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Abstract. Accurate detection of the myocardial infarction (MI) area
is crucial for early diagnosis planning and follow-up management. In
this study, we propose an end-to-end deep-learning algorithm framework
(OF-RNN) to accurately detect the MI area at the pixel level. Our OF-
RNN consists of three different function layers: the heart localization lay-
ers, which can accurately and automatically crop the region-of-interest
(ROI) sequences, including the left ventricle, using the whole cardiac
magnetic resonance image sequences; the motion statistical layers, which
are used to build a time-series architecture to capture two types of motion
features (at the pixel-level) by integrating the local motion features gen-
erated by long short-term memory-recurrent neural networks and the
global motion features generated by deep optical flows from the whole
ROI sequence, which can effectively characterize myocardial physiologic
function; and the fully connected discriminate layers, which use stacked
auto-encoders to further learn these features, and they use a softmax
classifier to build the correspondences from the motion features to the
tissue identities (infarction or not) for each pixel. Through the seamless
connection of each layer, our OF-RNN can obtain the area, position, and
shape of the MI for each patient. Our proposed framework yielded an
overall classification accuracy of 94.35% at the pixel level, from 114 clini-
cal subjects. These results indicate the potential of our proposed method
in aiding standardized MI assessments.

1 Introduction

There is a great demand for detecting the accurate location of a myocardial
ischemia area for better myocardial infarction (MI) diagnosis. The use of mag-
netic resonance contrast agents based on gadolinium-chelates for visualizing the
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position and size of scarred myocardium has become ‘the gold standard’ for eval-
uating the area of the MI [1]. However, the contrast agents are not only expen-
sive but also nephrotoxic and neurotoxic and, hence, could damage the health
of humans [2]. In routine clinical procedures, and especially for early screen-
ing and postoperative assessment, visual assessment is one popular method, but
it is subject to high inter-observer variability and is both subjective and non-
reproducible. Furthermore, the estimation of the time course of the wall motion
remains difficult even for experienced radiologists.

Therefore, computer-aided detection systems have been attempted in recent
years to automatically analyze the left ventricle (LV) myocardial function quan-
titatively. This computerized vision can serve to simulate the brain of a trained
physicians intuitive attempts at clinical judgment in a medical setting. Previous
MI detection methods have been mainly based on information theoretic measures
and Kalman filter approaches [3], Bayesian probability model [4], pattern recog-
nition technique [5,6], and biomechanical approaches [7]. However, all of these
existing methods still fail to directly and accurately identify the position and
size of the MI area. More specifically, these methods have not been able to cap-
ture sufficient information to establish integrated correspondences between the
myocardial motion field and MI area. More recently, unsupervised deep learning
feature selection techniques have been successfully used to solve many difficult
computer vision problems. The general concept behind deep learning is to learn
hierarchical feature representations by first inferring simple representations and
then progressively building up more complex representations from the previous
level. This method has been successfully applied to the recognition and predic-
tion of prostate cancer, Alzheimers disease, and vertebrae and neural foramina
stenosis [8].

In this study, an end-to-end deep-learning framework has been developed for
accurate and direct detection of infarction size at the pixel level using cardiac
magnetic resonance (CMR) images. Our methods contributions and advantages
are as follows: (1) for the first time, we propose an MI area detection framework
at the pixel level that can give the physician the explicit position, size and shape
of the infarcted areas; (2) a feature extraction architecture is used to establish
solid correspondences between the myocardial motion field and MI area, which
can help in understanding the complex cardiac structure and periodic nature
of heart motion; and (3) a unified deep-learning framework can seamlessly fuse
different methods and layers to better learn hierarchical feature representations
and feature selection. Therefore, our framework has great potential for improving
the efficiency of the clinical diagnosis of MI.

2 Methodology

As shown in Fig. 1, there are three function layers inside the OF-RNN. The
heart localization layers can automatically detect the ROI, including the LV,
and the motion statistical layers can generate motion features that accurately
characterize myocardial physiologic and physical function, followed by the fully
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Fig. 1. The architecture of OF-RNN: heart localization layers, motion statistical layers,
and fully connected discriminate layers.

connected discriminate layers that use stacked auto-encoders and softmax clas-
sifiers to detect the MI area from motion features.

Heart localization layers. One FAST R-CNN [9] is used here for the automatic
detection of a region of interest (ROI) around the LV, to reduce the computa-
tional complexity and improve the accuracy. In this study, the first process of
the heart localization layers is to generate category-independent region propos-
als. Afterward, a typical convolutional neural network model is used to produce
a convolution feature map by input images. Then, for each object proposed, an
ROI pooling layer extracts a fixed-length feature vector from the feature map.
The ROI pooling layer uses max pooling to convert the features inside any valid
region of interest into a small feature map with a fixed spatial extent of HxW,
where H and W are layer hyper-parameters that are independent of any partic-
ular ROI. Finally, each feature vector is fed into a sequence of fully connected
layers that branch into two sibling output layers, thereby generating a 64 x 64
bounding-box for cropping the ROI image sequences, including the LV from
CMR sequences.

Motion statistical layers. The motion statistical feature layers are used to
extract time-series image motion features through ROI image sequences to
understand the periodic nature of ghd heart motion. The local motion features
are generated by LSTM-RNN, and the global motion features are generated by
deep optical flow. Thus, in the first step, we attempt to compute the local motion



Direct Detection of Pixel-Level Myocardial Infarction Areas 243

features that are extracted from the ROI image sequence. For each ROI sequence,
the input image I = (11, Is...I;,J = 25) of size 64 x 64, I(p) represents a pixel
coordinate p = [z,y] of the image I. A window of size 11 x 11 is constructed
for the overlapping I[z,y] neighborhoods, which has an intensity value that is
representative of the feature of each p on image I ;. This approach results in the
J image sequence features being unrolled as vector Pj(p) € R'*!1*7 for each
pixel as input. Then, four layers of RNN [10] with LSTM cells layers are used to
learn the input. Give the input layer X; at time ¢, each time corresponds to each
frame(t =J), which indicates that x; = P;(p) at frame J, and for the hidden
state frame of the previous time step h; — 1, the hidden and output layers for
the current time step are computed as follows:

hi = & (Wan [hi—1,24]), pe = softmax (Whyht), ¢ = argmaxp; (1)

where x;, h; and y; are layers that represent the input, hidden, and output
at each time step t, respectively; W,y and Wy, are the matrices that denote the
weights between the input and hidden layers and between the hidden and output
layers, respectively, and ¢ denotes the activation function. The LSTM cell [10] is
designed to mitigate the vanishing gradient. In addition to the hidden layer vector
hy, the LSTMs maintain a memory vector ¢;, an input gate iy, a forget gate f;, and
an output gate o;; These gates in the LSTMs are computed as follows:

Tt sigm
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where W; is the weight matrix, and D is the dropout operator. The final
memory cell and the final hidden state are given by

ct = ft ©c—1 +1it © G, hi = ot © tanh(c:) (3)

In the second step, we attempt to compute the global motion feature of the
image sequence based on an optical flow algorithm [11] by the deep architecture.
An optical flow can describe a dense vector field, where a displacement vector is
assigned to each pixel, which points to where that pixel can be found in another
image. Considering an adjacent frame, a reference image I = (I;_1) and a target
image I’ = (I;), the goal is to estimate the flow w = (u,v)" that contains both
horizontal and vertical components. We assume that the images are already
smoothed by using a Gaussian filter with a standard deviation of o. The energy
to be optimized is the weighted sum of a data term E D, a smoothness term ES,
and a matching term EM:

E(’LU) = /Q Ep +aFs + BEMd.T (4)

Next, a procedure is developed to produce a pyramid of response maps, and
we start from the optical flow constraint, assuming a constant brightness. A
basic way to build a Data term and a Smoothness term is the following:

Ep =¥ (i wTJéw> + (i wTJ;yw> (5)

i=1 i=1



244 C. Xu et al.

Es = ¥([Vull® +[|V|]*) (6)

where ¥ is a robust penalizer; j;yw is the tensor for channel I; § and v are
the two balanced weights. The matching term encourages the flow estimation to
be similar to a precomputed vector field w’, and a term c(z) has been added.

Ewn :CKT/(waleQ) (7)

For any pixel p’ of I, C,, ,(p') is a measure of similarity between I, , and
I}, - We have I, ;, to be a patch size of NxN (N€4, 8, 16) from the first
image centered at p. We start with the bottom-level correlation maps, which are
iteratively aggregated to obtain the upper levels. This aggregation consists of
max-pooling, sub-sampling, computing a shifted average and non-linear rectifi-
cation. In the end, for each image I;_1, a fully motion field w;_1= (uy_1,vy_1)
is computed with reference to the next frame I;.

Fully connected discriminate layers. The fully connected discriminate layers
are used to detect the MI area accurately from the local motion features and
the global motion features. First, for each w;, we use image patches, say 3 x 3,
by extracting the feature beginning from a point p in the first frame and tracing
p in the following frame. We can thereby obtain Py(p) while containing a 3 x 3
vector for displacement and a 3 x 3 vector for the orientation of p for each frame.
Second, we conduct a simple concatenation between the local image feature P;(p)
from the LSTM-RNN and the motion trajectories feature P;(p) via optical flow,
to establish a whole feature vector P(p). Finally, an auto-encoder with three
stacking layers is used for learning the P(p), followed by a softmax layer, which
is used to determine whether p belongs to the MI area or not.

3 Experimental Results

Data acquisition. We collected the short axis image dataset and the corre-
sponding

Fig. 2. (a, b) Our predicted MI area (the green zone) can be a good fit for the ground
truth (the yellow arrow) (c) our predicted MI area (the green zone) can be a good fit
for the ground truth (the yellow dotted line).
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enhanced images using gadolinium agents from 114 subjects in this study on
a 3T CMR scanner. Each subjects short-axis image dataset consisted of 25 2D
images (a cardiac cycle), a total of 43 apical, 37 mid-cavity and 34 basal short-
axis image datasets for 114 subjects. The temporal resolution is 45.1 + 8.8 ms,
and the short-axis planes are 8&-mm thick. The delayed enhancement images
were obtained approximately 20 min after intravenous injection of 0.2 mmol/kg
gadolinium diethyltriaminepentaacetic acid. A cardiologist (with more than 10
years of experience) analyzed the delayed enhancement images and manually
traced the MI area by the pattern of late gadolinium enhancement as the ground
truth.

Implementation details. We implemented all of the codes using Python and
MATLAB R2015b on a Linux (Kylin 14.04) desktop computer with an Intel
Xeon CPU E5-2650 and 32 GB DDR2 memory. The graphics card is an NVIDIA
Quadro K600, and the deep learning libraries were implemented with Keras
(Theano) with RMSProp solver. The training time was 373 min, and the testing
time was 191s for each subject (25 images).

Performance evaluation criteria. We used three types of criteria to measure
the performance of the classifier: (1) the receiver operating characteristic (ROC)
curve; (2) the precision-recall (PR) curve; (3) for pixel-level accuracy, we assessed
the classifier performance with a 10-fold cross-validation test, and for segment-
level accuracy, we used 2/3 data for training and the remaining data for testing.

Automatic localization of the LV. The experiment’s result shows that OF-
RNN can obtain good localization of the LV. We achieve an overall classification
accuracy of 96.49%, with a sensitivity of 94.39% and a specificity of 98.67%, in
locating the LV in the heart localization layers. We used an architecture similar
to the Zeiler and Fergus model to pre-train the network. Using selective searches
quality mode, we sweep over 2k proposals per image. Our results for the ROI
localization bounding-box from 2.85 k CMR images were compared to the ground
truth marked by the expert cardiologist. The ROCs and PRs curves are shown
in Fig. 3(a, b).

MI area detection. Our approach can also accurately detect the MI area, as
shown in Fig. 2. The overall pixel classification accuracy is 94.35%, with a sen-
sitivity of 91.23% and a specificity of 98.42%. We used the softmax classifier by
fine-tuning the motion statistical layers to assess each pixel (as normal/abnormal).
We also compared our results to 16 regional myocardial segments (depicted as nor-
mal/abnormal) by following the American Heart Association standards. The accu-
racy performance for the apical slices was an average of 99.2%; for the mid-cavity
slices, it was an average of 98.1%; and for the basal slices, an average of 97.9%. The
ROCs and PRs of the motion statistical layers are shown in Fig. 3(a, b).

Local and global motion statistical features. A combination of local and
global motion statistical features has the potential to improve the results because
the features influence one another through a shared representation. To evaluate
the effect of motion features, we use local or global motion statistical features
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Fig. 3. (a, b) ROCs and PRs show that our results have good classification perfor-
mance. (¢, d) ROCs and PRs for local motion features and global motion features.
(e) The accuracy and time for various patch sizes.

separately along with both motion features in our framework. Tablel and
Fig.3(c, d) show that the results that combine motion statistical features in
our framework have better accuracy, sensitivity, and specificity in comparison
to those that use only the local or global motion features, in another 10-fold
cross-validation test.

Table 1. Combined motion statistical features effectively improve the overall accuracy
of our method

Local motion feature |/ Vv
Global motion feature v V4
Accuracy 92.6% | 87.3% | 94.3%
Sensitivity 86.5% | 79.4% | 91.2%
Specificity 97.9 196.2% | 98.4%

Size of patch. We use an N x N patch to extract the local motion features from
the whole image sequence. Because the displacements of the LV wall between two
consecutive images are small (approximately 1 or 2 pixels/frame), it is necessary
to adjust the size of the patch to capture sufficient local motion information.
Figure 3(e) shows the accuracy and computational time of our framework, using
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Fig.4. A pair of frames at the beginning of systole (a) and at the end of systole (b)
were first displayed, followed by the visual results of our deep optical flow (¢) and Horn
and Schunck (HS) optical flow (d) at pixel precision.

from 3 x 3 to 17 x 17 patches in one 10-fold cross-validation test. We find that the
11 x 11 patch size in our framework can obtain better accuracy in a reasonable
amount of time.

Performance of the LSTM-RNN. To evaluate the performance of the LSTM-
RNN, we replaced the LSTM-RNN using SVMrbf, SAE-3, DBN-3, CNN and
RNN in our deep learning framework, and we ran these different frameworks over
114 subjects using a 10-fold cross-validation test. Table 2 reports the classifica-
tion performance by using the other five different learning strategies: the RNN,
Deep Belief Networks (DBN), Convolutional Neural Network (CNN), SAE and
Support Vector Machine with RBF kernel (SVMrbf). LSTM-RNN shows better
accuracy and precision in all of the methods.

Table 2. LSTM-RNN works best in comparison with other models

SVMrbf | SAE-3 | DBN-3 | CNN |RNN |LSTM-RNN
Accuracy | 80.9% 83.5%% | 84.9% |83.7% | 88.4% | 94.3%
Precision | 74.2% | 75.5% | 75.1% |76.5% | 84.8% | 91.3%

Performance of the optical flow. The purpose of the optical flow is to cap-
ture the global motion features. To evaluate the performance of our optical flow
algorithm with a deep architecture, we used the average angular error (AAE) to
evaluate our deep optical flow and other optical flow approaches. The other opti-
cal flow methods, including the Horn and Schunck method, pyramid Horn and
Schunck method, intensity-based optical flow method, and phase-based optical
flow method, can be found in [12]. The comparison results are shown in Table 3,
and visual examples are illustrated in Fig. 4.
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Table 3. Deep optical flow (OF) can work better in comparison to other optical flow
techniques in capturing global motion features

Horn and Pyramid HS | Deep OF Intensity-based OF | Phase-based
Schunck (HS) OF

OF density | 100% 100% 100% 55% 13%

AAE 12.6° + 9.2° 7.4° £3.4° |5.7° £ 2.3°|5.7° £ 4.1° 5.5° £ 3.9°

4 Conclusions

We have, for the first time, developed and presented an end-to-end deep-learning
framework for the detection of infarction areas at the pixel level from CMR
sequences. Our experimental analysis was conducted on 114 subjects, and it
yielded an overall classification accuracy of 94.35% at the pixel level. All of these
results demonstrate that our proposed method can aid in the clinical diagnosis
of MI assessments.

Acknowledgment. This work was supported in part by the Shenzhen Research
and Innovation Funding (JCYJ20151030151431727, SGLH20150213143207911), the
National Key Research and Development Program of China (2016YFC1300302,
2016YFC1301700), the CAS Presidents International Fellowship for Visiting Scientists
(2017VTAO0011), the National Natural Science Foundation of China (No. 61673020),
the Provincial Natural Science Research Program of Higher Education Institutions of
Anhui province (KJ2016A016) and the Anhui Provincial Natural Science Foundation
(1708085QF143).

References

1. 6rg Barkhausen, J., Ebert, W., Weinmann, H.J.: Imaging of myocardial infarction:
comparison of magnevist and gadophrin-3 in rabbits. J. Am. Coll. Cardiol. 39(8),
1392-1398 (2002)

2. Wagner, A., Mahrholdt, H., Holly, T.: Contrast enhanced MRI detects subendo-
cardial myocardial infarcts that are missed by routine spect perfusion imaging.
Lancet 361, 374-379 (2003)

3. Shi, P., Liu, H.: Stochastic finite element framework for simultaneous estimation
of cardiac kinematic functions and material parameters. Med. Image Anal. 7(4),
445-464 (2003)

4. Wang, Z., Salah, M.B., Gu, B., Islam, A., Goela, A., Shuo, L.: Direct estimation of
cardiac biventricular volumes with an adapted bayesian formulation. IEEE Trans.
Biomed. Eng. 61(4), 1251-1260 (2014)

5. Afshin, M., Ben Ayed, I., Punithakumar, K., Law, M.W.K., Islam, A., Goela,
A., Ross, 1., Peters, T., Li, S.: Assessment of regional myocardial function via
statistical features in MR images. In: Fichtinger, G., Martel, A., Peters, T. (eds.)
MICCATI 2011. LNCS, vol. 6893, pp. 107-114. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23626-6_-14


http://dx.doi.org/10.1007/978-3-642-23626-6_14
http://dx.doi.org/10.1007/978-3-642-23626-6_14

10.

11.

12.

Direct Detection of Pixel-Level Myocardial Infarction Areas 249

Zhen, X., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct and simultaneous four-
chamber volume estimation by multi-output regression. In: Navab, N., Hornegger,
J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 669-676.
Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_82

Wong, K.C.L., Tee, M., Chen, M., Bluemke, D.A., Summers, R.M., Yao, J.:
Computer-aided infarction identification from cardiac CT images: a biomechan-
ical approach with SVM. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCATI 2015. LNCS, vol. 9350, pp. 144-151. Springer, Cham (2015). doi:10.
1007/978-3-319-24571-3_18

Cai, Y.: Multi-modal vertebrae recognition using transformed deep convolution
network. Comput. Med. Imaging Graph. 51, 11-19 (2016)

Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision,
pp. 1440-1448 (2015)

Graves, A.: Supervised sequence labelling. In: Graves, A. (ed.) Supervised Sequence
Labelling with Recurrent Neural Networks. Studies in Computational Intelligence,
vol. 385. Springer, Heidelberg (2012)

Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Deepmatching: hierarchical
deformable dense matching. Int. J. Comput. Vis. 120(3), 300-323 (2016)

Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation:
a survey. Comput. Vis. Image Underst. 134, 1-21 (2015)


http://dx.doi.org/10.1007/978-3-319-24553-9_82
http://dx.doi.org/10.1007/978-3-319-24571-3_18
http://dx.doi.org/10.1007/978-3-319-24571-3_18

	Direct Detection of Pixel-Level Myocardial Infarction Areas via a Deep-Learning Algorithm
	1 Introduction
	2 Methodology
	3 Experimental Results
	4 Conclusions
	References




