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Abstract. White matter tracts are commonly analyzed in studies of
micro-structural integrity and anatomical connectivity in the brain.
Over the last decade, it has been an open problem as to how best
to cluster white matter fibers, extracted from whole-brain tractogra-
phy, into anatomically meaningful groups. Some existing techniques use
region of interest (ROI) based clustering, atlas-based labeling, or unsu-
pervised spectral clustering. ROI-based clustering is popular for ana-
lyzing anatomical connectivity among a set of ROIs, but it does not
always partition the brain into recognizable fiber bundles. Here we pro-
pose an approach using convolutional neural networks (CNNs) to learn
shape features of the fiber bundles, which are then exploited to clus-
ter white matter fibers. To achieve such clustering, we first need to re-
parameterize the fibers in an intrinsic space. The clustering is performed
in induced parameterized coordinates. To our knowledge, this is one of
the first approaches for fiber clustering using deep learning techniques.
The results show strong accuracy - on a par with or better than other
state-of-the-art methods.

1 Introduction

White matter fibers are important structures in the brain, connecting its vari-
ous components, and are vulnerable to breakdown in a variety of brain diseases.
Studying white matter (WM) fiber bundles brings new insight into disease pro-
gression, and into the structural network supporting communication in the brain.
The brain’s neural pathways - or fiber tracts - have complex individual varia-
tions in geometry, and they are interspersed with each other - which makes it
very difficult to cluster them into anatomically meaningful groups or units for
further statistical analysis. One commonly used clustering method [9] uses man-
ual ROI delineation on the images of fractional anisotropy (FA), a scalar metric
derived from diffusion-weighted MRI. These regions can be used to seed whole-
brain fiber tractography, and the set of resulting curves - or streamlines - is
then grouped into white matter bundles using spectral clustering. One method
uses Hausdorff’s distance [4] as a distance metric between two fibers, prior to
hierarchical clustering based on the distances between fibers. Recently, several
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unsupervised clustering methods [6,8,11,15] have been proposed. Though math-
ematically elegant, these methods come with a baggage of assumptions and thus
with their own limitations. With the increasing amount of data, we can make
a completely data driven clustering algorithm using the convolution neural net-
work (CNN) framework. Though, texture based neural networks have been used
even in the early years of brain imaging [10], they were not used for white matter
clustering. Recently, CNNs have been extensively used in the computer vision
community for object detection, clustering and segmentation [13]. Deep learn-
ing methods offer some attractive properties. The most important is automatic
feature selection. A well designed CNN should be able to extract the most dis-
criminative features to achieve a given task. Other attractive properties of CNN
include re-usability and scalability. To use the CNN framework, we introduce
a volumetric parameterization technique to transform the brain into a topolog-
ically equivalent spherical domain. In computational anatomy, few algorithms
have been devoted for surface [5,14] and volumetric parameterization. In this
paper, we developed a novel method that parameterizes the entire volume of
the brain and every structure contained in it. We then use the parameterized
coordinates of the tracts to cluster the white matter fibers.

2 Harmonic Function

We parameterize the 3D volume using a potential function φ with harmonic
property. A function with the harmonic property is a C2 continuous function
that satisfies Laplace’s equation. Harmonic functions can be used to establish a
bijective mapping between the brain and the topologically equivalent spherical
shape. If φ : U→R, where U⊆Rn is some domain and φ is some function defined
over U , the function φ is harmonic if its Laplacian vanishes over U , i.e., ∇2φ = 0.
In terms of Cartesian coordinate system, we can write

∇2φ =
∑3

i=1

∂2φ

∂2xi
= 0 (1)

where xi is the ith Cartesian coordinate.

2.1 Defining a Shape-Center

Ideally, the shape-center should be located at approximately the same anatom-
ical location. This particular point is located at (98, 113, 111) in the standard
MNI template. The corresponding point among the subjects is located using a
linear registration process. The B0, T1 images and the MNI templates are rigidly
registered in the same order. The transformations are combined and inverted.
When applied to the aforementioned point, the inverse transformation outputs
the shape-center in the subject space.
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2.2 Boundary Conditions

We apply the Dirichlet and Neumann boundary conditions on the shape-center
and the boundary surface (∂U), i.e., we assign the value of the function φ on all
the boundary points and the shape-center to 1 and 0 respectively. These values
remain unchanged across computation. All the remaining points inside the brain
are assigned random values between 0 and 1 as an initial condition.

2.3 Potential Computation

An iterative finite difference scheme is used to solve the Laplace equations. If
φ(x, y, z) is a harmonic function, its second derivative is computed using the
Taylor’s series expansion and using the Laplace equation from 1 we have

φ(xi, yi, zi) =
φ(xi+1, yi, zi) + φ(xi−1, yi, zi)

6h2

+
φ(xi, yi−1, zi) + φ(xi, yi+1, zi)

6k2
+

φ(xi, yi, zi−1) + φ(xi, yi, zi+1)
6l2

where h, k and l are the grid resolution in x, y and z directions respectively. The
above potential values are computed until the maximum difference between two
successive iterations is below a certain threshold ζ (<10−6).

2.4 Computing Potential-Flow Lines

Streamlines or the potential flow lines are orthogonal to the equi-potential sur-
faces created in the previous step. Each of the streamlines starts from the
boundary points on the brain surface and progresses towards the designated
shape-center. Each of these streamlines approaches the shape-center at unique
angle(s), which remain constant along the streamline. This property is endowed
by construction. The streamlines are computed by solving the following differ-
ential equation,

∂X

∂t
= −η∇φ[X(t)] (2)

where X = [x, y, z]T is the coordinate vector and η is the normalization constant.
MATLAB’s ode23 routine is used to solve the system of differential equations.

2.5 Parameterizing the Brain

Each streamline originating from each of the boundary points approaches the
shape-center at a unique angle of approach. These angles remain constant along
the streamlines. In case of three dimensional objects, the angle of approach is
characterized by the elevation (θ) and the azimuthal (ψ) angles. The vector
between the shape-center and the end point of the streamline is calculated. The
angles are calculated using the Cartesian to spherical coordinate transformation

ψ = atan2(y, x); θ = atan2(z,
√

x2 + y2) (3)
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Fig. 1. Left: 3D view of different equipotential surfaces are shown with different col-
ors. The streamlines lines emanating from the surface approach the shape-center at
unique polar and azimuthal angles. These angles of approach remain constant along
the streamlines and intersect the surfaces at right angles. Middle: The equivalent
spherical shape. The streamlines are radial lines emanating from the surface. Right:
Location of shape-center on the MNI template.

The streamlines intersect the equipotential surfaces at right angles (see Fig. 1).
Each point of intersection generates a tuple [φ, θ, ψ]T for the corresponding
Cartesian coordinates [x, y, z]T .

3 Mapping the White Matter Fibers

After the whole brain is parameterized as above, each fiber tract is mapped to
the new coordinate system, i.e., in the spherical space. At this stage, we have a
bijective mapping between the Cartesian coordinates of every voxel in the brain
and the newly computed coordinate system. A KD-tree accessor is built using
the native brain coordinates for φ, θ and ψ. For every point on the fiber tract,
the algorithm searches for ten neighborhood points and computes a weighted
average to get the corresponding coordinate in the target domain. This process
establishes the mapping of fibers in the target spherical domain.

4 Data Pre-processing and Fiber Tracking

Each of the diffusion images has 46 volumes acquired with 5 T2-weighted B0 vol-
umes and 41 diffusion-weighted volumes with voxel size of 1.36 × 1.36 × 2.7mm3.
The scans are acquired using a GE 3.0T scanner, using with echo planar imaging
with parameters: TR/TE = 9050/62 ms. The raw DWI volumes are aligned to
the first b0 image using FSL’s eddy correct [12] to correct for head motion and
eddy current distortions. The corresponding T1 image is skull stripped and a
brain-mask was calculated. The B0 and T1 images are registered using an affine
registration. The resulting inverse transformation is used to transfer the mask
to the diffusion image space. Diffusion tensors and whole brain probabilistic
tractography are computed using the Camino toolkit [3]. Voxels with fractional
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anisotropy (FA) values greater than 0.2 were chosen as seed points. The maxi-
mum fiber turning angle was set to 60◦/voxel, and tracing stopped at any voxel
with FA < 0.2. As a pre-filtering step, any fiber tract shorter than 35 mm was
eliminated. We arrived at this values through inspection of our training dataset.
Also any tract whose ends are in unlikely ROIs were categorized as noisy.

4.1 Data Augmentation

One challenge in multi-class classification problems like the one presented here is
the uneven training samples for each class. Ideally, the training samples should
contain an even number of samples to avoid bias against any particular class.
However, it is natural to have an unbalanced group of WM fibers. In order to
have an even distribution of the training samples, we create copies of the original
data set by convolving with a three 1-D Gaussian filters along x, y and z axes
to create noisy variants of the tracts in the training dataset. In addition, the
order of points in the tracts is flipped. This process makes the training process
invariant to the order of points in the tracts. This data augmentation process is
only applied on the manually clustered bundles, thus ascertaining not to augment
the noisy fibers in the training set.

5 Network Architecture

The augmented data is mapped to the spherical domain as described in Sect. 3.
We experimented with multiple kernel sizes and layers and present the most
successful architecture. The input data consisted of a 50 × 3 matrix, i.e., each
tract consisted of 50 points. Initially, we resampled the tracts into 25, 50, 75 and
100 points for exploration. More than 50 points showed depreciating returns
in terms of accuracy. The network contains two convolutional layers with 32
and 64 feature maps. Feature maps define the number of filters used in each
layer, and their sizes determine the receptive field. A large receptive field can
acquire higher-order spatial information while the trade-off is the increase in the
number of parameters. The non-linearity inducing functions used are rectified
linear units (ReLU) and the hyperbolic tangent function (tanh). To prevent over-
fitting we use 80% dropout, which randomly switches off neuronal units in each
layer thereby reducing their influence at any particular iteration during back-
propagation. Finally, the last layer is a ‘softmax’ layer with 17 outputs for 17
classes. The method is implemented using TensorFlow version r0.11 [1].

5.1 Training Data and Majority Voting

Out of 96 subjects, manual segmentation is performed on four randomly selected
subjects. These four subjects act as the training data set. Each subject’s trac-
tography data is manually clustered into 17 anatomically relevant fiber bun-
dles. We use the manual tract segmentation on each of the four subjects used
as the training data for the method. Then we perform a leave one out cross-
validation (LOOCV) procedure. Another method to improve the accuracy of
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Fig. 2. Each fiber in the input layer is a 50 × 3 matrix. There are two convolutional
layers of size 32 and 64 respectively. Each layer contains convolutional kernels of size
3 × 3. The last convolutional layer is followed by two fully connected (FC) layers of
size 128 and 256 followed by a softmax (output) layer.

the method was to use bootstrap aggregation or bagging [2]. We sample our
data with replacements for 600,000 fibers, 20 times. In essence we fit 20 dif-
ferent “weak” classifiers to the given dataset. Bagging prevents overfitting, thus
accounting for the variability across datasets. For prediction, we used the major-
ity voting procedure from all the different models (Fig. 2).

6 Results

The LOOCV process proves the feasibility of our network architecture. Further,
we compare our method to an existing clustering algorithm, autoMATE [7].
The reliability can be assessed using the confusion matrix. In Fig. 3, we show
two matrices that compare the accuracy of predictions. The diagonal and the

Fig. 3. The confusion matrices show the classification accuracy of FiberNET. Left:
Validation set of 4 subjects. Right: 92 subjects in the dataset when compared to
autoMATE [7]
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off-diagonal values represent the true positive and the false positive rates of pre-
diction respectively. On the left, we show the mean prediction accuracy on the 4
cross-validation dataset. The prediction labels are compared against manual seg-
mentation. On the right, we show a similar mean matrix for all the 92 subjects in
the dataset, when compared to autoMATE. One of the drawbacks of autoMATE
is that it is very conservative, in the sense that it will not mis-classify tracts, but
it is quite likely that it will miss out on true positives. The presented method
has no such bias. In Fig. 4, the left panel shows a comparison of FiberNET with
manual segmentation. On the right, a comparison between FiberNET and auto-
MATE is presented. As we can see, FiberNET mis-classifies certain tracts when
compared against a random test subject from the dataset. However, we would
like to argue that the CNN based method is much more flexible and gives us an
opportunity to search for a better architecture that could possibly address the
misclassification problem. Since there is no linear mapping between the spheri-
cal space and the original coordinate system and the learned features lie in the
spherical space, it is difficult at the moment to comment on the properties of
learned shape features.

Fig. 4. Comparison of ground truth (top row) versus predicted clusters (bottom row)
on a validation subject (left) and a random test subject (right). We present here six
representative tracts to show examples of good and average clustering; the right inferior
fronto-occipital fasciculus (red), right cortico-spinal tract (orange), right inferior lon-
gitudinal fasciculus (green), right cingulum (yellow), right uncinate fasciculus (pink),
and right anterior thalamic radiation (blue). The arrows show the mis-classified tracts.

6.1 Conclusions

In this paper, we presented a volumetric parameterization procedure to define
an intrinsic coordinate system for the brain. We also showed its efficacy using
an ensembled deep learning approach to cluster WM fibers into anatomically
meaningful fiber bundles. We have shown for the first time a reliable method
to apply deep learning approaches to the fiber clustering problem. Though our
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method is not 100% accurate across different sections of corpus callosum, it is
understandable due to the very close resemblance between the shapes of these
tract bundles. Nonetheless, this is a first step towards solving this clustering
problem using a neural network. We also expect that the reliability of the method
should increase with time as more datasets are added to the model, to better
capture the spectrum of variability.
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