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Abstract. We present a novel hybrid architecture for reasoning about
description logics supporting role hierarchies and qualified cardinality
restrictions (QCRs). Our reasoning architecture is based on saturation
rules and integrates integer linear programming. Deciding the numerical
satisfiability of a set of QCRs is reduced to solving a corresponding sys-
tem of linear inequalities. If such a system is infeasible then the QCRs
are unsatisfiable. Otherwise the numerical restrictions of the QCRs are
satisfied but unknown entailments between qualifications can still lead to
unsatisfiability. Our integer linear programming (ILP) approach is highly
scalable due to integrating learned knowledge about concept subsump-
tion and disjointness into a column generation model and a decompo-
sition algorithm to solve it. Our experiments indicate that this hybrid
architecture offers a better scalability for reasoning about QCRs than
approaches combining both tableaux and ILP or applying traditional
(hyper)tableau methods.

1 Introduction

The performance of the original ALCQ tableau algorithm [19] that is imple-
mented by most description logic (DL) reasoners covering qualified cardinality
restrictions1 (QCRs) is not optimal. To perform a concept satisfiability test,
the tableau algorithm creates role successors to satisfy at-least restrictions, e.g.,
≥ 20R.C. Given at-most restrictions, e.g., ≤ 10R.D, ≤ 10R.E, the algorithm
resolves each R-successor as either D or ¬D, and E or ¬E. If an at-most restric-
tion for R is violated (≤ 10R.D), the algorithm nondeterministically merges two
R-successors that are instances of D. This uninformed process is highly ineffi-
cient, especially when the algorithm has to deal with larger cardinalities and/or
large sets of related QCRs. In [11, Sect. 4.1.1] it was shown that if a set of QCRs
contains p at-least (≥ ni Ri.Ci) and q at-most restrictions (≤ mj R′

j .C
′
j), then

roughly 2qN
∏M−2

i=0

(
M−i
2

)
/(M − 1)! branches need to be explored in the worst

case by the standard ALCQ algorithm (assuming that M R′
j-successors exist in

C ′
j with M > mj and N =

∑p
i=1 ni).

In our previous work (inspired by [26]) we have shown that algebraic tableaux
can improve reasoning on QCRs dramatically for DLs such as SHQ [11], SHIQ
1 Also known as graded modalities in modal logics.
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[28], and SHOQ [9,10]. The basic idea in these calculi is to transform a set
of QCRs into a linear optimization problem that will be solved accordingly.
These algorithms need to explore 22

p+q

branches in the worst case but they are
independent of N,M . If there is a feasible solution to the problem then the
corresponding set of QCRs is satisfiable provided completion rules encounter
no logical clashes for the returned solution. The prototypes implementing the
above-mentioned approaches on algebraic tableaux [10,11,28] could demonstrate
runtime improvements by several orders of magnitude for reasoning about QCRs
(and nominals). However, we identified the following two disadvantageous char-
acteristics.

(i) Given n QCRs (and nominals) the naive encoding of the corresponding
system of inequalities requires n rows and 2m columns, where m is the cardinality
of the set P of all pairs of roles and their qualifications occurring in the n given
QCRs. Let us illustrate this with a small example: ≥ 2R.C � ≥ 2R.D � ≤ 2R.E.
In this case, P = {RC , RD, RE}, n = 3, m = 3. In order to represent the QCRs
as inequalities we create

∑
xCi

≥ 2,
∑

xDj
≥ 2, and

∑
xEk

≤ 2. For instance,
the variables xCi

represent the cardinalities of all elements in the power set
of P that contain RC . The same holds for the other variables respectively. As
an additional constraint we specify that all variables must have values in N.
Our objective function minimizes the sum of all variables. Intuitively speaking,
the above-mentioned concept conjunction is feasible and also satisfiable in this
trivial case if the given system of inequalities has a solution in N. It is easy to
see that the size of such an inequality system is exponential with respect to m.
Furthermore, in order to ensure completeness, in our previous work we required a
so-called choose rule that implements a semantic split that nondeterministically
adds for each variable x either the inequality x ≤ 0 or x ≥ 1. Unfortunately, this
uninformed choose-rule could fire 22

m

times in the worst case and cause a severe
performance degradation.

(ii) The employed integer linear programming (ILP) algorithms were best-
case exponential in the number of occurring QCRs due to the explicit represen-
tation of 2m variables. In [9,10] we developed an optimization technique called
lazy partitioning that tries to delay the creation of ILP variables but it cannot
avoid the creation of 2m variables in case m QCRs are part of a concept model.
Our experiments in [9–11] indicated that quite a few ILP solutions can cause
clashes due to lack of knowledge about known subsumptions, disjointness, and
unsatisfiability of concept conjunctions. This knowledge can help reducing the
number of variables and eliminating ILP solutions that would fail logically. For
instance, an ILP solution for the example presented in the previous paragraph
might require to create an R-successor as an instance of C � D. However, if C
and D are disjoint this ILP solution will cause a clash (and fail logically).

Characteristic (i) can be avoided by eliminating the choose-rule for variables.
This does not sacrifice completeness because the algorithms implementing our
ILP component are complete (and certainly sound) for deciding (in)feasibility.
In case a system is feasible (or numerically satisfiable), dedicated saturation
rules determine whether the returned solutions are logically satisfiable. In case of
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logical unsatisfiability a corresponding unsatisfiable concept conjunction is added
to the input of the ILP component and therefore monotonically constrains the
remaining feasibility space. Consequently, previously computed solutions that
result in unsatisfiability are eliminated. For instance, the example above would
be deemed as infeasible once ILP knows that C, D are subsumed by E and C,
D are disjoint.

The avoidance of characteristic (ii) is motivated by the observation that only
a small number of the 2m variables will have non-zero values in the optimal
solution of the linear relaxation, i.e., no more variables than the number of con-
straints following the characteristics of the optimal solution of a linear program,
see, e.g., [6]. Moreover, in practice, only a limited number of variables have a
non-zero value in the integer optimal solution. In addition, linear programming
techniques such as column generation [7,13] can operate with as few variables
as the set of so-called basic variables in linear programming techniques at each
iteration, i.e., nonbasic variables can be eliminated and are not required for the
guarantee of reaching the conclusion that a system of linear inequalities is infea-
sible, or for reaching an optimal LP solution. Although the required number of
iterations varies from one case to another, it is usually extremely limited in prac-
tice, in the order of few times the number of constraints. The efficiency of the
branch-and-price method, which is required in order to derive an optimal ILP
solution, e.g., [3,23,31], depends on the quality of the integrality gap (i.e., how far
the optimal linear programming solution is from the optimal ILP solution in case
the system of inequalities is feasible, and on the level of infeasibility otherwise).
Furthermore, our new ILP approach considers known subsumptions, disjoint-
ness, and unsatisfiability of concept conjunctions and uses a different encoding
of inequalities that already incorporates the semantics of universal restrictions.
We delegate the generation of inequalities completely to the ILP component.

To summarize, the novel features of our architecture are (i) saturation rules
that do not backtrack to decide subsumption (and disjointness) [32]; (ii) feasi-
bility of QCRs is decided by ILP (in contrast to [4]); (iii) our revised encoding of
inequalities, which incorporates role hierarchies, the aggregation of information
about subsumption, disjointness, and unsatisfiability of concept conjunctions,
allows a more informed mapping of QCR satisfiability to feasibility and reduces
the number of returned solutions that fail logically; (iv) the best-case time com-
plexity of our ILP feasibility test is polynomial to the number of inequalities [24].
This work extends our previous research on the ELQ Avalanche reasoner [32].

2 Preliminaries

Description logics are a family of knowledge representation languages that form
a basis for the Web Ontology Language (OWL). The DL ALCHQ, which is a
core subset of OWL, allows role hierarchies (H) and the concept-forming con-
structors conjunction, disjunction, negation, at-least and at-most restriction (Q).
The semantics of ALCHQ concepts and roles is defined by an interpretation
I = (ΔI , ·I) that maps a concept C to CI ⊆ ΔI and a role R to RI ⊆ ΔI × ΔI .
For convenience we use the concepts � and ⊥ with �I = ΔI and ⊥I = ∅.
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ALCHQ concepts are inductively defined from concept and role names using
the constructors as follows (n,m ∈ N, n ≥ 1, ‖ · ‖ denotes set cardinality,
FR,C(x) = {y ∈ CI | (x, y) ∈ RI}): (i) (C � D)I = CI ∩ DI ; (ii) (C � D)I =
CI ∪ DI ; (iii) (¬C)I = ΔI \ CI ; (iv) (≥ nR.C)I = {x | ‖FC,R(x)‖ ≥ n};
(v) (≤ mR.C)I = {x | ‖FC,R(x)‖ ≤ m}. The latter two constructors are called
QCRs. A concept C is satisfiable if there exists an I such that CI �= ∅.

An ALCHQ Tbox T is defined as a finite set of axioms of the form C � D
or R � S, where C,D are concepts and R,S roles, and such axioms are satisfied
by I if CI ⊆ DI or RI ⊆ SI . We call I a model of T if it satisfies all axioms in
T . A Tbox T entails an axiom if all models of T satisfy that axiom.

One of the main tasks of a DL reasoner is to classify a Tbox by comput-
ing all subsumptions between named concepts. Tableau-based algorithms [2] are
the most applied reasoning algorithms to date. Consequence-based or saturation-
based algorithms [4,30] are algorithms that accumulate or saturate entailed
knowledge in a bottom-up way while tableaux attempt to prove entailment in a
goal-oriented or top-down way. The idea of saturating knowledge comes from the
one-pass saturation algorithm for the DL EL++ [1]. EL only allows conjunction
and existential value restriction (∃R.C ≡ ≥ 1R.C). Different optimization tech-
niques exist for different types of tasks performed by DL reasoners. In this work,
we are interested in applying linear optimization in order to handle qualified num-
ber restrictions [9–11] in ontologies expressed in ELQ, which is a superset of EL
that additionally allows QCRs. It is well-known that ELQ is a syntactic variant
of ALCQ [1].

Atomic decomposition was initially proposed in [26] to reason about sets,
however it can also be used to reason about role fillers of qualified number
restrictions in description logics. This technique allows us to reduce the problem
of deciding feasibility of qualified number restrictions to solving a linear program.
The example below illustrates how to transform qualified number restrictions
into inequalities. Let us assume the following three qualified number restrictions
≥ 3 hasColor .Blue, ≥ 4 hasColor .Red , ≤ 5 hasColor .Green. We denote the par-
tition of the set {b, r, g} (b = blue, r = red , g = green) as {b, r, g, br , bg , rg , brg}
where the absence of a letter indicate the implied presence of its negation, e.g.,
b stands for the intersection of blue, not red, not green. Then, we get the corre-
sponding inequalities (| . | denotes set cardinality).

|b| + |br| + |bg| + |brg| ≥ 3
|r| + |br| + |rg| + |brg| ≥ 4
|g| + |bg| + |rg| + |brg| ≤ 5

In such a way we preserve the semantics of qualified number restrictions and
reduce a satisfiability problem to a feasibility problem, i.e., whether a 0–1 linear
program is feasible.
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3 Column Generation and Branch-and-Price Methods

We discuss here how to check the feasibility of a 0–1 linear program with a col-
umn generation model, i.e., with an exponential number of variables. It consists
in first checking whether its linear relaxation, a linear program with an exponen-
tial number of variables, is feasible. We next provide a brief overview of linear
programming (LP for short) and column generation.

Linear Programming was recognized as one of the most important scientific
achievements of the 20th century. It allows the solution of complicated problems
that concern allocation of scarce resources with respect to various constraints
in a minimum amount of time. There exist different approaches to solve linear
programs. One of them is the simplex method that was proposed in 1947 by
George B. Dantzig. Although the simplex method requires an exponential num-
ber of iterations in the worst case, it performs very well in practice. In 1979
the ellipsoid method was proposed by Leonid Khachiyan, and could solve linear
programming problems in polynomial time. Nevertheless, the simplex method,
despite being worst-case exponential is more efficient in practice than the ellip-
soid method. The interior-point method is another polynomial-time algorithm
that was proposed in 1984 by Narendra Karmarkar and its recent refinements
[12] are competitive with the simplex algorithm.

The algorithms mentioned above have been integrated into different commer-
cial and open source solvers, e.g., CPLEX, Gurobi, XPRESS. These solvers are
capable of solving very large linear programming problems, i.e., with up to hun-
dreds of thousands of variables. When it comes to millions of variables, their per-
formance starts to deteriorate. We can then use the column generation method.
The idea behind this method is that only a subset of all variables (columns)
have non zero values in the optimal LP solution. Indeed, there are no more than
the number of constraints, i.e., the number of so-called basic variables in linear
programming. Numerous large-scale optimization problems are now using it [23].

Back to feasibility checking, column generation can easily detect infeasible
linear programs. However, infeasible integer linear programs do not necessarily
have an infeasible linear programming relaxation. In order to detect infeasibility
in such cases, it is then required to use a branch-and-price algorithm [3] (i.e., a
branch-and-bound algorithm [25] in which the linear relaxation is solved with a
column generation method).

In the context of our work, we create very large integer linear programs with
numerous variables. Therefore, we choose to solve the continuous relaxation with
the column generation method to address scalability issues, following the success
of using it for, e.g., deciding the consistency of a set of clauses in the context of
probabilistic logic [17,20]. In order to produce integer solutions, column gener-
ation is combined with a branch-and-price algorithm [3] to either conclude that
the model has no solution or to obtain an integer solution.

Column generation together with the branch-and-price method have been
implemented into a system that we decided to call QMediator. QMediator is a
middle layer or a mediator that facilitates communication between Avalanche and
CPLEX. This process will be described in detail in Sect. 5. In short, whenever
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Avalanche needs to process qualified number restrictions it calls QMediator. QMe-
diator in turn creates a corresponding integer linear program based on the received
information and solves it by means of column generation and branch-and-price
methods. To actually solve the integer linear program QMediator calls CPLEX.

The example below illustrates how column generation works in practice, with-
out the need of a branch-and-price method for this particular example.

Consider the axiom D � ≥ 2R.A � ≥ 3R.B � ≤ 4R.C. Initially we assume
that there is no known subsumption relationship between the QCR qualifi-
cations A,B,C. Since we have only one role, we can ignore its name and
only focus on QD = Q≥

D ∪ Q≤
D, which is our base set for partitioning, with

Q≥
D = {A,B} and Q≤

D = {C}. The complete decomposition set (or partition) is
DD = {{A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}} where each partition
element p represents the intersection of p’s elements plus the intersection of all
¬ei with ei ∈ QD\p. We denote the elements of DD by the variables xA, xB , xC ,
xAB , xAC , xBC , xABC . In the context of the ILP model, note that each variable
is associated with a column, so we may use either terms in the sequel.

First Example. The QCRs for concept D result in the following ILP problem.

min
∑

p∈DD

xp (1)

subject to:

xA + 0xB + 0xC + xAB + xAC + 0xBC + xABC ≥ 2 � ≥ 2R.A (2)
0xA + xB + 0xC + xAB + 0xAC + xBC + xABC ≥ 3 � ≥ 3R.B (3)
0xA + 0xB + xC + 0xAB + xAC + xBC + xABC ≤ 4 � ≤ 4R.C (4)

xp ∈ N, for p ∈ DD.

The optimal solution is xB = 1, xAB = 2, and all other variables are equal to
zero.

However, since the size of DD is exponential with respect to the size of QD,
in general one cannot afford to enumerate all variables. In order to use a col-
umn generation modelling, model (1)–(4) is decomposed into a restricted master
problem (RMP), made of a subset of columns, and the pricing problem (PP),
which can be viewed as a column generator. The RMP contains the inequalities
(rows) representing the QCRs, with a very restricted set of variables. Initially
one can start with an empty set P of variables xp, and a set of artificial vari-
ables hq, one for each constraint, i.e., for each element in QD (here n = 3) using
an arbitrarily large cost W (here W = 10). Those artificial variables define an
initial artificial feasible solution, however, in order to be feasible, the QCR set
must not use any of them in its solution.

The cost of a partition element p is defined as the number of elements
it contains. Consequently, the objective function of the RMPs is defined as∑

p∈P costpxp + W
∑n

i=1 hi. The choice of the cost is related to the selection of
partition elements of smaller sizes and thus of less restricted solutions. Indeed, it
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promotes the reuse of nodes in Avalanche’s saturation graph. The optimal solu-
tion2 of (RMP 1) has a cost 50, and contains two non-zero artificial variables.

Minimize 10h1 + 10h2 + 10h3 subject to (RMP 1)
h1 ≥ 2
h2 ≥ 3
h3 ≤ 4

Solution: cost = 50;h1 = 2, h2 = 3; Dual: πA = 10, πB = 10

The objective of the PP is equal to the so-called reduced cost in linear pro-
gramming (see, e.g., Chvatal [6] if not familiar with linear programming). It uses
the dual price values as coefficients of the variables associated with a potential
partition element, i.e., binary variables bq, rq (q ∈ QD) to ensure the descrip-
tion logics semantics of QCRs. The variables bq indicate whether role successors
must be an instance of q and rq whether an R-successor that is an instance of
q must exist. For each at-least QCR with a role and its qualification, P must
contain a corresponding variable, e.g., for ≥ 2R.A if rA = 1 a variable b con-
taining A in its subscript must exist (rA − bA ≤ 0). If P contains a qualification
of an at-most QCR, then a corresponding variable must be present, e.g., if C
occurs in P (bC = 1), then a variable r containing C in its subscript must exist
(bC − rC ≤ 0). The objective function of the PP can then be written as

∑

q∈QD

bq −
∑

q∈Q
≥
D

πqrq −
∑

q∈Q
≤
D

ωqrq (5)

Based on this formula we can define (PP 1). In its objective function the only
non-zero dual price values (coefficients) are πA, πB due to (RMP 1).

Minimize bA + bB + bC − 10rA − 10rB subject to (PP 1)
rA − bA ≤ 0
rB − bB ≤ 0 (CPP1)
bC − rC ≤ 0

Solution: cost = −18, rA = 1, rB = 1, bA = 1, bB = 1.

Since the values of rA, rB are 1, we add the variable xAB to the next RMP
(P = {{A,B}}). The cost of its solutions is reduced, from 50 in (RMP 1) to 6
in (RMP 2).

Minimize 2xAB + 10h1 + 10h2 + 10h3 subject to: (RMP 2)
xAB + h1 ≥ 2
xAB + h2 ≥ 3

h3 ≤ 4
Solution: cost = 6, xAB = 3; Dual: πB = 2

2 The value of variables not listed in a solution are equal to zero.
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In the objective of (PP 2) the only non-zero dual price value is πB (see
also (5)).

Minimize bA + bB + bC − 2rB subject to (CPP 1) (PP 2)
Solution: cost = −1, rB = 1, bB = 1

Since the value of rB is 1, we add the variable xB to the next RMP (P = {{B},
{A,B}}), whose cost is further reduced, from 6 in (RMP 2) to 5 in (RMP 3).

Minimize xB + 2xAB + 10h1 + 10h2 + 10h3 subject to (RMP 3)
xAB + h1 ≥ 2

xB + xAB + h2 ≥ 3
h3 ≤ 4

Solution: cost = 5, xB = 1,xAB = 2; Dual: πA = 1, πB = 1

In the objective of (PP 2) the only non-zero dual price values are πA, πB .

Minimize bA + bB + bC − rA − rB subject to (CPP 1) (PP 3)
Solution: cost = 0

At this point all variables hi in (RMP 3) and rq in (PP 3) are zero indicating
that we have reached a feasible solution. Moreover, since the reduced cost of the
problem is always positive no “improving” column can be added. This allows
us to conclude that we have reached the optimal solution of the LP. Lastly, as
this LP optimal solution is integer, we can also claim that it defines the optimal
set of partition elements. The inequality system (1) is feasible and the solution
in (RMP 3) results in creating one R-successor that is an instance of B with
cardinality 1 (xB = 1) and one R-successor that is an instance of A � B with
cardinality 2 (xAB = 2). Obviously, this solution satisfies the initial inequalities
since the successor A � B satisfies ≥ 2R.A and ≥ 2R.B. Thus, the B successor
together with the A � B successor will satisfy ≥ 3R.B.

Second Example. This example adds to the first example the axioms A � C
and B � C. The original inequality system (1) and (RMP 1) remain unchanged.
The new pricing problem below accommodates the added subsumptions, e.g.,
A � C is modelled as bA ≤ bC ⇐⇒ bA − bC ≤ 0.

Minimize bA + bB + bC − 10rA − 10rB subject to (PP 4)
rA − bA ≤ 0
rB − bB ≤ 0
bC − rC ≤ 0 (CPP4)
bA − bC ≤ 0
bB − bC ≤ 0.

Solution: cost = −17, rA = 1, rB = 1, rC = 1, bA = 1, bB = 1, bC = 1.
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Since the values of rA, rB , rC are 1 we add the variable xABC to the next
version of our RMP (P = {{A,B,C}}), which reduces the cost from 50 to 9 in
(RMP 5).

Minimize 3xABC + 10h1 + 10h2 + 10h3 subject to (RMP 5)
xABC + h1 ≥ 2
xABC + h2 ≥ 3
xABC + h3 ≤ 4

Solution: cost = 9, xABC = 3; Dual: πB = 3

Minimize bA + bB + bC − 3rB subject to (CPP 4) (PP 5)
Solution: cost = −1, rB = 1, rC = 1, bB = 1, bC = 1

Since the values of rB , rC are 1 we add the variable xBC to the next version
of our RMP (P = {{B,C}, {A,B,C}}), which reduces the cost from 9 to 8 in
(RMP 6).

Minimize 2xBC + 3xABC+10h1 + 10h2 + 10h3 subject to (RMP 6)
xABC + h1 ≥ 2

xBC + xABC + h2 ≥ 3
xBC + xABC + h3 ≤ 4

Solution: cost = 8, xBC = 1, xABC = 2; Dual: πA = 1, πB = 2

Minimize bA + bB + bC − rA − 2rB subject to (CPP 4) (PP 6)
Solution: cost = 0

All variables rq are zero, so, no variable can be added to minimize (RMP 6)
further. The inequality system (1) is feasible and according to (RMP 6) we create
an R-successor that is an instance of B�C with cardinality 1 and an R-successor
that is an instance of A�B �C with cardinality 2. Since we have 3 R-successors
that instances of C, the QCR ≤ 4R.C is satisfied.

Third Example. This example adds to the second example the axiom A�B �
⊥. The original inequality system (1) and (RMP 1) remain unchanged. The new
pricing problem below accommodates the added disjointness, i.e., A � B � ⊥ is
modelled as bA + bB ≤ 1.
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Minimize bA + bB + bC − 10rA − 10rB subject to (PP 7)
rA − bA ≤ 0
rB − bB ≤ 0
bC − rC ≤ 0 (CPP7)
bA − bC ≤ 0
bB − bC ≤ 0
bA + bB ≤ 1

Solution: cost = −8, rA = 1, rC = 1, bA = 1, bC = 1

Since the values of rA, rC are 1 we add the variable xAC to the next version
of our RMP (P = {{A,C}}), which reduces the cost from 50 to 34 in (RMP 8).

Minimize 2xAC+10h1 + 10h2 + 10h3 subject to (RMP 8)
xAC + h1 ≥ 2

h2 ≥ 3
xAC + h3 ≤ 4

Solution: cost = 34, xAC = 2, h2 = 3; Dual: πA = 2, πB = 10

Minimize bA + bB + bC − 2rA − 10rB subject to (CPP 7) (PP 8)
Solution: cost = −8, rB = 1, rC = 1, bB = 1, bC = 1

Since the values of rB , rC are 1 we add the variable xBC to the next version
of our RMP (P = {{B,C}, {A,C}}), which reduces the cost from 34 to 14 in
(RMP 9).

Minimize 2xAC + 2xBC+10h1 + 10h2 + 10h3 subject to (RMP 9)
xAC + h1 ≥ 2
xBC + h2 ≥ 3

xAC + xBC + h3 ≤ 4
Solution: cost = 14, xBC = 2, xAC = 2, h2 = 1; Dual: πA = 8, πB = 10,

ωC = −8

Minimize bA + bB + bC − 8rA − 10rB + 8rC subject to (CPP 7) (PP 9)
Solution: cost = 0

All variables rq are zero, so, no variable can be added to minimize (RMP 9)
further. However, the inequality system (1) is now infeasible because (RMP 9)
still contains the non-zero artificial variable h2. The infeasibility is caused by the
disjointness between the QCR qualifications A and B.
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Fig. 1. Optimization chart

The process described above is summarized in Fig. 1. We first define RMP
and apply column generation to produce new columns until we obtain an optimal
solution. Then, if the solution is infeasible the submitted QCRs are infeasible
as well. Otherwise, if the solution is feasible then we proceed with applying the
branch-and-price method. If the problem is not feasible, then it will be detected
at some iteration in the branch-and-price, while solving the linear relaxation with
the column generation algorithm. Otherwise, if the problem is feasible, then the
branch-and-price will output a feasible solution.

4 Role Hierarchies

Role hierarchies can easily be mapped to ILP. We illustrate the methodology
first with a small example and later with one that entails role subsumption.
However, please note that they have not yet been integrated in the current
version of Avalanche.

Simple Example. Let A � ≥ 2S.B � ≥ 2U.C � ≤ 3R.� with S,U subroles
of R. The concept A is satisfiable and its least constrained model must have at
least one SU -successor that is an instance of B � C. Role hierarchies only need
to be considered if an at-most QCR referring to a superrole (R) is restricting
other QCRs referring to subroles (S,U) of R. The semantics of role hierarchies
is encoded in the inequalities generated for the corresponding at-most QCRs.

We define Q≥
A = {SB , UC} and Q≤

A = {R}. Since S,U are subroles of R,
any partition element containing a subrole and its superrole can be simplified by
removing the superrole because their intersection is equal to the subrole, e.g.,
{SB , R} is equal to {SB}. Additionally, R can be removed from QA because
no at-least QCR mentioning R exists. The complete decomposition set is DA =
{{SB}, {UC}, {SB , UC}}. We denote these partition elements by the variables
xSB

, xUC
, xSBUC

.
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The QCRs for concept A result in the following ILP problem.

Minimize xSB
+ xUC

+ 2xSBUC
subject to (6)

xSB
+ 0xUC

+ xSBUC
≥ 2 � ≥ 2S.B

0xSB
+ xUC

+ xSBUC
≥ 2 � ≥ 2U.C

xSB
+ xUC

+ xSBUC
≤ 3 � ≤ 3R.�

with xSB
, xUC

, xSBUC
∈ N

The optimal solution is xSB
= 1, xUC

= 1, xSBUC
= 1. We create one SU -

successor that is an instance of B � C, one S-successor that is an instance of
B, and one U -successor that is an instance of C. All three successors have a
cardinality of 1.

Example with Entailed Role Subsumption. The combination of role hier-
archies and QCRs can be used to entail role subsumptions. Let us assume a
Tbox T = {� � ≤ 1R.�, ≥ 1S.� � C, C � ≥ 1U.�, A � ≥ 1S.B � ≤ 0U.B}
with S,U subroles of R. T entails that S is a subrole of U and thus A � ⊥. It is
easy to see that A is subsumed by C via the role S. Thus the QCRs applicable
to A are ≤ 1R.�,≥ 1S.B,≤ 0U.B, ≥ 1U.�.

We define Q≥
A = {SB , U} and Q≤

A = {R,UB}. After applying the simpli-
fications from above we get DA = {{U}, {SB}, {UB}, {U, SB}, {SB , UB}}. We
denote these partition elements by the variables xU , xSB

, xUB
, xUSB

, xSBUB
.

The QCRs for concept A result in the following ILP problem.

Minimize xU + xSB
+ xUB

+ 2xUSB
+ 2xSBUB

subject to (7)

0xU + xSB
+ 0xUB

+ xUSB
+ xSBUB

≥ 1 � ≥ 1S.B

xU + 0xSB
+ xUB

+ xUSB
+ xSBUB

≥ 1 � ≥ 1U.�
xU + xSB

+ xUB
+ xUSB

+ xSBUB
≤ 1 � ≤ 1R.�

0xU + 0xSB
+ xUB

+ xUSB
+ xSBUB

≤ 0 � ≤ 0U.B

with xU , xSB
, xUB

, xUSB
, xSBUB

∈ N

The system’s infeasibility is caused by the encoding of the entailed role sub-
sumption S � U (first three inequalities) and ≤ 0U.B (fourth inequality). If any
of these four inequalities is removed, the remaining system becomes feasible.

5 Communication of Avalanche with QMediator

Avalanche is a complex rule-based system that implements a consequence-based
reasoning algorithm presented in [32]. The algorithm manages the application
of rules to an input ontology by traversing the completion graph. A dedicated
module QMediator is called when a rule needs to expand the underlying graph or
when a clash has been detected in a node due to the presence of qualified number
restrictions. With the help of the module we can reduce the problem of deciding
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satisfiability of qualified number restrictions to the feasibility of inequalities,
which gives us a clear advantage over other existing systems. To avoid circular
dependencies between the two systems (considered an anti-pattern in software
design) QMediator cannot call or access any data from Avalanche. Avalanche in
its turn cannot directly call CPLEX.

During the execution of the algorithm the rules are being applied to an input
ontology and a directed completion graph is constructed to store the inferred
information. There can be four types of nodes in the graph – identified nodes,
anonymous nodes, auxiliary nodes, and two types of cloned nodes – a positive
clone to test subsumption between concepts and a negative clone to test disjoint-
ness between concepts. If a positive/negative node becomes unsatisfiable then
the subsumption/disjointness holds. Each node in a given completion graph is
uniquely identified by its representative concept. A representative concept is
either a concept (a concept name) declared in the original ontology or a concept
created during the reasoning process. All nodes contain a set of subsumers and
only identified nodes contain a set of possible subsumers. Subsumers are other
concepts that subsume the representative concept of a node. Possible subsumers
are collected by a dedicated rule and are needed for subsumption testing. As
it can be guessed from their name, possible subsumers represent the subsumers
that can possibly subsume the representative concept of a node. Thus, we can
avoid performing unnecessary subsumption tests.

When a node is subsumed by qualified number restrictions it has to call the
graph expansion rule. The rule in its turn will call QMediator and pass the
corresponding information: the qualified number restrictions, the subsumers of
the qualifications and their unsatisfiable concept conjunctions. After that, the
mediator will transform this information into a linear program, and it will call
CPLEX to solve it or in other words to find a model. The result of this call is
returned to the rule. Thus, the rule will have all the necessary information to
expand the graph or to make the node unsatisfiable by adding ⊥ (bottom) to its

Fig. 2. Clash detection
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subsumers. As a result, the expansion rule may create additional nodes in the
graph - the anonymous nodes. An anonymous node represents a situation when
a role filler is not a single concept (e.g., A) but rather an intersection of concepts
(A � B).

In Fig. 2 we show how the call to QMediator is integrated into the clash
detection process. If a node becomes unsatisfiable, then the cause of the unsat-
isfiability has to be identified. If there is a logical clash (e.g., A and ¬A are
present in the node) then the corresponding ancestors of the node will be made
unsatisfiable. However, if the clash is due to the presence of qualified number
restrictions then the mediator should be called and it should be asked to recom-
pute a more constrained model. If a new model was computed, the rules can
continue to be applied. If there is no model and the node is an identified node,
then the corresponding ancestors of the node should be made unsatisfiable. If the
node is an anonymous node this information will be recorded to avoid having the
QMediator recompute the same model. Otherwise, the node in question must
be a positive/negative cloned node. In this case it can be concluded that the
subsumption/disjointness holds and the node will be marked as unsatisfiable.

6 Performance Evaluation

We extended the test suite that we used in our previous work to evaluate the
performance of Avalanche [32]. The test suite is composed of three different col-
lections of test ontologies that will be presented below. We chose these ontologies

Ontology Name #A #C #R #QCRs
canadian-parliament-factions-1 48 21 6 19
canadian-parliament-factions-2 56 24 7 25
canadian-parliament-factions-3 64 27 8 30
canadian-parliament-factions-4 72 30 9 35
canadian-parliament-factions-5 81 34 10 40
canadian-parliament-factions-10 121 49 15 54
canadian-parliament-full-factions-1 51 22 6 22
canadian-parliament-full-factions-2 60 25 7 30
canadian-parliament-full-factions-3 69 28 8 36
canadian-parliament-full-factions-4 78 31 9 42
canadian-parliament-full-factions-5 87 34 10 48
canadian-parliament-full-factions-10 132 49 15 69
C-SAT-exp-ELQ 26 10 4 13
C-UnSAT-exp-ELQ 26 10 4 13
genomic-cds rules-ELQ-fragment-1 716 358 1 357
genomic-cds rules-ELQ-fragment-2 718 359 1 357
genomic-cds rules-ELQ-fragment-3 718 359 1 357
genomic-cds rules-ELQ-fragment-4 1691 2775 1 8172

Fig. 3. Metrics of benchmark ontologies (# = Number of . . . , A = Axioms, C =
Concepts, R = Roles)
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to be classified to stress test the performance of Avalanche with respect to differ-
ent applications of qualified cardinality restrictions. Some metrics about the test
ontologies are shown in Fig. 3. The ontologies differ by the number of axioms,
concepts, roles, and qualified number restrictions.

The first test collection models the House of Commons of the Canadian par-
liament [5] (see top part of Fig. 4). It is our own collection of ELQ ontologies
where we represent a real-world situation. There are two versions of this bench-
mark - short and full, each consisting of six variants. The variants differ by the
number of included factions [5]. The only reasoners that can classify all variants
of the simplest of these ontologies within the given time limit are Avalanche
and Racer. Avalanche is the only reasoner that can classify all variants of these
ontologies.

The second test collection (see middle part of Fig. 4) uses synthetic concept
templates. The original ALCQ concepts are shown below the table. They were
manually rewritten into normalized ELQ. The concept templates use a vari-
able n that is increased exponentially. The numbers used in the template are
bounded by the value of 2n. The first template is satisfiable and the second one
is unsatisfiable. Only Avalanche and Racer can classify all variants of these small
ontologies within the time limit.

The third test collection (see bottom part of Fig. 4) uses four ELQ fragments
of a real world ontology, genomic-cds rules [29], which was developed for pharma-
cogenetics and clinical decision support. It contains many concepts using QCRs
of the form = 2 has.Ai. However, in these fragments the concepts (Ai) occurring
in the qualification of the QCRs do not interact with one another. This sim-
plifies reasoning and all reasoners except Racer perform well. Avalanche (with
the exception of the fourth fragment) and HermiT as well as FaCT++ and Kon-
clude have similar runtimes. These fragments are interesting because the concept
<#human> contains several hundred QCRs using the same role. This is one of the
reasons why Racer times out for all fragments. At the moment we can classify
only the above mentioned fragments of the ontology in question. Our ultimate
goal is classify the entire ontology. As we know, no other reasoner can do it yet.

As compared to our previous work [32], the performance of Avalanche has
already been greatly improved. However, we expect to achieve even better results
in future. Avalanche’s speed for the Canadian Parliament ontologies has been
improved by several orders of magnitude. Previously it could not classify the
version of Canadian Parliament with 10 factions within 10,000 s. The reason
for such a change is mainly due to the improved communication with QMedia-
tor. Previously we delegated all computations that concerned qualified number
restrictions to the dedicated module. After a scrupulous analysis of Avalanche’s
runtime we noticed that a lot of time is spent in the module to solve rather
simple cases. It appears that Linear Programming methods are typically used to
solve feasible problems. If a problem is infeasible then it should be considered as
erroneous and it has to be remodelled. However, in our case we do not consider
infeasible models to be erroneous. On the contrary, they help us to discover valu-
able knowledge about the ontology in question, e.g. subsumption or disjointness.
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As a result, we identified several cases where feasibility/infeasibility information
can be discovered without CPLEX. For example, we do not need to call QMedi-
ator when we have only at-least or only at-most restrictions. In the former case
we simply connect with an edge the node that contains the number restrictions
and the nodes that contain role fillers as their representative concepts. In the
latter case we do not need to do anything because at-most inequalities do not
require us to create successors (remember that 0 will satisfy ≤ 5R.C). We have
a special treatment when we have a set of at-least and at-most inequalities and
all at-most inequalities are of cardinality 0. We also check if we can reduce all
at-least inequalities and all at-most inequalities to only one inequality. For exam-
ple, ≥ 3R.C and ≥ 5R.C could be replaced by ≥ 5R.C. Similarly, ≤ 0R.C and
≤ 6R.C could be replaced by ≤ 0R.C. Further, we have other ways to determine
early infeasibility. For example, ≤ 3R.C and ≥ 1R.D would be infeasible if C is
subsumed by D. Thus, QMediator is now called only when it cannot be avoided.

Although Racer can classify some of the test ontologies faster than Avalanche,
we are not discouraged by this fact because we know exactly how we have to
improve Avalanche in order to achieve comparable or even better results. In
particular, we will be working on a reimplementation of the strategy that is
used to apply rules to nodes.

Canadian Parliament
Factions only Full

#F Ava Fac Her Kon Rac Ava Fac Her Kon Rac
10 1.1 TO TO TO 0.12 1.4 TO TO TO TO
5 0.56 TO TO TO 0.12 0.73 TO TO TO TO
4 0.46 TO TO TO 0.11 0.58 TO TO TO TO
3 0.36 TO TO TO 0.07 0.43 TO TO TO TO
2 0.26 TO TO TO 0.07 0.33 TO TO TO 10.5
1 0.18 TO TO 7.3 0.05 0.24 TO TO TO 0.44

C-SAT-exp-ELQ C-UnSAT-exp-ELQ
n Ava Fac Her Kon Rac Ava Fac Her Kon Rac
40 1.3 TO TO TO 0.01 1.6 TO TO TO 0.01
20 1.3 TO TO TO 0.01 1.5 TO TO TO 0.01
10 1.2 TO TO TO 0.01 1.6 TO TO TO 0.01
5 0.95 6.3 4.4 0.91 0.01 1.8 TO TO 784 0.01
3 1.1 0.17 0.18 0.33 0.01 1.6 0.25 1.15 1.18 0.01

Sat: C � (≤ nR.¬A � ≤ n−1R.¬B) � ≥ 2nR.� � ≤ nR.A � ≤ nR.B
Unsat: C � (≤ n−1R.¬A � ≤ n−1R.¬B) � ≥ 2nR.� � ≤ nR.A � ≤ nR.B

Satisfiability of concept
Name Ava Fac Her Kon Rac
genomic-cds rules-ELQ-fragment-1 0.75 27.7 0.87 27.7 TO
genomic-cds rules-ELQ-fragment-2 1.2 28.2 1.14 28.3 TO
genomic-cds rules-ELQ-fragment-3 4.8 28.8 1.27 26.3 TO
genomic-cds rules-ELQ-fragment-4 26.7 28.8 4.4 29.4 TO

Fig. 4. Benchmark runtimes in seconds with a timeout of 1000 s (TO = timeout, #F =
Number of Factions, Ava = Avalanche, Fac = FaCT++, Her = HermiT, Kon = Kon-
clude, Rac = Racer)
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The experiments were performed on a MacBook Pro (2.6 GHz Intel Core i7
processor, 16 GB memory). The comparison results (average of 3 runs) are shown
in Fig. 4. We compared Avalanche with major OWL reasoners: FaCT++ (1.6.4)
[8], HermiT (1.3.8) [18], Konclude (0.6.2) [22], and Racer (3.0) [14,15,27]. In
fact, Racer is the only other available OWL reasoner using an ILP component
for reasoning about QCRs in contrast to [21] where ILP is used in the context
of probabilistic reasoning. The algorithms implementing Racer’s ILP component
are in general best-case exponential with respect to the number of QCRs given
for one concept. Another reasoning approach for ALCQ [16] used SMT with a
theory that is a specific and computationally much cheaper subcase of Linear
Arithmetic under the Integers but this approach suffers from inefficiencies for
nested QCRs where reasoning involves backtracking. It would also not scale well
for role hierarchies and its extension to inverse roles is an open problem.

7 Conclusion

In this work we presented a hybrid architecture for reasoning about description
logics supporting role hierarchies and QCRs. It allows us to reduce the QCR sat-
isfiability problem to a feasibility problem. We tested our system and identified
ontologies that cannot be classified by other reasoners in a reasonable amount of
time. We almost finished extending the architecture to cover ALCHQ. Our ulti-
mate goal is to extend our architecture to the DL ALCHIQ by adding inverse
roles (I).
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