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Abstract. Quantum annealers (QA) are specialized quantum comput-
ers that minimize objective functions over discrete variables by physically
exploiting quantum effects. Current QA platforms allow for the optimiza-
tion of quadratic objectives defined over binary variables, that is, they
solve quadratic unconstrained binary optimization (QUBO) problems.
In the last decade, QA systems as implemented by D-Wave have scaled
with Moore-like growth. Current architectures provide 2048 sparsely-
connected qubits, and continued exponential growth is anticipated.

We explore the feasibility of such architectures for solving SAT and
MaxSAT problems as QA systems scale. We develop techniques for effec-
tively encoding SAT and MaxSAT into QUBO problems compatible with
sparse QA architectures. We provide the theoretical foundations for this
mapping, and present encoding techniques that combine offline Satisfia-
bility and Optimization Modulo Theories with on-the-fly placement and
routing. Preliminary empirical tests on a current generation 2048-qubit
D-Wave system support the feasibility of the approach.

We provide details on our SMT model of the SAT-encoding problem
in the hopes that further research may improve upon the scalability of
this application of SMT technology. Further, these models generate hard
SMT problems which may be useful as benchmarks for solvers.

1 Introduction

Quantum Annealing (QA) is a specialized form of computation that uses quan-
tum mechanical effects to efficiently sample low-energy configurations of par-
ticular cost functions on binary variables. Currently, the largest QA system
heuristically minimizes an Ising cost function given by

E(z) def=
∑

i∈V

hizi +
∑

(i,j)∈E

Jijzizj (1)

argmin
z∈{−1,1}|V |

E(z). (2)

where G = (V,E) is an undirected graph of allowed variable interactions. Ising
models are equivalent to Quadratic Unconstrained Binary Optimization (QUBO)
c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 153–171, 2017.
DOI: 10.1007/978-3-319-66167-4 9



154 Z. Bian et al.

problems, which use {0, 1}-valued variables rather than ±1-valued variables. 1

The decision version of the Ising problem on most graphs G is NP-complete.
Theory suggests that quantum annealing may solve some optimization prob-

lems faster than state-of-the-art algorithms [18]. Quantum effects such as tun-
neling and superposition provide QA with novel mechanisms for escaping local
minima, thereby potentially avoiding suboptimal solutions commonly found by
classical algorithms based on bit-flip operations (such as WalkSAT). Practical
QA systems are not guaranteed to return optimal solutions; however, the D-
Wave processor has been shown to outperform a range of classical algorithms
on certain problems designed to match its hardware structure [16,21]. These
results also provide guidance about the kinds of energy landscapes on which QA
is expected to perform well.

Our ultimate goal is to exploit QA as an engine for solving SAT and other
NP-hard problem instances which are relatively small but hard enough to be
out of the reach of state-of-the-art solvers (e.g., SAT problems coming from
cryptanalysis). SAT is the problem of deciding the satisfiability of arbitrary
formulas on atomic propositions, typically written in conjunctive normal form.
MaxSAT is an optimization extension of SAT, in which each clause is given a
positive penalty if the clause is not satisfied, and an assignment minimizing the
sum of the penalties is sought.

In principle, converting SAT to optimization of an Ising cost function is
straightforward. However, practical QA systems such as the D-Wave 2000Q
offer sparse connectivity between variables. The connectivity graph G of cur-
rent D-Wave processors is shown in Fig. 1, and is called the Chimera graph.
Further, because the Ising model is solved on a physical, analog device, it is sub-
ject to engineering limitations. The D-Wave 2000Q system currently requires
hi ∈ [−2, 2] and Jij ∈ [−1, 1] and there are limits on the precision to which
these parameters may be specified. Parameter imprecisions act as small additive
noise sources on parameter values, and arise from operating quantum mechanical
systems in real-world environments. These real-world practicalities necessitate a
carefully defined SAT-to-Ising encoding.

These practical constraints generate a challenging problem because the SAT
encoding must be done both effectively (i.e., in a way that uses only the limited
number of qubits and connections available within the QA architecture, while
optimizing performance of the QA algorithm), and efficiently (i.e., using a limited
computational budget for computing the encoding). In this paper, we formalize
this problem and provide practical algorithms.

A direct formulation of the encoding problem results in a large system of
linear inequalities over continuous- and Boolean-valued variables. This system
can be effectively addressed with Satisfiability or Optimization Modulo Theory
(SMT/OMT) [3,28] solvers. Satisfiability Modulo the Theory of Linear Ratio-
nal Arithmetic (SMT (LRA)) [3] is the problem of deciding the satisfiability of
arbitrary formulas on atomic propositions and constraints in linear arithmetic
over the rationals. Optimization Modulo the Theory of Linear Rational Arithmetic

1 The transformation between zi ∈ {−1, 1} and xi ∈ {0, 1} is zi = 2xi − 1.
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Fig. 1. Example of the Chimera topology: the hardware graph for system of 72 qubits
in a 3-by-3 grid of tiles. (D-Wave 2000Q systems have 2048 qubits in a 16-by-16 grid.)
This topology consists of a lattice of strongly-connected components of 8 qubits, called
tiles. Each tile consists of a complete bipartite graph between two sets of four qubits.
One set, the “vertical” set, is connected to the tiles above and below; the other set,
the “horizontal” set, is connected to the tiles to the left and to the right. Notice that
each qubit is connected with at most six other qubits. In other words, each variable zi
in the Ising model (1) has at most 6 non-zero Jij interactions with other variables.

(OMT (LRA)) [28] extends SMT(LRA) by searching solutions which optimize
some LRA objective(s). Efficient OMT(LRA) solvers like OptiMathSAT [29]
allow for handling formulas with thousands of Boolean and rational variables [28].

This monolithic linear programming approach to encoding typically requires
the introduction of additional ancillary Boolean variables, and the resultant
SMT/OMT problem may be computationally harder than the original prob-
lem. In contrast, a large Boolean formula can be scalably converted into an
Ising model by decomposing it into subformulae, converting each subformula
into an Ising model (perhaps with introduction of additional fresh variables),
and linking variables from different subformulae. Unfortunately, in practice this
decomposition-based approach requires many auxiliary variables and connec-
tions, which are incompatible with the sparse connectivity restrictions imposed
by QA architectures.

To cope with these difficulties, we propose a mixed approach, which com-
bines (i) novel SMT/OMT-based techniques to produce off-line encodings of
commonly-used Boolean subfunctions, with (ii) the usage of function instantia-
tion and placement-and-routing techniques to combine and place on-the-fly the
encoded functionalities within the QA architecture.
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We have implemented prototype encoders on top of the SMT/OMT tool
OptiMathSAT [29]. As a proof of concept, we present some preliminary empir-
ical evaluation, in which we have executed encoded SAT and MaxSAT problems
on a D-Wave 2000Q system. Although preliminary, the results confirm the fea-
sibility of the approach. We stress the fact that this paper does not present a
comparison with respect to state-of-the-art of classic computing. Rather, this is
intended as a preliminary assessment of the challenges and potential of QA to
impact SAT and MaxSAT solving.

The rest of the paper is organized as follows. Section 2 presents the theoretical
foundations of this work; Sect. 3 describes our mixed approach to cope with this
problem; Sect. 4 presents a preliminary empirical evaluation; Sect. 5 hints future
developments. A longer and more detailed version of this paper, including a
section that describes related work, is available online [7].

2 Foundations

Let F (x) be a Boolean function on a set of n input Boolean variables x def=
{x1, ..., xn}. We represent Boolean value ⊥ with −1 and � with +1, so that we
can assume that each xi ∈ {−1, 1}. Suppose first that we have a QA system with
n qubits defined on a hardware graph G = (V,E), e.g., G can be any n-vertex
subgraph of the Chimera graph of Fig. 1. Furthermore, assume that the state of
each qubit zi corresponds to the value of variable xi, i = 1, . . . , n = |V |. One
way to determine whether F (x) is satisfiable using the QA system is to find an
energy function as in (1) whose ground states z correspond with the satisfiable
assignments x of F (x). For instance, if F (x) def= x1 ⊕ x2, since F (x) = � if
and only if x1 + x2 = 0, the Ising model (z1 + z2)2 in a graph containing 2
qubits joined by an edge has ground states (+1,−1) and (−1,+1), that is, the
satisfiable assignments of F .

Because the energy E(z) in (1) is restricted to quadratic terms and graph
G is typically sparse, the number of functions F (x) that can be solved with
this approach is limited. To deal with this difficulty, we can use a larger QA
system with a number of additional qubits, say h, representing ancillary Boolean
variables (or ancillas for short) a def= {a1, ..., ah}, so that |V | = n+h. A variable
placement is a mapping of the n+h input and ancillary variables into the qubits
of V . Since G is not a complete graph, different variable placements will produce
energy functions with different properties. We use Ising encoding to refer to the
hi and Jij parameters in (1) that are provided to the QA hardware together
with a variable placement of the variables. The gap of an Ising encoding is the
energy difference between ground states (i.e., satisfiable assignments) and any
other states (i.e., unsatisfiable assignments). An important observation from [5]
is that the larger the gap the better the success rates of the QA process. The
encoding problem for F (x) is to find an Ising encoding with maximum gap.

The encoding problem is typically over-constrained. In fact, the Ising model
(1) has to discriminate between m satisfiable assignments and k unsatisfiable
assignments, with m+k = 2n, whereas the number of degrees of freedom is given
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by the number of the hi and Jij parameters, which in the Chimera architecture
grows as O(n + h).

In this section, we assume that a Boolean function F (x) is given and that h
qubits are used for ancillary variables a.

2.1 Penalty Functions

Here we assume that a variable placement is given, placing x ∪ a into the
subgraph G. Thus, we can identify each variable zj representing the binary
value of the qubit associated with the jth vertex in V with either an xk or a�

variable, writing z = x ∪ a. Then we define penalty function PF (x,a|θ) as the
Ising model:

PF (x,a|θ) def= θ0 +
∑

i∈V

θizi +
∑

(i,j)∈E

θijzizj , (3)

with the property that ∀x min{a}PF (x,a|θ)

{
= 0 if F (x) = �
≥ gmin if F (x) = ⊥ (4)

where θ0 ∈ (−∞,+∞) (“offset”), θi ∈ [−2, 2] (“biases”) and θij ∈ [−1, 1]
(“couplings”), s.t. zi, zj ∈ z, and gmin > 0 (“gap”) are rational-valued parame-
ters. Notice that a penalty function separates models from counter-models by
an energy gap of at least gmin. We call PF (x,a|θ) an exact penalty function iff
it verifies a stronger version of (4) in which the condition “≥ gmin” is substi-
tuted with “= gmin”. To simplify the notation we will assume that θij = 0 when
(i, j) 
∈ E, and use PF (x|θ) when a = ∅.

The QA hardware is used to minimize the Ising model defined by penalty
function PF (x,a|θ). By (4), a returned value of PF (x,a|θ) = 0 implies that
F is satisfiable. However, if PF (x,a|θ) ≥ gmin, since QA does not guarantee
optimality, there is still a chance that F is satisfiable. Nevertheless, the larger
gmin is, the less likely this false negative case occurs.

The following examples show that ancillary variables are needed, even when
G is a complete graph.

Example 1. The equivalence between two variables, F (x) def= (x1 ↔ x2), can be
encoded without ancillas by means of a single coupling between two connected
vertices, with zero biases: PF (x|θ) def= 1 − x1x2, so that gmin = 2. In fact,
PF (x|θ) = 0 if x1, x2 have the same value; PF (x|θ) = 2 otherwise. Notice that
PF (x|θ) is also an exact penalty function. Penalty PF (x|θ) is called a chain of
length 2.

Example 2. Consider the AND function F (x) def= x3 ↔ (x1 ∧ x2). If x1, x2, x3

could be all connected in a 3-clique, then F (x) could be encoded without ancillas
by setting PF (x|θ) = 3

2 − 1
2x1− 1

2x2+x3+ 1
2x1x2−x1x3−x2x3, so that gmin = 2.

Since the Chimera graph has no cliques, so that the above AND function needs
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(a) x3 (x1 ∧ x2)
with one ancilla.

(b) x3 (x1 ⊕ x2)
with three ancillas.

(c) x4 (x3 ∧ (x1 ⊕ x2))
obtained by combining 2(b) and 2(a).

Fig. 2. Mappings within the Chimera graph, penalty functions use only colored edges.
(c) combines (a) and (b) using chained proxy variables y, y′. The resulting penalty
function is obtained by rewriting x4 ↔ (x3 ∧ (x1 ⊕x2)) into its equi-satisfiable formula
(x4 ↔ (x3 ∧ y′)) ∧ (y′ ↔ y) ∧ (y ↔ (x1 ⊕ x2)). (Color figure online)

(at least) one ancilla a to be encoded as: PF (x,a|θ) = 5
2 − 1

2x1 − 1
2x2 + x3 +

1
2x1x2 − x1x3 − x2a − x3a, which still has gap gmin = 2 and is embedded as in
Fig. 2(a).

Example 3. Consider the XOR function F (x) def= x3 ↔ (x1 ⊕ x2). Even within
a 3-clique, F (x) has no ancilla-free encoding. Within the Chimera graph, F (x)
can be encoded with three ancillas a1, a2, a3 as: PF (x,a|θ) = 5 + x3 + a2 − a3 +
x1a1 − x1a2 − x1a3 − x2a1 − x2a2 − x2a3 + x3a2 − x3a3, which has gap gmin = 2
and is embedded as in Fig. 2(b).

2.2 Properties of Penalty Functions and Problem Decomposition

After determining a variable placement, finding the values for the θs implicitly
requires solving a set of equations whose size grows with the number of models of
F (x) plus a number of inequalities whose size grows with the number of counter-
models of F (x). Thus, the θs must satisfy a number of linear constraints that
grows exponentially in n. Since the θs grow approximately as 4(n + h), the
number of ancillary variables needed to satisfy (4) can also grow very rapidly.
This seriously limits the scalability of a solution method based on (3)–(4). We
address this issue by showing how to construct penalty functions by combining
smaller penalty functions, albeit at the expense of a reduced gap.

The following two properties can be easily derived from the definition.

Property 1. Let F ∗(x) def= F (x1, ..., xr−1,¬xr, xr+1, ..., xn) for some index r.
Assume a variable placement of x into V s.t. PF (x,a|θ) is a penalty function
for F (x) of gap gmin. Then PF ∗(x,a|θ) = PF (x,a|θ∗), where θ∗ is defined as
follows for every zi, zj ∈ x,a:

θ∗
i =

{−θi if zi = xr

θi otherwise; θ∗
ij =

{−θij if zi = xr or zj = xr

θij otherwise.

Notice that since the previously defined bounds over θ (namely θi ∈ [−2, 2] and
θij ∈ [−1, 1]) are symmetric, if θ is in range then θ∗ is as well.
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Two Boolean functions that become equivalent by permuting or negating
some of their variables are called NPN-equivalent [14]. Thus, given the penalty
function for a Boolean formula, any other NPN equivalent formula can be
encoded trivially by applying Property 1. Notice that checking NPN equiva-
lence is a hard problem in theory, but it is fast in practice for small n (i.e., less
than 16 [20]).

Property 2. Let F (x) =
∧K

k=1 Fk(xk) be Boolean formula such that x = ∪kxk,
the xks may be non-disjoint, and each sub-formula Fk has a penalty function
PFk

(xk,ak|θk) with minimum gap gk
min where a = ∪kak and the aks are all

disjoint. Given a list wk of positive rational values such that, for every zi, zj ∈
x ∪ ⋃K

k=1 ak:

θi
def=

K∑

k=1

wkθk
i ∈ [−2, 2], θij

def=
K∑

k=1

wkθk
ij ∈ [−1, 1], (5)

then a penalty function for F (x) can be obtained as:

PF (x,a1...aK |θ) =
K∑

k=1

wkPFk
(xk,ak|θk). (6)

This new penalty function evaluates to zero if and only if all its summands
do, and otherwise it is at least gmin = minK

k=1 wkgk
min. Thus, in general, the

(weighted) sum of the penalty functions of a set of formulas represents a penalty
function for the conjunction of the formulas.

A formula F (x) can be decomposed (e.g., by a Tseitin transformation) into
an equivalently-satisfiable one F ∗(x,y):

F ∗(x,y) def=
m−1∧

i=1

(yi ↔ Fi(xi,yi)) ∧ Fm(xm,ym), (7)

where the Fis are Boolean functions which decompose the original formula F (x),
and the yis are fresh Boolean variables each labeling the corresponding Fi. By
Property 2, this allows us to decompose F (x) into multiple Fi(xi,yi) that can be
encoded separately and recombined. The problem is to choose Boolean functions
Fi(xi,yi) whose penalty functions are easy to compute, have a large enough gap,
and whose combination keeps the gap of the penalty function for the original
function as large as possible.

Summing penalty functions with shared variables may cause problems with
parameter ranges: penalty functions that share terms may sum up biases or
couplings resulting in out-of-range values. Using weights, Property 2 can help
to mitigate this, but also it is likely that the gmin of the final penalty function
becomes small.
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We can cope with this problem by mapping shared variables into distinct
qubits and then linking them together. Consider again F (x) =

∧K
k=1 Fk(xk) as

in Property 2. We rewrite it into its equi-satisfiable formula

F ∗(x∗) def=
K∧

k=1

Fk(xk∗
) ∧

∧

xi∈xk∩xk′

k,k′∈[1..K], k<k′

(xi
k∗ ↔ xi

k′∗
) (8)

where x∗ = ∪kxk∗ and the xk∗ are all disjoint. Also, as in Property 2, assume
we have PFk

(xk∗
,ak|θk) for each k with disjoint ak. If there is an edge between

every two copies of the same variable xi, we can write a penalty function in the
following way (using the penalty of Example 1):

PF ∗(x∗,a|θ) =
K∑

k=1

PFk
(xk∗

,ak|θk) +
∑

xi∈xk∩xk′

k,k′∈[1..K], k<k

(1 − xi
k∗

xi
k′∗

), (9)

and the θs stay within valid range because the xk∗s are all disjoint. Thus, we can
represent a single variable xi with a series of qubits connected by strong couplings
(1−ziz

′
i). Figure 2(c) illustrates a simple example. Two observations are at hand.

First, the gap gmin of PF ∗(x∗,a|θ) is at least min(minK
k=1 wkgk

min, 2), since each
(1 − ziz

′
i) penalty has a gap of 2. Second, not all copies of xi need to be directly

adjacent to obtain this bound: it suffices to use the edges of a tree connecting
all copies. More generally, that tree may contain additional qubits to facilitate
connectedness. A tree connecting all the copies of a variable xi is called a chain
and is the subject of the next section.

2.3 Embedding into Chimera Architecture

The process of representing a single variable xi by a collection of qubits connected
in chains of strong couplings is known as embedding, in reference to the minor
embedding problem of graph theory [12,13]. More precisely, suppose we have a
penalty function based on graph G (so xi and xj are adjacent iff θij 
= 0) and a
QA hardware graph H. A minor embedding of G in H is a function Φ : VG → 2VH

such that:

– for each G-vertex xi, the subgraph induced by Φ(xi) is connected;
– for all distinct G-vertices xi and xj , Φ(xi) and Φ(xj) are disjoint;
– for each edge (xi, xj) in G, there is at least one edge between Φ(xi) and Φ(xj).

The image Φ(xi) of a G-vertex is a chain, and the set of qubits in a chain are
constrained to be equal using (1 − ziz

′
i) couplings as in Fig. 2(c).

Embedding generic graphs is a computationally difficult problem [2],
although certain structured problem graphs may be easily embedded in the
Chimera topology [8,34] and heuristic algorithms may also be used [9]. A rea-
sonable goal in embedding is to minimize the sizes of the chains, as quantum
annealing becomes less effective as more qubits are included in chains [22].
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A different approach to use QA for finding models for F , global embedding,
is based on first finding a penalty function on a complete graph G on n + h
variables, and secondly, embedding G into a hardware graph H using chains (e.g.,
using [8]). Following [5], global embeddings usually need fewer qubits than the
methods presented in this paper; however, the final gap of the penalty function
obtained in this way is generally smaller and difficult to compute exactly.

3 Solving the Encoding Problem

3.1 Encoding Small Boolean Functions

Computing Penalty Functions via SMT/OMT(LRA). Given x def=
{x1, ..., xn}, a def= {a1, ..., ah}, F (x) as in Sect. 2.1, a variable placement in a
Chimera subgraph s.t. z = x ∪ a, and some gap gmin > 0, the problem of
finding a penalty function PF (x,a|θ) as in (3) reduces to solving the following
SMT(LRA) problem:

Φ(θ) def=
∧

zi∈x,a

(−2 ≤ θi) ∧ (θi ≤ 2) ∧
∧

zizj∈x,a
i<j

(−1 ≤ θij) ∧ (θij ≤ 1) (10)

∧
∧

{x∈{−1,1}n|F (x)=�}

∨

a∈{−1,1}h

(PF (x,a|θ) = 0) (11)

∧
∧

{x∈{−1,1}n|F (x)=�}

∧

a∈{−1,1}h

(PF (x,a|θ) ≥ 0) (12)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧

a∈{−1,1}h

(PF (x,a|θ) ≥ gmin). (13)

Consequently, the problem of finding the penalty function PF (x,a|θ) that
maximizes the gap gmin reduces to solving the OMT(LRA) maximization prob-
lem 〈Φ(θ), gmin〉.

Intuitively: (10) states the ranges of the θ; (11) and (12) state that, for
every x satisfying F (x), PF (x,a|θ) must be zero for at least one “minimum” a
and nonnegative for all the others; (13) states that for every x not satisfying
F (x), PF (x,a|θ) must greater or equal than the gap. Consequently, if the values
of the θ in PF (x,a|θ) satisfy Φ(θ), then PF (x,a|θ) complies with (4).

Notice that Φ(θ) grows exponentially with |x| + |a|, and no longer contains
Boolean atoms. Notice also that, if a = ∅, the OMT(LRA) maximization prob-
lem 〈Φ(θ), gmin〉 reduces to a linear program because the disjunctions in (11)
disappear.

To force PF (x,a|θ) to be an exact penalty function, we conjoin to Φ(θ) the
following:

... ∧
∧

{x∈{−1,1}n|F (x)=⊥}

∨

a∈{−1,1}h

(PF (x,a|θ) = gmin). (14)
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Here, (14) forces PF (x,a|θ) to be exactly equal to the gap for at least one “min-
imum” a. Exact penalty functions can be used to encode (weighted) MaxSAT
instances. Suppose we partition a formula into the conjunction of its soft con-
straints Ci each of weight wi ≥ 0. Then for each Ci we find an exact penalty
function of (10)–(14) for Ci imposing a gap gi proportional to wi, and we com-
bine the result as in Property 2.

Improving Efficiency and Scalability Using Variable Elimination.
As before, assume that the variable placement is fixed and consider the
SMT/OMT(LRA) formulation (10)–(13). Notice the exponential dependency on
the number of hidden variables h. For practical purposes, this typically implies
a limit on h of about 10. Here, we describe an alternative formulation whose
size dependence on h is O(h2tw), where tw is the treewidth of the subgraph of
G spanned by the qubits corresponding to the ancillary variables, Ga. For the
Chimera graph, even when h is as large as 32, tw is at most 8 and therefore still
of tractable size.

The crux of the reformulation is based on the use of the variable elimination
technique [15] to solve an Ising problem on Ga. This method is a form of dynamic
programming, storing tables in memory describing all possible outcomes to the
problem. When the treewidth is tw, there is a variable elimination order guar-
anteeing that each table contains at most O(2tw) entries. Rather than using
numerical tables, our formulation replaces each of its entries with a continuous
variable constrained by linear inequalities. In principle, we need to parametrically
solve an Ising problem for each x ∈ {−1, 1}n, generating O(2nh2tw) continuous
variables. However, by the sequential nature of the variable elimination process,
many of these continuous variables are equal, leading to a reduced (as much as
an order of magnitude smaller) and strengthened SMT formulation. See [5] for
more details.

Placing Variables & Computing Penalty Functions via SMT/
OMT(LRIA ∪ UF). The formula Φ(θ) in (10)–(14) can be built only after
a variable placement, so that each variable zj ∈ x ∪ a has been previously
placed in some vertex vj ∈ V . There are many such placements. For example, if
n + h = 8 and we want to encode the penalty function into a 8-qubit Chimera
tile, then we have 8! = 40320 candidate placements. Exploiting symmetry and
the automorphism group of G, one can show that most of these placements are
equivalent.

Alternatively, we can combine the generation of the penalty function with an
automatic variable placement by means of SMT/OMT(LRIA ∪ UF), LRIA ∪
UF being the combined theories of linear arithmetic over rationals and integers
plus uninterpreted function symbols. This works as follows.
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Offline process

On-the-fly process

Standard cell
mapping

Library

PreprocessingSAT
problem

Pre-encodingBoolean
functions

Placement
and routing

Ising
model

D-Wave
QA Solution

Fig. 3. Graph of the encoding process.

Suppose we want to produce the penalty function of some relatively small
function (e.g., so n + h ≤ 8, which fits into a single Chimera tile). We index
the n + h vertices in the set V into which we want to place the variables as
V

def= {1, ..., n + h}, and we introduce a set of n + h integer variables v def=
{v1, ..., vn+h} s.t. each vj ∈ V represents (the index of) the vertex into which zj

is placed. (For example, “v3 = 5” means that variable z3 is placed in vertex #5.)
Then we add the standard SMT constraint Distinct(v1, ..., vn+h) to the formula
to guarantee the injectivity of the map. Then, instead of using variables θi and
θij for biases and couplings, we introduce the uninterpreted function symbols
b : V �−→ Q (“bias”) and c : V × V �−→ Q (“coupling”), so that we can rewrite
each bias θj as b(vj) and each coupling θij as c(vi, vj) s.t vi, vj ∈ [1, .., n + h]
and Distinct(v1, ..., vn+h).

This rewrites the SMT(LRA) problem (10)–(13) into the SMT/OMT
(LRIA ∪ UF) problem (15)–(26). Equation (19) must be used iff we need an
exact penalty function. (Notice that (22) is necessary because we could have
c(vi, vj) s.t. vi > vj .) By solving 〈Φ(θ0, b, c,v), gmin〉 we not only find the best
values of the biases b and couplers c, but also the best placement v of the
variables into (the indexes of) the qubits.

3.2 Encoding Larger Boolean Functions

As pointed out in Sect. 2.2, encoding large Boolean functions using the SMT
formulations of the previous section is computationally intractable, so other
methods must be used. One sensible approach is to pre-compute a library of
encoded Boolean functions and decompose a larger Boolean function F (x) into
a set of pre-encoded ones

∧K
k=1 Fk(xk). The penalty models PFk

(xk,ak|θk) for
these pre-encoded functions may then be combined using chains as described in
Sect. 2.3. This schema is shown in Fig. 3. This is not the only possible method,
but it is a natural choice for SAT and constraint satisfaction problems, and in
terms of QA performance it has been shown experimentally to outperform other
encoding methods for certain problem classes [6]. In this section, we describe
each of the stages in turn.
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Φ(θ0, b, c,v)
def
= Range(θ0, b, c,v) ∧ Distinct(v) ∧ Graph() (15)

∧
∧

{x∈{−1,1}n|F (x)=�}

∧

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) ≥ 0) (16)

∧
∧

{x∈{−1,1}n|F (x)=�}

∨

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) = 0) (17)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) ≥ gmin) (18)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∨

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) = gmin) (19)

Range(θ0, b, c,v)
def
=

∧

1≤j≤n+h

(1 ≤ vj) ∧ (vj ≤ n + h) (20)

∧
∧

1≤j≤n+h

(−2 ≤ b(j)) ∧ (b(j) ≤ 2) (21)

∧
∧

1≤j≤n+h

(c(j, j) = 0) ∧
∧

1≤i<j≤n+h

(c(i, j) = c(j, i)) (22)

∧
∧

1≤i<j≤n+h

(−1 ≤ c(i, j)) ∧ (c(i, j) ≤ 1) (23)

Distinct(v1, ..., vn+h)
def
=

∧

1≤i<j≤n+h

¬(vi = vj) (24)

Graph()
def
= ∧

∧

1≤i<j≤n+h
〈i,j〉	∈E

(c(i, j) = 0) (25)

PF (x,a|θ0, b, c,v)
def
= θ0 +

∑

1≤j≤n+h

b(vj) · zj +
∑

1≤i<j≤n+h

c(vi, vj) · zi · zj . (26)

Pre-encoding. In this stage, we find effective encodings of common small
Boolean functions, using the SMT methods in Sect. 3.1 or by other means, and
store them in a library for later use. Finding these encodings may be computa-
tionally expensive, but this task may be performed offline ahead of time, as it is
independent of the problem input, and it need only be performed once for each
NPN-inequivalent Boolean function.

Preprocessing. Preprocessing, or Boolean formula minimization, consists of
simplifying the input formula F (x) to reduce its size or complexity in terms of
its graphical representation (typically and-inverter graphs). This is a well-studied
problem with mature algorithms available [23,25].

Standard cell mapping. In the standard cell mapping phase, F (x) is decom-
posed into functions

∧K
k=1 Fk(xk) that are available in the library. To minimize

the size of the final Ising model, K should be as small as possible. For SAT
or constraint satisfaction problems, this mapping may be performed näıvely:
given a set of constraints {Fk(xk)}K

k=1 on the variables, each Fk(xk) is found in
the library (possibly combining small constraints into larger ones [5]). However,
more advanced techniques have been devised in the digital logic synthesis liter-
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ature. For example, technology mapping is the process of mapping a technology-
independent circuit representation to the physical gates used in a digital circuit
[17,24]. Usually technology mapping is used to reduce circuit delay and load, and
performs minimization as an additional step. Delay and load do not play a role
in the context of QA, but minimization is important to simplify the placement
and routing phase that follows.

Placement and routing. Once F (x) is decomposed into functions
∧K

k=1 Fk(xk)
with penalty models PFk

(xk,ak|θk), it remains to embed the entire formula onto
the QA hardware as in equation (9). This process has two parts: placement, in
which each PFk

(xk,ak|θk) is assigned to a disjoint subgraph of the QA hardware
graph; and routing, in which chains of qubits are built to ensure that distinct
qubits xi and x′

i representing the same variable take consistent values (using
penalty functions of the form 1−xix

′
i). Both placement and routing are very well-

studied in design of digital circuits [4]. Nevertheless, this stage is a computational
bottleneck for encoding large Boolean functions.

During placement, chain lengths can be minimized by placing penalty func-
tions that share common variables close together. Heuristic methods for doing
this include simulated annealing [31], continuous optimization [10], and recur-
sive min-cut partitioning [27]. These algorithms can be applied in the present
context, but require some modification as current QA architectures do not dis-
tinguish between qubits used for penalty functions and qubits used for chains.

During routing, literals are chained together using as few qubits possible.
Finding an optimal routing is NP-hard, but polynomial-time approximation algo-
rithms exist [19]. In practice, heuristic routing algorithms scale to problem sizes
much larger than current QA architectures [11,26,33].

4 Preliminary Experimental Evaluation

In this section, we offer preliminary empirical validation of the proposed meth-
ods for encoding [Max]SAT by evaluating the performance of D-Wave’s 2000Q
system in solving certain hard SAT and MaxSAT problems.

Remark 1. To make the results reproducible to those who have access to a D-
Wave system, we have set a website [1] where the problem files, translation files
and demonstration code can be accessed. We also provide contact information
for D-Wave 2000Q system access.

Due to the limitations in size and connectivity of current QA systems, we
require [Max]SAT problems that become difficult with few variables. To this
end we modified the tool sgen [30], which has been used to generate the smallest
unsolvable problems in recent SAT competitions. In particular, we modified sgen
to use 2-in-4-SAT constraints instead of at-most/at-least 1-in-5-SAT constraints,
as 2-in-4-SAT is particularly suitable to encoding with Ising models (see [7] for
details). We generated 100 problem instances for various problem sizes up to
80 variables, the largest embeddable with current hardware. At 260 variables,
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these problems become unsolvable within 1000 seconds with state-of-the-art SAT
solvers on standard machines [7].

Another important consideration in solving [Max]SAT instances using QA is
that the QA hardware cannot be made aware of the optimality of solution; for
example, QA cannot terminate when all clauses in a SAT problem are satisfied.
In this way, QA hardware behaves more like an SLS [Max]SAT solver than a
CDCL-based SAT solver.

Propositional Satisfiability (SAT). To solve these SAT instances using QA,
we encode and embed them as in Sect. 3 and then draw a fixed number of samples
at an annealing rate of 10µs per sample. Table 1(a) shows the results from the
QA hardware. The QA hardware solves almost all problems within 50µs of
anneal time, and the rates of sampling optimal solutions remain relatively stable
at this scale of problem.

In order to evaluate the significance of the testbed, we solved the same prob-
lems with the UBCSAT SLS SAT solver using the best performing algorithm,
namely SAPS [32]. Table 1(b) shows that the problems are nontrivial despite the
small number of variables, and the run-times increase significantly with the size
of the problem.

Table 1. (a) Number of problem instances (out of 100) solved by the QA hardware
using 5 samples and average fraction of samples from the QA hardware that are opti-
mal solutions. Annealing was executed at a rate of 10µs per sample, for a total of
50µs of anneal time per instance. Total time used by the D-Wave processor includes
programming and readout; this amounts to about 150µs per sample, plus a constant
10 ms of overhead. (b) Run-times in ms for SAT instances solved by UBCSAT using
SAPS, averaged over 100 instances of each problem size. Computations were performed
using an 8-core IntelR© XeonR© E5-2407 CPU, at 2.20GHz.

D-Wave 2000Q

Problem size # solved
% optimal
samples

32 vars 100 97.4
36 vars 100 96.4
40 vars 100 94.8
44 vars 100 93.8
48 vars 100 91.4
52 vars 100 93.4
56 vars 100 91.4
60 vars 100 88.2
64 vars 100 84.6
68 vars 100 84.4
72 vars 98 84.6
76 vars 99 86.6
80 vars 100 86.0

(a)

UBCSAT (SAPS)
Problem size Avg time (ms)
32 vars 0.1502
36 vars 0.2157
40 vars 0.3555
44 vars 0.5399
48 vars 0.8183
52 vars 1.1916
56 vars 1.4788
60 vars 2.2542
64 vars 3.1066
68 vars 4.8058
72 vars 6.2484
76 vars 8.2986
80 vars 12.4141

(b)
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Table 2. (a) Number of problem instances (out of 100) solved by the QA hardware
using 100 samples, and average fraction of samples from the QA hardware that are
optimal solutions. Annealing was executed at a rate of 10µs per sample, for a total
of 1 ms of anneal time per instance. (b) Time in ms taken to find an optimal solution
by various inexact weighted MaxSAT solvers, averaged over 100 MaxSAT instances of
each problem size. Classical computations were performed on an Intel i7 2.90GHz × 4
processor. The solvers gw2sat, rots, and novelty are as implemented in UBCSAT [32].
All classical algorithms are performed with the optimal target weight specified; in the
absence of a target weight they are much slower.

D-Wave 2000Q

Problem size # solved
% optimal
samples

32 vars 100 78.7
36 vars 100 69
40 vars 100 60.2
44 vars 100 49.9
48 vars 100 40.4
52 vars 100 35.2
56 vars 100 24.3
60 vars 100 22.3
64 vars 99 17.6
68 vars 99 13
72 vars 98 9.6
76 vars 94 6.6
80 vars 93 4.3

(a)

MaxSAT solvers: avg time (ms)
Problem size g2wsat rots maxwalksat novelty
32 vars 0.02 0.018 0.034 0.039
36 vars 0.025 0.022 0.043 0.06
40 vars 0.039 0.029 0.056 0.119
44 vars 0.049 0.043 0.07 0.187
48 vars 0.069 0.054 0.093 0.311
52 vars 0.122 0.075 0.115 0.687
56 vars 0.181 0.112 0.156 1.319
60 vars 0.261 0.13 0.167 1.884
64 vars 0.527 0.159 0.207 4.272
68 vars 0.652 0.21 0.27 8.739
72 vars 0.838 0.287 0.312 14.118
76 vars 1.223 0.382 0.396 18.916
80 vars 1.426 0.485 0.43 95.057

(b)

Remark 2. The results shown are not intended as a performance comparison
between D-Wave’s 2000Q system and UBCSAT. It is difficult to make a reason-
able comparison for many reasons, including issues of specialized vs. off-the-shelf
hardware, different timing mechanisms and timing granularities, and costs of
encoding. Instead we aim to provide an empirical assessment of QA’s potential
for [Max]SAT solving, based on currently available systems.

Weighted MaxSAT sampling. One of the strengths of D-Wave’s processor is
its ability to rapidly sample the near-optimal solutions: current systems typically
anneal at a rate of 10µs or 20µs per sample and are designed to take thousands
of samples during each programming cycle. As a result, the first practical ben-
efits of QA will likely come from applications which require many solutions
rather than a single optimum. To demonstrate the performance of QA in this
regime, we generated MaxSAT instances that have many distinct optimal solu-
tions. These problems were generated from the 2-in-4-SAT instances described
above by removing a fraction of the constraints and then adding constraints on
single variables with smaller weight(details in [7]).

Table 2 summarizes the performance of the D-Wave processor in generating
a single optimal MaxSAT solution, as well as the run-times for various high-
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Table 3. Number of distinct optimal solutions found in 1 second by various MaxSAT
solvers, averaged across 100 instances of each problem size. (a) “anneal only” accounts
for only the 10 ms per sample anneal time used by the D-Wave processor. “wall-clock”
accounts for all time used by the D-Wave processor, including programming and read-
out. (b) Classical computations were performed as in Table 2(b).

D-Wave 2000Q
Size anneal only wall-clock
32 vars 448.5 443.9
36 vars 607 579.9
40 vars 1007.9 922
44 vars 1322.6 1066.6
48 vars 1555.4 1111.8
52 vars 3229 1512.5
56 vars 2418.9 1147.4
60 vars 4015.3 1359.3
64 vars 6692.6 1339.1
68 vars 6504.2 1097.1
72 vars 3707.6 731.7
76 vars 2490.3 474.2
80 vars 1439.4 332.7

(a)

MaxSAT solvers
Size g2wsat rots maxwalksat novelty
32 vars 448.5 448.5 448.5 448.5
36 vars 607 606.9 606.9 606.8
40 vars 1007.7 1006.3 1005.3 1005
44 vars 1313.8 1307.1 1311.7 1255.5
48 vars 1515.4 1510.7 1504.9 1320.5
52 vars 2707.5 2813 2854.6 1616.2
56 vars 2021.9 2106.2 2186.6 969.8
60 vars 2845.6 3061.7 3289 904.4
64 vars 3100 4171 4770 570.6
68 vars 2742.2 3823.3 4592.4 354.8
72 vars 1841.1 2400.2 2943.4 212.6
76 vars 1262.5 1716 2059.2 116.4
80 vars 772.2 1111.1 1363.9 66.7

(b)

performing SLS MaxSAT solvers. The QA hardware solves almost all problems
within 1 ms of anneal time. (Remark 2 also applies here.)

Table 3 considers generating distinct optimal solutions. For each solver and
problem size, the table indicates the number of distinct solutions found in 1 s,
averaged across 100 problem instances of that size. For the smallest problems,
1 s is sufficient for all solvers to generate all solutions, while the diversity of
solutions found varies widely as problem size increases. Although the D-Wave
processor returns a smaller fraction of optimal solutions for MaxSAT instances
than for the SAT instances, it is still effective in enumerating distinct optimal
solutions because its rapid sampling rate.

5 Ongoing and Future Work

Future QA architectures will be larger and more connected, enabling more effi-
cient encodings of larger and more difficult SAT problems. Faster and more
scalable SMT-based encoding methods for small Boolean functions is currently
an important direction of research. The ability to increase the number of ancil-
lary variables can lead to larger gaps, which in turn can make QA more reliable.
Among the encoding challenges presented in this paper, a few are of particular
interest and relevance to SMT research:

– Variable placement. Methods for simultaneously placing variables and com-
puting penalty functions are currently less scalable, and have been less stud-
ied, than those for fixed variable placements.
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– Augmenting penalty models. For large Boolean functions, generating penalty
models directly from SMT becomes difficult because the number of constraints
grows much more quickly than the number of available parameters. Function
decomposition and chains provide one way around this, but chains limit the
resulting energy gaps. There may be other methods of recombining a decom-
posed function that are not so restrictive. Alternatively, it may be possible to
augment an existing penalty model with additional qubits for the purposes of
increasing its energy gap. SMT formulations of these problems have not yet
been explored.

– Better function decompositions. While Boolean function decomposition and
minimization are mature classical subjects, those algorithms can probably be
improved by taking into consideration the specifics of the embedding (place-
ment and routing onto a QA hardware graph) that follow them.

Furthermore, we believe the problems presented here are not only practical,
but also complex enough to be used to challenge new SMT solvers. To encourage
the use of these problems as SMT benchmarks, we have provided example .smt
files on the website of supplementary material [1].
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17. Een, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
272–286. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0 26

18. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adi-
abatic evolution. arXiv preprint (2000)

19. Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: Bonnroute:
algorithms and data structures for fast and good VLSI routing. TODAES 18, 32
(2013)

20. Huang, Z., Wang, L., Nasikovskiy, Y., Mishchenko, A.: Fast boolean matching
based on NPN classification. In: ICFPT (2013)

21. King, J., Yarkoni, S., Raymond, J., Ozfidan, I., King, A.D., Nevisi, M.M., Hilton,
J.P., McGeoch, C.C.: Quantum Annealing amid Local Ruggedness and Global
Frustration. arXiv preprint (2017)

22. Lanting, T., Harris, R., Johansson, J., Amin, M.H.S., Berkley, A.J., Gildert, S.,
Johnson, M.W., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh,
T., Perminov, I., Chapple, E.M., Enderud, C., Rich, C., Wilson, B., Thom, M.C.,
Uchaikin, S., Rose, G.: Cotunneling in pairs of coupled flux qubits. Phys. Rev. B
82, 060512 (2010)

23. Mishchenko, A., Chatterjee, S., Brayton, R.: Dag-aware aig rewriting: a fresh look
at combinational logic synthesis. In: DAC (2006)

24. Mishchenko, A., Chatterjee, S., Brayton, R., Wang, X., Kam T.: Technology map-
ping with boolean matching, supergates and choices (2005)

25. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: Fraigs: a unifying repre-
sentation for logic synthesis and verification. Technical report (2005)

26. Roy, J.A., Markov, I.L.: High-performance routing at the nanometer scale. TCAD
27, 1066–1077 (2008)

27. Roy, J.A., Papa, D.A., Adya, S.N., Chan, H.H., Ng, A.N., Lu, J.F., Markov, I.L.:
Capo: robust and scalable open-source min-cut floorplacer. In: ISPD (2005)

28. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
TOCL 16, 12 (2015)

29. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
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