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Abstract. Finding solution values for unknowns in Boolean equations
was a principal reasoning mode in the Algebra of Logic of the 19th cen-
tury. Schröder investigated it as Auflösungsproblem (solution problem).
It is closely related to the modern notion of Boolean unification. Today
it is commonly presented in an algebraic setting, but seems potentially
useful also in knowledge representation based on predicate logic. We
show that it can be modeled on the basis of first-order logic extended
by second-order quantification. A wealth of classical results transfers,
foundations for algorithms unfold, and connections with second-order
quantifier elimination and Craig interpolation show up.

1 Introduction

Finding solution values for unknowns in Boolean equations was a principal rea-
soning mode in the Algebra of Logic of the 19th century. Schröder [27] investi-
gated it as Auflösungsproblem (solution problem). It is closely related to the mod-
ern notion of Boolean unification. For a given formula that contains unknowns
formulas are sought such that after substituting the unknowns with them the
given formula becomes valid or, dually, unsatisfiable. Of interest are also most
general solutions, condensed representations of all solution substitutions. A cen-
tral technique there is the method of successive eliminations, which traces back
to Boole. Schröder investigated reproductive solutions as most general solutions,
anticipating the concept of most general unifier . A comprehensive modern for-
malization based on this material, along with historic remarks, is presented by
Rudeanu [23] in the framework of Boolean algebra. In automated reasoning vari-
ants of these techniques have been considered mainly in the late 80s and early 90s
with the motivation to enrich Prolog and constraint processing by Boolean unifi-
cation with respect to propositional formulas handled as terms [8,15,16,20–22].
An early implementation based on [23] has been also described in [29]. An
implementation with BDDs of the algorithm from [8] is reported in [9]. The
ΠP

2 -completeness of Boolean unification with constants was proven only later
in [15,16] and seemingly independently in [2]. Schröder’s results were developed
further by Löwenheim [18,19]. A generalization of Boole’s method beyond propo-
sitional logic to relational monadic formulas has been presented by Behmann in
the early 1950s [5,6]. Recently the complexity of Boolean unification in a predi-
cate logic setting has been investigated for some formula classes, in particular for
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quantifier-free first-order formulas [12]. A brief discussion of Boolean reasoning
in comparison with predicate logic can be found in [7].

Here we remodel the solution problem formally along with basic classi-
cal results and some new generalizations in the framework of first-order logic
extended by second-order quantification. The main thesis of this work is that it
is possible and useful to apply second-order quantification consequently through-
out the formalization. What otherwise would require meta-level notation is then
expressed just with formulas. As will be shown, classical results can be repro-
duced in this framework in a way such that applicability beyond propositional
logic, possible algorithmic variations, as well as connections with second-order
quantifier elimination and Craig interpolation become visible. As demonstrated
in [30], the foundations developed here are adequate as basis for adaptions of
further classical material, notably reproductive solutions, and for further studies
such as the investigation of certain special cases for which constructive solu-
tion methods are available and a generalization of the solution problem where
vocabulary restrictions are taken into account.

The envisaged application scenario is to let solving “solution problems”, or
Boolean equation solving, on the basis of predicate logic join reasoning modes
like second-order quantifier elimination (or “semantic forgetting”), Craig inter-
polation and abduction to support the mechanized reasoning about relationships
between theories and the extraction or synthesis of subtheories with given prop-
erties. On the practical side, the aim is to relate it to reasoning techniques such
as Craig interpolation on the basis of first-order provers, SAT and QBF solv-
ing, and second-order quantifier elimination based on resolution [14] and the
Ackermann approach [11]. Numerous applications of Boolean equation solving
in various fields are summarized in [24, Chap. 14]. Applications in automated
theorem proving and proof compression are mentioned in [12, Sect. 7]. The pre-
vention of certain redundancies has been described as application of (concept)
unification in description logics [4]. In [30] the synthesis of definitional equiva-
lences is sketched as an application.

The rest of the paper is structured as follows: Notation, in particular for
substitution in formulas, is introduced in Sect. 2. In Sect. 3 a formalization of the
solution problem is presented and related to different points of view. Section 4
is concerned with abstract properties of and algorithmic approaches to solution
problems with several unknowns. Conditions under which solutions exist are
discussed in Sect. 5. Section 6 closes the paper with concluding remarks.

2 Notation and Preliminaries

2.1 Notational Conventions

We consider formulas in first-order logic extended by second-order quantification
upon predicates. They are constructed from atoms, constant operators �, ⊥,
the unary operator ¬, binary operators ∧,∨ and quantifiers ∀,∃ with their usual
meaning. Further binary operators →,←,↔, as well as n-ary versions of ∧ and ∨
can be understood as meta-level notation. The operators ∧ and ∨ bind stronger
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than →, ← and ↔. The scope of ¬, the quantifiers, and the n-ary connectives is
the immediate subformula to the right. A subformula occurrence has in a given
formula positive (negative) polarity if it is in the scope of an even (odd) number
of negations.

A vocabulary is a set of symbols, that is, predicate symbols (briefly predicates),
function symbols (briefly functions) and individual symbols. (Individual symbols
are not partitioned into variables and constants. Thus, an individual symbol is –
like a predicate – considered as variable if and only if it is bound by a quantifier.)
The arity of a predicate or function s is denoted by arity(s). The set of symbols
that occur free in a formula F is denoted by free(F ). Symbols not present in the
formulas and other items under discussion are called fresh. We write F |= G for
F entails G ; |= F for F is valid ; and F ≡ G for F is equivalent to G , that is,
F |= G and G |= F .

We write sequences of symbols, of terms and of formulas by juxtaposition.
Their length is assumed to be finite. The empty sequence is written ε. A sequence
with length 1 is not distinguished from its sole member. In contexts where a set
is expected, a sequence stands for the set of its members. Atoms are written
in the form p(t), where t is a sequence of terms whose length is the arity of
the predicate p. Atoms of the form p(ε), that is, with a nullary predicate p, are
written also as p. For a sequence of fresh symbols we assume that its members
are distinct. A sequence p1 . . . pn of predicates is said to match another sequence
q1 . . . qm if and only if n = m and for all i ∈ {1, . . . , n} it holds that arity(pi) =
arity(qi). If s = s1 . . . sn is a sequence of symbols, then ∀s stands for ∀s1 . . . ∀sn
and ∃s for ∃s1 . . . ∃sn.

As explained below, in certain contexts the individual symbols in the set
X = {xi | i ≥ 1} play a special role. For example in the following shorthands for a
predicate p, a formula F and x = x1 . . . xarity(p): p ⇔ F stands for ∀x (p(x) ↔ F );
p �⇔ F for ¬(p ⇔ F ); p ⇒ F for ∀x (p(x) → F ); and p ⇐ F for ∀x (p(x) ← F ).

2.2 Substitution with Terms and Formulas

To express systematic substitution of individual symbols and predicates concisely
we use the following notation:

– F (c) and F (t) – Notational Context for Substitution of Individual Symbols.
Let c = c1 . . . cn be a sequence of distinct individual symbols. We write F as
F (c) to declare that for a sequence t = t1 . . . tn of terms the expression F (t)
denotes F with, for i ∈ {1, . . . , n}, all free occurrences of ci replaced by ti.

– F [p], F [G] and F [q] – Notational Context for Substitution of Predicates. Let
p = p1 . . . pn be a sequence of distinct predicates and let F be a formula. We
write F as F [p] to declare the following:

• For a sequence G = G1(x1 . . . xarity(p1)) . . . Gn(x1 . . . xarity(pn)) of formulas
the expression F [G] denotes F with, for i ∈ {1, . . . , n}, each atom occur-
rence pi(t1 . . . tarity(pi)) where pi is free in F replaced by Gi(t1 . . . tarity(pi)).• For a sequence q = q1 . . . qn of predicates that matches p the expression
F [q] denotes F with, for i ∈ {1, . . . , n}, each free occurrence of pi replaced
by qi.
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• The above notation F [S], where S is a sequence of formulas or of predi-
cates, is generalized to allow also pi at the ith position of S, for example
F [G1 . . . Gi−1pi . . . pn]. The formula F [S] then denotes F with only those
predicates pi with i ∈ {1, . . . , n} that are not present at the ith position in
S replaced by the ith component of S as described above (in the example
only p1, . . . , pi−1 would be replaced).

– F [p] – Notational Context for Substitution in a Sequence of Formulas. If
F = F1 . . . Fn is a sequence of formulas, then F [p] declares that F [S], where
S is a sequence with the same length as p, is to be understood as the sequence
F1[S] . . . Fn[S] with the meaning of the members as described above.

In the above notation for substitution of predicates by formulas the members
x1, . . . , xarity(p) of X play a special role: F [G] can be alternatively considered as
obtained by replacing predicates pi with λ-expressions λx1 . . . λxarity(pi).Gi fol-
lowed by β-conversion. The shorthand p ⇔ F can be correspondingly considered
as p ↔ λx1 . . . λxarity(p).G. The following property substitutible specifies precon-
ditions for meaningful simultaneous substitution of formulas for predicates:

Definition 1 (SUBST(G,p, F ) – Substitutible Sequence of Formulas).
A sequence G = G1 . . . Gm of formulas is called substitutible for a sequence
p = p1 . . . pn of distinct predicates in a formula F , written SUBST(G,p, F ), if
and only if m = n and for all i ∈ {1, . . . , n} it holds that (1.) No free occurrence
of pi in F is in the scope of a quantifier occurrence that binds a member of
free(Gi); (2.) free(Gi) ∩ p = ∅; and (3.) free(Gi) ∩ {xj | j > arity(pi)} = ∅.

The following propositions demonstrate the introduced notation for formula sub-
stitution. It is well known that terms can be “pulled out of” and “pushed in to”
atoms, justified by the equivalences p(t1 . . . tn) ≡ ∃x1 . . . ∃xn (p(x1 . . . xn) ∧∧n

i=1 xi = ti) ≡ ∀x1 . . . ∀xn (p(x1 . . . xn)∨∨n
i=1 xi �= ti), which hold if no mem-

ber of {x1, . . . , xn} does occur in the terms t1, . . . , tn. Analogously, substitutible
subformulas can be “pulled out of” and “pushed in to” formulas:

Proposition 2 (Pulling-Out and Pushing-In of Subformulas). Let G =
G1 . . . Gn be a sequence of formulas, let p = p1 . . . pn be a sequence of distinct
predicates and let F = F [p] be a formula such that SUBST(G,p, F ). Then

(i) F [G] ≡ ∃p (F ∧ ∧n
i=1(pi ⇔ Gi)) ≡ ∀p (F ∨ ∨n

i=1(pi �⇔ Gi)).
(ii) ∀pF |= F [G] |= ∃pF.

Ackermann’s Lemma [1] can be applied in certain cases to eliminate second-order
quantifiers, that is, to compute for a given second-order formula an equivalent
first-order formula. It plays an important role in many modern methods for
elimination and semantic forgetting – see, e.g., [10,11,13,17,26,31]:

Proposition 3 (Ackermann’s Lemma, Positive Version). Let F,G be for-
mulas and let p be a predicate such that SUBST(G, p, F ), p /∈ free(G) and all free
occurrences of p in F have negative polarity. Then ∃p ((p ⇐ G)∧F [p]) ≡ F [G].
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3 The Solution Problem from Different Angles

3.1 Basic Formal Modeling

Our formal modeling of the Boolean solution problem is based on two concepts,
solution problem and particular solution:

Definition 4 (F [p] – Solution Problem (SP), Unary Solution Problem
(1-SP)). A solution problem (SP) F [p] is a pair of a formula F and a sequence p
of distinct predicates. The members of p are called the unknowns of the SP. The
length of p is called the arity of the SP. A SP with arity 1 is also called unary
solution problem (1-SP).

The notation F [p] for solution problems establishes as a “side effect” a context
for specifying substitutions of p in F by formulas as specified in Sect. 2.2.

Definition 5 (Particular Solution). A particular solution (briefly solution)
of a SP F [p] is defined as a sequence G of formulas such that SUBST(G,p, F )
and |= F [G].

The property SUBST(G,p, F ) in this definition implies that no member of p
occurs free in a solution. Of course, particular solution can also be defined on the
basis of unsatisfiability instead of validity, justified by the equivalence of |= F [G]
and ¬F [G] |= ⊥. The variant based on validity has been chosen here because
then the associated second-order quantifications are existential, matching the
usual presentation of elimination techniques.

Solution problem and solution as defined here provide abstractions of compu-
tational problems in a technical sense that would be suitable, e.g., for complexity
analysis. Problems in the latter sense can be obtained by fixing involved formula
and predicate classes. The abstract notions are adequate to develop much of the
material on the “Boolean solution problem” shown here and in [30]. On occasion,
however, we consider restrictions, in particular to propositional and to first-order
formulas, as well as to nullary predicates. As shown in [30, Sect. 6], further vari-
ants of solution, general representations of several particular solutions, can be
introduced on the basis of the notions defined here.

Example 6 (A Solution Problem and its Particular Solutions). As an
example of a solution problem consider F [p1p2] where

F =∀x (a(x ) → b(x )) →
(∀x (p1(x ) → p2(x )) ∧ ∀x (a(x ) → p2(x )) ∧ ∀x (p2(x ) → b(x ))).

The intuition is that the antecedent ∀x (a(x ) → b(x )) specifies the “back-
ground theory”, and w.r.t. that theory the unknown p1 is “stronger” than the
other unknown p2, which is also “between” a and b. Examples of solutions are:
a(x1)a(x1); a(x1)b(x1); ⊥a(x1); b(x1)b(x1); and (a(x1) ∧ b(x1))(a(x1) ∨ b(x1)).
No solutions are for example b(x1)a(x1); a(x1)⊥; and all members of {�,⊥} ×
{�,⊥}.
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Assuming a countable vocabulary, the set of valid first-order formulas is recur-
sively enumerable. It follows that for an n-ary SP F [p] where F is first-order the
set of those of its particular solutions that are sequences of first-order formulas
is also recursively enumerable: An n-ary sequence G of well-formed first-order
formulas that satisfies the syntactic restriction SUBST(G,p, F ) is a solution of
F [p] if and only if F [G] is valid.

In the following subsections further views on the solution problem will be
discussed: as unification or equation solving, as a special case of second-order
quantifier elimination, and as related to determining definientia and interpolants.

3.2 View as Unification

Because |=F [G] if and only if F [G] ≡ �, a particular solution of F [p] can be
seen as a unifier of the two formulas F [p] and � modulo logical equivalence as
equational theory. From the perspective of unification the two formulas appear
as terms, the members of p play the role of variables and the other predicates
play the role of constants.

Vice versa, a unifier of two formulas can be seen as a particular solution,
justified by the equivalence of L[G] ≡ R[G] and |= (L ↔ R)[G], which holds
for sequences G and p of formulas and predicates, respectively, and formulas
L = L[p], R = R[p], (L ↔ R) = (L ↔ R)[p] such that SUBST(G,p, L) and
SUBST(G,p, R). This view of formula unification can be generalized to sets
with a finite cardinality k of equivalences, since for all i ∈ {1, . . . , k} it holds
that Li ≡ Ri can be expressed as |= ∧k

i=1(Li ↔ Ri).
An exact correspondence between solving a solution problem F [p1 . . . pn]

where F is a propositional formula with ∨,∧,¬,⊥,� as logic operators and
E-unification with constants in the theory of Boolean algebra (with the men-
tioned logic operators as signature) applied to F =E � can be established:
Unknowns p1, . . . , pn correspond to variables and propositional atoms in F cor-
respond to constants. A particular solution G1 . . . Gn corresponds to a unifier
{p1 ← G1, . . . , pn ← Gn} that is a ground substitution. The restriction to ground
substitutions is due to the requirement that unknowns do not occur in solu-
tions. General solutions [30, Sect. 6] are expressed with further special parame-
ter atoms, different from the unknowns. These correspond to fresh variables in
unifiers.

A generalization of Boolean unification to predicate logic with various specific
problems characterized by the involved formula classes has been investigated in
[12]. The material presented here and in [30] is largely orthogonal to that work,
but a technique from [12] has been adapted to more general cases in [30, Sect. 7.3].

3.3 View as Construction of Elimination Witnesses

Another view on the solution problem is related to eliminating second-order
quantifiers by replacing the quantified predicates with “witness formulas”.



The Boolean Solution Problem from the Perspective of Predicate Logic 339

Definition 7 (ELIM-Witness). Let p = p1 . . . pn be a sequence of distinct
predicates. An ELIM-witness of p in a formula ∃pF [p] is defined as a sequence
G of formulas such that SUBST(G,p, F ) and ∃pF [p] ≡ F [G].

The condition ∃pF [p] ≡ F [G] in this definition is equivalent to |=¬F [p]∨F [G].
If F [p] and the considered G are first-order, then finding an ELIM-witness is
second-order quantifier elimination on a first-order argument formula, restricted
by the condition that the result is of the form F [G]. Differently from the gen-
eral case of second-order quantifier elimination on first-order arguments, the set
of formulas for which elimination succeeds and, for a given formula, the set of
its elimination results, are then recursively enumerable. Some well-known elim-
ination methods yield ELIM-witnesses, for example rewriting a formula that
matches the left side of Ackermann’s Lemma (Proposition 3) with its right side,
which becomes evident when considering that the right side F [G] is equivalent
to ∀x1 . . . ∀xarity(p) (G ← G) ∧ F [G]. Finding particular solutions and finding
ELIM-witnesses can be expressed in terms of each other:

Proposition 8 (Solutions and ELIM-Witnesses). Let F [p] be SP and let
G be a sequence of formulas. Then:

(i) G is an ELIM-witness of p in ∃pF if and only if G is a solution of the SP
(¬F [q] ∨ F )[p], where q is a sequence of fresh predicates matching p.

(ii) G is a solution of F [p] if and only if G is an ELIM-witness of p in ∃pF
and it holds that |=∃pF .

Proof (Sketch). Assume SUBST(G,p, F ). (Proposition 8i) Follows since
∃pF [p] ≡ F [G] iff ∃pF [p] |= F [G] iff F [p] |= F [G] iff |=¬F [q]∨F [G]. (Propo-
sition 8ii) Left-To-Right: Follows since |=F [G] implies |= ∃pF [p] and |=F [G],
which implies ∃pF [p] ≡ � ≡ F [G]. Right-to-left: Follows since ∃pF [p] ≡ F [G]
and |= ∃pF [p] together imply |= F [G]. ��

3.4 View as Related to Definientia and Interpolants

The following proposition shows a further view on the solution problem that
relates it to definitions of the unknown predicates:

Proposition 9 (Solution as Entailed by a Definition). A sequence G =
G1 . . . Gn of formulas is a particular solution of a SP F [p = p1 . . . pn] if and
only if SUBST(G,p, F ) and

∧n
i=1(pi ⇔ Gi) |= F .

Proof. Follows from the definition of particular solution and Proposition 2i. ��
In the special case where F [p] is a 1-SP with a nullary unknown p, the charac-
terization of a solution G according to Proposition 9 can be expressed with an
entailment where a definition of the unknown p appears on the right instead of
the left side: If p is nullary, then ¬(p ⇔ G) ≡ p ⇔ ¬G. Thus, the statement
p ⇔ G |= F is for nullary p equivalent to

¬F |= p ⇔ ¬G. (i)
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The second condition of the characterization of solution according to Proposi-
tion 9, that is, SUBST(G, p, F ), holds if it is assumed that p is not in free(G),
that free(G) ⊆ free(F ) and that no member of free(F ) is bound by a quantifier
occurrence in F . A solution is then characterized as negated definiens of p in
the negation of F . Another way to express (i) along with the condition that G
is semantically independent from p is as follows:

∃p (¬F ∧ ¬p) |= G |= ¬∃p (¬F ∧ p). (ii)

The second-order quantifiers upon the nullary p can be eliminated, yielding the
following equivalent statement:

¬F [⊥] |= G |= F [�]. (iii)

Solutions G then appear as the formulas in a range, between ¬F [⊥] and F [�].
This view is reflected in [23, Theorem 2.2], which goes back to work by Schröder.
If F is first-order, then Craig interpolation can be applied to compute formulas G
that also meet the requirements free(G) ⊆ free(F ) and p /∈ free(F ) to ensure
SUBST(G, p, F ). Further connections to Craig interpolation are discussed in [30,
Sect. 7].

4 The Method of Successive Eliminations – Abstracted

4.1 Reducing n-ary to 1-ary Solution Problems

The method of successive eliminations to solve an n-ary solution problem by
reducing it to unary solution problems is attributed to Boole and has been
formally described in a modern algebraic setting in [23, Chap. 2, Sect. 4]. It has
been rediscovered in the context of Boolean unification in the late 1980s, notably
with [8]. Rudeanu notes in [23, p. 72] that variants described by several authors
in the 19th century are discussed by Schröder [27, vol. 1, Sects. 26 and 27]. To
research and compare all variants up to now seems to be a major undertaking on
its own. Our aim is here to provide a foundation to derive and analyze related
methods. The following proposition formally states the core property underly-
ing the method in a way that, compared to the Boolean algebra version in [23,
Chap. 2, Sect. 4], is more abstract in several aspects: Second-order quantification
upon predicates that represent unknowns plays the role of meta-level shorthands
that encode expansions; no commitment to a particular formula class is made,
thus the proposition applies to second-order formulas with first-order and propo-
sitional formulas as special cases; it is not specified how solutions of the arising
unary solution problems are constructed; and it is not specified how intermediate
second-order formulas (that occur also for inputs without second-order quanti-
fiers) are handled. The algorithm descriptions in the following subsections show
different possibilities to instantiate these abstracted aspects.

Proposition 10 (Characterization of Solution Underlying the Method
of Successive Eliminations). Let F [p = p1 . . . pn] be a SP and let
G = G1 . . . Gn be a sequence of formulas. Then the following statements are
equivalent:
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(a) G is a solution of F [p].
(b) For i ∈ {1, . . . , n}: Gi is a solution of the 1-SP

(∃pi+1 . . . ∃pn F [G1 . . . Gi−1pi . . . pn])[pi]

such that free(Gi) ∩ p = ∅.
Proof. Left-to-right: From (a) it follows that |=F [G]. Hence, for all i ∈ {1, . . . , n}
by Proposition 2ii it follows that

|=∃pi+1 . . . ∃pn F [G1 . . . Gipi+1 . . . pn].

From (a) it also follows that SUBST(G,p, F ). This implies that for all i ∈
{1, . . . , n} it holds that

SUBST(Gi, pi,∃pi+1 . . . ∃pn F [G1 . . . Gi−1pi . . . pn]) and free(Gi) ∩ p = ∅.

We thus have derived for all i ∈ {1, . . . , n} the two properties that characterize
Gi as a solution of the 1-SP as stated in (b).

Right-to-left: From (b) it follows that Gn is a solution of the 1-SP

(F [G1 . . . Gn−1pn])[pn].

Hence, by the characteristics of solution it follows that |=F [G1 . . . Gn]. The prop-
erty SUBST(G,p, F ) can be derived from free(G)∩p = ∅ and the fact that for all
i ∈ {1, . . . , n} it holds that SUBST(Gi, pi, (∃pi+1 . . . ∃pn F [G1 . . . Gi−1pi . . . pn])).
The properties |=F [G1 . . . Gn] and SUBST(G,p, F ) characterize G as a solution
of the SP F [p]. ��
This proposition states an equivalence between the solutions of an n-ary SP
and the solutions of n 1-SPs. These 1-SPs are on formulas with an existential
second-order prefix. The following gives an example of this decomposition:

Example 11 (Reducing an n-ary Solution Problem to Unary Solution
Problems). Consider the SP F [p1p2] of Example 6. The 1-SP with unknown p1
according to Proposition 10 is

(∃p2 F [p1p2])[p1],

whose formula is, by second-order quantifier elimination, equivalent to
∀x (a(x ) → b(x )) → ∀x (p1(x ) → b(x )). Take a(x1) as solution G1 of that 1-SP.
The 1-SP with unknown p2 according to Proposition 10 is

(F [G1p2])[p2].

Its formula is then, by replacing p1 in F as specified in Example 6 with a and
removing the duplicate conjunct obtained then, equivalent to

∀x (a(x ) → b(x )) → (∀x (a(x ) → p2(x )) ∧ ∀x (p2(x ) → b(x ))).

A solution of that second 1-SP is, for example, b(x1 ), yielding the pair a(x1 )b(x1 )
as solution of the originally considered SP F [p1p2].
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4.2 Solving on the Basis of Second-Order Formulas

The following algorithm to compute particular solutions is an immediate trans-
fer of Proposition 10. Actually, it is more an “algorithm template”, since it is
parameterized with a method to compute 1-SPs and covers a nondeterministic
as well as a deterministic variant:

Algorithm 12 (SOLVE-ON-SECOND-ORDER). Let F be a class of formulas
and let 1-SOLVE be a nondeterministic or a deterministic algorithm that outputs
for 1-SPs of the form (∃p1 . . . ∃pn F [p])[p] with F ∈ F solutions G such that
free(G) ∩ {p1, . . . , pn} = ∅ and F [G] ∈ F .
Input: A SP F [p1 . . . pn], where F ∈ F , that has a solution.
Method: For i := 1 to n do: Assign to Gi an output of 1-SOLVE applied to the
1-SP (∃pi+1 . . . ∃pn F [G1 . . . Gi−1pi . . . pn])[pi].
Output: The sequence G1 . . . Gn of formulas, which is a particular solution of
F [p1 . . . pn].

The solution components Gi are successively assigned to some solution of the
1-SP given in Proposition 10, on the basis of the previously assigned components
G1 . . . Gi−1. Even if the formula F of the input problem does not involve second-
order quantification, these 1-SPs are on second-order formulas with an existential
prefix ∃pi+1 . . . ∃pn upon the yet “unprocessed” unknowns.

The algorithm comes in a nondeterministic and a deterministic variant, just
depending on whether 1-SOLVE is instantiated by a nondeterministic or a deter-
ministic algorithm. Thus, in the nondeterministic variant the nondeterminism of
1-SOLVE is the only source of nondeterminism. With Proposition 10 it can be
verified that if a nondeterministic 1-SOLVE is “complete” in the sense that for
each solution there is an execution path that leads to the output of that solu-
tion, then also SOLVE-ON-SECOND-ORDER based on it enjoys that property,
with respect to the n-ary solutions G1 . . . Gn.

For the deterministic variant, from Proposition 10 it follows that if 1-SOLVE
is “complete” in the sense that it outputs some solution whenever a solution
exists, then, given that F [p1 . . . pn] has a solution, which is ensured by the spec-
ification of the input, also SOLVE-ON-SECOND-ORDER outputs some solution
G1 . . . Gn.

This method applies 1-SOLVE to existential second-order formulas, which
prompts some issues for future research: As indicated in Sect. 3.4 (and elab-
orated in [30, Sect. 7]) Craig interpolation can in certain cases be applied to
compute solutions of 1-SPs. Can QBF solvers, perhaps those that encode QBF
into predicate logic [28], be utilized to compute Craig interpolants? Can it be
useful to allow second-order quantifiers in solution formulas because they make
these smaller and can be passed between different calls to 1-SOLVE?

As shown in [30, Sect. 6], if 1-SOLVE is a method that outputs so-called
reproductive solutions, that is, most general solutions that represent all par-
ticular solutions, then also SOLVE-ON-SECOND-ORDER outputs reproductive
solutions. Thus, there are two ways to obtain representations of all particular
solutions whose comparison might be potentially interesting: A deterministic
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method that outputs a single reproductive solution and the nondeterministic
method with an execution path to each particular solution.

4.3 Solving with the Method of Successive Eliminations

The method of successive eliminations in a narrower sense is applied in a
Boolean algebra setting that corresponds to propositional logic and outputs
reproductive solutions. The consideration of reproductive solutions belongs to
the classical material on Boolean reasoning [19,23,27] and is modeled in the
present framework in [30, Sect. 6]. Compared to SOLVE-ON-SECOND-ORDER,
the method handles the second-order quantification by eliminating quantifiers
one-by-one, inside-out, with a specific method and applies a specific method
to solve 1-SPs, which actually yields reproductive solutions. These incorporated
methods apply to propositional input formulas (and to first-order input formulas
if the unknowns are nullary). Second-order quantifiers are eliminated by rewrit-
ing with the equivalence ∃pF [p] ≡ F [�] ∨ F [⊥]. As solution of an 1-SP F [p] the
formula (¬F [⊥]∧t)∨(F [�]∧¬t) is taken, where t is a fresh nullary predicate that
is considered specially. The intuition is that particular solutions are obtained by
replacing t with arbitrary formulas in which p does not occur (see [30, Sect. 6]
for a more in-depth discussion).

The following algorithm is an iterative presentation of the method of suc-
cessive eliminations, also called Boole’s method , in the variant due to [8]. The
presentation in [22, Sect. 3.1], where apparently minor corrections compared to
[8] have been made, has been taken here as technical basis. We stay in the
validity-based setting, whereas [8,22,23] use the unsatisfiability-based setting.
Also differently from [8,22] we do not make use of the xor operator.

Algorithm 13 (SOLVE-SUCC-ELIM).
Input: A SP F [p1 . . . pn], where F is propositional, that has a solution and a
sequence t1 . . . tn of fresh nullary predicates.
Method:

1. Initialize Fn[p1 . . . pn] with F .
2. For i := n to 1 do: Assign to Fi−1[p1 . . . , pi−1] the formula Fi[p1 . . . pi−1�] ∨

Fi[p1 . . . pi−1⊥].
3. For i := 1 to n do: Assign to Gi the formula (¬Fi[G1 . . . Gi−1⊥] ∧ ti) ∨

(Fi[G1 . . . Gi−1�] ∧ ¬ti).

Output: The sequence G1 . . . Gn of formulas, which is a reproductive solution
of F [p1 . . . pn] with respect to the special predicates t1 . . . tn.

The formula assigned to Fi−1 in step (2.) is the result of eliminating ∃pi in
∃pi Fi[p1 . . . pi] and the formula assigned to Gi in step (3.) is the reproduc-
tive solution of the 1-SP (Fi[G1 . . . Gi−1pi])[pi], obtained with the respective
incorporated methods indicated above. The recursion in the presentations of
[8,22] is translated here into two iterations that proceed in opposite directions:
First, existential quantifiers of ∃p1 . . . ∃pn F are eliminated inside-out and the
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intermediate results, which do not involve second-order quantifiers, are stored.
Solutions of 1-SPs are computed in the second phase on the basis of the stored
formulas.

In this presentation it is easy to identify two “hooks” where it is possible to
plug-in alternate methods that produce other outputs or apply to further for-
mula classes: In step (2.) the elimination method and in step (3.) the method to
determine solutions of 1-SPs. If the plugged-in method to compute 1-SPs out-
puts particular solutions, then SOLVE-SUCC-ELIM computes particular instead
of reproductive solutions.

4.4 Solving by Inside-Out Witness Construction

Like SOLVE-SUCC-ELIM, the following algorithm eliminates second-order quan-
tifiers one-by-one, inside-out, avoiding intermediate formulas with existential
second-order prefixes of length greater than 1, which arise with SOLVE-ON-
SECOND-ORDER. In contrast to SOLVE-SUCC-ELIM, it performs elimination by
the computation of ELIM-witnesses.

Algorithm 14 (SOLVE-BY-WITNESESS). Let F be a class of formulas and
ELIM-WITNESS be an algorithm that computes for formulas F ∈ F and predi-
cates p an ELIM-witness G of p in ∃pF [p] such that F [G] ∈ F .
Input: A SP F [p1 . . . pn], where F ∈ F , that has a solution.
Method: For i := n to 1 do:

1. Assign to Gi[p1 . . . pi−1] the output of ELIM-WITNESS applied to

∃pi F [p1 . . . piGi+1 . . . Gn].

2. For j := n to i+1 do: Re-assign toGj [p1 . . . pi−1] the formulaGj [p1 . . . pi−1Gi].

Output: : The sequence G1 . . . Gn of formulas, which provides a particular solu-
tion of F [p1 . . . pn].

Step (2.) in the algorithm expresses that a new value is assigned to Gj and that
Gj can be designated by Gj [p1 . . . pi−1], justified because the new value does not
contain free occurrences of pi, . . . , pn. In step (1.) the respective current values of
Gi+1 . . . Gn are used to instantiate F . It is not hard to see from the specification
of the algorithm that for input F [p] and output G it holds that ∃pF ≡ F [G]
and that SUBST(G,p, F ). By Proposition 8ii, G is then a solution if |=∃pF .
This holds indeed if F [p] has a solution, as shown below with Proposition 15.

If ELIM-WITNESS is “complete” in the sense that it computes an elimina-
tion witness for all input formulas in F , then SOLVE-BY-WITNESESS outputs a
solution. Whether all solutions of the input SP can be obtained as outputs for dif-
ferent execution paths of a nondeterministic version of SOLVE-BY-WITNESESS
obtained through a nondeterministic ELIM-WITNESS, in analogy to the non-
deterministic variant of SOLVE-ON-SECOND-ORDER, appears to be an open
problem.
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5 Existence of Solutions

5.1 Conditions for the Existence of Solutions

We now turn to the question under which conditions there exists a solution of
a given SP, or, in the terminology of [23], the SP is consistent . A necessary
condition is easy to see:

Proposition 15 (Necessary Condition for the Existence of a Solution).
If a SP F [p] has a solution, then it holds that |=∃pF .

Proof. Follows from the definition of particular solution and Proposition 2ii. ��
Under certain presumptions that hold for propositional logic this condition is
also sufficient. To express these abstractly we use the following concept:

Definition 16 (SOL-Witnessed Formula Class). A formula class F is
called SOL-switnessed for a predicate class P if and only if for all p ∈ P and
F [p] ∈ F the following statements are equivalent:

(a) |= ∃pF .
(b) There exists a solution G of the 1-SP F [p] such that F [G] ∈ F .

Since the right-to-left direction of that equivalence holds in general, the left-
to-right direction alone would provide an alternate characterization. The class
of propositional formulas is SOL-witnessed (for the class of nullary predicates).
This follows since in propositional logic it holds that

∃pF [p] ≡ F [F [�]], (iv)

which can be derived in the following steps: F [F [�]] ≡ ∃p (F [p]∧(p ↔ F [�])) ≡
(F [�] ∧ (� ↔ F [�])) ∨ (F [⊥] ∧ (⊥ ↔ F [�])) ≡ F [�] ∨ F [⊥] ≡ ∃pF [p].

The following definition adds closedness under existential second-order quan-
tification to the notion of SOL-witnessed , to allow the application on 1-SPs
matching with item (b) in Proposition 10:

Definition 17 (MSE-SOL-Witnessed Formula Class). A formula class F
is called MSE-SOL-witnessed for a predicate class P if and only if it is SOL-
witnessed for P and for all sequences p of predicates in P and F ∈ F it holds
that ∃pF ∈ F .

The class of existential QBFs (formulas of the form ∃pF where F is proposi-
tional) is MSE-SOL-witnessed (like the more general class of QBFs – second-
order formulas with only nullary predicates). Another example is the class of
first-order formulas extended by second-order quantification upon nullary pred-
icates, which is MSE-SOL-witnessed for the class of nullary predicates. The
following proposition can be seen as expressing an invariant of the method of
successive eliminations that holds for formulas in an MSE-SOL-witnessed class:
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Proposition 18 (Solution Existence Lemma). Let F be a formula class
that is MSE-SOL-witnessed for predicate class P. Let F [p = p1 . . . pn] ∈ F
with p ∈ Pn. If |=∃pF [p], then for all i ∈ {0, . . . , n} there exists a sequence
G1 . . . Gi of formulas such that free(G1 . . . Gi) ∩ p = ∅, SUBST(G1 . . . Gi, p1 . . .
pi, F ), |=∃pi+1 . . . ∃pnF [G1 . . . Gipi+1 . . . pn] and ∃pi+1 . . . ∃pnF [G1 . . . Gipi+1 . . .
pn]∈F .

Proof. By induction on the length i of the sequence G1 . . . Gi. The conclusion
of the proposition holds for the base case i = 0: The statement SUBST(ε, ε, F )
holds trivially, |= ∃pF is given as precondition, and ∃pF ∈ F follows from
F ∈ F . For the induction step, assume that the conclusion of the proposi-
tion holds for some i ∈ {0, . . . n − 1}. That is, SUBST(G1 . . . Gi, p1 . . . pi, F ),
|=∃pF [G1 . . . Gipi+1 . . . pn] and ∃pF [G1 . . . Gipi+1 . . . pn] ∈ F . Since F is wit-
nessed for P and pi+1 ∈ P it follows that there exists a solution Gi+1 of the 1-SP
(∃pF [G1 . . . Gipi+1 . . . pn])[pi+1] such that (∃pF [G1 . . . Gi+1pi+2 . . . pn]) ∈ F .
From the characteristics of solution it follows that |=∃pF [G1 . . . Gi+1pi+2 . . . pn])
and SUBST(Gi+1, pi+1,∃pF [G1 . . . Gi+1pi+2 . . . pn]). In the latter statement the
quantifier ∃p ensures that free(Gi+1) ∩ p = ∅. With the induction hypothesis
SUBST(G1 . . . Gi, p1 . . . pi, F ) it follows that SUBST(G1 . . . Gi+1, p1 . . . pi+1, F ),
which completes the proof of the induction step. (The existential quantification
is here upon p, not just pi+1 . . . pn, to ensure that no members of p at all occur as
free symbols in the solutions.) ��
A sufficient and necessary condition for the existence of a solution of formulas
in MSE-SOL-witnessed classes now follows from Propositions 15 and 18:

Proposition 19 (Existence of a Solution). Let F be a formula class that
is MSE-SOL-witnessed on predicate class P. Then for all F [p] ∈ F where the
members of p are in P the following statements are equivalent:

(a) |= ∃pF .
(b) There exists a solution G of the SP F [p] such that F [G] ∈ F .

Proof. Follows from Propositions 15 and 18. ��
From that proposition it is easy to see that for SPs with propositional formulas
the complexity of determining the existence of a solution is the same as the
complexity of deciding validity of existential QBFs, as proven in [2,15,16], that
is, ΠP

2 -completeness: By Proposition 19, an SP F [p] where F is propositional
has a solution if and only if the existential QBF ∃pF [p] is valid and, vice versa,
an arbitrary existential QBF ∃pF [p] (where F is quantifier-free) is valid if and
only if the SP F [p] has a solution.

5.2 Characterization of SOL-Witnessed in Terms
of ELIM-Witness

The following proposition shows that under a minor syntactic precondition on
formula classes, SOL-witnessed can also be characterized in terms of ELIM-
witness instead of solution as in Definition 16:
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Proposition 20 (SOL-Witnessed in Terms of ELIM-Witness). Let F be
a class of formulas that satisfies the following properties: For all F [p] ∈ F and
predicates q with the same arity of p it holds that F [p] ∨ ¬F [q] ∈ F , and for all
F ∨ G ∈ F it holds that F ∈ F . The class F is SOL-witnessed for a predicate
class P if and only if for all p ∈ P and F [p] ∈ F there exists an ELIM-witness
G of p in F [p] such that F [G] ∈ F .

Proof. Left-to-right: Assume that F is meets the specified closedness conditions
and is SOL-witnessed for P, p ∈ P and F [p] ∈ F . Let q be a fresh predicate with
the arity of p. The obviously true statement |= ∃pF [p]∨¬∃pF [p] is equivalent to
|=∃pF [p]∨¬F [q] and thus to |=∃p (F [p]∨¬F [q]). By the closedness properties of
F it holds that F [p]∨¬F [q] ∈ F . Since F is SOL-witnessed for P it thus follows
from Definition 16 that there exists a solution G of the SP (F [p]∨¬F [q])[p] such
that (F [G]∨¬F [q]) ∈ F , and, by the closedness properties, also F [G] ∈ F . From
the definition of solution it follows that |= F [G] ∨ ¬F [q], which is equivalent
to ∃pF [p] ≡ F [G], and also that SUBST(G, p, F [G] ∨ ¬F [q]), which implies
SUBST(G, p, F [G]). Thus G is an SO-witness of p in F [p] such that F [G] ∈ F .
Right-to-left: Easy to see from Proposition 8ii. ��

5.3 The Elimination Result as Precondition of Solution Existence

Proposition 19 makes an interesting relationship between the existence of a solu-
tion and second-order quantifier elimination apparent that has been pointed out
by Schröder [27, vol. 1, Sect. 21] and Behmann [5], and is briefly reflected in
[23, p. 62]: The formula ∃pF is valid if and only if the result of eliminating
the existential second-order prefix (called Resultante by Schröder [27, vol. 1,
Sect. 21]) is valid. If it is not valid, then, by Proposition 19, the SP F [p] has no
solution, however, in that case the elimination result represents the unique (mod-
ulo equivalence) weakest precondition under which the SP would have a solution.
The following proposition shows a way to make this precise:

Proposition 21 (The Elimination Result is the Unique Weakest Pre-
condition of Solution Existence). Let F be a formula class and let P be a
predicate class such that F is MSE-SOL-witnessed on P. Let F [p] be a solution
problem where F ∈ F and all members of p are in P. Let A be a formula such
that (A → F ) ∈ F , A ≡ ∃pF , and no member of p does occur in A. Then

(i) The SP (A → F )[p] has a solution.
(ii) If B is a formula such that (B → F ) ∈ F , no member of p occurs in B, and

the SP (B → F )[p] has a solution, then B |= A.

Proof. (Proposition 19i) From the specification of A it follows that |=A → ∃pF
and thus |= ∃p (A → F ). Hence, by Proposition 19, the SP (A → F )[p] has a
solution. (Proposition 19ii) Let B be a formula such that the left side of holds.
With Proposition 19 it follows that |= B → ∃pF . Hence B |= ∃pF . Hence
B |= A. ��
The following example illustrates Proposition 21:
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Example 22 (Elimination Result as Precondition for Solvability). Con-
sider the SP F [p1p2] where

F = ∀x (p1(x ) → p2(x )) ∧ ∀x (a(x ) → p2(x )) ∧ ∀x (p2(x ) → b(x )).

Its formula is the consequent of the SP considered in Example 6. Since
∃p1∃p2 F ≡ ∀x (a(x ) → b(x )) �≡ �, from Proposition 19 it follows that F [p1p2]
has no solution. If, however, the elimination result ∀x (a(x ) → b(x )) is added as
an antecedent to F , then the resulting SP, which is the SP of Example 6, has a
solution.

6 Conclusion

The solution problem and second-order quantifier elimination were interrelated
tools in the early mathematical logic. Today elimination has entered automati-
zation with applications in the computation of circumscription, in modal logics,
and for semantic forgetting and modularizing knowledge bases, in particular for
description logics. Since the solution problem on the basis of first-order logic is,
like first-order validity, recursively enumerable there seems some hope to adapt
techniques from first-order theorem proving.

The paper makes the relevant scenario accessible from the perspective of
predicate logic and theorem proving. Together with the consideration of most
general solutions in [30] it shows that a wealth of classical material on Boolean
equation solving can be transferred to predicate logic. Some essential diverging
points crystallize, like the constructability of witness formulas for quantified
predicates. An abstracted version of the core property underlying the classical
method of successive eliminations provides a foundation for systematizing and
generalizing algorithms that reduce n-ary solution problems to unary solution
problems.

Beyond the presented core framework there seem to be many results from
different communities that are potentially relevant for further investigation. This
includes the vast amount of techniques for equation solving on the basis of
Boolean algebra and its variants, developed over the last 150 years. For descrip-
tion logics there are several results on concept unification, e.g., [3,4]. Variants of
Craig interpolation such as disjunctive interpolation [25] share with the solution
problem at least the objective to find substitution formulas such that the overall
formula becomes valid (or, dually, unsatisfiable).

First steps towards constructive methods for the solution problem that apply
to special cases of first-order inputs are described in [30], including methods
based on Craig interpolation and on an elimination technique from [12]. The
possible characterization of solution by an entailment also brings up the ques-
tion whether Skolemization and Herbrand’s theorem justify some “instance-
based” technique for computing solutions that succeeds on large enough quan-
tifier expansions.
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