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Abstract. The Golog agent programming language is a powerful
means to express high-level behaviours in terms of programs over actions
defined in a Situation Calculus theory. Its variant DTGolog includes
decision-theoretic aspects in the form of stochastic (probabilistic) actions
and reward functions. In particular for physical systems such as robots,
verifying that a program satisfies certain desired temporal properties is
often crucial, but undecidable in general, the latter being due to the lan-
guage’s high expressiveness in terms of first-order quantification, range
of action effects, and program constructs. Recent results for classical
Golog show that by suitably restricting these aspects, the verifica-
tion problem becomes decidable for a non-trivial fragment that retains a
large degree of expressiveness. In this paper, we lift these results to the
decision-theoretic case by providing an abstraction mechanism for reduc-
ing the infinite-state Markov Decision Process induced by the DTGolog
program to a finite-state representation, which then can be fed into a
state-of-the-art probabilistic model checker.

1 Introduction

When it comes to the design and programming of an autonomous agent, the
Golog [12] family of action languages offers a powerful means to express high-
level behaviours in terms of complex programs whose basic building blocks
are the primitive actions described in a Situation Calculus [16] action theory.
Golog’s biggest advantage perhaps is the fact that a programmer can freely
combine imperative control structures with non-deterministic constructs, leaving
it to the system to resolve non-determinism in a suitable manner. Its extension
DTGolog [2,17] includes decision-theoretic aspects in the form of stochastic
(probabilistic) actions and reward functions, essentially expressing a form of
(infinite-state) Markov Decisions Process (MDP) [15].

In particular when Golog is used to control physical robots, it is often
crucial to verify a program against some specification of desired behaviour, for
example in order to ensure liveness and safety properties, typically expressed by
means of temporal formulas. Unfortunately, the general verification problem for
Golog is undecidable due to the language’s high expressivity in terms of first-
order quantification, range of action effects, and program constructs. For this
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reason, there have recently been endeavours to identify restricted, but non-trivial
fragments of Golog where verification (and hence other reasoning tasks such as
projection) becomes decidable, while a great deal of expressiveness is retained. In
[20] we presented one such result for a class of action theories, called acyclic, that
allows for non-local effects, i.e. where actions may affect an unbounded number
of objects that are not explicitly mentioned as action parameters. Decidability of
verification is achieved by restricting dependencies between fluents in successor
state axioms, which allows for a wide range of applications that includes the
well-known briefcase domain [14].

So far, to the best of our knowledge, the verification of temporal properties of
decision-theoretic Golog programs has not received any attention, even though
in most practical applications one has to deal with uncertainty, e.g. in the form of
actions failing with a certain probability and not showing the desired effects. In
this paper, we lift the above mentioned decidability result on acyclic theories to
the decision-theoretic case by providing an abstraction mechanism for reducing
the infinite-state MDP induced by a DTGolog program to a finite-state rep-
resentation, which then can be fed into any state-of-the-art probabilistic model
checker such as PRISM [10] and STORM [4].

2 Preliminaries

2.1 The Logic ES
We use a fragment of the first-order action logic ES [11], a variant of the Situation
Calculus that uses modal operators instead of situation terms to express what
is true after a number of actions has occurred. Not only is the syntax of ES in
our view more readable, but its special semantics also makes proofs for many
semantic properties simpler, while retaining much of the expressive power and
main benefits of the original Situation Calculus. In particular, this includes the
usage of Basic Action Theories (BATs) [16] to encode dynamic domains.

As we aim at decidability, we further have to restrict ourselves to a decidable
fragment of FOL as base logic, as otherwise reasoning about theories not involv-
ing actions, programs and temporal properties would be undecidable already.
For this purpose we use C2, the two-variable fragment of FOL with equality and
counting, an expressive fragment that subsumes most description logics.

Syntax. There are terms of sort object, number and action. Variables of sort
object are denoted by symbols x, y, . . ., of sort number by p, r, and of sort action
by a. NO is a countably infinite set of object constant symbols, NN the count-
able set of rational numbers, and NA a countably infinite set of action function
symbols with arguments of sort object. We denote the set of all ground terms
(also called standard names) of sort object, number and action by NO, NN , and
NA, respectively.

Formulas are built using fluent predicate symbols (predicates that may vary
as the result of actions) with at most two arguments of sort object, and equal-
ity, using the usual logical connectives, quantifiers, and counting quantifiers.
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In addition we have the two special fluents Prob(as, an, p) (taking two actions
as, an and a number p as arguments), expressing that stochastic action as can
have outcome an with probability p, and Reward(r) (taking a number r as argu-
ment), saying that the reward in the current situation is r. Furthermore, there
are two modalities for referring to future situations: �φ says that φ holds after
any sequence of actions, and [t]φ means that φ holds after executing action t.

A formula is called fluent formula if it contains no �, no [·], no Prob and
no Reward (i.e. such formulas talk about the current state of the world and
do not involve dynamic or decision-theoretic aspects). A C2-fluent formula is a
fluent formula that contains no terms of sort action and at most two variables.
A sentence or closed formula is a formula without free variables.

Semantics. A situation is a finite sequence (history) of actions. Let Z := N ∗
A

be the set of all situations (including the empty sequence 〈〉) and PF the set
of all primitive formulas F (n1, ..., nk), where F is a regular k-ary fluent with
0 ≤ k ≤ 2 and the ni are object standard names, together with all expressions
of form Prob(t1, t2, c1) and Reward(c2), where t1, t2 ∈ NA and c1, c2 ∈ NN . A
world w then maps primitive formulas and situations to truth values:

w : PF × Z → {0, 1}.

The set of all worlds is denoted by W.

Definition 1 (Truth of Formulas). Given a world w ∈ W and a closed
formula ψ, we define w |= ψ as w, 〈〉 |= ψ, where for any z ∈ Z:

1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;
2. w, z |= (n1 = n2) iff n1 and n2 are identical;
3. w, z |= ψ1 ∧ ψ2 iff w, z |= ψ1 and w, z |= ψ2;
4. w, z |= ¬ψ iff w, z �|= ψ;
5. w, z |= ∀x.φ iff w, z |= φx

n for all n ∈ Nx;
6. w, z |= ∃≤mx.φ iff |{n ∈ Nx | w, z |= φx

n}| ≤ m;
7. w, z |= ∃≥mx.φ iff |{n ∈ Nx | w, z |= φx

n}| ≥ m;
8. w, z |= �ψ iff w, z · z′ |= ψ for all z′ ∈ Z;
9. w, z |= [t]ψ iff w, z · t |= ψ.

Above, Nx refers to the set of all standard names of the same sort as x. Moreover
φx

n denotes the result of simultaneously replacing all free occurrences of x in φ
by n. Note that by rule 2, the unique names assumption for constants is part
of our semantics. We use the notation x and y for sequences of object variables
and v for a sequence of object terms. We understand ∨, ∃, ⊃, and ≡ as the usual
abbreviations.

2.2 Action Theories

Definition 2 (Basic Action Theories). A C2-basic action theory (C2-BAT)
D = D0 ∪ Dpost is a set of axioms that describes the dynamics of a specific
application domain, where
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1. D0, the initial theory, is a finite set of C2-fluent sentences describing the
initial state of the world;

2. Dpost is a finite set of successor state axioms (SSAs), one for each fluent
relevant to the application domain, incorporating Reiter’s [16] solution to the
frame problem to encode action effects, of the form

∀a.∀x.�
((

[a]F (x)
)

≡ γ+
F ∨

(
F (x) ∧ ¬γ−

F

))

where the positive effect condition γ+
F and negative effect condition γ−

F are
fluent formulas that are (possibly empty) disjunctions of formulas of the form
∃y.

(
a = A(v) ∧ φ ∧ φ′) such that

(a) ∃y.
(
a = A(v) ∧ φ ∧ φ′) contains the free variables x and a and no other

free variables;
(b) A(v) is an action term and v contains y;
(c) φ is a fluent formula with no terms of sort action and the number of

variable symbols in it not among v or bound in φ is less or equal two;
(d) φ′ is a fluent formula with free variables among v, no action terms, and

at most two bound variables.
φ is called effect descriptor and φ′ context condition.

The restrictions 2a and 2b on SSAs are without loss of generality and describe
the usual syntactic form of SSAs. Intuitively, the effect descriptor φ defines a
set of (pairs of) objects that are added to or deleted from the relational flu-
ent F when A(v) is executed. If free occurrences of variables in φ that appear
as arguments of A(v) are instantiated, condition 2c ensures definability of the
(instantiated) effect descriptor in our base logic C2. In contrast to the effect
descriptor, the context condition φ′ only tells us whether A(v) has an effect on F ,
but not which objects are affected. Condition 2d again ensures that after instan-
tiation of the action, the context condition is a sentence in C2. The variables x
mentioned in 2a may hence have free occurrences in φ but not in φ′.

Note that for simplicity we do not include precondition axioms, again with-
out loss of generality: To ensure that action t only gets executed when precon-
dition φt holds, simply precede every occurrence of t in the program expression
(cf. Sect. 2.3) by a test for φt.

For representing the decision-theoretic aspects, we assume that action func-
tion symbols are subdivided into two disjoint subsets, deterministic actions and
stochastic actions. We then associate every stochastic action with a probability
distribution over a finite number of possible outcomes in the form of deterministic
actions. Moreover, (state-based) rewards are represented by assigning numeric
values to situations:

Definition 3 (Decision-Theoretic BATs). A C2-decision-theoretic action
theory (C2-DTBAT) DDT = D ∪Dprob ∪Dreward extends a BAT D over deter-
ministic actions by

1. Dprob, an axiom of the form �Prob(as, an, p) ≡ φ, where as and an are action
variables, p is a number variable, and φ is a disjunction of formulas of the
form
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∃x. as = A(x) ∧
∨

i

an = Ai(xi) ∧ p = ci,

where A is a stochastic action, the Ai are deterministic actions defined in D,
the xi are contained in x, and the ci are rational constants with 0 < ci ≤ 1
and

∑
i ci = 1. Furthermore, we assume that Prob is defined to be functional

in the sense that for any ground action terms ts and tn, there is at most one
c such that Prob(ts, tn, c).

2. Dreward, an axiom of the form �Reward(r) ≡ ψ, where ψ is a fluent formula
with free variable r, no terms of sort action and at most two bound variables.
Reward is assumed to be partially functional, i.e. in any situation there is at
most one r such that Reward(r) holds.

Example 1. Consider a warehouse domain with shelves holding boxes containing
items. The fluent Broken(x) denotes that a box or item x is currently broken,
On(x, y) says that box or item x is currently on shelf y, and Contains(x, y) is
true for a box x containing an item y.

The agent is a robot that can move a box v from shelf s to shelf s′ using
the action Move(v, s, s′). We also have actions with undesired effects: Drop(v, s)
stands for dropping a box v from shelf s to the ground, causing all fragile objects
in it to break if there is no bubble wrap in it. Finally, Repair(s) is an action by
means of which the robot can repair a box or an item that is not fragile.

Figure 2 exemplarily shows the effect conditions for Broken(x) and On(x, y).
Effect descriptors are underlined with a solid line, context conditions with a
dashed line. If for example the agent were to drop the box in an initial situation
incompletely described by the axioms in Fig. 1, everything in it will break if the
box contains no bubble wrap, i.e. the BAT entails

¬∃x
(
Contains(box , x) ∧ BubbleWrap(x)

)

⊃ [Drop(box )]
(
∀y.Contains(box , y) ⊃ Broken(y)

)
.

MoveS (v, s, s′) is a stochastic action that has the desired effect in 90% of the
cases, but there is a 10% chance to drop v from shelf s; having the unbroken
vase on shelf s1 gives a reward of 5, while on s2 it gives a reward of 10:

�Prob(as, an, p) ≡ ∃v, s, s′. as = MoveS (v, s, s′)∧
(
an = Move(v, s, s′) ∧ p = 0.9∨
an = Drop(v, s) ∧ p = 0.1

)

�Reward(r) ≡
(
On(vase, s1) ∧ ¬Broken(vase) ∧ r = 5∨
On(vase, s2) ∧ ¬Broken(vase) ∧ r = 10

)

2.3 DTGOLOG and the Verification Problem

In a Golog program over ground actions we combine actions, whose effects are
defined in a C2-BAT, and tests, using a set of programming constructs to define
a complex action.
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On(box , s1),

∀x∃≤1y.On(x, y),

∀x.(BubbleWrap(x) ⊃ ¬Fragile(x)),

Contains(box , vase),

∀x.(Contains(box , x) ⊃ Fragile(x))

∀y∃≤1x.Contains(x, y),

Fig. 1. Example initial theory

γ+
Broken := ∃v, s. a = Drop(v, s) ∧ On(v, s) ∧ Contains(v, x) ∧ Fragile(x) ∧

¬∃y.Contains(v, y) ∧ BubbleWrap(y)
)
;

γ−
Broken := ∃s. a = Repair(s) ∧ s = x ∧ ¬Fragile(x)

)
;

γ+
On := ∃v, s, s′. a = Move(v, s, s′) ∧ y = s′ ∧ Contains(v, x) ∨ x = v

))
;

γ−
On := ∃v, s, s′. a = Move(v, s, s′) ∧ y = s ∧ Contains(v, x) ∨ x = v

)) ∨
∃v, s. a = Drop(v, s) ∧ y = s ∧ v = x ∨ Contains(v, x)

))

Fig. 2. Example effect conditions

Definition 4 (Programs). A program expression δ is built according to the
following grammar:

δ ::= t | ψ? | δ;δ | δ|δ | δ∗

A program expression can thus be a (deterministic or stochastic) ground action
term t, a test ψ? where ψ is a C2-fluent sentence, or constructed from sub-
programs by means of sequence δ;δ, non-deterministic choice δ|δ, and non-
deterministic iteration δ∗. Furthermore, if statements and while loops can be
defined as abbreviations in terms of these constructs:

if φ then δ1 else δ2 endIf
def
= [φ?; δ1] | [¬φ?; δ2]

while φ do δ endWhile
def
= [φ?; δ]∗;¬φ?

A Golog program G = (D, δ) consists of a C2-BAT D = D0 ∪ Dpost and
a program expression δ where all fluents occurring in D and δ have an SSA in
Dpost.

To handle termination and failure of a program we use two 0-ary fluents
Final and Fail and two 0-ary action functions ε and f and include the SSAs
�[a]Final ≡ a = ε ∨ Final and �[a]Fail ≡ a = f ∨ Fail in Dpost. Furthermore,
we require that ¬Final ∈ D0 and ¬Fail ∈ D0, and that the fluents Final, Fail
and actions ε and f do not occur in δ.
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Following [3] we define the transition semantics of programs meta-theoretically.
First, consider program expressions that only contain deterministic actions. A
configuration 〈z, ρ〉 consists of a situation z ∈ Z and a program expression ρ,
where z represents the actions that have already been performed, while ρ is the
program that remains to be executed. Execution of a program in a world w ∈ W
yields a transition relation w−→ among configurations defined inductively over
program expressions, given by the smallest set that satisfies:

1. 〈z, t〉 w−→ 〈z · t, 〈〉〉;
2. 〈z, δ1; δ2〉 w−→ 〈z · t, γ; δ2〉, if 〈z, δ1〉 w−→ 〈z · t, γ〉;
3. 〈z, δ1; δ2〉 w−→ 〈z · t, δ′〉, if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉 w−→ 〈z · t, δ′〉;
4. 〈z, δ1|δ2〉 w−→ 〈z · t, δ′〉, if 〈z, δ1〉 w−→ 〈z · t, δ′〉 or 〈z, δ2〉 w−→ 〈z · t, δ′〉;
5. 〈z, δ∗〉 w−→ 〈z · t, γ; δ∗〉, if 〈z, δ〉 w−→ 〈z · t, γ〉.

The set of final configurations Fin(w) w.r.t. a world w is defined similarly as the
smallest set such that:

1. 〈z, ψ?〉 ∈ Fin(w) if w, z |= ψ;
2. 〈z, δ1; δ2〉 ∈ Fin(w) if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉 ∈ Fin(w);
3. 〈z, δ1|δ2〉 ∈ Fin(w) if 〈z, δ1〉 ∈ Fin(w) or 〈z, δ2〉 ∈ Fin(w);
4. 〈z, δ∗〉 ∈ Fin(w).

The set of failing configurations w.r.t. a world w is given by

Fail(w) := {〈z, δ〉 | 〈z, δ〉 /∈ Fin(w), there is no 〈z · t, δ′〉 s.t. 〈z, δ〉 w−→ 〈z · t, δ′〉}.

We now turn to the decision-theoretic case. A DTGolog program G = (DDT , δ)
consists of a C2-DTBAT DDT = D ∪ Dprob ∪ Dreward and a program expression
δ that only contains stochastic actions,1 and where all fluents occurring in DDT
and δ have an SSA in Dpost. Given a world w ∈ W with w |= DDT , execution
of δ in w induces an infinite-state MDP w.r.t. w given by Mw

δ = 〈S, s0,A,P,R〉,
where

– the (infinite) set of states S is given by Reach(w, δdet), which denotes the set
of configurations reachable from 〈〈〉, δdet〉 via w−→, where δdet is the program
obtained by replacing every stochastic action A(v) in δ by the expression
(A1(v1)| · · · |Ak(vk)) such that the Ai(vi) are all deterministic actions for
which

w, z |= Prob(A(x), Ai(xi), p)xv ;

– the initial state is s0 = 〈〈〉, δdet〉;
– the (finite) set of actions A are all (stochastic) ground action terms occurring

in δ;

1 Note that we can always simulate a deterministic action by a stochastic one that
has only one outcome.
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– the transition function P : S × A × S → R is such that

P(〈z, ρ〉, t, 〈z · t′, ρ′〉) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p, w, z |= Prob(t, t′, p)
and 〈z, ρ〉 w−→ 〈z · t′, ρ′〉

1, 〈z, ρ〉 ∈ Fin(w), t = t′ = ρ′ = ε

1, 〈z, ρ〉 ∈ Fail(w), t = t′ = ρ′ = f

0, otherwise

– the reward function R : S → R is given by

R(〈z, ρ〉) =

{
r, w, z |= Reward(r)
0, otherwise

In addition, final and failing configurations are absorbing states, i.e. if s is reached
by ε, then P(s, ε, s) = 1, and if s is reached by f, then P(s, f, s) = 1.

The non-determinism on the agent’s side is resolved by means of a policy σ,
which is a mapping σ : S → A such that P(s, σ(s), s′) > 0 for some s′ ∈ S. An
infinite path π = s0

a1−→ s1
a2−→ · · · is called a σ-path if σ(sj) = aj+1 for all j ≥ 0.

The j-th state sj of any such path is denoted by π[j]. The set of all σ-paths
starting in s is Pathsσ(s,Mw

δ ).
Every policy σ induces a probability space Prσ

s on the sets of infinite paths
starting in s, using the cylinder set construction [8]: For any finite path prefix
πfin = s0

a1−→ s1
a2−→ · · · sn, we define the probability measure

Prσ
s0,fin = P(s0, a1, s1) · P(s1, a2, s2) · . . . · P(sn−1, an, sn).

This extends to a unique measure Prσ
s .

Definition 5 (Temporal Properties of Programs). To express temporal
properties of probabilistic systems represented by DTGolog programs, we use
a probabilistic variant of CTL called PRCTL [1], which extends PCTL [7]
with rewards. However, in place of atomic propositions, we allow for C2-fluent
sentences ψ:

Φ ::= ψ | ¬Φ | Φ ∧ Φ | PI [Ψ ] | RJ [Φ] (1)

Ψ ::=XΦ | (Φ U Φ) | (Φ U≤k Φ) (2)

Above, I ⊆ [0, 1] and J are intervals with rational bounds. We call formulas
according to (1) state formulas, and formulas according to (2) path formulas.
Intuitively, PI [Ψ ] expresses that the probability of the set of paths satisfying Ψ
lies in the interval I, while RJ [Φ] says that the expected reward cumulated before
reaching a state that satisfies Φ is in J . Rather than providing intervals explicitly,
we often use abbreviations such as P≥0.9[Ψ ] to denote P[0.9,1][Ψ ], P=1[Ψ ] for
P[1,1][Ψ ], or P>0[Ψ ] for P]0,1][Ψ ].

(Φ1U
≤k Φ2) is the step-bounded version of the until operator, expressing that

Φ2 will hold within at most k steps, where Φ1 holds in all states before. We use
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the usual abbreviations FΦ ( eventually Φ) for (true U Φ) and GΦ ( globally Φ)
for ¬F¬Φ, as well as their corresponding step-bounded variants.

Let Φ be a temporal state formula, Mw
δ the infinite-state MDP of a program

G = (D, δ) w.r.t. a world w with w |= DDT , and s = 〈z, ρ〉 ∈ S. Truth of Φ in
Mw

δ , s, denoted by Mw
δ , s |= Φ is defined as follows:

– Mw
δ , s |= ψ iff w, z |= ψ;

– Mw
δ , s |= ¬Φ iff Mw

δ , s �|= Φ;
– Mw

δ , s |= Φ1 ∧ Φ2 iff Mw
δ , s |= Φ1 and Mw

δ , s |= Φ1;
– Mw

δ , s |= PI [Ψ ] iff for all policies σ, Prσ
s (Ψ) ∈ I;

– Mw
δ , s |= RJ [Φ] iff for all policies σ, ExpRewσ

s (Φ) ∈ J ,

where

Prσ
s (Ψ) = Prσ

s ({π ∈ Pathsσ(s,Mw
δ ) |Mw

δ , π |= Ψ})

and ExpRewσ
s (Φ) is the expectation (wrt. measure Prσ

s ) of the random variable
XΦ(π) : Pathsσ(s,Mw

δ ) → R≥0 such that for any path π = s0
a1−→ s1

a2−→ · · · ,

XΦ(π) =

⎧
⎪⎨

⎪⎩

0, Mw
δ , s0 |= Φ

∞, Mw
δ , si �|= Φ ∀ i ∈ N

∑min{j | Mw
δ ,sj |=Φ}−1

i=0 R(si), otherwise

Let Ψ be a temporal path formula, Mw
δ and s = 〈z, ρ〉 as above, and π ∈

Pathsσ(s,Mw
δ ) for some σ. Truth of Ψ in Mw

δ , π, denoted by Mw
δ , π |= Ψ , is

defined as follows:

– Mw
δ , π |= XΦ iff Mw

δ , π[1] |= Φ;
– Mw

δ , π |= (Φ1 U Φ2) iff ∃i ≥ 0 : Mw
δ , π[i] |= Φ2

and ∀j, 0 ≤ j < i : Mw
δ , π[j] |= Φ1;

– Mw
δ , π |= (Φ1 U

≤k Φ2) iff ∃i, k ≥ i ≥ 0 : Mw
δ , π[i] |= Φ2

and ∀j, 0 ≤ j < i : Mw
δ , π[j] |= Φ1.

Definition 6 (Verification Problem). A temporal state formula Φ is valid
in a program G = (DDT , δ) iff for all worlds w ∈ W with w |= DDT it holds
that Mw

δ , s0 |= Φ.

Example 2. Assume that due to the fact that the action may fail, the agent
decides to simply execute the MoveS (box , s1, s2) action repeatedly until the
desired situation is reached where the unbroken vase is on shelf s2:

δ = while ¬
(
On(vase, s2) ∧ ¬Broken(vase)

)
do MoveS (box , s1, s2) endWhile

Temporal properties one might want to verify for this program expression could
be whether it is very likely that this can be achieved within exactly one, at least
k, or an arbitrary number of steps:

P≥0.95[X
(
On(vase, s2) ∧ ¬Broken(vase)

)
] (3)

P≥0.95[F≤k
(
On(vase, s2) ∧ ¬Broken(vase)

)
] (4)

P≥0.95[F
(
On(vase, s2) ∧ ¬Broken(vase)

)
] (5)
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3 Decidability of Verification

We first note that in general:

Theorem 1. The verification problem for DTGolog is undecidable.

Proof. (sketch). In [20] it is shown that given a two-counter machine M, a Golog
program and BAT can be constructed where EFHalt is valid iff M halts, which
is undecidable. Since regular Golog programs are a subset of DTGolog, and
since the corresponding temporal property can be expressed as P]0,1][FHalt] in
PRCTL, we also get undecidability in the decision-theoretic case.

3.1 Fluent Dependencies and Acyclic Theories

One source of undecidability lies in cyclic dependencies between fluents in the
effect descriptors of SSAs.

Definition 7 (Fluent Dependencies). The fluent dependency graph GD for
a C2-BAT D consists of a set of nodes, one for each fluent in D. There is a
directed edge (F, F ′) from fluent F to fluent F ′ iff there is a disjunct ∃y.

(
a =

A(v) ∧ φ ∧ φ′) in γ+
F or γ−

F such that F ′ occurs in the effect descriptor φ. We
call D acyclic iff GD is acyclic. The fluent depth of an acyclic action theory D,
denoted by fd(D), is the length of the longest path in GD. The fluent depth of F
w.r.t. D, fdD(F ), is the length of the longest path in GD starting in F .

While the BAT used in the construction for the undecidability proof has a cyclic
dependency graph, the one for Example 1 is acyclic (with fluent depth 2), as
shown in Fig. 3. Note that only effect descriptors are relevant. Important special
cases of acyclic action theories are the local-effect ones [18] (corresponding to
fluent depth 0) and the context-free [13] (fluent depth 1).

Broken

OnContains Fragile

Fig. 3. Example fluent dependencies

3.2 Decidable Verification with Acyclic Theories

Let us now restrict our attention to programs over ground actions with an acyclic
C2-DTBAT DDT . Let A denote the finite set of ground deterministic actions
(including ε and f) occurring in δdet. The goal is to construct a finite proposi-
tional abstraction of the infinite-state MDP Mw

δ with w |= DDT . Following the
construction for Golog programs presented in [20] and elaborated in [19], the
essential part is a compact representation of effects from executing a sequence
of such ground actions in a given world satisfying the BAT.
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First we simplify SSAs as follows. If F (x) is a fluent and t ∈ A, the grounding
of the SSA of F w.r.t. t is of the form

�[t]F (x) ≡
(
γ+

F

)a

t
∨ F (x) ∧ ¬

(
γ−

F

)a

t
.

The instantiated positive and negative effect conditions
(
γ+

F

)a

t
and

(
γ−

F

)a

t
then

are each equivalent to a disjunction

φeff
1 ∧ φcon

1 ∨ · · · ∨ φeff
n ∧ φcon

n

for some n ≥ 0, where the φeff
i (effect descriptors) are C2-fluent formulas with

x as their only free variables, and the φcon
i (context conditions) are C2-fluent

sentences. We often view
(
γ+

F

)a

t
and

(
γ−

F

)a

t
as sets and write (φeff

i , φcon
i ) ∈

(
γ+

F

)a

t
to express that the corresponding disjunct is present. An effect function then
represents the effects of a ground action:

Definition 8 (Effects). Let F (x) be a fluent and φ a C2-fluent formula with
free variables x, where x is empty or x = x or x = (x, y). We call the expression
〈F+, φ〉 a positive effect on F , and the expression 〈F−, φ〉 a negative effect on F .
We use the notation 〈F±, φ〉 for an effect if we do not explicitly distinguish
between a positive or a negative effect on F . Let D be a C2-BAT, w a world with
w |= D, z ∈ Z and t ∈ A. The effects of executing t in (w, z) are defined as:

ED(w, z, t) :=

{〈F+, φeff〉 | ∃(φeff , φcon) ∈
(
γ+

F

)a

t
s. t. w, z |= φcon} ∪

{〈F−, φeff〉 | ∃(φeff , φcon) ∈
(
γ−

F

)a

t
s. t. w, z |= φcon}.

Intuitively, if 〈F+, φ〉 ∈ ED(w, z, t) and c is an instance of φ before executing t
in w, z, then F (c) will be true after the execution (similar for negative effects).
To accumulate effects of consecutively executed actions, we define a regression
operator applied to a C2-fluent formula given a set of effects. Without loss of
generality we assume that only variable symbols x and y occur.

Definition 9 (Regression). Let E be a set of effects and ϕ a C2-fluent for-
mula. The regression of ϕ through E, denoted by R[E, ϕ], is a C2-fluent formula
obtained from ϕ by replacing each occurrence of a fluent F (v) in ϕ by the formula

F (v) ∧
∧

〈F−,φ〉∈E

¬φx
v ∨

∨

〈F+,φ〉∈E

φx
v .

By appropriately renaming variables in the effect descriptors φ it can be ensured
that R[E, ϕ] is again a C2-fluent sentence.

The result of first executing effects E0 and afterwards E1 is a new set of effects
E0 � E1 given by:

{〈F±,R[E0, ϕ]〉 | 〈F±, ϕ〉 ∈ E1} ∪
{〈F+,

(
ϕ ∧

∧

〈F−,ϕ′〉∈E1

¬R[E0, ϕ
′]
)
〉 | 〈F+, ϕ〉 ∈ E0} ∪ {〈F−, ϕ〉 ∈ E0}.
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It can be shown that for any C2-fluent sentence φ,

R[E0,R[E1, φ]] ≡ R[E0 � E1, φ].

Let w be a world with w |= D. To accumulate the effects of a sequence z =
t1t2 · · · tn ∈ A∗ of deterministic actions into a single set, let z[i] denote the
subsequence of the first i ≤ n elements of z. Then we set

E1 := ED(w, 〈〉, t1)
Ei := Ei−1 � ED(w, z[i − 1], ti) for i = 2, . . . , n

and say that En is generated by executing t1t2 · · · tn in w. Then, for the effects
Ez generated by z in w and a C2-fluent sentence ψ, it holds that

w, z |= ψ iff w, 〈〉 |= R[Ez, ψ].

For a givenDTGolog program G = (DDT , δ) with an acyclic BAT D and finitely
many deterministic ground actions A occurring in δdet we show that there are only
finitelymany possible effects that can be generated by action sequences from A.We
observe that for an effect 〈F±, ϕ〉 on fluent F with depth fdD(F ) = i all fluents
occurring in ϕ have a depth that is strictly smaller than i. Thus, for regressing
the effect descriptor ϕ only effects on fluents with depth strictly smaller than i are
relevant. Using this argument we can define the set of all relevant effects as follows:
For a fluent F the set of all positive effect descriptors for F are given by

eff+
A(F ) := {φeff | (φeff , φcon) ∈

(
γ+

F

)a

t
for some t ∈ A},

and analogous for the negative effect descriptors eff−
A(F ). For an acyclic

BAT D and finite set of ground actions A the set of all relevant effects on
all fluents with depth ≤j with j = 0, . . . , fd(D) is denoted by ED,A

j and is given
in Fig. 4. We define ED,A := ED,A

n with fd(D) = n. For a given fluent F with
fdD(F ) = 0 it holds that the effects on F can be described without referring to
any other fluent. Consequently, all effects on F generated by a ground action
sequence from A must be contained in ED,A

0 . For fluents F with fdD(F ) = i
and i > 0 the fluents in the effect descriptors may also be subject to changes
but have a depth strictly smaller than i. To obtain all relevant effects on F it is
therefore sufficient to consider the effects in ED,A

i−1 .

Lemma 1. Let D and A be as above, z ∈ A∗, w |= D and Ez the effects
generated by executing z in w. For each 〈F±, ϕ〉 ∈ Ez there exists 〈F±, ϕ′〉 ∈
ED,A with ϕ ≡ ϕ′.

Using the finite representation of action effects we can construct a finite abstrac-
tion of the infinite-state MDP induced by a program with a C2-DTBAT and an
acyclic D. First, we identify a finite set of relevant C2-fluent sentences called
context of a program, denoted by C(G). It consists of



Decidable Verification of Decision-Theoretic Golog 239

ED,A
0 := {〈F−, ϕ〉 | fdD(F ) = 0, ϕ ∈ eff−

A(F )} ∪
{〈F+, ϕ ∧

∧

ϕ′∈X

¬ϕ′〉 | fdD(F ) = 0, ϕ ∈ eff+
A(F ), X ⊆ eff−

A(F )};

ED,A
i :=ED,A

i−1 ∪ {〈F−, R[E, ϕ]〉 | fdD(F ) = i, ϕ ∈ eff−
A(F ), E ∈ 2E

D,A
i−1 } ∪

{〈F+, Ξ〉 | fdD(F ) = i, φ ∈ eff+
A(F ), E ∈ 2E

D,A
i−1 , X ⊆ eff−

A(F ) × 2E
D,A
i−1 }

with Ξ := R[E, φ] ∧
∧

(ϕ,E′)∈X

¬R[E′, ϕ]
)

Fig. 4. Sets of all relevant effects with 1 ≤ i ≤ fd(D)

– all sentences in the initial theory,
– all context conditions in the instantiated SSAs,
– all instantiations ψr

c of the right-hand side of axiom Dreward for all occurring
numeric constants c,

– all C2-fluent subformulas in the temporal property, and
– all tests in the program.

Furthermore, the context is closed under negation.
Central for the abstraction is the notion of a type of a world, representing an

equivalence class over W. Intuitively, a type says which of the context axioms
are satisfied initially and in all relevant future situations of that world.

Definition 10 (Types). Let G = (DDT , δ) be a DTGolog program with an
acyclic BAT D = D0 ∪ Dpost w.r.t. a finite set of ground actions A (including ε
and f). Furthermore, let C(G) be the context of G and ED,A the set of all relevant
effects. The set of all type elements is given by

TE(G) := {(ψ,E) | ψ ∈ C(G),E ⊆ ED,A}.

A type w.r.t. G is a set τ ⊆ TE(G) that satisfies:

1. For all ψ ∈ C(G) and all E ⊆ ED,A either (ψ,E) ∈ τ or (¬ψ,E) ∈ τ .
2. There exists a world w ∈ W such that

w |= D0 ∪ {R[E, ψ] | (ψ,E) ∈ τ}.

The set of all types w.r.t. G is denoted by Types(G). The type of a world w ∈ W
w.r.t. G is given by

type(w) := {(ψ,E) ∈ TE(G) | w |= R[E, ψ]}.

The abstraction of a world state consisting of a world w ∈ W with w |= DDT
and an action sequence z ∈ A∗ is then given by type(w) and the set of effects
Ez ⊆ ED,A generated by executing z in w. Furthermore, the program only admits
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finitely many control states. Here we use a representation similar to the char-
acteristic program graphs from [3] where nodes are the reachable subprograms
Sub(δ), each of which is associated with a termination condition Fin(δ′), and

where an edge δ1
t/ψ−−→ δ2 represents a transition from δ1 to δ2 via action t if test

condition ψ holds. Moreover, failure conditions are given by

Fail(δ′) := ¬
(
Fin(δ′) ∨

∨

δ′ t/ψ−−→δ′′

ψ
)
.

The abstract, finite MDP for a type τ can then be constructed using the Carte-
sian product of effect sets and subprograms as states, the same actions as
in the original MDP, and the context formulas as labels. Formally, Mτ

δ fin =
〈Sfin, s

0
fin,Afin,Pfin,Rfin, Lfin〉 consists of

– the set of states Sfin = 2E
D,A × Sub(δdet);

– the initial state s0fin = 〈∅, δdet〉;
– the set of actions Afin = A;
– the transition function Pfin such that

Pfin(〈E1, δ1〉, t, 〈E2, δ2〉) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c, Dprob |= Prob(t, t′, c),

δ1
t′/ψ−−−→ δ2, (ψ,E1) ∈ τ,

E2 = E1 � ED(τ,E1, t
′)

1, (Fin(δ1), E1) ∈ τ, t = t′ = δ2 = ε

1, (Fail(δ1), E1) ∈ τ, t = t′ = δ2 = f

0, otherwise

and all 〈E, ε〉 as well as all 〈E, f〉 are absorbing states;
– the reward function Rfin such that Rfin(〈E1, δ1〉) = c iff (ψr

c ,E1) ∈ τ ;
– and the labeling function Lfin(〈E1, δ1〉) = {ψ ∈ C(G) | (ψ,E1) ∈ τ}.

We can thus regard the finitely many context formulas as atomic propositions,
and hence apply propositional probabilistic model checking. The finitely many
world types can be computed using a decidable consistency check in C2, so this
yields a decision procedure for the verification problem:

Theorem 2. Let G = (DDT , δ) be a DTGolog program with an acyclic C2-
BAT and Φ a temporal state formula. It is decidable to verify whether Φ is valid
in G.

Example 3. In our running example we obtain two types, one for the case that
the box contains bubble wrap and one where it does not. This is due to the
fact that our initial theory (Fig. 1) does not say anything about the truth of the
context condition ¬∃y.Contains(box , y) ∧ BubbleWrap(y) for the Drop action in
γ+
Broken (Fig. 2).

The corresponding abstract MDPs are depicted in Figs. 5(a) and (b), respec-
tively, where m stands for the ground action MoveS (box , s1, s2). That is to say
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Table 1. Verification results for example properties

Φ1 Φ≤1 Φ≤2 Φ≤3 Φ∞

With bubble wrap false false true true true

Without bubble wrap false false false false false

when there is bubble wrap, a successful attempt of moving the box leads to
state s1, from where only successful termination of the program is possible, rep-
resented by entering absorbing state s3. Should the box be dropped, state s2 is
entered, and m may be retried indefinitely until it succeeds. On the other hand,
if the box does not contain any bubble wrap, the agent only has one attempt.
Should it fail, absorbing state s4 is reached, representing program failure.

We can now feed these finite MDPs into a probabilistic model checker such as
STORM [4] in order to verify (the propositionalized versions of) the example prop-
erties. Table 1 shows the corresponding results, where Φ1 stands for formula (3),
Φ≤k for (4) with k ∈ {1, 2, 3}, and Φ∞ for (5). None of the properties holds in both
types, i.e. none is valid. We can see that in order to obtain a 95% certainty that the
unbroken vase ends up on shelf s2, we need to allow for at least two move attempts
(hence bubble wrap is required). Intuitively, this is because the first one only has a
90% chance to succeed, but with two attempts we already get 0.9+0.1 ·0.9 = 99%
success probability, 99.9% with three, and so on. The desired situation is thus
reached eventually “almost surely”, meaning with a 100% probability.

s0

s1

s2

s3
0.9

0.1

m

ε : 1

0.9

0.1

m

ε : 1

(a) with bubble wrap

s0

s1

s2

s3

s4

0.9

0.1

m

ε : 1

: 1

ε : 1

: 1

(b) without bubble wrap

Fig. 5. Example abstract MDPs

4 Conclusion

In this paper we lifted recent results on the decidability of verification of temporal
properties of classical Golog programs to the decision-theoretic case. The class
of acyclic theories is very expressive in the sense that it subsumes many of
the popular classes, including the context-free and local-effect ones. Our result
not only enables us to employ recent advances in probabilistic model checking
[4,6,9] for the verification of DTGolog agents, variants of which have been used
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e.g. for controlling soccer robots [5]. Our abstraction, which can be performed
as a preprocessing step, also opens the application range of methods normally
working on finite MDPs to a large class of infinite-state problems.
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