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Abstract. The human brain is intrinsically a high-dimensional and multi-variant
system. Simultaneous EEG and fMRI recoding offers a powerful tool to examine
the electrical activity of neuron populations at high temporal and frequency reso‐
lution, and concurrent blood oxygen level dependent (BOLD) responses at high
spatial resolution. Joint analysis of EEG and fMRI data could thus help compre‐
hensively understand the brain function at multiple scales. Such analysis,
however, is challenging due to the limited knowledge on the coupling principle
of neuronal-electrical and hemodynamic responses. A rich body of works have
been done to model EEG-fMRI data during event related design and resting state,
while few have explored concurrent data during natural stimulus due to the
complexity of both stimulus and response. In this paper, we propose a novel
method based on N-way decomposition to jointly analyze simultaneous EEG and
fMRI data during natural movie viewing. Briefly, a 4-way tensor from the EEG
data, constructed in four dimensions of time, frequency, channel and subject, is
decomposed into group-wise rank one components by canonical polyadic decom‐
position (CPD). We then used the decomposed temporal features to constrain a
2-way sparse decomposition of fMRI data for network detection. Our results
showed that the proposed method could effectively decode meaningful brain
activity from both modalities and link EEG multi-way features with fMRI func‐
tional networks.

Keywords: Simultaneous · EEG · fMRI · Natural stimulus · Joint analysis ·
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1 Introduction

The human brain is a complex system that involves massive electrical and metabolic
processes, which is high-dimensional and multi-variant [1]. We now could record brain
signals using EEG and fMRI simultaneously, which opened a new window to model the
brain processes across multiple dimensions [2]. EEG records the massive neuronal-
electrical activities that are reflected on the scalp, the high sampling rate of which enables
the multi-way time-frequency-space feature extraction [2–4]. In contrast, the fMRI
imaging captures the hemodynamic response of brain with low temporal resolution but
high spatial resolution, which could be modeled as functional networks on brain struc‐
tures [1–4]. The neuronal-electrical activities are believed to couple with blood oxygen
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level changes [2], so joint analysis of both modalities could link the two processes,
provide comprehensive understanding of brain function, and benefit decoding the path‐
ology of some neurology diseases, like epilepsy.

However, joint modeling of EEG and fMRI data is challenging because even though
the two modalities are derived from the same brain activity, the coupling principle of
them is poorly understood [2–4]. While many studies have developed joint analytical
strategies for event-related design and resting state paradigm [4], few methods have been
reported for analyzing simultaneous EEG and fMRI data during natural stimulus [5]. In
recent years, the use of natural stimuli becomes increasingly popular in neuroscience
research [4, 5], therefore, methodological innovation is urgently needed in this field to
fuse EEG and fMRI activity during such complexity of stimulus and response.

In this paper, we proposed a novel approach based on N-way decomposition towards
linking concurrent EEG and fMRI data analysis. Our method includes 4-way canonical
polyadic decomposition (CPD) [6] on EEG data and 2-way sparse decomposition [7]
on fMRI data. The EEG data was first transformed into time-frequency domain [8].
Considering electrode channel and subject as two additional dimensions, we organize
the group-wise EEG data as a 4D tensor. Using the 4-way CPD, the tensor is decomposed
into numbers of rank one components [6] which have features of time, frequency,
channel topology and subject contribution. Then the temporal features convolved by
hemodynamic function (HRF) serve as explanatory variables for the 2-way sparse
decomposition of fMRI data, which reconstructs functional networks. Since the two
decomposition share the same temporal feature, the EEG frequency and spatial topology
features are associated with fMRI networks. Our method was applied to a continuous
movie watching dataset, and meaningful features are linked between EEG and fMRI.

2 Materials and Method

2.1 Overview

The framework of the proposed method is summarized in Fig. 1. The whole method
includes 4-way CPD decomposition on EEG data and 2-way sparse decomposition on
the fMRI data. First, the EEG data from each subject was transformed into the time-
frequency domain (t and f), and the spatial topology of the channels are preserved in the
dimension “c” as shown in Fig. 1a. Since the data records the responses of multiple
subjects to the same movie, we assume the fourth dimension “s” to account for the
similarity and variability of subjects. The 4D tensor was decomposed into R rank one
components (Fig. 1b), or four factor matrices (Fig. 1c). We call them R components
from the EEG data. Each component includes four factors – ti, ci, fi and si, which show
features in different domains and are associated with each other. For example, in Fig. 1h
and i, each topological distribution is associated with one frequency power spectrum
density (PSD) histogram. The most important factor is the temporal one, as it serves as
a bridge to link the fMRI data. The signals in the T matrix of Fig. 1c was convolved with
HRF and become E matrix, which constructs the explanatory variables to model fMRI
networks. In Fig. 1d, the whole brain signals of each subject are organized into a 2D
matrix Yj, which was further decomposed by the E matrix with sparse constraint and a
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corresponding coefficient matrix Aj is optimized. By repeating the decomposition for
each subject and performing T-test on the coefficient matrices across subjects, we recon‐
struct functional networks at the group level (Fig. 1e and g). As these networks are
modeled based on the T factor from EEG data, they inherit the association with the EEG
topological distribution and frequency PSD, therefore, our method effectively links EEG
features and fMRI networks.

Fig. 1. The frame work of the proposed N-way decomposition method. The whole framework
includes a 4-way CPD on EEG data and a 2-way sparse decomposition on fMRI data.

2.2 Data Acquisition and Preprocessing

Twenty right-handed volunteers (mean age 27 ± 2.7) were recruited from University of
Queensland. The study was approved by human ethics research committee of the
University, in which simultaneous EEG and fMRI data was acquired during resting state
(8 min) and passive viewing of a movie named “The Butterfly Circus” (20 min).

Functional MRI images were acquired from a 3T Siemens Trio scanner equipped
with a 12-channel head coil. The acquisition parameters are: TR = 2200 ms, TE = 30 ms,
FA = 79°, FOV of 134 × 134 mm, 64 × 64 acquisition matrix, 44 axial slices, and
3 × 3 × 3 mm3 voxel resolution. fMRI data was preprocessed using SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/), which include slice-timing and motion correction,
temporal filtering (0.0085–0.15 Hz), spatial smoothing and registration to MNI space.

The EEG data were acquired using an MR-compatible EEG system (BrainProducts,
Germany) with 64 scalp channels positioned according to the international 10–20
system. The signals were recorded at a sampling rate of 5000 Hz, and filtered online via
a low-pass hardware filter at 250 Hz. The BrainProducts SyncBox ensured the EEG
system were synchronized precisely to the MRI system. The EEG data was pre-
processed using the EEGLAB toolbox [8] and the preprocessing include gradient-
switching artifacts correction, head motion removal, band-pass filtering (0.5–45 Hz),
down sampling to 500 Hz, ballistocardiogram artifacts and eye movement artifacts
removal [8].
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2.3 EEG Time-Frequency Transformation

Dynamic power spectrum density from the EEG data was calculated during the whole
movie watching in the following way. First, the preprocessed EEG signals were divided
into time windows with the length of TR (2.2 s) in fMRI. The EEG signals was normal‐
ized to zero mean and standard deviation of 1 in each window on each electrode. The
power spectrum density (PSD) was estimated in each time window by Welch’s method
[9] with the frequency resolution of 1 Hz. Inter-subject consistency analysis was
performed on the PSD time series for each frequency interval and each electrode channel.
The inter-subject consistency of the time-frequency decomposition provides a basis for
the tensor decomposition, which will be discussed in Sect. 3.1.

2.4 Four-way Canonical Polyadic Decomposition on EEG

In Fig. 1, the group-wise EEG time-frequency data is organized into a 4-way tensor,
X ∈ ℝ

d1×d2×d3×d4. The CPD aims to decomposed X into R rank one components [6]:

X =
∑R

i=1
𝜆i ⋅ ti ⊗ fi ⊗ ci ⊗ si + e (1)

The operator ⊗ denotes outer product of vectors. In each component, there are four
factors, i.e., ti, fi, ci, and si correspondingly in time, frequency, channel and subject
domain. Equation (1) could be rewritten into a tensor-matrix product form:

X = I × W × T × F × C × S + e = X̂ + e (2)

Where I is an identical tensor, W = [𝜆1, 𝜆2,… 𝜆R] ∈ ℝ
R×1 is a weight vector to

balance the contribution of normalized rank one tensors [6]. T ∈ ℝ
R×d1, F ∈ ℝ

R×d2,
C ∈ ℝ

R×d3, and S ∈ ℝ
R×d4 are four factor matrices. The cost function is summarized as:

f1 = minW,T ,F,C,S
1
2
‖X − CPD(W, T , F, C, S)‖2

F (3)

The advantage of CPD comparing with other type of tensor decomposition is that
the solution is unique [6]. In this work, we employ the Tensorlab toolbox (www.
tensorlab.net/) to estimate the CPD of EEG data. The toolbox provides various structure
constraint for the CPD based on parametric transformations [6], and here regarding the
characteristics of our data, we apply nonnegative constraint to matrix of W, T , F, C, S.
In addition, to make the decomposed features more distinct, and to decompose fMRI
data effectively, we apply the orthogonal constraint on the T  matrix.

2.5 Two-way FMRI Sparse Decomposition and Statistics

The T matrix from Sect. 2.4 is composed of group-wise temporal features from the EEG
data, which share the same time resolution with the fMRI data as illustrated in Sect. 2.3.
To deal with the lag in the fMRI signal comparing with EEG electrical activity, we
convolve the HRF (h(t)) to the signals in T to construct the explanatory variables E,
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which is used to decompose the fMRI signal matrices. Here, for the i-th signal:
Ei(t) = Ti(t) ⋆ h(𝜏), where “⋆” denotes convolution.

The 2D fMRI signal matrix Yj of each subject (j = 1,2…s) is then decomposed by
E. A L1 sparse penalty is introduced in the optimization to avoid overfitting and improve
the feature selection. So, the final function to optimize is:

f2 = min
Aj

1
2
‖‖‖Yj − AjE

‖‖‖
2

F
+ 𝛾

‖‖‖Aj

‖‖‖1
(4)

This sparse coding problem [7] can be solved by using the SPAMS toolbox [7].
Coefficient matrix Aj is then optimized for each subject, j = 1,2…s (j: subject ID). Two
tailed t-test was applied on Aj across subjects, which derive R functional networks with
group significance. Null hypothesis was rejected with p value threshold of 0.05.

2.6 Feature Selection

So far, we have linked multi-way features from EEG data and fMRI data, i.e., association
is built up among components in the domains of time, frequency, scalp topology and
fMRI networks. However, there are various sources of noises in both EEG and fMRI
data, therefore, not all the components from our analysis are meaningful. Thus, feature
selection is essential. We used the following steps to eliminate artifact or noise compo‐
nents: (1) We performed non-zero hypothesis test for the subject factor matrix S from
EEG, and the components without significant non-zero mean were removed; (2) The
components whose time course in the T matrix with abnormal fluctuation, like with one
single peak in ten times intensity were removed; (3) Components with no significant
fMRI networks were removed; (4) Components were removed if topological distribution
was not smooth. These four steps combined thus selected meaningful results.

3 Results

3.1 Inter-subject Consistency Analysis for EEG Time-Frequency Data

The CPD decomposition is usually based on low rank assumption, i.e., there are a lot of
repeated information in the data [6]. To test this low-rank assumption across subjects,
we examined inter-subject consistency in the EEG data. Here we employed Cronbach’s
α [10] as a measurement of consistency. In our experiment, the raw EEG signals during
natural stimulus show surprisingly low inter-subject consistency. Only after trans‐
forming the data into time-frequency domain, we found significant consistency amongst
many electrodes and frequency bands (Alpah: 7–14 Hz, Beta: 16–28 Hz and Gamma:
29–40 Hz) during natural stimulus as shown in Fig. 2b. As a comparison, inter-subject
consistency from resting state activity is very low (Fig. 2a). Therefore, it’s feasible to
apply 4-way CPD to the time-frequency EEG data during natural stimulus.
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Fig. 2. Inter-subject Consistency of spectral time courses on electrode channels during resting
state (a) and natural stimulus (b). X-axis: electrode channels. Y-axis: frequency bands.

3.2 The Linked EEG Components and FMRI Networks

Our proposed method and feature selection steps in Sect. 2 were able to decode and
associate meaningful EEG components and fMRI networks, as shown in Figs. 3, 4, 5
and 6. According to the pattern of the fMRI networks, we categorized the components
into visual components (Fig. 3), auditory components (Fig. 4), attention components
(Fig. 5) and others with interaction of multiple networks (Fig. 6). Interestingly, the EEG
components within category show similar topology of electrode spatial patterns
(Figs. 3a, 4a, 5a and 6a). As shown in Figs. 3b, 4b, 5b and 6b, these components are
primarily related to Alpha band activity, and a few of them involve Beta band activity
(C7–C9). The predominant presence of Alpha band reflects its roles in the attention and
sensory processing [11], and evidently multiple sensory systems (visual& auditory)
could possibly invoke Alpha oscillation [11].

Fig. 3. The visual components. (a) Scalp topology. (b) Frequency PSD. (c) fMRI network. (d)
fMRI network mapped on white matter surface.
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Fig. 4. The auditory components. (a) Scalp topology. (b) Frequency PSD. (c) fMRI network. (d)
fMRI network mapped on white matter surface.

Fig. 5. The attention related components. (a) Scalp topology. (b) Frequency PSD. (c) fMRI
network. d) fMRI network mapped on white matter surface.

Fig. 6. Components with interactions of multiple network. (a) Scalp topology. (b) Frequency
PSD. (c) fMRI network. (d) fMRI network mapped on white matter surface.

It’s interesting that in C1–C4 (Fig. 3) different parts of visual cortex are associated
with low, middle and high Alpha frequencies. Meanwhile, auditory networks in C5 and

388 J. Lv et al.



C6 (Fig. 2) are more associated with low Alpha frequencies. The attention networks in
Fig. 3 focused in Alpha band but also involve certain level of Beta oscillation, which
could be related to the role of Beta band in emotional and cognitive processes [12]. The
networks from fMRI in Fig. 6 involve multiple networks, e.g. C10 with visual and audi‐
tory networks; C11 with auditory and attention networks; C12 with visual, auditory and
attention networks. These components show evidence of interaction among visual,
auditory and attention networks (Fig. 6) during natural stimulus. We didn’t find Gamma
components with our method even though we see high inter-subject consistency in
Fig. 2, possibly because of huge variability in Gamma activities. Note that, based on
two tailed t-test activations in the fMRI networks were not further categorized as positive
or negative, but treated as equally important in this work.

4 Discussion

In this paper, we proposed a joint analyzing method for concurrent EEG and fMRI data
based on N-way decomposition. Experiment results have shown that our method could
detect meaningful EEG components associated with fMRI networks. This work could
open a new window to link two data modalities and provide a comprehensive way to
understand brain function during natural stimulus. Future efforts will be devoted to
further interpret the associated EEG components and fMRI networks.
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