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Abstract. Efficient dense correspondence and registration of CBCT
images is an essential yet challenging task for inter-treatment evalua-
tions of structural variations. In this paper, we propose an unsuper-
vised mixed metric random forest (MMRF) for dense correspondence of
CBCT images. The weak labeling resulted from a clustering forest is uti-
lized to discriminate the badly-clustered supervoxels and related classes,
which are favored in the following fine-tuning of the MMRF by penal-
ized weighting in both classification and clustering entropy estimation.
An iterative scheme is introduced for the forest reinforcement to mini-
mize the inconsistent supervoxel labeling across CBCT images. In order
to screen out the inconsistent matching pairs and to regularize the dense
correspondence defined by the forest-based metric, we evaluate consis-
tencies of candidate matching pairs by virtue of isometric constraints.
The proposed correspondence method has been tested on 150 clinically
captured CBCT images, and outperforms state-of-the-arts in terms of
matching accuracy while being computationally efficient.

1 Introduction

Cone-beam computed tomography (CBCT) images have been widely used in
clinical orthodontics for treatment evaluations and growth assessments. Effi-
cient dense correspondence and image registration of CBCT images are highly
desirable for inter-operative interventions and online attribute transfer, such
as landmark location and label propagation. Volumetric image registration has
been well-studied in medical image processing for decades. Nevertheless, while
the advances made by the large influx of work are dramatic, the efficient online
dense correspondence of CBCT images is still a challenging issue. Considering
CBCT images with hundreds of millions of voxels, the non-rigid registration of
full-sized CBCT images by commonly-used metrics, e.g. the mutual information
(MI) [4,8,9] and normalized correlation, by a large-scale non-linear optimization
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is far from real-time for online applications. Moreover, when given poor initial
alignment, the optimization can be trapped into a local minimum, and make
things even worse. An efficient and reliable engine for dense correspondence of
CBCT images is highly demanded for online inter-operative applications.

The registration based on reduced samples has been used to accelerate the
correspondence establishment [2,11]. Although importance sampling speeded up
gradient estimation of similarity metrics, the registration based on the iterative
optimization still consumed hundreds of seconds [2]. Moreover, the discrete sam-
ples were variable and cannot cover the whole volume image [11]. The supervised
classification and regression random forests are known for efficient online-testing
performance [3,6], and have been applied to correspondence establishment [7,12].
However, the regularization of forest-based correspondence in post-processing
was still time-consuming [12]. Moreover, the prior labeling of volumetric med-
ical images is extremely tedious and prone to inter- and intra-observer variations.
Without prior labeling, the pseudo labels were defined by supervoxel decompo-
sition of just one volumetric image [7]. It’s relatively hard to generalize the
classifier with limited training data.
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Fig. 1. Flowchart of our system.
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In this paper, we propose a mixed metric random forest (MMRF) for cor-
respondence establishment (see Fig. 1). The unsupervised clustering forest [10]
is adopted to generate dense correspondence between supervoxels across CBCT
images. We propose a novel iterative forest reinforcement method for an optimal
forest-based metric to maximize the correspondence consistency in the CBCT
image data set. The weak labeling defined by the clustering forest is used to
discriminate the badly-clustered supervoxels and related classes. The penalized
weights defined according to the confidence scores of weak labels are imposed
on the mixed classification and clustering entropy estimation. In each iteration,
the updated MMRF favors the previously badly-clustered instances, and in turn
improve the forest-based metric for the correspondence establishment. In order
to screen out the inconsistent matching pairs and to regularize the final dense
correspondence, we evaluate consistencies for candidate matching pairs. The soft
consistency label of a matching pair is defined based on supervoxel confidence
scores. A conventional regression forest is employed for the consistency evalu-
ation. In the online testing, the decomposed supervoxels of testing images are
fed to the MMRF for dense correspondence. The consistency scores of matching
pairs are further used to regularize the dense correspondence. The proposed sys-
tem is totally unsupervised and without prior labeling. The MMRF is reinforced
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based on the self-learning of data distribution and matching consistency across
images. The dense correspondence by the MMRF is conducted by tree traversals
with just a sequence of binary tests, and is computationally efficient.

2 Methods

2.1 Initial Supervoxel-wise Affinity and Weak Labeling

Once given a CBCT image data set V = {V|i = 0,..., M} and accompanying
decomposed supervoxel set S = {s;|i = 1,..., N}, an unsupervised clustering
forest [10] is employed to estimate initial pairwise supervoxel affinities. By mea-
suring hyperellipsoid volumes bounding the uncertainty of the data distribution,
the criteria function I, = >, _, . atr(o(S,)). I, is defined by a trace of covari-

ance matrix o of supervoxel data sets in left and right children nodes, i.e. S, and
S,. The trace-based criterion is dominant in the information gain estimation
[10], which can avoid the ubiquitous rank deficiency of the covariance matrix of
high-dimensional data. The coefficient o, is defined by the node cardinality, and
ar = |Skl/ Sh_y, |Sk|. Supervoxel s; and s; are assumed to be similar if they
come to the same leaf node, and £(s;) = {(s;). With respect to the k-th tree, the
affinity ax(sq, s;) = [€(s;) = £(s;)], where [-] is an indicator function. The metric
is defined as a(s;, s;) = 1/nr Y ar(s;, s;) for a forest with ny trees.

Feature Channels. In our system, the supervoxel has three kinds of feature
channels, i.e. intensity appearances, spatial contexts, and geodesic coordinates.
As in [15], an intensity histogram b of voxels inside a supervoxel and an aver-
age histogram b of one-ring neighboring supervoxels are used as appearance
feature f, = (b,b). The contextual features f. is defined as appearance dif-
ferences between supervoxel s and a randomly-sampled pattern P in a cube
centered at s. f. = {x? (f4(s), fo(s +8,)) |s + 0x € P}. The geodesic coordi-
nate f; is defined as the shortest distance between supervoxel s and bound-
ary background supervoxels s,. Graph G is built upon each CBCT image with
nodes at supervoxel centers and edges weighted by exp(—o||fa (si) — fa (s)])-
The geodesic coordinate f, (s) = mind (s,s,|/G). In our system, the bin num-
ber of the intensity histogram is set at 20. Pattern P is predefined by sam-
pling 50 voxels in a 150 x 150 x 150 cube. The normalization parameter

0 =1/max||fa (s:) = fa (s;)]-

Weak Labeling. Given the forest-based metric, the supervoxel mapping
function between images V" and V' is define as ¢(s;) = s;, where s; =
argmaxa(s;,s;j), and s; € V", s; € V' The supervoxel index label set Y =
{yily: € {1,...,ns}} of the reference image V" with n, supervoxels can be trans-
ferred to other images, and y(s;) = y(s;) when ¢(s;) = s;. In order to avoid label-
ing bias due to random reference image selection, the image which produces the
most consistent label transfer and maximizes Z%,n:l Zy(S;,L):y(S;L) a(sy",s?), is
selected as the reference image V7.
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2.2 Mixed Metric Random Forest

We propose an MMREF to iteratively reinforce the forest-based metric by favoring
the previously badly-clustered supervoxels and related classes. The penalized
weights are imposed on mixed classification and clustering entropy estimation
according to the weak labeling. In order to discriminate the badly-clustered
supervoxels, we define a confidence score of label y; with respect to the k-th
volumetric image V*) as

Y|

= 1- |Y,Zé([c2<k> @1, ) 1)

where Q*) and Q" are n, by ny matrices of the normalized Euclidean distance
between supervoxels of label Y and Y, with respect to image V*) and V7.
Y, is a subset of Y and has ng labels. § is the Heaviside step function. n is
a predefined inconsistency constant and set at 0.3in all our experiments. The
i-th row of matrix @) can be viewed as the spatial relationship of the supervoxel
of label y; with the rest supervoxels of label Y. When the spatial relationship
of the supervoxel with label y; in image V() agrees with that in the reference
image, the label ; is assumed to be confident with respect to image V*). The

(k)

conﬁdence score of label y; is defined by accumulating ;" on all images, and

Y = 3r Zk 1 ( —0.5). The weighted information gain with respect to the
discrete probablhty distribution determined by the weak labeling is defined as

L=-% akzm( (:150) mp(u:lS0) ). (2)

k=lr i=1

Moreover, we discriminate the badly-clustered supervoxels and impose penal-
ized weights on the uncertainty evaluation of data distribution in node splitting.
The penalized weight v of a supervoxel is defined as v(s) = K-6(0.5 — 7'(( )) )+1,s €

V%), K is a penalized constant and set at 5 in all our experiments. The clustering-
related information gain I, in Sect. 2.1 is rewritten as

S 2| s = S
Iu:—kgr S H

3)

where S}, is the weighted feature mean of supervoxel data set S - When training
MMRF, we integrate penalized weighted information gain I, of the discrete prob-
ability distribution determined by the weak labeling and I,, of the uncertainty
evaluation of the data distribution. The criteria function I = 0.5-(1./I?+1,/I9),
which is normalized by I? and I with respect to the information gains of the
classification and the clustering in the root node splitting.

As shown in Fig. 1, given the updated MMRF, the weak labeling together
with the penalized weights are updated accordingly. In the further iteration, the
MMREF training will favor the previously badly-clustered instances to improve
the forest-based metric for the correspondence establishment.
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2.3 Soft Consistency Evaluation

When given a volumetric image pair (V,V?2), the dense matching set C' =
{(si,85)s; = ¢(si),si € V', s; € V'2} is obtained by the MMRF-based metric.
However, there is no information on the relationship of one supervoxel matching
pair with the rest of C. Let’s denote the candidate matching pair in set C' as
z = (4, ;). The feature channels f. = (||f(s;) — f(s;)||, 5 (f(s;) + f(s;))). The
first term of f, is the feature difference between supervoxel s; and s;. The second
term is the location of pair z in the feature space as [14]. Instead of assigning

hard labels to z as [14], we introduce the soft label u(z) = T,!Stl)(si) . Tém(sj). y
is the supervoxel label of s; and s;. The large score © means both supervoxels
in matching pair z bear a confident label in image V! and V2, and in turn the
matching pair z is consistent with the rest of C'. A conventional regression forest
[3] is utilized for the consistency evaluation.

3 Experiments

Data Set. The proposed MMREF is evaluated on 150 clinical CBCT images cap-
tured from orthodontic patients for dense correspondence. According to Angle’s
classification (AC) of malocclusions, the data set includes 54 AC-I, 36 AC-II, 38
AC-III, as well as 22 normal occlusions. The CBCT images are acquired by a
NewTom scanner with a 12-in field of view with a resolution of 500 x 500 x 476.
The voxel size is 0.4 mm X 0.4mm X 0.4 mm.

It’s not easy to define ground truth supervoxel correspondence considering
the independent supervoxel decomposition. Aside from the real data set, we
generate a set of toy data viewed as the golden standard. An AC-I CBCT image
is supervoxel decomposed with voxels labeled according to the supervoxel indices.
Twenty random B-spline based non-rigid deformations are imposed on the CBCT
and the label images simultaneously. The resulted volume image data set T, has
the ground truth supervoxel labels.

Implementation Details. The 4-fold cross validation is used. The toy data set
T, is just used for testing. Each volume image is decomposed to 5k supervox-
els by the SLIC technique [1]. In the training process, the MMRF is updated
nyg times, and ng = 5. All forests, including the clustering forest for the ini-
tial affinity and MMRF, have 10 trees and the leaf size set at 5. Given the
consistency evaluation (Sect.2.3), the pairs with scores <0.1 are unlinked, and
new counterpart s; is located by a straightforward interpolation, and z(s;/) =
2 sneNeib(si) WkT(P(sk)), where z denotes 3D coordinates of supervoxel centers.

exp(=|[lz(si) =z (s)]l)
speNeib(s;) XP(—llz(se)—z(sk)l)

is denoted as MMRF-CR.

Wy = The method with the above regularization

3.1 Qualitative Assessment

The correspondence accuracy is qualitatively assessed by two metrics: the Dice
similarity coefficients (DSC) and the average Hausdorff distance (AHD). As to
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Fig. 2. Comparisons of the label transfer in (a) the toy data set Ty, and of (b) the
maxilla and (¢) the mandible on clinically-captured twenty images by the proposed
MMRF and MMRF-CR, as well as the CluRF [10], RegRF [7], ClaRF [7] methods in
terms of the AHD and DSC.

the toy data set, the DSCs are 97% and 99% by MMRF and MMRF-CR respec-
tively, and the AHDs are 0.16 mm and 0.15 mm as shown in Fig. 2(a).

The dense correspondence facilitates the attribute transfer between images.
We conduct the qualitative assessments of the proposed MMRF in the label
transfer of the mandible and maxilla on captured CBCT images. The upper
dentition is assigned to the maxilla, and the lower dentition to the mandible

s [13]. The proposed MMRF method is compared with the recent random for-
est based label propagation methods, including the regression forest (RegRF)
and the supervoxel classification forest (ClaRF) [7]. We also compare with
the traditional patch-based fusion (PF) [5], and the convex optimization (CO)
[13] methods as shown in Table1l. The label transfer accuracies of the max-
illa and mandible of twenty images are shown in Fig.2(b), (c). The consistency
scheme is used to find reliable matching pairs for the final correspondence. As
shown in Table1 and Fig.3(a)—(c), the label transfer with consistency regular-
ization (MMRF-CR) outperforms others. We also compare the label transfer
by the MMRFs built on different feature channels, i.e. f, alone, (f,, f.), and
(fas fes fg) as shown in Fig. 3(d). The forest built upon all feature channels per-
forms best in the mandible label transfer task. The proposed method utilizes
the iterative refinement to improve the forest-based metric, where the itera-
tively updated weak labeling and penalized weights are used to constrain the

Table 1. Comparisons of the proposed MMRF and MMRF-CR, with the CluRF [10],
RegRF [7], ClaRF [7], PF [5], and CO [13] methods in terms of the DSC and AHD for
the label transfer of the maxilla (Mx) and mandible (Md).

MMRF | MMRF+CR |CIuRF [10] RegRF [7] | ClaRF [7] |PF [5] CO [13]
Mx |DSC |0.88+0.02|0.90 + 0.02 |0.86£0.03 | 0.76 £ 0.03 | 0.81 + 0.03| 0.81 +0.03 | 0.87 = 0.02
AHD |0.29+0.02|0.28 £ 0.02 |0.30 +0.03 | 0.34+0.03 | 0.31 £0.03 | n/a n/a

Md |DSC 0.91£0.02|/0.93 £0.02 |0.89 +0.02 | 0.81 +0.03|0.88 £ 0.02 | 0.88 £0.02|0.91 +0.02
AHD | 0.28 £0.02|0.27 +0.01 |0.30£0.03 |0.324+0.03/0.30 £0.03 | n/a n/a
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Fig. 3. (a)The reference image and the label transfer of two images, (b) and (c), by
the CluRF [10], MMRF, MMRF-CR (from left to right) with pseudo-colors denoting
corresponding supervoxel pairs in two viewpoints. (d) Comparisons of label transfer
based on different feature channels. (¢) Comparisons of label transfer with increasing
iteration numbers. (f) Comparisons of label transfer with different supervoxel sizes.

entropy estimation. Figure 3(e) shows the performances after different number
of iterations. We observe that the correspondence improves with iterative refine-
ments and reaches a plateau after 5 iterations. We analyze the effects of the
supervoxel size on the label transfer. Figure 3(f) shows the label transfer per-
formances based on volumetric decompositions with 2k—8k supervoxels for each
CBCT image. We observe that the more supervoxels, the more accurate corre-
spondence can be achieved. We think the finer supervoxel decomposition helps
to find anatomically-accurate counterparts between images. On the other hand,
a large number of supervoxels impose both training and testing burden. In our
system, the supervoxel number is set at 5k to trade off the accuracy and the
computation burden.

4 Discussion and Conclusion

We propose a totally-unsupervised dense correspondence method for CBCT
images. The iteratively-updated MMRF-based metric is reinforced to handle
the previous poorly-clustered supervoxels. We perform experiments on the toy
data generated from CBCT images of an AC-I patient. The label transfer is per-
fect on the toy data by the MMRF-CR with a DSC of 99%. The DSC and AHD
of the maxilla label transfer are 90% and 0.28 mm respectively, and 93% and
0.27mm for the mandible on the real clinically-captured CBCT images. Also,
the computation is efficient by the forest-based metric and consumes average 5s.
The experiments are performed on the label transfer of relatively large struc-
tures. However, we observe that the segmentation of some small structures,
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e.g. the teeth, are sensitive to the granularity of supervoxel decomposition yet
desirable for treatment evaluations. In future work, we will investigate the poten-
tial of the MMRF for accurate correspondence for multi-scale structures.
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