Spatiotemporal Segmentation and Modeling
of the Mitral Valve in Real-Time 3D
Echocardiographic Images

Alison M. Pouchl(M), Ahmed H. Alyz, Eric K. Lai’,
Natalie Yushkevich', Rutger H. Stoffers4, Joseph H. Gorman IV3,
Albert T. Cheung®, Joseph H. Gorman III°, Robert C. Gorman®,
and Paul A. Yushkevich'

! Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
pouch@mail.med. upenn. edu
2 Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
3 Gorman Cardiovascular Research Group, University of Pennsylvania,
Philadelphia, PA, USA
4 University of Groningen, Groningen, The Netherlands
> Department of Anesthesiology, Perioperative and Pain Medicine,
Stanford University Medical Center, Stanford, CA, USA

Abstract. Transesophageal echocardiography is the primary imaging modality
for preoperative assessment of mitral valves with ischemic mitral regurgitation
(IMR). While there are well known echocardiographic insights into the 3D
morphology of mitral valves with IMR, such as annular dilation and leaflet
tethering, less is understood about how quantification of valve dynamics can
inform surgical treatment of IMR or predict short-term recurrence of the disease.
As a step towards filling this knowledge gap, we present a novel framework for
4D segmentation and geometric modeling of the mitral valve in real-time 3D
echocardiography (rt-3DE). The framework integrates multi-atlas label fusion
and template-based medial modeling to generate quantitatively descriptive
models of valve dynamics. The novelty of this work is that temporal consistency
in the rt-3DE segmentations is enforced during both the segmentation and
modeling stages with the use of groupwise label fusion and Kalman filtering.
The algorithm is evaluated on rt-3DE data series from 10 patients: five with
normal mitral valve morphology and five with severe IMR. In these 10 data
series that total 207 individual 3DE images, each 3DE segmentation is validated
against manual tracing and temporal consistency between segmentations is
demonstrated. The ultimate goal is to generate accurate and consistent repre-
sentations of valve dynamics that can both visually and quantitatively provide
insight into normal and pathological valve function.

Keywords: Medial axis representation *+ Deformable modeling - Multi-atlas
segmentation - Mitral valve - 3D echocardiography

Electronic supplementary material The online version of this chapter (doi:10.1007/978-3-319-
66182-7_85) contains supplementary material, which is available to authorized users.

© Springer International Publishing AG 2017
M. Descoteaux et al. (Eds.): MICCAI 2017, Part I, LNCS 10433, pp. 746754, 2017.
DOI: 10.1007/978-3-319-66182-7_85


http://dx.doi.org/10.1007/978-3-319-66182-7_85
http://dx.doi.org/10.1007/978-3-319-66182-7_85

Spatiotemporal Segmentation and Modeling of the Mitral Valve 747

1 Introduction

Ischemic mitral regurgitation (IMR) is a condition in which the mitral valve becomes
incompetent due to ischemic disease of the left ventricle. Transesophageal real-time 3D
echocardiography (1t-3DE) is the standard of care for preoperative assessment of IMR
in many major medical centers. Given the high recurrence rate of moderate to severe
IMR after valve repair surgery (33% in the first year [1]), there is a critical need to
identify patients at elevated risk of recurrence, for whom alternative surgical approa-
ches (complete valve replacement) may provide better long-term outcomes. Recently,
3D morphological features extracted from intra-operative rt-3DE of the diseased valve
were shown to predict post-repair IMR recurrence [2]. Static features such as leaflet
tethering angles demonstrate promising predictive value but only take advantage of
t-3DE data at a single frame in the cardiac cycle. Since the etiology of IMR is
functional left ventricular disease, it is likely that features of mitral valve dynamics
could potentially bolster recurrence prediction. Towards this end, we have developed a
spatiotemporal image analysis algorithm that can be used to quantitatively describe
mitral valve shape and motion in normal and IMR subjects.

Several studies have explored 4D mitral valve segmentation and modeling. In [3],
the mitral valve is first segmented in a diastolic 3DE image using graph cuts and the
resulting mesh evolves under a set of data-driven and regularization forces to capture
valve shape in the other images in the series. Application-specific regularization
includes forces that tether the leaflet free edges into the left ventricle, enforce a
physiological strain on the leaflets, and prevent collision along the leaflet free margin.
In [4], a landmark-based deformable model of the mitral and aortic valves is first
initialized in two frames in the cardiac cycle. For all other frames, landmark motion is
predicted using manifold learning and clustering and then updated by an optical flow
tracker and boundary detection. The result is a full 4D surface model of both valves.
A disadvantage of these methods is they do not generate volumetric segmentations that
distinguish the atrial and ventricular surfaces or capture locally varying thickness of the
leaflets. In this work, we present a 4D segmentation method that combines the benefits
of atlas-based segmentation and deformable modeling with medial axis representation,
which produces topologically consistent volumetric models of the mitral valve. The
former uses expert knowledge of valve image appearance to label the target rt-3DE
series and the latter establishes geometric correspondences across subjects and facili-
tates statistical shape analysis. Temporal coherence is enforced in the segmentation
stage by employing a groupwise implementation of multi-atlas label fusion, which
updates segmentations of individual 3DE frames using information from its temporal
neighbors in the same image series. Temporal consistency is also enforced during the
modeling phase by using the Kalman filter to smooth the trajectories of deformable
models fitted to the label fusion results. In contrast to previous work, this method is
validated against label maps of the valve at every frame in the 1t-3DE series and
volumetric models provide information about locally varying leaflet thickness. More-
over, it demonstrates a comparison of functional valve measurements in subjects with
normal mitral valve function and in subjects with severe IMR.
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2 Materials and Methods

2.1 TImage Data and Manual Segmentation

The iE33 imaging platform (Philips Medical Systems, Andover, MA) was used to
acquire EKG-gated rt-3DE images of the mitral valve from 10 patients: 5 with normal
mitral valve structure and function and 5 with severe IMR. Images were obtained over
four consecutive cardiac cycles with a 2—-7 MHz matrix-array transesophageal trans-
ducer. Each subject’s rt-3DE image series consisted of 10-37 frames (temporal reso-
lution of 18—40 Hz) showing the mitral valve over one cardiac cycle beginning at early
systole. The images were exported in Cartesian format with nearly isotropic resolution
ranging from 0.4 to 0.8 mm. All data series, totaling 207 individual 3DE images, were
manually segmented in ITK-SNAP, an interactive medical image segmentation tool.
An expert observer separately labeled the anterior and posterior leaflets in each 3DE
image. The manual segmentations served as atlases for multi-atlas label fusion and as
references for cross-validation of automated segmentation.

2.2 Automated Image Analysis

Automated 4D mitral valve segmentation requires a reference atlas set consisting of
manually traced images at each phase of the cardiac cycle, and a deformable model of
the valve. The only manual interaction required to segment a new unseen target image
series is the identification of several temporal and physical landmarks in the target
series, described below. First, the series is segmented using a groupwise implemen-
tation of multi-atlas label fusion. Then, a mitral valve model in the form of a medial
axis representation is deformed to the groupwise segmentation result with enforcement
of temporal coherence. The combination of these techniques facilitates standardized
automated measurements of mitral valve dynamics in rt-3DE data.

Cardiac Phase Detection and Landmark Initialization. Given a “target” rt-3DE
image series to segment, a user first identifies two frames in the cardiac cycle:
mid-systole and mitral valve opening. The user then identifies five landmarks in the
mid-systolic image: the anterior aortic peak of the annulus, two commissures, the
midpoint of the posterior annulus, and the midpoint of the coaptation line.

Groupwise Multi-atlas Segmentation. Multi-atlas label fusion (MALF) uses a set of
expert-labeled images, referred to as atlases, to generate individual candidate seg-
mentations of a target image. Each candidate segmentation is created by performing
deformable registration between the target and atlas image, and then warping the atlas
labels to the target image space. Registration is initialized with the user-identified
landmarks described above. Since the candidate segmentations may not be accurate on
their own, they are merged into a higher quality segmentation using a consensus-
seeking strategy called label fusion, which uses spatially-varying intensity-based
weighted voting to combine the candidates into a consensus label map [5]. In order to
extend 3D MALF to the spatiotemporal domain, we use a groupwise adaptation of
MALF [6]. First, each 3DE image in the series is independently segmented with MALF
using other subjects’ atlases. Once an initial segmentation is generated for each frame,



Spatiotemporal Segmentation and Modeling of the Mitral Valve 749

the series of segmentations is iteratively updated using both the original reference
atlases and the MALF segmentations of neighboring 3DE images as “pseudo” refer-
ence atlases. By weighting the “pseudo” atlases more than the original atlas set, the
iteratively updated segmentations become more coherent with one another, capturing
the similarity in the segmentations of the same structure moving over time.

A challenge of using groupwise MALF (GW-MALF) for 4D valve segmentation is
that performing within-subject deformable registration between the valve at systole and
diastole often produces poor results because the temporal resolution of image acqui-
sition is not sufficient to provide many intermediate images of the leaflets during rapid
valve opening. To overcome this challenge, GW-MALF is performed separately in
overlapping cardiac phases: systole, transition, and diastole. Figure 1 illustrates that
each image in a sample target series {I,}°_, is registered to a set of atlases {A}} drawn
from the same phase and a neighboring phase of the cardiac cycle. Here,f denotes a set
of frame numbers and s denotes a set of subject identifiers. Each image I, is likewise
registered to its neighboring images in the same series. In the first round of MALF,
each I, is segmented using only the reference atlas set {Ajf-}. In the subsequent
groupwise iterations, the segmentation of 1, is updated using the segmentations of I,,_;
and I, ;1 as pseudo atlases, along with the original atlas set {A}}

systole transition diastole

Fig. 1. (a) Atlas assignment based on cardiac phase in GW-MALF. (b) Deformable template
fitted to the groupwise segmentation results. Medial mesh (top) and boundary mesh (bottom)
shown with the anterior leaflet in red and posterior leaflet in green.

Deformable Medial Modeling. Once a series of valve segmentations is obtained, a
deformable model in the form of a continuous medial representation (cm-rep) [7] is
warped to the GW-MALF results. This step imposes a fixed topology on the final
segmentation, establishes correspondences on different patients’ segmentations, and
facilitates automated morphological measurement. Cm-rep describes the valve in terms
of its medial axis geometry and is parameterized by {m,R} € R* x R*, where m is a
continuous medial manifold and R is a radial thickness field defined over the medial
manifold. Numerically, the medial manifold and leaflet surfaces are represented by
triangulated meshes that can be sequentially Loop subdivided to a desired vertex
density. The template medial mesh, shown in Fig. 1b, is generated using a method
similar to that described in [8] and is deformed to maximize its overlap with the target
segmentation while imposing soft regularization constraints to ensure mesh regularity
and validity of medial axis geometry as described in [8].
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Kalman Filtering. Dynamic measurements derived from cm-reps that are indepen-
dently fitted to each frame in the output of GW-MALF segmentation are inherently
noisy. To impose spatiotemporal smoothness on the model series, a Kalman filter [9] is
used to recursively estimate the true state of the system (the valve’s configuration and
motion), which cannot be observed directly but can be estimated by combining noisy
observations with the predictions of kinematic equations. Let x, denote the true system
state at time 7 and let X,,_; be the a priori estimate of the system’s state at time 7 with
variance Py;_;. The vector X,,_; is determined by applying kinematic equations to the
state estimate at r — 1. Let z, be observations of the system made at time 7. The goal of
the Kalman filter is to combine the a priori estimate X,,_; and measurements z, to
generate an a posteriori prediction of the state at time #, denoted by x;;.

. . X
In this work, the sought “true” system state is defined by x, = L.C’
t

denotes vertex coordinates that comprise the medial surface m and x; denotes their
velocities at time z. We treat the cm-rep models fitted independently to different rt-3DE
frames as the noisy observations z,. With a medial mesh consisting of n, nodes, the
total number of state variables is n, = 6n,. The recursive filter begins by initializing
Xo|0 = Zo as the medial node coordinates and velocities of the medial model fitted to the
first frame of the rt-3DE series. Its covariance is initialized as Pgjo = 0,,. For each
subsequent frame, the state is predicted to evolve according to X,—; = F/X,_y,_1 + W,
where F, is a transition matrix that displaces the nodes with constant velocity and
w, ~N(0,Q,) is zero-mean Gaussian distributed process noise with covariance Q.
The a priori covariance is updated as Pj,_; = FtP,_1|,_1FTT + Q;. Noisy measurements
of the state at time ¢ are modeled as z, = H,x; + v;, where H, is the identity matrix I,
and v, ~N(0,R,) is zero-mean Gaussian distributed measurement noise with covari-
ance R,. Assuming that the process noise and measurement errors are uncorrelated, the
a posteriori state estimate is given by:

} , where x;

j7r\t = -i'z|t—1 +Ki(z — H, f(r|t—l) (1)
Pz|r = Pt|r—l - KerPt\t—l

where K, is the Kalman gain defined by K, = Pt|t,1HlT(H,Pt‘,,1HtT +R,)71. In this
study, R, = I,,, remains constant over time. Since the state evolution equations assume
a constant velocity, which does not accurately reflect the nonlinear motion of the valve,
we employ a time-varying process noise covariance that increases in magnitude at #,4;,
the transition time in the cardiac cycle when the valve opens:

0.1, t<tyans
Q, = a(t)I,,, wherea(t) = ’ . 2
= o0, D=110, 12ty @
The time-varying Q, allows the model fittings to have a stronger influence on the
state estimation when the valve accelerates. Once the Kalman filter is applied to the
entire series of medial models, measurements of valve dynamics are computed.
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3 Results

Valve segmentation and modeling were evaluated in a leave-one-out experiment using
manual image segmentation for comparison. For all patients’ rt-3DE data, each frame
in the target image series was first automatically segmented using an atlas set of 8
randomly selected frames from other subjects in the same group (normal or IMR, a
diagnosis that is known prior to preoperative imaging). Six of these atlas frames were
from the same phase of the cardiac cycle as the target image and 2 were from the
transition phase. For target images in the transitional phase, the atlases consisted of 1
from systole, 6 transitional, and 1 from diastole. The series of segmentations were
updated with two groupwise iterations, wherein the intra-subject pseudo atlases were
weighted 4 times the atlases from other subjects. A representative segmentation is
shown in Fig. 2, and the accuracy of GW-MALF and model fitting relative to manual
tracing are given in Table 1.

Table 1. Segmentation accuracy based on the symmetric mean boundary error (BE) metric.

Mean BE (mm) 95t percentile BE (mm)

Systole Diastole Systole Diastole
MALF 0.5 £ 0.1 0.5 £ 0.1 24+ 16 25 +0.7
GW-MALF 0.5£0.1 0.5 £ 0.1 25+ 1.7 2.6 £0.7
Model fitted to GW-MALF 0.6 £ 0.2 0.6 £ 0.1 28+ 1.8 27+£08

I JR - JE R G JRT IR IR
(b)." b D D DN DD

systole diastole

Fig. 2. (a) Manual segmentation and (b) model fitting to the GW-MALF results for a subject
with normal mitral valve function. The anterior leaflet is red, posterior leaflet green.

To evaluate the smoothing effect of the groupwise updates and Kalman filter, the
dynamic measurements listed in Table 2 were computed from cm-reps fitted to the
MALF segmentations and from the Kalman filtered models fitted to the GW-MALF
results. Shown in Fig. 3a, a cubic polynomial was fitted to each measurement curve
and the residual between the measurements (black) and the cubic polynomial (red) was
computed. The mean differences in the measurements before and after groupwise
updates and Kalman filtering were calculated to assess whether smoothing introduced a
significant bias. An embedded video illustrating the medial mesh before and after
groupwise updates and Kalman smoothing is shown in Fig. 3b.
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Table 2. Root mean square residual (RMSR) in dynamic measurements relative to their best-fit
cubic polynomials before and after GW + Kalman (groupwise iterations and Kalman filtering).
Measurement bias in GW + Kalman relative to MALF is given.

Measurement RMSR (MALF) | RMSR (GW + Kalman) | p-value | Bias

Annular bending | 0.6 = 0.2 deg |0.3 £ 0.2 deg 1 x 1073 =0.17 £ 0.19 deg
angle

Septolateral 0.8 £03mm |04+ 0.2 mm 4 x 107%-0.17 + 0.26 mm
diameter

Intercommissural |3.8 £ 2.0 mm |24 + 1.3 mm 8 x 1072/ -0.23 + 1.14 mm
width

(a) 4s MALF - ICW residual Kalman - ICW residual (b)

No temporal
smoothing

With temporal
smoothing

08 1 250 0.2 0.4 0.6 08 1
normalized time

0.4 0.6
normalized time

Fig. 3. (a) Cubic polynomials (red) fitted to dynamic intercommissural width measurements
(black) before and after groupwise iterations and Kalman filtering. (b) Embedded video of a valve
with severe IMR before (left) and after (right) groupwise iterations and Kalman filtering.

For the normal and IMR subgroups, the septolateral diameter, annular bending
angle, and intercommissural width were plotted as a function of time, normalized to the
cardiac cycle. Bending angle is the angle between planes fitted through the anterior and
posterior mitral annuli and is therefore a measure of annular bend, with a larger angle
signifying a flatter annulus. Figure 4 shows the IMR measurements in blue and normal
valve measurements in red. These measurements were significantly different (p < 0.01)
over the entire cardiac cycle and underscore differences in annular dynamics in the
normal and IMR patients.

160 bending angle comparison 50 SLD comparison 40 ICW comparison

0 0.2 0.8 1% 0.2 0.8 170 02 04 06 08 1

04 0.6 0.4 0.6 X 4 . 0.6
normalized time normalized time normalized time

Fig. 4. Comparison of septolateral diameter (SLD), bending angle, and intercommissural width
(ICW) in subjects with normal mitral valves (red) and severe IMR (blue) over one cardiac cycle.
The error bars represent one standard deviation from the mean.
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4 Discussion

The proposed 4D mitral valve segmentation pipeline combines the attractive properties
of multi-atlas segmentation and deformable medial modeling to create descriptive,
quantifiable representations of mitral valve dynamics from rt-3DE images. Exemplified
in Fig. 2, the output models are visually consistent with manual tracing throughout the
cardiac cycle. In addition, the accuracy metrics presented in Table 1 demonstrate that in
each cardiac phase, automated segmentation performs on par with user-guided seg-
mentation (0.40 £ 0.32 mm [10]), and compares favorably to other automated 4D
segmentation algorithms (0.59 £ 0.49 mm [3] and 1.54 £ 1.17 mm [4]). The pipe-
line’s novelty is its extension of MALF and cm-rep into the spatiotemporal domain by
enforcing temporal consistency during both the segmentation and modeling stages. The
effect of temporal smoothing is illustrated in Table 2 and in Fig. 3, which highlight that
Kalman-filtered cm-reps fitted to the GW-MALF results generate dynamic measure-
ments that are less noisy than those fitted to MALF segmentations without temporal
smoothing. Another important observation in this study is the identification of differ-
ences in valve dynamics in patients with normal mitral valve function and in patients
with severe IMR. Figure 4 demonstrates that the normal and IMR valves in this study
differ significantly in annular function. Increased SLD, ICW, and bending angle in IMR
patients suggest annular dilatation and flattening, which are common features of IMR.
Moreover, Fig. 4 suggests that annular dynamics, particularly change in size along on
the septolateral diameter, may be less pronounced over the cardiac cycle in IMR
patients relative to normal patients.

While the proposed pipeline only requires manual identification of two key frames
in the cardiac cycle and five valve landmarks at mid-systole, future work will focus on
full automation of the algorithm. In this study, the use of a Kalman filter with a constant
velocity model and time-varying process noise provide meaningful time series
smoothing. A physical model that better captures the valve’s non-linear dynamics
could further improve temporal coherence in the output 4D model. Finally, although
the dynamic measurements presented in this work suggest significant differences in
annular function in IMR patients, studies with a larger patient population are needed to
verify these findings. The development of this 4D automated segmentation and mod-
eling tool is a step towards better understanding the functional mechanisms underlying
IMR progression and post-operative disease recurrence.
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