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Chapter 9
Statistics Learning Trajectories

Pip Arnold, Jere Confrey, Ryan Seth Jones, Hollylynne S. Lee, 
and Maxine Pfannkuch

Abstract Statistics curricula and pedagogy are changing rapidly in response to a 
growing body of research findings involving students’ reasoning processes, technol-
ogy capability, attention to underpinning conceptual infrastructure, and new ways 
of statistical practice. Because many of the statistical ideas being considered are 
currently not in the curriculum, many researchers in statistics education have inves-
tigated students’ reasoning processes through the use of learning trajectories in con-
junction with design-based research methods. In this chapter, we outline the 
characteristics of learning trajectories and exemplify how learning trajectories have 
been used in three case studies in statistics education. Commonalities and differ-
ences across the learning trajectories are discussed as well as recommendations for 
future research.
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9.1  Introduction

Over the last 20 years, learning trajectories (LTs) have gained prominence in statis-
tics education research. Part of the prominence may be due to a general trend toward 
a participationist research and design paradigm in education (Sfard, 2005). In this 
paradigm, there is an emphasis on understanding the teaching and learning process 
as it develops in actual classrooms with researchers positioning themselves as col-
laborating with teachers rather than studying them—“there is a remarkable blurring 
of the boundaries between communities of researchers and practitioners” (Sfard, 
2005, p. 401). The trend in education research toward studies with ecological valid-
ity and a participationist paradigm may have set the scene for statistics education 
researchers to use LTs particularly as many of them were searching for new ways to 
approach statistical learning.

Traditionally statistics has been taught as a series of techniques to handle and 
display data with little regard for students’ reasoning processes and the building up 
of conceptual infrastructure across the grade levels. With attention now focusing on 
students’ reasoning from data and on conceptual understanding of statistics, 
researchers have found that the conceptual underpinnings are not only difficult to 
grasp but also difficult to elucidate (cf. Chap. 8). Therefore, to explicate the concep-
tual foundations for and across statistical topics, it has been necessary to build new 
LTs within and across grade levels for research and teaching purposes. Furthermore, 
research in statistics education is challenging traditional curricula and pedagogy 
with respect to the content and the lack of attention to conceptual pathways and to 
research findings. This challenge is coming from researchers who are concerned 
about problems in students’ reasoning processes and the links these problems have 
with instructional processes. These researchers invented innovative LTs because 
they were attempting to scaffold new conceptual understandings in students that 
were not present in current curricula. They used LTs to explore and document stu-
dents’ thinking as they engaged with new approaches to statistics (e.g., Bakker, 
2004; Makar, Bakker, & Ben-Zvi, 2011). Hence, research and curriculum develop-
ment and task design and students’ thinking are both strongly connected within LTs 
(cf. Clements & Sarama, 2004). By following the development of students’ thinking 
as they engage in a sequence of instructional tasks, new findings and gaps in stu-
dents’ thinking can emerge, which can result in new research and curricular paths 
for learning (see Bakker & Gravemeijer, 2004).

In Sect. 9.2 we elaborate on key characteristics of LTs and then illustrate in Sect. 
9.3 the use of LTs in research with three case studies. Finally, we reflect on the case 
studies and discuss implications and recommendations for future research.

9.2  Characterizing Learning Trajectories

In recognition that LTs were being interpreted and applied in a variety of ways 
within research, Clements and Sarama (2004, p. 83) stated:
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We conceptualize learning trajectories as descriptions of children’s thinking and learning in 
a specific mathematical domain and a related, conjectured route through a set of instruc-
tional tasks designed to engender those mental processes or actions hypothesized to move 
children through a development progression of levels of thinking, created with the intent of 
supporting children’s achievement of specific goals in that domain.

A similar conceptualization of LTs is held among statistics education researchers 
for the statistical domains. However, to understand the characteristics underpinning 
LTs, we need to return to their origin.

LTs were originally conceived as hypothetical learning trajectories in the semi-
nal work of Simon (1995) who described from a constructivist perspective how 
teachers could conceptualize and enact the learning process within their classrooms. 
He perceived the LT as hypothetical because it was based on a teacher’s prediction 
of the learning process before it was implemented. During implementation the LT 
would be constantly updated in response to observations on students’ interactions 
and reasoning processes. Because the term LT is now commonly used in the litera-
ture, we use it to describe the predicted trajectories and the updated trajectories. 
Other researchers (e.g., Lehrer, Kim, Ayers, & Wilson, 2014) prefer to use the term 
learning progressions to reflect a more open process. Although we refer to research-
ers using LTs, in practice teachers and researchers often collaborate on designing 
and studying LTs, and teachers in their own classrooms also enact the LT teaching 
cycle.

The LT (see Fig.  9.1) involves defining a learning goal, considering possible 
learning activities and the types of student thinking and understanding they might 
evoke, and the hypothetical learning process (Simon, 1995). To produce a LT, a 
learning goal is initially defined, and then a hypothesis is formed about a particular 
group of students’ understanding within that topic domain (Fig. 9.1(1)). The hypothesis 
is based on information from a wide range of sources and experiences, for example, 
current students’ experiences in a related area, the experiences of a similar group of 

Fig. 9.1 The learning trajectory and sources drawn upon (based on Simon, 1995, p. 137)

9 Statistics Learning Trajectories



298

students, information about prior knowledge that has come to light from pretesting, 
and data and information from the research literature (Fig. 9.1(3 and 4)). Another 
dimension in the creation of LTs is the undertaking of an analysis of the web of 
concepts including the big ideas (Ben-Zvi & Garfield, 2004) that may need to be 
addressed in reaching the learning goal (Fig. 9.1(2a)). For example, if the learning 
goal is for students to learn how to reason from distributions, then an analysis of the 
concepts and big ideas underpinning distributions (e.g., data, center, variability) 
needs to be undertaken in cognizance of future LTs that may address concepts and 
ideas that cannot be incorporated into the current trajectory (e.g., inference).

Based on the researchers’ hypothesis of students’ knowledge, skills, and possible 
thought processes and an analysis of the concepts and big ideas underpinning the 
main goal, potential learning activities and the types of thinking and learning these 
activities might provoke are considered. Researchers’ theories about statistics teach-
ing and learning (Fig. 9.1(3b)), their knowledge of learning in the statistics context, 
and their knowledge of statistics activities and representations (Fig. 9.1(2)) all inter-
sect and come into play when considering possible learning activities (Simon, 
1995). Statistical tools as mediators in the learning process need to be evaluated for 
inclusion in learning activities, while attention to classroom discourse and how it 
could be used to elicit and scaffold students’ understanding is another important 
consideration. Other influences also impinge researchers’ plans for learning activi-
ties, besides age-related development issues, such as cultural factors (Clements & 
Sarama, 2004), and researchers’ beliefs and interests including those of the teachers 
that they may be collaborating with (see Chap. 10).

The learning activities can also draw on research about task design, an area of 
research that has only recently come to the forefront (see Watson & Ohtani, 2015). 
Task design is considered important because the content of the tasks affects stu-
dents’ learning and the nature of the learning (see Chap. 16). For research about 
learning, the tasks given to students have a major influence on the resultant findings 
about their conceptions and capabilities. Principles for designing tasks have been 
elucidated by Lesh and Doerr (2003) for model-eliciting activities such as personal 
meaningfulness to the student and the ability to generalize from the model con-
structed. Ainley, Pratt, and Hansen (2006) also emphasize the importance of attend-
ing to purpose and utility when designing tasks. LTs often incorporate implicit task 
design principles into the learning activities that are developed, suggesting more 
consideration is needed in this area (Fig. 9.1(2b)).

The hypothesized learning process is “a prediction of how students’ thinking and 
understanding will evolve in the context of the learning activities” (Simon, 1995, 
p. 136). This is a best guess at what will happen. There is no suggestion that the 
instruction sequence is the only or best path for teaching and learning, only that it is 
one possible route (Clements & Sarama, 2004). A LT can also be thought of as a 
description of the set of intermediate behaviors (including both landmarks and 
obstacles) that are likely to emerge, as students progress from naïve preconceptions 
toward more sophisticated understandings of a target concept (Confrey, 2006). The 
hypothetical learning process is continually modified. This is a result of the research-
ers developing a broader understanding of students’ conceptions in the area through 
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a process of reflection based on interactions with and observations of students. The 
researchers’ thinking is modified as they make sense of what is happening in the 
classroom. Reflection, based on assessment of students’ thinking, leads to constant 
adjustment and fine-tuning of the LT, the goal, the activities, and the hypothetical 
learning process (Simon, 1995).

The assessment of students’ thinking to inform modifications to the LT 
(Fig. 9.1(4)) can be investigated in a variety of ways such as individual written diag-
nostic tests, task-based individual or group interviews requiring thematic qualitative 
analyses, and analyses of classroom discussion and interaction. An interesting 
example of addressing the problem of how to analyze classroom interaction data is 
found in the work of Dierdorp, Bakker, Eijkelhof, and van Maanen (2011). To deter-
mine how well conjectures about students’ learning matched up with the observed 
learning, they used a data analysis matrix and a summary coding system for tran-
scripts from classroom interactions in order to gain insight into how their LT sup-
ported students’ inferential reasoning. More work is needed in this area to provide 
better evidence in research papers about how a LT supports or does not support 
students’ learning with respect to the learning goal.

The LT systemizes and extends what good teachers do, with the difference being 
that within a research context, it is a deliberate act: the researchers are actively and 
consciously planning, reflecting, and recording actions and thoughts. As a LT is 
being trialed through several iterations on groups of students, the goal of the 
researchers is to deliberate on the observed student development together with the 
instructional sequence and form a localized theory of instruction (Gravemeijer, 
2004). It is localized because the theory may only pertain to the group of students 
on which the instructional tasks were implemented, but other researchers may be 
able to take the theory as a framework for developing LTs for their particular group 
of students. Bakker and van Eerde (2015) explain that similar patterns of students’ 
thinking can emerge across different classrooms and teaching experiments resulting 
in a more general theory of instruction of how a topic can be taught.

In education research, the use of LTs as a research instrument is often associated 
with design-based research (DBR) methodology (Cobb, Confrey, diSessa, Lehrer, 
& Schauble, 2003; Confrey & Lachance, 2000; Gravemeijer & Cobb, 2006; 
Prediger, Gravemeijer, & Confrey, 2015). DBR is characterized as research where 
students’ development and progression are analyzed using deliberately designed 
learning activities with the aim of testing or developing theory (Bakker & van Eerde, 
2015). The aims of DBR in which a new type of learning is engineered can be mani-
fold: explanatory and advisory “to give theoretical insights into how particular ways 
of teaching and learning can be promoted” or predictive to state that “under condi-
tion X using educational approach Y, students are likely to learn Z” (Bakker & van 
Eerde, 2015, p. 431). Another characteristic of DBR is its iterative nature where 
cycles of preparation and design, teaching experiment, and retrospective analysis 
are conducted. During the teaching sequence, researchers can ascertain how the 
learning occurs in actual practice and through reflecting critically can then adjust or 
modify the plan for the next lesson. Typically these are small changes from lesson 
to lesson. After the teaching sequence is implemented, larger-scale modifications 
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can be made to the LT.  DBR has recently undergone further development (see 
Design-Based Implementation Research, 2016). Hence, DBR methodology forms a 
natural partnership with LT research. Mixed methods research methodology can 
also be used in conjunction with LTs.

9.3  Three Case Studies of Learning Trajectories

The statistics education community has produced a number of studies that contrib-
ute to the knowledge base on LTs (Franklin et al., 2007; Lehrer et al., 2014; Rubin, 
Bruce, & Tenney, 1990). Research suggests that statistical concepts should be inte-
grated into inquiry activities and that how students think about statistical concepts 
evolves as students grow in encountering accessible forms of variability (Garfield & 
Ben-Zvi, 2007; Konold & Pollatsek, 2002; Pfannkuch & Wild, 2004) that create a 
need for the concepts (Confrey, 1991).

In this section, with references to Fig. 9.1, we illustrate how LTs can be used in 
statistics education research. In the first case study, Jere Confrey and Ryan Seth 
Jones illustrate strategies to represent hypothesized construct maps to help teachers 
and students trace the growth of students’ thinking about variability. Pip Arnold, in 
the second study, has the learning goal of making a judgment or an inference when 
comparing two box plots, and she exemplifies how students were scaffolded, using 
a hypothetical learning process, toward that goal. In the third study, Hollylynne Lee, 
in collaboration with Helen Doerr, designed a LT to advance teachers toward an 
understanding of repeated sampling for inference. All these studies used DBR. At 
the heart of these case studies is the big idea of variation, from the need to invent a 
statistic to describe the variation observed to the need to take variation into account 
when making an inference.

9.3.1  Case Study 1: Two Preparatory Learning Trajectories 
for Sixth-Grade Students toward Inventing a Statistic 
for Variability

9.3.1.1  Introduction

The first case study addresses students’ introduction to the concept of variability, a 
topic studied by numerous scholars (e.g., Ben-Zvi, 2004; Garfield & Ben-Zvi, 2005; 
Konold & Pollatsek, 2002; Lehrer et al., 2014; Makar & Confrey, 2005; Wild & 
Pfannkuch, 1999). Confrey and Jones chose to approach the topic using a learning 
map organized around big ideas, which were broken down further into constructs 
with underlying LTs (Confrey, 2015). These LTs accurately characterize typical 
responses from students in increasing levels of sophistication. The map is used for 
two primary purposes: to provide professional development opportunities for teach-
ers and to develop diagnostic assessments to gauge student progress.
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9.3.1.2  The Learning Goals and the Designed Learning Process

Confrey and Jones started with the learning goals from the Common Core State 
Standards for Mathematics (Common Core State Standards Initiative, 2010) in the 
United States for sixth-grade (age 11) statistics. Through analyzing the web of con-
cepts and big ideas underpinning the learning goals (cf. Fig. 9.1(2a)), they designed 
a learning map that was hierarchically organized around nine big ideas identified by 
Confrey. The big ideas were subdivided into one to five relational learning clusters, 
which were made of sets of mutually supporting constructs. Each construct was 
described with a corresponding learning trajectory consisting of an ordered set of 
indicators of increasing sophistication. These reflect the likely student behaviors 
and thinking that would emerge as they progressed through instruction (see Table 9.1 
for the first two constructs). In statistics one big idea was “display data and use 
statistics to measure center and variations in distributions.” This big idea was 
divided into three relational learning clusters: (1) displaying univariate data, (2) 
measuring data with statistics, and (3) displaying bivariate data. Each learning clus-
ter was divided further into a set of connected constructs. The constructs for dis-
playing univariate data were (1) gathering data and describing variability, (2) 
displaying data in novel and traditional ways, (3) comparing different displays of 
the same data, and (4) shape of univariate data.

The LTs were based on a synthesis of literature from statistics education research 
and previous iterations of the learning trajectory. For example, prior to this study, 
many of the behaviors and thinking about variability were articulated in the related 
learning cluster on modeling. However, after the foundational role of this thinking 
was observed in their studies for making sense of data displays and statistics, they 
restructured the map to include these ideas in the data display cluster. In each itera-
tion of the LT, patterns in student thinking are reinforced, but nuanced variations or 
even new ways of thinking emerge and are added into the LTs.

The overarching learning goal of the trajectory for displaying univariate data was 
to support students to develop a conception of variability that was represented in vari-
ous data shapes created by displaying data and to lay the groundwork for needing a 
measure of variability in later trajectories (Konold & Pollatsek, 2002; Lehrer & Kim, 
2009; Petrosino, Lehrer, & Schauble, 2003). The goal was influenced by Confrey and 
Jones’ theories about learning (cf. Fig. 9.1(3b)) the key elements of which include the 
role of invention and of transformation (accommodation in Piagetian terms). Another 
key element of their approach was to foster discourse among the students, so they 
could learn from each other’s ideas and contributions. Teachers play a central role in 
bringing forth this thinking and building classroom norms valuing articulation and 
sharing of ideas. Their belief is that the LTs should also communicate the kinds of 
student statistical thinking teachers should attend to and how they fit together into 
trajectories of increasingly sophisticated thinking. Thinking about variability, dis-
playing one’s data, and comparing those displays prepare the ground for a discussion 
of data shape and statistics (Lehrer, Kim, & Jones, 2011; Petrosino et  al., 2003; 
Schwartz & Martin, 2004). Only after students have productively struggled with 
these ideas are they ready to invent statistics and learn conventional definitions.

9 Statistics Learning Trajectories
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9.3.1.3  The Learning Activities and the Observed Learning Process

Confrey and Jones developed instructional materials by drawing on prior work by 
Lehrer (2016) and Confrey (2002), and they made use of TinkerPlots (Konold & 
Miller, 2005) and Data Games (Finzer, Konold, & Erickson, 2012) for data explora-
tion and display. Hence, the learning activities were based on their knowledge of 
teaching strategies and resources for statistics, their knowledge of how students might 
learn about univariate data displays, and their understanding of the current knowledge 
of the students who would be in their study (cf. Fig. 9.1(2 and 3)). Diagnostic assess-
ment to gauge student learning was also coordinated with the LTs (cf. Fig. 9.1(4)).

The following case involved 15 sixth graders (age 11) who met for 3 hours per 
day in a classroom on their research site for 1 week. The purpose of the study was 
twofold: (1) to confirm or modify the LT and (2) to collect samples of student work 
for professional development purposes. Thus, the research question under investiga-
tion was: What patterns of behavior, forms of representation, and ways of talking 
are in evidence among students when introduced to the ideas of multiple sources of 
variability and displaying univariate data, and how might these patterns be repre-
sented so that they are intelligible and useful to teachers?

The case study provides an image of student learning and how this learning is 
represented in the two constructs in Table 9.1. Throughout the description of student 
activity, the relevant levels are referenced within that construct. Note that in this 
description, Confrey and Jones are assessing students’ knowledge and thinking (cf. 
Fig. 9.1(4)) in order to inform them whether the observed patterns of behavior are 
consistent with the indicators listed in Table 9.1.

Gathering Data and Describing Variability

To engage students with the problem of creating variable data (the first two levels of 
this construct), they asked students to consider three different questions: What is the 
circumference of the fountain in our courtyard?, How many M&Ms. are in one indi-
vidually wrapped package?, and What is the circumference of a middle schooler’s 
head? To highlight the challenge of variability, they left the data collection strategies 
open-ended and provided crude measurement tools, such as string and rulers. Under 
these circumstances, students produced significant measurement error.

Student measurement mistakes, though, were a resource for them to make sense of 
the various sources of variability in the data. To elicit a conversation about sources of 
variability in the data (level 4 in Construct 1, Table 9.1), the teacher posted unordered 
lists of the students’ data and asked them in a whole class conversation “what do you 
notice when you look at all this variability?” They also discussed relative magnitude 
of the different sources they identified (level 5) by asking questions such as “what 
caused the variability in the different types of data?” Table 9.2 provides short exam-
ples of the kinds of student comments that are common to this discussion.

P. Arnold et al.
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Table 9.1 LT indicators for two constructs

Constructs

Construct 1: Gathering data and describing variability

  1. Recognizes target phenomenon and asks questions about it
  2. Creates and uses data as information to answer a question
  3. Describes that some questions have uncertain answers because of variability in the data
  4. Identifies sources of variability in data
  5. Estimates magnitude of different sources of variability
  6.  Categorizes sources of variability (measurement error, natural variability, production 

error)
  7. Anticipates variability in data across different samples
  8. Describes or predicts how a change in process affects variability
Construct 2: Displaying data in novel and traditional ways

  1. Displays data without reference to investigation
  2. Shows basic familiarity with bar graphs, pie charts, and dot plots
  3. Identifies or creates titles, labels, or keys
  4. Orders data from least to greatest without distinguishing scale from data
  5. Stacks individual values or within groups, intervals, or bins
  6. Scales using equal intervals
  7.  Creates dot plots and bar graphs, knows the distinction between categorical and 

continuous data, and explains choices about scale, order, and grouping
  8.  Creates histogram and circle graph, explains choices about intervals, and provides either 

count or percent within each interval
  9. Makes and justifies choices about displaying data in traditional and novel ways

Table 9.2 Key concepts and student comments about variability

Data context Student comments

Individual measurements of the same 
object (in our case, the fountain in the 
courtyard)

“…with the fountain it’s like whoa! What happened 
here? I see 461 and I see like 2010!”
“people could have made mistakes when they 
measured”
“people might leave a gap when they flip over the 
ruler”

Number of M&Ms. in different bags “the factory probably didn’t measure out the exact 
amount of M&Ms”
“we also could have counted wrong”
“It’s possible to miscount 10, but it’s not extremely 
likely”

Individual head circumferences “…it’s kind of common that everyone got different 
head circumferences, because not everyone’s head is 
the same size”
“the variation might be the result of different sized 
heads, but they also might be the result of mistakes 
people made”

9 Statistics Learning Trajectories



304

Students observed that the variability in the fountain data was a fundamentally 
different kind of variability than the other two types, and they drew on their data 
creation experiences to generate theories about the kinds of errors that likely pro-
duced the variability. Students then shifted from describing data as measurements to 
calling it “opinions,” indicating their feeling that there was so much variability in it 
that it was not “scientific” enough to be called data. This conversation ended with 
the teacher asking, “What would the data look like if a class of students similar to 
us measured the same fountain?” This question was asked to evoke early ideas about 
sample-to-sample variability (level 7). Students quickly responded that the data 
would look “similar to ours”, that their data would have “the same kinds of chaos as 
our data,” and that it would “have a similar median and mean, but the numbers will 
be different.”

These themes ran throughout the rest of the activities. For example, they were the 
driving motivation for remeasuring the fountain more precisely to see how a change 
in process affects variability (level 8) and creating paper hats using their measure-
ments to estimate the extent to which measurement error contributed to the vari-
ability in the head circumference data (level 5).

Displaying Data in Novel and Traditional Ways

Confrey and Jones provided opportunities for students to invent strategies for dis-
playing their fountain data in a way that helped them think about the true length and 
the variability in the measurements. Students revealed a variety of strategies for 
displaying their data, many of which had been documented by other researchers 
(e.g., Lehrer & Schauble, 2002). Here two of the four displays that students invented 
are presented to illustrate the ways student thinking corresponds to the learning map 
and to show how student thinking developed as they invented and revised their 
displays.

Group 1 produced a dot plot without distinguishing between the data and the 
scale (Fig. 9.2). They explained that they wanted a display that clearly displayed 
every measurement observed and how often each measurement was observed. They 
made the decision to order the data from least to greatest (level 4), without repre-
senting gaps, but with stacking of identical values (level 5).

Group 2 created a histogram (that they referred to as a box plot) with 100 cm 
intervals (Fig. 9.3). Similar to group 1, they ordered the data from least to greatest 
(level 4), but, in contrast, they grouped and stacked all values within a 100 cm inter-
val (level 5) and created an interval scale (level 6). These choices created a very 
different representation of the data, which provided a context to discuss the trade- 
offs between the two.

As they created these invented displays, the students sometimes showed evi-
dence of thinking at the lower three levels of the construct as they sometimes con-
sidered decisions without referencing the question about the fountain circumference, 
referred to approximate notions of conventional displays, and created titles and 
labels. However, the most significant intellectual work for students came when they 
had to consider decisions about order, grouping, and scale (levels 4–6). For exam-
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ple, the students had to decide if the display scale needed to include values that were 
not observed. Their early decisions about data displays were not driven strictly by 
convention, but more by their desire to make sense of variability and communicate 
meaning to their peers. Only after wrestling with these issues were data display 
conventions (levels 7 and 8) introduced, so the conventions could be rooted in stu-

Fig. 9.2 Group 1 data display

Fig. 9.3 Group 2 data display
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dent ideas and displays. When given the opportunities to build their ideas about 
statistical thinking from accessible forms of variability, students often demonstrate 
the behaviors, strategies, and thinking described in these LTs.

9.3.1.4  Discussion and Future Recommendations

This case illustrates the potential value of designing a learning map based on an 
analysis of the big ideas and the web of concepts that need to be included in the 
LT for supporting teachers to understand student thinking. It also illustrates the 
need for several iterations of LTs and reflection and analysis on students’ responses 
in the development of that map. By explicating in detail indicators of likely stu-
dent thinking as they progress through the LTs, this research across multiple set-
tings is at the stage of developing a dynamic representation of student thinking 
that can serve as an orienting framework for curriculum and assessment design. A 
product of the research for teaching is the learning map and its LTs including 
resource material for teaching and student work for teacher professional develop-
ment which can make patterns of student thinking intelligible to teachers.

The advantage of the approach outlined in this case is that the LTs for data, vari-
ability, and statistics are related to LTs that Confrey and her team have developed 
and refined across all big ideas for middle grade mathematics. This provides teach-
ers a comprehensive resource to have access to syntheses of learning trajectories. In 
addition, the map makes it possible to study what the effects of an overall approach 
informed by LTs would be as students accumulate experience with the map. Too 
often LT studies are difficult to continue across grades as students switch teachers 
and classes. In this way, research can contribute to the building up of infrastructure 
for supporting the long-term development of statistical concepts, a facet that is lack-
ing in current curricula.

9.3.2  Case Study 2: Preparing Ninth-Grade Students to Make 
the Call—Learning How to Make a Judgment When 
Comparing Two Box Plots

9.3.2.1  Introduction

The second case study illustrates a LT which started with a well-defined learning 
goal but required thought about the underpinning concepts that students needed to 
experience. Because the learning goal was new to the curriculum and resources did 
not exist, Arnold and a research team of two statisticians and nine teachers collab-
oratively worked on inventing language to describe the statistical ideas and design-
ing learning strategies and resources. The challenge in this case study was to develop 
a set of structured learning experiences that would enable grade 9 (age 14) students 
to “discover” collectively the criteria for “making the call”—making a judgment 
when comparing two box plots.
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9.3.2.2  The Learning Goals and the Designed Learning Process

The learning goal arose from a study on the reasoning processes of students in a 
grade-9 class. The students were learning how to make an inference when compar-
ing two box plots and were making the call based on a variety of criteria (Pfannkuch, 
2007). From the student responses, it was clear there was no agreed understanding 
between the teacher and her students as to what constituted support for an inference. 
Furthermore, the investigative question that the students were exploring was about 
the populations, but the students’ reasoning was based on describing the sample 
statistics. In New Zealand, the curriculum (Ministry of Education, 2007) and subse-
quent national assessment required students to make informal inferences (see Chap. 
8) about populations from samples for comparative situations. This created the 
problematic situation. Hence, a developmental pathway was proposed for compara-
tive situations from grade 9 to grade 12 for justifying how to make a call or make a 
decision about whether condition A tends to have bigger values than condition B 
back in the populations (Wild, Pfannkuch, Regan, & Horton, 2011). The problem 
for this study was how to create a LT to enable students to understand the rationale 
and concepts underpinning making the call using the rule as outlined in Fig. 9.4.

In cognizance of the research literature and an analysis of the web of concepts 
(cf. Fig.  9.1(2a)) needed for making the call, the research team determined that 
enabling students to make the call depended on building their understanding of a 
network of underlying interrelated concepts, the key concepts identified being sam-
ple, population, and sampling variability. They considered sampling variability rea-
soning to be at the core of statistical practice but noted it had only recently received 
attention in school curricula and instruction. Typically, students reach the final years 
of high school, where they are explicitly introduced to notions such as basic statisti-
cal inference from confidence intervals, without fundamental knowledge or 
 experiences of sampling behavior. Despite the importance of considering variation 
in statistics, researchers have only in the last two decades begun to document stu-

“How to make the call” by Age Level

At all Ages: A
B

If there is no overlap of the boxes, or only a very small overlap
make the call immediately that B tends to be bigger than A back in the populations

Age-14: the 3/4-1/2 rule
A
B

If the median for one of the samples lies outside the box for the other sample
(e.g. “more than half of the B group are above three quarters of the A group”)

make the call that B tends to be bigger than A back in the populations
[Restrict to samples sizes of between 20 and 40 in each group]

Apply the following when the boxes do overlap ...

Fig. 9.4 How to make the call at ninth grade (age 14) (cf. Wild et al., 2011, p. 260)
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dents’ conceptions of variability. Therefore, a carefully structured set of learning 
experiences to support the LT was required if students were to understand and 
appropriate the sampling variability reasoning underpinning statistical inference. As 
Garfield and Ben-Zvi (2007) stated in relation to distribution, center, and variability, 
students “need help in developing an understanding of what these concepts actually 
mean and how to reason about them in an integrated way” (p. 386).

9.3.2.3  The Learning Activities and the Observed Learning Process

This case study reports on one class, although the research was undertaken with a 
number of classes (see Arnold, Pfannkuch, Wild, Regan, & Budgett, 2011). The 
planning and preparation phase involved trialing potential learning activities with 
the research team and making continuous changes to how the development of the 
three key concepts could be approached. Changes to the LT were also made when 
implemented in the classroom. The research question was: How can grade 9 stu-
dents be facilitated to consistently and coherently make a statistical inference?

As already signaled, the three key concepts of population, sample, and sampling 
variability were important to support the LT for making the call. Specific learning 
materials and activities were created to support the development of these concepts 
and to support the LT (Table  9.3), which comprised 15 lessons. Some activities 
were deliberately planned and developed from the outset with the LT in mind, and 
some activities were developed as part of the ongoing reflection on the LT through-
out the implementation in this class. In the description that follows are some 
vignettes of the learning experiences including examples of how and why the LT 

Table 9.3 LT for the development of key concepts when comparing two box plots

LT for learning how to make a judgment when comparing two box plots (n ≈ 30)

1: Sampling data from a population

  • Identify population
  • Pose and critique investigative questions about the population
  • Recognize the need to use a sample to answer a question about the population
  •  Acknowledge that samples from the same population for the same variable provide similar 

information
  • Appreciate that inferences about a population can be made from a sample
2: Sampling variability

  •  Recognize sampling variability in the center across multiple samples of the same size from 
the same population

  •  Appreciate sampling variability in the center and the extent of the overlap when comparing 
two box plots across multiple samples of the same size from two different populations

3: Developing criteria for making the call

  •  Recognize the salient features to focus on when comparing two groups (e.g., center, 
shift, overlap)

  •  Acknowledge that there are two situations for making the call when comparing two 
groups
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was modified in response to the research team’s observations during the preparation 
stage and the collaboration of Arnold and the teacher in the classroom during the 
implementation stage.

Population and the “Population” Bags

As the “population” of Karekare College students (a fictitious college) was going to 
be used extensively throughout the teaching implementation, it was important that 
students in the class became familiar with the data that was available. The popula-
tion of Karekare College students was represented using a plastic bag filled with 
data cards (see Fig. 9.5). Each data card represented 1 student and contained 13 
different variables relating to the student. To develop familiarity with the data, stu-
dents had to work out what the different variables were on the data cards.

During subsequent lessons, whenever the teacher referred to Karekare College, 
she nearly always showed the population bag (see Fig. 9.5), indicating that she was 
referring to the whole population, not just the data cards that the students had 
selected. The ability to keep reminding students that they were making an inference 
about the population by holding up the bag was an addition to the LT by the teacher, 
which was regarded by her and other teachers as an important facet in aiding stu-
dents’ statistical reasoning processes. Giving students an image of the population 
was an issue that was extensively debated by the research team, because the 
Karekare College data had been randomly selected from a large CensusAtSchool 
New Zealand (2003) database and hence could be considered a sample, but then the 
database was also a sample itself. By considering students’ understanding of these 

Fig. 9.5 Karekare College data cards and the population bag
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issues and the fact that they were novices (cf. Fig. 9.1(3)), the research team decided 
to view the Karekare College students as the population. Although the population 
bag provided a good visualization of the population, it was insufficient, as a posttest 
revealed students did not have images for or contextual knowledge about popula-
tion distributions. Hence, the assessment (cf. Fig. 9.1(4)) led to the creation of an 
additional LT.

Developing the Idea of Using a Sample

Having established the population and the variables for which data were available, 
the students posed a variety of investigative questions. The teacher and Arnold 
together identified which of the variables would be used for the activity where the 
concept of sample was first addressed. From the different investigative questions 
that the students posed, one was selected to be explored further. The students were 
to answer the question: “What are typical popliteal1 lengths of students at Karekare 
College?” The teacher, as part of the planned LT, asked them how they might go 
about answering this question, to which they ultimately replied that they would be 
“putting [the data] in a graph.” There was then some discussion and the students, 
working in small groups each with their own population bag, started to graph all 
(616 students) of the student data, using the data cards and a pre-prepared grid. 
After about 10 minutes, some general discussion started about “students” not all 
fitting onto the grid. A student said, “I’m not going to organize the whole college 
into this,” at which point the teacher asked, “Is there a better way than looking at the 
whole lot?” The ensuing discussion and action resulted in students continuing until 
they had filled up their group’s grid or felt that the shape of the graph was not chang-
ing despite adding more data cards, i.e., they did not use the whole population, just 
part of it. The teacher allowed the idea of using a sample, rather than the whole 
population to answer the question, to come from the students—she did not say to 
her class at the start, “Take a sample and use this to answer the investigative ques-
tion.” From the observed responses of the students, it was felt that the students were 
developing the idea that a sample could tell them something about the population. 
This observation was reinforced when comparing pre- and posttest student assess-
ment responses as in the posttest students specifically referred to the population of 
interest in their investigative questions and in their conclusions.

Sampling Variability

Sampling variability was explored in a number of ways. In the lesson described 
previously where sampling was first introduced, the students had created their 
graphs using the actual data cards, which provided a strong visual display. The 

1 The popliteal length is a measurement taken on the back of the leg from behind the knee to the 
floor when a student is seated.
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teacher gave students time to walk around the class and see how their graph com-
pared with other graphs in the class. The students looked at features that were simi-
lar and features that were different. All groups gave an indication of where they felt 
the middle of their popliteal length data was, and across the class the set of middle 
popliteal-lengths for the different groups lay within a 3–4 cm band. The students 
were able to see that the middle popliteal length was similar even though the sam-
ples were different.

Sampling variability was a focus again in a later lesson about making the call 
when students were looking at the patterns across different samples with respect to 
two variables: student heights disaggregated by gender and time taken to get to 
school disaggregated by mode of transportation. These two examples were deliber-
ately chosen for the LT as they captured very clearly the two situations described in 
Fig. 9.4. Note that students were observing box plots, with only the box part drawn, 
a modification made to the LT when trialed with the research team in order to focus 
student attention on the salient features for making the call (see Fig. 9.6 and Arnold 
et al., 2011).

Making the Call

When students were looking for patterns across the sets of graphs, Arnold and the 
teacher realized that additional prompts were required because information about 
the shift and the position of medians was not forthcoming. According to Bodemer, 
Ploetzner, Feuerlein, and Spada (2004), leaving students to generate hypotheses 
about relationships on their own is very hard, and they may not pay attention to 
salient features. Bodemer et al. (2004) suggest that learners’ interactions with learn-
ing materials should be structured so that hypotheses are formulated only on one 
relevant aspect of the visualization at a time, and therefore in a modification to the 
LT, the students were guided to first focus on the distributional shift and then on 
which median was bigger.

After students had sorted their samples for each question, the teacher and class 
reflected on the process. They described and abstracted the patterns and criteria for 
making a call about what was happening back in the two populations. This allowed 
students an opportunity to extract relevant principles (Bakker & Gravemeijer, 2004). 
The students noticed that in the samples for heights, the boxes were close together, 
whereas in the samples for time taken to get to school, the boxes were apart 
(Fig. 9.6). They named these two situations about the relative location of the boxes 
Situation 1 and Situation 2, respectively.

In the following excerpt, they explore the differences between the two situations 
(see Fig. 9.6):

Teacher: So in our first situation we’ve got the boxes. They’re all overlapping; some 
of them are going this way and some of them are going the other way. The medi-
ans are very close together, and the medians are also within the overlap of the 
boxes. In the second situation, how is it different? What’s different about the 
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overlap here? Is there no difference between the overlap on these boxes and these 
boxes?

Student: They’re not overlapped so much.
Teacher: They’re not overlapped so much. No, they’re not. Okay, do they all 

overlap?
Student: No.
Teacher: No, so when they do have an overlap, they don’t overlap much and other-

wise they don’t overlap at all. What can you tell us about the medians in this one?

Fig. 9.6 Box plots of two situations: (a) samples comparing heights of girls and boys (on the left) 
and (b) samples comparing time taken to get to school by bus and walking (on the right)
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Student: They’re not overlapped.
Teacher: They’re not in the overlap.

Visually and verbally, the students and teacher described differences in the two 
situations in terms of shift, overlap, and location of the medians. The students and 
teacher started to develop the criteria and language for making or not making a call. 
Collectively they spontaneously used hand gestures to describe the two situations, 
close (Figs. 9.6a and 9.7a) and apart (Figs. 9.6b and 9.7b), with vibrations to show 
the effect of sampling variability. Gestures according to Radford (2009) are a pre-
cursor to verbal conceptualization. The use of these gestures and the naming of the 
two situations, as Situations 1 and 2, by the teacher and students were built into the 
LT in subsequent classroom implementations.

The students also noticed that in Situation 2, there were consistent messages 
from the samples about the relative location of the two medians to one another back 
in the populations, allowing them to determine the larger of the two population 
medians, i.e., the median time to school by bus was always longer than the median 
time to school by walking. This was not the case in Situation 1. The students noted 
that sometimes the boys’ median height was higher than the girls’ median height 
and sometimes it was the other way around. Through recognizing and reasoning 
from the patterns in the two situations, they “discovered” collectively the criteria for 
making a call when two box plots are compared and the boxes overlap (age 14, 
Fig. 9.4) and do not overlap (at all ages, Fig. 9.4).

After further reinforcement of how to make the call for comparative situations, 
the students were given some practice material. The practice material given to the 
students had each student use a different sample from the same population as they 
worked on the same investigative question. However, this had the effect of rein-
forcing the idea that they could use multiple samples to make the call—an unfor-
tunate side effect that had not been anticipated. Therefore, in a modification to the 
LT, all the practice material involved the same single sample for all students in the 
class, reflecting what happens in reality, for each investigative question. The use 
of multiple samples from the same population was appropriate for developing the 
 understanding of making the call and sampling variability; however, it was not 
appropriate for subsequent practice as it created an unintended confusion for 
students.

Fig. 9.7 (a) Hands close together mimicking two box plots overlapped (on the left) and (b) hands 
apart mimicking two box plots with little overlap (on the right)
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By the end of the LT, based on an analysis of posttest data and individual student 
interviews, these students were beginning to understand how to make a statistical 
inference. They were (1) articulating the uncertainty embedded in an inference by 
drawing upon ideas about sampling variability, (2) making a claim about the popu-
lation from the sample, and (3) explicitly providing the evidence they used from the 
data such as distributional shift, overlap, position of the medians, and the decision 
guide that enabled them to make or not make a call (cf. framework of Makar & 
Rubin, 2009; Chap. 8). They also seemed to understand how and why the use of the 
overlap and position of the medians relative to the overlap informed their use of the 
rule to consistently and coherently make an inference (see Arnold, 2013; Arnold 
et al., 2011).

9.3.2.4  Discussion and Future Recommendations

Working together to plan the LT and the carefully structured set of learning experi-
ences to support the LT allowed the teacher, Arnold, and wider research team to get 
a better sense of the possible responses and outcomes for students. Modifications to 
the LT occurred through extensive debate within the research team, in response to 
students’ difficulties during the lesson, from spontaneous reactions in the classroom 
to the issue under consideration, through reflection on the lesson or an in-depth 
analysis of student data after the lessons. The LT for developing the concept of mak-
ing the call with grade 9 students has been the basis for teacher professional devel-
opment and subsequent use in their classes.

Defining the learning goal and analyzing the web of concepts are essential ingre-
dients for the construction of LTs. The rich interrelated conceptual repertoire under-
pinning statistical ideas needs further research including finding ways of developing 
new conceptual understandings that are not present in current curricula. As this case 
illustrates, LTs using DBR can assist in the development of new approaches to sta-
tistics and in understanding students’ reasoning processes. Other topics in statistics 
need a similar focus to understand teaching and learning processes better, to gener-
ate local theories of instruction, and to explore and identify interesting phenomena.

9.3.3  Case Study 3: Preparing Teachers to Develop 
a Conceptualization of Repeated Sampling for Inference

9.3.3.1  Introduction

The third case presents a LT for assisting adult learners (mostly secondary and post- 
secondary mathematics and statistics teachers) in conceptualizing repeated sam-
pling approaches to statistical inference, with particular attention to the role of 
probability models in that conceptualization. The teachers had already been exposed 
to formal hypothesis techniques. The intent of this case is to illustrate how and why 
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a team of instructors working in real graduate-level classrooms with a designed LT 
added further learning experiences in response to their observations on the teachers’ 
reasoning processes.

9.3.3.2  The Learning Goals and the Designed Learning Process

The focus of the LT in this case study was to assist teachers in conceptualizing a 
repeated sampling approach to inference and to consider their learning with this 
approach. In a repeated sampling approach to inference, students and teachers 
should be conceiving of the observed outcome (from an observational study or an 
experimental design) as resulting from a process that is repeatable and that repeat-
ing the process may result in a different outcome. Thus, the question becomes: How 
unusual is what happened in the particular instance that we know about already? In 
other words, what is the likelihood of a particular outcome occurring if a process is 
repeated many times?

Lee and Doerr considered learners’ use of probability models as essential to 
conceptualizing a repeated sampling approach to inference. To produce the LT, they 
considered the research literature and curriculum development in recent years that 
had focused on understanding inference and using simulation to enact resampling 
approaches (cf. Fig. 9.1(2 and 3)). For example, Saldanha and Thompson (2002) 
reported that when students can visualize a simulation process through a three-tier 
scheme, they develop a deeper understanding of the process and logic of inference. 
This scheme is centered around “the images of repeatedly sampling from a popula-
tion, recording a statistic, and tracking the accumulation of statistics as they distrib-
ute themselves along a range of possibilities” (p. 261). Lane-Getaz (2006) offered 
the simulation process model (SPM) to describe the process of using simulation to 
develop the logic of inference starting with a question in mind, “what if,” to investi-
gate a problem including three tiers: population parameters, random samples, and 
distribution of sample statistics. In line with Lane-Getaz’s suggestion, Garfield and 
Ben-Zvi (2008) and Garfield, delMas, and Zieffler (2012) used a generalized struc-
ture to the logic of a simulation approach to inference in their curriculum materials. 
Their structure includes specifying a model, using the model to generate simulated 
data for a single trial and then multiple trials, each time collecting a statistic of 
 interest, and finally using the distribution of collected summary measures to com-
pare observed data with the behavior of the model.

Saldanha and Liu (2014) described work with learners in repeated sampling 
tasks and made the case that students should develop a stochastic conception of an 
event that “entails thinking of it as an instantiation of an underlying repeatable 
process, whereas a non-stochastic conception entails thinking of an event as unre-
peatable or never to be repeated” (p. 382). Such a stochastic conception includes 
seeing an event as an expression of some process that could be repeated under 
similar conditions that produces a collection of outcomes and “reciprocally, see-
ing a collection as having been generated by a stochastic process” (p. 382). All 
this research literature fed into the development of the LT (cf. Fig. 9.1(2)) includ-
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ing the influence of the modeling perspective of Lesh and Doerr (2003) and the 
importance of a careful model development sequence for learners. Such a model 
development sequence emphasizes how learners develop their own models of a 
context within a LT.

Lee and Doerr’s learning goal was for teachers to develop a stochastic concep-
tion of events and a generalizable model that they could use to approach inference 
situations using a repeated sampling approach and for them to be able to assist oth-
ers in using such an approach (cf. Fig. 9.1(1a)). This model includes understanding 
the relationships among the problem situation, physical enactments of sampling, 
representations of those enactments, computer representations, and the underlying 
randomization (i.e., the probability models discussed above), the distribution of the 
statistics of interest, and how to interpret and use such a distribution (a sampling 
distribution) to make a decision. In order for learners to develop that model (and the 
entailments needed for teaching that model), they hypothesized that they should be 
able to make connections to and use the underlying probability model of repeatable 
actions with unpredictable outcomes.

The initial LT of Lee and Doerr is depicted in Fig. 9.8. This represents the key 
experiences they felt would lead to a generalizable model for how to use a simula-
tion approach to inference. The key experiences in the trajectory are bolded in the 
center, while the statistical concepts that should be emphasized at each phase in the 
trajectory are noted on the right, and pedagogical considerations that could be use-
ful in participants’ own teaching practices are noted on the left. Both the statistical 
ideas that needed to come to the fore and pedagogical issues could help inform the 
development of teachers’ understandings.

Fig. 9.8 Initial planned LT for a repeated sampling approach to inference
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9.3.3.3  The Learning Activities and the Observed Learning Process

Lee and Doerr’s research goals were to (1) develop and test a sequence of tasks in a 
LT that could achieve their learning goals for a particular group of adult learners and 
(2) identify key conceptualizations that seem to afford a stronger development of a 
generalized model of repeated sampling approach to inference. The approaches 
used in DBR (Bakker & van Eerde, 2015), their understanding of the literature on 
probability models and repeated sampling approaches to inference, and the repre-
sentations and activities used by others (e.g., Lee, Angotti, & Tarr, 2010) informed 
their design of the LT (cf. Fig. 9.1(2)). The plan for the initial LT was designed dur-
ing the 4 months before the course began and then revised during the first 7 weeks 
of the course as they got to know their learners. The course was taught by 4 instruc-
tors (led by Lee and Doerr) over 15 weeks in a once-a-week 3-hour meeting format 
to 27 teacher participants across 2 institutions.

What follows is a description of the LT at the point where teachers are comparing 
two proportions, the fifth task, and the consequent adjustments made to the LT 
based on their ongoing analysis of their learners’ successes and struggles.

For the fifth task, they wanted teachers to apply their developing repeated sam-
pling model for understanding the likelihood of a single proportion to the compari-
son of two proportions from an experimental design study (see fourth and fifth 
bolded goal in the initial LT in Fig. 9.8). They modified the Dolphin Therapy task 
(Catalysts for Change, 2012) to ask teachers to create a by-hand simulation using 
index cards that would answer the question: Can swimming with dolphins be thera-
peutic for patients suffering from depression? In the experiment, in the dolphin- 
swimming group (treatment), 10/15 patients improved their depression, while 3/15 
improved in the control group. The question is whether that result indicates that 
swimming with dolphins is therapeutic for depression. The teachers were given 30 
index cards marked with results from the study (13 cards marked “YES” for those 
benefiting with swimming with dolphins, and 17 cards marked “NO”).

Lee and Doerr anticipated that how to conceive the random assignment in groups 
as a repeatable action would not be obvious, an important consideration when 
designing a LT. A variety of methods were created by teachers. After the discussion 
to draw out the importance of the assumptions of random assignment and that a 
patient’s outcome does not change regardless of group assigned, the class eventually 
agreed to shuffle the cards representing the 30 patient outcomes and deal cards into 
2 groups of 15. By repeating this action and computing the difference in proportion 
of YESs, they could examine a distribution of the difference in proportions on a 
shared class dot plot and consider how likely it is that the benefits of therapy reported 
in the original study happened by chance alone.

The Dolphin Therapy hands-on experience was followed by a sixth task that was 
another model exploration activity where the sampling distribution was explored 
again in Statkey (Lock, Lock, Morgan, Lock, & Lock, 2013) and TinkerPlots 
(Konold & Miller, 2005). Many of their teachers seemed to struggle with the multi- 
tiered process involved in doing a simulation through repeated sampling for this 
comparing proportions task. It was sometimes difficult for them to keep in mind all 
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the steps of the process that were happening in the computer. They also struggled 
with interpreting the sampling distribution in terms of how to use it to make an 
inference. The seventh task provided an opportunity for teachers to further explore 
the structure of their developing models by reading two articles (Lane-Getaz, 2006; 
Lee, Starling, & Gonzalez, 2014) in which diagrams were used to illustrate the 
simulation approach.

In the weekly team meetings, the four instructors (including Lee and Doerr) 
discussed the teachers’ struggles with the repeated sampling approaches used in the 
two simulation tasks. They were not convinced that their learners had developed a 
general model for how to use a simulation approach to inference that they could 
apply to other situations and use for teaching students to use such an approach. 
Thus, they designed a new eighth task to allow teachers an opportunity to express 
their developing conceptions of the simulation process in terms of how they would 
help students understand the process. They considered that this task was an oppor-
tunity for teachers to explore their representations of the structure of models of 
repeated sampling for drawing inferences that would serve a pedagogical purpose. 
That is, the intended audience for this representation would be the future students of 
the teachers, and this representation hence served a perceived purpose of explaining 
the structure of models of repeated sampling to other learners. Teachers worked in 
small groups to do the following:

Suppose you were going to use a repeated sampling approach with your students to help 
them use a simulation (with physical objects or computer models) to investigate if an 
observed statistic is likely or unlikely to occur. Draw a diagram you could use to help students 
understand the general process used for applying randomization techniques for solving 
these types of tasks.

Both during class and in the post-class analysis, the instructors noticed the wide 
variety of representations expressed in teachers’ diagrams. Many teachers expressed 
some aspect of the modeling process from the real-world problem (though not 
always explicit) and that a collection of statistics is used for examining likelihood; 
however, their diagrams were much less explicit about the “randomize and repeat” 
phases in a simulation approach (e.g., see sample diagrams in Fig. 9.9).

Lee and Doerr’s analysis of teachers’ diagrams and the classroom conversations 
led to the design of an additional ninth task that was structurally similar to the 
Dolphin Therapy task but required an adaptation of their previous model since it 
involved comparing means for two unequally sized groups. In addition, they delib-
erately changed the form of the manipulatives (using unmarked flat wooden craft 
sticks rather than pre-marked index cards) to further push the learners in under-
standing the role of randomization in their model of repeated sampling. The teach-
ers had varied approaches to recognizing what the repeatable action was in the 
scenario. Many used the craft sticks in some way, with slight variations from each 
other, to indicate scores and repeatedly reassigning those scores into two different 
unequal sized groups. Some teachers really struggled and did not create viable ways 
of representing the scores or reassignment to groups. Their attempts at applying their 
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Fig. 9.9 Two samples of teachers’ diagrams
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model for a repeated sampling approach to inference to create this simulation in 
such a different context really illuminated the fragility of their models and concep-
tual understanding.

9.3.3.4  Discussion and Future Recommendations

This case illustrates how an ongoing analysis and instructional experiences impact 
the development of instructional tasks hypothesized as needed to assist learners in 
further developing the intended learning goals. Retrospective analysis of learners’ 
work also can be used to modify a LT, in this case for using a simulation approach 
to inference. This analysis led to a realization that more attention needs to be given 
to the modeling process, the explicit role of probability in inference, and use of 
probability language. There is a two-part modeling process that should be made 
explicit. The first is to create a local specific model of the real-world context in sta-
tistical terms. The second is creating a simulation process that models the repeatable 
actions in the original problem and can be used to generate random samples. Most 
previous works have combined these two aspects into a single “model” or “popula-
tion” level. There seems to also be a need to be more explicit concerning building a 
distribution of sample statistics, viewing the distribution as an empirical probability 
distribution, using the distribution to reason about the observed statistic, and mak-
ing a claim about the chance of that observed statistic occurring. Lee, Doerr, Tran, 
and Lovett (2016) elaborate on these suggestions. It is important to recall that learn-
ers in this case had previous exposure and experience with learning traditional infer-
ence techniques, and some had experiences in teaching such techniques. There were 
only two who had previous experience in using a repeated sampling approach in 
their own curriculum materials with their students. Thus, the initial LT and sequence 
of tasks were designed with these learners in mind (cf. Fig. 9.1(3)). Researchers and 
teachers working with learners first engaging with inference through repeated sam-
pling will need to adapt and adjust the LT as needed.

The LT discussed in this case study demonstrates how LTs are useful for identi-
fying and exploring learners’ reasoning processes, building new conceptual 
approaches for learning statistics, contributing to the research knowledge base, and 
directing the focus of future research.

9.4  Conclusion

LTs have been critical in the development of statistics education research and in 
enhancing students’ learning in the classroom. LTs are not just a sequence of les-
sons; rather they are deliberately planned and modified based on careful analyses of 
the research literature, the web of concepts underpinning the learning goal, and the 
student responses. This chapter has focused on researchers using LTs, but we rec-
ommend that teachers, as action researchers in their own classroom, use LTs to 
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understand and improve their students’ learning. Additionally, we recommend that 
teachers co-design LTs with other teachers to reflect the intentions of their curricu-
lum and the realities of their classrooms (see Chap. 16). Co-designing LTs with 
researchers is also a possibility. We now reflect on what we can learn from the case 
studies and then propose four recommendations.

9.4.1  Reflection on the Case Studies

The LTs in the three case studies shared many commonalities. At a meta-level, all 
shared LTs that combined, in an interactive process, curriculum development and 
research and sequences of tasks and supporting students’ thinking and performance. 
Furthermore, there was collaboration with teachers in classroom settings reflecting 
a participationist research paradigm (Sfard, 2005). Differences existed depending 
on the purpose of the research, the existing research literature, and how many cycles 
of teaching experiments were implemented. All the case studies, however, reflected 
the LT iterative process outlined in Fig. 9.1 and the components necessary to inform 
its design.

All the studies started with a problem. Case Study 1 sought to model students’ 
understanding of variability over time. Case Study 2 had a defined goal of making 
the call when comparing two box plots and then ascertained the myriad of concepts 
that underpinned making a judgment under uncertainty. Case Study 3 began with 
the researchers’ knowledge of the literature on statistics, probability, and modeling 
and their belief that teachers needed to conceptualize the links among them into a 
general model. In line with the other two studies, Case Study 3 developed a hypo-
thetical learning process that aimed to scaffold teachers’ thinking toward a general 
model realization about repeated sampling for making an inference. Case Studies 1 
and 3 drew on some existing learning activities for their LTs, whereas Case Study 2 
invented its own. Whether inventing new tasks for LTs or not, all attended to delin-
eating the statistical big ideas and concepts underpinning the learning goal and 
strived to engage students in the LT’s defined abstract notions using innovative 
learning approaches. During teaching, as students engaged with the learning tasks, 
their actions, representations, and thinking were observed and analyzed. 
Consequently there was a feeding forward and back into the LTs, which were modi-
fied and altered from the planned LT. Case Study 3 illustrated the importance of a 
retrospective analysis whereby the researchers, in response to the teachers’ fragile 
understanding of models for repeated sampling in inference, proposed some new 
key conceptualizations.

Compared to research that gauges levels and types of thinking based on survey 
questions or explicating students’ thought processes when engaging with several 
tasks, research that uses LTs and DBR methodology has the potential to have more 
impact on learning in classrooms as Case Studies 1 and 2 show (see Chap. 16 also). 
While acknowledging that the findings from the former type of research are vital for 
the designing of LTs, the latter type of research is also good at identifying gaps in 
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students’ thinking and new avenues to explore (e.g., Case Study 3). A LT can be just 
one lesson or cover many lessons, but as these studies illustrated, statistical big 
ideas and concepts take time to experience and take root in students’ cognitive 
infrastructure.

In a critique of LTs used in research, Baroody, Cibulskis, Lai, and Li (2004) 
believed some of them were overly prescriptive and detailed and consequently an 
inquiry-based investigative approach was lost. They conjectured that LTs “could be 
more comprehensible and useful to practitioners if they focused on how big ideas 
evolve” (p. 253). These case studies did focus on the big ideas and how these might 
evolve at particular levels, but there is a danger that microanalyses of students’ 
thinking, while important to research, may lead to a plethora of types and levels of 
reasoning resulting in researchers and teachers using step-by-step procedures in LTs 
to achieve the learning goals. When designing LTs, an important criterion to con-
sider is the degree of openness permitted in the learning process so as not to lose the 
investigative spirit inherent in the statistical enterprise and the process of inquiry 
that is central to statistical thinking and learning (cf. Chap. 10).

The statistical inquiry investigative cycle is the centerpiece of some new curri-
cula (e.g., Ministry of Education, 2007) with students learning how to be “data 
detectives.” As part of enculturating (Garfield & Ben-Zvi, 2008) students into statis-
tical thinking and inquiry (see Chaps. 4 and 7), the development of concepts is 
essential as well as the development of coherent conceptual infrastructure across the 
curricula levels. These LTs illustrated how conceptual understanding might be built 
up in students and teachers. However, researchers may need to remind themselves 
not to lose sight of the big ideas and the inquiry-based investigative approach when 
designing LTs. That is, there is a balance between concept-focused and inquiry- 
based LTs.

9.4.2  Recommendations and Implications

We have four recommendations for future research regarding LTs:

 1. Continue exploratory research on LTs of specific topics in statistics.
 2. Scale LTs to many diverse classrooms.
 3. Build coherent conceptual pathways across curricula and grade levels.
 4. Attend to analysis of web of concepts, task design, and methods of data 

analysis.

Much of the research using LTs has been within one topic domain at one curricu-
lum level with a few groups of students. As Case Studies 2 and 3 showed, explor-
atory research with one group of students that either treads into new territory or 
investigates a concept from a new angle can provide invaluable insights into garner-
ing understanding about teaching and learning processes. These small-scale studies 
can facilitate the generation of more refined local theories about teaching and learn-
ing certain topics in statistics. Thus, our first recommendation is that researchers 
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continue using LTs in their research as they have enormous potential to explore and 
identify interesting phenomena and to develop theories about learning.

The second recommendation, which Case Study 1 attempted to address, is scal-
ability to many classrooms. The challenge for Case Study 1 was accurately captur-
ing typical responses, describing them in terms of increasing levels of sophistication, 
and communicating these ideas effectively to teachers. Another open question was 
how to make teachers aware of LT research results so that they could anticipate the 
possible student ideas and challenges, provide opportunities for ideas to emerge, 
and then use data on student learning to support continued progress in learning. 
Such challenges and questions will need to be addressed when expanding success-
ful LTs to a broad range of classrooms. When LTs are considered to have the poten-
tial to be shared, we recommend that researchers think about collaborating in new 
research projects to address how to manage implementation on a larger scale. Where 
necessary, researchers may need to alter their LTs in response to new findings as a 
result of more people such as curriculum developers, professional development 
facilitators, and teachers being involved in the implementation (e.g., Lehrer et al., 
2014).

The third recommendation is building curriculum coherence for teachers and 
students across the grade levels. What is needed is a major collaboration of research-
ers worldwide to work out the big ideas and web of concepts that have been 
researched and where more research is needed (e.g., covariation). They could then 
attempt to map across the curriculum the main conceptual pathways and identify the 
LTs that exist and may be used given the time constraints of curricula. We recom-
mend, as a start, that researchers using LTs could devise and research a pathway for 
growing students’ knowledge and thinking in one topic domain from grades 1 to 
12 in a similar vein to Case Study 1 with its learning maps, relational learning clus-
ters, and big ideas for grade 6. Perceiving across the curriculum, an evolving con-
ceptual pathway together with LTs toward a big idea could be useful for curriculum 
developers and for the research community.

In Sect. 9.2 we identified three aspects regarding the design and use of LTs that 
seemed to need more attention in research. Hence, our fourth recommendation is 
that researchers conduct more in-depth analyses of the web of concepts underpin-
ning their learning goal, carefully consider the literature on task design and the 
influence the task will have on students’ learning, and devise more transparent ways 
of analyzing data gathered and providing evidence, particularly for classroom inter-
actions. Also meta-LT research is required to study LTs as a methodological tool. 
Addressing these issues, which seem to be currently missing in statistics education 
research using LTs, would move the field forward.

In statistics education research, the use of LTs as an instrument in DBR has 
resulted in a fecund route for learning about students’ thinking and has opened up 
many new challenges and avenues for future research. As technology changes 
approaches to learning, there is now an even greater need to focus on the big ideas 
and concepts that will endure despite those changes. We believe that using LTs 
and DBR will continue to provide a fruitful and rewarding pathway for future 
researchers.
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