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Abstract. Automatic vertebra localization and identification in 3D
medical images plays an important role in many clinical tasks, including
pathological diagnosis, surgical planning and postoperative assessment.
In this paper, we propose an automatic and efficient algorithm to local-
ize and label the vertebra centroids in 3D CT volumes. First, a deep
image-to-image network (DI2IN) is deployed to initialize vertebra loca-
tions, employing the convolutional encoder-decoder architecture. Next,
the centroid probability maps from DI2IN are modeled as a sequence
according to the spatial relationship of vertebrae, and evolved with the
convolutional long short-term memory (ConvLSTM) model. Finally, the
landmark positions are further refined and regularized by another neural
network with a learned shape basis. The whole pipeline can be con-
ducted in the end-to-end manner. The proposed method outperforms
other state-of-the-art methods on a public database of 302 spine CT vol-
umes with various pathologies. To further boost the performance and
validate that large labeled training data can benefit the deep learning
algorithms, we leverage the knowledge of additional 1000 3D CT volumes
from different patients. Our experimental results show that training with
a large database improves the performance of proposed framework by a
large margin and achieves an identification rate of 89%.

1 Introduction

Accurate and automatic localization and identification of human vertebrae have
become of great importance in 3D spinal imaging for clinical tasks such as patho-
logical diagnosis, surgical planning and post-operative assessment of pathologies.
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Fig. 1. Proposed method consisting of three major components: DI2IN, ConvLSTM
and shape-based Network.

Specific applications such as vertebrae segmentation, fracture detection, tumor
detection and localization, registration and statistical shape analysis can benefit
from the efficient and precise vertebrae detection and labeling algorithms. How-
ever, designing such an algorithm requires addressing various challenges such as
pathological cases, image artifacts and limited field-of-view (FOV).

In the past, many approaches have been developed to address these limita-
tions in spine detection problems. In [1], Glocker et al. presented a two-stage app-
roach for localization and identification of vertebrae in CT, which has achieved
an identification rate of 81%. This approach uses a regression forests and a
generative model for prediction and it requires handcrafted feature vectors in
pre-processing. Then, Glocker et al. [2] further extended the vertebrae localiza-
tion to handle pathological spine CT. This supervised classification forests based
approach achieves an identification rate of 70% and outperforms state-of-the art
on a pathological database. Recently, deep convolutional neural network has also
been highlighted in the research of human vertebrae detection. A joint learning
model with deep neural networks (J-CNN) [3] has been designed to effectively
identify the type of vertebra and improved the identification rate (85%) with
a large margin. They trained a random forest classifier to coarsely detect the
vertebral centroids instead of directly performing neural network on the whole
CT volumes. Suzani et al. [4] also presented a deep neural network for fast ver-
tebrae detection. This approach first extracts the intensity-based features; then
uses a deep neural network to localize the vertebrae. Although this approach has
achieved high detection rate, it suffers from the large mean error compared to
other approaches.

To meet the requirements of both accuracy and efficiency and take advan-
tage of deep neural networks, we present an approach, shown in Fig. 1, with
following contributions: (a) Deep Image-to-Image Network (DI2IN) for Voxel-
Wise Regression: Instead of extracting handcrafted features or adopting coarse
classifiers, the proposed deep image-to-image network directly performs on the
3D CT volumes and outputs the multichannel probability maps associated with
different vertebrae centers. The high responses in probability maps intuitively
indicate the location and label of vertebrae. The training is formulated as a
multichannel voxel-wise regression. Since the DI2IN is implemented in a fully
convolutional way, it is significantly efficient in time compared to the sliding-
window approaches. (b) Response Enhancement with ConvLSTM: Inspired by
[5], we introduce a recurrent neural network (RNN) to model the spatial
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relationship of vertebra responses from DI2IN. The vertebrae can be interpreted
in a chain structure from head to hip according to their related positions. The
sequential order of the chain-structured model enables the vertebra responses to
communicate with each other using recurrent model, such as RNN. The popular
architecture, ConvLSTM, is adopted as our RNN to capture the spatial correla-
tion between vertebra prediction. The ConvLSTM studies the pair-wise relation
of vertebra responses and regularize the output of the DI2IN. (c) Refinement
using a Shape Basis Network: To further refine the coordinates of vertebrae, we
incorporate a shape basis network which takes advantage of the holistic struc-
ture of spine. Instead of learning a quadratic regression model to fit the spinal
shape, we adopt the coordinates of spines in training samples to construct a
shape-based dictionary and formulate the training process as a regression prob-
lem. The shape-based neural network extracts the coordinates from the previ-
ous stage as input and generates the coefficients associated with the dictionary,
which indicates the linear combination of atoms from the shape-based dictionary.
By embedding the shape regularity in the training of neural network, ambigu-
ous coordinates are removed and the representation is optimized, which further
improves the localization and identification performance. Compared to previous
method [3] which applies classic refinement method as a post-processing step,
our algorithm introduces an end-to-end training network in the refinement step
for the first time, which allows us to train each component separately and then
fine-tuned together in an end-to-end manner.

2 Method

2.1 Deep Image-to-Image Network (DI2IN)

In this section, we present the architecture and details of the proposed deep
image-to-image network, as shown in Fig. 2. The basic architecture is designed
as a convolutional encoder-decoder network [6]. Compared to sliding-window
approach, the DI2IN is implemented in a voxel-wise fully convolutional end-to-
end learning. It performs the network on 3D CT volumes directly. Basically,
the DI2IN takes the 3D CT volume as input and generates the multichannel
probability maps simultaneously. The ground truth probability maps are gen-
erated by Gaussian distribution Igt = 1

σ
√
2π

e−‖x−μ‖2/2σ2
, where x ∈ R

3 and μ

denote the voxel coordinates and ground truth location, respectively. σ is prede-
fined to control the scale of the Gaussian distribution. Each channel’s prediction
Iprediction is associated with the centroid location and type of vertebra. The
loss function is defined as |Iprediction − Igt|2 for each voxel. Therefore, the whole
learning problem is formulated as a multichannel voxel-wise regression. Instead
of using classification formulation for detection, regression is tremendously help-
ful for determining predicted coordinates and it relieves the issue of imbalanced
training samples, which is very common in semantic segmentation.

The encoder is composed of convolution, max-pooling and rectified linear unit
(ReLU) layers while the decoder is composed of convolution, ReLU and upsam-
pling layers. Max-pooling layers are of great importance to increase receptive field
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Fig. 2. Proposed deep image-to-image network (DI2IN). The front part is a con-
volutional encoder-decoder network with feature concatenation, and the backend is
multi-level deep supervision network. Numbers next to convolutional layers are channel
numbers. Extra 26-channel convolution layers are implicitly used in deep supervision.

and extract large contextual information. Upsampling layers are designed with
the bilinear interpolation to enlarge and densify the activation, which also fur-
ther enables the end-to-end voxel-wise training without losing resolution details.
The convolutional filter size is 1×1×1 in the output layer and 3×3×3 in other
layers. The max-pooling filter size is 2× 2× 2 for down-sampling by half in each
dimension. In upsampling layers, the input features are upsampled by a factor of
2 in each dimension. The stride is set as 1 in order to maintain the same size in
each channel. Additionally, we incorporate the feature concatenation and deep
supervision in DI2IN. In feature concatenation, a bridge is built directly from
the encoder layer to the decoder layer, which passes forward the feature infor-
mation from the encoder and then concatenates it with the decoder layer [7]. As
a result, the DI2IN benefits from both local and global contextual information.
Deep supervision has been adopted in [8–10] to achieve good boundary detection
and organ segmentation. In the DI2IN, we incorporated a more complex deep
supervision approach to further improve the performance. Several branches are
diverged from the middle layers of the decoder network. With the appropriate
upsampling and convolutional operations, the output size of all branches matches
the size of 26-channel ground truth. In order to take advantage of deep supervi-
sion, the total loss function losstotal of DI2IN is defined as the combination of
loss li for all output branches as follows.

losstotal =
∑

i

lossi + lossfinal (1)
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2.2 Response Enhancement Using Multi-layer ConvLSTM

Given the image I, the DI2IN generates a probability map P (vi|I) for the cen-
troid of each vertebra i with high confidence. The vertebrae are localized at the
peak positions vi of probability maps. However, we find that these probability
maps are not perfect yet: some probability maps don’t have response or have
very low response at the ground truth locations because of similar image appear-
ances of several vertebrae (e.g. T1 ∼ T12). In order to handle the problem of
missing response, we propose a RNN to effectively enhance the probability maps
by incorporating prior knowledge of the spinal structure.

RNN has been widely developed and used in many applications, such as
natural language processing, video analysis. It is capable to handle arbitrary
sequences of input, and performs the same processing on every element of the
sequence with memory of the previous computation. In our case, the spatial
relation of vertebrae naturally forms a chain structure from top to bottom. Each
element of the chain is the response map of a vertebra centroid. The proposed
RNN model treats the chain as a sequence and enables vertebra responses of
DI2IN to communicate with each other. In order to adjust the 3D response maps
of vertebrae, we apply the convolutional LSTM (ConvLSTM) as our RNN model
shown in Fig. 3. Because the z direction is the most informative dimension, the
x, y dimensions are set to 1 for all the convolution kernels. During inference, we
pass information forward and backward to regularize the output of DI2IN. The
passing process can be conducted k iterations (k = 2 in our experiments). All
input-to-hidden and hidden-to-hidden operations are convolution. Therefore, the
response distributions can be adjusted with necessary displacement or enhanced
by the neighbors’ responses.

Equation (2) describes how the LSTM unit is updated at each time step.
X1,X2, ... and Xt are input states for vertebrae, cell states are C1, C2, ... and
Ct, and the hidden states are H1,H2, ... and Ht. it, ft and ot are the gates of

Fig. 3. The multi-layer ConvLSTM architecture for updating the vertebra response.
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ConvLSTM. We use several sub-networks G to update Xt, and Ht, which differs
from the original ConvLSTM setting (original work only uses single kernel).
Each G is consist of three convolutional layers with 1 × 1 × 9 kernels, and filter
numbers are 9, 1 and 1. The sub-networks are more flexible and have a larger
receptive field compared to that uses a single kernel. Therefore, it is helpful to
capture the spatial relationship of all vertebrae.

it = σ (Gxi (Xt) + Ghi (Ht−1) + Wci � Ct−1 + bi)
ft = σ (Gxf (Xt) + Ghf (Ht−1) + Wcf � Ct−1 + bf )
Ct = ft � Ct−1 + it � tanh (Gxc (Xt) + Ghc (Ht−1) + bc)
ot = σ (Gxo (Xt) + Gho (Ht−1) + Wco � Ct + bo))

Ht = ot � tanh (Ct)

(2)

2.3 Shape Basis Network for Refinement

As shown in Fig. 4, the ConvLSTM generates clear probability maps, where
the high response in the map indicates the potential location of the landmark
(centroid of the vertebrae). However, sometimes due to image artifacts and low
image resolution, it is difficult to guarantee there is no false positive. Therefore,
we present a shape basis network to help refine the coordinates inspired by [11].

Fig. 4. Probability map examples from DI2IN (left in each case) and ConvLSTM (right
in each case). The prediction in “Good Cases” is close to ground truth location. In “Bad
Cases”, some false positives exist remotely besides the response at the ground truth
location.

Given a pre-defined shape-based dictionary D ∈ R
N×M and coordinate vec-

tor y ∈ R
N generated by ConvLSTM, the proposed shape basis network takes

y as input and outputs the coefficient vector x ∈ R
M associated with dictio-

nary D. Therefore, the refined coordinate vector ŷ is defined as Dx. In practice,
the shape-based dictionary D is simply learned from the training samples. For
example, the dictionary Dz associated with the vertical axis is constructed by
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the z coordinate of vertebrae centroids in the training sample. N and M indicate
the number of vertebrae and number of atoms in dictionary, respectively.

The proposed shape basis network consists of several fully connected layers.
Instead of regressing the refined coordinates, the network is trained to regress
the coefficients x associated with the shape-based dictionary D. The learning
problem is formulated as a regression model and the loss function is defined as:

lossshape =
∑

i

||Dxi − yi||22 + λ||xi||1 (3)

xi and yi denote the coefficient vector and ground truth coordinate vector
of ith training sample. λ is the �1 norm coefficient to leverage the sparsity and
residual. Intuitively, the shape-based neural network is learned to find out the
best linear combination in the dictionary to refine the coordinates. In our case, we
focus on the refinement of vertical coordinates. The input of shape basis network
is obtained directly from the output of ConvLSTM using a non-trainable fully
connected layer. The layer has uniform weights and no bias term, and it generates
the correct coordinates when the response is clear. Such setting enables the end-
to-end scheme for fast inference instead of solving the loss function directly.

3 Experiments

First, we evaluate the proposed method on database introduced in [2] which
consists of 302 CT scans with various types of lesions. The dataset has some
cases with unusual appearance, such as abnormal spinal structure and bright
visual artifacts due to metal implants by post-operative procedures. Further-
more, the FOV of each CT image varies greatly in terms of vertical cropping,
image noise and physical resolution [1]. Most cases contain only part of the entire
spine. The overall spinal structure can be seen only in a few examples. Large
changes in lesions and limited FOV increase the complexity of the appearance
of the vertebrae. It is difficult to accurately localize and identify the spinal col-
umn. The ground truth is marked on the center of gravity of each vertebra and
annotated by the clinical experts. In previous work [1,3,4], two different settings
have been conducted on this database: the first one uses 112 images as training
and other 112 images as testing. The second one takes all data in first setting
plus extra 18 images as the training data (overall 242 training images), and 60
unseen images are used as the testing data. For fair comparison, we follow the
same configuration, which are referred as Set 1 and Set 2 respectively, in the
experiments. Table 1 compares our result with the numerical results reported
in previous methods [2–4] in terms of the Euclidean distance error (mm) and
identification rate (Id.Rates) defined by [1]. The average mean errors of these
two databases are 10.6 mm and 8.7 mm, respectively, and the identification rates
are 78% and 85%, respectively. Overall, the proposed method is superior to the
state-of-the-art methods on the same database with respect to mean error and
identification rate.
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Table 1. Comparison of localization errors in mm and identification rates among
different methods. Our method is trained and tested using default data setting in “Set
1” and “Set 2”, while “+1000” indicates training with additional 1000 labeled spine
data and evaluated on the same testing data.

Region Method Set 1 Set 2

Mean Std Id.Rates Mean Std Id.Rates

All Glocker et al. [2] 12.4 11.2 70% 13.2 17.8 74%

Suzani et al [4] 18.2 11.4 - - - -

Chen et al. [3] - - - 8.8 13.0 84%

Our method 10.6 8.7 78% 8.7 8.5 85%

Our method +1000 9.0 8.8 83% 6.9 7.6 89%

We collect additional 1000 CT volumes and train the proposed DI2IN from
scratch to verify whether training a neural network with more labeled data will
improve its performance. This data set covers large visual changes of the spinal
column (e.g. age, abnormality, FOV, contrast etc.). We evaluated on the same
database and reported the results in Table 1 (shown as “Our method + 1000
training data”). As can be seen, adding more training data will greatly improve
the performance of the proposed method, verifying that a large amount of labeled
data will effectively boost the power of DI2IN.

4 Conclusion

In this paper, we presented an accurate and automatic method for human ver-
tebrae localization and identification in 3D CT volumes. Our approach outper-
formed other state-of-the-art methods of spine detection and labeling in terms
of localization mean error and identification rate.
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