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Abstract. Machine learning methods have been used to predict the
clinical scores and identify the image biomarkers from individual MRI
scans. Recently, the multi-task learning (MTL) with sparsity-inducing
norm have been widely studied to investigate the prediction power of
neuroimaging measures by incorporating inherent correlations among
multiple clinical cognitive measures. However, most of the existing MTL
algorithms are formulated linear sparse models, in which the response
(e.g., cognitive score) is a linear function of predictors (e.g., neuroimag-
ing measures). To exploit the nonlinear relationship between the neu-
roimaging measures and cognitive measures, we consider that tasks to be
learned share a common subset of features in the kernel space as well as
the kernel functions. Specifically, we propose a multi-kernel based multi-
task learning with a mixed sparsity-inducing norm to better capture the
complex relationship between the cognitive scores and the neuroimag-
ing measures. The formation can be efficiently solved by mirror-descent
optimization. Experiments on the Alzheimers Disease Neuroimaging Ini-
tiative (ADNI) database showed that the proposed algorithm achieved
better prediction performance than state-of-the-art linear based methods
both on single MRI and multiple modalities.

1 Introduction

The Alzheimer’s disease (AD) status can be characterized by the progressive
impairment of memory and other cognitive functions. Thus, it is an important
topic to use neuroimaging measures to predict cognitive performance. Multi-
variate regression models have been studied in AD for revealing relationships
between neuroimaging measures and cognitive scores to understand how struc-
tural changes in brain can influence cognitive status, and predict the cognitive
performance with neuroimaging measures based on the estimated relationships.
Many clinical/cognitive measures have been designed to evaluate the cognitive
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status of the patients and used as important criteria for clinical diagnosis of prob-
able AD [5,13,15]. There exists a correlation among multiple cognitive tests, and
many multi-task learning (MTL) seeks to improve the performance of a task by
exploiting the intrinsic relationships among the related cognitive tasks.

The assumption of the commonly used MTL methods is that all tasks share
the same data representation with �2,1-norm regularization, since a given imag-
ing marker can affect multiple cognitive scores and only a subset of the imag-
ing features (brain region) are relevant [13,15]. However, they assumed linear
relationship between the MRI features and the cognitive outcomes and the �2,1-
norm regularization only consider the shared representation from the features in
the original space. Unfortunately, this assumption usually does not hold due to
the inherently complex structure in the dataset [11]. Kernel methods have the
ability to capture the nonlinear relationships by mapping data to higher dimen-
sions where it exhibits linear patterns. However, the choice of the types and
parameters of the kernels for a particular task is critical, which determines the
mapping between the input space and the feature space. To address the above
issues, we propose a sparse multi-kernel based multi-task Learning (SMKMTL)
with a mixed sparsity-inducing norm to better capture the complex relation-
ship between the cognitive scores and the neuroimaging measures. The multiple
kernel learning (MKL) [4] not only learns a optimal combination of given base
kernels, but also exploits the nonlinear relationship between MRI measures and
cognitive performance. The assumption of SMKMTL is that the not only the
kernel functions but also the features in the high dimensional space induced by
the combination of only few kernels are shared for the multiple cognitive mea-
sure tasks. Specifically, SMKMTL explicitly incorporates the task correlation
structure with �2,1-norm regularization on the high dimensional features in the
RKHS space, which builds the relationship between the MRI features and cogni-
tive score prediction tasks in a nonlinear manner, and ensures that a small subset
of features will be selected for the regression models of all the cognitive outcomes
prediction tasks; and an �q-norm on the kernel functions, which ensures various
schemes of sparsely combining the base kernels by varying q. Moreover, MKL
framework has advantage of fusing multiple modalities, we apply our SMKMTL
on multi-modality data (MRI, PET and demographic information) in our study.

We presented mirror descent-type algorithm to efficiently solve the proposed
optimization problems, and conducted extensive experiments using data from the
Alzheimers Disease Neuroimaging Initiative (ADNI) to demonstrate our methods
with respect to the prediction performance and multi-modality fusion.

2 Sparse Multi Kernel Multi-task Learning, SMKMTL

Consider a multi-task learning (MTL) setting with m tasks. Let p be the number
of covariates, shared across all the tasks, n be the number of samples. Let X ∈
R

n×p denote the matrix of covariates, Y ∈ R
n×m be the matrix of responses

with each row corresponding to a sample, and Θ ∈ R
p×m denote the parameter

matrix, with column θ.t ∈ R
p corresponding to task t, t = 1, . . . , m, and row

θi. ∈ R
m corresponding to feature i, i = 1, . . . , p.
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min
Θ∈Rp×t

L(Y,X,Θ) + λR(Θ), (1)

where L(·) denotes the loss function and R(·) is the regularizer.
The commonly used MTL is MT-GL model with �2,1-norm regularization,

which considers R(Θ) = ‖Θ‖2,1 =
∑p

l=1 ‖θl.‖2 and is suitable for simultaneously
enforcing sparsity over features for all tasks. Moreover, Argyriou proposed a
Multi-Task Feature Learning (MTFL) with �2,1-norm [1], the formulation of
which is: ‖Y −UT XΘ‖2F + ‖Θ‖2,1, where U is an orthogonal matrix which is to
be learnt.

In these learning methods, each task is traditionally performed by formulat-
ing a linear regression problem, in which the cognitive score is a linear function
of the neuroimaging measures. However, the assumption of these existing linear
models usually does not hold due to the inherently complex patterns between
brain images and the corresponding cognitive outcomes. Modeling cognitive
scores as nonlinear functions of neuroimaging measures may provide enhanced
flexibility and the potential to better capture the complex relationship between
the two quantities. In this paper, we consider the case that the features are
associated to a kernel and hence they are in general nonlinear functions of the
features. With the advantage of MKL, we assume that xi can be mapped to
k different Hilbert spaces, xi → φj(xi), j = 1, . . . , k, implicitly with k nonlin-
ear mapping functions, and the objective of MKL is to seek the optimal kernel
combination.

In order to capture the intrinsic relationships among multiple related tasks
in the RKHS space, we proposed a multi-kernel based multi-task learning with
mixed sparsity-inducing norm. With the ε-insensitive loss function, the formu-
lation can be expressed as:

min
θ,b,ξ,U

1
2

(∑k

j=1

(∑p̂j

l=1
‖θ.jl‖2

)q) 2
q

+ C
∑m

t=1

∑nt

i=1
(ξti + ξ∗

ti)

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yti −
∑k

j=1
θT

tjU
T
j φj(xti) − bt ≤ ε + ξti

∑k

j=1
θT

tjU
T
j φj(xti) + bt − yti ≤ ε + ξ∗

ti, ∀t, i

ξti, ξ
∗
ti ≥ 0,Uj ∈ Op̂j

(2)

where θj is the weight matrix for the j-th kernel, θtjl(l = 1, . . . , p̂j) is the entries
of θtj , nt is the number of samples in the t-th task, p̂j is the dimensionality of the
feature space induced by the j-th kernel, ε is the parameter in the ε-insensitive
loss, ξti and ξ∗

ti are slack variables, and C is the regularization parameter.
In the formulation of Eq. (2), the use of �2,1-norm for θj , which forces the

weights corresponding to the i-th feature across multiple tasks to be grouped
together and tends to select features based on the k tasks jointly in the kernel
space. Moreover, an �q norm (q ∈ [1, 2]) over kernels is used over kernels instead
of �1 norm to obtain various schemes of sparsely combining the base kernels by
varying q.
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Lemma 1. Let ai ≥ 0, i = 1 . . . d and 1 < r < ∞. Then,

min
η∈Δd,r

∑

i

ai

ηi
=

(
d∑

i=1

a
r

r+1
i

) r+1
r

(3)

where Δd,r =
{
z ≡ [z1 . . . zd]T | ∑d

i=1 zr
i ≤ 1, zi ≥ 0, i = 1 . . . d

}
. According to

the Lemma 1 introduced in [8], we introduces new variables λ = [λ1 . . . λk]T ,
and γj = [γj1 . . . γjp̂j

]T, j = 1, . . . , k. Thus, the regularizer in (2) can be writ-

ten as: minλ∈Δk,q̄
minγj∈Δp̂j ,1

∑m
t=1

∑k
j=1

∑p̂j

l=1

θ2
tjl

γjkλj
, where q̄ = q

2−q . Now we

perform a change of variables: θtjl√
γjkλj

= θ̄tjl, l = 1, . . . , p̂j , and construct the

Lagrangian for our optimization problem in (2) as:

min
λ,γj,Uj

∑m

t=1
maxαt y

T
(αt − α

∗
t ) − 1

2
(αt − α

∗
t )

T
(∑k

j=1
Φ

T
tjU

T
j ΛjUjΦtj

)
(αt − α

∗
t )

s.t. λ ∈ Δk,q̄, γj ∈ Δp̂j ,1Uj ∈ O
p̂j , αt ∈ Snt (C)

(4)

where Λj is a diagonal matrix with entries as λjγjl, l = 1, . . . , p̂j , λ ∈ Δk,q̄, γj ∈
Δp̂j ,1, Φtj is the data matrix with columns as φj(xti), i = 1, . . . , nt, αt,α

∗
t are

vectors of Lagrange multipliers corresponding to the t-th task in the SMKMTL
formulation, Snt

(C) ≡ {αt | 0 ≤ αti, α
∗
ti ≤ C, i = 1, . . . , nt,

∑nt

i=1(αti − α∗
ti) =

0}. Denoting UT
j ΛjUj by Q̄j and eliminating variables λ, γ,U leads to:

min
Q̄

m∑

t=1

max
αt∈Snt (C)

yT(αt − α∗
t ) − 1

2
(αt − α∗

t )
T
(∑k

j=1
ΦT

tjQ̄jΦtj

)
(αt − α∗

t )

s.t. Q̄j � 0,
∑k

j=1
(Tr(Q̄j))

q̄ ≤ 1

(5)

Then, we use the method described in [6] to kernelize the formulation. Let
Φj ≡ [Φ1j . . . ΦTj ] and the compact SVD of Φj be UjΣjVT

j . Now, introduce
new variables Qj such that Q̄j = UjQjUT

j . Here, Qj is a symmetric positive
semidefinite matrix of size same as rank of Φj . Eliminating variables Q̄j , we can
re-write the above problem using Qj as:

min
Q

m∑

t=1

max
αt∈Snt (C)

y
T
(αt − α

∗
t ) − 1

2
(αt − α

∗
t )

T
(∑k

j=1
M

T
tjQjMtj

)
(αt − α

∗
t )

s.t. Qj � 0,
∑k

j=1
(Tr(Qj))

q̄ ≤ 1

(6)

where Mtj = Σ−1
j VT

j ΦT
j Φtj . Given Qjs, the problem is equivalent to solving

m SVM problems individually. The Qjs are learnt using training examples of
all the tasks and are shared across the tasks, and this formulation with trace
norm as constraint can be solved by a mirror-descent based algorithm proposed
in [2,6].
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3 Experimental Results

3.1 Data and Experimental Setting

In this work, only ADNI-1 subjects with no missing features or cognitive scores
are included. This yields a total of n = 816 subjects, who are categorized into 3
baseline diagnostic groups: Cognitively Normal (CN, n1 = 228), Mild Cognitive
Impairment (MCI, n2 = 399), and Alzheimer’s Disease (AD, n3 = 189). The
dataset has been processed by a team from UCSF (University of California at
San Francisco), who performed cortical reconstruction and volumetric segmenta-
tions with the FreeSurfer image analysis suite. There were p = 319 MRI features
in total, including the cortical thickness average (TA), standard deviation of
thickness (TS), surface area (SA), cortical volume (CV) and subcortical volume
(SV) for a variety of ROIs. In order to sufficiently investigate the comparison,
we further evaluate the performance on all the widely used cognitive assess-
ments (e.g. ADAS, MMSE, RAVLT, FLU and TRAILS, totally m = 10 tasks)
[11,12,14]. We use 10-fold cross valuation to evaluate our model and conduct the
comparison. In each of twenty trials, a 5-fold nested cross validation procedure
for all the comparable methods in our experiments is employed to tune the reg-
ularization parameters. Data was z-scored before applying regression methods.
The candidate kernels are: six different kernel bandwidths (2−2, 2−1, . . . , 23),
polynomial kernels of degree 1 to 3, and a linear kernel, which totally yields
10 kernels. The kernel matrices were pre-computed and normalized to have unit
trace. To have a fair comparison, we validate the regularization parameters of all
the methods in the same search space C (from 10−1 to 103) and q (1,1.2,1.4,..,2)
in our method on a subset of the training set, and use the optimal parameters to
train the final models. Moreover, a warm-start technique is used for successive
SVM retrainings.

In this section, we conduct empirical evaluation for the proposed methods
by comparing with three single task learning methods: Lasso, ridge and sim-
pleMKL, all of which are applied independently on each task. Moreover, we
compare our method with two baseline multi-task learning methods: MTL with
�2,1-norm (MT-GL) and MTFL. We also compare our proposed method with
several popular state-of-the-art related methods: Clustered Multi-Task Learning
(CMTL) [16]: CMTL(minΘ:F T F=Ik

L(X,Y,Θ)+λ1(tr(ΘT Θ)−tr(FT ΘT ΘF ))+
λ2tr(ΘT Θ), where F ∈ R

m×k is an orthogonal cluster indicator matrix) incor-
porates a regularization term to induce clustering between tasks and then share
information only to tasks belonging to the same cluster. In the CMTL, the num-
ber of clusters is set to 5 since the 7 tasks belong to 5 sets of cognitive functions.
Trace-Norm Regularized Multi-Task Learning (Trace) [7]: The assumption that
all models share a common low-dimensional subspace (minΘ L(X,Y,Θ)+λ‖Θ‖∗,
where ‖ · ‖∗ denotes the trace norm defined as the sum of the singular values).
Table 1 shows the results of the comparable MTL methods in term of root mean
squared error (rMSE). Experimental results show that the proposed methods
significantly outperform the most recent state-of-the-art algorithms proposed
in terms of rMSE for most of the scores. Moreover, compared with the other
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Table 1. Performance comparison of various methods in terms of rMSE.

Ridge Lasso MT-GL MTFL CMTL Trace simpleMKLSMKMTL

ADAS 7.89 ± 0.556.84 ± 0.36 6.77 ± 0.31 6.82 ± 0.41 7.64 ± 0.378.18 ± 0.616.70 ± 0.31 6.61 ± 0.45

MMSE 2.76 ± 0.142.21 ± 0.07 2.21 ± 0.09 2.26 ± 0.09 3.08 ± 0.466.11 ± 2.042.21 ± 0.08 2.09 ± 0.12

RAVLT-

TOTAL

11.6 ± 0.5210.0 ± 0.54 9.61 ± 0.459.44 ± 0.53 11.5 ± 0.5113.1 ± 3.129.65 ± 0.47 9.63 ± 0.51

RAVLT-

TOT6

3.70 ± 0.303.32 ± 0.203.34 ± 0.15 3.38 ± 0.18 3.91 ± 0.263.78 ± 0.493.41 ± 0.22 3.33 ± 0.20

RAVLT-

T30

3.79 ± 0.273.44 ± 0.173.44 ± 0.153.46 ± 4.04 3.24 ± 0.253.91 ± 0.433.41 ± 0.23 3.46 ± 0.19

RAVLT-

RECOG

4.43 ± 0.253.64 ± 0.21 3.64 ± 0.25 3.63 ± 0.194.38 ± 0.234.52 ± 0.863.64 ± 0.253.39 ± 0.20

FLU-

ANIM

6.69 ± 0.425.35 ± 0.45 5.29 ± 0.44 5.25 ± 0.496.61 ± 0.566.74 ± 1.425.30 ± 0.44 5.23 ± 0.43

FLU-VEG 4.47 ± 0.213.75 ± 0.10 3.70 ± 0.10 3.71 ± 0.11 4.39 ± 0.294.67 ± 0.794.82 ± 0.22 3.47 ± 0.16

TRAILS-A 26.7 ± 1.8023.8 ± 1.40 23.4 ± 1.11 23.4 ± 1.12 27.5 ± 1.9828.8 ± 3.2824.1 ± 1.81 21.1 ± 1.47

TRAILS-B 81.3 ± 2.5271.2 ± 2.81 71.3 ± 2.95 70.9 ± 2.52 83.6 ± 5.4489.7 ± 7.8372.8 ± 2.74 69.8 ± 1.23

multi-task learning with different assumption, MT-GL, MTFL and our proposed
methods belonging to the multi-task feature learning methods with the idea of
sparsity, have a advantage over the other comparative multi-task learning meth-
ods. Since not all the brain regions are associated with AD, many of the features
are irrelevant and redundant. Sparse based MTL methods are appropriate for
the task of prediction cognitive measures and better than the non sparse based
MTL methods. Furthermore, CMTL and Trace are worse than the Ridge, which
demonstrates that the model assumption in them may be incorrect for modeling
the correlation among the cognitive tasks.

3.2 Fusion of Multi-modality

To estimate the effect of combining multi-modality image data with our
SMKMTL methods and provide a more comprehensive comparison of the result
from the proposed model, we further perform some experiments, that are
(1) using only MRI modality, (2) using only PET modality, (3) combining two
modalities: PET and MRI (MP), and (4) combining three modalities: PET, MRI
and demographic information including age, years of education and ApoE geno-
typing (MPD). Different the above experiments, the samples from ADNI-2 are
used instead of ADNI-1, since the amount of the patients with PET is sufficient.
From the ADNI-2, we obtained all the patients with both MRI and PET, totally
756 samples. The PET imaging data are from the ADNI database processed by
the UC Berkeley team, who use a native-space MRI scan for each subject that
is segmented and parcellated with Freesurfer to generate a summary cortical
and subcortical ROI, and coregister each florbetapir scan to the corresponding
MRI and calculate the mean florbetapir uptake within the cortical and refer-
ence regions. The procedure of image processing is described in http://adni.
loni.usc.edu/updated-florbetapir-av-45-pet-analysis-results/. In our SMKMTL,
ten different kennel function described in the first experiment are used for each

http://adni.loni.usc.edu/updated-florbetapir-av-45-pet-analysis-results/
http://adni.loni.usc.edu/updated-florbetapir-av-45-pet-analysis-results/
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Table 2. Performance comparison with multi-modality data in terms of rMSE.

MTFL SMKMTL

MRI PET MP MPD MRI PET MP MPD

ADAS 6.28 ± 0.33 6.09 ± 0.27 6.05 ± 0.29 5.83 ± 0.33 6.19 ± 0.53 5.95 ± 0.17 5.87 ± 0.22 5.79 ± 0.27

MMSE 1.96 ± 0.12 1.92 ± 0.23 1.91 ± 0.18 1.85 ± 0.19 1.87 ± 0.21 1.83 ± 0.19 1.82 ± 0.11 1.77 ± 0.15

RAVLT-TOTAL 9.82 ± 0.44 9.69 ± 0.43 9.55 ± 0.51 9.51 ± 0.41 9.80 ± 0.41 9.71 ± 0.35 9.56 ± 0.42 9.51 ± 0.33

RAVLT-TOT6 3.24 ± 0.15 3.19 ± 0.16 3.09 ± 0.11 2.95 ± 0.11 3.11 ± 0.12 3.03 ± 0.21 2.97 ± 0.09 2.84 ± 0.13

RAVLT-T30 3.16 ± 0.20 3.21 ± 0.12 3.14 ± 0.10 3.05 ± 0.15 3.18 ± 0.25 3.18 ± 0.22 3.11 ± 0.18 3.07 ± 0.12

RAVLT-RECOG 3.70 ± 0.25 3.52 ± 0.12 3.44 ± 0.28 3.30 ± 0.18 3.55 ± 0.21 3.54 ± 0.15 3.34 ± 0.11 3.17 ± 0.10

FLU-ANIM 4.95 ± 0.27 4.46 ± 0.32 4.51 ± 0.28 4.29 ± 0.22 4.71 ± 0.19 4.54 ± 0.18 4.45 ± 0.22 4.21 ± 0.16

FLU-VEG 3.65 ± 0.20 3.55 ± 0.15 3.47 ± 0.25 3.38 ± 0.21 3.49 ± 0.18 3.32 ± 0.21 3.15 ± 0.17 3.09 ± 0.10

TRAILS-A 16.2 ± 2.72 15.8 ± 1.56 14.7 ± 1.43 13.8 ± 1.25 15.3 ± 1.33 13.9 ± 1.18 13.1 ± 0.84 12.5 ± 1.08

TRAILS-B 54.9 ± 1.78 52.8 ± 1.43 50.5 ± 2.02 48.7 ± 2.22 51.8 ± 1.84 50.9 ± 1.66 48.9 ± 1.52 46.0 ± 1.47

modality. To show the advantage of SMKMTL, we compare our SMKMTL with
MTFL, which concatenated the multiple modalities features into a long vec-
tor features. The prediction performance results are shown in Table 2. From the
results, it is clear that the method with multi-modality outperforms the methods
using one single modality of data. This validates our assumption that the com-
plementary information among different modalities is helpful for cognitive func-
tion prediction. Regardless of two or three modalities, the proposed SMKMTL
achieved better performances than the linear based multi-task learning for the
most cases, same as for the single modality learning task above.

4 Conclusions

In this paper, we propose to multi-kernel based multi-task learning with �2,1-
norm on the correlation of tasks in the kernel space combined with �q-norm
on the kernels in a joint framework. Extensive experiments illustrate that the
proposed method not only yields superior performance on cognitive outcomes
prediction, but also is a powerful tool for fusing different modalities.
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