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Abstract. This paper develops a general methodology to connect
propositional and first-order interpolation. In fact, the existence of suit-
able skolemizations and of Herbrand expansions together with a propo-
sitional interpolant suffice to construct a first-order interpolant. This
methodology is realized for lattice-based finitely-valued logics, the top
element representing true and for (fragments of) infinitely-valued first-
order Gödel logic, the logic of all linearly ordered constant domain Kripke
frames.
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1 Introduction

Ever since Craig’s seminal result on interpolation [8], interpolation properties
have been recognized as important desiderata of logical systems. Craig interpo-
lation has many applications in mathematics and computer science, for instance
consistency proofs, model checking [18], proofs in modular specifications and
modular ontologies. Recall that a logic L has interpolation if whenever A ⊃ B
holds in L there exists a formula I in the common language of A and B such
that A ⊃ I and I ⊃ B both hold in L.

Propositional interpolation properties can be determined and classified with
relative ease using the ground-breaking results of Maksimova cf. [12–14]. This
approach is based on an algebraic analysis of the logic in question. In contrast
first-order interpolation properties are notoriously hard to determine, even for
logics where propositional interpolation is more or less obvious. For example it
is unknown whether GQF

[0,1] (first-order infinitely-valued Gödel logic) interpolates

(cf [1]) and even for MCQF, the logic of constant domain Kripke frames of 3
worlds with 2 top worlds (an extension of MC), interpolation proofs are very
hard cf. Ono [17]. This situation is due to the lack of an adequate algebraization
of non-classical first-order logics.
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In this paper we present a proof theoretic methodology to reduce first-order
interpolation to propositional interpolation:

existence of suitable skolemizations +
existence of Herbrand expansions +

propositional interpolance

⎫
⎬

⎭
→ first-order

interpolation.

The construction of the first-order interpolant from the propositional inter-
polant follows this procedure:

1. Develop a validity equivalent skolemization replacing all strong quantifiers
(negative existential or positive universal quantifiers) in the valid formula
A ⊃ B to obtain the valid formula A1 ⊃ B1.

2. Construct a valid Herbrand expansion A2 ⊃ B2 for A1 ⊃ B1. Occurrences of
∃xB(x) and ∀xA(x) are replaced by suitable finite disjunctions

∨
B(ti) and

conjunctions
∧

B(ti), respectively.
3. Interpolate the propositionally valid formula A2 ⊃ B2 with the propositional

interpolant I∗:
A2 ⊃ I∗ and I∗ ⊃ B2

are propositionally valid.
4. Reintroduce weak quantifiers to obtain valid formulas

A1 ⊃ I∗ and I∗ ⊃ B1.

5. Eliminate all function symbols and constants not in the common language
of A1 and B1 by introducing suitable quantifiers in I∗ (note that no Skolem
functions are in the common language, therefore they are eliminated). Let I
be the result.

6. I is an interpolant for A1 ⊃ B1. A1 ⊃ I and I ⊃ B1 are skolemizations of
A ⊃ I and I ⊃ B. Therefore I is an interpolant of A ⊃ B.

We apply this methodology to lattice based finitely-valued logics and the
weak quantifier and subprenex fragments of infinitely-valued first-order Gödel
logic.

Note that finitely-valued first-order logics admit variants of Maehara’s
Lemma and therefore interpolate if all truth values are quantifier free defin-
able [16]. For logics where not all truth-values are represented by quantifier-free
formulas this argument does not hold, which explains the necessity of different
interpolation arguments for e.g. MCQF (the result for MCQF is covered by our
framework, cf. Example 2).

2 Lattice-Based Finitely-Valued Logics

We consider finite lattices L = 〈W,≤,∪,∩, 0, 1〉 where ∪,∩, 0, 1 are supremum,
infimum, minimal element, maximal element and 0 �= 1, [7].

Definition 1. A propositional language for L, L0(L, V ), V ⊆ W is based on
propositional variables xn, n ∈ N, truth constants Cv for v ∈ V , ∨, ∧, ⊃.
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Definition 2. A first-order language for L, L1(L, V ), V ⊆ W is based on the
usual first-order atoms, truth constants Cv for v ∈ V , ∨,∧,⊃,∃,∀.

We write ⊥ for C0, � for C1, ¬A for A ⊃ ⊥ if 0 ∈ V .

Definition 3. →: W × W ⇒ W for L = 〈W,≤,∪,∩, 0, 1〉 is an admissible
implication iff

u → v = 1 iff u ≤ v,

if u ≤ v, f ≤ g then v → f ≤ u → g.

Definition 4. The propositional logic L0(L, V,→) based on L0(L, V ), L =
〈 W,≤,∪,∩, 0, 1 〉, → an admissible implication is defined as follows: Φ0 is a
propositional valuation iff

1. Φ0(x) ∈ W for a propositional variable x,
2. Φ0(Cv) = v,
3. Φ0(A ∨ B) = Φ0(A) ∪ Φ0(B),
4. Φ0(A ∧ B) = Φ0(A) ∩ Φ0(B),
5. Φ0(A ⊃ B) = Φ0(A) → Φ0(B).

|=0 A iff ∀Φ0 : Φ0(A) = 1 L(L, V,→) = {A | |=0 A}
we write A1 . . . An |=0 B iff for all Φ0 Φ0(A1) = 1 and . . . and Φ0(An) = 1
implies Φ0(B) = 1.

Definition 5. The first-order logic L1(L, V,→) based on L1(L, V ), L = 〈W,
≤,∪,∩, 0, 1〉, → an admissible implication is defined as follows: Φ1 is a first-
order valuation into a structure 〈DΦ1 , ΩΦ1〉, DΦ1 �= ∅ iff

1. Φ1(x) ∈ DΦ1 for a variable x,
2. Φ1(Cv) = v,
3. Φ1 is calculated for terms and other atoms according to ΩΦ1 .
4. Φ1(A ∨ B) = Φ1(A) ∪ Φ1(B),
5. Φ1(A ∧ B) = Φ1(A) ∩ Φ1(B),
6. Φ1(A ⊃ B) = Φ1(A) → Φ1(B),
7. Φ1(∃xA(x)) = sup(Φ1(A(d) | d ∈ DΦ1),
8. Φ1(∀xA(x)) = inf(Φ1(A(d)) | d ∈ DΦ1).

|=1 A iff ∀Φ1 : Φ1(A) = 1 L1(L, V,→) = {A | |=1 A}
We write A1 . . . An |= B iff for all Φ1 Φ1(A1) = 1 and . . . and Φ1(An) = 1
implies Φ1(B) = 1.

1 is the only value denoting truth, this justifies the chosen definitions. We omit
the superscript in |=0, |=1 if the statement holds both for propositional and first-
order logic. Quantifier-free first-order formulas can be identified with proposi-
tional formulas by identifying different atoms with different variables.
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Proposition 1. For all logics the following hold

i. |= A ⊃ A,
ii. If |= B then |= A ⊃ B,
iii. If |= A ⊃ B and |= C ⊃ D then |= (B ⊃ C) ⊃ (A ⊃ D).

Example 1. L = 〈{0, 1, a},≤,∪,∩, 0, 1〉, 0 < a < 1

u → v =

⎧
⎪⎨

⎪⎩

1 u ≤ v

0 u = 1 and v = 0
a else

L0(L, {0, 1},→) does not interpolate as

|=0 (x ∧ (x ⊃ ⊥)) ⊃ (y ∨ (y ⊃ ⊥))

does not interpolate, as the only possible interpolant is a constant with value a,
as there are no common variables in the antecedent and the succedent.

L0(L, {0, a},→) interpolates as all truth constants are representable, � by
⊥ ⊃ ⊥ (c.f. Sect. 5).

Example 2. Finite propositional and constant-domain Kripke frames can be
understood as lattice-based finitely valued logics: Consider upwards closed sub-
sets Γ ⊆ W , W is the set of worlds, and order them by inclusion. A formula A
is assigned the truth value Γ iff A is true at exactly the worlds in Γ .

The constant-domain intuitionistic Kripke frame K in Fig. 1 is represented
by the lattice L in Fig. 2.

α

γβ

〈{α, β, γ}, ≤∗〉

Fig. 1. Constant-domain intuitionistic Kripke frame K.

The propositional language is given by

L0

(

L,

{(
0 0

0

)})

and the first-order language is given by

L1

(

L,

{(
0 0

0

)})

.
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Fig. 2. Lattice L.

The admissible implication of K is

u → v =

{
1 u ≤ v

v else

≤ determines the lattice.

MC = L0

(

L,

{(
0 0

0

)}

,→
)

is the set of valid propositional sentences and

MCQF = L1

(

L,

{(
0 0

0

)}

,→
)

the set of valid first-order sentences.
Propositional interpolation is easily demonstrated for MC, one of the seven

intermediate logics which admit propositional interpolation [13]. Previous proofs
for the interpolation of MCQF are quite involved, [17]. In fact, in Sect. 5, Exam-
ple 5 we will show that this interpolation result is a corollary of the main theorem
of this paper.
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Definition 6. The occurrence of a formula ◦ in a context C(◦) is inductively
defined as

– C(◦) is ◦: the occurrence of ◦ is positive,
– C(◦) is E(◦)�F , F�E(◦), F ⊃ E(◦), QxE(◦), where � ∈ {∧,∨}, Q ∈ {∃,∀},

E,F are formulas: the occurrence of ◦ is positive iff the occurrence of ◦ in
E(◦) is positive, negative iff the occurrence of ◦ in E(◦) is negative,

– C(◦) is E(◦) ⊃ F , where E,F are formulas: the occurrence of ◦ is positive
iff the occurrence of ◦ in E(◦) is negative, negative iff the occurrence of ◦ in
E(◦) is positive.

Definition 7. If a ∀ quantifier or an ∃ quantifier occurs positively or negatively,
respectively, it is referred to as a strong quantifier. If a ∀ quantifier or an ∃
quantifier occurs negatively or positively, respectively, it is referred to as a weak
quantifier.

Due to the general definition of → we have to prove the following Lemma.

Lemma 1. For formulas A, B and a corresponding context C(◦) it holds

if |= A ⊃ B then |= C(A) ⊃ C(B)

if ◦ occurs positively and

if |= A ⊃ B then |= C(B) ⊃ C(A)

if ◦ occurs negatively.

Proof. We proof the lemma by induction on the structure of the context C(◦).

1. If C(◦) is ◦ or Cv, the claim holds trivially.
2. If C(◦) is E(◦) ∧ F and ◦ occurs positively in E(◦), then ◦ occurs positively

in E(◦) ∧ F .
If |= A ⊃ B then |= C(A) ⊃ C(B)

as by induction hypothesis

if |= A ⊃ B then |= E(A) ⊃ E(B)

and
if |= E(A) ⊃ E(B) then |= E(A) ∧ F ⊃ E(B) ∧ F.

If C(◦) is E(◦) ∧ F and ◦ occurs negatively in E(◦), then ◦ occurs negatively
in E(◦) ∧ F .

If |= A ⊃ B then |= C(B) ⊃ C(A)

as by induction hypothesis

if |= A ⊃ B then |= E(B) ⊃ E(A)

and
if |= E(B) ⊃ E(A) then |= E(B) ∧ F ⊃ E(A) ∧ F.
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Analogously if C(◦) is E ∧ F (◦).
3. If C(◦) is E(◦) ∨ F and ◦ occurs positively in E(◦), or ◦ occurs negatively in

E(◦), similar to 2, analogously if C(◦) is E ∨ F (◦).
4. If C(◦) is E(◦) ⊃ F and ◦ occurs positively in E(◦) then ◦ occurs negatively

in E(◦) ⊃ F .

If |= A ⊃ B then |= C(B) ⊃ C(A)

as by induction hypothesis

if |= A ⊃ B then |= E(A) ⊃ E(B).

The claim follows by Proposition 1.
If C(◦) is E(◦) ⊃ F and ◦ occurs negatively in E(◦) then ◦ occurs positively
in E(◦) ⊃ F .

If |= A ⊃ B then |= C(A) ⊃ C(B)

as by induction hypothesis

if |= A ⊃ B then |= E(B) ⊃ E(A).

The claim follows by Proposition 1.
If C(◦) is E ⊃ F (◦) and ◦ occurs positively in F (◦) or ◦ occurs negatively in
F (◦) similar to 2.

5. If C(◦) is ∃xD(◦) and ◦ occurs positively in D(◦) then ◦ occurs positively in
∃xD(◦).

If |= A ⊃ B then |= C(A) ⊃ C(B)

as by induction hypothesis

if |= A ⊃ B then |= D(A) ⊃ D(B).

and
if |= D(A) ⊃ D(B) then |= ∃xD(A) ⊃ ∃xD(B).

Analogously if C(◦) is ∃xD(◦) and ◦ occurs negatively in D(◦).
6. If C(◦) is ∀xD(◦) and ◦ occurs positively in D(◦) then ◦ occurs positively in

∀xD(◦) similar to 5.

3 Skolemization

We use skolemization to replace strong quantifiers in valid formulas such that
the original formulas can be recovered. Note that several Skolem functions for
the replacement of a single quantifier are necessary to represent proper suprema
and proper infima. We fix L(L, V,→), L = 〈W,≤,∪,∩, 0, 1〉.
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Definition 8. Consider a formula B in a context A(B). Then its skolemization
A(sk(B)) is defined as follows:

Replace all strong quantifier occurrences (positive occurrence of ∀ and nega-
tive occurrence of ∃) (note that no quantifiers in A bind variables in B) of the
form ∃xC(x) (or ∀xC(x)) in B by

∨|W |
i=1 C(fi(x)) (or

∧|W |
i=1 C(fi(x))), where fi

are new function symbols and x are the weakly quantified variables of the scope.
Skolem axioms are closed sentences

∀x(∃yA(y, x) ⊃
|W |∨

i=1

A(fi(x), x) and ∀x(
|W |∧

i=1

A(fi(x), x) ⊃ ∀yA(y, x))

where fi are new function symbols (Skolem functions).

Lemma 2. 1. If |=1 A(B) then |=1 A(sk(B)).
2. If S1 . . . Sk |=1 A(sk(B)) then S1 . . . Sk |=1 A(B), for suitable Skolem axioms

S1 . . . Sk.
3. If S1 . . . Sk |=1 A, where S1 . . . Sk are Skolem axioms and A does not contain

Skolem functions then |=1 A.

Proof. 1. Note that

if |= A(D) then |= A(D ∨ D)

and
if |= A(D) then |= A(D ∧ D).

Use Lemma 1 and

|=1 D′(t) ⊃ ∃xD′(x), |=1 ∀xD′(x) ⊃ D′(t).

2. Use Lemma 1 and suitable Skolem axioms to reconstruct strong quantifiers.
3. Assume �|=1 A. As usual, we have to extend the valuation to the Skolem

functions to verify the Skolem axioms. There is a valuation in 〈DΦ1 , ΩΦ1〉 s.t.
Φ1(A) �= 1. Using at most |W | Skolem functions and AC we can always pick
witnesses as values for the Skolem functions such that the first-order suprema
and infima are reconstructed on the propositional level. (AC is applied to sets
of objects where the corresponding truth value is taken.)

sup{Φ1(B(fi(t), t)) | 1 ≤ i ≤ |W |} =

sup{Φ1(B(d, t) | d ∈ DΦ1} = Φ1(∃yB(y, t))

and
inf{Φ1(B(fi(t), t)) | 1 ≤ i ≤ |W |} =

inf{Φ1(B(d, t)) | d ∈ DΦ1} = Φ1(∀yB(y, t)).

Example 3. We continue with the logic MCQF introduced in Example 2. For the
given logic

∃xB(x) ⊃ sk(∃y∀zC(y, z)) ≡ ∃xB(x) ⊃ ∃y
5∧

i=1

C(y, fi(y)).
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4 Expansions

Expansions, first introduced in [15], are natural structures representing the
instantiated variables for quantified formulas. They record the substitutions for
quantifiers in an effort to recover a sound proof of the original formulation of
Herbrand’s Theorem. As we work with skolemized formulas, in this paper we we
consider only expansions for formulas with weak quantifiers. Consequently the
arguments are simplified.

In the following we assume that a constant c is present in the language
and that t1, t2, . . . is a fixed ordering of all closed terms (terms not containing
variables).

Definition 9. A term structure is a structure 〈D,Ω〉 such that D is the set of
all closed terms.

Proposition 2. Let Φ1(∃xA(x)) = υ in a term structure. Then Φ1(∃xA(x) =
Φ1(

∨n
i=1 A(ti)) for some n. Analogously for ∀xA(x), i.e. let Φ1(∀xA(x)) = υ in

a term structure, then Φ1(∀xA(x)) = Φ1(
∧n

i=1 A(ti)) for some n.

Proof. Only finitely many truth values exists, therefore there is an n such that
the valuation becomes stable on

∨n
i=1 A(ti) (

∧n
i=1 A(ti)).

Definition 10. Let E be a formula with weak quantifiers only. The n-th expan-
sion En of E is obtained from E by replacing inside out all subformulas ∃xA(x)
(∀xA(x)) by

∨n
i=1 A(ti) (

∧n
i=1 A(ti)). En is a Herbrand expansion iff En is valid.

In case there are only m terms Em+k = Em.

Lemma 3. Let Φ1(E) = υ in a term structure. Then there is an n such that for
all m ≥ n Φ1(Em) = υ.

Proof. We apply Proposition 2 outside in to replace subformulas ∃x A(x) (∀x
A(x)) stepwise by

∨n
i=1 A(ti) (

∧n
i=1 A(ti)) without changing the truth value. The

disjunctions and conjunctions can be extended to common maximal disjunctions
and conjunctions.

Theorem 1. Let E contain only weak quantifiers. Then |= E iff there is a
Herbrand expansion En of E.

Proof. ⇒: Assume |= E but �|= En for all n. Let Γi = {Φ0
i,v|Φ0

i,v(Ei) �= 1} and
define Γ =

⋃
Γi. Note that the first index in Φ0

i,v relates to the expansion level and
the second index to all counter-valuations at this level. Assign a partial order < to
Γ by Φ0

i,v < Φ0
j,w for Φ0

i,v ∈ Γi, Φ0
j,w ∈ Γj and i < j iff Φ0

i,v and Φ0
j,w coincide on

the atoms of Ei. By König’s Lemma there is an infinite branch Φ0
1,i1

< Φ0
2,i2

< . . ..
Define a term structure induced by an evaluation on atoms P :

Φ1(P ) =

{
υ P occurs in some En and Φn,in(P ) = υ

1 else
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Φ1(E) �= 1 by Lemma 3.
⇐: Use Lemma 1 and |= A(t) ⊃ ∃xA(x) and |= ∀xA(x) ⊃ A(t). Note that

if |= A(D ∨ D) then |= A(D)

and
if |= A(D ∧ D) then |= A(D).

Example 4. Consider the lattice in Example 2, Fig. 2 and the term ordering
c < d. The expansion sequence of P (c, d, d) ⊃ ∃xP (c, x, d) is

E1 = P (c, d, d) ⊃ P (c, c, d), E2 = P (c, d, d) ⊃ P (c, c, d) ∨ P (c, d, d), E2+k = E2.

The second formula is a Herbrand expansion.

5 The Interpolation Theorem

Theorem 2. Interpolation holds for L0(L, V,→) iff interpolation holds for
L1(L, V,→).

Proof. ⇐: trivial.
⇒: Assume A ⊃ B ∈ L(L, V ) and |= A ⊃ B.

|= sk(A) ⊃ sk(B) by Lemma 2 1.

Construct a Herbrand expansion AH ⊃ BH of sk(A) ⊃ sk(B) by Theorem 1.
Construct the propositional interpolant I∗ of AH ⊃ BH ,

|= AH ⊃ I∗ and |= I∗ ⊃ BH .

Use Lemma 1 and

|= A(t) ⊃ ∃xA(x), |= ∀xA(x) ⊃ A(t)

to obtain
|= sk(A) ⊃ I∗ and |= I∗ ⊃ sk(B)

Order all terms f(t) in I∗ by inclusion where f is not in the common language.
Let f∗(t) be the maximal term.

i. f∗ is not in sk(A). Replace f∗(t) by a fresh variable x to obtain

|= sk(A) ⊃ I∗{x/f∗(t)}.

But then also
|= sk(A) ⊃ ∀xI∗{x/f∗(t)}

and
|= ∀xI∗{x/f∗(t)} ⊃ sk(B)

by
|= ∀xI∗{x/f∗(t)} ⊃ I∗.
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ii. f∗ is not in sk(B). Replace f∗(t) by a fresh variable x to obtain

|= I∗{x/f∗(t)} ⊃ sk(B).

But then also
|= ∃xI∗{x/f∗(t)} ⊃ sk(B)

and
|= sk(A) ⊃ ∃xI∗{x/f∗(t)}

by
|= I∗ ⊃ ∃xI∗{x\f∗(t)}.

Repeat this procedure till all functions and constants not in the common lan-
guage (among them the Skolem functions) are eliminated from the middle for-
mula. Let I be the result. I is an interpolant of sk(A) ⊃ sk(B). By Lemma 2 2,3
I is an interpolant of A ⊃ B. For a similar construction for classical first-order
logic see Chap. 8.2 of [4].

Corollary 1. If interpolation holds for L0(L, V,→), |= A ⊃ B and A ⊃ B
contains only weak quantifiers, then there is a quantifier-free interpolant with
common predicates for A ⊃ B.

Remark 1. Corollary 1 cannot be strengthened to provide a quantifier-free inter-
polant with common predicate symbols and common function symbols for
A ⊃ B. Consider

Q∀A(x1, f1(x1), x2, f2(x1, x2), . . .) ⊃ Q∃A(g1, y1, g2(y1), y2, g3(y1, y2), . . .),

where Q∀ = ∀x1∀x2 . . . and Q∃ = ∃y1∃y2 . . .. This is the skolemization of

∀x1∃x′
1∀x2 . . . A(x1, x

′
1, x2, . . .) ⊃ ∀x1∃x′

1∀x2 . . . A(x1, x
′
1, x2, . . .),

where ∀x1∃x′
1∀x2∃x′

2 . . . A(x1, x
′
1, x2, x

′
2, . . .) is the only possible interpolant

modulo provable equivalence with common predicate and function symbols.

Example 5. Example 2 continued. For the given logic we calculate the interpolant
for

∃x(B(x) ∧ ∀yC(y)) ⊃ ∃x(A(x) ∨ B(x)).

1. Skolemization

5∨

i=1

(B(ci) ∧ ∀yC(y)) ⊃ ∃x(A(x) ∨ B(x)).

2. Herbrand expansion

5∨

i=1

(B(ci) ∧ C(c1)) ⊃
5∨

i=1

(A(ci) ∨ B(ci)).
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3. Propositional interpolant

5∨

i=1

(B(ci) ∧ C(c1)) ⊃
5∨

i=1

B(ci)
5∨

i=1

B(ci) ⊃
5∨

i=1

(A(ci) ∨ B(ci)).

4. Back to the Skolem form

5∨

i=1

(B(ci) ∧ ∀yC(y)) ⊃
5∨

i=1

B(ci)
5∨

i=1

B(ci) ⊃ ∃x(A(x) ∨ B(x)).

5. Elimination of function symbols and constants not in the common language
from

∨5
i=1 B(ci). Result:

∃z1 . . . ∃z5
∨

B(zi).

6. Use the Skolem axiom

∃x(B(x) ∧ ∀yC(y)) ⊃
5∨

i=1

B(ci) ∧ ∀yC(y)

to reconstruct the original first-order form.
7. The Skolem axiom can be deleted.

Proposition 3. Let L = 〈W,≤,∪,∩, 0, 1〉.
i. L0(L, ∅,→) (and therefore L1(L, ∅,→)) never has the interpolation property.
ii. L0(L,W,→) (and therefore L1(L,W,→)) always has the interpolation prop-

erty.

Proof. i. |=0 x ⊃ (y ⊃ y) and the only possible interpolant is �, which is not
variable-free definable.

ii. Consider |= A(x1, . . . , xn, y1, . . . , ym) ⊃ B(y1 . . . yn, z1, . . . zo),

I =
∨

〈vi1 ,...vin 〉∈W×W

A(Cvi1
, . . . , Cvin

, y1, . . . , ym)

is an interpolant as

|= A(x1, . . . , xn, y1, . . . , ym) ⊃ I

and
|= I ⊃ B(y1 . . . yn, z1, . . . zo)

by substitution.

Proposition 3 ii. makes it possible to characterize all extensions of a lattice
based many-valued logic which admit first-order interpolation.

SPECTRUM(L,→) = {V |L1(L, V,→) interpolates}.
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Example 6. L = 〈{0, 1},≤,∪,∩, 0, 1〉 the lattice of classical logic, → classical
implication.

SPECTRUM(L,→) = {{0}, {1}, {0, 1}}
This is the maximal possible spectrum by Proposition 3 i.

L0(L, {0},→) and L0(L, {0, 1},→) interpolate as all truth constants are rep-
resentable by closed formulas, therefore L1(L, {0},→) and L1(L, {0, 1},→) inter-
polate (Craig’s result, which does however not cover L1(L, {1},→)).

To show that L0(L, {1},→) interpolates first note that in general
∨

i

Ei ⊃
∧

j

Fj

interpolates iff there are interpolants

Ei ⊃ Iij Iij ⊃ Fj .

∧
j

∨
i Iij is a suitable interpolant. Now use the value presenting transformations

D(A ∧ B ⊃ C) ⇒ D(A ⊃ C ∨ B ⊃ C)

D(A ∨ B ⊃ C) ⇒ D(A ⊃ C ∧ B ⊃ C)

D((A ⊃ B) ⊃ C) ⇒ D(C ∨ (A ∧ (B ⊃ C)))

D(x) ⇒ D(� ⊃ x)

for variables x together with distributions and simplifications, to reduce the
problem to ∧

i

(ui ⊃ vi) ⊃
∨

j

(sj ⊃ tj)

vi, tj variables, ui, sj variables or �. We assume that the succedent is not valid
(otherwise � is the interpolant). So any variable occurs either in the sj group or
in the tj group. Close the antecedents under transitivity of ⊃. There is a common
implication u ⊃ v, an interpolant (Otherwise there is a countervaluation by
assigning 0 to all tj and extending this assignment in the antecedent such that
if vi is assigned 0 also ui is assigned 0. No sj is assigned 0 by this procedure.
Assign 1 to all other variables and derive a contradiction to the assumption, that
the initial implication is valid). Therefore, L1(L, {1},→) interpolates.

Example 7. n-valued Gödel logics.
Let Gn = 〈Wn,≤,∪,∩, 0, 1〉, where Wn = {0, 1

n−1 , . . . , n−2
n−1 , 1}, ≤ is the

natural order and ∪,∩, 0, 1 are defined accordingly.

u → v =

{
1 u ≤ v

v else

The first-order spectrum in the presence of ⊥ consists of all sets of truth
values {⊥} ∪ (Γ − {⊥,�}) and {⊥,�} ∪ (Γ − {⊥,�}) such that there are no
consecutive truth values υi, υi+1 both not in Γ − {⊥,�} (see [6]).
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6 Extensions to Infinitely-Valued Logics

We may use the described methodology to prove interpolation for (fragments
of) infinitely-valued logics, as for instance Gödel logics [5]. Consider Gödel logic
GQF

[0,1], the logic of all linearly ordered Kripke frames with constant domains. Its
connectives can be interpreted as functions over the real interval [0, 1] as follows:
⊥ is the logical constant for 0, ∨,∧,∃,∀ are defined as maximum, minimum,
supremum, infimum, respectively. ¬A is an abbreviation for A → ⊥ and → is
defined as

u → v =

{
1 u ≤ v

v else

The weak quantifier fragment of GQF
[0,1] admits Herbrand expansions. This fol-

lows from cut-free proofs in hypersequent calculi [2]. This can be easily shown by
proof transformation steps in the hypersequent calculus. Indeed, we can trans-
form proofs by eliminating weak quantifier inferences:

i. If there is an occurrence of an ∃ introduction, we select all formulas Ai that
correspond to this inference and eliminate the ∃ introduction by the use of∨

i Ai.
ii. If there is an occurrence of a ∀ introduction, we select all formulas Bi that

correspond to this inference and eliminate the ∀ introduction by the use of∧
i Bi.

We suppress the inference of weak quantifiers and combine the disjunctions
respectively conjunctions to accommodate contractions. Propositional Gödel
logic interpolates and therefore the weak quantifier fragment of GQF

[0,1] interpo-
lates too, as no skolemization is necessary.

The fragment A ⊃ B, A,B prenex also interpolates: Skolemize as in classical
logic, construct a Herbrand expansion, interpolate, go back to the Skolem form
and use an immediate analogy of the 2nd ε-theorem [11] to go back to the original
formulas. To illustrate the procedure, consider the following example.

Example 8.

GQF
[0,1] |= ∀x∃y(P (x) ∧ Q(y)) ⊃ ∀x∃y(R(x) ∨ P (y))

We skolemize as in classical logic (note that the substitution of Skolem terms is
always possible).

GQF
[0,1] |= ∀x(P (x) ∧ Q(f(x))) ⊃ ∃y(R(c) ∨ P (y)).

Calculate a Herbrand expansion

GQF
[0,1] |= P (c) ∧ Q(f(c)) ⊃ R(c) ∨ P (c).

Construct a propositional interpolant

GQF
[0,1] |= P (c) ∧ Q(f(c)) ⊃ P (c) GQF

[0,1] |= P (c) ⊃ R(c) ∨ P (c).
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Go back to the Skolem form

GQF
[0,1] |= ∀x(P (x) ∧ Q(f(x))) ⊃ P (c) GQF

[0,1] |= P (c) ⊃ ∃x(R(c) ∨ P (x)).

Eliminate c from the interpolant

GQF
[0,1] |= ∀x(P (x) ∧ Q(f(x))) ⊃ ∀xP (x) GQF

[0,1] |= ∀xP (x) ⊃ ∃x(R(c) ∨ P (x)).

Skolemize the interpolant in both formulas and construct a Herbrand expansion
to apply the 2nd ε-Theorem to obtain

GQF
[0,1] |= ∀x∃y(P (x) ∧ Q(y)) ⊃ ∀xP (x) GQF

[0,1] |= ∀xP (x) ⊃ ∀x∃y(R(x) ∨ P (y)).

i. GQF
[0,1] |= P (e) ∧ Q(f(e)) ⊃ P (e): replace all Skolem terms by variables repre-

senting them.
GQF

[0,1] |= P (xe) ∧ Q(xe) ⊃ P (xe).

Infer weak quantifiers, shift and contract as much as possible, otherwise infer
the strong quantifier representing a deepest Skolem term available, shift and
repeat.

GQF
[0,1] |= ∃y(P (xe) ∧ Q(y)) ⊃ P (xe)

GQF
[0,1] |= ∀x∃y(P (x) ∧ Q(y)) ⊃ P (xe)

GQF
[0,1] |= ∀x∃y(P (x) ∧ Q(y)) ⊃ ∀xP (x)

ii. GQF
[0,1] |= P (c) ⊃ R(c) ∨ P (c):

GQF
[0,1] |= P (xc) ⊃ R(xc) ∨ P (xc)

GQF
[0,1] |= ∀xP (x) ⊃ R(xc) ∨ P (xc)

GQF
[0,1] |= ∀xP (x) ⊃ ∃y(R(xc) ∨ P (y))

GQF
[0,1] |= ∀xP (x) ⊃ ∀x∃y(R(x) ∨ P (y))

Therefore, it is possible to show interpolation for fragments of GQF
[0,1], how-

ever, not yet for GQF
[0,1]. What lacks to prove interpolation for GQF

[0,1] is a suitable
skolemization of all formulas!

7 Conclusion

Extending the notion of expansion to formulas containing strong quantifiers
might be possible to cover logics which do not admit skolemization, e.g. logics
based on non-constant domain Kripke frames (such notions of expansion are in
the spirit of Herbrand’s original proof of Herbrand’s Theorem).



280 M. Baaz and A. Lolic

Another possibility is to develop unusual skolemizations e.g. based on exis-
tence assumptions [3] or on added Skolem predicates instead of Skolem functions
as in [10].

The methodology of this paper can also be used to obtain negative results.
First-order S5 does not interpolate by a well-known result of Fine [9]. As propo-
sitional S5 interpolates, first-order S5 cannot admit skolemization together with
expansions in general.

Acknowledgments. Partially supported by FWF P 26976, FWF I 2671 and the
Czech-Austrian project MOBILITY No. 7AMB17AT054.

References

1. Aguilera, J.P., Baaz, M.: Ten problems in Gödel logic. Soft. Comput. 21(1), 149–
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147(1), 23–47 (2007)

6. Baaz, M., Veith, H.: Interpolation in fuzzy logic. Arch. Math. Log. 38(7), 461–489
(1999)

7. Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society, New York
(1948)

8. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(03), 269–285 (1957)

9. Fine, K.: Failures of the interpolation lemma in quantified modal logic. J. Symbolic
Logic 44(02), 201–206 (1979)
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shefte für Mathematik 37(1), 349–360 (1930)

11. Hilbert, D., Bernays, P.: Grundlagen der Mathematik (1968)
12. Maksimova, L.: Intuitionistic logic and implicit definability. Ann. Pure Appl. Logic

105(1–3), 83–102 (2000)
13. Maksimova, L.L.: Craig’s theorem in superintuitionistic logics and amalgamable

varieties of pseudo-Boolean algebras. Algebra Logic 16(6), 427–455 (1977)
14. Maksimova, L.L.: Interpolation properties of superintuitionistic logics. Stud. Log-

ica. 38(4), 419–428 (1979)
15. Miller, D.A.: A compact representation of proofs. Stud. Logica. 46(4), 347–370

(1987)
16. Miyama, T.: The interpolation theorem and Beth’s theorem in many-valued logics.

Mathematica Japonica 19, 341–355 (1974)
17. Ono, H.: Model extension theorem and Craig’s interpolation theorem for interme-

diate predicate logics. Rep. Math. Logic 15, 41–58 (1983)
18. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their

applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)


	First-Order Interpolation of Non-classical Logics Derived from Propositional Interpolation
	1 Introduction
	2 Lattice-Based Finitely-Valued Logics
	3 Skolemization
	4 Expansions
	5 The Interpolation Theorem
	6 Extensions to Infinitely-Valued Logics
	7 Conclusion
	References




