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Abstract. The uncertainty associated with existing sensing technolo-
gies and reasoning methods affects the outcome of the activity recogni-
tion process (e.g., accuracy, precision, granularity). The activity recogni-
tion process is even challenging when switching from laboratory towards
real deployments, where scenarios are not predefined and more complex.
Therefore we propose a novel method to improve the activity recognition
outcome, by finding a proper balance between accuracy and granularity.
The method has been validated through the deployment of UbiSMART
(an AAL framework) in 45 scenarios of ageing in place. We discuss in
this paper our method and the validation results.

Keywords: Ambient assisted living · Activity recognition · Semantic
reasoning · Quality insurance · Ground-truth acquisition

1 Introduction

The acceptance of Ambient Assisted Living (AAL) solutions by stakeholders is
a critical factor for the success and large use of such systems. Different criteria
influence the acceptance of AAL solutions such as the usability, usage, usefulness.
According to EN ISO 9241-11 [8], usability is defined as the degree of suitability
of use of a system, a prototype, or a service in a particular application envi-
ronment to achieve specific goals in a satisfactory and efficient manner. In this
perspective, context-awareness and activity recognition are critical components
leading to the acceptability and usability of AAL solutions.

Context-awareness and activity recognition are necessary to trigger adequate
services on appropriate media, given a certain situation/context. An example can
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be to send an alert when a risk/dangerous situation is detected. Thus, fault infer-
ences (i.e., lack of accuracy and granularity) in activity recognition are among
the most critical issues we have identified in our experience with AAL. An inac-
curate system generates a number of misleading reactions affecting the accept-
ability of the solution, whereas a coarse-grained system can possibly be accurate,
but hardly useful.

Following, we present our approach to improve the activity recognition out-
come based on collected ground-truth data. The approach adopts a hierarchical
representation of activities and introduces two metrics “Accuracy” and “Gran-
ularity” in the activity recognition process. Section 2 illustrates the problems
of fault inferences. Section 3 positions our contribution within the literature.
Section 4 introduces our method to quantify the accuracy of a reasoning engine.
Section 5 discusses our method to optimize the decision-making. We also intro-
duce in this section a score of quality for activity recognition. Section 6 presents
the validation of our method. Finally, Sect. 7 concludes the paper.

2 Granularity and Accuracy Issues in Activity
Recognition

We propose to introduce the use of two metrics “accuracy” and “granularity” in
the activity recognition process to improve its outcome and reduce fault infer-
ences. For clarity purpose, it is important to distinguish the concepts of gran-
ularity and accuracy : The granularity represents who much precise an activity
recognition engine was; for instance, a fine-grained inferred activity would be “on
the phone with his daughter,” and a coarse-grained activity would be “in the
living-room.” Therefore, we assign a granularity level to each specific activity.
On the other hand, accuracy is defined in the literature [7] as the confidence that
the inferred activity matches the reality (i.e., the confidence of having a correct
inference). We use accuracy to determine the ability of an activity recognition
engine to properly detect a specific activity. A system with 99% of accuracy
would be considered highly accurate, whereas another system with 20% would
be considered inaccurate.

From our experience, we can deduce that the more fine-grained an activity
is, the less accurate it will be. To illustrate this, Fig. 1 represents two chains
of hierarchical activities (one in circles and one in triangles). Activities on the
upper left corner are the most fine-grained (for example eating pasta), however,
they are difficult to infer and therefore they have low accuracy. On the other side,
activities on the lower right corner are easy to infer (for example located in the
kitchen) and therefore have the highest accuracy. However, they are too coarse-
grained to provide appropriate services for the end-user. Therefore, our method
presented in this paper intends to find the best balance between granularity and
accuracy, in order to improve the outcome of the activity recognition process.

Following we discuss existing works on the evaluation and validation of rea-
soning engines, with techniques used to collect ground-truth and the employment
of the “Accuracy” metric to evaluate the activity recognition engines outcome.
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Fig. 1. Illustrating the relation between accuracy and granularity for activity recognition

3 Related Works

A large number of AAL solutions prototypes exist around the world [3,14,17].
Nevertheless only few of them involve long-term deployments with real data
gathering [15]. Yet, we witness recently a shift in AAL research, from laboratory
experiments towards real deployments. This shift is accompanied by the creation
of several databases that enable researchers to share the real-world deployment
recorded data. CASAS1 is an example of these databases.

The limitation in the number of AAL solutions aiming for long-term deploy-
ment is a big burden towards the validation of the accuracy of such solutions.
We believe that the availability of databases for real-world deployment records
will promote the development and validation of approaches to improve accu-
racy of AAL solutions. In addition, a key step towards wide acceptance of AAL
solutions is the evaluation and validation of reasoning engines [1]. The legacy
approach for assessing elderly people Activities of Daily Livings (ADLs), whether
by direct observations [10] or by questionnaires [6,13], are very instructive, but
they lack practical applications towards activity recognition in the AAL. These
solutions are difficult to put in place in nursing homes and especially in personal
residences for end-users living independently as the observations are limited to
specific points of time when caregivers are available. They are based on a manual
process which is tedious and time-consuming. Thus, some technological solutions
should be put in place to easily collect elderly people ADLs and directly introduce
them in the evaluation and improvement process of the AAL solution accuracy.

Several researchers have been interested in accuracy using the datasets gath-
ered from the real-world deployment [4,5,9]. For example, Cook [5] has used
CASAS datasets to perform machine-learning methods for activity recognition;
the results of her team were around 75% on rich training datasets. Kleinberger
et al. [11] performed a thorough validation of their system, measuring its

1 http://ailab.wsu.edu/casas/datasets.html.
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accuracy with the use of the well-established Goal-Question-Metric (GQM) app-
roach [2]. They observe an accuracy of 92% of correct inferences on average for
simple ADLs such as “Going to Toilet.” Kadouche et al. used Support Vec-
tor Machine (SVM) for activity recognition and they obtained an accuracy of
88% [9]. Chung et al. [4] applied activity recognition in an application target-
ing nursing home. Using Hierarchical Context Hidden Markov Model (hchmm),
they obtain a recognition accuracy of 85%. Nevertheless, their activity recog-
nition process relies on cameras, which is often associated with acceptability
issues.

These approaches use “Accuracy” as a metric to evaluate the performance of
their reasoning engine in activity recognition. On the other hand, the results are
not used in a systematic process to improve the reasoning approach or method-
ology. The method we propose in this paper uses both metrics accuracy and
granularity in an iterative process to gradually improve the reasoning engine
outcome without changing the approach used or bringing new sensing technolo-
gies and complicate the deployment. In addition, researches to improve activity
recognition have been supported by the development of novel algorithms based
on Artificial Neural Network, Naive Bays, Support Vector Machine, etc. [16]. The
method we introduce in this paper to improve the activity recognition outcome
is reasoner-agnostic. It can be applied with any approach for activity recognition
(e.g., machine-learning, ontological reasoning).

We believe that accuracy and granularity are key criteria in the validation of
the activity recognition outcome, since accuracy is an indicator of the reliability
of an AAL system and granularity is an indicator of its usefulness. We also believe
that using these two indicators in an iterative process of activity recognition
will improve the reasoning engine outcome. Our method improves the decision-
making process on the output of the reasoning (i.e., the set of activities possibly
being performed by the end-user), through accuracy, granularity, and score of
the reasoning engine.

4 Measuring Accuracy of a Rule Engine

We discuss in this section the measurement of the deployed solution accuracy. As
an example of inaccurate inference, the system infers that the end-user “Watches
TV ” at 14:00, whereas we know from direct observations that he actually “Takes
a Nap.” There is a need to know how accurate a reasoning engine is, in order
to improve the quality of activity recognition. Thus, there is a need to measure
the confidence towards the fact that an activity is actually being performed,
given that it has been inferred. To obtain this confidence, we first need to enrich
our datasets with real observations (ground-truth), in order to confront inferred
activities with observed ones. The relation between real activities, sensor events,
and inferred activities can be summarized in Fig. 2. Following we discuss the
process of gathering ground-truth and measuring the accuracy of activities.
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Fig. 2. Relation between Real Activities, Inferred Activities, and Sensor Events

4.1 Gathering Ground-Truth

The most straightforward method to gather ground-truth is to perform direct
observation in a real-world environment. A human observer regularly observes
and records what end-users do. The result is a list of punctual observations of
activities over a period of time. Through this method, we can be certain that
the observations represent a real situation. However a bias may be introduced by
the sampling periods: the observers are more likely to perform the ground-truth
acquisition only at specific hours of the day (e.g., in morning time for nurses),
ending up with an heterogeneous density of data, that must be translated later
in the measurement process. The ground-truth acquisition is a manual process,
and it is not immune to human errors. This manual process is time-consuming,
which restricts observers recruiting.

This method may also have logistic difficulties and acceptance issues, partic-
ularly in the case of collecting data linked to end-user living independently. We
have experienced this situation ourselves in individual houses. A solution would
be to ask caregivers to perform acquisition, but it would only bring little benefit,
as caregivers would actually influence the environment they observe. In fact, in
this situation, ground-truth acquisitions would take place in a multi-user situ-
ations (i.e., end-user and caregiver), in which the acquired data sensors cannot
be considered linked only to the end-user.

We have provided a dedicated mobile application which sends a quick ques-
tionnaire when the system wants to verify the reasoning output or a risky sit-
uation is detected. This solution was used by our collaborating nursing home’s
caregivers and helped to semi-automatically collect ground-truth data without
seriously affecting the caregivers daily routines. It also allowed integrating data
directly into our process of activities accuracy measurement.

Another approach to overcome the limitations of the direct observation by
human would be using cameras. This method is rich in data, however, we did
not consider it due to acceptability and privacy concerns.
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4.2 Measuring Accuracy of Activities

One goal of our research is to give a confidence value to an inferred activity
based on our ground-truth observations of real activities. More precisely, we
are interested in a metric based on the probability P (A = a|I = a) that an
activity a is being actually performed (A), given that it has been inferred (I).
In other words: “is the person really doing a, when a reasoner says a?” In order
to measure the accuracy of activity recognition, we apply the Bayes equation of
probability [12]. We define the metric as follows:

P (A = a|I = i) =
P (A = a ∩ I = i)

P (I = i)
=

|a ∩ i|
|A ∩ I|P (I = i)

=

|a ∩ i|
∑

X∈I

duration(X)

|A ∩ I|
∑

x∈i

duration(x)

(1)

where:
|a ∩ i| is the number of occurrences when i is inferred and a is observed
|A ∩ I| is the number of observations made while inferring an activity∑

X∈I

duration(X) is the total duration covered by our inferences

∑

x∈i

duration(x) is the total duration when i is inferred

In the case when the activity has never been observed or never been inferred,
we set accuracy value of this activity as 0.

5 Improving the Decision-Making Process
by Introducing a Score of Quality

We believe that the accuracy metric can be helpful to evaluate the quality of a
reasoning engine. By coupling accuracy with granularity, and introducing hierar-
chical activities models, we propose a systematic method to improve the activity
recognition outcome and help the reasoner to conclude with more effective infer-
ences.

5.1 Introducing Granularity to the Reasoner

The reasoner may infer “Takes Shower” whereas the ground-truth shows a faulty
inference, as the end-user “Goes to Toilet.” It could also infer “Is Busy”, which
is not an adequate inference for a service delivery. These two cases are caused
by an irrelevant granularity. In fact, in some cases, the reasoner tends to be too
fine-grained, and leads to an inaccurate inference. The reasoner could infer a
slightly less precise activity with more accuracy.

Generally, a human observer intuitively adjusts his conclusions to the
expected level of granularity. He also measures the risks of being inaccurate
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when he makes fine-grained conclusions. Our approach is to apply the same
process for decision-making in activity recognition, so that the system will min-
imize the risk of inaccuracy and maximize granularity. Thus, we represent gran-
ularity in our model as a value ranging from “1” to “10,” determined by an
expert. “1” would be an extremely coarse-grained activity and “10” would be
an extremely fine-grained one. We argue that introducing granularity into the
model as an arbitrary value is acceptable because an acceptable granularity is a
non-functional requirement of a system, which is by nature arbitrary.

5.2 Introducing Hierarchical Activities

“Takes Shower” and “Goes to Toilet” can both be generalized as “Is in the
Bathroom.” In other words, “Is in the Bathroom” is a parent activity of “Takes
Shower” and “Goes to Toilet.” More generally, activities exist at different gran-
ularities, and can be modeled as hierarchies. With a hierarchical model, several
activities are inferred at a given time, and a person can be both “Going To
Toilet” and “In the Bathroom.” When an activity occurs, all of its generaliza-
tions occur, recursively. Similarly, we can affirm that when an activity occurs,
some of its specializations may occur too. An example of a hierarchical model is
presented in Fig. 3, and the generalization inference goes from right to left.

Hierarchical models are richer than linear models, and the ability to infer
activities on several layers has powerful applications when combined with gran-
ularity and accuracy. In a hierarchical model, an activity always has a higher
granularity than its parent. On the other hand, an activity always has a lower
accuracy than its parent: if an activity is accurate, its parent will always be accu-
rate, but if an activity is not accurate, its parent will sometimes be accurate.
Following this logic, we created a formal process to perform accurate inferences
while being as fine-grained as possible. The reasoning process is similar to a tree
exploration, where the system starts by reasoning on the most coarse-grained
activities (i.e., the activities with no parent) to its specializations (more fine-
grained). In this path (parent → kid), the reasoning checks whether the context
can be valid or not (for of each specialization). This process can be executed
recursively across specializations until the inference of a chain of activities, from
coarse-grained to fine-grained (Fig. 1). We expect that with this process, a sys-
tem converges towards the activity that has the best balance between granularity
and accuracy.

5.3 Measuring Performance of the Reasoning Engine

We propose to formalize the process of inferring activities with the right level
of granularity. Therefore, we introduced a score of quality of activity recog-
nition that enables the reasoner to converge towards the activity having the
best balance of accuracy vs. granularity. Our proposed process starts by giv-
ing each activity a score, that is based on its accuracy and granularity. Then,
the decision-making engine selects the activity with the best score. The system
uses a weighted geometric mean of accuracy and granularity (Eq. 2) to measure
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Activities

Kitc hen Activity

Eat Meal

Cook Meal

Activity in Bathroom

Go Toilet

Hygiene

Living Room Activity

Read Book

Watch TV

Bedroom Activity

Sleep

Outside

Come Home

Fig. 3. A hierarchical set of activities

score. The advantage of a geometric mean is that a marginally low value of
either granularity or accuracy has a dramatic impact on the resulting score, and
an accuracy of 0% will result in a score of 0.

Score(a) =
(
accuracy (a)A × (0.1 × granularity (a))G

) 1
A×G

(2)

Where:

A is the weight given to accuracy
G is the weight given to granularity
The 0.1 factor normalizes granularity in range [0, 1]

A and G are to be defined by experts. However, there is no objective criteria
to set them. From our empirical experience, we choose to give more importance
to accuracy than to granularity and we set A = 3 and G = 1. The goal is to
have the most useful sets for the end-user experience. We also propose to run
reasoners with various values of A and G, and ask end-users which reasoner
generates the most useful conclusions.

6 Validation

Our proposed method was validated using our AAL framework Ubiquitous Ser-
vice MAnagement & Reasoning sysTem (UbiSMART). UbiSMART was deployed
in a real environment where several scenarios of aging in place were performed.
The first version did neither include the hierarchical activities approach, nor the
metrics of Accuracy and Granularity. We have updated UbiSMART in order to



Activity Recognition Enhancement Based on Ground-Truth 95

support accuracy and granularity. The new UbiSMART reasoner can be executed
in two different ways:

1. In calibration mode: we execute the reasoner in order to measure the
accuracy of all activities in hierarchical chain. We expect the reasoner to
return all possible valid inferred activities, without making a conclusion. The
result of the calibration mode is used as an input for the production mode.
The calibration mode is run only at the first phases of deployment. Once the
reasoner has converged towards stationary accuracy values, there is no need
to run calibration mode anymore.

2. In production mode: we execute the reasoner in order to infer a single
activity at a given time. In this case, accuracy measurement is predefined
and calculated during the calibration mode. The production mode is the
mode used by UbiSMART framework to deliver adaptable services.

We use the same collected datasets to run the UbiSMART’s reasoner, before
and after applying the proposed method. We have experimented our system in
the environment represented in Table 1 and with the activities summarized in
Table 2.

Table 1. Topology of the experiment

Room Bedroom Bathroom Living Room Kitchen Entrance

Sensors Motion sensor Motion sensor Motion sensor Motion sensor
Door sensor
(fridge)

Motion sensor
Door sensor
(main door)

6.1 Introducing Validation Metrics

We propose four metrics to validate our proposed method. The first metric is
the Recall R (e.i. total measured accuracy vs. ground-truth) as defined in Eq. 3.
R is useful to measure the exact accuracy of the reasoning, given that we have
a ground-truth on the executed dataset. R is similar to the measured accuracy
of an activity (Eq. 1), but it is measured on all activities at once (A), not on a
specific activity. It is defined as the number of times the system inferred correctly
(based on ground-truth observations), divided by the total number of activities
that are both inferred and observed.

R(A) =
|{groundtruth(a) = inferred(a)|a ∈ A}|

|groundtruth(A) ∩ inferred(A)| (3)

Three other metrics have been introduced: the average value of accuracy
(Ā), granularity (Ḡ) and score (S̄) for the inferred activities (Eq. 4). These three
metrics provide an estimation of accuracy, granularity, and score of reasoning
engine in a dataset, even in the absence of ground-truth. Ā is not to be confused
with the total measured accuracy R. Ā is an indicator that can be obtained at
any time, whereas R is exact, but requires ground-truth to be measured.
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X̄(act) =

∑

a∈act

(X (a) × d (a))

∑

a∈act

d (a)
(4)

where: X = accuracy — granularity — score; act = activities; d = duration

6.2 Results

We run UbiSMART reasoning engine in both modes (i.e., calibration and produc-
tion). Table 2 presents accuracy, granularity and score values for each activity,
after the calibration mode. Score is calculated using Eq. 2 from Sect. 5.3, with an
accuracy weight A = 3 and a granularity weight G = 1. For comparison, a sec-
ond score is calculated, using A = 1 and G = 1. We observe that activities that
are coarse-grained but extremely accurate, such as “Kitchen Activity”, are more
valued with a higher value of A. With A = 3, it has a score of 79.5%, whereas it
only has a score of 63.2% with A = 1. On the opposite, a more fine-grained and
less accurate activity, such as “Cook Meal” has a score of 64.5% with A = 3,
and 69.3% with A = 1. When both “Kitchen Activity” and “Cook Meal” are
inferred, the reasoner will conclude with “Kitchen Activity” if A = 3, and with
“Cook Meal” if A = 1.

We run the reasoner four times in production mode: with (A = 3, G = 1)
and with (A = 1, G = 1), in both case before and after running the calibration
(Table 3). Without calibration, each activity has a default accuracy of 10%, and
scores are calculated accordingly. With (A = 3, G = 1), we measure T = 93.8%
after the calibration, whereas R was only 63.4% before the calibration (+30.4%).
Ḡ has decreased from 6.75 to 4.15 (−2.60), and Ā has increased from 55.5% to
89.4% (+33.9%). This illustrates the trade-off between accuracy and granularity.
With (A = 1, G = 1), the calibration impact is less significant. R happens
to increase by 3.3%. Ā decreases by 11.8%, and Ḡ increases by 0.26. This is
explained by the fact that with A = 1, the reasoner is not allowed to decrease
much granularity in favor of accuracy. Thus, it will tend to be as fine-grained as
possible, which is similar to its default behavior, without the method introduced
in this paper. Finally, we notice that S̄ increases with both values of (A,G):
+16.5% with (A = 3, G = 1) and +1.7% with (A = 1, G = 1). This is inherent
to the method we propose, which always selects the activity with the maximal
score among all the inferred activity.

Table 2. Scores of the original UbiSMART reasoner

Activity Kitchen

Activity

Cook

Meal

Bathroom

Activity

Go Toilet Living

Room

Activity

Read

book

Bedroom

Activity

Sleep

Accuracy 100% 60% 100% 50% 100% 50% 100% 100%

Granularity 4 8 4 8 4 8 6 7

Score A = 3, G = 1 79.5% 64.5% 79.5% 56.2% 79.5% 56.2% 88% 91.5%

Score A = 1, G = 1 63.2% 69.3% 63.2% 63.2% 63.2% 63.2% 77.5% 83.7%
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Table 3. Results with (A = 3, G = 1) and (A = 1, G = 1), before and after the
calibration

Sample A G Total
Accuracy

Average
Accuracy

Average
Granularity

Average
Score

Before calibration 3 1 63.4% 55.5% 6.75 56.9%

After calibration 93.8% 89.4% 4.15 73.4%

Before calibration 1 1 63.4% 67.3% 5.56 59%

After calibration 66.7% 55.5% 5.82 60.7%

7 Conclusion

We have introduced in this paper our research on improving the activity recog-
nition decision-making process in developing AAL solutions. This research has
been motivated by the feedback we had from our real deployment in a nursing
home and three individual houses. The observations from this real deployment
brought our attention to the faulty results of our reasoning engine and stressed
the need for a systematic method to evaluate reasoning engines in order to
improve the activity recognition process.

We argue that an efficient systematic method to evaluate reasoning engines
has to include ground-truth from deployment environment (e.g., elderly people
house). Therefore, we proposed a method that includes observing ground-truth
as an input for measuring the accuracy of a reasoning engine. We also introduce
for the first time granularity and score of the quality of a reasoning engine. The
score is derived from accuracy and granularity. Our method effectively leads to
conclude on the most reasonable activity (i.e., the activity with the best balance
between granularity and accuracy). We found that by giving more importance
to accuracy over granularity, our reasoner infers more coarse-grained activities,
in order to be more accurate.
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