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Abstract. We consider ontology-based query answering in a setting
where some of the data are numerical and of a probabilistic nature,
such as data obtained from uncertain sensor readings. The uncertainty
for such numerical values can be more precisely represented by contin-
uous probability distributions than by discrete probabilities for numer-
ical facts concerning exact values. For this reason, we extend existing
approaches using discrete probability distributions over facts by contin-
uous probability distributions over numerical values. We determine the
exact (data and combined) complexity of query answering in extensions
of the well-known description logics EL and ALC with numerical com-
parison operators in this probabilistic setting.

1 Introduction

Ontology-based query answering (OBQA) has recently attracted considerable
attention since it dispenses with the closed world assumption of classical query
answering in databases and thus can deal with incomplete data. In addition,
background information stated in an appropriate ontology can be used to deduce
more answers. OBQA is usually investigated in a setting where queries are
(unions of) conjunctive queries and ontologies are expressed using an appropriate
Description Logic (DL). Depending on the expressiveness of the DL, the com-
plexity of query answering may vary considerably, starting with data complexity
(i.e., complexity measured in the size of the data only) of AC0 for members of
the DL-Lite family [2,9] to P for DLs of the EL family [28], all the way up to
intractable data complexity for expressive DLs such as ALC and beyond [15].

In many application scenarios for OBQA, however, querying just symbolic
data is not sufficient. One also wants to be able to query numerical data. For
example, in a health or fitness monitoring application, one may want to use con-
cepts from a medical ontology such as SNOMED CT [14] or Galen [29] to express
information about the health status of a patient, but also needs to store and refer
to numerical values such as the blood pressure or heart rate of this patient. As an
example, let us consider hypertension management using a smartphone app [21].

Supported by the DFG within the collaborative research center SFB 912 (HAEC)
and the research unit FOR 1513 (HYBRIS).

c© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 77–94, 2017.
DOI: 10.1007/978-3-319-66167-4 5



78 F. Baader et al.

Fig. 1. Measured blood pressure as normal distribution.

What constitutes dangerously high blood pressure (HBP) depends on the mea-
sured values of the diastolic pressure, but also on other factors. For example, if a
patient suffers from diabetes, a diastolic blood pressure above 85 may already be
classified as too high, whereas under normal circumstances it is only considered
to be too high above 90. This could, for example, be modelled as follows by an
ontology:

∃diastolicBloodPressure.>90 � PatientWithHBP (1)
∃finding.Diabetes � ∃diastolicBloodPressure.>85 � PatientWithHBP (2)

Note that we have used a DL with concrete domains [6] to refer to numerical
values and predicates on these values within concepts. While there has been quite
some work on traditional reasoning (satisfiability, subsumption, instance) in DLs
with concrete domains [24], there is scant work on OBQA for such DLs. To the
best of our knowledge, the only work in this direction considers concrete domain
extensions of members of the DL-Lite family [3,4,17,31], and develops query
rewriting approaches. In contrast, we consider concrete domain extensions of EL
and ALC and determine the (combined and data) complexity of query answering.

However, the main difference to previous work is that we do not assume
the numerical values in the data to be exact. In fact, a value of 84.5 for the
diastolic pressure given by a blood pressure sensor does not really mean that
the pressure is precisely 84.5, but rather that it is around 84.5. The actual
value follows a probability distribution—for example a normal distribution with
expected value 84.5 and a variance of 2 as shown in Fig. 1—which is determined
by the measured value and some known variance that is a characteristic of the
employed sensor. We can represent this in the knowledge base for example as
follows:

finding(otto, f1) Diabetes(f1) diastolicBloodPressure(otto) ∼ norm(84.5, 2)

From this information, we can derive that the minimal probability for the patient
Otto to have high blood pressure is slightly above 36%, which might be enough
to issue a warning. In contrast, if instead of using a probability distribution we
had asserted 84.5 as the exact value for Otto’s diastolic blood pressure, we could
not have inferred that Otto is in any danger.
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Continuous probability distributions as used in this example also emerge in
other potential applications of OBQA such as in robotics [34], tracking of object
positions in video analytics [35], and mobile applications using probabilistic sen-
sor data [12], to name a few. The interest in continuous probability distributions
is also reflected in the development of database systems that support these [33].

In addition to using continuous probability distributions for sensor values, we
also consider discrete probability distributions for facts. For example, it might
be that the finding f1 for Otto is diabetes only with a certain probability. While
OBQA for probabilistic data with discrete probability distributions has been
considered before for DL-Lite and EL without concrete domains [19], OBQA for
probabilistic data with both discrete and continuous probability distributions is
investigated here for the first time. A rather expressive combination we consider
is the DL ALC extended with a concrete domain in which real numbers can be
compared using the (binary) predicates > and =. A less expressive combination
we consider is the DL EL extended with a concrete domain in which real numbers
can be compared with a fixed number using the (unary) predicates >r for r ∈ R.
Since OBQA for classical knowledge bases (i.e., without probabilities) in these
two DLs has not been investigated before, we first determine their (data and
combined) complexity of query answering. When considering probabilistic KBs
with continuous probability distributions (modelled as real-valued functions),
the resulting probabilities may be numbers without a finite representation. To
overcome this problem, we define probabilistic query entailment with respect
to a given precision parameter. To allow a reasonable complexity analysis, we
define a set of feasibility conditions for probability distributions, based on the
complexity theory of real functions [20], which capture most typical probability
distributions that appear in practical applications. For probabilistic KBs that
satisfy these conditions, we give tight bounds on the complexity of probabilistic
query answering w.r.t data and combined complexity for all considered DLs.
Detailed proofs for all results can be found in the long version of the paper [7].

2 Description Logics with Numerical Domains

We recall basic DLs with concrete domains, as introduced in [6], and give com-
plexity results for classical query answering.

A concrete domain is a tuple D = (ΔD, ΦD), where ΔD contains objects of the
domain, and ΦD contains predicates Pn with associated arity n and extension
PD

n ⊆ Δn
D. Let Nc, Nr, NcF and Ni be pair-wise disjoint sets of names for

concepts, roles, concrete features and individuals, respectively. Let NaF ⊆ Nr be
a set of abstract feature names. Concrete features are partial functions that map
individuals to a value in the concrete domain. Abstract features are functional
roles and their use in feature paths does not harm decidability [23]. A feature
path is an expression of the form u = s1s2 . . . sng, where si ∈ NaF , 1 ≤ i ≤ n,
and g ∈ NcF . ALC(D) concepts are defined as follows, where A ∈ Nc, s ∈ Nr,
u and u′ are feature paths, Pn ∈ ΦD is a predicate of arity n, and C1 and C2

are ALC(D) concepts:

C := 	 | A | ¬C1 | C1 � C2 | ∃s.C1 | ∃(u1, . . . , un).Pn | u↑.
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Additional concepts are defined as abbreviations: C1 � C2 = ¬(¬C1 � ¬C2),
∀s.C = ¬∃s.¬C, and ⊥ = ¬	. If a concept uses only the constructors 	, A,
C1 � C2, ∃s.C1 and ∃(u1, . . . , un).Pn and no abstract features, it is an EL(D)
concept. The restrictions for EL(D) concepts ensure polynomial time complexity
for standard reasoning tasks. Specifically, as done in [5], we disallow abstract
features, since axiom entailment in EL with functional roles is ExpTime-hard [5].

A TBox is a finite set of general concept inclusion axioms (GCIs), which are
of the form C � D, where C and D are concepts. A classical ABox is a finite set
of assertions, which are of the forms A(a), s(a, b) and g(a, d), where a, b ∈ Ni,
A ∈ Nc, s ∈ Nr, g ∈ NcF and d ∈ ΔD. We call GCIs and assertions collectively
axioms. A knowledge base (KB) K is a pair (T ,A) of a TBox T and an ABox A.
Given a KB K, we denote by sub(K) the subconcepts occurring in K. Let L be
a DL, then a TBox/KB that uses only L concepts is a L TBox/L KB.

The semantics of EL(D) and ALC(D) is defined in terms of interpretations.
An interpretation is a tuple I = (ΔI , ·I) consisting of a set of domain elements
ΔI and an interpretation function ·I . The interpretation function ·I maps indi-
vidual names to elements of ΔI , concept names to subsets of ΔI , concrete fea-
tures to partial functions ΔI → ΔD, and role names to subsets of ΔI × ΔI s.t.
for all s ∈ NaF , sI is a partial function. The extension of ·I to feature paths is
(s1 . . . sng)I = gI ◦ sI

n ◦ . . . ◦ sI
1 , and to (complex) concepts is:

	I = ΔI (¬C)I = ΔI \ CI (C1 � C2)I = CI
1 ∩ CI

2

(∃s.C)I = {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ sI ∧ y ∈ CI}
(∃(u1, . . . , un).P )I = {x ∈ ΔI | (uI

1 (x), . . . , uI
n(x)) is defined and in PD}

(u↑)I = {x ∈ ΔI | uI(x) is undefined }.

An axiom α is true in an interpretation I, in symbols I |= α, if α = C � D and
CI ⊆ DI , α = C(a) and aI ∈ CI , α = s(a, b) and (aI , bI) ∈ sI , or α = g(a, n)
and gI(a) = n. An interpretation I is a model of a TBox (an ABox), if all GCIs
(assertions) in it are true in I. An interpretation is a model of a KB K = (T ,A),
if it is a model of T and A. A KB is satisfiable iff it has a model. Given a KB
K and an axiom α, we say α is entailed in K, in symbols K |= α, iff I |= α in
all models I of K.

The particular concrete domain to be used needs to be selected carefully, in
order to obtain a decidable logic with reasonable complexity bounds. Specifi-
cally, axiom entailment with TBoxes already becomes undecidable if ΔD = N

and ΦD can express incrementation, as well as equality between numbers and
with 0 [25]. However, by restricting the predicates to basic comparison oper-
ators, decidability cannot only be retained, but an increase of complexity for
common reasoning tasks can be avoided when adding such concrete domains
to the logic. To pursue this as a goal, we concentrate on two concrete domains
that allow for standard reasoning in P and ExpTime, respectively. The first
concrete domain is R = {R, ΦR} investigated in [22], where ΦR contains the
binary predicates {<,=, >} with the usual semantics, and the unary predicates
{<r,=r, >r | r ∈ R}, where for ⊕ ∈ {<,=, >}, the extension is defined as
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⊕R
r = {r′ ∈ R | r′⊕r}. This concrete domain allows for axiom entailment in

ExpTime, while even small extensions lead to undecidability [22]. The second
concrete domain is R> = {R, ΦR>

}, where ΦR>
= {>r | r ∈ R}. Since polynomial

time reasoning requires the concrete domain to be convex [5], we consider this
convex concrete domain.

Example 1. The axioms in the introduction only use predicates from R> and are
in the logic EL(R>). Feature paths and the more expressive concrete domain R
allow to compare different values referred to by concrete features. The following
more flexible definition of HBP patients compares their diastolic blood pressure
(BP) with the maximal diastolic blood pressure assigned to their age group:

∃(diastolicBP, belongsToAgeGroup maxDiastolicBP).> � PatientWithHBP.

2.1 Queries

We recall atomic, conjunctive and unions of conjunctive queries. Let Nv be a set
of variables disjoint from Nc, Nr, NcF and Ni. An atom is of the form C(x) or
s(x, y), where C is a concept, s ∈ Nr, x, y ∈ Nv ∪Ni. A conjunctive query (CQ) q
is an expression of the form ∃x1, . . . , xn : a1 ∧ . . . ∧ am, where x1, . . . , xn ∈ Nv

and a1, . . . , am are atoms. The variables x1, . . . , xn are the existentially quantified
variables in q, the remaining variables in q are the free variables in q. If a CQ
contains only one atom, it is an atomic query (AQ). A union of conjunctive
queries (UCQ) is an expression of the form q1 ∨ . . . ∨ qn, where q1, . . . , qn are
CQs with pairwise-disjoint sets of variables. The existentially quantified/free
variables of a UCQ are the existentially quantified/free variables of its disjuncts.
We call AQs, CQs and UCQs collectively queries. A query is Boolean if it has
no free variables.

Given an interpretation I and a Boolean CQ q, q is true in I, in symbols
I |= q, iff there is a mapping π that maps variables in q to domain elements in I
and each a ∈ Ni to aI such that for every atom A(x) in q, π(x) ∈ AI , and for
every atom s(x, y) in q, (π(x), π(y)) ∈ sI . A Boolean UCQ is true in I iff one of
its disjuncts is true in I. Finally, given a KB K = (T ,A) and a Boolean query q,
q is entailed by K, in symbols K |= q, if I |= q in every model of K. The query
entailment problem is to decide whether a given Boolean query is entailed by a
given KB.

The query answering problem is to find a substitution from the free vari-
ables in the query to individual names such that the resulting Boolean query
is entailed by the KB. Because this problem can be polynomially reduced to
query entailment, it is typical to focus on the query entailment problem, which
is a decision problem, when analysing computational complexity. We follow the
same route in this paper.

Note that according to our definition, concrete features cannot be used out-
side of concepts in a query. Therefore, our queries can only express relations
between concrete features that can be captured by a concept in our language.
For example, the FOL formula

∃y1, y2, z1, z2 : s1(x, y1) ∧ g1(y1, z1) ∧ s2(x, y2) ∧ g2(y2, z2) ∧ z1 < z2.
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can be captured the query ∃(s1g1, s2g2).<(x), but only given s1, s2 ∈ NaF ,
g1, g2 ∈ NcF , and < is a predicate of the concrete domain.

Example 2. In a KB with patient records, the following query can be used to
retrieve a list of doctors who diagnosed their patients with high blood pressure.

∃y, z : hasPatient(x, y) ∧ finding(y, z) ∧ observed(x, z) ∧ HighBloodPressure(z)

2.2 Complexity of Classical Query Entailment

We give tight complexity bounds for query entailment for the introduced DLs.
To the best of our knowledge, the complexity of query answering for the log-
ics studied here has not been considered in the literature before. We focus on
the DLs EL(R>) and ALC(R), since EL(R) has the same expressive power as
ALC(R) [5], and ALC(R>) already has matching lower bounds from ALC to our
upper bounds for ALC(R). We further assume values from the concrete domain to
be represented in binary. Our complexity analysis only concerns knowledge bases
that have a finite representation, which by this assumption are those in which
each number can be represented with a finite number of bits. When analysing
complexity of query entailment, we distinguish between combined and data com-
plexity, where in combined complexity, the size of the complete input is taken
into consideration, while for data complexity, everything but the ABox is fixed.

Table 1. Complexity of classical query entailment.

EL(R>) ALC(R)

AQs UCQs AQs UCQs

Data complexity P P coNP coNP

Combined Complexity P NP ExpTime ExpTime

An overview of the complexities is shown in Table 1. Since the correspond-
ing lower bounds are the same for CQs as for UCQs, we do not include CQs.
Matching lower bounds are already known for the DLs EL and ALC [10,30,32],
so that adding the respective concrete domains does not increase the complex-
ity of query answering for these logics. We show in the extended version of the
paper how to reduce query entailment in EL(R>) to query entailment of EL KBs,
following a technique from [23, Sect. 2.4]. For ALC(R), the results are based on
and match results from [22], [23, Sect. 6.2], and [26], which concern the combined
complexities of SHIQ(R) TBox satisfiability and ALC(R) KB satisfiability, as
well as the combined complexity of query entailment in SHQ∩.

3 Probabilistic Knowledge Bases with Continuous
Probability Distributions

We want to represent both, discrete probabilities of assertions and continuous
probability distributions of values of concrete features. As we can simply assign a



Using Ontologies to Query Probabilistic Numerical Data 83

probability of 1 to assertions that are certain, there is no need to handle certain
assertions separately. A discrete probability assertion assigns a minimal proba-
bility to a classical assertion. This corresponds to the approach taken by tuple-
independent probabilistic database systems [11], where probabilities are assigned
to database and to ipABoxes introduced in [19]. For example, the fact that “Otto
has a finding that is Diabetes with a probability of at least 0.7” is expressed by
the two assertions finding(otto, f1) : 1 and Diabetes(f1) : 0.7.

Note that discrete probability assertions state a lower bound on the probabil-
ity, rather than the actual probability, and that statistical independence is only
assumed on this lower bound. This way, it is consistent to have the assertions
A(a) : 0.5, B(a) : 0.5 together with the axiom A � B in the knowledge base.
Under our semantics, the probability of B(a) is then higher than 0.5, since this
assertion can be entailed due to two different, statistically independent state-
ments in the ABox. Namely, we would infer that the probability of B(a) is at
least 0.75 (compare also with [19]).

While for symbolic facts, assigning discrete probabilities is sufficient, for
numerical values this is not necessarily the case. For example, if the blood pres-
sure of a patient follows a continuous probability distribution, the probability
of it to have any specific value is 0. For this reason, in a continuous probability
assertion, we connect the value of a concrete feature with a probability density
function. This way, the fact that “the diastolic blood pressure of Otto follows a
normal distribution with an expected value of 84.5 and a variance of 2” can be
expressed by the assertion diastolicBloodPressure(otto) ∼ norm(84.5, 2). In addi-
tion to a concrete domain D, the DLs introduced in this section are parametrised
with a set P of probability density functions (pdfs), i.e., Lebesgue-integrable func-
tions f : A → R

+, with A ⊆ R being Lebesgue-measurable, such that
∫

A
f(x) dx

= 1 [1].

Example 3. As a typical set of probability density functions [1], we define the
set Pex that contains the following functions, which are parametrised with the
numerical constants μ, ω, λ, a, b ∈ Q, with λ > 0 and a > b:

normal distribution with mean μ and variance ω:
norm(μ, ω) : R → R

+, x �→ 1√
2πω

e−(x−μ)2/2ω,
exponential distribution with mean λ:

exp(λ) : R+ → R
+, x �→ λe−λx,

uniform distribution between a and b:
uniform(a, b) : [a, b] → R

+, x �→ 1
b−a .

Next, we define probabilistic KBs, which consist of a classical TBox and a set of
probability assertions.

Definition 1. Let L ∈ {EL(R>),ALC(R)} and P be a set of pdfs. A probabilistic
LP ABox is a finite set of expressions of the form α : p and g(a) ∼ f , where α is
an L assertion, p ∈ [0, 1] ∩D,1 g ∈ NcF , a ∈ Ni, and f ∈ P. A probabilistic LP
1 Here, the set D ⊆ R denotes the dyadic rationals, that is, the set of all real numbers

that have a finite number of bits after the binary point.
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KB is a tuple K = (T ,A), where T is an L TBox and A is a probabilistic LP
ABox. If P = ∅, K and A are called discrete, and if P �= ∅, they are called
continuous.

3.1 Semantics of Probabilistic Knowledge Bases

As typical for probabilistic DLs and databases, we define the semantics using a
possible worlds semantics. In probabilistic systems that only use discrete prob-
abilities, the possible world semantics can be defined based on finite sets of
non-probabilistic data sets, the possible worlds, each of which is assigned a prob-
ability [11,19,27]. The probability that a query q is entailed then corresponds
to the sum of the probabilities of the possible worlds that entail q. If continuous
probability distributions are used, this approach is insufficient. For example, if
the KB contains the assertion diastolicBP(p) ∼ norm(84.5, 2), the probability of
diastolicBP(p, x) should be 0 for every x ∈ R. Therefore, we cannot obtain the
probability of diastolicBP(p) > 85 by just adding the probabilities of the possible
worlds that entail diastolicBP(p, x) for some x > 85. To overcome this problem,
we assign probabilities to (possibly uncountable) sets of possible worlds, rather
than to single possible worlds. Specifically, we define the semantics using contin-
uous probability measure spaces [1]. A measure space is a tuple M = (Ω,Σ, μ)
with Σ ⊆ 2Ω and μ : Σ → R such that

1. Ω ∈ Σ and Σ is closed under complementation, countable unions and count-
able intersections,

2. μ(∅) = 0, and
3. μ(

⋃
E∈Σ′) =

∑
E∈Σ′ μ(f) for every countable set Σ′ ⊆ Σ of pair-wise disjoint

sets.

If additionally μ(Ω) = 1, M is a probability measure space.
We define a probability measure space MA = (ΩA, ΣA, μA) that captures the

relevant probabilities in a probabilistic ABox A, similar to how it is done in [19]
for discrete probabilistic ABoxes. For this, we introduce the three components
ΩA, ΣA and μA one after another. For simplicity, we assume all pdfs f : A →
R ∈ P to be extended to the full real line by setting f(x) = 0 for all x ∈ R \ A.

Given a probabilistic ABox A, the set of possible worlds for A, in symbols ΩA,
consists of all classical ABoxes w such that for every g(a) ∼ f ∈ A, w contains
g(a, x) for some x ∈ R, and for every axiom α ∈ w, either α : p ∈ A, or α is
of the form g(a, x) and g(a) ∼ f ∈ A. For w ∈ ΩA, we write w |= g(a)⊕x,
x ∈ R, ⊕ ∈ {<,≤,=,≥, >}, iff w |= g(a, y) and y⊕x. We write w |= g(a)⊕h(b)
iff w |= g(a, y), h(b, z) and y⊕z. We abbreviate w |= g(a) ≥ x, g(a) ≤ y by
w |= g(a) ∈ [x, y]. The event space over ΩA, in symbols ΣA, is now the smallest
subset ΣA ⊆ 2ΩA that satisfies the following conditions:

1. ΩA ∈ ΣA,
2. for every α : p ∈ A, {w ∈ ΩA | α ∈ w} ∈ ΣA,
3. for every g(a) ∼ f ∈ A, x ∈ R, {w ∈ ΩA | w |= g(a) < x} ∈ ΣA,
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4. for every g1(a1) ∼ f1, g2(b) ∼ f2 ∈ A, {w ∈ ΩA | w |= g1(a) < g2(b)} ∈ ΣA,
and

5. ΣA is closed under complementation, countable unions and countable inter-
sections.

The conditions ensure that for every query q and TBox T , the set of possible
worlds w such that (T , w) |= q is included in ΣA. To complete the definition
of the measure space, we now assign probabilities to these sets via the measure
function μA. This function has to respect the probabilities expressed by the
discrete and continuous probability assertions in A, as well as the assumption
that these probabilities are statistically independent. We define μA explicitly for
sets of possible worlds that are selected by the assertions in them, and by upper
bounds on the concrete features occurring in continuous probability assertions.
By additionally requiring that Condition 3 in the definition of measure spaces is
satisfied for μA, this is sufficient to fix the probability for any set in ΣA.

Given a probabilistic ABox A, we denote by cl-ass(A) = {α | α : p ∈ A} the
classical assertions occurring in A. A bound set for A is a set B of inequations of
the form g(a) < x, x ∈ R, where g(a) ∼ f ∈ A and every concrete feature g(a)
occurs at most once in B. Given a set E ⊆ cl-ass(A) of assertions from A and
a bound set B for A, we define the corresponding set ΩE,B

A of possible worlds
in ΩA as

ΩE,B
A = {w ∈ ΩA | w ∩ cl-ass(A) = E , w |= B}.

The probability measure space for A is now the probability measure space MA =
(ΩA, ΣA, μA), such that for every E ⊆ cl-ass(A) and every bound set B for A,

μA(ΩE,B
A ) =

∏

α:p∈A
α∈E

p ·
∏

α:p∈A
α�∈E

(1 − p) ·
∏

g(a)∼f∈A
g(a)<x∈B

∫ x

−∞
f(y) dy.

As shown in the extended version of the paper, this definition uniquely deter-
mines μA(W ) for all W ∈ ΣA, including sets such as W = {w ∈ ΩA | w |=
g1(a) < g2(b)}. The above product is a generalisation of the corresponding defi-
nition in [19] for discrete probabilistic KBs, where in addition to discrete proba-
bilities, we take into consideration the continuous probability distribution of the
concrete features in A. Recall that if a concrete feature g(a) follows the pdf f ,
the integral

∫ x

−∞ f(y) dy gives us the probability that g(a) < x.
Since we have now finished the formal definition of the semantics of prob-

abilistic ABoxes, we can now define the central reasoning task studied in this
paper. As in Sect. 2.1, we concentrate on probabilistic query entailment rather
than on probabilistic query answering. The latter is a ranked search problem
that can be polynomially reduced to probabilistic query entailment as in [19].
Based on the measure space MA, we define the probability of a Boolean query q
in a probabilistic KB K = (T ,A) as PK(q) = μA({w ∈ ΩA | (T , w) |= q}). Note
that due to the open-world assumption, strictly speaking, PK(q) corresponds to
a lower bound on the probability of q, since additional facts may increase the
value of PK(q).
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Different to [19] and classical approaches in probabilistic query answering,
because P contains real functions, PK(q) is in general a real number, and as
such not finitely representable. In practice, it is typical and usually sufficient
to compute approximations of real numbers. To capture this adequately, we
take the required precision of the probability PK(q) as additional input to the
probabilistic query entailment problem. For a real number x ∈ R and n ∈ N,
we use the notation 〈x〉n to refer to an n-bit approximation of x, that is, a real
number such that |〈x〉n − x| < 2−n. Note that, while we do not enforce it,
generally n bits after the binary point are sufficient to identify 〈x〉n. We can
now state the main reasoning problem studied in this paper.

Definition 2. The probabilistic query entailment problem is the problem of
computing, given a probabilistic KB K, a Boolean query q and a natural number n
in unary encoding, a number x s.t. x = 〈PK(q)〉n.

Since the precision parameter n determines the size of the result, we assume
it in unary encoding. If we would represent it in binary, it would already take
exponential time just to write the result down.

4 Feasibility Conditions for PDFs

Up to now, we did not put any restrictions on the set P of pdfs, so that a given
set P could easily render probabilistic query entailment uncomputable. In this
section, we define a set of feasibility conditions on pdfs that ensure that proba-
bilistic query entailment is not computationally harder than when no continuous
probability distributions are used. We know from results in probabilistic data-
bases [11], that query-entailment over probabilistic data is #·P-hard. Note that
integration of pdfs over bounded intervals can be reduced to probabilistic query
answering. Namely, if g(a) ∼ f ∈ A, we have P(∅,A)((∃g.>r)(a)) =

∫ ∞
r

f(x) dy
for all r ∈ R. Our feasibility conditions ensure that the complexity of approxi-
mating integrals does not dominate the overall complexity of probabilistic query
entailment.

We first recall some notions from the complexity theory of real functions by
Ker-I Ko [20], which identifies computability of real numbers x ∈ R and functions
f : A → R, A ⊆ R, with the computability of n-bit approximations 〈x〉n and
〈f(x)〉n, where n is given in unary encoding. Since real function arguments have
no finite representation in general, computable real functions are modelled as
function oracle Turing machines Tφ(x), where the oracle φ(x) represents the
function argument x and can be queried for n-bit approximations 〈x〉n in time
linear in c + n, where c is the number of bits in x before the binary point.
Given a precision n in unary encoding on the input tape, Tφ(x) then writes a
number 〈f(x)〉n on the output tape. This formalism leads to a natural definition
of computability and complexity of real numbers and real functions. Namely, a
real number x ∈ R is P-computable iff there is a polynomial time Turing machine
that computes a function φ : N �→ D s.t. φ(n) = 〈x〉n. A function f : A → R,
A ⊆ R, is P-computable iff there is a function oracle Turing machine Tφ(x) as
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above that computes for all x ∈ A a function ψ : N �→ D with ψ(n) = 〈f(x)〉n in
time polynomial in n and the number of bits in x before the binary point.

An important property of P-computable functions f that we use in the next
section is that they have a monotone and polynomial modulus of continuity
(modulus), that is, a monotone, polynomial function ωf : N → N s.t. for all
n ∈ N and x, y ∈ [2−n, 2n], |x − y| < 2−ωf (n) implies |f(x) − f(y)| < 2−n [18,20,
Chap. 3].

Approximating integrals
∫ 1

0
f(x) dx of P-computable functions f : [0, 1] → R

is #·P-complete [20, Chap. 5]. To be able to integrate over unbounded integrals
in #·P, we introduce an additional condition.

Definition 3. A probability density function f is #·P-admissible iff it satisfies
the following conditions:

1. f is P-computable, and
2. there is a monotone polynomial function δf : N → N such that for all n ∈ N:

1 −
∫ 2δf (n)

−2δf (n)
f(x) dx < 2−n.

Condition 2 allows us to reduce integration over unbounded integrals to inte-
gration over bounded integrals: to obtain a precision of n bits, it is sufficient to
integrate inside the interval [−2δf (n), 2δf (n)]. Note that as a consequence of Con-
dition 1, there is also a polynomial ρf : N → N s.t. for all x ∈ [−2δf (n), 2δf (n)],
f(x) < 2ρf (n). Otherwise, approximations of f(x) would require a number of
bits that is not polynomially bounded by the number of bits in x before the
binary point, and could thus not be computed in polynomial time. We call δf

and ρf respectively bounding function and range function of f . In the following,
we assume that for any set P of #·P-admissible pdfs, their moduli, bounding
functions and range functions are known.

The above properties are general enough to be satisfied by most common pdfs.
Specifically, we have the following lemma for the set Pex defined in Example 3:

Lemma 1. Every function in Pex is #·P-admissible.

5 Complexity of Probabilistic Query Answering

We study the complexity of probabilistic query answering for KBs with #·P-
admissible pdfs. As often in probabilistic reasoning, counting complexity classes
play a central role in our study. However, strictly speaking, these are defined for
computation problems for natural numbers. To get a characterisation for prob-
abilistic query answering, we consider corresponding counting problems. Their
solutions are obtained by, intuitively, shifting the binary point of an approxi-
mated query probability to the right to obtain a natural number. We first recall
counting complexity classes following [16].
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Definition 4. Let C be a class of decision problems. Then, #·C describes the
class of functions f : A → N such that

f(x) =
∥
∥
{
y | R(x, y) ∧ |y| < p(|x|)

}∥
∥

for some C-decidable relation R and polynomial function p.

Relevant to this section are the counting complexity classes #·P, #·NP and
#·coNP. The class #·P is also called #P. The following inclusions are known:
#·P ⊆ #·NP ⊆ #·coNP ⊆ FPSpace [16].

In order to characterise the complexity of probabilistic query answering using
counting classes, we consider corresponding counting problems, inspired by [20,
Chap. 5] and [11]. For a function f : A → D, we call g : A → N a corresponding
counting problem if g(x) = 2p(x)f(x) for all x ∈ A, where p : A → N and p can
be computed in unary in polynomial time.2

For discrete probabilistic KBs, the above definition allows us to give a com-
plexity upper bound for a counting problem corresponding to probabilistic query
entailment in a quite direct way. Without loss of generality, we assume that
queries contain only concept names as concepts. If K = (T ,A) is discrete, the
probability measure space MA has only a finite set ΩA of possible worlds, and
each possible world w ∈ ΩA has a probability μA({w}) that can be repre-
sented with a number of bits polynomial in the size of the input. We use this
to define a relation R as used in Definition 4. Let bK be the maximal num-
ber of bits used by any probability μA({w}), w ∈ ΩA. Define the relation R
by setting R((K, q, n), (w, d)) for all w ∈ ΩA, d ∈ N s.t. (T , w) |= q and
d < 2bK · μA({w}), where K = (T ,A). One easily establishes that 〈PK(q)〉n =
2−bK · ‖{y | R((K, q, n), y)}‖ for any n ∈ N. (Note that our “approximation” is
always the precise answer in this case.) For discrete KBs, we thus obtain a com-
plexity upper bound of #·C for the corresponding counting problem defined by
g(K, q, n) = 2bK · PK(q), where C is the complexity of classical query entailment.

In order to transfer this approach to continuous probabilistic KBs, we define
a discretisation of continuous probability measure spaces based on the precision
parameter n and the TBox T . Namely, given a probabilistic KB K = (T ,A)
and a desired precision n, we step-wise modify the measure space MA into an
approximated measure space Ma

K,n = (Ωa
K,n, Σa

K,n, μa
K,n) such that (i) the size

of each possible world w ∈ Ωa
K,n is polynomially bounded by |K| + n, (ii) for

each w ∈ Σa
K,n, μa

K,n({w}) can be computed precisely and in time polynomial
in |K| + n, and (iii) it holds μa

K,n({w ∈ Ωa
K,n | (T , w) |= q}) = 〈PK(q)〉n for

every query q. Real numbers occur in MA in concrete feature values and in the
range of μA, and have to be replaced by numbers with a polynomially bounded
number of bits. We proceed in three steps: (1) we first reduce the number of
bits that occur before the binary point in any concrete feature value, (2) we
then reduce the number of bits that occur after the binary point in any concrete
feature value, and (3) we finally reduce the number of bits in the range of μA.
2 Note that the counting complexity classes considered here are all closed under this

operation. To see this, consider f and g characterized by the relations R and R′ s.t.
R′ = {(x, y#z) | R(x, y), z ∈ {0, 1}∗, |z| = p(x)}. Clearly, g(x) = 2p(x)f(x).
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We define C = {gi(ai) ∼ fi ∈ A} as the set of continuous probability asser-
tions in K and F = {fi | gi(ai) ∼ fi ∈ C} as the relevant pdfs in K. We also set
nv = ‖C‖ and nc as the number of unary concrete domain predicates in K.

Step 1: Reduce the number of bits before the binary point. Because
every function f ∈ F has a monotone polynomial bounding function, we can
obtain a function δ : N → N s.t. for every pdf f ∈ F and every n′ ∈ N, we have

1 −
∫ 2δ(n′)

−2δ(n′)
f(x) dx < 2−n′

.

The first step is to remove all possible worlds w in which for some g(a) ∼ f ∈ C,
we have w �|= g(a) ∈ [−2δ(nv+n), 2δ(nv+n)]. Note that for each g(a) ∼ f ∈ A, the
probability of g(a) to lay outside this interval is 2−nv−n. Based on this, one can
show that for the resulting measure space M1 = (Ω1, Σ1, μ1), we have |μA(ΩA)−
μ1(Ω1)| < 2−n−1. This restricts also the overall error on the probability of any
query. Therefore, we have a remaining error of 2−n−1 that we can make in
subsequent steps. Note that the number of bits before the binary point in any
concrete feature value is now polynomially bounded by the input.

Step 2: Reduce the number of bits after the binary point. Intuitively,
in this step we “replace” each possible world w ∈ Ω1 by a possible world w′

that is obtained by “cutting off” in all concrete feature values all digits after
a certain position after the binary point, preserving its probability. First, we
specify the maximum number m of digits after the binary point we keep. Similar
as for the bounding function δ, we can obtain a polynomial function ω that is
a modulus of all functions f ∈ F , and a polynomial function ρ that is a range
function of all functions f ∈ F . Let k = ρ(nv + n) be the highest number of
bits before the binary point in the range of any pdf in the remaining interval
[−2δ(n+nv), 2δ(n+nv)], and set l = nv + δ(nv + n) + 2 + n. Based on k, l and ω,
we define the maximal precision m by

m = �log2(nv(nv + nc)) + k + n + 3 + ω(l)� .

The motivation behind this definition will become clear in the following. For
now, just notice that m is polynomially bounded by |K| + n.

In the approximated measure space M2 = (Ω2, Σ2, μ2), Ω2 contains all worlds
from Ω1 in which each concrete feature value has at most m bits after the binary
point. To preserve the probabilities, we define a function Ω2→1 : Ω2 → 2Ω1 that
maps each possible world w ∈ Ω2 to the possible worlds in Ω1 that have been
“replaced” by w. Ω1→2 is defined as

Ω2→1(w) = {w′ ∈ Ω1 |w ∩ cl-ass(A) = w′ ∩ cl-ass(A),

∀g(a, x) ∈ w, g(a) ∼ f ∈ C : w′ |= g(a) ∈ [x, x + 2−m]}.

The measure function μ2 is now defined by

μ2({w}) = μ1(Ω2→1(w)).
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This transformation affects the probability of concepts such as ∃(g1, g2).> and
∃g.>r, because the probability that two concrete features have the same value,
or that a concrete feature has a value occurring in some unary domain predicate,
increases. One can show that this probability is bounded by nv(nv+nc)·2−m+k+1.
By definition, m > log2(nv(nv + nc)) + k + n + 3, so that the error created in
this step is bounded by 2−n−2.

Step 3: Reduce the number of bits in the probabilities. Each possible
world M2 can be finitely represented and has a size that is polynomially bounded
in the size of the input. However, the probabilities for each possible world are
still real numbers. We first explain how we approximate the probabilities for a
single concrete feature. For an assertion gi(ai) ∼ fi ∈ C, and a number x ∈ R

with m bits after the binary point, we have μ2({w ∈ Ω2 | w |= g(a) = x}) =
∫ x+2−m

x
fi(y) dy. To discretise this probability, we make use of the modulus ω

of the pdfs used in K. Recall that, by the definition of a modulus, for any
precision n′ ∈ N and two real numbers x, y ∈ [2−n′

, 2n′
], |x − y| < 2−ω(n′)

implies |fi(x) − fi(y)| < 2−n′
. By construction, we have m > ω(l), and hence,

for x ∈ [2−l, 2l] and y ∈ [x, x+2−m], we have |fi(x)−fi(y)| < 2−l. Consequently,

the integral
∫ x+2−m

x
fi(y) dy can be approximated by the product 2−m · 〈fi(x)〉l,

and we have
∣
∣
∣
∣
∣

∫ x+2−m

x

fi(y) dy − 2−m · 〈fi(x)〉l

∣
∣
∣
∣
∣

< 2−m−l.

There are 2δ(nv+n)+1+m different values per concrete feature in our measure
space, so that an error of 2−m−l per approximated interval introduces a maximal
error of 2−n−nv−1 for each concrete feature value (recall l = nv+δ(nv+n)+2+n).
If we approximate all pdfs this way, for similar reasons as in Step 1, we obtain
a maximal additional error of 2−n−2 for any query.

Based on these observations, we define the final discretised measure space.
Specifically, we define the measure space Ma

K,n = (Ωa
K,n, Σa

K,n, μa
K,n), where

Ωa
K,n = Ω2 and μa

K,n is specified by

μa
K,n({w}) =

∏

α:p∈A
α∈w

p ·
∏

α:p∈A
α�∈w

(1 − p) ·
∏

g(a)∼f∈A
g(a,x)∈w

2−m〈f(x)〉l.

Note that μa
K,n({w}) can be evaluated in polynomial time, and can be repre-

sented with at most 2 + na · nb + nv · (m + l) bits, where na is the number of
discrete probability assertions and nb the maximal number of bits in a discrete
probability assertion.

Given a probabilistic KB K and a precision n ∈ N, we call the measure space
Ma

K,n constructed above the n-approximated probability measure space for K. We
have the following lemma.
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Table 2. Complexities of counting problems corresponding to prob. query entailment.

EL(R>)P ALC(R)P
AQs UCQs AQs UCQs

Data complexity #·P #·P #·coNP #·coNP

Combined Complexity #·P #·NP ExpTime ExpTime

Lemma 2. Let K = (T ,A) be a probabilistic KB, q a query, n ∈ N and Ma
K,n

the n-approximated probability measure space for K. Then,

μa
K,n({w ∈ Ωa

K,n | (T , w) |= q}) = 〈PK(q)〉n.

Note that one can test in polynomial time whether a given possible world
is in Ωa

K,n, and compute its probability in polynomial time. Using the observa-
tions from the beginning of this section, together with the complexity results
in Table 1, we can establish the upper bounds for data and combined complex-
ity shown in Table 2 on counting problems corresponding to probabilistic query
answering, which already hold for discrete probabilistic KBs without concrete
domain. To the best of our knowledge, only the data complexity for query answer-
ing in probabilistic EL has been considered in the literature before [19], while the
other results are new. For the ExpTime upper bounds, note that the approx-
imated measure space has at most exponentially many elements, and can thus
be constructed and checked in exponential time.

Hardness for all complexities already holds for discrete probabilistic KBs,
so that continuous, #·P-admissible probability distributions do not increase the
complexity of probabilistic query answering. A general #·P-lower bound follows
from the corresponding complexity of probabilistic query entailment in probabilis-
tic databases [11], while for the combined complexities in ALC(R)P , the lower
bound follows from the non-probabilistic case. For the remaining complexities,
we provide matching lower bounds for the corresponding counting problems in
the extended version of the paper using appropriate reductions. Specifically, we
show #·NP-hardness w.r.t. combined complexity under subtractive reductions in
the case of UCQ entailment in EL, and #·coNP-hardness w.r.t data complexity
under parsimonious reductions in the case of AQ entailment in ALC [13].

6 Conclusion

When numerical data are of an uncertain nature, such as data obtained by sensor
readings or video tracking, they can often be more precisely represented using
continuous probability distributions than using discrete distributions. While
there is work on OBQA for discrete probabilistic KBs in DL-Lite and EL [19],
this is the first work that considers KBs with concrete domains and continuous
probability distributions. For our complexity analysis, we devised a set of feasi-
bility conditions for probability distributions based on the complexity theory of
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real functions, which captures most typical distributions one might encounter in
realistic applications. We show that under these conditions, continuous proba-
bility distributions do not increase the complexity of probabilistic query entail-
ment. Using a similar technique as in [20, Chap. 5], our results can likely be
extended to a wider class of probability distributions, where the requirement of
P-computability is weakened to polynomial approximability.

For light-weight description logics, it is often possible to rewrite queries w.r.t
the ontology, so that they can be answered directly by a corresponding data-
base system. As there are probabilistic database systems like Orion 2.0 that
support continuous probability distributions [33], query rewriting techniques
for continuous probabilistic KBs could be employed in our setting as well. For
more expressive DLs, a practical implementation could be based on a less fine-
grained representation of measure spaces, for which relevant intervals for each
concrete feature value are determined based on the concrete domain predicates
in the TBox. Probabilities could then be computed using standard algorithms for
numerical integration. It might also be worth investigating whether Monte-Carlo
approximations can be used for practical implementations. However, as observed
in [19], this might be hard to accomplish already for discrete probabilistic EL
KBs. Another basis for practical implementations could be approximation tech-
niques developed for other logical frameworks involving continuous probability
distributions, such as the one presented in [8].
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