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Abstract. Accurate segmentation of optic cup and disc in retinal fun-
dus images is essential to compute the cup to disc ratio parameter, which
is important for glaucoma assessment. The ill-defined boundaries of optic
cup makes the segmentation a lot more challenging compared to optic
disc. Existing approaches have mainly used fully supervised learning that
requires many labeled samples to build a robust segmentation framework.
In this paper, we propose a novel semi-supervised method to segment
the optic cup, which can accurately localize the anatomy using limited
number of labeled samples. The proposed method leverages the inher-
ent feature similarity from a large number of unlabeled images to train
the segmentation model from a smaller number of labeled images. It
first learns the parameters of a generative model from unlabeled images
using variational autoencoder. The trained generative model provides
the feature embedding of the images which allows the clustering of the
related observation in the latent feature space. We combine the feature
embedding with the segmentation autoencoder which is trained on the
labeled images for pixel-wise segmentation of the cup region. The main
novelty of the proposed approach is in the utilization of generative mod-
els for semi-supervised segmentation. Experimental results show that the
proposed method successfully segments optic cup with small number of
labeled images, and unsupervised feature embedding learned from unla-
beled data improves the segmentation accuracy. Given the challenge of
access to annotated medical images in every clinical application, the pro-
posed framework is a key contribution and applicable for segmentation
of different anatomies across various medical imaging modalities.
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1 Introduction

Glaucoma will affect approximately 80 million persons worldwide by 2020 [12].
Being asymptomatic, Glaucoma patients are usually ignorant about it until a
noticeable visual loss occurs at a later stage. Early detection and treatment are
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essential to reduce the progression of vision loss. Glaucoma diagnosis is based on
medical history, intra-ocular pressure and visual field loss tests together with an
assessment of the Optic Disc (OD) through ophthalmoscopy. In 2D color retinal
fundus images, the OD can be divided into two distinct regions; the central
bright optic cup (OC), and the peripheral neuroretinal rim. The loss in optic
nerve fibers leads to the enlargement of cup region called cupping. One of the
important indicators of glaucoma is the enlargement of the cup with respect to
OD which can be measured as the vertical cup to disc ratio CDR. Quantification
of CDR requires accurate delineation of the boundaries of the optic disc and cup.

There are many automated methods for segmentation of optic disc [10,14] in
the literature. However, only a few have tackled optic cup segmentation, since ill-
defined and in-homogeneous boundaries make its segmentation very challenging.
Existing approaches of optic cup segmentation are based on level sets [6], super-
pixels classification [15] and sparse dictionary learning [1]. In another method [2],
fusion of cup segmentation from multi-view fundus images was used to improve
the performance.

Fully supervised approaches require large numbers of annotated images to
achieve reasonable robustness and accuracy, which is often difficult to obtain
as it can be time-consuming and costly. Semi-supervised approaches tackle this
problem by leveraging large number of unlabeled data along with the labeled
data to improve the performance. For example, semi-supervised approach has
been applied in different medical imaging tasks like, brain MRI segmentation
[11], lung nodule detection [7] and retina vessel segmentation [16].

In this paper, we propose a novel approach which leverages unlabeled images
to segment the optic cup in retinal fundus images. The proposed method is
based on learning a generative model from the unlabeled data and utilizing the
feature embedding provided by the trained generative model. We propose to use
the variational-autoencoder (VAE) [5] as a generative model which learns the
feature embedding as a latent variable without assumption of specific distance
measure. Although, VAE have been extended to semi-supervised classification [3,
4,9], it has not been applied on the segmentation task. Our approach is based on
first learning the feature embedding using VAE from large number of unlabeled
images. We then train the segmentation autoencoder that maps the image to
the segmentation mask by transferring the properties of the learned feature
embedding through end-to-end training.

2 Proposed Semi-supervised Segmentation Method

In the proposed semi-supervised segmentation method, a generative model is
trained from a large number of unlabeled data. The feature embedding from
the generative model is then incorporated in the segmentation model so that
the segmentation model can be trained from limited number of labeled images.
We use variational autoencoder (VAE) [5] as the generative model which models
each observation in terms of a low dimensional latent variable. VAE has two
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parts; encoder network which maps the input image to the continuous latent
variable z, and the decoder network which uses the latent variable z to recon-
struct the image.

Fig. 1. Proposed segmentation framework: the segmentation model (SVAE) contains
segmentation encoder (SE) and segmentation decoder (SD). The generative model
(GVAE) is used in the training of SVAE and is not required in testing phase.

As shown in Fig. 1, our proposed semi-supervised learning approach for optic
cup segmentation consists of two main components; generative VAE (GVAE)
and segmentation VAE (SVAE), details of each is provided in the following.

2.1 GVAE: Generative Variational Autoencoder

GVAE models the probability distribution of the image using neural networks,
and is composed of two parts; generative encoder (GE), and generative decoder
(GD). GE takes an image x as input and outputs the mean μg and standard
deviation σg. The latent representation z of the generative model is constructed
by sampling from the distribution qφ(z|x) = N

(
μz, σ

2
zI

)
where φ is the parame-

ter of GE network. GE is modeled using convolution neural network with five
convolution layers where each convolution layer is followed by a max-pooling
layer which effectively reduces the size of feature response by half. Two dense
layers are then attached to the features response from the last layer to output
σz and μz. The GD network consist of five in-network deconvolution layers [8]
which takes the latent representation z and reconstructs the image x. GVAE is
trained using the following loss function given by the variational lower bound [5]:

L (θ;φ;x) = −DKL(qφ(z|x) ‖ p(z)) + Eqφ(z|x)[log pθ(x|z)] (1)



78 S. Sedai et al.

where the first term is the negative KL-divergence between the posterior approx-
imation qφ(z|x) to the prior p(z), and the second term is expected reconstruction
error obtained from the GD network and θ is the parameter of GD network. The
reconstruction error can be computed using binary crossentropy. The prior p(z)
is a spherical Gaussian distribution p(z) = N(0, I) and the posterior distribution
qφ(z|x) which is the output of the encoder network, is also Gaussian. The KL
part can then be written in analytical form as:

− DKL(qφ(z|x) ‖ p(z)) =
1
2
ΣJ

j=1(1 + log(
(
σj

z

)2
) − (

σj
z

)2 − (
μj

z

)2
) (2)

The input to the decoder is the random sample generated from the poste-
rior qφ(z|x), yet back-propagation is not possible through random sampling. To
overcome this obstacle, re-parametrization trick have been used [5].

The GVAE model can be used to estimate the probability density of data
from which unseen samples can be generated. The GE part of the GVAE model
provides the latent representation of the input image which we use as the feature
embedding to improve the segmentation performance.

2.2 SVAE: Segmentation Variational Autoencoder

The goal of SVAE is to predict the segmentation mask of the optic cup from the
given image by leveraging the feature embedding learned by GVAE. Similar to
GVAE, SVAE consists of two parts; segmentation encoder (SE) and segmenta-
tion decoder (SD). SE is modeled using five blocks of convolution and max-pool
layers followed by two dense layers which outputs σv and μv. The latent represen-
tation v of the segmentation model is obtained by sampling from the distribution
qα(v|x) = N

(
μv, σ2

vI
)

where α is the parameter of SE network. SD consist of
five deconvolution layer which takes the latent representation v as input and
outputs the segmentation mask y.

In order to leverage the information within unlabeled data for segmentation,
SVAE model is trained to reconstruct not only the segmentation mask but also
the latent representation learned by GVAE. Given an image x, the corresponding
latent representation z is generated from conditional distribution pφ(z|x) given
by GE. The SVAE network is then trained using following loss function:

L (α;β;x) = −DKL(qα(v|x) ‖ p(v)) + Eqα(v|x)[log pβ(x|v)]+ ‖ z − v ‖2 (3)

where the first term is the negative KL-divergence between the posterior approx-
imation qα(v|x) to the prior p(v) = N(0, I) which can be computed in analytical
form as

− DKL(qα(v|x) ‖ p(v)) =
1
2
ΣJ

j=1(1 + log(
(
σj

v

)2
)) − (

σj
v

)2 − (
μj

v

)2
). (4)

The second terms of Eq. 3 denotes the expected reconstruction error of the
segmentation mask which can be computed using binary crossentropy, β denotes
the parameter of SD network and the third term is the Euclidean distance loss
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Algorithm 1. Training of the proposed semi-supervised method of segmentation
of optic cup in retinal fundus images.
1. Given an unlabeled data Xu = {x1, · · ·xNu} , train a GVAE model to reconstruct

the image using the loss function given by Eq. 1.
2. Given the labeled samples given by images Xl = (x1, · · ·xNl) and corresponding

segmentation mask Yl = (y1, · · · , yNl), train the SVAE model as follows:
3. For each minibatch, until the validation loss converges:

(a) Compute the latent representation z by sampling from the posterior
qφ(z|x) = N(μz, σ

2
z )

(b) Compute the latent representation of segmentation v by sampling from the
posterior pα(v|x) = N(μv, σ2

v).
(c) Compute the loss using Eq. 3.
(d) Update the parameters of α of SE and β of SD using backpropagation.

between the latent codes produced by GE and SE. Therefore, the training process
transfers the latent representation learned from the generative model into the
segmentation model. Our entire algorithm is summarized in Algorithm1.

3 Experiment Results

The dataset used in this research is provided by EyePACS1 and contains 12000
high resolution fundus images. We select 600 images to create a labeled set,
where the ground truth has been obtained by manual delineation of the cup
regions of all images by a clinician. The remaining 11400 images are used as the
unlabeled set. Since our goal is to segment the optic cup, we cropped the optic
disc region of all images by first segmenting the optic disc using the approach of
[10] and rescaled to 128 × 128 dimension. Therefore, images in both labeled and
unlabeled sets are disc cropped.

We split the labeled set into 400 training and 200 test sets. We train the
network parameters using the training set, and then evaluate the final model
on the test set. In order to evaluate the effect of number of training samples,
we further divide the training set into four subsets containing 50, 100, 200 and
400 samples. Data augmentation is an important step in training deep networks.
We augment the training images and corresponding label masks in each subset
through a mirror-image reflection and rotation at 6 different angles, leading to
12x the original set.

We first train the generative model (GVAE) network using the unlabeled
set for 20000 iterations. We have used mini-batch gradient descent using the
RMSprop algorithm with momentum and a batch size of 50. The learning rate is
set to 0.001 which is decreased by one tenth after 10000 iterations of the training
process. Figure 2 shows examples of images reconstructed using GVAE. It can
be seen that the reconstruction preserves the optic disc and optic cup structure

1 http://www.eyepacs.com/.

http://www.eyepacs.com/
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in images, even though the surrounding vasculature is not clear. This shows that
the latent representation obtained from GVAE is able to capture the structural
information of the cup region.

Fig. 2. Random images from the test set (top row) and the corresponding reconstructed
images from using GVAE (bottom row)

We then train the segmentation model (SVAE) using the labeled set by lever-
aging the trained GVAE as described in Algorithm1. The SVAE network is
trained for 10000 iteration using mini-batch gradient descent and the Adam
optimizer with learning rate of 0.0001. In the testing phase, the output of the
SE (i.e. the mean value of the latent code μv) is directly fed to SD to obtain
the segmentation mask, as the sampling is only required in the training phase.
For both GVAE and SVAE we set the dimension of latent variable z and v to
J = 100. We compare our method with Unet network [13] which is the state-of-
the-art method in biomedical image segmentation. The architecture of the Unet
is kept similar to SE and SD except that in the Unet there are skip connections
between SE and SD. The Unet is trained using binary crossentropy loss using the
same parameters as of SVAE. We also compared the result of SVAE with plain
SVAE (SVAE-Plain) which does not take into account the feature embedding
from GVAE, i.e., it does not include the third term of the loss in Eq. 3.

Table 1 compares the average Dice coefficient (DC) between the ground truth
and predicted segmentation for the proposed SVAE, the Unet methods and the
SAVE-Plain. The proposed method SVAE resulted in average DC of 0.80 when
trained on the full training set, slightly improving over the Unet and SVAE-Plain.
However, when we use less number of training samples, the proposed method
improves significantly over both Unet and SVAE-Plain. This demonstrates that
the proposed approach improves the segmentation performance when the number
of labeled images are limited. This also demonstrates that our approach can
leverage the information from unlabeled samples by first learning the encoding
by GVAE and training SVAE with encoding samples generated from GVAE.
Figure 3 shows the examples of segmentation produced by the proposed semi-
supervised method.



Semi-supervised Segmentation of Optic Cup in Retinal Fundus Images 81

Table 1. Optic cup segmentation performance of the proposed method compared with
the Unet and SVAE-Plain for different training sizes.

Dice coefficient

#Images Proposed SVAE Unet SVAE-Plain

50 0.73 ± 0.06 0.69 ± 0.07 0.70 ± 0.07

100 0.77 ± 0.04 0.74 ± 0.06 0.75 ± 0.05

200 0.78 ± 0.03 0.77 ± 0.04 0.78 ± 0.04

400 0.80 ± 0.03 0.79 ± 0.03 0.79 ± 0.03

Fig. 3. Examples of the optic cup segmentation produced by the proposed method. The
red color indicates the ground truth cup region (contour). The green color indicates
the predicted optic cup region (contour)

4 Conclusion

In this paper, we have presented a novel semi-supervised segmentation algorithm
based on variational autoencoder (VAE) to segment optic cup in retinal fundus
images. The generative VAE was trained using large number of unlabeled images.
The segmentation VAE, which maps the image to the segmentation mask, was
then trained using limited number of labeled images by leveraging the feature
embedding provided by the generative VAE. We have demonstrated the effec-
tiveness of our proposed method using limited number of labeled samples to
the challenging task of segmentation of optic cup in retinal fundus images. We
have demonstrated that the proposed method improves the segmentation perfor-
mance when the number of labeled images is limited. Therefore, our approach is
useful in clinical applications where the availability of annotated images in lim-
ited. Although, we have applied our approach in segmentation of cup in fundus
image, we believe that our method is equally applicable to other modalities.
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