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Abstract. In this paper we compare models developed in two formal
frameworks, Uppaal and Event-B, for the Optimised Link State Rout-
ing (OLSR) protocol. OLSR is one of the proactive routing protocols
used in Mobile Ad-hoc Networks (MANETs) and Wireless Mesh Net-
works (WMNs). We also describe different aspects of the Uppaal and
Event-B formalisms. This leads to a more general comparison of both for-
malisms, considering the following criteria: their specification languages,
their update of variables mechanism, their modularity methods, their ver-
ification strategies, their scalability potentials and their real-time mod-
elling capabilities. Based on it, we provide several guidelines for when to
use Uppaal or Event-B for formal modelling and analysis.

1 Introduction

Continuous connectivity is a defining feature of our current working routines
as well as of our free-time ones. We expect to be able to access information
at all times as well as be able to communicate to various entities at all times.
Technically, this is ensured with myriads of interconnected networks that offer
us coverage and route all our requests for information and communication in
certain ways. Hence, routing is a fundamental stone of our lifestyles and as such,
presents enormous interest for study. Routing is obviously not a new concept for
the era of continuous connectivity; it has been around since the first networks
were developed some decades ago. Along with network evolution, routing has
however evolved as well, with numerous algorithms in use today.

Routing protocols are divided into two main categories: proactive and reactive.
Proactive protocols select routes in advance, by having network nodes exchanging
(control) messages about all the other network nodes. Consequently, an injected
data packet can be delivered to the destination immediately. Examples of such
protocols are Optimised Link State Routing (OLSR) protocol [10], Better App-
roach To Mobile Ad hoc Networking (BATMAN) routing protocol [22], etc. Reac-
tive protocols search for routes to destination nodes on demand, whenever a data
packet is injected into the network. Examples of reactive protocols are Ad hoc On-
Demand Distance Vector (AODV) protocol [23], Dynamic Source Routing (DSR)
protocol [14], etc.

In this paper we compare two models for the OLSR proactive protocol. This
protocol is used for routing in Wireless Mesh Networks (WMNs). WMNs are
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self-healing and self-organising wireless technologies supporting broadband com-
munication without requiring any wired infrastructure. They are employed in a
wide range of application areas such as emergency response networks, commu-
nication systems, video surveillance, etc. A central feature of a WMN is that
its topology, in terms of active nodes and links, can vary quite much. OLSR is
adapted to this feature by continuously updating the information that any node
has about any other node, based on the most recent ‘scanning’ of the network.
It thus finds good-enough routes to all destinations.

Previously, our goal was to model OLSR and analyse its properties [15,17,18].
There are numerous frameworks and techniques, formal and less formal, that one
can choose for modelling purposes. Since we are interested in analysis, formal
methods with their underlying mathematical foundations are best suited. How-
ever, the question is which formal method to choose. In this paper we resume
our experiences with two formal methods, the Uppaal model checker and the
Event-B theorem prover.

In Uppaal [7], safety and liveness properties are expressed using Computa-
tion Tree Logic (CTL). Constants, data structures and procedures are defined in
a C-like language and modularity is addressed via components, represented as
timed automata, that communicate with each other via channels. Uppaal has a
model checking tool1, that supports the basic computational model and checks
whether properties hold for a model or not, in the latter case providing a coun-
terexample. In Event-B [2], safety properties are expressed in first-order logic,
while constants, data structures, variables and their updates are modelled in a
guarded command language. Event-B has a theorem prover tool, the Eclipse-
based Rodin platform2, that supports the basic modelling and analysis, based
on generating and discharging proof obligations. Modularity is addressed via
refinement: a model is initially abstract and details are added to it in proof-safe
manner. Liveness properties are modelled logically or with specific update types.

Contributions. After modelling and analysing OLSR with both Uppaal and
Event-B, we found that both formal methods are useful, but at different scales
and for emphasising different aspects of modelling and analysis. In this paper,
our contribution is to provide a comparison of our respective models as well as
of these formal methods, with suggestions for modellers as to when to use one
or another. We take into account four main criteria w.r.t. our models (Uppaal
and Event-B models) comparison: parts of the protocols that have been mod-
elled, particular properties that have been verified, networks topologies that
have been modelled and data structures that have been used when modelling.
To overview the applicability of Uppaal and Event-B, we provide a comparison
between them by focusing on their specification languages, their mechanism for
variable updating, their modularity methods, their verification strategies, their
scalability potentials and their real-time modelling capabilities. Based on our

1 http://uppaal.org/.
2 http://www.event-b.org/.

http://uppaal.org/
http://www.event-b.org/
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considerations, we provide several guidelines for when to use Uppaal or Event-B
for formal modelling and analysis.

Outline. We proceed as follows.3 In Sect. 2 we describe in some detail the for-
mal tools employed in the paper, namely Uppaal and Event-B. In Sect. 3 we
overview the OLSR protocol and in Sect. 4 we summarise our modelling of OLSR
in Uppaal and Event-B, respectively. In Sect. 5 we compare our Uppaal and
Event-B models as well as the frameworks themselves. We draw some usage
guidelines of these formal tools in practical situations in Sect. 6.

2 Formal Methods, Model Checking, and Theorem
Proving

A formal method usually refers to a framework allowing one to model, analyse,
verify, and animate a system. A formal methods has a formal semantics based on
mathematics, and can thus provide precise answers to questions about systems
properties. A formal method includes a specification (or modelling) language,
analysis methods, various modularity mechanisms addressing the scale of a sys-
tem; nowadays, successful formal methods also have tools associated to them,
including editors, analysers, animators, and more.

When modelling the dynamic behaviour of a system with a formal method,
each execution step in the model follows from a semantical rule of inference
and hence can be checked by a mechanical process. The advantage of formal
methods is that they provide valuable means to symbolically examine the entire
state space of a system model and establish a correctness or safety property
that is true for all possible inputs. These methods have a great potential on
improving the correctness and precision of design and development, as they
produce reliable results. However, this is rarely done in practice today, except
for safety critical systems. In the rather recent past, one of the reasons was the
lack of user friendly and scaling tools, combined with the enormous complexity of
real systems. Nowadays however, we have good tools for several formal methods,
so one of the questions remaining for the adoption of formal methods in industry
remains: which tool is more suitable for a certain (type of) system?

In this paper we set out to examine two different tools associated to two
formal methods, namely model checking and theorem proving.

2.1 Model Checking–Uppaal’s Timed Automata

Model checking (e.g. [9]) is an algorithmic and automatic approach used to val-
idate and verify key correctness properties in finite representations of a formal
system model. By modelling the behaviour of a system in mathematical language,
model checking exhaustively and automatically checks whether the model meets

3 The detailed descriptions of our models appear in [16] for the Uppaal model and
in [19] for the Event-B model.
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a given specification. In model checking, Temporal Logic (TL) is used to spec-
ify and check the correct behaviour of a system. One of the most used model
checking tools nowadays is the Uppaal model checker.

Uppaal [7,20] is an integrated model checker for modelling, simulating (val-
idating) and verifying real-time systems. It is appropriate for systems that can
be modelled as networks of timed automata extended with bounded integer vari-
ables, structured data types, functions and synchronisation channels. A timed-
automata is a finite-state machine with clock variables that measure time pro-
gression. Each automaton can be represented as a graph consists of locations
(optionally also consisting invariants) and edges between those locations having
guards, synchronisation channels, and updates of some variables. A state of a
system is defined by automata’s locations, value of clocks, and the value of all
local and global variables. An edge can be fired in an automaton which leads
to a new state. This edge can be fired separately in the automaton or between
different automata used for synchronisation.

Uppaal’s verifier uses Computation Tree Logic (CTL) (e.g. [11]) to express
system requirements (properties) offering two types of formulas: state formu-
las and path formulas. State formulas describe individual states of the model,
whereas path formulas quantify over paths in the model.

2.2 Theorem Proving–Event-B

Event-B [2] is a formal technique based on the B-Method [1] and on the Action
Systems [5] framework, provides means to model and analyse parallel, reac-
tive and distributed systems. Rodin Platform [3] provides automated support
for modelling and verifying such systems. Event-B uses two modules for defin-
ing system specifications and for expressing system properties, namely context
and machine. A context consists of carrier sets and constants, and their prop-
erties are defined as axioms of the model. So, a context deals with the static
part of the system whereas a machine contains the dynamic part of the system.
A machine can access the contents of a context which is defined by the keyword
Sees determining the relationship between the machine and the context.

A machine expresses the model state using variables that are updated by
events. Events can have guards that need to evaluate to true, allowing the
event to be executed. When having several events enabled simultaneously, one
event is selected non-deterministically. A machine may also contain invariants,
i.e., properties which must hold for any reachable state in the model. In other
words, invariants must be satisfied before and after the occurrence of all events.

The refinement is the main developing strategy in Event-B where a machine,
let’s say machine A, is refined by another machine, let’s say machine B, i.e., A �
B. This happens when A’s behaviour is not altered by B in any way and more
new variables are added in B as well as new events to update the new variables.
This type of refinement employed for our modelling is called superposition
refinement. In order to prove that machine B is the refinement of machine A, a
set of so-called proof obligations is generated by the Rodin platform. Some of
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these proof obligations are discharged automatically by Rodin and some require
interactive discharging with the help of the modeller.

3 An Overview of Optimised Link State Routing

The Optimised Link State Routing (OLSR) is a proactive routing protocol devel-
oped for Mobile Ad-hoc Networks (MANETs) and Wireless Mesh Networks
(WMNs). OLSR operates as a routing table-driven protocol; each node keeps
information about all the other nodes of the network in order to transfer data
packets from a source node to a destination node. Examples of information stored
in the routing table of a node a are: to get to node b (from a) the next node
to take is node c; or, to get to node b from a takes n hops, where a, b, c are
nodes in the network and n is a natural number. Keeping the information in
the routing table up-to-date is realised by nodes periodically exchanging spe-
cific control messages. OLSR is an optimisation over other link state protocols,
since it decreases the network traffic by restricting the broadcasting of control
messages to only specific nodes.

OLSR works in a completely distributed manner and does not require any
central entity for coordination. Each node selects a set of one-hop neighbour
nodes that have links to the two-hop neighbours of that selector node. The
selected nodes are called MultiPoint Relays (MPRs) and are allowed to trans-
mit control messages intended for diffusion into the entire network. There are
two types of control messages, namely HELLO and TC (Topology Control) mes-
sages.

HELLO messages are broadcast every 2 s and are used to determine one-hop
and two-hop neighbours of each node as well as to select MPR nodes. These mes-
sages are only broadcast on single hops (to one-hop neighbours) and are not
forwarded. TC messages are broadcast every 5 s for building and refreshing topo-
logical information in the routing tables. These messages are broadcast on single
hops and can be forwarded through the network via MPR nodes. Upon receipt
of HELLO or TC messages, the receiving node updates its routing table based on
the information in the received control message. Therefore, the topological infor-
mation is always kept up-to-date in the routing tables in order to deliver data
packets to arbitrary destination nodes.

4 Formal Modelling of the OLSR

We now present the overview of our OLSR models, i.e., Uppaal and Event-B
models of the OLSR protocol. Both formal models are described in detail in our
technical reports [16,19].

4.1 Uppaal Model of the OLSR

In [15], we modelled OLSR in Uppaal as a parallel composition of identical
processes, each indicating the behaviour of each node of the network. Every
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Fig. 1. Overview of model development

process is itself a parallel composition of two timed-automata, i.e., OLSR and
Queue. The OLSR automaton is modelling the complete behaviour of the routing
protocol [10] and Queue automaton (depicted in Fig. 1) is chosen to model the
input buffer of every node in the network.

Nodes are able to broadcast and handle different types of messages (HELLO,
TC and PACKET) in the network (modelled by OLSR) and the connected neighbour
nodes can receive the incoming messages and store these messages in their input
buffer (modelled by Queue). Whenever the OLSR is ready to handle a message (is
not busy) and there are messages stored in the Queue, the OLSR and the Queue
synchronise together on the imsg channel, moving a message from the Queue to
the OLSR for processing.

The OLSR models the routing table of a node using a local data structure.
Routing tables provide all the necessary information to route data packets to
different destination nodes. Connectivity between two nodes is modelled by the
predicate isconnected[i][j], denoting a node-to-node communication. If two
nodes are in transmission range of each other, they can communicate with each
other via channels. In order to model rigorous timing behaviour, we defined
several clocks for each OLSR to model on-time broadcasting control messages,
to consider time spent to send every message, and to update and refresh the
information in the routing tables.

Based on [10], each node in the network broadcasts a HELLO message every
2 s containing the information about the originator of the message and the one-
hop neighbours of the HELLO message originator. Upon receipt of a HELLO, the
receiving node updates its routing table for the HELLO message originator and its
two-hop neighbours (one-hop neighbours of the HELLO message originator). The
receiving node also selects its MPR nodes which are able to broadcast TC messages
through the network. Such nodes (MPRs) then broadcast TC messages every 5 s
through the network. TC messages contain the information about the originator of
the TC messages, MPR nodes of the message originator, etc. When a node receives
a TC message, it first checks if the message is considered for processing following
some conditions. If so, then the receiving node updates its routing table for the
TC message originator and the MPR nodes of the TC originator. Afterwards, if the
receiving node is an MPR and the TC message is considered for forwarding, the TC
is forwarded to the next nodes.
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The Queue (Fig. 1) models storing incoming messages from other nodes
(directly connected neighbour nodes) of the network. The incoming messages
are buffered and in turn are sent to the OLSR for further processing. Messages
can be received only if the receiving node is connected to the sender of the mes-
sage. In this case, the Queue of the receiving nodes stores the messages to its
local data queue.

4.2 Event-B Model of the OLSR

In [18], we developed a formal model of the OLSR protocol at five different levels
of abstraction (depicted in Fig. 2) using Event-B (Rodin platform). We have
defined two contexts containing constants and carrier sets, whose properties are
expressed as a list of axioms for the model. These contexts contain the static part
of the system. The dynamic part of our system is modelled using five machines
that describe the state of the model with their variables which are updated by
events. These five machines are related to the contexts and can access them
using the keyword sees as shown in Fig. 2. Also, the more abstract machines and
contexts are refined into more concrete machines and contexts using keywords
‘refines’ and ‘extends’, respectively.

Fig. 2. Overview of model development
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Our initial model M0 deals with basic protocol behaviour, i.e., sending, receiv-
ing, and losing data packets as well as an abstraction of proactive routing behav-
iour (adding links between nodes). First refinement M1 models a storing and for-
warding architecture when data packets are transferred hop by hop from a source
node to a destination node. Second refinement M2 models the basic behaviour of
the route discovery protocol, describing the OLSR behaviour when sending and
receiving control messages as well as updating routing tables. Third refinement
M3 models how the protocol decides to process only new control messages and
how to avoid processing control messages with old information. Fourth refine-
ment M4 models the selection of MPR nodes, helping to decrease the traffic in the
network.

Event packet receiving =̂
any

msg
where

grd1 : msg ∈ sent packet \ (got packet ∪ lost packet)
then

act1 : got packet := got packet ∪ {msg}
end

In M0, data packets are received from a source node to a destination node
in an atomic step which is of course not the case in reality. In real protocols,
data packets are forwarded hop by hop from a source node to a destination node
using multi-hop communication that is modelled in the more concrete machine
M1. For instance, event packet receiving models the successful receiving of the
data packet msg by a destination node. The guard of this event (grd1 ) models
that msg has not been received or lost yet. When the packet is received, it will
be added in the got packet set.

In M1, the storing and forwarding architecture of data packets is modelled
while all nodes are not connected and the data packets must be forwarded hop
by hop through the destination. In this step, we model a local storage for each
node to store these incoming packets and forward these data packets to next
nodes along the path to the destination node.

In M2, nodes are able to broadcast and handle different types of messages
(HELLO, TC and PACKET) in the network (modelled by several events). Also rout-
ing tables of nodes are modelled as variables, providing the information to deliver
data packets to different destination nodes. Every node broadcasts a HELLO mes-
sage having the information only about the HELLO message originator. Upon
receipt of a HELLO message, the corresponding routing table for the originator of
the HELLO message is updated. Also, each node broadcasts a TC message contain-
ing the information about the TC message originator, number of hops of the TC
message, sender of the TC message and time to live of the TC message (number
of hops that a TC message can be forwarded). Upon receipt of a TC message, the
corresponding routing table for the originator of the TC message is updated and
if the TC message is considered for forwarding, it is forwarded to the next nodes.

In M3, we extend the routing table of every node and also add a new variable
in the TC message in order to model sequence numbers. Sequence numbers are
embedded in TC messages to avoid processing messages with old information.
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Also, we defined several events to update the local sequence number of each
node and to remove out-dated messages from the network.

In M4, we restrict the broadcasting of TC messages to only specific nodes,
namely MPRs, and not all nodes broadcast TC messages through the network.
We added one-hop neighbours of the HELLO message originator in the HELLO
messages so that upon receipt of a HELLO message, the two-hop neighbours of
the receiving nodes can be also updated. In this case, nodes can determine their
MPR nodes and also nodes are able to recognise whether or not they are MPR
nodes of some other nodes in the network. If some nodes are selected to be MPRs,
then they can broadcast/forward TC messages through the network.

5 Comparison

In this section, we compare our OLSR models, the Uppaal model [15] and the
Event-B model [18] as well as the modelling tools Uppaal [7] and Event-B [2].

5.1 Uppaal Model vs Event-B Model

Table 1 depicts an overview of our comparison. We take into the account four
main criteria: what parts of the protocol we’ve modelled, what properties we’ve
verified for our models, for what types of network topologies we modelled the
protocol and what data structures we’ve used.

Table 1. Overview of our models comparison

Uppaal model Event-B model

Protocol Core functionality Core functionality with timing
abstraction

Properties Route establishment packet
delivery non-optimal route
finding recovery time

Route establishment packet
delivery non-optimal route
finding

Topologies All topologies up to 5 nodes All topologies with n nodes

Data Structures Queues Relations, functions

Protocol. We were able to model the core functionality of the OLSR protocol [10] in
both Uppaal and Event-B. This functionality refers to the behaviour that is always
required for the protocol to perform. The only feature that we abstracted away in
our Event-B model was the timing of messages. In the OLSR protocol [10], HELLO
and TC messages are sent periodically. We have abstracted away the treatment of
time in Event-B as this is still incipient, involving a rather different perspective of
treating variables as continuous functions of time [4,6].



198 M. Kamali and L. Petre

Table 2. Overview of Uppaal and Event-B comparison

Uppaal Event-B

Specification Language Timed automata, C-like
language

Set theory, guarded
commands language

Variables Update Transition: selection guard
update

Event: parameter guard
action

Modularity Divided into several automata
at the same level of abstraction

Divided into several
machines at different
levels of abstraction

Verification CTL automatically providing
counterexamples

First-order logic
automatically and
interactively no
counterexamples

Scalability Small-scale systems (finite) Large-scale systems
(infinite)

Real Time Precisely models timing
variables

Partially models timing
variables

Properties. We verified our OLSR model in Uppaal for the following properties:
route establishment, packet delivery, optimal route finding, and recovery time.
We were able to verify that all nodes in the network can establish routes to
different destination nodes as well as deliver data packets to these destinations.
We proved by finding a counterexample that OLSR is not always able to find
optimal routes to all the destinations as well as showed that OLSR needs a
relatively long time to recover after a link breakage in the network [15]. In our
Event-B model, we verified our OLSR model for the following properties: route
establishment, packet delivery and optimal route finding. We came to the same
conclusions as for our Uppaal model. Routes are established to all destinations
and data packets are delivered to these destinations; however, these routes may
be non-optimal w.r.t. the hop counts. Since we abstracted away from timing
properties, we did not investigate the recovery time of OLSR in Event-B.

Topologies. We verified our Uppaal model of OLSR for all network topologies
up to 5 nodes. Since the model checking technique suffers from the state space
explosion problem, we were not able to extend our analysis for more realistic
networks. However, when modelling in Event-B, we were not restricted by the
number of nodes in the network and we could verify the protocol for arbitrary
networks with n number of nodes.

Data Structures. We modelled the OLSR protocol in Uppaal and Event-B with
different data structures. In our Uppaal model, we have defined the Queue timed
automata to store different types of incoming messages to a node. In Event-B, we
modelled the storing architecture using relations between nodes and messages.
We defined a specific data structure in Uppaal to model the routing tables,



Uppaal vs Event-B for Modelling Optimised Link State Routing 199

whereas in Event-B we defined different variables to model routing tables. The
types of nodes in the network were defined by integers in Uppaal, while in Event-
B we introduced a carrier set to model the network nodes. We defined a common
data structure for all types of messages in Uppaal; in Event-B, we introduced
different carrier sets for each type of message. We note here that we can have
the same data structure (modelling all types of messages, i.e., data packets and
control messages) also in Event-B, and this is part of some future generalisation
that we plan for modelling various network protocols in Event-B.

5.2 Uppaal vs Event-B

Table 2 depicts an overview of the comparison between Uppaal and Event-B. We
detail this table below, namely we compare the specification languages, the vari-
able updating mechanisms, the modularity methods, the verification strategies,
the scalability potential, and the real-time modelling capabilities.

Specification Language. The Uppaal model checker uses timed-automata as the
specification language whereas Event-B is based on set theory. In Uppaal, con-
stants, data structures and procedures are defined in a C-like language. In Event-
B, constants, data structures, variables and their updates are modelled in a
guarded command language.

Variable Updating Mechanism. In Uppaal transitions are used to update the
variables while in Event-B events accomplish the same thing. In both formal
methods, the state of the model is determined by the values of the variables. We
show the similarities between transitions in Uppaal and events in Event-B by
sketching an example based on our models when a node receives a message as
depicted in Fig. 3. By this, we also demonstrate how our models in Uppaal and
Event-B are equivalent. These similarities are as following:

– Selection of Parameters. In Uppaal, the select label of a transition consists
of a list of name:type expressions, where name is the variable’s name and type
is its type. As depicted in Fig. 3 (Transition), IP is the type of variable ip,
i.e., an integer in our model. This variable is only accessible for the respective

Fig. 3. Transition and event in Uppaal and Event-B.
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transition and it takes a non-deterministic value in the range of its respective
types (integer type in our model). In Event-B (Event), the any clause of an
event lists the parameters (or local variables) of the event, i.e., msg in Fig. 3;
the types of these parameters are usually specified in the guards of the events.

– Guards. In Uppaal, the guard label refers to logical expressions that deter-
mine if the respective transitions are enabled (when guards hold). In Fig. 3
(Transition), msglocal.msgtype == packet is the guard of the transition
and shows if the received message is a new packet. In Event-B, the where
clause contains the guards of the events, i.e., the logical conditions for the
event to be enabled (when guards hold). The guard of the (Event) in Fig. 3
is shown as msg ∈ sent packet \ (got packet ∪ lost packet).

– Updates and Actions. In Uppaal, the update label of a transition contains a
list of expressions that update the values of variables. In Fig. 3 (Transition),
delivered++ is the update that increases the value of integer variable
delivered showing that the packet has been received. In Event-B, the then
clause lists the actions of the event that modify some variables of the model.
In Fig. 3 (Event), got packet := got packet ∪ {msg} is the action that adds
the receiving packet to the received messages set. In both frameworks, the
variable updating mechanism takes place only if the guards of transitions or
events respectively hold.

Modularity. In order to model the whole system’s behaviour in Uppaal, several
automata are introduced, each modelling different parts of the system. These
automata need to synchronise with each other, to keep the consistency and
relevance between different parts of the system model. However, it is not always
possible to split the system into different automata and thus a system model may
remain too complex to understand, having too numerous transitions. In Event-B,
different machines are introduced to fully model the behaviour of the system at
different levels of abstraction, starting from a very simple and abstract level. This
abstract model is stepwise developed using refinement methods to finally model
the complete behaviour of the entire system. Consistency between the different
levels of refinements is verified by discharging proof obligations. The stepwise
development allows to split the complexity of the system into different levels and
makes it easier to understand the model and discharge the proof obligations.

Verification. In Uppaal, the required properties are expressed in Computational
Tree Logic (CTL) syntax and the whole system model is verified for the defined
properties. In Event-B, invariants are used to formulate system properties using
first-order logic; the invariants have to be checked for the whole system in order
to show the consistency between different levels of abstractions. Properties in
Uppaal are discharged fully automatically whereas in Event-B some of the prop-
erties are discharged automatically and some are discharged interactively. Uppaal
provides counterexamples if a property does not hold; this helps in finding errors
in the system. In Event-B, if a proof obligation is not discharged automatically,
this typically signals some modelling problem and the modeller is prompted back
to remodel certain aspects.
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Scalability. Uppaal, like all model checking tools, suffers from the state space
explosion problem, hence it is not able to verify very large and complex systems.
Event-B allows to verify even large and complex systems. Event-B checks the
general validity of a property for all models (i.e., also for infinite models) whereas
Uppaal is dedicated to small-scale, finite systems.

Real-Time. Uppaal provides clock variables to model timing behaviour of real-
time systems whereas for Event-B modelling timing behaviour is still incipient. In
Uppaal, clock variables model discrete timing behaviour. In Event-B, advances
are made to model hybrid behaviour including discrete and continuous time
modelling [4,6], but these are not implemented in the Rodin platform yet. In
Event-B, the time can be defined as a function that can be mapped to an integer
variable increasing by the events.

6 Conclusions and Usage Guidelines

To resume our experiences of modelling OLSR with Uppaal and Event-B, we
essentially found that the two formalisms require different approaches to mod-
elling. In Uppaal, the modeller attempts to capture the whole system, in all its
complexity, from the beginning, aided in this task by the modularity technique
of splitting the model into communicating time automata. In Event-B, the mod-
eller gets to understand the system’s complexity by modelling it in increasingly
more detailed levels of abstraction. When we have a conceptually complex sys-
tem (behaviour of routing protocols), choosing Uppaal or Event-B for modelling
it and analysing it is ultimately a matter depending on the modeller’s experience.

One can specify properties to prove in both formalisms, but the verification
of these properties differs in the two frameworks. In Uppaal, the verification
depends on the size of the model and may be unsuccessful if the size is bigger
(networks of realistic size) than some arbitrary and typically small value. This
is because model checking enforces a brute force verification of properties in all
possible states of the system, thus leading relatively fast to overflow. Approaches
are taken to overcome this problem, such as partial order reduction techniques
[21] and statistical model checking. The former assumes that not all states are
worth verifying, and thus defines a priority-based order relation that imposes the
verification of the most important states only. The latter employs probabilities
and gives results such as the property holds with a 0.99 probability; these prob-
abilities are calculated based on many random walks through the state space
(simulations of) the system. In Event-B, the verification of properties is based
on logic and proof engines that are built to work for any defined mathemati-
cal concepts, including infinite-sized models. When properties are not verified
automatically, Uppaal provides counterexamples exposing the offending state:
this can be quite useful for correcting errors. In the same situation, the Rodin
platform shows the unsatisfied proof obligation and thus the modeller gets some
feedback on what does not work. We note here that, if there are flaws in the
system, often they are exposed even for small-scale models, see [12,15].
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Both Uppaal and Event-B are supported by performant software platforms
for modelling and proving; depending on how advanced these platforms are, some
aspects can be modelled or not, such as real-time properties. Uppaal was designed
to include clock variables and time modelling, while Event-B was designed as a
general refinement-based framework. We can precisely model real-time properties
of communication protocols in Uppaal, e.g., broadcasting a control message at a
certain time. Recently, several approaches were proposed on how to add real-time
modelling in Event-B in a conservative manner, e.g. Hybrid Event-B [6] or [4].
This would imply that all variables except clocks are functions of time, so a slight
change of perspective is needed here. Real-time properties are typically closely
related to implementation details, for instance, to various network parameters;
hence, even if we can model timing, when translating the final model into a
software product, we might need to alter various properties and parameters
anyway.

For modelling and verifying routing protocols, Uppaal remains very useful, as
it provides synchronisation mechanisms used in wireless networks: broadcast and
binary synchronisation. This allows to closely understand the communication
between network nodes. Besides these clear differences, we found that modelling
in either framework is quite natural and rewarding and, once the modeller is
experienced enough with the framework, quite efficient as well.

To the best of our knowledge, this is the first paper comparing Uppaal and
Event-B with respect to what each can model and prove. Relations between
model checking and theorem proving in general have been studied before,
e.g. [13], where for solving a (rather simple) puzzle, arguments are given for
using model checking instead of theorem proving. We note that real systems
are very complex nowadays and thus, proving properties for the system, inde-
pendently of its size, is quite important. Another interesting observation made
in [13] is that theorem proving helps in constructing the model, while model
checking can be used when we already understand the model quite well. Other
approaches connecting model checking and theorem proving are [8], where the
idea is to combine the two methods and more recently [24], where refinement is
studied in the context of both Uppaal and Event-B.
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