
gent scalability, availability and serviceability needs, and, on the other side, strict
security and data protection obligations; (ii) how to cope with the heterogeneity
and lack of interoperability of cloud infrastructures and the consequent lack of
portability of cloud applications; (iii) how to combine the advantages of agile,
flexible, and continuous integration, testing, delivery, and deployment, and of
mission-critical quality assurance, test, and verification.

The main solution of the aforementioned problems is the automation of
DevOps jobs, in particular test, configuration, deployment, and ops management.
This position paper introduces an ongoing research on automating installation,
configuration, startup, and operation management of self-adaptive distributed
applications on hybrid cloud infrastructures. In particular, it presents an envis-
aged solution based on three correlated research topics: (i) a declarative, cloud
agnostic, and extensible Domain Specific Language (DSL) for structural and
behavioral modeling and policy definition for automated deployment and self-
management; (ii) a generic and instantiated architecture of an autonomic ops
application manager enabling self-configuration, self-healing, and self-protection;
(iii) a DSL workbench as a service, equipped with editors, wizards, consoles, and
dashboards for deployment and monitoring of self-adaptive cloud applications.

2 Related Work and Background

Self-aware management is becoming commonplace to address the scale, growth,
and reliability of cloud applications. The authors of [IZM+17] propose a concep-
tual framework for analyzing the state-of-the-art and comparing practical char-
acteristics, benefits, and drawbacks of self-awareness approaches used for cloud
applications in different domains. A big challenge of self-aware and adaptive dis-
tributed systems on cloud is achieving self-protection as well as guaranteeing

390 L.M. Hillah et al.

self-configuration, self-healing, and self-optimization. Aceto et al. [ABdDP13]
examine current platforms and services for cloud monitoring pointing out their
issues and challenges whereas the authors of [KA12] investigate testing models,
recent research works, and commercial tools for cloud testing. However, the main
open issues emerging from the analysis of the literature related to the manage-
ment of elasticity, dependability, and security of cloud applications are mainly
about the limitations of flexibility and portability in a multi-cloud environment.

The OASIS TOSCA [OAS16] standard covers the cloud-portable automation
of installation, configuration, and startup of conventional cloud applications.
TOSCA is a declarative language that let model the distributed application
topology independently from the particular target cloud infrastructure. It uses
the following concepts: (i) Nodes - nodes represent components of an application
or service and their properties; example nodes are computer, network, storage
(i.e. infrastructure-oriented), OS, VM, DB, Web Server (i.e. platform-oriented),
functional libraries, or modules (i.e. applicative); (ii) Relationships - they rep-
resent the logical relations between nodes (e.g. hosted on, connects to), and
describe the valid source and target nodes they link together; (iii) Artifacts -
they describe installable and executable objects required to instantiate and man-
age a service; (iv) Service Templates - they group the nodes and relationships
that make up a service’s topology. In summary, TOSCA DSL allows describing a
distributed cloud application at the infrastructure level in a portable way. Cur-
rent TOSCA implementations target the main cloud provider infrastructures.

3 Outline of the Solution

A DSL for self-adaptive cloud applications. We plan to overcome the lim-
itations sketched in the section above by extending the TOSCA standard and
implementations. The planned extensions of the TOSCA standard are about: (i)
language traits for the installation, configuration, and setup of security and data
protection provisions; (ii) language traits for structural and behavioral model-
ing of distributed applications, beyond the infrastructure level, at the applica-
tion/service level; (iii) a policy description language that enables the definition
of self-configuration, self-healing, and self-protection policies to be fulfilled at
runtime. Security and data protection provisions to be automatically installed,
configured and setup with the DSL deal with standard authentication, confiden-
tiality, and integrity. Besides the DSL language traits to efficiently and conve-
niently express these security requirements, the implementation shall take into
account security matters that are particular to cloud deployment. These concerns
are about multi-sites communication, different hypervisors (code which manages
the virtual machines), different hypervisor provided services that could have var-
ious security issues or expose security loopholes, different CPU/memory/storage.
The TOSCA standard already provides a rich and flexible language for struc-
tural modeling (topology) at the infrastructure level. We plan to enrich the lan-
guage with traits for structural modeling at the applicative level, by describing
a distributed application as a graph of logical components connected by service

Towards Automated Deployment of Self-adaptive Applications 391

dependency wires. At deployment time, this structure shall be installed, config-
ured and setup at the applicative level too. This structural model is referenced by
the self-configuration, self-healing and self-protection policies. Behavioral mod-
eling shall leverage an existing standardized notation, such as the State Chart
XML (SCXML) [W3C14]. SCXML provides a powerful, general-purpose and
declarative modeling language to describe the behavior of timed, event-driven,
state-based systems. Therefore, in our context, state machines shall describe the
external interactions between service components, explicitly showing the states
of the conversation of each component with its wired interlocutors. Behavioral
modeling will enable runtime checks and adaptation thanks to monitoring. The
runtime policy language extension shall enable: (i) non-intrusive logging of events
at the infrastructure and the applicative levels; (ii) non-intrusive monitoring
(analysis of the logging stream) with slightly delayed evaluation of infrastruc-
ture events and distributed application behavior (asynchronous passive testing);
(iii) non-intrusive active testing of the deployed application in a concurrent stag-
ing environment; (iv) intrusive active testing in the production environment to
check application robustness and fault tolerance; (v) runtime installation, con-
figuration and setup of components without service interruption, including new
version deployment and version backtracking; (vi) automatic elasticity (scalabil-
ity up and down); (vii) server failover (self-recovery); (viii) masking of transient
network failures; (ix) circuit breaking at the application level; (x) generalized
timeout management. An autonomic ops application manager shall implement
and enforce these policies at run time.

The autonomic ops application manager. The classical autonomic architec-
ture combines the managed application and an autonomic manager that over-
sees it. The abstract (platform independent) architecture of our ops manager
includes (i) a supervisor, and (ii) a collection of concurrent feedback loops. Each
feedback loop monitors and analyses a particular aspect of the managed applica-
tion and its cloud environment and, if needed, plans and executes an adaptation
process, driven by DSL policies, which brings the managed system to a new state.
The abstract (platform independent) model of the feedback loop is the original
MAPE-K generic architecture [IW15]. The supervisor controls the concurrent
feedback loops and handles the interaction with the user, through the monitoring
facility of the DSL workbench. There are no interferences between the managed
application and the Ops manager, except for those performed by the adapta-
tion processes. Significant concerns for the supervisor are the stability, accuracy,
short settling-time, robustness, termination (no deadlock), consistency, scala-
bility, and security of the adaptation processes. Important research questions
are (i) the coordination of autonomous ops manager within cross-organizational
distributed applications, and (ii) the DSL policy change at run time.

The DSL workbench. The DSL workbench (WB) is a Platform as a Service
deployed on the cloud. It shall be accessible by the user via (i) the Web-based
Graphical User Interface, and (ii) the WB API, a REST interface. The work-
bench is composed of three main layers: GUI, Processing, and Storage. The GUI
Edit wizard allows: (i) easy graphical drafting of the DSL artifacts (models,

392 L.M. Hillah et al.

policies), (ii) reverse engineering of existing legacy artifacts into the DSL ones,
and (iii) straightforward building of the DSL archives (sets of models and policies
for an application to be deployed) and self-adaptive application releases (AR).
The GUI Deploy wizard lets initiate and supervise the deployment of a AR on
the target cloud infrastructure. When deployed, the application ops manager
interacts with the user through the GUI Monitoring wizard. The Processing
layer is composed of three main components: the DSL Compiler, the Applica-
tion Deployer, and the Application Monitor. The compiler builds the AR. The
deployer installs, configures, and startups the application with the AR on the
target (multi-)cloud infrastructure. The monitor implements the interaction with
the deployed Ops Manager. The Storage layer contains: (i) the Legacy Artifact
Base, that stores the existing legacy artifacts such as Juju Charms, Kubernetes,
Chef cookbooks; (ii) the DSL Artifact Base that stores the DSL artifacts; (iii)
the Code Base that stores the codes of the Managed Application and of the Ops
Manager. The general architecture is sketched in Fig. 1.

Limitations of the approach. The main limitations of the proposed approach
relate to: (i) the fact that the proposed DSL is based on TOSCA and could collide
or overlap with other emerging standards; (ii) the inability or difficulty to inte-
grate the proposed solution within all the available cloud provider infrastructures

Fig. 1. General architecture

Towards Automated Deployment of Self-adaptive Applications 393

(i.e. Microsoft Azure, Google Cloud, etc.); (iii) the lack of optimization methods
for self-adaptive applications on cloud, except for the automatic scaling up and
down - the current project focuses on security, dependability, and fault-tolerance,
not on self-optimization.

4 Real-World Trials

We plan to try our solution with real-world applications and systems, in partic-
ular in the logistics and high-tech industries. In the logistics domain, decision
making is distributed. All stakeholders make decisions locally and autonomously,
so the most important challenge is to achieve collaborative decision-making
in practice. The proposed solution can be adopted in the logistic domain for
building a cloud-based logistics information platform, as a general exchange
platform, where cloud services are composed to collect, classify, store, analyze,
evaluate, publish (release), manage and control relevant information on inter-
organizational logistics operations, processes, and management.

The proposed solution shall be applied to simplyTestify [sim], which is a
geo-distributed, multi-instance and multi-tenant PaaS offering self-provisioning
and pay-as-you-go test automation services. Even if simplyTestify core modules
have been designed and implemented for cloud portability, the implementation of
strong elasticity, dependability, security, and performance requirements is IaaS-
dependent (the current version of simplyTestify runs on the Amazon Web Ser-
vices public cloud). The DSL, the autonomic ops application manager, and the
workbench shall allow the automatic installation, configuration, and startup of
the PaaS and the policy-driven implementation of the mentioned requirements
in a hybrid cloud including private and other public clouds, such as Microsoft
Azure, Google Cloud, IBM Cloud, etc.

References

[ABdDP13] Aceto, G., Botta, A., de Donato, E., Pescap, A.: Cloud monitoring: a
survey. Comput. Netw. 57(9), 2093–2115 (2013)

[IW15] De La Iglesia, D.G., Weyns, D.: MAPE-K formal templates to rigorously
design behaviors for self-adaptive systems. ACM Trans. Auton. Adapt.
Syst. 10(3), 15:1–15:31 (2015)

[IZM+17] Iosup, A., Zhu, X., Merchant, A., Kalyvianaki, E., Maggio, M.,
Spinner, S., Abdelzaher, T., Mengshoel, O., Bouchenak, S.: Self-awareness
of cloud applications. In: Kounev, S., Kephart, J.O., Milenkoski, A., Zhu,
X. (eds.) Self-Aware Computing Systems, pp. 575–610. Springer, Cham
(2017). doi:10.1007/978-3-319-47474-8 20

[KA12] Katherine, A.V., Alagarsamy, K.: Software testing in cloud platform: a
survey. Int. J. Comput. Appl. 46(6), 21–25 (2012)

[OAS16] OASIS. TOSCA Simple Profile in YAML Version 1.0. OASIS Committee
Specification 01, June 2016

[sim] simplyTestify. http://simplytestify.com/pages/simplyTestify
[W3C14] W3C. State Chart XML (SCXML): State Machine Notation for Control

Abstraction, May 2014. http://www.w3.org/TR/scxml/

http://dx.doi.org/10.1007/978-3-319-47474-8_20
http://simplytestify.com/pages/simplyTestify
http://www.w3.org/TR/scxml/

A Diagnosis Framework for Critical Systems
Verification (Short Paper)

Vincent Leildé1(B), Vincent Ribaud2, Ciprian Teodorov1,
and Philippe Dhaussy1

1 Lab-STICC, Team MOCS, ENSTA-Bretagne, rue Fran çois Verny, Brest, France
{vincent.leilde,ciprian.teodorov,philippe.dhaussy}@ensta-bretagne.fr

2 Lab-STICC, Team MOCS, Université de Bretagne Occidentale,
Avenue le Gorgeu, Brest, France
Vincent.Ribaud@univ-brest.fr

Abstract. For critical systems design, the verification tasks play a cru-
cial role. If abnormalities are detected, a diagnostic process must be
started to find and understand the root causes before corrective actions
are applied. Detection and diagnosis are notions that overlap in com-
mon speech. Detection basically means to identify something as unusual,
diagnosis means to investigate its root cause. The meaning of diagnosis
is also fuzzy, because diagnosis is either an activity - an investigation -
or an output result - the nature or the type of a problem. This paper
proposes an organizational framework for structuring diagnoses around
three principles: that propositional data (including detection) are the
inputs of the diagnostic system; that activities are made of methods and
techniques; and that associations specialize that relationships between
the two preceding categories.

Keywords: Diagnosis · Verification · Critical systems · Framework

1 Introduction

Critical systems are concerned by dependability, i.e. the ability of an entity to
perform as and when required [3], that requires the means of improving the
quality of systems design. This should be realized in three cyclical phases: ver-
ification, diagnosis and correction. Verification aims to demonstrate whether a
system meets specification properties. This may be achieved using various tech-
niques such as static analysis, simulation or model checking. Model checking is
an automated technique that, given a finite-state model of a system and a formal
property, systematically checks whether this property holds for that model [4].
If a property is violated, a counter-example is produced as a trace from the ini-
tial state to the state in which the error was detected. This triggers a diagnosis
process (generally carried out through detection, localization and identification

This is a short paper accepted in the new ideas and work-in-progress section of
SEFM 2017.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 394–400, 2017.
DOI: 10.1007/978-3-319-66197-1 27

A Diagnosis Framework for Critical Systems Verification 395

tasks) that aims to outline the violation root causes. Consequently, the system
is corrected and the design cycle repeated.

There are many frameworks and approaches for performing a diagnosis
[2,5,6,11,13], all of which face the following two issues. First, poor management
and control [19] of the verification process produces a profusion of heteroge-
neous interrelated models that makes it more difficult to understand errors, for
instance, localizing the relevant parts in a detailed source-level trace to identify
why a verification run failed [10]. Second, diagnosis is also loosely formalized. As
a result, models produced during the design and verification process are not well
adapted to diagnosis tasks. Therewith, diagnosis is weakly integrated with other
activities and interoperability between tools and processes is not easily achieved.

For the above reasons, understanding and formalizing the diagnosis is
intended to foster the definition of diagnosis tools and methodologies, and reduce
the set of diagnoses. If diagnosis is applicable in different fields (medicine, plant
and process supervision), frameworks differ, and cannot be fully applied to trace-
based diagnosis. We propose an organizational framework for diagnosis systems,
based on three concepts: activity, propositional object and association.

2 Background

If model checking is often dedicated to faults detection, some frameworks also
employ it for faults localization. For instance, slicing-based approaches [21] use
dependency analysis to retrieve the set of elements which contains the fault.
State space reduction [13] aims at reducing the state space size by exploiting the
concurrent transitions commutativity. Ball et al. [5] introduced an approach to
compare the counter-examples with successful traces and thus isolate faulty state
transitions. In [6], the authors propose a Symbolic Model Checking framework
for safety analysis diagnosis. These approaches focus on trace processing, and the
identification task, i.e. identifying the specific nature of faults, is not considered.
Consequently, a semantic gap between design models and traces still holds.

Some approaches allow for a complete diagnostic. For instance in [11], the
authors define a framework that combines an abductive model-based diagnosis
approach with a Labelled Transition System. This kind of method is also experi-
enced by [2], who associated logic learning with trace-based diagnosis and error
correction using positive and negative traces. These approaches are restricted
to one diagnosis technique, model-based, that imposes the presence of either a
fault or a well-functioning model, which is not always available.

Venkatasubramanian [20] has broadly classified fault diagnosis methods
into quantitative model-based methods, qualitative model-based methods, and
process history-based methods. This classification provides a large spectrum
of methods and techniques, but focuses on industrial processes, and put aside
important techniques for trace-based diagnosis like interaction-based techniques.

To the best of our knowledge, there are no frameworks for characterizing diag-
nosis systems, unrestricted to any diagnosis techniques, activities or application
domains. Therefore, we focus on understanding diagnosis in order to identify a
core set of concepts that can be applied for any diagnoses systems.

396 V. Leildé et al.

3 Conceptual Framework

We propose a framework for characterizing diagnosis systems, not restricted to
a diagnosis technique or method. We start from a general definition of diagnosis
given by Merriam Webster [1]: “diagnosis is an investigation or analysis of the
cause or nature of a condition, situation, or problem”. This framework is based
on three concepts: - Activity, a set of mechanisms or tasks used to perform the
diagnosis; - Propositional object, tangible or immaterial, produced or consumed
by activities; - Association between propositional objects and activities.

3.1 Activities

The foremost part of the diagnosis definition refers to an activity, whether an
investigation or an analysis. An activity is a set of cohesive tasks. Activities and
tasks use mechanisms as means to achieve their outcomes.

Diagnosis tasks. According to the literature, diagnosis systems support three
main tasks, fault detection, isolation, and causal analysis [20].

Fault detection establishes that a system run raises so-called abnormal event.
In the particular case of verification by model checking, detection is done by
model checking itself.

When a diagnosis is required, the ensuing step consists in isolating the subset
of elements, part of models, that needs to be corrected [9]. Isolation is performed
through various techniques, such as slicing-based approaches [21], state space
reduction techniques [13] or counter-example comparisons [5].

Once suspicious elements are localized, the causal analysis task, associates
causes to the observed abnormalities. This is generally a reasoning process, either
deductive, inductive or abductive. Deduction is concerned by deducting knowl-
edge from already learned knowledge, induction identifies general rules from
observations, and abductive reasoning discovers causes from facts by elaborat-
ing hypothesis. Each type of reasoning fits with a different situation, abduction
produces ideas and concepts to be explained, then induction contributes to the
construction of the abductive hypothesis by giving it consistency, finally deduc-
tion formulates a predictive explanation from this construction [8].

Mechanisms. Activities and tasks are supported by a set of mechanisms, includ-
ing tools and methods, that can be organized in model-based or process history-
based category. We complete the list with an interaction-based category, relevant
for trace-based diagnosis.

Model-based mechanisms assume that a model of the system is available,
representing its correct (consistency-based) [18] or abnormal (abductive-based)
[22] behavior. In consistency-based, the reasoning consists in rejecting a set of
assumptions using the correct behaviour, to restore consistency with (abnormal)
observations [7]. In the opposite, abductive-based reasoning works with causes
and effects models, for instance using Inductive Logic Programming to provide
automated support for correcting the errors identified by model checking [2].

A Diagnosis Framework for Critical Systems Verification 397

Process-history based mechanisms relies on the availability of large amount of
historical process data. Mechanisms may use knowledge extraction techniques,
like data mining or statistical analysis. Liu [15] uses statistical models to remove
false positive counterexamples. Probabilities can also be applied, using decision
trees or Bayesian networks. In machine learning approach, neural networks and
case-based reasoning try to reproduce the human way of reasoning. When a
strong expertise is available, one can simply use expert systems gathering prob-
lems set, rules and an inference engine.

Interactions-based mechanisms allow for observing, controlling, understand-
ing and altering the system execution. By storing the execution traces, omni-
scient debuggers enable back-in-time navigation features, postmortem query
processing, trace-analysis and reduction facilities, and execution replay [17].
Besides, a large number of visualization tools exists [12], including dia-
gram structures ranging from waveforms, finite state machines and business
representations.

3.2 Propositional Objects

Activities handle different kinds of information [1], whether “situation or prob-
lem”. As information may be tangible or immaterial, we define any information
items as propositional objects that are, or represent sets of propositions about
real or imaginary things.

Set of circumstances. Situation or problem are related to propositional
objects. A situation is a way in which something is positioned with respect to
its surroundings [1]. Regarding model checking, propositional objects comprises
design models, properties, exploration graphs or model checker configurations.
A problem is a difficulty that has to be resolved or dealt with [1]. Thus situation
and problem are generalized in a concept called set of circumstances.

Observations. Problems are revealed by symptoms, a special case of observa-
tions, which are effects or visible consequences of the passage of the system into
an abnormal state. Regarding model checking it includes counterexamples. As
stated by [18], “real world diagnostic settings involve observations, and without
observations, have no way determining whether something is wrong and hence
whether a diagnosis is called for”.

3.3 Associations

“Cause or nature” are both diagnoses, i.e. statements or conclusions from diag-
nosis analysis [1]. A diagnosis specializes an association between activities and
propositional objects. Following a systemic triangulation, we organize diagnoses
in three viewpoints, causality, concerned with functional aspects, nature, con-
cerned with structural aspects, and evolution, concerned with historical aspects.

Causality is defined by [16] as a sequence of linked events. Consider for
instance a car with flat tires that suddenly slips on a water poll, resulting to an
accident. The accident is a succession of related events. Closed to our concerns,

398 V. Leildé et al.

a Fault, an Error and a Failure are considered for [3] as causal events, a fault
may produce an error, which may lead to a failure.

Nature consists in determining the type, the characteristics or the essence
of something, “what the object is”. By taking up the example of a car, the
owner inspects each tires and finds that some are more damaged than others,
and classifies one tire in the category “too flat”. The nature association itself
can be refined in more specific relations, like generalization or specialization.

Evolution represents the historical, that is linked to the evolutionary nature
of the system, “what the system was or is becoming”. For instance, a man is
driving when an impact happen closed to the car wheels. He remembers he found
one flat tire during his last car inspection, and supposes the tire is scratched.

4 Framework by Example

Fig. 1. Full adder

We present different kind of diagnosis systems using
our framework, each pursuing a different objective
(see Table 1). We refer to the classical example of
a one bit adder, see in Fig. 1 an illustration from
wikimedia commons Full-adder.svg. A full adder is
composed of two AND gates, two XOR gates, and
one OR gate.

An analysis of the nature of a situation pursues a pedagogical objec-
tive. If we are not aware of the purpose of a digital circuit, we might build
the truth table which sets out the output values for each combination of input
values. The truth table is a diagnosis that helps to understand how the circuit
works (assuming the circuit behavior is normal). The analysis associates out-
puts (observations) to inputs (facts) and tries to figure out the nature of the
circuit. Regarding verification, simulation activity helps to understand the way
the system behaves, or ensure it behaves correctly.

An investigation of the cause of a problem pursues a curative objective.
Consider we expect from the circuit a full adder behavior, and thus one expected
property is P1: “for the set of entries A=1, B=1 and C=1, the result is S=1
and Cout=1”. Assume that the XOR gate X1 was inadvertently replaced by
an OR gate. Then the output of the circuit conflicts with the property P1, i.e.
“S=0 and Cout= 1”, and we must investigate the cause of the failure. Regarding

Table 1. Diagnosis systems examples

A Diagnosis Framework for Critical Systems Verification 399

model checking, if a violation of functional specifications is discovered by a model
checker. One has to correct the design or model accordingly.

An analysis of the evolution of a situation pursues a prognosis objec-
tive. Given a set of properties (probably non-exhaustive), running the model
checker over the set without any errors yields an indication that the circuit, as
far we know, behaves correctly. The underlying diagnosis is used as a prognosis
of circuit major dysfunctions. In software, design patterns, like security patterns,
are prevention mechanisms. Regarding model checking of system design, if we
consider a set of historical state spaces, one could apply design prognosis by
using statistical and probability analysis.

5 Conclusion

In this paper we presented core concepts of a framework for understanding diag-
nosis. We believe that this set of concepts will enable the exploration of the pos-
sible and constrained compositions of diagnostic systems, reducing the minimal
set of diagnoses. This work paves the way for the construction of an organizing
system, an ongoing work [14], for storing system data (propositional objects),
interpreting them (association), and diagnosing critical systems (activities).

References

1. Dictionary—Merriam-Webster. https://www.merriam-webster.com
2. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Automated support for iagnosis

and repair. Commu. ACM 58(2), 65–72 (2015)
3. Aviienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and axonomy

of dependable and secure computing. IEEE Trans. Dependable Secure Comput.
1(1), 11–33 (2004)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: ACM SIGPLAN, vol. 38. ACM (2003)

6. Bertoli, P., Bozzano, M., Cimatti, A.: A symbolic model checking framework for
safety analysis, diagnosis, and synthesis. In: Edelkamp, S., Lomuscio, A. (eds.)
MoChArt 2006. LNCS, vol. 4428, pp. 1–18. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-74128-2 1

7. Bourahla, M.: Model-based diagnostic using model checking. In: 2009 Fourth Inter-
national Conference on Dependability of Computer Systems, Brunow, pp. 229–236
(2009). doi:10.1109/DepCoS-RELCOMEX.2009.33

8. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in
verification by AI techniques. Artif. Intell. 112(1), 57–104 (1999)

9. Cleve, H., Zeller, A.: Locating causes of program failures, p. 342. ACM Press (2005)
10. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball,

T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). doi:10.1007/3-540-44829-2 8

https://www.merriam-webster.com
http://dx.doi.org/10.1007/978-3-540-74128-2_1
http://dx.doi.org/10.1007/978-3-540-74128-2_1
http://dx.doi.org/10.1109/DepCoS-RELCOMEX.2009.33
http://dx.doi.org/10.1007/3-540-44829-2_8

400 V. Leildé et al.

11. Gromov, M., Willemse, T.A.C.: Testing and model-checking techniques for diagno-
sis. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) FATES/Test-
Com -2007. LNCS, vol. 4581, pp. 138–154. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-73066-8 10

12. Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and tech-
niques. In: CASCON 2004, pp. 42–55. IBM Press (2004)

13. Holzmann, G.J.: The theory and practice of a formal method: NewCoRe. In: IFIP
Congress (1), pp. 35–44 (1994)

14. Leilde, V., Ribaud, V., Dhaussy, P.: An organizing system to perform and enable
verification and diagnosis activities. In: Yin, H., Gao, Y., Li, B., Zhang, D., Yang,
M., Li, Y., Klawonn, F., Tallón-Ballesteros, A.J. (eds.) IDEAL 2016. LNCS, vol.
9937, pp. 576–587. Springer, Cham (2016). doi:10.1007/978-3-319-46257-8 62

15. Liu, Y., Xu, C., Cheung, S.: AFChecker: effective model checking for context-aware
adaptive applications. J. Syst. Softw. 86(3), 854–867 (2013)

16. Mackie, J.L.: The Cement of the Universe: A study of causation. Clarendon Library
of Logic and Philosophy, 5. dr. edn. Clarendon Press, Oxford (1990). oCLC:
258760915

17. Pothier, G., Tanter, É., Piquer, J.: Scalable omniscient debugging. ACM SIGPLAN
Not. 42(10), 535–552 (2007)

18. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32, 57–95 (1987)
19. Ruys, T.C., Brinksma, E.: Managing the verification trajectory. Int. J. Softw. Tools

Technol. Transf. (STTT) 4(2), 246–259 (2003)
20. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.: A review of process fault

detection and diagnosis. Comput. Chem. Eng. 27(3), 293–311 (2003)
21. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.

Autom. Softw. Eng. 10(2), 203–232 (2003)
22. Wotawa, F., Rodriguez-Roda, I., Comas, J.: Abductive reasoning in environmental

decision support systems. In: AIAI workshops, pp. 270–279. Citeseer (2009)

http://dx.doi.org/10.1007/978-3-540-73066-8_10
http://dx.doi.org/10.1007/978-3-540-73066-8_10
http://dx.doi.org/10.1007/978-3-319-46257-8_62

Design of Embedded Systems with Complex
Task Dependencies and Shared Resource

Interference (Short Paper)

Fotios Gioulekas1,5P, Peter Poplavko2, Rany Kahil2, Panagiotis Katsaros1,4(B),
Marius Bozga2, Saddek Bensalem2, and Pedro Palomo3

1 Information Technology Institute, CERTH, Thessaloniki, Greece
gioulekas@teemail.gr

2 Universite Joseph Fourier - Verimag, Grenoble, France
{petro.poplavko,rany.kahil,marius.bozga,saddek.bensalem}@imag.fr

3 Deimos-Space S.L.U, Madrid, Spain
pedro.palomo@deimos-space.com

4 Aristotle University of Thessaloniki, Thessaloniki, Greece
katsaros@csd.auth.gr

5 University General Hospital of Larissa, Larissa, Greece

Abstract. Languages for embedded systems ensure predictable timing
behavior by specifying constraints based on either data streaming or
reactive control models of computation. Moreover, various toolsets facil-
itate the incremental integration of application functionalities and the
system design by evolutionary refinement and model-based code gener-
ation. Modern embedded systems involve various sources of interference
in shared resources (e.g. multicores) and advanced real-time constraints,
such as mixed-criticality levels. A sufficiently expressive modeling app-
roach for complex dependency patterns between real-time tasks is needed
along with a formal analysis of models for runtime resource managers
with timing constraints. Our approach utilizes a model of computa-
tion, called Fixed-Priority Process Networks, which ensures functional
determinism by unifying streaming and reactive control within a timed
automata framework. The tool flow extends the open source TASTE
tool-suite with model transformations to the BIP language and code gen-
eration tools. We outline the use of our flow on the design of a spacecraft
on-board application running on a quad-core LEON4FT processor.

Keywords: Model-based design · Embedded systems · Model of
computation · Code generation · Multicores

This work was supported by ESA under contract No. 4000111814/14/NL/MH. This
is a short paper accepted in the new ideas and work-in-progress section of SEFM
2017.

c© Springer International Publishing AG 2017
A. Cimatti and M. Sirjani (Eds.): SEFM 2017, LNCS 10469, pp. 401–407, 2017.
DOI: 10.1007/978-3-319-66197-1 28

402 F. Gioulekas et al.

1 Introduction

The model-based design philosophy for embedded systems is grounded on the
evolutionary design using models [4], which support the analysis, the gradual
refinement and the setting of real-time attributes that ensure predictable timing
behavior. For being able to analyze the models, they are specified with languages
based on formal models of computation [1], which allow the synthesis and the
optimization of behavior into an implementation solution. Such models provide
syntax for describing dependencies between the runtime entities of a design and
rules for computation of the behavior, given the syntax. The well-known stream-
ing models of computation are suitable for describing complicated data transfer
functions, whereas the reactive control models used in synchronous languages
are suitable for complex control dependencies, which are compiled to sequential
code as tasks, and classical schedulability methods can then be applied.

However, in modern embedded systems the task dependencies are further
complicated, due to various sources of interference in shared software and hard-
ware resources (e.g. buses, DMAs, I/Os in multicores) and additional constraints,
such as mixed-criticality levels, dynamic voltage and frequency scaling. Thus, the
design should ensure predictable timing behavior, while allowing adaptation to
unexpected overload cases by dynamically reallocating resources.

To this end, we present a rigorous design approach that integrates a
recently introduced model of computation, the Fixed Priority Process Networks
(FPPNs) [3], with the TASTE toolset [5] and a timed automata analysis frame-
work with “resource managers” [6], i.e. software functions that monitor uti-
lization of compute resources and adapt the schedule in cases of shortage [2].
The FPPN model of computation combines the expressiveness of streaming
and reactive control, retains the efficiency potential of parallel processing and
ensures functional determinism, i.e. the program’s outputs are neither depen-
dent on the tasks’ execution times, nor on their scheduling. TASTE is an open
source toolset based on a system-level architecture description language, the
AADL. It supports the incremental model-based integration (through ASN.1)
of application functionalities using various languages (C/C++, SDL, VHDL,
Ada, Python) and tools (SCADA, Simulink). We utilized TASTE’s extensibil-
ity support towards enabling the design of FPPN programs. Moreover, a model
transformation was implemented to a timed automata modeling framework in
BIP, a language with formal operational semantics and code generation tools, for
execution engines ported to various embedded platforms. Our approach allows
scheduling the program’s tasks, while taking into account their dependencies
and the various sources of interference, through explicit interference models and
resource managers. A resource manager is an integral part of an online scheduler
that implements a customized online scheduling policy.

We present the scheduling of a Guidance, Navigation and Control (GNC)
application on the quad-core LEON4FT in ESA’s Next Generation Microproces-
sor platform (NGMP) [7]. Section 2 summarizes background knowledge on the
FPPN model of computation. Section 3 introduces the TASTE toolset exten-
sions to support FPPNs, the TASTE2BIP model transformations and task graph

Design of Embedded Systems with Complex Task Dependencies 403

extraction, which enable the application’s scheduling based on appropriate inter-
ference models. Section 4 presents the scheduling of the GNC application and the
paper concludes with an overview of the exposed contributions.

2 Fixed Priority Process Networks

The FPPN [3] extends the reactive control models of computation by intro-
ducing synchronization and pipelined execution for a set of processes (tasks),
which communicate data through channels. It allows the specification of time
dependent, yet deterministic, behavior and real time task properties (sporadic or
periodic activations with deadlines), and can be scheduled on single or multiple
processors with or without priorities. The determinism is ensured by a func-
tional priority relation between the tasks that are executed in an order, which is
determined first by the task release times, i.e. when the tasks are invoked, and
secondly by the task priorities.

An FPPN consists of processes, data channels and event generators. The
processes represent subroutines with functional code featuring internal variables
and ports connected to their input/output channels. A subroutine invocation
is defined as a job with bounded execution time, which is subject to worst-
case execution time (WCET) analysis. Every process is associated with an event
generator, which can be either periodic or sporadic. The data channels support
non-blocking read and write operations, which means that reading from an empty
channel does not block the reader. The returned data value is accompanied by
a validity flag, i.e. a boolean indicator of whether the data is valid. There are
inter-process and external (environment) channels of two possible types, FIFO
or blackboard. The blackboard remembers the last written value, which can be
read multiple times.

Every process p has a deadline dp. An event generator’s sequence of
timestamps τk determines when the kth job of process p is “activated”. The
periodic processes are activated with period Tp, whereas for sporadic processes
Tp denotes the minimum inter-arrival time. Each job’s execution has to be com-
pleted by Dk = τk + dp. We assume that all simultaneous process activations
are signaled synchronously and we consider two variants of FPPN semantics.
According to the zero-delay semantics the processes’ execution takes zero time
and since all deadlines can be met without exploiting parallelism, we assume
for simplicity that it takes place sequentially. The deterministic ordering of non-
blocking accesses to the shared variables between the processes is ensured by a
set of rules detailed in [3]. The zero-delay semantics allows the functional sim-
ulation of the FPPN through its sequential execution. The real time semantics
defines how the FPPN is executed on embedded platforms, which is a relaxed
version of the zero-delay semantics, since it allows jobs to have any execution
time, as well as to start concurrently at any time after their invocation.

For certain subclasses of FPPNs it is possible to statically derive a task graph,
which then serves as input to a scheduling algorithm. A task graph is a directed
acyclic graph TG(J, E) with nodes representing jobs J = {Ji} and edges E that

404 F. Gioulekas et al.

are called precedence edges, which constrain the job execution order. A job is
characterized by a tuple Ji = (pi, ki, Ai,Di, Ci) where pi is the process to which
the job belongs, ki is the job’s invocation count, Ai ∈ Q≥0 is the arrival time,
Di ∈ Q+ is the required time (absolute deadline) and Ci ∈ Q+ is the WCET.

3 Design and Scheduling for FPPNs in TASTE

Figure 1 delineates our model based design flow that integrates FPPNs within
TASTE [5], along with a timed automata modeling framework in BIP [3] (parts
in grey color depict our contribution) and its associated scheduling and code
generation tools. The latter ensure predictable timing behavior, when execut-
ing the application on a multithreaded BIP Runtime Environment (BIB RTE).
Specifically, a representation of the software is provided through the TASTE
front-end tools (Interface View, Data View, Deployment View), which were
amended to capture FPPN-compliant models. The TASTE functions can be
assigned attributes that characterize the FPPN node (e.g. blackboard, periodic
process). Each process is associated with a unique integer (larger numbers imply
lower priorities) and a criticality level (only HI and LO are supported), for
scheduling the application with multiple criticality levels [6]. Additionally, func-
tional C/C++ code primitives are inserted in TASTE including also ASN.1
based data types.

The next step is the TASTE2BIP model transformation, where (i) the
TASTE FPPN is transformed to a BIP FPPN model and (ii) the TASTE
attributes are used to generate the task graph through graph rewriting. At this
stage, we take into account the interference on shared software and hardware
resources, which invalidates the canonical WCET and schedulability analysis,

Fig. 1. Model-based design and tool flow for FPPNs in TASTE.

Design of Embedded Systems with Complex Task Dependencies 405

due to a feedback influence. This step involves the design of an interference
model, as detailed in [6]. The schedule obtained from the static scheduler together
with the interference model are then translated into parameters of the online-
scheduler model in BIP. The joint application and scheduler representation is
compiled into an executable, which is linked with the resource manager BIP
RTE and executed on the target platform on top of the real time operating
system.

4 Case-Study: Guidance Navigation Control Application

The described approach was applied on the design and scheduling of a
GNC application ported onto ESA’s NGMP with the aim to utilize multi-
ple cores of the quad-core LEON4FT processor [7]. The main objective of
a GNC application is to affect the movement of the vehicle and provide
the corresponding sensor and controller with the necessary data. It com-
prises the Guidance Navigation Task (Functional Priority = 4, Period = 500 ms,
Deadline = 500 ms, WCET = 22 ms), the Control Output Task (Functional Pri-
ority = 3, Period = 50 ms, Deadline = 50 ms, WCET = 3 ms) that sends the out-
puts to the appropriate spacecraft unit, the Control FM Task (Functional
Priority = 2, Period = 50 ms, Deadline = 50 ms, WCET = 8 ms) which runs the
control and flight management algorithms, and the Data Input Dispatcher
Task (Functional Priority = 1, Period = 50 ms, Deadline = 50 ms, WCET = 6 ms),
which reads, decodes and dispatches data to the right destination whenever new
data from the spacecraft’s sensors are available.

2

1

0

 0 100000 200000 300000 400000 500000 600000

P
ro

ce
ss

or
s

time

Gantt chart

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
20

P
1

P
2

P
3

P
1

P
2

P
3

P
1

P
2

P
3

P
1

P
2

P
3

P
1

P
2

P
3

P
3

P
1

P
2

P
3

P
1

P
1

P
2

P
3

P
1

P
2

P
3

P
1

P
2

P
1

P
3

P
1

P
2

P
2

P
3

P
3

P
2

P
4

Fig. 2. Execution of the GNC application on LEON4FT (in microseconds).

406 F. Gioulekas et al.

The TASTE2BIP tool transformed the TASTE Interface View models (XML
and C language) to an equivalent FPPN BIP model. The calculated hyper-period
(least common multiple of periods) was H = 500 ms. The Guidance Navigation
and Control Output Tasks start with time offsets 450 ms and 30 ms, respectively.
This information was inserted into the BIP model by manually modifying the
default design flow script. The task graph data was then passed to the BIP offline
scheduler tool, which estimated the load (utilization) to be 112% (thus requir-
ing two compute cores) and provided the time-triggered scheduling tables. This
computation took into account the interference of the BIP engine and the prece-
dence constraints. The last step was to compile the BIP model, to link it with the
BIP RTE and to execute it on the quad-core LEON4FT processor. The executa-
bles were subsequently loaded and executed on the LEON4FT board. Figure 2
depicts the execution of the GNC model on the NGMP, within a time frame
equal to the hyper-period of 500 ms plus another 50 ms. The GNC application
utilizes one core for the resource manager P20 (BIP RTE and BIP controllers)
and two computing cores for the application’s tasks. Process P1 corresponds to
the Data Input Dispatcher Task, P2 to the Control FM Task, P3 to the Control
Output Task and P4 to the Guidance Navigation Task. Minor time shifts to the
jobs execution time are noticed and this is due to the P20 overhead. However,
runtime overhead is present in every execution environment.

5 Conclusion

A rigorous model-based design flow was introduced for embedded systems with
complex task dependencies and shared resource interference, which is integrated
with the TASTE toolset. Task dependencies and shared resource interference
are arbitrated through dependency patterns according to the FPPN model of
computation. Experimental results demonstrated the efficacy of the proposed
design flow through the modeling and execution of a GNC application on the
quad-core LEON4FT processor. As future work, we intend to support more than
two criticality levels, and at the TASTE2BIP model transformation level the use
of additional languages such as ITU-T SDL and Simulink. Furthermore, we also
intend to utilize more TASTE design capabilities by implementing test-bench
wrappers using python test-benching.

References

1. Radojevic, I., Salcic, Z.: Models of computation and languages. In: Radojevic, I.,
Salcic, Z. (eds.) Embedded Systems Design Based on Formal Models of Computa-
tion, pp. 7–41. Springer, Dordrecht (2011). doi:10.1007/978-94-007-1594-3 2

2. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: schedulability, decid-
ability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007). Elsevier

3. Poplavko, P., Socci, D., Bourgos, P., Bensalem, S., Bozga, M.: Models for deter-
ministic execution of real-time multiprocessor applications. In: Design, Automation
and Test in Europe Conference and Exhibition, DATE 2015, Grenoble, France,
pp. 1665–1670 (2015)

http://dx.doi.org/10.1007/978-94-007-1594-3_2

Design of Embedded Systems with Complex Task Dependencies 407

4. Hugues, J., Zalila, B., Pautet, L., Kordon, F.: From the prototype to the final
embedded system using the ocarina AADL tool suite. ACM Trans. Embed. Comput.
Syst. 7(4), 42:1–42:25 (2008)

5. Perrotin, M., Conquet, E., Delange, J., Schiele, A., Tsiodras, T.: TASTE: a real-time
software engineering tool-chain overview, status, and future. In: Ober, I., Ober, I.
(eds.) SDL 2011. LNCS, vol. 7083, pp. 26–37. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25264-8 4

6. Poplavko, P., Kahil, R., Socci, D., Bensalem, S., Bozga, M.: Mixed-critical sys-
tems design with coarse-grained multi-core interference. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2016. LNCS, vol. 9952, pp. 605–621. Springer, Cham (2016). doi:10.
1007/978-3-319-47166-2 42

7. GR-CPCI-LEON4-N2X: Quad-Core LEON4 Next Generation Microproces-
sor Evaluation Board. http://www.gaisler.com/index.php/products/boards/
gr-cpci-leon4-n2x

http://dx.doi.org/10.1007/978-3-642-25264-8_4
http://dx.doi.org/10.1007/978-3-642-25264-8_4
http://dx.doi.org/10.1007/978-3-319-47166-2_42
http://dx.doi.org/10.1007/978-3-319-47166-2_42
http://www.gaisler.com/index.php/products/boards/gr-cpci-leon4-n2x
http://www.gaisler.com/index.php/products/boards/gr-cpci-leon4-n2x

Author Index

Assad, Rodrigo 388
Attard, Duncan Paul 219

Baier, Christel 349
Beckert, Bernhard 300
Bellettini, Carlo 375
Bensalem, Saddek 401
Bernasconi, Anna 54
Bertolino, Antonia 388
Boström, Pontus 136
Bozga, Marius 401
Bozzelli, Laura 104

Cabodi, Gianpiero 382
Camilleri, John J. 87
Camilli, Matteo 375
Campos, José C. 284
Camurati, Paolo 382
Courtieu, Pierre 17

Danas, Natasha 168
De Rosa, Fabio 388
De Santis, Elena 269
Delamaro, Marcio 388
Dhaussy, Philippe 394
Di Benedetto, Maria Domenica 269
dos Santos, Daniel Ricardo 203
Dougherty, Daniel J. 168

Fachini, Guglielmo 367
Fantechi, Alessandro 236
Farrell, Marie 152
Fischer, Bernd 185
Francalanza, Adrian 219

Garcia, Vinicius 388
Gargantini, Angelo 375
Georget, Laurent 1
Ghezzi, Carlo 54
Giorgini, Paolo 70
Gioulekas, Fotios 401
Greiner, Simon 300

Harrison, Lane 168
Hatcliff, John 17
Haxthausen, Anne E. 236
Hillah, Lom Messan 388

Iyoda, Juliano 388

Jakobs, Marie-Christine 120
Jaume, Mathieu 1
Johansen, Christian 87
Jones, Paul 284

Kahil, Rany 401
Katsaros, Panagiotis 401
Klein, Joachim 349
Klüppelholz, Sascha 349
Krishnamurthi, Shriram 168
Kumar, N.V. Narendra 35

La Torre, Salvatore 185
Leildé, Vincent 394
Liu, Peizun 316
Ljungkrantz, Oscar 332
Lonetti, Francesca 388
Luteberget, Bjørnar 87

Macedo, Hugo D. 236
Maesano, Ariele-Paolo 388
Maesano, Libero 388
Mahmud, Nesredin 332
Marchetti, Eda 388
Märcker, Steffen 349
Masci, Paolo 284
Matteplackel, Raj Mohan 253
Menghi, Claudio 54
Miranda, Breno 388
Mohr, Martin 300
Molinari, Alberto 104
Momigliano, Alberto 367
Monahan, Rosemary 152
Montanari, Angelo 104
Moy, Yannick 17
Mylopoulos, John 70

Nelson, Tim 168
Nguyen, Chi Mai 70
Nguyen, Truc Lam 185

Palena, Marco 382
Palomo, Pedro 401
Pandya, Paritosh K. 253
Parlato, Gennaro 185
Pasini, Paolo 382
Peron, Adriano 104
Piolle, Guillaume 1
Pola, Giordano 269
Poplavko, Peter 401
Power, James F. 152

Ranise, Silvio 203
Ribaud, Vincent 394
Robby 17

Scandurra, Patrizia 375
Schneider, Gerardo 87

Sebastiani, Roberto 70
Seceleanu, Cristina 332
Shyamasundar, R.K. 35
Spoletini, Paola 54

Teodorov, Ciprian 394
Tomasco, Ermenegildo 185
Tong, Valérie Viet Triem 1
Tronel, Frédéric 1

Vendraminetto, Danilo 382
Vincenzi, Auri 388

Wahl, Thomas 316
Wakankar, Amol 253
Wiik, Jonatan 136

Zhang, Yi 284
Zhang, Zhi 17
Zuck, Lenore D. 54

410 Author Index

	Preface
	Organization
	Invited Talks
	The Challenge of Change
	Software Safety and Security, Assurance Cases and Model Management
	A Formal Contract-Based Design Methodology for CyberPhysical Systems
	Contents
	Information Flow Tracking for Linux Handling Concurrent System Calls and Shared Memory
	1 Introduction
	2 Evading Existing Information Flow Trackers
	2.1 Exploiting a Race Condition to Copy a File Without Its Taint
	2.2 Making a Flow in Memory

	3 A New Algorithm for Taint Propagation
	3.1 Tags, Information Flows and Executions
	3.2 Flow-Based Interpretations of Executions

	4 Implementation and Experiments
	5 Related Work
	6 Conclusion
	References

	Focused Certification of an Industrial Compilation and Static Verification Toolchain
	1 Introduction
	2 Technical Approach
	2.1 Core SPARK 2014 Mechanized Semantics
	2.2 Certified Run-Time Check Generator
	2.3 Certified Run-Time Check Optimizer
	2.4 Certifying GNAT RT Check Generator

	3 Evaluation: Certifying GNAT
	4 Related Work
	5 Conclusions and Future Work
	References

	A Complete Generative Label Model for Lattice-Based Access Control Models
	1 Introduction
	2 Overview of Denning's Lattice Model
	3 Recasting Denning's Model via Semantic Labels
	3.1 Illustration of the Recasting Procedure Through Examples

	4 Recasting Readers/Writers Explicitly in Labels
	4.1 Basic Readers Writers Flow Model (B-RWFM)
	4.2 Characteristic Properties of B-RWFM

	5 Encoding Common Security Policies in RWFM
	6 Where does RWFM stand in relation to RBAC
	7 Conclusions
	References

	From Model Checking to a Temporal Proof for Partial Models
	1 Introduction
	2 Background
	3 THRIVE
	4 Using THRIVE with PKS and LTL
	4.1 Adapting the Theorem Prover
	4.2 Integrating the Model Checker and the Theorem Prover
	4.3 Thorough Semantics and THRIVE

	5 Preliminary Evaluation
	6 Using THRIVE in Real Cases
	7 Conclusions and Future Work
	References

	Modeling and Reasoning on Requirements Evolution with Constrained Goal Models
	1 Introduction
	2 Background: Constrained Goal Models
	3 Requirements Evolution and Evolution Requirements
	3.1 Requirements Evolution
	3.2 Evolution Requirements

	4 Automated Reasoning with Evolution Requirements
	5 Implementation
	6 Conclusions
	References

	Participatory Verification of Railway Infrastructure by Representing Regulations in RailCNL
	1 Introduction
	2 Approach to Participatory Verification for Railway Regulations
	3 RailCNL: A Front-End Language for Railway Verification
	3.1 RailCNL Grammar
	3.2 RailCNL Modules and Examples
	3.3 Translating RailCNL into Datalog
	3.4 Tool Integration

	4 Design Methodology for a Verification Front-End Language
	4.1 Abstract Syntax
	4.2 Concrete Syntax
	4.3 Translation into the Target Logic Formalism

	5 Evaluation and Conclusions
	References

	An In-Depth Investigation of Interval Temporal Logic Model Checking with Regular Expressions
	1 Introduction
	2 Preliminaries
	2.1 Kripke Structures, Regular Expressions, and Finite Automata
	2.2 The Interval Temporal Logic HS

	3 The General Picture
	4 MC for Full HS
	5 Exponential Small-Model for AABB and AAEE
	6 PSPACE-Completeness of MC for AABB
	7 Conclusions
	References

	PARTPW: From Partial Analysis Results to a Proof Witness
	1 Introduction
	2 Background
	3 When Do Partial ARGs Witness Program Safety?
	4 Proof Witnesses from Complete Sets of Partial ARGs
	5 Experiments
	6 Conclusion
	References

	Specification and Automated Verification of Dynamic Dataflow Networks
	1 Introduction
	2 Dataflow Actors and Networks
	3 Verification Technique
	3.1 Networks
	3.2 Actors

	4 Programming and Assertion Language
	5 Encoding
	5.1 Assertions
	5.2 Basic Actors
	5.3 Networks

	6 Invariant Generation
	7 Soundness
	8 Evaluation
	9 Related Work
	10 Conclusion
	References

	Specification Clones: An Empirical Study of the Structure of Event-B Specifications
	1 Introduction and Motivation
	2 Background and Related Work
	2.1 Clones in Code and Specifications
	2.2 Modularisation of Event-B Specifications

	3 Analysing a Corpus of Event-B Specifications: Metrics and Refinement
	3.1 Quantifying Specification Size
	3.2 Metrics for Event-B Specifications
	3.3 Quantifying Refinements

	4 Detecting Specification Clones
	5 Results of the Clone Analysis
	5.1 Context Clones
	5.2 Machine Clones
	5.3 Event Clones
	5.4 Discussion: Dealing with Clones

	6 Threats to Validity
	7 Summary and Future Work
	References

	User Studies of Principled Model Finder Output
	1 Introduction
	2 Principled Output Methods Being Evaluated
	2.1 Minimality and Maximality
	2.2 UNSAT Cores
	2.3 Provenance

	3 Evaluation with Student Subjects
	3.1 Minimality and Maximality
	3.2 UNSAT Cores
	3.3 Provenance
	3.4 Discussion

	4 Evaluation with Crowd-Sourced Subjects
	4.1 Design Decisions
	4.2 Training Crowd Workers in Formal Methods
	4.3 Effects of Unsat Cores and Provenance
	4.4 Discussion

	5 Related Work
	6 Conclusion
	References

	Using Shared Memory Abstractions to Design Eager Sequentializations for Weak Memory Models
	1 Introduction
	2 Weak Memory Models
	3 Multi-threaded Programs over Shared Memory Abstractions
	4 Verification with Thread-Asynchronous SMAs
	5 Individual Memory-Location Unwindings
	6 IMU-based SMA Implementations
	7 Experimental Evaluation
	8 Related Work, Conclusions, and Future Work
	References

	On Run-Time Enforcement of Authorization Constraints in Security-Sensitive Workflows
	1 Introduction
	2 Background
	3 A Catalog of Authorization Constraints
	3.1 Classification of Constraints
	3.2 Data-Based Constraints

	4 Encoding Constraints in Cerberus
	4.1 Overview of Cerberus
	4.2 Run-Time Monitor Synthesis
	4.3 Encoding Constraints

	5 Conclusion
	References

	Trace Partitioning and Local Monitoring for Asynchronous Components
	1 Introduction
	2 Monitors and Specification
	3 The Approach
	4 The Implementability of Local Monitoring
	5 Experimental Evaluation
	5.1 Monitoring for the Ranch Connection Protocol
	5.2 Experiment Set-Up and Design
	5.3 Results and Analysis

	6 Conclusion
	References

	Compositional Verification of Interlocking Systems for Large Stations
	1 Introduction
	2 Interlocking Systems and Their Verification
	3 Compositionality
	4 Horizontal Cut
	4.1 Decomposition of the Network
	4.2 Decomposition of the Interlocking Table
	4.3 Safety Verification
	4.4 Soundness of the Approach

	5 A More Complex Example
	6 Conclusions
	References

	Formalizing Timing Diagram Requirements in Discrete Duration Calculus
	1 Introduction
	2 Logic QDDC
	2.1 Chop Expressions: Ce and SeCe
	2.2 DCVALID and DCSynth
	2.3 Logic SeCeNL: Syntax and Semantics

	3 Formalizing Timing Diagrams
	3.1 Waveform to SeCeNL Translation
	3.2 Comparision with Other Temporal Logics

	4 Case Study: Minepump Specification
	References

	On Approximate Diagnosability of Metric Systems
	1 Introduction
	2 Notation and Preliminary Definitions
	3 Metric Systems
	4 Approximate Diagnosability
	5 Approximate Simulation and Diagnosability
	6 Application to Diagnosability of Nonlinear Systems
	7 Conclusions
	References

	A Hazard Analysis Method for Systematic Identification of Safety Requirements for User Interface Software in Medical Devices
	1 Introduction
	2 Background on STPA
	3 Enhanced STPA Analysis
	3.1 New Causal Factor Categories
	3.2 Process for Using the New Categories

	4 Case Study: The Gantry-2 System
	5 Formalization of Safety Requirements in PVS
	5.1 Gantry-2 Model in PVS
	5.2 Formalization of the Requirements

	6 Related Work
	7 Conclusion
	References

	Modular Verification of Information Flow Security in Component-Based Systems
	1 Introduction
	2 Formal Framework
	2.1 Components and Services
	2.2 Non-interference

	3 Service-Local Non-interference Specification
	4 Dependency Clusters and Components
	5 Weakening Specifications
	6 Proof of Concept: Verifying JavaEE Implementations
	7 Conclusion
	References

	IJIT: An API for Boolean Program Analysis with Just-in-Time Translation
	1 Introduction
	2 Boolean Programs and Thread-Transition Systems
	2.1 Boolean Programs
	2.2 From Boolean Programs to Thread Transition Systems

	3 BP Analysis with JIT Translation: Overview
	4 The IJIT Application Programming Interface
	4.1 API Usage
	4.2 API Design

	5 Case Study: Performance Benefits of IJIT
	5.1 Benchmark Algorithms
	5.2 Case Study

	6 Related Work
	7 Summary
	References

	Specification and Semantic Analysis of Embedded Systems Requirements: From Description Logic to Temporal Logic
	1 Introduction
	2 Preliminaries
	2.1 ReSA
	2.2 Description Logic
	2.3 Timed Computation Tree Logic

	3 Defining ReSA Semantics in DL
	3.1 Semantic Analysis Framework
	3.2 Semantic Representation via the Event-Based Approach
	3.3 The ReSA Ontology
	3.4 Semantics of Clauses and Statements in ReSA

	4 Semantic Equivalence in ReSA
	5 Automated Analysis and Transformation to TCTL Properties
	5.1 Consistency Checking
	5.2 Completeness
	5.3 Transformation to TCTL

	6 Related Work
	7 Conclusions
	References

	Computing Conditional Probabilities: Implementation and Evaluation
	1 Introduction
	2 Preliminaries
	3 Implementation
	4 Evaluation and Comparative Studies
	4.1 Methodology
	4.2 Considered Models and Properties
	4.3 Results

	5 Comparison Prism vs Storm
	6 Conclusion
	References

	Validating the Meta-Theory of Programming Languages (Short Paper)
	1 Introduction
	2 Binders-Aware Property-Based Testing
	3 Experiments
	4 Conclusions and Future Work
	References

	Towards Inverse Uncertainty Quantification in Software Development (Short Paper)
	1 Introduction
	2 Overview of the Approach
	3 Related Work
	4 Conclusion
	References

	Interpolation-Based Learning as a Mean to Speed-Up Bounded Model Checking (Short Paper)
	1 Introduction
	2 Background
	2.1 Model, Notation and Property Definition
	2.2 Bounded Model Checking
	2.3 Craig Interpolants

	3 Combining SAT-based BMC and Interpolation
	4 Experimental Results
	5 Conclusions
	References

	Towards Automated Deployment of Self-adaptive Applications on Hybrid Clouds (Short Paper)
	1 Introduction
	2 Related Work and Background
	3 Outline of the Solution
	4 Real-World Trials
	References

	A Diagnosis Framework for Critical Systems Verification (Short Paper)
	1 Introduction
	2 Background
	3 Conceptual Framework
	3.1 Activities
	3.2 Propositional Objects
	3.3 Associations

	4 Framework by Example
	5 Conclusion
	References

	Design of Embedded Systems with Complex Task Dependencies and Shared Resource Interference (Short Paper)
	1 Introduction
	2 Fixed Priority Process Networks
	3 Design and Scheduling for FPPNs in TASTE
	4 Case-Study: Guidance Navigation Control Application
	5 Conclusion
	References

	Author Index

