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Abstract. In contrast to qualitative linear temporal logics, which can
be used to state that some property will eventually be satisfied, met-
ric temporal logics allow to formulate constraints on how long it may
take until the property is satisfied. While most of the work on combin-
ing Description Logics (DLs) with temporal logics has concentrated on
qualitative temporal logics, there has recently been a growing interest in
extending this work to the quantitative case. In this paper, we comple-
ment existing results on the combination of DLs with metric temporal
logics over the natural numbers by introducing interval-rigid names. This
allows to state that elements in the extension of certain names stay in
this extension for at least some specified amount of time.

1 Introduction

Description Logics [8] are a well-investigated family of logic-based knowledge
representation languages, which provide the formal basis for the Web Ontology
Language OWL.1 As a consequence, DL-based ontologies are employed in many
application areas, but they are particularly successful in the medical domain
(see, e.g., the medical ontologies Galen and SNOMED CT2). For example, the
concept of a patient with a concussion can formally be expressed in DLs as
Patient� ∃finding.Concussion, which is built from the concept names (i.e., unary
predicates) Patient and Concussion and the role name (i.e., binary predicate)
finding using the concept constructors conjunction (�) and existential restric-
tion (∃r.C). Concepts and roles can then be used within terminological and
assertional axioms to state facts about the application domain, such as that
concussion is a disease (Concussion � Disease) and that patient Bob has a con-
cussion (Patient(BOB), finding(BOB,F1),Concussion(F1)).

This example, taken from [9], can also be used to illustrate a shortcom-
ing of pure DLs. For a doctor, it is important to know whether the concussed
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patient has lost consciousness, which is the reason why SNOMED CT contains
a concept for “concussion with no loss of consciousness” [19]. However, the
temporal pattern inherent in this concept (after the concussion, the patient
remained conscious until the examination) cannot be modeled in the DL used
for SNOMED CT.

To overcome the problem that pure DLs are not able to express such temporal
patterns, a great variety of temporal extensions of DLs have been investigated
in the literature.3 In the present paper, we concentrate on the DL ALC and
combine it with linear temporal logic (LTL), a point-based temporal logic whose
semantics assumes a linear flow of time. But even if these two logics are fixed,
there are several other design decisions to be made. One can either apply tempo-
ral operators only to axioms [9] or also use them within concepts [15,20]. With
the latter, one can then formalize “concussion with no loss of consciousness” by
the (temporal) concept

∃finding.Concussion � (Conscious U ∃procedure.Examination),

where U is the until -operator of LTL. With the logic of [9], one cannot formulate
temporal concepts, but could express that a particular patient, e.g., Bob, had
a concussion and did not lose consciousness until he was examined. Another
decision to be made is whether to allow for rigid concepts and roles, whose
interpretation does not vary over time. For example, concepts like Human and
roles like hasFather are clearly rigid, whereas Conscious and finding are flexible,
i.e., not rigid. If temporal operators can be used within concepts, rigid concepts
can be expressed using terminological axioms, but rigid roles cannot. In fact,
they usually render the combined logic undecidable [15, Proposition 3.34]. In
contrast, in the setting considered in [9], rigid roles do not cause undecidability,
but adding rigidity leads to an increase in complexity.

In this paper, we address a shortcoming of the purely qualitative temporal
description logics mentioned until now. The qualitative until-operator in our
example does not say anything about how long after the concussion that exam-
ination happened. However, the above definition of “concussion with no loss
of consciousness” is only sensible in case the examination took place in tempo-
ral proximity to the concussion. Otherwise, an intermediate loss of consciousness
could also have been due to other causes. As another example, when formulating
eligibility criteria for clinical trials, one needs to express quantitative temporal
patterns [12] like the following: patients that had a treatment causing a reaction
between 45 and 180 days after the treatment, and had no additional treatment
before the reaction:

Treatment � �(
(¬Treatment)U[45,180]Reaction

)
,

where � is the next-operator. On the temporal logic side, extensions of LTL by
such intervals have been investigated in detail [1,2,16]. Using the next-operator
of LTL as well as disjunction, their effect can actually be simulated within qual-
itative LTL, but if the interval boundaries are encoded in binary, this leads to
3 We refer the reader to [15,17] for an overview of the field of temporal DLs.
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an exponential blowup. The complexity results in [1] imply that this blowup
can in general not be avoided, but in [16] it is shown that using intervals of a
restricted form (where the lower bound is 0) does not increase the complexity
compared to the qualitative case. In [13], the combination of the DL ALC with
a metric extension of LTL is investigated. The paper considers both the case
where temporal operators are applied only within concepts and the case where
they are applied both within concepts and outside of terminological axioms. In
Sect. 2, we basically recall some of the results obtained in [13], but show that
they also hold if additionally temporalized assertional axioms are available.

In Sect. 3, we extend the logic LTLbin
ALC of Sect. 2 with interval-rigid names,

a means of expressiveness that has not been considered before. Basically, this
allows one to state that elements belonging to a concept need to belong to
that concept for at least k consecutive time points, and similarly for roles. For
example, according to the WHO, patients with paucibacillary leprosy should
receive MDT as treatment for 6 consecutive months,4 which can be expressed by
making the role getMDTagainstPB rigid for 6 time points (assuming that each
time point represents one month). In Sect. 4, we consider the effect of adding
interval-rigid concepts and roles as well as metric temporal operators to the
logic ALC-LTL of [9], where temporal operators can only be applied to axioms.
Interestingly, in the presence of rigid roles, interval-rigid concepts actually cause
undecidability. Without rigid roles, the addition of interval-rigid concepts and
roles leaves the logic decidable, but in some cases increases the complexity (see
Table 2). Finally, in Sect. 5 we investigate the complexity of this logic without
interval-rigid names, which extends the analysis from [9] to quantitative temporal
operators (see Table 3). An overview of the logics considered and their relations
is shown in Fig. 1. Detailed proofs of all results can be found in [7].

Fig. 1. Language inclusions, with languages investigated in this paper highlighted.
Dashed arrows indicate same expressivity.

Related Work. Apart from the above references, we want to point out work on
combining DLs with Halpern and Shoham’s interval logic [3,4]. This setting is
quite different from ours, since it uses intervals (rather than time points) as the
basic time units. In [6], the authors combine ALC concepts with the (qualitative)
operators ♦ (‘at some time point’) and � (‘at all time points’) on roles, but
do not consider quantitative variants. Recently, an interesting metric temporal
extension of Datalog over the reals was proposed, which however cannot express
interval-rigid names nor existential restrictions [11].
4 See http://www.who.int/lep/mdt/duration/en/.

http://www.who.int/lep/mdt/duration/en/
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2 The Temporal Description Logic LTLbin
ALC

We first introduce the description logic ALC and its metric temporal extension
LTLbin

ALC [13], which augments ALC by allowing metric temporal logic opera-
tors [1] both within ALC axioms and to combine these axioms. We actually
consider a slight extension of LTLbin

ALC by assertional axioms, and show that this
does not change the complexity of reasoning compared to the results of [13].

Syntax. Let NC, NR and NI be countably infinite sets of concept names, role
names, and individual names, respectively. An ALC concept is an expression
given by

C,D : := A | � | ¬C | C � D | ∃r.C,

where A ∈ NC and r ∈ NR. LTLbin
ALC concepts extend ALC concepts with the

constructors �C and C UID, where I is an interval of the form [c1, c2] or [c1,∞)
with c1, c2 ∈ N, c1 ≤ c2, given in binary. We may use [c1, c2) to abbreviate
[c1, c2 − 1], and similarly for the left endpoint. For example, AU[2,5)B � ∃r.�A

is an LTLbin
ALC concept.

An LTLbin
ALC axiom is either a general concept inclusion (GCI) of the form

C � D, or an assertion of the form C(a) or r(a, b), where C,D are LTLbin
ALC

concepts, r ∈ NR, and a, b ∈ NI. LTLbin
ALC formulae are expressions of the form

φ, ψ ::= α | � | ¬φ | φ ∧ ψ | �φ | φ UIψ,

where α is an LTLbin
ALC axiom.

Semantics. A DL interpretation I = (ΔI , ·I) over a non-empty set ΔI , called
the domain, defines an interpretation function ·I that maps each concept name
A ∈ NC to a subset AI of ΔI , each role name r ∈ NR to a binary relation rI

on ΔI and each individual name a ∈ NI to an element aI of ΔI , such that
aIi 
= bIi whenever a 
= b, a, b ∈ NI (unique name assumption). As usual, we
extend the mapping ·I from concept names to ALC concepts as follows:

�Ii := ΔI, (¬C)Ii := ΔI\CIi , (C � D)Ii := CIi ∩ DIi ,

(∃r.C)Ii := {d ∈ ΔI | ∃e ∈ CIi : (d, e) ∈ rIi}.

A (temporal DL) interpretation is a structure I = (ΔI, (Ii)i∈N), where each
Ii = (ΔI, ·Ii), i ∈ N, is a DL interpretation over ΔI (constant domain assump-
tion) and aIi = aIj for all a ∈ NI and i, j ∈ N, i.e., the interpretation of
individual names is fixed. The mappings ·Ii are extended to LTLbin

ALC concepts
as follows:

(�C)Ii := {d ∈ ΔI | d ∈ CIi+1},

(C UID)Ii := {d ∈ ΔI | ∃k : k − i ∈ I, d ∈ DIk , and ∀j ∈ [i, k) : d ∈ CIj }.

The concept C UID requires D to be satisfied at some point in the interval I,
and C to hold at all time points before that.



64 F. Baader et al.

The validity of an LTLbin
ALC formula φ in I at time point i ∈ N (written

I, i |= φ) is inductively defined as follows:

I, i |= C � D iff CIi ⊆ DIi I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= C(a) iff aIi ∈ CIi I, i |= �φ iff I, i + 1 |= φ
I, i |= r(a, b) iff (aIi , bIi) ∈ rIi I, i |= φ UIψ iff ∃k : k − i ∈ I, I, k |= ψ,
I, i |= ¬φ iff not I, i |= φ and ∀j ∈ [i, k) : I, j |= φ.

As usual, we define ⊥ := ¬�, C � D := ¬(¬C � ¬D), ∀r.C := ¬(∃r.¬C),
φ ∨ ψ := ¬(¬φ ∧ ¬ψ), α Uβ := α U[0,∞)β, ♦Iα := � UIα, �Iα := ¬♦I¬α,
♦α := � Uα, and �α := ¬♦¬α, where α, β are either concepts or formulae [8,15].
Note that, given the semantics of LTLbin

ALC , �α is equivalent to ♦[1,1]α.

Relation to LTLALC.The notation ·bin refers to the fact that the endpoints of the
intervals are given in binary. However, this does not increase the expressivity com-
pared to LTLALC [17], where only the qualitative U operator is allowed. In fact,
one can expand any formula φ U[c1,c2]ψ to

∨
c1≤i≤c2

(�iψ ∧
∧

0≤j<i �jφ), where
�i denotes i nested � operators, and similarly for concepts. Likewise, φ U[c1,∞)ψ

is equivalent to
( ∧

0≤i<c1
�iφ

)
∧ �c1φ Uψ. If this transformation is recursively

applied to subformulae, then the size of the resulting formula is exponential: ignor-
ing the nested � operators, its syntax tree has polynomial depth and an exponen-
tial branching factor; and the �i formulae have exponential depth, but introduce
no branching. This blowup cannot be avoided in general [1,13].

Reasoning. We are interested in the complexity of the satisfiability problem in
LTLbin

ALC , i.e., deciding whether there exists an interpretation I such that I, 0 |= φ
holds for a given LTLbin

ALC formula φ. We also consider a syntactic restriction
from [9]: we say that φ is an LTLbin

ALC formula with global GCIs if it is of the form�T ∧ ϕ, where T is a conjunction of GCIs and ϕ is an LTLbin
ALC formula that does

not contain GCIs. By satisfiability w.r.t. global GCIs we refer to the satisfiability
problem restricted to such formulae.

First Results. The papers [13,17] consider the reasoning problems of concept
satisfiability in LTLbin

ALC w.r.t. TBoxes (corresponding to formulae with global
GCIs and without assertions) and satisfiability of LTLbin

ALC temporal TBoxes (for-
mulae without assertions). However, these results from [13,17] can be extended
to our setting by incorporating named types into their quasimodel construction to
deal with assertions (see also [20], our Sect. 3, and [15, Theorem 2.27]).

Theorem 1. Satisfiability inLTLbin
ALC is 2-ExpSpace-complete, and ExpSpace-

complete w.r.t. global GCIs. In LTLALC, this problem is ExpSpace-complete, and
ExpTime-complete w.r.t. global GCIs.

Note that ExpSpace-completeness for LTLALC with assertions has already
been shown in [20]; we only state it here for completeness. In [13], also the inter-
mediate logic LTL0,∞

ALC was investigated, where only intervals of the form [0, c] and
[c,∞) are allowed. However, in [16], it was shown for a branching temporal logic
that U[0,c] can be simulated by the classical U operator, while only increasing the
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size of the formula by a polynomial factor. We extend this result to intervals of
the form [c,∞), and apply it to LTL0,∞

ALC .

Theorem 2. Any LTL0,∞
ALC formula can be translated in polynomial time into an

equisatisfiable LTLALC formula.

This reduction is quite modular; for example, if the formula has only global
GCIs, then this is still the case after the reduction. In fact, the reduction applies
to all sublogics of LTLbin

ALC that we consider in this paper. Hence, in the following
we do not explicitly consider logics with the superscript ·0,∞, knowing that they
have the same complexity as the corresponding temporal DLs using only U .

3 LTLbin
ALC with Interval-Rigid Names

In many temporal DLs, so-called rigid names are considered, whose interpretation
is not allowed to change over time. To formally define this notion, we fix a finite
set NRig ⊆ NC ∪ NR of rigid concept and role names, and require interpretations
I = (ΔI, (Ii)i∈N) to respect these names, in the sense that XIi = XIj should
hold for all X ∈ NRig and i, j ∈ N. It turns out that LTLbin

ALC can already express
rigid concepts via the (global) GCIs C � �C and ¬C � �¬C. The same does
not hold for rigid roles, which lead to undecidability even in LTLALC [15, Theo-
rem 11.1]. Hence, it is not fruitful to consider rigid names in LTLbin

ALC (they will
become meaningful later, when we look at other logics).

To augment the expressivity of temporal DLs while avoiding undecidability,
we propose interval-rigid names. In contrast to rigid names, interval-rigid names
only need to remain rigid for a limited period of time. Formally, we take a finite
set NIRig ⊆ (NC ∪ NR)\NRig of interval-rigid names, and a function iRig : NIRig →
N≥2. An interpretation I = (ΔI, (Ii)i∈N) respects the interval-rigid names if the
following holds for all X ∈ NIRig with iRig(X) = k, and i ∈ N:

For each d ∈ XIi , there is a time point j ∈ N such that i ∈ [j, j + k) and
d ∈ XI� for all � ∈ [j, j + k).

Intuitively, any element (or pair of elements) in the interpretation of an interval-
rigid name must be in that interpretation for at least k consecutive time points.
We call such a name k-rigid. The names in (NC ∪ NR)\(NRig ∪ NIRig) are called
flexible. For simplicity, we assume that iRig assigns 1 to all flexible names.

We investigate the complexity of satisfiability w.r.t. (interval-)rigid names (or
(interval-)rigid concepts if NIRig ⊆ NC / NRig ⊆ NC), which is defined as before,
but considers only interpretations that respect (interval-)rigid names. Note that
(interval-)rigid roles can be used to simulate (interval-)rigid concepts via existen-
tial restrictions ∃r.� (e.g., see [9]). Therefore, it is not necessary to consider the
case where only role names can be (interval-)rigid. The fact that NRig and NIRig

are finite is not a restriction, as formulae can only use finitely many names. We
assume that the values of iRig are given in binary.
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Table 1 summarizes our results for LTLbin
ALC . Since interval-rigid concepts A

can be simulated by conjuncts of the form
(
A � �[0,k)A

)
∧ �(

¬A � �(¬A � �[0,k)A)
)
,

Theorem 1 directly yields the complexity results in the right column (again, for
sublogics of LTLbin

ALC this is not always so easy). The GCI A � �[0,k)A that applies
only to the first time point does not affect the complexity results, even if we restrict
all other GCIs to be global.

Table 1. Complexity of satisfiability in LTLbin
ALC w.r.t. interval-rigid names. For (*), we

have 2-ExpTime-completeness for the temporal semantics based on Z (Theorem 5).

NIRig ⊆ NC ∪ NR NIRig ⊆ NC

LTLbin
ALC 2-ExpSpace ≤ [Theorem 4] 2-ExpSpace ≥ [13]

LTLbin
ALC ,

global GCIs
2-ExpTime-hard (*) ExpSpace ≥ [2], ≤ [Theorem 1]

LTLALC 2-ExpTime-hard ExpSpace ≥ [15], ≤ [20]

LTLALC ,
global GCIs

2-ExpTime-hard [Theorem 7] ExpTime ≥ [18], ≤ [Theorem 1]

The complexity of LTLbin
ALC with interval-rigid roles is harder to establish. We

first show in Sect. 3.1 that the general upper bound of 2-ExpSpace still holds, by
a novel quasimodel construction. For global GCIs, we show 2-ExpTime-hardness
in Sect. 4, by an easy adaption of a reduction from [9]. We show 2-ExpTime-
completeness if we modify the temporal semantics to be infinite in both direc-
tions, i.e., replace N by Z in the definition of interpretations (see Sect. 3.2). We
leave the case for the semantics based on N as future work. To simplify the proofs
of the upper bounds, we usually assume that NIRig ⊆ NR since interval-rigid con-
cepts can be simulated. Moreover, for this section we assume that NRig is empty,
as rigid concepts do not affect the complexity of LTLbin

ALC , and rigid roles make
satisfiability undecidable.

3.1 Satisfiability Is in 2-ExpSpace

For the 2-ExpSpace upper bound, we extend the notion of quasimodels from [13].
In [13], quasimodels are abstractions of interpretations in which each time point
is represented by a quasistate, which contains types. Each type describes the inter-
pretation for a single domain element, while a quasistate collects the information
about all domain elements at a single time point. Central for the complexity results
in [13] is that every satisfiable formula has a quasimodel of a certain regular form,
which can be guessed and checked in double exponential space. To handle interval-
rigid roles, we extend this approach so that each quasistate additionally provides
information about the temporal evolution of domain elements over a window of
fixed width, and show that under this extended notion, satisfiability is still cap-
tured by the existence of regular quasimodels.
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We now formalize this intuition. Let ϕ be an LTLbin
ALC formula. Denote by

csub(ϕ)/fsub(ϕ)/ind(ϕ)/rol(ϕ) the set of all concepts/formulae/individuals/roles
occurring in ϕ, by clc(ϕ) the closure of csub(ϕ) ∪ {C UD | C U[c,∞)D ∈ csub(ϕ)}
under single negations, and likewise for clf(ϕ) and fsub(φ). A concept type for ϕ is
any subset t of clc(ϕ) ∪ ind(ϕ) such that

T1 ¬C ∈ t iff C 
∈ t, for all ¬C ∈ clc(ϕ);
T2 C � D ∈ t iff C,D ∈ t, for all C � D ∈ clc(ϕ); and
T3 t contains at most one individual name.

Similarly, we define formula types t ⊆ clf(ϕ) by the following conditions:

T1’ ¬α ∈ t iff α 
∈ t, for all ¬α ∈ clf(ϕ); and
T2’ α ∧ β ∈ t iff α, β ∈ t, for all α ∧ β ∈ clf(ϕ).

Intuitively, a concept type describes one domain element at a single time
point, while a formula type expresses constraints on all domain elements. If
a ∈ t ∩ ind(ϕ), then t describes an named element, and we call it a named type.

To put an upper bound on the time window we have to look at, we consider
the largest number occurring in ϕ and iRig, and denote it by �ϕ. Then, a (con-
cept/formula) run segment for ϕ is a sequence σ = σ(0) . . . σ(�ϕ) composed exclu-
sively of concept or formula types, respectively, such that

R1 �α ∈ σ(0) iff α ∈ σ(1), for all �α ∈ cl∗(ϕ);
R2 for all a ∈ ind(ϕ) an n ∈ (0, �ϕ], we have a ∈ σ(0) iff a ∈ σ(n);
R3 for all α UIβ ∈ cl∗(ϕ), we have α UIβ ∈ σ(0) iff (a) there is j ∈ I ∩ [0, �ϕ] such

that β ∈ σ(j) and α ∈ σ(i) for all i ∈ [0, j), or (b) I is of the form [c,∞) and
α, α Uβ ∈ σ(i) for all i ∈ [0, �ϕ],

where cl∗ is either clc or clf (as appropriate), and R2 does not apply to formula
run segments. A concept run segment captures the evolution of a domain element
over a sequence of �ϕ +1 time points, and a formula run segment describes general
constraints on the interpretation over a sequence of �ϕ + 1 time points.

The evolution over the complete time line is captured by (concept/formula)
runs for ϕ, which are infinite sequences r = r(0)r(1) . . . such that each subse-
quence of length �ϕ + 1 is a (concept/formula) run segment, and additionally

R4 α U[c,∞)β ∈ r(n) implies that there is j ≥ n + c such that β ∈ r(j) and
α ∈ r(i) for all i ∈ [n, j).

A concept run (segment) is named if it contains only (equivalently, any) named
types. We may write ra (σa) to denote a run (segment) that contains an individual
name a. For a run (segment) σ, we write σ>i for the subsequence of σ starting at
i + 1, σ<i for the one stopping at i − 1, and σ[i,j] for σ(i) . . . σ(j).

Since we cannot explicitly represent infinite runs, we use run segments to con-
struct them step-by-step. For this, it is important that a set of concept runs (seg-
ments) can actually be composed into a coherent model. In particular, we have to
take care of (interval-rigid) role connections between elements. A role constraint
for ϕ is a tuple (σ, σ′, s, k), where σ, σ′ are concept run segments, s ∈ rol(ϕ), and
k ∈ [1, iRig(s)], such that
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C1 {¬C | ¬∃s.C ∈ σ(0)} ⊆ σ′(0); and
C2 if σ′ is named, then σ is also named.

We write σ s
k σ′ as a shorthand for the role constraint (σ, σ′, s, k). Intuitively, σ s

k σ′

means that the domain elements described by σ(0), σ′(0) are connected by the
role s at the current time point, and also at the k − 1 previous time points. In
this case, we need to ensure that these elements stay connected for at least the
following iRig(s) − k time points. Condition C1 ensures that, if σ(0) cannot have
any s-successors that satisfy C, then σ′(0) does not satisfy C.

We can now describe the behaviour of a whole interpretation and its elements
at a single time point, together with some bounded information about the future
(up to �ϕ time points). A quasistate for ϕ is a pair Q = (RQ, CQ), where RQ is a
set of run segments and CQ a set of role constraints over RQ such that

Q1 RQ contains exactly one formula run segment σQ;
Q2 RQ contains exactly one named run segment σa for each a ∈ ind(ϕ);
Q3 for all C � D ∈ clf(ϕ), we have C � D ∈ σQ(0) iff C ∈ σ(0) implies D ∈ σ(0)

for all concept run segments σ ∈ RQ;
Q4 for all C(a) ∈ clf(ϕ), we have C(a) ∈ σQ(0) iff C ∈ σa(0);
Q5 for all s(a, b) ∈ clf(ϕ), we have s(a, b) ∈ σQ(0) iff σa

s
k σb ∈ CQ for some

k ∈ [1, iRig(s)]; and
Q6 for all σ ∈ RQ and ∃s.D ∈ σ(0), there is σ s

k σ′ ∈ CQ with D ∈ σ′(0) and
k ∈ [1, iRig(s)].

We next capture when quasistates can be connected coherently to an infinite
sequence. A pair (Q,Q′) of quasistates is compatible if there is a compatibility rela-
tion π ⊆ RQ × RQ′ such that

C3 every run segment in RQ and RQ′ occurs at least once in the domain and
range of π, respectively;

C4 each pair (σ, σ′) ∈ π satisfies σ>0 = σ′<�ϕ ;
C5 for all (σ1, σ

′
1) ∈ π and σ1

s
k σ2 ∈ Q with k < iRig(s), there is σ′

1
s

k+1 σ′
2 ∈ Q′

with (σ2, σ
′
2) ∈ π; and

C6 for all (σ1, σ
′
1) ∈ π and σ′

1
s

k+1 σ′
2 ∈ Q′ with k > 1, there is σ1

s
k σ2 ∈ Q with

(σ2, σ
′
2) ∈ π.

Such a relation makes sure that we can combine run segments of consecutive qua-
sistates such that the interval-rigid roles are respected. Note that the unique for-
mula run segments must be matched to each other, and likewise for the named run
segments. Moreover, the set of all compatibility relations for a pair of quasistates
(Q,Q′) is closed under union, which means that compatible quasistates always
have a unique maximal compatibility relation (w.r.t. set inclusion).

To illustrate this, consider Fig. 2, showing a sequence of pairwise compatible
quasistates, each containing two run segments. Here, �ϕ = iRig(s) = 3. The rela-
tions π0, π1, and π2 satisfy Conditions C3–C6, which, together with C1 and C2,
ensure that a run going through the types t1, t2, t3, and t4 can be connected to
another run via the role s for at least 3 consecutive time points.

Finally, a quasimodel for ϕ is a pair (S,R), where S is an infinite sequence of
compatible quasistates S(0)S(1) . . . and R is a non-empty set of runs, such that
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Fig. 2. Illustration of role constraints and compatibility relations.

M1 the runs in R are of the form σ0(0)σ1(0)σ2(0) . . . such that, for every i ∈ N,
we have (σi, σi+1) ∈ πi, where πi is the maximal compatibility relation for the
pair (S(i), S(i + 1));

M2 for every σ ∈ RS(i), there exists a run r ∈ R with r[i,i+�ϕ] = σ;
M3 every role constraint in S(0) is of the form σ1

s
1 σ2; and

M4 ϕ ∈ σS(0)(0).

By M1, the runs σ0(0)σ1(0)σ2(0) . . . always contain the whole run segments
σ0, σ1, σ2, . . . , since we have σ1(0) = σ0(1), σ2(0) = σ0(2), and so on. Moreover,R
always contains exactly one formula run and one named run for each a ∈ ind(ϕ).

We can show that every quasimodel describes a satisfying interpretation for ϕ
and, conversely, that every such interpretation can be abstracted to a quasimodel.
Moreover, one can always find a quasimodel of a regular shape.

Lemma 3. An LTLbin
ALC formula ϕ is satisfiable w.r.t. interval-rigid names iff ϕ

has a quasimodel (S,R) in which S is of the form

S(0) . . . S(n)(S(n + 1) . . . S(n + m))ω,

where n and m are bounded triple exponentially in the size of ϕ and iRig.

This allows us to devise a non-deterministic 2-ExpSpace algorithm that
decides satisfiability of a given LTLbin

ALC formula. Namely, we first guess n and m,
and then the quasistates S(0), . . . , S(n+m) one after the other. To show that this
sequence corresponds to a quasimodel as in Lemma 3, note that only three quasi-
states have to be kept in memory at any time, the sizes of which are double expo-
nentially bounded in the size of the input: the current quasistate, the next qua-
sistate, and the first repeating quasistate S(n + 1). 2-ExpSpace-hardness holds
already for the case without interval-rigid names or assertions [13].

Theorem 4. Satisfiability in LTLbin
ALC with respect to interval-rigid names is 2-

ExpSpace-complete.

3.2 Global GCIs

For LTLbin
ALC formulae with global GCIs, we can show a tight (2-ExpTime) com-

plexity bound only if we consider a modified temporal semantics that uses Z
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instead of N. With a semantics over Z, every satisfiable formula has a quasimodel
in which the unnamed run segments and role constraints are the same for all qua-
sistates. This is not the case if the semantics is only defined for N, since then a
quasistate at time point 1 can have role constraints σ s

k σ′ with k > 1, whereas
one at time point 0 cannot (see M3).

Hence, interpretations are now of the form I = (ΔI, (Ii)i∈Z), where ΔI is a
constant domain and Ii are classical DL interpretations, as before. Recall that an
LTLbin

ALC formula with global GCIs is an LTLbin
ALC formula of the form �T ∧ φ,

where T is a conjunction of GCIs and φ is an LTLbin
ALC formula that does not con-

tain GCIs. In order to enforce our GCIs on the whole time line (including the time
points before 0), we replace �T with �−

+ in that definition, where �−
+T expresses

that in all models I, I, i |= T for all i ∈ Z. We furthermore slightly adapt some of
the notions introduced in Sect. 3.1. First, to ensure that GCIs hold on the whole
time line, we require (in addition to T1’ and T2’) that all formula types contain
all GCIs from T . Additionally, we adapt the notions of runs . . . r(−1)r(0)r(1) . . .
and sequences . . . S(−1)S(0)S(1) . . . of quasistates to be infinite in both direc-
tions. Hence, we can now drop Condition M3, reflecting the fact that, over Z, role
connections can exist before time point 0. All other definitions remain unchanged.

The complexity proof follows a similar idea as in the last section. We first
show that every formula is satisfiable iff it has a quasimodel of a regular shape,
which now is also constant in its unnamed part, in the sense that, if unnamed run
segments and role constraints occur in S(i), then they also occur in S(j), for all
i, j ∈ Z. This allows us to devise an elimination procedure (in the spirit of [17,
Theorem 3] and [13, Theorem 2]), with the difference that we eliminate run seg-
ments and role constraints instead of types, which gives us a 2-ExpTime upper
bound. The matching lower bound can be shown similarly to Theorem 7 in Sect. 4.

Theorem 5. Satisfiability in LTLbin
ALC w.r.t. interval-rigid names and global GCIs

over Z is 2-ExpTime-complete.

4 ALC-LTLbin with Interval-Rigid Names

After the very expressive DL LTLbin
ALC , we now focus on its sublogic ALC-LTLbin,

which does not allow temporal operators within concepts (cf. [9]). That is, an
ALC-LTLbin formula is an LTLbin

ALC formula in which all concepts are ALC con-
cepts. Recall that ALC-LTL, which has been investigated in [9] (though not with
interval-rigid names), restricts ALC-LTLbin to intervals of the form [0,∞). In this
section, we show several complexity lower bounds that already hold for ALC-LTL
with interval-rigid names. As done in [9], for brevity, we distinguish here the vari-
ants with global GCIs by the subscript ·|gGCI . In contrast to LTLbin

ALC , in ALC-LTL
rigid concepts cannot be simulated by GCIs and rigid roles do not lead to undecid-
ability [9]. Hence, we investigate here also the settings with rigid concepts and/or
roles.

The results of this section are summarized in Table 2. Central to our hard-
ness proofs is the insight that interval-rigid concepts can express the operator �



Metric Temporal Description Logics with Interval-Rigid Names 71

on the concept level. In particular, we show that the combination of rigid roles
with interval-rigid concepts already leads to undecidability, by a reduction from a
tiling problem. If rigid names are disallowed, but we have interval-rigid names, we
can only show 2-ExpTime-hardness. If only interval-rigid concepts are allowed,
then satisfiability is ExpSpace-hard. All of these hardness results already hold
for ALC-LTL, and some of them even with global GCIs.

Table 2. Complexity of satisfiability in ALC-LTLbin w.r.t. (interval-)rigid names.

NIRig ⊆ NC, NRig ⊆
NC ∪ NR

NIRig ⊆ NC ∪ NR,
NRig ⊆ NC or NRig = ∅

NIRig ⊆ NC, NRig ⊆
NC or NRig = ∅

ALC-LTLbin Undec. 2-ExpTime-hard ExpSpace ≤
[Theorem 1]

ALC-LTLbin
|gGCI Undec. 2-ExpTime-hard ExpSpace = [2]

ALC-LTL Undec. 2-ExpTime-hard ExpSpace ≥
[Theorem 8]

ALC-LTL|gGCI Undec. [Theorem 6] 2-ExpTime-hard
[Theorem 7]

ExpTime ≥ [18],
≤ [Theorem 1]

4.1 Rigid Roles and Interval-Rigid Concepts

We show that satisfiability of ALC-LTL with rigid roles and interval-rigid concepts
is undecidable, even if we only allow global GCIs. Our proof is by a reduction from
the following tiling problem.

Given a finite set of tile types T with horizontal and vertical compatibility
relations H and V , respectively, and t0 ∈ T , decide whether one can tile
N × N with t0 appearing infinitely often in the first row.

We define an ALC-LTL|gGCI formula φT that expresses this property. In our
encoding, we use the following names:

– a rigid role name r to encode the vertical dimension of the N × N grid;
– flexible concept names A0, A1, A2 to encode the progression along the horizon-

tal (temporal) dimension; for convenience, we consider all superscripts mod-
ulo 3, i.e., we have A3 = A0 and A−1 = A2;

– flexible concept names Pt, t ∈ T , to denote the current tile type;
– 2-rigid concept names N0

t , N1
t , N2

t , for the horizontally adjacent tile type;
– an individual name a denotes the first row of the grid.

We define φT as the conjunction of the following ALC-LTL|gGCI formulae.
First, every domain element must have exactly one tile type:

�(
� �

⊔

t∈T

(
Pt �

�

t′∈T, t	=t′
¬Pt′

))
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For the vertical dimension, we enforce an infinite rigid r-chain starting from a,
and restrict adjacent tile types to be compatible:

�(� � ∃r.�), �(
Pt �

⊔

(t,t′)∈V

∀r.Pt′
)

For each time point i, we mark all individuals along the r-chain with the con-
cept name A(imod 3), by using the following formulae, for 0 ≤ i ≤ 2:

A0(a), �(
Ai(a) → �Ai+1(a)

)
, �(Ai � ¬Ai+1 � ∀r.Ai)

To encode the compatibility of horizontally adjacent tiles, we add the following
formulae, for 0 ≤ i ≤ 2 and t ∈ T :

�(
Pt � Ai �

⊔

(t,t′)∈H

N i
t′

)
, �(N i

t � Ai+1 � Pt), �(Ai−1 � ¬N i
t )

These express that any domain element with tile type t (expressed by Pt) at a
time point marked with Ai must have a compatible type t′ at the next time point
(expressed by N i

t′). Since all N i
t′ are false at the previous time point (designated

by Ai−1) and iRig(N i
t′) = 2, any N i

t′ that holds at the current time point is still
active at the next time point (described by Ai+1), where it then implies Pt′ .

Finally, we express the condition on t0 via the formula �♦Pt0(a). We now
obtain the claimed undecidability from known results about the tiling prob-
lem [14].

Theorem 6. Satisfiability in ALC-LTL|gGCI w.r.t. rigid roles and interval-rigid
concepts is Σ1

1 -hard, and thus not even recursively enumerable.

4.2 Interval-Rigid Roles

Since rigid roles cause undecidability, we consider the case where instead only
interval-rigid roles (and concepts) are allowed, and obtain 2-ExpTime-hardness
by an easy adaptation of a result for ALC-LTL|gGCI with rigid roles from [9].

Theorem 7. Satisfiability in ALC-LTL|gGCI with respect to interval-rigid names
is 2-ExpTime-hard.

4.3 Rigid and Interval-Rigid Concepts

As the last setting, we consider the case where only concept names can be rigid
or interval-rigid, and show ExpSpace-completeness. For the upper bound, recall
from Sect. 3 that rigid concepts and interval-rigid concepts are expressible in
LTL0,∞

ALC via global GCIs, so that we can apply Theorem 1. The same observation
yields an ExpTime upper bound for satisfiability in ALC-LTL w.r.t. global GCIs,
which is tight since satisfiability in ordinary ALC is already ExpTime-hard [18].
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We show theExpSpace lower bound by a reduction from satisfiability of ALC-
LTL�, the extension of ALC-LTL in which � can be applied to concepts, to sat-
isfiability of ALC-LTL w.r.t. interval-rigid concepts. It is shown in [15, Theo-
rem 11.33] that satisfiability in (a syntactic variant of) ALC-LTL� is ExpSpace-
hard. To simulate � using interval-rigid concept names, we use a similar construc-
tion as in Sect. 4.1, where we mark all individuals at time point i with A(imod 3),
and use 2-rigid concept names to transfer information between time points. More
precisely, we first define an ALC-LTL formula ψ as the conjunction of the following
formulae, where 0 ≤ i ≤ 2:

(� � A0), �((� � Ai) → �(� � Ai+1)), �(Ai � ¬Ai+1)

We now simulate concepts of the form �C via fresh, 2-rigid concept names
Ai�C

, 0 ≤ i ≤ 2. Given any ALC-LTL� formula α (resp., ALC-LTL� concept D),
we denote by α� (resp., D�) the result of replacing each outermost concept of the
form �C in α (resp., D) by

⊔

0≤i≤2

(Ai�C � Ai).

To express the semantics of �C, we use the conjunction ψ�C of the following for-
mulae (where the replacement operator ·� is applied to the inner concept C):

�(Ai�C � Ai+1 � C�), �(C� � Ai+1 � Ai�C), �(Ai−1 � ¬Ai�C)

As in Sect. 4.1, Ai�C
must either be satisfied at both time points designated by Ai

and Ai+1, or at neither of them. Furthermore, an individual satisfies �C iff it sat-
isfies Ai�C

�Ai for some i, 0 ≤ i ≤ 2. One can show that an ALC-LTL� formula φ

is satisfiable iff the ALC-LTL formula φ� ∧ ψ ∧
∧�C∈csub(φ) ψ�C is satisfiable.

Theorem 8. Satisfiability in ALC-LTL with respect to interval-rigid concepts is
ExpSpace-hard.

5 ALC-LTLbin Without Interval-Rigid Names

To conclude our investigation of metric temporal DLs, we consider the setting of
ALC-LTLbin without interval-rigid names. Table 3 summarizes the results of this
section, where we also include the known results about ALC-LTL for compari-
son [9]. Observe that all lower bounds follow from known results. In particular,
ExpSpace-hardness for ALC-LTLbin

|gGCI is inherited from LTLbin [1,2], while rigid
role names increase the complexity to 2-ExpTime in ALC-LTL|gGCI [9].

The upper bounds can be shown using a unified approach that was first pro-
posed in [9]. The idea is to split the satisfiability test into two parts: one for
the temporal and one for the DL dimension. In what follows, let φ be an ALC-
LTLbin formula. The propositional abstraction φp is the propositional LTLbin for-
mula obtained from φ by replacing every ALC axiom by a propositional variable
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Table 3. Complexity of satisfiability in ALC-LTLbin without interval-rigid names.

NRig ⊆ NC ∪ NR NRig ⊆ NC NRig = ∅
ALC-LTLbin 2-ExpTime ≤

[Theorem 10]
ExpSpace ≤
[Theorem 10]

ExpSpace

ALC-LTLbin
|gGCI 2-ExpTime ExpSpace ExpSpace ≥ [1]

ALC-LTL 2-ExpTime NExpTime [9] ExpTime ≤ [9]

ALC-LTL|gGCI 2-ExpTime ≥ [9] ExpTime ≤ [9] ExpTime ≥ [18]

in such a way that there is a 1:1 relationship between the ALC axioms α1, . . . , αm

occurring in φ and the propositional variables p1, . . . , pm in φp.
The goal is to try to find a model of φp and then use it to construct a model of φ

(if such a model exists). While satisfiability of φ implies that φp is also satisfiable,
the converse is not true. For example, the propositional abstraction p ∧ q ∧ ¬r of
φ = A � B ∧ A(a) ∧ ¬B(a) is satisfiable, while φ is not. To rule out such cases,
we collect the propositional worlds occurring in a model of φp into a (non-empty)
set W ⊆ 2{p1,...,pm}, which is then used to check the satisfiability of the original
formula (w.r.t. rigid names). This is captured by the LTLbin formula φp

W := φp ∧
φW , where φW is the (exponential) LTL formula

� ∨

W∈W

⎛

⎝
∧

p∈W

p ∧
∧

p∈W

¬p

⎞

⎠

in which W := {p1, . . . , pm}\W denotes the complement of W . The formula φp
W

states that, when looking for a propositional model of φp, we are only allowed to
use worlds from W.

Since satisfiability of φ implies satisfiability of φp
W for some W, we can proceed

as follows: choose a set of worlds W, test whether φp
W is satisfiable, and then check

whether a model with worlds from W can indeed be lifted to a temporal DL inter-
pretation (respecting rigid names). To check the latter, we consider the conjunc-
tion

∧
pj∈W αj ∧

∧
pj∈W ¬αj for every W ∈ W. However, the rigid names require

that all these conjunctions are simultaneously checked for satisfiability. To tell
apart the flexible names X occurring in different elements of W = {W1, . . . ,Wk},
we introduce copies X(i) for all i ∈ [1, k]. The axioms α

(i)
j are obtained from αj by

replacing every flexible name X by X(i), which yields the following conjunction
of exponential size:

χW :=
k∧

i=1

( ∧

pj∈Wi

α
(i)
j ∧

∧

pj∈Wi

¬α
(i)
j

)
.

The following characterization from [9] can be easily adapted to our setting:

Lemma 9 (Adaptation of [9]). An ALC-LTLbin formula φ is satisfiable w.r.t.
rigid names iff a set W ⊆ 2{p1,...,pm} exists so that φp

W and χW are both satisfiable.
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To obtain the upper bounds in Table 3, recall from Sect. 2 that there is an expo-
nentially larger LTL formula φp′ that is equivalent to the LTLbin formula φp. Since
φW is also an LTL formula of exponential size, satisfiability of the conjunction
φp′ ∧ φW can be checked in ExpSpace. Since the complexity of the satisfiabil-
ity problem for χW remains the same as in the case of ALC-LTL, we obtain the
claimed upper bounds from the techniques in [9]. This means that, in most cases,
the complexity of the DL part is dominated by the ExpSpace complexity of the
temporal part. The only exception is the 2-ExpTime-bound for ALC-LTLbin with
rigid names.

Theorem 10. Satisfiability in ALC-LTLbin is in 2-ExpTime w.r.t. rigid names,
and in ExpSpace w.r.t. rigid concepts.

6 Conclusions

We investigated a series of extensions of LTLALC and ALC-LTL with interval-rigid
names and metric temporal operators, with complexity results ranging from Exp-
Time to 2-ExpSpace. Some cases were left open, such as the precise complexity
of LTLbin

ALC with global GCIs, for which we have a partial result for the temporal
semantics based on Z. Nevertheless, this paper provides a comprehensive guide to
the complexities faced by applications that want to combine ontological reasoning
with quantitative temporal logics.

In principle, the arguments for ALC-LTLbin in Sect. 5 are also applicable if we
replace ALC by the light-weight DLs DL-Lite or EL, yielding tight complexity
bounds based on the known results from [5,10]. It would be interesting to investi-
gate temporal DLs based on DL-Lite and EL with interval-rigid roles and metric
operators.
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