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Abstract. We present a novel methodology for the automated detection
of breast lesions from dynamic contrast-enhanced magnetic resonance
volumes (DCE-MRI). Our method, based on deep reinforcement learn-
ing, significantly reduces the inference time for lesion detection compared
to an exhaustive search, while retaining state-of-art accuracy.

This speed-up is achieved via an attention mechanism that progres-
sively focuses the search for a lesion (or lesions) on the appropriate
region(s) of the input volume. The attention mechanism is implemented
by training an artificial agent to learn a search policy, which is then
exploited during inference. Specifically, we extend the deep Q-network
approach, previously demonstrated on simpler problems such as anatom-
ical landmark detection, in order to detect lesions that have a significant
variation in shape, appearance, location and size. We demonstrate our
results on a dataset containing 117 DCE-MRI volumes, validating run-
time and accuracy of lesion detection.

Keywords: Deep Q-learning · Q-net · Reinforcement learning · Breast
lesion detection · Magnetic resonance imaging

1 Introduction

Breast cancer is amongst the most commonly diagnosed cancers in women [1,2].
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents
one of the most effective imaging techniques for monitoring younger, high-risk
women, who typically have dense breasts that show poor contrast in mammog-
raphy [3]. DCE-MRI is also useful during surgical planning once a suspicious
lesion is found on a mammogram [3]. The first stage in the analysis of these 4D
(3D over time) DCE-MRI volumes consists of the localisation of breast lesions.
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Fig. 1. Example of the detection process of breast lesions from DCE-MRI with DQN.
Depth transformation are not shown for simplicity.

This is a challenging task given the high dimensionality the data (4 volumes each
containing 512 × 512 × 128 voxels), the low signal to noise ratio of the dynamic
sequence and the variable size and shape of breast lesions (see Fig. 1). Therefore,
a computer-aided detection (CAD) system that automatically localises breast
lesions in DCE-MRI data would be a useful tool to facilitate radiologists. How-
ever, the high dimensionality of DCE-MRI requires computationally efficient
methods for lesion detection to be developed to be viable for practical use.

Current approaches to lesion detection in DCE-MRI rely on extracting hand-
crafted features [4,5] and exhaustive search mechanisms [4–6] in order to han-
dle the variability in lesion appearance, shape, location and size. These meth-
ods are both computationally complex and potentially sub-optimal, resulting
in false alarms and missed detections. Similar issues in the detection of visual
objects have motivated the computer vision community to develop efficient detec-
tors [7,8], like the Faster R-CNN [7]. However, these models need large annotated
training sets making their application in medical image analysis (MIA) challeng-
ing [9]. Alternatively, Caicedo and Lazebnik [8] have recently proposed the use of
a deep Q-network (DQN) [10] for efficient object detection that allows us to deal
with the limited amount of data. Its adaptation to MIA applications has to over-
come two additional obstacles: (1) the extension from visual object classes (e.g.,
animals, cars, etc.) to objects in medical images, such as tumours, which tend
to have weaker consistency in terms of shape, appearance, location, background
and size; and (2) the high dimensionality of medical images, which presents prac-
tical challenges with respect to the DQN training process [10]. Ghesu et al. [11]
have recently adapted DQN [10] to anatomical landmark detection, but did not
address the obstacles mentioned above because the visual classes used in their
work have consistent patterns and are extracted from fixed small-size regions of
the medical images.

Here, we introduce a novel algorithm for breast lesion detection from DCE-
MRI inspired by a previously proposed DQN [8,10]. Our main goal is the reduc-
tion of run time complexity without a reduction in detection accuracy. The pro-
posed approach comprises an artificial agent that automatically learns a policy,
describing how to iteratively modify the focus of attention (via translation and
scale) from an initial large bounding box to a smaller bounding box containing
a lesion, if it exists (see Fig. 2). To this end, the agent constructs a deep learn-
ing feature representation of the current bounding box, which is used by the
DQN to decide on the next action, i.e., either to translate or scale the current
bounding box or to trigger the end of the search process. Our methodology is
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the first DQN [10] that can detect such visually challenging objects. In addi-
tion, unlike [11] that uses a fixed small-size bounding box, our DQN utilises a
variable-size bounding box. We evaluate our methodology on a dataset of 117
patients (58 for training and 59 for testing). Results show that our methodology
achieves a similar detection accuracy compared to the state of the art [5,6], but
with significantly reduced run times.

2 Literature Review

Automated approaches for breast lesion detection from DCE-MRI are typically
based on exhaustive search methods and hand-designed features [4,5,12,13].
Vignati et al. [12] proposed a method that thresholds an intensity normalised
DCE-MRI to detect voxel candidates that are merged to form lesion candidates,
from which hand-designed region and kinetic features are used in the classifi-
cation process. As shown in Table 1, this method has low accuracy that can be
explained by the fact that this method makes strong assumptions about the
role of DCE-MRI intensity and does not utilise texture, shape, location and size
features. Renz et al. [13] extended Vignati et al.’s work [12] with the use of addi-
tional hand-designed morphological and dynamical features, showing more com-
petitive results (see Table 1). Further improvements were obtained by Gubern-
Merida et al. [4], with the addition of shape and appearance hand-designed
features, as shown in Table 1. The run-time complexity of the approaches
above can be summarised by the mean running time (per volume) shown by
Vignati et al.’s work [12] in Table 1, which is likely the most efficient of these
three approaches [4,12,13]. McClymont et al. [5] extended the methods above
with the unsupervised voxel clustering for the initial detection of lesion candi-
dates, followed by a structured output learning approach that detects and seg-
ments lesions simultaneously. This approach significantly improves the detection
accuracy, but at a substantial increase in computational cost (see Table 1). The
multi-scale deep learning cascade approach [6] reduced the run-time complexity,
allowed the extraction of optimal and efficient features, and had a competitive
detection accuracy as shown in Table 1.

There are two important issues regarding previously proposed approaches:
the absence of a common dataset to evaluate different methodologies and the

Table 1. Summary of results from previous approaches.

Evaluation criteria Time

Vignati et al. [12] 0.89 TPR @ 12.00 FPI 7.00min

Renz et al. [13] 0.96 sensitivity @ 0.75 specificity –

Gubern-Merida et al. [4] 0.89 TPR @ 4.00 FPI –

McClymont et al. [5] 1.00 TPR @ 4.50 FPI O(60)min

Maicas et al. [6] 0.80 TPR @ 2.80 FPI 2.74min
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lack of a consistent lesion detection criterion. Whereas detections in [12,13] were
visually inspected by a radiologist, [4,5] considered a lesion detected if a (single)
voxel in the ground truth was detected. In [6] a more precise criterion (minimum
Dice coefficient of 0.2 between ground truth and candidate bounding box) was
used - in the experiment, we adopt this Dice > 0.2 criterion and use the same
dataset as a few previous studies [5,6].

3 Methodology

In this section, we first define the dataset, then the training and inference stages
of our proposed methodology, shown in Fig. 2.

Fig. 2. Block diagram of the proposed detection system.

3.1 Dataset

The data is represented by a set of 3D breast scans D =
{(

x, t, {s(j)}M
j=1

)
i

}|D|

i=1
,

where each, x, t : Ω → R denotes the first DCE-MRI subtraction volume and
the T1-weighted anatomical volume, respectively, with Ω ∈ R

3 representing the
volume lattice of size w × h × d; s(j) : Ω → {0, 1} represents the annotation for
the jth lesion present, with s(j)(ω) = 1 indicating presence of lesion at voxel
ω ∈ Ω. The entire dataset is patient-wise split such that the mutually exclusive
training and testing datasets are represented by T ,U ⊂ D, where T

⋃
U = D.

3.2 Training

The proposed DQN [10] model is trained via interactions with the DCE-MRI
dataset through a sequence of observations, actions and rewards. Each observa-
tion is represented by o = f(x(b)), where b = [bx, by, bz, bw, bh, bd] ∈ R

6 (where
bx, by, bz represent the top-left-front corner and bw, bh, bd denotes the lower-right-
back corner of the bounding box) indexes the input DCE-MRI data x, and f(.)
denotes a deep residual network (ResNet) [14,15], defined below. Each action
is denoted by a ∈ A = {l+x , l−x , l+y , l−y , l+z , l−z , s+, s−, w}, where l, s, w represent
translation, scale and trigger actions, with the subscripts x, y, z denoting the



Deep Reinforcement Learning for Active Breast Lesion Detection 669

horizontal, vertical or depth translation, and superscripts +,− meaning posi-
tive or negative translation and up or down scaling. The reward when the agent
chooses the action a = w to move from o to o′ is defined by:

r(o, a,o′) :=

{
+η, if d(o′, s) ≥ τw

−η, otherwise
, (1)

where d(.) is the Dice coefficient between a map formed by the bounding box
o = f(x(b)) and the segmentation map s, η = 10 and τw = 0.2 (these values
have been empirically defined - for instance, we found that increasing η to 10.0
from 3.0 used in [8] helped triggering when finding a lesion). For the remaining
of the actions in A\{w}, the rewards are defined by:

r(o, a,o′) := sign(d(o′, s) − d(o, s)). (2)

The training process models a DQN that maximises cumulative future
rewards with the approximation of the following action-value function:
Q∗(o, a) = maxπ E[rt + γrt+1 + γ2rt+2 + ... | ot = o, at = a, π], where rt denotes
the reward at time step t, γ represents a discount factor per time step, and π is
the behaviour policy. This action-value function is modelled by a DQN Q(o, a, θ),
where θ denotes the network weights. The training of Q(o, a, θ) is based on
experience replay memory and the target network [10]. Experience replay uses a
dataset Et = {e1, ..., et} built with the agent’s experiences et = (ot, at, rt,ot+1),
and the target network with parameters θ−

i computes the target values for the
DQN updates, where the values θ−

i are held fixed and updated periodically. The
loss function for modelling Q(o, a, θ) minimises the mean-squared error of the
Bellman equation, as in:

Li(θi) = E(o,a,r,o′)∼U(E)

[(
r + γ max

a′
Q(o′, a′; θ−

i ) − Q(o, a; θi)
)2

]
. (3)

In the training process, we follow an ε-greedy strategy to balance exploration
and exploitation: with probability ε, the agent explores, and with probability
1-ε, it will follow the current policy π (exploitation) for training time step t. At
the beginning of the training, we set ε = 1 (i.e., pure exploration), and decrease
ε as the training progresses (i.e., increase exploitation). Furthermore, we follow
a modified guided exploration: with probability κ, the agent will select a random
action and with probability 1−κ, it will select an action that produces a positive
reward. This modifies the guided exploration in [8] by adding randomness to the
process, aiming to improve generalisation. Finally, the ResNet [14,15], which
produces the observation o = x(b), is trained to decide whether a random
bounding box b contains a lesion. A training sample is labelled as positive if
d(o, sj) ≥ τw, and negative, otherwise. It is important to notice that this way
of labelling random training samples can provide a large and balanced training
set, extracted at several locations and scales, that is essential to train the large
capacity ResNet [14,15]. In addition, this way of representing the bounding box
means that we are able to process varying-size input bounding box, which is an
advantage compared to [11].
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3.3 Inference

The trained DQN model is parameterised by θ∗ learned in (3) and is defined
by a multi-layer perceptron [8] that outputs the action-value function for the
observation o. The action to follow from the current observation is defined by:

a∗ = arg max
a

Q(o, a, θ∗). (4)

Finally, given that the number and location of lesions are unknown in a test
DCE-MRI, this inference is initialised with different bounding boxes at several
locations, and it runs until it either finds the lesion (with the selection of the
trigger action), or runs for a maximum number of 20 steps.

4 Experiments

The database used to assess our proposed methodology contains DCE-MRI and
T1-weighted anatomical datasets from 117 patients [5]. For the DCE-MRI, the
first volume was acquired before contrast agent injection (pre-contrast), and the
remaining volumes were acquired after contrast agent injection. Here we use only
one volume represented by the first subtraction from DCE-MRI: the first post-
contrast volume minus pre-contrast volume. The T1-weighted anatomical is used
only to extract the breast region from the initial volume [5], as a pre-processing
stage. The training set contains 58 patients annotated with 72 lesions, and the
testing set has 59 patients and 69 lesions to allow a fair comparison with [6].
The detection accuracy is assessed by the proportion of true positives (TPR)
detected in the training and testing sets as a function of the number of false
positives per image (FPI), where a candidate lesion is assumed to be a true
positive if the Dice coefficient between the candidate lesion bounding box and
the ground truth annotation bounding box is at least 0.2 [16]. We also measure
the running time of the detection process using the following computer: CPU:
Intel Core i7 with 12 GB of RAM and a GPU Nvidia Titan X 12 GB.

The pre-processing stage of our methodology consists of the extraction
of each breast region (from T1-weighted) [5], and separate each breast into a
resized volume of (100 × 100 × 50) voxels. For training, we select breast region
volumes that contain at least one lesion, but if a breast volume has more than
one lesion, one of them is randomly selected to train the agent. For testing, a
breast may contain none, one or multiple lesions. The observation o used by
DQN is produced by a ResNet [14] containing five residual blocks. The input
to the ResNet is fixed at (100 × 100 × 50) voxels. We extract 16 K patches
(8 K positives and 8 K negatives) from the training set to train the ResNet to
classify a bounding box as positive or negative for a lesion, where a bounding
box is labelled as positive if the Dice coefficient between the lesion candidate and
the ground truth annotation is at least 0.6. This ResNet provides a fixed size
representation for o of size 2304 (extracted before the last convolutional layer).
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The DQN is represented by a multilayer perceptron with two layers, each
containing 512 nodes, that outputs nine actions: six translations (by one third of
the size of the corresponding dimension), two scales (by one sixth in all dimen-
sions) and a trigger (see Sect. 3.2). For training this DQN, the agent starts an
episode with a centred bounding box occupying 75% of the breast region vol-
ume. The experience replay memory E contains 10 K experiences, from which 100
mini-batch samples are drawn to minimise the loss (3). The DQN is trained with
Adam, using a learning rate of 1×10−6, and the target network is updated after
running one episode per volume of the training set. For the ε-greedy strategy
(Sect. 3.2), ε decreases linearly from 1 to 0.1 in 300 epochs, and during explo-
ration,the balance between random exploration and modified guided exploration
is given by κ = 0.5. During inference, the agent follows the policy in (4), where
for every breast region volume, it starts at a centred bounding box that covers
75% of the volume. Then it starts at each of the eight non-overlapping (50, 50,
25) bounding boxes corresponding to each of the corners. Finally, it is initialised
at another four (50, 50, 25) bounding boxes centred at the intersections of the
previous bounding boxes. The agent is allowed a maximum number of 20 steps
to trigger, otherwise, no lesion is detected.

4.1 Results

We compare the training and testing results of our proposed DQN with the
multi-scale cascade [6] and structured output approach [5] in the table in Fig. 3.
In addition, we show the Free Response Operating Characteristic (FROC) curve
in Fig. 3 comparing our approach (using a varying number of initialisations that
lead to different TPR and FPI values) with the multi-scale cascade [6]. Finally,
we show examples of the detections produced by our method in Fig. 4.
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164s 
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TPR FPR Time
DQN (Ours) 0.80 3.2 92± 21s
Ms-C [6] 0.80 2.8 164± 137s
SL [5] 1.00 4.50 O(60) m

Fig. 3. FROC curve showing TPR vs FPI and run times for DQN and the multi-scale
cascade [6] (left) TPR, FPR and mean inference time per case (i.e. per patient) for
each method (right). Note run time for Ms-C is constant over the FPI range.

We use a paired t-test to estimate the significance of the inference times
between our approach and the multi-scale cascade [6], giving p ≤ 9 × 10−5.
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Fig. 4. Examples of detected breast lesions. Cyan boxes indicate the ground truth, red
boxes detections produced by our proposed method and yellow false positive detections.

5 Discussion and Conclusion

We have presented a DQN method for lesion detection from DCE-MRI that
shows similar accuracy to state of the art approaches, but with significantly
reducing detection times. Given that we did not attempt any code optimisation,
we believe that the run times have the potential for further improvement. For
example, inference uses several initialisations (up to 13), which could be run in
parallel as they are independent, decreasing detection time by a factor of 10. The
main bottleneck of our approach is the volume resizing stage that transforms the
current bounding box to fit the ResNet input - currently representing 90% of
the inference time. A limitation of this work is that we do not have an action to
change the aspect ratio of the bounding box, which may improve detection of
small elongated lesions. Finally, during training, we noted that the most impor-
tant parameter to achieve good generalisation is the balance between exploration
and exploitation. We observed that the best generalisation was achieved when
ε = 0.5 (i.e. half of the actions correspond to exploration and half to exploita-
tion of the current policy). Future research will improve run-time performance
via learning smarter search strategies. For instance, we would like to avoid re-
visiting regions that have already been determined to be free from lesions with
high probability. At present we rely on the training data to discourage such
moves, but there may be more explicit constraints to explore. We would like to
acknowledge NVIDIA for providing the GPU used in this work.
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