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Abstract. In recent years, many pre-processing filters have been devel-
oped in order to enhance anatomical structures on chest CT images.
These filters are typically based on the analysis of the multiscale second-
order local information of the image, that helps identify structures with
even (tubes) or odd (surfaces) symmetries. Therefore, they often require
specific parameter tuning to enhance the different structures. Moreover,
while the filters seem to be able to isolate the structure of interest, they
do not provide information about the sub-voxel location of the feature.
In this work, we present a novel method for vessel, airway, and fissure
strength computation on chest CT images using convolutional neural
networks. A scale-space particle segmentation is used to isolate train-
ing points for vessels, airways, and fissures which are then used to train
an 8-layer neural network with 3 convolutional layers which define high
order local information of the image. The network returns a probability
map of each feature and provides information on the feature offset from
the voxel sampling center, allowing for sub-voxel location of the differ-
ent structures. The proposed method has been evaluated on clinical CT
images and compared to other methods for feature enhancement avail-
able in the literature. Results show that the proposed method outper-
forms competing algorithms in terms of enhancement and is also unique
in providing subvoxel information.

1 Introduction

Enhancement of anatomical structures on CT images is often used as initial step
of medical imaging techniques to isolate the structure of interest from the sur-
rounding background. For chest CT images, several methods have been proposed
to enhance the vascular and airway trees [1–4], as well as fissures [5].

Conventional methods are based on the idea that the anatomical structures
have either an even (tubes) or odd (surfaces) symmetry. For this reason, the mul-
tiscale second-order local information of the image (Hessian matrix) is analyzed
to compute the feature strength. This idea was first introduced by the authors
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in [1], who proposed a method for vessel enhancement based on the geomet-
rical shape of the structure. Although filters using the Hessian matrix provide
good results, CT feature image enhancement remains a challenge. In particular,
conventional filters often need parameter tuning, and while they show good sen-
sitivity (i.e. they properly enhance the structure of interest), they tend to suffer
of poor specificity. To address this, [6] proposed a Hessian-based method for
enhancement of nodules, vessels, and airway walls that simultaneously enhances
objects of a specific shape while suppressing others. [2] proposed a method that
determines the medialness of tubular structures based on the Hessian matrix
and then uses a model of cylindrical vessels to derive the optimal parameters for
the detection. [7] presented an enhancement algorithm for plate-like structures
through a sheetness measure computed based on Frangi’s idea. In an attempt
to reduce the sensitivity to noise of Hessian-based filters and enhance small and
thin vessels, [3] proposed a method that computes a directional filter bank that
facilitates and improves the Hessian analysis.

A main drawback of conventional Hessian-based methods is the assumption
that all voxels of a structure are characterized by a single strong shape modeling
that structure. For this reason, information at specific points, such as bifurca-
tions or curved ends, is often lost. Therefore, [8] proposed an approach for vessel
detection based on a non-parametric model that does not use image derivatives.
The method assumes that the intensities inside at least one conical-shaped region
around the voxel of interest do not vary much. The method proposed by [4] also
tries to preserve the general vascular structures by measuring the strength in
terms of the strain energy density, which is tuned to a specific vessel shape com-
puted by means of the Hessian eigenvalues. Other approaches exploit learning
techniques to determine optimal filter for feature detection [9].

In this paper, we present a novel method for vessel, airway, and fissure
strength computation on chest CT images that aims at breaking the limita-
tions of Hessian-based methods. The idea is to exploit high order derivatives
of the image to improve both sensitivity and specificity of the filter and pre-
serve information at critical points, i.e. bifurcations and curved ends. Since their
initial development, convolutional neural network (CNN) [10] algorithms have
been proved really powerful to outperform conventional methods on challenging
problems. However, this approach has not been considered yet to solve problems
as CT feature enhancement.

We propose a CNN network composed of 3 convolutional layers and no max-
pooling that can learn high order kernel functions that are optimal for feature
enhancement. This way, no parameter tuning is involved, and the shape of the
structure of interest does not need to be defined a-priori, allowing for simultane-
ous enhancement of several features. The network returns a probability map of
vessels, airways, and fissures. We further exploit the potential phase information
that is encoded by the convolutional kernels to estimate the feature subvoxel
offset by means of a fully connected regression layer. The method has been com-
pared to six different algorithms using clinical CT cases from the COPDGene
study [11], and the experimental results show that the proposed method signifi-
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cantly improves both the sensitivity and the specificity for each of the considered
features and outperforms competing approaches as assessed by AUC analysis.

2 Materials and Methods

Figure 1 shows the flow diagram of the proposed method to train a CNN to
automatically extract feature probabilities from CT images. In this section, we
first introduce the construction of the neural network and the specific training
set. Then, we introduce the dataset used for evaluation and the experimental
setup.

Fig. 1. Overview of the proposed method for training CNN to enhance features. Train-
ing samples are extracted by particles deployment followed by manual editing. Around
each particles, patches of 16× 16× 16 voxels are extracted and given in input to a CNN
that produces a probability map for vessels, airways and fissures.

2.1 Feature Likelihood Detection and Localization

To extract the probability of each voxel to belong to vessels, airways, or fissures,
we implemented an 8-layer 3D network, which consists of three convolutional
layers separated and followed by drop-out layers (to avoid overfitting), and two
fully-connected layers. As the idea is to approximate the high local order infor-
mation of the image, no max pooling, a non-linear down-sampling of the patches,
is implemented. The network computes the probability of the central voxel of
patches of 16×16×16 voxels, a size chosen to include enough neighborhood infor-
mation for big structures, such as the trachea, without losing specificity for small
and thin features. We use a Nesterov-momentum update with a softmax func-
tion as output non-linearity, and we train on a NVIDIA Titan X GPU machine,
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using the deep learning framework Keras [12] on top of TensorFlow [13], for 60
epochs with a learning rate of 0.01 and batch size of 128.

We also implemented a regression method that uses the weights trained for
classification, and we changed the last fully connected layer to provide the sub-
voxel coordinate of the sample of interest.

2.2 Training Set Definition

We used eight cases from the COPDGene study, acquired with an inspiratory
protocol, to train the network. Training points were obtained by first performing
scale-space particle segmentation [14] for the structures, and manually removing
false positive. We also added negative samples to the training set, created from
voxels inside the lung that were both close and far from all the structures. Since
negative samples and vessels outnumber airways and fissures, we used negative
samples and vessels only from four training cases, and we added airway and
fissure samples from four additional cases. Moreover, among all available negative
points and vessels, we randomly selected a subset of 8,000 negatives (equally
divided into far and close points) and 6,000 vessels (including branch points)
per case. In summary, the network was trained with a total of 116,147 points, of
which 32,000 negatives, 24,000 vessels, 26,412 airways, and 33,735 fissures.

2.3 Experimental Setup

We evaluated our algorithm on 18 cases from the COPDGene study that were
not used for the training. In order to create an accurate reference standard, we
tweaked parameters to make particles very sensitive, and we manually removed
the false positives. Although this approach has limitations, we think that choos-
ing parameters to be extremely sensitive followed by manual touch-up, provides
a sensible approach to evaluation.

As with the training set, we considered only a sub-set of negative and ves-
sel samples for evaluation. To evaluate our approach on potentially confounding
factors like emphysema, we added to the negative set samples with low inten-
sities, created using a simple thresholding of the image that did not include
features of interest. To create the sub-set of samples, we tried to maintain the
same distribution of voxels belonging to each structure as in a CT image by
randomly selecting 60,000 negative points (equally divided into far, close, and
low-intensity points) and 40,000 vessel points per case, while all available fis-
sure and airway points were used. A total of 1,936,154 testing points were used
for evaluation: 1, 080, 000 negative points, 720, 000 vessel points, 51, 969 airway
points and 84, 185 fissure points. The unbalance ratio between points roughly
represents the nominal proportion of each feature in the lung.

Our results were compared with six traditional Hessian-based filters ([1,2,4,7].
Filters as described in [1,4], originally developed for tubular structures (vessels
and airways), were properly modified to also enhance fissures. The method in [2]
was implemented only for vessels and airways. In order to compare our method to
algorithms specifically developed for surface enhancement, we also implemented
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the filter described in [7]. Moreover, we combined the methods of [1,4] and those
of [4,7] by implementing a sheetness equation and adding a step-edge suppress-
ing term to specifically enhance fissures. We applied the different filters to all cases
and we evaluated them on the points extracted by particles. The quantitative eval-
uations were performed by plotting the receiver operator characteristic (ROC) of
all considered methods after binarizing the enhanced images with varying global
thresholds.

The proposed method does not require any parameter to be set. For all other
methods we used 10 steps with 0.5–3.0 mm scales for vessels, as proposed by
[4], 0.7–6.0 mm for airways, and 0.5–4.0 mm for fissures. [2] represents the only
method that does not require other parameters to be set. For [1,4,7] we set all
the fixed parameters as proposed in the original papers. The only parameter
that needs optimizing is the noise-suppressing parameter C. For this parameter,
we set C = 120 for vascular images, as this is the value found as optimal in [4],
C = 50 for airways and C = 5 for fissures, found after grid search optimization.
All results for the CNN-based algorithm were computed on a single NVIDIA
Titan X GPU machine, with batch size equals to 5000.

3 Results

Table 1 shows the performance of the proposed approach compared to the others
in terms of area under the ROC curve (AUC). As shown, the proposed algorithm
achieves an AUC of 99.76% for vessels, 98.73% for airways, and 99.40% for
fissures, against 98.22%, 93.87%, and 97.24% of the competing best methods,
respectively. The ROC curves are plotted in Fig. 2 to show the filters perfor-
mance.

Table 1. Performance comparison (AUC: Area Under ROC Curve).

AUC (%)

Vessels Airways Fissures

Our method 99.76 98.73 99.40

Frangi 96.43 93.87 96.30

Xiao 98.22 62.24 70.13

Krissian 94.84 92.76 /

Descoteaux / / 95.10

Frangi-Xiao / / 97.17

Descoteaux-Xiao / / 97.24

A 3D rendering of the detected features, obtained by filtering a CT with our
approach and doing a simple thresholding at 0.7 for all structures, is presented
in Fig. 3. The features probabilities strengths obtained with the current method
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Fig. 2. ROC curves for all methods for vessels (a), airways (b), and fissures(c).

Fig. 3. Left: 3D rendering of vessels (top), airways (middle), and fissures (bottom)
probabilities obtained from a clinical case (threshold = 0.7). Right: comparison of
strengths overlaying a cropped CT image obtained with the proposed method for all
features (top) and Xiao, Frangi, and Descoteaux-Xiao for vessels, airways, and fissures,
respectively (bottom). Vessels are shown in red, airways in green, and fissures in blue.

and with the best competing algorithm for each feature, are also shown in Fig. 3
overlaying the cropped CT image. As shown, while the competing methods tend
to pick several false positives, the proposed approach is very specific without
compromising sensitivity, making it a good prior candidate for post-processing
operations, such as thresholding, connected component, or feature detection.

An accurate analysis of the probabilities obtained for full clinical cases showed
that while the network is extremely sensitive, it sometimes confuses airway walls
for vessels and fissures. However, this is not a surprising result, since airway walls
were not included as negative samples and have structure and intensities similar
to vessels and fissures.
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Figure 4a shows iso-surfaces for the convolutional filters that provides the
biggest mean activation for fissure, airways and vessel, respectively, for each
layer. It can be observed that the filters are highly non-symmetric and high-pass
corresponding to anisotropic high order derivatives of the input signal.

Finally, to prove the idea that the analysis of the image with the proposed
network contains enough information to define the sub-voxel offset of the consid-
ered feature, the box-plot of the L2 norm obtained comparing predicted offsets
to those provided by particles, is presented in Fig. 4b. A mean error of about
0.1 voxel units is obtained from the analysis of the three features indicating the
adequate performance in resolving the sub-voxel localization of the feature of
interest.

Fig. 4. (a) Isosurfaces for the convolutional kernels with the highest activations for
vessel, airways and fissures. The isosurfaces were up-sampled (for proper showing) and
are for the 25% (red), 50% (green) and 75% (blue) level of the highest filter value. (b)
Boxplot of the L2 error obtained for offset prediction in comparison to particles.

4 Conclusion

In this paper, a novel enhancement filter is proposed to help identify vessels, air-
ways, and fissures on chest CT images. Conventional methods are typically based
on the analysis of second-order local information of the image and need a strong
parameter tuning. We propose that analysis of the high-order derivative helps
improve the results, avoid the definition of a shape model a-priori, and eliminate
parameter tuning. To this end, we used a CNN-based network which uses three
convolutional layers and no max-pooling. The network is able to simultaneously
enhance vessels, airways, and fissures making the filter one of a kind. Moreover,
due to the large patch size chosen, the proposed CNN shows multiscale capa-
bilities as it detects both very large and small features like trachea and small
airways and vessels.
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Results show that the proposed method outperforms the most typical
approaches used in the literature for all features, significantly improving the
specificity-sensitivity ratio, as it preserves most true positive while suppress-
ing unwanted noise. This is further confirmed by the fact that even though the
proposed filter is not meant for feature segmentation, the low false positives
rate suggests that the extracted probabilities could be used as a reference for
post-processing operations, such as segmentation or detection.

In addition to feature strength, the CNN estimates the sub-voxel location
of the features. This represents a novelty compared to competing methods that
only provide strength information. Sub-voxel location of features can be of high
interest for specific applications. However, it should be noted that the sub-voxel
location was trained from particle sub-voxel offsets which is obtained by means
of second-order derivative analysis using high-order splines. This may affect the
accuracy of the true sub-voxel location of the feature.

Our approach has a higher computational complexity, due to the use of high-
order operators, than conventional second-order derivatives at multiple scales.
However, the added complexity is well within the current computational capa-
bilities to perform large scale deployment of this technique, as a typical high
resolution case (512× 512× 653) takes around 42 min to be computed.

Finally, although the study we have done shows encouraging preliminary
results, an interesting idea for future work is to evaluate the performance of
the algorithm when varying scan parameters like slice thickness, reconstruction
kernel, dose etc., to show the ability of CNN-based method to generalize results.
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