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Abstract. Automatic and robust registration between real-time patient
imaging and pre-operative data (e.g. CT and MRI) is crucial for
computer-aided interventions and AR-based navigation guidance. In this
paper, we present a novel approach to automatically align range image
of the patient with pre-operative CT images. Unlike existing approaches
based on the surface similarity optimization process, our algorithm
leverages the contextual information of medical images to resolve data
ambiguities and improve robustness. The proposed algorithm is derived
from deep reinforcement learning algorithm that automatically learns to
extract optimal feature representation to reduce the appearance discrep-
ancy between these two modalities. Quantitative evaluations on 1788
pairs of CT and depth images from real clinical setting demonstrate that
the proposed method achieves the state-of-the-art performance.

1 Introduction

Depth sensing technologies using structured light or time-of-flight become pop-
ular in recent years. Their applications have also been widely studied in the
healthcare domain, such as patient monitoring [1], patient positioning [16] and
computer-aided interventions [19]. In general, depth imaging provides real-time
and non-intrusive 3D perception of patients that could be used for markerless
registration, to replace conventional RGB cameras, and potentially to achieve
higher robustness against illumination and other data variability.

To enable such clinical applications, one of the fundamental steps is to align
the pre-operative image such as CT or MRI, with the real-time patient image
from the depth sensor. This requires an efficient and accurate registration or ego-
positioning algorithm. As depth sensors capture the 3D geometric surface of the
patient while skin surface can be readily extracted from CT scans, surface-based
registration methods [2,14,19] have been intuitively proposed. However, those
methods usually fail to perform robustly due to several challenges: (1) the surface
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data obtained from the depth sensor is noisy and suffers from occlusions; (2) the
surface similarity is tampered due to the patients’ clothing or protective covers;
(3) the two modalities may have a different field of view. CT data, for example,
often only covers a part of the patient’s body; (4) the patient’s pose/shape may
vary between the two imaging processes. To overcome these challenges, most of
the existing solutions still rely on marker-based approaches [5].

Another way to formulate the depth-CT registration problem is to utilize the
internal body information that the CT scan naturally captures. Unfortunately,
the physical principles used in the depth sensing and CT imaging are so different
that the information from the two modalities has little in common. To measure
the similarity between different modalities, learning-based algorithms have been
actively explored [4,15]. Most recently, there has been a significant progress in
feature representation learning using deep convolutional neural networks, which
can extract hierarchical features directly from raw visual input. The high level
features encode large contextual information which are robust against noise and
other data variations. Moreover, by combining deep convolutional neural net-
work with reinforcement learning, the deep reinforcement learning (DRL) has
demonstrated superhuman performance in different applications [10,13].

In this paper, we propose a deep reinforcement learning based multimodal
registration method that handles the aforementioned challenges. An overview
of the system algorithm workflow is shown in Fig. 1. Our major contributions
are summarized as follows: (1) We propose a learning-based system derived from
deep Q-learning [13] that automatically extracts compact feature representations
to reduce the appearance discrepancy between depth and CT data. It is the first
time a state-of-the-art DRL method is used to solve the multimodal registration
problem in an end-to-end fashion. (2) We also propose to use the contextual
information for the depth-CT registration. Compared to conventional methods
that compute surface similarities, our algorithm learns to exploit the relevant
contextual information for optimal registration.

Fig. 1. Run-time workflow of the proposed DRL registration framework. The iterative
observe-action process gradually aligns the multimodal data until termination.
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2 Related Work

Registration of multimodal data recently attracts increasing attention on medical
use cases. Different information is extracted and fused from different modality
scans to provide pieces of an overall picture of pathologies. In general, most of
the multimodal registration (MMR) approaches can be categorized as one of the
two types. The first category algorithms attempt to locate invariant image fea-
tures [2,17], while the second category approaches apply statistical analysis such
as regression to find a metric that measures dependency between two modalities
[4,7]. Different from those approaches, our method learns both feature represen-
tations and alignment metric implicitly in an end-to-end fashion with DRL.

DRL is a powerful algorithm that trains an agent which interacts with an
environment, with image observations and rewards as the input, to output a
sequence of actions. The working mechanism makes it suitable to solve the
sequential decision making problems, for example the landmark detection in
medical images with trajectory learning [6]. To the best of our knowledge, the
most relevant registration work is proposed in [11]. They solve the 3D CT volume
registration problem with a standard deep Q-learning framework. To speedup
the training process with the 6 degree-of-freedom transformation, they replace
the agent’s greedy exploration process with a supervised learning scheme. In
our scenario, due to the appearance discrepancies as well as ambiguities due
to missing observations, we instead encourage the agent to explore the search
space freely rather than exploiting the shortest path. Furthermore, we utilize the
history of actions to help agent escape from local loops caused by the incorrect
initialization, which differentiates our work from theirs.

3 Method

We propose a novel MMR algorithm that aligns the depth data to the medical
scan. Our work is inspired by the process of how human experts perform the
manual image alignment, which can be described as an iterative observe-action
process. Similarly, the DRL algorithm trains an agent with observations from
environment to learn a control policy, which is reflected by the capability of
making sequential alignment actions with given observations. The rest of the
section will reveal more details of the proposed registration method.

3.1 Environment Setup

In deep reinforcement learning, the environment E is organized as a stochastic
finite state machine. It takes agent’s action as the input and outputs states and
rewards. The agent is designed to have zero knowledge about the internal model
of the environment, besides the observed states and rewards.

States: In our setup, the state is represented by a 3D tensor consisting of cropped
images from both data modalities. At the beginning of each training episode,
the environment is initialized either randomly or roughly to align the two data
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Fig. 2. The derived dueling network architecture used in the proposed method.

sources. A fixed size window is applied to crop the depth image with current
transformation, where the cropped image is stacked with the projected CT data
(Sect. 3.3) as an output state. In the following iterations, a new action output
from the agent is used to update the transformation accordingly.

Rewards: Given a state st, a reward rt is generated to reflect the value of
current action at given by the agent. A small reward value is given to the agent
during the regular exploration steps, while the terminal state triggers a much
larger reward. The sign of the reward is determined by the current distance to
the ground truth compared to the previous step.

3.2 Training the Agent

Let Id represent the depth image and It represent the projected CT image.
The goal here is to estimate the rigid transformation T that aligns the moving
image It to the fixed image Id with a minimal error. A common method to find
the optimal parameters of T is by maximizing a similarity function S(Id, It)
with a metric. Instead of applying a manually defined metric, we adopt the
reinforcement learning algorithm to implicitly learn the metric. The optimization
process is recast as a Markov Decision Process following the Bellman equation
[3]. More precisely, we train an agent to approximate the optimal action-value
function by maximizing the cumulative future reward [13]. Different from the
deep-Q network, the proposed method is derived from the Dueling Network [18]
with some modifications (Fig. 2):

– We add more convolution and pooling layers to make the network deep enough
to extract high-level contextual features.

– We add batch normalization layer after the input data layer to minimize the
effect of intensity distribution discrepancy across different modalities.

– We concatenate the feature vector extracted from the last convolution layer
with an action history vector that records the actions of the past few frames.
In our experiment, the concatenation of the action history vector alleviates
the action oscillation problem around certain image positions.
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The insight behind the dueling network is that certain states include more
critical information than others to help the agent make the right decision. For
example, during the chest region registration, getting the head region rather than
the arms within the observation will significantly help the agent move toward the
right direction. Compared to the deep Q-network, the dueling network has the
capability of providing separate estimates of the value and advantage functions,
which allow for a better approximation of the state values. In our setup, the final
Q value function is formulated as:

Q(s, h, a; θ, α, β) = V (s, h; θ, β) + (A(s, h, a; θ, α) − maxa′A(s, h, a′; θ, α)) (1)

where h is the history action vector, θ is the convolution layers’ parameters,
α and β are the parameters of the two streams of fully-connected layers. To
further stabilize the training process, double DQN [8] is also adopted to update
the network weights.

3.3 Data Projection

The two data modalities in our scenario are the 2.5D depth image and 3D CT
volume data. One way to align the two modalities is to reconstruct the depth
image to a 3D surface, and then apply the registration algorithm in the 3D
space. However, feature learning with the 3D convolution requires tremendous
computation. Meanwhile, the DRL algorithm with a greedy exploration policy
has to explore millions of observations to properly train an agent. To reduce the
computation complexity and speedup the training process, we reformulate the
2.5D-3D registration problem to a 2D image registration problem. We simplify
the 3D volume data to a 2D image through a projection process. Note that the
simplification is only for speedup purpose and the proposed workflow can be
extended to the 2.5-3D registration with minor modifications.

To best utilize the internal information that CT data naturally captures, we
project the CT volume to a 2D image using the following equation.

It(x, y) =
1
h
×

h∑

z=0

CT (x, y, z) (2)

where h is the size of the CT volume along the anterior axis. The intensity of
each pixel on the projected image is the summation of the voxel readings of
the volume along the projection path. We apply an orthographic projection for
both depth data and volume data, and Fig. 3 shows an example of the projected
images. The projected image of volume data is visually similar to a topogram
image. Since the medical scans often only have a partial view of the patient,
it is challenging even for a human expert to align the two modalities from the
surface, especially over the flat regions such as the chest and the abdomen. On
the contrary, the topogram-like image reveals more contextual information of the
internal structures of the patient to better handle the data ambiguity problem,
compared to the surface representation.
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Fig. 3. Orthographically projected CT and depth images. Left image shows a CT
abdomen scan in a larger scale. Middle image shows a depth image rendered in color.
Right image displays the overlay of the two modalities with the ground truth.

Although the depth-CT registration involves a six degree-of-freedom trans-
formation, we simplify the search space into two translations TR (along the
Right axis in the RAS coordinate system), TS (along the Superior axis) and
one rotation RA (along the Anterior axis). The rest of the transformation can
be determined/inferred through the sensor calibration process together with the
depth sensor readings. For example, the relative translation offset along the
Anterior axis can be calculated by deducting the actual distance between table
and camera from the distance recorded during the calibration time.

4 Experiments and Results

We installed Microsoft Kinect2 cameras to the ceilings of clinical CT-scan rooms.
Depth images were collected when the patient lay down on the table and adjusted
the pose for the scan. We took several snapshots during the positioning process.
We reconstruct the depth image to a 3D point cloud and orthographically re-
project the point cloud to a 2D image. We also reconstruct the patient’s CT data
with full FOV to avoid cropping artifacts. The two imaging systems, Kinect2
and CT scanner, can be pre-calibrated through a standard extrinsic calibration
process [12]. As long as the patient remains stationary during the two imag-
ing processes, the ground truth alignment of the two data modalities can be
determined from the table movement offsets and the extrinsic parameters.

We collect two datasets that consist of thorax and abdomen/pelvis scans,
which ends up with 1788 depth-CT pairs across several clinical sites. We ran-
domly split the training and testing set for each experiment and guarantee each
training set have 800 data. The rest of them is used as the testing data. We also
add random perturbations to the training data to avoid overfitting.

The network configuration is shown in Fig. 2. The input images are cropped
with the same size (200 × 200) at a resolution of 5 mm. The network output
is a 6D vector (4 translations and 2 rotations). The action history vector has
a length of 24 (6 actions× 4 histories). We use RMSprop optimizer without
the momentum to update network weights. The learning rate is initially set to
0.00002 with a decay of 0.95 every 10,000 iterations. The mini-batch size is 32. γ
equals to 0.9. We randomly initialize the transformation with a translation offset
±500 mm and a rotation offset ±30◦ from the ground truth location, to start
training the agent. The non-terminal rewards are ±0.1 and the terminal rewards
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Fig. 4. Qualitative impression with the proposed algorithm. Left image is a perfect
thorax alignment. Middle one is a good thorax alignment though the patient’s poses at
the two imaging time were different. Right image shows a perfect abdomen alignment.

are ±10. For each dataset, we train an agent with a single TitanX Pascal GPU
for 1.2M iterations and each of the training lasts about 4 days.

System performance is reported as the average Euclidean distance between
the network estimation and the ground truth. We compare the performance
with several baseline approaches as well as different DRL networks. The land-
mark baseline [6] trains detectors to detect surface landmarks, such as shoulders
and pelvises, to align with the CT anatomy landmarks. The Haustorff baseline
minimizes the surface distance between CT and depth in 3D with the Haustorff
metric. The ICP baseline aligns the two surfaces with the standard ICP algo-
rithm. The DQN baseline is configured with the original setup [13]. The Dueling
Network [18] is similar to our proposed method but configured with the origi-
nal setup. We also test the proposed network without history information and
batch normalization [9] separately. The quantitative accuracy comparison among
all methods is shown in Table 1 as well as the computation time. A qualitative
analysis of the results generated by the proposed method is shown in Fig. 4.

Table 1. Results comparison of thorax and abdomen (ABD) dataset.

Methods Region TS (mm) TR (mm) RA (◦) TS (mm) TR (mm) RA (◦) Time (s)

Landmark [6] Thorax 36.1 ± 19.7 7.3 ± 2.1 - ABD 47.8 ± 25.6 7.2 ± 3.7 - 0.06

Hausdorff Thorax 14.6 ± 7.1 5.9 ± 4.4 - ABD 20.2 ± 16.8 9.3 ± 6.1 - 11.8

ICP Thorax 18.3 ± 9.5 5.1 ± 2.2 4.2 ± 2.2 ABD 25.9 ± 18.2 11.2 ± 2.7 5.1 ± 3.4 2.35

DQN [13] Thorax 27.3 ± 5.9 4.9 ± 1.5 7.2 ± 1.8 ABD 33.2 ± 9.3 9.1 ± 2.2 4.8 ± 2.2 1.37

Dueling [18] Thorax 19.7 ± 6.2 5.2 ± 1.3 6.9 ± 1.4 ABD 22.4 ± 10.5 7.6 ± 3.3 6.3 ± 2.4 1.40

Proposed
– w/o history
– w/o BN [9]

Thorax
Thorax
Thorax

9.1 ± 3.7

11.5 ± 6.4
17.7 ± 6.9

2.7 ± 1.5

4.2 ± 1.5
4.7 ± 1.4

2.5 ± 0.4

3.1 ± 1.4
6.2 ± 1.7

ABD
ABD
ABD

15.2 ± 5.8

19.2 ± 8.3
22.8 ± 8.2

4.6 ± 1.9

7.3 ± 2.9
7.1 ± 2.9

2.9 ± 0.8

2.9 ± 0.9
3.4 ± 1.5

1.42
1.42
1.41

5 Conclusion and Future Work

A novel depth-CT registration method based on deep reinforcement learning is
proposed. Our approach investigates the correlations between surface readings
from depth sensors and internal body structures captured by the CT imaging.
The experimental results demonstrate that our approach reaches the best accu-
racy with the least deviation. The better performance compared to two original



Multimodal Image Registration with Deep Context Reinforcement Learning 247

DRL methods suggests that our modifications improve the network learning for
the multimodal registration. Higher errors in the abdomen cases, compared to
the chest cases, may be caused by the larger appearance variations. The pro-
posed approach also has no limitations to be applied to register images from
other modalities. Future research direction includes combining the surface met-
ric together with the contextual information to further improve performance.
Extra efforts are also required to improve the training and testing efficiency.
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