
Kamel Barkaoui · Hanifa Boucheneb
Ali Mili · Sofiène Tahar (Eds.)

 123

LN
CS

 1
04

66

11th International Conference, VECoS 2017
Montreal, QC, Canada, August 24–25, 2017
Proceedings

Verification and Evaluation
of Computer
and Communication Systems



Lecture Notes in Computer Science 10466

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407



Kamel Barkaoui • Hanifa Boucheneb
Ali Mili • Sofiène Tahar (Eds.)

Verification and Evaluation
of Computer
and Communication Systems
11th International Conference, VECoS 2017
Montreal, QC, Canada, August 24–25, 2017
Proceedings

123



Editors
Kamel Barkaoui
CNAM-CEDRIC
Paris Cedex 03
France

Hanifa Boucheneb
École Polytechnique de Montréal
Montreal, QC
Canada

Ali Mili
New Jersey Institute of Technology
Newark, NJ
USA

Sofiène Tahar
Concordia University
Montreal, QC
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66175-9 ISBN 978-3-319-66176-6 (eBook)
DOI 10.1007/978-3-319-66176-6

Library of Congress Control Number: 2017950042

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7175-0448
http://orcid.org/0000-0001-9158-6374


Preface

These proceedings contain the papers presented at the 11th International Conference on
Verification and Evaluation of Computer and Communication Systems (VECoS 2017),
held at Concordia University, Montreal, Canada, during August 24–25, 2017.

The aim of the VECoS conference is to bring together researchers and practitioners
in the areas of verification, control, performance, and dependability evaluation in order
to discuss the state of the art and challenges in modern computer and communication
systems in which functional and extra-functional properties are strongly interrelated.
Thus, the main motivation for VECoS is to encourage cross-fertilization between
various formal verification and evaluation approaches, methods, and techniques, and
especially those developed for concurrent and distributed hardware/software systems.

The Program Committee of VECoS 2017 includes researchers from 20 countries.
We received 35 full submissions from 15 countries and each paper was evaluated by at
least three reviewers. After a thorough and lively discussion phase, the committee
decided to accept 13 papers (which represents an acceptance rate of 37,14%).

The conference program also includes three invited talks. The invited speakers for
VECoS 2017 are: Mourad Debbabi from Concordia University, Montreal, Quebec,
Canada; Michel Dagenais from Polytechnique Montreal, Quebec, Canada; and Zhiwu
Li from Xidian University, China.

We are grateful to all members of the Program and Organizing Committees, to all
referees for their cooperation and to Springer for their professional support during the
production phase of the proceedings.

Finally, we would like to thank the sponsoring institutions without whom VECoS
2017 could not have been a reality. We are also thankful to all authors of submitted
papers and to all participants of the conference. Their interest in this conference and
contributions to the discipline are greatly appreciated.

August 2017 Kamel Barkaoui
Hanifa Boucheneb

Ali Mili
Sofiène Tahar



Organization

VECoS 2017 was organized by Concordia University in Montreal, Quebec, Canada
with the support of Polytechnique Montreal, New Jersey Institute of Technology, Le
Cnam, and Formal Methods Europe.

VECoS was created by a Euro-Med network of researchers in computer science in
the form of an annual workshop series. The first workshop, VECoS 2007, took place in
Algiers (Algeria), VECoS 2008 took place in Leeds (UK), VECoS 2009 in Rabat
(Morocco), VECoS 2010 in Paris (France), VECoS 2011 in Tunis (Tunisia), VECoS
2012 in Paris (France), VECoS 2013 in Florence (Italy), VECoS 2014 in Bejaia
(Algeria), VECoS 2015 in Bucharest (Romania), VECoS 2016 in Tunis (Tunisia).

Steering Committee

Djamil Aissani LAMOS, Université de Bejaia
Hassane Alla GIPSA Lab INPG Grenoble
Kamel Barkaoui CEDRIC CNAM Paris
Hanifa Boucheneb Veriform, Polytechnique Montreal
Francesco Flammini Ansaldo STS, Milano
Belgacem Ben Hedia LIST CEA Saclay
Mohamed Kaaniche LAAS CNRS, Toulouse
Bruno Monsuez ENSTA UIIS, Paris
Nihal Pekergin LACL Université Paris Est Créteil
Tayssir Touili LIPN, CNRS Université Paris Nord

Executive Committee

Conference Co-chairs

Sofiène Tahar Concordia University, Montreal, QC, Canada
Ali Mili New Jersey Institute of Technology, Newark, NJ, USA

Program Co-chairs

Kamel Barkaoui CNAM, Paris, France
Hanifa Boucheneb Polytechnique Montreal, QC, Canada

Organizing Chair

Otmane Ait Mohamed Concordia University, Montreal, QC, Canada

Publicity Co-chairs

Belgacem Ben Hedia CEA-LIST, Saclay, France
Vladimir-Alexandru Paun ENSTA ParisTech, Palaiseau, France



Referees

T. Abdellatif
D. Aissani
H. Alla
Y. Ait Ameur
M.F.i Atig
E. Badouel
K. Barkaoui
F. Belala
I. Ben-Hafaiedh
B. Ben-Hedia
S. Bensalem
A. Benzina
S. Bliudze
P. Bonhomme
F. Boniol
T. Bouabana-Tebibel
A. Bouabdallah
H. Boucheneb
S. Bouzefrane
F. Brandner
F. Chu
G. Ciobanu

M. Van Eekelen
M. Escheikh
A. Fantechi
A. Felty
F. Flammini
M. Frappier
F. Gadducci
B. Van Gastel
A. Geniet
M. Ghazel
S. Haddad
B. Heidergott
M. Ioulalen
M. Jaber
R. Janicki
A. Jaoua
C. Jerad
M. Jmaiel
J. Julvez
M. Kaaniche
L. Kahloul
R. Khedri

O. Korbaa
L. Kristensen
Z. Li
D. Liu
M. Maouche
A. Melo
A. Mili
B. Monsuez
M. Mosbah
A. Nouri
M. Ouederni
M. Oussalah
V.A. Paun
R. Rebiha
A. Rezine
R. Robbana
S. Tahar
F. Thabet
T. Touili
F. Toumani
R. Villemaire
K. Wolf

Additional Reviewers

B. Aman
I. Ghorbel
S. Ghoul
M. Jan
H. Khemissa
B. Liu
H. Sahli

P. Saivasan
L. Sfaxi
R. Sirdey
M. Soualhia
E. Tuosto
N. Wu

Sponsoring Institutions

Concordia University, QC, Canada
Polytechnique Montreal, QC, Canada
New Jersey Institute of Technology, NJ, USA
Le Cnam, France
Formal Methods Europe
RESMIQ, Canada
CEA-LIST, France

VIII Organization



Keynote Speakers



Live Run-Time Verification of Parallel
Heterogeneous Real-Time Systems

Mourad Debbabi

CSL - CIISE, Concordia University, 1455, de Maisonneuve Blvd.
West, EV 14.185, Montreal, QC H3G 1M8, Canada

debbabi@ciise.concordia.ca

Abstract. By massively deploying information and pervasive communication
technologies, the smart grid has become smarter by providing a plethora of
previously unsupported services (e.g., smart control, two-way communication,
bidirectional flow of energy, and real-time sensing) in addition to enhanced
responsiveness and efficiency. However, the deployment of information and
communication technologies introduces new attack surfaces and vulnerabilities.
The exploitation of these vulnerabilities will result in dramatic security, privacy
and, safety consequences. Recent incidents and studies demonstrate that power
systems could be subjected to debilitating and disrupting attacks that might lead
to severe social and economic consequences. In this talk, we will first present
our ongoing research activities on smart grid security. Then, we will present
some of our recent research contributions in terms of security metrics for the
smart grid.



Measuring and Enhancing Smart
Grid Security

Michel Dagenais

Ecole Polytechnique de Montreal, 2900 Boulevard Edouard-Montpetit,
Montréal, QC H3T 1J4, Pavillion Pierre Lassonde, bureau M-4015, Canada

michel.dagenais@polymtl.ca

Abstract. What are the most difficult systems to analyse (Parallel, Heteroge-
neous, Real-time, Virtualised…) and the most evasive problems to diagnose
(races, interrupt latencies)? Our group has been working on tools for those
difficult situations for over a decade. Many if not most systems are now indeed
parallel and heterogeneous (from smart phones to cloud servers) and often
involve virtualisation or real-time constraints. Therefore, difficult problems,
which only manifest themselves in live systems, in production under full load,
are a common occurrence. While structured design methodologies and static
validation can avoid many problems, errors remain possible, often in hardware
or third-party software which do not satisfy the design constraints. The right
tools are needed to tackle those problems.

During this talk, the design and implementation of various tracing and
debugging tools, many developed in our group in collaboration with several
industrial partners, will be discussed. Representative examples of real industrial
problems will be presented, along with the diagnosis process using the tools
described.



Deadlock Analysis and Control of Resource
Allocation Systems: Structural

and Reachability Graph Approaches

Zhiwu Li

Systems Control and Automation Group, School of Electro-Mechanical
Engineering, Xidian University, No. 2 South TaiBai Road, Xi’an 710071, China

zhwli@xidian.edu.cn

Abstract. This talk exposes the recent advances of deadlock problems in
resource allocation systems using Petri nets. The pertinent methodologies are
categorized by structural analysis and reachability graph analysis techniques.
The former, without enumerating the reachable states of a system, utilize
structural objects to derive a liveness-enforcing supervisor, while its structure
can be compact. The latter can usually lead to an optimal supervisor with a
minimal control structure subject to a full state enumeration and solution to
integer linear programming problems. Open issues in this area are outlined.



Contents

Formal Probabilistic Analysis of a Virtual Fixture Control Algorithm
for a Surgical Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Muhammad Saad Ayub and Osman Hasan

Performance Analysis of Multi-services Call Admission Control in Cellular
Network Using Probabilistic Model Checking. . . . . . . . . . . . . . . . . . . . . . . 17

Sana Younes and Momtez Benmbarek

Application of Generalized Stochastic Petri Nets to Performance Modeling
of the RF Communication in Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 33

Sedda Hakmi, Ouiza Lekadir, and Djamil Aïssani

Regression-Based Statistical Bounds on Software Execution Time. . . . . . . . . 48
Peter Poplavko, Ayoub Nouri, Lefteris Angelis, Alexandros Zerzelidis,
Saddek Bensalem, and Panagiotis Katsaros

WCET Analysis by Model Checking for a Processor with Dynamic Branch
Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Armel Mangean, Jean-Luc Béchennec, Mikaël Briday,
and Sébastien Faucou

Factor-Based C-AMAT Analysis for Memory Optimization . . . . . . . . . . . . . 79
Qi Yu, Libo Huang, Cheng Qian, Jianqiao Ma,
and Zhiying Wang

An Experimental Comparison of Two Approaches for Diagnosability
Analysis of Discrete Event Systems - A Railway Case-Study . . . . . . . . . . . . 92

Abderraouf Boussif and Mohamed Ghazel

Mobility Load Balancing over Intra-frequency Heterogeneous Networks
Using Handover Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Hana Jouini, Mohamed Escheikh, Kamel Barkaoui,
and Tahar Ezzedine

A Toolset for Mobile Systems Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Pierre André, Nicolas Rivière, and Hélène Waeselynck

Intertwined Global Optimization Based Reachability Analysis. . . . . . . . . . . . 139
Ibtissem Seghaier and Sofiène Tahar

Analyzing Distributed Pi-Calculus Systems by Using the Rewriting
Engine Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bogdan Aman and Gabriel Ciobanu



TT-BIP: Using Correct-by-Design BIP Approach for Modelling Real-Time
System with Time-Triggered Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Hela Guesmi, Belgacem Ben Hedia, Simon Bliudze, Saddek Bensalem,
and Briag Le Nabec

Uppaal vs Event-B for Modelling Optimised Link State Routing. . . . . . . . . . 189
Mojgan Kamali and Luigia Petre

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

XVI Contents



Formal Probabilistic Analysis of a Virtual
Fixture Control Algorithm for a Surgical Robot

Muhammad Saad Ayub(B) and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{saad.ayub,osman.hasan}@seecs.nust.edu.pk

Abstract. With the ever-growing interest in the usage of minimally-
invasive surgery, surgical robots are also being extensively used in the
operation theaters. Given the safety-critical nature of these surgeries,
ensuring the accuracy and safety of the control algorithms of these sur-
gical robots is an absolute requirement. However, traditionally these
algorithms have been analyzed using simulations and testing methods,
which provide in-complete and approximate analysis results due to their
inherent sampling-based nature. We propose to use probabilistic model
checking, which is a formal verification method for quantitative analysis
of systems, to verify the control algorithms of surgical robots. The paper
provides a formal analysis of a virtual fixture control algorithm, imple-
mented in a neuro-surgical robot, using the PRISM model checker. We
have been able to verify some probabilistic properties about the out-of-
boundary problem for the given algorithm and found some new insights,
which were not gained in a previous attempt of using formal methods in
the same context. For validation, we have also done some experiments
by running the considered algorithm on the Al-Zahrawi surgical robot.

Keywords: Probabilistic model checking · PRISM · Surgical robotics

1 Introduction

Minimal-invasive surgery (MIS) [16] is a surgical procedure in which a laparo-
scope (a thin lighted tube), along with a high resolution camera, and other
surgical instruments are inserted into the human body through small incisions
rather than a relatively larger incision commonly used in the traditional open
surgeries. The internal operating field is then visualized on a video monitor con-
nected to the scope. MIS has become quite popular these days as it facilitates
quick patient recovery and has less chances of post-operative infections. How-
ever, these added benefits come at the cost of highly precise movements required
by the surgeons in the confined space provided. Robotic arms and hands have
a high degree of dexterity and thus are playing a promising role in facilitating
surgeons for operating in very tight spaces in the body that would otherwise
only be accessible through open (long incision) surgery. Operations relevant to
microanatomy and neuro-endoscopy are specifically performed through robotic-
assisted MIS because of the static nature of human skull. Moreover, treating the
c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 1–16, 2017.
DOI: 10.1007/978-3-319-66176-6 1



2 M.S. Ayub and O. Hasan

brain tumor via small hole surgery and precise robotic arms also reduces the risk
of damaging the brain tissue overlying the tumor.

Despite the extreme precision of surgical robots, these man-made machines
have their own inherent inaccuracies. There is always a risk that these robotic
arms may go out of control and damage other organs instead of working in the
surgical area. This problem is termed as the out-of-boundary problem. As these
robots are operated by humans via a software interface, so the substantial loss
of force feedback (haptics) and a lack of adaptability are the most common risk
factors that lead to the out-of-boundary problem [12]. These issues may lead
to life threatening situations [10]. The conventional approach to test the out-
of-boundary problem is by manually operating the robot. The more the user
operates the robot, the more are the chances of finding errors but this method is
very time consuming and it also does not ensure a reliable system behavior for
all possible scenarios. The other most commonly used analysis method for find-
ing the out-of-bound errors is computer simulation [24], where a computer-based
model of the robot is tested systematically but this method is very expensive in
terms of computational resources and memory, due to the continuous and ran-
domized nature of the problem. Moreover, it is also not possible to simulate each
and every case for success and failure and thus most of the times an incomplete
analysis is done by leaving a significant number of test cases.

Formal verification methods [8], i.e., computer-based methods for mathe-
matical analysis for systems, have been used to overcome the above-mentioned
inaccuracy limitations for many hardware and software systems. Model checking
[8] is based on state-space exploration methods and is one of the most widely
used formal methods. The system under verification is mathematically modeled
as state-transition system. This model is then used within a computer to auto-
matically verify that it meets rigorous specifications of intended behavior [8].

We propose to conduct the formal analysis of control algorithms used in surgi-
cal robots using probabilistic model checking. The proposed framework allows us
to capture the uncertainties of the real-world scenarios using Markovian models
and verify probabilistic properties within the sound environment of a probabilis-
tic model checker. The quantitative information provided by these probabilistic
properties can play a vital role in designing safer and more performance efficient
surgical robots. In particular, the paper provides the formal probabilistic verifica-
tion of a control algorithm for the neuro-mate robot that is used to perform skull
surgeries [24]. We verified the deadlock freedom, reachability, out-of-boundary
and collision freeness properties. Moreover, we validated our results by conduct-
ing real experiments on the Al-Zahrawi robot [9].

2 Related Work

Given the safety-critical nature of robotic applications, formal verification meth-
ods have been widely used to conduct their analysis. For example, Mikaël [17]
used probabilistic model checking to verify the flexibility property of swarm
robots in a collective foraging scenario. Kim et al. [11] developed the discrete



Formal Probabilistic Analysis of a Virtual Fixture Control Algorithm 3

control software of the Samsung’s home robot (SHR) using Esterel and used the
XEVE model checker to verify the stopping behavior of SHR. Webster et al. [23]
verified the autonomous decision making system of a personal home robot using
the SPIN model checker. Scherer et al. [22] built a method for the verification of
robotic control software based on the Java path finder. They verified the safety
and liveness properties for a line following robot. Model checking has also been
used to verify the motion planning algorithms of various robots. Lahijanian et
al. [14] verified the probability of the robot reaching its destination via a safe
path. Similarly, Fainekos et al. [4] addressed the problem of generating contin-
uous trajectories for mobile robots while satisfying formulas in temporal logic
using the NuSMV model checker. Saberi et al. [21] used the mCRL2 language
[6] to create a formal model for a multi-robot system by creating different com-
municating processes and the Modal u-calculus [5] to formally specify deadlock
freedom, collision-freeness and the reachability properties. Li [15] used the HOL4
theorem prover to verify the collision freeness property for collision-free motion
planning algorithm (CFMC) of a dual-arm robot.

In the context of surgical robotics, Bresolin et al. [3] used hybrid automata
[1] to formalize an autonomous surgical robot and analyzed the surgical task
of “puncturing”, i.e., the method of piercing a biological tissue with the help
of a needle. Similarly, a formal modeling and verification approach for the vir-
tual fixture control algorithm for a surgical robot has been reported in [12]. The
authors used a hybrid logic, i.e., differential dynamic logic and quantified differ-
ential dynamic logic to model the system and verify it using the KeymaeraD [19]
theorem prover. They showed that the algorithm is unsafe and modified it to
satisfy safe operation. This work modeled and analyzed the real-time dynamics
of the system quite well but ignored the randomized aspects, such as the input
from the surgeon (force exerted and direction of motion). The main focus of
the current paper is to overcome this gap and provide quantitative information
about the formally verified properties of control algorithm of surgical robots.

3 Preliminaries

This section gives a general overview of probabilistic model checking and the
virtual fixture based control algorithm that is formally verified in the paper.

3.1 Probabilistic Model Checking and PRISM

Probabilistic Model Checking [18] is used for the formal analysis of systems that
exhibit random behavior and thus can be represented as Markov chains [13].
The probabilistic behavior of systems can be captured via discrete-time Markov
chains (DTMCs), continuous-time Markov chains (CTMCs), Markov decision
processes (MDPs) and probabilistic timed automata (PTAs) [18]. Once the
Markovian model of the system under verification is finalized, then the prob-
abilistic properties of the system are formally specified. The commonly used
specification language for probabilistic model checking is Probabilistic Linear



4 M.S. Ayub and O. Hasan

Temporal Logic (PLTL). The model and property of the system, expressed in the
language of the probabilistic model checker, is then given to the model checker.
The tool explores the model exhaustively to check all possible executions and
the probabilistic queries are solved through numerical methods [18].

PRISM [13] is a widely used probabilistic model checker that supports DTMCs,
CTMCs, MDPs and PTAs. It allows describing the probabilistic behavior of the
given system using the reactive modules formalism [2]. PRISM incorporates state-
of-the-art symbolic data structures and algorithms, based on Binary Decision Dia-
grams (BDDs) and Multi-Terminal Binary Decision Diagrams (MTBDDs), and
its discrete-event based simulation engine provides support for statistical model
checking. The components of the given distributed system are modeled as mod-
ules, which can either be synchronous or asynchronous in nature. Each module
mainly consists of variables and commands. The variables describe the possible
states that the module can be in and the commands describe its behaviour, i.e.,
the way in which the state changes over time. Variables in PRISM can be declared
both globally and locally. PRISM supports (finite ranges of) integer or Boolean
as data-types. Moreover, multiple instances of modules can also be instantiated.
Verification properties are expressed in PRISM using the probabilistic computa-
tion tree logic (PCTL). Once a property is formulated, then the PRISM tool auto-
matically verifies that the property conforms to the model or not. The verification
results can also be logged and plotted [13].

3.2 Virtual Fixture Control Algorithm for Surgical Robots

Surgeries are usually conducted in a specific zone, which is identified for the
surgical robot using a virtual boundary, usually known as the virtual fixture [20].
With the aid of these virtual fixtures, the robot manipulator is guided to move
within the specified region [24]. A surgeon describes the operating volume by a
series of planes oriented and positioned in space. These planar boundaries are
divided into three zones [12,24]: Safe zone is safe for the movement of robot.
Forbidden zone is out-of-bound for the robot. Slow zone is the region between
the safe and the forbidden zones where the movement is somewhat restricted.

The control algorithm exhibits different behaviors in the above-mentioned
zones. In the safe zone, the controller allows the robot to move freely. In the
slow zone, as the boundary of the forbidden zone approaches, the controller
increases the resistance for movement while alarming the surgeon that she is
getting closer to the boundary and also prevents the robot from crossing it [12].
The equation governing the control circuit in this region is as follows

p′ = K(p)G(f)f (1)

where overbars indicate vectors and the prime (′) indicates a derivative with
respect to time. p is the position and p′ is the velocity of the tip of the surgical
tool attached to the robot. f is the force applied by the surgeon on the robot
manipulator. G is the scaling factor, which controls the precision of the tool tip.
The value of G should be high when the surgeon desires to have flexibility to



Formal Probabilistic Analysis of a Virtual Fixture Control Algorithm 5

move rapidly and should be low when fine movements are required. K is the
gain term, which is used to impose motion constraints on the tool. It is taken as
an identify matrix in the safe zone and zero in the forbidden zone, respectively.
Whereas in the slow zone, K is chosen such that the velocity is scaled down
by a factor proportional to the distance of tool from the forbidden zone. The
behavior of K can be abstracted as the following equation:

K =
d

D
(2)

where d is the distance of the tool from the forbidden zone boundary at any
instant and D is the width of the slow zone region. The Eq. 1 works fine in
preventing the tool from crossing the safety boundary but once the tool is in
the slow zone, it attenuates motion in all the directions. Therefore the equation
was modified so that once the tool enters the slow zone, the control algorithm
restricts the movement of the tool in the direction of the forbidden region and
allows free movement in the direction opposite to the forbidden region. This
behavior is implemented using the following equation where n1 is unit normal
to the boundary.

p′ = p′ − (1 − d

D
)(p′.n1)n1 (3)

The purpose of this paper is to verify probabilistic properties related to the
above equation using probabilistic model checking.

4 Formalization of the Virtual Fixture Algorithm Using
the PRISM Language

The first step in modeling the given virtual fixture algorithm, explained in
Sect. 3.2, is the translation of Eqs. (1) and (3). After some arithmetic simpli-
fication and decomposing the force and velocity into the Cartesian plane, we
obtain the following equations:

px = G(
dx

Dx
)fx, py = G(

dy

Dy
)fy, pz = G(

dz

Dz
)fz (4)

The second step is to develop a model for the control algorithm. We have
chosen to model the given algorithm as a DTMC. The virtual fixtures are defined
using the Cartesian plane, where the origin is taken as the center point of the
safe zone as the surgeon is quite likely to start from the center. Considering the
Cartesian coordinates, the boundaries for each plane may lie on the positive axis
or the negative axis. Thus for each plane, we defined four boundaries, i.e., two for
the safe zone and the other two for the forbidden zone. The movement of the tool
in the virtual fixture is modeled using a grid of blocks, which represent 1 unit
of movement. The distance of the tool from the boundary and the boundaries of
the safe and the forbidden zones are thus determined by the number of blocks
on the grid as illustrated in Fig. 1 for a 45× 45 grid.



6 M.S. Ayub and O. Hasan

Fig. 1. Virtual fixture zones

The scaling factor G in Eq. 4 is responsible for translating the force applied
by the surgeon to the velocity of the tool. It depends on the virtual fixture area
and the force applied by the surgeon. If the area of operation is small then the
scaling factor is kept small so that a sudden force applied by the surgeon is
not completely translated into tool velocity. The scaling factor changes with the
amount of force or movement applied by the surgeon on the control stick. As
the maximum force applied is limited by the movement of the control stick due
to mechanical constraints, the scaling factor is responsible generating variable
velocities for movement of the operating tool. In our model, the scaling factor is
taken as a constant since the area of the robot is fixed and the force applied by
the surgeon is non-deterministic and not limited by mechanical constraints. The
model consists of three main components: the force module that is responsible
for generating the force applied by the surgeon and the velocity translation
module that converts the force applied by the surgeon into the tool velocity. It is
also responsible for introducing the damping factor in the velocity. The position
update block changes the current position of the tool based on the velocity and
previous position and also checks the boundaries of operation. The modules
are implemented as Finite State Machines (FSM) with augmented probabilities.
The environment is modelled by defining the bounds of all the zones as shown
in Fig. 1. Data Sharing among various modules of the Control Algorithm is done
via variables created in each module.

4.1 Force Module

The force module captures the behavior of the interaction of the surgeon with the
system, which includes the behavior of the force applied by the surgeon’s hand on
the controlling tool. The force applied is further divided into three components
based on the Cartesian coordinates, i.e., fx, fy, fz. The force applied by the
surgeon is non-deterministic with probabilistic bounds, such that the probability
of the force applied by the surgeon in the direction of force applied previously
is higher than the force applied in the opposite direction. Based on surgical



Formal Probabilistic Analysis of a Virtual Fixture Control Algorithm 7

statistics [7], we used a probability of 0.75 for the tool to retain the previous
direction of movement and a probability of 0.25 for a change. The force f = *
represent non-determinism in the case when the force is zero initially.

1: [](f = 0) → 1/n : f = ∗;
2: [](f > 0) → 0.75 : f >= 0 + 0.25 : f < 0;
3: [](f < 0) → 0.25 : f > 0 + 0.75 : f <= 0;

4.2 Velocity Module

The velocity module determines the instantaneous velocity of the tool using
the force exerted by the surgeon and the position of the tool. The velocity is
also divided into three components, i.e., vx, vy, vz. The control algorithm under
verification is basically modeled in this module. If the position of tool is within
the safe zone represented by sl and sh as the safe zone upper and lower limits in a
single axis, then the force applied is directly translated to velocity. If the position
of the tool is in the slow zone defined by bl and bh as the upper and lower limits
for a single axis and the force is applied in the direction of the boundary, then
the translated velocity is attenuated based on the scale factor K. If the tool
crosses the boundary of the slow zone then the velocity is completely nullified
restricting further movement in the forbidden zone.

1: [](p > sl & p <= sh) → (v′ = gain ∗ f);
2: [](p <= sl & p > bl) & f <= 0 → (v′ = (dl/Dl) ∗ gain ∗ f));
3: [](p > sh & p < bh) & f >= 0 → (v′ = (dh/Dxh) ∗ gain ∗ f));
4: [](p <= sl & p > bl) & f > 0 → (v′ = gain ∗ f);
5: [](p > sh & p < bh) & f < 0 → (v′ = gain ∗ f);
6: [](p <= bl & f >= 0) → (v′ = gain ∗ f);
7: [](p <= bl & f < 0) → (v′ = 0);
8: [](p >= bh & f > 0) → (v′ = 0);
9: [](p >= bh & f <= 0) → (v′ = gain ∗ f);

4.3 Position Module

The position module determines the number of blocks on the grid that the
tool will move depending on the calculated velocity. It is also divided into three
components, i.e., px, py, pz. If the position of the tool is within the limits specified
by the grid size defined by n, then the tool is allowed to move based on the
velocity. However, if it is at an edge of the grid then its movement is restricted
towards the end of grid but it is allowed to move in the opposite direction freely.

1: [](p + v < n & v > 0) → (p′ = P + v);
2: [](px + v > −n & v < 0) → (p′ = P + v);
3: [](v = 0)|(p + v >= n)|(p + v <= (−n)) → (p′ = P );



8 M.S. Ayub and O. Hasan

4.4 Multiple Surgical Tools

Most of the surgical procedures involve multiple robotic arms that are inde-
pendently controlled. In order to formally model this scenario, we replicate the
above-mentioned modules for force, velocity and position and allow them to run
concurrently. The tool boundary limits are considered to be the same for both
tools in our model. The modules are initialized such that both tools operate
simultaneously and independently; a choice that makes collision a possibility as
well. We enhanced the control algorithm with collision avoidance capabilities by
treating the location of one tool as a forbidden zone boundary for the other and
vice versa. This will ensure that when a tool is moving towards the other tool its
velocity will be attenuated to avoid collision between the two tools. The atten-
uation will increase as the tool gets nearer to the other tool. Thus, in essence,
the main modeling concept is basically to treat the previously considered static
forbidden boundaries as dynamic ones using a module obstacle, which creates
boundary points from the other tool’s position.

1: []ox < n & ox > −n → (ox′ = ax1) & (oy′ = ayl);

These boundary points are then used in the velocity module as additional
boundaries for the model. The velocity module then restricts the movement of
the tool if they are moving towards the other tool by a factor M , which is the
ratio of distance between both tools and the maximum distance between both
tools. The maximum distance is computed depending on the width of the slow
zone and the distance between both tools is computed in each iteration. This
will ensure that the tools are less likely to collide with each other.

M =
dobs
Dobs

(5)

Where dobs is the distance between both tools with a maximum value of Dobs.

5 Virtual Fixture Control Algorithm

In this section, the formal model of control algorithm, described in the previ-
ous section, is verified using property specifications introduced in the proposed
methodology. We verified these properties using PRISM 4.1.2 on Windows 7
64-bit operating system running on an Intel Core2 Quad Q9100 processor at
2.66 GHz with 4.0 GB of RAM. The grid size is taken as 45× 45, the range of
the width of the slow zone is taken to be 0 to 20 and the maximum value of the
force is taken to be 6.

5.1 Deadlock Freedom

We verified the deadlock freedom of our virtual fixture control algorithm by
using the built in deadlock property of the PRISM model checker. This property
checks if for some states the transition from the present to future state will result
in a deadlock. Our algorithm was found to be deadlock free.



Formal Probabilistic Analysis of a Virtual Fixture Control Algorithm 9

5.2 Reachability

This property ensures that the surgical robot will move to the position desired
by the surgeon in a finite number of steps. The presence of two robotic arms in
the virtual fixture makes the verification of the property quite important. The
fact that the control algorithm, under consideration, attenuates the movement
of tool, makes the verification of the reachability property very important as it
may happen that the algorithm does not allow the tool to reach some areas,
especially the ones that are very close to the boundaries where the attenuation
is the maximum. The reachability property can be verified by checking that
the tool moves from its current position and reaches the required destination in
a finite number of steps if the required force is applied to it. We verified this
property by associating a reward with every step of the algorithm, i.e., a reward
of 1 is added to the existing reward value at every step of the algorithm. The
reachability property, based on the reward accumulated along a particular path,
can now be expressed as:

R=? [px=0 & fx>0 -> F px=(width zone limit/2)-1]

This property states that if the tool position is 0 and a force is applied in
the positive direction, then the tool will eventually reach the boundary of the
forbidden zone in a bounded number of steps or rewards. The property is not
verified probabilistically as the result will not clearly depict if the tool reaches
the boundary in minimal number of steps or not, while using the reward based
approach we can ensure the tool will reach the boundary in a limited number
of steps. The property is verified for the x-plane while observing the impact of
varying the width of the slow zone. Checking this property returns the reward or
number of steps that the algorithm would take to get to the edge of the forbidden
zone. The properties for the y and z-planes are given as follows

R=? [py=0 & fy>0 -> F py=(width zone limit/2)-1]
R=? [pz=0 & fz>0 -> F pz=(width zone limit/2)-1]

These properties are verified for different widths of slow zones and the resul-
tant rewards for the x-plane, while keeping the value of the maximum force
constant. Figure 2 shows that the rewards calculated are always a finite number
and their value increases with the increase in the width of the slow zone. This is
because as the width increases, the distance from origin to the edges of the vir-
tual fixture increases and the steps to reach them also increase. This is because
at each step towards the boundary of the forbidden zone, the attenuation in the
velocity increases and the tool moves slowly towards the boundary, therefore,
more steps are required to cater for this attenuation. These verification results
show that the algorithm under verification satisfies the reachability property.

The properties are also verified by varying the scaling factor and Fig. 2 shows
the resultant rewards. It is observed that increasing the scaling factor increases
the velocity of the tool and thus the reward value decreases. This happened
because as the velocity increases the tool moves more distance in a single itera-
tion and thus requires less number of steps to reach the destination.



10 M.S. Ayub and O. Hasan

Fig. 2. Impact of changing the width of slow zone on the reachability rewards vs width
of slow zone property

5.3 Out-of-Boundary

As described previously, the main focus of this paper is the formal probabilistic
analysis of the out-of-boundary problem. The most important aspect of any
surgical robot is to stay within the operable area at all times. If it is allowed
to move out of the operable area it may damage sensitive organs, which may
lead to the loss of human life in worst-case scenarios. The given algorithm is
therefore checked in the proposed methodology for boundary crossovers and
their probability. In the context of our modeling, the problem can be stated
as follows: At any given time during the operation, if the surgeon starts in the
safe zone then the tool should not cross the boundary of forbidden zone. This
property can be formally expressed in terms of the boundary limits defined for
our virtual fixtures. We can simply check that the position of the tool is within
these limits in every state, i.e.,

forall (px< bxh & px>bxl)

where px is the position of tool in the x-plane, bxh is the higher boundary limit
and bxl is the lower boundary limit of the slow zone. The same condition should
be checked for the y-plane and z-plane.

forall (py< byh & py>byl), forall (pz< bzh & pz>bzl)

The main issue with these properties is that they will either be True or False.
In the case of failure, we would not know the probability of failure, which is a
desirable performance characteristic as well. This limitation can be overcome by
verifying the probability of failure of this property:

P=? (px>0 & px>sxh & fx>0 => F px>bxh)

Where P is the probability of failure, sxh is the boundary of the safe zone
and fx is the force applied by the surgeon. This property checks the probability



Formal Probabilistic Analysis of a Virtual Fixture Control Algorithm 11

(a) Effects of the Slow Zone Width
on Probability of Failures

(b) Position of the
tool(Dx=20,Dy=17,Fmax=6,Fmin=-
6)

Fig. 3. Results of verification of out-of-boundary properties

of crossing the boundary of the forbidden zone if the tool is in the slow zone and
accelerating towards the forbidden zone. The same property can be checked for
the y-plane and z-plane as follows:

P=?(py>0 & py>syh & fy>0 =>F py>byh),P=?(pz>0 & pz>szh & fz>0 =>F pz>bzh)

These properties are for a boundary in the positive plane for each axis. The
corresponding properties for the negative planes are as follows:

P=?(px<0 & px<sxl & fx<0 =>F px<bxl),P=?(py<0 & py<syl & fy<0 =>F py<byl)

P=?(pz<0 & pzl<szl & fz<0 =>F pz<bzl)

The size of the virtual fixture and its boundaries have a great impact upon
the verification time and computational requirements. Therefore, in order to
avoid the state-space explosion problem, the maximum size of the virtual fixture
has to be bounded and the boundaries for the safe and forbidden zones have to
be varied accordingly.

Figure 3(a) shows the resultant probabilities computed after the verification
of the above-mentioned properties at different slow zone widths and Scaling
factor. It is seen that when the width of slow zone is increased, the probability
of the surgical tool crossing the boundary decreases (Fig. 3(a)). The probabilities
change by varying the scaling factor. However, after a certain width of the slow
zone, the probabilities become constant. This happens because as the width of
the slow zone increases the chances of the surgical tool to enter the forbidden
region, due to a sudden change of the velocity in the direction of the forbidden
region, decreases. But no matter how much the width is increased, if the tool is
at the very edge of the forbidden region and sudden changes of velocity occur
in the direction of the boundary, then the tool would always cross it. Therefore,
the probability does not reach zero. This is validated by simulating the extreme
cases using PRISM. These probabilities are also found to be dependent on the
force applied by the surgeon. This shows that the algorithm will not restrict the
surgical tool from crossing the boundary if the surgeon exhibits sudden changes
near the boundary of the forbidden region. The control algorithm needs to be
updated to cater for these cases.



12 M.S. Ayub and O. Hasan

Figure 3(b) shows the simulation of the virtual fixture model for a width
of 35 units for the slow zone in the x-axis and 35 units for the slow zone in
the y-axis and a scaling factor of 6, respectively. The results show that the
tool crosses the boundary of the forbidden zone, i.e., 35 units, in cases where
maximum force is applied towards the boundary from the very edge, whereas
the tool remains within the boundary for other cases. The results also show that
the control algorithm does not ensure complete safety of the tool, i.e., it does
not take into account the extreme cases, which results in the penetration of the
tool in the forbidden zone. Probabilistic analysis played a vital role in identifying
these extreme cases as the non-probabilistic formal techniques can only tell us
if the algorithm is safe or not.

5.4 Collision Freeness

In a laparoscopic surgical operation, more than one tool are inserted inside the
patient. The corresponding control algorithm is supposed to ensure that these
tools do not collide with each other inside the patient. Instead of formally verify-
ing the collision freeness property for the robotic arms, we verify the probability
associated with the event when the tools collide with one another. In particular,
this will compute the probability that the tools share a same grid point. This
property can be defined in the context of our model by ensuring that, at any
given time during the operation, the tools should not share the same position in
any zone. The property can be stated by considering the position of one tool as
a boundary point for other tools. For two tools, the property can be specified as

forall (px1!=px2)

where px1 and px2 are the positions of the first and second tool in the x-,
respectively. The same properties are verified for the y and z-planes.

forall (py1!=py2), forall (pz1!=pz2)

These properties result in either True or False and do not give us information
about frequency of failures. In order to find quantitative information in this
regard, we compute the probability of failure associated with these properties

P=?(px1>sxl & px1<sxh & px2>sxl & px2<sxh => F px1=!px2)

where P is the probability of failure, px1 is the position of first tool, px2 is the
position of second tool and sxh and sxl are the upper and lower limits of virtual
fixture, respectively. This property is also checked for the y and z-plane.

P=?(py1>syl & py1<syh & py2>syl & py2<syh => F py1=!py2)
P=?(pz1>szl & pz1<szh & pz2>szl & pz2<szh => F pz1=!pz2)

The size of the virtual fixture and the force applied have a great impact on the
verification of this property. In order to avoid the state-space explosion problem,
the size of the virtual fixture is fixed and the maximum force applied is varied



Formal Probabilistic Analysis of a Virtual Fixture Control Algorithm 13

(a) Effect of Force on Probability of
Collision for Both Models

(b) Effect of Force on Probability
of Collision for Different Widths
of the Slow Zone

Fig. 4. Results of verification of collision freeness properties

by changing the scaling factor. These properties are verified for both models,
i.e., with and without obstacle avoidance algorithm, using different force limits
keeping the width of virtual fixtures and the boundaries constant.

Figure 4(a) shows the probabilities associated with the above-mentioned
properties when verified for the model with and without obstacle avoidance
algorithm at different scaling factors. The probability of collision for the model
without algorithm remains almost constant by varying the scaling factor as there
is no restriction on collision and changing the scaling factor will not affect the col-
lisions. On the other hand, for the case with the collision avoidance algorithm, it
is observed that as the scaling factor increase the probability of collision increases
(Fig. 4(a)). This happens because the tools become more likely to share the same
grid point when the tools are near and the velocity of one of the tool is high in
the direction of the other.

Figure 4(a) clearly shows that, with the obstacle avoidance algorithm, the
probability of collision decreases but does not approach zero. The properties are
also verified for different widths of slow zones. The resultant probabilities are
shown in Fig. 4(b). It is observed that the width of slow zone does not affect the
collisions of tools and the probabilities of collision are almost the same.

6 Testing on Al-Zahrawi

In order to validate our verification results, we tested the considered virtual
fixture control algorithm on a minimal invasive surgery (MIS) robot Al-Zahrawi
[9], named after a renowned arab surgeon Abu al-Qasim Khalaf ibn al-Abbas
Al-Zahrawi (936–1013), who is also known as the father of modern surgery. The
Al-Zahrawi robot consists of a Master Console (MC) and Slave Console (SC)
as shown in Fig. 5. The master console is used to track the force applied by the
surgeon and transfer it to the slave console. The surgeon operates the tool using
the master manipulator and a screen to display the camera output. The master
manipulator, shown in Fig. 5(a), is made up of a mechanical mechanism and



14 M.S. Ayub and O. Hasan

(a) Master Manipulator (b) Slave Manipulator

Fig. 5. Consoles of the Al-Zahrawi surgical robot [9]

Fig. 6. Experimental results

optical encoders to track the movements of the hand of the surgeon. It offers 6
degree of freedom, i.e., Pitch, Yaw, Roll, back/forth and individual forceps jaw
open/close. The slave console, shown in Fig. 5(b), is used to reproduce the force
applied by the surgeon on the patient and is mainly composed of a servo motor
based mechanical structure to replicate the movements of the surgeon’s hand on
the patient side. The slave console provides the same degrees of freedom as the
master console.

We implemented the virtual fixture based control algorithm on the Al-
Zahrawi surgical robot for our experiment. The master manipulator sets the
value of attenuation for the velocities based on the feedback of the positions of
slave manipulators and sends them to the slave manipulator. The slave manip-
ulator is equipped with a clamper, which is a widely used surgical instrument.
Our testbed consists of five different positions, one at the center and four at the
boundaries of a rectangular region.

In our experiment, 40 different subjects, with various levels of expertise in
robotic surgery, are asked one-by-one to pick an object, placed in the center,
using the telesurgical tool and move it to any edge box and try to place it at



Formal Probabilistic Analysis of a Virtual Fixture Control Algorithm 15

the center of that box. The user then picks the object and places it in the box
located at the opposite corner of the testbed.

The resultant boundary crossings of all the operators are logged and plotted
in Fig. 6 for both the cases, i.e., with the virtual fixture control algorithm and
without the algorithm. The results show that the number of boundary crossings
of the robotic tool without the algorithm are much greater than the ones of with
the algorithm. They also show that the tool does cross the boundary with the
algorithm but the crossings in that case are very less compared to ones without
the algorithm. This validates our verification results, given in Sect. 6, stating
that the algorithm is not completely safe with respect of restricting the robot
within the operating area and crossovers will occur if significant force is applied
near the edge of the boundary.

7 Conclusions

This paper presents a formal verification technique for a virtual fixture based
control algorithm used in a surgical robot [24]. In order to consider the ran-
domized nature of the environment, such as the force, applied by the surgeon,
and its direction, we propose to use probabilistic model checking for the verifi-
cation. The main idea is to first develop a formal Discrete-Time Markov chain
(DTMC) model of the given algorithm and its environment. This model can
then be used to analyze the corresponding probabilistic properties. The paper
describes the details about modelling a well-known virtual fixture based con-
trol algorithm and also identifies the corresponding probabilistic properties. Our
results confirm that the properties of out-of-boundary are failing but under cer-
tain conditions the probability of failure is very small, and thus it is quite safe to
use the robot under these conditions. Since traditional model checking cannot be
used to verify probabilistic properties so these insights about the safe conditions
cannot be obtained.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6 30

2. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1),
7–48 (1999)

3. Bresolin, D., Guglielmo, L.D., Geretti, L., Muradore, R., Fiorini, P., Villa, T.:
Open problems in verification and refinement of autonomous robotic systems. In:
Euromicro Conference on Digital System Design, pp. 469–476 (2012)

4. Fainekos, G.E., Gazit, H.K., Pappas, G.J.: Temporal logic motion planning for
mobile robots. In: Robotics and Automation, pp. 2020–2025 (2005)

5. Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a
setting with data. In: Haeberer, A.M. (ed.) AMAST 1999. LNCS, vol. 1548, pp.
74–90. Springer, Heidelberg (1998). doi:10.1007/3-540-49253-4 8

http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/3-540-49253-4_8


16 M.S. Ayub and O. Hasan

6. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., Weerdenburg, M.V.: The
formal specification language mCRL2. Citeseer (2007)

7. Haidegger, T., Benyó, B., Kovács, L., Benyó, Z.: Force sensing and force control for
surgical robots. In: Symposium on Modeling and Control in Biomedical Systems,
pp. 401–406 (2009)

8. Hasan, O., Tahar, S.: Formal Verification Methods. In: Encyclopedia of Information
Science and Technology, pp. 7162–7170. IGI Global (2014)

9. Hassan, T., Hameed, A., Nasir, S., Kamal, N., Hasan, O.: Al-Zahrawi: a telesurgical
robotic system for minimal invasive surgery. IEEE Syst. J. 10(3), 1035–1045 (2016)

10. Kazanzides, P., Zuhars, J., Mittelstadt, B., Taylor, R.H.: Force sensing and control
for a surgical robot. In: Robotics and Automation, pp. 612–617 (1992)

11. Kim, M., Kang, K.C., Lee, H.: Formal verification of robot movements-a case
study on home service robot SHR100. In: Robotics and Automation, pp. 4739–
4744 (2005)

12. Kouskoulas, Y., Renshaw, D., Platzer, A., Kazanzides, P.: Certifying the safe design
of a virtual fixture control algorithm for a surgical robot. In: Hybrid Systems:
Computation and Control, pp. 263–272 (2013)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Computer Aided Verification, pp. 585–591 (2011)

14. Lahijanian, M., Wasniewski, J., Andersson, S.B., Belta, C.: Motion planning and
control from temporal logic specifications with probabilistic satisfaction guaran-
tees. In: Robotics and Automation, pp. 3227–3232 (2010)

15. Li, L., Shi, Z., Guan, Y., Zhao, C., Zhang, J., Wei, H.: Formal verification of a
collision-free algorithm of dual-arm robot in HOL4. In: Robotics and Automation
(ICRA), pp. 1380–1385 (2014)

16. Mack, M.J.: Minimally invasive and robotic surgery. J. Am. Med. Assoc. 285(5),
568–572 (2001)

17. Mikaël, L.: Formal verification of flexibility in swarm robotics. Thesis, Department
of Computer Science, Universit libre de Bruxelles (2012)

18. Oldenkamp, H.A.: Probabilistic model checking: a comparison of tools. Master’s
thesis, University of Twente, Enschede, Netherlands (2007)

19. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71070-7 15

20. Rosenberg, L.B.: Virtual fixtures: Perceptual tools for telerobotic manipulation.
In: Virtual Reality Annual International Symposium, pp. 76–82 (1993)

21. Saberi, A.K., Groote, J.F., Keshishzadeh, S.: Analysis of path planning algorithms:
a formal verification-based approach. In: Robotics and Automation ICRA, pp. 232–
239 (2013)

22. Scherer, S., Lerda, F., Clarke, E.M.: Model checking of robotic control systems.
In: International Symposium on Artificial Intelligence, Robotics and Automation
in Space (i-SAIRAS), pp. 5–8 (2005)

23. Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.,
Dautenhahn, K.: Formal verification of an autonomous personal robotic assistant.
In: Formal Verification and Modeling in Human-Machine Systems: Papers from
the AAAI Spring Symposium (FVHMS 2014), pp. 74–79 (2014)

24. Xia, T., Baird, C., Jallo, G., Hayes, K., Nakajima, N., Hata, N., Kazanzides, P.:
An integrated system for planning, navigation and robotic assistance for skull base
surgery. J. Med. Robot. Comput. Assist. Surg. 4(4), 321–330 (2008)

http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15


Performance Analysis of Multi-services Call
Admission Control in Cellular Network Using

Probabilistic Model Checking

Sana Younes1,2(B) and Momtez Benmbarek1

1 Tunis El Manar University, Tunis, Tunisia
sana.younes@fst.utm.tn, momtez.benmbarek@etudiant-fst.utm.tn

2 LIP2 Laboratory, Campus Universitaire El-Manar, 2092 Tunis, Tunisia

Abstract. This paper deals with formal verification to evaluate perfor-
mances of Call Admission Control (CAC) schemes in cellular mobile net-
work. Call Admission Control is a mechanism regulating cellular network
access to ensure QoS provisioning. From the fact that cellular networks
have many classes of services and each class has different QoS require-
ments, we study CAC schemes supporting two classes of services, real
time (RT) and non-real time (NRT), and for each class we distinguish
two types of calls, handoff calls (HCs) and new calls (NCs). The stud-
ied CAC schemes give priority to RT calls over NRT calls and to HCs
over NCs. Traditionally, performance analysis of CAC schemes is per-
formed using analytic and/or simulation models by computing the main
steady-state performance measures: new call blocking probability, hand-
off call dropping probability and mean channels occupation rate. In this
work we propose to employ Continuous-time Stochastic Logic (CSL) to
specify QoS requirements using transient and steady-state formulas sup-
ported by this formalism. Indeed, CSL is a specification language that
can be used for Continuous Time Markov Chains (CTMCs) and offers
the flexibility to express both transient and steady-state measures includ-
ing probabilistic path and steady-state formulas. We model the studied
CAC schemes with labelled CTMCs then we formalize QoS requirements
of each traffic class with CSL. We perform the verification of the consid-
ered formulas with PRISM model checker. A performance comparison of
the studied CAC schemes is provided based on verification results.

Keywords: Probabilistic model checking · CTMC · CSL · CAC
schemes · PRISM

1 Introduction

Probabilistic model checking is a formal verification technique for modelling and
analysis systems which exhibit stochastic behavior. It has been employed in dif-
ferent application domains such as wireless communication protocols, security,
power management [9,10]. Probabilistic model checking, using Continuous Time
Markov Chains, is widely employed to perform quantitative measurements of
c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 17–32, 2017.
DOI: 10.1007/978-3-319-66176-6 2



18 S. Younes and M. BenMbarek

properties such as performance and reliability. In this context we use this for-
malism to evaluate performances of Call Admission Control (CAC) schemes in
cellular network.

In cellular network, base station (BS) is a radio access point covering certain
geographic area (cell). Each cell is equipped with a limited number of channels
to serve different user’s connections. If there is no available channel the connec-
tion request will be rejected. Call admission control is the mechanism handling
the acceptance or rejection of arriving calls. Several CAC schemes are proposed
and can be classified based on different criteria [1]. One criterion is the number
of services/classes. Indeed, traffic arriving to BS can be classified to RT such
as voice, streaming applications or NRT such as web services or file transfers.
For each class two types of calls can be differentiated, NCs originating from the
underlying cell and HCs coming from neighboring cells. Each traffic class has
different Quality of Service (QoS) requirements. Indeed, RT traffic has stringent
QoS requirements because it can contains interactive applications compared to
NRT traffic which contains non-interactive applications. Moreover, HCs are pri-
oritized over NCs because dropping a HC in progress is more annoying than
blocking a NC request.

Several CAC schemes have been discussed in the literature [5,6,8,17] to pro-
vide priority to HC without significantly forgoing NC requests. These schemes
can be categorized into two basic methods: The first is by reserving, statistically
or dynamically, a number of channels exclusively for handoff calls called guard
channels [6]. The second by queuing handoff request [8] if all channels are not
available, waiting that channel be free.

Recently much research work has been done on call admission control for
multi-service mobile networks by favoring RT calls over NRT calls. In [16], the
authors propose a multi-service CAC schemes improving bandwidth utilization
in case of bandwidth asymetry (between uplink and downlink) environment. In
[5], the authors propose a CAC schema based on the classification of channels
to bad and good. This classification is done by estimating the quality of channel
according to received signal strength. Calls with high priority are favored by
taking good channels. In [17], an adaptive CAC schema based on degradation
procedure is presented. The authors propose to reduce the width of channels
allocated to calls having lower priority in order to maximize the number of calls
having higher priority. We refer reader to these surveys [1,11] that explain and
classify different CAC schemes.

The main QoS requirements that a CAC schema should satisfy are: HC drop-
ping probability and NC blocking probability should be below certain predefined
value and the channels occupation rate should be greater than some threshold
to obtain a good bandwidth utilization. Different works have studied perfor-
mance evaluation of CAC schemes. To the best of our knowledge, all studies
are performed using simulation technique [5,8,17] and/or analytic approaches
[6,15,16]. In this paper, we propose to use probabilistic model checking to check
and compare performances of different CAC schemes. This work contains two
contributions: Firstly we propose two multi-service CAC schemes prioritizing RT



Performance Analysis of Multi-services Call Admission Control 19

calls over NRT calls, secondly we compare their performances with two classic
ones using probabilistic model checking. We model CAC schemes with labelled
CTMCs then we formalize QoS requirements of each traffic class with CSL. The
verification of the considered formulas is performed with PRISM model checker
which has been used in wide range of case studies [9,10]. A performance com-
parison of the studied CAC schemes is provided based on verification results.

This paper is organized as follows. In Sect. 2 we briefly give an overview of
labelled CTMC and CSL. Section 3 provides a modeling of studied CAC schemes.
In Sect. 4, we formalize QoS requirements with CSL. We give in Sect. 5 numerical
results of verification. Finally, Sect. 6 concludes the paper.

2 Probabilistic Model Checking

In this section we present briefly formalisms (labelled Continuous-Time Markov
Chain (CTMC) and CSL [3]) that we use to evaluate performance measures for
the studied CAC schemes. We refer to the book [13] for more details on Markov
chains. Recall that in this paper, we model CAC schemes by labelled CTMCs
and we formalize QoS constraints with CSL.

2.1 Labelled CTMC

A labelled CTMC M is a tuple (S,R, L) where S is a finite set of states,
R : S × S → R+ is the rate matrix and L : S → 2AP is the labelling function
which assigns to each state s ∈ S, the set L(s) of atomic propositions a ∈ AP
that are valid in s, AP denotes the finite set of atomic propositions. Remark
that the infinitesimal generator Q can be easily deduced as Q(s, s′) = R(s, s′) if
s �= s′ and Q(s, s) = −∑

s′∈S R(s, s′). A path through a CTMC is an alternat-
ing sequence σ = s0t0s1t1 · · · with R(si, si+1) > 0 and ti ∈ R+ for all i ≥ 0. ti
represents the amount of time spent in state si. Let us denote by paths the set
of paths through M starting from the state s. For a CTMC, there are two types
of state probabilities: transient probabilities where the system is considered at
time t and steady-state probabilities when the system reaches an equilibrium if
it exists. In the sequel, we denote by ΠM

s (t) the transient distribution at time
t of Markov chain M starting at t = 0 from the initial state s. The probability
to be in state s′ at time t starting initially from s will be denoted by ΠM

s (s′, t).
ΠM

s (s′) = limt→∞ ΠM
s (s′, t) is the steady-state probability to be in state s′. If

M is ergodic, ΠM
s (s′) exists and it is independent of the initial distribution that

we will denote by ΠM(s′). We denote also by ΠM the steady-state probability
vector. For S′ ⊆ S, we denote by ΠM

s (S′, t) (resp. ΠM(S′)) the transient prob-
ability to be in states of S′, ΠM

s (S′, t) =
∑

s′∈S′ ΠM
s (s′, t) (the steady-state

probability to be in states of S′, ΠM(S′) =
∑

s′∈S′ ΠM(s′)).

2.2 Temporal Logic CSL

Continuous Stochastic Logic is an extension of CTL (Computational Tree Logic)
[7] with two probabilistic operators that refer to steady-state and transient
behaviors of the underlying system.



20 S. Younes and M. BenMbarek

Let p be a probability threshold, � be a comparison operator such that � ∈
{≤,≥, <,>} and I be an interval of real numbers. In the sequel, we denote by
Sφ or φ-states the set of states that satisfy φ property and by |= the satisfaction
relation. The syntax of CSL is defined by:

φ ::= true | a | φ ∧ φ | ¬φ | P�p(φ UIφ) | S�p(φ)

In this paper, we will use probabilistic operators P�p(φ1 UIφ2) and S�p(φ)
to define and quantify performance measures of studied systems. In fact these
operators are refering to transient and steady state behavior of the considered
system.

P�p(φ1 UIφ2) asserts that the probability measure of paths satisfying φ1 UIφ2

meets the bound given by �p. Whereas, the path formula φ1 UIφ2 asserts that
φ2 will be satisfied at some time t ∈ I and that at all preceding time φ1 holds.
S�p(φ) asserts that the steady-state probability for φ-states meets the bound �p.

Let us present briefly the semantics of these formulae [4]:
s |= true for all s ∈ S
s |= a iff a ∈ L(s)
s |= ¬φ iff s �|= φ
s |= P�p(φ1 UIφ2) iff ProbM(s, φ1UIφ2) � p
s |= S�p(φ) iff ΠM

s (Sφ) � p

Where ProbM(s, φ1UIφ2) denotes the probability measure of all paths σ
starting from s (σ ∈ pathss) satisfying φ1 UIφ2 i.e. ProbM(s, φ1UIφ2) =
Prob{σ ∈ pathss | σ |= φ1 UIφ2}.

In this paper we will use also two reward operators belonging to CSRL logic.
Continuous Stochastic Reward Logic (CSRL) [12] is an extension of Continuous
Stochastic Logic (CSL) by adding constraints over rewards. The steady-state
operator EJ (φ) asserts that the expected (long run) reward rate for φ-states lies in
J (J is an interval of real numbers). The transient operator Et

J(φ) asserts that the
expected instantaneous reward rate at time t for φ-states lies in J . ρ : S → R+ is
a reward structure that assigns to each state s ∈ S a reward ρ(s). The verification
of these reward formulas EJ(φ) (resp. Et

J (φ)) requires the computation of the
steady-state (resp. transient at t) distribution of the considered CTMC M.

s |= Et
J (φ) iff

∑
s′∈Sφ

ΠM
s (s′, t) · ρ(s′) ∈ J

s |= EJ (φ) iff
∑

s′∈Sφ
ΠM(s′) · ρ(s′) ∈ J

(1)

3 Formal Modelling of CAC Schemes

In this section we describe and model with labelled CTMC four CAC schemes.
We compare next their performances in Sect. 5 using probabilistic model check-
ing. Let us first describe the system under consideration.

We consider a single cell and the arrival traffic to the base station (BS) is
categorized in two classes of services: RT class and NRT class. The RT class



Performance Analysis of Multi-services Call Admission Control 21

is prioritized over the NRT class. This latter is assumed best effort traffic. For
each class of service, we distinguish two types of calls: NCs originating from
the underlying cell and HCs coming from neighboring cells. BS channels are
divided into two parts: NRT channels and RT channels. RT channels serve only
RT calls whereas NRT channels can serve both NRT and RT calls depending on
the CAC schema. In this paper we study performances of four CAC schemes.
The first two schemes named B-CAC (Basic CAC) and Q-CAC (Queuing CAC)
are classics and their performances are studied in many works [2,8]. The two
other schemes RTP-CAC (Real Time Priority CAC) and RTPQ-CAC (Real Time
Priority Queuing) schemes are proposed in this paper in order to enhance QoS
of RT calls by carrying out mechanisms that give priority to this class of calls.

All the investigated CAC schemes use guard channels in order to prioritize
HC over NC since dropping handoff calls is less tolerable than blocking new calls.
In fact, from user’s point of view, a call being forced to terminate during a service
(HC) is more annoying than a call being blocked at its start (NC). B-CAC is a
static admission control schema. It does not consider the priority between classes
of calls and only prioritize HCs over NCs for each class by reserving exclusively
guard channels used only by HCs. Similarly, the second schema Q-CAC uses
guard channels and further adds, for each class of traffic, a queue used by HC
if all channels are occupied. In RTP-CAC, we give RT priority by permitting
RT calls to use NRT channels if there is no idle RT channels. For the last CAC
schema RTPQ-CAC, we combine mechanisms of RTP-CAC and Q-CAC in order
to improve QoS of Calls with high priority (RT calls and HCs).

Let C1 (resp. C2) be the total number of NRT (resp. RT) channels. Let
g be the number of guard channels reserved exclusively for HCs. We assume
that the arrival processes for different traffic are independent and follow Poisson
distribution with the following rates: λNh for NRT HCs, λNn for NRT NCs,
λRh for RT HCs and λRn for RT NCs. We denote by λN = λNh + λNn (resp.
λR = λRh + λRn) arrival rate of NRT (resp. RT). We suppose that the holding
time of channels is exponentially distributed with mean 1/μ.

In order to check CSL formulas that specify QoS requirements in terms of NC
blocking probability and HC dropping probability for both NRT and RT classes,
we need to label CTMC states with atomic propositions that characterize the
state. Let us consider the following set of atomic propositions AP.

AP = {RT Drop,RT Block,NRT Drop,NRT Block} (2)

RT Drop (resp. NRT Drop) is assigned to states in which RT (resp. NRT) HC is
dropped. RT Block (resp. NRT Block) is assigned to states in which RT (resp.
NRT) NC is blocked.

Let us detail the corresponding labelled CTMC of studied CAC schemes. We
start by classical and existing schemes (B-CAC and Q-CAC) and then we detail
proposed schemes in this work (RTP-CAC and RTPQ-CAC).



22 S. Younes and M. BenMbarek

3.1 Basic CAC (B-CAC) Schema

B-CAC is a static admission schema that does not take into account the priority
between classes of traffic. For both classes NRT and RT, the priority is given
only to HCs over NCs by assigning g channels used exclusively by HCs. HCs and
NCs for NRT (resp. RT) class are sharing C1 − g (resp. C2 − g channels). The
channel allocation in B-CAC is presented in Fig. 1(a). A NRT (resp. RT) NC
is blocked if the number of available channels in NRT (resp. RT) channel part
is less or equal to (C1 − g) (resp. C2 − g). Whereas, A NRT (resp. RT) HC is
dropped if the number of occupied channels in NRT (resp. RT) channel part is
equal to C1 (resp. C2).

Based on assumptions for arrival and service rates described previously, we
obtain a two dimensional homogeneous CTMC (see Fig. 1(b)). The state space
is given by:

SB−CAC = {(c1, c2)|0 ≤ c1 ≤ C1; 0 ≤ c2 ≤ C2} (3)

In state (c1, c2), c1 (resp. c2) represents the number of busy NRT (resp. RT)
channels. The transition rate RB−CAC(c1, c2; c̄1, c̄2) from state (c1, c2) to state

.
(a) Channels allocation (b) Labelled CTMC

Fig. 1. B-CAC schema



Performance Analysis of Multi-services Call Admission Control 23

(c̄1, c̄2) in B-CAC schema is defined as follows:

RB−CAC(c1, c2; c1 + 1, c2) =
{

λN if (0 ≤ c1 < C1 − g; 0 ≤ c2 ≤ C2)
λNh if (C1 − g ≤ c1 < C1; 0 ≤ c2 ≤ C2)

RB−CAC(c1, c2; c1, c2 + 1) =
{

λR if (0 ≤ c1 ≤ C1; 0 ≤ c2 < C2 − g)
λRh if (0 ≤ c1 ≤ C1;C2 − g ≤ c2 < C2)

RB−CAC(c1, c2; c1 − 1, c2) = μc1 if (0 < c1 ≤ C1; 0 ≤ c2 ≤ C2)
RB−CAC(c1, c2; c1, c2 − 1) = μc2 if (0 ≤ c1 ≤ C1; 0 < c2 ≤ C2)

We label states by atomic propositions of AP set defined in Eq. 2. The
obtained satisfaction sets are marked in Fig. 1(b) and defined formally by:

SNRT Drop = {(c1, c2) | c1 = C1 and 0 ≤ c2 ≤ C2}
SNRT Block = {(c1, c2) | C1 ≥ c1 ≥ C1 − g and 0 ≤ c2 ≤ C2}
SRT Drop = {(c1, c2) | c2 = C2 and 0 ≤ c1 ≤ C1}
SRT Block = {(c1, c2) | C2 ≥ c2 ≥ C2 − g and 0 ≤ c1 ≤ C1}

3.2 Queuing CAC (Q-CAC) Schema

In order to improve the QoS of HCs, two queues QNRT (resp. QRT ) can be
added to put HC for NRT (resp. RT) traffic. If a HC arrives and there is no
idle channels, it is pushed in the corresponding queue. A HC is deleted from
the queue when it moves out handoff area before getting channel (it is forced
to terminate) or if the conversation is completed before living handoff area. The
HC is dispatched from the queue to as soon as any channel is released. It is
clear that this schema offers the same QoS for NCs as B-CAC but improve the
QoS of HCs. The description of the channels allocation of this schema is given
in Fig. 2(a).

We suppose that queuesQNRT (resp.QRT ) is finitewith capacityQ1 (resp.Q2).
We assume that the overtime in each queue is exponentially distributed with mean
1/μto. Based on these assumptions, the underlying model is a homogeneous two
dimensional CTMC and the state space is defined by Eq. 4 where i is the sum of
number ofNRTbusy channels andnumber ofNRTHCrequests in the queueQNRT ,
j is the sum of number of RT busy channels and number of RT HC requests in the
queue QRT . The obtained CTMC is presented in Fig. 2(b).

SQ−CAC = {(i, j)|0 ≤ i ≤ C1 + Q1; 0 ≤ j ≤ C2 + Q2} (4)

The transition rate from state (i, j) to state (̄i, j̄) is defined by:

RQ−CAC(i, j; i + 1, j) =

{
λN if (0 ≤ i < C1 − g; 0 ≤ j ≤ C2 + Q2)
λNh if (C1 − g ≤ i < C1 + Q1; 0 ≤ j ≤ C2 + Q2)

RQ−CAC(i, j; i, j + 1) =

{
λR if (0 ≤ i ≤ C1 + Q1; 0 ≤ j < C2 − g)
λRh if (0 ≤ i ≤ C1 + Q1; C2 − g ≤ j < C2 + Q2)

RQ−CAC(i, j; i − 1, j) =

{
μ i if(0 < i ≤ C1; 0 ≤ j ≤ C2 + Q2)
μC1 + μto(i − C1) if(C1 < i ≤ C1 + Q1; 0 ≤ j ≤ C2 + Q2)

RQ−CAC(i, j; i, j − 1) =

{
μ j if(0 ≤ i ≤ C1 + Q1; 0 < j ≤ C2)
μC2 + μto(j − C2) if(0 ≤ i ≤ C1 + Q1; C2 < j ≤ C2 + Q2)



24 S. Younes and M. BenMbarek

.
(a) Channels allocation (b) Labelled CTMC

Fig. 2. Q-CAC schema

By the same mean, we label states of obtained CTMC corresponding to Q-CAC
by atomic propositions of set AP (Eq. 2). The obtained satisfaction sets are
marked in Fig. 2(b) and formally defined by:

SNRT Drop = {(i, j) | i = C1 + Q1 and 0 ≤ j ≤ C2 + Q2}
SNRT Block = {(i, j) | C1 − g ≤ i ≤ C1 + Q1 and 0 ≤ j ≤ C2 + Q2}
SRT Drop = {(i, j) | 0 ≤ i ≤ C1 + Q1 and j = C2 + Q2}
SRT Block = {(i, j) | 0 ≤ i ≤ C1 + Q1 and C2 − g ≤ j ≤ C2 + Q2}

We have described and modelled two classics CAC schemes B-CAC and Q-
CAC that give priority to HC over NC without priortising RT calls over NRT
calls. Next, we propose two CAC schemes in which we take into account the
prioritization of RT calls over NRT calls and preserve priority given to HCs. We
show in Sect. 5 that these proposed schemes improve QoS of RT calls and satisfy
requirements expressed with CSL formulas.

3.3 Real Time Priority CAC (RTP-CAC) Schema

In this schema, to decrease the blocking/dropping of RT calls, we permit RT calls
to use channels of NRT part. Hence, NRT calls are served only by NRT channels
whereas RT calls can use NRT channels if there is no RT available channels. If
C2−g channels are occupied and a RT NC arrives to BS, it is not blocked and can



Performance Analysis of Multi-services Call Admission Control 25

.
(a) Channels alloca-
tion

(b) RTP-CAC Flowchart

Fig. 3. RTP-CAC schema

take a NRT channel. In case of occupation of C1−g channels (number authorized
for NRT NC) then the RT NC will be blocked. A RT HC can take NRT channel if
all C2 channels are occupied. But if the number of busy NRT channels is equal to
C1 then it will be dropped. The channels allocation is presented in Fig. 3(a) and
a flowchart that details mechanism of acceptation/rejection of calls is provided
in Fig. 3(b).

Obviously, the CTMC state space of RTP-CAC and B-CAC is the same. And
transition rates of these two CACs are the same except the arrival rate to NRT
channels RRTP−CAC(c1, c2; c1 + 1, c2) defined by:

RRTP−CAC(c1, c2; c1 + 1, c2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λN if(0 ≤ c1 < C1 − g; 0 ≤ c2 < C2 − g)
λN + λRn if(0 ≤ c1 < C1 − g; C2 − g ≤ c2 < C2)
λN + λR if(0 ≤ c1 < C1 − g; c2 = C2)
λNh if(C1 − g ≤ c1 < C1; 0 ≤ c2 < C2)
λNh + λRh if(C1 − g ≤ c1 < C1; c2 = C2)

We give now the satisfaction sets of AP atomic propositions. It is clear that
SNRT Drop and SNRT Block sets are equals for RTP-CAC and B-CAC because
NRT HC dropping and NRT NC blocking conditions are the same. Based on the
dropping and blocking conditions for RT calls proposed in this CAC schema,
SRT Drop and SRT Block are defined by:

SRT Drop = {(c1, c2) | c1 = C1 and c2 = C2}
SRT Block = {(c1, c2) | C1 − g ≤ c1 ≤ C1 and C2 − g ≤ c2 ≤ C2}
Clearly, the improvement in terms of RT class QoS that we expect with this

RTP-CAC schema is fulfilled through the reduction of NRT class QoS.



26 S. Younes and M. BenMbarek

3.4 Real Time Priority and Queuing (RTPQ-CAC) Schema

In this schema, we propose to combine RTP-CAC and Q-CAC in order to
improve simultaneously performances of RT calls and HCs for (RT and NRT)
classes. Indeed, acceptance and rejection conditions of NRT calls are the same of
Q-CAC schema. The acceptance and blocking conditions of RT NC are identical
to RTP-CAC schema. For RT HC (the type of call that has the higher priority),
the dropping condition is defined differently. In fact, when a RT HC arrives and
all RT channels are occupied, it passes to NRT part to take channel. If all NRT
channels are occupied, it is put into QRT queue waiting the release of one RT
channel. The channels allocation is presented in Fig. 4(a) and the flowchart of
RTPQ-CAC is described in Fig. 5. The CTMC of this proposed schema is given
in Fig. 4(b) and the state space is defined by the following set (see Eq. 4 for
SQ−CAC):

SRTPQ−CAC = SQ−CAC\{(i, j)|0 ≤ i < C1;C2 < j ≤ C2 + Q2} (5)

As we can see in Fig. 4(b) that the CTMC of this schema contains two parts.
Transition rates of the lower part are equal to transition rates of CTMC in
RTP-CAC and the transition rates of higher part are equal to transition rates
of CTMC in Q-CAC schema. Hence, we have:

RRTPQ−CAC = RRTP−CAC if (0 ≤ i < C1; 0 ≤ j ≤ C2)
RRTPQ−CAC = RQ−CAC if (C1 ≤ i ≤ C1 + Q1; 0 ≤ j ≤ C2 + Q2)

(a) Channels allocation (b) Labelled CTMC

Fig. 4. RTPQ-CAC schema



Performance Analysis of Multi-services Call Admission Control 27

Fig. 5. RTPQ-CAC flowchart

Satisfaction sets of AP atomic propositions are marked in Fig. 4(b) and for-
malized by:
SNRT Drop = {(i, j) | i = C1 + Q1 and 0 ≤ j ≤ C2 + Q2}
SNRT Block = {(i, j) | C1 − g ≤ i < C1 and 0 ≤ j ≤ C2}

∪ {(i, j) | C1 ≤ i ≤ C1 + Q1 and 0 ≤ j ≤ C2 + Q2}
SRT Drop = {(i, j) | C1 ≤ i ≤ C1 + Q1 and j = C2 + Q2}
SRT Block = {(i, j) | C1 − g ≤ i < C1 and C2 − g ≤ j < C2}

∪ {(i, j) | C1 ≤ i ≤ C1 + Q1 and C2 − g ≤ j ≤ C2 + Q2}

4 Formal Specification of Performance Properties by
CSL Formulas

In this section, we formalize QoS requirements of each type of call with CSL in
order to check if these requirements are satisfied by different CAC schemes. We
express requirements using steady-state formulas, transient path formulas and
reward formulas.

4.1 Checking Steady-State Formulas

The verification of steady-state formulas needs the computation of steady-state
distribution ΠM of the considered CTMC M. It is clear that obtained CTMCs of
different CAC schemes presented in Sect. 3 are ergodic (finite and irreductible) so
the steady-state probability vector ΠM of each CTMC M exists and is unique.



28 S. Younes and M. BenMbarek

S≤0.2(NRT Block). We check this formula to evaluate the expected steady-
state blocking probability for NRT NC in all obtained CTMCs. For a model M,
this formula is satisfied if steady-state blocking probability for NRT NC is less
or equal to the probability threshold 0.2 (i.e. Π(SNRT Block) ≤ 0.2).

S≤10−2(NRT Drop). This formula is checked to estimate steady-state drop-
ping probability for NRT HC. Because HC requires strict QoS, this dropping
probability must be less or equal to 10−2. This formula is then satisfied if
ΠM(SNRT Drop) ≤ 10−2.

S≤10−1(RT Block). By checking this formulas, we evaluate the RT steady-state
blocking probability for NC. This formula is satisfied if Π(SRT Block) ≤ 10−1.

S≤10−3(RT Drop). We check this formula to estimate the RT steady-state
dropping probability for HC. This formula is satisfied if Π(SRT Drop) ≤ 10−3.

4.2 Checking Transient Formulas

The verification of transient formulas requires the computation of the transient
distribution ΠM

s (t) which depends on the initial distribution. We choose to
evaluate transient formulas at time 2 because after making some tests we observe
that studied CTMCs reach equilibrium state at around t = 4. We suggest to
check transient QoS requirements at the middle of time before reaching the
steady-state of considered CTMCs. We suppose that at t = 0 all channels are
empty (i.e. s = (0, 0)).

P≤10−1(true U [2,2] NRT Block). We check this formula to evaluate the NRT
transient blocking probability of NC at time 2 in the considered model M. This
formula is satisfied if (i.e. ΠM

s (SNRT Block, t) ≤ 10−1)

P≤10−3(true U [2,2] NRT Drop). This formula is checked to evaluate the tran-
sient dropping probability at time 2 for NRT HC. If this probability is less or
equal to 10−3 then it is satisfied. We have to check if ΠM

s (SNRT Drop, 2) ≤ 10−3.

P≤10−2(true U [2,2] NRT Block). By checking this formulas, we evaluate
the RT transient blocking probability of NC. This formula is satisfied if
ΠM

s (SRT Block, 2) ≤ 10−2 in the underlying model M.

P≤10−4(true U [2,2] NRT Drop). We check this formula to estimate the RT
transient dropping probability at time 2 for HC. This formula is satisfied if
ΠM

s (SRT Drop, 2) ≤ 10−4.
Let us note that RT HCs have the most strict QoS requirements that’s why

the dropping probability threshold in the transient (resp. steady-state) formula
must be the lowest, 10−4 (resp. 10−3).



Performance Analysis of Multi-services Call Admission Control 29

4.3 Checking Reward Formulas

We use CSRL [12] logic to express requirements related to the occupation rate
of channels. Hence, we define three reward function ρ1, ρ2 and ρ to evaluate
respectively the occupation rate of NRT channels, RT channels and the whole BS
channels. ρ1 (resp. ρ2) associates to each state of the CTMC a reward value equal
to percentage of occupied NRT (resp. RT) channels. ρ associates to each state of
the CTMC a reward value equal to percentage of occupied BS station. Therefore,
for each state s = (c1, c2) of CMTCs in B-CAC and RTP-CAC schemes, the
reward value associated to s is:

ρ1(s) = 100c1/C1 ρ2(s) = 100c2/C2 ρ(s) = 100(c1 + c2)/(C1 + C2)

For each state s = (i, j) of CMTCs in Q-CAC and RTPQ-CAC,the reward value
assigned to s is:

ρ1(s) = 100min(i, C1)/C1 ρ2(s) = 100min(C2, 100)/C2

ρ(s) = 100(min(i, C1) + min(j, C2))/(C1 + C2)

Now, for each reward function (ρ1, ρ2 and ρ), we check the two following reward
formulas related to the transient and the steady-state behavior in each obtained
CTMC.

E2
J (true). We check this formula for each reward function ρ1, ρ2 and ρ to evaluate

respectively the mean occupation rate of NRT, RT and BS channels. For a given
reward function, this formula is satisfied if the mean occupation rate at time
2 lies in J . To check this formula we compute transient distributions at time 2
and then we sum over the probabilities of all CTMC states (because all CTMC
states are true) multiplied with the corresponding rewards and finally we check
if the obtained reward lies in J or not (see Eq. 1).

EJ (true). This formula is checked to evaluate the expected steady-state occu-
pation rate of NRT, RT and BS channels by considering respectively the reward
function ρ1, ρ2 and ρ. These reward measures are derived from steady-state
distributions of studied CTMCs and reward functions (see Eq. 1).

5 Model Checking Results of CSL Formulas

The aim of this study is to compare performances of proposed CAC schemes
(RTP-CAC and RTPQ-CAC) with classical schemes (B-CAC and Q-CAC). In
this section, we give numerical results obtained based on the following para-
meters: we suppose that the number of RT channels (C2 = 50) is greater
than the number of NRT channels (C1 = 30) and traffic intensity of RT
class (λRn = λRh = 25) is higher than the traffic intensity of NRT class
(λNn = λNh = 10). The time unit is 1 minute, we suppose that the channel
holding time μ = 1, QNRT = QRT = 5 and μto = 0.75. In this scenario, the



30 S. Younes and M. BenMbarek

Table 1. Model checking results of CSL transient formulas

Transient formulas B-CAC Q-CAC RTP-CAC RTPQ-CAC

Prob. Sat? Prob. Sat? Prob. Sat? Prob. Sat?

P≤10−1 (true U [2,2] NRT Block) 4, 4 10−3 Yes 4, 4 10−3 Yes 2, 0 10−2 Yes 2, 0 10−2 Yes

P≤10−3 (true U [2,2] NRT Drop) 2, 9 10−4 Yes 6, 7 10−7 Yes 1, 0 10−3 Yes 3, 1 10−6 Yes

P≤10−2 (true U [2,2] RT Block) 1, 1 10−1 No 1, 1 10−1 No 6, 0 10−3 Yes 6, 1 10−3 Yes

P≤10−4 (true U [2,2] RT Drop) 3, 8 10−3 No 6, 3 10−5 Yes 8, 7 10−5 Yes 2, 6 10−7 Yes

Table 2. Model checking results of steady-state CSL formulas

Steady-state formulas B-CAC Q-CAC RTP-CAC RTPQ-CAC

Prob. Sat? Prob. Sat? Prob. Sat? Prob. Sat?

S≤0.2(NRT Block) 1, 3 10−2 Yes 1, 3 10−2 Yes 7, 1 10−2 Yes 7, 1 10−2 Yes

S≤10−2(NRT Drop) 1, 0 10−3 Yes 3, 7 10−6 Yes 6, 1 10−3 Yes 2, 1 10−5 Yes

S≤10−1(RT Block) 1, 5 10−1 No 1, 5 10−1 No 1, 9 10−2 Yes 1, 9 10−2 Yes

S≤10−3(RT Drop) 5, 5 10−3 No 1, 8 10−4 Yes 2, 6 10−4 Yes 1, 1 10−6 Yes

traffic load of RT class (25 requests per minute) is higher than the traffic load to
NRT class (10 requests per minute). This choice is justifiable because the number
of user’s requests with high exigence in terms of QoS (RT calls) is continually
increasing.

We use the probabilistic model checker PRISM [14] to construct and solve
considered CTMCs. This tool is a high-level modeling language and formulas are
checked automatically. Recall that the main relevant QoS requirements are NC
blocking probabilities, HC dropping probabilities and the channels occupation
rate. The best CAC schema is which provides: the lowest values of call dropping
probabilities, the lowest values of call blocking probabilities and the highest value
of channels occupation rate.

In Table 1 (resp. Table 2) we present model checking results of transient at
time t = 2 min (resp. steady-state) formulas described in Sect. 4. For each CAC
schema we give the probability value and the satisfaction results of considered
formulas. As observed, RTP-CAC and RTPQ-CAC satisfy all underlying formu-
las and therefore requirements in terms of HC dropping probabilities and NC
blocking probabilities for both NRT and RT classes are fulfilled. Whereas, these
probability measures in B-CAC and Q-CAC are greater than the probability
thresholds measures given in formulas related to RT traffic. This implies that
QoS requirements for RT traffic (which must has the best QoS) are not satisfied
with these classical CACs.

We note that the size of obtained CTMCs is 1581 for B-CAC and RTP-CAC,
2016 for Q-CAC and 1866 for RTPQ-CAC. The checking time of each formula
presented in the following tables is less than 2 s.

Table 3 provides model checking results of transient (at t = 2 min) and
steady-state reward formulas. These formulas are checked by considering reward
functions defined previously: ρ1 for NRT channels occupation rate, ρ2 for RT



Performance Analysis of Multi-services Call Admission Control 31

Table 3. Model checking results of Reward CSRL formulas

Reward formulas B-CAC Q-CAC RTP-CAC RTPQ-CAC

Mean occupation rate of NRT channels

Mean ρ1 Sat? Mean ρ1 Sat? Mean ρ1 Sat? Mean ρ1 Sat?

E2
[60,100](true) 57,51% No 57,48% No 63,98% Yes 63,99% Yes

E[75,100](true) 65,28% No 65,15% No 77,35% Yes 77,36% Yes

Mean occupation rate of RT channels

Mean ρ2 Sat? Mean ρ2 Sat? Mean ρ2 Sat? Mean ρ2 Sat?

E2
[80,100](true) 81,95% Yes 81,98% Yes 81,95% Yes 81,95% Yes

E[84,100](true) 84, 56% Yes 84,60% Yes 84,56% Yes 84,50% Yes

Mean occupation rate of BS channels

Mean ρ Sat? Mean ρ Sat? Mean ρ Sat? Mean ρ Sat?

E2
[75,100](true) 72,79% No 72,79% No 75,22% Yes 75,21% Yes

E[80,100](true) 77,33% No 77,30% No 81,86% Yes 81,82% Yes

channels occupation rate and ρ for BS channels occupation rate. As observed,
proposed CACs (RTP-CAC and RTPQ-CAC) provides the highest transient and
steady-state values of NRT and BS occupation rates which implies that proposed
schemes provide a good utilization ratio of BS bandwidth. We can observe also
that the occupation rate of RT channels is the same in all CAC schemes which
are predictable because RT channels allocation mechanism is the same in all
studied CAC schemes.

6 Conclusion

In this paper, we have presented a formal modeling and verification of different
CAC multi-service schemes. We have proposed two CAC schemes that consider
the prioritization of RT traffic over NRT traffic and HC over NC. We model
CAC schemes with labeled CTMC. In order to compare their performances, we
use CSL logic to specify QoS requirements of each class of call. We perform
numerical results using the PRISM model checker. Results show that the pro-
posed CAC schemes (RTP-CAC and RTPQ-CAC) satisfy QoS requirements of
different classes of traffic compared to classical schemes (B-CAC and Q-CAC).
This work can be extended by checking other CSL formulas providing further
performance measures like queue occupation rate and queue waiting time. We
can verify also the satisfaction of other QoS requirements over the execution
paths of the considered model using the until path formula P. Moreover, we
envisage to consider vertical handoffs by taking into account traffic coming from
networks having different access technologies as WLAN.



32 S. Younes and M. BenMbarek

References

1. Ahmed, M.H.: Call admission control in wireless networks: a comprehensive survey.
In: IEEE Communications Surveys and Tutorials, pp. 49–68 (2005)

2. Alagu, S., Meyyappan, T.: An efficient call admission control scheme for handling
handoffs in wireless mobile networks. IJANS 2(3) (2012)

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time
Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model checking continuous-
time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.)
CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000). doi:10.
1007/10722167 28

5. Belghith, A., Mohamed, M.B., Obaidat, M.S.: Efficient bandwidth call admission
control in 3Gpp. LTE networks. In: GLOBECOM (2016)

6. Bisdikian, C., Choi, Y., Kwon, T., Naghshineh, M.: Call admission control for
adaptive multimedia in wireless/mobile networks. In: Proceedings of the IEEE
Wireless Communications and Networking Conference, vol. 2, pp. 540–544 (1999)

7. Clarke, E.M., Emerson, A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

8. Cornefjord, M., Gaasvik, P.-O., Svensson, V.: Different methods of giving priority
to handoff traffic in a mobile telephone system with directed retry. In: Proceedings
of the 41st IEEE Vehicular Technology Conference, pp. 549–553 (1991)

9. Dubslaff, C., Klppelholz, S., Baier, C.: Probabilistic model checking for energy
analysis in software product lines. In: Proceedings of the 13th International Con-
ference on Modularity, pp. 169–180. ACM (2014)

10. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A formal analysis of Blue-
tooth device discovery. Int. J. STTT 8(6), 621–632 (2006)

11. Ghaderi, M., Boutaba, R.: Call admission control in mobile cellular networks: a
comprehensive survey. Wirel. Commun. Mob. Comput. 6, 69–93 (2006)

12. Haverkort, B., Cloth, L., Hermanns, H., Katoen, J.P., Baier, E.C.: Model checking
performability properties. In: Proceedings of DSN. IEEE CS Press (2002)

13. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall,
London (1995)

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

15. Wang, J., Qiu, Y.: A new call admission control strategy for LTE femtocell net-
works. In: International Conference on Advances in Computer Science and Engi-
neering, Sydney (2013)

16. Yang, X., Feng, G., Siew, C.K.: Call admission control for multi-service wireless
networks with bandwidth asymmetry between uplink and downlink. IEEE Trans.
Veh. Technol. 55, 360–368 (2006)

17. Zarai, F., Ben Ali, K., Obaidat, M.S., Kamoun, L.: Adaptive call admission control
in 3GPP LTE networks. Int. J. Commun. Syst. 27(10), 1522–1534 (2014). Wiley

http://dx.doi.org/10.1007/10722167_28
http://dx.doi.org/10.1007/10722167_28
http://dx.doi.org/10.1007/978-3-642-22110-1_47


Application of Generalized Stochastic Petri Nets
to Performance Modeling of the RF
Communication in Sensor Networks

Sedda Hakmi(B), Ouiza Lekadir, and Djamil Äıssani

Research Unit LaMOS (Modeling and Optimization of Systems),
Bejaia University, 06000 Béjäıa, Algeria

sed.hakmi@gmail.com, ouizalekadir@gmail.com, lamos_bejaia@hotmail.com

Abstract. In this paper we model and analyse the radio frequency (RF)
transmission in wireless sensor networks using Generalized Stochastic
Petri Nets (GSPN). In our model two types of priority requests are con-
sidered. In the first type, high priority requests are queued and served
according to FIFO discipline. In the second type (case of blocking) low
priority requests join the orbit before retrying the request until they
find the server free. We consider the preemptive priority to the requests.
Indeed, in this study, we highlight the impact of the presence of priority
requests on network performances via GSPN formalism. Firstly, we study
the case where the high priority requests have non-preemptive priority
over lower ones. While, in the second case, we apply the preemptive dis-
cipline to the high priority requests. Finally, some numerical examples
are given to illustrate our analysis.

Keywords: Radio Frequency (RF) transmission · Wireless sensor net-
work · Generalized Stochastic Petri Nets · Modeling · Performance
evaluation · Priority requests

1 Introduction

Wireless sensor networks are rapidly emerging as an important new area in the
research community. Their applications are numerous and growing, and range
from indoor deployment scenarios in the home and the office to outdoor deploy-
ment scenarios in natural, military and embedded settings such as temperature,
pressure, fire alarms, motion etc. [8]. Wireless sensor sends such sensed data,
usually via radio frequency. Signal processing and communication activities are
the main parts of sensor networks. Therefore, optimal organization and man-
agement of the sensor network is very crucial in order to perform the desired
function with an acceptable level of quality [13]. In order to study the perfor-
mance of wireless sensor networks, many researchers rely mainly on queueing
theory especially retrial or priority queues [9,22].

In the last decades there has been significant contribution in the area of
retrial queueing theory. The particularity of these kinds of queueing systems is
that arriving requests, which find a server busy, go to some virtual place called
c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 33–47, 2017.
DOI: 10.1007/978-3-319-66176-6 3



34 S. Hakmi et al.

orbit and try their request after some random time. These queueing models
arises in many communication protocols, local area networks, and some other
life situations. For a detailed survey one can see [1,2,5–7,10,11,23] and the
references therein. Furthermore, there are some situations in sensor networks
where some requests are generally considered more important than others such
as: fire, explosion sounds in the military field, etc., so the modeling by retrial
queue with priority requests arises. In this context of modeling with priority
retrial queues, Berczes et al. introduce a non preemptive priority retrial model
for the transmission in wireless sensor networks which is based on vacation of
the server in [3]. This work is primary based on the works of [9,22]. Later, in [4],
Berczes et al. extend this model by adding the fact that at the arrival of high
priority requests wake up the Radio Frequency (RF) unit (server) while the low
priority requests can not do it.

Motivated by the need for performance models suitable for modeling and
evaluating of the Radio transmission in wireless sensor networks, we consider
a preemptive priority in order to extend the model of [4]. So, in our model,
two types of requests (high priority and low priority requests) arrive at the
system and if they find the server unavailable, the high priority requests join
the ordinary queue, while the low priority requests have to join the orbit and
reattempt after a random period. The server departs for a vacation when there
are no requests in the queue or in the orbit upon a service completion. Under
this scheme, when a vacation period expires, the server wakes up. If the queue or
the orbit are non-empty, the server starts serving requests according to the order
of priority. Otherwise, it remains awake for a limited time period, waiting for a
possible other request. If no requests arrive during this period, it goes for another
vacation. The particularity of our proposed model resides in the fact that any
high priority request, upon arrival, interrupts the service of low priority one and
begins its service. To analyse this model we used the generalized stochastic Petri
nets formalism (GSPN).

To highlight priority impact of priority requests on sensor networks perfor-
mances, we have considered two models. In the first model we considered the
case where the requests are served under the non-preemptive priority policy.
Whereas in the second model, the requests are served under the preemptive pri-
ority. For the numerical application, we compared the performance indices of the
models above for different parameters values. We considered the non preemptive
case where the high and the low priority requests have the same service rates
to compare our results with those in [4]. Furthermore, we considered different
service rates in the preemptive priority case to illustrate the influence of these
parameters on the performance indices of our model.

This paper is organized as follows: In Sect. 2, we introduce the proposed mod-
els of the RF transmission in wireless sensor networks in detail. In Sect. 3, we give
an overview of Petri Nets. The generalized Stochastic Petri Net models describ-
ing the RF transmission in wireless networks for the two cases: non preemptive
and preemptive priority are investigated in Sect. 4. Section 5 is devoted to the
performance characteristics where we give the main steady-state characteristics



Application of Generalized Stochastic Petri Nets to Performance Modeling 35

of the studied models. In Sect. 6, we provide various numerical results which are
presented and discussed in detail. We finally conclude and give some envisaged
further works.

2 The Basic Models

Our motivation is the need for performance models suitable for modeling and
evaluating of the Radio Frequency transmission in wireless sensor networks.
Thus, we consider in the RF transmission two types of requests: high priority
and low priority requests. The sources represent two classes of sensors: the emer-
gency class like fire alarms (high priority requests) while the second one refers
to the standard case like temperature measurement (low priority requests). The
basic operation of the model can be described as:

• Arrival and retrial process: Two types of requests high priority (resp.
low priority) requests arrive from two groups of finite sources with capacity
N1, resp. N2. The high priority (resp. low priority) requests follow Poisson
process with mean arrival rate λ1 (resp. λ2). Upon blocking, low priority
requests immediately join a pool of unsatisfied requests, called the orbit. Any
orbiting request tries to connect with the RF (server) after an exponential
time period with rate ν > 0, until it finds the server free.

• Service process: The RF unit (server) can be in two states: in ON state
(accessible), it is able to start processing the incoming requests, or in OFF
state, the RF unit can be asleep. The distribution of this ON state times is
exponential with parameter α. If there are no incoming requests during this
time period, the RF unit switches to OFF state. The distribution of this OFF
state times is exponential with parameter β. A listening session starts when
the server is in ON state and there are not requests waiting in the queue or
in the orbit.

If the server RF is in ON state at the arrival time of a low priority request,
it will be served according to exponential distribution with rate μ2. Any high
priority request in non preemptive case, which upon arrival finds the server
busy is queued up in an ordinary queue and will be served according to
exponential distribution with rate μ1. In the case of preemptive priority, the
service of a lower-priority request will be interrupted and begins its service
immediately with rate μ3. The interrupted request joins the orbit and will
restart service later. Indeed, in these two priorities cases, when the high pri-
ority request arrives when the server is at the OFF state, it wakes up the
RF unit and starts its service with an exponentially distributed initializa-
tion time with parameter γ. In the following, we present the GSPN models
describing the RF transmission in wireless sensor networks for the two cases
of non preemptive and preemptive priority.

3 An Overview of Generalized Stochastic Petri Nets

Petri nets (PNs) are a powerful modeling tool, introduced in 1962 by
Carl Adam [21]. In fact, they combine a well defined mathematical theory with a



36 S. Hakmi et al.

graphical representation of the systems dynamic behavior. PNs are widely studied
and successfully applied in different discrete event dynamic systems in computers
networks, real-time computing systems, telecommunication networks, etc. [12,14–
17]. The strong mathematical foundation of Petri nets and the amiability of a wide
range of supporting tools have made them popular among academic researchers. A
Petri Net is a collection of directed arcs connecting places and transitions. Places
may hold tokens, so the state or marking of a net is its assignment of tokens to
places. A transition is enabled when the number of tokens in each of its input places
is at least equal to the arc weight going from the place to the transition. When fired,
the tokens in the input places are moved to output places, according to arc weights
and place capacities.

In this paper, we use Generalized Stochastic Petri Nets (GSPN) formalism
[19,20], which is a modeling formalism that can be conveniently used for ana-
lyzing the complex models of discrete event dynamic systems and study their
performances or reliability evaluations. This formalism allows us to define two
classes of transitions: immediate transitions and timed transitions. Immediate
transitions fire in zero time, this means they occur instantaneously, so they
always have priority over any enabled timed transitions. While timed transitions
fire after a random exponentially distributed enabling time. A marking in which
immediate transitions are enabled is known as a vanishing marking, while a mark-
ing in which only timed transitions are enabled is known as a tangible marking.
The use of GSPN has several advantages due to the memoryless property of the
exponential distribution of firing times. [19,20] has shown that the stochastic
Petri nets are isomorphic to a Continuous-Time Markov Chain (CTMC). Thus,
solving GSPN models consists first to eliminate the vanishing states in order to
obtain an equivalent CTMC which contains only tangible states. In this way,
the performance measures of this GSPN model can be evaluated by a simple
computation of the steady-state distribution π = (π1, π2, π3, · · · , πn), which is
the solution of the following linear system:{

π.Q = 0;∑
i∈E

πi = 1; (1)

where: πi denotes the steady-state probability that the process is in the state Mi

and E is the set of the tangible states. Q is the infinitesimal generator matrix
of the Markov process and its elements are computed as a function of the timed
transitions firing rates [18].

4 GSPN Models of the RF Transmission in Wireless
Sensor Networks

The two GSPN models that we proposed to describe the RF transmission with
non preemptive (resp. preemptive) priority are depicted in Fig. 1 (resp. Fig. 2).



Application of Generalized Stochastic Petri Nets to Performance Modeling 37

Fig. 1. The non preemptive GSPN Model of the RF transmission in wireless sensor
networks.

Fig. 2. The preemptive GSPN Model of the RF transmission in wireless sensor net-
works.



38 S. Hakmi et al.

� In both GSPN models:

• The place P.Sour1 (resp. P.Sour2) contains the high priority (resp. low priority)
requests, represented by N1 (resp. N2) tokens, which represents the condition
that none of the N1 and N2 requests has arrived for service;

• The place P.Cust1 contains the high priority requests;
• The place P.Choice represents the condition that a primary or a repeated call

is ready for service;
• The place P.Orbit represents the orbit;
• The place P.serv1 (resp. P.serv2) represents the condition that the server is

busy by the high priority (resp. low priority) request;
• The place P.sleep represents the fact that the RF sleeps for power saving

purposes.
• The place P.serv.Idle represents the condition that server is idle, represented

by one token.
• When the transition tArri1 fires, one token is taken from PSour1 and is

deposited in PCust1. The firing of tArri1 indicates the arrival of a high prior-
ity request. This firing is marking dependent. Thus, the firing rate of tArri1

depends on the number of tokens in PSour1. If we have N1 tokens in PSour1,
the firing rate is N1λ1. The condition of marking dependent firing is repre-
sented by the symbol # placed next to the transition tArr1.

• If the arrived request is a low priority one, the transition tArri2 will fire, then
PChoice receives a token. Because the transition tArri2 is a marking dependent,
so the firing rate is N2λ2.

• The immediate transition tgo.serv1 is enabled when PServ.Idle contains one
token (i.e. the server is idle), and PCust1 is not empty (i.e. there is at least one
priority request). Once the transition tgo.serv1 is fired, a token is removed
from each of the two places PServ.Idle and PCust1, and it is placed in PServ1.
This token represents a high priority request in service.

• The immediate transition t.Orbit fires at the arrival of a low priority request
which finds no operational free server i.e. PServ.idle is empty. Hence, it joins
immediately the orbit represented by the place POrbit. Once in orbit, the
request starts generation of a flow of repeated calls exponentially distributed
with rate ν. The firing of transition tRetr represents the arrival of a repeated
call from the orbit.

• The immediate transition tgo.serv2 is fired if the place PCus1 is empty (This
condition is expressed by the inhibitor arc from place PCust1 to the transition
tgo.serv2.), PServ.idle contains one token represents the idle server and PChoice

contain one token. So, PServ2 receives a token representing a low priority
request in service.

• When there are no requests in PCus1 and PChoice a listening session is com-
mencing which is expressed by the inhibitor arcs. So, the firing of the transi-
tion tlisten represents the event that an idle server is in OFF state.

• The firing of transition tsleep represents the end of the OFF period. Hence,
the server is returned to the available state (ON state).

• Once in the OFF state, the server can serve the high priority requests if there
is at least one high priority request in PCus1.



Application of Generalized Stochastic Petri Nets to Performance Modeling 39

• The timed transition tServ2 (resp. tServ1 and tServ3) is fired to determine the
end of the low priority (resp. high priority) requests period service. Thus,
Psour2 (resp. in Psour1) receives a token which represents the condition that
a low priority request or a high priority one will be returned to be idle, and
a second token is deposited in PServ.idle which represents the condition that
the server is ready to serve another request.

� In the preemptive GSPN model:

• P.serv4 represents the condition that the server is busy by the high priority
request after interruption of low priority request service. So, the interrupted
request joins the orbit and will restart service later.

• At the end of a service period of the preemptive requests, timed transition
tgo.Serv4 fires. The request under service returns to free state Psour2 and the
server becomes idle.

5 Performance Measures

The aim of this section is to derive the formulas of the most important stationary
performance indices corresponding to a RF transmission. As all the proposed
models are bounded their initial markings are home states. Accordingly, their
steady-state probability distributions exist. In this case, several performance
indices can be computed by the formulas given in the following subsections.

� The mean arrival rate of the high priority requests η1 (resp. low
priority requests η2 are:

η1 =
∑

j∈(SMj)1

λ1(Mj)πj , η2 =
∑

j∈(SMj)2

λ2(Mj)πj ; (2)

with: (SMj)k is the set of markings where the transition tArrik is enabled, and
λk(Mj) is the firing rate associated with the transition tArrik in the marking
Mj , with k = 1, 2.

� The mean retrial rate of low priority requests:
The throughput of the transition tRetr gives the mean retrial rate of low priority
requests:

ηo =
∑

j∈(SMj)o

ν(Mj).πj ; (3)

with: (SMj)o is the set of markings where the transition tAretr is enabled, and
ν(Mj) is the firing rate associated with the transition tretr in the marking Mj .

� The mean rate of listening period:
This represents the throughput of the transition tlisten:

ᾱ =
∑

j∈(SMj)

α(Mj).πj ; (4)



40 S. Hakmi et al.

with: (SMj) is the set of markings where the transition tlisten is enabled, and
α(Mj) is the firing rate associated with the transition tlisten in the marking Mj .

� The mean rate of sleeping period:
This represents the throughput of the transition tlisten:

β̄ =
∑

j∈(SMj)

β(Mj).πj ; (5)

with: (SMj) is the set of markings where the transition tsleep is enabled, and
β(Mj) is the firing rate associated with the transition tsleep in the marking Mj .

� The mean number of the high priority requests η01 (resp. low priority
requests η02) in the queue:

η01 =
∑
j

Mj(PCust1) + Mj(PServ4)πj , η02 =
∑
j

Mj(POrbit).πj ; (6)

where, Mj(PCust1) is the number of tokens in place PCust1 in the marking Mj

and Mj(POrbit) is the number of tokens in place POrbit in the marking Mj . The
sum in this formula is made on all the accessible markings.

� The mean number of high priority requests ηS1 (resp. low priority
requests ηS2) in the system:

ηS1 =
∑
j

[Mj(PCust1) + Mj(PServ1) + Mj(PServ4)]πj ; (7)

ηS2 =
∑
j

[Mj(POrbit) + Mj(PServ2)]πj . (8)

The sum in this formula is made on all the accessible markings.

� The mean waiting time of high priority W1 (resp. low priority W2)
the requests:

W1 =
η01
η1

; W2 =
η02
η2

. (9)

� The mean response time of high priority τ1 (resp. low priority τ2)
requests:

τ1 =
ηS1

η1
; τ2 =

ηS2

η2
. (10)

� The blocking probability of low priority requests:

Bp =
∑
i

Prob{M(POrbit) ≥ 1 and M(P.serv.Idle) = 0}. (11)

� The probability that the server is busy by high priority request Ps1

(resp. low priority requests Ps2):

Ps1 =
∑
i

Prob{(M(Pserv1) = 1) or (M(Pserv4) = 1)}; (12)



Application of Generalized Stochastic Petri Nets to Performance Modeling 41

Ps2 =
∑
i

Prob{M(Pserv2) = 1}. (13)

� The probability of sleeping period:

Prs =
∑
i

Prob{M(Psleep) ≥ 1}. (14)

6 Numerical Results

In the present section, we study the effect of several parameters on the perfor-
mance measures in the sensor networks for the two cases: preemptive and non
preemptive priority. The results of this study are displayed in different figures.
On each figure the blue lines correspond to the non preemptive priority and the
red lines correspond to the preemptive priority. In Table 1, we considered the
same parameters as those used by Berczes et al. [4] in order to compare the
results.

Figure 3 displays the mean queue length versus the λ. We see that as the
arrival rate increases, the mean queue length increases. We note that the mean
queue length for the preemptive priority is less than in the non preemptive
priority. In the case of preemptive priority, the requests spend less time compared
to non preemptive case.

On Fig. 4 the mean orbit size of low priority requests is displayed as a function
of λ. We see that the mean number of requests in the orbit is an increasing
function of arrival rate. However, the mean orbit size in preemptive priority is
almost close to the mean orbit size in non preemptive priority. For high request
generation rates mean orbit size approaches N2 i.e. the low priority requests are
blocked. These results are useful for choosing the parameters that fine tuning
the size of the orbit.

In Fig. 5, mean waiting time spent in the queue are plotted versus arrival
rates. We remark that increasing of the arrival rates increases the mean waiting
time spent in the queue by the high priority requests. But the mean waiting
time in preemptive case is smaller than mean waiting time in the non preemptive

Table 1. Network parameters.

Parameter Symbol Value

Population size (N1, N2) (50, 50)

Arrival rates (λ1, λ2) ( λ
10

, 9λ
10

)

Service rates (μ1, μ2) (20, 20), (20, 10), (10, 20)

Retrial rate ν 2

Initialization rate γ 10

Mean time of sleeping period 1
β

0.5

Mean time of listening period 1
α

1.5



42 S. Hakmi et al.

Fig. 3. Mean queue length versus λ.

Fig. 4. Mean orbit size versus λ.

case. We remark also that the waiting time in the case of non preemptive priority
increases with the decreases of the service rate of low priority requests, contrary
to the case of preemptive priority where waiting time remains almost the same.

Figure 6 illustrates the behavior of mean waiting time in the orbit versus the
arrival rates. The curves show the increases of the waiting time in the orbit with
the increases of λ. We can see that for small values of λ ≤ 2 mean waiting time
in the orbit given by the preemptive case is close to mean waiting time in the
orbit given by the non preemptive one. But after this value, the requests spend
more time in the orbit. This is because the server interrupt the non preemptive
requests (which join the orbit) and serve the high priority requests.

Figures 7 and 8 show how much the increases of the arrival rate affects the
mean response time, especially for the low priority requests. We can also see



Application of Generalized Stochastic Petri Nets to Performance Modeling 43

Fig. 5. Mean waiting time in the queue versus λ.

Fig. 6. Mean waiting time in the orbit versus λ.

the influence of service rates, for example, the difference between the response
times for λ = 4.5 in the case of (μ1, μ2) = (20, 20) and (μ1, μ2) = (20, 10) is
significant. Furthermore, we remark that the mean response time of low priority
requests in non preemptive case is almost close to the mean response time in the
preemptive case for a lower values of the arrival rates (λ ≤ 2.3). But priority
requests response time in the case of preemptive case gives the best results. This
is because the server is busy a lot more with priority requests.

In Fig. 9 the blocking probability of retrial requests curves are plotted versus
the arrival rate λ. From this figure it is shown that this probability increases as
λ increases and approaches one. The increasing of this blocking probability is
rapid for a small value of μ2. This figure also shows that the optimal choice of



44 S. Hakmi et al.

Fig. 7. Mean response time of low priority requests versus λ.

Fig. 8. Mean response time of high priority requests versus λ.

blocking probability for the retrial requests corresponds to the case of preemptive
discipline.

Figure 10 illustrates the behavior of the probability that the server is busy
versus the arrival rate λ. We have presented two curves which correspond to
the probability that the server is busy by the high priority (resp. low priority)
requests. These curves show the probability that RF is busy by the low priority
request increases until the maximum and decreases to approaches zero. The
observed peak in curve indicates that from the λ = 0.5 corresponding to this
point, the high-priority requests are strongly constrained to be preferred over
low-priority requests. We notice that this probability approaches zero with the
increases of λ. The zero is reached rapidly for a lower values of μ1. We can



Application of Generalized Stochastic Petri Nets to Performance Modeling 45

Fig. 9. Blocking probability of retrial requests versus λ.

see also that in the case of preemptive discipline this probability is less than in
preemptive case.

Fig. 10. The probability that the server is busy versus λ.

Figure 11 shows that the increases of the sleeping period rate doesn’t influ-
ences a lot for the mean queue length and for the orbit size. For example, the
mean number of waiting requests is around 0.02 in the case of preemptive priority
and around 0.11 in the case of non preemptive priority. Otherwise, the average
number of requests in the orbit is between [21.4, 22.4] in the case of preemptive
priority, and between [22.1, 23.4] in the case of non preemptive priority. We con-
stat that the number of priority requests in the queue does not depend on the
sleeping period rate, this is due the wake up of the server and the preemptive
priority of the requests.



46 S. Hakmi et al.

Fig. 11. Mean queue length and mean orbit size versus β.

7 Conclusion

Sensor networks can increase the efficiency of many military and civil applica-
tions, such as combat field surveillance, security and disaster management where
conventional approaches prove to be very costly and risky [13]. This paper aims
at modeling and studying performances of the RF transmission in wireless sensor
networks by using Generalized Stochastic Petri Nets (GSPN). We studied two
models: in the first the high priority requests have non-preemptive priority over
lower ones while, in the second model, we applied the preemptive priority to the
high priority requests. According to this study we can see that the preemptive
priority is favorable to higher priority customers, because they are not influenced
by lower priority customers at all. The advantage of our approach resides in the
expressive power that the GSPN formalism offer in order to construct a sim-
ple model for the RF transmission in sensor networks. The numerical results are
discussed and show the positive and negative effects of parameters on several per-
formance Indices. The performance results obtained and compared to [4] showed
that our model based on preemptive priority improves the network performances
with better blocking probability compared to non preemptive one, especially for
high priority requests. The results show significant performance improvements
in the processing of high priority requests. The conclusion is that the proposed
model can be implemented in sensor networks situations where some requests
are considered more important than others such us: fire, explosions sound in the
military field.

In future, we plan to extend our model to mixed priority with more sleeping
period schemes.

References

1. Artalejo, J.R.: A classified bibliography of research on retrial queues: progress in
1990–1999. Top 7, 187–211 (1999)



Application of Generalized Stochastic Petri Nets to Performance Modeling 47

2. Artalejo, J.R.: Accessible bibliography on retrial queues: progress in 2000–2009.
Math. Comput. Model. 51, 1071–1081 (2010)

3. Bérczes, T., Sztrik, J., Orosz, P., Moyal, P., Limnios, N., Georgiadis, S.: Tool sup-
ported modeling of sensor communication networks by using finite-source priority
retrial queues. Carpathian J. Electron. Comput. Eng. 5, 13–18 (2012)

4. Bérczes, T., Almási, B., Sztrik, J., Kuki, A.: Modeling the RF communication
in sensor networks by using finite-source retrial queueing system. Trans. Autom.
Control Comput. Sci. 58(72), 2–4 (2013). Scientific Bulletin of the Politehnica
University of Timisoara, Romania

5. Choi, B.D., Park, K.K.: The M/G/1 retrial queue with Bernoulli schedule. Queue-
ing Syst. 7, 219–227 (1990)

6. Choi, B.D., Choi, K.B., Lee, Y.W.: M/G/1 retrial queueing system with two types
of calls and finite capacity. Queueing Syst. 19, 215–229 (1995)

7. Choi, B.D., Chang, Y.: Single server retrial queues with priority calls. Math. Com-
put. Model. 30(3–4), 7–32 (1999)

8. Deng, J., Han, R., Mishra, S.: A performance evaluation of intrusion-tolerant rout-
ing in wireless sensor networks. In: Zhao, F., Guibas, L. (eds.) IPSN 2003. LNCS,
vol. 2634, pp. 349–364. Springer, Heidelberg (2003). doi:10.1007/3-540-36978-3 23

9. Dimitriou, I.: Analysis of a priority retrial queue with dependent vacation scheme
and application to power saving in wireless communication systems. Comput. J.
56(11), 1363–1380 (2012)

10. Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)
11. Falin, G.I.: A survey of retrial queues. Queueing Syst. 7(2), 127–167 (1990)
12. Gharbi, N., Charabi, L.: Comparing random server and fastest free server disciplin.

Int. J. Adv. Netw. Serv. 5(1–2), 102–115 (2012)
13. Gupta, G., Younis, M.: Performance evaluation of load-balanced clustering of wire-

less sensor networks. In: 10th International Conference on Telecommunication, vol.
2 (2003)

14. Hakmi, S., Lekadir, O., Aı̈ssani, D.: A GSPN formalism to obtain service-time prob-
ability of finite source-queue with different customers. In: International Conference
on Natural Science and Applied Mathematics, ICNSAM, Dubai (2016)

15. Ikhlef, L., Lekadir, O., Aı̈ssani, D.: MRSPN analysis of semi-Markovian finite source
retrial queues. Ann. OR 247, 141–167 (2016)

16. Liu, F., Blätke, M.A., Heiner, M., Yang, M.: Modelling and simulating reaction
diffusion systems using coloured Petri nets. Comput. Biol. Med. 53, 297–308 (2014)

17. Marsan, M.A., Balbo, M.G., Conte, G.: Models of Multiprocessor Systems, vol. 11,
p. 294. The MIT Press, Massachusetts (1986)

18. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. Wiley, New York (1995)

19. Molloy, M.K.: On the integration of delay and throughput measures in processing
models, Ph.D. Thesis. University of California, Los Angeles (1981)

20. Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. Com-
put. C–31, 913–917 (1982)

21. Petri, C.A.: Kommunikation mit automaten, Ph.D. dissertation, Institut für Instru-
mentelle Mathematik, University of Bonn, West Germany, pp. 65–377 (1962)

22. Wüchner, P., Sztrik, J., Meer, H.: Modeling wireless sensor networks using finite-
source retrial queues with unreliable orbit. In: Hummel, K.A., Hlavacs, H.,
Gansterer, W. (eds.) PERFORM 2010. LNCS, vol. 6821, pp. 73–86. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-25575-5 7

23. Yang, T., Templeton, J.G.C.: A survey on retrial queues. Queueing Syst. 2(3),
201–233 (1987)

http://dx.doi.org/10.1007/3-540-36978-3_23
http://dx.doi.org/10.1007/978-3-642-25575-5_7


Regression-Based Statistical Bounds
on Software Execution Time

Peter Poplavko1, Ayoub Nouri1(B), Lefteris Angelis2,3, Alexandros Zerzelidis2,
Saddek Bensalem1, and Panagiotis Katsaros2,3

1 Univ. Grenoble Alpes, VERIMAG, CNRS, 38000 Grenoble, France
ayoub.nouri@univ-grenoble-alpes.fr

2 Information Technologies Institute, Centre of Research & Technology - Hellas,
6th km Xarilaou - Thermi, 57001 Thessaloniki, Greece

3 Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, Greece

Abstract. Our work aims at facilitating the schedulability analysis of
non-critical systems, in particular those that have soft real-time con-
straints, where WCETs can be replaced by less stringent probabilistic
bounds, which we call Maximal Execution Times (METs). In our app-
roach, we can obtain adequate probabilistic execution time models by sep-
arating the non-random input data dependency from a modeling error
that is purely random. To achieve this, we propose to take advantage of the
rich set of available statistical model-fitting techniques, in particular lin-
ear regression. Although certainly the proposed technique cannot directly
achieve extreme probability levels that are usually expected for WCETs,
it is an attractive alternative for MET analysis, since it can arguably guar-
antee safe probabilistic bounds. We demonstrate our method on a JPEG
decoder running on an industrial SPARC V8 processor.

1 Introduction

We propose a new statistical measurement-based method, for the timing analy-
sis of software programs. Such methods aim at highly-probable execution time
overestimations, as opposed to the 100% certain upper bounds given by common
worst-case execution times (WCET) techniques. This option can be justified in
many practical situations. For systems that do not have safety requirements
(e.g., car infotainment) that are characterized by weak, soft or firm real-time
constraints, we can rely on statistical (over-)estimations based on extensive mea-
surements that we call probabilistic maximal execution times (MET).

The methods used to estimate arguably reliable METs are referred to as
measurement-based timing analysis (MBTA) techniques. In the recent research
literature, the reliability of MBTA techniques has been improved, even to the
level of considering them eligible for WCET estimates for hard real-time sys-
tems, under some restrictive hardware assumptions (e.g., cache randomization).

The research leading to these results has received funding from the European Space
Agency project MoSaTT-CMP, Contract No. 4000111814/14/NL/MH.

c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 48–63, 2017.
DOI: 10.1007/978-3-319-66176-6 4



Regression-Based Statistical Bounds on Software Execution Time 49

Such estimates are the so-called probabilistic WCETs, i.e., METs that hold
at an extremely high probability (1 − α) with α = 10−15 per program exe-
cution [CSH+12] or 10−9 per hour, which corresponds to the most stringent
requirements in safety-critical standards.

Analyses aiming to ‘true’ WCET (with α = 0) are costly to adapt to new
application domains and processor architectures, as they require the construc-
tion of complex exact models that have to be verified. The techniques based on
extreme value theory (EVT) can ensure the levels of probability that render them
suitable for WCET. However, these techniques assume that the execution times
are random and identically distributed, a strong assumption that does not gener-
ally hold in practice. Execution times typically show significant autocorrelations
and their probability distribution varies due to the input data dependencies.

For non safety-critical systems, one can settle for METs characterized by α
a few orders of magnitude larger than that claimed by EVT methods (10−15).
In this case, it is possible to rely on a rich set of mature statistical model fitting
tools, such as linear regression, which can handle the input data dependencies.
In this paper, we propose a novel probabilistic MET analysis technique that
builds upon linear regression and the associated statistical analyses.

The contributions of the paper are the following. In Sect. 2, we discuss MBTA
and recall linear regression basics. In Sect. 3, we introduce a regression model,
called Maximal Regression Model, that yields probabilistic upper bounds for
METs estimation, using confidence intervals. A great challenge for building
a regression model is to come up with the most influential explanatory vari-
ables of the execution time. For this, we propose, in the same section, step-wise
regression, an iterative method for building a compact model including the most
relevant variables. Since the proposed method is measurement-based, we also
propose a statistical technique for assessing the input data in order to obtain
pertinent measurements. In Sect. 4, we rely on all these techniques to propose
a complete design flow for METs estimation. In Sect. 5, we demonstrate our
flow using a JPEG decoder case study with a significant input data dependency,
which runs on a state-of the art industrial SPARC V8 architecture with caches,
reset at every execution start. The related work is further discussed along with
the conclusions, in Sect. 6.

In [LS09], it was proposed to use linear regression for conservative execu-
tion time analysis, but without profiting from the rich statistics associated with
it. More specifically, that work aims at 100% conservative estimates (without
probabilities) and for this reason it focuses on non-statistical linear model fit-
ting techniques. However, targeting 100% conservative estimates may result in
a costly analysis, losing the advantage of regression. Moreover, their technique
for calculating the regression parameters is rather ad hoc and is not described
in detail. On the other hand, in [LS09], an important connection is established
between linear regression and WCET analysis methodologies, which is based on
implicit path enumeration.

In that work, some interesting possibilities are also shown for the explicit
modeling of hardware effects, e.g., pipelining, which could be used in our work.



50 P. Poplavko et al.

However, for simplicity, in the present paper we do not address the hardware
modeling issue directly, but undoubtedly this is an important future work matter.
Nevertheless, since our analysis is based on measurements on real hardware and
since the variability attributed to hardware is consequence of the variability of
input data, we believe that hardware effects are covered indirectly up to a level
of accuracy that may be appropriate for non safety-critical applications.

2 Common Probabilistic Techniques

In this section, we first review the general MBTA setting, and we recall the basics
of linear regression while providing an interpretation in the context of MBTA.

2.1 Probabilistic Measurement-Based Timing Analysis

MBTA consists of initially performing multiple measurements of the program
execution times and/or the execution times for its blocks of code, and a subse-
quent analysis to combine the results and thereafter to calculate the MET bound.
The probabilistic variant of MBTA utilizes statistical methods [CSH+12] for the
analysis phase.

We denote by Y the execution time, which in general depends on some other
variables, Xi. An MET bound with probability (1−α) can be obtained by finding
the minimal y such that Pr{Y < y} ≥ (1 − α). Suppose that Y is random with
a known continuous distribution f , denoted Y ∼ f . A possible solution is given
through the quantile function of that distribution: y = Qf (1 − α), such that, by
definition, Pr{Y < y} = (1 − α).

In the case when Y is normally distributed, i.e., Y ∼ N (μY , σY ), we have
y = μY +σY Φ−1(1−α), where Φ−1 is the quantile function for N (0, 1). In order
to calculate METs using this formula, the ‘mean’ μY and the ‘standard devia-
tion’ σY have to be estimated from measurements with enough precision, which
requires a large enough number of measured Y samples. The normal distribution
can describe many random physical variables, especially noise and measurement
errors in model parameters. Furthermore, it provides access to a rich set of
mature statistical tools for reliably estimating parameters from measurements.

Unfortunately, neither normal nor any other distribution law can be justified
to describe execution times directly. Therefore probabilistic MBTA techniques
do not consider execution time itself as a random variable, but only some of
its characteristics. For example, the normal distribution can be adequate if we
suppose that we dispose of an ‘oracle model’ that for each program run can
predict its execution time Y almost perfectly, but still makes a small error due
to various independent factors ignored by the ‘oracle’. Then it is reasonable to
apply the normal distribution law to characterize the error of the ‘oracle’. This
is, in fact, the underlying idea of our method. It should be mentioned, though,
that normal distribution is only adequate for the values of α that are not too
small, and thus this idea can be applied only for soft real-time systems.



Regression-Based Statistical Bounds on Software Execution Time 51

To sustain very small α, MBTA analyses use EVT [CSH+12]. They apply
EVT probability distribution laws, again, not to the execution times directly
but to their upper bounds. However, as noted in [CSH+12], to justify the EVT-
based techniques an important requirement is that the execution times should
be independent and identically distributed (iid) random variables. However, this
requirement is typically violated due to the dependency on input data via mul-
tiple conditional branches and loops in the program. The input data parameters
are not iid and in a certain sense they are even ‘non-random’ (no practically
adequate distribution law can characterize them). Therefore for programs with
complex control flow the applicability of EVT-based techniques is difficult to jus-
tify. By contrast, using linear regression, our method separates the non-random
factors from the modeling error. The regression is our ‘oracle model’.

2.2 Linear Regression in the Nutshell

Linear regression is mostly used to predict average execution times [EFH04,
HJY+10]. Though our goal is to produce upper bounds, we use the same app-
roach as the starting point. The main goal of linear regression is to model a
variable of interest Y , called dependent variable, with explanatory variables (or
predictors) Xi. The fundamental requirements for the validity of such an analy-
sis is that (i) Xi should have approximately linear contribution to Y and (ii)
the approximation error should be normally distributed. The first requirement is
realistic since one can always decompose execution time as a linear combination
of code block contributions. The second requirement validity is motivated in the
previous subsection and is further confirmed by experiments (see Sect. 5).

The concrete values of Xi represent the possibility to ‘explain’ (or ‘predict’),
with some precision, the concrete value of Y . For MET, an important implication
is that if we can obtain bounds for Xi this helps us to derive a bound on Y as
well. In linear regression [DS81], the dependence of Y on Xi is given by

Y (n) = β0 + β1X1(n) + . . . + βp−1Xp−1(n) + ε(n) (1)

In the context of MBTA, the dependent variable Y is the program execution
time, and Y (n) is its nth observation in a series of measurements. Coefficients
βi are parameters that have to be fitted to measurements Y (n) to minimize the
regression error ε(n). The dependent variable Y , the error ε, and the parameters
βi are components of the execution time and therefore they can be modeled as
real numbers. Their probability distributions are assumed to be continuous, as
it is usually the case for timing metrics in statistical MET methods [CSH+12,
BCP02]. On the contrary, the predictors Xi are discrete; they are in fact non-
negative integers that count the number of times that some important branch or
loop iteration in the program is taken or skipped. The corresponding parameter
βi can be either positive, to reflect the processor time spent per unit of Xi, or
negative, to reflect the economized time.

From a probabilistic MBTA perspective, Eq. (1) has a concrete meaning.
It captures the ‘non-randomness’ of Y by building a model

∑
i βiXi(n) which



52 P. Poplavko et al.

‘explains’ its dependence on some factors Xi, with different weights βi, reflect-
ing the complexity of the program. Ideally, the remaining ‘non-explained’ part
is a random variable β0 + ε(n) with β0 representing the mean value and ε(n)
the random deviation, whereby ε(n) are hopefully independent and normally
distributed, by N (0, σε).

The probability bounds proposed in this work are accurate only if this
assumption is valid. However, they are generally believed to be robust with
respect to deviations from the normal distribution. We can justify the ‘random-
ness’ of ε by the hypotheses that all non-random factors have been captured
by Xi. Also, the normality of ε can be justified using the central limit theorem
based on the intuitive observation that the sources of execution time variation,
e.g., non-linearity of Xi, are additive in nature and independent.

The parameters βi are ‘ideal’ abstractions whose exact values are unknown.
They can only be estimated based on measurement data, e.g., with the least-
squares method. We denote by bi the estimate of βi and by Ŷ the estimate of Y .
Hence, when ε is 0, we get an unbiased regression model

Ŷ (n) = b0 + b1X1(n) + . . . + bp−1Xp−1(n) (2)

whereas the difference eres(n) = Y (n) − Ŷ (n), called residual, serves as an esti-
mation of the error ε(n): ε(n) ≈ eres(n).

For more convenience, we use a vector notation. Let x = (Xi | i = 0 . . .
(p − 1)), where X0 = 1 is an artificial constant predictor that corresponds to b0,
and b the vector of parameters estimators. The regression model can thus be
seen as the product of b and x.

The model parameters are obtained from a set of measurements - the so-
called training set - through a process known as model training (or fitting). In
our case, the training set consists of N measurements of Y (n) and x(n), with
N recommended in practice to be N � p, i.e. at least N > 5p [LS09]. We
consider a training-set with predictors measurements organized into a p × N
matrix Xtrain = [x(1) . . .x(N)], and the corresponding N -dimensional vector of
execution time measurements ytrain = (Y (n) | n = 1 . . . N).

3 Linear Regression for MET

In this section, we introduce the maximal regression model for conservative esti-
mation of MET. Then, we propose a technique to identify the most relevant
predictors for the model. Since we rely on measurements, we also present a tech-
nique for collecting enough input data to ensure a good coverage.

3.1 The Maximal Regression Model

The least-squares method provides a closed form formula to compute the vector b
from Xtrain and ytrain (see [DS81]). However, each least-square model parameter
bi is itself a random variable, because it is obtained from a training-set ytrain



Regression-Based Statistical Bounds on Software Execution Time 53

‘perturbed’ with a random error ε. It turns out from theoretical studies that
each estimate bi can be seen itself as a sample from a normal distribution, since
different training sets would lead to distinct samples bi from the distribution
shown in Fig. 1. This distribution has as mean value the unknown parameter βi

and therefore, the estimator samples bi are likely to be close to βi.

Fig. 1. Parameter confidence interval

For the estimation of METs, the
model parameters b that are simply ‘close’
to β are not adequate. We prefer a con-
servative model consisting of parameters
b+ that are likely to be larger than β.
Such parameters can be obtained using
the notion of confidence interval, which is
an interval Δb = [b−, b+] that likely con-
tains β (see Fig. 1), such that

Pr{β ∈ Δb} = (1 − α) (3)

where α is some small value, usually specified in percents, e.g., α = 5 %. By
symmetry with the distribution of b, if we use b+, the upper bound of Δb,
as coefficient estimator, then our model in the above example is conservative,
i.e., with probability (1 − α/2). Therefore, our maximal regression model is not
the usual unbiased regression model of Eq. (2), but

Ŷ +(n) = b+0 + b+1 X1(n) + . . . + b+p−1Xp−1(n) + ε+ (4)

where we assume that ε+ is the (probabilistic) maximal error. By analogy to b+,
we set it to a value, such that Pr{ε(n) < ε+} ≥ (1−α/2). Because ε ∼ N (0, σε)
we could use σε ·Φ−1(1−α/2). However, just as the case where we did not know
the exact value of βi and had to obtain an estimate bi instead, we do not know
the value of σε and have to use ε+ = σ̂+

ε · Φ−1(1 − α). The estimate σ̂+
ε should

be pessimistic, i.e., it should be biased to be larger than the value of σε with a
high probability. When obtaining its unbiased estimate, σ̂ε, the sum of squares
of regression ‘residual’ is involved, e2res(n) = (Y (n)− Ŷ (n))2, which is calculated
from the training set. Based on the properties of the residual [DS81], we can

show that for σ̂+
ε =

√
N∑

n=1
(Y (n) − Ŷ (n))2/Qχ2(N−p)(α/2), we have Pr{σε <

σ̂+
ε } = (1 − α/2), where Qχ2(N−p) is the quantile function of a χ2 distribution

with (N − p) degrees of freedom.
By comparison of Eqs. (1) and (4) we can see that all the terms of the first

are likely to be inferior to the corresponding terms of the second, and therefore
Ŷ +(n) is a probabilistic bound of Y (n). Moreover, we have

Pr{Y (n) < Ŷ +(n)} ≥
(

1 − (p + 2)α
2

)

(5)

since we have (p + 2) parameter estimates.



54 P. Poplavko et al.

3.2 Identifying the Predictors: Stepwise Regression

When modeling execution times using a regression model, the simplest way to
construct the set of predictors is to create a predictor for every block of code of
the program that counts the number of block’s executions, see e.g., [LS09]. In this
case, every program operator that introduces branching, e.g., loop, ‘if’ operator,
would contribute at least with one predictor. This results in a relatively large
set of predictors, that we denote P and we call it the set of potential predictors.
In our method, we would like to identify only a small sufficient subset of P for
our regression model. By abuse of notation, we call it p (i.e., the same notation
for the set and the number of predictors).

By simple rule of thumb N > 5p, we see that by ignoring one predictor we can
save 5 measurements. However, the rationale is not merely a less costly model,
but also the so-called principle of parsimony : a model should not contain redun-
dant variables. Many predictors are interdependent, as, for example, in nested
loops, where the (total) number of inner-loop iterations is likely to have a strong
dependence on the number of outer-loop iterations. From a pair of dependent
variables we can try to keep only one, while attributing the small additional
effect of the other variable to random error ε. If we keep too many variables in
P , we will have overfitting, which means that our model will perfectly fit the
training set, but it will not be able to reliably predict any program execution
outside this set. The reason for this is that an overfitted model would exactly
fit not only the ‘true’ linear dependence βiXi, but also the particular sample
of non-linear random noise ‘ε’ encountered in the training set, but not in other
samples.

In most of the previous literature on execution time modeling, the identifi-
cation of predictors is either manual or ad hoc. Here we point to a practical and
mathematically sound algorithm for identifying the subset p of P . In applied
mathematical studies, the identification of a subset of useful predictors in a set
of candidates is an important problem to solve (see Ch. 15 of [DS81]).

An overall strategy of most such methods is based on starting with one predic-
tor and observing the reduction of the model error when adding new predictors.
It is thus expected that at a certain number of predictors, the error reaches satu-
ration and new variables do not reduce it significantly anymore. At this point, we
stop by adopting the hypothesis that the remaining error represents a ‘random
noise’. One of the most well-established methods is stepwise regression, which
we propose for use in the MET analysis. This algorithm is outlined here by the
following simple procedure (see [DS81] for details). A tentative set p of identi-
fied predictors is maintained, containing initially (for p = 1) only the constant
predictor X0 = 1, which is always kept in the set. The algorithm first tries to
add a variable that is ‘worthwhile’ to add and then to remove a variable that
is not worthwhile to keep; the same step is repeated until no progress can be
made. A variable is added when it is moved from P to p and it is removed when
moving it backwards. When there is no variable that can be added or removed,
the algorithm stops.



Regression-Based Statistical Bounds on Software Execution Time 55

The criterion for considering a predictor ‘worth’ to be included depends on
the other variables that are already in p; the decision is based on evaluating the
least-squares regression Ŷ with and without the candidate predictor. Intuitively,
a predictor is ‘worth’ if its ‘signal to noise ratio’ is significantly large. The ‘noise’
here is the total model error, which is evaluated based on the residual sum of
squares and the ‘signal’ is the contribution of the variable to the variance of Ŷ .
If the variance does not change significantly (compared to the total error) when
the predictor is kept, then the predictor is not ‘worth’. The whole procedure
is controlled by a parameter αsw that sets a threshold for variable acceptance
and rejection, and is based on statistical hypothesis-testing procedures under
the assumption that modeling error is normally distributed.

3.3 Quality of Input Data: Cook’s Distance

The set of measurements should represent all important scenarios that may occur
at runtime. To ensure this, the engineer should discover the most influential
algorithmic complexity parameters of the program that may vary at run time.
Then, it is essential to obtain an input data set, where every combination of
these factors is represented fairly.

For the linear regression, a useful mathematical metric of input-data quality
is Cook’s distance. Given a set of measurements, this metric ranks every measure-
ment n by a numeric ‘distance’ value D(n) that indicates the amount to which
the measurement influences the whole regression model. The regression model
should not be dominated by ‘odd’ measurements; it is generally recommended
to have D(n) < 1 or even D(n) < 4/N . For convenience, let us refer to the
measurements with D(n) > θ as the bad samples, for some threshold θ. These
samples should be examined, and one should either add more similar samples
(so that they are not exceptional anymore) or remove them from the training
set (keep them for testing).

4 A Design Flow for MET

We build upon the techniques presented in the previous section to present a
complete design flow for MET estimation1. In this section, we give a simplified
view of the flow and we discuss its steps (see Fig. 2). The first phase of the flow
is the instrumentation of the input program in order to obtain measurements.
Then, the most relevant predictors p are identified. Finally, the model to estimate
MET is produced in the model construction phase.

4.1 Instrumentation and Measurements

In some MBTA approaches, multiple blocks of code may have to be instrumented
and measured [BCP02]. Such instrumentation can be intrusive, whereas it is

1 Sources (Octave) can be found at www-verimag.imag.fr/˜nouri/exec-time-lra.

http://www-verimag.imag.fr/~nouri/exec-time-lra


56 P. Poplavko et al.

& Mesurements
Instrumentation Predictors

Identification Model ConstructionProgram
P p MET

Fig. 2. A simplified view of the MET design flow

likely to obtain inaccurate results when adding the block contributions, due to
various hardware effects (e.g. pipelining).

However, the instrumentation is not intrusive in a regression-based approach,
where measurements are end-to-end, i.e., they include the entire program. For
the end-to-end measurements, Y (n), the program has to be instrumented only
at the start and the end. As for the measurements needed to construct the set of
potential predictors P and to obtain their values Xi(n), i ∈ P the instrumented
program does not have to run on the target platform; a workstation can be used
instead, but it is essential to run the program with the same input data, as those
used for the Y (n) measurements. We refer to these measurements as functional
simulations2.

Fig. 3. Instrumentation and predictors

The instrumentation for functional
simulations consists of inserting instru-
mentation points (i-points) into the
source code of the program. The i-points
are inserted at every point, where the con-
trol flow diverges or converges, e.g., at
the start/end of the conditional and loop
blocks, at the branches of the conditional
statements et cetera. An i-point is a sub-
routine call passing the i-point identifier
‘q’, e.g., in Fig. 3 we have points with
q = 1, 2, . . . , 5. The goal is to get a
measurement record about the path fol-
lowed in an simulation run. This informa-
tion consists of the sequence of i-points
visited during the simulation run, which
is called i-point trace and it is denoted
as Tr(n) = (q1, q2, q3, . . .). Examples of
traces for Fig. 3 are (1,2,4), (1,2,3,4,5),
and (1,2,4,5,5,5).

From the traces we automatically
detect the set of basic blocks, which cor-
respond one-to-one to predictors in P . We
count the number of their occurrences in the trace, denoted f(q1, q2), where q1

2 For a higher precision, instead of instrumenting the source code one could instrument
the binary code for the target platform and run it on an ISS simulator for construc-
tion of P , while still using non-instrumented version for the end-to-end execution
time measurements on the target platform.



Regression-Based Statistical Bounds on Software Execution Time 57

and q2 are the i-point boundaries of the block. We have ∀k,Xk = f(qi, qj) for
some i, j. For the example in Fig. 3 we would detect a predictor f(2, 3), which
corresponds to the ‘if’ operator body, and predictor f(5, 5), which corresponds
to one loop iteration. For a general procedure, we refer the reader to [PAN+16].

4.2 Final Flow Steps

As sketched in Fig. 2, having done the measurements and detected the set of
potential predictors P , we identify the final set of predictors p ⊆ P , as described
in Sect. 3.2. It is worth mentioning that measurements are separated into two
sets, a training set (Xtrain,ytrain) and a test set (Xtest,ytest)3, and that only the
former is used to construct the model, whereas the latter is used to evaluate its
quality. The next step of the flow is the construction of the maximal regression
model, as described in Sect. 3.1. This phase will instantiate the model, i.e., given
the set of predictors and their associated measurements Xtrain,ytrain, it will
estimate their coefficients, et cetera. In this phase, we also evaluate the quality
of input data as described in Sect. 3.3. Finally, we calculate a MET bound.

Pragmatic MET. Our maximal regression model could be used within the
context of the implicit path enumeration technique (IPET) [LS09]. In this case,
the MET would be computed by

ε+ + maxx∈X

(∑p−1
i=0 b+i Xi

)
, with X the set of all vectors x that can result

from feasible program paths. This is achieved by solving the integer linear pro-
gramming (ILP) problem with a set of constraints on the variables Xi. The
constraints are derived from a static program analysis, which requires sophisti-
cated tools, as well as from user provided hints, such as loop bounds. We have
not yet implemented the IPET method in our flow. Currently, we assume that
for each predictor we have (either from measurements or user hint) its minimal
and maximal bound, X− and X+ and we calculate the pessimistic estimate:
ε+ + b+0 +

∑p−1
i=1 (bX)+i , where (bX)+ is b+X+ if b+ > 0 or b+X− otherwise. We

refer to this estimate as the pragmatic MET.
It is true that the pragmatic MET can be very pessimistic; for example, in

switch-case branching it may associate with every case a separate predictor and
then assume that they all take the maximal value simultaneously. Nevertheless,
the pragmatic MET is safe with the probability bound (5) if the regression model
itself is safe with this bound.

5 A JPEG Decoder on a SPARC Platform

We use a JPEG decoder program written in C4 to illustrate our method. The
JPEG decoder processes the header and the main body of a JPEG file. Basically,
3 A common practice is to consider 70% for the training set and 30% for the test set.
4 Downloaded from Internet, presumably authored by P. Guerrier and G. Janssen

1998.



58 P. Poplavko et al.

the main body consists of a sequence of compressed MCUs (Minimum Coded
Units) of 16 × 16 or 8 × 8 pixels. An MCU contains pixel blocks also referred
to as ‘color components’, as they encode different color ingredients. In the color
format ‘4:1:1’ an MCU contains six blocks. For monochromatic images, the MCU
contains only one pixel block. The pixel blocks are represented by a matrix of
Discrete Cosine Transform (DCT) coefficients, which are encoded efficiently over
few bits, so that a whole pixel block can fit in only a few bytes.

The hardware for the execution time measurements was an FPGA board
featuring a SPARC V8 processor with a 7-stage pipeline, a double-precision
FPU, a 4 KB instruction cache, a 4 KB data cache, a 256 KB Level-2 cache, and
an SDRAM. The data caches were reset at every new program run (i.e., after
loading a new JPEG image), so that the data caches are always empty at the
beginning.

5.1 Instrumentation and Measurements

We used 99 different JPEG images of different sizes and color formats, which yields
99 execution traces including the predictors Xi and the execution time Y .5 From
the generated traces we detected 103 potential predictors. We then randomly split
the complete set of 99 measurements into N = 70 for the training set, and 29 for
the test set used to verify the regression model. In the training set, 8 predictors
showed up as constants and they were therefore eliminated, thus ending up with
P = 95 potential predictors, plus one constant X0 = 1 added by default. Since
we had a training set size N = 70, by the rule of thumb, we should not exceed
N/5 = 14 variables, to avoid overfitting.

It is worth mentioning that the maximal observed execution time (over the
whole set of measurements) corresponds to an image of a particularly large size,
yielding maximal measured time of 23643 Mcycles, while the mean time was
only 1000 MCycles. In the remaining discussion, all timing values (e.g., errors)
are reported in Megacycle units. We use α = 0.05 for the maximal regression
parameters and MET, but we also present the final estimate for α = 0.00005.

5.2 Predictors Identification and Model Construction

Basic Model. The simplest model to build is when p = 1, i.e., when the execu-
tion time is modeled as a purely random variable β0 + ε(n) without non-random
contributors. This case corresponds to a näıve measurement-based method where
the execution time does not capture the non-random factors. In this case, we
cannot expect good results with such a strong input data dependency as in JPEG
decoders. Indeed, we carried out a normality test for Y using the Kolmogorov-
Smirnov test that reported only a mere 2% likelihood, which was not surprising
as the histogram for Y was considerably skewed and had a few extreme values
due to images of exceptionally large size.

5 We could not obtain more measurements because the FPGA card was available for a
limited period of time, and loading data into it required some manual work.



Regression-Based Statistical Bounds on Software Execution Time 59

The obtained error in this case is large (compared to the mean) ε+ = 6650
and the pragmatic MET is ≈8000, which underestimates the maximal measured
time; this adversity is the consequence of the relatively large model error whose
distribution was essentially not normal and which was actually not random (it
could be easily controlled, e.g., made large by using large JPEG images).

In line with our methodology, these observations point to a need of adding
more predictors into the model (e.g., those characterizing the image size) in
order to ensure a smaller, random and normally distributed error, so that the
computation of MET is more accurate.

Our Method. We first tune the αsw (≈20%) to obtain p = 6, i.e., to have 5
predictors. Table 1 shows the identified variables – in the order of their identifica-
tion – and the corresponding MET calculation on the training set. The meaning
of the identified variables is the following. The first predictor f(271, 244) corre-
sponds to the byte count in the ‘main body’ of JPEG. The second basic-block
counter f(90, 30) gives the pixel block count specifically for those blocks that
had correct prediction of the 0-th DCT coefficient. Typically, such blocks are
not costly in terms of needed bytes for encoding. At the same time, the contri-
bution of the costly blocks can be captured by the first predictor. Hence, the
f(90, 30) as second predictor can account for the additional computations that
were not accounted for by the first predictor; a similar variable in P , the total
pixel block count, f(406, 26), would give less additional information and hence
was not identified by our method.

The remaining predictors have less impact on the execution time. The third
predictor, f(101, 101), corresponds to the number of elements in the color format
minus one, e.g., 5 = 6 − 1 for the 4:1:1 format and 0 for monochromatic images.
Equivalently, it gives the number of pixel blocks per MCU block minus one. We
note that this predictor has a negative regression coefficient. The JPEG decoding
is characterized by two related cost components: a cost per pixel block (reflected
by the first two predictors) and a highly correlated cost per MCU block. The
more pixel blocks fit into one MCU, the less overhead per pixel block has the
MCU processing and this presumably explains why the found coefficient is neg-
ative. The fourth identified predictor, f(80, 81), counts the number of ‘padded’
image dimensions, X and Y, i.e., the dimensions which are not exactly propor-
tional to the MCU size (16 or 8 pixels). When an image has such dimensions, less
processing is required and less data copying for ‘partial’ MCU blocks, which pre-
sumably explains the negative coefficient for this predictor. Finally, the predictor
f(409, 410) is zero for colored images. This predictor counts the total number of
MCUs in monochromatic images and its impact is presumably complementary
to that of f(101, 101).

The obtained pragmatic MET is 26696, which, as we expected, exceeds 23643,
the observed maximal time. For the MET, we used the X+ and X− observed in
the measurements. We recall that the pragmatic MET is likely to incur extra
overestimation by including unfeasible paths. In fact, this is presumably the case
for the presented model, as the calculation in Table 1 may combine a relatively



60 P. Poplavko et al.

Table 1. Stepwise regression results in the training set

p b− b+ X− X+ (bX)+

(Constant) 409.660 637.29 1 1 637

f(271, 244) 0.010 0.011 3688 1818500 19752

f(90, 30) 0.055 0.070 28 27215 1917

f(101, 101) −49.506 −11.530 0 5 0

f(80, 81) −113.010 −26.009 0 2 0

f(409, 410) 0.013 0.022 0 192280 4150

ε+ − − − − 240

Pragmatic MET − − − − 26696

large byte and block count that is typically required for colored images with
pessimistic contributions of the predictors representing monochromatic images.
With the IPET approach this possibility would be excluded and a more realistic
worst-case vector x would have been obtained. A lower bound on hypothetical
IPET results with the given model is 25764, which is calculated as the observed
maximum value of Ŷ +(n). Compared to p = 1, we see a significantly smaller error
ε+ = 240. In the test set, we saw reasonably tight overestimations from Ŷ +(n),
however, two underestimations were detected. Analyzing these two samples, we
saw that they had Cook’s distance significantly larger than all other samples.

Our quality of input data assurance procedure has moved the two samples
from the training to the test set and we re-constructed the model for p = 6.
The obtained error was ε+ = 52 and we observed a tight overestimation for all
samples. The normality test of the residual returned 26% likelihood on the train-
ing set. The MET has become less accurate, reaching 28048. This is presumably
explained by the degraded stability of regression accuracy for the bad samples;
the sample that provided X+ and maximal Y was among such samples. This
corresponded to a monochromatic image of exceptionally large size, whereas a
vast majority of other samples were color images of much smaller size. In prac-
tice, such a situation should be avoided by well prepared measurement data.
For technical reasons we could not repair the situation by adding more mea-
surements but we decided to keep the bad samples for illustrative purposes. An
observation that should be made, though, is that the instability did not result
in unsafe underestimation, but instead in a safe overestimation.

By experimenting with larger values of p, we found that the model with
p = 8 was optimal. The error ε+ was reduced to 35 and stopped improving,
thus showing saturation. With more variables, a degradation of model tightness
was observed, probably because the new parameters b started getting ‘blurred’,
showing a Δb much larger than b. The optimal p = 8 yielded 97% error normality
likelihood, with tight overestimations for all measured samples except for the bad
ones; the resulting MET was 56538, not particularly tight due to bad samples,
but safe. By (5) this estimate corresponded to Pr > 0.725 – for α = 0.05. The



Regression-Based Statistical Bounds on Software Execution Time 61

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

test set

E
xe

cu
tio

n 
Ti

m
es

 (M
cy

cl
es

)
Actual and Predicted Execution Times

Actual
alpha=0.050000
alpha=0.000050

(a) Obtained execution times (on test set)

-30 -20 -10 0 10 20 30 40
0

5

10

15

20
Residual in training set (Mcycles)

(b) residuals (on training set)

Fig. 4. Maximal regression model results for p = 8

MET estimations using the same model at Pr > 0.999725 amounts to 58859.
As it is shown in Fig. 4a, the corresponding maximal regression model showed
tight overestimations over the measurements not only for α = 0.05 but also for
α = 0.00005. In Fig. 4b, the histogram of residual error is shown that is close to
the normal distribution. This is in line with the 97% estimate of normality test
and it justifies the use of statistical formulas associated with linear regression.

6 Related Work

Historically, linear regression and other model fitting techniques have been
mostly used to predict average, not conservative, software performance in terms
of execution time, e.g., [EFH04], and energy consumption. A regression for maxi-
mal execution time was proposed in [LS09], but, unlike our work, their regression
model is not based on statistical techniques. Instead, the authors sketch an ad hoc
linear programming based approach and they admit that additional future work
is still required. In contrast to our work, all potential predictors are included in
the model, instead of a small subset of the significant ones, and therefore their
techniques presumably require many more measurements to avoid overfitting,
and more costly calculations to estimate all parameters. The coverage criteria
are based on existence of an hypothetical exact model with a large enough num-
ber of variables, which should be known, whereas we tolerate presence of error
and estimate the coverage probabilistically. On the other hand, they have showed
how a maximal regression model, such as ours, could be combined with existing
complementary WCET techniques for calculating tighter execution time bounds
than our pragmatic MET formula.

In [HJY+10], regression analysis is used in the context execution time pre-
diction. The proposed method, called SPORE, considers polynomial regression
models, as opposed to our work. Although it fundamentally differs from our
work, the SPORE method is faced with similar challenges, namely, identifying a



62 P. Poplavko et al.

relevant compact set of predictors. Two ways are proposed in [HJY+10], which
are both variants of the LASSO (least absolute shrinkage and selection operator)
[HTF09] statistical technique. However, since used for prediction, the selection
method seems to give an important weight to the cost of computing each pre-
dictor. This potentially results in eliminating relevant predictors. Furthermore,
no clear indication is given regarding the choice of the input data sample and
its impact on the accuracy of the obtained model.

Among the works on statistical WCET analysis, we only consider those that
take into account non-random input data parameters. One of the methods pro-
posed in [CSH+12] is to enumerate execution paths of the program and treat
them separately, however this approach is appropriate only for programs with
simple control flow structure. Another approach is proposed in [BCP02]. In that
work, program paths are modeled using ‘timing schema’, which split the pro-
gram into code blocks. The WCET distributions of each block are measured
separately and then the results for the different blocks are combined. However,
this approach requires executing instrumentation points together with timing
measurements, which introduces the unwanted probe effect.

7 Conclusions

In this paper, we have presented a new regression-based technique for the estima-
tion of probabilistic execution time bounds. Unlike WCET analysis techniques, it
cannot ensure safe estimates at very high probability levels, but it can be utilized
for preliminary WCET estimates and in the context of non safety-critical sys-
tems. We have described a complete methodology for model construction, which
includes an algorithm for identifying the proper model variables and an algorithm
for finding conservative model parameters. So far, this technique was tested with
only one program, a JPEG decoder, through a limited set of measurements. Nev-
ertheless, it has shown promising results, by giving tight overestimations in the
tests.

In future work, it would be interesting to combine the presented regression
technique with a complete WCET analysis flow using implicit path enumeration
techniques and to study how to model hardware effects using specially defined
predictors, similarly to [LS09]. An investigation of possible connections between
regression and extreme value theory is also needed, in order to produce high-
probability bounds, as in [CSH+12]. Finally, we observed that by putting too
many variables into the multi-variate regression analysis the estimation of model
parameters is weakened, which manifests in ‘blurred’ parameter confidence inter-
vals. Therefore, it is interesting to investigate splitting the program into blocks
characterized by a smaller set of variables and combining the results by their
joint distributions, as in [BCP02].



Regression-Based Statistical Bounds on Software Execution Time 63

References

[BCP02] Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard
real-time system. In: Proceedings of RTSS 2002, pp. 279–288. IEEE (2002)

[CSH+12] Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T.,
Kosmidis, L., Abella, J., Mezzetti, E., Quiñones, E., Cazorla, F.J.:
Measurement-based probabilistic timing analysis for multi-path programs.
In: Proceedings of ECRTS 2012, pp. 91–101. IEEE (2012)

[DS81] Draper, N.R., Smith, H.: Applied Regression Analysis, 2nd edn. Wiley,
New York (1981)

[EFH04] Eskenazi, E., Fioukov, A., Hammer, D.: Performance prediction for com-
ponent compositions. In: Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wall-
nau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 280–293. Springer, Hei-
delberg (2004). doi:10.1007/978-3-540-24774-6 25

[HJY+10] Huang, L., Jia, J., Yu, B., Chun, B.-G., Maniatis, P., Naik, M.: Predicting
execution time of computer programs using sparse polynomial regression.
In: Proceedings of NIPS 2010, pp. 883–891. Curran Associates Inc., USA
(2010)

[HTF09] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learn-
ing: Data Mining, Inference and Prediction, 2nd edn. Springer, New York
(2009)

[LS09] Lisper, B., Santos, M.: Model identification for WCET analysis. In: Pro-
ceedings of RTAS 2009, pp. 55–64. IEEE (2009)

[PAN+16] Poplavko, P., Angelis, L., Nouri, A., Zerzelidis, A., Bensalem, S., Katsaros,
P.: Regression-based statistical bounds on software execution time. Tech-
nical report TR-2016-7, Verimag Research Report (2016)

http://dx.doi.org/10.1007/978-3-540-24774-6_25


WCET Analysis by Model Checking
for a Processor with Dynamic Branch Prediction

Armel Mangean, Jean-Luc Béchennec(B), Mikaël Briday, and Sébastien Faucou

CNRS, École Centrale de Nantes, Université de Nantes, LS2N,
44000 Nantes, France

jean-luc.bechennec@ls2n.fr

Abstract. In this paper, we investigate the case for model checking
in the WCET analysis of pipelined processors with dynamic branch and
target prediction. We consider a microarchitecture inspired by the e200z4
Power 32-bit architecture, with an instruction cache, a dynamic branch
prediction mechanism, a branch target buffer (BTB) and an instruction
prefetch buffer. The conjoint operation of all these components produce
a very complex behaviour that is difficult to analyse with tight and sound
static analysis techniques. We show that model checking techniques can
actually be used to compute WCET bounds for this kind of architectures.

1 Introduction

Embedded control systems found in domains like automotive, industrial automa-
tion, or robotics, have to satisfy real-time requirements stemming from the
dynamics of the physical plant they control. To design these systems, the worst
case execution time (WCET) of the tasks must be computed. The execution time
of a task is a function of its inputs and the initial state of the microarchitecture.
As it is usually not possible to run the real system with all possible combinations
of these variables, techniques have been developed to statically estimate upper
bounds on the WCET [17].

In this context, different approaches have been investigated. One of them is
model checking. Using model checking in the context of WCET analysis has been
debated in the scientific community. In [16] it is deemed as ineffective because
of the state space explosion problem. In [14], it is claimed that it can actually
improve the precision of WCET analysis by leveraging dynamic analysis1 of
microarchitecture features. Both points actually hold: model checking allows to
compute more precise bounds but suffers from scalability issues. However, recent
results show that model checking sufficiently scales to tackle the WCET analysis
of systems based on core such as ARM7 or ARM9 [2,4].

In this paper, we investigate the case for model checking in the WCET analy-
sis of architectures typically found in embedded control systems. We consider a
core architecture inspired by the e200z4 Power 32-bit architecture. More precisely,
1 Metzner use dynamic analysis to designate techniques that analyze concrete paths

in the system, as opposed to static analysis that consider abstract paths.

c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 64–78, 2017.
DOI: 10.1007/978-3-319-66176-6 5



WCET Analysis by Model Checking for a Processor 65

we consider a microarchitecture with an instruction cache (ICache), a dynamic
branch prediction mechanism, a branch target buffer (BTB), a prefetch instruc-
tion buffer, and a 5-stage pipeline2. The conjoint operation of all these components
produce a very complex behaviour that is difficult to analyse with tight and sound
static analysis techniques. We show that model checking techniques can actually
be used to compute WCET bounds for this kind of architectures.

Contribution and Outline. To the best of our knowledge, this paper is the
first to propose an analysis integrating at the same time the ICache, the branch
target buffer, and the instruction prefetch buffer. Among the work exploring
model checking for WCET analysis, it is the first to tackle a dynamic branch
prediction mechanism. Based on this analysis, we also provide an evaluation of
the impact of dynamic branch prediction and BTB on the estimation of WCET
for embedded control systems.

The paper is organized as follows. In Sect. 2 we provide some background
and summarize related works. In Sect. 3 we describe our target microarchitec-
ture. In Sect. 4 we describe our WCET analysis framework. In Sect. 5 we give
some insights on the models developed for the dynamic analysis of the target
microarchitecture. In Sect. 6 we report an evaluation based on benchmarks. In
Sect. 7 we conclude the paper.

2 Background and Related Works

2.1 Branch Prediction Basis

In modern processors, pipelines are used to improve the instruction execution
rate by executing simultaneously different stages of several instructions at the
same time. Each cycle, one (or more in the case of superscalar processor) instruc-
tion is fetched sequentially from the memory and fed into the pipeline. When a
branch instruction is executed, the outcome (whether the branch is taken or not,
and what is the actual target) is usually not known in the lower stages of the
pipeline. Thus, bubbles3 are inserted in these stages until the address of the next
instruction is available. These delays are control hazards and have an impact on
the execution time.

Branch prediction is a set of techniques used to minimize the occurrence of
this situation. It consists in trying to predict the outcome of a branch instruction
when it gets into the pipeline in order to fetch the correct following instruction
with a high probability. The simplest form of branch prediction is static branch
prediction based on the program code only. A straightforward prediction algo-
rithm is to predict all branches as always not taken. If the prediction is correct,
no cycle is lost. If the prediction is incorrect, the lower stages of the pipeline
2 The main difference is that the e200z4 is actually a two issues statically scheduled

superscalar processor, whereas we consider a single issue processor.
3 A bubble, or pipeline stall, is a delay cycle. When a bubble enters a stage, this stage

has no activity during the current cycle.



66 A. Mangean et al.

have to be flushed to mimic the insertion of bubbles. A more efficient algorithm
widely used is to predict forward branches (conditional statements) as always
not taken and backward branches (loops) as always taken.

Dynamic branch prediction uses runtime information to further improve the
prediction accuracy. There is a wide variety of dynamic branch prediction algo-
rithms that cannot be covered here (see [5] for an overview). From now on,
we will focuses on the algorithm analysed in this paper. It is based on a set
of 2-bit saturating counter as illustrated on Fig. 1. From left to right, the four
states are usually called: taken (11), weakly taken (10), weakly not taken (01),
not taken (00). A counter is associated with a branch instruction. It is initial-
ized either statically or after the first execution of the branch. Then, the state
evolves according to the actual outcomes of the execution of the instruction: it
is incremented when the branch is taken and decremented otherwise.

01

nt

00

nt

10

t

11

t

taken

not taken

not taken

taken

not taken

taken

not taken

taken

Fig. 1. State machine of a 2-bit saturating counter. Outputs: t for taken, nt for not
taken. The initial state is implementation dependant.

Each of these counters is usually stored along with the target of the branch
instruction in an entry of a small cache memory: the BTB. A BTB entry is
commonly retrieved with a combination of index and tag computed from the
branch instruction. When the BTB is full, a replacement policy is applied to
free an entry.

2.2 Analysis of Branch Prediction Techniques

An important body of work is related to WCET analysis for processor with
dynamic branch prediction (see for instance [1,3,8,12,15]). Most of these works
focus on the analysis of branch prediction (whether a branch is taken or not)
but except for [3,8], do not take into account branch target prediction (whether
the target of the branch is in the BTB or not). Only [8] analyzes the interactions
between the BTB and the instruction prefetch buffer which is mandatory to take
into account fine grain penalty for misprediction. When this interaction is not
analyzed, a uniform penalty must be used to account for misprediction, and the
hypothesis of the timing compositionality of the architecture must be implicitly
assumed (i.e. the analysis can safely follow local worst case path only [18]). Lastly
none of these works tackle the problem of analyzing the interactions between
the ICache and the branch prediction mechanism. Our approach integrates in
a single analysis the ICache, the BTB, and the pipeline using an instruction
prefetch buffer.



WCET Analysis by Model Checking for a Processor 67

2.3 Model Checking and WCET Analysis of Processors

There is a limited body of work on model checking techniques for the WCET
analysis of processors [2,4,10,14]. In [2,4], it is shown that UPPAAL, a state-of-
the-art symbolic model checker for (networks of) timed automata, can be used
to model and analyze real-life processors. The target processor of these works
feature instruction and data caches and an in-order 5-stage pipeline without
dynamic branch prediction. Our target processor features an ICache and an in-
order 5-stage pipeline with a BTB and an instruction prefetch buffer. Our ICache
model is original, but close to the model used in [2]. Our pipeline model is fully
original, as it integrates an instruction prefetch buffer and interactions with an
original BTB model.

Following [2], to improve scalability, our analysis framework uses program
slicing to narrow the set of instructions and memory locations that must be
accurately modeled in order to compute a sound bound. To improve modularity,
we use a standalone, state-of-the-art, program slicer for binary code [13].

3 Description of the Target Microarchitecture

Our target microarchitecture is inspired by the Qorivva MPC5643L microcon-
troller [7]. It is a dual-core developed for safety critical applications of the auto-
motive domain. The architecture is based on two e200z4 Power cores [6]. The
e200z4 core is a 32-bits processor of the Power family, based on the PowerPC
instruction set. In this paper, we focus on the model of one core.

3.1 Memory Hierarchy

The Qorivva SoC classically embeds internal (S)RAM and flash. The RAM uses
a 32-bit data bus and no data cache is available on the e200z4 core. The flash
stores the program instructions and is connected to the ICache using the AHB
interface4. It supports 64-bit data bus for instruction fetch and 32-bit data bus
for CPU loads and DMA access. A burst mode allows to fill cache lines faster
by sending only the start address to the flash memory controller and get the
data flow of sequential access to memory, instead of reading one 64-bit value at
a time and then requesting the data at the following address and so on.

The ICache size is 4Kbyte with 32 bytes lines. It can be configured either has
a 2- (64 sets) or 4-ways (32 sets) associative cache. The replacement policy is
pseudo round-robin. A global register shared among sets points to the next way
to replace. The register is incremented for each cache miss modulo the number
of ways.

The cache is non-blocking so that the execution continues during a cache miss.
On a cache miss, four 64-bits memory accesses are required to fill a cache line.
These accesses are done starting with the required instruction to decrease access
4 The Advanced High-performance Bus is part of the open standard ARM-AMBA

on-chip interconnect specification.



68 A. Mangean et al.

latency. A line fill buffer stores the memory words retrieved from the memory and
the cache line is updated as soon as the line fill buffer load completes. Moreover,
a hit under fill feature is implemented to check the line fill buffer instead of
waiting for the cache line update.

3.2 Execution Pipeline and Instruction Prefetch Buffer

The e200z4 is a 2-issue static scheduling superscalar core. Instructions are exe-
cuted on a 5-stage pipeline. The fetch stage gets the instruction code from the
cache using a 64-bits memory bus. It can retrieve up to two 32-bits instruc-
tions to feed them to the decode stage. Fetched instructions are stored in a 32
bytes instruction buffer (8 32-bits instructions). When an instruction enters the
fetch stage, the program counter (PC) is updated with the address of the next
instruction to fetch. If the instruction is a branch, a BTB lookup is performed.
In case of a hit, dynamic branch prediction applies (see below). If the prediction
is to take the branch, PC gets the predicted target. Otherwise, PC gets the next
address in sequence.

The decode stage decodes up to two instructions from the instruction buffer,
determine instructions requirements and check register dependencies5. In the
case of a branch instruction, if it was not found in the BTB when entering the
fetch stage, static prediction policy is applied. If the prediction is to take the
branch, then the lower stages of the pipeline, including the instruction buffer,
are flushed and PC is updated to the target of the branch. The instruction buffer
will be refilled either at the next pipeline stall caused by a data or structural
hazard (lack of hardware resources).

The next two stages are either the execute stages or data memory accesses
stages. In the case of a branch instruction, the actual outcome of the branch
is resolved here. According to the match between the prediction and the actual
outcome, the BTB and PC are updated. If the prediction was incorrect, the
lower stages of the pipeline, including the instruction fetch buffer, are flushed
and PC is updated to the correct address. This is an in-order execution and the
last stage is the write back stage to update registers.

3.3 Branch Prediction

The branch unit integrates a fully associative 8-entry BTB. The branch unit
mixes static and dynamic prediction. Static prediction is used when the branch
is not known, i.e. not allocated in the BTB. It can be configured to use either the
always not taken (AN) policy, or the backward taken forward not taken (BTFN)
policy presented in Sect. 2.1. Dynamic prediction uses a 2-bit saturating counter.
Thus each entry of the BTB contains a tag (the full address of the branch

5 In the case where the instruction in the decode stage requires a result produced by
an instruction ahead in the pipeline, bubbles are inserted until the availability of the
result. This is a data hazard. Bypasses are used between stages to propagate results
and limits these bubbles.



WCET Analysis by Model Checking for a Processor 69

instruction), a 2-bit saturating counter and the target address. In the case of a
BTB miss, if the branch is resolved as taken, it is allocated in the BTB using a
FIFO replacement policy and its counter is initialized to weakly taken. Its target
address is also stored.

The reference manual of the e200z4 core does not provide information on the
prediction of computed branches, i.e. branches for which the target is computed
at runtime. This is typically the case of function return, switch statement, or
function pointer. In this paper, we consider that these branches are handled
in the same way as the other ones. According to this interpretation, for these
branches, the branch prediction can be correct and at the same time the target
prediction incorrect because the BTB stores the last target address of the branch.

All in all, there are 9 different outcomes for this branch prediction mecha-
nism. They are summarized in Table 1. Notice that in case of misprediction, the
instruction buffer has to be flushed. In this case, a memory access is triggered
to refill this buffer. In turn, this access can add extra latency when the target
instruction is not already in the ICache.

Table 1. The 9 different cases of branch prediction. The given penalties are lower
bound corresponding to the case where all involved instructions are already in the
ICache. +: this case triggers a flush of the instruction buffer because the branch is
predicted taken in the decode stage. ∗: this case triggers a flush of the instruction
buffer because of misprediction detected in the execute stage.

BTB Hit Miss

Prediction Taken Not taken Taken Not taken

Correct prediction Yes No Yes No Yes No Yes No

Target prediction Correct Incorrect

Penalty (in cycle) 0 2∗ 2∗ 0 2∗ 1+ 2+,∗ 0 2∗

3.4 Analyzability and Predictability

The main challenge concerning the WCET analysis of this architecture lays in
the complex interactions between the ICache, the branch prediction unit, and the
instruction prefetch buffer. To compute a safe and tight bound on the WCET,
an integrated analysis of these 3 units is required. Indeed, only an integrated
analysis allows to compute the actual sequence of memory accesses requests and
pipeline stall states produced by a given run of the program.

4 Our WCET Analysis Framework

As shown in Fig. 2, our analysis framework is built around two tools: BEST [13]
and UPPAAL [11].

BEST is a program slicing tool for binary code. It is interfaced with a dis-
assembler library for the target instruction set architecture (PowerPC 32-bit in



70 A. Mangean et al.

Complete model of 
the system

of the 
application

UPPAAL 
model of 

the 
application

UPPAAL 
model of 

the 
architecture

BEST
(Binary Executable 

Slicing Tool)

Target Architecture 
Disassembler 

Library 

UPPAAL Model 
Checker WCET

Fig. 2. The UPPAAL model of the application is generated by the BEST tool, from
the application binary file. This model is synchronized with the hand-written model of
the architecture (that does not depend on the application considered). The WCET is
then computed by model checking.

this paper). For each instruction of the program, the disassembler provides a set
of semantics information including the opcode, the arguments, the type (branch
or not), the set of used and defined registers, etc. BEST uses this information
to slice the program, with all the branch instructions as the slice criterion. The
resulting sliced program contains all and only the instructions that have an
impact on the execution flow. This sliced program is then used to produce a
control flow graph where each instruction is tagged as either in or out of the
slice. From the set of instructions in the slice, the set of useful memory locations
to analyze the control flow of the program is computed. This information is then
used to generate an UPPAAL model of the program (see Sect. 5.1). The program
slicing is a mandatory phase to limit the state space explosion problem.

The second step consists in analyzing the system with UPPAAL. UPPAAL
is a model design and verification tool for networks of timed automata (NTA).
Timed automata (TA) are finite state automata augmented with real-valued
clocks. The values of these clocks all increase at the same rate. Linear con-
straints on clocks can be used to guard transition, and clocks can be reset when
a transition is taken. In UPPAAL syntax, TA can use boolean and bounded
integer variables. These variables can be manipulated through functions speci-
fied in a language with a C-like syntax. Moreover, TA can be synchronized over
synchronous channels to form a NTA.

In our framework, we have developed a set of TA corresponding to the compo-
nents of the microarchitecture. These components interact through global vari-
ables and synchronizations. The corresponding models are briefly described in
Sect. 5. The model of the program generated by BEST is synchronized with the
models of the microarchitecture. The resulting NTA models the whole system,
hardware and software. This model contains a specific clock reset one time only,
at system startup. The model checker is then used to perform a symbolic explo-
ration of the state space of the system and computes the maximal value reached



WCET Analysis by Model Checking for a Processor 71

by this clock over all paths. Our framework (BEST, UPPAAL models and script
files) used to produce the experimental data are distributed in open-source6.

5 Models

Figures 3, 4a, b and 5 show UPPAAL models. Location labels, invariants, guards,
synchronisations and updates are displayed respectively in purple, pink, green,
cyan and blue.

5.1 Modeling the Program

The model of a program is composed of two main parts: an array of data struc-
tures that will be fed to the model of the pipeline to mimic the timing behavior,
and an automata to mimic the functional behavior.

A data structure is associated with an instruction of the program. It contains
constant information like the instruction address, the number of cycles required
to execute the instruction in the execute stage, a flag indicating whether the
instruction is a branch instruction and if applicable its target address, a flag
indicating whether the instruction is a memory access instruction and the set of
defined and used registers.

It contains also a dynamic part called the instruction runtime data structure.
For a standard instruction, it contains only the number of remaining execution
cycles. In the particular case of a branching instruction, 3 flags are also used:
whether the instruction has been predicted taken or not taken, whether the
prediction was static or dynamic, and lastly, whether the branch has actually
been taken or not taken.

The automata is built from the control flow graph of the program, as illus-
trated in Fig. 3. In this automata, each location models a breakpoint before
the execution of the corresponding instruction and each outcoming transition is
associated with the functional effect of the execution of the instruction.

The label identifies the instruction: thus BBx Insty denotes the yth instruc-
tion of the xth basic block of the program. The guard InE(Insty) tests if this
instruction is currently in the execute stage of the pipeline. The Tick signal is
used to synchronize the program model with the pipeline update. The update
of the transition calls a UPPAAL function that execute the semantics of the
instruction. It consists in updating the global variables that model the content
of the memory and the status flags of the processor. If the instruction is not part
of the slice, then the transition does no update as executing its semantics has no
influence on the temporal behavior of the system (e.g. the outgoing transition of
location BB10 Inst10 on Fig. 3). For conditional branches, two transitions are
provided, corresponding to the two cases: taken or not taken. For these transi-
tions, the guard is completed with a test to select the correct path according to
the status of the processor (e.g. nz() or !nz() on the two outgoing transition
of location BB10 Inst12 for Inst12 on Fig. 3).
6 Available at https://github.com/TrampolineRTOS/BEST.

https://github.com/TrampolineRTOS/BEST


72 A. Mangean et al.

Fig. 3. Part of an automata modeling the functional behavior of a program. The
bdnz instruction is a branch instruction that decrements a counter register (CTR) and
branches if this counter is not null. (Color figure online)

5.2 Modeling the Pipeline

The model of the pipeline is composed of a set of data structures that capture the
content of the internal memory of the components such as the pipeline stages,
the instruction buffer and the BTB; and a set of automata used to synchronize
the update of this data structures with the flow of time in order to mimic the
timing behavior of the system.

(a) Fetching process
control

(b) Pipeline exe-
cution control

Fig. 4. Automata controlling the pipeline. (Color figure online)

The first automaton (Fig. 4a) is associated with the (pre)fetching process.
When the instruction buffer (IBuff) is not full, it tries to fetch an instruction from
the instruction cache. When an instruction is fetched, the function ibuff update
updates the instruction buffer and the BTB. The instruction buffer is an array
of instruction runtime data structures. The BTB is a circular buffer with each
entry composed of a tag and a 2-bit saturating counter. Notice that the target
adresses are not actually stored in the BTB because they are already in the



WCET Analysis by Model Checking for a Processor 73

program automata. The pc update updates the PC. It performs a BTB lookup
in the case of a branch instruction.

The second automaton (Fig. 4b) controls the execution of the pipeline.
Thanks to the invariant clck <= 1 it generates a Tick signal every one unit
of time. This is used to synchronize the NTA to the frequency of the pipeline.
It also calls the pipeline update function used to update the data structure
and variables associated with the pipeline stage following the fetch stage. Each
pipeline stage is associated with an instruction runtime data structure. Updat-
ing the stages consists in making instructions progress by updating the data
structures from stage to stage (including the instruction prefetch buffer), taking
into account the possible stall cycles due to data or structural hazards.

Static branch prediction is done when a branch instruction enters the decode
stage, if no dynamic branch prediction was available for this instruction at the
fetch stage. If the prediction is taken, the lower stages are flushed and PC is
updated.

Branch target resolution is done when a branch instruction enters the execute
stage. This encompass a potential BTB update, and, in case of misprediction, a
flush of the lower stages and a PC update.

5.3 Modeling the Memory Hierarchy

The model of the memory hierarchy is composed of a set of data structures
and global variables to track the content of the instruction cache and store the
content of the useful memory locations (as computed during the program slicing
step), and a set of automata to mimic the access times. In this paper, we focus
on branch prediction so for the sake of clarity we will not give too many details
on these models.

Fig. 5. Instruction cache access time model. (Color figure online)

The automata used to mimic the ICache access time is shown Fig. 5. When a
fetch request is received, a cache look up and update is performed by the function
icache set. If the instruction is present in the cache or in the fill buffer, the
request is acknowledged. Otherwise, a request is sent to the Flash memory. As



74 A. Mangean et al.

explained in Sect. 3.1, the instruction cache line fill requires 4× 64 bits memory
transactions from the flash, using a burst access. The request is acknowledged
before the end of the burst, as soon as the instruction is in the fill buffer. At the
end, a synchronization on the Tick signal enforces the cycle required to transfer
an instruction from the cache to the fetch stage.

6 Experimental Results

We have conducted a set of experiments with the framework described above.
The main goals of these experiments are (i) to assess the applicability and scala-
bility of model checking for computing WCET estimation for embedded control
systems; and (ii) to evaluate the impact of the branch prediction policy on the
WCET.

We used the Mälardalen WCET benchmarks [9] to generate the programs. We
excluded certain programs to account for the current limitations of our frame-
work:(i) TAs are not fit to model recursive programs; (ii) our model of the
architecture does not manage floating point arithmetic instructions; (iii) BEST
does not manage binary executables with indirect branch instructions other than
function return instructions (i.e. switch-case statements and function pointers);
(iv) BEST does not manage slices where instructions depend each others through
local variables located on the program stack. This point will be addressed in the
future.

We built the binaries with Gcc 5.3.1. Without optimization, Gcc generates
code where local variables are loaded from and stored to the stack frame each
time they are used. Such binary executables can not be processed by the current
version of our framework. Options -O1 and -O2 force Gcc to output optimized
code that uses registers to load and store local variables. Thus we created two
versions of each of the 14 Mälardalen benchmarks fitting our constraints, except
for cnt.c, insertsort.c and ud.c which make use of the program stack when
compiled with option -O1. All in all, we have built 25 binaries and for each one
we ran our framework to compute its WCET on an Intel Core i7-3770 (4 cores,
3.40 GHz) with 8 GiB of RAM running Debian 9 (64-bit, Linux 4.9). Each time,
we also collected the number of explored states, the time taken by UPPAAL
to perform the exploration, and the amount of memory used. The results are
summarized in Table 2 and Fig. 6.

Table 2 displays raw data from UPPAAL for models implementing the static
always not taken branch prediction policy (AN) which is the worst wrt. resource
consumption during the analysis. The worst case for each column is highlighted
in bold. It is obtained for the binary built from the program fir.c compiled with
-O1. Even in this case, both the analysis time (less than 5 s) and the amount
of memory used (less than 640 MiB) are very reasonable. Our conclusion is that
model checking seems to be a promising solution to compute WCET for this
type of system. Further experiments should be performed to identify the limits
of the scalability of the approach.

Figure 6 presents the impact of the branch prediction policy on the WCET
(Fig. 6a) and the state space (Fig. 6b). Each bar represents the ratio between



WCET Analysis by Model Checking for a Processor 75

Table 2. Consumption of resources by the analysis for the AN prediction policy.

Program States explored CPU time (ms) Memory (KiB)

bs-O1 586 10 12684

bs-O2 451 0 12140

bsort100-O1 12457 130 29192

bsort100-O2 11982 130 27868

cnt-O2 11279 110 30504

crc-O1 157612 1600 550048

crc-O2 144653 1570 494760

expint-O1 5967 40 22236

expint-O2 4118 40 13860

fdct-O1 6823 50 23804

fdct-O2 7080 50 25532

fibcall-O1 949 10 12104

fibcall-O2 590 0 11000

fir-O1 728321 4770 655628

fir-O2 692704 4430 608412

insertsort-O2 2995 20 14116

janne complex-O1 779 10 12512

janne complex-O2 594 0 12572

jfdctint-O1 11121 100 31636

jfdctint-O2 11349 100 33796

ns-O1 32482 250 44964

ns-O2 31229 230 40276

prime-O1 12072 80 26560

prime-O2 12056 80 25564

ud-O2 11305 380 491300

two policies: BTFN over AN in dark gray, BTFN+BTB over BTFN in light
gray, and BTFN+BTB over AN in medium gray. For instance the ratio between
the WCET computed for program expint-O1.c with the policy BTFB+BTB
(1944 cycles) and the WCET computed for the same program with the policy
AN (2304 cycles) is 84% (medium gray bar in slot expint-O1 of Fig. 6a). When
a bar is above 100%, it means that the numerator policy performs worst than
the denominator policy. On the contrary, if the bar is below 100%, it means that
it performs better.

Concerning the WCET, we first remark that most ratios are smaller than
100%. It means that branch prediction policies designed to improve the average
case also have a positive impact on the WCET. Second, we remark that no
branch prediction policy dominates the others: for each case, we have at least



76 A. Mangean et al.

(a) WCET ratios

(b) State space ratios

Fig. 6. Impact of the branch prediction policy on the WCET and the size of the state
space. Each bar represent the ratio between two policies for a given binary: BTFN
over AN in dark gray, BTFN+BTB over BTFN in light gray, BTFN+BTB over AN
in medium gray.

one bar below the 100% threshold and one bar above. In the context of WCET
analysis, it means that there is no worst policy that could be used to always
estimate a worst case upper bound.



WCET Analysis by Model Checking for a Processor 77

Concerning the state space, we remark that adding the BTB to the model of
the architecture does not results in an increase of its size. On the contrary we
note that the average number of states decreases while using a model simulating
a more complex behavior. For example, Fig. 6b shows a decrease of the state
space when using BTFN+BTB over AN policies (medium gray bars) up to 35%
(for bsort100-O1), with an average around 15%. A better prediction policy
decreases the number of control hazards and thus the number of configurations
of the lower stages of the pipeline, thus reducing the size of the state space.
In addition, we note that the WCET bound and the size of the state space do
not always change in the same direction. For instance, in the case of fdct-O2,
using BTFN+BTB over BTFN (light gray bar) increases the WCET bound (bar
above 100%) but decreases the size of the state space (bar below 100%). Further
experiments should be performed to collect lower level events (eg. cache accesses,
memory accesses, flushes of the prefetch buffer, etc.) to better understand this
type of phenomenon.

7 Conclusion

In this paper we show that model checking can be used to analyze the complex
interactions between the components of a microarchitecture used in safety critical
embedded control systems. We focus on the interaction between the instruction
cache, the branch prediction unit, and a pipeline with an instruction buffer.
Model checking provides a solution to perform an integrated analysis of the
whole system. This integrated analysis allows to explore only feasible traces
of the system and to compute the actual sequence of memory access requests
and pipeline stall states corresponding to each trace. Our result are promising
concerning the scalability of the approach for such systems.

In future works, we shall extend our analysis framework to support programs
that use the stack to store data that impact the control flow. We also want to
produce results using more complex benchmarks, and explore the impact of non-
determinism concerning the initial state of the micro-architecture (eg. cache and
BTB state). We will also tend toward having a model aligned with the actual
e200z4 core (i.e. adding a second way to the pipeline) in order to validate our
model against a real system through microbenchmarks. Our long term objective
is to model and analyze a multiprocessor architecture based on e200z4 core such
as the MPC5643L.

References

1. Bate, I., Reutemann, R.D.: Worst-case execution time analysis for dynamic branch
predictors. In: 16th Euromicro Conference on Real-Time Systems, ECRTS, pp.
215–222 (2004)

2. Cassez, F., Béchennec, J.: Timing analysis of binary programs with UPPAAL. In:
13th International Conference on Application of Concurrency to System Design,
ACSD, pp. 41–50 (2013)



78 A. Mangean et al.

3. Colin, A., Puaut, I.: Worst case execution time analysis for a processor with branch
prediction. Real-Time Syst. 18(2/3), 249–274 (2000)

4. Dalsgaard, A.E., Olesen, M.C., Toft, M., Hansen, R.R., Larsen, K.G.: META-
MOC: modular execution time analysis using model checking. In: 10th Interna-
tional Workshop on Worst-Case Execution Time Analysis, WCET, pp. 113–123
(2010)

5. Engblom, J.: Analysis of the execution time unpredictability caused by dynamic
branch prediction. In: 9th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, RTAS, pp. 152–159 (2003)

6. Freescale semiconductors/NXP: e200z4 Power ArchitectureTM Core Reference
Manual, rev. 0 edn., October 2009

7. Freescale semiconductors/NXP: MPC5643L Microcontroller Reference Manual,
rev, 10 edn., June 2013

8. Grund, D., Reineke, J., Gebhard, G.: Branch target buffers: WCET analysis frame-
work and timing predictability. J. Syst. Architect. 57(6), 625–637 (2011)

9. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The Mälardalen WCET bench-
marks - past, present and future. In: International Workshop on Worst-Case Exe-
cution Time Analysis (WCET) (2010)

10. Gustavsson, A., Ermedahl, A., Lisper, B., Pettersson, P.: Towards WCET analysis
of multicore architectures using UPPAAL. In: 10th International Workshop on
Worst-Case Execution Time Analysis, WCET, pp. 101–112 (2010)

11. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997)

12. Maiza, C., Rochange, C.: A framework for the timing analysis of dynamic branch
predictors. In: 19th International Conference on Real-Time and Network Systems,
RTNS, pp. 65–74 (2011)

13. Mangean, A., Béchennec, J.L., Briday, M., Faucou, S.: BEST: a binary exe-
cutable slicing tool. In: 16th International Workshop on Worst-Case Execution
Time Analysis, WCET, pp. 7:1–7:10 (2016)

14. Metzner, A.: Why model checking can improve WCET analysis. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 334–347. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-27813-9 26

15. Puffitsch, W.: Efficient worst-case execution time analysis of dynamic branch pre-
diction. In: 28th Euromicro Conference on Real-Time Systems, ECRTS, pp. 152–
162 (2016)

16. Wilhelm, R.: Why AI + ILP Is Good for WCET, but MC Is Not, Nor ILP Alone. In:
Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 309–322. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24622-0 25

17. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P.P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem - overview of methods and survey of tools. ACM Trans. Embedded Comput.
Syst. 7(3), 36:1–36:53 (2008)

18. Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M., Ferdinand, C.:
Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. IEEE Trans. CAD Integr. Circuits Syst. 28(7), 966–978 (2009)

http://dx.doi.org/10.1007/978-3-540-27813-9_26
http://dx.doi.org/10.1007/978-3-540-24622-0_25


Factor-Based C-AMAT Analysis for Memory
Optimization

Qi Yu, Libo Huang(B), Cheng Qian, Jianqiao Ma, and Zhiying Wang

College of Computer, National University of Defense Technology, Changsha, China
{yuqi13,libohuang,qiancheng,majianqiao12,zywang}@nudt.edu.cn

Abstract. The “memory problem” promotes researches on improving
performance of memory systems, as well as researches on proposing more
accurate memory metrics. C-AMAT, an extension of AMAT that takes
memory concurrency into consideration, can evaluate the performance of
modern memory systems more accurately. However, compared to AMAT,
the method for calculating C-AMAT is more complicated, besides, addi-
tional detecting logic and registers are required to measure parameters
of C-AMAT, which incur high hardware overhead for this metric. In
this paper, we propose Factor-Based C-AMAT (FC-AMAT), an analy-
sis model based on C-AMAT. FC-AMAT divides a memory system into
factors according to actual research demands, and uses factor’s-first C-
AMAT to evaluate effects of optimizations applied to the memory sys-
tem. By selecting factor’s C-AMAT, FC-AMAT can reduce the hard-
ware overhead for measuring its parameters, meanwhile, it guarantees
an acceptable evaluation accuracy through a rigorous check. Simulations
with varied cache configurations were conducted to verify the usefulness
of FC-AMAT. Experimental results show that FC-AMAT can simplify
the detecting logic and reduce the storage cost for recording memory
access phases, without sacrificing obvious evaluation accuracy, demon-
strating the effectiveness of FC-AMAT.

Keywords: FC-AMAT · C-AMAT · Correlation coefficient · Evaluation
accuracy

1 Introduction

With expanding disparities between processor and memory speeds, the “memory
wall” problem [9,13] emerges and memory rather than processor has become the
leading performance bottleneck in modern computing systems. A number of
techniques, including conventional techniques and advanced methods, have been
proposed to alleviate the “memory wall” problem. Conventional techniques are
mainly designed to reduce the memory access latency, while advanced methods
like pipelined cache [1], nonblocking cache [4], mainly focus on improving memory
system concurrency. These methods allow tens or even hundreds of memory
accesses to coexist in the memory hierarchy simultaneously, thus, a single cache
miss is no longer a key performance factor of the overall memory system [10].
c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 79–91, 2017.
DOI: 10.1007/978-3-319-66176-6 6



80 Q. Yu et al.

As the performance of memory systems has a dominant impact on the overall
performance (represented by IPC), how to measure and evaluate memory sys-
tems has become an important issue in the high performance computing com-
munity. Conventional memory performance metrics, such as MR (Miss Rate),
AMP (Average Miss Penalty) and AMAT (Average Memory Access Time), are
designed to measure a particular component in the memory system or measure
accesses based on sequential single-access activities [3]. Therefore, they are inad-
equate for evaluating concurrent memory access activities, which are common
in modern memory systems that adopt designs like pipelined cache, nonblocking
cache, et cetera.

To tackle the evaluation problem, X.H. Sun et al. proposed a new memory
metric called C-AMAT (Concurrent Average Memory Access Time) [10]. It is an
extension of AMAT that takes memory concurrency into consideration. C-AMAT
introduces two new parameters, namely hit concurrency and miss concurrency,
as well as a new concept called pure miss. Pure miss is defined as a miss access
that contains at least one miss cycle with no hit access activity [10]. As C-AMAT
considers both memory locality and memory concurrency, it can evaluate modern
memory systems more accurately and comprehensively.

The advantage of C-AMAT lies in its effectiveness for evaluating memory
system designs. However, compared to AMAT, the method for measuring its
parameters is more complicated. According to [10], to calculate C-AMAT, addi-
tional hardware resources are needed to measure its two parameters, namely hit
concurrency and miss concurrency. More specifically, a hit concurrency detector
and a miss concurrency detector are required. The hit concurrency detector is
a monitoring unit that counts total hit cycles and records each hit phase (the
starting cycle and the ending cycle of each hit event), and the miss concur-
rency detector has similar functionality. The hit/miss concurrency detector is
composed of some detecting logic and registers. Detecting logic detects hit/miss
events, while registers are used to count total hit/pure miss cycles as well as
record each hit/miss phase, which may incur high hardware overhead for this
metric. Based on the above analysis, we propose Factor-Based C-AMAT (FC-
AMAT), an analysis model based on C-AMAT. FC-AMAT divides a memory
system into factors and uses factor’s-first C-AMAT to evaluate effects of opti-
mizations applied to the memory system. By selecting factor’s C-AMAT, FC-
AMAT can reduce the hardware overhead for measuring its parameters, mean-
while, it guarantees an acceptable evaluation accuracy by checking whether the
factor’s C-AMAT meets certain requirement. Simulations with varied cache con-
figurations were conducted to verify the usefulness of FC-AMAT. Experimental
results show that FC-AMAT can simplify the detecting logic and reduce the
storage cost for recording memory access phases, without sacrificing obvious
evaluation accuracy, demonstrating the effectiveness of FC-AMAT.

The rest of this paper is organized as follows. We introduce the principle
of FC-AMAT in Sect. 2. In Sect. 3, we introduce experiment methodology and
setup. The analysis of experimental results is shown Sect. 4. Related work is
briefly discussed in Sect. 5 and conclusion is discussed in Sect. 6.



Factor-Based C-AMAT Analysis for Memory Optimization 81

2 FC-AMAT Analysis Model

As our work is directly based on C-AMAT, we first introduce the definition of
C-AMAT. It is defined as total memory access cycles divided by total number
of memory accesses:

C-AMAT =
TMemCycle

CMemAcc
(1)

TMemCycle represents total memory access cycles, CMemAcc represents total num-
ber of memory accesses. Note that the memory access cycles are different from
CPU cycles, only those CPU cycles in which there is at least one outstanding
memory access can be counted as memory access cycles. Besides, TMemCycle is
counted in overlapping mode, in other words, when several memory accesses
coexist during the same cycle, TMemCycle increases by only one [10]. A more
useful and detailed equation of C-AMAT is expressed as follows:

C-AMAT =
H

CH
+ pMR× pAMP

CM
(2)

H represents hit latency, same to that in AMAT. CH and CM represent hit con-
currency and miss concurrency respectively. pMR is different from conventional
MR, which is redefined as the number of pure misses divided by the number of
accesses [10]. pAMP is the average pure miss cycles per pure miss access.

According to Eq. 2, CH and CM are required to calculate C-AMAT. The
method for calculating the average CH and CM is provided in [10], where two
detectors, namely hit concurrency detector and miss concurrency detector, are
added to the original hardware structure. These two detectors both consist of
detecting logic and registers. The detecting logic in hit concurrency detector
monitors whether there are cache tag query activities and registers are used to
count total hit cycles and record hit phases. Total number of registers required
can be calculated in the following way: each hit phase needs two registers (can be
also called a register pair, one records the starting cycle and the other records the
ending cycle), once the cycles in each hit phase (cycles fall in between starting
cycle and ending cycle) are added to total hit cycles, the corresponding register
pair can be freed and reused for next hit phase, therefore, it is unnecessary for
allocating a new register pair for each hit phase. The number of register pairs
can be selected as the maximum number of hit accesses coexist during the same
cycle, which is an empirical value, we set it 20 in this paper. Besides, one long-bit
sized register (e.g. 64-bit register) is needed to count total hit cycles.

The detecting logic in miss concurrency detector monitors whether there are
new requests arriving at MSHR (Missing Status Holding Register) and registers
are used to count total pure miss cycles and record miss phases. The method
for calculating total number of registers required in miss concurrency detector
is similar to that in hit concurrency detector, except that the number of register
pairs can be selected as the maximum number of miss accesses coexist during
the same cycle, which equals to the number of MSHR entries times the number
of targets in a MSHR entry. Based on the above analysis, we can estimate the



82 Q. Yu et al.

hardware resources for calculating the average CH and CM , which incur high
hardware overhead for C-AMAT.

Different memory systems (also called research targets in this paper) can be
divided into different factors. In this paper, factor refers to a component of a
target memory system or part of memory accesses in certain memory hierarchy.
For example, if L1 cache is the target memory system, L1 instruction cache and
L1 data cache can be its factors; if L2 cache (unified cache) is the research target,
instruction accesses and data accesses can be its factors. Similarly, we regard the
C-AMAT of the target memory system as the overall C-AMAT and regard the
C-AMAT of a component or part of memory accesses as factor’s C-AMAT. The
overall C-AMAT generally has higher evaluation accuracy than factor’s C-AMAT
for its comprehensiveness. However, calculating the overall C-AMAT also means
higher hardware overhead, which is shown in Fig. 1.

Fig. 1. Structures for measuring CH and CM of the overall C-AMAT and factor’s
C-AMAT

We can see from Fig. 1 that the memory system is divided into two factors. To
calculate factor2’s C-AMAT, the detecting logic (gray lines in this figure) needs
only to be added to factor2 (detects corresponding signal) and some registers are
required to record memory access phases. However, to calculate the overall C-
AMAT, detecting logic needs to be added to both factor1 and factor2, besides,
more registers are required. We take L1 cache as an example, whose default
configurations are show in Table 1. The L1 cache consists of instruction cache and
data cache, which can be regarded as its two factors. To calculate data cache’s
C-AMAT, hit detecting logic and miss detecting logic should be added to data
cache. Actually, the wiring from various detecting signals is more complicated in
real chip design. In addition, according to the above analysis, 20 register pairs
are needed to record hit access phases, 160 register pairs (8 MSHR entries times
20 targets per entry) are required to record miss access phases, 2 registers count



Factor-Based C-AMAT Analysis for Memory Optimization 83

total hit cycles and total pure miss cycles respectively. Therefore, 181 register
pairs are required in total, assume each register is 64-bit, this will incur 2.8 KB
storage cost. As instruction cache has the same configurations with data cache,
calculating the overall C-AMAT doubles the detecting logic as well as number
of register pairs, which means higher hardware overhead.

Based on the observation, we propose FC-AMAT. The key idea of FC-AMAT
is using factor’s-first C-AMAT to evaluate effects of optimizations applied to a
memory system if the factor’s C-AMAT meets certain requirement. By using the
factor’s C-AMAT, FC-AMAT reduces the hardware overhead (include detecting
logic and storage cost), meanwhile, it guarantees an acceptable evaluation accu-
racy by checking whether the factor’s C-AMAT meets the requirement. We can
select the appropriate factor’s C-AMAT in the following way:

(1) If an optimization is applied to a factor of the memory system, we can use
the optimized factor’s C-AMAT if it meets the requirement;

(2) If an optimization is applied to the whole memory system, we can look for a
leading factor which has more influence on the overall memory system and
choose its C-AMAT if it meets the requirement;

(3) If we cannot find the ideal factor’s C-AMAT or the factor’s C-AMAT does
not meet the requirement, the overall C-AMAT is selected.

As memory systems have become a key factor of the overall performance, the
memory performance should influence and correlate to the overall performance
[12], an appropriate metric should be chosen to reflect this correlation relation.
We use correlation coefficient [7] to describe the variation similarity between
C-AMAT (represents the memory performance) and IPC (represents the overall
performance), which we regard as the evaluation accuracy of C-AMAT in this
paper. The correlation coefficient is a value between −1 and 1. The higher the
absolute of correlation coefficient is, the closer the relation between the two
variables is [7]. The mathematical definition of correlation coefficient is shown
as follows:

rxy =
∑

XY − (
∑

X)(
∑

Y )
n√

[(
∑

X2 − (
∑

X)2

n )(
∑

Y 2 − (
∑

Y )2

n )]
(3)

where, array X and Y are sampling points for two variables, n represents number
of sampling points.

If the correlation coefficient is larger than 0, there is a positive relation
between the two variables, in other words, if one variable increases, the other
also increases. Otherwise, if it is less than 0, there is a negative relation between
the two variables, that means if one variable increases, the other decreases. Gen-
erally speaking, it is believed that the two variables have a strong relation if the
absolute value is greater than 0.8, and have a dominant relation if the absolute
value is greater than 0.9, otherwise if less than 0.5, the relation is weak [11].

Based on the above analysis, we propose the reference standard of require-
ment. Since there is a strong relation between the two variables if the absolute
value is greater than 0.8, we regard 0.8 as the reference standard, which means



84 Q. Yu et al.

if the evaluation accuracy of factor’s C-AMAT is greater than or equal to 0.8,
we think it meets the requirement, otherwise, the overall C-AMAT is used to
evaluate the performance of a memory system.

3 Methodology

We adopted a detailed out-of-order superscalar CPU model in the GEM5 sim-
ulator [2] whose default configurations are shown in Table 1. Each experimental
configuration is based on the default and only one parameter is changed in the
simulation. The detailed experimental configurations are shown in Table 2. Each
configuration is simulated in single core mode.

Table 1. Default processor and cache configuration parameters

Parameters Values

Processor 1 core, 4GHz, 4-issue width

Function units 6 IntALU: 1 cycle; 1 IntMul: 3 cycles; 2 FPAdd: 2 cycles; 1 FPCmp:
2 cycles; 1 FPMul: 4 cycles; 1 FPDiv: 12 cycles; 1 FPCvt: 2 cycles

ROB and LSQ size ROB 64, LQ 48, SQ 24

L1 caches 32KB inst/ 32KB data, 2-way, 64B line, 4-cycle hit latency inst/
4-cycle data, ICache 8 MSHR entry, 20 targets per entry
DCache 8 MSHR entry, 20 targets per entry

L2 cache 512KB, 16-way, 64B line, 24-cycle hit latency
16 MSHR entry, 12 targets per entry

DRAM latency/width 240-cycle access latency/64bits

There are three groups of configurations. The first group includes C1–C13
and they are basic L1 cache (include instruction cache and data cache) configu-
rations, which only change cache size and associativity. These configurations can
be further divided into three subgroups. The first subgroup consists of C1–C5,
in which L1 cache configurations (size and associativity) are changed. C6–C9
comprise the second subgroup, in which L1 instruction cache configurations are
changed. The third subgroup is composed of C10–C13, which changes L1 data
cache configurations. The second group, including C14–C17, are basic L2 cache
configurations which also change cache size and associativity. The third group,
which consists of C18–C20, changes memory access parallelism by changing the
number of MSRH entries. These are advanced cache configurations, which take
the effect of non-blocking cache into consideration. By changing memory system
configurations, it is possible to observe the overall/factor’s C-AMAT and IPC
variation trend.

The simulations were conducted with 29 benchmarks from SPEC CPU2006
suite [8], 2 benchmarks in the set were omitted because of compatibility issues
with the simulator. The benchmarks were complied using GCC 4.3.2 with -O2
optimization and the suite-provided reference input sizes were adopted. For these



Factor-Based C-AMAT Analysis for Memory Optimization 85

Table 2. A series of detailed configurations

ID Description Changed parameter

1 L1: 32 KB, 2way; L2: 512 KB, 16way Default config.

2 L1: 32 KB, 4way; L2: 512 KB, 16way L1 cache assoc.

3 L1: 32 KB, 8way; L2: 512 KB, 16way L1 cache assoc.

4 L1: 16 KB, 2way; L2: 512 KB, 16way L1 cache size

5 L1: 64 KB, 2way; L2: 512 KB, 16way L1 cache size

6 L1: I$32KB, 4way; D$32 KB, 2way; L2: 512 KB,16way Only ICache assoc.

7 L1: I$32KB, 8way; D$32 KB, 2way; L2: 512 KB,16way Only ICache assoc.

8 L1: I$16KB, 2way; D$32 KB, 2way; L2: 512 KB,16way Only ICache size

9 L1: I$64KB, 2way; D$32 KB, 2way; L2: 512 KB,16way Only ICache size

10 L1: I$32KB, 2way; D$32 KB, 4way; L2: 512 KB,16way Only DCache assoc.

11 L1: I$32KB, 2way; D$32 KB, 8way; L2: 512 KB,16way Only DCache assoc.

12 L1: I$32KB, 2way; D$16 KB, 2way; L2: 512 KB,16way Only DCache size

13 L1: I$32KB, 2way; D$64 KB, 2way; L2: 512 KB,16way Only DCache size

14 L1: 32 KB, 2way; L2: 256 KB, 16way L2 size

15 L1: 32 KB, 2way; L2: 1024 KB, 16way L2 size

16 L1: 32 KB, 2way; L2: 512 KB, 8way L2 assoc.

17 L1: 32 KB, 2way; L2: 512 KB, 32way L2 assoc.

18 L1: 32 KB, 2way, MSHR 1; L2: 512KB, 16way MSHR entry

19 L1: 32 KB, 2way, MSHR 2; L2: 512KB, 16way MSHR entry

20 L1: 32 KB, 2way, MSHR 4; L2: 512KB, 16way MSHR entry

simulations, we first warmed up the simulations for 10 million instructions, then
collected statistics based on the following 100 million instructions.

4 Results

We conducted experiments based on three groups of configurations. In each
group, we run simulations for 29 benchmarks. Note that those benchmarks whose
IPC remain unchanged or change in a very small range across different config-
urations were omitted. Because their C-AMAT may not remain unchanged or
change by the same extent as IPC, in this case, their correlation coefficients may
be very low or even zero, which is meaningless. For each group, we calculated
the evaluation accuracy of the overall C-AMAT and the factor’s C-AMAT. For
all selected benchmarks, we calculated the average evaluation accuracy of these
benchmarks. Then the average values were compared to the standard to check
whether the factor’s C-AMAT meets the requirement. In addition, the hardware
overhead (include detecting logic and registers) for calculating C-AMAT was
also compared.



86 Q. Yu et al.

4.1 Basic L1 Cache Configurations

We regard L1 cache as the research target, instruction cache and data cache
are two factors, and cache configuration changes can be seen as optimizations
applied to them. Therefore, the overall C-AMAT is the C-AMAT of L1 cache,
and the factor’s C-AMAT includes C-AMAT of instruction cache and data cache.
In the following figures, EA represents evaluation accuracy, EA L1 represents the
evaluation accuracy of the overall C-AMAT, while EA I and EA D represent the
evaluation accuracy of the factor’s C-AMAT.

Basic L1 Instruction Cache Configurations. Only L1 instruction cache
configurations are changed in this subgroup and instruction cache is regarded as
the optimized factor. Based on the rules of FC-AMAT, the C-AMAT of instruc-
tion cache is expected to be selected and checked first. The average evaluation
accuracy of instruction cache’s C-AMAT are −0.991 and −0.995 for changing
size and changing associativity respectively, with the absolute value larger than
0.8, its C-AMAT meets the requirement. As a comparison, we also calculate the
evaluation accuracy of overall C-AMAT and data cache’s C-AMAT. The detailed
results are shown in Fig. 2.

-1
-0.95
-0.9

-0.85
-0.8

-0.75
-0.7

pe
rlb

en
ch gc
c

ga
m
es
s

m
cf

ze
us
m
p

gr
om

ac
s

ca
ct
us
A
D
M

na
m
d

go
bm

k
de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

hm
m
er

sj
en
g

G
em

sF
D
TD

lib
qu
an
tu
m

h2
64

re
f

to
nt
o

om
ne
tp
p

as
ta
r

w
rf

sp
hi
nx
3

sp
ec
ra
nd

co
rr

el
at

io
n 

co
ef

fic
ie

nt

EA_L1 EA_I EA_D

(a) EA under changing size

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

pe
rlb

en
ch

bz
ip
2

gc
c

ga
m
es
s

m
cf

ze
us
m
p

gr
om

ac
s

na
m
d

go
bm

k
de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

hm
m
er

sj
en
g

G
em

sF
D
TD

h2
64

re
f

to
nt
o

om
ne
tp
p

w
rf

sp
hi
nx
3

sp
ec
ra
nd

co
rr

el
at

io
n 

co
ef

fic
ie

nt

EA_L1 EA_I EA_D

(b) EA under changing assoc.

Fig. 2. The results of changing L1 instruction cache configurations

It can be seen that the C-AMAT of instruction cache has similar evaluation
accuracy with the overall C-AMAT for most selected benchmarks, which is much
higher than that of data cache’s C-AMAT for some benchmarks. The average
evaluation accuracy of the overall C-AMAT are −0.999 and −1 respectively,
we can see that the evaluation accuracy gap between the overall C-AMAT and
instruction cache’s C-AMAT is negligible. In terms of hardware overhead, cal-
culating the overall C-AMAT needs two sets of detecting logic, one for detecting
instruction access events, the other for detecting data access events. However,
calculating instruction’s C-AMAT needs only one set of detecting logic. As for
storage cost, calculating instruction cache’s C-AMAT needs 181 register pairs
(see the example in Sect. 2). However, as instruction cache has the same config-
urations with data cache, calculating the overall C-AMAT doubles the number



Factor-Based C-AMAT Analysis for Memory Optimization 87

of register pairs. Therefore, selecting instruction’s C-AMAT can simplify the
detecting logic and reduce the storage cost by 50%.

Basic L1 Data Cache Configurations. Only L1 data cache configurations
are changed in this subgroup, thus data cache is the optimized factor and its C-
AMAT should be checked first. Its average evaluation accuracy are −0.999 and
−0.987 for changing size and changing associativity respectively. According to
rules of FC-AMAT, data cache’s C-AMAT meets the requirement. The detailed
results are shown in Fig. 3.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

pe
rlb

en
ch

bz
ip
2

gc
c

ga
m
es
s

m
cf

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
A
D
M

le
sl
ie
3d

na
m
d

go
bm

k
de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

hm
m
er

G
em

sF
D
TD

h2
64

re
f

to
nt
o

om
ne
tp
p

as
ta
r

w
rf

sp
hi
nx
3

sp
ec
ra
nd

co
rr

el
at

io
n 

co
ef

fic
ie

nt

EA_L1 EA_I EA_D

(a) EA under changing size

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

pe
rlb

en
ch

bz
ip
2

gc
c

bw
av
es

ga
m
es
s

m
cf

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
A
D
M

le
sl
ie
3d

na
m
d

go
bm

k
de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

hm
m
er

G
em

sF
D
TD

h2
64
re
f

to
nt
o

om
ne
tp
p

as
ta
r

w
rf

sp
hi
nx

3

co
rr

el
at

io
n 

co
ef

fic
ie

nt

EA_L1 EA_I EA_D

(b) EA under changing assoc.

Fig. 3. The results of changing L1 data cache configurations

We can see that the data cache’s C-AMAT has almost the same evaluation
accuracy with the overall C-AMAT for most benchmarks, much higher than that
of instruction cache for most benchmarks. This is because the configurations
of instruction cache remained unchanged during simulations and its C-AMAT
varied in a very small range, which failed to match the changing trend of IPC.
The average evaluation accuracy of the overall C-AMAT are −0.999 and −0.989
respectively and the evaluation accuracy gap between the overall C-AMAT and
data cache’s C-AMAT is negligible. Similar to changing basic instruction cache
configurations, selecting data cache’s C-AMAT can also simplify the detecting
logic and reduce the storage cost by 50%.

Basic L1 Cache Configurations. In this subgroup, both instruction cache
and data cache configurations are changed and they are both optimized factors.
In this case, a leading factor’s C-AMAT should be checked first. The average eval-
uation accuracy of data cache’s C-AMAT are −0.991 and −0.995 for changing
size and changing associativity respectively, much higher than that of instruc-
tion cache’s C-AMAT, which are −0.836 and −0.695 respectively. Therefore,
data cache is the leading factor and its C-AMAT should be selected. The results
are shown in Fig. 4.

It shows that data cache’s C-AMAT has higher evaluation accuracy than that
of instruction cache for some benchmarks, demonstrating that data cache has



88 Q. Yu et al.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

pe
rlb

en
ch

bz
ip
2

gc
c

ga
m
es
s

m
cf

m
ilc

ze
us
m
p

gr
om

ac
s

le
sl
ie
3d

na
m
d

go
bm

k
de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

hm
m
er

G
em

sF
D
TD

h2
64

re
f

to
nt
o

om
ne
tp
p

as
ta
r

w
rf

sp
hi
nx
3

sp
ec
ra
nd

co
rr

el
at

io
n 

co
ef

fic
ie

nt

EA_L1 EA_I EA_D

(a) EA under changing size

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

pe
rlb

en
ch

bz
ip
2

gc
c

bw
av
es

ga
m
es
s

m
cf

m
ilc

ze
us
m
p

gr
om

ac
s

le
sl
ie
3d

na
m
d

go
bm

k
de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

hm
m
er

G
em

sF
D
TD

h2
64

re
f

to
nt
o

om
ne
tp
p

as
ta
r

w
rf

sp
hi
nx
3

sp
ec
ra
nd

co
rr

el
at

io
n 

co
ef

fic
ie

nt

EA_L1 EA_I EA_D

(b) EA under changing assoc.

Fig. 4. The results of changing L1 cache configurations

more impacts on the performance of L1 cache in the simulation. For these bench-
marks, the instruction cache’s C-AMAT changed in a very small range (smaller
than IPC’s changing range) or changed in an apposite trend with IPC. The aver-
age evaluation accuracy of the overall C-AMAT are both −0.999 for changing
size and changing associativity respectively, negligible evaluation accuracy gap
with data cache’s C-AMAT. Similar to changing basic data cache configurations,
selecting data cache’s C-AMAT can also simplify detecting logic and reduce the
storage cost by 50%.

4.2 Basic L2 Cache Configuration

This group contains configurations that change L2 cache size and associativity.
As L2 cache is a unified cache, the optimizations affect both instructions and data
accesses. We divide the accesses to L2 cache into two factors, instructions and
data accesses. As the number of data accesses to L2 cache is greater than that of
instructions in the simulation, data access is the leading factor and it is expected
to be selected and checked first. The average evaluation accuracy of data access’s
C-AMAT are −0.99 and −0.966 for changing size and changing associativity
respectively. Therefore, data access’s C-AMAT meets the requirement and it
can be selected. The results are shown in Fig. 5.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

pe
rlb

en
ch

bz
ip
2

gc
c

bw
av
es

ga
m
es
s

m
cf

ze
us
m
p

le
sl
ie
3d

go
bm

k
de
al
II

so
pl
ex

po
vr
ay

hm
m
er

h2
64
re
f

om
ne
tp
p

as
ta
r

w
rf

sp
hi
nx
3

co
rr

el
at

io
n 

co
ef

fic
ie

nt

EA_L2 EA_I EA_D

(a) EA under changing size

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

co
rr

el
at

io
n 

co
ef

fic
ie

nt

EA_L2 EA_I EA_D

(b) EA under changing assoc.

Fig. 5. The results of changing L2 cache configurations



Factor-Based C-AMAT Analysis for Memory Optimization 89

It can be seen that data access’s C-AMAT has similar evaluation accu-
racy with L2 cache’s C-AMAT for most benchmarks, much higher than that of
instruction’s C-AMAT for some benchmarks. For these benchmarks, C-AMAT
of instructions remained relative stable or just changed in a small range, which
mismatched with the changing trend of IPC. The evaluation accuracy of L2
cache’s C-AMAT are −0.99 and −0.98 respectively, compared to that of data
access’s C-AMAT, the evaluation accuracy gap is negligible. In terms of hard-
ware overhead, calculating data access’s C-AMAT uses the same detecting logic
with calculating the L2 cache’s C-AMAT, however, as instruction access phases
are not required to be recorded, we can use fewer register pairs. According to the
ratio of instructions to data accesses (including hit and miss accesses), we can
use about 90% of original storage cost for calculating data access’s C-AMAT.

4.3 Advanced Cache Configurations

We change the number of MSHR entries for both instruction and data cache
in this group, therefore, instruction and data cache are both optimized factors.
The average evaluation accuracy of data cache’s C-AMAT is −0.987, much higher
than that of instruction cache’s C-AMAT and the overall C-AMAT, which are
0.26 and −0.649 respectively. Note that the evaluation accuracy of instruction
cache’s C-AMAT is a positive value, demonstrating that instruction’s cache C-
AMAT evaluates the memory system performance inaccurately. Therefore, data
cache’s C-AMAT should be selected. The results are shown in Fig. 6.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

pe
rlb

en
ch

bz
ip
2

gc
c

bw
av
es

ga
m
es
s

m
cf

m
ilc

ze
us
m
p

ca
ct
us
A
D
M

le
sl
ie
3d

na
m
d

go
bm

k
de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

hm
m
er

sj
en
g

G
em

sF
D
TD

lib
qu
an
tu
m

h2
64

re
f

to
nt
o

lb
m

om
ne
tp
p

as
ta
r

w
rf

co
rr

el
at

io
n 

co
ef

fic
ie

nt

EA_L1 EA_I EA_D

Fig. 6. The results of changing MSHR entries

We can see that the evaluation accuracy of data cache’s C-AMAT is even
higher than that of the overall C-AMAT for some benchmarks, such as milc,
zeusmp, cactusADM, libquantum and astar. This is because the hit rate of
instruction cache is very high and few instruction misses were handled by MSHR.
Therefore, the instruction cache’s C-AMAT is insensitive to the number of
MSHR entries, which can be seen from Fig. 6. As L1 cache includes both instruc-
tion cache and data cache, its C-AMAT changed in a smaller range than that of



90 Q. Yu et al.

data cache’s C-AMAT, which did not correlate well with IPC for these bench-
marks. Similar to changing basic L1 cache configurations, using data cache’s
C-AMAT can simplify the detecting logic and reduce the storage cost by 50%.

5 Related Work

Traditional memory metrics, such as MR, AMP and AMAT discussed in Sect. 1,
mainly focus on certain component or evaluate the performance based on sequen-
tial single-access activity, which is inaccurate for evaluating memory systems
with concurrent accesses. X.H. Sun et al. proposed C-AMAT [10]. It takes both
memory locality and memory concurrency into consideration, thus, can evaluate
modern memory systems more accurately. D.W. Wang et al. introduced another
memory metric called APC (Access Per Cycle) [12], which is defined as the total
number of memory accesses divided by the total memory access cycles. Math-
ematically, C-AMAT is the reciprocal of APC. The advantage of C-AMAT lies
in its effectiveness for evaluating memory system designs and APC’s attraction
as a metric is its simplicity. Based on C-AMAT, Y.H. Liu et al. proposed a
model called LPM (Layered Performance Matching) [5]. The key idea of LPM is
adjusting hardware configurations dynamically in each layer of a memory hier-
archy to match the requests of the layer directly above it. In addition, Y.H. Liu
et al. reevaluated data stall time using C-AMAT [6]. Our work is based on C-
AMAT, however, by selecting the factor’s C-AMAT rather the overall C-AMAT,
it reduces the hardware overhead (including detecting logic and storage cost),
with an acceptable evaluation accuracy.

6 Conclusion

C-AMAT takes both memory locality and memory concurrency into consider-
ation, therefore, evaluates modern memory systems more accurately and com-
prehensively. However, additional hardware resources, including detecting logic
and registers are required to measure the parameters (hit concurrency and miss
concurrency) of C-AMAT, which incur high hardware overhead for this met-
ric. Based on this observation, we propose FC-AMAT, an analysis model based
on C-AMAT. FC-AMAT divides a memory system into factors according to
actual research demands and uses factor’s-first C-AMAT rather than the overall
C-AMAT to evaluate effects of optimizations applied to a memory system if the
factor’s C-AMAT meets certain requirement. By selecting factor’s C-AMAT, FC-
AMAT can reduce the hardware overhead for measuring its parameters, mean-
while, it guarantees an acceptable evaluation accuracy through a rigorous check.
Simulations with varied cache configurations were conducted to verify the useful-
ness of FC-AMAT. Experimental results show that FC-AMAT can simplify the
detecting logic and reduce the storage cost for recording memory access phases,
without sacrificing obvious evaluation accuracy, demonstrating the effectiveness
of FC-AMAT.



Factor-Based C-AMAT Analysis for Memory Optimization 91

Acknowledgments. This work is supported in part by National Natural Science
Foundation of China under Grant No.: 61433019, 61472435, 61572508 and 61672526.

References

1. Agarwal, A., Royn, K., Vijaykumar, T.N.: Exploring high bandwidth pipelined
cache architecture for scaled technology. In: Proceedings of Design, Automation
and Test in Europe Conference and Exhibition (DATE 2003), pp. 778–783. IEEE
Computer Society Press, Los Alamitos (2003)

2. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., et al.: The gem5 simulator.
ACM SIGARCH Comput. Architect. News 39(2), 1–7 (2011)

3. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach, 4th edn. Morgan Kaufmann Publishers Inc., San Francisco (2006)

4. Kroft, D.: Lockup-free instruction fetch/prefetch cache organization. In: Proceed-
ings of the 8th Annual Symposium on Computer Architecture (ISCA 1981),
pp. 81–87. IEEE Computer Society Press, Los Alamitos (1981)

5. Liu, Y.H., Sun, X.H.: LPM: concurrency-driven layered performance matching. In:
Proceedings of the 44th International Conference on Parallel Processing (ICPP
2015), pp. 879–888 (2015)

6. Liu, Y., Sun, X.: Reevaluating data stall time with the consideration of data access
concurrency. J. Comput. Sci. Technol. 30(2), 227–245 (2015)

7. Rummel, R.: Understanding correlation (2011). http://www.hawaii.edu/
powerkills/UC.HTM

8. Spradling, C.D.: SPEC CPU2006 benchmark tools. ACM SIGARCH Comput.
Archit. News 35(1), 130–134 (2007)

9. Sun, X.H., Ni, L.M.: Another view on parallel speedup. In: Proceedings of the
ACM/IEEE Conference on Supercomputing (SC 1990), pp. 324–333. IEEE Com-
puter Society Press, Los Alamitos (1990)

10. Sun, X.H., Wang, D.: Concurrent average memory access time. Computers 47(5),
74–80 (2014)

11. Sun, X., Wang, D.: APC: a performance metric of memory systems. ACM SIG-
METRIVS Perform. Eval. Rev. 40(2), 125–130 (2012)

12. Wang, D., Sun, X.: APC: a novel memory metric and measurement methodology
for modern memory system. IEEE Trans. Comput. 63(7), 1626–1639 (2011)

13. Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the obvious.
ACM SIGARCH Comput. Archit. News 23(1), 20–24 (1995)

http://www.hawaii.edu/powerkills/UC.HTM
http://www.hawaii.edu/powerkills/UC.HTM


An Experimental Comparison of Two
Approaches for Diagnosability Analysis
of Discrete Event Systems - A Railway

Case-Study

Abderraouf Boussif(B) and Mohamed Ghazel(B)

IFSTTAR, Cosys/Estas, 59650 Villeneuve d’Ascq, France
{abderraouf.boussif,mohamed.ghazel}@ifsttar.fr

Abstract. In this paper, two approaches for diagnosability analysis of
discrete event systems are discussed and experimentally evaluated. The
considered approaches are the diagnoser-based approach proposed in [1,2]
and the model-checking reformulation approach proposed in [3,4]. Exper-
iments are performed on a level crossing benchmark, using the software
tools integrating the considered approaches. These two approaches show
different features in terms of state-space building and procedure for ana-
lyzing diagnosability. Based on the obtained results through the bench-
mark, a comparative discussion is provided particularly regarding the
generated state-spaces and the time consumption for analyzing diagnos-
ability.

Keywords: Discrete event systems · Diagnosability analysis · Fault
diagnosis · Model-checking

1 Introduction

Fault diagnosis is an important task in large complex systems and has received a
lot of attention in industry and academia during the two last decades [5]. Fault
diagnosis involves (i) detecting when a fault has occurred, (ii) isolating the true
fault from many possible fault candidates, and (iii) identifying the true damage
to the system. In the context of discrete event systems (DES), fault diagnosis
is often discussed through two main issues: online diagnosis and diagnosability
analysis [6,7]. Online diagnosis consists in inferring the occurrence of predeter-
mined faults from the online observed behavior of the system, where diagnos-
ability refers to the ability to infer within a finite delay, from the observable part
of the system behavior, about the occurrence of faults [6].

The pioneering work dealing with these issues has been proposed in [1,6]
in the framework of regular languages and automata theories, where a formal
definition of diagnosability was introduced. Such a work provided a necessary
and sufficient condition for diagnosability as well as a systematic technique,
based on the construction of a deterministic automaton called diagnoser, with
c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 92–107, 2017.
DOI: 10.1007/978-3-319-66176-6 7



An Experimental Comparison of Two Approaches 93

the aim of verifying diagnosability and perform the online diagnosis. In [2,8,9],
some improvements of this approach have been proposed regarding the diag-
noser construction and the diagnosability verification algorithm. Currently, such
approaches are known as ‘diagnoser-based approaches’ since the diagnosability
verification is based on the diagnoser construction.

Another class of approaches, called ‘twin-plant/verifier-based ’ approaches,
were introduced in [10–12] in order to improve the computing complexity of
analyzing diagnosability. The basis idea behind these approaches is to build an
intermediate automaton called twin-plant (or verifier), by performing a parallel
composition of the system model with itself. The diagnosability issue can then be
addressed by analyzing every pair of executions that share the same observation.
Such a task is performed using polynomial-time algorithms. Nevertheless, these
approaches deal only with diagnosability analysis and do not consider online
diagnosis. Recently, authors in [3,4,13,14] attempted to bring forward an effec-
tive framework for the diagnosability analysis by proposing some reformulations
of the twin-plant/verifier-based approaches as model-checking problems. Thus,
checking diagnosability can be reduced to a reachability analysis problem in the
twin-plant structure and then be tackled by means of model-checking tools.

In this paper, two approaches for fault diagnosis of discrete-event systems
(DES) are evaluated. The case study using the railway level crossing benchmark
is carried out to compare features, advantages and limits of these approaches,
namely the diagnoser-based approach in [1,2] and the model-checking reformu-
lation approach in [3,4]. It is worth noticing that we have particularly chosen
these two approaches since they correspond respectively to the recent improved
versions of the diagnoser-based and the twin-plant/verifier approaches.

The paper is structured as follows: in Sect. 2, we briefly introduce some nota-
tions pertaining to DES modeling and diagnosability analysis. In Sect. 3, an
overview of the two approaches is given with a comparative discussion regard-
ing the main features of the approaches. In Sect. 4, we evaluate the approaches
through a level crossing benchmark and we discuss the obtained results. Finally,
some concluding remarks are given is Sect. 5.

2 Preliminaries

2.1 The System Model

The system to be diagnosed is modeled as a finite state automaton G =
〈X,Σ, δ, x0〉, where X is a finite set of states, Σ is a finite set of events,
δ : X × Σ → 2X is the partial transition function, and x0 ∈ X is the initial
state. A triple 〈x, σ, x′〉 ∈ X × Σ × X is called a transition if x′ ∈ δ(x, σ). The
model G accounts for the normal and faulty behavior of the system, which can
be described by the prefix-closed language L ⊆ Σ∗ generated by G, where Σ∗

denotes the Kleene-closure of set Σ. Some events in Σ are observable, i.e., their
occurrence can be observed, while the others are unobservable. Thus, set Σ can
be partitioned as Σ = Σo

⊎
Σu, where Σo denotes the set of observable events



94 A. Boussif and M. Ghazel

and Σu the set of unobservable events. In the context of fault diagnosis, faults
are basically represented using unobservable events (Σf ⊆ Σu).

An event trace s = σ1σ2 . . . σn, with σi ∈ Σ, is said to be associated with
state trace π = (x1, x2, . . . , xn+1) if ∀ 0 < i ≤ n, xi+1 ∈ δ(xi, σi). The partial
transition function δ can be extended to sequences of events, i.e., one can write
xn+1 ∈ δ(x1, s). We write si to denote the ith event in s. We denote by L/s the
post-language of L upon s, i.e., L/s := {t ∈ Σ∗ |s.t ∈ L}. We write s ≤ s′ to
denote that s is a prefix of s′. Also, ψ(Σf ) denotes the set of event-traces in L that
end with a faulty event in Σf . That is, ψ(Σf ) := {s.σf ∈ L : σf ∈ Σf}. Let us
consider σ ∈ Σ and s ∈ Σ∗. We write σ ∈ s to denote that ∃ 1 ≤ i ≤ |s| : si = σ.
With a slight abuse of notation, we write Σf ∈ s to denote that ∃ σf ∈ Σf such
that σf ∈ s.

To capture the observed behavior of the model, we define the projection
mapping P : Σ∗ → Σ∗

o . In the usual manner, P (σ) = σ for σ ∈ Σo; P (σ) = ε for
σ ∈ Σu, and P (s.σ) = P (s)P (σ), where s ∈ Σ∗, σ ∈ Σ. The inverse projection
operation P−1

L is defined by P−1
L (y) = {s ∈ L(G) : P (s) = y}.

2.2 Definition of Diagnosability

Diagnosability is a qualitative property which refers to the ability to infer accu-
rately, from partially observed executions, about the faulty behavior within a
finite delay after a possible occurrence of a fault in a system model. Such a
property is widely studied in fault diagnosis of DESs.

The original definition of diagnosability was introduced in the seminal work
of Sampath et al. [6] under the assumptions that faults are permanent (i.e., once
a fault occurs, the system remains irreparably faulty), the language generated
by a system model G is live, and no cycles composed only of unobservable events
exist in G. The formal definition of diagnosability is recalled as follows.

Definition 1 (diagnosability [6]). A prefix-closed and live language L is said to
be diagnosable, with respect to projection mapping P and class of faults Σf , if
the following holds:

(∃n ∈ N) [∀s ∈ ψ(Σf )] (∀t ∈ L/s) [|t| ≥ n ⇒ D]

where D is: ω ∈ P−1
L [P (s.t)] ⇒ Σf ∈ ω. �

This definition means the following: Let s be any sequence generated by G
that ends with a fault event in Σf , and let t be any sufficiently long continuation
of s. Condition D then requires that every sequence ω belonging to language L,
which produces the same observable event-trace as s.t (P (ω) = P (s.t)), must
hold a fault event from Σf .

Example 1. Let us consider finite state automaton (FSA) G in Fig. 1 (adapted
from [6]) as a running example. The set of observable events is Σo = {a, b, d, t}
and the set of unobservable events is Σu = {u, f} with f ∈ Σf . G is non-
diagnosable model since there exist two infinite event-traces (i.e., fa(bud)∗ and
a(bud)∗) which share the same observable infinite event-trace a(bd)∗ such that
one event-trace is fault-free and the other one is faulty.



An Experimental Comparison of Two Approaches 95

1start

2 3 4 5

7

8 9 10 6

11 12

f

a b u

d

t
a

f b u
t

b u

d

Fig. 1. System model G of Example 1

3 The Considered Approaches

In this section, we first present the approaches considered, namely the diagnoser-
based approach and the model-checking reformulation approach, and then we
discuss their main features.

3.1 The Diagnoser-based Approach [1,2]

The so-called diagnoser-based approach has been firstly introduced in [6] and
then improved in [1,2]. In this paper, we are interesting in the approach discussed
in [2].

In order to present the approach, we firstly introduce the following notations:

– EnableΣ(x) = {σ ∈ Σ|δ(x, σ) = ∅}, is the set of events in Σ that are enabled
from state x. The generalization to a subset of states X ′ ⊆ X and a subset
of events Σ′ ⊆ Σ, is EnableΣ′(X ′) = {σ ∈ Σ′|∃ x ∈ X ′ : δ(x, σ) = ∅}
which denotes the set of enabled events in Σ′ from the set of states X ′, i.e.,
EnableΣ′(X ′) =

⋃
x∈X′EnableΣ′(x).

– Img(X,σ) =
⋃

x∈X′ δ(x, σ) with σ ∈ Σ, is the generalization of the transition
relation to a subset of states X ′ ⊆ X. The generalization of the transition
relation δ to a subset of states X ′ ⊆ X and a subset of events Σ′ ⊆ Σ is
Img(X ′, Σ′) =

⋃
x∈X′

⋃
σ∈Σ′ δ(x, σ).

– ReachΣ′(x) = {x} ∪ {x′ ∈ X|∃ t ∈ Σ′∗, x′ ∈ δ(x, t)} is the set of states
reached by the occurrence of a sequence of events in Σ′ from x (will be
used particularly for the unobservable reachability). The generalization of
this notion for a set of states is ReachΣ′(X ′) =

⋃
x∈X′ ReachΣ′(x).

The Structure of the Diagnoser Node. Each diagnoser node is partitioned
into two distinct subsets of system states:

1. the set of normal states (denoted by XN ), which is the subset of states in
the node that are reachable from fault-free event-traces;

2. the set of faulty states (denoted by XF ), which is the subset of states in
the node that are reachable from faulty event-traces.



96 A. Boussif and M. Ghazel

There may exist some faulty transitions that link some states in XN to some
others in XF within the same node (See Fig. 2(a)). The existence of such transi-
tions is encoded within each node using a Boolean variable. Actually, such a node
structure can be advantageously explored for rendering diagnosability analysis
more efficiently than using the classic diagnoser structures [1,6,8].

One can differentiate between three types of diagnoser nodes, in the same
way as in the classic diagnosers:

– N-certain node: is a node of which the set of faulty states is empty (XF = ∅);
– F-certain node: is a node of which the set of normal states is empty

(XN = ∅);
– F-uncertain node: is a diagnoser node of which neither the normal set, nor

the faulty set, is empty i.e., XN = ∅ and XF = ∅.

To simplify the notation, we use a.XN (resp. a.XF ) to indicate the set of
normal states XN (resp. set of faulty states XF ) of a given diagnoser node a.

Definition 2 (the diagnoser). Let G = 〈X,Σ, δ, x0〉 be an FSA to be diagnosed.
The diagnoser associated with G is a deterministic FSA D = 〈Γ,Σo, δD, Γ0〉,
where:

1. Γ is a finite set of diagnoser nodes;
2. Γ0 is the initial diagnoser node with:

(a) Γ0.XN = ReachΣu\Σf
(x0);

(b) Γ0.XF = ReachΣu
(Img(Γ0.XN , Σf )).

3. δD : Γ × Σo → Γ is the transition relation, defined as follows: ∀a, a′ ∈ Γ ,
σ ∈ Σo : a′ = δD(a, σ) ⇔ a′.XN = ReachΣu\Σf

(Img(a.XN , σ))∧ a′.XF =
ReachΣu

(Img(a′.XN , Σf ) ∪ Img(a.XF , σ)). �
To summarize, the diagnoser D is constructed as follows: let the current node

be a, and σ is an observable event. The target diagnoser node a′ is computed
following the rules below:

1. If σ ∈ Enable(a.XN ) ∩ Enable(a.XF ) then:
– a′.XN = ReachΣu\Σf

(Img(a.XN , σ)).
– a′.XF = ReachΣu

(Img(a′.XN , Σf ) ∪ Img(a.XF , σ)).
2. If σ ∈ Enable(a.XN )\Enable(a.XF ) then:

– a′.XN = ReachΣu\Σf
(Img(a.XN , σ)).

– a′.XF = ReachΣu
(Img(a′.XN , Σf )).

3. If σ ∈ Enable(a.XF )\Enable(a.XN ) then:
– a′.XN = ∅.
– a′.XF = ReachΣu

(Img(a.XF , σ)). �
As the diagnoser is constructed on the fly and since all the successors of an

F -certain diagnoser node are also F -certain, one does not need to construct them
(i.e., the subsequent F -certain nodes) because it is unnecessary from the diag-
nosis point of view. Indeed, as regards diagnosability analysis, only the analysis
of F -uncertain cycles is necessary and since faults are permanent, one can be
certain that no such cycle can be generated following an F -certain node.



An Experimental Comparison of Two Approaches 97

Example 2. In order to better illustrate the diagnoser construction procedure, let
us again consider FSA G in Fig. 1. Then, its corresponding diagnoser is depicted
in Fig. 2(b). The initial node (a0) is composed of the initial state of G (state 1)
and state 2 reachable from state 1 by the occurrence of faulty event f . One can
also notice that there exists an F-uncertain cycle composed of nodes (a1) and
(a2) by executing the observable event sequence a(bd)∗. Diagnoser node (a3) is
reached after the occurrence of event t and it contains only a set of faulty states
(a3.XN = ∅).

Fig. 2. The diagnoser node and the diagnoser of model G

Diagnosability Analysis. The necessary and sufficient condition for diagnos-
ability is formulated on the basis of the diagnoser structure and a systematic
procedure for checking such a condition on the fly and directly upon the diag-
noser is developed in [2].

Proposition 1. Let c
 = a1, a2, . . . , an be an F-uncertain cycle1 in D, with
δD(ai, σi) = a(i+1)modn

for 1 ≤ i ≤ n. Then, there exists at least one fault-free
cycle in FSA G that shares the same observation (σ1, σ2, . . . , σn)∗. �

This result is interesting for checking F-indeterminate cycles2. It is, in fact,
sufficient to check that an F-uncertain cycle in the diagnoser corresponds to a
faulty cycle in the original model (or the intermediate model), without checking
the existence of the faulty-free cycle (the reader is referred to [1,2,6] for more
details about these notions).

1 An F -uncertain cycle is a cycle in the diagnoser which is composed of only
F -uncertain nodes.

2 An F -indeterminate cycle in the diagnoser is an F -uncertain cycle for which
some cycles, which share the same observable projection, exist in the system model
such that: (1) at least one cycle involves only normal states and (2) at least one cycle
involves only faulty states.



98 A. Boussif and M. Ghazel

The necessary and sufficient condition for diagnosability is established on
the basis of the notion of ‘indicating sequence’, which is associated with the
F -uncertain cycles.

Definition 3 (c
-indicating sequence). Let c
 = a1, a2, . . . , an be an F-uncertain
cycle in D, with δD(ai, σi) = a(i+1)modn

for 1 ≤ i ≤ n. c
-indicating sequence
ρc� = S1,S2, . . . , is an infinite sequence of sets of states, such that:
− S1 = a1.XF ;
− ∀ i > 1 : Si = ReachTu

(Img(Si−1, σ(i−1)modn
)); �

In fact, the c
-indicating sequence tracks the subsets of faulty states in each
node of c
 without considering the faulty states generated through the occurrence
of some faulty transitions outgoing from the normal set of states in the traversed
nodes (except for S1 which holds all the faulty states of a1.XF , i.e., S1 = a1.XF ).

Actually, the c
-indicating sequence is introduced with the aim of tracking
the actual faulty cycles corresponding to a given F-uncertain cycle, if such cycles
exist in the original model.

Hereafter, we state the necessary and sufficient condition for diagnosability
on the basis of the notion of c
-indicating sequence.

Theorem 1. For an F-uncertain cycle c
 = a1, a2, . . . , an in D, and ρc� =
S1,S2, . . . its corresponding c
-indicating sequence. Then, c
 is anF -indeterminate
cycle if and only if: ∀i ∈ N

∗ : Si = ∅. �
We recall that a system model G is diagnosable if and only if its correspond-

ing diagnoser does not contain F -indeterminate cycles [6].
For the actual verification of diagnosability, a systematic procedure is derived

directly from Theorem 1 and can be performed as follows:
During the on the fly construction of the diagnoser, when an F -uncertain

cycle c
 is found in D, then:

1. generate the successive elements of c
-indicating sequence ρc� (starting from
S1), and for each element Si check the following conditions:
(a) if Si = ∅, then cycle c
 is not an F -indeterminate cycle and therefore the

procedure is stopped;
(b) else, if Si = ∅ and ∃k ∈ N : i = 1 + kn (with n = |c
|), then:

i. if Si = S(i−n), then cycle c
 is an F -indeterminate cycle and stop the
procedure;

ii. else continue.

This procedure is repeated on each non-explored F -uncertain cycle generated on
the fly in D.

Example 3. Let us take once again diagnoser D of model G depicted in Fig. 2(b).
An F-uncertain cycle c
 = a1, a2 exists in D. Thus, let us pick the c
-indicating
sequence ρ = S1, S2, S3, S4. One can observe that S4 = S2=4−2 = {4, 5} = ∅,
which means that, according to Theorem 1, the F-uncertain cycle c
 is also an
F-indeterminate cycle. Thus, G is non-diagnosable.



An Experimental Comparison of Two Approaches 99

3.2 The Model-Checking Reformulation Approach [3,4]

This approach for analyzing diagnosability is carried out by combining the twin-
plant construction method [11], and some reformulation on LTL/CTL model-
checking [3,4].

Firstly, we recall the twin-plant structure, the necessary and sufficient con-
dition for diagnosability, and then the reformulation of diagnosability issue as a
model-checking problem (Fig. 3).

In order to define the twin-plant, let us introduce the so-called ‘generator ’
G′ = 〈Xo, Σo, δG′ , x0〉 which is a non-deterministic automaton derived directly
for the system model G, with Xo = {x0} ∪ {x ∈ X|∃x′ ∈ X,∃σ ∈ Σo : x ∈
δ(x′, σ)} is the finite set of reached states, x0 ∈ X is the initial state, Σo is the set
of observable events, and δG′ ⊆ Xo×Σo×Xo is the transition relation, defined as
follows: 〈x, σ, x′〉 ∈ δG′ if ∃s ∈ Σ∗ : x′ ∈ δ(x, s) subjected to s = σ1σ2 . . . σn = σ:
σi ∈ Σu(i = 1, 2, . . . , n − 1) and σn ∈ Σo. It is worth recalling that when, the
generator is combined with the tagging function that associates to each state a
tag (‘N’ for normal states and ‘F’ for faulty ones), then it is called a pre-diagnoser
or an augmented generator [1,6].

Twin-Plant Construction. The twin-plant simply consists of two synchro-
nized copies of (augmented) generator G′ of system model G, i.e., the parallel
system event-traces are synchronized on the observable events. Thus, any event-
trace in the twin-plant corresponds to a pair of event-traces in the system model
that share the same observation.

Definition 4 (Twin-plant). A twin-plant of a system model G is an FSA P =
〈Q, Σo, Γ, q0〉, where,

– Q ⊆ {(x, x′) | x, x′ ∈ Xo } is the set of states.
– Σo the set of the (observable) events.
– Γ ⊆ Q × Σo × Q is the partial transition relation s.t. (q, σ, q′) ∈ Γ , with

q = (x1, x2), and q′ = (x′
1, x

′
2) if and only if (x1, σ, x′

1), (x2, σ, x′
2) ∈ δo.

– q0 = (x0 × x0) ∈ Q is the initial state.

Each twin-plant state q = {(x1, l1), (x2, l2)} is a pair of the system states with
xi ∈ Xo and li ∈ {N,F}. The initial diagnoser state q = {(xo, N), (xo, N)}. If

Fig. 3. Generation of c�-indicating sequences for analyzing diagnosability



100 A. Boussif and M. Ghazel

li = N (resp. li = F ) for i = 1, 2, the twin-plant state q is said to be N -certain
(resp. F -certain). Otherwise, state q is an F -ambiguous state.

We define an F -confused cycle (called also an infinite critical path) in the
twin-plant as a cycle which is composed exclusively of F -ambiguous states.
Authors in [11] have developed a necessary and sufficient condition for diag-
nosability on the basis of the twin-plant structure as follows:

Theorem 2 (Necessary and sufficient condition). An FSA G is diagnosable with
respect to projection mapping P and class of faults Σf if and only if no F -
confused cycle exists in its corresponding twin-plant P. �
Example 4. Let us take again automaton G of Fig. 1. Figure 4 depicted its cor-
responding twin-plant P. It is worth noticing that only the live part of P is
constructed. One can observe that P contains some F -confused cycles (drawn in
orange color). Therefore, according to Theorem 2, G is non-diagnosable.

1N , 1Nstart

3F , 7N
7N , 3F7N , 7N

3 F , 3F

4F , 4F4F , 11N
11N , 4F11N,11N9 F , 9F6 F , 6F

a
a

a a

b
bb

bdd
dd

b

t

t

Fig. 4. Twin plant P of model G (Color figure online)

Diagnosability as a Model-Checking Problem. The model-checking [15] is
an automatic formal verification technique that is widely applied to the design
of complex dynamic systems (communication protocols, hardware design, etc.).
It allows for verifying whether the behavior of a system (modeled by a Kripke
structure) satisfies a given property (expressed as a temporal logic formula, such
as LTL or CTL) or not using efficient algorithms based on an exhaustive explo-
ration of the system behavior.

In order to use model-checking for verifying diagnosability, authors in [3]
proposed a practical framework for reformulating diagnosability issue as a model-
checking problem. The approach consists in modeling the twin-plant as a Kripke
structure, the diagnosability property as a temporal logic formula, and then using
the model-checking algorithms and tools for the actual verification. Hereafter,
such a reformulations is recalled.

(a) The twin-plant as a Kripke structure:

In simple terms, a Kripke structure is a non-deterministic state/transition
model with atomic propositions assigned to the states (or the actions). Each state



An Experimental Comparison of Two Approaches 101

of the Kripke structure represents some possible configuration of the system,
while a labeling function associates with each state the properties holding in it.

In order to formulate a twin-plant as a Kripke structure, one can simply
encode states (of the two copies of the system model) and the observed events
of the twin-plant in the state-space of the Kripke structure, i.e., a state in the
Kripke structure which corresponds to a state of twin-plant is defined as a vector
(x1, x2, σ, φ), where x1, x2 are the states of the system copies and σ is a feasible
(observable) event from both x1 and x2, and φ is an atomic proposition associ-
ated with each state, and which takes one proposition from {N,F} × {N,F}.

(b) The diagnosability condition as a temporal logic formula:

As mentioned above, the diagnosability property can be verified by looking
for F -confused cycles in a twin-plant. Moreover, the existence of such cycles can
be expressed as a model-checking problem using LTL/CTL specifications.

In order to formulate the diagnosability problem as Model-Checking one, we
first express the notion of F -confused cycle using a CTL specification.

The CTL formula which characterizes each state of an F -confused cycle is:

φ : EG(Amb)

‘Amb’ is an atomic proposition associated to each F -ambiguous state in the
twin-plant. This specification can be read as follows: “from the current state, all
the successor states are F-ambiguous states”.

Now, the diagnosability issue can be expressed as a model-checking problem
as follows:

KP , SP |= ¬ EF EG(Amb)

where KP is the Kripke structure corresponding to the twin-plant P of G,
and SP is the initial state in KP .

3.3 The Main Features of the Considered Approaches

The diagnoser-based approach is based on the construction of the diagnoser,
which is a deterministic automaton derived directly from the system model [1,9].
Such a technique allows for analyzing diagnosability offline and (if the model is
diagnosable) performing the online diagnosis task. However, the combinator-
ial explosion problem is inherent to this approach since the state-space of the
diagnoser is, in the worst case, exponential w.r.t. the size of the system model
state-space [6].

The main feature of the model-checking reformulation approach is the idea
of combining the twin-plant construction method [11] with the model-checking
reformulation [3,4] for the actual verification of diagnosability. Since the twin-
plant construction can be performed using a polynomial-time algorithm [11], the
diagnosability property can be checked within a reduced computing complexity
regarding the diagnoser-based approach. Nevertheless, this approach allows only



102 A. Boussif and M. Ghazel

for analyzing diagnosability and do not consider online diagnosis (due to the
non-deterministic nature of the twin-plant).

Regarding the software tools integrating the approaches, the diagnoser-based
approach is implemented in DIAG-Tool [2], which is a command-line software
developed in C# programming language. DIAG-Tool takes as inputs: (i) the
system models in ‘fsm’ format, and (ii) a text file which specifies the sets of
observable, non-observable and faulty events. Using these ingredients, DIAG-
Tool builds on the fly the diagnoser and simultaneously analyzes the diagnos-
ability. When the model is non-diagnosable, DIAG-Tool outputs the generated
part of the diagnoser as well as a witnessed diagnoser event-trace that violated
the diagnosability property (the first encountered event-trace). When the model
is stated to be diagnosable. DIAG-tool generates the part of the diagnoser that
is sufficient to perform the online diagnosis.

Regarding the model-checking reformulation approach, a wide range of pow-
erful and optimized model-checking tools can be used for implementing the tech-
nique and analyzing diagnosability. In [3,4], the used tool for analyzing diagnos-
ability is the symbolic model-checker NuSMV [16] (which is widely used for
formal verification in both academia and industry). The model-checker NuSMV
is originated from the re-engineering, re-implementation and extension of CMU
SMV tool. Its main advantage is the integration of model-checking techniques
based on propositional satisfiability analysis(SAT), which is currently enjoying
a substantial success in several industrial fields.

In Table 1, we summarize the main features of the two approaches.

Table 1. Features of the considered approaches

Features Diagnoser-based approach Model-checking reformulation

Intermediate model Deterministic Non-deterministic

Complexity Exponential Polynomial

Diagnosability analysis Yes Yes

Online diagnosis Yes No

Verification algorithms Ad-hoc algorithms Model-checking algorithms

Tools DIAG-Tool Model-checkers (NuSMV)

4 The Railway Case-Study

In this section, we apply the two techniques to perform the diagnosability analy-
sis of a railway level crossing benchmark [17]. Firstly, we introduce the considered
benchmark and then we discuss the experimental results.



An Experimental Comparison of Two Approaches 103

4.1 Railway Level Crossing Benchmark

The considered benchmark consists of a level crossing (LC) system which is an
intersection where a railway line intersects with a road or path at the same
level. The system is mainly constituted of railway traffic, barriers subsystems
and a local controller, which is responsible for activating/deactivating the sound
alarms, the road lights and the barriers.

The railway level crossing benchmark was developed in [17] for analyzing
various diagnosis issues. The associated Labeled Petri net (LPN) model has
been shown to be live and bounded (see Fig. 5). Moreover, while the size of the
model grows linearly as the number of railway tracks increases, the associated
state-space grows exponentially. Hence, for the sake of scalability analysis, the
number of tracks in the benchmark can be increased iteratively as necessary.

The operational logic of a multi-track LC considers the railway traffic on
each track:

– the LC is closed to road traffic when at least one train is in the crossing zone;
– the LC is reopened to road traffic only if no train is in the crossing zone.

For diagnosis purposes, a single (n = 1) and multi (n > 1)-track LC bench-
mark with two classes of faults are considered using n (n is the number of tracks)

nth track

1st track

p1,1 p1,2 p1,3

pn,1 pn,2 pn,3

t1,4 , ig

tn,4 , ig

p1 np2 p3 p4

p5 n p6

t1 , cr t2 , or

t1,1 , ap1

p9

t1,3 , lv1

tn,1 , apn tn,3 , lvn

p7 , up

p8 , down

p9

t6 , bf

t1,2 , en1

tn,2 , enn

t4 , lwt3 , kd t5 , rs

n n

railway traffic

LC controller

barriers

� observable transition � unobservable fault transition

Fig. 5. The multi-track level crossing benchmark (Color figure online)



104 A. Boussif and M. Ghazel

railway traffic blocks, an LC controller block and a barrier block, as shown in
Fig. 5.

The two fault classes which may occur are denoted by red colored transitions
in the LPN model (Fig. 5). The first one, named TF1 , related to a train-sensing
defect is modeled by unobservable transition (ti,4, ig) and indicates that the
train may enter the LC zone before the barriers are lowered. The second failure,
named TF2 , modeled by unobservable transition (t6, bf) indicates a defect of the
barriers that results in a premature rising. Either of these two faults can induce
incorrect operation of the LC control and possibly train-car collisions.

As the LC system is modeled by an LPN, we first generate its reachability
graph with the help of TINA Tool [18] and then perform the two techniques
based on the generated reachability graph. In order to assess the scalability, we
increase the number of railway track n progressively.

4.2 Experimentation

The experiments were performed on 64-bit PC (CPU: Intel Core i5, 2.5 GHz,
Processor with 4 core and 6 GB RAM). We fix 4 h as a maximum analysis
duration above which we consider that the tool failed to return a result. The
experimental results are summarized in Table 2.

Table 2. Comparative experimental results

PN features Diagnoser approach Model-checking app.
n |P | |T | |N | |A| |D| ed(s) |S| es(s) Diag
1 12 10 20 43 10 0.0 21 0.1 yes

Tf1

2 15 14 142 500 13 0.0 216 0.1 no
3 18 18 832 4085 15 0.0 6246 5.9 no
4 21 22 4314 27142 28 0.0 68811 424.9 no
5 24 26 20556 157551 34 0.5 * o.t. no
6 27 30 92070 831384 36 2.3 * o.t. no
7 30 34 393336 4086585 38 11.8 * o.t. no

1 12 10 20 43 10 0.0 25 0.1 yes

Tf2

2 15 14 142 500 83 0.0 484 0.2 yes
3 18 18 832 4085 483 0.0 5322 7.4 yes
4 21 22 4314 27142 2434 1.0 49569 395.9 yes
5 24 26 20556 157551 11304 31.8 * o.t. yes
6 27 30 92070 831384 56136 1560 * o.t. yes
7 30 34 393336 4086585 * o.t. * o.t. yes

*: No result obtained in 4 hours. o.t.: Out of time

• n: the number of tracks;
• |P | and |T | are, respectively, the number of places and transitions in the Petri net models;
• |A| and |N | are, respectively, the number states and arcs in the reachability graph;
• |D| and ed(s) are, respectively, the numbers of states in the diagnoser and the required

simulation time (in seconds);
• |S| and es(s) are, respectively, the numbers of states of the Kripke structure and the required

simulation time (in seconds);
• ‘Diag’ is the diagnosability verdict.



An Experimental Comparison of Two Approaches 105

In what follows, we highlight the main observations that can be derived from
the obtained results. First, we give some comments regarding the LC models.

• The size of the reachability graph corresponding the LC models (generated
by TINA tool [18]) grows very quickly (exponentially) as the number of tracks
n increases. This is due to the fact that places p2 and p6 can hold as many as n
tokens, because of which so many markings exist. Such an exponential evolution
of the reachability graph allows for assessing the scalability of the diagnosis
approaches.

• Regarding the diagnosability analysis of the LC models, both approaches
tested output the same verdicts, namely, while the barriers’ failure (TF2) is diag-
nosable, the sensor failure (TF1) is not (except for n = 1). A discussion regarding
the critical scenarios (transition sequences in the LPN models) which help to
understand the diagnosability verdict, can be found in [17,19].

Regarding the results obtained, the following remarks can be underlined:
• In the case of non-diagnosable models, i.e., when the sensor failure (TF1) is

considered, one can observe that DIAG-tool efficiently analyzes the diagnosabil-
ity by only constructing the relevant part of the diagnosers, which reduces the
memory/time consumption. Actually, while NuSMV blocks from n = 4, DIAG-
Tool provides the diagnosability verdict in a few seconds even for large values of
n. This is due to the on-the-fly analysis which allows for performing the diagnos-
ability analysis based on a partial building of the diagnoser. In other terms, the
state-space generation as well as the verification process are stopped as soon as
an F -indeterminate cycle is met. This is an interesting feature especially when
we deal with such large models. It is worth noticing that NuSMV does not use
on-the-fly algorithms for the actual verification. However, by using other model-
checkers which perform the on-the-fly analysis, we may obtain similar results to
that of DIAG-Tool.

• In the case of diagnosable models, i.e., when the barriers’ failure (TF2) is
considered, the diagnoser approach implementing an on the fly procedure poten-
tially needs to construct a larger part of the diagnoser state-space. Consequently,
the verification process checks all the F -uncertain cycles that exist in the diag-
nosers to decide about the diagnosability of the models. In this case, the obtained
results clearly reflect the exponential feature of the diagnoser-based approaches.
Actually, this is unavoidable when working with diagnoser-based approaches,
since it is due to the deterministic nature of the diagnoser.

• Regarding the generated state-spaces, the results show that the diagnoser
approach is more efficient and generates less state-space than the model-checking
reformulation approach for the considered benchmark. This does not violate the
claim that the twin-plant approach is more efficient in terms of time complexity
(polynomial complexity for the twin approach versus exponential for the diag-
noser approach), since the theoretical complexity is computed while considering
the worst case.

As a concluding remark, one can underline that from the practical point of
view, the efficiency of these two (classes of) approaches developed for analyzing
diagnosability greatly depends on the model structure and the sensor mapping



106 A. Boussif and M. Ghazel

configuration, namely the number of observable/unobservable events, the num-
ber of strongly connected components, the number of fault events, etc. There-
fore, although these aforementioned techniques show different complexity range
from a theoretical point of view, in practice (for a given model), it is difficult
to decide which the most efficient technique is. Consequently, both approaches
remain interesting to investigate and improve.

5 Conclusion

This paper compares two approaches for analyzing diagnosability of discrete
event systems, namely a recent version of the diagnoser-based approach and
the model-checking reformulation approach. A railway level crossing bench-
mark, which shows both diagnosable and non-diagnosable faults, is chosen as
an experimental benchmark. Two software tools associated with the considered
approaches are used for the actual verification. The approaches are evaluated
particularly in terms of the generated state-space of advanced models and the
required time for constructing such models and analyzing diagnosability.

Acknowledgement. The authors acknowledge the support of the ELSAT2020
project. ELSAT2020 is co-financed by the European Union with the European Regional
development Fund, the French state and the Hauts-de-France Region Council.

References

1. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
Heidelberg (2008)

2. Boussif, A.: Contributions to fault diagnosis of discrete event systems. Ph.D. Thesis
- University of Lille 1 (2016)

3. Cimatti, A., Pecheur, C., Cavada, R.: Formal verification of diagnosability via
symbolic model checking. In: International Conference on Artificial Intelligence,
pp. 363–369 (2003)

4. Boussif, A., Ghazel, M.: Diagnosability analysis of input/output discrete event sys-
tem using model checking. In: The 5th IFAC International Workshop on Depend-
able Control of Discrete Systems (DCDS), pp. 71–78 (2015)

5. Zaytoon, J., Lafortune, S.: Overview of fault diagnosis methods for discrete event
systems. Ann. Rev. Control 37(2), 308–320 (2013)

6. Sampath, M., Sengupta, R., Lafortune, S.: Diagnosability of discrete event systems.
IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)

7. Lin, F.: Diagnosability of discrete event systems and its applications. Discr. Event
Dynamic Syst. 4(2), 197–212 (1994)

8. Hashtrudi Zad, S., Kwong, R.H., Wonham, W.M.: Fault diagnosis in discrete event
systems: framework and model reduction. IEEE Trans. Autom. Control 48(7),
1199–1212 (2003)

9. Boussif, A., Ghazel, M., Klai, K.: Combining enumerative and symbolic techniques
for diagnosis of discrete event systems. In: Verification and Evaluation of Computer
and Communication Systems, pp. 1–15 (2015)



An Experimental Comparison of Two Approaches 107

10. Yoo, T.-S., Lafortune, S.: Polynomial-time verification of diagnosability of partially
observed discrete event systems. IEEE Trans. Autom. Control 47(9), 1491–1495
(2002)

11. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing
diagnosability of discrete event systems. IEEE Trans. Autom. Control 46(8), 1318–
1321 (2001)

12. Moreira, M.V., Jesus, T.C., Basilio, J.C.: Polynomial time verification of decentral-
ized diagnosability of discrete event systems. IEEE Trans. Autom. Control 56(7),
1679–1684 (2011)

13. Boussif, A., Ghazel, M.: Using model-checking techniques for diagnosability analy-
sis of intermittent faults-a railway case-study. In: Verification and Evaluation of
Computer and Communication Systems, pp. 93–104 (2016)

14. Bourgne, G., Dague, P., Nouioua, F., Rapin, N.: Diagnosability of input output
symbolic transition systems. In: 1st International Conference on Advances in Sys-
tem Testing and Validation Lifecycle, pp. 147–154 (2009)

15. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press,
Cambridge (1999)

16. Bozzano, M., Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A.,
et al.: nuXmv: 1.0 user manual (2014)

17. Ghazel, M., Liu, B.: A customizable railway benchmark to deal with fault diagnosis
issues in DES. In: 13th International Workshop on Discrete Event Systems, pp.
177–182 (2016)

18. Berthomieu, B., Ribet, P.-O., Vernadat, M.: The tool TINA: construction of
abstract state spaces for Petri nets and time Petri nets. Int. J. Prod. Res. 42(14),
2741–2756 (2007)

19. Liu, B., Ghazel, M., Toguyeni, A.: Model-based diagnosis of multi-track level cross-
ing plants. IEEE Trans. Intell. Transp. Syst. 17(2), 546–556 (2016)



Mobility Load Balancing over Intra-frequency
Heterogeneous Networks

Using Handover Adaptation

Hana Jouini1,2(B), Mohamed Escheikh1, Kamel Barkaoui1,2,
and Tahar Ezzedine1

1 Communications Systems Laboratory (SysCom),
National Enginneering School of Tunis (ENIT),

University of Tunis El Manar (UTM), BP 37, 1002 Tunis Le Belvédère, Tunisia
{hana.jouini,mohamed.escheikh,tahar.ezzedine}@enit.rnu.tn

2 Conservatoire National des Arts et Métiers,
Ecole SITI - Département Informatique Lab. Cedric Vespa,

2, Rue Conté, 75141 Paris Cedex 03, France
kamel.barkaoui@cnam.fr

Abstract. Heterogeneous Networks (HetNet) present a straightforward
and effective key factor for enhancing performance of next generation cel-
lular networks. Since outdoor macro-cells are often likely to be affected
by heavy loaded situations, a major issue in HetNet planning is to ensure
that small-cells actually serve enough user equipments (UE). A scenario
to consider is the traffic offloading from macro-cells to small-cells. The
concept of Mobility Load Balancing (MLB) which had arisen with the
3rd Generation Partnership Project (3GPP) Release 8 [1,2] to maximize
the whole capacity of the system by optimally distributing traffic among
neighbouring cells, may play a key role in such a situation. In this paper,
we present a review of MLB algorithms proposed in the literature and
designed for HetNets by classifying these algorithms based on the UE
state (i.e. UE in idle or connected mode). In fact the adopted MLB tech-
nique is closely related to the mode of the UE (idle or connected mode).
We also present a technique for MLB based on optimizing handover (HO)
by adapting hysteresis values based on cells’ loads.

Keywords: HetNet · Mobility load balancing · Connected mode ·
Hysteresis · Handover

1 Introduction

Giving the exponentially increasing number of mobile broadband, data sub-
scribers and highly bandwidth demanding applications, operators had recourse
to advance physical layer technologies such as Orthogonal Frequency Division
Multiple Access (OFDMA), multi-antenna techniques or more efficient modula-
tion/coding schemes, when deploying 4G cellular networks and especially Long

c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 108–123, 2017.
DOI: 10.1007/978-3-319-66176-6 8



Mobility Load Balancing over Intra-frequency Heterogeneous Networks 109

Term Evolution (LTE) systems. However, it seems that capacity demand increas-
ing is faster than spectral efficiency improvement. Then the above mentioned
solutions alone are insufficient in particular at hotspot areas and cell edges where
network performance can significantly degrade. One solution maybe to add more
macro-cells or multiplying the number of sectors/antennas per macro-cell. Such
a solution is difficult to consider given the high cost of macro-cells deployment
especially in urban zones [3]. While HetNet seems to be an attractive way to
deal with system capacity/coverage limitations, operators started integrating
small-cells with their macro-cell networks. A new LTE network topology had
arisen and will strongly influence next generations of cellular networks. Tradi-
tional HetNets deal with the interworking of wireless local area networks such
as wifi and cellular networks [4]. Whereas a HetNet in 3GPP definition is a net-
work containing cell sites with different characteristics such as different values
of transmission power (Tx power) or radio frequency (RF) coverage areas. The
result is a HetNet with large coverage macro-cell layer combined with small-cell
deployments producing increased bitrates per unit area. A typical HetNet may
gather macro-cell, picocell and femtocell layers. A femtocell may be a closed sub-
scriber group (CSG) cell allowing only its UE members to access it. Picocells are
typically managed together with macro-cells by operators. In general, they are
open access. Excellent contributions have been provided in [5–7] to better under-
stand HetNets. Authors in [5] discuss theoretical models including coverage and
throughput analysis, signal-to-interference-plus-noise ratio (SINR) distribution,
cell association and cellular spatial models for understanding the requirements
of future HetNet against current cellular topologies. A theoretical framework
for two-tier cellular networks based on random spatial models was developed
to investigate network performance when using enhanced technologies such as
enhanced Inter-Cell Interference Coordination (eICIC) or Cell Range Exten-
sion (CRE, a.k.a. Cell Range Expansion). Concerning HetNet new features, the
work in [6] compares between traditional networks and heterogeneous ones by
discussing aspects such as KPI performance metrics, mobility and interference
management, cell association or network topology. A potential 5G cellular archi-
tecture based on HetNet deployment is proposed in [7] where authors discuss
some promising key technologies that can be adopted in 5G systems.

In the context of HetNet, cell offloading generally means the transfer (i.e.
offload) of extra traffic from macro- to small-layer to improve macro-cells capac-
ity. As a large amount of indoor traffic can be offloaded from macro- to small-layer,
fewer macro-cells will be needed for indoor coverage. The reduction of macro-cell
sites will result in a huge CAPEX (i.e. significant saving in macro-cell deploy-
ments) and OPEX (i.e. significant saving in backhauling) reductions for operators.
Since Load Balancing1 (LB) refers to techniques that enable the balance of traffic
between hot spot cells and low loaded cells, offloading may be studied under the
general heading of LB. In 3GPP LTE systems the MLB is closely related to the

1 Throughout this scope we use the terms Load Balancing and mobility load balancing
interchangeably.



110 H. Jouini et al.

Fig. 1. UE RRC connection states in 3GPP LTE systems

UE connection mode (i.e. UE in idle or connected mode) (Fig. 1). In fact, MLB
may be performed at any instance of the radio resource control (RRC) UE state
machine. This includes offloading UEs while being in idle or connected states.
MLB in idle state is performed by means of cell selection and reselection pro-
cedures. The main motivation for offloading idle UEs is to mitigate signalling
overhead from potential load driven HO executions. After switching to the con-
nected mode, a situation where the camping cell does not have enough resources
to serve the newly arrived UE may occur. To resolve such a situation, imple-
menting a connected mode MLB scheme seems to be the most effective solution.
In this context, cells can quickly react to inter-layer load variations and take
the proper offloading decision either by updating mobility parameters or exe-
cuting forced HOs. The challenge for connected MLB schemes is to maintain
HO executions at an acceptable level, as they cost in terms of signalling. In this
paper we will investigate MLB in HetNets, first by presenting a literature review
on existing techniques and then by implementing and simulating MLB schemes
under realistic network scenarios of a two-tier HetNet deployment. The rest of
this paper is organized as follows: in Sect. 2 we focus our attention on the study
of MLB for HetNets in both UE idle and connected states. In Sect. 3 we give a
brief insight on the HO procedure in 3GPP LTE systems and then we formulate
the problem of MLB by defining the cell load measurement. In Sect. 4 we detail
the proposed MLB schemes while in Sect. 5 we present simulation results and
conclude our work in Sect. 6.

2 Literature Review of MLB in HetNets

2.1 MLB in Idle Mode: Load-Aware User Association

The problem of User Association2 (UA) for network MLB has attracted much
attention in the recent years. In fact, an efficient method to balance the traffic
between macro- and small-layers seems to be optimizing the cell selection scheme.
Radio Access Technology (RAT) selection has been extensively studied in earlier
works (see [8] for a survey). It has been shown that an efficient cell association
scheme for HetNets should jointly consider two objectives; balancing the load

2 Throughout this dissertation, we use the terms user association, cell association and
cell selection interchangeably.



Mobility Load Balancing over Intra-frequency Heterogeneous Networks 111

among different layers while minimizing the inter-cell interference [9]. From that
point of view many recent works cope with MLB issue by proposing UA schemes.
These latter are generally considered as a binary NP-hard matching problems
[10], that aim to minimize inter- and intra-layer load disparity in HetNets. In
this context a classical cell selection approach where UEs camp in the cell with
the best downlink (DL) signal strength is unsuitable. Since HetNets combine
both macro-cells with high Tx power and small-cells with low Tx power. The
concept of CRE proposed by 3GPP [11] is a popular solution that has been stud-
ied in many works. Authors in [16] propose a CRE based approach for UA. The
technique consists on minimising a-fairness objective function using distributed
learning algorithms in near-potential games with load and outage constraints.
Authors in [32] investigate an inter-RAT offloading using biased received power,
where the optimal bias resulting in the highest SINR and the highest rate cov-
erage were determined using numerical evaluation techniques. Authors in [12]
propose to perform cell selection based on a hybrid scheme where a centralized
entity sends load information to idle UEs which perform UA based on a global
utility to maximize Quality of Service (QoS) by achieving optimum values of
throughput and call blocking probability. Ye et al. propose in [13] a distributed
load-aware UA scheme defined as a logarithmic maximisation problem and aims
to maximize UE data rate. First, authors relax the deterministic UA to a frac-
tional association by allowing UEs to associate more than one cell at the same
time (i.e. fractional UA). Then the primal combinatorial optimization problem
is converted into a convex optimization problem. By exploiting the convexity of
the problem, a distributed UA algorithm was developed with the assistance of
dual decomposition and the gradient descent method. A similar approach was
adopted in [14] where authors aim to optimize UA decision by utilizing a loga-
rithmic utility function based on weighted proportional fairness as objective but
without relaxing the deterministic UA constraint in order to approach a realis-
tic system modelling. Authors in [15] address the UA problem for HetNets from
an optimization perspective under the proportional fairness criterion. Based on
pricing strategy, UEs are associated with a cell according to the value of a utility
minus a price. Authors in [17] propose to utilize the concept of topology poten-
tial for measuring the desirability of different cells to UEs in UA issue. Then the
problem is resolute as a utility proportional fairness optimization function. A vir-
tually distributed UA algorithm is proposed in [18] for software-defined Radio
Access Network (RAN) architecture where the UA scheme is implemented in a
centralized manner at the RAN controller (RANC).

2.2 MLB in Connected Mode

In 3GPP LTE systems connected mode refers to the state where a connection
is established between the cell and the UE according to the RRC protocol spec-
ifications. When UEs are in RRC connected state, the mobility management
is implemented by means of HO executions. Many works investigate the MLB
issue while UEs are in connected state. Authors in [19] propose to balance the
load by dividing the traffic of each UE among the different layers forming the



112 H. Jouini et al.

HetNet. In fact, [19] presents the heterogeneity as an overlapping of cell layers
with divergent characteristics in terms of frequency bands, RAT and backhaul
support. The problem is treated as a weighted base LB where the traffic of an
UE is divided into subflows, each of which is transmitted via a different layer.
MLB is investigated jointly with interference mitigation in [20] where authors
exploit massive multiple-input multiple-output (MIMO) technology as one of
the key factors of 5G systems. Since MLB is closely related to the manner how
we schedule UEs among different cells, authors in [20] design a DL macro-cell
scheduler which offload macro UEs to small-cell layer. Authors in [21] consider
a relaxed problem formulation where each UE can be associated with multiple
cells and show that this problem can be solved by convex optimization. For a
weight-based MLB scheme, the performance of this latter is highly depended on
the specific weight, which was heuristically obtained in [21]. Based on the con-
cept of auction in game theory, authors in [22] propose a two-stage LB scheme
for offloading UEs to small-cell layer. The proposed algorithm allows a small-cell
that has received a HO request message from an UE to calculate the received
signal strength indicator (RSSI) of its neighbouring small-cells which is used to
identify if there are other small-cells that are more suitable for the UE. Authors
in [23] propose to improve the energy efficiency of the LTE network by inter-
working with low energy consuming WiFi networks. The basic idea is to try
to hand over UEs with low signal quality in LTE as many as possible to WiFi
layer which has enough resources to accommodate more users. Authors in [24]
apply the technique of design of experiments (DOE) to dynamically optimize
small-CRE according to the load of neighbouring macro-cells. Authors in [25]
propose a LB scheme in which each small-cell locally performs a load balanced
scheduling to equalise the performance of its connected UEs that are scheduled
in subframes overlapping and non-overlapping with macro-cell ABS. Authors in
[26] investigate and analyse the behaviour of a novel distributed MLB scheme
where the cell individual offset (CIO) is updated for each cell depending on cal-
culation of its composite available capacity (CAC) [27]. In the next two sections,
we first formulate the general problem of MLB in connected mode by defining
HO procedure as specified in LTE 3GPP systems. After the definition of cell load
is given and the concept of available capacity is introduced, the MLB scheme is
decided.

3 Problem Formulation and System Model

The HO procedure enables one cell to hand over an UE to another cell while
maintaining the RAN services at the new cell. In 3GPP LTE systems intra-
frequency HO is triggered based on A3 event [29]. The entering condition to be
satisfied for A3 event can be formulated as follows:

Mj + CSOff > Mi + Hysi→j (1)

where Mi and Mj are the UE measurement corresponding to the serving cell i
and the neighbouring cell j respectively. CSOff is a parameter depending on



Mobility Load Balancing over Intra-frequency Heterogeneous Networks 113

the measurement biasing (i.e. CSOff calculation depends on whether we have
intra- or inter-layer HO) and Hysi→j is the HO offset from cell i to j (a.k.a.
hysteresis). If the serving cell i is overloaded, one way to offload the excess traffic
to its neighbours is by decreasing Hysi→j value. To alleviate the traffic in the
congested cell, we adopt two scenarios:

– Inter-layer HO biasing: a principle issue in HetNet is the traffic balancing
between the macro-layer, more sensitive to overloaded situations, and the
small-layer. Inter-layer HO biasing concerns the biasing of HO threshold
between a congested macro-cell and its neighbouring from the small-tier (i.e.
small-cells).

– Intra-layer HO biasing: since loads in different cells from the same macro-
layer are frequently unequal [28], a scenario to consider when balancing the
network traffic concerns the biasing of HO threshold between a congested
macro-cell and its neighbours from the same tier (i.e. macro-cells).

The proposed MLB scheme relies on the performing of intra- and inter-layer
HO biasing to guarantee a best interoperability, scalability and reliability of the
traffic offloading. In this paper we consider the DL transmission of a two-tier
3GPP LTE HetNet with multiple macro-cells and small-cells as shown in Fig. 3.
Each eNB consists of three macro-cells (i.e. sectors) and a small-cell represents a
femtocell configured in open access mode. Femtocells are composed by one small-
cell. In HetNet, the total bandwidth in a cell is determined by the network’s
frequency planning. To facilitate the implementation of intra-frequency MLB
algorithm, a full frequency reuse scheme is considered (we assume a frequency
reuse of one). This means that no frequency partitioning is performed between
cells which is considered as a realistic scenario for LTE systems. We adopt a
regular deployment for modelling the macro-cell layer where eNBs are deployed
in an hexagonal layout. All UEs and small-cells are scattered into each macro-
cell in a random manner. We denote C the set of cells including macro-cells
and small-cells, and represent the set of scheduled UEs as U . We assume that
the number of connected UEs in the network is constant along the simulation
duration. Ci represents the cell i. Ci,j denotes a neighbouring cell Cj of a cell
Ci. The amount of Physical Resource Blocks (PRBs) quantifying time-frequency
resources of a cell is denoted R (We assume that all cells have the same amount
of PRBs). Ui(t) is the set of UEs scheduled in Ci at time t and Ui,k(t) indicates
an UE k scheduled in Ci at time t. Ri,k(t) is the amount of consumed PRBs by
Ui,k(t) at time t. The load ρi(t) of Ci at time t can be calculated as follows:

ρi(t) =

∑
k∈Ui(t)

Ri,k(t)

R
(2)

To detect an overloaded situation, each cell periodically monitors information
about its own load conditions and exchange load information with its neighbour-
ing cells. LTE systems define the X2 interface between neighbouring eNBs which
allows cells to be aware about network load condition [27]. Load information is
transmitted over the X2 interface in the form of Composite Available Capacity



114 H. Jouini et al.

(CAC) parameter. Formally, CAC expresses the amount of load that a particu-
lar cell is willing to accept subject to several factors such as resource utilization,
QoS requirements, backhaul capacity and the load of control channels. We define
CACD as the CAC in DL. Let CACDi be the overall available resource level
that a cell i can offer for MLB purposes in DL. Then it can be expressed as:

CACDi(t) = 1 − ρi(t) (3)

Depending on CACD value, each cell may estimate its load condition and decide
whether to enable the MLB algorithm if it experiences an overloaded situation
or to keep it disabled.

4 MLB Based HO Biasing

The MLB algorithm developed to balance the load among neighbouring cells
relies on the principles described in [28]. The proposed MLB scheme is based on
calculating new HO thresholds based on the load of each cell as illustrated in
Fig. 2.

Fig. 2. Illustration of the proposed offloading scheme

We introduce three thresholds, with values between 0 to 1, that would serve
to estimate cell load status:

– ThPre: If CACDi decreases below this threshold, Ci is declared as an over-
loaded cell and should enable the MLB algorithm to balance its load by
updating HO threshold values according to the MLB scheme.

– ThTarget: If CACDi of an overloaded cell Ci that activated the MLB algo-
rithm increases over this threshold, Ci should deactivate the MLB algorithm
and restore default HO threshold values.



Mobility Load Balancing over Intra-frequency Heterogeneous Networks 115

– ThAvail: it serves to estimate the degree of neighbouring cells’ capability to
receive offloaded traffic.

These thresholds are operator-configurable parameters and are transmitted as
an input to the MLB algorithm. E.g. if we set ThPre to 0 the MLB scheme
is only executed when the concerned cell is fully-loaded and has zero available
resources. If ThTarget is set to 1, the MLB scheme will be disabled only if the
cell is totally empty. Operators may tune thresholds according to their specific
objectives. Low ThAvail values mean that more cells will participate to MLB
if it’s enabled by a neighbouring cell. To maximize the number of active cells,
ThAvail should be set to 0. High ThPre values may be chosen if operators
want to promote network performance in terms of QoS. This means that the
network will be very sensitive to overloaded situations and will aim to avoid call
blocking/dropping situations by optimising load distribution among different
network tiers. Low ThTarget values mean that the operator aims to minimise
signalling traffic between cells by minimising HO executions due to LB, while
high values will reduce the risk of ping-pong HO.

Cells periodically perform load measurements and estimate their own CACD.
If a cell Ci is overloaded (i.e. CACDi � ThPre) it should offload some of its
attached UEs to neighbouring cells. As shown in Fig. 2 and Table 1, neighbouring
cells are classified into three categories given their own load conditions and based
on the aforementioned thresholds; High active cells correspond to nodes whose
available capacity is higher than ThTarget threshold and are willing to accept
more traffic. On the contrary, those with a CACD value equal or under ThAvail
are denoted as passive and constitute cells declared incapable to participate
to MLB procedure. Ultimately, cells operating within the [ThAvail, ThTarget]
CACD range are characterized as low active ones as they may participate in
MLB procedures with little rate of resources. Formally, all MLB procedures are
triggered by overloaded macro-cells. Therefore, upon overload declaration, the
cell has to estimate an hysteresis decrement so that excess traffic is offloaded to
adjacent cells. In addition, it informs its active neighbours over the X2 interface
to the new hysteresis modification subject to their own cell load conditions.
Both active and passive cells need to estimate their CACD. Once CACDj(t)
is estimated, it is basically mapped to an α−modification. We propose three
versions of the MLB algorithm depending on how we calculate new hysteresis
values:

Table 1. Neighbouring cells classification

Neighbouring cell load condition Neighbouring cell status

CACDj > ThTarget High active

ThAvail < CACDj � ThTarget Low active

CACDj � ThAvail passive



116 H. Jouini et al.

1. version 1: slow MLB

αi→j =
{

1 if CACDj ≤ ThTarget
0 if CACDj > ThTarget

(4)

2. version 2: fast MLB

αi→j =
{

1 if CACDj ≤ ThAvail
0 if CACDj > ThAvail

(5)

3. version 3: smooth MLB

αi→j =

⎧
⎨

⎩

1 if CACDj ≤ ThAvail

1 − ThAvail−CACDj

ThAvail−ThTarget if ThAvail < CACDj ≤ ThTarget

0 if CACDj > ThTarget

(6)

The new hysteresis value between Ci and Ci,j (i.e. NewHysi→j) is adjusted as
follows:

NewHysi→j = αi→j × Hysi→j (7)

5 Simulation Assumptions and Results

System level simulations using the discrete-event network simulator ns-3 [31] are
considered in this paper. We consider the dual stripe model proposed by 3GPP
to illustrate realistic scenarios of dense-urban Home eNBs (HeNB3) deploy-
ment [30]. Simulations implement an intra-frequency network where both macro-
cells and small-cells are deployed at 2 GHz sharing 5 MHz of bandwidth. Figure 3
illustrates the multi-cell network considered in the 3GPP dual stripe model. The

Fig. 3. Network topology

3 Also known as femtocell.



Mobility Load Balancing over Intra-frequency Heterogeneous Networks 117

simulated network is composed by 7 eNBs (21 cells) regularly deployed in hexag-
onal layout where the distance between two eNBs is assumed equals to 500 m.
4 blocks (apartment buildings) are randomly dropped among the network. Each
block represents two stripes of apartments, each stripe has 2 by 10 apartments
(Fig. 4). We simulate a street between the two stripes of apartments with width
of 10 m. Each small-cell block has one floor. Each block has 1 small-cell. The
number of connected macro-UEs is gradually increased to show the effect of
high traffic generation areas (hotspots) on the network performance.

Fig. 4. block of small-cells lyaout

A fixed number of home UEs is considered (i.e. nbHomeUE = 16). Table 2
summarizes the main parameters of the simulated scenarios. Thresholds values
are fixed as follows:

– ThPre = 0.2: In fact ThPre refers to the point from which a cell may enable
the MLB scheme. ThPre = 0.2 means that when 80% of the cell resources are
occupied and only 20% are still available the cell is considered as overloaded,
which may be a realistic assumption if no QoS is required.

– ThTarget = 0.8: It refers to the point that, when reached, the cell may disable
the MLB scheme. A reason to set ThTarget to such a high value is to avoid
ping-pong HO due to MLB while offloading UEs to neighbouring cells.

– ThAvail = 0.5: operators can control the number of neighbouring cells that
may participate to LB by tuning ThAvail.

To evaluate the trade-off between capacity enhancements provided by LB and
a potential mobility performance degradation, the following cases are considered:

– Fixed hysteresis: No hysteresis adjustments are performed. A fixed handover
hysteresis of 3 dB is assumed for all cell pairs; hence, Hysm→m = Hysm→s =
3db (i.e. Hysm→m is the hysteresis value for HO between macro-cells and
Hysm→s is the hysteresis value fro HO from a macro-cell to a neighbouring
small-cell)

– Slow MLB algorithm: Hysteresis range is calculated based on Eq. 4 for both
Hysm→m and Hysm→s.



118 H. Jouini et al.

Table 2. Simulation parameters

Parameter Value

Macro-tier cellular layout 7 eNBs (21 cells) in hexagonal layout

Number of smallcells 16

Inter-eNBs distance 500m

Macro-cell Tx power 46 db

small-cell Tx power 20 db

Path loss model both outdoor and indoor communication are
considered in pathloss calculation

Carrier frequency 2Ghz

System bandwidth 5Mhz

Traffic model Guaranteed Bit Rate (GBR) conversational
voice over IP

UE distribution random

Macro UE densities {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} × 10−4

UE measurement reporting interval 50ms

Simulation duration 50 s

MLB parameters tuning

Hysteresis default value 3.0 db

Hysteresis margin with MLB [0..3 db]

ThPre 0.2

ThTarget 0.8

ThAvail 0.5

– Fast MLB algorithm: The hysteresis range is calculated based on Eq. 5 for
both Hysm→m and Hysm→s.

– smooth MLB algorithm: In this case, Hysm→m and Hysm→s are dynamically
adjusted based on Eq. 6 and within the range of [0 db, 3 db] dB.

Cell load observations are performed periodically every second. Figure 5 illus-
trates the global network throughput for all simulated schemes with different
UEs densities. When using a MLB algorithm, the global throughput is ame-
liorates across different network cells, especially for high traffic simulations. As
observed, the MLB impact on network performance depends closely on UEs den-
sity. For relatively low UEs densities (i.e. [10−5, 5 × 10−5]) MLB integration has
low impact on the network performance. Since in such case a heavy-loaded sit-
uation may not occur during the simulation, MLB algorithm will very probably
not be enabled. For higher densities (i.e. [6× 10−5, 10−4]), some macro-cells will
fall under a heavy-loaded situation. Then by offloading extra traffic from those
macro-cells to its macro neighbours and to the small-cell layer the network global
throughput is significantly ameliorated.



Mobility Load Balancing over Intra-frequency Heterogeneous Networks 119

2 3 4 5 6 7 8 9 10

x 10
−5

45

50

55

60

65

70

75

80

UEs density

G
lo

ba
l t

hr
ou

gh
pu

t (
M

bi
t/s

)

 

 

without MLB
smooth MLB
slow MLB
fast MLB

Fig. 5. Global network throughput vs UEs density

To highlight the impact of deploying small-cell layer alongside the macro-cell
layer, we present the macro-layer’s cells throughput for each simulated scheme
and for a UE density of 5×10−5 (Fig. 6). We notice that the throughput disparity
between macro-cells is more severe for simulations without a MLB scheme; while
cells 15 and 18 experience high throughput values which may result in high call
blocking/dropping rates, cells 6, 17 and 20 present low throughput leading to a
resource waste. This disparity is mitigated when integrating a MLB algorithm,
especially for fast and smooth MLB schemes. Figure 7 represents the Packet Loss
Ratio (PLR) evolution with respect to UEs density with and without activation of
the MLB algorithms. Results show that smooth MLB scheme presents the lower
values of PLR. This phenomenon may be explained by the particularity of smooth

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

Macrocell identifier

M
cr

oc
el

l t
hr

ou
gh

pu
t (

M
bi

t/s
)

Cell throughput vs macrocell identifier (density=0.00005)

 

 
without MLB

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

Macrocell identifier

M
cr

oc
el

l t
hr

ou
gh

pu
t (

M
bi

t/s
)

Cell throughput vs macrocell identifier (density=0.00005)

 

 
smooth MLB

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

Macrocell identifier

M
cr

oc
el

l t
hr

ou
gh

pu
t (

M
bi

t/s
)

Cell throughput vs macrocell identifier (density=0.00005)

 

 
slow MLB

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

Macrocell identifier

M
cr

oc
el

l t
hr

ou
gh

pu
t (

M
bi

t/s
)

Cell throughput vs macrocell identifier (density=0.00005)

 

 
fast MLB

Fig. 6. Macro-cells throughput vs macro-cell’s identifier



120 H. Jouini et al.

0 0.2 0.4 0.6 0.8 1

x 10
−4

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

UEs density

P
ac

ke
t l

os
s 

ra
tio

 

 

without MLB
smooth MLB
slow MLB
fast MLB

Fig. 7. Packet loss ratio vs UEs density

MLB scheme that tune hysteresis values in a non-aggressive and progressive man-
ner with a more meticulous respect to neighbours’ load conditions comparing to
fast and slow MLB schemes (see Eqs. 4, 5 and 6). Figure 8 highlights Jain’s Fair-
ness Index (JFI) versus UEs density. We observe that JFI values are improved
for relatively high densities in a similar manner when activating MLB algorithms.
For lower densities, no improvement in the fairness between macro-cells is gener-
ated and the simulated MLB schemes present in some cases (i.e. 0.1 × 10−4 and
0.2 × 10−4) a degradation in JFI values. Figure 9 illustrates the evolution of the
number of successful HOs according to UEs density with and without MLB algo-
rithms activation. The number of successful HOs is almost unchanged when acti-
vating one of the MLB algorithm or when deactivating MLB schemes. This may be
considered as a significant gain, since a MLB scheme promotes enabling more HOs
in order to attenuate load disparity between cells. Then the implemented MLB
algorithms seem to be able to find convenient trade-off between different investi-
gated network key performance indicators (KPIs) since they improve global net-
work throughput and PLR without strongly increasing the rate of HO signalling.

0 0.2 0.4 0.6 0.8 1

x 10
−4

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

UEs density

Ja
in

′s
 fa

irn
es

s 
in

de
x

 

 

without MLB
smooth MLB
slow MLB
fast MLB

Fig. 8. Jain’s fairness index vs UEs density



Mobility Load Balancing over Intra-frequency Heterogeneous Networks 121

0 0.2 0.4 0.6 0.8 1

x 10
−4

0

50

100

150

200

250

300

350

400

450

500

UEs density

N
um

be
r 

of
 s

uc
ce

ss
fu

l h
an

do
ve

rs

 

 

without MLB
smooth MLB
slow MLB
fast MLB

Fig. 9. Number of successful HOs vs UEs density

6 Conclusion

With the emerging trend of heterogeneity and cells? dense deployment among
new generations of cellular networks dealing to a massive deployment of small-
cells, inter- and intra-traffic balancing management is more complicated to
model. In this paper we propose an implementation, using ns-3, of a MLB algo-
rithm based adaptive HO for downlink LTE SON HetNets. Intensive simulations
for MLB scheme under realistic network scenarios of a two-tier HetNet deploy-
ment were considered. Numerical results show that enhancements provided by
the proposed MLB schemes are closely dependent on network UEs density and
are illustrated in this paper through different KPIs. These improvements con-
cern particularly PLR reduction, JFI and network global throughput without HO
overhead. For future works, more effort should be made to evaluate the impact
of MLB thresholds (i.e. ThAvail, ThPre and ThTarget) on MLB algorithms’
performance.

References

1. European Telecommunications Standards Institute: LTE; Evolved Universal Ter-
restrial Radio Access Network (E-UTRAN); Architecture description. 3GPP TS
36.401 version 8.6.0 Release 8 (2009)

2. European Telecommunications Standards Institute: LTE; Evolved Universal Ter-
restrial Radio Access Network (E-UTRAN); Architecture description. 3GPP TS
36.401 version 12.2.0 Release 12 (2015)

3. Hwang, I., Song, B., Soliman, S.S.: A holistic view on hyper-dense heterogeneous
and small cell networks. IEEE Commun. Mag. 51, 20–27 (2013)

4. Mehmeti, F., Spyropoulos, T.: Performance analysis of mobile data offloading in
heterogeneous networks. IEEE Trans. Mobile Comput. 16(2), 482–497 (2016)

5. Ghosh, A., et al.: Heterogeneous cellular networks: from theory to practice. IEEE
Commun. Mag. 50(6), 54–64 (2012)

6. Andrews, J.G.: Seven ways that HetNets are a cellular paradigm shift. IEEE Com-
mun. Mag. 51(3), 136–144 (2012)



122 H. Jouini et al.

7. Wang, C.X., et al.: Cellular architecture and key technologies for 5G wireless com-
munication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

8. Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K.K., Schober, R., Hanzo, L.:
User association in 5G networks: a survey and an outlook. IEEE Commun. Surv.
Tutorials 18(2), 1018–1044 (2016)

9. Chinipardaz, M., Noorhosseini, M.: A study on cell association in heterogeneous
networks with joint load balancing and interference management. Telecommun.
Syst. 66(1), 1–20 (2017)

10. Kuo, W.H., Liao, W.: Utility-based resource allocation in wireless networks. IEEE
Trans. Wireless Commun. 6(10), 3600–3606 (2007)

11. European Telecommunications Standards Institute: Evolved Universal Terres-
trial Radio Access (E-UTRA); Mobility enhancements in heterogeneous networks.
3GPP TS 36.839 Release 11 (2012)

12. Elayoubi, S.E., Altman, E., Haddad, M., Altman, Z.: A hybrid decision approach
for the association problem in heterogeneous networks. In: 10th Proceedings IEEE
INFOCOM, San Diego, CA, USA, pp. 1–5 (2010)

13. Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., Andrews, J.G.: User
association for load balancing in heterogeneous cellular networks. IEEE Trans.
Wireless Commun. 12(6), 2706–2716 (2013)

14. Chen, Y., Li, J., Lin, Z., Mao, G., Vucetic, B.: User association with unequal user
priorities in heterogeneous cellular networks. IEEE Trans. Veh. Technol. 65(9),
7374–7388 (2016)

15. Shen, K., Yu, W.: Distributed pricing-based user association for downlink hetero-
geneous cellular networks. IEEE J. Sel. Areas Commun. 32(6), 1100–1113 (2014)

16. Ali, M.S., Coucheney, P., Coupechoux, M.: Load balancing in heterogeneous net-
works based on distributed learning in near-potential games. IEEE Trans. Wireless
Commun. 15(7), 5046–5059 (2016)

17. Zhang, T., Xu, H., Liu, D., Beaulieu, N.C., Zhu, Y.: User association for energy-
load tradeoffs in HetNets with renewable energy supply. IEEE Commun. Lett.
19(12), 2214–2217 (2015)

18. Han, T., Ansari, N.: A traffic load balancing framework for software-defined radio
access networks powered by hybrid energy sources. IEEE/ACM Trans. Networking
(TON) 24(2), 1038–1051 (2016)

19. Son, H., Lee, S., Kim, S.C., Shin, Y.S.: Soft load balancing over heterogeneous
wireless networks. IEEE Trans. Veh. Technol. 57(4), 2632–2638 (2008)

20. Vu, T.K., Bennis, M., Samarakoon, S., Debbah, M., Latva-aho, M.: Joint Load Bal-
ancing and Interference Mitigation in 5G Heterogeneous Networks. arXiv preprint
arXiv:1611.04821 (2016)

21. Li, J., Bjorson, E., Svensson, T., Eriksson, T., Debbah, M.: Joint precoding and
load balancing optimization for energy-efficient heterogeneous networks. IEEE
Trans. Wireless Commun. 14(10), 5810–5822 (2015)

22. Tseng, C.C., Wang, H.C., Ting, K.C., Wang, C.C., Kuo, F.C.: Fast game-based
handoff mechanism with load balancing for LTE/LTE-A heterogeneous networks.
J. Netw. Comput. Appl. 85, 106–115 (2017)

23. Zhou, F., Feng, L., Yu, P., Li, W.: Energy-efficiency driven load balancing strategy
in LTE-WiFi interworking heterogeneous networks. In: Wireless Communications
and Networking Conference Workshops (WCNCW), 10th Proceedings of IEEE
INFOCOM, New Orleans, LA, USA, pp. 276–281 (2015)

24. Siomina, I., Yuan, D.: Load balancing in heterogeneous LTE: range optimization
via cell offset and load-coupling characterization. In: IEEE International Confer-
ence on Communications (ICC), Ottawa, ON, Canada, pp. 1357–1361 (2012)

http://arxiv.org/abs/1611.04821


Mobility Load Balancing over Intra-frequency Heterogeneous Networks 123

25. Lopez-Perez, D., Claussen, H.: Duty cycles and load balancing in HetNets with
eICIC almost blank subframes. In: 24th IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIMRC Workshops), London,
UK, pp. 173–178 (2013)

26. Fotiadis, P., Polignano, M., Laselva, D., Vejlgaard, B., Mogensen, P., Irmer, R.,
Scully, N.: Multi-layer mobility load balancing in a heterogeneous LTE network.
In: IEEE Vehicular Technology Conference (VTC Fall), Quebec City, QC, Canada,
pp. 1–5 (2012)

27. European Telecommunications Standards Institute: LTE; Evolved Universal Ter-
restrial Radio Access Network (E-UTRAN); X2 Application Protocol (X2AP).
3GPP TS 36.423 version 12.3.0 Release 12 (2014)

28. Jouini, H., Escheikh, M., Barkaoui, K., Ezzedine, T.: Mobility load balancing
based adaptive handover in downlink LTE self-organizing networks. Int. J. Wireless
Mobile Comput. (IJWMN) 8(4), 89–105 (2016)

29. European Telecommunications Standards Institute: Radio Resource Control
(RRC); Protocol specification. 3GPP TS 36.331 version 11.5.0 Release 11 (2013)

30. Alcatel-Lucent, picoChip Designs and Vodafone: Simulation assumptions and para-
meters for FDD HeNB RF requirements (2009)

31. Network Simulator 3. https://www.nsnam.org/
32. Singh, S., Dhillon, H.S., Andrews, J.G.: Offloading in heterogeneous networks:

modeling, analysis, and design insights. IEEE Trans. Wireless Commun. 12(5),
2484–2497 (2013)

https://www.nsnam.org/


A Toolset for Mobile Systems Testing

Pierre André(B), Nicolas Rivière, and Hélène Waeselynck

LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
{pierre.andre,nicolas.riviere,helene.waeselynck}@laas.fr

Abstract. Validation of mobile applications needs taking account of
context (such network topology) and interactions between mobile nodes.
Scenario-based approaches are well-suited to describe the behavior and
interactions to observe in distributed systems. The difficulty to control
accurately the execution context of such applications has led us to use
passive testing. This paper presents a toolset which supports specifica-
tion and verification of scenarios. A UML-based formal language, called
TERMOS, has been implemented for specifying scenarios in mobile com-
puting systems. These scenarios capture the key properties which are
automatically checked on the traces, considering both the spatial config-
uration of nodes and their communication. We give an overview of the
language design choices, its semantics and the implementation of the tool
chain. The approach is demonstrated on a case study.

Keywords: Mobile computing systems · Scenario-based testing · UML
sequence diagrams · UML profile · Trace analysis

1 Introduction

Mobile computing systems involve devices (smartphone, laptop, intelligent car)
that move within some physical areas, while being connected to networks by
means of wireless links (Bluetooth, IEEE 802.11, LTE). Compared to “tradi-
tional” distributed systems, such systems run in an extremely dynamic context.
The movement of devices yields an evolving topology of connection. Links with
other mobile devices or with infrastructure nodes may be established or destroyed
depending on the location. Moreover, mobile nodes may dynamically appear and
disappear as devices are switched on and off, run out of power or go to standby
mode.

Our work is aimed at developing a framework and a toolset to support the
testing of such systems based on a passive approach. Passive testing (see e.g.,
[5]) is the process of detecting errors by passively observing the execution trace
of a running system. In our case, the properties to be checked are specified using
graphical interaction scenarios. A scenario captures a key property of a mobile
application, depicting mandatory or forbidden behavior, to be checked on the
traces. For mobile computing systems, a property has to be checked according to
the topology of the mobile nodes involved in the scenario. A scenario should have
both (i) a spatial view, depicting the dynamically changing topology of nodes as
c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 124–138, 2017.
DOI: 10.1007/978-3-319-66176-6 9



A Toolset for Mobile Systems Testing 125

a sequence of graphs, and (ii) an event view representing the communications
between nodes.

Graphical scenario languages (e.g., Message Sequence Charts [11], UML
Sequence Diagrams [19]) allow the visual representation of interactions in distrib-
uted systems. Typical use cases, forbidden behaviors, test cases and many more
aspects can be depicted. The need to automate analysis of test traces led us to
design a scenario language with a formal semantics [10]. This graphical language
is a formal UML-based language called TERMOS (Test Requirement Language
for Mobile Settings) [21]. It depicts scenarios including the node context.

The global concept followed for testing mobile computing applications needs
two main elements: an execution platform and software tools to process the
recorded data. The execution platform is composed of three components: a con-
text controller (to manage mobility of nodes), a network controller (to manage
communication) and an execution environment support to run the system under
test (SUT). The SUT is run in a simulated environment, using a synthetic work-
load. The platform controls the context, to observe and to record execution
traces data during the testing campaigns.

Nevertheless, software tools are needed for checking a large amount of traces
against scenarios. In order to support the verification, we designed a test frame-
work. There are three main activities: the specification of scenarios, the capture
of traces via the execution platform, and the analysis of traces.

In a previous work [3], we demonstrated our approach with a first prototype
which integrated the TERMOS language and algorithms in an open-source UML
environment. Since then, significant improvements and extensions have been
achieved:

1. the different pieces of our toolset have been developed and fully integrated,
2. the specification of the language has been extended to take account of

predicates,
3. several checks have been implemented during specification and analysis,
4. a man-machine interface has been created for an accurate analysis of test

verdicts.

This paper aims at giving an overview of a full demonstrator for the approach,
from the graphical editing of requirement scenarios to their automated use for
checking test traces.

The structure of the paper is the following:

– Section 2 gives an overview of the test framework.
– Section 3 presents the choices and development done for the specification of

graphical scenarios for mobile settings.
– Section 4 explains the principle of the trace analysis.
– Section 5 concludes with results provided by the application of the test

method to a case study.



126 P. André et al.

2 Toolset Overview

The goal of our work is the validation of mobile computing systems. Our work
focuses on the use of scenarios to analyze execution traces of mobile computing
systems. It is essential to take account the network topology and the interactions
between mobile nodes. To achieve this analysis, we need to run the application
within an execution platform. It can be either a platform producing real traces
from real physical devices or a simulation platform. For a better reproducibility
of the test campaigns, the system under test (SUT) is run in a simulated envi-
ronment, using a synthetic workload. The SUT may involve both fixed nodes
and mobile devices. The movement of the latter ones is managed according to
some mobility model, a context manager being in charge of producing location-
based data. The network simulator can simulate delays or communication errors
on wireless or wired links. Execution traces are collected, including both com-
munication messages and location-based data from which the system spatial
configurations can be retrieved.

We want to check whether the test trace exhibits some behavior patterns
described by scenarios. The properties are specified using graphical interaction
scenarios which represent test requirements or test purposes. The TERMOS lan-
guage has been developed to capture the three classes of scenarios exemplified
by Fig. 1. Positive requirements capture key invariant properties of the following
form: whenever a given interaction happens in the trace, then a specific inter-
action always follows. Negative requirements describe forbidden behaviors that
should never occur in the trace. Any observed violation of a requirement must be
reported. Test purposes describe behaviors to be covered by testing, that is, we
would like these behaviors to occur at least once in the trace. If the interaction
appears in the trace, the test purpose is reported as covered.

Initial Configuration C1

A B
m1()

Assertion
m2()

(a) Positive req.

Initial Configuration C1

A B
m1()

FALSE
Assertion

(b) Negative req.

Initial Configuration C1

A B
m1()

Config. C1 → Config. C2

TRUE
Assertion

(c) Test purpose

Fig. 1. Requirement and test purpose scenarios (event views)

We interpret TERMOS scenarios as generic behavior patterns that may be
matched by various subsets of the system during the test run. In Fig. 1, the node
ids A and B are symbolic ones. For example, the positive requirement (Fig. 1a)
is interpreted as:



A Toolset for Mobile Systems Testing 127

Whenever two nodes exhibit spatial configuration C1, and the node
matching A sends message m1() to the node matching B, then the node
matching B must answer with message m2().

At some point of a test run, we may have two simultaneous instances of C1,
one with system nodes x and y matching A and B, and one with x and z. At
some later point, system node x may play the role of B in yet another instance
of C1.

Given a scenario, the analysis of a test trace thus involves two steps:

1. Determine which physical nodes of the trace exhibit the (sequence of) con-
figuration(s) of the scenario, and when they do so.

2. Analyze the order of events in the identified configurations using an
automaton.

Assuming that system configuration graphs can be built from the contextual
test data, step 1 can be formulated as a graph matching problem. We explained
in [2,18] how subgraph isomorphism can be used to search for all instances of the
scenario configurations in a trace. Then, in step 2, the order of communication
and configuration change events are analyzed using an automaton for all found
spatial matches.

To automate the execution of the test and the processing of the traces, a test
framework has been implemented. We made the choice to distribute the different
steps in three main activities, as shown in Fig. 2, each performing a specific task
in the testing of mobile applications: the specification of scenarios, the capture
of traces via the execution platform, and the analysis of traces.

The overall principles of the toolset are the following. The trace capture pro-
vides execution traces where location-based data and communication messages
are time stamped. Requirement scenarios are specified manually within a UML-
workshop. A scenario is transformed, after checks, into an automaton and a
pattern containing a sequence of topologies. Finally, trace analysis is processed
in fours steps with specific tools we have developed, and is concluded with a
verdict (pass, fail, inconclusive).

3 Scenario Specification

The scenario specification, the right green block in Fig. 2, consists of three steps:
scenario modeling, scenario format checks and scenario transformation.

In the first step, requirements are captured using our scenario based language,
which includes the mobility related extensions. Our language TERMOS is a
specialization of UML Sequence Diagrams [19]. Its genesis can be found in our
work [17,21]. Like in usual sequence diagrams, lifelines are drawn for the nodes
and the partial orders of their communications are shown. We first noticed that
the spatial configurations of nodes should be a first class concept. As a result, a
scenario should have both (i) a spatial view, depicting the dynamically changing
topology of nodes as a sequence of graphs, and (ii) an event view representing the



128 P. André et al.

Fig. 2. Test framework architecture (Color figure online)

communications between nodes. The syntax of the language includes elements
for representing spatial configurations, changes in the communication structure,
broadcast messages and predicates. These are called non standard elements in
the following.

Next, the scenario to be verified automatically must meet a number of con-
straints. In this way, a verification stage for the well-formedness of the scenario
has been set up. It aims at ensuring the correct syntactic form of the scenario,
and the determinism of verdicts with the use of an unambiguous semantics.
There are three categories of specific constraints for the language: UML syntac-
tic restrictions, consistency between event views and spatial views, and specific
elements of the language.

After all format checks passed successfully, it is possible to process the trans-
formation of the graphical scenario in a suitable format for the trace analysis.
The scenario is then decomposed in two files: a graph sequence representing the
sequence of spatial configurations, and an automaton representing all event order
paths available for this scenario.

Our language has been implemented within a UML workshop. For this imple-
mentation, we have chosen Eclipse Papyrus workshop for its extension capabil-
ities through the use of UML profiles and the development of Eclipse plugins.

3.1 Scenario Modeling

UML Profile for Non-standard Elements. A scenario in a mobile setting
contains two connected views. These views were integrated into Papyrus with



A Toolset for Mobile Systems Testing 129

the use of a UML profile in order to represent of non-standard UML elements
and some syntactic restrictions to sequence diagrams. The first two views are
relevant to the mobile setting, while the syntactic restrictions are relevant to
the use of TERMOS for checking execution traces. With this profile, we pro-
posed three extensions: representation of a spatial view, consideration for spatial
configuration change events in sequence diagrams, representation of broadcast
communication events.

The sequence diagram illustrated Fig. 3 depicts a piece of TERMOS scenario.
The upper note “Initial Configuration: C1” reports that our scenario starts with
a topology called C1. There is a life line in the diagram for each node of the spa-
tial configuration. The spatial configuration change “CHANGE (C2)” impacts
all the nodes, this is why this event is common to each life line. The “hello”
broadcast message is sent by node n2 and received by every node at commu-
nication range. This sequence diagram implies that nodes n1, n3 and n4 are
connected with n2.

Fig. 3. TERMOS example

Local broadcast is used as a basic step for the discovery layer in mobile-based
applications (group discovery for group membership services, route discovery
in routing protocols, etc.). In order to represent a broadcast message in the
neighborhood, we used a stereotype �broadcast� associated with an integer
attribute to link several events together, as in Fig. 4. This stereotype can be
applied to lost/found hello message events as represented in Fig. 3.

A Grammar for the Predicates. In order to provide a richer description of
scenarios, we extended the specification language to take account of predicates
[1]. The scenario in Fig. 5 contains two expressions to evaluate in the Assert
block.



130 P. André et al.

�Stereotype�
broadcast

Message�PrimitiveType�
Integer

id

Fig. 4. UML profile for broadcast

(m1.members includes n1) and (m1.members = m2.members)

Variables used in this expression may have various origins, e.g. variables
from nodes as node identifier or node attributes, or message attributes from the
event view. For example n1 is a node identifier from the spatial view. Variable
like m1.members comes from the content of the first message. The ability to
use variables from either spatial and event view of a scenario is very useful to
represent behavior of complex systems in a scenario.

A dedicated grammar has been created to write predicates [1]. It is based
on a subset of the OCL language syntax and has been implemented using the
ANTLR language. The operations feasible using our grammar can be classified
into three groups: numerical comparison, set comparison and logical operation.
In the example Fig. 5, we want to know if n1 is a member of the m1.members
list, and if m1.members and m2.members contain the same elements.

(a) Event view (b) Spatial view

Fig. 5. Scenario example using predicates

3.2 Scenario Format Checks

Before processing the verification steps of scenarios on an execution trace, it
is necessary to verify that the scenario complies with the constraints of our
language. The objectives of this stage are: to ensure the correct syntactic form
of scenarios, and to ensure the determinism of verdicts using an unambiguous
semantics.



A Toolset for Mobile Systems Testing 131

Some checks are run before the scenario is transformed into an automaton.
The scenario modification is guided by a feedback provided to the user with all
possible details. The goal is to have an error free scenario for the next steps. The
constraints introduced by our language may be classified into three categories.

UML Syntax Restrictions. To adapt the sequence diagrams representation of
interactions within mobile systems, some UML elements have been deleted and
some constraints have been introduced [16]. For example, the following oper-
ators where deleted: Strict, Loop, Ignore, Neg, Break and Critical. In terms of
constraints, some operators are considered as global events. The Assert operator
in Fig. 5 must cover all the lifelines of the scenario and be the last element of
the sequence diagram.

Consistency Constraints Between Event View and Spatial View. As
our scenarios are composed of two views, we must ensure consistency between
them. For example, the nodes present in an event view must be present in the
spatial view.

Specific Elements of the Language. The link between the spatial view and
the event view of the scenario is managed by a global event called Configuration
Change. An example of this specific element of the language is represented in
Fig. 3 by the event CHANGE (C2). Another specific element is the broadcast
communication event. Here we need to link several receive message events with
one unique send event.

3.3 Scenarios Processing

Before running trace analysis, a scenario transformation is mandatory to gen-
erate input patterns for trace analysis. This step occurs after all format checks
have been passed successfully. As mentioned in Fig. 2, the scenario transforma-
tion process produces two behavior patterns. An event order analysis of the
scenario is run to produce them. The configuration changes in the scenario are
analyzed to build a sequence of graphs that depicts the needed sequence of net-
work topology. An automaton is also built with all possible event sequences that
may represent the scenario [1,21].

Some checks have to be executed once the complete automaton is produced.
This is the case when a scenario includes some predicates. For each predicate,
it is necessary to check that all the variables required for its assessment are
available. Considering the example in Fig. 5, the predicate in the Assert block
uses variables m1.members and m2.members from the two preceding messages.
All the branches that led to a state where a predicate is assessed must contain
a valuation of the variables.

4 Trace Analysis

The trace analysis part (the central yellow block in Fig. 2) consists of severals
steps: matching of graph sequences, trace filtering, automaton process-
ing and verdict analysis.



132 P. André et al.

4.1 Principles

There is a gap between the abstract spatial configurations defined in the require-
ment scenarios and the concrete ones observed in the trace. It is necessary to
decide which node from the execution environment can play the roles depicted
in the scenarios. Based on their types and connections, the abstract nodes have
to be mapped to the concrete ones found in the trace. However, usually there are
several possible matchings. Moreover, the matching should take into account not
only one configuration, but also the changes in a sequence of configurations like
C1 followed by C2 in Fig. 3. To address this issue, we developed a method and a
tool, called GraphSeq [2,21], which reasons on a series of abstract and concrete
configuration graphs, and return the set of possible matches and valuations.

Considering the example of the Fig. 5, there is only one spatial view contain-
ing two nodes n1 and n2 which are closed enough to exchange messages. For
each occurrence of the pattern identified by GraphSeq, a match is returned. A
match identifies a subset of concrete nodes that exhibits the searched sequence
of patterns and its duration. It contains the valuation of each existing variable in
the pattern. For each match, a sub-trace is generated. A sub-trace contains only
configuration changes identified by GraphSeq, and communication messages sent
or received by the identified nodes during the time window.

All sub-traces are evaluated with respect to the requirements using the
automaton. Each event in the sub-trace triggers a transition in the automa-
ton until the check reaches a final state or the end of the sub-trace. Each state of
the automaton is linked to a verdict. Finally, a pass, fail or inconclusive verdict
is assigned to a (trace, requirement, matching) combination according to the
reached state.

During the analysis of the execution trace, a new check has to be performed.
Indeed, the use of predicates may lead to some cases of non-determinism. To
detect them, from the current state, we are seeking if more than one transition
can be fired.

Each sub-trace can lead to several verdicts. Indeed, in the automaton some
transitions are labelled as initial ones. That means they can trigger a new vali-
dation of the automaton from the fired event.

The Fig. 6 is an ordered event sequence extracted from a trace we want to
check against the scenario of Fig. 5. GrapSeq has valuated node n1 with real
node A from the trace and respectively n2 with B. The sequence diagram that
depicts the event view of Fig. 5 shows that we expect two unordered messages,
one for each node. Each message (from ❶ to ❺) has been identified as an ini-
tial transition. Then, the sets of messages ❶–❹, ❷–❹, ❸–❹, ❹–❺ lead to the
predicate assessment and then to a verdict pass or fail. Considering the set ❺,
containing only one message, it is impossible to assess the predicate and leads
to an inconclusive verdict. On the other hand the occurence of ❻ does not lead
to a verdict because it occurs after a configuration change. ❻ is represented
here in order to explain how our tool works. However it cannot occur in a sub-
trace because it will be filtered by the time window founds by GraphSeq in the
previous steps of analysis.



A Toolset for Mobile Systems Testing 133

A B

Configuration : C2

New Configuration

GroupChange()
2

GroupChange()
1

GroupChange()
3

GroupChange()
4

GroupChange()
5

GroupChange()
6

Fig. 6. Multiple verdicts from one trace

4.2 Verdict Analysis

The automaton execution stage leads mostly to a set of verdicts that it is difficult
to analyze manually. We have implemented a verdict analysis tool based on a
man-machine interface allowing an accurate analysis of test verdicts. The inter-
face of this tool shown Fig. 7 is composed of three areas. The first one contains
all verdicts of the current execution. It may contain a large number of verdicts
because an automaton check can be run on all the sub-traces identified in the
first step of the trace analysis. In this part of the interface, the user is able to
select and analyze in details a verdict through the analysis of the automaton
transition triggered to reach the verdict. The trigerred transitions are displayed
in the automaton area. For each transition, the event that triggered it is high-
lighted in the trace area. It is also possible to display the content of the message
for manual analysis.

With this analysis interface, the user has a better feedback to understand
more easily the behavior of the system and take the necessary actions to correct
it. Actions can be changed in the source code of the application under test or
the scenario may be rewriten in the right way. These actions are represented
in Fig. 2 by the feedback from Verdict analysis to Application to test and
Scenario modeling.



134 P. André et al.

Trace Automaton

Verdicts

Fig. 7. Verdict analysis interface

5 Results

Our test framework was validated with a case study. To be used, our method
requires two elements: detailed specifications in order to design test cases and
functional implementation for the collection of execution traces. The application
we have verified is a group membership protocol called GMP whose specifications
are detailed in [9]. Its implementation was provided by the authors.

The main functionality of the GMP is to maintain a consistent view of who is
in the group. The studied implementation dynamically merges and splits groups
of nodes according to a notion of safe distance. The safe distance is determined
to give enough time for two nodes in the same group for: (i) moving away from
each other at their maximum speed, (ii) splitting up the group before loosing
network connection between them. Using this notion, a link between two nodes
can have three labels: safe distance, communication range, disconnected and any
(wildcard for any of the three labels).

The GMP works with two main operations, GroupSplit and GroupMerge. We
used specifications of the protocol fully described in [9] to write tests scenarios
and check key properties of this protocol.

One example of property was described using our language in Fig. 5. This
scenario depicts a property called Membership Agreement. It aims at ensuring
that two nodes connected together with a safe link have to be in the same group.



A Toolset for Mobile Systems Testing 135

To collect traces of execution, we have instrumented the application under
test. This instrumentation consists, on each mobile node, to simulate a location
device acting as a GPS and to record all communications events with the outside
world. To observe how the protocol works, several nodes must be running at the
same time. To manage the simulation and coordinate nodes movements between
them, a mobility simulator was used.

We tested our scenarios considering the traces collected during the execution
of the GMP using 16 nodes during 15 min. This execution produced a global trace
containing 900 configuration graphs and more than 500,000 sent or received mes-
sage events. Firstly, as shown in Fig. 2, for each scenario, we searched for spatial
patterns and generated subtraces. This step found 3,116 spatial matches and
generated one subtrace for each of them. Next, we check the automaton on each
subtrace. The automaton may be checked more than once per subtrace because
we look for initial events in the subtrace, and run the automaton starting at
each initial event detected. This step led to 36,460 executions of the automaton,
distributed as follows:

– 16 186 executions reached the final state of the automaton. In other words,
the verdict of the execution is accept.

– 20 240 executions have not reached the assert block of the scenario. In this
scenario, this is due to the lack of one of the two GroupChange messages.

– 34 executions stopped inside the assert block. These cases revealed violation
of the property.

Table 1. Summary of scenarios validation for a trace of more than 500,000 events.

Tested scenario Matches Accept Reject

Spatial Event Stringent Trivial

Local monotonicity 16 3,608 3,478 16 114

Self inclusion 16 3,608 3,606 0 2

Membership change justification 16 3,608 3,495 16 97

Membership agreement 3,116 36,460 16,186 20,240 34

Wrong split* 8768 53702 0 53098 604

Concurrent merge* 2450 2487 0 2336 151

Concurrent split 162 569 52 387 130

Complete results about tested scenarios are presented Table 1. With these
results displayed in the verdict analysis interface presented in the previous section,
the user is able to analyse each verdict and detect which events caused it.

All the GMP properties were described using TERMOS language, and veri-
fied on traces from the SUT presented above. Each property was violated at least
once. The results show the usefulness of our tool which can detect properties vio-
lation easily on execution traces. The user only needs to describe properties using



136 P. André et al.

our UML editor, run analysis on execution traces and analyse the results given
by our tool.

6 Related Works

We did not find any testing framework or tools like our toolset. The closest work
we can find is a methodology for testing autonomous systems based on graphical
scenarios [15].

Other works have investigated how to incorporate mobility into UML scenar-
ios [4,7,13]. However, the focus was more on logical mobility (mobile computa-
tion) than on physical one (mobile computing). It induces a view of mobility that
consists of entering and exiting administrative domains, the domains being hier-
archically organized. This view is adequate to express the migration of agents,
but physical mobility requires further investigation, e.g., to account for dynamic
ad-hoc networking. Also, there is not always a formal semantics attached to the
notations.

Having a formal semantics is crucial for our objective of automated analy-
sis of traces. We had a thorough look at existing semantics for UML Sequence
Diagrams that led to the one presented in [10]. More details on UML-semantics
can be found in a survey [16]. We also looked at other scenario languages distin-
guishing potential and mandatory behavior. The most influential work for the
TERMOS semantics was work on Live Sequence Charts (LSC) [6,12], as well as
work adapting LSC concepts into UML Sequence Diagrams [8,14].

GraphSeq implements an algorithm to match sequences of configurations: the
sequence of symbolic configurations of the scenario, and the sequence of concrete
configurations traversed during SUT execution. To the best of our knowledge,
this is an original contribution. The comparison of sequences of graphs has been
much less studied than the comparison of two graphs. The closest work we found
is for the analysis of video images. In [20], the authors search for sequences of
patterns (called pictorial queries) into a sequence of concrete graphs extracted
from video images. Some differences with us are that their patterns do not involve
label variables, and that there is at most one possibility for matching a pattern
node with an image object.

7 Conclusion

This paper presented a tooling support for TERMOS, a UML-based scenario lan-
guage for the testing of mobile computing systems. Its formal semantics allows
an automated analysis of test traces. A grammar for predicates has been created
to accommodate richer descriptions of scenarios. Several checks during the ver-
ification process from the depiction of requirements scenarios to trace analysis
have been implemented to ensure the correctness of our method. A man-machine
interface was integrated to help the user to analyze the test verdict. The full inte-
gration of our main tools, GraphSeq and TERMOS, led us to develop a complete



A Toolset for Mobile Systems Testing 137

tool chain for the automated checking of test traces. The integration has been
done in a UML workshop called Papyrus.

In order to validate our test framework, we led experiments on a group mem-
bership protocol. During this experimentation, we have proven the efficiency of
our tools using them on traces of several hundred of thousands events. Detailed
information on the testing tools and the tested scenarios of the GMP case study
are available at https://www.laas.fr/projects/TERMOS. The tool will be made
available online for the scientific community.

References

1. Andre, P.: Test of ubiquitous systems with explicit consideration of mobility. Ph.d.
[in french], UPS Toulouse. https://tel.archives-ouvertes.fr/tel-01261593

2. André, P., Rivière, N., Waeselynck, H.: GraphSeq revisited: more efficient search for
patterns in mobility traces. In: Vieira, M., Cunha, J.C. (eds.) EWDC 2013. LNCS,
vol. 7869, pp. 88–95. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38789-0 8

3. Andre, P., Waeselynck, H., Riviere, N.: A UML-based environment for test sce-
narios in mobile settings. In: International Conference on Computer, Information,
and Telecommunication Systems (CITS 2013). IEEE (2013)

4. Baumeister, H., Koch, N., Kosiuczenko, P., Stevens, P., Wirsing, M.: UML for
global computing. In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874, pp. 1–24.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-40042-4 1

5. Cavalli, A., Maag, S., de Oca, E.M.: A passive conformance testing approach for
a MANET routing protocol. In: Proceedings of the 2009 ACM Symposium on
Applied Computing (SAC 2009), pp. 207–211, NY, USA (2009). http://doi.acm.
org/10.1145/1529282.1529326

6. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Formal
Methods Syst. Des. 19(1), 45–80 (2001)

7. Grassi, V., Mirandola, R., Sabetta, A.: A UML profile to model mobile systems. In:
Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol.
3273, pp. 128–142. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30187-5 10

8. Harel, D., Maoz, S.: Assert and negate revisited: modal semantics for UML
sequence diagrams. Softw. Syst. Model. 7(2), 237–252 (2008)

9. Huang, Q., Julien, C., Roman, G.: Relying on safe distance to achieve strong
partitionable group membership in ad hoc networks. IEEE Trans. Mobile Comput.
3(2), 192–205 (2004)

10. Huszerl, G., Waeselynck, H., Egel, Z., Kovi, A., Micskei, Z., Nguyen, M.D., Pinter,
G., Riviere, N.: Refined design and testing framework, methodology and application
results, HIDENETS project deliverable D5.3 (2008). http://www.hidenets.aau.dk/

11. International Telecommunication Union: Message Sequence Chart (MSC), recom-
mendation Z.120 (2011). http://www.itu.int/rec/T-REC-Z.120

12. Klose, J.: Live Sequence Charts: A Graphical Formalism for the Specification of
Communication Behavior. Ph.D. thesis, Carl von Ossietzky Universitat Oldenburg
(2003)

13. Kusek, M., Jezic, G.: Extending UML sequence diagrams to model agent mobility.
In: Padgham, L., Zambonelli, F. (eds.) AOSE 2006. LNCS, vol. 4405, pp. 51–63.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-70945-9 4

14. Küster-Filipe, J.: Modelling concurrent interactions. Theor. Comput. Sci. 351(2),
203–220 (2006)

https://www.laas.fr/projects/TERMOS
https://tel.archives-ouvertes.fr/tel-01261593
http://dx.doi.org/10.1007/978-3-642-38789-0_8
http://dx.doi.org/10.1007/978-3-540-40042-4_1
http://doi.acm.org/10.1145/1529282.1529326
http://doi.acm.org/10.1145/1529282.1529326
http://dx.doi.org/10.1007/978-3-540-30187-5_10
http://www.hidenets.aau.dk/
http://www.itu.int/rec/T-REC-Z.120
http://dx.doi.org/10.1007/978-3-540-70945-9_4


138 P. André et al.

15. Micskei, Z., Szatmári, Z., Oláh, J., Majzik, I.: A concept for testing robustness and
safety of the context-aware behaviour of autonomous systems. In: Jezic, G., Kusek,
M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol.
7327, pp. 504–513. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30947-2 55

16. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a
survey. Softw. Syst. Model. 10(4), 489–514 (2011)

17. Nguyen, M.D., Waeselynck, H., Riviere, N.: Testing mobile computing applications:
toward a scenario language and tools. In: Proceedings of the 2008 International
Workshop on Dynamic Analysis (WODA 2008), pp. 29–35. ACM (2008)

18. Nguyen, M.D., Waeselynck, H., Riviere, N.: GraphSeq: a graph matching tool for
the extraction of mobility patterns. In: 3rd International Conference on Software
Testing, Verification and Validation (ICST), pp. 195–204, April 2010

19. Object Management Group: Unified Modeling Language (UML) 2.4.1 Superstruc-
ture Specification, formal/2011-08-06 (2011)

20. Shearer, K., Venkatesh, S., Bunke, H.: Video sequence matching via decision tree
path following. Pattern Recognit. Lett. 22(5), 479–492 (2001)

21. Waeselynck, H., Micskei, Z., Rivière, N., Hamvas, Á., Nitu, I.: TERMOS: a for-
mal language for scenarios in mobile computing systems. In: Sénac, P., Ott, M.,
Seneviratne, A. (eds.) MobiQuitous 2010. LNICSSITE, vol. 73, pp. 285–296.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-29154-8 24

http://dx.doi.org/10.1007/978-3-642-30947-2_55
http://dx.doi.org/10.1007/978-3-642-29154-8_24


Intertwined Global Optimization
Based Reachability Analysis

Ibtissem Seghaier(B) and Sofiène Tahar

Department of Electrical and Computer Engineering,
Concordia University, Montréal, QC, Canada

{seghaier,tahar}@ece.concordia.ca

Abstract. This paper proposes a semi-formal reachability analysis tech-
nique based on global optimization for hybrid systems. In order to model
the hybrid system dynamics with parameter and noise disturbance, a sys-
tem of stochastic recurrence equations formalism is proposed. Then, a
reachability analysis approach is adopted to compute the reachable sets
under an interval of initial conditions and in light of system parameters
variability. The novelty of our approach is in approximating the reach-
able bounds in an intertwined forward/backward manner. The backward
corrections refine the obtained reachable bounds in the forward scheme
and so reduce the high reachability over-bounding due to the wrapping
effect. Finally, a Monte Carlo hypothesis testing based technique is per-
formed on the resultant reachable bounds to uncover the hybrid system
failure with regard to a certain specification. These failures are quan-
tified in terms of parametric yield rate which reflects the sensitivity of
the hybrid system to variations in its parameters. We demonstrate the
effectiveness of our proposed verification methodology by applying it on
a mixed analog and digital electronics building block commonly used in
communications systems.

Keywords: Hybrid systems · System of stochastic recurrence equa-
tions · Intertwined forward-backward reachability analysis

1 Introduction

Continuous and discrete systems behaviors have been extensively analyzed sep-
aretly by control theory and formal verification communities, respectively. How-
ever, the verification of their composition in the same system, termed as hybrid
system, has gained a lot of attention lately [1]. Indeed, hybrid systems are basic
blocks in embedded control systems that involve interaction between digital sys-
tems and the physical world via analog plants (e.g., sensors and actuators) [2].
The complex infinite possible behaviors that a hybrid system exhibits rend the
verification of such systems both challenging and critical, especially for safety
critical applications such as avionics, automotive engine, and medical systems [3].
Verification becomes particularly challenging with hybrid models that account

c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 139–154, 2017.
DOI: 10.1007/978-3-319-66176-6 10



140 I. Seghaier and S. Tahar

for real system imperfections such as system parameter variations due to fab-
rication impurities along with input fluctuations. Monte Carlo simulation is a
cornerstone and perhaps the most common practice in the verification of hybrid
systems [4]. However, it is not sufficient to carry out multiple simulations when
the system is actually required to match its specifications for all possible ini-
tial conditions and process parameters. Instead, reachability analysis techniques
which refer to computing the set of all possible system behaviors emanating
from an initial reachable set are adopted to prove that they satisfy a desired
specification. Current reachability analysis techniques can be broadly classified
into three main categories. Namely, SMT-solving [5], theorem proving [6] and
flowpipe computation-based techniques [7]. Most of these reachability analysis
techniques can only handle hybrid systems with linear continuous dynamics but a
few are readily scalable to systems with nonlinear dynamics. In addition, because
reachalbility analysis is in general undecidable, over-approximation is required
to ensure the decidability of the reachability problem. This leads to verification
errors in the computed reachable set that accumulates and even blows up with
the reachable set evolution over time. This problem, known as wrapping effect,
becomes a great concern for an accurate verification of hybrid systems. Hence,
an efficient verification of these systems dictates two key requirements: (1) a
uniform modeling formalism that fully reflects the relations as well as the inter-
actions of the discrete and continuous parts of the system. With the uniformity,
the model should also provide accuracy by realistically replicating noise, para-
meters and initial conditions variation; and (2) an accurate reachability analysis
scheme that can handle nonlinear continuous hybrid systems and assess the effect
of parameter variations while reducing the wrapping effect.

In this paper, we present a novel methodology for modeling and verification
of continuous and hybrid systems under parameter and initial conditions uncer-
tainties using a system of stochastic recurrence equations formalism. We propose
an intertwined forward/backward reachability analysis technique based on global
optimization that is capable of reducing the wrapping effect. The key insights is
that for the purpose of nonlinear hybrid system verification, the reachable sets
are tracked precisely by a backward reachability correction approach and the
system failure rate is estimated using a hypothesis testing based approach.

The rest of this paper is organized as follows: in Sect. 2, we introduce some
preliminary definitions of hybrid system modeling, including Latin Hypercube
sampling and hypothesis testing techniques. Section 3 then discusses our pro-
posed methodology for hybrid systems modeling and verification. In Sect. 4, we
demonstrate the effectiveness of our methodology by applying it on a common
analog and mixed signal design used in communication systems. Finally, conclu-
sions and future work are given in Sect. 5.

2 Preliminaries

In this section, we define the terminology that will be used for hybrid systems
modeling. We also present some background on the Latin Hypercube Sampling
technique, and statistical hypothesis testing along with their definitions.



Intertwined Global Optimization Based Reachability Analysis 141

2.1 Hybrid System Modeling: System of Stochastic Recurrence
Equations

Hybrid systems contain two different types of components: those with continuous
dynamics and those with discrete dynamics. Despite their heterogeneous nature,
a careful time domain discretization allows a unified description of all the hybrid
systems components. Due to the statistical behavior that hybrid systems exhibit
in the presence of uncertainties (such as noise and parameter variability), we
are interested in modeling hybrid systems as a System of Stochastic Recurrence
Equations (SSRE) [8], which is a formalism that allows to capture the statistical
properties of the system in a unified discrete-time description. Moreover, the
temporal properties of these hybrid components and their interactions can be
expressed as SSRE. In what follows, we explain the SSRE notations and detail
the conversion process of system equations and properties to SSREs. A system
of recurrence equations is a set of relations between consecutive elements of a
sequence. The notion of recurrence equations to describe discrete systems using
the normal form: generalized If-formula was first proposed by Al-Sammane [9].
In addition, a stochastic recurrence equation can be generated for the case of
continuous systems using the discrete version of their Stochastic Differential
Equation (SDEs) [10]. In the following, we briefly present the SSRE theory. An
SSRE is a set of SREs with stochastic processes. Let us consider the following
Itô process {Xt, 0 ≤ t ≤ T} SDE [11]:

dXt(ω) = f(Xt(ω))dt + σ(Xt(ω))dWt(ω) (1)

where the stochastic variable Wt is a Brownian motion [12] (see Definition 1),
the initial condition (Xt0 = X0) and the diffusion coefficient σ are deterministic
variables.

Definition 1. (Brownian Motion) A scalar standard Brownian process, or
standard Winer process over [0,T] is a random variable Wt that depends contin-
uously on t ∈ [0, T ] and satisfies the following conditions:

Condition 1. W (0) = 0 with probability 1.

Condition 2. For 0 ≤ s < t ≤ T the random variable given by the increment
Wt −Ws is normally distributed with mean zero and variance (t−s) (Wt −Ws ∼√

t − sN (0, 1)).

Condition 3. For 0 ≤ s < t < u < v ≤ T the increments Wt−Ws and Wv −Wu

are independent.
By integrating Eq. (1) between s and s + Δs, we will have:

dXs+Δs(ω) = Xs(ω)+

∫ s+Δs

s

f(Xs+Δs(ω))dt+

∫ s+Δs

s

fσ(Xs+Δs(ω))dWs+Δs(ω) (2)

The Euler scheme [13] consists in approximating the integral Eq. (2) by the
following iterative scheme:

X̄s+Δs(ω) = X̄s(ω) + f(X̄s(ω))Δs + σ(Ws+Δs(ω) − Ws(ω)) (3)



142 I. Seghaier and S. Tahar

Definition 2. (Generalized If-formula) The generalized If-formula is a class
of symbolic expressions that extend recurrence equations to describe discrete sys-
tems. Let i and n be natural numbers. Let K be a numerical domain in (N,Z,Q,R
or B), an If-formula is one of the following:

– A variable Xi(n) or a constant C that takes values in K

– Any arithmetic operation � ∈ {+,−,×,÷} between variables Xi(n) that take
values in K

– A logical formula: any expression constructed using a set of variables Xi(n) ∈
K and logical operators: not, and, or, xor, nor, . . . , etc.

– A comparison formula: any expression constructed using a set of variables
Xi(n) ∈ K and comparison operators � ∈ {�=,=, <,≤, >,≥}

– An expression If(X,Y,Z), where X is a logical formula or a comparison
formula and Y,Z are any generalized If-formula.

Here, If(X,Y,Z) : B × K × K −→ K satisfies the axioms:

1. If(true, X ,Y) = X
2. If(false, X ,Y) = Y

Definition 3. (SSRE) Consider a set of variables Xi(n) ∈ K,
i ∈ V = 1, . . . , k, ω ∈,R, an SSRE is a system of the form:

Xi(ω) = fi(Xj(ω)γ)), (j, γ) ∈ εi,∀ω ∈ R (4)

where fi(Xj(ω)γ)) is a generalized If-formula of the recurrence stochastic
differential equation given in Eq. (3). The set εi is a finite non empty subset of
1, . . . , k × N. The integer γ denotes the delay.

2.2 Latin Hypercube Sampling

To study parameter variation effects on the behavior of hybrid systems, an opti-
mal exploration of the variation domain of the parameter values is very important
in order to achieve a good accuracy and avoid non-informative verification runs.
Traditional sampling techniques (e.g., Pseudo Random Sampling (PRS), Frac-
tional Factorial, Central Composite, etc.) only arrange parameter values at some
specific corners in the parameter space and can not handle multivariate stochas-
tic parameters especially in terms of correlation. Consequently, when performing
verification, it cannot mimic the system behavior in a global system parameter
space. We first look at PRS as applied in the estimation of system failure in order
to justify the use of Latin Hypercube Sampling (LHS). It has been demonstrated
that the LHS technique gives samples that could reflect the integral distribution
more effectively with a reduced samples variance [14]. Figure 1 illustrates the
differences while using Monte Carlo PRS and Gaussian Monte Carlo LHS of a
random normal parameter of transistor width for 1000 trials.

In the sequel, we explain the Latin Hypercube Sampling (LHS) main steps
to generate a sample size N from n hybrid system parameter variables ξ =
[ξ1, ξ2, . . . , ξn] with the probability distribution function fξ(.).



Intertwined Global Optimization Based Reachability Analysis 143

Fig. 1. Sampling differences between Monte Carlo PRS and LHS

First, the approach involves the partitioning of the range of each system
parameter variable into N non overlapping intervals on the basis of equally
probability size 1

N . One value from each interval is randomly selected w.r.t. the
conditional probability density in the variation interval defined by the technology
library. The N values thus obtained for ξ1, are paired in a random manner with
the N values of ξ2. These N pairs are combined in a random manner with the N
values of ξ3 to form N triplets, and so on, until a set of N × n-tuples is formed.
The choice of this sampling technique can be justified by its variance sampling
reduction, which results in a better sampling coverage and consequently a better
verification coverage [15].

2.3 Hypothesis Testing

Hypothesis testing [16] uses statistics to make decisions about the acceptance
or the rejection of some statements based on the data from random samples. In
this technique, the property of interest is formulated as a null hypothesis (H0)
which is tested against an alternative hypothesis (H1). If we reject H0, then the
decision to accept H1 is made.

Definition 4. Given the property P within the ambit of a null hypothesis H0,
a significance level α, and a test statistic T , hypothesis testing is the process of
verifying whether a system S satisfies H0 with a probability greater than or equal
to α (i.e., S |= Pr(T ) ≥ α).

As depicted in Fig. 2, Hypothesis testing can be a one side test (upper test or
lower tes) or two sided. In the case of a two sided test for example, we can verify
if a variable X is within a bounded region [x1, x2] as follows:

H0 : P (x1 < X < x2) = P (X < x2) − P (X < x1) = 1 − α (5)



144 I. Seghaier and S. Tahar

50 60 70 80 90 100 110 120
0

0.02

0.04

0.06

(a) Two-tailed Test

50 60 70 80 90 100 110 120
0

0.02

0.04

0.06

(b) Upper-tailed Test

50 60 70 80 90 100 110 120
0

0.02

0.04

0.06

(c) Lower-tailed Test

Rejection
Region

Rejection
Region

Rejection
Region

Rejection
Region

Retain H
 0

Retain H
 0

Retain H
 0

Fig. 2. Hypothesis testing concept

Following are the central steps to carry out hypothesis testing:

1. Elucidate the property to be verified and formulate it as H0 and H1.
2. Specify the appropriate level of significance α and determine the type of the

test, namely, upper test, lower test or two sided test.
3. Select the appropriate test statistic.
4. Compute the critical region or p-value of the test statistic.
5. Compute the test statistic of the observed value for the original data.
6. Make the decision of accepting or rejecting the null hypothesis H0. If the

computed test statistic falls in the critical region, then the null hypothesis is
rejected, otherwise H0 is accepted.

The performance criteria of this approach is related to two types of errors as
shown in Table 1:

Table 1. System verification classification

Passed Failed

Good System � Type I error

Failed System Type II error �

Type I error (α) or false positive, the null hypothesis H0 is true but the
decision based on the testing process erroneously rejected it. In other words, it
represents the probability of accepting H0 when H1 holds.



Intertwined Global Optimization Based Reachability Analysis 145

Type II error (β) or false negative, the null hypothesis H0 is false but the test-
ing process concludes that it should be accepted. In other words, it corresponds
to the probability of accepting H1 when H0 holds.

3 Proposed Methodology

An overview of the proposed methodology for intertwined forward/backward
reachability analysis is shown in Fig. 3. Given a nonlinear hybrid system descrip-
tion, SSREs that express its stochastic behavior under noise perturbation are
generated. The proposed SSRE formalism features a sound treatment of noise.
It actually allows a consistent consideration of the noise effect to which the
system is incurred during the reachability analysis process. More details about
the system uncertainties modeling can be found in [17]. Then, parameter values
from a certain distribution of the parameter space are derived using the efficient
LHS technique. Next, reachability bounds of the hybrid system for a continuous
set of initial conditions, and under the derived system parameters are generated
using a novel intertwined forward/backward reachability analysis technique. The
reachability computed using SSRE system model with parameters selected by
the LHS procedure and for initial conditions that are defined within intervals
(n-cubes) is based on the global optimization theory. The SSRE is not solved for
every initial condition value but it employs the reachability analysis algorithm
to optimize the search for the global extremum.

The output of this step is a refined reachability set generated from the back-
ward reachability correction that includes all possible actual behaviors (trajec-
tories) of the system. The main advantage of the proposed verification scheme
is its generality and scalability. In fact, it does not make any assumption about
the nature of the hybrid system dynamics: it works for any hybrid system with
linear and nonlinear behavior. Next, appropriate null and alternative hypothe-
ses are formulated from a certain SSRE specification of the hybrid system under
verification. For each selected system parameters in the reachability iteration,
Hypothesis Testing based Monte Carlo (MC) technique is conducted to estimate
the system parametric failure which refers to failures caused by the deviation
between manufactured system parameter values and intended parameter values.
Each time the null hypothesis H0, which represents the desired system prop-
erty, is rejected, we draw a conclusion that the system fails to comply with its
property and so we increment the number of system failures Nfailure. Finally,
the system yield rate is computed based on the probability of failure PFailure as
follows:

PFailure =
Nb. of Rejected H0

Total Nb. of MC Trials

Y ield = 1 − PFailure



146 I. Seghaier and S. Tahar

Nonlinear Hybrid System Model  

System of Stochas c 
Recurrence  Equa ons

(SSRE) Model

Forward Reachability 
Analysis

Backward Reachability 
Analysis

MC based 
Hypothesis Tes ng 

Property / 
Specifica on

System Parameters 
Varia on

Yield Rate

Noise UncertaintyIni al Condi ons 
Varia on

Hypothesis 
Formula on

System uncertainties

In
te

rt
w

in
ed

  R
ea

ch
ab

ili
ty

 
A

na
ly

si
s

La n Hypercube 
Sampling

Verifica on 
Set Up

Fig. 3. Proposed verification methodology

3.1 Forward-Backward Reachability Analysis

Definition 5. (Reachability Analysis) Reachable set (or bounds) is the collec-
tion of all possible trajectories or states of the hybrid system dynamical behavior
originated from an interval of initial conditions. Mathematically, this can be
defined as follows:

XReachable set = {x ∈ R
Nx | XL ≤ x ≤ XU} (6)

where XL is the lower reachable bound of the reachable set (or region) and XU

is the upper bound of the reachable set.

The proposed intertwined reachability analysis approach is shown in Fig. 4.
The definition of reverse time dynamics of the SSRE model allows the for-
ward/backward reachability exchange. The detailed implementation of the inter-
twined reachability analysis approach is summarized in Algorithm 1. Hybrid
dynamical systems: An introduction to control and verification. Given an inter-
val system of stochastic differential equations (an SSRE whose initial conditions
are intervals), the algorithm defines the region of uncertainty of the system as an
hypercube (n-cube) at time t0 (Lines 3 and 18). Hence, the reachability analysis
problem at a given simulation time point t∗ for each system output (or state
space) is equivalent to finding the maximum and minimum bounds of the SSRE
model. In the proposed algorithm, the reachability analysis problem is so cast



Intertwined Global Optimization Based Reachability Analysis 147

Algorithm 1. Intertwined Forward/Backward Reachability Analysis
Require: SSRE : Hybrid System Model, X0 : Interval of Initial Conditions, P : System parameters,

Nx : Number of state variables, t0 : Initial time, tf : Final time
1: for t∗

1 ← t0 to tf do
2: for j ← 1 to Nx do
3: Xext(t

∗
1) = Generate(X0) � external surface of the uncertainty region

4: Xmax(t
∗
1 , j) = −∞

5: Xmin(t
∗
1 , j) = ∞

6: for each state variable Xext(j) ∈ Xext do
7: Const = UpdateConstar(j, SSRE, P, Xext)
8: Grad = UpdateGrad(j, t∗

1 , SSRE, P, Xext))
9: [Xmax(t

∗
1), Xmin(t

∗
1)] = Global Opt(SSRE, j, t0, t∗

1 , P, Xext), Grad, Constr)
10: end for
11: BLForward

(t∗
1) ← Xmin(t

∗
1)

12: BUForward
(t∗

1) ← Xmax(t
∗
1)

13: update forward(t∗
1 , Δt)

14: end for
15: end for
16: for t∗

2 ← tf to t0 do
17: for j ← 1 to Nx do
18: Xext(t

∗
2) = Generate(BLForward

(t∗
2), BUForward

(t∗)) � external surface of the
approximate reachability bounds

19: Xmax(t
∗
2 , j) = BUForward

(t∗
2 , j)

20: Xmin(t
∗
2 , j) = BLForward

(t∗
2 , j)

21: for each state variable Xext(j) ∈ Xext do
22: Const = UpdateConstarB(j, SSRE, P, Xext)
23: Grad = UpdateGradB(j, t∗

2 , SSRE, P, Xext))
24: [Xmax(t

∗
2), Xmin(t

∗
2)] = Global OptB(SSRE, j, tf , t∗

2 , P, Xext), Grad, Constr)
25: end for
26: BLcorrected

(t∗
2) ← Xmin(t

∗
2)

27: BUcorrected
(t∗

2) ← Xmax(t
∗
2)

28: update backward(t∗
2 , Δt)

29: end for
30: end for

into a constrained multivariable nonlinear global optimisation problem. It was
proven that under continuity condition, it is sufficient to compute the evolution
of the external surface of the uncertainty region [18]. This means that to calcu-
late the reachable bounds, it is sufficient to compute the trajectories emanating
from the external surface of the region of the uncertainty region.

The extreme functions (Max and Min) at a specific time t∗ of the system
equations SSRE(t∗, j,Xext),∀j = 1, . . . , Nx, which bound the system behavior,
are first computed using the forward reachability analysis. We used the MAT-
LAB Optimization solver [19] based on trust regions (Lines 1 to 15) to get
these extreme functions of SSRE(t∗, j,Xext),∀j = 1, . . . , Nx by fixing the time
variable to t∗ and constraining the system behavior to evolve over the external
uncertainty region (Line 7). The computed optimization point is then passed to
the SSRE model, which uses Xext as initial conditions and generates a partial
derivatives (gradient) values that are used to control the stability of the reach-
ability analysis (Line 8). The algorithm terminates if the optimisation method
considers SSRE(t∗, j,Xext),∀j = 1, . . . , Nx as an extremum;

Otherwise the gradient values are used to select new points from the external
uncertainty region Xext and the above described steps are repeated. Athough
this step guarantees the completeness of the reachability set, the upper and lower



148 I. Seghaier and S. Tahar

Fig. 4. Intertwined reachability analysis concept

obtained reachable sets are highly overbounded due to the wrapping effect. One
way to tighten the reachability space is to conduct a backward reachability
(Lines 16 to 30). Starting from the final computed set (Line 18), the backward
optimization algorithm is now performed on the hybrid system SSRE reversed in
time in order to compute backwards the reachability bounds and consequently
correct the overbounded forward reachability set.

4 Application: PLL Frequency Synthesizer

In this section, we validate our proposed intertwined forward reachability analy-
sis with backward correction methodology on a Phase Locked Loop (PLL) mixed
signal design. More details about PLL case study as well as the results of another
application are reported in [17]. All computation and hybrid system models
were integrated in MATLAB environment and were run on a 64-bit Windows 7
machine with 2.8 GHz processor and 24 GB memory. The hypothesis testing is
conducted for a level of significance α = 5%.

The PLL based frequency synthesizer is a basic and essential block of modern
communication systems. It is basically a feedback circuit that tries to reduce the
phase error between the input and the reference signals. In this case study, we
consider a simple frequency synthesizer, that generates an output signal whose
frequency is N times the frequency of the reference signal. We consider for this
application a Sine wave reference signal with a frequency of ω0, the PLL output
is a Cosine wave signal with frequency N × ω0.



Intertwined Global Optimization Based Reachability Analysis 149

Fig. 5. PLL design block diagram

Figure 5 shows a block based description of a second order PLL based fre-
quency synthesizer. It consists of a reference oscillator, a Charge Pump (CP), a
Low Pass Filter (LPF), and a Voltage Controlled Oscillator (VCO). In order to
model this PLL using SSREs notation, we need to model each block separately
and then link them according to the PLL architecture in Fig. 5. The noise consid-
ered in this case study is the random temporal variation of the phase (a.k.a jitter)
in the reference oscillator and the VCO block. It is well-known that jitter is the
most dominant and critical noise metric in PLL because large jitter can modulate
the oscillator signal both in frequency and amplitude. These modulation effects
can cause a deviation in the phase from targeted locking range and hence results
in a design failure. The efficient verification of PLL for a certain design specifi-
cation has always been a challenge for circuit designers. We apply the proposed
methodology to verify the locking property of a second order PLL design shown
in Fig. 5. The lock time property is a safety property that expresses how fast the
frequency synthesizer switches from one frequency to another. The verification of
this property is achieved by checking that the PLL reaches the proper DC value
within the lock time parameter range which is ∈ [0.002, 0.0024] seconds.

This property is defined within the ambit of an SSRE model in Eq. (7), where
the SSRE concatenation operator (∧) indicates that the two Boolean expressions
hold simultanuously.

Property PLL = If(Filter out(Lock timemin + n) ∈ DC level range ∧ (7)
Filter out(Lock timemax − n) ∈ DC level range, true, false)



150 I. Seghaier and S. Tahar

The verification property is For a given confidence level α, and N Monte Carlo
trials, what is the probability that the PLL meets the lock-time requirement?.

In this case, the PLL has been designed with a lock-time in the range of [0.002 ,
0.0024] sec. Hence, the null hypothesis H0 and the alternative hypothesis H1 of
the Property in Eq. (7) can be, respectively, expressed as:

H0 : lock time ∈ [0.002, 0.0024]
H1 : lock time /∈ [0.002, 0.0024]

Fig. 6. PLL Output with and without phase noise (Color figure online)

Figure 6 depicts a comparison between the locking property of the PLL design
whose parameter values are listed in Table 2 with and without jitter. A compari-
sion of the same reachability algorithm without backward refinement [20] for the
PLL design is given in [17]. It can be remarked that in the case of jittery PLL
(red dotted line), the low pass filter outputs do not stabilize to the tolerated DC
level and keep fluctuating outside the tolerated range. As a result, the PLL lock-
ing property is violated and the verification fails. Therefore, the verification of
the PLL with consideration of jitter is very important when performing reach-
ability analysis. Now, we validate our proposed intertwined forward/backward
reachability technique on the jittery PLL design for an entire range of initial con-
ditions and with consideration of parameter variations. The derived forward and
backward reachable bounds are shown in Fig. 7, in which the forward reachabil-
ity bound is painted in red and the backward reachability bound in green. In the
forward iteration, the reachable set is highly over-approximating the PLL behav-
ior. By performing the backward correction, we were able to tighten up this over-
approximation and trace back the circuit dynamics down to the initial condition.
The results of the PLL yield estimation using a variant of statistical Monte Carlo



Intertwined Global Optimization Based Reachability Analysis 151

Table 2. PLL frequency synthesizer parameters

Name Value Unit

RC 0.0001 s

α exp( −108

0.0001
) -

Vc 5 V

ω0 π × 106 rad.Hz

ωvco 2π × 106 rad.Hz

Kvco
2ωvco

Vc
rad.Hz

DClevel 2.5 V

technique [21] called Monte Carlo-Jackknife (MC-JK) and our proposed inter-
twined reachability technique are summarized in Table 3. It is worth mentioning
that our technique converges in one iteration only while Monte Carlo technique
requires thousands of runs. From Table 3, it can be noticed that our proposed
method finds a lower yield percentage compared to the statistical Monte Carlo
scheme in [21]. This can be explained by the fact that our verification approach
can weed out PLL locking failures that were not covered in [21].

Fig. 7. Intertwined forward/backward reachability analysis of PLL under jitter
(Color figure online)

In addition, the presence of combined jitter, initial conditions and process
variations (Columns 8−10) have substantially decreased the PLL yield, meaning
the PLL presents more probability of lock failure.

The presence of jitter alone has shown a lower yield rate. This can be justified
by the high sensitivity of the VCO block to jitter. The failure of the PLL is not



152 I. Seghaier and S. Tahar

Table 3. Verification results for the PLL Lock-Time property

N= Phase noise only Parameter variation only Phase noise & P.V

[21] Our method RE [21] Our methodRE [21] Our methodRE

Yield (%) Yield (%) (%) Yield (%) Yield (%) (%) Yield (%) Yield (%) (%)

1000 82.4 74.1 8.3 84.7 79.2 5.5 80.6 71.5 9.1

83.3 71.7 11.6 80.9 76.3 4.6 78.2 68.9 9.3

81.7 69.8 11.9 79.2 72.7 6.5 77.5 67.3 10.2

5000 83.6 73.1 10.5 85.8 81.6 4.2 81.8 72.3 8.7

80.2 72.3 7.9 81.9 77.8 4.1 78.2 70.1 8.9

79.8 70.8 9 80.7 74.4 6.3 78.2 68.6 9.6

10000 81,7 69.9 11.8 83.6 79.7 3.9 80.2 66.1 14.1

79.6 67.1 12.5 80.3 74.4 6.1 78.1 62.6 15.3

78.1 65.9 12.2 81.9 71.8 10.1 76.8 60.1 16.7

due to lock up (non oscillation) of the VCO but, due to either an “ugly” (i.e.,
fluctuates outside the tolerated region) or delayed oscillation.

The Relative Error (RE) between our proposed approach and the MC tech-
nique (Columns 4, 7 and 10) becomes more pronounced when the number of
Monte Carlo trials is increased due to the high MC sampling variance.

5 Conclusion

This paper presents a novel methodology for modeling and verification of non-
linear hybrid systems by computing reachable sets of possible state-space tra-
jectories in the presence of uncertainties. In contrast to methods that use solely
forward reachability, the refinement of the reachable state space is carried out
in an intertwined forward/backward manner. The resulting set, which contains
all periodic and aperiodic time bounded behaviors of the system under para-
meter variation and initial condition disturbance, can be used to verify critical
properties such as bounds on voltages, currents, and cycle time (frequency) of
embedded designs. Statistical verification based on hypothesis testing is then
conducted on the resultant corrected reachable sets for an accurate parametric
system failure estimation. Experimental results show that our intertwined for-
ward/backward reachability analysis can succeed in accurately estimating the
system failure rate (a.k.a yield) by reducing the highly over-approximation of
the forward scheme in the presence of noise and process variations. Experimental
results of a second order PLL application, our algorithm outperforms existing
methods by providing up to 17% more reliable yield estimation of the locking
time property. However, the computational cost of the proposed methodology
highly increases with the number of process parameters and system properties
to be verified. In our future research, we will further investigate the possibility
of adopting efficient heuristics and parallelization techniques that may address
the computational time issue. We plan to verify complex systems in presence of
transient faults uncertainty [22] and that involve multiple performance metrics.



Intertwined Global Optimization Based Reachability Analysis 153

References

1. Lin, H., Antsaklis, P.J., et al.: Hybrid dynamical systems: an introduction to control
and verification. Found. Trends Syst. Control 1(1), 1–172 (2014)

2. Wolf, M.: High-performance embedded computing: applications in cyber-physical
systems and mobile computing (2014)

3. da Silva Azevedo, L., Parker, D., Walker, M., Papadopoulos, Y., Araujo, R.E.:
Assisted assignment of automotive safety requirements. IEEE Softw. J. 31(1), 62–
68 (2014)

4. Bouissou, M., Elmqvist, H., Otter, M., Benveniste, A.: Efficient Monte Carlo sim-
ulation of stochastic hybrid systems. (96), pp. 715–725 (2014)

5. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: a
novel technique for the analysis of probabilistic hybrid systems. In: International
Workshop on Hybrid Systems: Computation and Control, pp. 172–186 (2008)

6. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A., KeYmaera, X.: An
axiomatic tactical theorem prover for hybrid systems. In: International Conference
on Automated Deduction, pp. 527–538 (2015)

7. Adimoolam, A.S., Dang, T.: Template complex zonotopes: a new set representation
for verification of hybrid systems. In: International Workshop on Symbolic and
Numerical Methods for Reachability Analysis, pp. 1–2 (2016)

8. Milstein, G.N.: Numerical integration of stochastic differential equations, vol. 313
(1994)

9. Al-Sammane, G.: Simulation symbolique des circuits décrits au niveau algorith-
mique. Ph.D. thesis, Université Joseph-Fourier-Grenoble I, France (2005)

10. Kumar, P.R., Varaiya, P.: Stochastic systems: Estimation, identification, and adap-
tive control (2015)

11. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes,
vol. 24 (2014)

12. Revuz, D., Yor, M.: Continuous martingales and Brownian motion, vol. 293 (2013)
13. Milstein, G.N., Tretyakov, M.V.: Stochastic numerics for mathematical physics

(2013)
14. Han, Y., Chung, C.Y., Wong, K.P., Lee, H.W., Zhang, J.H.: Probabilistic load

flow evaluation with hybrid latin hypercube sampling and cholesky decomposition.
IEEE Trans. Power Syst. 24(2), 661–667 (2009)

15. Burrage, K., Burrage, P., Donovan, D., Thompson, B.: Populations of models,
experimental designs and coverage of parameter space by Latin hypercube and
orthogonal sampling. Procedia Comput. Sci. 51, 1762–1771 (2015)

16. Martinez, W.L., Martinez, A.R.: Computational Statistics Handbook with MAT-
LAB. CRC Press, Boca Raton (2007)

17. Seghaier, I., Tahar, S.: Intertwined global optimization based reachability analysis
of analog and mixed signal designs; Technical report, Department of Electrical and
Computer Engineering, Concordia University, June 2017. http://hvg.ece.concordia.
ca/Publications/TECH REP/IGO TR17.pdf

18. Bonarini, A., Bontempi, G.: A qualitative simulation approach for fuzzy dynamical
models. ACM Trans. Modeling Comput. Simul. 4(4), 285–313 (1994)

19. Coleman, T., Branch, M.A., Grace, A.: Optimization toolbox. For Use with MAT-
LAB. Users Guide for MATLAB 5, Version 2, Release II (1999)

20. Seghaier, I., Aridhi, H., Zaki, M.H., Tahar, S.: A qualitative simulation approach
for verifying PLL locking property. In: Great Lakes Symposium on VLSI, pp. 317–
322 (2014)

http://hvg.ece.concordia.ca/Publications/TECH_REP/IGO_TR17.pdf
http://hvg.ece.concordia.ca/Publications/TECH_REP/IGO_TR17.pdf


154 I. Seghaier and S. Tahar

21. Seghaier, I., Zaki, M.H., Tahar, S.: Statistically validating the impact of process
variations on analog and mixed signal designs, pp. 99–102 (2015)

22. Hamad, G.B., Kazma, G., Mohamed, O.A., Savaria, Y.: Efficient and accurate
analysis of single event transients propagation using SMT-based techniques. In:
International Conference on Computer-Aided Design, pp. 1–7 (2016)



Analyzing Distributed Pi-Calculus Systems
by Using the Rewriting Engine Maude

Bogdan Aman1,2 and Gabriel Ciobanu1,2(B)

1 Romanian Academy, Institute of Computer Science,
Blvd. Carol I No.8, 700505 Iaşi, Romania

bogdan.aman@gmail.com
2 Faculty of Computer Science, “A.I.Cuza” University,

Blvd. Carol I No.11, 700506 Iaşi, Romania
gabriel@info.uaic.ro

Abstract. Distributed systems with explicit locations and process
mobility are described in terms of the distributed π-calculus. The sys-
tems described in distributed π-calculus are translated into a rewriting
logic which is executable on the Maude software platform. We prove an
operational correspondence allowing to verify properly the properties of
the distributed systems. The approach is illustrated by examples of dis-
tributed systems analyzed by using the powerful Maude platform. We
verify whether some systems are behaviourally equivalent by involving
the metalevels of Maude.

1 Introduction

Process calculi are developed and studied with the aim of modelling concur-
rent processes. The π-calculus [14] works with communicating mobile processes,
where the mobility is expressed by sending certain channel names as messages
to other processes. Other formalisms involving mobility are Dπ-calculus [11],
ambient calculus [7] and mobile membranes in bio-inspired computing [2].

In this paper we consider distributed systems with an explicit notion of loca-
tion (it is not possible to model locations faithfully only by using the channels of
π-calculus), and an explicit migration of processes between different locations. In
order to describe systems with explicit locations, explicit migration, replication
and local communication among processes, we use the distributed π-calculus [11].

On the other hand, rewriting logic and rewrite theory [13] has been used
for more than two decades as a computational framework able to express sev-
eral paradigms. Computationally, rewriting logic is a semantic framework in
which several models of concurrency and programming languages can be natu-
rally expressed, analyzed, and executed as rewrite theories. Rewriting logic is a
framework within which different logics can be represented. The Maude system is
an implementation of the rewriting logic using powerful metaprogramming based
on reflection [10]. There exist various Maude specifications for Petri nets [18],
CCS [20], concurrent objects [8], membrane systems [1,3,4], Klaim [21], and

c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 155–170, 2017.
DOI: 10.1007/978-3-319-66176-6 11



156 B. Aman and G. Ciobanu

adaptive systems [6]. A more comprehensive list of calculi, programming para-
digms, tools and applications implemented in Maude is presented in [13].

In this article we present an implementation in Maude of the distributed
π-calculus based on a correspondence between the operational semantics of dis-
tributed π-calculus and its rewriting logic implementation. This allows the trans-
lation of distributed π-calculus systems into Maude, followed by their execution
and then by verification of properties as searching if a given located process
is reachable, returning all reachable or final states, or even obtaining the entire
search graph. We insist on these properties because reachability is a fundamental
problem to which several quantitative and qualitative aspects can be reduced.

We also implement new behavioural equivalences between distributed sys-
tems; this is done by involving the Maude metalevels by using the metaXapply
operation to collect all rewriting results of a given system. Two systems are con-
sidered to be equivalent if they match each other’s nature of the applied rules
(e.g., if one system can perform a ‘move’, then the other can also do a ‘move’,
but possibly at a different location). An advantage of this equivalence is that it
is possible to obtain an interesting relationship between processes that otherwise
would not be equivalent (by using the existing strong behavioural equivalences
where the order of compared actions has to be exactly the same). We are able to
give a coarser comparison of systems by looking either at the performed actions
or involved locations, or both. We provide examples to illustrate the implemen-
tation, and show how the distributed systems can be analyzed in Maude.

Structure of the paper. In Sect. 2 we present the syntax and semantics of
the distributed π-calculus, while rewriting logic is presented in the first part of
Section 3. The rewriting specification of the distributed π-calculus processes is
also presented in Sect. 3. It is proved a correspondence between the operational
semantics of distributed π-calculus and its rewriting implementation. In Sect. 4
we analyze the distributed systems by using their rewriting implementation in
Maude, including the behavioural equivalences of some systems. Conclusion and
related work end the paper.

2 Distributed Pi-Calculus

In distributed π-calculus (shortly Dπ), the processes can migrate between loca-
tions of a distributed environment consisting of a number of explicit and distinct
names for these locations. Two processes may interact (communicate) only if
they are present at the same location.

Syntax. We use a variant of the distributed π-calculus which was then extended
with timers to become the timed distributed π-calculus [9]. The syntax is given in
Table 1, where we assume a set Loc of locations and a set Chan of communication
channels. Thus a ∈ Chan is a communication channel, l ∈ Loc is a location or a
location variable, e ∈ Chan ∪ Loc is either a location or a channel name, X is a
variable, V is an expression built from values, variables and operations. Tuples of
variables or values are usually used in the distributed π-calculus defined in [11];
for simplicity, we consider only single variables or values.



Analyzing Distributed Pi-Calculus Systems 157

Table 1. Syntax of distributed π-calculus used in this paper

Processes P, Q, R::= a! V .Q (output)

a?(X).Q (input)

goto l.Q (move)

!P (replication)

(νe)P (restriction)

if v1 = v2 then Q else R (matching)

P | Q (parallel)

stop (termination)

Systems N, M ::= l[[P ]] (located processes)

N || M (composition)

(νke)N (restriction)

void (empty)

The process a!〈V 〉.Q represents the transmission of value V along the channel
a followed by the execution of Q. The input from a channel a is expressed by
a?(X).Q; such a process a?(X).Q awaits for a value V along the channel a, and
then executes Q{V/X}. Q{V/X} denotes a process Q in which all free occur-
rences of the variable X are replaced by V , eventually after alpha-converting the
bound variables in Q in order to avoid name clashes. The substitution Q{V/X}
may not take place if the value V and variable X do not match; therefore, the
input action can be applied only when the received term is well-formed with
respect to the expected format.

Migration is provided by a process goto l.P which describes the migration
from the current location to the location indicated by l, where it behaves as P .
Since l can be a variable, and so its value is assigned dynamically through
communication with other processes, this form of migration supports a flexi-
ble scheme for the movement of processes from one location to another. Thus,
the behaviour can adapt to various changes of the distributed environment.

The replication !P provides the necessary (potentially infinite) number of
copies of P . (νe)P is a scoping mechanism for names; for example, in the process
Q | (νe)P the name e is known to P , but not to Q. Names and values are
transmitted from a process to another, and so in the course of a computation e
may become known by P as the result of a local communication. The process
if v1 = v2 then Q else R is a test for the identity of simple values v1 and v2; if
the equality is true then Q is executed, otherwise R is executed. The parallel
composition P | Q is used to denote two processes running in parallel. The
process stop represents a process finishing an execution.

A located process l[[P ]] specifies a process P running at location l, and a
system is built from parallel located processes. (νk@e)N is a scoping mechanism
for names that restricts the use of name e from location k. void represents an
empty system.



158 B. Aman and G. Ciobanu

The only binding constructors are a?(X).P and (νe)P which bind the vari-
able X and name e within P . fn(P ) and bn(P ) are used to denote the free and
bound names of a process P , respectively. Similarly, fn(N) and bn(N) denote
the free and bound names for a system N .

A problem that might appear is that some processes can be infinitely branch-
ing; for instance, the term !P can create an unbounded number of copies of
process P . To overcome this problem, we consider a bounded replication con-
struct of the form !(m)P in which we specify the maximum number of P ’s
(namely m) which can be created during computation.

Operational Semantics. The structural equivalence ≡ is the smallest con-
gruence such that the equalities in Table 2 hold. Essentially, the role of ≡ is
to rearrange a system in order to apply the rules of the operational semantics
(given in Table 3). The rule (NNew) is used to move the scope of a restricted
name from inside a location l to outside this location, while the rule (NEXTR)
is known as scope extrusion axiom. This axiom is central, since it describes how
a bound name e may be extruded, causing the scope of e to be extended. When
e ∈ fn(M), the alpha-conversion may be used to allow the scope extension.

Table 2. Structural congruence

(PNULL) P | stop ≡ P

(NNULL) N || void ≡ N

(NCOMM) N || N ′ ≡ N ′ || N

(NASSOC) (N || N ′) || N ′′ ≡ N || (N ′ || N ′′)

(NNEW) l[[(νe)P ]] ≡ (νle)l[[P ]] if e �= l

(NEXTR) M ||(νle)N ≡ (νle)(M ||N) if e /∈ fn(M)

The operational semantics rules of distributed π-calculus is presented in Table 3.
We use a labelled transition system in which the name of the applied rule

is placed on transitions whenever the rules (Com), (Move), (Rep), (EqTrue),
(EqFalse) and (Split) are used. The rules (Par1), (Par2) and (Struct)
collect all the applied rules in one step. In rule (Com), a process a!〈V 〉.P located
at location k succeeds in sending a value V over channel a to the process a?(X).Q,
also located at k. Both processes continue to execute at location k, the first one
as P and the second one as Q{V/X}. In rule (Move), the process goto l.P
define a migration from location k to location l, followed by an execution as
process P . Rule (Rep) describes the evolution of a replicating process. The
rules (EqTrue) and (EqFalse) test for equality between values; depending
on the equality tests, the process if v1 = v2 then P else Q continues either as
process P or as process Q. Using the (Split) rule, a given distributed system N
can always be transformed into a finite parallel composition of located processes
of the form l1[[P1]] || . . . || ln[[Pn]] such that no process Pi has the parallel
composition operator at its topmost level. Each located process li[[Pi]] is called



Analyzing Distributed Pi-Calculus Systems 159

Table 3. Operational semantics of distributed π-calculus

(Com) k[[a!〈V 〉.P ]] || k[[a?(X).Q]]
com−−−→ k[[P ]] || k[[Q{V/X}]]

(Move) k[[goto l.P ]]
move−−−→ l[[P ]]

(Rep) k[[!P ]]
rep−−→ k[[P | !P ]]

(EqTrue) k[[if v = v then P else Q]]
eqtrue−−−−→ k[[P ]]

(EqFalse) k[[if v1 = v2 then P else Q]]
eqfalse−−−−−→ k[[Q]] if v1 �= v2

(Split) k[[P | Q]]
split−−−→ k[[P ]] || k[[Q]]

(Par1) if M
λ1−→ M ′and N

λ2−→ N ′ then M || N
λ1∪λ2−−−−→ M ′ || N ′

(Par2) if M
λ−→ M ′ then M || N

λ−→ M ′ || N

(Struct) if M ≡ N and M
λ−→ M ′ and M ′ ≡ N ’ then N

λ−→ N ′

a component of N , and the whole expression l1[[P1]] || . . . || ln[[Pn]] is called a
component decomposition of the system N . This is done in order to be able to
apply communication rules requiring that the two communicating processes are
located processes residing at the same location. Rules (Par1) and (Par2) are
used to obtain larger systems from smaller ones by putting them in parallel. The
rule (Struct) is used to rearrange a system by bringing its components side by
side in order to apply a rule.

Example 1. Let us consider a system Travel consisting of the following agents:

• Promoter is located at location agency; in order to promote his agency, he
moves to location home where a client is available; then returns to his agency.

• Agent is located at location agency, waiting to offer a destination to some
potential clients, and then taking money for this service and going to bank
to deposit the received cash.

• Client is located at location home; after talking with a promoter, he goes to
the agency to check for vacation destinations and acquires an offer for which
he pays 100, and then goes on vacation. If this is not working, namely there
is no offer from the Agent, the Client returns home.

By using the syntax of Table 1, these agents are described as follows:
Travel = Promoter || Agent || Client
Promoter = agency[[goto home.talk!〈agency〉. goto agency.stop]]
Agent = agency[[offer !〈dest〉.pay?(price).goto bank.stop]]
Client = home[[talk?(X).Client1]]
Client1 = goto X.if X = agency then Client2 else Client3
Client2 = offer?(Y ).pay!〈100〉.goto Y.stop

Client3 = goto home.stop .

A possible evolution of the system Travel is presented below:
Travel = Promoter || Agent; ‖|; Client
move−−−→ home[[talk!〈agency〉.goto agency.stop]] || Agent || Client
comm−−−−→ home[[goto agency.stop]] || home[[Client1{agency/X}]] || Agent

then Client2 else Client3]] || Agent



160 B. Aman and G. Ciobanu

move move−−−−−−−→ agency[[stop]] || agency[[if agency = agency then Client2
else Client3]] || Agent

eqtrue−−−−→ agency[[stop]] || agency[[Client2]] || Agent
comm−−−−→ agency[[stop]] || agency[[(pay!〈100〉.goto Y.stop) {dest/Y }]]

|| agency[[pay?(price).goto bank.stop]]
comm−−−−→ agency[[stop]] || agency[[goto dest.stop]] || agency[[goto bank.stop]]
move move−−−−−−−→ agency[[stop] || dest[[stop]] || bank[[stop]]] .

It should be noticed that at the end of this evolution, a Client ends its
execution at location dest, the Promoter at location home, while the Agent
ends at location bank. This is due to the fact that we use a simple syntax for
these agents, enough to illustrate how the rules of Table 3 work. In this scenario
it is possible to consider multiple processes having the same definition by using
the replication operator. For instance, a process !Client defines several clients;
in such a situation, there exist various possible behaviours of the system Travel.

2.1 Bisimulations for Distributed Systems with Migration

Bisimulation is a new and important notion related to the behaviours of con-
current and distributed systems [16]. In addition to the classical definition of
bisimulation in which two systems are equivalent if they match each other’s
actions one by one, in this paper we consider a more relaxed notion such that
two systems are equivalent if they match each other’s nature of the applied rules
(e.g., if one system can perform a (Move) rule then the other can also perform
a (Move), but not necessarily involving the same locations). An advantage of
the equivalences defined in this way is that we can get a correspondence between
processes which otherwise would not be equivalent (by using the existing equiv-
alences where the order of compared actions has to be exactly the same). Two
processes are said to be equivalent if they are able to “simulate” each others’
applied rules, step by step, and continue to be equivalent after each such step [14].
After formally defining such an equivalence, we describe certain simple scenarios
illustrating the difference from the classical behaviour equivalence.

When choosing which equivalence relation to adopt for a given system, one
needs to decide what properties should be preserved by the equivalence relation.
In what follows, we denote by M

label−−−→ M ′ the fact that the system M evolves
to the system M ′ by applying a rule with name (Label).

Definition 1. A behavioural equivalence R over systems described in dis-
tributed π-calculus by using the rules from the set Labels = {Com, Move, Rep,
EqTrue, EqFalse, Split} is a symmetric binary relation such that:

– for all (M,N) ∈ R, if M
label−−−→ M ′ for label ∈ Labels, then N

label−−−→ N ′ and
(M ′, N ′) ∈ R for some N ′.

Two distributed π-calculus systems M and N are behavioural equiva-
lent (denoted M ∼ N) if and only if there is a behavioural equivalence
containing them.



Analyzing Distributed Pi-Calculus Systems 161

This reasoning is based on the assumption that only the nature of the per-
formed reduction can be observed. This means that the following four systems
are equivalent according to Definition 1 as they all can perform one move.

eq P1 = k[[(goto l) . stop]] .
eq P2 = m[[(goto l) . stop]] .
eq P3 = m[[(goto s) . stop]] .
eq P4 = k[[(goto l) . stop]] || m[[(offer ! < Y >) . stop]] .

It is assumed that an observer can distinguish between the performed actions and
involved locations as in [5], in the sense that when a system performs an action,
the observer knows the performed action and which location is responsible for
it. If one looks only at the performed actions, the processes P1, P2 and P4 are
still equivalent as they can perform the same action goto l, while P3 is different
as it moves to a different location s. By considering also that the locations are
observable, then only P1 and P4 turn out to be equivalent. Therefore, it is easy
to see that the locations are also important when comparing the behaviours of
some distributed systems.

3 Translating Distributed Pi-Calculus into Maude

Rewriting logic is a computational logic which combines term rewriting with
equational logic. A rewrite theory [10] is a triple R = (Σ,E,R) where Σ is a
signature of function symbols, E is a set of (possibly conditional) Σ-equations,
and R is a set of (possibly conditional) Σ-rewrite rules. Both equations and
rewrite rules can be used as conditions for a rewrite rule. The pair (Σ,E) is
an order-sorted equational logic which has sorts, subsort inclusions and kinds
(connected components of sorts) [12]. If TΣ(X)k denotes the set of Σ-terms of
kind k over the variables in X and s is a sort in the kind k, then TΣ(X)s ⊂
TΣ(X)k. The sentences which R proves are of form (∀X)t → t′, with t, t′ ∈
TΣ(X)k for some kind k. These sentences are obtained from the inference rules
described below, where the notation R � t → t′ is used to express that t → t′ is
provable in the theory R.

reflexivity For each t ∈ TΣ(X), R � t → t

equality
(∀X)u → v,E � u = u′, E � v = v′

(∀X)u′ → v′
congruence For each f ∈ Σs1...sn,s, ti ∈ TΣ(X)si

(∀X)tj → t′j , j ∈ J ⊆ [n]
(∀X)f(t1, . . . , tn) → f(t′1, . . . , t

′
n)

, where t′i := ti whenever i ∈ J ;

replacement For each θ : X → TΣ(Y ) and for each rule in R of the form
(∀X)t → t′ if (

∧
i ui = u′

i) ∧ (
∧

wj → w′
j), we have

∧
x(∀Y )θ(x) → θ′(x)) ∧ (

∧
i(∀Y )θ(ui) = θ(u′

i)) ∧ (
∧

j(∀Y )θ(wj) → θ(w′
j))

(∀Y )θ(x) → θ(x′)
where θ′ is the substitution obtained from θ by some rewritings θ(x) → θ′(x)
for each x ∈ X;



162 B. Aman and G. Ciobanu

transitivity
(∀X)t1 → t2, (∀X)t2 → t3

(∀X)t1 → t3

In what follows we use the rewriting engine Maude to describe a rewrite
theory corresponding to the semantics presented in the previous section1. It
is worth noting that the replication operator cannot be translated into Maude
since it does not support infinite computations. To overcome this problem, we
consider a bounded replication construct of the form !(m)P in which we specify
the maximum number m of P ’s which can be created during computation. This
means that we need to replace the rule k[[!P ]]

rep−−→ k[[P | !P ]] of Table 3 by the
following two rules:

– k[[!(m)P ]]
rep−−→ k[[P | !(m − 1)P ]];

– k[[!(1)P ]]
rep−−→ k[[P ]].

To translate the syntax of Table 1, we use sorts with easy-to-understand names:
e.g., Channel is used to represent channel names of the set Chan. A new aspect
comes from the sort Guard which is used to denote parts of the processes of the
form a!〈V 〉, a?(X) and goto l. These parts are used to construct certain sequential
processes. Between the given sorts there exist some subsorting relations from
which we mention subsorts Var < Location Channel Value illustrating the
fact that the variables can be replaced by location names, channel names or
values. The sort MValue is used when counting the names appearing in the
system, while RValue is used to stand for restricted values, namely the values
used in the scope operators.

sorts Channel Location Var Value RValue MValue Process Guard
System MSystem .

subsorts Var < Location Channel Value < MValue .
subsorts Value < Location .
subsorts Location Channel < RValue .
subsort System < MSystem .

To represent the processes and distributed systems of Table 1, we use the follow-
ing constructors which are inspired by the syntax of distributed π-calculus. For
instance, the parallel operators | and || are described by using associative and
commutative constructors. We use a precedence relation between constructors
by providing a certain precedence value to each constructor.

op _ ! < _ > : Channel Value -> Guard [prec 10 ctor] .
op _ ? ( _ ) : Channel Var -> Guard [prec 10 ctor] .
op goto _ : Location -> Guard [prec 10 ctor] .
op _ . _ : Guard Process -> Process [prec 5 ctor] .
op if _ = _ then _ else _ fi : Value Value Process Process

-> Process [prec 5 ctor] .
op _ | _ : Process Process -> Process [assoc comm prec 20 ctor] .
op (new _ ) _ : RValue Process -> Process [prec 10 ctor] .
op !( _ ) _ : Nat Process -> Process [prec 5 ctor] .
op stop : -> Process [ctor] .
op _ [[ _ ]] : Location Process -> System [prec 15 ctor].
op _ || _ : System System -> System [assoc comm prec 30 ctor] .
op (new _ @ _ ) _ : RValue Location System -> System [prec 15 ctor] .
op void : -> System [ctor] .

1 The full specification is available at iit.iit.tuiasi.ro/∼ baman/Maude/DpiSpec.maude.



Analyzing Distributed Pi-Calculus Systems 163

To represent substitution as a result of communication between processes accord-
ing to rule (Com)), we use a specific constructor (for explicit substitutions). The
main idea in such a substitution is to preserve the bound names inside their
binders, and to replace all the free occurrences.

eq ((c ! < X >) . P) {V / X} = (c ! < V >) . (P {V / X}) .
ceq ((c ! < W >) . P) {V / X} = (c ! < W >) . (P {V / X}) if V =/= W .

eq ((c ? ( X )) . P) {V / X} = (c ? ( X )) . P .
ceq ((c ? ( Y )) . P) {V / X} = (c ? ( Y )) . (P {V / X}) if X =/= Y .
eq ((goto X) . P) {V / X} = (goto V) . (P {V / X}) .
ceq ((goto l) . P) {V / X} = (goto l) . (P {V / X}) if X =/= l .
eq (if X = X then P else Q fi) {V / X}

= (if V = V then (P{V / X}) else (Q{V / X}) fi) .
ceq (if X = v1 then P else Q fi) {V / X}

= (if V = v1 then (P{V / X}) else (Q{V / X}) fi) if v1 =/= X .
ceq (if v1 = X then P else Q {V / X} fi)

= (if v1 = V then (P{V / X}) else (Q{V / X}) fi) if v1 =/= X .
ceq (if v1 = v2 then P else Q fi) {V / X}

= (if v1 = v2 then (P{V / X}) else (Q{V / X}) fi)
if v1 =/= X /\ v2 =/= X .

eq (P | Q) {V / X} = (P {V / X}) | (Q {V / X}) .
eq stop {V / X} = stop .
eq (!(a) P) {V / X} = !(a) (P {V / X}) .

However, using only the above substitution it is possible for a process P =
(a(b).goto X.stop) to get the process P{b/X} = a(b).goto b.stop by considering
the substitution {b/X}, just because there is no alpha-conversion needed to
avoid name clashes. More exactly, the bound name b in the input prefix should
be alpha-converted to avoid the clash with the name b substituting X. To avoid
name capturing during alpha-conversion, we consider that some fresh names are
given as terms of the form [X].

op [_] : Var -> System [ctor] .

These fresh names are placed in parallel with the system using the parallel
operator ||. We consider fresh names as systems because we use them in the
conditional rules presented below, and these rewrite rules work only with systems
(namely, they transform systems into systems). We could consider initially a set
of fresh variables as a single system, but using the [Split] rule from the set
of rewriting rules presented below, we would eventually reach the situation in
which each fresh variable is treated as a separate system.

The renaming appearing before substitution is defined using the operator
presented below (we mention only the equations in which the renaming differs
from the substitution, as the other equations are similar):

op _ (_ / _) : Process Value Var -> Process [prec 40] .
eq ((c ? ( X )) . P) (V / X) = (c ? ( V )) . (P (V / X)) .

The rules of Table 3 are simulated as conditional rewrite rules having a similar
form as the simulated ones in which the premises appear as conditions of the
rules. The inference rules (PAR1), (PAR2) and (STRUCT) are not directly
implemented as rewrite rules, but are translated into the matching mechanism of
Maude (congruence rewriting and associativity and commutativity of the parallel
operator || ). Since rewrites do not use labels as in the rules of Table 3, we include
the labels as part of the rules by identifying the name of the conditional rule
with the corresponding label.



164 B. Aman and G. Ciobanu

crl [Comm] : (k[[(c ! < V >) . P ]]) || (k[[(c ? ( X )) . Q ]])
=> ([X]) || (k [[ P ]]) || (k [[ Q {V / X} ]]) if notin(V , bnP(Q)) .

crl [Comm] : (([Z]) || (k[[(c ! < V >) . P ]])) || (k[[(c ? ( X )) . Q ]])
=> (([X]) || (k [[ P ]])) || (k [[ (Q (Z / V)) { V / X} ]])

if in(V , bnP(Q)) /\ (notin(Z , bnP(Q))) .
crl [Rep] : k[[!(a) P]] => k[[P | (!( sd(a , 1)) P)]] if a > 1 .
rl [Rep] : k[[!(1) P]] => k[[P]] .
rl [EqTrue] : k[[if V = V then P else Q fi]] => k[[P]] .
crl [EqFalse] : k[[if v1 = v2 then P else Q fi]] => k[[Q]] if v1 =/= v2 .
rl [Move] : k[[(goto l) . P]] => l[[P]] .
rl [Split] : k[[P | Q]] => (k[[P]]) || (k[[Q]]) .

It should be noticed that there are two instances for each of the rules [Comm]
and [Rep]. In the case of the [Comm] rule, the need for two rules is due to
the fact that in some cases we need to do renaming of bound names to avoid
accidental captures (when in(V, bnP(Q))), while in other we do not (when
notin(V, bnP(Q)). In the case when one needs to rename bound names, we
check if there exists a free variable (denoted by [Z]) which does not appear in
the bound names of Q (denoted by notin(Z, bnP(Q))). The functions in and
notin are used to test membership of the first parameter into the second one.

Maude’s metalevel is required to select a particular rule and apply it to a
system in order to get the derived system. A predefined module called META-
LEVEL contains operators over the representation of terms and modules of sorts
Term and Module, and allows reduction of metalevel computations to object-level
ones. The constructor metaXapply returns a tuple of information about the next
state of the evolution from which we can get the meta-representation of the
reduced term by using the operation getTerm. Finally, the function downTerm
takes a meta-representation of a term and returns the term. In order to use the
obtained term in the equiv constructor, we declare Term as a subsort of System.

The behavioural equivalence over two systems in distributed π-calculus is
verified by using the commutative constructor equivSS which returns a value of
sort Bool indicating if the two compared systems are equivalent.

ceq equivSS(M’, N’, M, N, depth) = true if
equivMM(M, N, nextSystemsComm(M, depth),
nextSystemsComm(N, depth), depth) == true and
...

The first two systems M ′ and N ′ of the equivSS operator are used to keep
track of the systems from which the compared systems (M and N , respectively)
were obtained. When we go to the next reductions for comparing the systems
obtained from M and N , these M ′ and N ′ will be updated to the M and N .
Keeping track of the initial systems is useful when computing the consumed
channel or location in order to have a more strict equivalence.

Since there could be more than one system in nextSystemsComm(M, depth)
to which a given system M can reduce, we need additional constructors equivMM
(comparing a multiset of systems with another multiset of systems) and equivSM
(comparing a system with a multiset of systems) to check the equivalence.

The construct equivMM takes all the possible systems obtained after a reduc-
tion of a system, and compares it with all the other systems obtained after a
reduction of the other system; if it finds that the two systems can mimic each
other behaviour, than it will return true.



Analyzing Distributed Pi-Calculus Systems 165

ceq equivMM(M’, N’, M |+| MM, MN, depth) = true
if equivSM(M’, N’, M, MN, depth) == true

and equivMM(M’, N’, MM, MN, depth) == true
and M =/= void and MM =/= eM and MN =/= eM .

...

The construct equivSM takes one system from all possible obtained systems
from nextSystemsComm(M, depth), and compares it with the multiset of sys-
tem nextSystemsComm(N, depth) obtained from N ; if it finds one that mimics
its behaviour, than it will return true. To be able to observe also the con-
sumed action and locations, we use two additional constructors consumed and
locatedAt.

ceq equivSM(M’, N’, M, N, depth) = equivSS(M’, N’, M, N, depth)
if consumed(M’, M) == consumed(N’, N)

and locatedAt(M’, M) == locatedAt(N’, N) .
...

As for each system there are several possible evolutions, in order to check the
equivalence there are required various constructors to see what are the obtained
reductions after each step. Checking what are the obtained systems after per-
forming a Move rule, we need a recursive construction which stops when the
application of the metaXapply constructor does return failure:

eq nextSystemsMove(M, depth) =
if metaXapply(upModule(’SIMPLE-COM,false), upTerm(M), ’Move, none,

0, unbounded, depth) == failure then eM
else downTerm(getTerm(metaXapply(upModule(’SIMPLE-COM,false),

upTerm(M), ’Move, none, 0, unbounded, depth)), eM) |+|
nextSystemsMove(M, depth + 1) fi .

The correspondence between the operational semantics given by the transition
system of the distributed π-calculus on one hand, and the rewrite theory on the
other hand, is given by a mapping ψ : Dπ → System defined inductively by

ψ(M) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l[[ϕ(P ]] if M = l[[P ]]

ψ(N1)||ψ(N2) if M = N1||N2

(new e@l)ψ(N) if M = (νle)N

void if M = void

;

ϕ(P ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a!〈 V 〉 . ϕ(Q) if P = a!〈V 〉.Q
a?(X) . ϕ(Q) if P = a?(X).Q

(goto l) . ϕ(Q) if P = goto l.Q

stop if P = stop

! Q if P =!Q

(new e)ψ(Q) if P = (νe)Q

ϕ(Q) | ϕ(R) if P = Q | R

if v1 = v2 then Q else R fi if P = if v1 = v2 then Q else R

.



166 B. Aman and G. Ciobanu

By RD we denote the rewrite theory defined by the rewrite rules [Comm], [Move],
[Rep], [EqTrue], [EqFalse] and [Split] together with the operators and equa-
tions defining them. The next theorem emphasizes the correspondence between
the dynamics of the distributed π-calculus systems and the rewrite theory.

Theorem 1. M
label−−−→ N iff RD � ψ(M) ⇒ ψ(N).

The next result emphasizes the connection between the equivalence relations
defined in distributed π-calculus and in rewrite theory. In should be noticed that
only one-step rewrites are considered as rewriting logic deductions.

Theorem 2. M ∼ N implies RD � equivSS(ψ(M), ψ(N)).

These theorems ensure that our encoding is faithful and behaves as expected
when studying the systems described in distributed π-calculus.

4 Analyzing Distributed Systems by Using Maude

We provide some examples of distributed systems described in terms of Dπ, and
then analyze their behaviours by using Maude. In this way we can check that
the rules are applied properly, and verify that the results are the desired ones.

Since we know how to translate Dπ syntax into Maude rewriting system, the
Travel system of Example 1 can be described now in Maude. However, in Dπ
the alpha-conversion is implicit, while in Maude we need to consider explicitly
the fresh names; thus, we add to this encoding two fresh names [X1]||[X2] which
are enough to avoid name capturing in our examples.

As an example, Client1 syntax in Maude is:

eq Client1 = (goto X) . (if X = agency then Client2 else Client3 fi) .

When using the rewrite command rew Travel, Maude executes the Travel spec-
ification by applying the previously presented rules and equations, and finally
returns the following output:

rewrite in SIMPLE-COM : Travel .
rewrites: 66 in 0ms cpu (0ms real) (~rewrites/second)
result System: [X1] || [X2] || bank[[stop]]

|| dest[[stop]] || agency[[stop]]

It is possible to use the frew command in order to rewrite a system by using
a depth-first position-fair strategy which makes possible for some rules to be
applied even when they are not applied by using the rew command. For our
example, there is no difference when these two commands are used.

We use Maude to check if certain configurations of a system can be reached.

search in SIMPLE-COM : Travel =>* bank[[stop]]
|| dest[[stop]] || agency[[stop]] .

No solution.
states: 18 rewrites: 131 in 0ms cpu (0ms real) (~ rewrites/second)



Analyzing Distributed Pi-Calculus Systems 167

We use the search command to answer the following question: starting from the
initial system Travel, can we get an empty location named dest meaning that a
client went on vacation at this promoted destination? This is done by searching
for states which match a corresponding pattern. In this example, we use the
=>! symbol, meaning that we are searching for states which cannot be further
rewritten. If one is interested in a bounded number of reachable final states, the
command search [n] can be used to obtain systems reachable in n steps:

search in SIMPLE-COM : Travel =>! X:System || dest[[stop]] .
Solution 1 (state 17)
states: 18 rewrites: 131 in 0ms cpu (0ms real) (~ rewrites/second)
X:System --> [X1] || [X2] || bank[[stop]] || agency[[stop]]
No more solutions.
states: 18 rewrites: 131 in 0ms cpu (0ms real) (~ rewrites/second)

Since there are no more solutions, the desired state is numbered 18. The sequence
of rewrites allowing to reach this state can be obtained by typing show path 18.
However, since the number of states is rather large to be presented here, we ask
only the first two reachable states, and present the second reached one:

show path 2 .
state 0, System: [X1] || [X2] || home[[(talk ?(X)) . (goto X) .

if X = agency then (offer ?(Y)) . (pay ! < 100 >) . (goto Y) .
stop else (goto home) . stop fi]]
|| agency[[(goto home) . (talk ! < agency >) .
(goto agency) . stop]] || agency[[(offer ! < dest >) .
(pay ?(price)) . (goto bank) . stop]]

...
===> state 2, System: [X1] || [X2] || home[[(goto agency) . stop]]

|| home[[(goto agency) . if agency = agency then (offer ?(Y)) .
(pay ! < 100 >) . (goto Y) . stop else (goto home) . stop fi]]
|| agency[[(offer ! < dest >) . (pay ?(price)) . (goto bank) . stop]]

It is possible to get just the sequence of labels of applied rules up to the state 17
by using a show command. It can be noticed that the order of the applied rules
is exactly as in Example 1.

show path labels 17 .
Move Comm Move Move EqTrue Comm Comm Move Move

It is also possible to obtain the search graph for the above rewriting by using the
command show search graph. As this graph is rather large, we do not display
here the result of this command.

To display all the reachable states (not only of the graph obtained using
the previous search commands), we can use the command search Travel =>*
X:System. To display the system configurations reachable only after one step,
one can use the following command.

search in SIMPLE-COM : Travel =>1 X:System .
Solution 1 (state 1)
states: 2 rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)
X:System --> [X1] || [X2]

|| home[[(talk ! < agency >) . (goto agency) . stop]]
|| home[[(talk ? (X)) . (goto X) . if X = agency
then (offer ? (Y)) . (pay ! < 100 >) . (goto Y) . stop
else (goto home) . stop fi]] || agency[[(offer ! < dest >) .
(pay ? (price)) . (goto bank) . stop]]

No more solutions.
states: 2 rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)



168 B. Aman and G. Ciobanu

Regarding the behavioural equivalence, in order to check if the behavioural equiv-
alences work properly, we consider four very simple systems and check whether
some of them are equivalent or not.

eq P1 = k[[(goto l) . stop]] .
eq P2 = m[[(goto l) . stop]] .
eq P3 = m[[(goto s) . stop]] .
eq P4 = k[[(goto l) . stop]] || m[[(offer ! < Y >) . stop]] .
eq E1 = s[[!(3) ((goto m) . stop)]] .
eq E2 = k[[!(3) ((goto n) . stop)]] .

We illustrate the equivalence checking when both the performed actions and
locations are observed as in [16], namely we test if the systems are equivalent
using the classical notion of equivalence. Additionally, we can also check other
equivalences, for instance when only one of either the performed actions or loca-
tions are observed.

reduce in SIMPLE-COM : equivSS(P1, P2, P1, P2, 0) .
rewrites: 363 in 28ms cpu (26ms real) (12964 rewrites/second)
result Bool: false
==========================================
reduce in SIMPLE-COM : equivSS(P1, P3, P1, P3, 0) .
rewrites: 335 in 8ms cpu (8ms real) (41875 rewrites/second)
result Bool: false
==========================================
reduce in SIMPLE-COM : equivSS(P1, P4, P1, P4, 0) .
rewrites: 517 in 16ms cpu (15ms real) (32312 rewrites/second)
result Bool: true
==========================================
reduce in SIMPLE-COM : equivSS(E1, E2, E1, E2, 0) .
rewrites: 1670693 in 23000ms cpu (22999ms real) (72638 rewrites/second)
result Bool: false

As expected, the above verification return false when comparing P1 and P2
because they perform the same action goto l, but from different locations (k
and m, respectively). Both pairs P1 with P3 and E1 with E2 are not equivalent
because they perform different moving actions from different locations. Even they
have different definitions, the only systems that are equivalent are P1 and P4,
because they perform the same mobility action goto l from the same location k.

5 Conclusion and Related Work

Maude is a rewriting engine able to implement different kinds of semantics for
process calculi in order to obtain quickly certain prototypes available for software
experiments and for checking/proving properties. An implementation in Maude
via explicit substitutions for the labelled semantics of asynchronous π-calculus
was proposed in [19]. Also, in [15] was defined an implementation in Maude for
mobile ambients, a calculus able to encode the asynchronous π-calculus.

Our approach is different. We use the distributed π-calculus, a synchronous
calculus with distributed locations. One of the main differences consists in the
fact that our way of modelling explicit substitutions is different from [15,19] in
which the authors use an existing implementation of explicit substitutions in



Analyzing Distributed Pi-Calculus Systems 169

Maude called CINNI [17]. In these approaches the authors use indexed names
and variables, a fact which implies also defining functions to manage them. We
took a more natural and easier to understand approach by using a set of fresh
names placed near the system. The minimum size of this set represents work in
progress; now we know that one needs to use at least the same number of fresh
names as all appearances of the bound names in the system.

In this paper we provided an implementation and software analysis of high-
level processes described in distributed π-calculus by using the rewriting engine
Maude. The features of distributed π-calculus include the possibility to cre-
ate a number of copies of certain processes and local communications between
processes. Since Maude does not support infinite computations, we consider
only bounded replications. In order to have correct communications between
processes, we need to consider renaming of bound names with some fresh names
in order to avoid accidental captures.

We started by presenting shortly the distributed π-calculus, and continued
by defining the rewrite theory of the distributed π-calculus processes. We present
the correspondence between the operational semantics of distributed π-calculus
and its Maude implementation. In this way, any distributed system M described
in Dπ is implemented correctly in Maude, and so we can analyzed the high-level
description of the distributed systems by using the rewriting engine Maude. We
verified that for the initial system M the rules are applied properly, and the
results are the desired ones. When using the rewrite command rew M, Maude
executes the specification of M by applying the rules and equations of the Maude
encoding, and finally returns an output system. By using the specific search
command, Maude returns an answer to the following question: starting from the
initial system M, can we reach a certain given output system? Maude can also
displays all the reachable systems starting from a given one, and also to return
the search graph.

We defined the behavioural equivalence between distributed systems based
on the nature of the applied rules, the performed actions and the involved loca-
tions. We used the metalevels of Maude to collect all the results for a given
system; in this way we checked whether some systems are equivalent accord-
ing to some bisimulations. This verification emphasized an advantage of using
Maude, namely its tower of metalevels allowing convenient operations which per-
mit to control the execution of sets of rewrite rules, and to play with the inner
structure of the Maude encoding.

References

1. Agrigoroaiei, O., Ciobanu, G.: Rewriting logic specification of membrane systems
with promoters and inhibitors. Electron. Notes Theoret. Comput. Sci. 238, 5–22
(2009)

2. Aman, B., Ciobanu,G.:Mobility in Process Calculi andNatural Computing. Natural
Computing Series. Springer, New York (2011)



170 B. Aman and G. Ciobanu

3. Andrei, O., Ciobanu, G., Lucanu, D.: Executable specifications of P systems. In:
Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC
2004. LNCS, vol. 3365, pp. 126–145. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31837-8 7

4. Andrei, O., Ciobanu, G., Lucanu, D.: A rewriting logic framework for operational
semantics of membrane systems. Theoret. Comput. Sci. 373, 163–181 (2007)

5. Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: Observing localities. Theoret.
Comput. Sci. 114(1), 31–61 (1993)

6. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with maude. Sci. Comput. Pro-
gram. 99, 75–94 (2015)

7. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoret. Comput. Sci. 240, 177–213
(2000)

8. Ciobanu, G., Lucanu, D.: Communicating concurrent objects in HiddenCCS. Elec-
tron. Notes Theoret. Comput. Sci. 117, 353–373 (2005)

9. Ciobanu, G., Prisacariu, C.: Timers for distributed systems. Electron. Notes The-
oret. Comput. Sci. 164, 81–99 (2006)

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

11. Hennessy, M.: A Distributed π-Calculus. Cambridge University Press, Cambridge
(2007)

12. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). doi:10.1007/3-540-64299-4 26

13. Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebraic Program. 81(7–8),
721–781 (2012)

14. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge
University Press, Cambridge (1999)

15. Rosa-Velardo, F., Segura, C., Verdejo, A.: Typed mobile ambients in maude. Elec-
tron. Notes Theoret. Comput. Sci. 147(1), 135–161 (2006)

16. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge
University Press, New York (2011)

17. Stehr, M.-O.: CINNI: a generic calculus of explicit substitutions and its application
to λ-, ς- and π-calculi. Electron. Notes Theoret. Comput. Sci. 36, 70–92 (2000)

18. Stehr, M.-O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying framework
for petri nets. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying
Petri Nets. LNCS, vol. 2128, pp. 250–303. Springer, Heidelberg (2001). doi:10.
1007/3-540-45541-8 9

19. Thati, P., Sen, K., Mart́ı-Oliet, N.: An executable specification of asynchronous
Pi-Calculus semantics and may testing in maude 2.0. Electron. Notes Theoret.
Comput. Sci. 71, 261–281 (2002)

20. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in maude.
J. Logic Algebraic Program. 67(1–2), 226–293 (2006)

21. Wirsing, M., Eckhardt, J., Mühlbauer, T., Meseguer, J.: Design and analysis of
cloud-based architectures with KLAIM and maude. In: Durán, F. (ed.) WRLA
2012. LNCS, vol. 7571, pp. 54–82. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34005-5 4

http://dx.doi.org/10.1007/978-3-540-31837-8_7
http://dx.doi.org/10.1007/978-3-540-31837-8_7
http://dx.doi.org/10.1007/3-540-64299-4_26
http://dx.doi.org/10.1007/3-540-45541-8_9
http://dx.doi.org/10.1007/3-540-45541-8_9
http://dx.doi.org/10.1007/978-3-642-34005-5_4
http://dx.doi.org/10.1007/978-3-642-34005-5_4


TT-BIP: Using Correct-by-Design BIP
Approach for Modelling Real-Time System

with Time-Triggered Paradigm

Hela Guesmi1(B), Belgacem Ben Hedia1(B), Simon Bliudze2,
Saddek Bensalem3, and Briag Le Nabec1

1 CEA-LIST, PC 172, 91191 Gif-sur-Yvette, France
{hela.guesmi,belgacem.benhedia,briag.lenabec}@cea.fr

2 EPFL IC IIF RiSD, 1015 Lausanne, Switzerland
simon.bliudze@epfl.ch

3 Verimag, 38610 Gieres, France
saddek.bensalem@imag.fr

Abstract. In order to combine advantages of Real-Time Operating Sys-
tems (RTOS) implementing the Time-Triggered (TT) execution model
and model-based design frameworks, we aim at proposing a correct-by-
design methodology that derives correct TT implementations from high-
level models. This methodology consists of two main steps; (1) transform-
ing the high-level model into an intermediate which respects the TT com-
munication principles and where all communication between components
are simple send/receive interactions, and (2) transforming the obtained
intermediate model into the programming language of the target plat-
form.

In this paper, we focus on the presentation of the methodology of
the first step of the design flow. This methodology produces a correct-
by-construction TT model by starting from a high-level model of the
application software in Behaviour, Interaction, Priority (BIP).

Keywords: Component-based design · Time-triggered paradigm ·
Model to model transformation · Correct-by-design transformation · For-
mal methods

1 Introduction

The Time-Triggered (TT) paradigm for the design of real-time systems was intro-
duced by Kopetz [14]. TT systems are based on a periodic clock synchronization
in order to enable a TT communication and computation. Each subsystem of a
TT architecture is isolated by a so-called temporal firewall. It consists of a shared
memory element for unidirectional exchange of information between sender and
receiver task components. It is the responsibility of the TT communication sys-
tem to transport, by relying on the common global time the information from the

c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 171–188, 2017.
DOI: 10.1007/978-3-319-66176-6 12



172 H. Guesmi et al.

sender firewall to the receiver firewall. The strong isolation provided by the tem-
poral firewall is key to ensuring the determinism of task execution and, thereby,
allowing the implementation of efficient scheduling policies.

Developing embedded real-time systems based on the TT paradigm is a chal-
lenging task due to the increasing complexity of such systems and the necessity
to manage, already in the programming model, the fine-grained temporal con-
straints and the low-level communication primitives imposed by the temporal
firewall abstraction. Several Real-Time Operating Systems (RTOS) implement
the TT execution model, such as PharOS [4] and PikeOS [13]. However, they do
not provide high-level programming models that would allow the developers to
think on a higher level of abstraction and to tackle the complexity of large safety-
critical real-time systems. Model-based design frameworks, such as BIP [1] and
SCADE [7], allow the specification, design and simulation of real-time systems.
In particular, BIP—a component-based framework for the design of real-time
systems—allows verification of behavioural properties, such as deadlock-freedom,
and lends itself well to model transformations.

To the best of our knowledge, few connections exist between high-level com-
ponent-based design frameworks, allowing reasoning about application models
and verification of their functional behaviour and TT execution platforms, which
guarantee temporal determinism of the system.

In this work, we propose a framework that performs the first step to perform
link between the model-based design framework BIP and TT execution plat-
forms. This first step transforms a generic BIP model into a restricted model—
called TT-BIP model, which lends itself well to an implementation based on
TT communication primitives. We have outlined this transformation in a previ-
ous publication [11]. In this paper, we present new substantial results about this
step, identify the key difficulties in defining this transformation, propose exhaus-
tive solutions to address these difficulties and prove that this transformation is
semantics-preserving.

The rest of this paper is structured as follows. Section 2 presents the BIP
framework. In Sect. 3, we discuss challenges of the transformation and explain
approach allowing to address them as well as choices leading to the definition
of the structure of the target TT-BIP model. In Sect. 4, we formally define
the transformation of a high-level BIP model into a TT-BIP model. Section 5
presents the application of the proposed approach on an industrial use case. Due
to lack of space the correctness proofs of the proposed transformation are not
included to the paper but may be provided by e-mail by one of the authors.

2 The BIP Framework

BIP is a component framework for constructing systems by superposing three
layers of modelling: Behaviour, Interaction, and Priority. The Behaviour layer
consists of a set of components defined by timed automata [3] extended with data
and C functions. Transition labels of a component automaton are called ports.
Interactions are sets of ports used for synchronization. Thus, the Interaction layer



TT-BIP: Using Correct-by-Design BIP Approach 173

describes all possible synchronisations among components as a set of interactions.
The third layer defines priorities among interactions, providing a mechanism
for conflict resolution. In this paper, we do not consider priorities. Thus, we
only consider BIP models obtained by composing components with interactions.
Before formally defining BIP components and their semantics, we introduce some
notations. For a variable x, denote D(x) its domain (i.e. the set of all values
possibly taken by x). A valuation on a set of variables X is a function v : X →⋃

x∈X D(x), such that v(x) ∈ D(x), for all x ∈ X. We denote by V(X) (resp.
GX = B

V(X)) the set of all possible valuations (resp. Boolean guards) on X.

Definition 1 (Clock constraints). Let C be a set of clocks. The associated
set GC of clock constraints CC is defined by the following grammar:
CC := True | False | c ∼ a | CC ∧ CC, with c ∈ C, ∼ ∈ {≤,=,≥} and a ∈ Z+.
Notice that any guard CC can be written as:

CC :=
∧

c∈C

lc ≤ c ≤ uc, where ∀c ∈ C, lc, uc ∈ Z+ ∪ {+∞} . (1)

Definition 2. A component is a tuple B = (L,P,X,C, T, tpc), where L is a
finite set of locations; P is a finite set of ports; X is a finite set of local variables;
C is a finite set of clocks; T ⊆ L × (P × GX × GC × 2C × V(X)V(X)) × L is
a finite set of transitions, each labelled with a port, two Boolean guards (on
variables and on clocks), a set of clocks to be reset and a function updating a
subset of variables of X; the function tpc : L → GC assigns a time progress
condition to each location, such that, for any l ∈ L, the constraint tpc(l) is a
conjunction of constraints of the form c ≤ uc.

Definition 3 (Semantics of a component). The semantics of a compo-
nent B = (L,P,X,C, T, tpc) is defined as a Labelled Transition System (LTS)
(Q,P,−→), where Q = L × V(X) × V(C) denotes the set of states of B and
−→ ⊆ Q× (P ∪R�0)×Q is the set of transitions defined as follows. Let (l, vx, vc)
and (l′, v′

x, v′
c) be two states, p ∈ P and δ ∈ R�0.

– Jump transitions: We have (l, vx, vc)
p−→ (l′, v′

x, v′
c) iff there exists a tran-

sition τ = (l, p, gX , gC , R, f, l′) ∈ T , such that gC(vc) = gX(vx) = True,
v′

x = f(vx) and

v′
c(c) =

{
0, for all c ∈ R,
vc(c) for all c ∈ C \ R.

– Delay transitions: We have (l, vx, vc)
δ−→ (l, vx, vc + δ) iff ∀δ′ ∈ [0, δ],

tpc(l)(vc + δ′) = True, where (vc + δ)(c) def= vc(c) + δ, for all c ∈ C.

A component B can execute a transition τ = (l, p, gX , gC , R, fτ , l′) from a state
(l, vx, vc) if its timing constraint is met by the valuation vc. The execution of τ
corresponds to moving from control location l to l′, updating variables and reset-
ting clocks of R. Alternatively, it can wait for a duration δ > 0, if the time progress



174 H. Guesmi et al.

condition tpc(l) stays True. This increases all the clock values by δ. Notice that exe-
cution of jump transitions is instantaneous; control location cannot change while
time elapses.

Components communicate by means of interactions. An interaction is a syn-
chronization between transitions of a fixed subset of components. It is possible
only if all the participating components can execute the corresponding transi-
tions. A formal definition can be found in [1], we omit it here for the sake of
conciseness.

3 Problem Statement and the Proposed Solution

Transforming a user-defined task mapping and a high-level BIP model based on
multi-party interaction model into an equivalent model where interactions com-
ply with the TT communication pattern, is a challenging task. From one hand,
introducing TT settings consists in (1) modelling the TT communication system
by introducing dedicated atomic components and (2) restricting the synchronous
multiparty inter-task interactions to simple unidirectional communications with
the introduced communication components. From the other hand, the derived
model is required to be observationally equivalent to the original BIP model.

In order to respect TT communication settings, the derived model should
handle each inter-task communication through a dedicated BIP component
which stands for the TT communication system. This latter can communicate
with tasks only through message-passing. The challenge here is to switch from
the high-level BIP model, where multi-party interactions provide component
synchronization on top of data transfer, to asynchronous message-passing com-
munications while preserving the models equivalence.

This issue is addressed by breaking the atomicity of execution of interactions.
A task can execute unobservable actions to notify the communication component
about their states. If all participating components are ready, the communication
component can execute the corresponding interaction.

The execution of interactions sometimes generates conflicts that need to be
resolved. In high-level BIP model, such conflicts are resolved by the single engine.
TT communication components in the derived model must ensure that execution
of conflicting interactions is mutually exclusive.

In order to tackle this challenge, we use the solution proposed in [12,15,16],
which consists in instantiating a BIP component that implements the algorithm
proposed in [5]. The latter uses message counts to ensure synchronization and
reduces the conflict resolution problem to dining or drinking philosophers [9].

The target TT-BIP model
The target TT-BIP model—that satisfies the TT settings and addresses the
previously cited challenges—is structured following a three-layer architecture
called TT-BIP architecture:

The Task Components Layer consists of a transformation of atomic com-
ponents corresponding to the behavior layer of the initial model. This layer



TT-BIP: Using Correct-by-Design BIP Approach 175

depends also on a user-defined task mapping. A task component can inter-
fere even in an internal computation, intra-task interaction (i.e. communication
between components of the same task) or inter-task interaction (i.e. commu-
nication with other tasks). Components within a task that are concerned by
the inter-task interaction or participating in an intra-task interaction that is
conflicting with an inter-task interaction, operate in partial-state semantics.

The communication Layer aims at modelling the TT communication sys-
tem by hosting inter-task interactions and allowing to resolve their potential
conflicts by soliciting the third layer. This layer contains TT communication
component (TTCC) hosting each an inter-task interaction of the original model.
We have essentially two conflict cases involving inter-task interactions; conflict
between only inter-task interactions and conflict between inter-task interactions
and intra-task interactions or internal computations. By dedicating a third layer
for resolving conflicts, the first case of conflicts, if existing, can be directly
resolved. Resolving the second conflict case, can not be resolved locally since
a task has a partial observability of the system. This needs however, to host the
conflicting intra-task interaction or internal computation in the communication
layer in order to be resolved by requesting the third layer. Thus, this layer con-
sists of components hosting each either an inter-task interaction or an interaction
that is either directly or indirectly conflicting with another inter-task interaction.
For simplifying the notation, all constituent components of the communication
layer are denoted by TTCC components.

The Conflict Resolution Protocol (CRP) Layer resolves the conflicts
requested by the communication layer. In the original model, these conflicts
are resolved by the BIP engine. In order to guarantee conflicts resolution in
the derived model, we reuse the same solution proposed in [12,15,16] which
consists in dedicating a third layer to implement the fully centralized committee
coordination algorithm presented in [5].

Cross-layer interactions are send/receive interactions, i.e. providing a unidi-
rectional data transfer from one sender component to one or more receiver(s).

A BIP model complies with the TT-BIP architecture if it consists of three lay-
ers: Tasks layer, TTCC layer and CRP layer, organized by the following abstract
grammar:

TT -BIP -Model ::= Task+ . TTCC+ . CRP . S/R-connector+

Task ::= atomic-component+ . atomic-talking-component+ . connectors+

TTCC ::= TTCCNC | TTCCC

The TT-BIP model consists of a set of Tasks, TTCC and CRP components.
A task component is a composite component consisting of one or more atomic
components. Atomic components within a task which interfere in inter-task inter-
actions (via the task interface) are called atomic-talking-components (ATC).
These latter can only communicate with a TTCC component or a component
within the same task. The behavior of a TTCC component depends on whether
the interaction it is hosting is conflicting or not. If the interaction is conflicting,
the TTCC component is denoted by TTCCC and needs to communicate with



176 H. Guesmi et al.

Fig. 1. Overview of a TT-BIP model

the CRP component. Otherwise, it is denoted by TTCCNC . Conflicts between
different TTCCC components, are resolved through CRP component.

Task components (resp. TTCC components) and TTCCs (resp. CRP compo-
nents) communicate with each other through message-passing, i.e. send/receive
interactions. Such interaction is a set of one send port and one or more receive
ports. Communications between components inside a task are classic multi-party
BIP interactions. Notice that in Fig. 1a, we assume that the interaction a2 is con-
flicting only with the interaction a3, while in Fig. 1b a2 is conflicting with both
a1 and a3.

Formally, we define a TT-BIP model as follows:

Definition 4. We say that BTT = γTT (BTT
1 , ..., BTT

n ) is a TT-BIP model iff we
can partition the set of its ports into three sets Pu, Ps and Pr that are respectively
the set of unary ports, send ports and receive ports, such that:

– Each interaction α ∈ γTT is either a send/receive interaction with Pα =
s, r1, ..., rk, s ∈ Ps, r1, ..., rk ∈ Pr, Gα = True and Fα copies variables
exported by port s to variables associated with ports r1, ..., rk, or a unary
interaction—called also external interaction—where Pα = pα with pα ∈ Pu,
Gα = True and Fα is the identity function.

– Interactions that are relating components of the same task are classic multi-
party interactions—called internal interaction—.

– If s is a port in Ps, then there exists one and only one send/receive interaction
α ∈ γTT with Pα = (s, r1, ..., rk) and all ports r1, ..., rk are receive ports. We
say that r1, ..., rk are receive ports of s,

– If α ∈ γTT is a send/receive interaction such that Pα = (s, r1, ..., rk) and s
is enabled at some global state of BTT , then all its receive ports r1, ..., rk are
also enabled at that state.

The proposed solution, leads out to a 3-layer architecture structuring the
target model of the transformation. Although our work doesn’t have the same
goal as transformational approaches proposed in [12,15,16], but there is some
intersection between both target models’ architectures. Aiming at deriving dis-
tributed implementations from high-level BIP model, these cited approaches



TT-BIP: Using Correct-by-Design BIP Approach 177

propose an intermediate model called send/receive model. This latter is a 3-
layer model consisting of atomic components layer, schedulers layer and CRP
layer.

We reuse the third layer of the send/receive model (i.e. the CRP layer) since
it is, so far, the unique solution to guarantee the conflicts resolution without
requesting the BIP engine. The difference between the send/receive and the TT-
BIP architectures, lies in the task notion introduced in the TT-BIP architecture.
Thus, we build the task layer depending on a user-defined task mapping, and we
construct communication components in order to handle inter-task interactions
and other conflicting interactions. In the second layer of send/receive models,
are introduced schedulers allowing to handle interactions between all atomic
components. Also, we introduce one component per external interaction, while
a scheduler of send/receive model can handle more than one interaction.

4 Transformation of a BIP Model into a TT-BIP Model

In our work we assume that the input model is flat, i.e. it consists only of atomic
components and flat connectors. This restriction is obtained by using the flat-
tening tool from previous research work [8,12]. This tool replaces all hierarchical
connectors and composite components of a BIP model by an equivalent set of
flat connectors and atomic components.

In this section, we describe in details our technique for transforming
a BIP model B

def
= γ(B1, ..., Bn) into a TT-BIP model BTT = γTT (BTT

1 , ..., BTT
n ,

TTCC1, ..., TTCCm, CRP ).
One parameter to this transformation is the user-defined task mapping which

consists in associating to each task Tk a group of atomic components of the
model B. We denote by B the set of atomic components of model B. The task
mapping is formally defined as follows:

Definition 5 (Task mapping). We assume, we have K ≤ n tasks and we
denote by T = {Tk}k∈K the task set, such that T is a partition of B: where for
all j, k ∈ K and j �= k, Tj ∩Tk = ∅. For all k ∈ K we have Tk = {Bi}i∈Ik , Ik ⊆ K
such that ∪

k∈K
Ik = K.

The transformation process is performed in two steps. First, depending on
the given task mapping, the original model is analysed in order to define the
set of components and connectors to be transformed. Then, the BIP model is
transformed into a TT-BIP model where only inter-task interactions and other
related conflicting interactions are replaced by TTCC components. Non conflict-
ing intra-task interactions remain intact. Components mapped to the same task
are gathered in a composite task component.

We first present details about the analysis phase in Subsect. 4.1. Then, we
explain how concerned atomic components are transformed and how task com-
ponents are instantiated in Subsect. 4.2. Then we show how TTCC components
are built in order to coordinate task components in Subsect. 4.4. Behavior of
the CRP component is detailed in Subsect. 4.5. Finally, we define the cross-layer
connections in Subsect. 4.6.



178 H. Guesmi et al.

4.1 Analysis Phase

We have first to identify internal and external interactions as well as ATC com-
ponents denoted respectively AE , AI and BATC . These obtained sets are inputs
for the transformation of components and connectors of B into BTT .

External interactions
In order to be able to define the set AE , we need first to define the set of inter-
task interactions denoted AIT . An interaction a ∈ γ is an inter-task interaction
iff at least two of its participant components belong to two different tasks.
Formally, AIT = {α ∈ γ | ∃B1, B2 ∈ comp(α), T1, T2 ∈ T : B1 ∈ T1, B2 ∈ T2,}
T1 �= T2. We denote intra-task interactions that are either directly or indirectly
conflicting with inter-task ones by A#

IT defined as follows:

A#
IT = {a ∈ γ | a �∈ AIT ,∃α ∈ AIT : a#α}

∪ {a ∈ γ | a �∈ AIT ,∃b �∈ Ainter ,∃α ∈ Ainter : a �= b, a#b, b#α}.

And we denote the set of transitions labelled by internal ports and conflicting
with interactions of A#

IT ∩ AIT by Ap
IT . It is sefined as follows:

Ap
IT = {p | ∀a ∈ γ, p �∈ Pa,∃α ∈ AIT ∪ A#

IT , q ∈ Pα,∃i ∈ [1, n],∃l ∈ Li : l
p−→, l

q−→}.

As explained in Definition 4, AE consists of inter-task interactions AIT , intra-
task interactions A#

IT and internal transitions Ap
IT that are either directly or

indirectly conflicting with inter-task ones. Thus, we have: AE = AIT ∪A#
IT ∪Ap

IT

Internal interactions
AI set in defined as the set of intra-task interactions (i.e. participating compo-
nents are belonging to the same task) which are neither directly nor indirectly
conflicting with inter-task components: AI = γ \ AE .

Atomic talking components
BATC set is the set of atomic components in B that are concerned by external
interactions AE . We define: BATC = {B ∈ B|AE ∩ PB �= ∅}, where PB is the
port set of the component B.

4.2 Transformation of Task Components

We transform each ATC atomic component Bi ∈ B ∩ BATC of a BIP model into
a TT ATC component BTT

i that is capable of communicating with TTCC com-
ponent(s). This transformation consists mainly in decomposing each “atomic”
inter-task synchronization into send and receive actions. The synchronization
between the ATC component (via the task interface) and the TTCC layer is
implemented as a two-phase protocol.

First, BTT
i sends communication offers through dedicated send ports. Then,

in the second step, it waits for a notification coming from the TTCC component



TT-BIP: Using Correct-by-Design BIP Approach 179

via a receive port. The communication offer contains information about the
enabledness of the interaction. Each offer is associated to one of the enabled
ports of Bi through which the component is ready to interact. An offer consists
of a set of variables related to the corresponding enabled port. Let p be such port
enabled from a location l (i.e. l

p−→). The set of variables of the corresponding
offer includes variables initially exported by p since they may be read and written
by the interaction. It includes also variables tcp and tpcl storing respectively
timing constraint of transition labelled by p and enabled from l and the time
progress condition of the location l. Another variable gp is dedicated to store
the evaluation of the Boolean guard of the transition labelled by p and enabled
from l. The offer contains also a variable fi storing the update function of the
transition labelled by the port p. In order to be able to resolve conflicts, each
offer contains the participation count variable nb of the component BTT

i . This
variable counts the number of interactions BTT

i has participated in.
The notification —received after sending offers—allows the ATC component

to execute the transition triggered by the enabled receive port marking the end
of the interaction.

Notice that each offer —sent by a component—contains information about
only one enabled interaction among the enabled interaction set. Therefore, if in
the original model B, more than one interaction involving Bi are enabled, then
BTT

i has to send first successive offers before waiting for notification from the
TTCC component executing the interaction selected after conflict resolution.

Let a location l, in Bi, from which p1, ..., pn are enabled such that at least
one of the n ports interferes in an inter-task interaction. In BTT

i , we split such
a location l into n + 1 locations, namely l itself and locations {⊥l

pi
}i∈[1,n] from

which corresponding offers are sent.
Consider the case when, in the original model Bi, time is allowed to progress

from location l, i.e. before executing the interaction. In order to enforce correct-
ness of the target model, time should be able to progress until the interaction is
actually executed. Thus we associate to locations ⊥l

pi
the time progress condition

of location l originally defined in the atomic component Bi.

4.3 Expressing Timing Constraints and Time Progress Conditions
over a Common Global Clock

In BIP framework, each atomic component can define its own local set of clocks.
These clocks can be reset at any time and are used in definitions of timing
constraints and time progress conditions.

In order to execute an external interaction a = pi, i ∈ I, a TTCC component
needs to evaluate the timing constraint of the interaction, i.e. the conjunction of
timing constraints of transitions labelled by ports pi involved in the interaction
in the original model. These respective timing constraints are sent by respective
ATC components to the TTCC layer within offers. In order to allow the TTCC
to compute interactions between tasks components and schedule them correctly,
we need to reduce the effort of keeping track of different clocks of participating
components. This can be resolved by expressing timing constraints in terms of



180 H. Guesmi et al.

a single time scale, that is, a single global clock. Moreover, the global time scale
is a key feature of the TT paradigm targeted by the transformation.

For these two reasons, we need to translate all timing constraints and express
them over the global clock.
We denote by cg, the global clock which is initialized to 0 and measures the
absolute time elapsed since the system started executing, i.e. cg is never reset.

We follow a similar approach as in [2] in order to translate selected timing
constraints. Here are the different translation steps: (1) for each component Bi ∈
B and for each clock c ∈ C, we introduce a variable wc that stores the absolute
time of the last reset of c. The variable wc is initialized to zero and updated
to the absolute time (i.e. the valuation of the global clock cg) whenever the
component executes a transition resetting clock c. (2) Each atomic expressions
lb � c � ub involved in a timing constraint tc, is rewritten by using the global
clock cg and the variable wc. Mainly, we have to add to the initial lower and
upper bounds the last reset value wc of the local clock c as follows: lb � c �
ub ≡ lb + wc � cg � ub + wc. (3) Similarly, we rewrite each atomic expressions
c � ub of time progress conditions tpc —defined on all locations from which an
external interaction can be enabled—as follows: c � ub ≡ cg � ub + wc

Notice that the value of each local clock c can be computed from the current
value of the global clock cg and the variable wc by using the equality c = cg −wc.
This allows to entirely remove clocks of components Bi, keeping only the clock
cg and variables wc; c ∈ C.

After applying the described rules, we can formally define the obtained com-
ponent in function of the original one.

Definition 6. Formally, BTT
i is obtained from Bi as follows:

– LTT
i = Li ∪ L⊥, where L⊥ = {⊥l

p |∃l ∈ Li,∃τ = (l, p, g, tc, r, f, l′) ∈ Ti, p ∈
Pi ∩ AE},

– PTT
i = Pi ∪Po, where Po = {op|p ∈ Pi ∩AE}. Each port op exports the set of

variables XTT
op

= Xp ∪ {tpc, tcp, gp, fp, nb}. For all ports in p ∈ Pi ∩ AE, we
have XTT

p = Xp. For all ports p ∈ Pi \ AI , we have XTT
p = Xp.,

– XTT
i = Xi ∪ {tpc} ∪ {tcp, gp, fp}p∈Pi∩AE

∪ {wc}c∈Ci
∪ {nb},

– CTT
i = {cg},

– TTT
i = {τop

}p∈Pi∩AE
∪ {τ ′

p}p∈Pi
. Such that for each τp =

(l, p, gτp , tcτp , rτp , fτp , l
′) ∈ Ti we have: τop

= (⊥l
op

, op,True,True, ∅, Id,⊥′l
op

)
if p ∈ Pi ∩ AE and τ ′

p = (l, p,True,True, rτp , fτ ′
p
, l′), where ⊥′l

op
is l or ⊥l

oq

if l
q−→. If p ∈ Pi ∩ AE, the update function fτ ′

p
(1) updates the clock reset

variables: ∀c ∈ rτpj
, wc = vc(cg), where vc is the clock valuation function,

(2) increments the participation count variable nb and (3) updates variables
of offers sent from next reached state. If p ∈ Pi \ AE, fτ ′

p
(1) applies the

original update function fτp , (2) updates the clock reset variables: ∀c ∈ rτpj
,

wc = vc(cg), where vc is the clock valuation function, (3) increments the par-
ticipation count variable nb and (4) updates variables of offers sent from next
reached state.

– For places of L⊥, the time progress condition tpcTT (⊥l
op

) = tpc(l).



TT-BIP: Using Correct-by-Design BIP Approach 181

Fig. 2. Example of transformation of an ATC component

Example 1. Figure 2 illustrates transformation of an ATC component into its
corresponding ATC TT component. In this example we consider that ports p
and q are participating in external interactions.

Once all ATC components are transformed, we instantiate the composite
component of each task, which corresponds to gathering all components mapped
to that task and exporting send and receive ports of ATC components.

4.4 Building TTCC Components

As explained before, a TTCC component layer is introduced initially in order
to handle intertask interactions and thus model the TT communication system.
By considering the need for operational equivalence, and in order to be able to
resolve all conflicts of the target model interactions, the TTCC layer handles,
on top of intertask interactions, other interactions that are conflicting directly
or indirectly with these latter. Recall that all interactions of the original model,
that are handled in the TTCC layer are called external interactions.

Initially, all components are doing their initial computations and the TTCC
layer does not know their state or their enabled communication ports until they
send offers. Handling only one external interaction, a TTCC can execute this
latter only when all participating tasks’ components have sent their offers and
are ready to execute the interaction.

When the interaction is conflicting with another external interaction, the
TTCC has to communicate, after checking the enabledness of the interaction,
with the CRP in order to get the permission or not to execute. We call this
communication a reservation mechanism.

To summarize, the behavior of a TTCC component handling an interaction
a = (a,Ga, Fa) ∈ γ is made of three steps: (1) it waits for offers from its par-
ticipating task components, (2) once all offers are received —regardless their



182 H. Guesmi et al.

order, the TTCC component takes a decision by either executing the interaction
upon synchronization (i.e., conjunction of reveived guards and Ga evaluates to
True) if a is a non-conflicting interaction or soliciting the CRP component to
find out if the conflicting interaction a can be executed and (3) finally it writes
on appropriate task components by sending a notification.

Figure 3 shows a representative part of a TTCC automaton, where we can
distinguish the three steps. From location wait, the TTCC is waiting for respec-
tive offers from its participating components. Since these offers can be received
in a random order, the TTCC is designed in such a way to allow all possible
combination from location wait. Once all offers are received, the location read is
reached. From this location the TTCC starts the second step in order to execute
the interaction depending on whether it is conflicting or not. Once the TTCC
executes the interaction, the automaton reaches location send from which it exe-
cutes a transition allowing to notify participating components and reaches back
the location wait. All transitions of the first step are triggered by receive ports
corresponding to respective offers. Transition of the third step is triggered by
a send port. Behaviour and ports triggering transitions of the second step are
detailed later.

Fig. 3. Skeleton of a TTCC automa-
ton

Let a TTCC component handling an
external interaction α = (Pα, Gα, Fα) ∈
γ∩AE . We denote by n the number of com-
ponents related to TTCC, i.e. the number
of participating components of α.

In the case when α is a non conflict-
ing interaction, the execution of this latter
is performed without requesting the CRP
component. As shown in Fig. 4a, the TTCC
executes a transition from location read to
send labelled by a unary port denoted pα.
Its update function executes the update
function Fα of the interaction α, and then

respective update functions that are received in offers. The transition pα is
guarded by the conjunction of the guard Gα and respective guards and tim-
ing constraints received in offers. If the conjunction of these guards evaluates to
True, the interaction is executed and the TTCC sends notification to partici-
pating components.

In the case when α is conflicting with another interaction, the TTCC goes
through a reservation mechanism (cf. Fig. 4b). If the interaction is enabled, i.e.
the conjunction of the guard Gα and respective guards and timing constraints
received in offers evaluates to True, the TTCC executes transition rsvα from
location read. This transition reaches location try. By the execution of rsvα,
a reservation request is sent to the CRP component. This reservation contains
different values of participation count variables of α participating components.
Based on these participation counters, the CRP decides whether to allow or dis-
allow the interaction execution. It notifies the TTCC component either through



TT-BIP: Using Correct-by-Design BIP Approach 183

Oi

Fig. 4. Mechanisms for execution of interaction α = (Pα, Gα, Fα)

port okα in case when the reservation succeeds or through port failα if the
reservation can not be made. While waiting for CRP notification, the TTCC
occupies the location try. If the port okα is enabled, then it executes the tran-
sition reaching location send from which notification to components are ready
to be sent. Note that update function Fα composed with those of received offers
is associated with the transition labelled by the okα port. If the port failα is
enabled, the TTCC reaches back the location read in order to proceed again for
the reservation.

When an ATC component is participating in two conflicting interactions α1

and α2, it sends successively offers to each of the corresponding TTCC compo-
nents TTCCα1 and TTCCα2 and waits from a notification from one of them.
After resolving the conflict by requesting the CRP, suppose TTCCα1 will notify
the component after successfully executing the interaction α1, while TTCCα2

reaches back its location read in order to proceed to a new reservation attempt.
The component is able to continue execution of its next transitions. And it may
reach again the location allowing to send again offers to TTCCα1 and TTCCα2 .
Both TTCC components should be ready to receive the offers. For that, we add
loop transitions in TTCC automata labelled by offers receive ports over loca-
tions read and try. Furthermore, such an ATC component may need to resend
an offer to a TTCC even before this latter receives other offers from the rest of
its participating components. This is resolved by adding loop transitions labelled
by offer receive ports over locations that are placed between location wait and
read (cf. Fig. 4b). These added loop transitions allow to respect the last point of
Definition 4 stating that whenever a send port is activated, all its receive ports
are enabled as well.

Example 2. In Fig. 5a (resp. Fig. 5b), we illustrate transformation of a conflict-
ing (resp. non conflicting) external interactions α into its corresponding TTCC
component. In these examples we consider that ports p and q of the interaction
α are exporting respectively variables xp and xq.

4.5 Conflict Resolution Protocol Component

The conflict resolution protocol (CRP) that we use in our work is the same CRP
used in [12,15,16]. It is, so far, the unique solution to guarantee the resolution



184 H. Guesmi et al.

Fig. 5. Example of transformation of a external interaction into a TTCC component

of conflicts without requesting the BIP execution engine. In order to simplify
the presentation of the behavior of the CRP component, authors of [12] opted
for the Petri Net formalism. They choose in particular to use 1-safe Petri Nets.
The CRP accommodates the algorithm proposed in [5]. It uses message counts
to ensure synchronization and reduces the conflict resolution problem to dining
or drinking philosophers [9]. Its main role is to check the freshness of requests
received for an interaction, that is, to check that no conflicting interactions has
been already executed using the same request. In each request, an interaction
sends the participation numbers of its components, i.e. number of interactions
each ATC component has participated in. This ensures that two conflicting inter-
actions cannot execute with the same request. Mutual exclusion is ensured using
participation numbers. To this end, the conflict resolution protocol keeps the last
participation number NBi of each component Bi and compares it with the par-
ticipation number nbi provided along with the reservation request from TTCC
components. If each participation number from the request is greater than the
one recorded by the conflict resolution protocol (nbi > NBi), the interaction is
then granted to execute and NBi is updated to nbi. Otherwise, the interaction
execution is disallowed.

4.6 Cross-Layer Interactions

Tasks and TTCC components exchange offers and notifications. Communica-
tion between TTCC components and the CRP component involves transmission
of messages corresponding to rsv, ok and fail. For each task component BTT

Tj

participating originally in interaction α, we include in γTT the offer interaction
based on ports (BTT

Tj
.op, TTCCα.op). For each TTCC component TTCCα and

its participating components {BTT
Tj

}j∈J , we include the notification interaction
based on ports (TTCCα.ps, {BTT

Tj
.pj}j∈J), where for all j ∈ J , pj ∈ α. Its

guard is set to True. And its update function copies variables associated with
TTCCα.ps to those of the receive ports BTT

Tj
.pj . If α ∈ γ that is not conflicting,



TT-BIP: Using Correct-by-Design BIP Approach 185

we include the unary interaction having as unique port (TTCCα.pα), where
TTCCα is the TTCC component handling the interaction α. Its guard is set
to True. And its update function is the identity function. If α ∈ γ that is con-
flicting, we include a triplet of interactions having respectively the following sets
of ports: (TTCCα.rsvα, CRP.rsvα), (CRP.okα, TTCCα.okα) and (CRP.failα,
TTCCα.failα). All their guards are set to True. The update function of the for-
mer interaction copies variables of ports TTCCα.rsvα to port CRP.rsvα. Since
ports CRP.okα and CRP.failα do not have any associated variables, the update
function of the last two interactions is the identity function.

Due to lack of space the formal definition of all transformation rules are not
included to the paper but may be provided by e-mail by one of the authors.

5 Implemantation and Use Case

The transformation is implemanted into BIP toolset as a eclipse plugins called
BIP2TT-BIP. The approach is validate on the Flight Similator use case.

The Flight Simulator (FS) application [6] dedicated to the navigation of DIY
radio controlled planes. The original application is written in Modelica [10].
This application provides a simulation of the physics of a plane and an auto-
matic pilot who tries to reach given way-points on a map. The simulation of the
Modelica model gives a display of the road followed by the plane (specifically
the trajectories of left and right wingtips).

The Modelica model consists of a set of six communicating sub-models (cf.
Fig. 6b): autopilot, fly-by-wire, route planner, servo (i.e. the actuator), simu-
lator and sensor. The autopilot models the pilot commands in function of the
flight state. It has four main functionalities: flight state reception from sensor
component, execution of the route planner, execution of fly-by-wire and sending
command to servo component. The software architecture of the original Modelica
model is shown in Fig. 6a.

Fig. 6. Overview of the Flightsim Appilication

We have first modelled the FS application in BIP language. This latter —
coupled with different task mapping strategies—is the input of transformation



186 H. Guesmi et al.

tools. We also simulate the initial BIP model, the TT-BIP model (the output of
the BIP2TT-BIP tool) in order to compare their respective behavior.

Each sub-model of the modelica model is modelled as a BIP component,
communication between different components is modeled using BIP connectors.
In Fig. 6b, the overall architecture of the BIP model is displayed. The bihavior of
each component is modeled with a timed automata. We apply the transformation
of the BIP2TT-BIP tool in order to derive the TT-BIP model following different
task mapping strategies. In this paper we consider the task mapping strategy
TM1 : T1 = {FLY } , T2 = {ROUTE} , T3 = {PILOT} , T4 = {SERV O} , T5 =
{SIMULATOR} , T6 = {SENSOR} .

Figure 7a, shows the obtained model for the task mapping TM1. For clar-
ity reason, behaviours of TTCC and CRP components are not displayed.
Nonetheless, since all TTCC components are connecting exactly two tasks, their
automata are strictly similar to those of Fig. 5a and b.

Fig. 7. Overview of TT-BIP transformation of the Flightsim Appilication

In order to be able to compare the functionality of the original BIP model
with the obtained TT-BIP model, we use BIP simulator that generates C++
code from the original and the TT-BIP models. Simulation of two generated
C++ codes allowed us to visualize and compare the output signals. A band shows
the trajectories of left and right wingtips and illustrates the roll movement that
precedes the change in course at each waypoint, while the plane progressively
reaches its desired altitude. Figure 7b presents the simulation results of the initial
and the derived models, for the waypoints (300, 0, 300), (300, 300, 300), (0, 300,
300) and (0, 0, 300). Visual inspection reveals that the output of the transformed
model is strictly similar to that of the original model.

6 Conclusion

In this paper, we have presented a model to model transformational method
allowing to explicit TT communication settings in the obtained model. The



TT-BIP: Using Correct-by-Design BIP Approach 187

obtained model is structured following the TT-BIP architecture. It consists of
tasks layer, communication layer and the conflict resolution layer. The first layer
is obtained after transforming components participating in external interactions
depending on a user-defined task mapping. Each TTCC component of the second
layer is dedicated to handle one external interaction and communicate with tasks
of the layer underneath in two steps; it receives offers and sends notification after
executing the interaction. The third layer is responsible of resolving conflicts
between different interactions handled by the second layer.

The obtained model is based on one global clock, implements multiparty
interactions through dedicated communication media (i.e. TTCC components)
and ensures communication between different layers by using message passing
interactions (i.e. Send/receive interactions). Even though the obtained model
satisfies the TT settings described in the opening of Sect. 3, it is yet still far
from being intuitively translatable to the programming language of a target
platform which is based on the TT execution model.

In an ongoing work, we present a method for generating TT implementation
from the obtained TT-BIP model.

References

1. Abdellatif, T.: Rigourous Implementation of real-time Systems. Ph.D. thesis, UJF
(2012)

2. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications, pp. 229–238, May 2010

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

4. Aussagues, C., Chabrol, D., David, V., Roux, D.,Willey, N., Tournadre, A., Graniou,
M.: Pharos, a multicore os ready for safety-related automotive systems: results and
future prospects. In: Proceedings of the Embedded Real-Time Software and Systems
(ERTS2) (2010)

5. Bagrodia, R.: Process synchronization: design and performance evaluation of dis-
tributed algorithms. IEEE Trans. Softw. Eng. 15(9), 1053–1065 (1989)

6. Hedia, B.B., Hamelin, E.: Projet openprod rapport r4.28: Model to embedded
real-time transformation. Technical report (2012)

7. Boulanger, J.-L., Fornari, F.-X., Camus, J.-L., Dion, B.: Language and applica-
tions. Scade: Language and applications (2015)

8. Bozga, M., Jaber, M., Sifakis, J.: Source-to-source architecture transformation for
performance optimization in BIP. IEEE Trans. Industr. Inf. 6(4), 708–718 (2010)

9. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Trans. Pro-
gram. Lang. Syst. (TOPLAS) 6(4), 632–646 (1984)

10. Elmqvist, H., Mattsson, S.E.: An introduction to the physical modeling language
modelica. In: Proceedings of the 9th European Simulation Symposium, ESS, vol.
97, pp. 19–23. Citeseer (1997)

11. Guesmi, H., Hedia, B.B., Bliudze, S., Bensalem, S., Combaz, J.: Towards time-
triggered component-based system models. In: ICSEA 2015, Barcelone, Spain,
ThinkMind, pp. 157–169, November 2015



188 H. Guesmi et al.

12. Jaber, M.: Centralized and Distributed Implementations of Correct-by-
construction Component-based Systems by using Source-to-source Transforma-
tions in BIP. Theses, Université Joseph-Fourier - Grenoble I, October 2010

13. Kaiser, R., Wagner, S.: Evolution of the pikeos microkernel. In: Proceedings of
the 1st International Workshop on Microkernels for Embedded Systems, pp. 50–57
(2007)

14. Kopetz, H.: The time-triggered approach to real-time system design. In: Randell, B.,
et al. (eds.) Predictably Dependable Computing Systems. Springer, Luxembourg
(1995)

15. Quilbeuf, J.: Distributed Implementations of Component-based Systems with Pri-
oritized Multiparty Interactions. Application to the BIP Framework. Ph.D. thesis,
Université de Grenoble (2013)

16. Triki, A.: Distributed Implementations of Timed Component-based Systems. Ph.D.
thesis, Grenoble Alpes (2015)



Uppaal vs Event-B for Modelling Optimised
Link State Routing

Mojgan Kamali(B) and Luigia Petre

Åbo Akademi University, Turku, Finland
{mojgan.kamali,lpetre}@abo.fi

Abstract. In this paper we compare models developed in two formal
frameworks, Uppaal and Event-B, for the Optimised Link State Rout-
ing (OLSR) protocol. OLSR is one of the proactive routing protocols
used in Mobile Ad-hoc Networks (MANETs) and Wireless Mesh Net-
works (WMNs). We also describe different aspects of the Uppaal and
Event-B formalisms. This leads to a more general comparison of both for-
malisms, considering the following criteria: their specification languages,
their update of variables mechanism, their modularity methods, their ver-
ification strategies, their scalability potentials and their real-time mod-
elling capabilities. Based on it, we provide several guidelines for when to
use Uppaal or Event-B for formal modelling and analysis.

1 Introduction

Continuous connectivity is a defining feature of our current working routines
as well as of our free-time ones. We expect to be able to access information
at all times as well as be able to communicate to various entities at all times.
Technically, this is ensured with myriads of interconnected networks that offer
us coverage and route all our requests for information and communication in
certain ways. Hence, routing is a fundamental stone of our lifestyles and as such,
presents enormous interest for study. Routing is obviously not a new concept for
the era of continuous connectivity; it has been around since the first networks
were developed some decades ago. Along with network evolution, routing has
however evolved as well, with numerous algorithms in use today.

Routing protocols are divided into two main categories: proactive and reactive.
Proactive protocols select routes in advance, by having network nodes exchanging
(control) messages about all the other network nodes. Consequently, an injected
data packet can be delivered to the destination immediately. Examples of such
protocols are Optimised Link State Routing (OLSR) protocol [10], Better App-
roach To Mobile Ad hoc Networking (BATMAN) routing protocol [22], etc. Reac-
tive protocols search for routes to destination nodes on demand, whenever a data
packet is injected into the network. Examples of reactive protocols are Ad hoc On-
Demand Distance Vector (AODV) protocol [23], Dynamic Source Routing (DSR)
protocol [14], etc.

In this paper we compare two models for the OLSR proactive protocol. This
protocol is used for routing in Wireless Mesh Networks (WMNs). WMNs are
c© Springer International Publishing AG 2017
K. Barkaoui et al. (Eds.): VECoS 2017, LNCS 10466, pp. 189–203, 2017.
DOI: 10.1007/978-3-319-66176-6 13



190 M. Kamali and L. Petre

self-healing and self-organising wireless technologies supporting broadband com-
munication without requiring any wired infrastructure. They are employed in a
wide range of application areas such as emergency response networks, commu-
nication systems, video surveillance, etc. A central feature of a WMN is that
its topology, in terms of active nodes and links, can vary quite much. OLSR is
adapted to this feature by continuously updating the information that any node
has about any other node, based on the most recent ‘scanning’ of the network.
It thus finds good-enough routes to all destinations.

Previously, our goal was to model OLSR and analyse its properties [15,17,18].
There are numerous frameworks and techniques, formal and less formal, that one
can choose for modelling purposes. Since we are interested in analysis, formal
methods with their underlying mathematical foundations are best suited. How-
ever, the question is which formal method to choose. In this paper we resume
our experiences with two formal methods, the Uppaal model checker and the
Event-B theorem prover.

In Uppaal [7], safety and liveness properties are expressed using Computa-
tion Tree Logic (CTL). Constants, data structures and procedures are defined in
a C-like language and modularity is addressed via components, represented as
timed automata, that communicate with each other via channels. Uppaal has a
model checking tool1, that supports the basic computational model and checks
whether properties hold for a model or not, in the latter case providing a coun-
terexample. In Event-B [2], safety properties are expressed in first-order logic,
while constants, data structures, variables and their updates are modelled in a
guarded command language. Event-B has a theorem prover tool, the Eclipse-
based Rodin platform2, that supports the basic modelling and analysis, based
on generating and discharging proof obligations. Modularity is addressed via
refinement: a model is initially abstract and details are added to it in proof-safe
manner. Liveness properties are modelled logically or with specific update types.

Contributions. After modelling and analysing OLSR with both Uppaal and
Event-B, we found that both formal methods are useful, but at different scales
and for emphasising different aspects of modelling and analysis. In this paper,
our contribution is to provide a comparison of our respective models as well as
of these formal methods, with suggestions for modellers as to when to use one
or another. We take into account four main criteria w.r.t. our models (Uppaal
and Event-B models) comparison: parts of the protocols that have been mod-
elled, particular properties that have been verified, networks topologies that
have been modelled and data structures that have been used when modelling.
To overview the applicability of Uppaal and Event-B, we provide a comparison
between them by focusing on their specification languages, their mechanism for
variable updating, their modularity methods, their verification strategies, their
scalability potentials and their real-time modelling capabilities. Based on our

1 http://uppaal.org/.
2 http://www.event-b.org/.

http://uppaal.org/
http://www.event-b.org/


Uppaal vs Event-B for Modelling Optimised Link State Routing 191

considerations, we provide several guidelines for when to use Uppaal or Event-B
for formal modelling and analysis.

Outline. We proceed as follows.3 In Sect. 2 we describe in some detail the for-
mal tools employed in the paper, namely Uppaal and Event-B. In Sect. 3 we
overview the OLSR protocol and in Sect. 4 we summarise our modelling of OLSR
in Uppaal and Event-B, respectively. In Sect. 5 we compare our Uppaal and
Event-B models as well as the frameworks themselves. We draw some usage
guidelines of these formal tools in practical situations in Sect. 6.

2 Formal Methods, Model Checking, and Theorem
Proving

A formal method usually refers to a framework allowing one to model, analyse,
verify, and animate a system. A formal methods has a formal semantics based on
mathematics, and can thus provide precise answers to questions about systems
properties. A formal method includes a specification (or modelling) language,
analysis methods, various modularity mechanisms addressing the scale of a sys-
tem; nowadays, successful formal methods also have tools associated to them,
including editors, analysers, animators, and more.

When modelling the dynamic behaviour of a system with a formal method,
each execution step in the model follows from a semantical rule of inference
and hence can be checked by a mechanical process. The advantage of formal
methods is that they provide valuable means to symbolically examine the entire
state space of a system model and establish a correctness or safety property
that is true for all possible inputs. These methods have a great potential on
improving the correctness and precision of design and development, as they
produce reliable results. However, this is rarely done in practice today, except
for safety critical systems. In the rather recent past, one of the reasons was the
lack of user friendly and scaling tools, combined with the enormous complexity of
real systems. Nowadays however, we have good tools for several formal methods,
so one of the questions remaining for the adoption of formal methods in industry
remains: which tool is more suitable for a certain (type of) system?

In this paper we set out to examine two different tools associated to two
formal methods, namely model checking and theorem proving.

2.1 Model Checking–Uppaal’s Timed Automata

Model checking (e.g. [9]) is an algorithmic and automatic approach used to val-
idate and verify key correctness properties in finite representations of a formal
system model. By modelling the behaviour of a system in mathematical language,
model checking exhaustively and automatically checks whether the model meets

3 The detailed descriptions of our models appear in [16] for the Uppaal model and
in [19] for the Event-B model.



192 M. Kamali and L. Petre

a given specification. In model checking, Temporal Logic (TL) is used to spec-
ify and check the correct behaviour of a system. One of the most used model
checking tools nowadays is the Uppaal model checker.

Uppaal [7,20] is an integrated model checker for modelling, simulating (val-
idating) and verifying real-time systems. It is appropriate for systems that can
be modelled as networks of timed automata extended with bounded integer vari-
ables, structured data types, functions and synchronisation channels. A timed-
automata is a finite-state machine with clock variables that measure time pro-
gression. Each automaton can be represented as a graph consists of locations
(optionally also consisting invariants) and edges between those locations having
guards, synchronisation channels, and updates of some variables. A state of a
system is defined by automata’s locations, value of clocks, and the value of all
local and global variables. An edge can be fired in an automaton which leads
to a new state. This edge can be fired separately in the automaton or between
different automata used for synchronisation.

Uppaal’s verifier uses Computation Tree Logic (CTL) (e.g. [11]) to express
system requirements (properties) offering two types of formulas: state formu-
las and path formulas. State formulas describe individual states of the model,
whereas path formulas quantify over paths in the model.

2.2 Theorem Proving–Event-B

Event-B [2] is a formal technique based on the B-Method [1] and on the Action
Systems [5] framework, provides means to model and analyse parallel, reac-
tive and distributed systems. Rodin Platform [3] provides automated support
for modelling and verifying such systems. Event-B uses two modules for defin-
ing system specifications and for expressing system properties, namely context
and machine. A context consists of carrier sets and constants, and their prop-
erties are defined as axioms of the model. So, a context deals with the static
part of the system whereas a machine contains the dynamic part of the system.
A machine can access the contents of a context which is defined by the keyword
Sees determining the relationship between the machine and the context.

A machine expresses the model state using variables that are updated by
events. Events can have guards that need to evaluate to true, allowing the
event to be executed. When having several events enabled simultaneously, one
event is selected non-deterministically. A machine may also contain invariants,
i.e., properties which must hold for any reachable state in the model. In other
words, invariants must be satisfied before and after the occurrence of all events.

The refinement is the main developing strategy in Event-B where a machine,
let’s say machine A, is refined by another machine, let’s say machine B, i.e., A �
B. This happens when A’s behaviour is not altered by B in any way and more
new variables are added in B as well as new events to update the new variables.
This type of refinement employed for our modelling is called superposition
refinement. In order to prove that machine B is the refinement of machine A, a
set of so-called proof obligations is generated by the Rodin platform. Some of



Uppaal vs Event-B for Modelling Optimised Link State Routing 193

these proof obligations are discharged automatically by Rodin and some require
interactive discharging with the help of the modeller.

3 An Overview of Optimised Link State Routing

The Optimised Link State Routing (OLSR) is a proactive routing protocol devel-
oped for Mobile Ad-hoc Networks (MANETs) and Wireless Mesh Networks
(WMNs). OLSR operates as a routing table-driven protocol; each node keeps
information about all the other nodes of the network in order to transfer data
packets from a source node to a destination node. Examples of information stored
in the routing table of a node a are: to get to node b (from a) the next node
to take is node c; or, to get to node b from a takes n hops, where a, b, c are
nodes in the network and n is a natural number. Keeping the information in
the routing table up-to-date is realised by nodes periodically exchanging spe-
cific control messages. OLSR is an optimisation over other link state protocols,
since it decreases the network traffic by restricting the broadcasting of control
messages to only specific nodes.

OLSR works in a completely distributed manner and does not require any
central entity for coordination. Each node selects a set of one-hop neighbour
nodes that have links to the two-hop neighbours of that selector node. The
selected nodes are called MultiPoint Relays (MPRs) and are allowed to trans-
mit control messages intended for diffusion into the entire network. There are
two types of control messages, namely HELLO and TC (Topology Control) mes-
sages.

HELLO messages are broadcast every 2 s and are used to determine one-hop
and two-hop neighbours of each node as well as to select MPR nodes. These mes-
sages are only broadcast on single hops (to one-hop neighbours) and are not
forwarded. TC messages are broadcast every 5 s for building and refreshing topo-
logical information in the routing tables. These messages are broadcast on single
hops and can be forwarded through the network via MPR nodes. Upon receipt
of HELLO or TC messages, the receiving node updates its routing table based on
the information in the received control message. Therefore, the topological infor-
mation is always kept up-to-date in the routing tables in order to deliver data
packets to arbitrary destination nodes.

4 Formal Modelling of the OLSR

We now present the overview of our OLSR models, i.e., Uppaal and Event-B
models of the OLSR protocol. Both formal models are described in detail in our
technical reports [16,19].

4.1 Uppaal Model of the OLSR

In [15], we modelled OLSR in Uppaal as a parallel composition of identical
processes, each indicating the behaviour of each node of the network. Every



194 M. Kamali and L. Petre

isconnected(sip,ip)

(nextmsg()!=NONE)&&
idle[ip]

isconnected(sip,ip)

imsg[ip]!

sip:IP

dip:IP

sip:IP

addmsg(msgglobal)addmsg(msgglobal)

create_add_packet(ip,dip)

htc[sip]?

packet[ip][dip]?
msgglobal=msglocal[0],
deletemsg()

pkt[sip][ip]?

Fig. 1. Overview of model development

process is itself a parallel composition of two timed-automata, i.e., OLSR and
Queue. The OLSR automaton is modelling the complete behaviour of the routing
protocol [10] and Queue automaton (depicted in Fig. 1) is chosen to model the
input buffer of every node in the network.

Nodes are able to broadcast and handle different types of messages (HELLO,
TC and PACKET) in the network (modelled by OLSR) and the connected neighbour
nodes can receive the incoming messages and store these messages in their input
buffer (modelled by Queue). Whenever the OLSR is ready to handle a message (is
not busy) and there are messages stored in the Queue, the OLSR and the Queue
synchronise together on the imsg channel, moving a message from the Queue to
the OLSR for processing.

The OLSR models the routing table of a node using a local data structure.
Routing tables provide all the necessary information to route data packets to
different destination nodes. Connectivity between two nodes is modelled by the
predicate isconnected[i][j], denoting a node-to-node communication. If two
nodes are in transmission range of each other, they can communicate with each
other via channels. In order to model rigorous timing behaviour, we defined
several clocks for each OLSR to model on-time broadcasting control messages,
to consider time spent to send every message, and to update and refresh the
information in the routing tables.

Based on [10], each node in the network broadcasts a HELLO message every
2 s containing the information about the originator of the message and the one-
hop neighbours of the HELLO message originator. Upon receipt of a HELLO, the
receiving node updates its routing table for the HELLO message originator and its
two-hop neighbours (one-hop neighbours of the HELLO message originator). The
receiving node also selects its MPR nodes which are able to broadcast TC messages
through the network. Such nodes (MPRs) then broadcast TC messages every 5 s
through the network. TC messages contain the information about the originator of
the TC messages, MPR nodes of the message originator, etc. When a node receives
a TC message, it first checks if the message is considered for processing following
some conditions. If so, then the receiving node updates its routing table for the
TC message originator and the MPR nodes of the TC originator. Afterwards, if the
receiving node is an MPR and the TC message is considered for forwarding, the TC
is forwarded to the next nodes.



Uppaal vs Event-B for Modelling Optimised Link State Routing 195

The Queue (Fig. 1) models storing incoming messages from other nodes
(directly connected neighbour nodes) of the network. The incoming messages
are buffered and in turn are sent to the OLSR for further processing. Messages
can be received only if the receiving node is connected to the sender of the mes-
sage. In this case, the Queue of the receiving nodes stores the messages to its
local data queue.

4.2 Event-B Model of the OLSR

In [18], we developed a formal model of the OLSR protocol at five different levels
of abstraction (depicted in Fig. 2) using Event-B (Rodin platform). We have
defined two contexts containing constants and carrier sets, whose properties are
expressed as a list of axioms for the model. These contexts contain the static part
of the system. The dynamic part of our system is modelled using five machines
that describe the state of the model with their variables which are updated by
events. These five machines are related to the contexts and can access them
using the keyword sees as shown in Fig. 2. Also, the more abstract machines and
contexts are refined into more concrete machines and contexts using keywords
‘refines’ and ‘extends’, respectively.

Fig. 2. Overview of model development



196 M. Kamali and L. Petre

Our initial model M0 deals with basic protocol behaviour, i.e., sending, receiv-
ing, and losing data packets as well as an abstraction of proactive routing behav-
iour (adding links between nodes). First refinement M1 models a storing and for-
warding architecture when data packets are transferred hop by hop from a source
node to a destination node. Second refinement M2 models the basic behaviour of
the route discovery protocol, describing the OLSR behaviour when sending and
receiving control messages as well as updating routing tables. Third refinement
M3 models how the protocol decides to process only new control messages and
how to avoid processing control messages with old information. Fourth refine-
ment M4 models the selection of MPR nodes, helping to decrease the traffic in the
network.

Event packet receiving =̂
any

msg
where

grd1 : msg ∈ sent packet \ (got packet ∪ lost packet)
then

act1 : got packet := got packet ∪ {msg}
end

In M0, data packets are received from a source node to a destination node
in an atomic step which is of course not the case in reality. In real protocols,
data packets are forwarded hop by hop from a source node to a destination node
using multi-hop communication that is modelled in the more concrete machine
M1. For instance, event packet receiving models the successful receiving of the
data packet msg by a destination node. The guard of this event (grd1 ) models
that msg has not been received or lost yet. When the packet is received, it will
be added in the got packet set.

In M1, the storing and forwarding architecture of data packets is modelled
while all nodes are not connected and the data packets must be forwarded hop
by hop through the destination. In this step, we model a local storage for each
node to store these incoming packets and forward these data packets to next
nodes along the path to the destination node.

In M2, nodes are able to broadcast and handle different types of messages
(HELLO, TC and PACKET) in the network (modelled by several events). Also rout-
ing tables of nodes are modelled as variables, providing the information to deliver
data packets to different destination nodes. Every node broadcasts a HELLO mes-
sage having the information only about the HELLO message originator. Upon
receipt of a HELLO message, the corresponding routing table for the originator of
the HELLO message is updated. Also, each node broadcasts a TC message contain-
ing the information about the TC message originator, number of hops of the TC
message, sender of the TC message and time to live of the TC message (number
of hops that a TC message can be forwarded). Upon receipt of a TC message, the
corresponding routing table for the originator of the TC message is updated and
if the TC message is considered for forwarding, it is forwarded to the next nodes.

In M3, we extend the routing table of every node and also add a new variable
in the TC message in order to model sequence numbers. Sequence numbers are
embedded in TC messages to avoid processing messages with old information.



Uppaal vs Event-B for Modelling Optimised Link State Routing 197

Also, we defined several events to update the local sequence number of each
node and to remove out-dated messages from the network.

In M4, we restrict the broadcasting of TC messages to only specific nodes,
namely MPRs, and not all nodes broadcast TC messages through the network.
We added one-hop neighbours of the HELLO message originator in the HELLO
messages so that upon receipt of a HELLO message, the two-hop neighbours of
the receiving nodes can be also updated. In this case, nodes can determine their
MPR nodes and also nodes are able to recognise whether or not they are MPR
nodes of some other nodes in the network. If some nodes are selected to be MPRs,
then they can broadcast/forward TC messages through the network.

5 Comparison

In this section, we compare our OLSR models, the Uppaal model [15] and the
Event-B model [18] as well as the modelling tools Uppaal [7] and Event-B [2].

5.1 Uppaal Model vs Event-B Model

Table 1 depicts an overview of our comparison. We take into the account four
main criteria: what parts of the protocol we’ve modelled, what properties we’ve
verified for our models, for what types of network topologies we modelled the
protocol and what data structures we’ve used.

Table 1. Overview of our models comparison

Uppaal model Event-B model

Protocol Core functionality Core functionality with timing
abstraction

Properties Route establishment packet
delivery non-optimal route
finding recovery time

Route establishment packet
delivery non-optimal route
finding

Topologies All topologies up to 5 nodes All topologies with n nodes

Data Structures Queues Relations, functions

Protocol. We were able to model the core functionality of the OLSR protocol [10] in
both Uppaal and Event-B. This functionality refers to the behaviour that is always
required for the protocol to perform. The only feature that we abstracted away in
our Event-B model was the timing of messages. In the OLSR protocol [10], HELLO
and TC messages are sent periodically. We have abstracted away the treatment of
time in Event-B as this is still incipient, involving a rather different perspective of
treating variables as continuous functions of time [4,6].



198 M. Kamali and L. Petre

Table 2. Overview of Uppaal and Event-B comparison

Uppaal Event-B

Specification Language Timed automata, C-like
language

Set theory, guarded
commands language

Variables Update Transition: selection guard
update

Event: parameter guard
action

Modularity Divided into several automata
at the same level of abstraction

Divided into several
machines at different
levels of abstraction

Verification CTL automatically providing
counterexamples

First-order logic
automatically and
interactively no
counterexamples

Scalability Small-scale systems (finite) Large-scale systems
(infinite)

Real Time Precisely models timing
variables

Partially models timing
variables

Properties. We verified our OLSR model in Uppaal for the following properties:
route establishment, packet delivery, optimal route finding, and recovery time.
We were able to verify that all nodes in the network can establish routes to
different destination nodes as well as deliver data packets to these destinations.
We proved by finding a counterexample that OLSR is not always able to find
optimal routes to all the destinations as well as showed that OLSR needs a
relatively long time to recover after a link breakage in the network [15]. In our
Event-B model, we verified our OLSR model for the following properties: route
establishment, packet delivery and optimal route finding. We came to the same
conclusions as for our Uppaal model. Routes are established to all destinations
and data packets are delivered to these destinations; however, these routes may
be non-optimal w.r.t. the hop counts. Since we abstracted away from timing
properties, we did not investigate the recovery time of OLSR in Event-B.

Topologies. We verified our Uppaal model of OLSR for all network topologies
up to 5 nodes. Since the model checking technique suffers from the state space
explosion problem, we were not able to extend our analysis for more realistic
networks. However, when modelling in Event-B, we were not restricted by the
number of nodes in the network and we could verify the protocol for arbitrary
networks with n number of nodes.

Data Structures. We modelled the OLSR protocol in Uppaal and Event-B with
different data structures. In our Uppaal model, we have defined the Queue timed
automata to store different types of incoming messages to a node. In Event-B, we
modelled the storing architecture using relations between nodes and messages.
We defined a specific data structure in Uppaal to model the routing tables,



Uppaal vs Event-B for Modelling Optimised Link State Routing 199

whereas in Event-B we defined different variables to model routing tables. The
types of nodes in the network were defined by integers in Uppaal, while in Event-
B we introduced a carrier set to model the network nodes. We defined a common
data structure for all types of messages in Uppaal; in Event-B, we introduced
different carrier sets for each type of message. We note here that we can have
the same data structure (modelling all types of messages, i.e., data packets and
control messages) also in Event-B, and this is part of some future generalisation
that we plan for modelling various network protocols in Event-B.

5.2 Uppaal vs Event-B

Table 2 depicts an overview of the comparison between Uppaal and Event-B. We
detail this table below, namely we compare the specification languages, the vari-
able updating mechanisms, the modularity methods, the verification strategies,
the scalability potential, and the real-time modelling capabilities.

Specification Language. The Uppaal model checker uses timed-automata as the
specification language whereas Event-B is based on set theory. In Uppaal, con-
stants, data structures and procedures are defined in a C-like language. In Event-
B, constants, data structures, variables and their updates are modelled in a
guarded command language.

Variable Updating Mechanism. In Uppaal transitions are used to update the
variables while in Event-B events accomplish the same thing. In both formal
methods, the state of the model is determined by the values of the variables. We
show the similarities between transitions in Uppaal and events in Event-B by
sketching an example based on our models when a node receives a message as
depicted in Fig. 3. By this, we also demonstrate how our models in Uppaal and
Event-B are equivalent. These similarities are as following:

– Selection of Parameters. In Uppaal, the select label of a transition consists
of a list of name:type expressions, where name is the variable’s name and type
is its type. As depicted in Fig. 3 (Transition), IP is the type of variable ip,
i.e., an integer in our model. This variable is only accessible for the respective

Fig. 3. Transition and event in Uppaal and Event-B.



200 M. Kamali and L. Petre

transition and it takes a non-deterministic value in the range of its respective
types (integer type in our model). In Event-B (Event), the any clause of an
event lists the parameters (or local variables) of the event, i.e., msg in Fig. 3;
the types of these parameters are usually specified in the guards of the events.

– Guards. In Uppaal, the guard label refers to logical expressions that deter-
mine if the respective transitions are enabled (when guards hold). In Fig. 3
(Transition), msglocal.msgtype == packet is the guard of the transition
and shows if the received message is a new packet. In Event-B, the where
clause contains the guards of the events, i.e., the logical conditions for the
event to be enabled (when guards hold). The guard of the (Event) in Fig. 3
is shown as msg ∈ sent packet \ (got packet ∪ lost packet).

– Updates and Actions. In Uppaal, the update label of a transition contains a
list of expressions that update the values of variables. In Fig. 3 (Transition),
delivered++ is the update that increases the value of integer variable
delivered showing that the packet has been received. In Event-B, the then
clause lists the actions of the event that modify some variables of the model.
In Fig. 3 (Event), got packet := got packet ∪ {msg} is the action that adds
the receiving packet to the received messages set. In both frameworks, the
variable updating mechanism takes place only if the guards of transitions or
events respectively hold.

Modularity. In order to model the whole system’s behaviour in Uppaal, several
automata are introduced, each modelling different parts of the system. These
automata need to synchronise with each other, to keep the consistency and
relevance between different parts of the system model. However, it is not always
possible to split the system into different automata and thus a system model may
remain too complex to understand, having too numerous transitions. In Event-B,
different machines are introduced to fully model the behaviour of the system at
different levels of abstraction, starting from a very simple and abstract level. This
abstract model is stepwise developed using refinement methods to finally model
the complete behaviour of the entire system. Consistency between the different
levels of refinements is verified by discharging proof obligations. The stepwise
development allows to split the complexity of the system into different levels and
makes it easier to understand the model and discharge the proof obligations.

Verification. In Uppaal, the required properties are expressed in Computational
Tree Logic (CTL) syntax and the whole system model is verified for the defined
properties. In Event-B, invariants are used to formulate system properties using
first-order logic; the invariants have to be checked for the whole system in order
to show the consistency between different levels of abstractions. Properties in
Uppaal are discharged fully automatically whereas in Event-B some of the prop-
erties are discharged automatically and some are discharged interactively. Uppaal
provides counterexamples if a property does not hold; this helps in finding errors
in the system. In Event-B, if a proof obligation is not discharged automatically,
this typically signals some modelling problem and the modeller is prompted back
to remodel certain aspects.



Uppaal vs Event-B for Modelling Optimised Link State Routing 201

Scalability. Uppaal, like all model checking tools, suffers from the state space
explosion problem, hence it is not able to verify very large and complex systems.
Event-B allows to verify even large and complex systems. Event-B checks the
general validity of a property for all models (i.e., also for infinite models) whereas
Uppaal is dedicated to small-scale, finite systems.

Real-Time. Uppaal provides clock variables to model timing behaviour of real-
time systems whereas for Event-B modelling timing behaviour is still incipient. In
Uppaal, clock variables model discrete timing behaviour. In Event-B, advances
are made to model hybrid behaviour including discrete and continuous time
modelling [4,6], but these are not implemented in the Rodin platform yet. In
Event-B, the time can be defined as a function that can be mapped to an integer
variable increasing by the events.

6 Conclusions and Usage Guidelines

To resume our experiences of modelling OLSR with Uppaal and Event-B, we
essentially found that the two formalisms require different approaches to mod-
elling. In Uppaal, the modeller attempts to capture the whole system, in all its
complexity, from the beginning, aided in this task by the modularity technique
of splitting the model into communicating time automata. In Event-B, the mod-
eller gets to understand the system’s complexity by modelling it in increasingly
more detailed levels of abstraction. When we have a conceptually complex sys-
tem (behaviour of routing protocols), choosing Uppaal or Event-B for modelling
it and analysing it is ultimately a matter depending on the modeller’s experience.

One can specify properties to prove in both formalisms, but the verification
of these properties differs in the two frameworks. In Uppaal, the verification
depends on the size of the model and may be unsuccessful if the size is bigger
(networks of realistic size) than some arbitrary and typically small value. This
is because model checking enforces a brute force verification of properties in all
possible states of the system, thus leading relatively fast to overflow. Approaches
are taken to overcome this problem, such as partial order reduction techniques
[21] and statistical model checking. The former assumes that not all states are
worth verifying, and thus defines a priority-based order relation that imposes the
verification of the most important states only. The latter employs probabilities
and gives results such as the property holds with a 0.99 probability; these prob-
abilities are calculated based on many random walks through the state space
(simulations of) the system. In Event-B, the verification of properties is based
on logic and proof engines that are built to work for any defined mathemati-
cal concepts, including infinite-sized models. When properties are not verified
automatically, Uppaal provides counterexamples exposing the offending state:
this can be quite useful for correcting errors. In the same situation, the Rodin
platform shows the unsatisfied proof obligation and thus the modeller gets some
feedback on what does not work. We note here that, if there are flaws in the
system, often they are exposed even for small-scale models, see [12,15].



202 M. Kamali and L. Petre

Both Uppaal and Event-B are supported by performant software platforms
for modelling and proving; depending on how advanced these platforms are, some
aspects can be modelled or not, such as real-time properties. Uppaal was designed
to include clock variables and time modelling, while Event-B was designed as a
general refinement-based framework. We can precisely model real-time properties
of communication protocols in Uppaal, e.g., broadcasting a control message at a
certain time. Recently, several approaches were proposed on how to add real-time
modelling in Event-B in a conservative manner, e.g. Hybrid Event-B [6] or [4].
This would imply that all variables except clocks are functions of time, so a slight
change of perspective is needed here. Real-time properties are typically closely
related to implementation details, for instance, to various network parameters;
hence, even if we can model timing, when translating the final model into a
software product, we might need to alter various properties and parameters
anyway.

For modelling and verifying routing protocols, Uppaal remains very useful, as
it provides synchronisation mechanisms used in wireless networks: broadcast and
binary synchronisation. This allows to closely understand the communication
between network nodes. Besides these clear differences, we found that modelling
in either framework is quite natural and rewarding and, once the modeller is
experienced enough with the framework, quite efficient as well.

To the best of our knowledge, this is the first paper comparing Uppaal and
Event-B with respect to what each can model and prove. Relations between
model checking and theorem proving in general have been studied before,
e.g. [13], where for solving a (rather simple) puzzle, arguments are given for
using model checking instead of theorem proving. We note that real systems
are very complex nowadays and thus, proving properties for the system, inde-
pendently of its size, is quite important. Another interesting observation made
in [13] is that theorem proving helps in constructing the model, while model
checking can be used when we already understand the model quite well. Other
approaches connecting model checking and theorem proving are [8], where the
idea is to combine the two methods and more recently [24], where refinement is
studied in the context of both Uppaal and Event-B.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, New York (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

4. Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In:
Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Ric-
cobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30885-7 13

http://dx.doi.org/10.1007/978-3-642-30885-7_13


Uppaal vs Event-B for Modelling Optimised Link State Routing 203

5. Back, R.J.R., Sere, K.: From action systems to modular systems. In: Naftalin, M.,
Denvir, T., Bertran, M. (eds.) FME 1994. LNCS, vol. 873, pp. 1–25. Springer,
Heidelberg (1994). doi:10.1007/3-540-58555-9 83

6. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

7. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30080-9 7

8. Berezin, S.: Model checking and theorem proving: a unified framework. Ph.D. the-
sis, Carnegie Mellon University (2002)

9. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. Commun. ACM 52(11), 74–84 (2009)

10. Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). RFC 3626
(Experimental) (2003). http://www.ietf.org/rfc/rfc3626

11. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, vol. B. Formal Models and Semantics, pp. 995–1072. MIT (1995)

12. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Modelling and analysis of AODV in UPPAAL. In: 1st International Workshop on
Rigorous Protocol Engineering, pp. 1–6 (2011)

13. Halpern, J., Vardi, M.: Model checking vs. theorem proving: a manifesto. In:
Lifschitz, V. (ed.) Artificial Intelligence and Mathematical Theory of Computa-
tion, pp. 151–176. Academic Press Professional, Inc. (1991)

14. Johnson, D., Hu, Y., Maltz, D.: The Dynamic Source Routing Protocol (DSR).
RFC 4728 (Experimental) (2007). http://www.ietf.org/rfc/rfc4728

15. Kamali, M., Höfner, P., Kamali, M., Petre, L.: Formal analysis of proactive, dis-
tributed routing. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276,
pp. 175–189. Springer, Cham (2015). doi:10.1007/978-3-319-22969-0 13

16. Kamali, M., Kamali, M., Petre, L.: Formally analyzing proactive, distributed rout-
ing. Technical report 1125, TUCS - Turku Centre for Computer Science (2014)

17. Kamali, M., Petre, L.: Improved recovery for proactive, distributed routing. In:
20th International Conference on Engineering of Complex Computer Systems
(ICECCS 2015), pp. 178–181. IEEE (2015)

18. Kamali, M., Petre, L.: Modelling link state routing in Event-B. In: 21st Interna-
tional Conference on Engineering of Complex Computer Systems, ICECCS 2016,
pp. 207–210. IEEE (2016)

19. Kamali, M., Petre, L.: Modelling link state routing in Event-B. Technical report
1154, TUCS - Turku Centre for Computer Science (2016)

20. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. (STTT) 1(1), 134–152 (1997)

21. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Compact data structures and
state-space reduction for model-checking real-time systems. Real-Time Syst. 25(2–
3), 255–275 (2003)

22. Neumann, A., Aichele, C., Lindner, M.: Better Approach To Mobile Ad-hoc Net-
working Routing Protocol (B.A.T.M.A.N.). IETF Draft (2008). https://tools.ietf.
org/id/draft-openmesh-b-a-t-m-a-n-00.txt

23. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector Rout-
ing Protocol (AODV). RFC 3561 (Experimental) (2003). http://www.ietf.org/rfc/
rfc3561

24. Vain, J., Tsiopoulos, L., Bostrom, P.: Integrating refinement-based methods for
developing timed systems. In: Petre, L., Sekerinski, E. (eds.) From Action Systems
to Distributed Systems: The Refinement Approach, pp. 171–185. CRC Press (2016)

http://dx.doi.org/10.1007/3-540-58555-9_83
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://www.ietf.org/rfc/rfc3626
http://www.ietf.org/rfc/rfc4728
http://dx.doi.org/10.1007/978-3-319-22969-0_13
https://tools.ietf.org/id/draft-openmesh-b-a-t-m-a-n-00.txt
https://tools.ietf.org/id/draft-openmesh-b-a-t-m-a-n-00.txt
http://www.ietf.org/rfc/rfc3561
http://www.ietf.org/rfc/rfc3561


Author Index

Aïssani, Djamil 33
Aman, Bogdan 155
André, Pierre 124
Angelis, Lefteris 48
Ayub, Muhammad Saad 1

Barkaoui, Kamel 108
Béchennec, Jean-Luc 64
Ben Hedia, Belgacem 171
Benmbarek, Momtez 17
Bensalem, Saddek 48, 171
Bliudze, Simon 171
Boussif, Abderraouf 92
Briday, Mikaël 64

Ciobanu, Gabriel 155

Escheikh, Mohamed 108
Ezzedine, Tahar 108

Faucou, Sébastien 64

Ghazel, Mohamed 92
Guesmi, Hela 171

Hakmi, Sedda 33
Hasan, Osman 1
Huang, Libo 79

Jouini, Hana 108

Kamali, Mojgan 189
Katsaros, Panagiotis 48

Le Nabec, Briag 171
Lekadir, Ouiza 33

Ma, Jianqiao 79
Mangean, Armel 64

Nouri, Ayoub 48

Petre, Luigia 189
Poplavko, Peter 48

Qian, Cheng 79

Rivière, Nicolas 124

Seghaier, Ibtissem 139

Tahar, Sofiène 139

Waeselynck, Hélène 124
Wang, Zhiying 79

Younes, Sana 17
Yu, Qi 79

Zerzelidis, Alexandros 48


	Preface
	Organization
	Keynote Speakers
	Live Run-Time Verification of Parallel Heterogeneous Real-Time Systems
	Measuring and Enhancing Smart Grid Security
	Deadlock Analysis and Control of Resource Allocation Systems: Structural and Reachability Graph Approaches
	Contents
	Formal Probabilistic Analysis of a Virtual Fixture Control Algorithm for a Surgical Robot
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Probabilistic Model Checking and PRISM
	3.2 Virtual Fixture Control Algorithm for Surgical Robots

	4 Formalization of the Virtual Fixture Algorithm Using the PRISM Language
	4.1 Force Module
	4.2 Velocity Module
	4.3 Position Module
	4.4 Multiple Surgical Tools

	5 Virtual Fixture Control Algorithm
	5.1 Deadlock Freedom
	5.2 Reachability
	5.3 Out-of-Boundary
	5.4 Collision Freeness

	6 Testing on Al-Zahrawi
	7 Conclusions
	References

	Performance Analysis of Multi-services Call Admission Control in Cellular Network Using Probabilistic Model Checking
	1 Introduction
	2 Probabilistic Model Checking
	2.1 Labelled CTMC
	2.2 Temporal Logic CSL

	3 Formal Modelling of CAC Schemes
	3.1 Basic CAC (B-CAC) Schema
	3.2 Queuing CAC (Q-CAC) Schema
	3.3 Real Time Priority CAC (RTP-CAC) Schema
	3.4 Real Time Priority and Queuing (RTPQ-CAC) Schema

	4 Formal Specification of Performance Properties by CSL Formulas
	4.1 Checking Steady-State Formulas
	4.2 Checking Transient Formulas
	4.3 Checking Reward Formulas

	5 Model Checking Results of CSL Formulas
	6 Conclusion
	References

	Application of Generalized Stochastic Petri Nets to Performance Modeling of the RF Communication in Sensor Networks
	1 Introduction
	2 The Basic Models
	3 An Overview of Generalized Stochastic Petri Nets
	4 GSPN Models of the RF Transmission in Wireless Sensor Networks
	5 Performance Measures
	6 Numerical Results
	7 Conclusion
	References

	Regression-Based Statistical Bounds on Software Execution Time
	1 Introduction
	2 Common Probabilistic Techniques
	2.1 Probabilistic Measurement-Based Timing Analysis
	2.2 Linear Regression in the Nutshell

	3 Linear Regression for MET
	3.1 The Maximal Regression Model
	3.2 Identifying the Predictors: Stepwise Regression
	3.3 Quality of Input Data: Cook's Distance

	4 A Design Flow for MET
	4.1 Instrumentation and Measurements
	4.2 Final Flow Steps

	5 A JPEG Decoder on a SPARC Platform
	5.1 Instrumentation and Measurements
	5.2 Predictors Identification and Model Construction

	6 Related Work
	7 Conclusions
	References

	WCET Analysis by Model Checking for a Processor with Dynamic Branch Prediction
	1 Introduction
	2 Background and Related Works
	2.1 Branch Prediction Basis
	2.2 Analysis of Branch Prediction Techniques
	2.3 Model Checking and WCET Analysis of Processors

	3 Description of the Target Microarchitecture
	3.1 Memory Hierarchy
	3.2 Execution Pipeline and Instruction Prefetch Buffer
	3.3 Branch Prediction
	3.4 Analyzability and Predictability

	4 Our WCET Analysis Framework
	5 Models
	5.1 Modeling the Program
	5.2 Modeling the Pipeline
	5.3 Modeling the Memory Hierarchy

	6 Experimental Results
	7 Conclusion
	References

	Factor-Based C-AMAT Analysis for Memory Optimization
	1 Introduction
	2 FC-AMAT Analysis Model
	3 Methodology
	4 Results
	4.1 Basic L1 Cache Configurations
	4.2 Basic L2 Cache Configuration
	4.3 Advanced Cache Configurations

	5 Related Work
	6 Conclusion
	References

	An Experimental Comparison of Two Approaches for Diagnosability Analysis of Discrete Event Systems - A Railway Case-Study
	1 Introduction
	2 Preliminaries
	2.1 The System Model
	2.2 Definition of Diagnosability

	3 The Considered Approaches
	3.1 The Diagnoser-based Approach 
	3.2 The Model-Checking Reformulation Approach 
	3.3 The Main Features of the Considered Approaches

	4 The Railway Case-Study
	4.1 Railway Level Crossing Benchmark
	4.2 Experimentation

	5 Conclusion
	References

	Mobility Load Balancing over Intra-frequency Heterogeneous Networks Using Handover Adaptation
	1 Introduction
	2 Literature Review of MLB in HetNets
	2.1 MLB in Idle Mode: Load-Aware User Association
	2.2 MLB in Connected Mode

	3 Problem Formulation and System Model
	4 MLB Based HO Biasing
	5 Simulation Assumptions and Results
	6 Conclusion
	References

	A Toolset for Mobile Systems Testing
	1 Introduction
	2 Toolset Overview
	3 Scenario Specification
	3.1 Scenario Modeling
	3.2 Scenario Format Checks
	3.3 Scenarios Processing

	4 Trace Analysis
	4.1 Principles
	4.2 Verdict Analysis

	5 Results
	6 Related Works
	7 Conclusion
	References

	Intertwined Global Optimization Based Reachability Analysis
	1 Introduction
	2 Preliminaries
	2.1 Hybrid System Modeling: System of Stochastic Recurrence Equations
	2.2 Latin Hypercube Sampling
	2.3 Hypothesis Testing

	3 Proposed Methodology
	3.1 Forward-Backward Reachability Analysis

	4 Application: PLL Frequency Synthesizer
	5 Conclusion
	References

	Analyzing Distributed Pi-Calculus Systems by Using the Rewriting Engine Maude
	1 Introduction
	2 Distributed Pi-Calculus
	2.1 Bisimulations for Distributed Systems with Migration

	3 Translating Distributed Pi-Calculus into Maude
	4 Analyzing Distributed Systems by Using Maude
	5 Conclusion and Related Work
	References

	TT-BIP: Using Correct-by-Design BIP Approach for Modelling Real-Time System with Time-Triggered Paradigm
	1 Introduction
	2 The BIP Framework
	3 Problem Statement and the Proposed Solution
	4 Transformation of a BIP Model into a TT-BIP Model
	4.1 Analysis Phase
	4.2 Transformation of Task Components
	4.3 Expressing Timing Constraints and Time Progress Conditions over a Common Global Clock
	4.4 Building TTCC Components
	4.5 Conflict Resolution Protocol Component
	4.6 Cross-Layer Interactions

	5 Implemantation and Use Case
	6 Conclusion
	References

	Uppaal vs Event-B for Modelling Optimised Link State Routing
	1 Introduction
	2 Formal Methods, Model Checking, and Theorem Proving
	2.1 Model Checking--Uppaal's Timed Automata
	2.2 Theorem Proving--Event-B

	3 An Overview of Optimised Link State Routing
	4 Formal Modelling of the OLSR
	4.1 Uppaal Model of the OLSR
	4.2 Event-B Model of the OLSR

	5 Comparison
	5.1 Uppaal Model vs Event-B Model
	5.2 Uppaal vs Event-B

	6 Conclusions and Usage Guidelines
	References

	Author Index



